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ABSTRACT

Advancement in technology is usually made by building on previous experiences
and learning from past successes and failures. However, knowledge transfer in the broad
field of product design is often difficult to accomplish. Research has shown that
successful component configurations, observed from existing products, can be dissected
and stored for reuse; but few computational tools exist to assist designers during the
conceptual phase of design. Many well-known manual methods (e.g. brainstorming,
intrinsic and extrinsic searches, and morphological analysis) rely heavily on individual
bias and experience and are often time intensive, laborious tasks that may not catch
solutions that are functionally analogous, but seemingly unrelated.

This research presents an automated concept generation tool that augments
traditional activities during the conceptual phase of design. The automated concept
generator draws on the existing knowledge contained within a repository of existing
design solutions to quickly produce numerous feasible concepts early in the design
process that each satisfy the functional requirements for a design problem. The
computational algorithm enables the development of a computerized design tool that
complements other concept generation activities, such as brainstorming and
morphological analyses. By quickly presenting numerous concepts from products that
have already been developed, this design tool provides a broader set of initial concepts
for evaluation than a designer may generate alone when limited by his/her personal

experiences.
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1. INTRODUCTION

Product design involves the transformation of a set of established requirements
into a physical device capable of satisfying those requirements. The early stages of
design, especially the stages involving concept generation and evaluation, are notoriously
difficult to study because much of the processes occur subtly within a designer’s head.
Because of the challenges associated with automating such an intrinsic and nuanced task,
designers are faced with complex decisions to make during these early stages of design
with few tools available to help manage the process. Designers can often feel
overwhelmed by the idea of generating not just one but a broad array of solutions to a
given design problem, especially if external pressure is being applied to develop an
appropriate solution quickly. This combination of discomfort and pressure usually leads a
designer to hastily rush through this critical phase of the design process. Consequently,
designers, especially those with less experience, often fail to pursue and adequately
evaluate an appropriate number of alternatives before selecting a design to embody. The
research presented here seeks to support a designer during the conceptual phase of the
design process with an automated tool capable of quickly searching a large database of
design knowledge and delivering multiple relevant and easily identifiable conceptual

solutions for a designer to pursue.

1.1. PRODUCT DESIGN OVERVIEW

Figure 1.1 diagrams common activities a designer must go through during the

development of a design—from clarifying the needs the device must fulfill through



generating the detailed embodiment of its structure. Many structured methods have
emerged to help guide designers during the various stages of the design process (Pahl and
Beitz, 1996; Otto and Wood, 2001; Ulrich and Eppinger, 1995). In particular, the
systematic approach of Pahl and Beitz (1996) and Hubka and Eder (1984), representing
European schools of design, has spawned many variant methodologies in American
design literature (Ulrich and Eppinger, 1995; Ullman, 1997; Schmidt and Cagan, 1995;
Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cutherell, 1996; Otto and Wood,
1996, 1997). These methodologies (e.g. Pahl and Beitz, 1996 and Otto and Wood, 2001)
take a designer through a specific set of steps devised to help dissect a design problem
and build conceptual solutions based on the functionality that a product needs to exhibit.
Functional modeling methods directly extract the functionality a solution must fulfill
from the established customer needs, ideally removing designer biases that may be
introduced by focusing on specific solutions too early in the design process. This act of
abstraction helps a designer generate more creative and complete conceptual solutions
and balance design choices between different components with the same functionality

(Pahl and Beitz, 1996).
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Figure 1.1. Steps of the planning and design process (adapted from Pahl and Beitz, 1996.)

1.2. PROBLEM DESCRIPTION

Although systematic methodologies exist, Ivashok (2004) discusses the resistance
designers seem to have toward applying them to generate initial design solutions and
states that designers tend to quickly descend on potential solutions as a means to further
define and understand a design problem. However, despite the tendency of designers to
be resistant in employing rigid methods early in the design process (Cross, 1994),
evidence also supports the idea that structured approaches can be helpful to students and
demonstrates a positive correlation between a structured approach and both the quantity
and quality of student designs (Radcliffe and Lee, 1989). Additionally, during the early
stages of the design process, designers tend to focus more on loose representations of
conceptual ideas, such as sketches and short descriptions, in order to begin to define a
design solution. Yang (2003) concludes that, in the context of student design teams, it is
important to generate and solidify a large number of ideas as well as begin prototyping a
design early in the design process. These ideas seem to point toward the need for the

seemingly tedious stages of systematic design to employ some level of automation to



help integrate the benefits of a structured method with the more natural activities of a
designer—a need that is most evident during the early phases of conceptual development.

The fuzzy front end of the conceptual design process has seen few attempts at
automation, perhaps due in part to the evolving strategies and methodologies that exist
for this phase of design. Many non-computational methods exist (e.g. techniques
designed to stimulate creative solutions (Glover, et al., 1989; de Bono, 1970) or use
design rationale from successful designs (Navinchandra, et al., 1991; Altschuller, 1984;
Suh, 1995)) but do not employ any automated tools to help guide a designer.
Furthermore, redesign tools (e.g. Quality Function Deployment (Prasad, 1998) and Life
Cycle Analysis (van den Berg, et al., 1995)) may prove initially confusing to an
inexperienced designer. Computational tools that support the conceptual stage of design
do exist, but often these tools address areas that support other aspects of conceptual
design such as initial requirements gathering (e.g. organizational tools such as the
TikiWiki project (Wodehouse, et al., 2004)), the creation of function structures (e.g. the
function grammar tool developed by Sridharan and Campbell (2005)), or optimization of
well-established concepts (e.g. (Du and Chen, 2004)) rather than the generation of design
solutions from existing design knowledge. Computational tools have been developed to
assist a designer during the transition between defining a design’s function and
establishing its form, but often these approaches either limit the scope of design problems
they are applicable to (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998),
restrict concept generation to dynamic systems where a bond graph can be readily

utilized (e.g. Welch and Dixon, 1991; Gui and Mantyl&, 1994; Bradley, et al., 1993; Oh,



et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi, 1997; Campbell, et al., 1999,
2000, 2003), or utilize user interfaces that a novice designer may find difficult to interpret
(e.g. Lu and Russomanno, 1999; Deng, 2002).

Conventional CAD programs are not designed to foster interactivity and creativity
during the early stages of design (Akman, et al., 1990), and suitable computational tools
that support the fuzzy leading edge of the conceptual phase are still relatively young and
underdeveloped. One area of research explores the development of computer tools that
enable 2D designer sketches to be quickly transformed into 3D parameterized models,
which can then be evaluated for the given design problem. Hearst, et al. (1998) state that
computerized sketching research seeks to create an environment that encourages
collaboration and modification in contrast to current computer interfaces that feel too
formal and precise to stimulate creativity. However, computerized sketching tools (e.g.
Lipson and Shpitalni, 2000; Qin, et al., 2000; Eggli, et al., 1997; Sturgill, et al., 1995;
Hwang and Ullman, 1990), although potentially useful, seem geared more toward
capturing a designer’s ideas for further development early in the design process and do
not seem to address the origination of the ideas to sketch. Other computer-aided
conceptual design tools apply function-based associations to graphically describe the
elements of a mechanical assembly (Serran and Gossard, 1992; Al-Hakim, et al., 2000;
Moore, et al., 1997). Often, though, function and flow semantics are only assigned to a
conceptual design after the structure has been chosen for manipulation by the software
(e.g. the Multi User Groups research platform (Cera, et al., 2002)), thus diluting any

benefits that may be gained by first abstracting a problem.



1.3. MOTIVATION

An increasing emphasis is placed on generating the best design early in the design
process as companies strive to reduce costs and develop more reliable designs with
minimal environmental impact at all stages of a product’s life cycle. This drive toward
perfecting a design (both from a marketing and manufacturing standpoint) in its infancy
requires that experience from completed designs be retained and reused so that accurate
decisions are made as early as possible, when design changes cost the company much
less, as shown in Figure 1.2. Often, this experience is retained in the mind of a tenured
employee and is given as sagely advice to a fellow designer seeking counsel about a
design decision. All too often, the tenured employee reaches retirement and the company
is faced with either losing decades of valuable experience or spending significant

amounts of money seeking consultation from the retired employee.
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Figure 1.2. Allocated and expended costs during design development and manufacture.
(adapted from Black, 1990).

Research has shown that successful component configurations, observed from
existing products, can readily be dissected and stored for reuse (Bohm, et al., 2005;
Bohm and Stone, 2004). But, even if experience in the form of design knowledge is
accessible, both the experienced and inexperienced designer may feel compelled to
become fixated on a particular solution or domain restricted set of solutions based on
instinct or, perhaps, a subconscious desire to pursue an initial ‘gut feeling.” Designers
traditionally have a limited number of options available to them to help generate multiple
feasible design solutions to evaluate.
Many well-known manual methods for generating multiple ideas (e.g.
brainstorming, intrinsic and extrinsic searches, and morphological analysis) are designed

to stimulate a designer’s creativity but ultimately still rely heavily on individual bias and



experience. Ideation is typically limited by experience, and experienced designers tend to
pursue a larger array of solutions early in the design process. Structured design
methodologies seek to encourage the generation and evaluation of a broad array of
conceptual designs by leading a designer through a series of guided stages. When
directed to generate multiple solutions for a given problem within a structured design
process, designers with limited experience are often able to produce a few feasible
concepts, but many of the ideas they produce are technically or realistically infeasible or
merely minor variations of similarly themed solutions. Researching alternative solutions
could potentially yield new concepts, but inexperienced designers are often still limited to
searching for preexisting solutions to the same design problem. This raises the question
of how one searches for something when (s)he does not know it exists?

Traditional methods for researching alternative ideas include interviewing more
knowledgeable people, searching for relevant patents, performing an Internet (web)
search, browsing through catalogs, or reverse engineering existing designs. Interviews
may still be limited by the experiences of the person being interviewed, and the
interviewee’s biases may inhibit an inexperienced designer from pursuing a non-
traditional solution. Patent databases, while vast, are not searchable in a manner that
readily fosters innovation and often are only useful for focused searches into specific
technologies. Web searches and catalogs are also vast sources of knowledge, but personal
experience can severely narrow a designer’s search, and the amount of available

information may prove too daunting to effectively parse through. Reverse engineering



existing products is potentially costly and time consuming and little information may be

gained by dissecting only one or two products.

1.4. HYPOTHESIS AND OBJECTIVES

The challenge in creating useful conceptual design tools lies in finding innovative
ways to help guide a designer toward the best solution(s) by building on existing design
experience while simultaneously discouraging tendencies to make choices or evaluations
based on hunches or biased methods. The following subsections elaborate on the research
hypothesis driving this the research and the specific objectives accomplished by
addressing this challenge.

1.4.1. Hypothesis. Using a database of stored design knowledge as a library, a
computational design tool can be created that is capable of quickly generating multiple
feasible solutions for a generic design problem. This study focuses on creating a design
tool that integrates into a structured design methodology, transforms user-defined design
specifications into a broad array of conceptual designs, and helps a designer evaluate the
solutions returned. By quickly presenting numerous concepts from products that have
already been developed, this design tool can provide a broader set of concepts to evaluate

than a designer may generate alone when limited by his/her personal experiences.

1.4.2. Objectives. The objectives of this dissertation are to:

I.  Create a computational theory for generating and filtering conceptual solutions
for a design problem using designer-defined functional requirements and

existing design knowledge mined from a repository of design knowledge.
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Il. Define a structured methodology for classifying the component terms used to
communicate the generated conceptual solutions to the designer.

I11. Implement the concept generator theory and algorithms as a software tool
(hereafter referred to as the concept generator tool) to present feasible
and relevant design alternatives to a designer. The software will be validated by:

A. Showing the capability of the concept generator tool to produce design
solutions comparable to those produced by upper level engineering students.

B. Showing the capability of the concept generator to reproduce design
solutions for existing products that do not directly comprise any of the
information stored in the repository of design knowledge.

C. Showing the capability of the concept generator to produce conceptual ideas

for a new product design.

1.5. ORGANIZATION

The layout of this document is arranged to coordinate with the main objectives.
First the reader is given a detailed look at the state of the art in design and especially
conceptual design, as well as a detailed introduction to the specific existing design
technologies that are used to support the automated design tool presented in this
dissertation. The three chapters (Sections 3-5) following the background (Section 2)
present the main contributions that this research delivers, namely a comprehensive
generalized algorithm for the automatic generation of conceptual solutions and the

technologies created to support its applied use. Later chapters present experiments and
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case studies performed to validate the research presented in Sections 3-5 and test the
current limitations of the proposed technology.

Synopses of the included subject matter by chapter:

Section 2 gives the reader background information pertaining to all of the
remaining chapters. This chapter covers an overview of the existing methodological
framework and computational tools that form the base for the work presented in Sections
3-6. This chapter also covers the state of the art in computational design tools that
support various stages of the design process.

Section 3 presents the algorithm that the concept generator uses to transform the
user-defined input into conceptual ideas. A simple example using a finite repository of
parts from a popular children’s toy is included to help demonstrate how new conceptual
solutions are created using the described algorithm,

Section 4 presents the software created from the algorithm described in Section 3.
Two versions of the Java-based program are described; one with limited functionality that
was initially used to test the efficacy of the algorithm in a real design scenario (described
in Section 6), and one with expanded functionality capable of supporting a full graphical
model of the requirements generated during a structured design process.

Section 5 presents the structured methodology created for classifying components
under a proposed hierarchical structure, similar to ones used for the classification of
living organisms. Additionally, function and port templates are proposed for each term to
help establish a more rigorous structure for the inclusion of design data into the

repository used to generate new conceptual solutions.
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Section 6 presents a series of experiments and case studies performed to test the
viability and usability of the proposed concept generator algorithm and implementation.
Two studies involving independent student evaluations of an implementation of the
computational tool are first presented. Finally, a case study investigating the effectiveness
of the proposed computational tool is included.

The final section, Section 7, concludes the work presented, outlines the
contributions made, and establishes future avenues of investigation that build on the
research presented. Appendices and a list of References can be found immediately

following Section 7.
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2. BACKGROUND

2.1. INTRODUCTION

The following section begins with a review of the state of the art in conceptual
design research and areas that support automated concept generation. In particular, we
first review systematic approaches to conceptual design and then focus on specific
product function and component representations and design knowledge collection
techniques on which the automated concept generation theory is built. Finally, a review
of existing computational tools that support designers throughout various stages of the
design process is presented.

2.2. STRUCTURED DESIGN METHODS

The fuzzy front end of the conceptual design process has seen few attempts at
automation, perhaps due in part to the evolving strategies and methodologies that exist
for this phase of design. However, over the past decade several methodologies have
coalesced around the functional decomposition and partial solution manipulation
techniques of Pahl and Beitz (Pahl and Beitz, 1988; Ulrich and Eppinger, 1995; Otto and
Wood, 1996, 1997, 2001; Hubka and Ernst Eder, 1984; Ullman, 1997; Schmidt and
Cagan, 1995; Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cuthrell, 1996).
Subfunction descriptions are necessary elements of a formal approach to identify or
derive a functional model for a product (originally called a function structure by Pahl and
Beitz (1988)) to initiate the concept generation phase of design. For this research, the

functional model derivation method as prescribed in Stone and Wood (2000) and
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Kurfman, et al. (2003) is followed. The procedure is comprised of a five-step method
summarized as:

1. Identify input and output flows that address customer needs (or other high level
requirements).

2. Generate a black box model (a model of the overall function and input/output
flows) of the system that the performance model describes.

3. Create function chains for each input flow-i.e. “Be the flow” and imagine
traversing through the system noting each operation (e.g. function) that is
performed on you prior to leaving the system.

4. Aggregate function chains into a functional model.

5. Check that each customer need is addressed by at least one subfunction. If not,
then add or adapt functionality to meet remaining customer needs.

To briefly illustrate this technique, the functional model of an insulating cup is
shown in Figure 2.1. The black box model is constructed based on the overall product
function and includes the various energy, material, and signal flows involved in the global
functioning of the product. The detailed functional model is then derived from

subfunctions that operate on the flows listed in the black box model.



hand, liquid

thermal energy

Hold Liquid

15

hand, liquid

thermal energy

> and
Customer Needs i
Retain Heat

e Doesnotburn » T e >

hand
o Comfortable fit

in hand
o Keeps drink hot .

for extended time 44 - . . g

u port llauid o guide liquid o store Liquid supply export luid

o Easy to drink s liquid ™| tiquid P guia P iquid liquid E—
« Holds a standard T i

Starbucks latte 1
o ... hand Irhn::‘:t hard : stop e:::&'t hand '

& thermal
ene| g!
L"HE'E’[;:' import il store supply ::f;;g‘ export iahrf;-“g?
—Pp| th 1} - P thermal | thermal B thermal
energy energy L energy energy
(@) (b)

Figure 2.1. For an insulating cup, (2) a snippet of customer needs leads to a (b) black box
and functional model of a cup following the functional model derivation method.

Functional models for any product can be generated using this technique.

Repeatability, ease in storing and sharing design information, increased scope in the

search for solutions, and tracking of input and output flows are some of the advantages of

functional models (Pahl and Beitz, 1988; Stone and Wood, 2000). When following the

functional model derivation method outlined above, designers in an experimental group

used 50% fewer terms to describe the functionality of the same product, and increased the

clarity of design communication (Kurfman, et al., 2003). On average, the experimental

group found 82% of the important subfunctions of a very detailed “control” functional

model after only one training session, indicating repeatability but not an exact science.
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In many respects, any type of model creation to represent engineering systems is
dependent on the skills and choices of the engineer. Different engineers are likely to
report slightly differing results unless given extremely constrained scenarios. The same is
true with functional modeling. In fact, this may be a strength of functional modeling as
part of an original concept generation approach. The subtle differences between
designers’ models may promote the exploration of innovative alternatives. For the present
purpose of conceptual design, designers who follow the functional model derivation
method outlined above can generate functional models that are ‘repeatable enough’ to

generate similar solutions with the concept generator algorithm presented in Section 3.

2.3. STANDARDIZED “LANGUAGES” IN DESIGN

Use of a standardized vocabulary is a beneficial tool for efficiently applying a
computational method to a natural language process such as conceptual design. Two such
existing vocabularies were utilized during the course of this research to facilitate the
input of functional requirements and the output of conceptual solutions for a design.
These two vocabularies, the Functional Basis of Design and the Component Basis, are

described in the next two subsections.

2.3.1. The Functional Basis of Design. The lack of a precise definition for small

easily solved subfunctions has spurred research into the development of a high level
design language (sometimes called a vocabulary or taxonomy) to describe product
function and thus enable a systematic approach to functional modeling (Hundal, 1990;
Koch, et al., 1994; Malmaqvist, et al., 1996; Altshuller, 1984; Kirschman and Fadel, 1998;

Kitamura and Mizoguchi, 1998, 1999; Umeda and Tomiyama, 1997; Sasajima, et al.,



17

1995). In order to make elements of the early design phases computable, researchers have
continued to pursue a standard language that unifies the previous works (Otto and Wood,
1997; Little, et al., 1997; Stone and Wood, 2000; Murdock, et al., 1997; Szykman, et al.,
1999; Hirtz, et al., 2002). The result of these recent efforts is a design language known as
the Functional Basis. Shown in Table 2.1 and Table 2.2, the hierarchically arranged Basis
terms are utilized during the generation of a black box model and functional model
(discussed in Section 2.2) in order to encapsulate the actual or desired functionality of a
product (Hirtz, et al., 2002). In this approach, the designer follows a rigorous set of steps
to define a new or redesigned product’s functionality prior to exploring specific solutions
for the design problem (Stone and Wood, 2000). The Functional Basis is intended to be
broad enough to span the entire electro-mechanical design space without repetition and
has been independently verified by other researchers such as Ahmed (Ahmed and
Wallace, 2003; Ahmed, et al., 2005) and Wood (Wood, et al., 2005; Gietka, et al., 2002).
In Table 2.1, engineering functions are categorized as 8 primary classes that are further
specified as secondary and tertiary (not shown) categories. In Table 2.2, engineering
flows are categorized as three primary classes (material, signal and energy) and then

further specified as secondary and tertiary (not shown) categories within each class.
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Table 2.1. Function classes under the Functional Basis (for term definitions, see Hirtz, et
al., 2002).
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Table 2.2. (Below) Flow classes under the Functional Basis (for term definitions, see
Hirtz, et al., 2002).
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The black box model is constructed based on the overall product function and
includes the various Functional Basis energy, material, and signal flows involved in the
global functioning of the product. A detailed functional model is then derived using
Functional Basis function terms that operate on the flows from the black box model.
Repeatability, ease in storing and sharing design information, and increased scope in the
search for solutions are some of the advantages functional models that incorporate the

Functional Basis exhibit (Stone and Wood, 2000; Kurfman, et al., 2001).
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2.3.2. Component Basis. The component naming vocabulary employed

throughout this research, termed the Component Basis, enhances the usefulness of the
information contained within the design knowledge repository by grouping similar
product artifacts into related classes (Kurtoglu, et al., 2005, 2007). For example, specific
instances of components in different products may be named "motor 1", "shaded pole
induction motor”, or "dc motor”. Using the Component Basis, each of the of these
components would be identified as similar and tagged as an "electric motor"”. Use of this
vocabulary allows for groupings of similar components to be viewed as a single more
abstract concept variant when returned as a result from a computational tool. Also, this
clustering of like components helps eliminate redundancies that bog down computations.
By eliminating these redundancies, a larger set of unique and more abstract concept
variants can be quickly generated and evaluated using the proposed computational tool.
After concept variants are selected using the generalized Component Basis names,
individual artifacts classified under the chosen Component Basis names can then be more
closely investigated to spur a more specific concept variant idea. For example, if a
returned concept variant included an "electric motor", the design repository (described in
detail in Section 2.4.) could be accessed to provide the designer with the specific

examples "motor 1", "shaded pole induction motor™, or "dc motor".

2.4. DESIGN KNOWLEDGE STORAGE AND RETRIEVAL

Functional models reveal functional and flow dependencies and are useful for
capturing design knowledge from existing products. Over the course of several years, a

web-based repository of design knowledge has been developed and refined at the
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University of Missouri—Rolla and in collaboration with the University of Texas at Austin,
Pennsylvania State University, Bucknell University, and Virginia Polytechnic Institute
and State University (Bohm, et al., 2004, 2005). This repository, which includes
descriptive product information such as functionality, component physical parameters,
manufacturing processes, failure modes, and component connectivity, now contains
detailed design knowledge on over 100 consumer products and the components that
comprise them (in total over 4500 design artifacts are currently included in the
repository).

2.4.1. Information Captured by the Repository. Several design artifact
attributes are captured when entering products into the UMR design repository database.
These attributes are stored in a relational database where each record contains an Artifact
Name as a free form text field where the user can define the name of an artifact, a Part
Family as a free form text field that can be used to catalog similar artifacts as a type or
family, and a Part Number, which is a sequential artifact number given when the artifact
populates the database. Information about the actual function of an artifact is captured in
the Subfunction field as a value from the Functional Basis described above.

Quantity, Artifact Color, Manufacturing Process, Material, and Description fields
further describe the given aspects of the particular artifact along with fields to capture
rough geometric dimensions. An Assembly field denotes whether or not the artifact is a
composite assembly or atomic, and a Supporting Function field denotes whether or not

the artifact is secondary to the product’s operation. A Component Naming field references
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the list of standard component terms, described in Section 2.3.2., to abstractly identify the
class of the artifact.

Acrtifact relationships are captured by the Sub-Artifact Of field, which establishes
a parent-child relationship; the Input Artifact and Output Artifact fields, which are used to
trace flow from the current artifact to the corresponding input/output artifacts; and the
Input Flow and Output Flow fields which similarly trace the input and output flows to
other artifacts using values from the Functional Basis. With these fields, various

relationships and connections can be drawn from the repository.

2.4.2. Using the Design Repository. The repository web interface, which offers

guest and registered user access, is located at http://function.basiceng.umr.edu/
repository/. The top-level options within the web repository are Browse, Search, Design
Tools, Design Methodology Dictionary and Account Information. With the web-based
repository, a user can browse and search artifacts, generate design tools, and view a
dictionary of function and flow terms.

The Browse feature allows users to navigate through the repository. When Browse
is initially selected, all of the high-level systems within the repository are shown at the
left of the screen. The systems can be expanded such that artifacts within the system are
exposed. A hierarchical menu system allows for systems to be expanded through
subassemblies down to singular artifacts. The menu system draws information from the
Subartifact_Of field of the database to establish artifact hierarchy. Finally, when an
artifact or assembly is selected, a repository listing of the artifact is shown on the right

portion of the screen. A screenshot of the Browse feature is shown in Figure 2.2.
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Figure 2.2. The UMR Design Repository web interface. Access to the repository may be
requested at http://function.basiceng.umr.edu/repository.

When a repository user selects the design tool option, they are presented with a
listing of the high-level systems contained in the repository and selection boxes to denote

the type of desired design tool output. Once one or more systems are selected, a summary
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of the selected systems is presented, notifying the user of the number of artifacts within
the systems and system descriptions. The repository can currently output function-
component and design structure matrices as well as bills of materials. Because the design
tools are not stored but rather created on demand directly from the repository database,

the user will always be presented with the most up-to-date design tool.

2.4.3. The Web-Based Morphological Search. The morphological matrix

introduced by Zwicky is a now a classic technique for use in conceptual design (Zwicky,
1969). This method provides the design engineer with a simple, albeit manual, means for
bookkeeping potential physical solutions and their corresponding functionality. A
morphological matrix is traditionally created by listing all of the subfunctions for a
design and brainstorming solutions to each subfunction, listing the solutions as columns
and the subfunctions as rows (Pahl and Beitz, 1996; Otto and Wood, 2001; Ulrich and
Eppinger, 1995; Hubka and Eder, 1984; Ullman, 1997). In a manual engineering design
context, the morphological matrix is limited to the concepts generated by the engineer,
although the morphological matrix is one technique that can be used in conjunction with
overall design processes such as 6-3-5 or the reverse engineering and redesign method of
Otto and Wood (2001).

The web-based morphological search tool is an automated online tool that
designers can use to filter and browse through the product knowledge contained within
the web-based repository. Accessed through either a guest or personalized user account at

http://function.basiceng.umr.edu/repository/, a designer may reach the design tool via a

web-browser on any computer connected to the Internet. Upon logging into the design
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repository, the user is presented with an options menu. To perform a morphological
search, the user navigates to the Search page and is presented with the option to perform
either a “Standard Artifact Search” or a “Morphological Chart Search”. Once
“Morphological Chart Search” is selected, the user is presented with the morphological

search options shown in Figure 2.3.
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Figure 2.3. The morphological search input.
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A list of available products is presented on the left hand side of the morphological
search input. The user can select any combination of the products listed depending on
their desired search domain. With the search base selected, the user then selects the
number of subfunctions they wish to enter through the “Subfunction:” pull-down menu.
At this time, a maximum of 10 subfunctions can be entered for a single search. If more
than 10 subfunctions exist, the user must perform multiple searches. Once the number of
subfunctions is selected, the user must specify the number of columns they wish to
appear in the search return. A maximum of 20 columns can be displayed although 10
columns typically capture most, if not all, of the possible returns.

The user can now begin to specify the subfunctions they wish to search for by
using the pull-down menus. Subfunctions are entered as a tuple representing the input
flow, subfunction and output flow. The first subfunction entered in Figure 2.3 relates to
“import human material” but is specified in the format (human material, import, human
material). For most functions, the input and output flow are identical; however, the input
and output flow for some functions (e.g. convert) are different.

With all of the desired subfunction tuples entered, the user can utilize the “Use
Component Basis Naming” checkbox to choose how search results are returned.
Checking the box categorizes returned artifacts under the Component Basis. Leaving the
box unchecked will return results categorized by the name given to a specific artifact. For

LR AN 11

example, artifacts may be named “motor,” “electric motor” and “dc motor,” but they are
all categorized by the Component Basis as “Electric Motor.” Choosing to categorize

search results by the Component Basis will group all instances of an electric motor as
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“Electric Motor.” Without using the Component Basis categorization, the instances of

“motor,” “electric motor” and “dc motor” would be returned distinctly.

Upon submitting the search, a new browser window is opened containing the
search results. These results for the three example subfunction tuples entered in Figure
2.3 are shown below in Figure 2.4. The left-most column of the results page displays the
subfunction search criteria and subsequent columns (up to the amount specified) show the
groupings of artifacts solving the given function. The results are sorted within each row
by their rate of return. For example, a “Housing” of some sort is found to solve “Import

Human Material” in 34.55% of the total number of solutions to “Import Human

Material.”
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Figure 2.4. The morphological search results.
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For this particular search, results were returned for “import human material” and
“guide human material” while no artifacts were found for the “stabilize human material”
criteria. To view specific instances of a returned component grouping, the user can click
on the link below the component image. Figure 2.5 shows all of the 19 artifacts classified
as a “Housing” for the “import human material” search criteria. Listed along side each
artifact is the artifact’s parent product. For example, the “Left Case Handle” artifact
originated from the Black and Decker Dustbuster. If the user wishes to view more
information about a specific artifact, they can do so by clicking the artifact name. The
screen-shot seen previously in Section 2.4.2. as Figure 2.2 shows the Browse page that
appears when “Left Case Handle” is selected. The Browse page shows additional
information such as the additional subfunctions associated with the artifact, artifact color,

material, manufacturing process, and physical parameters.

Browse Repository

800
4. » [+ | I + | A hep://function2 basiceng.umr.edu:8080/ view /seare ’Q- Google

Design Engineering Lab
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case (salton slectric wok)

Search took: 0.077 seconds.

Figure 2.5. Detailed component list for “housing”.
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2.4.4. Downloadable Design Tools. The knowledge contained in the repository is

steadily expanding and benefits from a broad base of consumer products. As indicated in

Figure 2.6, design generation tools like the function-component matrices (FCMs) and

design structure matrices (DSMs) can be readily created from single or multiple products

using the web-browser interface. The downloadable matrices can be used in a variety of

ways to enhance the design process (Bohm, et al., 2004, 2005). FCMs contain

information about the functionality of the components comprising the subset of products

chosen for analysis.
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Figure 2.6. From the web-based repository (center), a designer may extract information
about component functionality in the form of a function-component matrix (FCM, left)

and component compatibility in the form of a design structure matrix (DSM, right).
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Each nonzero cell entry, xij in the FCM matches a component classification term j
with a subfunction i that it had solved in a product that had previously been dissected and
stored in the repository, where Xj; is the number of instances of the j" component
exhibiting the i functionality. For example, in the column labeled ‘gear’, common
functionality includes the rows ‘change mechanical energy’ and ‘transfer mechanical
energy’. Similarly, each DSM generated from the repository contains component
compatibility information for the components comprising the subset of products selected.
In a DSM, positive compatibility between component j and component i is indicated
when a 1 occupies the cell at djj (e.g. an electric motor and a gear). DSM cell entries set at
0 indicate that the corresponding row and column components were not directly
connected in any of the products selected to generate the DSM. Each of these matrices is
a simple but potentially powerful representation of the design knowledge from existing

designs.

2.5. TOOLS TO SUPPORT THE DESIGN PROCESS

Many tools are available, both computational and manual, to assist a designer
during various stages of the design process outlined in Figure 1.1. This section will
provide an overview of design tool research that supports various stages of the design
process and illustrates where the research presented in this dissertation fits into the

process.

2.5.1. Idea Generation Techniques. Concept generation research has traditionally

focused on developing methods that improve the quality and variety of concepts

generated. These methods are often kept simple and efficient such that designers are not
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burdened by the details or limitations of the method. The most common concept
generation method is known as brainstorming (Osborn, 1957). The term brainstorming is
frequently applied to any idea generation technique. Brainstorming as a specific method
requires a group of individuals to follow the basic rules of 1) avoiding criticism, 2)
welcoming “wild ideas”, 3) building on one another’s ideas, and 4) preferring more ideas
than dwelling on specific ones. A more structured concept generation method can be
found in the techniques known as C-Sketch (Shah, 1998) and 6-3-5 (Rohrbach, 1969).
The latter of these sketch-based methods requires six participants to independently create
three ideas at a time in a series of five rounds. The added constraints of the method
ensure that individuals participate equally, which may be more difficult to enforce in
traditional brainstorming.

In addition to these team-based methods of concept generation, some well-
accepted approaches that do not require a set of interacting designers also exist. Lateral
thinking techniques help stimulate creative solutions using mental exercises to help
encourage broad, sideways thought during the early stages of conceptual development (de
Bono, 1970). Designing by analogy is another established approach to arrive at novel
design solutions. This method begins by first generalizing the design problem to a set of
functional requirements (or a function structure representation). Then, the functional
framework allows a designer to look for or conceive of analogous products or
components that perform the same set of functions (McAdams and Wood, 2000; Linsey,
et al., 2005). Function-means trees and morphological analysis (Zwicky, 1969) are

similar methods in which solutions to individual functional requirements are first sought
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and then synthesized together. Apart from these approaches, one widely used method is
the Theory of Inventive Problem Solving (also known by the Russian-based acronym
TRIZ, (Altshuller, 1984)). This method provides a tabulated representation of a large
number of solution principles that have been extracted from existing patents. Another
approach is “catalog design” where concepts are generated purely through browsing a
catalog of physical elements (components, assemblies, etc.). The results are evidently
limited by the breadth of the catalog; however, the benefit lies in the presentation of
design knowledge that falls outside the designer’s expertise memory (McAdams and
Wood, 2000). The computational concept generation methods presented in this
dissertation exploit the benefits of having a catalogue of design knowledge from which to
pull new designs while leveraging functional descriptions to quickly home in on solutions

that are the most relevant to the design problem at hand.

2.5.2. Automated Design Tools. Innovations cited by Antonsson and Cagan

(2001) indicate that certain parts of larger design problems can be solved automatically
and without human expertise. However, automation in the design process is often only
employed once basic design concepts have been selected but lack specific dimensions.
Complete automation of the design process seems to be restricted by a lack of continuity
between conceptual design methods and computational design tools. Several existing
design tools primarily focus on the initial design phases, such as customer need
gathering, the mapping of requirements to functionality, or function decomposition (e.g.
Prasad, 1998; Feng, et al., 2001; Kitamura, et al., 2004). Other tools address automation

issues during the later steps of design embodiment or detail design, such as predicting
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performance in early physical embodiment designs, analyzing kinematic designs,
predicting required assembly sequences for an early embodiment design, and defining the
detailed geometry and layout for a conceptual solution (e.g. Onyebueke, et al., 1995;
Simpson, et al., 1995; Fox, 1994; Johnson, 1998; Zha, et al., 2001; Gorti and Sriram,
1996; Homem de Mello and Sanderson, 1991, Ishii, et al., 1988; Thornton and Johnson,
1996). However, relatively few computational tools exist to assist designers during the
conceptual phase of design, where requirements must be translated into a broad array of
potential solutions that must then be roughly evaluated for predicted performance and
cost.

Some tools or approaches do directly address the generation of design solutions
from existing design knowledge, but are narrow in their application domain (e.g. Yates
and Beaman, 1995; Hayes, 1995; Finkelstein, 1998) or exist only as limited research
prototypes. For example, graph grammars have tackled specific component synthesis
problems based on a desired behavior or performance (Schmidt and Cagan, 1995, 1997;
Campbell, et al., 1999, 2000, 2003; Kurtoglu and Campbell, 2005). Similarly, catalog
design efforts can synthesize very specific products from a candidate set of components
based purely on quantitative performance input/output requirements (Ward, 1989; Ward
and Seering, 1993). Several technologies have utilized bond graphs to aid the translation
from requirements to embodiment (e.g. Welch and Dixon, 1991; Gui and Mantyld, 1994;
Bradley, et al., 1993; Oh, et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi,
1997), but this approach limits concept generation to dynamic systems for which bond

graph relationships can be defined. Group technologies evolved as coding schemes that
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can be used to tag and recall components within a catalog or inventory of parts (Jordan, et
al., 2005; Opitz, 1970; Opitz, et al., 1970; Opitz and Wiendahl, 1971; Girdhar and Mital,
2001a, 2001b; Shah and Bhatnagar, 1989; Henderson and Musti, 1988; Bhadra and
Fischer, 1988). Some research outlines interesting methods for a designer to move from
functional requirements to conceptual solutions (e.g. Umeda, et al., 1996; Ulrich and
Seering, 1988; Mann, 2000; Malmqvist and Svensson, 1999; Chakrabarti and Bligh,
2001) but employ little or no automation to assist a designer through the described
activities. Others employ automation (e.g. Lu and Russomanno, 1999; Deng, 2002), but
have steep learning curves or utilize knowledge in a way that is not easily generalizable
to accommodate alternative approaches. In general, suitable computational tools that
support the fuzzy leading edge of the conceptual phase are still relatively young and
underdeveloped if they exist at all. Regardless of the specific concept generation
methodology, all approaches begin by formulating the overall product function and
breaking it into small easily solved subfunctions. Solutions to the subfunctions are
sought, and the form of the device then follows from the assembly of all subfunction
solutions.

From a perspective different than the functional modeling approach discussed
above, a number of research efforts have sought to establish a generic computational
scheme for electromechanical design. While these methods have yet to capture function
on the same level understood by human designers, such approaches have been used in
attempts to synthesize new electromechanical configurations. These methods use a

variety of computer techniques including case-based reasoning (Navinchandra, et al.,
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1991), constraint programming (Subramanian and Wang, 1995), qualitative symbolic
algebra (Williams, 1990), or geometric algebras (Palmer and Shapiro, 1993). One of the
most historically significant of these includes several approaches applying expert system
formulations to specific design problems such as the paper roller system established by
Mittal, et al. (1985).

The concept generation phase of the design process is, at best, difficult to translate
into a succinct methodology that is useful to both experienced and inexperienced
designers. Formalization of the conceptual design phase is an active, but relatively
immature, area of research. Many formal methods of conceptual design have yet to be
realized as computational algorithms. The work described in this dissertation presents an
automated, mathematically based algorithm for concept generation and early concept
evaluation capable of being adapted to multiple design applications. The specific focus of
this research is the combination and formalization of function-based synthesis, constraint
management, and design space search to create a comprehensive space of concept

variants and search it for feasible design candidates.

2.6. SUMMARY

This section presented background information that supports the automated
concept generation design tool proposed in this research. Details about existing theories
of design and how the concept generator fits into a structured design methodology were
given. Standardized vocabularies for functions and components, known as the Functional
Basis and Component Basis respectively, and a web-based repository of product artifacts

were presented as tools used by the concept generator to generate new concepts from
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existing design knowledge. Finally, an in-depth survey of literature on computational

tools developed to support the design process was given.
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3. AUTOMATED CONCEPT GENERATION, PART I: THEORY AND
ALGORITHM

3.1. INTRODUCTION

This section introduces the proposed algorithm used to generate concept variants
from a set of user-prescribed design requirements. First, the theory behind the proposed
algorithm is presented in Section 3.2. Next, in Section 3.3, the procedure for transforming
a set of functional requirements in the form of a functional model into a set of compatible
components that comprise a complete concept variant is presented. In Section 3.4, a
simple example demonstrating how the algorithm can be utilized is presented using a

finite set of design components, namely a set of Tinkertoy™ construction toys.

3.2. THEORY

A theoretical challenge common to all attempts to automate the early conceptual
design phase is the issue of how to convey functional relationships, or the basic purpose
of a new design problem, to a computer so that it can search, retrieve and synthesize
relevant design information. The theoretical approach of this research begins with a
functional description of a desired product based on high level requirements from a
societal need (e.g., customer needs), searches for components that solve the identified
functionality, exhaustively explores all possible combinations of those components that
can be physically integrated, ranks the resulting feasible concept variants based on
designer specified criteria, and, finally, presents those ranked concept variants to the
designer. The underpinnings of this computational theory of concept generation include

the basic ideas that functionality of a product generally maps to a repeatable set of forms
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or components (e.g. Pahl and Beitz, 1988), that component to component connections are
important identifiers for product architecture (e.g. Pimmler and Eppinger, 1994) and that
abstract as well as concrete knowledge about products can be stored in a design
repository (e.g. Szykman, et al., 2001).

More specifically, if an existing repository of design knowledge exists which
records, at a minimum, the functionality, connections, and generalized component name
for each artifact of a set of known products, then that knowledge can be mined to create
new products that are combinations of existing artifacts. The function-component
relationships can be represented mathematically, most simply as a matrix. The same is
true for connections between components. From these mathematical representations of
design knowledge, all possible concept variants can be computed—an activity that,
except for very simple products, is too tedious and time consuming for designers. The
computations essentially mimic the key steps in function-based conceptual design:
mapping function to physical solution through a mathematical form of a morphological
matrix and connecting physical solutions together into feasible concept variants
(including the ability to capture function- and component sharing).

The number of potential, feasible concept variants resulting from the computation
can be overwhelming. Consider a morphological matrix with n subfunctions where there
exist M, i = 1..n, component solutions for each subfunction. The upper bound on concept

variants is combinatorial and given by:

CVmax :HMi (31)
i=1
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Even after filtering out infeasible concept variants based on connections, a
designer may be left with thousands of concept variants. This necessitates a ranking
aspect to any automated concept generation approach. From a minimal set of product
knowledge such as described in the previous paragraph, the frequency of component
occurrence can be calculated and used as a simple measure of the confidence in the
generated concept variant. Additional knowledge in the repository can allow for more
sophisticated ranking of generated concept variants, for example component failure rate
and types, manufacturing process, or cost. The particular approach to computing a rank
will depend upon the criteria chosen.

It is important to note that the process of the automated concept generation theory
is key here. The general theory would work with any initial, abstract representation
scheme to describe a product. It does not have to follow this particular form of functional
modeling—in fact it does not even have to utilize function. One could potentially use
customer needs as the abstract representation, for example. As long as a repository of
design information, encoded by the chosen abstract representation scheme, exists, a
generalized version of the mapping and computations presented would apply.

Moving to the specifics of the automated concept generation algorithm, an outline
the matrix-based method of concept generation is next established. The concept
generation method starts with a high level functional description of a product, expressed
in the Functional Basis, and uses component functionality along with component
compatibility to create, filter, and rank concept variants (Hirtz, et al., 2002; Bryant, et al.,

2005). The function-component matrix (FCM) and the design structure matrix (DSM)
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describe the function-component relationships and the component-component
compatibility, respectively, of existing consumer products (Pimmler and Eppinger, 1994)
and are extracted from the web-based design repository hosted at the University of
Missouri-Rolla. The product descriptions stored in the repository allow access to
additional information such as historical occurrence and failure mode, which can be used
to help limit and rank design solutions (a rudimentary ranking based on historical

occurrence is implemented for results reported in this section).

3.3. ALGORITHM

The algorithm that uses the design knowledge contained in the repository to
generate, filter, and rank concept variants for further analysis by design engineers is
described in detail in the following sections. Figure 3.2 graphically summarizes the
theory behind each step in the concept generation scheme, while Figure 3.3 relates each
theoretical step it to the matrix-based manipulations necessary to compute the set of

filtered concept variants.

3.3.1. Step 1: Generate a Conceptual Functional Model. The concept

generation scheme begins with the functional model for either a new product to be
developed or a previously developed product that is to be redesigned. Using the
functional model derivation method presented in Section 2.2, a graphical block diagram
that defines the flows through the product and the functions that act on those flows is
created. This block diagram is then translated into a matrix form that describes the
adjacency between functions, i.e., the connection between subfunctions as defined by

their connecting flows. Step 1 under “Theory” in Figure 3.2 shows a simple generic flow
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chain of the form used to create functional models using the Functional Basis method,
where f1-f4 are unspecified subfunctions of a product to be designed. Figure 3.2 also
illustrates the matrix equivalent of this flow chain, an adjacency matrix where a non-zero

cell entry indicates a forward connection between the row and column functions.

-
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Figure 3.1. Visual summary of the algorithm used in the concept generator. The
information shown in Steps 1, 2, and 4 is entered by the user. The unfiltered set of
concept variants (Step 3) and set of feasible variants filtered by the component capability
information from the DSM (Step 5) are produced using matrix algebra operations shown
in Figure 3.2.
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3.3.2. Step 2: Define Function-Component Relationships. The next step

utilizes design knowledge gathered from existing consumer products to define the
relationships between a component and the functions that it solves in previously
examined products. Reverse engineering techniques are applied to existing consumer
products, and information extracted from each product’s bill of materials and functional
model is stored in the web-based design repository described in Section 2.4. The
function-component relationships in the repository capture both function- and component
sharing cases. In the case of function sharing, a single artifact in the repository can be
tagged with as many functions as it solves. For component sharing, where several distinct
components are required to solve an overall function, the components are grouped as an
assembly and treated as a single artifact. Function-component matrices (FCM) for
individual products or specified groups of products can easily be generated from the
stored information. Non-zero cell entries in the FCM indicate that the component from
the column containing the cell can solve the function from the row containing the cell.
Step 2 in Figure 3.2 shows how the FCM equivalent describes the function-component
relationships in the generic example shown under the “Theory” column.

3.3.3. Step 3: Compute the Set of Concept Variants that Solve the Function
Model. Step 3 utilizes the information from Step 1 and Step 2 to create a set of design

solutions. In Step 3 under “Theory” in Figure 3.2, a component “tree” is created showing
the chains of components that could potentially solve the flow chain presented in Step 1,
based on the component-function relationship information shown in Step 2. Although the

generic example illustrated in Figure 3.2 shows a single branching tree (i.e., only one
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component solves the first function in the chain) for Step 3, it is important to note that
multiple branching trees may be formed at this stage when multiple components have the
potential to solve the initiating function in the chain. It is also important to note that the
algorithm supports the cases of function sharing (note the repeated components C1 in the
top half of the branch in Step 3 of Figure 3.2) and component sharing (here an assembly
of components that solves a single function or an overall higher level function can be
entered as an artifact in the repository).

Computationally, if the transpose of the row vector from the FCM that
corresponds to each of the functions from the flow chain in Step 1 is matrix multiplied by
the row vector from the FCM that corresponds to the forward connected function, a
component-component matrix will be generated for each function connection in the flow
chain. This matrix multiplication is illustrated as the matrix equivalent to Step 3 in Figure
3.2. Non-zero cells within these newly created component-component matrices represent
all theoretically possible component combinations that will solve each pairing of
connected functions in the flow chain.

If these component-component matrices are then placed into the adjacency matrix
generated in Step 1, component paths can be traced through the aggregated matrix similar
to the way a path is traced along the tree shown in Step 3 under “Theory” in Figure 3.2.
Tracing every possible “path” of connections will give a list of all theoretically possible
component chain variations that solve the function chain presented in Step 1 of Figure

3.2.
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3.3.4. Step 4: Define Component-Component Compatibility Using Existing
Design Knowledge. The next step uses additional design knowledge gathered from

existing consumer products to define the compatibility between components in the
examined products. As each product is reverse engineered, information regarding the
connection between components is extracted from assembly models (Rajagopalan, et al.,
2005) and stored in the web-based design repository described in Section 2.4.
Component-component compatibility matrices for individual or specified groups of
products can easily be generated from the stored information. Non-zero cell entries in the
component-component matrix (frequently called a design-structure matrix or DSM)
indicate that the component from the column containing the cell has been directly
connected to the component from the row containing the cell in an existing product. Step
4 in Figure 3.2 shows the DSM equivalent describing the known component-component

compatibility in the generic example shown under the “Theory” column.

3.3.5. Step 5: Filter Set of Conceptual Variants. Step 5 uses the component

compatibility information contained in the DSM to prune the tree of design solutions
computed in Step 3. Shown under the “Theory” column for Step 5 in Figure 3.2, each
component connection in each component chain is checked for known compatibility
using the stored connection information from Step 4. An ‘X’ indicates each component
connection line that is not supported by the compatibility table shown in Step 4. In the
matrix equivalent, each cell of the DSM is multiplied with the corresponding cell in each
of the function pair component-component matrices generated in Step 3. Overlaying the

DSM on each matrix created in Step 3 (via cell multiplication) has the effect of removing
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any of the possible component connections that do not appear in the repository database.
This technique uses the “experience” contained in the repository to filter out potentially
inadequate concept variants and reduce the set of possible concept variants down to a
more manageable size. After the matrices are filtered, we can once again trace every
“path” of possible components to generate a list of feasible component chains that solve
the function chain from Step 1.

Finally, this filtered list of feasible solutions can be ranked to bubble the most
promising solutions to the top of the list based on a designer’s specified needs. For
instance, various measures of design needs (e.g. manufacturability, recyclability, failure
etc.) entered as the non-zero FCM and/or DSM entries can be used to rank and sort the
resulting conceptual design solutions generated by this method. Once the set of filtered
concept variants has been computed and ranked, a designer is then free to sift through the
generated concept variants and evaluate the application of each to the design situation at
hand.

The presented algorithm illustrates a method to quickly produce and sort a set of
conceptual designs for a new or redesigned product. Functions comprising a proposed
product’s functional model are mapped to lists of components that are capable of solving
each function. The tree of possible component chains is then pruned by eliminating
infeasible component connections according to historical component-component
compatibility. This filtered set of component chains is then ranked and presented to the

design engineer for further analysis. The following section illustrates the application of
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the presented algorithm by manually applying it to a simplified design example using

Tinkertoy™ parts as the set of components available in a simulated design repository.

3.4. ILLUSTRATIVE EXAMPLE

A tricycle built from a standard Tinkertoy™ set, shown in Figure 3.3, is next
presented as a simple proof-of-concept example. This simplified example demonstrates
the effectiveness of the described methodology while utilizing a manageable set of

artifacts for ease of illustration.

Figure 3.3. Tinkertoy™ tricycle used as the “product” to be redesigned in the following
example.

First, a functional model of the tricycle construction was generated as described in
Step 1 of the concept generation algorithm. For demonstration purposes, the subsequent

steps of the concept generation scheme were only applied to the energy flow chain,
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shown in Figure 3.4a, from the complete functional model. The functional model of this
flow chain begins by importing human energy across the product boundary of the tricycle
toy. The model follows the energy flow as it gets converted to translational energy and
transmitted through the product, then gets converted into rotational energy, which is
further transmitted through the product and finally converted back into translational
energy (note that we have used the tertiary categorization of flows in order to distinguish
between the rotational and translation aspects of mechanical energy). Figure 3.4b shows
the function adjacency matrix generated from the energy function chain in Figure 3.4a.
Sequential numbers are used in the function connectivity matrix for easy reference to the

connections labeled in the energy function chain.
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Figure 3.4. (a) Function chain for the energy flow through the Tinkertoy™ tricycle. (b)
Function adjacency matrix describing the function connections graphically shown in (a).
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Next, in Step 2 of the concept generation scheme, a function-component matrix
(FCM) was constructed for the complete set of Tinkertoy™ components. The FCM for
the Tinkertoy™ set was generated by assigning functionality to each component of the
Tinkertoy™ component set, which is, in effect, a mini-repository of Tinkertoys™. Note
that the component naming terms were not used in this initial proof of concept study. The
complete FCM generated for the Tinkertoy™ set is shown in Figure 3.5. For instance, the
FCM indicates that the yellow bearing component is capable of embodying the following
functionality: Guiding a solid, distributing translational energy, transmitting translational
energy, converting human energy to translational energy, and converting translational

energy to rotational energy.
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Figure 3.5. Function-component matrix manually generated for the set of Tinkertoy™
components.

Using the function connectivity information from Figure 3.4b and the component
functionality from Figure 3.5, the entire set of theoretical concept variants for the

redesign was calculated during Step 3 of the concept generation algorithm. As illustrated



49

in Figure 3.6, rows for each of the connected function pairs were multiplied together to
generate the unfiltered matrices of design solutions for each function pair. These
unfiltered matrices are then embedded into the function adjacency matrix to describe the

full set of theoretical solutions.

i T.E b

Figure 3.6. Matrix row multiplication is used to generate the set of theoretical design
solutions for each connected function pair. Resulting matrices are embedded in the
function adjacency matrix.

In Step 4, a similar method to that used to create the FCM was employed to
construct the design structure matrix (DSM) for the set of Tinkertoy™ components. The
DSM, shown in Figure 3.7, describes the component compatibility between each

component, where 1’s entered into each cell identifies components that can be connected

together, and 0’s indicate incompatibility.
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Figure 3.7. Design structure matrix (DSM) generated for the set of Tinkertoy™
components.

Finally, in Step 5, each cell of the DSM was multiplied by the corresponding cell
for each of the connected function pairs in order to filter out design solutions that are
infeasible due to component incompatibility. The entire set of filtered design solutions is
shown in Figure 3.8. To clarify the pertinent information, cells that contained zero values

in the original function adjacency matrix are grayed out.
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Figures 3.9a-d present four of the design variants encompassed in the matrix
presented in Figure 3.8. The design variants shown are unstable asymmetric versions of
the original tricycle concept since the energy function chain generated in Step 1 does not
encompass requirements that the design be stable. The design variant in Figure 3.9a was
constructed by selecting the component connections circled in Figure 3.8. Think of the
overall matrix shown in Figure 3.8 as an adjacency matrix of embedded DSM matrices.
The overall matrix has rows and columns of functions (that describe the product under
study). This overall adjacency matrix captures the connectivity of the functions in the
functional model.

Specifically, in Figure 3.8, enter the matrix through the row labeled ‘import h.e.’
and then read over to the cell containing the embedded matrix (the non-grey cell). Read
up the column from that cell and you see the column label of ‘convert h.e. to t.e.’, the
function that is connected to import h.e. Now, within the cell containing the embedded
DSM matrix, follow the row labeled ‘blue rod’ (the first component of concept variant 1)
across to find six cells with entries of *1” in them. This means the blue rod does solve the
function ‘import h.e.” and if selected can then connect to the components ‘red wheel’
through ‘orange cap,’ as indicated by the column headings above each of the cells with a
‘1’ in them. The circle in Figure 3.8 indicates that the “yellow hub’ is the next component
to which we will connect. Next, find the row of the overall matrix labeled ‘convert h.e. to
t.e.” (the next function in the functional model chain of Figure 3.4a) and then read over to
the cell with the embedded matrix. Reading up this column identifies that the next

function in the chain will be ‘transmit t.e.” Returning to the cell, we start at the row
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corresponding to ‘yellow hub’ (the component chosen to connect to ‘blue rod’). The
‘yellow hub’ can connect to the components ‘purple connector’ through ‘purple rod,” as
indicated by the ‘1’ entries and, in this instance, we explore connecting to the ‘green
rod.” Now, we move on to the third function in the chain, ‘transmit t.e.” Locate the
‘transmit t.e.” row in the overall matrix and read over to the cell containing the embedded
matrix. Reading up identifies that ‘convert t.e. to r.e.” is the next function in the chain.
Within the embedded matrix, we locate the ‘green rod’ row and see that there are two
possible connections — ‘blue hub’ or ‘yellow bearing.” In this instance, the ‘blue hub’ is
selected. Continuing on shows how the remaining two components that solve the

functionality specified in Step 1 for this concept variant are identified.

(a) Concept variant #1:

(b) Concept variant #2;

Figure 3.9. (a)-(d) Concept variants selected from the matrix of feasible solutions
presented in Figure 3.8.
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Using this technique, a set of feasible design solutions for the product to be
designed or redesigned can be identified. Ranking of the design solutions can be
accomplished by calculating a “score” for each concept variant using stored measures of
frequency of occurrence, manufacturability, assemblability, or other measures related to
the component connections selected. The ranking is not implemented for this contrived
Tinkertoy™ example. In Section 4, the presented algorithm is automated to eliminate the
need for manual matrix manipulations and quickly produce concept variants for

evaluation.
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4. AUTOMATED CONCEPT GENERATION, PART II: SOFTWARE

4.1. INTRODUCTION

This section presents the software implementation of the proposed algorithm
presented in Section 3. The first implementation implements the computational theory
presented in Section 3 and presents the designer with a list of possible component
solutions that satisfies the functional requirements input by a the user. Next, Section 4.3
presents a case study that uses the list-based implementation. Finally, in Section 4.4, an
improved implementation, which extends the capabilities of the software presented in

Section 4.2, is presented.

4.2. AUTOMATION OF THE CONCEPT GENERATION ALGORITHM

Using the algorithm described in Section 3, a Java-based program was created to
automatically produce a ranked list of concept variants for an input functional model
chain. The user interface, shown in Figure 4.1, firsts prompts the user for the location of
the function-component matrix (FCM) and design structure matrix (DSM) data files
generated from the web-based design repository from which the new concepts will be
created. Within the repository, the FCM and DSM design tools permit the user to select
any subset of products from the repository from which to generate these matrices,

allowing the designer to select which group of products to build new concepts from.
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(b)

@asn Concept Generator v1.0 - Component Chain Output.

Rank: 13-->
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Figure 4.1. User interface for (a) inputting the FCM, DSM, and functional model for
automatic concept generation, and (b) browsing through the list of returned concept
variant chains. Actual entries correspond to the case study presented in Section 4.3.
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Next, the user enters the number of distinct flow chains contained in the
conceptual functional model. This initial version of the concept generation software
limits flow chain entries to a single non-branching flow, requiring the user to break a full
functional model up into individual chains prior to entry into the software. The user then
selects the number of subfunctions in each flow chain and proceeds to enter the input and
output flows and subfunctions for the individual chain. At this point, concepts can be
generated and ranked for each flow chain by selecting the “Go!” button.

The number of components displayed for each concept variant can be minimized
by selecting the “Combine repeated components” checkbox. Selecting this option
instructs the program to search for repeating series of components in the concept variant
chain and collapse them down to a single instance for display, exploiting the concept of
function sharing. The option to “Include incomplete solutions” in the ranked returned
concepts is also available. This allows the user to decide whether to display concept
variant chains that may be incomplete (i.e. not all subfunctions have an associated
component solution) since the design repository may not yet contain preexisting solutions
for the entered flow/subfunction combination. If selected, incomplete variants will show
a question mark in chains where a solution with known compatibility cannot be found.

After obtaining the user input, the program filters the FCM so it contains only
those functions relevant to the user-input functional model. From this filtered FCM, or
morphological matrix, the component-component matrices for each pairing of functions
are calculated and filtered using the information contained in the DSM. The components

in both the FCM and DSM are categorized according to the terms from the component
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naming basis presented in Section 2.3.2. Finally, all combinations of the remaining
feasible component-component connections are determined, ranked, and output as
potential component configurations for the input functional model. In the initial
implementation of the algorithm, a rudimentary ranking of the concept variants by
historical occurrence of their constituent components is calculated (note that a high
ranking result indicates that the concept variant is composed of the most commonly
occurring components). The magnitude of the cell values from the FCM supplies the
occurrence data.

Once the concept variants are created and ranked, the results are displayed in a
separate window where the user can either save the results to a text file or browse through
the variants using the interface at the bottom of the panel. By using them as a point of
departure for other non-computational creative techniques like brainstorming, these
conceptual design variants can then be further developed and/or modified by the designer
to satisfy the design requirements. The next section presents a case study for the creation
of a box-labeling device to demonstrate the effectiveness of the software in a real-world

design situation.

4.3. CASE STUDY: BOX LABELING DEVICE

This section presents a case study that demonstrates how the automated concept
generation software can effectively assist a designer during the early phases of design. A
design team was charged with creating a box-labeling device to assist workers at a local
area workshop for persons with disabilities. Prior to the designer’s solution, the task of

labeling the contents of cardboard boxes filled with sample products from a local
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business was restricted to those workers who possessed the agility and mental capacity
required to properly hand write the information on the box. The managers at the
workshop were looking for a solution that would allow any of the workers to perform this
task regardless of level of ability, while maintaining a level of quality acceptable to the
local business that contracted the work. After determining the applicable customer needs
for the device to be designed, the conceptual functional model, shown in Figure 4.2, for
the box-labeling device was generated.

Since the current form of the software is limited to handling single, non-branching
flow chains, the functional model shown in Figure 4.2 was divided into individual non-
branching chains, as illustrated in Figure 4.3. Note that subfunctions with multiple input/
output flows appear in multiple flow chains, and that these repeated subfunctions appear
vertically adjacent to each other in Figure 4.3. These five flow chains were used as the
input into the concept generation program as demonstrated using Flow Chain C shown in

Figure 4.1a above.

Hand Hang
Expon Hand
Hand Hand
Import Hamt Gulde Hand Hand Labeisd

* . " Box
. g Poskion Giide Caiipley Guide: Ny, Exppt
o [ — > [ £ =
i
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HE. we BosAligned: & Hand
! - Expart Hand

Figure 4.2. (Above) Conceptual functional model for the case study of a box-labeling
device.
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Figure 4.3. The conceptual functional model was divided into single non-branching flow
chains, labeled Flow Chains A-E, and entered into the concept generation software.

Flow Chain D:

The panel shown in Figure 4.1b demonstrates how the top ranked concepts are
displayed for flow chain C. All returned concept variants for flow chain C can be viewed
using the “Previous” and “Next” buttons located at the bottom of the panel. Additionally,
the concept variant chains can be saved to a text file using the “Output File” button
located at the top of the panel. Question marks located in the component placeholders for
the returned variants indicate that no solutions were found with known compatibility with
the adjacent component. Variants containing unknown solutions may be combined to
create a more complete solution. For instance, combining the top two solutions shown in
Figure 4.1b results in a concept variant with only one unspecified component solution. It
is important to note that at the time that this case study was performed, the design

repository contained knowledge data from a limited number of consumer products. As the
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repository has grown to house design information on over 100 consumer products to date,
the number of incomplete solutions returned is greatly reduced. Gathered from the results
returned by the algorithm, these and other top ranked component chains for each flow
chain, A-E, are displayed in Figure 4.4. Vertically adjacent components designated by the
dotted outlines indicate solutions for the same subfunction, which was repeated when the
full functional model was dissected into individual chains. For clarity, Table 4.1 shows

the definitions for the subset of Component Basis names shown in Figure 4.4.

Table 4.1. Subset of Component Basis artifacts found in the listed concept variants
(Kurtoglu, et al., 2005).

| Component Basis Name Definition
| Fan A device composed of blades around a revolving hub.
| Guide Any device by which another objest is led in 11s proper course.
| Handle A component that allows any action that i1 thought of as comparable w
! — grosping something or keeping it m place.
Housing A device fitted to contain or enclose other devices or items.
Spool*
Support Anything that holds up, or sustaing the weizht of a body. (includes beam,
excludes brucket)
| Switch Control congisting of & mechanical or electrical or ¢lectronie device for
| makirig or breaking or chunging the connections in a cirouil.

* speclfic artifact label; not tagged wndir component hasis
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Figure 4.4. Conceptual component chains generated from the concept generation
software. Components grouped together vertically by the dotted outlines indicate overlap
in the component chains. This redundancy is triggered when the complete functional
model is divided into individual flow chains, causing a single subfunction to appear in
multiple flow chains.

The individual component chains, shown in Figure 4.4, can then be reassembled
to produce a complete concept variant for the product to be redesigned (see Figure 4.5).
To help clarify the component-function relationships for the concept variant chosen, the
complete concept variant, shown in Figure 4.5, was superimposed onto the functional

model from Figure 4.2,
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Figure 4.5. Aggregated concept variant generated from the component chains shown in
Figure 4.4. Components are associated with the subfunctions from the functional model

they solve.

After generating an array of concept variants from the software, sketching

techniques can next be employed as a final step to create visual representations

of

selected conceptual design variants. Using the Component Basis definitions and pictures

of specific artifacts from the web-based repository as guides, multiple embodiments

of

the conceptual design ideas were generated for the box-labeling device by sketching

various configurations of the returned component solutions, one of which is shown

Figure 4.6.

in
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Figure 4.6. Conceptual design generated for the box-labeling device, inspired by the
concept generation program output.

Figure 4.7. Embodied design for the box-labeling device (cover removed to show internal
components).
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Many concepts were generated using several different methodologies over the
course of the box-labeling project. After each of the concept variants generated by the
various methods were evaluated and ranked, the sketch shown in Figure 4.6 was chosen
as the starting point for the final box-labeling device design. Although the eventual
embodiment of the box-labeling device, shown in Figure 4.7, was modified from the
initial conceptual sketch presented in Figure 4.6 during the later stages of design, the

concept variant shown in Figure 4.5 catalyzed the idea that led to a successful end design.

4.4. MEMIC: THE INTERACTIVE MORPHOLOGICAL SEARCH

Beneficial characteristics of the web-based morphological search described in
Section 2.4.4. and the automated concept generator described in Section 4.2. were
combined into a hybrid technique in an effort to enhance the usefulness of the automated
design tool to a designer. The hybrid technique, named MEMIC or Morphological
Evaluation Machine and Interactive Conceptualizer, retains the solution accessibility that
the web-based morphological search method provides a user by listing the solutions for
each function in a matrix form, while retaining the connectivity information that the list-
based automated concept generator establishes. Thus a user can more easily choose
between multiple solutions for a given function and interactively build a complete
feasible solution. The code for the MEMIC software can be found in Appendix A.

The interactive morphological search begins by accepting a text file describing a
full functional model in the form of a function-adjacency matrix. A function-adjacency
matrix, briefly demonstrated using a simple example shown in Figure 4.8, is a translation

of a block functional diagram into matrix form, where a non-zero cell entry indicates a
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forward connection between the row and column functions. Converting a graphical
functional model into this asymmetric matrix form yields an easy and convenient tool for
identifying the connectivity between functions, including branching connections and
connections that converge into a single function, as well as starting and ending

subfunctions (zero columns and zero rows, respectively).
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Figure 4.8. (a) A simple functional model and (b) the associated function-adjacency
matrix.
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Next, as for the list-based concept generator, a user is prompted to load tab-
delimited data files of the function-component matrix (FCM) and design structure matrix
(DSM) generated from the web-based design repository. The user interface for uploading
the files is shown in Figure 4.9a. Once each of these three data files is loaded, the “Get
concepts” button may be pressed to generate design solutions.

When the user indicates that concepts should be generated, the data files are run
through an algorithm similar to the one described in Section 3. However, to build up full
solutions more efficiently and eliminate occasional solution “dead ends” that may not be
weeded out using the automated concept generator in Section 4.2., the algorithm is
expanded to check for and remove “dead end” solutions. The solutions are then returned
to the user in the form of a morphological matrix, where the components that may be
assembled into a full solution are listed alongside the name of each subfunction in the
input functional model. If no compatible solution was found for a given subfunction, a
“?” is placed as an indicator that no known solutions were found within the database that
was also compatible with the solutions connecting to it, indicating to a designer that a

novel partial solution may need to be implemented to create a complete design.
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Figure 4.9. The interactive morphological search user interface for (a) inputting the FCM,
DSM, and functional model for automatic concept generation, and (b) interacting with the
return conceptual solutions.

Once components are returned, the interactive morphological matrix, shown in

Figure 4.9b, allows the user to select components that solve each function in an input
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functional model. When a solution component is selected, incompatible solutions are
shaded over and the user is no longer allowed to select them. By implementing the
concept generator output in this fashion, users can build entire concepts that, based on
historical data contained within the repository, are comprised only of components that
can physically be connected together. By using the interactive morphological matrix, a
designer is allowed to tinker with various ideas and virtually assemble a complete
solution that can be physically produced.

To be effective, the component terms presented to a designer via the interactive
morphological matrix must be meaningful and rigorously defined. To this end, the
Component Basis described in Section 2.3.2. has been enhanced by establishing a
hierarchical method to classify components and establish new classification terms. This

research is present next in Section 5.
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5. COMPONENT CLASSIFICATION FOR KNOWLEDGE RETRIEVAL

5.1. INTRODUCTION

To facilitate the interpretation of results presented via the interactive
morphological matrix described in Section 4.4, a methodology for the systematic
placement of components into a hierarchical ontology is presented. Cues taken from the
Linnaean classification system for living organisms are used to generate a hierarchical
ontology for organizing component terms and to create a robust procedure for adding new
component terms to an existing component naming scheme. The objective of this
research is to begin constructing a hierarchical ontology that is analogous to the Linnaean
classification system with specific rules that rigorously guide component placement
within the framework. The primary motivation for this research is to develop an ontology
of distinct abstract components terms that supports computational strategies for
automated design synthesis, general design knowledge storage and reuse, efficient
communication of design information, and standardization for digital component
cataloging and searching.

5.2. MOTIVATIONS

Components are the fundamental artifacts from which physical devices are built.
In the early stages of design, a designer must take a set of specifications and constraints
and translate these design requirements into a set of compatible components that work
together to solve a desired task. As an electromechanical design evolves from a loose
conceptual sketch to a fully realized product design, designers make decisions regarding

specific component geometry and performance. While formal component representations
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exist during the detailed stages of product development, electromechanical components
lack similar representations that support the conceptual phase of design, leaving a
designer to rely on personal experience or potentially time consuming search methods to
identify an initial broad selection of distinct conceptual component configurations for a
design. In addition, less experienced designers may find it difficult to produce a broad
array of distinctly different potential solutions, and instead may generate several similar
alternatives that may contain one or more components that are merely variations on a
theme within the realm of his or her personal experience. In the early stages of design,
specific details of component geometry and performance are less important than the
ability to represent component knowledge at a higher level of abstraction (Kuziak, et al.,
1991). The functionality of components provides a natural framework upon which such
abstractions can be built. Previous work sought to develop and later refine a component
naming convention for abstract functionally relevant component classes for first
mechanical and later electromechanical components (Greer, et al., 2003; Kurtoglu, et al.,
2005). The research presented here seeks to create a hierarchical ontology into which
both new and existing component terms may be classified. It is hoped that this hierarchy,
inspired by the animal classification system begun by Carolus Linneaus, will help ensure
that the goal of complete and exclusive inclusion of all components into the ontology will
be maintained as new terms are added.

5.2.1. Implementation of a Computational Theory for Design Synthesis.
Many researchers have explored automated design tools to improve design synthesis

activities (see Section 2.5.). Components typically constitute the fundamental building
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blocks of these activities. Within the variety of computer aided design research, various
methodologies and tools have been developed which require a rich library of
components, however, there is no agreed upon standard component library. As a result of
this, libraries of components are independently developed in an application specific
manner. Creation of a structured framework for the classification of new and existing
components will reconcile previous efforts into a single electromechanical component

library that can be leveraged by a number of design automation methods.

5.2.2. Design Knowledge Reuse. Over the past few decades, systematic

approaches to conceptual design have emerged (see Section 2.2.). These design methods
begin by formulating the product function as a set of low level subfunctions, solutions to
which are then synthesized together to arrive at a final design. The core of the
computational synthesis methods, presented in Sections 3 and 4, that are built upon this
function-based framework is the mapping of subfunctions to components. This allows
designers to generate concept variants from a generic functional description of the
product being designed. Each of these computational methods requires a knowledge base
of “reconfigurable” standardized component objects that can be archived, searched and
reused. A defined ontology facilitates the organization of such a knowledge base so that

various computational design tools can leverage existing design knowledge.

5.2.3. Communication of Design Knowledge. The use of natural language often

leads to ambiguity in representing component design knowledge. Arbitrary and redundant
component naming results in different interpretations among designers for similar

concepts, hindering effective communication of design knowledge. By associating
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fundamental component concepts with uniquely defined component classes and by
providing a structure for defining each term, improvements in uniformity and consistency
in the representation of components and communication of design information for

industry and design education are possible.

5.2.4. Standardization for Digital Component Cataloging. Solutions to

conceptual design problems are usually represented as a configuration of components and
interactions between them (Kurtoglu and Campbell, 2005; Liang and Paredis, 2004). The
transformation from these configurations to fully embodied design solutions requires the
specification of a system of electromechanical components that meet the overall design
requirements. Given the breadth of suppliers and production methods that exist today,
most engineered artifacts are a mix of both custom-made parts and OEM (original
equipment manufacturer) parts. As a result, the OEM suppliers compete by striving to
improve their components quality and variety. It is particularly important for them to
catalogue their solutions such that they can be efficiently retrieved and incorporated into
the design process. Technologies involving electronic representations of standard
components and resulting digital databases are becoming more prominent in engineering
design (Wallace, 1995; Culley and Webber, 1992; Hicks, et al., 2005). Contributing to
these efforts, it is hoped that this ontology provides a useful classification scheme for
vendors selling a variety of OEM components.

Motivated by these factors, a starting point for the creation of a component
ontology that is accessible to all design engineers is provided here. In the following

subsections, other approaches to cataloging components, the use of ontologies in
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engineering design and computational synthesis, and a discussion of the biological
parallels between classifying animals and classifying components will be discussed. The
background discussions are followed by a description of the method used to create the
proposed hierarchical framework and to classify existing and new component naming

terms within it.

5.3. BACKGROUND INFORMATION

The motivation for developing a component ontology for systems design is
analogous to that of the museum curator who archives artifacts from the universe around
us as a repository of knowledge about those artifacts. Research in the field of artificial
intelligence (Al) known as knowledge capture and representation is closely related to the
work reported here. In general, an ontology is a philosophical theory about the nature of
existence, but Al researchers have adapted the term to describe “a shared and common
understanding of some domain that can be communicated between people and application
systems” (Gruber, 1994). Neches, et al., (1991) claim: “An ontology defines the basic

terms and relations comprising the vocabulary of a topic area.”

5.3.1. Artifact Classification. In this paper the view of an ontology is taken as a

construct for the classification of knowledge:

“An ontology may take a variety of forms, but necessarily it will include a
vocabulary of terms, and some specification of their meaning. This includes
definitions and an indication of how concepts are inter-related which collectively
impose a structure on the domain and constrain the possible interpretations of
terms.”(Uschold, 1998)

A rich source for information about artifact classification is found in the

ontologies used by museums. Because museums are in the business of collecting,
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cataloging, and classifying the artifacts of human endeavor, their curators have spent
considerable energy in devising systematic means of cataloging their collections. One of
the tools employed in this classification is a lexicon. The most commonly used lexicon is
the one developed by Chenhall (1978), who stated:
“The lexicon...is based on the assumption that every man-made object was
originally created to fulfill some function or purpose and, further, that original

function is the only common denominator that is present in all of the artifacts of
man, however simple or complex.”

In Chenhall’s view, the known (or assumed) function of an object represents the
highest level of organizing principle upon which human-made artifacts can be classified
and named. A logical system for naming objects consists of a ontology, or hierarchical
ordering, based on three levels of relationships: 1) A controlled list of major categories, 2)
A controlled vocabulary of classification terms, and 3) An open vocabulary of object
names. Each of these levels is based on the function of the object:

« Major categories are a very limited set of easily remembered functional classes.

« Classification terms are carefully defined subdivisions of the major categories.

 Object names are the words used to identify individual artifacts.

The Al community takes a similar approach to component classification by using
the function and form of a component as fundamental elements in its classification. The
inclusion of function is a consistent theme in both the practical approach of Chenhall and
the virtual approach of the Al community. The presence of component function in
component naming is an important linkage between the theory of knowledge capture and

representation and the theory of design. An understanding of function is integral to the



76

design process (Pahl and Beitz, 1996; Otto and Wood, 2001); hence, a natural
relationship between components and function must exist.

Another approach to classification comes from the Linnaean system of classifying
species used in biology (Linnaei, 1937). Carolus Linnaeus began the classification of
living species during the early 1700s. Originally organizing plants by their reproductive
structures, Linnaeus laid the foundations for the modern organism classification, which
later led to striking observations and evolutionary theories about the similarities between
functional forms found between species in the natural world. In the Linnaean system, the
two classes are the genus class and the species name; these are equivalent to the
classification and object name within the Chenhall system. In Chenhall’s lexicon, the
classifications are defined very clearly, while the object names are left open ended. This
approach allows those interested in the lexicon to add to the collected knowledge
contained therein. When used properly, a classification and an object name from
Chenhall’s lexicon results in a name that is unique in all of humankind’s creations.

One difficulty in developing an ontology for components is classification
consistency. For example, does a long slender two-force member describe a link, a beam,
or a shaft? Stahovich, et al., (1993) claim that the fundamental ontology for mechanical
devices should be based on object behavior not structure. Paredis, et al., (2001) suggest
that a complete description of a component requires the addition of form to the
classification, where form specifies a particular instantiation of a component, e.g., a part
number for a motor. Both approaches imply that behavior is a key element in classifying

mechanical components. Does this clear up the issue of the long slender two force
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member? The behavior of this component is describable using the mathematical
representation of the states of a device (Pahl and Beitz, 1996). Modeling using the state
representation of the component leads to an input/output relationship. Input/output
relationships at a more abstract level are, by definition, the function of a component,
device, or system. “A function of a product is a statement of a clear, reproducible
relationship between the available input and the desired output of a product, independent
of any particular form (Otto and Wood, 2001).” In the case of the long slender two force
member, the input/output relationship is to transmit force, where transmit force is a
function taken from the Functional Basis of Hirtz, et al., (2002). Hence, it is proposed

that the function of a component is the fundamental ontology for components.

5.3.2. Observations. In this work, common ground is found between the goal of a

basis set of component names in systems design and Chenhall’s lexicon for classifying
human-made artifacts. Because most components used in systems design are indeed
human-made artifacts, they should be describable in the lexicon of Chenhall.
Unfortunately, the lexicon does not include all possible artifact names, in fact “Artifacts
originally created to be a physical part of some other object have, in most cases, been
excluded from the lexicon” (1978). In terms of design, “artifacts originally created to be a
physical part of some other object...” describe components.

Similarly, electro-mechanical devices share characteristics with living organisms
that make the creation of a classification system analogous to the Linnaean classification,
like having distinct observable form and function traits, varied levels of complexity, and a

potential for partial overlap with traits from distinctly different components.



78

Since components cannot be adequately described in either Chenhall’s lexicon or
the Linnean classification, this function-based component ontology for systems design is
proposed in order to establish a vocabulary of terms and a set of specifications for their
inter-relationship. Therefore, similar to the way the Linnaean classification system has
spawned an international code to ensure uniqueness and distinctness in naming biological
terms, it is anticipated that the naming of new component terms under a component

ontology should employ similar procedural guidelines.

5.4. THE CLASSIFICATION HIERARCHY

Although not completely analogous, systems and their components share many
traits with animals that make classification challenging. Originally, animal classifications
were primarily based on visual observations of morphological similarity. More recently,
biologists have used molecular and biochemical data in addition to morphological data to
identify evolutionary links and classify animals under what is thought to be a more
accurate binary tree structure known as cladistics (Hennig, 1979). Components are not
evolutionary in the same sense that animals evolve from what is commonly thought to be
a series of branching points, and the goal of classification in this research is focused more
on the practical use of the proposed hierarchical ontology. For this reason, we have
chosen to initially begin with a function-based framework for the component
classification hierarchy. The hierarchical framework was initially established from the
notion that device function is an integral and critical characteristic of a component from
the perspective of concept selection during the design process (Pahl and Beitz, 1996; Otto

and Wood, 2001). As a starting point, the list of primary and secondary level function
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terms from the Functional Basis (Hirtz, 2002), discussed in Section 2.2., were used to
designate the primary and secondary levels of the component framework.

5.4.1. Establishing the Hierarchy. In order to begin placing existing terms
(Kurtoglu, et al., 2005) into the framework, the functional traits of each device term
needed to be established, where a device (component) is defined as having “input and
output ports through which it is connected to another device (component)” (Kitamura and
Mizoguchi, 2003). The functional traits of each component term were determined by
analyzing the individual components housed within the repository of product information
and categorized under that component term. The black box functionality for each
component term was defined by identifying the most commonly occurring subfunction
(function-flow combination) assigned to each of the components classified under that
term in the repository.

5.4.2. Placing Existing Component Terms into the Hierarchy. Function
templates for each component term (see Figure 5.1) were generated to show the functions
assigned to components within a given classification. In nearly every case, a component
term would have a single function that was common among all components classified
under that term. Exceptions included components that had errors resulting from entering
the data into the repository (e.g. no conceptual functions were assigned to an electric
motor) and components that are classified as Provisioners where the functions Store and
Supply were nearly always both included as conceptual functions. The functional
information was then used to locate the appropriate placement for the component term

within the hierarchical framework.
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Figure 5.1. (Above) Function templates were used to help establish the functional
characteristics of each component term. The templates were constructed using function
and flow information entered into the web-based repository described in Section 2.

Figure 5.2. Port templates used to help establish the functional characteristics of each
component term and to help create distinct definitions for each. Ports are indicated by
lines into and out of the component box. Circles represent material flow ports, squares
represent energy flow ports, and dashed lines with a vertical terminus represent signal
flows. Components classes with members exhibiting variable numbers of repeating object
ports are indicated by an output flow with ellipses (...), as shown for the electric wire.
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In addition to function templates, templates that describe the major flows through
a component were also established for each component term (Figure 5.2). The set of
function and port templates for each of the components classified at this time can be
found in Appendix B. In creating the port templates, the following port definitions were
utilized:

Object port: A device port through which a flow (material, energy, or signal)

enters and then travels through the device from the input port to the output port
and is processed by the device (Hirtz, 2002; Kitamura and Mizoguchi, 2003).

Medium port: A device port through which a flow (material, energy, or signal)
enters and then travels through the device from the input port to the output port
while holding an object and enabling it to flow through the device (e.g. water can
act as a medium carrying hydraulic energy as an object through a device) (Hirtz,
2002; Kitamura and Mizoguchi, 2003).

Assembly port: A device port that acts only as a mating surface to support the
weight or stabilize the position of the device.

Flow information contained in the repository was used to identify all ports of a
particular component. This information was then generalized to create a standard
template for the component term group. For this research, port templates only include the
object and medium flows that are directly relevant to the function the component
performs (e.g. the material separated by a blade and the mechanical energy used during
the separation); waste flows, undesired flows, and reaction flows were not included (e.g.
any thermal or acoustic energy that may result from a blade interacting with a material it
is separating). Additionally, since they are not used at this point to help classify a
component term, assembly connections were generalized into a single assembly port in

each component template. Component term definitions within the hierarchical ontology
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were standardized using flow information from the port templates in addition to common
morphological characteristics of the components within a single group. The previously
developed list of component terms was refined to adhere to the newly developed rigorous

classification structure (see Table 5.1 for an excerpt of the full list found in Appendix C).

Table 5.1. An excerpt of component terms and definitions organized using the proposed
hierarchical ontology (the full component list may be found in Appendix C).

The individual component terms and associated definitions represent the different
“species” of components. Definition of these terms is critical to the usefulness of the
ontology proposed. In animal classifications, disagreements exist over how narrowly to
define different species, i.e. whether to identify species based primarily on minor
differences (splitters (Merriam-Webster, 2005)) or major differences (lumpers (Merriam-
Webster, 2005)). Similar questions become valid when defining new or existing

component terms. For example, should an axle and a drive shaft be classified under the
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same component term? Should a flexible hose be classified under a different component
term than a rigid tube? In the case of the axle and drive shaft, these two components solve
different functionality and would, therefore, be placed under different branches of the
proposed ontology. The flexible hose and rigid tube are functionally similar, so a decision
must be made about whether to group them together under a broad definition or separate
them into more specific groups. When defining terms, effort was made to determine
whether a new (separate) definition would be beneficial from the perspective of a
designer in the early conceptual stages of design, e.g. deciding whether to use a flexible
vs. a rigid tube to transfer a material would be less useful when initially generating
concepts than deciding whether to use a tube vs. a conveyor. To help evaluate whether
terms were defined at a low enough level of detail, additional consideration was made as
to whether generalities of performance could be made across a component term to help
evaluate ideas early in the conceptual phase of the design process.

In general, the initially selected function-based framework worked well to help
classify the existing component terms, with two notable exceptions. First, as briefly
mentioned before, in nearly all cases of a component solving the function of store, the
function of supply was also included. For this reason, the secondary level of the
component hierarchy was refined to eliminate the separate designations of a Storer and a
Supplier and instead include the secondary designation of a Material or Energy Supplier.
Secondly, under the primary level term Convert in the Functional Basis exists a single
secondary level term Convert. To eliminate redundancy in the proposed hierarchical

ontology, the secondary level term Converters was replaced with designations of a
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Material, Energy, or Signal Converter. The complete component hierarchy can be found

in Figure 5.3.

Figure 5.3. The proposed function-based hierarchical ontology structure. Only the
component terms for the class of Separators are shown.

5.5. CLASSIFYING COMPONENTS USING THE ONTOLOGY

A rigorous procedure was established in order to determine under which
component term a previously unclassified component should be grouped within the
established hierarchical framework. The procedure developed is as follows:

1. Define the system boundary of the device.
2. ldentify all input and output ports of the device across the system boundary

defined in Step 1.

3. Classify each port as an
a. Object port: A device port through which a flow (material, energy, or

signal) enters and then travels through the device from the input port to the
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output port and is processed by the device (Hirtz, 2002; Kitamura and
Mizoguchi, 2003).

b. Medium port: A device port through which a flow (material, energy, or
signal) enters and then travels through the device from the input port to the
output port while holding an object and enabling it to flow through the
device (e.g. water can act as a medium carrying hydraulic energy as an
object through a device) (Hirtz, 2002; Kitamura and Mizoguchi, 2003).

c. Assembly port: A device port that acts only as a mating surface to support
the weight or stabilize the position of the device.

4. Identify the black box functionality of the device and the object flow(s) that it acts
on. When defining the black box functionality, the functional purpose of the
device should be identified versus the functional embodiment of the device (i.e.
the function selected should answer the question “what does this device do?”
instead of the question “how does this device work?”) For instance, the functional
purpose of a friction brake is to “stop rotational energy” and it does this by
“converting rotational energy to thermal energy”. In this case, the black box
functionality of the brake would be to “stop rotational energy.”

5. Locate device placement in classification hierarchy.

a. Label device using appropriate term.

b. If no existing term is suitable, create a new term under the relevant

hierarchical category. Generate a definition precisely defining the form of
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the device in a manner that clearly distinguishes the new device from the

other components located under the same functional class.

5.6 ANALYTICALLY DERIVED DESIGN STRUCTURE MATRIX (DSM)

In the concept generation algorithm presented in Section 3, the first pass “filter”
for pruning the space of possible solutions utilizes component—component compatibility
information in the form of Design Structure Matrix (DSM). Although there are many
considerations to take into account when determining full compatibility between
components (e.g. spatial characteristics, energy domain constraints, etc.), a DSM contains
general “go” or “no go” component compatibility information from products that have
previously been designed and, in most cases, commercially manufactured. Therefore,
although specific compatibility parameters are not enumerated, general compatibility
between components can be utilized to implicitly weed out solutions that contain
component connections that have not been embodied before—whether due to
incompatibility issues or other design rationale.

To extend the information generated purely from repository data, a DSM was
analytically constructed using the component templates described in Section 5.4.2. For
each of the component templates shown in Appendix B, in and out energy, material, and
signal ports were analyzed. Compatibility with another component was identified as
possible if any of the ports could be “connected”, i.e. if the flow types were the same. For

instance, Figure 5.4 shows the component port template for an airfoil.
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Figure 5.4. Component port template for an airfoil.

At this time, no component is contained in the repository that can be classified as an
airfoil. However, using the port information contained in the template, an airfoil accepts
pneumatic energy as an input and outputs mechanical energy. Looking through the
templates of the other currently classified terms, port flow comparisons can be made with
each of them. Thus, if a component outputs pneumatic energy, it is deemed possible for
that component to be compatible with an airfoil, and a “1” is entered into the
corresponding DSM cell. Similarly, if a component accepts mechanical energy as an
input, it would also be deemed as a potential compatible component and have a “1”
placed into the corresponding DSM cell. Zeros, “0”s, are placed in the DSM if a
component has no potentially compatible ports with the airfoil. Sorting through the list of
components using this procedure identifies 41 different components with the potential to
comprise a complete solution in conjunction with an airfoil. Varying on the functionality
each design fulfills, several potential airfoil-compatible examples are shown in Figure

5.5.
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Figure 5.5. Potential compatible components for an airfoil.

The analytical DSM, presented in Appendix D, identifies the set of compatible

components for the current set of component terms. This compatibility has been

determined solely using port information and without consideration for design rationale

with the notion of enhancing the potential for innovative solutions to be derived. By

extending the compatibility information beyond only those connections that have

occurred before, the hope is that a new combination of components could be considered

for a design and design rationale could then be reintroduced to investigate the feasibility
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of the new idea. In this way, truly original designs would be less likely to be banished by

existing design biases regarding component compatibility.
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6. EXPERIMENTS AND CASE STUDIES

6.1. INTRODUCTION

The research described in this section presents several verification experiments
and case studies executed to test the ability and effectiveness of the proposed
computational technology to automatically generate relevant conceptual solutions. First,
several experiments are reported which test the validity of results returned when utilized
by students in a structured design process for several design scenarios. Then, several case
studies are shown illustrating the effectiveness of the concept generator in multiple
design situations.

6.2 EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART I

To qualitatively evaluate the practicality of using the concept generator to produce
conceptual design variants early in the design process, four undergraduate researchers
from the University of Texas at Austin and the University of Missouri-Rolla were
directed to complete several different activities. In the first activity, the students were
instructed to qualitatively compare manually generated concepts against automatically
generated design solutions produced using the list-based concept generator, described in
Section 4.2, for three original design scenarios. The data collected by the students during
this methodological comparison were later studied quantitatively, and the results can be
found in Section 6.2.2. Further activities investigated the robustness of solutions returned
by the concept generator against variations in the functional modeling chains used to seed
the generation of concepts, including permutations and omissions of subfunctions. The

following sections describe, in detail, both the qualitative and quantitative comparisons of



91

the student-derived design solutions to the solutions automatically generated by the
concept generator as well as the robustness studies that the undergraduate researchers
engaged in during their activities.

6.2.1. Experimental Setup. The following subsections describe the
experimental procedure the students followed during the course of this experimental

study.

6.2.1.1. Methodological Comparison. To evaluate the validity of the design

solutions returned by the concept generator, the undergraduate researchers first
investigated how the automatically produced concept variants compared to concepts that
they had generated manually using a morphological matrix approach. In order to do this,
the students looked at three different design scenarios that investigated concepts produced
for an original design. The students were instructed to complete the manual concept
generation activities for each design scenario prior to exploring any results generated by
the concept generator software to avoid any unintentional biasing of results.

The flowchart in Figure 6.1 shows an overview of the structure of activities.

Translate Cus

Figure 6.1. Flowchart of the activity structure for the concept generation methodological
comparison.
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For the methodological comparison, students generated design solutions for each

of the original design problems described below.

« Hot or cold thermal mug: This original design entailed creating a thermal mug
to be used either to keep a hot beverage hot or a cold beverage cold. The idea
was to create a thermal mug that is superior to ones currently on the market that
rely solely on insulating techniques to achieve thermal isolation. In other words,
concepts needed to be generated that not only attempted to inhibit the transfer of
heat, but also had the ability to add or remove heat to the beverage.

o Human powered power supply: For this original design, the students were
instructed to design a human-powered power supply that could reasonably
supply enough electricity consistently to power an audio-visual device or that
could be used to recharge batteries.

« Wall climbing toy: In this original design scenario, a company has begun
marketing a wall coating that contains ferrous micro-metal chips. This coating is
“attractive” to magnetic devices and walls coated with this product “look”
metallic. One potential marketing ploy for the company to increase sales of its
coating product is to sell a toy that would operate on the vertical space of the
walls (or even the ceiling). Thus, the undergraduate researchers were instructed
to generate concepts for toy products that utilize walls covered with the coating
as their play space. Since there are numerous types of potential toys for this new
application, this call for products is fairly open ended. Broad requirements for

the students to exhibit in their design included the ability to direct the toy
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accurately to specific points on the wall, remain stationary while on the wall, be
marketable to a broad customer segment, be lightweight, have a long-lasting

power source, and be inexpensive and easy to set up.
Using the design steps shown in Figure 6.2, the undergraduate researchers
produced functional models from the customer needs they established (from customer

interviews) for each product.

Translate

Step 1: Identify flows that address the
cuslomer needs.

Step 2: Translate customer needs intoa
black box model.

Veri Step 3; Generate chains of funclions that Generate
fy follow each input fiow through the product

until it becomes an output flow.

Step 4: Aggregate the function chains into
a complete functional model.

Step 5: Verify that the cusiomer needs are
accounted for in the final model.

Aggregate

Figure 6.2. The students used the steps illustrated above to generate functional models for
each product design scenario from the customer needs they established through customer
interviews.
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For the original design scenarios, the undergraduate researchers began by
producing functional models for each product from customer needs (established from
customer interviews) using the design steps shown in Figure 6.2. Once a functional
model was generated, the students generated partial solutions for each product using a
morphological matrix. Finally, the students assembled several complete solutions for each
design from the corresponding morphological matrix, and produced design variant
sketches as well as lists of components comprising each of their designs. To avoid
pollinating the manually generated morphological matrices with ideas from the design
repository, the undergraduate researchers completed all concept generation tasks for the
original and redesign scenarios before moving on to generate designs solutions using the
concept generator software. The final step of the methodological comparison was to
generate conceptual variants for each design using the concept generator software. Since
the software user input was limited at this time, functional models had to first be
separated into sequential (non-parallel) chains, with instructions given to the
undergraduate researchers to experiment with how they chose to dissect the functional
models for entry into the program. The students were instructed to compare the results
generated by the software with those they had generated manually and make notes of any
thoughts they had on the results produced for the chains they had entered. All design
solution chains generated via the software were saved to text files that included the input
function chain that was used to generate that set of concept variants.

As an extension to the methodological comparison study performed by the

undergraduate researchers, the original design solutions generated by the students were



95

later compared quantitatively to those generated by the concept generator from the design
repository knowledge. Since the complete set of student design solutions was contained
in a morphological matrix while the complete set of solutions produced by the concept
generator consisted of lists of compatible solutions, making direct comparisons of the
solutions was difficult to achieve. In order to make more quantitative comparisons, the
design solutions generated by the students were translated into lists of compatible
solution chains that could more easily be compared to those generated by the concept
generator from the repository data, see Figure 6.3. Additionally, the results returned by
the concept generator were separated out into morphological matrices that could more
directly be compared to the morphological matrices manually generated by the students,

also shown in Figure 6.3.
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Figure 6.3. The lists of component chains returned by the concept generator were
transformed into morphological matrices that could more easily be compared to the
morphological matrices produced by the undergraduate researchers. Similarly, the
morphological charts produced by the students were transformed into lists of feasible
component chains.

The lists of student generated compatible solution chains were created by first
manually translating each morphological matrix generated by the students into a
function-component matrix (FCM) for each product. Next, a design structure matrix
(DSM) was generated by inspection for each product. In other words, the DSM cell
entries defining solution compatibility were manually entered for each design solution
combination, e.g. a “battery” can be connected to a “wire” so a “1” would be placed in

the corresponding DSM cell to indicate compatibility. Conversely, a “bubble” is unlikely
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to be connected to a “levee” so a “0” would be placed in the corresponding DSM cell to
indicate incompatibility. The manually constructed FCM and DSM for each product were
then used in the concept generator to seed the solutions produced for an entered function
chain. This, in effect, produced a list of design solution chains with incompatible
solutions filtered out. The concept generator derived morphological matrices were
produced by dissociating each component solution from the chain of compatible
components and recording the unique solutions produced for each function entered.
Finally, the student-derived morphological matrices were classified using the
component naming basis where applicable, in order to help facilitate comparisons with
the concept generator design solutions. This translation also helped identify and combine
similar design solutions generated by the students, e.g. under the component naming
scheme a “soda container” a “coffee pot” and a “water tank” would be classified as
different instantiations of a “reservoir”. Grouping the student solutions under the
component naming basis had the effect of grouping similar solutions and identifying
ideas generated by the students that either need a classification under the Component
Basis (e.g. electric generator) or were outside the black box boundary of the design
scenario (e.g. fountain machine). After the terms were translated into the Component
Basis, new morphological matrices, FCMs, DSMs, and sets of compatible solution chains

were generated for comparison.

6.2.1.2. Returned Results Robustness Investigation. The undergraduate

researchers next investigated the effect of how various permutations in the user-input

function chain impacted the conceptual component chains returned by the concept
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generator software. Figure 6.4 gives an illustration of how a sample chain of functions
might be permuted for investigation in this activity. To complete this task, the students
extracted function chains from functional models they had generated for products
dissected during an earlier activity. The undergraduate researchers next determined
permutations in function adjacency that would still satisfy the functional requirements of
the product and entered each permutation into the concept generator software. Again, the
students were instructed to make notes of any thoughts they had on the results produced
for the chains they had entered. All design solution chains generated via the software
were saved to text files that included the input function chain that was used to generate

that set of concept variants.

electrical electrical electrical electrical mechanical mechanical mechanical mechanical

energy = energy Actuate energy Convert
e.e. .8, | |B.E. to m.e.

mechanical mechanical

Thangello ey [ Export |oneray
m.e.

Figure 6.4. This activity investigated the effect of chain permutation on the conceptual
results returns by the concept generator software.

electrical electrical electrical 1 electrical mechanical

ENergyl |mport |SMOrOY[ Actuate ]eneray Franstar1°7°r 9 ["Convert
a.e. ee. | H a8, i e.e. tom.e.

6.2.1.3. Functional Model Variation Effects. The final activity focused on

investigating the effect that variations in functional modeling generation might have on

the results returned by the concept generator software. This activity, along with the
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robustness investigation described in Section 6.2.1.2., seeks to explore how
dissimilarities in functional models produced by different designers might impact the
solutions produced by the concept generator software. In particular, in this activity, the
students looked at how the insertion or deletion of “minor” or “assumed” functionality
impacted the results generated. For instance, one person may produce the conceptual
functional model shown in Figure 6.5a, whereas another person may include more
specific functionality that deals with the “transition” from one critical function to the

next, such as the specific transfer of energy, as shown in Figure 6.5b.

(a)

electrical electrical I
anargyl Imy pnrl lenergyl Actuate Ienargyl Convert |2MeT9Y[ Change lanergyl Export Ianargy
|

Lee | |eeto me.| L _me. me. |

(b)

electrical electrical electrical electrical electrical mechanical

energyensrgy Tanstar] eIy | Actuale |eneray [ranster) o 2 2¥ [Convert |°"°rgy|TransfaraIe"emy| Change |°"aml‘Transferr“°'9y|| Export Ie""gyl
e.e. | l b e.e. !I Ieetemnl | m.e.

Figure 6.5. (a) A person may omit implied functions a product needs to exhibit while

deriving a functional model. (b) A different person may be more explicit and include

functional “transitions” in a functional model. This activity investigates the software
results returned by function chains with slight variations in functionality.

The undergraduate researchers were instructed to think about which functions
might be considered to have “assumed” or “minor” functionality by a designer. Next, the
students extracted function chains from the functional models generated for previously
dissected products and for the original design activities presented in Section 6.2.1.1. that

either already had or could include these “minor” functions. Finally, the undergraduate
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researchers compared the concepts produced by the software for chains with and without
the “minor” functions included. As in the previously described activities, the students
were instructed to make notes of any thoughts they had on the results produced for the
chains they had entered, and all design solution chains generated via the software were
saved to text files that included the input function chain used to generate that set of
concept variants.

The next section presents a summary of the results produced by the
undergraduates during the methodological comparison, with example results from the

hot/cold thermal mug design included.

6.2.2. Results from the Experimental Study. The following sections present the

results from the study of the methodological comparison as well as the results from the
robustness and variation study activities described. Results from the undergraduate
researchers’ evaluation activities indicated that manually generated concepts were
completely encapsulated in the concept variant results returned by the software for the
investigated design scenarios. In addition, with a few notable exceptions, the concept
generator consistently averaged a larger quantity of feasible solutions for each
subfunction than those produced manually by the students. Furthermore, results from the
software-generated conceptual designs for function chains varied by permutation or
omission indicated that similar concepts were returned for seed function chains with

minor variations.
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6.2.2.1. Methodological Comparison Results. For the methodological

comparison, the undergraduate researchers manually developed original design solutions
for the thermal mug, human-powered power supply, and wall-climbing toy design
scenarios. They began by conducting interviews to collect customer need data for each
original scenario. Next, the students used the customer needs to establish a functional
model for each product using the method previously summarized in Figure 6.2. Using the
subfunctions from the functional models, the undergraduate researchers manually
constructed morphological charts to generate multiple partial solutions for each discrete
functional element the design needed to embody using brainstorming techniques. Finally,
the students selected a partial solution for each subfunction and sketched a complete
concept capable of solving the given design problem. This last step was repeated several
times to produce multiple concept variants for each design scenario. Figure 6.6 gives a
summary of the data manually generated by the undergraduate researchers for the thermal

mug design scenario described in Section 6.2.1.1.



102

Tt

: = |
water tank fountain machine coffes
water tank baby bottis SIppY T
hose levas nipple
water fank
styrafoam air poclket ]
plug and cord Tightning rod Ganarator tharmo-electric device | car ndapter
plug and cord wire circuit board terminal block
battery capacitor shectolitic goo fsie] |
Dattery ngmar eisctolitic goo [sic] [}
switch Lrangistor Hmar Lemp sensor tharmal gv_wg
plug and cord wire circuit board terminal block
thermo-slectric device heating plate heat exchanger resistor heating coil &
metal plate ceramic disc water air cg !
matar

Figure 6.6. The students began the methodological comparison for the thermal mug by
generating (a) customer needs, (b) functional models, (c) morphological charts, and (d)
complete concept sketches.

After generating similar sets of data for each of the original and redesign
scenarios, the undergraduate researchers divided the functional models they developed

during the design process into single non-branching chains of functions and entered the
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chains separately into the concept generator software. In the case of the thermal mug
design, the hypothetical functional model was broken into 8 function chains. Next, they
compared the concepts returned by the concept generator against the complete concepts
they had assembled from their morphological charts. The undergraduate researchers
found that every flow chain they were able to gather results from returned at least one
concept extremely similar to their manually developed concepts, with most of the
matched solutions occurring toward the top of the ranked list of returned component
chains. If we first classify the students’ brainstormed solutions under the same
Component Basis classification scheme that the concept generator uses to return
components, the similar matches become identical, as shown in Figure 6.7. Each of the
original and redesign scenarios resulted in successful comparisons that were similar to the

thermal mug design example shown.
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Figure 6.7. The students found nearly all of their manually generated concepts from their
complete design solutions matched up with top-ranked solutions returned by the concept
generator.

The lists of design solutions produced by the concept generator were saved as text
files. Once the student generated design solutions had been combined into lists of feasible
design solution chains and the software generated design solutions had been distilled into
morphological matrices, numerous observations could be made regarding the quality and
quantity of solutions produced by each method. Looking at the total number of distinct
design solutions generated during the original design scenarios, on average, the concept
generator produced more design solutions per subfunction than the students produced
manually (6.85 vs. 2.45 as shown in Table 6.1). For all observations, a student generated
partial design solution was considered unique if no other solution listed for the same

subfunction was classified the same under the component naming scheme or if it did not
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fit any of the current component naming classifications. In other words, a design solution
(e.g. an “electric wire”) would be considered unique even if was listed as a solution to
multiple subfunctions in the morphological matrix, e.g. an “electric wire” may be listed
as a solution to both the subfunction “import electrical energy” and “transfer electrical
energy”. In this situation, the “electric wire” would be counted twice in a design solution
count; once as a solution to “import electrical energy” and once as a solution to “transfer

electrical energy”.

Table 6.1. Summary table showing the number of solutions generated for each original
design scenario. The number of subfunctions included in each morphological matrix and
the average number of solutions per subfunction for all design scenarios together is also

shown.
Solutions
Student Generated
Student Generated {Using Component Software Generated Subfunctions
Basis Classifications)

Power Supply 51 43 150 15
Thermal Mu 93 79 152 28
Wall Climber 26 25 109 17

Totals 170 147 411 60
Average # of
Solutions Per 2.83 2,45 6.85
Subfunction

Tables 6.2a-c give a more detailed breakdown of the number of solutions and
feasible solution chains produced by each method for each specific original design
scenario. Data within these tables are organized by the flow chains that were entered into

the concept generator to produce corresponding chains of compatible partial solutions.
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From these tables, we can see that the average number of solutions produced per
subfunction for nearly every flow is higher for the concept generator group vs. the
student generated group of solutions. Correspondingly, the total number of compatible
solutions produced by the concept generator from the repository of design knowledge is
typically greater than those produced by the students, with a few notable exceptions.
First, in Table 6.2a, we can see that no complete solutions were assembled by the concept
generator for “Flow 1” in the human-powered power supply design scenario. This
observation stems from the fact that, at this time, no component in the design repository
solves the subfunction “convert mechanical energy to electrical energy”. Similarly, in
Table 6.2c, the lack of solutions for “Flow 2” in the wall climber toy design scenario
results from the concept generator being unable to find a component solution to the
subfunction “secure mechanical energy” that is historically compatible with the
component found to solve the subfunctions “import mechanical energy” and “export
mechanical energy”. Additionally, for “Flow 3” in the same scenario, no complete
solutions were returned (although the student derived solutions were manually found
contained in the design repository) because the subfunctions generated by the students
were slightly varied from the models used when the components were entered into the

repository database.
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Table 6.2. Summary tables showing the number of subfunctions in each flow extracted
from the full functional model, total number of solutions generated for all of the
subfunctions in each flow, average number of solutions per subfunction within a flow,
number of compatible solution chains able to be constructed (both partial and complete)
to solve the flow, and the total number of solution chain combinations possible (both
compatible and incompatible) for the (a) human-powered power supply, (b) hot or cold
thermal mug, and (c) wall climbing toy design scenarios.

# Subfunctions # of solutions Avg. # /| Total  Jotal Complete | possible Solution
Generated Subfunction Solutions Generated Genarnten C
Student Generated Morphological Matrix
e Flow 1 6 20 3.33 270 270 360
-] Flow 2| 6 18 3.00 270 270 540
g Flow 3 3 13 4.33 75 75 75
- % Student Generated Mo logical Matrix with Solutions Classified Using Component Name Classifications
am Flow 1/ 6 17 2.83 96 96 128
25 Flow 2 6 i5 I 2.50 | 120 120 192
a3 Fiow 3 3 11 [ 3.67 | a5 45 45
g Automatically Generated Solutions Using Concept Generator Software
E Flow 1 5] 76 12.67 46113 o= 330330
Flow 2 6 | 37 | 6.17 921 916 7920
Flow 3 3 | 37 | 12.33 790 790 1820
= At this time, no artifact in the repository solves the function "convert mechanical energy to electrical energy”
# Subfunctions # of Solutions Avg. # Total C ol Total Possi “'
Generated Subfunction Solutions Generated G ted
Student Generated Morphological Matrix
Flow 1 4 21 5.25 85 86 630
Flow 2 9 45 5.00 272161 266112 1209600
Fiow 3 1 2 2.00 2 2 2
Flow 4 2 S 4.50 13 13 20
Flow 5 3 ] 3.00 27 27 27
Flow 6 3 7 2.33 12 12 12
2 Flow 7 3 ] 3.00 6 6 7
E Flow 8l 3 7 2.33 8 8 B
§  [Student Generated Morphological Matrix with Solutions Classified Using Component Name Classifications
@ Flow 1 4 15 3.75 60 60 150
§| 9 37 4.11 32181 31280 201600
E 1 2 2.00 2 2 2
a 2 7 3.50 9 9 12
=] 3 9 3.00 27 27 27
2 3 7 2.33 12 12 12
- 3 ¥ 2.33 3 3 5
g 3 6 2.00 4 4 4
o Automatically Generated Solutions Using Concept Generator Software
ﬁ Flow 1| 4 8 2.00 12 12 12
Flow 2| 9 44 4.89 7400 5761 131040
Flow :il 1 2 2.00 1 1 2
Flow 4 2 9 4.50 13 13 18
Flow 5 3 38 12,67 790 790 1950
Flow 6 3 26 8.67 208 208 468
Flow 7 3 25 8.33 176 176 336
Flow 8B 3 15 5.00 25 24 60
P # of Solutions Avg. # /| Totaic Total Complete | o) bocsible Solution
ubfunctions Generated Subincth C
Generated
Student Generated Morphological Matrix
k) Flow 1 B 16 2.00 [ %6 192
a Flow 2 3 3 1.00 1 1 1
a Flow 3 & 10 1.67 12 12 12
Z 2 [Student Generated Morphological Matrix with Solutions Classified Using Component Name Classifications
- Flow 1| [ 15 [ 1.88 I 36 36 96
g8 Flow 2| 3 3 [ 1.00 | 1 1 1
Ea Flow 3 6 10 | 1.67 | 12 12 12
E Generated Solutions Using Concept Generator Software
3 Flow 1 8 | 82 | 10.25 43973 42834 1782000
2 Fiow 2 3 | 0 | 0.00 o* o= 0=
Flow 3 & | 27 | 4.50 294 0%= 560

= At this time, no artifact in the repository solves the function "secure mechanical energy”
=* Student generated functional mode! did not identically correspond with a suitable artifact in the repository generated FCM

Since quantity of results is not the only concern when evaluating the usability of a

design tool in concept generation, a comparison of the type of solutions produced by the
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concept generator against those produced by the students was also made. Table 6.3 shows
a summary of the number of overlapping design solutions seen in both the student
generated and concept generator derived morphological matrices. For instance, if we look
at the human-powered power supply data, of the 43 distinct solutions produced by the
students, 19 matched with solutions produced by the concept generator, meaning 44.19%
of the student generated solutions were contained in the automatically generated solution
set. Of the 24 remaining solutions produced by the students, 6 were not definable under
the current version of the component naming scheme, including 3 solutions for the
subfunction “convert mechanical energy to electrical energy,” for which no solutions
currently exist in the design repository. Other times, the student generated solutions that
did not match with solutions from the concept generator and were not classifiable under
the component naming basis were either technically infeasible for the given design
scenario, e.g. using a “bubble” to “store liquid material” or using a “levee” to “guide
liquid material” for the thermal mug design, or too broad of an idea to be encapsulated by
a single component in the design repository, e.g. using a “fountain machine” to “import
liquid material”. Inspection of the results returned by the concept generator that did not
overlap with the results generated by the students showed an overwhelming majority of
viable alternatives. Only a few instances of obvious incorrect matches were identified,
and each were linked back to data entry mistakes that occurred while the repository was

being populated with product information.
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Table 6.3. Summary table showing the number of design solutions found in both the
student generated morphological matrices and the morphological matrices derived from
the concept generator results.

# of Solutions that % Overlap with

" ;::::::L‘:l“’ Appear in Both Concept| Alternatively Produced

Generation Methods Solutions
> Student Generated Morphological
a ¢ .2 | Matrix with Solutions Classified Using 43 19 44.19%
2 EE Component Name Classifications
888
z Automatically Generated Solutions
g = Using Concept Generator Software| 150 19 12.67%
2 Student Generated Morphological
5T _g Matrix with Solutions Classified Using 79 35 44.30%
528 Component Name Classifications
E U a - 5 .
so8 Automatically Generated Solutions|
= G Using Concept Generator Software 152 35 23.03%
5 Student Generated Morphological
2 oo | Matrix with Solutions Classifiad Using 25 12 4B.00%
g i Component Name Classifications
oo j§
=28 Automatically Generated Solutions
s o Using Concept Generator Softwarel 109 12 11.01%

6.2.2.2. Robustness Investigation Results. For the robustness evaluation activity,

several function chains were selected from products previously dissected and analyzed by
the undergraduate researchers, including a bug vacuum (a pest-removal device that
utilizes a vacuum to trap bugs), an eyeglass cleaner, and a snow cone maker. Within the
selected chains, components were swapped in a manner in which the chain still exhibited
logical functionality. The original chain and the modified chain were then run through
the concept generator software. An example of an original chain and its modified form
from the bug vacuum is shown in Figure 6.8a. In each case, the top ranked conceptual

solutions returned by each original chain input were also found highly ranked in the
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results returned by the modified chain input. Figure 6.8b shows the top 17 results for the

original and modified chains in the bug vacuum example.

Original Function Chain (below)

(b)
Concept Generator Results from Original Function Chain
Rank |Component Chain =

41454 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Metor| Fan Tube
41409 Battery Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motar| Fan Tube
41400 Electric Wire | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor| Fan Tube
| 41400 | Electric Wire | Circuit Board | Electric Wire | Battery Switch | Electric Wire | Electric Motar Fan Tube
41397 Switch Electric Wire | Electric Wire | Battery | Switch Electric Wire | Electric Motor Fan Tube
41397 Switch Circuit Board | Electric Wire Battery Switch Electric Wire | Electric Motar Fan Tube
41388 Circuit Board | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41388 Circuit Board | Circuit Board | Eleciric Wire Battery Switch Electric Wire | Electric Motar Fan Tube
41385 Housing Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41385 Electric Motor| Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motar Fan Tube
41385 Housing | Circuit Board | Electric Wire | Battery = Switch _Electric Wire | Electric Motor Fan _ Tube
41385 Electric Motor| Circuit Board | Electric Wire Battery Switch Electric Wire | Electric Motor| Fan Tube
41286 | Electric Cord | Electric Wire | Electric Wire | Battery | Swilch Electric Wire | Electric Motor]|  Gear ?
41241 Battery Elgctric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor| Gear ?
41238 Electric Cord | Electric Wire | Electric Wire | Battery Switch Electric Wire | Electric Motor Seal Tube
41236 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor| Seal Valve
41234 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor| Driveshaft ?
41234 | Electric Cord | Electric Wire | Electric Wire | Battery Switch Electric Wire | Electric Motar| Circuit Board 2
=232 | Electiic Wirg w=saic Wire | Elgaisioilice | Besm==e._ _SWilch, eeeiagific Wi === =taiQL] mmmiGaas 2

Concept Generator Results from Modified Function Chain
Rank |Component Chain >

34630 Electric Cord | Electric Wire | Electric Wire Battery | Electric Wire Switch | Electric Motor Fan Tube
34462 | Electric Cord | Electric Wire | Electric Wire | Battery | Electric Wire | Switch  |Electric Motor|  Gear ?
34414 Electric Cord | Electric Wire | Electric Wire Battery | Electric Wire Switch Electric Motar| Seal Tube
34412 Electric Cord | Electric Wire | Electric Wire Battery | Electric Wira Switch | Electric Motar, Seal Valve
34410 Electric Cord | Electric Wire | Electric Wire Baltery Electric Wire Switch  |Electric Motor| Driveshaft ?
34410 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Switch Electric Motor| Circuit Board ?
34360 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Switch Electric Motar|  Housing Tube
34359 Electric Cord | Electric Wire | Electric Wire | Battery | EleciricWire |  Switch | EleciricMotor|  Switch | Valve
34359 Electric Cord | Electric Wire | Electric Wire Battery | Electric Wire Switch Electric Motar|  Housing Valve
34358 Electric Cord | Electric Wire | Electric Wire Battery Eleciric Wire Switch Electric Motor Link ?
31998 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Switch Switch Gear ?
31990 Electric Cord | Electric Wire | Elsctric Wire Battery Electric Wire Switch Switch Circuit Board ?
31990 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Switch Indicator Light| Circuit Board ?
31984 Eleclric Cord | Electric Wire | Electric Wire | Battery | Electric Wire Switch Switch Housing Tube
| 31984 Electric Cord | Electric Wire | Electric Wire Battery | Electric Wire Switch  |Indicator Light| Housing |  Tube
31983 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Switch Switch Switch Valve
31983 Electric Cord | Electric Wire | Electric Wire Battery Electric Wire Swiich Switch Housing Valve
31983 Electric Cord | Electric Wire 'E‘Igu:i;.\a[[re Battery Electric Wire Switch Ingipst==t=akil  Switch Valve
~—a1gga L=~ Electric i e Ting L

Figure 6.8. (a) Example function chain extracted from the full functional model of a bug
vacuum both in the original form and permuted form. (b) The top concept generator
results returned from the original and permuted chain shown above in (a).



111

6.2.2.3. Functional Model Variation Effects Results. Next, to investigate the

effect that function omission has on the results returned by the concept generator, several
function chains were selected from the students’ pool of existing functional models that
included functions that may be implicit in a designer-produced functional model. All
functions that might not be explicitly included were then removed from the function
chain, as shown in an example taken from the bug vacuum in Figure 6.9a. The original
and the modified function chains were both run through the concept generator. The
undergraduate researchers found that, for the chains entered, the modified function chains
returned the same basic results as the original function chains. In the bug vacuum
example shown in Figure 6.9b, the modified chain still generates concepts with the same
major components as the original despite the removed functions, In addition, the students
remarked that the number of concepts generated for the modified chain is much smaller
and more manageable than the one generated for the original chain (195 concepts vs.
43136 concepts in the bug vacuum example shown); a situation that is expected given the
combinatorial characteristics of assembling chains of solutions from . Additionally, the
modified chain returned only complete concepts (in the example shown in Figure 6.9)

while the original chain returned over 18,500 incomplete concepts.
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(b)
Concept Generator Results from Original Function Chain
41454 Electric Cord | Electric Wire | Electric Wire Batlery Switch Electric Wire | Electric Motor Fan Tube
41409 Battery Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41400 Electric Wire | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41400 Electric Wire | Circuit Board | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41397 Switch Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41397 Switch Circuit Beard | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41388 Circuit Board | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41388 Circult Board | Circuit Board | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41385 Housing | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Mator Fan Tube
41385 Electric Motor| Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube-
41385 Housing Circuit Beard | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41385 Electric Motor| Circuit Board | Electric Wire Battery Switch Electric Wire | Electric Motor Fan Tube
41286 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Gear ?
41241 Battery Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Gear ?
41238 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Seal Tube
41238 Electric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor Seal Valve
41234 Elactric Cord | Electric Wire | Electric Wire Battery Switch Electric Wire | Electric Motor| Driveshaft ?
| 41234 Electric Cord | Electric Wire | Electric Wire Battery Switch | Eleetrin Wirg | Electric Motor| Circuit Board 7
~2__| Elogiic\ica | ElegitietntSlaghmtnl __Bgliane—" < Gaa 3

Conceit Generator Results from Modified Function Chain

4832 Electric Cord | Eiectric Wire Battery Switch Electric Motor Fan Tube
4787 Battery Electric Wire Battery Switch Electric Motor Fan Tube
4778 Electric Wire | Electric Wire Battery Switch Electric Motor Fan Tube
4775 Switch Electric Wire Battery Switch Electric Motor Fan Tube
4766 Circuit Board | Electric Wire Battery Switch Electric Motor Fan Tube
4763 Housing Electric Wire Battery Switch Electric Motor Fan Tube
4763 Electric Motor | Electric Wire Battery Switch Electric Motor Fan Tube
4616 Electric Cord | Electric Wire Battery Switch Electric Motor Seal Tube
4614 Electric Cord | Electric Wire Battery Switch Electric Motor Seal Valve
4571 Battery Electric Wire Battery Switch Electric Motor Seal Tube
4569 Battery Electric Wire Battery Switch Electric Motor Seal Valve
4562 Electric Wire | Electric Wire Battery Switch Electric Motor Seal Tube
4562 Electric Cord | Electric Wire Battery Switch Electric Motor|  Housing Tube
4561 Electric Cord | Electric Wire Battery Switch Electric Motor Switch Valve
4561 Electric Cord | Electric Wire Battery Switch Electric Motor|  Housing Valve
4560 Electric Wire | Electric Wire Battery Switch Electric Motor Seal Valve
4559 Switch Electric Wire Battery Switch Electric Motor Seal Tube
e 4557 Switch Electric Wire Battery Switch Electric Motor Seal Valve
| Cicou et o at ‘mﬁ-’ V— Cmal

Figure 6.9. (a) Example function chain extracted from the full functional model of a bug
vacuum both in the original form and with the assumed functionality omitted. (b) The top
concept generator results returned from the original and modified chain shown above in

(@).



113

6.3. EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART Il
To qualitatively evaluate the practicality of using the concept generators to
produce conceptual design variants early in the design process, designers manually
generated concepts and compared them against automatically generated design solutions
for two design scenarios. The data collected during this comparison were later studied
quantitatively, and the results can be found in Section 6.3.2. The chief objective of this
study is to compare and analyze the concepts generated by hand versus those generated
by the computer design synthesis tools in a 23 factorial design of experiment. The
research participants were three undergraduate researchers from the University of Texas
at Austin and University of Missouri-Rolla with roughly two to three years of college
experience behind them. All of them have a basic understanding and experience with the
design process including concept generation techniques. Throughout the experiment, each
participant had access to a computer for documentation purposes. To avoid pollinating the
manually generated morphological matrices with ideas from the design repository, the
designers completed all manual concept generation tasks for each design scenario before
moving on to generate design solutions using the concept generators. The timeline for the

study spanned two weeks and was carried out as discussed in the following section.

6.3.1. Experimental Setup. The researchers were each presented two different

design scenarios. In the first, the participants were asked to generate concepts by
redesigning a drink mixer (Figure 6.10), a preexisting small kitchen appliance. Each
researcher had the liberty to redesign the drink mixer without any specific customer

needs to use as guidelines for the redesign process. In the second scenario, the
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participants were asked to design a bread slicer based on a given set of customer needs

(see Table 6.4).

}'_
ol 5
Figure 6.10. (Above) Original drink mixer design used during the redesign scenario.

Table 6.4. (Below) List of customer needs used for the original design of a bread slicer.

Customer Need

| Uniform slices

Accomodates any size loaf

S ]

Easy clean up (of crumbs)

Clean cut

Bread should not break / squish

Easy to use

Compact

ol |wv| &

Safe to use

In both scenarios the functional models were generated using the primary and

secondary Functional Basis as different start points for the concept generation exercise.
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A full factorial experiment was carried out to test, study, and analyze the impact of these
three factors on the concept generation.
« Beginning concept generation activities from a primary function structure
versus a secondary function structure.
» Generating conceptual variants using automated tools versus manually
brainstorming ideas.
 Producing conceptual variants for a redesign scenario versus an original design
scenario.
A tabular summary of the three test factors and the eight factor combinations is

shown below in Table 6.5.

Table 6.5. Summary of full factorial experimental test combinations performed by the
research participants.

Test
Combination

Factor 1 Factor 2 Factor 3

Secondary Level ; 5
ey Redesign No Automation
I Functional Model SIE * :
Primary Level ; . i
2 L/ Redesign No Automation
Functional Model SIE
Secondary Level Redesign Automation
Functional Model m o
Prmary Level Redesign Automation

Functional Model
Secondary Level

Functional Model

Original Design

No Automation

Primary Level
Functional Model

Original Design

No Automation

Secondary Level
Functional Model

Original Degign

Automation

Primary Level
Functional Model

Original Design

Automation
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For test combinations 1 through 4, no customer needs were provided for the
redesign of a drink mixer. The function models were generated by tearing down the drink
mixer and understanding the basic functions exhibited by the existing product rather than
by establishing the functional requirements from a set of customer needs. Hence, the
starting point for the concept generation process was not a hypothetical functional model
but the actual functional model of the product itself.

Each participant generated a functional model independently based on prior
knowledge from the product teardown (see example shown in Figure 6.11) using function
and flow terms strictly at the secondary level of the Functional Basis. A morphological
matrix of conceptual solutions was next manually generated for each subfunction in the
secondary level functional model (see Figure 6.12). Then, one brainstormed solution was
picked for each subfunction, and a complete redesign solution was sketched for the drink

mixer (see Figure 6.13).



Solid, Liquid

117

Solid-Liguid

Mix Drink

ME b

Status

-Cheap
=Works Quickly
-Durable
-Safe
-Small/Compact
-Low human effort required
-Easy to Clean

ot

Export ME

h
ME

Salid, Import

Solid

|

Soli

Mix Liquid-

L\amd.vw

Import
Liquid

Li uu\i

Solid

Ligui

Export Solid-

L\Eunsﬂd

Lquid

ME

Convert
EE to ME

A
EE

Import

i

.2 slb Actuate EE

e

Export
Status

A
EE

Import EE

7

Considered using Pneumatic Energy
instead, but figured electricity would
be cheaper and more user friendly.

Figure 6.11. (Above) Functional model using the secondary level terms of the Functional
Basis for the drink mixer redesign scenario.

Drink Mixer: Secondary

Sub-Functions Possible Solutions s====>

Import Control Button Switch Sensor Knob

Export Status Light Source Speaker |Labels

Import EE Power Cable Batteries |Capacitor

Actuate EE Button Switch Sensor Timer Knob

Convert EE to ME Electric Motor Solenoid |Synthetic Muscle

Export ME Screw Rotor Agitator Wheel Piston Fan Gear |Flywheel [Carousel
Import Liguid Container Housing |Tube Reservoir |Guide

Import Solid Container Housing |Guide Reservoir |Inclined Plane

Export Liquid-Solid Container Housing |Tube Scoop Reservoir Guide

Figure 6.12. Morphological matrix generated from the functional model shown in Figure
6.11 for the drink mixer redesign scenario.
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Figure 6.13. Solution sketch generated from the morphological matrix shown in Figure
6.12 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.12
were used to produce this complete conceptual design.

Next, this process was repeated using only primary level function and flow terms
from the Functional Basis to construct the functional model. Examples of a primary
functional model, morphological matrix, and resulting embodiment sketch are shown in

Figures 6.14-6.16.
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Energy >

Figure 6.14. (Above) Functional model using the primary level terms of the Functional
Basis for the drink mixer redesign scenario.

Drink Mixer: Primary

Sub-Functions
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Figure 6.15. Morphological matrix generated from the functional model shown in Figure
6.14 for the drink mixer redesign scenario.
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Figure 6.16. Solution sketch generated from the morphological matrix shown in Figure
6.15 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.15
were used to produce this complete conceptual design.

Each of the two functional models created above (secondary and primary level)
were then run through the concept generator to generate solutions. Sample solutions

produced by the concept generator are shown in Figure 6.17.



Figure 6.17. Sample matrix-based concept generator output for a primary level functional
model input for the drink mixer redesign.
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The same experimental procedure was used for the original design of a bread
slicer with one minor change. For this original design scenario, the designers began by
producing functional models (secondary and primary) for each product from customer
needs using the design steps previously shown in Figure 6.2.

As before, the three researchers independently developed primary and secondary
level functional models from which to develop conceptual solutions. Since the
researchers used no prior knowledge of existing products, the functional models
generated were purely conceptual. Concepts were generated from each of the two
functional models with and without automation. Sample results from this design scenario

are shown below in Figures 6.18-6.23.
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Figure 6.18. (Above) Functional model using the primary level terms of the Functional

Basis for the bread slicer original design scenario

Bread Slicer: Secondary Level

Sub-function:

Import Solid Housing Reservoir Container Carousel Door  |Scoop [Support  |Human
Position Solid Stop Markings Human

Export Solid Housing Reservoir Container Carousel Door  |Scoop [Support Human
Import CS Switch Sensor Chip circuit board |button

Export CS Markings indicator light [speaker

Import EE Electric Cord Battery Capacitor

Acluate EE Switch Sensor Button

Convert EE to ME _||[Electric Motor Actuator Synthetic Muscle

Transfer ME Link Pulley Belt Gear Shaft |Cable |extension |Cam
Export ME Cable Shaft Blade needle wheel

Figure 6.19. Morphological matrix generated from the functional model shown in Figure

6.18 for the bread slicer original design scenario.
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Figure 6.20. (Above) Solution sketch generated from the morphological matrix shown in
Figure 6.19 for the bread slicer original design scenario. Highlighted solutions shown in
Figure 6.19 were used to produce this complete conceptual design.
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Figure 6.21. Functional model using the primary level terms of the Functional Basis for
the bread slicer original design scenario.
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Bread Slicer: Primary Level

Sub-function: Possibla Soluti _

Channal Matarial |[Cuntairar |Housing  |Inclined Plans Support Human

Support Material |Stop ’ridggs

Charnel Materal Conlainer Housing | Inclined Plane |Support  |Human

Channe! Signal Wire Switeh Indicator Light

Channel Signal Wire Switch Indicatar Light

Channel Energy [Power Cable Batteries  |Whee! Fl ol |Carousel |Dinde Projectile  |Link [needle
Control Magnitude Energy  |[Bullon Swilch thermaostat

Convert Engrgy Electric Molar | Solenoid |speaker | Explosiva [Pump _ |Chemical Reaction

(Channel Enemy Power Cable Batteries |Wheel Fiywheel |Carousel |Diode Projectile [Link |nesdle
Channel Enangy Powar Cable 8 i Wheel Flywhesl |Carousel |Diode Projectile [Link |[psedla

Figure 6.22. (Above) Morphological matrix generated from the functional model shown
in Figure 6.21 for the bread slicer original design scenario.

Coene L4

Figure 6.23. Solution sketch generated from the morphological matrix shown in Figure
6.22 for the bread slicer original design scenario. Highlighted solutions shown in Figure
6.22 were used to produce this complete conceptual design.
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6.3.2. Results. The following sections present the results from the qualitative

comparisons as well as the post-investigation quantitative study. Results from the
designers’ evaluation activities indicated that, in general, both the primary and secondary
modeling levels are useful for modeling a product’s functional requirements under
different design scenarios. In general, primary level functional models are more abstract
and increase creativity in design and secondary level models increase a designer’s focus
and speed at converging on a feasible design. In addition, with a few notable exceptions,
the matrix-based concept generator consistently averaged a larger quantity of feasible
solutions for each subfunction than those produced manually by the students. In general,
the research participants felt the matrix-based concept generator helped stimulate new
creative solutions to the design problems given, but noted that the number of concepts
returned from primary level functional inputs produced was largely unmanageable and
would benefit greatly from additional constraints and filters to eliminate concepts that
were largely irrelevant to the specific design problem.

6.3.2.1. Qualitative Analysis. The concepts generated were evaluated by the
undergraduate researchers in terms of value to them during the design process. This
evaluation primarily involved qualitatively analyzing each combination of test factors and
determining the combinations of factors (i.e. primary vs. secondary level of functional
modeling, manual vs. automated concept generation) produced more diverse sets of
concepts when used to develop concepts for the redesign and original design scenarios.
Additionally, similarities among the concepts produced were also examined. Seeking the

existing design embodiment for the drink mixer as well as the brainstormed solutions for
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each scenario among the concepts generated by the automated tools may help elucidate
the comprehensiveness, feasibility, and novelty of the generated variants. Key questions
asked during the qualitative evaluations include:

(1) Which level of model detail (primary vs. secondary) is more valuable to a
designer during the process of (re)designing a product?

(2) Do any of the solutions returned by the concept generator at the primary/
secondary level of detail give ideas for solutions that were not achieved by manual
methods?

(3) Which level of model detail (primary vs. secondary) returns results from the
automated concept generators that are more useful to a designer during the process of (re)
designing a product?

During the drink mixer redesign activities, the research participants observed that
the primary level functional model allowed for greater freedom to generate a wide
assortment of conceptual solutions, both manually and by using the automated concept
generators. By including more abstract terms to describe the functional requirements,
primary functional models help to broaden the solution space and enhance creativity and
novelty without eliminating the ideas similar to the existing design. However, many of
the solutions generated computationally from the primary level functional models by the
matrix-based concept generation method were not feasible or relevant to the given design
objective. In contrast, the concepts generated from the secondary function model were
complete and practical but tended to be too specific and too similar to the original

existing design to stimulate new creative solutions by the research participants. Hence,
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these results lead to the conclusion that the primary level of functional model is more
valuable if a complete revision of the existing product with the same functionality is
desired, whereas the secondary level functional model will be more beneficial if only
minor revisions to the configuration of components are sought without making changes
across solution domains. For maximum versatility, the choice of a secondary or primary
functional model should be left open to the designer.

In the bread slicer original design scenario, the concepts generated from the
primary level were very diverse. The matrix-based concept generator generated numerous
concepts. However, the participants reported difficulty in parsing through the returned
concepts and narrowing down the results without any additional constraints beyond the
given set of customer needs. For the bread slider design, the secondary level functional
model generated more complete and feasible solutions, but, in general, the concepts
generated tended to be less creative when compared to those generated by the primary
functional model.

The research participants observed a critical need to filter out obscure and absurd
solutions (with respect to the specific design needs for the product to be designed) if the
designer is to proceed through the design process using the primary level functional
model, especially when the matrix-based method of automated concept generation is
employed. This filtering of solutions is complicated and is subjective to say the least, but
one proposed way to help create design boundaries for the results would be to combine
the primary and secondary level Functional Basis terms within a single functional model.

Design functions and flow domains that the designer is certain that the product needs to
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include may be expressed at the more concrete secondary level of language, while the
primary level of language may be used to designate the less well-defined areas of the
design. This combination of detail level is anticipated to help eliminate some of the less

applicable design while still encouraging a broad array of solution exploration.

6.3.2.2. Quantitative Analysis. As an extension to the qualitative comparison

performed by the undergraduate researchers, the manual design solutions generated by
the students during each design scenario were later compared quantitatively to those
generated by the matrix-based concept generator from the design repository knowledge.
Since the student design solutions were contained in a morphological matrix while the set
of computationally generated solutions consisted of lists of compatible component
chains, direct comparisons of the solutions were difficult to achieve. In order to make
quantitative comparisons, the results returned by the matrix-based concept generator were
separated into morphological matrices that could then be directly compared to the
morphological matrices manually generated by the students. The computationally derived
morphological matrices were produced by dissociating each component solution from
each chain of compatible components and recording the unique solutions produced for
each function entered.

The functional models developed during the design process were divided into
single non-branching chains of functions and each chain was entered into the matrix-
based concept generator software. In the case of the drink mixer design, for instance, the
full conceptual functional model shown in Figure 6.11 was broken into three function

chains. The lists of design solutions produced by the matrix-based concept generator were
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saved as text files. Once the software generated design solutions had been distilled into
morphological matrices, numerous observations could be made regarding the quantity of
solutions produced by each method. Looking at the total number of distinct design
solutions generated during each test combination, the matrix-based concept generator
produced more design solutions per subfunction than the students produced manually
(22.14 vs. 3.81 for student #1, 24.07 vs. 10.78 for student #2, and 30.20 vs. 3.78 for
student #3, as shown in Table 6.6). For each subfunction, solutions were translated to the
component naming scheme and distinct solutions refer to the number of different

component names plus any additional solutions that were not classifiable.
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Table 6.6. Summary table showing the total number of solutions for the morphological
matrix from each testing combination. The number of subfunctions included in each
morphological matrix and the average number of solutions per subfunction are also

shown.
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Table 6.7 gives a more detailed breakdown of the number of solutions and

feasible solution chains produced by each method for each design scenario. Data within

these tables are organized by the flow chains that were entered into the matrix-based

concept generator to produce corresponding chains of compatible partial solutions. These
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tables show that the average number of solutions produced per subfunction for nearly
every flow is higher for the matrix-based concept generator group vs. the student
generated groups of solutions. Correspondingly, the total number of complete compatible
solutions produced by the matrix-based concept generator from the repository of design
knowledge is typically greater than the total number of possible combinations produced
by the students, with a few notable exceptions. First, in Table 6.7a, we can see that no
complete solutions were assembled by the matrix-based concept generator for “Flow 1”
under Student #1 or “Flow 3” under Student #3 in the drink mixer redesign scenario. This
observation stems from the fact that, at this time, no component in the design repository
solves the subfunction “mix liquid material”. Similarly, in Table 6.7a, the lack of
solutions for “Flow 2” under Student #3 for the drink mixer redesign scenario results
from the matrix-based concept generator being unable to find a component solution to the

subfunction “regulate human material.
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Table 6.7. Summary tables showing the # of subfunctions in each flow extracted from
each functional model, total # of solutions generated for all of the subfunctions in each
flow, avg. # of solutions per subfunction within a flow, # of compatible solution chains
able to be constructed (both partial and complete) to solve the flow, and the total # of
solution chain combinations possible (both feasible and infeasible) for the (a) drink mixer
redesign, and (b) bread slicer original design scenarios.
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Since quantity of results is not the only concern when evaluating the usability of a
design tool in concept generation, a comparison of the type of solutions produced by the
matrix-based concept generator against those produced by the students was also made.
Table 6.8 shows a summary of the number of overlapping design solutions seen in both
the student generated and computationally derived morphological matrices. For instance,
for the drink mixer data, of the 271 distinct solutions produced by the matrix-based
concept generator plus all of the three designers, 32 of the solutions were generated by
both of the two methods. This means that 32.65% of the designer-generated solutions
were contained within the automatically generated solution set, and, alternatively, 15.61%
of the concept generator results were contained within the designer-generated set of

solutions.
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Table 6.8. Summary table showing the number of distinct design solutions found in both
the student generated morphological matrices and the morphological matrices derived
from the matrix-based concept generator results.
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6.4. CASE STUDY: ADOG FOOD PACKET COUNTER
In this section, both of the previously described methods of automated concept
generation (the list-based output method and the interactive morphological matrix method
described in Section 4.2 and 4.4, respectively) along with the web-based morphological
search, described in Section 2.4.3., are evaluated using a design problem to transform an
imprecise counting and packaging line at the Rolla Area Sheltered Workshop. The
solutions generated for that design problem are used here to compare the results of
manual concept generation techniques with the results from each of the three automated
methods. The device, prototyped at the University of Missouri-Rolla (UMR), was the
product of several modern design methodologies. Initial customer interviews were
conducted, a customer needs questionnaire was developed, technical requirements were
formed, and several methods of concept generation and selection techniques were applied
to this original design project. The manual concept generation activities required the team
to meet outside of class and devote several hours of research and brainstorming to
complete. The concepts that the team generated manually during these activities are
compared to the results returned in a few minutes using each of the three automated tools

in Section 6.4.3.

6.4.1. Chi-Matrix Background. The chi-matrix method relies on a catalog of

design information that stores components and the functions they perform (Strawbridge,
2002). When a designer desires to generate concepts for a given design problem, a filter
matrix is used which contains only the functions needed for the given problem. This filter
is multiplied into the aggregate function-component matrix to produce a matrix that

contains only components that solve the needed functions. In this way a designer can
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generate possible solutions without having to search the entire store of knowledge

manually.

6.4.2. Description of Case Study. The Rolla Area Sheltered Workshop employs

persons with mental and physical disabilities to package variety boxes of dog and cat
food sample packets for a local pet food manufacturer. In the interest of increased
productivity and a reduced incidence of repacking, a counting and packaging assistive
device was sought. The design team began by observing the previous method of
packaging used by the employees and interviewing the Workshop managers to develop an
understanding of the design problem and determine and weight the needs of the customer.
Next, the team established the functional requirements for the design by developing a
black box model and subsequent functional model, which incorporated the previously
described Functional Basis terms.

A black box model is a simple representation of product’s function with input/
output flows, which are identified from the customer needs. In the model, the product is
treated as a closed system and does not include the details of the flows and functions that
are internal to the product; only flows input into and output from the product are taken
into consideration. Figure 6.24 shows a black box model created for the sample packet
counting product. After the black box model was defined, each input flow was then
associated with subfunctions that operate on the flow and then aggregated to form a

functional model.
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Figure 6.24. The black box model developed for the dog food packaging device.

A functional model is a description of a product or process in terms of the

elementary functions that are required to achieve its overall function or purpose. A

graphical form of a functional model is represented by a collection of subfunctions

connected by the flows on which they operate. This structure is an easy way for a

designer to see what functions must be performed without being distracted by any

particular form the artifact may take. A functional model of the dog food packaging

device is shown in Figure 6.25.
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Figure 6.25. The functional model developed for the dog food packaging device.

Next, the design team used many different manual concept generation techniques

including the C-sketch method, Design by Analogy, the Chi Matrix approach, described

above in Section 6.4.1, and the Morphological Matrix approach, described in Section

2.4.3, to explore many different creative solutions and to generate a broad spectrum of

complete design concepts. The team generated five design concepts using the C-Sketch

method. Three of the concepts were based on mechanical and electrical systems to

transport and count the dog food packets. The fourth concept contained no moving parts

or electronics and was a simple plastic tray with color-coded slots. The fifth concept built

on concept four by adding switches and buzzers to indicate when the slots were full.

Figure 6.26 shows three such concepts developed using the C-Sketch method (C-sketch

1, C-sketch 3 and C-sketch 5 respectively).
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C-Sketch 3

Figure 6.26. Concepts generated by the C-Sketch method.

Four concepts were produced using the Design by Analogy method. The first

three concepts were electro-mechanical devices using conveyors and sensors to count and
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transport the dog food packets. The fourth concept was a plastic tray variant with rotating
handles to empty the counted dog food packets directly into the box.

Employing the Chi Matrix approach yielded five additional concepts. The first
concept was based on a case with individual dog food packet receptacle slots. A sliding
door was placed beneath the receptacles and was used to empty the slots once they are
filled directly into the packing box via a chute. The remaining four concepts incorporated
fairly simple electronics to act as counters while dog food packets were manually placed
in the box. Figure 6.27 shows concepts Chi-Matrix 1, Chi-Matrix 2, and Chi-Matrix 5 as
example solutions generated by the design team using this method. Although the method
is similar to the Morphological Matrix Search method discussed in the remainder of this

paper, the Chi Matrix solutions here were produced by hand using a different set of data.
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Chi Matrix 1 Chi Matrix 2

Chi Matrix 5

Figure 6.27. Concepts generated by the Chi Matrix method.

Ten concepts were generated using the morphological matrix approach. All of
these concepts made use of electrical and mechanical devices to count and transport the
dog food packets. It is important to recognize at this point that this morphological matrix
was generated by hand by the design team and is not derived from the same data as the

Morphological Matrix Search operation discussed in the rest of the paper.
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6.4.3. Evaluation of the Three Automated Methods. Using the functional model

shown in Figure 6.25 as input, results from each of the three automated methods, the
web-based morphological matrix method described in Section 2.4.3 and the list-based
and interactive morphological matrix software implementations described in Section 4,
were compared to the conceptual solutions manually generated by the students for the
dog food packet counter case study. The data used to generate the automated solutions
was produced from the online repository of product knowledge described in Section 2.4,
which currently houses detailed information on the 102 consumer products listed in Table

6.9.

Table 6.9. Information on these 102 products is currently contained within the data

repository.

Products Currently Housed in the Online Repository of Design Knowledge
1 air purifier 35 delta circular saw 69 lawn mower
2 all-in-one printer 36 delta drill 70 mac cordless dril-driver
3 apple usb mouse 37 delta flashlight 71 mini bumble ball
4 b and d can opener 38 delta jigsaw 72  mixer
5 b and d circular saw attachment 39 delta nail gqun 73 mr coffee iced tea maker
6 b and d drill attachment 40 delta sander 74 oral b toothbrush
7 b and d dustbuster 41 dewalt sander 75 orion paintball gun
8 bandd jigsaw 42 digger dog 76 presto salad shooter
9 b and d jigsaw attachment 43 digital scale 77 proctor silex iran
10 b and d mini router attachment 44  dirt devil vacuum 78 quickgrip_irwin
11 b and d palm sander 45 dishwasher 79 razor scooter
12 b and d power pack 46 durabrand iron 80 salton electric wok
13 b and d rice cooker 47 dvd player 81 shopvac
14 b and d sander attachment 48 electric stapler 82 skil circular saw
15 b and d screwdriver 49 eyeglass cleaner 83 skil drill
16 b and d sliceright 50 firestorm battery 84 skil flashlight
17 ball shooter 51 firestorm circular saw 85 skil jigsaw
18 bissell hand vac 52 firestorm drill 86 slow cooker
19 black 12 cup deluxe coffee 53 firestorm flashlight 87 snowcone maker
20 black 12 cup economy coffee 54 firestorm saber saw 88 stapler
21 black 4 cup regular coffee 55 firestorm screwdriver 89 stir chef
22 blowervac 56 first shot nerf gun 90 supermax hair dryer
23 brake system 57 game controller 91 tippman paintball gun
24 braun coffee grinder 58 garage door opener_genie 92 tractor sprinkler
25 brother sewing machine 59 ge microwave 93 versapak circular saw
26 bugvac 60 giant bicycle 94 versapak sander
27 camera 61 hair timmer 95 vibrating razor
28 cassette player 62 holmes fan 96 vise grip
29 cd player 63 hot air popper 97 water pump
30 colgate motion toothbrush 64 hulk hands 98 westbend electric wok
31 cordless kettle 65 irobot roomba 99 white 12 cup regular
32 crest toothbrush 66 jar opener 100 white 4 cup economy coffee
33 datsun truck 67 john deere tractor gear 101 zip drive
34 dazey stripper 68 juice extractor 102 zippo lighter
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Ten of the 31 concepts developed during the bulk-packaging device project were
chosen to compare to the morphological search results, list-based automated concept
generator results, and interactive morphological matrix results. The concepts are named
for the technique that was used for their generation. For example, “Chi-Matrix 1”
corresponds to the first concept developed by using the Chi Matrix approach. The
concepts named “Chi-Matrix 1”7, “Chi-Matrix 27, “Chi-Matrix 4”, “Chi-Matrix 5”, and
“C-Sketch 5” were identified by the original design team as their top-five concepts. The
remaining concepts were selected from the pool of 31 total concepts because they

represented well-documented complete design solutions with definable functionality.

6.4.3.1. Survey of the Data Contained within the Repository. A function-

component matrix (FCM) was downloaded from the online repository to get an initial
snapshot of the coverage that the repository had in reference to the input functional model
for the dog food packaging device. Of the 29 subfunctions identified for the bulk-
packaging device, all 29 of the subfunctions were contained within the FCM produced

from the 102 consumer products.

6.4.3.2. Preparing the Manual Concepts for Comparison. In order to compare

the results from each of the automated design tools to the concepts manually developed
for the bulk-packaging device, the concept sketches and design notes from the design
project were revisited. Since the subfunctions used as input into each of the automated
design tools originates from the initial functional model of the bulk-packaging device,
each manually produced concept was checked against the same set of subfunctions. Some

differences exist between the subfunctions identified in each of the concepts and those of
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the original functional model. This subfunction variation is partially due to the natural
progression of the design process where customer needs are refined and the product
direction is better identified. Table 6.10 shows a mapping of the originally identified
subfunctions to each of the concepts used as a comparison in this study.

Next, each manually created concept was analyzed to determine the component
that solves each subfunction found in that concept. These results were placed into a
concept-specific function-component matrix for each manually generated concept to
assist comparison with the results from each of the automated design tools. Table 6.11
demonstrates this idea by showing the identified subfunctions and components for the
Chi-Matrix 1 concept comparison. Note that the components listed in the columns
represent only those components that were identified as part of the Chi-Matrix 1 concept.
Components that were identified to solve a specific function are denoted with a cell entry
of 1. Shaded functions identify the subfunctions from the original functional model,

which were embodied in the Chi Matrix 1 manually generated concept.
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Table 6.10. Subfunctions from the original model that are embodied in each manually
generated solution compared.

Dominant Functions Identified in Manually Generated

Concepts

Lo~ b WwNE-

import human material

guide human material

stabilize human material

impaort control signal

import solid material

position solid material

store solid material

supply solid material

transfer solid material

sense solid material

indicate solid material

store solid material

export solid material

import control signal

process control signal

import human energy

convert human energy to mechanical energy
change mechanical energy

transfer mechanical energy

indicate status signal

change status signal

convert electrical energy to optical energy
export optical energy

import electrical energy

change electrical energy

supply electrical energy

change status signal

convert electrical energy to acoustic energy
export acoustic energy
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Table 6.11. Concept-specific function-component matrix for the manually generated
solution labeled Chi Matrix 1.

Chi Matrix 1 Concept Specific Function-Component Matrix| . o 2 g S E
U 5 T o Y a o

23 3 8 £ 34§ 5

O U T T T & O

1 import human material 0|loj1|0]|of0]O
2 guide human material gfof1/ofof0|D
3 stabilize human material 0joj1/ojojo|0
4  import control signal gjloj0j0|0JO]O
5 import solid material ol1/ololojofo
6 position solid material 0]0/0/1[{0]0]0
7  store solid material 0jo|o|o|1][0]|0
8 supply solid material 0|1[0[0]0|0]|O
9 transfer solid material 1(of[ojofof0|D
10 sense solid material ogj|0j0jO0|O|JO{O
11 indicate selid material 0|0|0|1]|0]|0|O
12 store solid material o|elolo]0o]|1]|0
13 export solid material o|l1lolojofo]o
14 import control signal ofoj0ojof0]0O]O
15 process control signal ofoj0O|0of0]O]O
16 import human energy ojloj1/0|l0]l0O]|O
17 convert human energy to mechanical energy i|lojofofojo]|oO
18 change mechanical energy ofoj1/0]|0]0]0
19 transfer mechanical energy ofolololojo(1
20 indicate status signal ofo|/0o|0Of0]0O]|DO
21 change status signal ofojO0j0Of0]J0O]O
22 convert electrical energy to optical energy ofojloj0Of0]j0O]oO
23 export optical energy ofojO0|0Of0]JO]O
24  import electrical energy ofo|jo|0Of0]0O]|O
25 change electrical energy ofojOojOofO0]0O]O
26 supply electrical energy of0j0o|0OfO0]J]O]O
27 change status signal gjojoj0ojJOJ0O]O
28 convert electrical energy to acoustic energy oOfo|/o|Oof0]JO]O
29 export acoustic energy gjojOojO0|0|JO[O

6.4.3.3. Comparison of Automated Results to Manually Generated Concepts.
Once the subfunction-component solution data had been extracted from each manually
developed concept, the subfunctions from the functional model shown in Figure 6.25
were entered into each of the automated design tools. The returned results for the entire

set of 29 subfunctions in the original model were compared to each of the concept-
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specific function-component matrices to determine what percentage of the manually
generated concept was returned by each automated conceptual design tool.

Table 6.12 shows a summary of the comparisons between each manually
generated concept and automated results for each of the three tested design tools. For the
concept Chi-Matrix 1, 80.00% of the components used in the manually created concept
were returned by the morphological search while only 73.33% of the components were
found using the list-based concept generator and 66.67% by the interactive morphological
search concept generator. This means that 80.00% of the manually derived concept (using
no database of existing design knowledge) could have been derived by using the
morphological search feature of the repository and 66.67%-73.33% could have been
found or assembled using one of the concept generators. Analysis of all of the concepts
indicate that an average of 80.44% of the ten manually derived concepts could have been
automatically generated by the repository’s morphological search feature, while only an
average of 61.10% of the concepts could have been developed directly from the list-based
automated concept generator and 53.10% directly from the interactive morph search

concept generator.
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Table 6.12 Portion of manually generated concept returned by each of the automated

design tools.
Manual List-Based Interactive Morph
Concept Morph Search Concept Search Concept
Generator Generator
Chi-Matrix 1 £0.00% 73.33% 66.67%
| Chi-Matrix2 |  75.00% 43.75% 37.50%
Chi-Matrix 4 £69.23% 38.46% 23.08%
Chi-Matrix 5 B5.71% 71.43% 64.29%
C-Sketch 1 §1.25% _62,50% 43.75%
C-Sketch 2 §1.25% 56.25% 43.75%
C-Sketch 3 B0.00% 60.00% 53.33%
C-Sketch 4 B7.50% B7.50% 87.50%
C-Sketch § 77.78% 44,44 % 44.44%
DBEA-1 B6.67% ! 73.33% 66.67%
Average. G0, 44 % 61 10% 53.10%

Table 6.13. (Below) Summary of the number of solutions returned by each of the
automated design tools.

List-Based Interactive Morph
Morph Search Concept Search Concept
Generator Generator
Total Number
of Possible 7.04E+11 6.52E+11 8.76E-+09
Solutions
Average
s 11.21 10.93 B.45
Solutions per
Subfunction

The results returned by each method were also analyzed to determine the number
of complete solutions possible for a user to assemble. These results are summarized in
Table 6.13. The morph search returns an unfiltered matrix of component solutions
yielding a total of 7.04 x 10% possible solutions with an average of 11.21 possible
solutions returned for each subfunction. The filtering of infeasible concepts based on
historical compatibility within the concept generator reduces the number of possible
complete solutions down to 8.76 x 10° with and average of 8.45 solutions returned for

each subfunction.
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7. CONCLUSIONS

7.1. INTRODUCTION

The creative nature of design generation demands skills from a designer that must
be developed and refined through practice. Advancement in technology is usually made
by building on previous experiences and learning from past successes and failures.
However, this knowledge transfer in the broad field of product design is difficult to
accomplish. Often, few records are kept cataloging a designer’s rationale during the
decision-making processes that lead to the embodiment of a successful design solution.
Additionally, although many successful designs are easily identifiable, it can be unclear
why or how that success materialized without prior experience dissecting or designing a
similar product.

The research presented here provides a computational link between existing
design tools used to gather and organize customer needs and tools used to capture and
manipulate a designer’s sketches for further development using CAD software. This
design tool seeks to assist a designer during the conceptual phase of the design process
with computer software capable of searching a large database of design knowledge and
delivering multiple relevant and easily identifiable solutions for a design problem. The
search is facilitated by accepting standard input generated by a designer during a
structured design process. The following sections will summarize the research presented,
discuss key findings and conclusions reached during the course of the research,

enumerate key contributions of the work presented here, and establish future work that
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will further expand the usefulness and applicability of the automated design tool

presented in various design situations.

7.2. SUMMARIES AND DISCUSSIONS

The following subsections give summaries and discussions for each of the

chapters contained in this dissertation.

7.2.1. Automated Concept Generation Design Tools. Section 3 and Section 4

present the algorithm and software implementation of an automated, mathematically-
based concept generation technique developed from an empirical study of consumer
products. Intending to facilitate the generation and evaluation of feasible concept variants
during the early phases of the design process, the goal is to utilize existing design
knowledge to rapidly produce a large array of concepts early in the design process. The
automated concept generation method not only produces numerous results, but also has
the capability to automatically rank the returned concepts based on a designer’s desired
specifications. One particular strength of the created algorithm is the generality it allows
in terms of input and output. Unlike many other research efforts into automated concept
generation which focus on the dynamic aspects of a design by utilized bond graphs (e.g.
Welch and Dixon, 1991; Gui and Méntyld, 1994; Bradley, et al., 1993; Oh, et al., 1996;
Bracewell and Sharpe, 1996; Sieger and Salmi, 1997) or focus on applicability to specific
design situations (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998), the
design tool presented here allows for varying types of design input to be entered and
varying categories of design solutions to be combined into full solutions. In addition,

compared to traditional concept generation methods, the process presented here is quick
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and does not require the effort of an entire team of designers. Furthermore, ongoing
research activities seem to indicate that the concept generation software is capable of
producing concept variants comparable to those produced manually by upper-class

undergraduate engineering students.

7.2.2. Component Classification Hierarchy and Procedure. The research

described in Section 5 outlines a hierarchical framework constructed to help guide the
classification of components and extend previously presented work toward a component
naming convention that led to a flat list of 114 distinct generic component terms
(Kurtoglu, et al., 2005). In addition, the framework presented uses primary and secondary
levels of specification coupled with a robustly defined procedure to help identify the
appropriate placement of terms into the hierarchy while maintaining the goals of
completeness and exclusivity in component coverage. Under this proposed framework,
components of widely varying levels of complexity (e.g. an electric wire vs. an electric
motor) may both be placed within the hierarchical structure, as long as the black box
functionality may be limited to a single function contained within the Functional Basis
list of terms. Additionally, components that exhibit functionality directly vital to the
functioning of a product (e.g. a plug and cord) are not distinguished from components
that only exhibit functionality that supports the function of a product in a more indirect
manner (e.g. a bracket that secures an electric motor in place). Finally, although
component definitions include references to component form as a way to distinguish
between the various component “species”, information regarding a component’s form or

method of manufacture is not used within the component hierarchy. For the components
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classified thus far, complexity, type of functionality (i.e. whether it directly or indirectly
works to solve conceptual functionality), and other characteristics not function related do
not seem to negatively impact the effectiveness of the proposed framework. However, as
the number of component “species” grows, the proposed framework could be easily
adjusted to fit into a larger hierarchical framework where other component characteristics
that are deemed appropriate may be added as super-groups to the proposed hierarchy (see

Figure 7.1). As with the classification of living organisms, the classification of

components is an endeavor that will be strengthened by discourse.

Figure 7.1. The proposed hierarchy has the potential to be adapted to a larger structure if
components from other domains do not fit within the structure proposed for
electromechanical devices from consumer products.

In addition to establishing a method of consistently achieving complete and
exclusive coverage of the component space, the hierarchical ontology also establishes a

means to distinguish traditionally similarly named components that, in fact, have very
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different functionality. Just as a black-tailed prairie dog (which is, indeed, not a dog at
all) and a common domesticated dog could be distinguished as unrelated by their
scientific names (i.e. Cynomys ludovicianus and Canis lupus familiaris), a similar formal
naming structure could be used to distinguish common component names that may be
misleadingly similar (e.g. a wheel used as a control device to steer a car vs. a wheel that
is fixed to an axle and allows for an object, such as a bicycle, to roll along the ground).
As with animal naming, the formal names may be used when clarity of meaning is
essential, while the familiar names would not lose their meanings.

Since the primary motivation behind the creation of an effective component
ontology is to assist designers during the early phases of design, a hierarchy organized by
functional purpose incorporates a level of abstraction that will allow functionally similar
but distinct components to be considered for a design. By following the presented
procedure and utilizing the proposed hierarchical structure where components are
grouped together by functional purpose and distinguished by form and functional
embodiment, it is postulated that the goals of completeness and exclusivity of term
coverage will also be effectively maintained.

7.2.3. Experimental Activities and Case Studies. Section 6 presents several
research activities designed to test the effectiveness of the proposed automated concept
generation tool throughout various stages of its development. First, research activities
performed by four undergraduate researchers at the University of Texas at Austin and the
University of Missouri—-Rolla to evaluate the early list-based form of the concept

generator, described in Section 4.2, is presented. Included are a qualitative investigation
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performed by a group of four undergraduate researchers at the University of Texas at
Austin and the University of Missouri-Rolla and a post-investigation quantitative analysis
designed to evaluate the list-based concept generator. Overall, the analyses described
demonstrate that even this early version of the implemented concept generator algorithm
holds promise as a useful design tool. The investigations presented in this section
identified many paths for further development of both the software implementation as
well as the design tools used to support this automated method of concept generation,
including the design repository and Component Basis. One identified avenue of
development for the early concept generator software, later incorporated into the second
generation implementation, was enabling a user to submit a full functional model (with
branching chains and multiple input and output flows). Another potentially useful user-
interface improvement, later implemented, was to output the generated design solutions
as a more interactive tool instead of listing the results in a ranked list of solution chains.
The interactive morphological matrix style output, described in Section 4.4, allows a
designer to “tinker” with solution variations rather than be presented with an
overwhelming list of solutions that may contain groups of variants with only mild
deviations from each other. Thus a designer is free to choose various configurations and
get instant feedback on compatibility and ranking scores on a selected design, since
metrics such as measures of failure, manufacturing and assembly costs, quality,
recyclability, or some mathematical combination of similar design characteristics can be
embedded in the seed FCM and DSM that seed the concept generator. In general,

management of the design solutions, including developing useful ranking schemes and
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grouping similar solutions into sets, will be a key area of development, since this aspect
of the software strongly influences a designer’s perception of the software’s usefulness.

Section 6.3 presents a qualitative investigation performed by a group of three
designers at the University of Texas at Austin and the University of Missouri-Rolla and a
post-investigation quantitative analysis designed to evaluate multiple parameters within a
systematic design process; functional requirement abstraction level and manual versus
automated concept generation in original and redesign scenarios. The analyses described
in this section demonstrate that, as with any tool, a computerized design tool must either
be intuitive enough to use that a designer can naturally incorporate it into the design
process, or the benefits of using the software must be great enough to justify scaling a
learning curve to reap the advantage. As Snowden (Andrews and Snowden, 2002) states,
“...technology [is] a tool: If you pick it up and it fits in the hand, then it’s useful. If you
have to bio-reengineer your hand to fit your tool, it’s a waste of time.” To this end, as
with all useful computer applications, the automated tools proposed must be refined so
that, from a designer’s perspective, the tool does not hinder the design process. The
research presented was performed to help compare the current effectiveness of the
automated design tool and guide the further development of the method into a useful
computational conceptual design tool.

The case study described in Section 6.4 investigates the results returned by the
existing web-based morphological search tool described in Section 2.4.3, the list-based
concept generation implementation described in Section 4.2, and the interactive concept

generation software described in Section 4.4. Each of the three design tools were
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evaluated against manually created concepts (using no database of existing design
knowledge) generated for a dog food packaging device. The web-based morphological
search tool captured an average of 80.44% of the ideas manually generated, while each of
the automated concept generator tools captured between 53.10% and 61.10% of the
manually generated ideas after filtering the incompatible solutions from those returned by
the morphological search method.

A key characteristic of the two automated concept generators compared during
this study is the filtering of incomplete solutions from the pool of concepts automatically
produced based on data contained within the database of design knowledge. Although the
filtering out of incomplete solutions begins to dramatically reduce the pool of
automatically generated solutions that a designer must parse through (in this study a
reduction from 7.04 x 10M to 8.76 x 10° possible solutions), many feasible partial
solutions are lost, as indicated by the reduced hit percentage between the web-based
morphological search and the two automated concept generators. However, the increased
number of “misses” by each of the concept generator design tools can be addressed by
refining several existing traits of the data contained in the web-based design repository.

First, the data contained in the repository may include intermediate component
connections to link together the major components identified in the manually generated
solutions. For instance, solution pairs comprised of a battery connected to a circuit board
were filtered out because none of the products that are dissected and stored within the
repository have a battery directly in physical contact with a circuit board. This fact alone

accounts for significantly decreased correlation between the automated solutions
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produced by the concept generators and the manually generated solutions labeled Chi
Matrix 2, Chi Matrix 4, C-Sketch 1, C-Sketch 3, and C-Sketch 5. This problem could be
alleviated by using a secondary method of compatibility identification beyond direct
physical contact, e.g. by identifying compatible input and output flow ports for a
component.

Other problems arise because of “bottlenecking” of solutions for a particular
subfunction. That is to say, if the repository data for a given subfunction is limited, the
results returned by any of the methods may produce only a single or very few solutions.
This has a dramatic effect on the morphological search automated concept generator
especially, because all solutions returned should be complete and therefore must include
the same solution for the restricted function. The best way to avoid this problem is to
continue to populate the design repository with many products from a variety of domains
and complexities.

The final problem identified as having a significant impact on the reduced hit
return from the automated concept generators relates directly to the signal flows
contained within the input functional model. Product knowledge entered into the online
repository for components that primarily have functionality dealing with signal flows
through a product suffers from inconsistencies that are not as readily seen when dealing
with components that mainly deal with materials and energies moving through a product.
Recent research at the University of Missouri-Rolla has made strides to develop

grammars to address the significant issues of inconsistency in modeling signal flows, but
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this research has not yet been retroactively applied to products already contained in the
repository.

The design tools investigated in this study offer designers an additional approach
for generating concept variants and presents historically recorded subfunction solutions.
The high hit percentages for the morphological search further reinforces this feature of
the online design repository as a promising tool for concept generation. The lower hit
percentages for the two automated concept generators (the list-based version—Section
4.2., and interactive version—-Section 4.4.) that limit the results returned to only feasible
solutions based on component compatibility suggest that a larger pool of data is needed in
order to avoid limiting the results with obstacles such as solution “bottlenecking” and
data inconsistency. However, it is important to note that although these obstacles did have
an impact on the commonality percentages calculated for the interactive morphological
search, many complete and physically feasible solutions were returned by the automated
tools that the students did not manually generate.

Two distinct advantages emerge from the use of the automated design tools. First,
the process is automated to the extent that component solutions are identified
computationally through repeatable algorithms rather than through mental retrieval.
Secondly, the aggregation of knowledge represented in a generated matrix offers a greater
degree of diversity, permanence, and portability than human recollection alone is likely to
provide. The process for retrieving knowledge from each of the design tools is quick and

does not require the efforts of an entire design team.
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7.3. KEY CONTRIBUTIONS

The computational theory of concept generation addresses the lack of automated
methods in the early stage of conceptual design. It is based on the notion that archived
product design knowledge can be reused to create new product concepts. The theory
behind the design knowledge relationships is sound, drawn from accepted systematic
design methodologies. The representation of the various design knowledge relationships
in a mathematical form is a rather novel development. The formulation of a theoretical
construct to compute concept variants from archived knowledge breaks new ground by
helping to push engineering design concept generation activities into the realm of
artificial intelligence.

One of the key advantages of the computational theory of concept generation is
that it sets forth a path to capture and reuse corporate knowledge. This is a particular
useful notion for industry where design knowledge often resides in the minds of the more
experienced designers. This approach provides a way to capture abstract and specific
product design knowledge (in the form of a design repository) and transfer that
knowledge to less experienced designers (through browsing the repository and computing
new concept variants from the concept generator). Likewise, design education can benefit
from this approach in the education of engineering designers.

Another key advantage of this approach is that the supporting knowledge base can
grow and adapt over time. As more and more product knowledge is accumulated in a
repository, the greater the breadth (or depth, for that matter) of potential concept variants
becomes. A question that results from this is how much data is necessary to make this

concept generation algorithm pliable? Preliminary tests within our lab show that the
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design knowledge in the UMR repository can generate 60-80% of the concept variants
that human design teams produce (the comparisons were made after the human designers
completed their design projects). In addition to the overlapping concept variants, the
concept generator algorithm produces two to four times more concept variants that are
viable than design teams. These results are based on a repository knowledge base of 102
products.

There can be too much of a good thing, however. The output of the concept
generator algorithm can reach into the tens of thousands of viable concept variants,
depending on the size of the input functional models and the make up of the knowledge
base. Ranking quickly becomes a critical method to further filter the viable concept
variants into a more manageable set. Any number of ranking approaches is possible with
the types of design knowledge stored in the repository, as the concept generator approach

does not preclude or dictate any particular type.

7.4. FUTURE WORK

The following subsections outline future research projects that could further

enhance the proposed computational design tool and its supporting technologies.

7.4.1. Extensions to the Automated Concept Generator. Although the research

presented in this dissertation has demonstrated usefulness for early design concept
generation, the effectiveness of the tool would benefit from additional research. For
instance, since conceptual design is inherently an evolutionary process, significant
benefits could be gained by further extending the dynamic functionality of the software.

When a design solution is first explored, a core set of desired functionality is known by
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the designer, but the very act of choosing a specific solution component begins to add
additional functional requirements to a design. In its current form, the proposed
computational theory allows for an initial static set of requirements to be input, but does
not support these evolutionary changes that all designs undergo.

Additional benefits would be gained by further enhancing the presentation of
solutions to a designer. The interactive morphological search takes strides in the direction
of giving a design real-time feedback on the compatibility of a solutions, but focusing
research on taking the text-based solutions and presenting them in a visual manner (i.e.
creating a virtual prototype) would make a significant impact on how a designer interacts
with the knowledge presented. The computational theory presented in this dissertation
also very readily could be extended to present a designer with design modules by
employing the method of clustering components into design groups presented by Kusiak

and Szczerbicki (1993).

7.4.2. Ranking and Identifying “Good” Designs. Features of future software

versions should include the exploration of various ranking methods to help sort the
concept variants generated. Although using the design structure matrix as a first-pass
filter eliminates many less useful concepts from the set of design variants, metrics such as
measures of failure, manufacturing and assembly costs, quality, recyclability, or some
mathematical combination of similar design characteristics could prove to be valuable
tools for identifying the most promising variants among the hundreds (or thousands) of
potentially viable solutions found. In general, management of the design solutions,

including developing useful ranking schemes and grouping similar solutions into sets,
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will be a key area of development, since this aspect of the software will strongly dictate
whether the introduced design tool will help or hinder the design process from the

designer’s perspective.

7.4.3. Early Design Tools for Multiple Design Contexts. The computational

theories presented in this dissertation, because they are generalized, have the potential to
impact other areas of design beyond the scope of product design. Investigations into the
different approaches and requirements that designers in different contextual situation face
may demonstrate that the established theory is adaptable to situations such as designing
process layouts (e.g. for manufacturing purposes or potentially even chemical or
biological (protein) design processes), dictating performance parameters for complex
systems (i.e. integration designs), automating previously manual processes, designing

efficient workflow layouts.

7.4.4. Component Classification Research. Further areas of improvement for

the established component templates and classification procedure includes establishing
more complete port templates that may be used to help build up more complete
conceptual ideas during the early stages of conceptual design. By knowing the number
and types of ports a component term typically has, software may be used to help guide
the evolution of a full conceptual idea, including parts needed to indirectly support the
functionality of other components. Additionally, design measure estimates (such as
measures of potential failures, manufacturability, cost, size, performance, etc.) could be
determined across each component group and used to help guide concept selection early

in the design process. Other work could include creating a forum for the discussion of
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new and existing component terms, their placement within the hierarchical ontology, and
even the organization of the hierarchical ontology as well. Finally, the work presented
here is focused mainly on components found in consumer products. Additional work
should look at other design domains and identify how the hierarchy should be altered or
expanded to include a broader range of component types. As with the animal groupings,
the process to create a complete and robust hierarchy should be an evolutionary process

with much discussion involved.

7.4.5. Other Related Research Areas. Further areas of refinement include

enhancing the robustness of the data entry procedure for populating the design repository.
Since the validity of the results returned by the concept generator is closely tied to the
validity of the knowledge stored in the repository, the quality of returned results is
sensitive to the quality and correctness of design knowledge contained in the repository.
For instance, during the quantitative study of the data from the methodological
comparison reported in Section 6.2, an error in data entered into the design repository
was identified when the design solution of an “indicator light” turned up as a solution to
the subfunction “convert electrical energy to mechanical energy.” The entry error was
identified as an incorrectly selected component classification term, but since this
component was also compatible with the surrounding components via the identified
component connections, it was not filtered out of the compatible solutions returned by the

concept generator.
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7.5. PARTING WORDS.

As mentioned in Section 1, Yang (2003) concludes that it is both important to
generate and solidify a large number of ideas as well as begin prototyping a design early
in the design process. Anderson’s (1981) research indicates that while experienced
designers tend to approach a design problem broadly at first, inexperienced designers
explore solutions using a depth-first approach. From this perspective, the presented
concept generation theory encourages novice designers to investigate a broad range of
solutions, as a more experienced designer may be inclined to do. The matrix-based
concept generator allows for the quick development of conceptual ideas and for
significantly different concepts to be explored through sketching, since it utilizes the
component classification scheme rather than specific component instantiations to return
results. In addition, the wide array of results returned by the concept generator supports
creativity and design research, which indicates that conceptual design activities should
contain both divergent and convergent steps (Cross, 1994; Pugh, 1991; Guilford, 1959;
Roozenburg and Eekels, 1995). The computational theory presented in this dissertation
demonstrates the potential for automated technologies to support designers during the
early stages of design and reuse existing design knowledge in a way that contributes to

innovation and creativity in product design.
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start ‘ConGen.java’ code

* Concept Generator (a.k.a Memic - Morphological Evaluation Machine and Interactive Conceptualizer)

* This software accepts the functional description of a product to be designed and outputs a morphological matrix

*

*

that a designer may interact with to build and evaluate conceptual solutions.

Version: 2.0

* Author: Cari R. Bryant, University of Missouri-Rolla

*

Last Update: July 01, 2007

* Disclaimer: This program is used primarily as a proof-of-concept and is not developed using rigorous Java

*

development conventions.

package edu.umr.ide;

import
import
import
import

import
import

public

java.awt.*;
java.awt.event.*;
java.io.*;
java.util.*;

javax.swing.*;
javax.swing.border.*;

class ConGenV2_0 {

JFrame baseFrame; // Frame for user input GUI

JPanel background; // Panel for input background
JButton loadFM, loadF(CM, loadDSM; // Buttons to load Functional Model, Function-Component Matrix, and Design

Structure Matrix files
JTextField labelFM, labelFCM, labelDSM; // Labels for file and directory displays

JFrame resultFrame; // Frame for results output GUI

JPanel resultBackground; // Panel for output background

ArraylList<JTextField> selectedFields = new ArraylList<JTextField>(); // Array of selected component fields
ArraylList<JButton> removeButtons = new ArraylList<JButton>(); // Array of removeButtons
ArraylList<Arraylist<JButton>> fullCompArray = new ArraylList<ArraylList<JButton>>(); // Array of morph matrix

rows
Color lightblue = new Color(200,205,225); // Background color

Color darkblue = new Color(142,148,191); // Dark accent color

Color white = new Color(255,255,255); // Light accent color

/¥

* Define global variables for program methods

H o */

String lastFMOpenPath = System.getProperty("user.home"); // Keeps track of path of last FM file opened

String lastOpenPath = System.getProperty("user.home"); // Keeps track of path of last FCM or DSM file opened
String lastSavePath = System.getProperty("user.home"); // Keeps track of path of last file saved

ArrayList fmArray = null; // Array to hold raw FM data file data

ArraylList fcmArray = null; // Array to hold raw FCM data file data
ArraylList dsmArray = null; // Array to hold raw DSM data file data

ArrayList<Subfunction> fmLinks = new ArrayList<Subfunction>(); // Array to hold link info from the functional
model

int fmHeader = @; // Number of header rows before column labels in FM data file

int fcmHeader = @; // Number of header rows before column labels in FCM data file
int dsmHeader = @; // Number of header rows before column labels in DSM data file

ArraylList<String> masterComponentlList = new ArraylList<String>(); // List of all components in DSM

ArraylList<Integer> functionsWithoutSolutions = new ArraylList<Integer>(); // List of all subfunctions with
unknown compatible solutions

public static void main(String[] args) {
ConGenV2_0 gui = new ConGenV2_0(); // Create new object
gui.buildInputGUI(); // Run method to build the input GUI
} // end main()
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/* Define and Initialize variables -------=------mmmm oo e */

baseFrame = new JFrame();
background = new JPanel();

loadFM = new JButton();
loadFCM = new JButton();

loadDSM = new JButton();
labelFM = new JTextField();

labelFCM = new JTextField();
labelDSM = new JTextField();

JPanel steplPanel = new JPanel(), step2Panel = new JPanel(), step3Panel = new JPanel();

JPanel radioPanel = new JPanel();
JRadioButton defaultComponents = new JRadioButton(), customComponents = new JRadioButton();

JPanel customComponentLoadPanel = new JPanel(), loadFCMPanel = new JPanel();
JPanel loadDSMPanel = new JPanel();

JTextPane spacerPane = new JTextPane();
JButton goButton = new JButton();

/* DASEFrame —--=— = m oo oo */

{
baseFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
baseFrame.setResizable(false);
baseFrame.setTitle("Memic (The Concept Generator v2.0)");
baseFrame.setBackground(lightblue);
Container baseFrameContentPane = baseFrame.getContentPane();

baseFrameContentPane.setLayout(new BoxLayout(baseFrameContentPane, BoxLayout.Y_AXIS));
/% DACKGrOUNd === === = e e */

{
background.setBorder(new EmptyBorder(10, 10, 10, 10));

background.setFocusable(false);
background.setMaximumSize(new Dimension(800, 320));

background. setOpaque(false);
background.setPreferredSize(new Dimension(800, 320));

background. setMinimumSize(new Dimension(800, 320));
background.setBackground(lightblue);

background. setLayout(new BoxLayout(background, BoxLayout.Y_AXIS));

/* steplPanel =-----mmmm o e e */
{
steplPanel.setBorder(new CompoundBorder(
new TitledBorder("Step 1: Import functional model."),
new EmptyBorder(5, 5, 5, 5)));
steplPanel.setMinimumSize(new Dimension(800, 67));
steplPanel.setFocusable(false);
steplPanel.setOpaque(false);

steplPanel.setBackground(lightblue);
steplPanel.setLayout(new BoxLayout(steplPanel, BoxLayout.X_AXIS));

/% 10ad FM = - oo oo oo oo */

loadFM.setText("Find File");
loadFM. setOpaque(false);

loadFM.addActionListener(new loadDatalListener());
steplPanel.add(loadFM);

/% Label FM = oo oo e oo e */

labelFM.setText("../");
labelFM.setEditable(false);
labelFM.setFocusable(false);
labelFM. setBackground(white);
steplPanel.add(labelFM);

}

background.add(steplPanel);

/% SteP2PANEl === */
{

step2Panel.setBorder(new CompoundBorder(
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new TitledBorder("Step 2: Load component data."),
new EmptyBorder(5, 5, 5, 5)));
step2Panel.setFocusable(false);

step2Panel.setOpaque(false);
step2Panel . setBackground(lightblue);

step2Panel.setLayout(new BorderLayout());

/* radioPanel --------------------—---- */
{

radioPanel.setBackground(lightblue);
radioPanel.setLayout(new BoxLayout(radioPanel,

BoxLayout.Y_AXIS));

/* defaultComponents ------==----mmmmmmmmm e */
defaultComponents.setText("Use default component data.");

defaultComponents.setContentAreaFilled(false);
defaultComponents.setBackground(lightblue);

defaultComponents.setEnabled(true);
defaultComponents.addActionListener(new

defaultFilesListener());
radioPanel.add(defaultComponents);

/* customComponents -----------------oooom o */

customComponents.setText("Load custom component files.");
customComponents.setOpaque(false);

customComponents.setContentAreaFilled(false);
customComponents.setBackground(lightblue);

customComponents.setSelected(true);
customComponents.addActionListener(new

customFilesListener());
radioPanel.add(customComponents);

}
step2Panel .add(radioPanel, BorderLayout.NORTH);

/* customComponentLoadPanel --------------------oo */

{

customComponentLoadPanel .setBorder(null);

customComponentLoadPanel.setBackground(lightblue);
customComponentLoadPanel . setLayout(new

BoxLayout(customComponentLoadPanel,
BoxLayout.Y_AXIS));

/* loadFCMPanel -----------------ommmm oo */

{
loadFCMPanel. setBackground(lightblue);

loadFCMPanel.setLayout(new
BoxLayout(loadFCMPanel,

BoxLayout.X_AXIS));

/* 10adFCM === m—m oo~ */
loadF(M.setText("Load FCM");

loadFCM. setEnabled(true);
loadF(M.setOpaque(false);

loadF(M.setContentAreaFilled(false);
loadFCMPanel .add(loadFCM);

loadF(CM.addActionListener(new
loadDatalListener());

/* 1labelFCM ----- e */

labelFCM.setText("../");
labelFCM.setEnabled(true);

labelFCM. setCursor(Cursor.getPredefinedCursor
(Cursor.DEFAULT_CURSOR));

labelF(M.setEditable(false);
labelF(CM.setFocusable(false);

labelFCM. setBackground(white);
loadFCMPanel .add(labelFCM);

}
customComponentLoadPanel .add(loadFCMPanel);

/* loadDSMPanel ----------------mommm oo */
{
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loadDSMPanel . setBackground(lightblue);

loadDSMPanel . setLayout(new BoxLayout
(loadDSMPanel, BoxLayout.X_AXIS));

/* 10adDSM === — = m oo~ */
loadDSM.setText("Load DSM");

loadDSM. setEnabled(true);
loadDSM. setOpaque(false);

loadDSM. setContentAreaFilled(false);
loadDSM.addActionListener(new

loadDatalListener());
loadDSMPanel .add(loadDSM);

/% 1abelDSM === o - oo oo e */

labelDSM.setText("../");

labelDSM.setEnabled(true);

labelDSM. setCursor(Cursor.getPredefinedCursor
(Cursor .DEFAULT_CURSOR));

labelDSM.setEditable(false);

labelDSM.setFocusable(false);

labelDSM.setBackground(Color.white);

loadDSMPanel .add(labelDSM);

}
customComponentLoadPanel .add(loadDSMPanel);

step2Panel . add(customComponentLoadPanel, BorderLayout.CENTER);

/% SPACErPANE === === == e */

spacerPane.setPreferredSize(new Dimension(50, 16));
spacerPane.setBackground(lightblue);

spacerPane.setAutoscrolls(false);
spacerPane.setDragEnabled(false);

spacerPane.setEditable(false);
spacerPane.setEnabled(false);

spacerPane.setFocusable(false);
spacerPane.setOpaque(false);

step2Panel.add(spacerPane, BorderLayout.WEST);

}
background.add(step2Panel);
/* step3Panel =----mmmmm e e */
{
step3Panel.setBorder(new CompoundBorder(
new TitledBorder("Step 3: Generate interactive
morphological matrix™),
new EmptyBorder(5, 5, 5, 5)));
step3Panel.setFocusable(false);
step3Panel.setOpaque(false);
step3Panel.setBackground(new Color(200, 205, 225));
step3Panel.setLayout(new BorderLayout());
/* goButton --------""---------------° - - : .  : */
goButton.setText("Create concepts!");
goButton.setContentAreaFilled(false);
goButton.setPreferredSize(new Dimension(135, 15));
goButton.setMinimumSize(new Dimension(135, 15));
goButton.setMaximumSize(new Dimension(135, 15));
goButton.addActionListener(new goButtonListener());
step3Panel.add(goButton, BorderLayout.WEST);
}
background.add(step3Panel);
}
baseFrameContentPane.add(background);
baseFrame.pack(Q);
baseFrame.setLocationRelativeTo(baseFrame.getOwner());
baseFrame.setVisible(true);
}
/* componentRadioButtons —=--==--==m oo oo */

ButtonGroup componentRadioButtons = new ButtonGroup();

componentRadioButtons.add(defaultComponents);
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componentRadioButtons.add(customComponents);
} // end buildInputGUI()

* Listener to register the defaultComponents radio button
* actionPerformed method:

* 1. Disables loadFCM and loadDSM
* 2. Automatically loads data from included files into the FCM and DSM arrays
K L o e e e */

private class defaultFilesListener implements ActionListener {
public void actionPerformed(ActionEvent custom) {

// Disable manual loading buttons ------==----mmmmm e
loadF(M.setEnabled(false);

loadDSM. setEnabled(false);
labelFCM.setEnabled(false);

labelDSM. setEnabled(false);

// Automatically load data from included files
ArraylList<Object> fcmFileArray = new Arraylist<Object>(); // Holds array of strings read

from data file
ArraylList<Object> dsmFileArray = new ArraylList<Object>(); // Holds array of strings read

from data file
File newFCMFile = new File("FCM.txt"); // Holds pathname for FCM data file to be read

File newDSMFile = new File("DSM.txt"); // Holds pathname for DSM data file to be read

try { // Try to read data from file
BufferedReader reader = new BufferedReader(new FileReader(newFCMFile));

// Read stream

String line = null; // Initialize variable to get data

while ((line = reader.readlLine()) != null) { // Read in data until end of file
String[] splitlLine = line.split("\t"); // Split line string at tabs
fcmFileArray.add(splitLine); // Add split line strings to file array

}

reader.close(); // Close read stream

} catch (Exception e) {

JOptionPane.showMessageDialog(baseFrame, "Error reading file.");
// Error dialog box

e.printStackTrace();
} // end try

try { // Try to read data from file

BufferedReader reader = new BufferedReader(new FileReader(newDSMFile));
// Read stream

String line = null; // Initialize variable to get data
while ((line = reader.readLine()) != null) { // Read in data until end of file

String[] splitlLine = line.split("\t"); // Split line string at tabs
dsmFileArray.add(splitLine); // Add split line strings to file array

reader.close(); // (Close read stream

} catch (Exception e) {
JOptionPane.showMessageDialog(baseFrame, "Error reading file.");

// Error dialog box
e.printStackTrace(Q);

} // end try

fcmArray = fcemFileArray; // Save data to FCM global variable
dsmArray = dsmFileArray; // Save data to DSM global variable

} // end actionPerformed
} // end defaultFilesListener

* Listener to register the customComponents radio button

* actionPerformed method:
* 1. Enables loadFCM and loadDSM

private class customFilesListener implements ActionListener {

public void actionPerformed(ActionEvent custom) {
loadF(M.setEnabled(true);

loadDSM. setEnabled(true);
labelFCM.setEnabled(true);

labelDSM. setEnabled(true);
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}

} // end customFileslListener

* Listener to register any of the data file load button presses

* actionPerformed method:
1. Triggers box to select data file

* 2. Updates file and directory label for file chosen by user

private class loadDatalListener implements ActionListener {
public void actionPerformed(ActionEvent load) {

Object source = load.getSource(); // Determines source button that triggered the listener
ArraylList returnedArray = loadFile(); // Holds array loaded from data file

if (returnedArray != null) { // If returned file array contains data
File filePath = (File) returnedArray.get(@); // Get path of opened file
returnedArray.remove(@); // Remove path from file data array
if (source == loadFCM) { // If "Load FCM" button was pressed
labelFCM.setText(filePath.getPath()); // Update FCM label field

fcmArray = returnedArray; // Data from the opened file was for the
FCM

} else if (source == loadDSM) { // If "Load DSM" button was pressed
labelDSM.setText(filePath.getPath()); // Update DSM label field

dsmArray = returnedArray; // Data from the opened file was for the
DSM

} else if (source == loadFM) { // If "Find File" button was pressed
labelFM.setText(filePath.getPath()); // Update FM label field
fmArray = returnedArray; // Data from the opened file was for the FM

}

} // end if
} // end actionPerformed

} // end loadDatalistener

* Prompts user for file location, reads in tab-delimited file
* data, and saves the data to a matrix

private ArraylList loadFile() {
File newFile = new File(lastOpenPath); // Holds pathname for data file to be read
JFileChooser fileOpen = new JFileChooser(newFile); // Create new file chooser dialog box
ArraylList<Object> fileArray = new ArraylList<Object>(); // Holds array of strings read from data
file

int cancelOpen = fileOpen.showOpenDialog(baseFrame); // Show dialog box to open file

if (cancelOpen == @) { // Check to make sure file open dialog wasn't cancelled
newFile = fileOpen.getSelectedFile(); // Get path and name of selected file

lastOpenPath = newFile.getPath(); // Retain path of last file opened
fileArray.add(newFile); // Add file path to file data array

try { // Try to read data from file
BufferedReader reader = new BufferedReader(new FileReader(newFile));
// Read stream
String line = null; // Initialize variable to get data
while ((line = reader.readlLine()) != null) { // Read in data until end of file
String[] splitlLine = line.split("\t"); // Split line string at tabs
fileArray.add(splitLine); // Add split line strings to file array
}
reader.close(); // (Close read stream
} catch (Exception e) {
JOptionPane.showMessageDialog(baseFrame, "Error reading file.");
// Error dialog box
e.printStackTrace();
} // end try

return fileArray; // Return array of data read from file
} else {
return null; // Return null value
} // end if
} // end loadFile()
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* Listener to register the goButton button press
* actionPerformed routine:

* 1. Check for data compatibility between the selected FCM and DSM files

* 2. Filter FCM matrix using imported functional model data

* 3. Build and filter the mini DSMs between the function pairings

* 4. Extract the valid component pairs from the filtered mini DSMs

* *5. Build complete solutions that solve the entered function model

* *6. Identify highest ranking solutions

* 7. Build GUI of result chains

K L e */

private class goButtonListener implements ActionListener {
public void actionPerformed(ActionEvent go) {

ArraylList<String[]> fcmArrayFiltered = new ArraylList<String[]>Q);
// Make array for filtered FCM

if (fmArray == null | fcmArray == null | dsmArray == null) {
// Make sure FM, FCM, and DSM files have been selected
JOptionPane.showMessageDialog(baseFrame, "Error: Please load all data files
before continuing."); // Error dialog box

} else {
/* Check for FCM and DSM file compatibility-----------==------------co—o */
boolean match = false; // True if FCM component labels match DSM component
labels

String [] fcmString, dsmString; // Hold label rows for each matrix

femString = (String[]) fcmArray.get(fcmHeader); // Get label row from FCM
dsmString = (String[]) dsmArray.get(dsmHeader); // Get label row from DSM

match = Arrays.equals(fcmString,dsmString); // Component headers match?

if (match) { // If the FCM and DSM files are compatible

fmLinks.clear(); // Clear list
masterComponentList.clear(); // Clear component list

/* Create subFunction link set--------------------~-~—---c */
for (int i = (fmHeader + 1); i < fmArray.size(); i++) {
// For each row in the FM matrix
String[] fmRow = (String[]) fmArray.get(i);
ArraylList<Integer> forConn = new ArraylList<Integer>();
// Array of forward connections
ArraylList<Integer> revConn = new ArraylList<Integer>();

// Array of reverse connections
Subfunction tempSub = new Subfunction(i, fmRow[@]);

for (int j = 1; j < fmRow.length; j++) {
/* Check for forward connections-------------- */
int cellForw = Integer.parseInt(fmRow[j]);
// Get cell value
if (cellForw > @) {

forConn.add(j); // If cell is not zero,
add subfunction as a

forward connection
} // end if

/* Check for reverse connections-------------- */
String[] fmCol = (String[1) fmArray.get(j);
int cellRev = Integer.parseInt(fmCol[i]);
// Get cell value
if (cellRev > @) {
revConn.add(j); // If cell is not zero,
add subfunction as a
reverse connection
} // end if
} // end for

tempSub.setForward(forConn);
tempSub.setReverse(revConn);
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fmLinks.add(tempSub);
} // end for

/* Filter the FCM matrix with the FM data-----------------------—- */
String filter = null; // String to hold filter

String[] headerRow = (String[]) fcmArray.get(@); // Get FCM header

row
fcmArrayFiltered.addCheaderRow); // Add header row to filtered FCM

for (int ii = (fmHeader + 1); ii < fmArray.size(); ii++) {
// Get filter from each row of the input FM

String[] fmRow = (String[1) fmArray.get(ii);
filter = fmRow[@];

// For each row label in the FCM matrix

boolean found = false; // Trigger to add empty FCM row
for (int k = (fcmHeader + 1); k < fcmArray.size(); k++) {

String[] fcmRow = (String[]) fcmArray.get(k);
// Get FCM row

if (filter.equals(fcmRow[@])) {

// If filter matches FCM row
fcmArrayFiltered.add(fcmRow);

// Add row to filtered FCM
found = true;

// FCM contained filter value
} // end if

} // end for

if (!found) { // If row wasn't found for filter
String[] newRow = new String
[fcmString.length]; // Create a new
empty row
newRow[@] = filter; // Row header

for (int m = 1; m < newRow.length; m++) {
// Fill row with zeros

newRow[m] = "0"; // Indicates no
component matches

} // end for

fcmArrayFiltered.add(newRow); // Add created row
to filtered matrix

} // end if
} // end for

FkkdokkokkkdkkkkxkkkkTndentation on the following sections is shifted left 4 tabs to help avoid confusion**¥skskokkkkkkokokkx

/* Build and filter pairwise DSM matrices--------------—--—-———~———- 27

for (int 1 = 0; i < fmLinks.sizeQ); i++) {
Subfunction functionForeward = fmLinks.get(i); // Cycle through each subfunction in the FM
int functionID = functionForeward.getID(); // Get function id

String functionLabel = functionForeward.getSub(); // Get function label
ArraylList<Integer> connectedTo = functionForeward.getForward(); //Get forward connections

for (int 1 = @; 1 < connectedTo.size(); 1++) {

int nextFunct = (Integer)connectedTo.get(1l); // Get next connected function id
Subfunction functionReverse = fmLinks.get(nextFunct-1); // Point to next connected

subfunction

String[] funcl = (String[]) fcmArrayFiltered.get(functionID); // Get first row
String[] func2 = (String[]) fcmArrayFiltered.get(nextFunct); // Get second row

if (functionLabel.equals(funcl[@])) { // Double check that functions are same
int[J[] miniDSM = new int[funcl.length-1][func2.length-1]; //Holds pairwise DSM
for (int m = 1; m < funcl.length; m++) { // Build mini matrix

int cellA = Integer.parseInt(funcl[m]); // Get 1st cell
String[] dsmRow = (String[]) dsmArray.get(m); // Get DSM row



} // end

/* Build
String[]

for (int
} // end

// Check
for (int

} // end

// Build
for (int

174

for (int n = 1; n < func2.length; n++) {

int cellB = Integer.parseInt(func2[n]); // Get 2nd cell
int dsmFilter; // Get filter value from DSM

if (dsmRow[n].equals(" ") | dsmRow[n].equals("")) {

// Account for blank entry

dsmFilter = @; // Makes blanks equal to zero
} else { // Otherwise get DSM value

dsmFilter = Integer.parseInt(dsmRow[n]);

} // end if

if (dsmFilter != @) { // If the filter is nonzero
miniDSM[m-1][n-1] = cellA*cellB*

} else {

(dsmFilter/dsmFilter); // Build DSM

miniDSM[m-1][n-1] = cellA*cellB*dsmFilter;

} // end if
} // end for

} // end for

// Build DSM

functionForeward.addForwardDSM(miniDSM); // Add matrix to list

Arraylist reverselist = functionReverse.getReverse(); // Get list of reverse

connections

int ref = functionReverse.getReverseDSMs().size(); // How many DSMs are already

in the reverse list?

if (reverselist.get(ref) == (Integer)functionID) { // Check that the reverse

DSM is in the same order

as the reverse
connections list

functionReverse.addReverseDSM(miniDSM); // Add this DSM as a reverse

DSM

} else { // Else print error information

System.out.println("Error--
System.out.println(" Reverse connection =

+ reverselist.get(ref));

System.out.println(" Reverse DSM functionID = " + functionID);
} // end if
} else {
System.out.println("Error----- Function mismatch----- ")
} // end if

} // end for loop
building DSMs

115 LTRSS

dsmRow = (String[]) dsmArray.get(@); // Get DSM header row

i =1; i < dsmRow.length; i++) {

masterComponentList.add(dsmRow[i]); // Build component name index list

for

for in ports and out ports
j = @; j < fmLinks.size(); j++) { // For each function in

Subfunction function = fmLinks.get(j); // Get function
ArraylList<Integer> forwardConns = function.getForward();

ArraylList<Integer> reverseConns = function.getReverse();

// Check for in ports

if (forwardConns.isEmpty()) { // If there are no forward
forwardConns.add(-20); // Add that the forward

} // end if

// Check for out ports
if (reverseConns.isEmpty()) { // If there are no reverse

reverseConns.add(-10); // Add that the reverse
} // end if

for

choice lists for all functions
j = 0; j < fmLinks.size(); j++) { // For each function in

the model

// Get forward connections
// Get reverse connections

connections
connection is an out port (-20)

connections
connection is an in port (-10)

the model
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Subfunction function = fmLinks.get(j); // Get next function

ArraylList forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs
Arraylist reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs

ArraylList<ArraylList> forwardChoices = new ArraylList<ArraylList>(); // Initialize array to hold lists
of choices for all forward DSM

for (int p = @; p < forwardDSMList.size(); p++) { // For each forward DSM for this function

ArrayList<ComponentInfo> thisForwCompList = new Arraylist<ComponentInfo>();
// Make list of choices for current forward DSM

int[J[] tempDSM = (int[][])forwardDSMList.get(p); // Get next DSM in the list

for (int m = @; m < tempDSM.length; m++) { // For each DSM row
int rowAddition = @; // Initialize variable

for (int n = @; n < tempDSM[@].length; n++) { // For each DSM column

rowAddition += tempDSM[m][n]; // Add row into a single variable
} // end for

if (rowAddition > @) { // If there is a successful component pair in this row

ComponentInfo thisComponent = new ComponentInfo
(masterComponentList.get(m)); // Make new component object

thisForwCompList.add(thisComponent); // Add choice to list
} // end if

} // end for

if (thisForwCompList.size() > @) {
forwardChoices.add(thisForwCompList); // Add choice list to list of all forward

choices
} // end if

} // end for

ArraylList<ArraylList> reverseChoices = new Arraylist<ArraylList>(); // Initialize array to hold lists
of choices for all reverse DSM

for (int p = @; p < reverseDSMList.size(); p++) { // For each reverse DSM for this function

ArraylList<ComponentInfo> thisRevComplList = new Arraylist<ComponentInfo>();
// Make list of choices for current reverse DSM

int[J[] tempDSM = (int[][])reverseDSMList.get(p); // Get next DSM in the list

for (int m = @; m < tempDSM[@].length; m++) { // For each DSM column
int colAddition = @; // Initialize variable

for (int n = @; n < tempDSM.length; n++) { // For each DSM row

colAddition += tempDSM[n][m]; // Add column into a single variable
} // end for

if (colAddition > @) { // If there is a successful component pair in this

column
ComponentInfo thisComponent = new ComponentInfo

(masterComponentList.get(m)); // Make new component object
thisRevCompList.add(thisComponent); // Add choice to list

} // end if
} // end for

if (thisRevCompList.size() > @) {

reverseChoices.add(thisRevCompList); // Add choice list to list of all reverse
choices

} // end if
} // end for

ArraylList<ComponentInfo> choicelist = new ArraylList<ComponentInfo>();

// List of component choices to be set for current function
int numConnections = forwardChoices.size() + reverseChoices.size(); // Number of occurrences needed

for each component

for (String nextComponent : masterComponentList) {
int occurrences = @; // Initialize variable to count number of component matches

for (ArrayList<ComponentInfo> nextForwardList : forwardChoices) {

for (ComponentInfo nextForward : nextForwardlList) {
if (nextForward.getComponent().equals(nextComponent)) {

occurrences += 1; // Increment the number of occurrences
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} // end if
} // end for
} // end for
for (ArrayList<ComponentInfo> nextReverselist : reverseChoices) {
for (ComponentInfo nextReverse : nextReverselList) {
if (nextReverse.getComponent().equals(nextComponent)) {
occurrences += 1; // Increment the number of occurrences

} // end if
} // end for
} // end for
if (occurrences == numConnections and numConnections != @) { // If the component is a
match for all links

choicelist.add(new ComponentInfo(nextComponent)); // Add component to the
choice list
} // end if
} // end for

if (choicelist.isEmpty()) {
ComponentInfo noSolution = new ComponentInfo("?");
choicelist.add(noSolution); // Add question mark indicator
functionsWithoutSolutions.add(function.getID()); // Add function ID to list of functions
without solutions

} // end if
function.setChoices(choicelist);
} // end for
/* Build component L1ink Lists——-=-mmmmm - */

for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

Subfunction function = fmLinks.get(j); // Get function
ArraylList<int[J[]> forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs

ArraylList<int[]J[]> reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs
ArraylList<ComponentInfo> allChoices = function.getChoices(); // Get all component choices

for (ComponentInfo nextChoice : allChoices) { // For each component choice

int componentIndex = masterComponentList.index0f(nextChoice.getComponent()); // Get DSM
index

if (componentIndex >= @) {

for (int[J[] tempDSM : forwardDSMList) { // For each forward DSM for this
function

ArraylList<String> forelLink = new ArraylList<String>();
// Temp holder for fore links

for (int n = @; n < tempDSM[componentIndex].length; n++) {
// For each DSM column in the index row
if (tempDSM[componentIndex][n] != @) {
// If there is a link between components

foreLink.add(masterComponentList.get(n));
// Add component to forward link list

} // end if
} // end for

if (foreLink.isEmpty()) {
foreLink.add("unknown");
} // end if

nextChoice.addForwardLinks(foreLink); // Add array to link list
} // end for

for (int[J[] tempDSM : reverseDSMList) { // For each reverse DSM for this
function

ArraylList<String> revLink = new ArraylList<String>Q);
// Temp holder for reverse links

for (int n = @; n < tempDSM.length; n++) { // For each DSM row in the
index column
if (tempDSM[n][componentIndex] != @) {
// If there is a link between components
revLink.add(masterComponentList.get(n));
// Add component to reverse link list
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} // end if
} // end for

if (revLink.isEmpty()) {
revLink.add("unknown");

} // end if

nextChoice.addReverseLinks(revLink); // Add array to link list

} // end for
} else {
ArraylList<String> forelink = new ArraylList<String>(); // Temp holder for fore
links
foreLink.add("unknown");
nextChoice.addForwardLinks(foreLink); // Add array to link list
ArraylList<String> revLink = new ArraylList<String>(); // Temp holder for reverse
links
revLink.add("unknown");
nextChoice.addReverseLinks(revLink); // Add array to link list
} // end if
} // end for

ArraylList<Integer> forwardConns = function.getForward(); // Get forward connections

ArraylList<Integer> reverseConns = function.getReverse(); // Get reverse connections
ArraylList<ComponentInfo> choicelist = function.getChoices(); // Get list of choices

if (forwardConns.contains(-20)) { // If there are no forward connections because of an out port
for (ComponentInfo choice : choicelList) { // Set all component forward links as system
outs
ArraylList<String> foreport = new ArraylList<String>();
Arraylist<ArraylList<String>> foreports = new ArraylList<ArraylList<String>>Q);
foreport.add("out");
foreports.add(foreport);
choice.setForwardLinks(foreports);
} // end for
} // end if

if (reverseConns.contains(-10)) { // If there are no reverse connections because of an in port
for (ComponentInfo choice : choicelist) { // Set all component forward links as system
ins
ArraylList<String> aftport = new Arraylist<String>(Q);
ArraylList<ArraylList<String>> aftports = new ArraylList<ArraylList<String>>(Q);
aftport.add("in");

aftports.add(aftport);
choice.setReverselLinks(aftports);

} // end for
} // end if
} // end for
End shifted indentation
buildOutputGUIQ);
} else {

JOptionPane.showMessageDialog(baseFrame, "Error: FCM and DSM matrices
are not compatible.\nPlease choose
compatible files.");

// Error dialog box
} // end if
} // end if

} // end actionPerformed
} // end goButtonListener

private void buildOutputGUI() {

fullCompArray.clear(); // Clear button array
removeButtons.clear(); // Clear button array

selectedFields.clear(); // Clear textfield array

if (resultFrame != null) { // If an old result frame exists
resultFrame.dispose(); // Get rid of old result frame before generating a new one
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/* Define and Initialize variables ------------------mmm o */
resultFrame = new JFrame();

resultBackground = new JPanel();

JPanel step4Panel = new JPanel(), headerPanel = new JPanel(), resultsPanel = new JPanel();
JTextField selectedComponentLabel = new JTextField(), blankLabel = new JTextField();

JTextField subFunctionLabel = new JTextField(), componentLabel = new JTextField();
JScrollPane resultsScrollPane = new JScrollPane();

/* resultFrame ----------------- */
{
resultFrame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
resultFrame.setResizable(true);
Container resultFrameContentPane = resultFrame.getContentPane();
resultFrameContentPane.setlLayout(new BorderLayout(10, 10));

/* resultBackground ----------------mmmm */
{
resultBackground.setBorder(new EmptyBorder(10, 10, 10, 10));
resultBackground.setBackground(lightblue);

resultBackground.setLayout(new BoxLayout(resultBackground, BoxLayout.Y_AXIS));

/* stepAPanel —---- - s m o */
{
step4Panel.setBorder(new CompoundBorder(
new TitledBorder("Step 4: Build and evaluate conceptual
solutions.™),
new EmptyBorder(5, 5, 5, 5)));

step4Panel.setBackground(lightblue);
step4Panel . setLayout(new BorderLayout());

/* headerPanel -------------------mm o */
{
headerPanel.setMinimumSize(new Dimension(427, 35));
headerPanel.setMaximumSize(new Dimension(427, 35));
headerPanel .setLayout(new BoxLayout(headerPanel,
BoxLayout.X_AXIS));

/* selectedComponentLabel --------=-----mmmmmmmmmm */
selectedComponentLabel.setText("Selected");
selectedComponentLabel.setBorder(new EmptyBorder(0,0,0,0));
selectedComponentLabel.setHorizontalAlignment
(SwingConstants.CENTER);
selectedComponentLabel.setMaximumSize(new Dimension(155,

35));
selectedComponentLabel.setPreferredSize(new Dimension(155,
35));
selectedComponentLabel.setMinimumSize(new Dimension(155,
35));
selectedComponentLabel.setBackground(darkblue);
selectedComponentLabel.setFocusable(false);
selectedComponentLabel.setEditable(false);
headerPanel .add(selectedComponentLabel);
/* blankLabel ----------------------—--om */

blankLabel.setBorder(new EmptyBorder(@, 0, 0, 0));

blankLabel.setHorizontalAlignment(SwingConstants.CENTER);
blankLabel.setMaximumSize(new Dimension(8@, 35));

blankLabel.setPreferredSize(new Dimension(80, 35));
blankLabel.setMinimumSize(new Dimension(8@, 35));

blankLabel.setBackground(darkblue);
blankLabel.setFocusable(false);

blankLabel.setEditable(false);
headerPanel.add(blankLabel);

/* subFunctionlabel -----------ooommmoooooooo oo */

subFunctionLabel.setText("Subfunctions");
subFunctionLabel.setBorder(new EmptyBorder(@, 0, 0, 0));

subFunctionLabel.setHorizontalAlignment
(SwingConstants.CENTER);

subFunctionLabel.setMaximumSize(new Dimension(155, 35));



179

subFunctionLabel.setMinimumSize(new Dimension(155, 35));
subFunctionLabel.setPreferredSize(new Dimension(155, 35));
subFunctionLabel.setBackground(darkblue);
subFunctionLabel.setFocusable(false);
subFunctionLabel.setEditable(false);

headerPanel .add(subFunctionLabel);

/* componentlabel -----=------mmmmmmm o */
componentLabel.setText("Component Solutions -->");
componentLabel.setBorder(new EmptyBorder(@, @, 0, 0));
componentLabel .setBackground(darkblue);
componentLabel.setFocusable(false);
componentLabel.setEditable(false);
headerPanel .add(componentLabel);

}

step4Panel.add(headerPanel, BorderLayout.NORTH);

/* resultsScrollPane =-----==----mm oo */
{
int boxHeight = 30, boxWidth = 150;
int spaceTall = 80;
int scrollPaneHeight = 400, scrollPaneWidth = 1000;
int scrollPanelHeight = spaceTall*(fmArray.size()-1),
scrollPanelWidth = 1000;
int compScrollPaneHeight = spaceTall;
int compScrollPaneWidth = 600;
rowPanelHeight = spaceTall, rowPanelWidth = 1000,

resultsScrollPane.setHorizontalScrollBarPolicy
(ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
resultsScrollPane.setMinimumSize(new Dimension
(scrollPaneWidth, scrollPaneHeight));
resultsScrollPane.setMaximumSize(new Dimension
(scrollPaneWidth, scrollPaneHeight));
resultsScrollPane.setPreferredSize(new Dimension
(scrollPaneWidth, scrollPaneHeight));

FkkkkkxkxkxkkkkxkxIndentation on the following sections is shifted left 4 tabs to help avoid confusion**k¥kkkxkkkkkkxkx

/* resultsPanel

{

resultsPanel.setMinimumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));
resultsPanel.setMaximumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

resultsPanel.setPreferredSize(new Dimension(scrollPanelWidth, scrollPanelHeight));
resultsPanel.setLayout(new BoxLayout(resultsPanel, BoxLayout.Y_AXIS));

/* Populate panels ----------------"-~-—"—~—~—~—~—~———- */

for (int i

=0; i < fmLinks.size(Q); i++) {
Subfunction tempFunction = fmLinks.get(i);

/* Full row panel ---------------—-———- */

JPanel rowPanel = new JPanel();
rowPanel .setMinimumSize(new Dimension(rowPanelWidth, rowPanelHeight));

rowPanel . setMaximumSize(new Dimension(rowPanelWidth, rowPanelHeight));
rowPanel .setPreferredSize(new Dimension(rowPanelWidth, rowPanelHeight));

rowPanel .setLayout(new BoxLayout(rowPanel, BoxLayout.X_AXIS));

/* Component selections ---*/
JTextField selectedComponent = new JTextField();
selectedComponent.setBackground(Color.white);
selectedComponent.setAutoscrolls(false);
selectedComponent.setBorder(new BevelBorder(BevelBorder.LOWERED));
selectedComponent.setHorizontalAlignment(SwingConstants.CENTER);
selectedComponent.setMinimumSize(new Dimension(boxWidth, boxHeight));
selectedComponent.setMaximumSize(new Dimension(boxWidth, boxHeight));
selectedComponent.setPreferredSize(new Dimension(boxWidth,
boxHeight));
selectedComponent.setText("None");

selectedComponent.setEditable(false);
selectedFields.add(selectedComponent);
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JButton removeButton = new JButton();
removeButton.setText("Remove™);

removeButton.addActionListener(new removeButtonListener());
removeButtons.add(removeButton);

/* Subfunction fields -----------—————--——co-- - =

JPanel subFunctionPanel = new JPanel();
subFunctionPanel.setBorder(new EmptyBorder(20,5,5,0));

subFunctionPanel.setLayout(new BoxLayout(subFunctionPanel,
BoxLayout.Y_AXIS));

JTextArea subFunction = new JTextArea();
subFunction.setAutoscrolls(false);

subFunction.setLineWrap(true);
subFunction.setWrapStyleWord(true);

subFunction.setMinimumSize(new Dimension(boxWidth, boxHeight*2));
subFunction.setMaximumSize(new Dimension(boxWidth, boxHeight*2));

subFunction.setOpaque(false);
subFunction.setText(tempFunction.getSub());

subFunction.setPreferredSize(new Dimension(boxWidth, boxHeight*2));
subFunction.setEditable(false);

subFunctionPanel.add(subFunction);

/5 @@ipSEFELIPENED =======s====ssssssssssssssssossssosossssssos=s=s Y
JScrollPane compScrollPane = new JScrollPane();

compScrollPane.setVerticalScrollBarPolicy
(ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER);

compScrollPane.setMinimumSize(new Dimension(compScrollPaneWidth,
compScrollPaneHeight));

compScrollPane.setMaximumSize(new Dimension(compScrollPaneWidth,
compScrollPaneHeight));

compScrollPane.setPreferredSize(new Dimension(compScrollPaneWidth,
compScrollPaneHeight));

/* Component fields ——==----——---————---—————o——— oo =

ArraylList<JButton> componentArray = new ArraylList<JButton>();
ArraylList components = tempFunction.getChoices();

int numComps = components.size();
int compPanelHeight = boxHeight,

compPanelWidth = boxWidth * numComps;

/8 GO 6N en ERE WA AN € e Y
JPanel compRowPanel = new JPanel();

compRowPanel . setMinimumSize(new Dimension(compPanelWidth,
compPanelHeight));

compRowPanel . setMaximumSize(new Dimension(compPanelWidth,
compPanelHeight));

compRowPanel . setPreferredSize(new Dimension(compPanelWidth,
compPanelHeight));

compRowPanel . setLayout(new BoxLayout(compRowPanel,
BoxLayout .X_AXIS));

for (int j = @; j < components.size(); j++) {
JButton component = new JButton();
ComponentInfo nextComp = (ComponentInfo) components.get(j);

// Get next component in list
component . setText(nextComp.getComponent());

component.setHorizontalAlignment(SwingConstants.CENTER);
component.setCursor(Cursor.getPredefinedCursor

(Cursor.HAND_CURSOR));
component.setMinimumSize(new Dimension(95, 35));

component. setMaximumSize(new Dimension(150, 35));
component.addActionListener(new selectComponentListener());

compRowPanel .add(component) ;
componentArray .add(component) ;

compScrollPane.setViewportView(compRowPanel);

fullCompArray.add(componentArray);
rowPanel . add(selectedComponent);

rowPanel .add(removeButton);
rowPanel .add(subFunctionPanel);

rowPanel .add(compScrollPane);
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}

resultsPanel.add(rowPanel);
} // end for loop

End shifted indentation
resultsScrollPane.setViewportView(resultsPanel);

}
step4Panel .add(resultsScrollPane, BorderLayout.CENTER);

}
resultBackground.add(step4Panel);

}
resultFrameContentPane.add(resultBackground, BorderlLayout.CENTER);

resultFrame.pack(Q);
resultFrame.setLocationRelativeTo(resultFrame.getOwner());

resultFrame.setVisible(true);
} // end resultsFrame

} // end buildOutputGUI()

* Listener to register any component selection click:
1. Determines which component was selected

* 2. Deselects other components for that function
* 3. Updates the results displayed
K L */

private class selectComponentListener implements ActionListener {
public void actionPerformed(ActionEvent select) {

Object source = select.getSource(); // Determines button selection that triggered the
listener

int functionNum = -1; // Initialize function number
String selectedComponent = null; // Initialize selected component

// Determine which component button was selected

for (ArrayList<JButton> compButtonList : fullCompArray) {
for (JButton compButton : compButtonList) {

if (compButton == source) {
functionNum = fullCompArray.indexOf(compButtonList);

JTextField updateSelect = selectedFields.get(functionNum);
selectedComponent = compButton.getText();

updateSelect.setText(selectedComponent);
} // end if

} // end for
} // end for

// Deselect other components for that function
ArraylList<JButton> desButtonList = fullCompArray.get(functionNum);

for (JButton desButton : desButtonList) { // For each component choice for this function
if (desButton.getText() != selectedComponent) { // If the component is not the

one that was selected
desButton.setEnabled(false); // Deactivate the button

} // end if
} // end for
updateResults(); // Refresh output to eliminate incompatible choices
} // actionPerformed

} // end componentSelectedListener

* Listener to register any remove button activation:
1. Determines which textfield was selected

* 2. Reactivates other components for that function
* 3. Updates the results displayed
K o L */

private class removeButtonListener implements ActionListener {
public void actionPerformed(ActionEvent remove) {

Object source = remove.getSource(); // Determines textfield selection that triggered the
listener

int functionNum = -1; // Initialize function number
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// Determine which remove button was selected

for (JButton removeButton : removeButtons) {
if (removeButton == source) {

functionNum = removeButtons.indexOf(removeButton);
// Get index of function that had the component removed

JTextField updateSelect = selectedFields.get(functionNum);
// Get text field for selected component

updateSelect.setText("None"); // Update text field to remove
component choice

} // end if
} // end for

for (JTextField nextSelected : selectedFields) { // For each selected text field

if (nextSelected.getText().equalsIgnoreCase("None™)) {
// If there is no component selected

int selectedIndex = selectedFields.indexOf(nextSelected);
// Get index of current selection text field

ArraylList<JButton> nextComponentlList = fullCompArray.get
(selectedIndex); // Get corresponding component button list

for (JButton nextComponent : nextComponentlList) {

// For each component GUI button
nextComponent.setEnabled(true); // Activate button

} // end for
} // end if

} // end for
updateResults(); // Refresh output to eliminate incompatible choices

} // end actionPerformed
} // end remove Button Listener

* Updates the graphical user interface for the interactive output frame by eliminating
* incompatible choices.

private void updateResults() {

boolean change = false;
do {
change = false;

for (int 1 = 0; i < fmLinks.size(); i++) { // For each subfunction
Subfunction f = fmLinks.get(i); // Get next subfunction

ArrayList<ComponentInfo> choicesForF = f.getChoices();
// Get list of component choices for this subfunction

ArraylList<Integer> fConnections = f.getForward(); // Get forward connected
functions

ArraylList<Integer> aConnections = f.getReverse(); // Get reverse connected
functions

JTextField selectedField = selectedFields.get(i);
// Get selected component text field for this function

ArraylList<JButton> componentButtonList = fullCompArray.get(i);
// GUI buttons for this function's components

ArraylList<String> activeValidForeComps = new ArraylList<String>Q);
// List of active valid components from forward connections

ArraylList<String> activeValidAftComps = new ArraylList<String>Q);
// List of active valid components from reverse connections

if (selectedField.getText().equalsIgnoreCase("None")) {

// If a component has not yet been selected for the current component
for (int fConnectID : fConnections) { // For each forward connected

function
if (fConnectID > @) { // If the forward connection is not

an out port
ArraylList<JButton> nextForwardButtons =

fullCompArray.get(fConnectID-1);
// Get GUI button array for next
forward connected function

FkddokkkokkkdkkkxkkkkTndentation on the following sections is shifted left 4 tabs to help avoid confusion**¥skskokkkkkokkkx

for (JButton nextForwardButton :
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nextForwardButtons) { // For each GUI button

if (nextForwardButton.isEnabled()) { // If the button is still active
String componentText = new String();

if (nextForwardButton.getText() == "?") { // If forward component is
unknown
componentText = "unknown"; // Set text to "unknown"
} else {

componentText = nextForwardButton.getText();
// Set text to button text

} // end if

if (lactiveValidForeComps.contains(componentText)) {
// If component name is not already in the list

activeValidForeComps.add(componentText);
// Add the active valid component to the list
} // end if
} // end if

} // end for
} // end if

} // end for

for (int aConnectID : aConnections) { // For each reverse connected function
if (aConnectID > @) { // If the reverse connection is not an in port

ArraylList<JButton> nextReverseButtons = fullCompArray.get(aConnectID-1);
// Get GUI button array for next reverse connected function

for (JButton nextReverseButton : nextReverseButtons) { // For each GUI button

if (nextReverseButton.isEnabled()) { // If the button is still active
String componentText = new String(Q);

if (nextReverseButton.getText() == "?") { // If forward component is
unknown
componentText = "unknown"; // Set text to "unknown"
} else {

componentText = nextReverseButton.getText();

// Set text to button text
} // end if

if (lactiveValidAftComps.contains(componentText)) {

// If component name is not already in the list
activeValidAftComps.add(componentText);

// Add the active valid component to the list
} // end if

} // end if
} // end for

} // end if
} // end for

for (int j = @; j < choicesForF.size(); j++) { // For each component choice in the current function's choice
list
ComponentInfo choice = choicesForF.get(j); // Get next component choice

JButton choiceButton = componentButtonList.get(j); // Get component GUI button

ArraylList<Arraylist<String>> forelLinks = choice.getForwardLinks(); // Get the component's forward
links

ArraylList<Arraylist<String>> aftlinks = choice.getReverselinks(); // Get the component's reverse
links

boolean noValidForelLinks = true;
boolean outport = false;

for (ArrayList<String> nextForelLinks : foreLinks) { // For each valid forward component link list
for current component

for (String nextForelLink : nextForeLinks) { // For each valid forward component for
current component

for (String validForeLink : activeValidForeComps) {
// Compare against each active valid forward component

if (nextForelink.equalsIgnoreCase(validForeLink)) {
// If there is a matching active link

noValidForelinks = false; // Change boolean value
} // end if

} // end for
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if (nextForeLink == "out") { // Check for an out port
outport = true; // Change boolean value
} // end if
if (nextForelLink == "unknown" and nextForelLinks.size() == 1) {

noValidForelLinks = false; // Change boolean value

}
} // end for
} // end for

if (forelLinks.size() == 1 and noValidForelLinks and outport) { // If there is only one output, no

valid
links, and the output is an out port
noValidForelLinks = false; // Change boolean value
}
boolean noValidAftLinks = true;
boolean inport = false;
for (ArraylList<String> nextAftlLinks : aftLinks) { // For each valid reverse component link list for
current component
for (String nextAftLink : nextAftLinks) { // For each valid reverse component for current
component
for (String validAftLink : activeValidAftComps) { // Compare against each
active valid reverse
component
if (nextAftLink.equalsIgnoreCase(validAftLink)) { // If there is a
matching active
link
noValidAftLinks = false; // Change boolean value
} // end if
} // end for
if (nextAftLink == "in") { // Check for an in port
inport = true; // Change boolean value
} // end if
if (nextAftLink == "unknown" and nextAftLinks.size() == 1) {
noValidAftLinks = false; // Change boolean value
}
} // end for
} // end for
if (aftlinks.size() == 1 and noValidAftLinks and inport) { // If there is only one input, no valid
links, and the input is an in port
noValidAftLinks = false; // Change boolean value
}
if ((noValidForeLinks | noValidAftLinks)andchoiceButton.getText() !="?" and choiceButton.isEnabled
O {
// If the current component has no active forward or reverse links
choiceButton.setEnabled(false); // Deactivate the component
//change = true; // Indicate a change has been made
} // end if
} // end for
} // end if
End shifted indentation
} // end for

} while (change);
} // end updateResults

} // end ConGenV2_0




package edu.umr.ide;
import java.util.Arraylist;

public class Subfunction {
int id = -1; // Unique assigned to the subfunction

String functionLabel = null; // Subfunction label from functional model
ArraylList<Integer> forwardConnect = new ArraylList<Integer>(); // Other subfunction ids that this subfunction

connects to
ArraylList<Integer> reverseConnect = new ArraylList<Integer>(); // Other subfunction ids that are connected to

this subfunction
ArraylList<int[J[]> forwardDSMs = new ArraylList<int[J[]>(); // Collection of forward DSMs for this function

ArrayList<int[J[]> reverseDSMs = new ArraylList<int[][]>(); // Collection of reverse DSMs for this function
ArraylList<ComponentInfo> choices = new ArraylList<ComponentInfo>(); // Component choices to fulfil this

function

public Subfunction() {
id = -1; // Set id
functionLabel = null; // Set label

public Subfunction(int functID, String funct) {

id = functID; // Set id
functionLabel = funct; // Set label

public int getID() {
return id;

public String getSub() {
return functionlLabel;

public void setForward(ArraylList<Integer> forward) {
forwardConnect = forward;

public ArraylList<Integer> getForward() {
return forwardConnect;

public void setReverse(ArraylList<Integer> reverse) {
reverseConnect = reverse;

public ArraylList<Integer> getReverse() {
return reverseConnect;

public void setForwardDSMs(ArrayList<int[J[]> dsm) {
forwardDSMs = dsm;

public ArraylList<int[][]> getForwardDSMs() {
return forwardDSMs;

public void addForwardDSM(int[J[] singleDSM) {
forwardDSMs.add(singleDSM); // Add single DSM to array

public void setReverseDSMs(ArrayList<int[J[]> dsm) {
reverseDSMs = dsm;

public ArraylList<int[]J[]> getReverseDSMs() {
return reverseDSMs;

public void addReverseDSM(int[J[] singleDSM) {
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reverseDSMs.add(singleDSM); // Add single DSM to array

public ArraylList<ComponentInfo> getChoices() {
return choices;

}

public void setChoices(ArraylList<ComponentInfo> newChoices) {
choices = newChoices;

}

public void addChoice(ComponentInfo choiceToAdd) {
choices.add(choiceToAdd);

}

public void removeChoice(int removeIndex) {
choices.remove(removeIndex);

}
} // end Subfunction



------------- start “Componentinfo.java’ code

package edu.umr.ide;
import java.util.Arraylist;

public class ComponentInfo {
String componentName; // Component label

ArraylList<ArraylList<String>> forwardlLinks = new ArraylList<ArraylList<String>>(Q);
// Components that this component is forward linked to

ArraylList<ArraylList<String>> reverselinks = new ArraylList<ArraylList<String>>(Q);
// Components that this component is reverse linked to

// Establish constructors

public ComponentInfo() {
componentName = "?"; // Default component name

public ComponentInfo(String label) {
componentName = label; // Set component name to the label input

}

// Methods for retrieving general component information

public String getComponent() {
return componentName; // Return the name of the component

}

public ArraylList<ArraylList<String>> getForwardLinks() {
return forwardlLinks; // Return the array of components that are forward linked this component

}

public ArraylList<ArraylList<String>> getReverselLinks() {
return reverselinks; // Return the array of components that are forward linked this component

}

// Methods for establishing general component information

public void setComponent(String label) {
componentName = label; // Sets the name of the component

}

public void setForwardLinks(ArraylList<ArraylList<String>> links) {
forwardLinks = links; // Set the forward links for this component

}

public void setReverselLinks(ArraylList<ArraylList<String>> links) {
reverselinks = links; // Set the forward links for this component

}

// Methods for adding to existing component information

public void addForwardLinks(ArraylList<String> forelinks) {
forwardLinks.add(forelinks); // Add to forwardLinks list

}

public void addReverselLinks(ArraylList<String> revlinks) {
reverselinks.add(revlinks); // Add to reverselinks list

} // end ComponentInfo
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APPENDIX B

Component Templates



Component Name:  Abrasive

Port Template:

‘assamoly
Pﬂ'lﬁsl

sold
matarial

mech.gnard

oy |
: (with devica)

Abrasive

materiat

fwttn m.gy
ratenal

I twthme) _[;
B =

Function Témplm:

Key: E -Someemes incluoes U tsualy inctudan u Fequired (Biack Box Funclonisi)

Component Name: A'gltamr

Port Template:

assambly
portis)

&——— malerial

*+——— material

Agitator

matetisl ——a

Function Template:

—E=i-

Key: E Sometmes includog U tisualy inotudad u FHoquirea (Siack Box Furctionisl)

Component Nama:

Port Template:

®—— nooustio anergy ——

Acoustic Insulator

‘Agoustic Insuiator

— 200ustic anergy, ——8

Function Tﬁmglm:

Key: U -Someames incluted Uu::;aﬂrmmuoga ukcqumrﬁrwﬂowrummfa;p

‘Component Name: Adriail

Port Template:

proumatic enoigy |
{with matarial)

assambly
port(s)

Airfail

| machgnical enorgy
(With gewvize)

Function Template:

Key: U -Sometimes inclutod Uumu,—mmu nkcqmmar_ﬁfwﬂnwnmmmqﬁ

™
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Component Name: Ammetar

Port Template:

elpcineat enrgy

::l— {with dvice)

assambly
DOTIS)

Component Name: Analog Display

Port Template:

Ammeter

signal SN
(wnha%nnrw) fwithr anaroy)
| sisctneal anamgy
[with gevical

assambly
Dcrlﬁs)

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name: Armature
Port Template:
magnetic energy |
(with dovieo)

assambly
port(s)

Analog Display

Funetion Template:

Component Name:  Auditory Indicator

Port Template:

Armature

| machanical ehesgy

o —
(with savics) : : (with anargy)

assambly
port(s)

‘Auditory |ndicator

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

Funetion Template:
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(wn:%::rwj '

Kay: U Somesmes incluged U Lsuaily nciudon n FAequirnd (Black Hox Funclanisi

snal
{with enargy)

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name: Baftery

Port Template:

assambly
DGJT[S)
wiectscat energy |
{with dovico)
olpetrienl onoray |
{witn devicn} Battary

| electical enoigy
{wilh pavice) :

| sinctrical anargy
[with davica)

Function Template:

Fay: u Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli

Component Name: Beil

Port Template:

assambly
D@rll[-‘i)

sgnal |
: (with anaroy) I

swnal
{with anangy)

Function Template:

Key: m Sometimes includog D Lswally inctudad n Required iBiack Box Funchonsi

Component Name: Bearing

Port Template:

assambly
Dcrlﬁs)

mecnenayy

::,_ (windeves) |

Baaring

miech.anengy

[ (with dovica) _[:

Funetion Template:
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Key: [ Somesmes ncluoa U Usually Inciugen n Fiequired (Black Sox Functiangs|

Component Name: Bel
Port Template:
assambly
DGT!S)
‘mach.onergy
: {witn devien)
Belt

miech.energy

T (wiih poviea) _[:
I 7 L

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Name: Bladder

Port Template:

materal _
; [wein metve enery)

assambly
DGJTIS)

Bladdar

magsial

[ (with motwa enargy) —[;

Function Template:

Key: u -Somaames includod U Lsually notuded n Aequired (Biack Hox Functangsii

Component Name:  Bracket

Port Template:

&——— malenal

Bracket

—— mataral ———#

Function Template:

Key: u Sometimes includog m Lswally inctudad n Required iBiack Box Funchonsi

Component Name:  Blade

Port Template:

assambly
:m‘ttsi

192

——— maeny

mech.anar

oy |
: (with tevico) I

Blade

L materal
{witn mua.) I
mateial

7:mmm\‘[;

Function Template:

Key: u -Sometimes intluded Du&u\aﬂﬂnmq

Component Name: Brush

Port Template:

& {luig material

mach. aneray
{with devien)

assambly
Dﬂl‘iﬁsl

u Agquirnd Biack Sox Funcnanis)t

—— fluid matorl ————@

Funetion Template:

Kay: U Somgames included m Lisually frioludad n Feoquirea (Black Box Funclonis))



Component Name: Burner

Port Template:

‘thomicat energy

::l— {with materla)

assambly
DOTIS)

Bumer

— tharmal enargy ——&

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name: Gam

Port Template:

mechianical energy |

::I— {With Beviee)

assambly
port(s)

| machanical ehesgy

(Wilh poviza) —[:

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Buzzar

Port Template:

ol
(with anargy)

assambly
Dcrlﬁs)

Buzzer

Funetion Template:
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(wn:%::rwj '

Kay: U Somesmes incluged U Lsuaily nciudon n FAequirnd (Black Hox Funclanisi

Component Name: Gap

Port Template:

iBrial

ma _
; [wnn rieths enerdy)

assambly
port(s)

cap

Funetion Template:

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name: Capacitor
Port Template:
assambly
DBTIS)
wipcttcaienery | | slectrical enaigy
; {with dovico) {with pavice) :
Capagitor’

Function Template:

Key: E ‘Somenmes incluted U Usually inctudac n Aequired [Biack Box Functanishi

Component Name: Carousel
Port Template:
‘assambly
DBTS)
matarial matarial
Wit st {with et ;
Carousal

Lenaty |
devica)

o

Function Template:

Key: m ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Carburetor

Port Template:
assambly
DQT!S)
materal | | mawdal
Wit MtivE enpigy) {with mative energy) ;
e al -4
;:]' {with motive energy) Carburator

<t—— control signal

Funetion Template:

i
control signal

llguid

Tiquid
material oy

material
mixture

matarial

gas ek
material material
|
confrol signal
|
'
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Kay: U Sometmes incluged D tisuaily inciugod u Aequired (Black Box Funciangsh

Component Name:  Catalytic Canverter

Port Template:
assambly
port(s)
gas maerial | | gesmatoriat
; {wnn mieths enerdy) (WiLh motve enaray) ;
Catalytic Corverter

Funetion Template:

Kay: U Sometimes included D Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name: Cenlrifuge

Port Template:

liquid
matarial

mach. anergy
(with devica)

Centrifuige

Hiuld musterisl ——

- mamiy ———@

Function Template:

Key: E ‘Somenmes incluted U Usually inctudac n Aequired [Biack Box Functanishi

Component Name: Choke
Port Template:
nhyoraulic énefgy |
{witty materin)

assambly
port(s)

Choke

| hydmulic enargy
(Wit matoral)

Function Template:

Key: m ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name:

Port Template:

fuid energy

: {with materlal)

Check Valve

assambly
Dcrlﬁs)

Chack Valve
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1luid Enargy

[ (wnn materal) _[:

Funetion Template:

Key: U Sometimes includod Dmua#,mmagq

Component Name:

Port Template:

oL —
(with anargy) i

Cireult Board

assambly
port(s)

Circuit Board

u Fiequired (Black Box Funcianisti

snal
{with enargy)

Funetion Template:

Kay: U Sometimes included D Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Nama: Clamp

Port Template:

*——— malenal

human anary

L] {with material)

il

assambly
DBTIS)

Clamp

|———— matens ——a

- —0

Function Template:

Key: E ‘Somenmes incluted U Usually inctudac n Aequired [Biack Box Functanishi

Component Name: Condenser

Port Template:

gas materal

; {wnn metiva enermy) |

assambly
port(s)

Condenser

liquitd matgrna|

[ twan motve enarey) ;

Function Template:

Key: m ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Ciutch

Port Template:

mecnenayy

::,_ (windeves) |

contiol sigma|
(witr anargy)

assambly
Dcrlﬁs)

Clutch
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miech.anengy

[ (with dovica) _[:

Funetion Template:

Key: U Sometimes includod Dmua#,mmagq

Component Name: Container

Port Template:

iBrial

ma _
; [wnn rieths enerdy)

assambly
port(s)

Container

u Fiequired (Black Box Funcianisti

Funetion Template:

Kay: U Sometimes included D Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name: Covar

Port Template:

Component Nama: Canveyar
Port Template: T
‘assambly
paorlfs)
S
tmatafial
: Wit wasiahi}
Conveyor’

mech enary
(with devico)

mataral Esral
(with welghi) ;]— fwan mothve enery) |

Function Template:

Key: E ‘Somenmes incluted U Usually inctudac n Aequired [Biack Box Functanishi

Funetion Template:

Component Name: Cushlan

Port Template:

Component Name: Crarnk
Port Template:
assambly
port(s)
mechianical energy |
: (Wit dovieg)
Crank

| machanical ehesgy

(with gaviza) : {wath m:

Function Template:

Key: m ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Funetion Template:

assambly
Dcrlﬁs)

Cover

assambly
port(s)

Cushion

197

matesia

T (with motvi enargy) —[;

Kay: U Sometmes incluged D tisuaily inciugod u Aequired (Black Box Funciangsh

Kay: U Sometimes included D Usually inciudad n Aequirnd (Black Hox Funclianisii



198

Component Nama: Dightal Display Component Nama: Diods
Port Template: Port Template:
assambly assambly
parlr[s) DQT!S)
sgnal zgnal awcensray | | olscenargy
! {with onargy) | {with anergy) : : {with tavice) {wiih dovica) :

Digital Display Diode

Function Template: Funetion Template:
Fay: E Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli Kay: U Someames includod U Lsuaily (nciwgad u Foquired (Black Box Funcionis)j

Ci Name: Displ Gauge Component Name: Diverer

Port Template: Port Template:

assambly assambly
parlr[s) Dﬂl‘lllsi

mecnianical energy | L swndl matara massnal
::I— (i devieo) fwith 2nergy) ;]* (it motive snaray] ] [ (with mative erargy) ;
| mdchanical enaray . material
Dispiacement Gauge [with cevica) : Divertar [ {with mative energy)

R

Function Template: Function Template:

Kay: m Sometimes inoludog D Lsaally inotuded n FAequired (Biack Box Functontsli Key: U “Sametimes inaluced Lisually inctudad u FAoquired (Black Box Functiants)



Component Nama: Divider

Port Template:

——— maenm

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

‘assambly
ports)

Divider

— mufarlal ——®

- mamiy ———@

Component Name:  Eleatric Gonducior
Port Template:
assambly
port(s)
ot ene!
: {with dovica|
Electric Conductor

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

eloc.enomgy

T
I

Component Name: Doar

Port Template:

mataral

(withy enaroy) 1

- conira signal -

assambly
Dcrlﬁs)

Door

matenal

[ (win engrgy) ;

Funetion Template:
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Kay: U Somesmes incluged U Lsuaily nciudon n FAequirnd (Black Hox Funclanisi

Component Name: Electric Cord
Port Template:
assambly
port(s)
abec.enomngy.
: {with dovica}
awc.anemy
:]7 {with devica} Elgatric Cord

eloc.enorgy

[ (wimn sovica) _[:
e
—

Funetion Template:

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii
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Component Name:  Electric Distributor Component Name:  Elgetric Insulator
Port Template: Port Template:
assambly assambly
parlr[s) DQT!S)
ShBC.ENBTOY aloc.enangy GRC.ENETOY. eloc.enangy
; {with dovica| {with pavics) : : {with davica) {with davica) :
olec.anern!
Eleotric Distributor Iwith device) Elgctric Insulator
mech.onamy
{with ievice) : =

Function Template: Funetion Template:

Fay: E Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli Kay: U Someames includod U Lsuaily (nciwgad u Foquired (Black Box Funcionis)j
Component Name: Elgctric Motar Component Name: Electric Plate  (Subset of Electic Gonduotor)
Port Template: Port Template:
assambly assambly
port(s) port(s)
elpctnea energy machanical ahergy ahec.enamy eloc.enorgy
(with devieo) | [ (win savisa) : : {witm dovica} {Witn devica) :

:]—"m“;:‘:?”ﬁ Electric Motor A E— Eiectic Piate 12

Function Template: Funetion Template:

Key: m -Somatimes includeg D Usually inctudad n Agquired (Biack Box Functionisi Kay: u Sometimes includod D tisuaily Inciuded n Aequired (Black Box Funclionist)



Component Name: Electric Plug

Port Template:

assambly
DOTIS)

ShBC.ENBTOY
{with dovica |

Elsictric Plig

aloc.enangy

[ (with zavice) _[:

tlacaneay
Iwith device)

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name:

Port Template:

Electric Switch

assambly
port(s)

BTy
: {with dovica|

- Ol Signe

Electric Swilch

eloc.enomgy

[ (witn eevica) _[:

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Elactric Socket

Port Template:
assambly
DQT!S)
GRC.ENETOY.
: {with davica)
aes ane
: {witn devicn} Elactric Seckat

201

eloc.enangy

[ (wiin dovica) _[:

wlscanatay
[ with devion)

Funetion Template:

Kay: U Somesmes incluged U Lsuaily nciudon n FAequirnd (Black Hox Funclanisi

Component Name: Elsatric Wire  (Subset of Electic Gonductor)
Port Template:
assambly
port(s)
akec.eng! eloc.enorgy

Electric Wire

[ temeoven — >
" Ig

Funetion Template:

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name:

Port Template:

elpcineat enrgy

::l— {with dvice)

Elsetrival Translormer

assambly
DOTIS)

Electrical
Translormer

electical enargy

[ (with sovice) :

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name: EM Sensar
Port Template:
algctiomagnetc |}
' energy

assambly
port(s)

EM Sensor

swnal
{with anangy)

aleyamagnehe -
anergy

Function Template:

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name:

Port Template:

wiscricat energy

:]— (with device)

slectricai energy

:]— {with devica)

Electromagnat

assambly
Dcrllis)

Elsotromagnet

Funetion Template:
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magnetc

energy -

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

Component Name:

Port Template:

signal
(it anoray)

EM Transmitter

assambly
port(s)

EM Transmitter

Funetion Template:

snal
{with enargy)

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Name: Evapaorator
Port Template:
assambly
DOTIS)
figuid materinl | |- gas mataral
; fwetn metiva eneray) [ (with motve enaroy) ;
Evaporator

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name: Fastener

Port Template:
assambly
port(s)
- s matera ——— sona matetisl ——a
&— s0iic matena
o Fastener

Function Template:

**0Only supporting functionality***

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

203

Component Name: Fan
Port Template:
assambly
DQTJS)
mecrianical enemy | | preumatic énargy
: {with devieg} (witry matera) :
Fan

Funetion Template:

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

Component Name: Flag
Port Template:
assambly
port(s)
sgny signal
{witr enargy) {with enargy)
Flag

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Name: Flywheel

Port Template:

mocnanical energy |

::I— {with device)

assambly
DGJTIS)
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Component Name:  Friction Enhancer

Flywhesl

Port Template:
assambly
Dcflﬁs)
machanical ahergy math. shendy miech. eneigy
[ (with govice) : : {with matera) (Wit matereal) :
Friction Enhanesr

<—— contral signal ——

Function Template:

Fay: u Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli

Component Name: Fuse

Port Template:

BTy
: {with dovica|

<3— contral signal ——

assambly
D@rll[-‘i)

Funetion Template:

Key: [ Somesmes ncluoa U Usually Inciugen n Fiequired (Black Sox Functiangs|

Component Name: Gear

Port Template:

Fuse

eloc.enomgy mecnanical energy

[ (witn eevica) _[: :]— {witn devieo}

Function Template:

Key: m Sometimes includog D Lswally inctudad n Required iBiack Box Funchonsi

Funetion Template:

assambly
port(s)
|
mechanical ahogy
i [ (win dovisa) :
Gear

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish
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Component Name: Generator Component Name: Glue
Port Template: Port Template:
assambly assambly
porlr[s) DQT!S)
= — o R— e
& 30ilo maten
) | esmcirical enstoy.
Ganeralor. (with gayica) : [ S Glie

Function Template: Funetion Template:

***0Only supporting functionality***

Key: U Somesmes inciuteg U sually inctudag n Aequired [Biack Box Furetionish Kay: U Somedmes mncluood D tisuaiy Inciugod u Aequired (Blacy Sox Funclonish

Component Name:  Washer Component Name: Heat Exchanger

Port Template: Port Template:
‘assambly assambly
ports) port(s)
\
| bl thermal energy k- matetial
. material matarial {with material) {with tharmal enaray)
0 ———9
tataral tharmal ensrgy
Handle ;j (win marmal energy) | Heat Exchanger (wnm e

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

Funetion Template:

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Name:

Port Template:

oipctneat energy
{with tovica)

alpetrienl onaray
{with devicn)

Heating Elament

assambly
DOTIS)

Heating Elsment

— tharmal enargy ——&

Function Template:

Component Name: Hinge

Port Template:

tatarial

; (it ersrgy}

assambly
Dcrllis)

206

matarial

[ {wins enanay) _[;

Funetion Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name:  Hydraulic Pision
Port Template:
assambly
port(s)
nhyoraulic énefgy | | machanical ehesgy
{witty materin) (with goviza) :
Hydraulic Piston

Function Template:

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

—E-

***Only supperting functions***

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

Component Name: Hydralic Pump

Port Template:
assambly
portis)
mecrianical energy | | hydraulic enangy
: {win devies) (witm mmaoral)
Hydraulic Pump

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish
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Component Nama: 1T Motor Component Name: Inclined Plane

Port Template: Port Template:
assambly assambly

porlr[s) DQT!S)
‘chomicatenergy | | machanical shemgy mach. shargy mech. ensigy
: {with materin) (with avica) : : {with matera) (Wit matereal) :

1C Mator Inclinad Plans

Function Template: Funetion Template:

Key: U -Somesmes inuiloeg D Lsuatly inciuged u Fequired [Biack Box Functionishi Key: U Sometmos includeg U tisuaily inciugod n Fequired (Black Sox Funclionist)
Component Name: Indicator Light Component Name: |nduetor
Port Template: Port Template:
assambly assambly
port(s) port(s)

sgnal signal wiectical energy | | Bisctical enaiy
{with anargy) fwith anargy) : {with dovieo} (Wit deviea)

Indicator Light Indiotor

Function Template: Funetion Template:

Key: E -Somatimes includeg D Usually inctudad n Agquired (Biack Box Functionisi Kay: U Sometimes includod m tisuaily Inciuded n Aequired (Black Box Funclionist)



Component Name: Insart

Port Template:

*——— malens —

‘assambly
ports)

Insert

— malptial ————@

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name: Knoty

Port Template:

human enargy

: {with matoria)

assambly
port(s)

—— sonire: sgnal ——ee

Function Template:

Key: U -Sometimes includog D Usually inotucad g Aequired (Biack Box Furctanish

Component Name: Kay

Port Template:

&——— S0 malerns

& 30ilo maten

o—.

assambly
Dcrllis)

Key

208

——— soid matefial ——a

Function Template:

***0Only supporting functionality***

Kay: U Sometmes incluged D {sually inolugo u Aequired (Black Box Funciangsh

Component Name: Latch Release
Port Template:
assambly
port(s)
‘mach.onergy
: {witn devien)
Laich Release

- conio signs

miech.energy

[ (win dovica) _[:

Function Template:

Kay: U Fometimes includod m tisually nciudad n Aequired (Black Box Funchanish



Component Name: Lens
Port Template:
assambly
DOTIS)
= olgctromagnetic |
energy
Lens

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name: Lever
Port Template:
assambly
port(s)
mech. anargy
{wath materni)
Laver

Function Template:

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Nama: Level Gauge
Port Template:
assambly
DQTJS)
| wleciromagnatic - - ——
anengy
Level Gauge

209

signal >
{with enargy) Lq

‘matengl —————@

Funetion Template:

Component Name: Light Sourca
Port Template:
assambly
port(s)
mech. enelgy wiactsical engrgy |
(it matar)) : {win dovies)
slectical eniergy |
:]— (with device) g Light Source

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

‘eleciromagnetic
anrgy

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish
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Component Name: Link Component Name: Magnat

Port Template: Port Template:

assambly assambly
parlr[s) DQT!S)

mah:anany AN ERORIY magnetic enatgy _ | -
: {with dervice) i (with evica} : ::’_ {ith davical magnate energy ——@

Link F— —[g Maginst

Function Template: Funetion Template:

Fay: u Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli Kay: u Someames includod U Lsuaily (nciwgad u Foquired (Black Box Funcionis)j

Component Name:  Meehanioal Transformer

Component Name: Material Filter
Port Template:
Port Template: T mbly
port(s)
assembly |
port(s)
I mecrianical energy | | machanical aho:gy
: {wimn daviee} (WiIn doviza) :
matnria) _ . materia|
;]— (whn metve energy) | [ i merve snergy) —[; 'Meachanical
Tranisformer
Material Filter mataral
[ iwan motva enargy) ; i
|
Funetion Template:
Function Template:

Key: a Somenimes incluged D Usually inclided u Raquired (siack Box Funelan(s)i Kay: E Sometimes included Du:uau, It u Fequined (Black Box Funchanish



Component Nama: Mold
Port Template:
assambly
DOTIS)
&—— liguid materal
Mold

— soiid matera ——

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name: Mozzle
Port Template:
‘assembly
DOl‘iiSi
el
; (with mativs sravdy] — |
Nozzle

massnal

[ (witn matve enargy) ;

Function Template:

Key: E ‘Somatimes includog m Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Needle
Port Template:
assambly
DQT!S)
mach. shargy
: {with matera)
Needls

Funetion Template:

211

Kay: U Somesmes incluged U Lsuaily nciudon n FAequirnd (Black Hox Funclanisi

Component Name: Mut-Bolt
Port Template:
assambly
port(s)
+—— solia matenal
&— 30l matenal
% . J Nut-Bolt

——— soid matefial ——a

Funetion Template:

***Only supporting functionality***

Kay: U Sometimes included m Usually inciudad n Aequirnd (Black Hox Funclianisii
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Component Name: Plpa
Component Name:  Permeable Membrane (Subser of Matertal Filter)
Port Template:
ort Template:
P T assambly
port(s)
assambly |
Pﬂflllsi B
fuid energy 1luid Enargy
7 ::’— iwn}w mater) (with materal) _[:
" s ‘ |- material
; {with metive energy) i ! with metve energyl ; Fipe
zom : mataral
Membrane F vy ot s —[; i
I
Funetion Template:
Function Template:
Kay: a Somenimes nelugeg D Usaaly inclidod u Aaquired (&ieck Box Funetn(s)i Key: U Sometimes included D tisually ncivgad n Fpquined (Black Box Funcnanish
Component Name:  Pneurnatic Pision Component Name:  Pneumatic Pump
Port Template: Port Template:
assambly assambly
parlr[s) DGrlﬁs)
umatic enargy machanical ahargy mecnanical energy Drieumatic gnargy
: wan mn!eﬂl:)g 1 [ (win savisa) : : (winoeves; | [ (wir matera) :
Prieumatic Piston Prgumatic Pump
| i
Function Template: Funetion Template:

Key: m -Somasimes includod D Lswally {rotudad n Aoquired (Biack Box Funetianisht Key: u Sometmes included D Lsuaily Inciudar n Fequined (Black Box Funchanish
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Component Nama: Potentiometer Component Name: Prassure Gauge
Port Template: Port Template:
assambly assambly
parlr[s) DQT!S)
wipcttcaienery | | slectrical enaigy pneumatic enargy | sgnal
: {with dovico) {with pavice) : : (with materin {with enargy) '
L preumatic erargy

- conrol signal | Potentiometer Pressure Galge [wein matecial] —[:

Function Template: Funetion Template:

Fay: E Somesmes includeg U Usaally inotuded n FAequired (Biack Box Functianisli Kay: U Someames includod U Lsuaily (nciwgad u Foquired (Black Box Funcionis)j
Component Name: Pressure Viessel Component Name: Pulley
Port Template: Port Template:
assambly assambly
port(s) port(s)
T et fuid mptoriat mecrianical energy | | mr:\lwm ooy
;]— (iiom othve erera) 4 f— iunt e j:; : {with dovig (WiIn doviza) :

Procsure Vesael Pulley

Function Template: Funetion Template:

Key: m ‘Sometimes includod D Usually inotucad n Aequired (Biack Box Furctanish Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Name: Punch

Port Template:

®——— =oid mania)

rach. enaray
(with device)

assambly
DGJTIS)

Punch

214

Component Name: Rake {Subset of Matertal Filtet)
Port Template: r
assembly
port(s)
‘Botid matirial
i {with anargy) ; [
matezial material
; {whn motve energy) | f [with metve energy) ;
Rake

Function Template:

| = mataral
(win metiva enargy) ;

Function Template:

Key: u -Somasimes includog U Uswally irotugad n Fequired (Biack Box Funcranisii Key: u Sgmatimes inchinad D.pamﬂymmm
Component Name: Recording Component Name: Reservolr
Port Template: Port Template:
assambly assambly

sgnal |
: (with anaroy) F |

D@T[S)

DGl'lﬁs)

Recording

— sgnal magrial
I {with snaray) ; Twn metne eneroyy |

n Foguirad (Black Box Funeian(s))

Function Template:

Key: E Sometimes includog m Lswally inctudad u Required iBiack Box Funchonsi

Funetion Template:

Kay: E Fometimes includod D tisually nciudad u Aequired (Black Box Funchanish



Component Nama: Resistar
Port Template:
assambly
DOTIS)
wipcttcaienery | | slectical enaigy
: {with dovico) with guvicel) :
Reslstor

Function Template:

Key: U -Somenmes includog U Lsually inotucad D Aquired [Biacy Box Furenanisit

Component Name: Rivet

Port Template:
assambly
port(s)
&— solic majera) [— soiid matefisl —a
&— s0iic matena
Rivet

o—.

Function Template:

**0Only supporting functionality***

Keay: D Sometimes included U Lisually inctuded g Aoquired (Biack Box Functonisli
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Component Name: Retaining Clip

Port Template:
assambly
DQTJS)
&——— 0l matenal ——— soig matensl ——a
& 30ilo maten
o B Rataining Clig

Function Template:

***0Only supporting functionality***

Kay: U Sometmes incluged D {sually inolugo u Aequired (Black Box Funciangsh

Component Name:  Aotational Coupler

Port Template:
assambly
port(s)
‘mach.onergy rABch.anengy
: {with devieo) (witn savica) :
Rotational Coupler’

Function Template:

Kay: D Fometimes includod D tisually nciudad D Aequired (Black Box Funchanish
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Component Name: Screw Propeller

Component Name:  Screen (Subset of Maserial Fifter)

Port Template:
ort Template:
Part Tamp 1 assambly
port(s)
a5l |
port(s) — ——— ]
I mecrianical enemy | | thydradlicenangy
: {with devies) (wwnin maeral)
‘ material
; {with metve enerty) | i [ {with metve energy) ; ot

g - mataral
(win metva energy) ;

Funetion Template:

Function Template:

Kay: a Sameumes nciuasg g Usaaly inclidod u Aaquired (&ieck Box Funetn(s)i Kay: U Someames incluoed D tisually ncivgad u Fpquined (Black Box Funcnanish
Component Name: Screw Component Name: Seal
Port Template: Port Template:
assambly assambly
port(s) port(s)
&— 90i0 majenal [— soid matefiel ——a magrial 3 | matesial
; {wnn migths enerdy) (with motive enaroy) ;

o soig manmnia

o— Screw Seal
Function Template: Funetion Template:

**0Only supporting functionality***

Key: m ‘Sometimes includod D Usually inotucad n Aequired (Biack Box Furctanish Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Nama: Shatt

Port Template:

mach-anangy

::,_ {with device) — |

assambly
DOTIS)

Component Nama: Signal Filter

Port Template:

mEch.enagy

[ (with sovice} _[: !:,_ Lwl!ﬁgrgy] i

assambly
Dcrllis)

Function Template:

Key: U -Somenmes includog U Lsually inotucad u Aquired [Biacy Box Furenanisit

Component Name: Sled

Port Template:

mech.anergy

::,_ {With Aevico)

assambly
port(s)

‘Bignal Filter

217

syl
{with snargy) '

Function Template:

Component Name: Spidar

Port Template:

Sied

mech.ongegy

— — ol
(With seviea} : S mE

&— 30l matenal

— mectncal energy ——

Key: U Sometimes included Dusuaummma

assambly
port(s)

Function Template:

Key: U -Sometimes includog D Usually inotucad g Aequired (Biack Box Furctanish

Solder

u Foquired (Blacy Box Funclonis)j

——— soid matefial ——a

sloctrica! enargy —£1

Function Template:

***Only supporting functionality***

Kay: U Fometimes includod m tisually nciudad n Aequired (Black Box Funchanish



Component Nama: Speaker
Port Template:
assambly
DBTIS)
vlecincat enargy |
::l— {with dvice)
@lectrcat onordy |
{with Bvico) Speaker

—— zoousiic energy —— 8

Function Template:

Key: U -Somaames includod Dmmmmmq

Component Name: Sgring

u Fgquired fBiack Box Funenantsit

Port Template:
assambly
port(s)
mechianical energy |
{with devieg)
Spring

| machanical ehesgy

(with gevics)

T

Function Template:

Key: m -Somaames includod Dmmﬂmmq

u Aequired (Biack Box Functlanisii

Component Name: Speed Gauge

Port Template:
assambly
portis)
. —
mecrianical enemy |
{wish devics)
Speed Gaugs

218

signal
{with snargy)

| maenanical snaty
[with device} —[:

Funetion Template:

Key: U Sometimes includod Dmua#,mmagq

Component Name: Sprocket

Port Template:
assambly
port(s)
mecrianical energy |
{witn devies}
“Bprockel

u Fequired (Black Sox Funclionist)

| macnanical ahasgy

{wirh gavica)

g

Funetion Template:

Kay: U Sometimes included Du:uaummagq

u Feoquirea (Black Box Funclonis))



Component Name: Stop

Port Template:

mHEC. anargy

: {with materia)

assambly
DOTIS)

miech. energy

[ (win matora)) _[:

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name:  Support

Port Template:

&——— malenal
-

‘assambly
ports)

Suppert

[— maistial ———&

Function Template:

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Stuffing

Port Template:

assambly
Dcrllis)

&——— soild matong|

Stulting

— 80id materiai ——8

Funetion Template:

219

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

Component Name: Tﬁerrrqa].(:_nndunmr
Port Template:
assambly
port(s)
thermal energy thermal energy
{win dovie) {witn savica) :
Thermal

i

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish
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Component Name:  Thermal Insulator Component Name: Thetrmnal Plate

Port Template: Port Template:

assambly assambly
porll[s) Dcrllis)

tharmal amorgy tharmal enargy thermal anorgy [harmal enargy

::,_ {with tavice) {with govisaj. _[: ::’_ (i device) With avicaj _[:
“Thermal Insulator 2]_, 1 ThermalPmte —[S

Function Template: Funetion Template:

3

Key: E -Somesmes inuiloeg U Lsuatly inciuged n Fequired [Biack Box Functionishi Key: U Sometmos includeg U tisuaily inciugod u Fequired (Black Sox Funclionist)
Component Name: Thermal Wira Component Name: Thermostat
Port Template: Port Template:
assambly assambly
ports) port(s)
thermal anergy tharmal energy thermal energy thermal energy

::,_ {Wwith Aevico) (with pavisa] _[: ::’_ {witm dovieo) {witn gavica) _[:
T L Thermal Wire' g T - conna signa | Thermosial

Function Template: Funetion Template:

Key: E -Somatimes includeg D Usually inctudad n Agquired (Biack Box Functionisi Kay: U Sometimes includod m tisuaily Inciuded n Aequired (Black Box Funclionist)



Component Nama: Transistor

Port Template:

assambly
DOTIS)

elpcineat enrgy

::l— {with dvice)

P m— -

Transistor

electical enargy

[ (with sovice) :

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

Component Name: Vaive

Port Template:

assambly
port(s)

material
: (with erargy) i

- Ol Signe

‘material
{with enorgy) :

Function Template:

Key: E ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name: Tube

Port Template:

tatarial

; (it ersrgy}

assambly
Dcrllis)

Tube

221

matarial

[ {wins enanay) _[;

Funetion Template:

Key: [ Somesmes ncluoa Umua#mmmq uﬁmrsrwﬁpm‘unumwi

Component Name: Varistar
Port Template:
assambly
port(s)
electrical energy ||
{with dovica)
Varistor

- conio signs

pactrical enaigy
{with gavica)

Funetion Template:

Kay: U Fometimes includod D tisually nciudad n Aequired (Black Box Funchanish



Component Nama:  Vibrator
Port Template:
solid
- matarial

acoustic energy
(wih devica)

Vibrator

matonal
fwin ma.)
matenal

7rmm\‘[;
R

Function Template:

Key: E ‘Somenmes incluted U Usually inctudac n Aequired [Biack Box Functanishi

Component Name: Voltmeter
Port Template:
elpcincat enargy |
(it e

assambly
port(s)

Voltmeter

swnal
{with anangy)

| cioetneal anargy
[with gevica) :

Function Template:

Key: m ‘Somatimes includog D Lswally {rotudad n Aoquired (Biack Box Funetianisht

Component Name:

Port Template:

ol
(with anargy) i

Visual Indicator

assambly
Dcrlﬁs)

Wisual Indicalor

[WH:%TMJ '

Funetion Template:

222

Kay: U Sometmes incluged D tisuaily inciugod u Aequired (Black Box Funciangsh

Component Name: Washer

Port Template:

&——— maena)
=

‘assambly
pots)

Washer

—— maistial ——&

Funetion Template:

Kay: U Sometimes included D Usually inciudad n Aequirnd (Black Hox Funclianisii



Component Nama: Whesal
Port Template:
assambly
DOTIS)
mecrianical energy | | machanical ahergy
: {with dovieg) (with avica) :
Wheel

Function Template:

Key: E -Somenmes includog U Lsually inotucad n Aquired [Biacy Box Furenanisit

223
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APPENDIX C

Hierarchical Component Term List
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Component Terms & Definitions

Primary Secondary
Component P
Component Component Component Term SUbset Definition
Classification Classification
Separator
A device or material that uses texture on a surface to remove any portion of a firm (non-
Abrasive . "
fluid) material.
Blade A device or material consisting of a broad flat or concave edge used to separate a firm
(non-fluid) material.
Centrifuge A devl‘ce that uses centrifugal force via a rapidly rotating container to separate fluid
materials.
A device that divides a material into smaller separate areas.
Material Filter A de\{lce or matenall con;lstlng of a pattern of holes, slits, or pores used to separate
constituents of a fluid mixture.
A material filter that uses a fine, porous, flexible material to separate particles from the
Permeable Membrane . .
surrounding mixture.
Rake A material filter that uses a series of parallel slits or tines to separate particles from the
surrounding mixture.
Screen A material filter that uses a mesh structure to separate particles from the surrounding
mixture.
A device that uses bristles attached to a surface to remove any portion of a firm (non-
Scrub Brush . N
fluid) material.
Vibrator A device that uses frequency oscillations to separate or dislodge a firm (non-fluid)
material.
Distributor
Brush A device that uses bristles to distribute a fluid material over a surface.
Diverter A device or structure that distributes a flow of material into multiple directions by way of
its geometry.
Electric Distributor A device used to systematically allocate electrical energy along multiple paths.
Nozzle A device at the end of a pipe, hose, or tube used to distribute a continuous flow of fluid
material.
Channeler
Importer/Exporter
Electric Cord A device used to bring electrical energy into a system from an external receptacle.
Housing A protective cover primarily used to bring flows into or out of a system that is also
designed to contain or support components within it.
Transferor
Belt A device shaped as an endless loop of flexible material between two rotating shafts or
pulleys used to transmit mechanical energy.
Carousel A device used to move material in a continuous circular path.
Clutch A device used to transmit rotational energy between two shafts that may be (dis)engaged
smoothly.
Conveyor A device used to move material in a linear path.

Electric Conductor

A device used to transmit electrical energy from one component to another.

Electric Plate

An electric conductor in the form of a thin, flat sheet or strip.

Electric Wire

An electric conductor in the form of a thin, flexible thread or rod.

Electric Plug

A device in the form of a plug that transmits electrical energy via a detachable connection
with an electric socket.

Electric Socket

A device in the form of a receptacle that transmits electrical energy via a detachable
connection with an electric plug.

EM Transmitter

A device that transmits electromagnetic (EM) signals (such as infrared or RF) over a non-
wired medium.
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Component Terms & Definitions

Primary
Component
Classification

Secondary
Component
Classification

Component Term

Component
Subset

Definition

Extender

A device that transmits mechanical energy between two elements of any jointed
apparatus as they are drawn away from each other.

Heat Exchanger

A device used to transmit heat from one medium to another.

Pipe

A device in the forma of a hollow cylinder that transmits hydraulic or pneumatic energy by
transferring fluid material under pressure.

Projectile

A device that transmits mechanical energy by being thrown or propelled through the air.

Rotational Coupler

A device used to connect coaxial shafts for power transmission from one to the other.

Shaft

A device in the form of a cylindrical bar used to support rotating pieces or to transmit
power or motion by rotation.

Thermal Conductor

A device used to transmit thermal energy from one component to another.

Thermal Plate

A thermal conductor in the form of a thin, flat sheet or strip.

Thermal Wire

A thermal conductor in the form of a thin, flexible thread or rod.

Guider
A device in the form of a sphere or cylinder (or in an arrangement of spheres or cylinders)
Bearing that is placed between moving parts to allow them to move easily relative to each other
along a path.
Hinge A device that allows rigidly connected materials to rotate relative to each other about an
9 axis, such as the revolution of a lid, valve, gate or door, etc.
Link A device connecting two or more components that transmits motive power from one part
to another along a specific path.
Sled A device either under or within a machine used to facilitate the sliding of components
relative to each another along a path.
Tube A device in the form of a hollow cylinder used to direct a fluid material (that is not under
pressure) along a path.
Connector
Coupler
Clami A device used to hold two or more components together that is readily (dis)engageable
P without the use of an external tool.
Fastener A device used to hold two or more components together indefinitely with great effort or
an external tool required to separate the joined components.
Glue A fastener in the form of an adhesive substance.
Key A fastener in the form of a piece of material that is inserted between other pieces, usually
a pin-, bolt-, or wedge-like artifact fitting into a hole or space.
Nut-Bolt A fastener in the form of a threaded pin that screws into a usually square or hexagonal
material through a threaded hole.
Retaining Clip A fastener in the form of a brace, band, or clasp.
Rivet A fastener in the form of a heavy pin having a head at one end with the other end
hammered flat after being passed through holes in the joined pieces.
Screw A fastener in the form of a threaded pin, which does not require a nut to remain secure.
Solder A fastener in the form of a low-melting alloy used to join less fusible metals.
Mixer
Agitator A device used to maintain fluidity and plasticity, and to prevent segregation of liquids and
solids in liquids, such as concrete and mortar.
Carburetor A device used to mix air with a fine spray of liquid fuel.
Magnitude Controller
Actuator
Door A device in the form of a movable barrier, usually turning on hinges or sliding in a groove,

and serving to close or open a passage into a space.
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Component Terms & Definitions

Primary Secondary
Component s
Component Component Component Term Definition
M R Subset
Classification Classification
Electric Switch A device for making or breaking the flow of electrical energy in an electrical circuit.
Latch Release A device that is designed to hold or free a mechanism as required.
Regulator
Potentiometer A device used to adjust the flow of electrical energy in an electric circuit.
Thermostat A device used to adjust temperature by starting or stopping the supply of heat.
Transistor A semiconductor device with three connections capable of regulating the flow of electrical
energy in an electrical circuit.
valve A device by which the flow of a fluid material may be adjusted by opening, shutting, or
partially obstructing one or more ports or passageways.
Varistor A device used to adjust the flow of electrical energy in an electric circuit.
Changer
Capacitor A device used to alter a signal by storing an electrical charge.
Choke A device in the form of a restriction in a pipe that reduces the flow of a fluid material.
. A device used to change the voltage of an alternating electric current via a magnetic
Electrical Transformer N M.
coupling between two separate circuits.
Inclined Plane A device in the form of a surface sloped at an angle to a reference surface, which provides
a mechanical advantage for raising loads.
Inductor A device used to alter a signal by storing energy as a magnetic field.
Lens A device in the form of a translucent substance used to alter the path of optical energy
transmitted through it.
Lever A device fixed at a fulcrum and acted on at two other points by two forces, each tending
to cause it to rotate in opposite directions round the fulcrum.
A device that alters the flow of mechanical energy during the process of transmitting force
Mechanical Transformer
and motion between rotating or translating components.
Gear A mechanical transformer in the form of a disc or plate that transmits mechanical energy
to another device by means of teeth.
Pulle A mechanical transformer in the form of a wheel or drum fixed on a shaft and turned by a
Yy belt, chain, or strap.
Sprocket A mechanical transformer in the form of a toothed wheel that engages a power chain.
Mold A hollow device used to give shape to a molten or hot fluid when it cools and hardens.
Needle A device in the form of a slender, usually pointed, rod used to amplify a mechanical
rotation on a dial or other measuring instrument.
Punch A device used to make holes, impress a design, or stamp a die into a firm material.
Resistor A device that alters the flow of electrical energy by resisting the passage of electrical
current.
Signal Filter A device that alters the frequency spectrum of signals passing through it.
Stuffing A device used to fill up hollows and to fill out or expand the outlines of the body.
Stoppers

Acoustic Insulator

A device used to prevent the passage of sound, or vibration.

Cap

A device in the form of a firm material secured to and used to prevent the flow of material
into a hole or aperture.

Check Valve

A device that allows a fluid to flow in only one direction.
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Component Terms & Definitions

Primary Secondary
Component P
Component Component Component Term Definition
e - Subset
Classification Classification
Cover A device that overspreads an object, which is used to hide, defend, or shelter a material.
Cushion A device in the form of a soft pad or bumper used to prevent the transmission of
mechanical energy from jarring, friction, or pressure.
Diode A semiconductor device which allows current to flow in only one direction.
Electric Insulator A device used to prevent the passage of electrical energy.
Friction Enhancer A device in the form of a material used to reduce heat and increase friction.
Fuse A device that breaks the flow of electrical energy in an electrical circuit in response to an
excessive current.
Seal A device used prevent the flow of a fluid material, especially at a place where two
surfaces meet.
Stoy A device in the form of a rigid structure that is automatically activated by a predetermined
P nent to limit the c 1 of a system.
Thermal Insulator A device used to prevent the passage of thermal energy.
Converter

Material Converter

Catalytic Converter

A device used to chemically transform a harmful gas material into one or more inert
forms.

Condenser A device used to transform a gas material into a liquid material.
Evaporator A device used to transform a liquid material into a gas material.
Energy Converter

Airfoil A device with curved surfaces used to transform pneumatic energy into translational
energy.

Armature A device used to transform magnetic energy into rotational energy.

Burner A device used to transform chemical energy into thermal energy.

cam A device in the form of an eccentric curved wheel or disc used to transform rotational
energy into reciprocating translational energy.

Crank A device used to transform reciprocating translational energy into rotational energy.

Electric Motor

A device used to transform electrical energy into mechanical energy.

Electromagnet

A device used to transform electrical energy into magnetic energy.

A device in the form of a rotating shaft with two or more broad, angled blades attached
used to transform rotational energy into pneumatic energy.

Generator

A device used to transform mechanical energy into electrical energy.

Heating Element

A device used to transform electrical energy into thermal energy.

Hydraulic Piston

A device in the form of a cylinder tightly fitted inside a tube used to transform hydraulic
energy into translational energy.

Hydraulic Pump

A device used to transform mechanical energy into hydraulic energy by altering the
pressures within a system.

1C Motor

A device used to transform chemical energy in the form of liquid fuel into mechanical
energy.

Light Source

A device used to transform electrical energy into the spectrum of electromagnetic energy
visible to humans.

Pneumatic Piston

A device in the form of a cylinder tightly fitted inside a tube used to transform pneumatic
energy into translational energy.
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Component Terms & Definitions

Primary
Component
Classification

Secondary
Component
Classification

mponent Term
CPEREG 13 Subset

Component

Definition

Pneumatic Pump

A device used to transform mechanical energy into pneumatic energy by altering the
pressures within a system.

Screw Propeller

A device in the form of a rotating shaft with two or more broad, angled blades attached
used to transform rotational energy into hydraulic energy.

Speaker A device used to transform an electrical signal into acoustic energy.
Wheel A device in the form of a disc or circle used to transform translational energy applied at
the hub into rotational energy.
Signal Converter
Knob A device used to transform human energy into a control signal.
Provisioner
Material Supplier
Bladder A device in the form of a hollow, expandable sac or membrane with a narrow opening
used to accumulate and dispense a material.
Container A device in the form of a closed canister used to accumulate and dispense a material.
A device in the form of a sealed tank used to accumulate and dispense a pressurized fluid
Pressure Vessel N
material.
Reservoir A device in the form of an open tank used to accumulate and dispense a material.
Energy Supplier
A device used to accumulate and dispense electrical energy by means of a chemical
Battery .
reaction.
Flywheel A device used to accumulate and dispense rotational energy via angular momentum.
Spring A device used to accumulate and dispense mechanical energy via the elastic properties of
the device's material properties.
Signal Supplier
Signaler
Sensor
Ammeter A device used to determine the current through an electric circuit.
Displacement Gauge A device used to determine translational or rotational distance in a system.
EM Sensor A device used to detect an electromagnetic signal.
A device in the form of an external plate or face on which the amount of a fluid material is
Level Gauge
determined.
Pressure Gauge A device used to determine the pressure from hydraulic or pneumatic energy in a system.
Speed Gauge A device used to determine velocity in a system.
Voltmeter A device used to determine the voltage across a portion of an electric circuit.
Indicator

Visual Indicator

A device used to visibly indicate a signal.

Analog Display

A visual indicator in the form of a continuously variable dial or gauge.

Digital Display

A visual indicator in the form of a discrete readout or gauge.

Flag

A visual indicator in the form of a physical banner or marker.

Indicator Light

A visual indicator in the form of a single bulb.

Auditory Indicator

A device used to acoustically indicate a signal.
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Component Terms & Definitions

Primary Secondary
Component P
Component Component Component Term Subset Definition
Classification Classification
Bell An auditory indicator in the form of a hollow object that is struck to produce vibration.
Buzzer An auditory indicator in the form of an electronic device that emits a buzzing noise.
Recording An auditory indicator in the form of stored acoustic information that is replayed.
Processor
Circuit Board A device in the form of a printed circuit used to perform systematic operations on a signal.
Supporter
Stabilizer
Insert A device in the form of a material around which another material sets, solidifies, or is
formed and used to strengthen or prevent a material from overturning.
Support A device that holds up or sustains the weight of a body.
Securer
A device in the form of a piece or combination of pieces, usually triangular in general
Bracket shape, projecting from, or fastened to, a wall, or other surface, to secure heavy bodies or
angles.
Positioner
Handle A device used to place a human hand in an appropriate configuration for grasping or
interacting.
Washer A device in the form of a disk or ring used to provide spacing between components

located on a axle or shaft.
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