
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2007

A computational theory for the generation of solutions during A computational theory for the generation of solutions during

early conceptual design early conceptual design

Cari R. Bryant

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Mechanical Engineering Commons

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering

Recommended Citation Recommended Citation
Bryant, Cari R., "A computational theory for the generation of solutions during early conceptual design"
(2007). Doctoral Dissertations. 1881.
https://scholarsmine.mst.edu/doctoral_dissertations/1881

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1881?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1881&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

A COMPUTATIONAL THEORY FOR THE GENERATION OF SOLUTIONS

DURING EARLY CONCEPTUAL DESIGN

by

CARI RIHAN BRYANT

A DISSERTATION

Presented to the Faculty of the Graduate School of the

UNIVERSITY OF MISSOURI–ROLLA

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

MECHANICAL ENGINEERING

2007

_____________________________ _____________________________

Robert B. Stone, Co-Advisor Daniel A. McAdams, Co-Advisor

_____________________________ _____________________________

Matthew I. Campbell Ashok Midha

_____________________________ _____________________________

David C. Drain Xiaoping Du

© 2007

Cari R. Bryant

All Rights Reserved

DEDICATION

I dedicate this to my husband Scott and my parents Allen and Deon.

ABSTRACT

Advancement in technology is usually made by building on previous experiences

and learning from past successes and failures. However, knowledge transfer in the broad

field of product design is often difficult to accomplish. Research has shown that

successful component configurations, observed from existing products, can be dissected

and stored for reuse; but few computational tools exist to assist designers during the

conceptual phase of design. Many well-known manual methods (e.g. brainstorming,

intrinsic and extrinsic searches, and morphological analysis) rely heavily on individual

bias and experience and are often time intensive, laborious tasks that may not catch

solutions that are functionally analogous, but seemingly unrelated.

This research presents an automated concept generation tool that augments

traditional activities during the conceptual phase of design. The automated concept

generator draws on the existing knowledge contained within a repository of existing

design solutions to quickly produce numerous feasible concepts early in the design

process that each satisfy the functional requirements for a design problem. The

computational algorithm enables the development of a computerized design tool that

complements other concept generation activities, such as brainstorming and

morphological analyses. By quickly presenting numerous concepts from products that

have already been developed, this design tool provides a broader set of initial concepts

for evaluation than a designer may generate alone when limited by his/her personal

experiences.

i

ACKNOWLEDGMENTS

I would like to thank my advisors, Dan McAdams and Rob Stone, for their tireless

support and dedication to mentoring me. I would also like to thank Matt Campbell for his

willingness to travel to the far reaches of Missouri for my exams. I appreciate the time

dedication and insightful questions and comments from all of my committee members. I

also thank Ron Fannin for graciously allowing me to access his wisdom throughout the

past years. Finally, I would like to thank my family. Without their constant support and

encouragement, my achievements would be greatly diminished.

While working toward my Ph.D., I was supported by the National Science

Foundation under grants IIS-0307419 and IIS-0307665. I am also grateful for the support

I received from the University of Missouri–Rolla as a Curator’s Fellow.

ii

TABLE OF CONTENTS

 Page

...ABSTRACT i

...ACKNOWLEDGMENTS ii

..LIST OF ILLUSTRATIONS viii

..LIST OF TABLES xiii

SECTION

...1. INTRODUCTION 1

..1.1. PRODUCT DESIGN OVERVIEW 1

..1.2. PROBLEM DESCRIPTION 3

...1.3. MOTIVATION 6

..1.4. HYPOTHESIS AND OBJECTIVES 9

...1.4.1. Hypothesis. 9

..1.4.2. Objectives. 9

..1.5. ORGANIZATION 10

...2. BACKGROUND 13

..2.1. INTRODUCTION 13

..2.2. STRUCTURED DESIGN METHODS 13

..2.3. STANDARDIZED “LANGUAGES” IN DESIGN 16

..2.3.1. The Functional Basis of Design. 16

...2.3.2. Component Basis. 19

...............................2.4. DESIGN KNOWLEDGE STORAGE AND RETRIEVAL 19

iii

...2.4.1. Information Captured by the Repository. 20

...2.4.2. Using the Design Repository. 21

...2.4.3. The Web-Based Morphological Search. 23

...2.4.4. Downloadable Design Tools. 28

..2.5. TOOLS TO SUPPORT THE DESIGN PROCESS 29

..2.5.1. Idea Generation Techniques. 29

...2.5.2. Automated Design Tools. 31

..2.6. SUMMARY 34

3. AUTOMATED CONCEPT GENERATION, PART I: THEORY AND ALGORITHM

 36

..3.1. INTRODUCTION 36

..3.2. THEORY 36

..3.3. ALGORITHM 39

...................................3.3.1. Step 1: Generate a Conceptual Functional Model. 39

...............................3.3.2. Step 2: Define Function-Component Relationships. 42

3.3.3. Step 3: Compute the Set of Concept Variants that Solve the Function

...Model. 42

3.3.4. Step 4: Define Component-Component Compatibility Using Existing

...Design Knowledge. 44

..3.3.5. Step 5: Filter Set of Conceptual Variants. 44

..3.4. ILLUSTRATIVE EXAMPLE 46

.........................4. AUTOMATED CONCEPT GENERATION, PART II: SOFTWARE 55

..4.1. INTRODUCTION 55

iv

............4.2. AUTOMATION OF THE CONCEPT GENERATION ALGORITHM 55

...4.3. CASE STUDY: BOX LABELING DEVICE 58

.....................4.4. MEMIC: THE INTERACTIVE MORPHOLOGICAL SEARCH 65

..................5. COMPONENT CLASSIFICATION FOR KNOWLEDGE RETRIEVAL 70

..5.1. INTRODUCTION 70

...5.2. MOTIVATIONS 70

.........5.2.1. Implementation of a Computational Theory for Design Synthesis. 71

...5.2.2. Design Knowledge Reuse. 72

...5.2.3. Communication of Design Knowledge. 72

................................5.2.4. Standardization for Digital Component Cataloging. 73

...5.3. BACKGROUND INFORMATION 74

...5.3.1. Artifact Classification. 74

..5.3.2. Observations. 77

...5.4. THE CLASSIFICATION HIERARCHY 78

..5.4.1. Establishing the Hierarchy. 79

..........................5.4.2. Placing Existing Component Terms into the Hierarchy. 79

.........................5.5. CLASSIFYING COMPONENTS USING THE ONTOLOGY 84

.......5.6 ANALYTICALLY DERIVED DESIGN STRUCTURE MATRIX (DSM) 86

..6. EXPERIMENTS AND CASE STUDIES 90

..6.1. INTRODUCTION 90

................6.2 EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART I 90

...6.2.1. Experimental Setup. 91

v

..6.2.1.1. Methodological Comparison. 91

................................6.2.1.2. Returned Results Robustness Investigation. 97

..6.2.1.3. Functional Model Variation Effects. 98

..6.2.2. Results from the Experimental Study. 100

..6.2.2.1. Methodological Comparison Results. 101

...6.2.2.2. Robustness Investigation Results. 109

.............................6.2.2.3. Functional Model Variation Effects Results. 111

.............6.3. EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART II 113

...6.3.1. Experimental Setup. 113

...6.3.2. Results. 126

..6.3.2.1. Qualitative Analysis. 126

..6.3.2.2. Quantitative Analysis. 129

....................................6.4. CASE STUDY: A DOG FOOD PACKET COUNTER 135

..6.4.1. Chi-Matrix Background. 135

...6.4.2. Description of Case Study. 136

..6.4.3. Evaluation of the Three Automated Methods. 142

...............6.4.3.1. Survey of the Data Contained within the Repository. 143

......................6.4.3.2. Preparing the Manual Concepts for Comparison. 143

6.4.3.3. Comparison of Automated Results to Manually Generated

...Concepts. 146

..7. CONCLUSIONS 149

..7.1. INTRODUCTION 149

vi

..7.2. SUMMARIES AND DISCUSSIONS 150

.....................................7.2.1. Automated Concept Generation Design Tools. 150

............................7.2.2. Component Classification Hierarchy and Procedure. 151

...7.2.3. Experimental Activities and Case Studies. 153

...7.3. KEY CONTRIBUTIONS 159

...7.4. FUTURE WORK 160

..................................7.4.1. Extensions to the Automated Concept Generator. 160

...7.4.2. Ranking and Identifying “Good” Designs. 161

................................7.4.3. Early Design Tools for Multiple Design Contexts. 162

...7.4.4. Component Classification Research. 162

...7.4.5. Other Related Research Areas. 163

...7.5. PARTING WORDS. 164

APPENDICES

..APPENDIX A: MEMIC Software Code 165

..APPENDIX B: Component Templates 188

..APPENDIX C: Hierarchical Component Term List 225

..APPENDIX D: Analytical Design Structure Matrix 231

...REFERENCES 236

..VITA 250

vii

LIST OF ILLUSTRATIONS

Figure Page

......1.1. Steps of the planning and design process (adapted from Pahl and Beitz, 1996.) 3

1.2. Allocated and expended costs during design development and manufacture.

..(adapted from Black, 1990).. 7

2.1. For an insulating cup, (a) a snippet of customer needs leads to a (b) black box

and functional model of a cup following the functional model derivation

..method. 15

2.2. The UMR Design Repository web interface. Entry into the repository may be

requested at http://function.basiceng.umr.edu/repository .. 22

...2.3. The morphological search input. 24

...2.4. The morphological search results. 26

...2.5. Detailed component list for “housing”. 27

2.6. From the web-based repository (center), a designer may extract information

about component functionality in the form of a function-component matrix

(FCM, left) and component compatibility in the form of a design structure

...matrix (DSM, right). 28

..........................3.1. Visual summary of the algorithm used in the concept generator.. 40

..............3.2. Summary of the matrix operations for the concept generation algorithm. 41

3.3. Tinkertoy™ tricycle used as the “product” to be redesigned in the

..following example. 46

3.4. (a) Function chain for the energy flow through the Tinkertoy™ tricycle.

(b) Function adjacency matrix describing the function connections graphically

..shown in (a). 47

3.5. Function-component matrix manually generated for the set of Tinkertoy™

..components. 48

viii

http://function.basiceng.umr.edu/repository
http://function.basiceng.umr.edu/repository

3.6. Matrix row multiplication is used to generate the set of theoretical design

...solutions for each connected function pair. 49

3.7. Design structure matrix (DSM) generated for the set of Tinkertoy™

..components. 50

3.8. Function adjacency matrix with embedded component connection information

that describes the complete set of feasible design solutions for the tricycle

..redesign. 51

3.9. (a)-(d) Concept variants selected from the matrix of feasible solutions

...presented in Figure 3.8. 53

4.1. User interface for (a) inputting the FCM, DSM, and functional model for

automatic concept generation, and (b) browsing through the list of returned

..concept variant chains. 56

.............4.2. Conceptual functional model for the case study of a box-labeling device. 59

4.3. The conceptual functional model was divided into single non-branching flow

chains, labeled Flow Chains A-E, and entered into the concept generation

..software. 60

..4.4. Conceptual component chains generated from the concept generation software. 62

4.5. Aggregated concept variant generated from the component chains shown in

...Figure 4.4. 63

4.6. Conceptual design generated for the box-labeling device, inspired by the

..concept generation program output. 64

4.7. Embodied design for the box-labeling device (cover removed to show internal

...components). 64

4.8. (a) A simple functional model and (b) the associated function-adjacency

...matrix. 66

..4.9. The interactive morphological search user interface. 68

5.1. Function templates were used to help establish the functional characteristics of

...each component term. 80

ix

5.2. Port templates used to help establish the functional characteristics of each

...........................component term and to help create distinct definitions for each. 80

...............................5.3. The proposed function-based hierarchical ontology structure. 84

..5.4. Component port template for an airfoil. 87

...5.5. Potential compatible components for an airfoil. 88

6.1. Flowchart of the activity structure for the concept generation methodological

...comparison. 91

6.2. The students used the steps illustrated above to generate functional models for

each product design scenario from the customer needs they established through

...customer interviews. 93

6.3. The lists of component chains returned by the concept generator were

transformed into morphological matrices that could more easily be compared

..........to the morphological matrices produced by the undergraduate researchers. 96

6.4. This activity investigated the effect of chain permutation on the conceptual

..results returns by the concept generator software. 98

6.5. (a) A person may omit implied functions a product needs to exhibit while

deriving a functional model. (b) A different person may be more explicit and

..include functional “transitions” in a functional model. 99

6.6. The students began the methodological comparison for the thermal mug by

generating (a) customer needs, (b) functional models, (c) morphological charts,

...and (d) complete concept sketches. 102

6.7. The students found nearly all of their manually generated concepts from their

complete design solutions matched up with top-ranked solutions returned by

...the concept generator. 104

6.8. (a) Example function chain extracted from the full functional model of a bug

vacuum both in the original form and permuted form. (b) The top concept

generator results returned from the original and permuted chain shown above

...in (a). 110

x

6.9. (a) Example function chain extracted from the full functional model of a bug

vacuum both in the original form and with the assumed functionality omitted.

(b) The top concept generator results returned from the original and modified

..chain shown above in (a). 112

...........................6.10. Original drink mixer design used during the redesign scenario. 114

6.11. Functional model using the secondary level terms of the Functional Basis for

..the drink mixer redesign scenario. 117

6.12. Morphological matrix generated from the functional model shown in Figure

...6.11 for the drink mixer redesign scenario. 117

6.13. Solution sketch generated from the morphological matrix shown in Figure

...6.12 for the drink mixer redesign scenario. 118

6.14. Functional model using the primary level terms of the Functional Basis for the

..drink mixer redesign scenario. 119

6.15. Morphological matrix generated from the functional model shown in Figure

...6.14 for the drink mixer redesign scenario. 119

6.16. Solution sketch generated from the morphological matrix shown in Figure 6.15

..for the drink mixer redesign scenario. 120

6.17. Sample matrix-based concept generator output for a primary level functional

...model input for the drink mixer redesign. 121

6.18. Functional model using the primary level terms of the Functional Basis for the

..bread slicer original design scenario. 123

6.19. Morphological matrix generated from the functional model shown in Figure

..6.18 for the bread slicer original design scenario. 123

6.20. Solution sketch generated from the morphological matrix shown in Figure 6.19

..for the bread slicer original design scenario. 124

6.21. Functional model using the primary level terms of the Functional Basis for the

..bread slicer original design scenario. 124

6.22. Morphological matrix generated from the functional model shown in Figure

..6.21 for the bread slicer original design scenario. 125

xi

6.23. Figure 6.23. Solution sketch generated from the morphological matrix shown

.................................in Figure 6.22 for the bread slicer original design scenario. 125

...................6.24. The black box model developed for the dog food packaging device. 137

..................6.25. The functional model developed for the dog food packaging device. 138

...6.26. Concepts generated by the C-Sketch method. 139

..6.27. Concepts generated by the Chi Matrix method. 141

7.1. The proposed hierarchy has the potential to be adapted to a larger structure if

components from other domains do not fit within the structure proposed for

...electromechanical devices from consumer products. 152

xii

LIST OF TABLES

Table Page

2.1. Function classes under the Functional Basis (for term definitions, see Hirtz,

et al. .., 2002). 18

2.2. Flow classes under the Functional Basis (for term definitions, see Hirtz, et al.,

..2002). 18

4.1. Subset of Component Basis artifacts found in the listed concept variants

(Kurtoglu, et al. ..., 2005). 61

5.1. An excerpt of component terms and definitions organized using the proposed

......hierarchical ontology (the full component list may be found in Appendix B). 82

6.1. Summary table showing the number of solutions generated for each original

...design scenario. 105

6.2. Summary tables showing the number of subfunctions in each flow extracted

from the full functional model, total number of solutions generated for all of the

subfunctions in each flow, average number of solutions per subfunction within a

flow, number of compatible solution chains able to be constructed (both partial

and complete) to solve the flow, and the total number of solution chain

combinations possible (both compatible and incompatible) for the (a) human-

powered power supply, (b) hot or cold thermal mug, and (c) wall climbing toy

...design scenarios. 107

6.3. Summary table showing the number of design solutions found in both the

student generated morphological matrices and the morphological matrices

..derived from the concept generator results. 109

..................6.4. List of customer needs used for the original design of a bread slicer. 114

6.5. Summary of full factorial experimental test combinations performed by the

...research participants. 115

6.6. Summary table showing the total number of solutions for the morphological

...matrix from each testing combination. 131

xiii

6.7. Summary tables showing the number of subfunctions in each flow extracted

from each functional model, total number of solutions generated for all of the

subfunctions in each flow, average number of solutions per subfunction within

a flow, number of compatible solution chains able to be constructed (both

partial and complete) to solve the flow, and the total number of solution chain

combinations possible (both feasible and infeasible) for the (a) drink mixer

......................................redesign, and (b) bread slicer original design scenarios. 133

6.8. Summary table showing the number of distinct design solutions found in both

the student generated morphological matrices and the morphological matrices

....................................derived from the matrix-based concept generator results. 134

6.9. Information on these 102 products is currently contained within the

..data repository. 142

6.10. Subfunctions from the original model that are embodied in each manually

...generated solution compared. 145

6.11. Concept-specific function-component matrix for the manually generated

...solution labeled Chi Matrix 1. 146

6.12. Portion of manually generated concept returned by each of the automated

..design tools. 148

6.13. Summary of the number of solutions returned by each of the automated

..design tools. 148

xiv

1. INTRODUCTION

Product design involves the transformation of a set of established requirements

into a physical device capable of satisfying those requirements. The early stages of

design, especially the stages involving concept generation and evaluation, are notoriously

difficult to study because much of the processes occur subtly within a designer’s head.

Because of the challenges associated with automating such an intrinsic and nuanced task,

designers are faced with complex decisions to make during these early stages of design

with few tools available to help manage the process. Designers can often feel

overwhelmed by the idea of generating not just one but a broad array of solutions to a

given design problem, especially if external pressure is being applied to develop an

appropriate solution quickly. This combination of discomfort and pressure usually leads a

designer to hastily rush through this critical phase of the design process. Consequently,

designers, especially those with less experience, often fail to pursue and adequately

evaluate an appropriate number of alternatives before selecting a design to embody. The

research presented here seeks to support a designer during the conceptual phase of the

design process with an automated tool capable of quickly searching a large database of

design knowledge and delivering multiple relevant and easily identifiable conceptual

solutions for a designer to pursue.

1.1. PRODUCT DESIGN OVERVIEW

Figure 1.1 diagrams common activities a designer must go through during the

development of a design—from clarifying the needs the device must fulfill through

generating the detailed embodiment of its structure. Many structured methods have

emerged to help guide designers during the various stages of the design process (Pahl and

Beitz, 1996; Otto and Wood, 2001; Ulrich and Eppinger, 1995). In particular, the

systematic approach of Pahl and Beitz (1996) and Hubka and Eder (1984), representing

European schools of design, has spawned many variant methodologies in American

design literature (Ulrich and Eppinger, 1995; Ullman, 1997; Schmidt and Cagan, 1995;

Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cutherell, 1996; Otto and Wood,

1996, 1997). These methodologies (e.g. Pahl and Beitz, 1996 and Otto and Wood, 2001)

take a designer through a specific set of steps devised to help dissect a design problem

and build conceptual solutions based on the functionality that a product needs to exhibit.

Functional modeling methods directly extract the functionality a solution must fulfill

from the established customer needs, ideally removing designer biases that may be

introduced by focusing on specific solutions too early in the design process. This act of

abstraction helps a designer generate more creative and complete conceptual solutions

and balance design choices between different components with the same functionality

(Pahl and Beitz, 1996).

2

Figure 1.1. Steps of the planning and design process (adapted from Pahl and Beitz, 1996.)

1.2. PROBLEM DESCRIPTION

Although systematic methodologies exist, Ivashok (2004) discusses the resistance

designers seem to have toward applying them to generate initial design solutions and

states that designers tend to quickly descend on potential solutions as a means to further

define and understand a design problem. However, despite the tendency of designers to

be resistant in employing rigid methods early in the design process (Cross, 1994),

evidence also supports the idea that structured approaches can be helpful to students and

demonstrates a positive correlation between a structured approach and both the quantity

and quality of student designs (Radcliffe and Lee, 1989). Additionally, during the early

stages of the design process, designers tend to focus more on loose representations of

conceptual ideas, such as sketches and short descriptions, in order to begin to define a

design solution. Yang (2003) concludes that, in the context of student design teams, it is

important to generate and solidify a large number of ideas as well as begin prototyping a

design early in the design process. These ideas seem to point toward the need for the

seemingly tedious stages of systematic design to employ some level of automation to

3

help integrate the benefits of a structured method with the more natural activities of a

designer—a need that is most evident during the early phases of conceptual development.

 The fuzzy front end of the conceptual design process has seen few attempts at

automation, perhaps due in part to the evolving strategies and methodologies that exist

for this phase of design. Many non-computational methods exist (e.g. techniques

designed to stimulate creative solutions (Glover, et al., 1989; de Bono, 1970) or use

design rationale from successful designs (Navinchandra, et al., 1991; Altschuller, 1984;

Suh, 1995)) but do not employ any automated tools to help guide a designer.

Furthermore, redesign tools (e.g. Quality Function Deployment (Prasad, 1998) and Life

Cycle Analysis (van den Berg, et al., 1995)) may prove initially confusing to an

inexperienced designer. Computational tools that support the conceptual stage of design

do exist, but often these tools address areas that support other aspects of conceptual

design such as initial requirements gathering (e.g. organizational tools such as the

TikiWiki project (Wodehouse, et al., 2004)), the creation of function structures (e.g. the

function grammar tool developed by Sridharan and Campbell (2005)), or optimization of

well-established concepts (e.g. (Du and Chen, 2004)) rather than the generation of design

solutions from existing design knowledge. Computational tools have been developed to

assist a designer during the transition between defining a design’s function and

establishing its form, but often these approaches either limit the scope of design problems

they are applicable to (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998),

restrict concept generation to dynamic systems where a bond graph can be readily

utilized (e.g. Welch and Dixon, 1991; Gui and Mäntylä, 1994; Bradley, et al., 1993; Oh,

4

et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi, 1997; Campbell, et al., 1999,

2000, 2003), or utilize user interfaces that a novice designer may find difficult to interpret

(e.g. Lu and Russomanno, 1999; Deng, 2002).

Conventional CAD programs are not designed to foster interactivity and creativity

during the early stages of design (Akman, et al., 1990), and suitable computational tools

that support the fuzzy leading edge of the conceptual phase are still relatively young and

underdeveloped. One area of research explores the development of computer tools that

enable 2D designer sketches to be quickly transformed into 3D parameterized models,

which can then be evaluated for the given design problem. Hearst, et al. (1998) state that

computerized sketching research seeks to create an environment that encourages

collaboration and modification in contrast to current computer interfaces that feel too

formal and precise to stimulate creativity. However, computerized sketching tools (e.g.

Lipson and Shpitalni, 2000; Qin, et al., 2000; Eggli, et al., 1997; Sturgill, et al., 1995;

Hwang and Ullman, 1990), although potentially useful, seem geared more toward

capturing a designer’s ideas for further development early in the design process and do

not seem to address the origination of the ideas to sketch. Other computer-aided

conceptual design tools apply function-based associations to graphically describe the

elements of a mechanical assembly (Serran and Gossard, 1992; Al-Hakim, et al., 2000;

Moore, et al., 1997). Often, though, function and flow semantics are only assigned to a

conceptual design after the structure has been chosen for manipulation by the software

(e.g. the Multi User Groups research platform (Cera, et al., 2002)), thus diluting any

benefits that may be gained by first abstracting a problem.

5

1.3. MOTIVATION

An increasing emphasis is placed on generating the best design early in the design

process as companies strive to reduce costs and develop more reliable designs with

minimal environmental impact at all stages of a product’s life cycle. This drive toward

perfecting a design (both from a marketing and manufacturing standpoint) in its infancy

requires that experience from completed designs be retained and reused so that accurate

decisions are made as early as possible, when design changes cost the company much

less, as shown in Figure 1.2. Often, this experience is retained in the mind of a tenured

employee and is given as sagely advice to a fellow designer seeking counsel about a

design decision. All too often, the tenured employee reaches retirement and the company

is faced with either losing decades of valuable experience or spending significant

amounts of money seeking consultation from the retired employee.

6

Figure 1.2. Allocated and expended costs during design development and manufacture.

(adapted from Black, 1990).

 Research has shown that successful component configurations, observed from

existing products, can readily be dissected and stored for reuse (Bohm, et al., 2005;

Bohm and Stone, 2004). But, even if experience in the form of design knowledge is

accessible, both the experienced and inexperienced designer may feel compelled to

become fixated on a particular solution or domain restricted set of solutions based on

instinct or, perhaps, a subconscious desire to pursue an initial ‘gut feeling.’ Designers

traditionally have a limited number of options available to them to help generate multiple

feasible design solutions to evaluate.

Many well-known manual methods for generating multiple ideas (e.g.

brainstorming, intrinsic and extrinsic searches, and morphological analysis) are designed

to stimulate a designer’s creativity but ultimately still rely heavily on individual bias and

7

experience. Ideation is typically limited by experience, and experienced designers tend to

pursue a larger array of solutions early in the design process. Structured design

methodologies seek to encourage the generation and evaluation of a broad array of

conceptual designs by leading a designer through a series of guided stages. When

directed to generate multiple solutions for a given problem within a structured design

process, designers with limited experience are often able to produce a few feasible

concepts, but many of the ideas they produce are technically or realistically infeasible or

merely minor variations of similarly themed solutions. Researching alternative solutions

could potentially yield new concepts, but inexperienced designers are often still limited to

searching for preexisting solutions to the same design problem. This raises the question

of how one searches for something when (s)he does not know it exists?

Traditional methods for researching alternative ideas include interviewing more

knowledgeable people, searching for relevant patents, performing an Internet (web)

search, browsing through catalogs, or reverse engineering existing designs. Interviews

may still be limited by the experiences of the person being interviewed, and the

interviewee’s biases may inhibit an inexperienced designer from pursuing a non-

traditional solution. Patent databases, while vast, are not searchable in a manner that

readily fosters innovation and often are only useful for focused searches into specific

technologies. Web searches and catalogs are also vast sources of knowledge, but personal

experience can severely narrow a designer’s search, and the amount of available

information may prove too daunting to effectively parse through. Reverse engineering

8

existing products is potentially costly and time consuming and little information may be

gained by dissecting only one or two products.

1.4. HYPOTHESIS AND OBJECTIVES

The challenge in creating useful conceptual design tools lies in finding innovative

ways to help guide a designer toward the best solution(s) by building on existing design

experience while simultaneously discouraging tendencies to make choices or evaluations

based on hunches or biased methods. The following subsections elaborate on the research

hypothesis driving this the research and the specific objectives accomplished by

addressing this challenge.

1.4.1. Hypothesis. Using a database of stored design knowledge as a library, a

computational design tool can be created that is capable of quickly generating multiple

feasible solutions for a generic design problem. This study focuses on creating a design

tool that integrates into a structured design methodology, transforms user-defined design

specifications into a broad array of conceptual designs, and helps a designer evaluate the

solutions returned. By quickly presenting numerous concepts from products that have

already been developed, this design tool can provide a broader set of concepts to evaluate

than a designer may generate alone when limited by his/her personal experiences.

1.4.2. Objectives. The objectives of this dissertation are to:

I. Create a computational theory for generating and filtering conceptual solutions

for a design problem using designer-defined functional requirements and

existing design knowledge mined from a repository of design knowledge.

9

II. Define a structured methodology for classifying the component terms used to

communicate the generated conceptual solutions to the designer.

III. Implement the concept generator theory and algorithms as a software tool

(hereafter referred to as the concept generator tool) to present feasible

and relevant design alternatives to a designer. The software will be validated by:

A. Showing the capability of the concept generator tool to produce design

solutions comparable to those produced by upper level engineering students.

B. Showing the capability of the concept generator to reproduce design

solutions for existing products that do not directly comprise any of the

information stored in the repository of design knowledge.

C. Showing the capability of the concept generator to produce conceptual ideas

for a new product design.

1.5. ORGANIZATION

The layout of this document is arranged to coordinate with the main objectives.

First the reader is given a detailed look at the state of the art in design and especially

conceptual design, as well as a detailed introduction to the specific existing design

technologies that are used to support the automated design tool presented in this

dissertation. The three chapters (Sections 3–5) following the background (Section 2)

present the main contributions that this research delivers, namely a comprehensive

generalized algorithm for the automatic generation of conceptual solutions and the

technologies created to support its applied use. Later chapters present experiments and

10

case studies performed to validate the research presented in Sections 3–5 and test the

current limitations of the proposed technology.

Synopses of the included subject matter by chapter:

Section 2 gives the reader background information pertaining to all of the

remaining chapters. This chapter covers an overview of the existing methodological

framework and computational tools that form the base for the work presented in Sections

3–6. This chapter also covers the state of the art in computational design tools that

support various stages of the design process.

Section 3 presents the algorithm that the concept generator uses to transform the

user-defined input into conceptual ideas. A simple example using a finite repository of

parts from a popular children’s toy is included to help demonstrate how new conceptual

solutions are created using the described algorithm,

Section 4 presents the software created from the algorithm described in Section 3.

Two versions of the Java-based program are described; one with limited functionality that

was initially used to test the efficacy of the algorithm in a real design scenario (described

in Section 6), and one with expanded functionality capable of supporting a full graphical

model of the requirements generated during a structured design process.

Section 5 presents the structured methodology created for classifying components

under a proposed hierarchical structure, similar to ones used for the classification of

living organisms. Additionally, function and port templates are proposed for each term to

help establish a more rigorous structure for the inclusion of design data into the

repository used to generate new conceptual solutions.

11

Section 6 presents a series of experiments and case studies performed to test the

viability and usability of the proposed concept generator algorithm and implementation.

Two studies involving independent student evaluations of an implementation of the

computational tool are first presented. Finally, a case study investigating the effectiveness

of the proposed computational tool is included.

The final section, Section 7, concludes the work presented, outlines the

contributions made, and establishes future avenues of investigation that build on the

research presented. Appendices and a list of References can be found immediately

following Section 7.

12

2. BACKGROUND

2.1. INTRODUCTION

The following section begins with a review of the state of the art in conceptual

design research and areas that support automated concept generation. In particular, we

first review systematic approaches to conceptual design and then focus on specific

product function and component representations and design knowledge collection

techniques on which the automated concept generation theory is built. Finally, a review

of existing computational tools that support designers throughout various stages of the

design process is presented.

2.2. STRUCTURED DESIGN METHODS

The fuzzy front end of the conceptual design process has seen few attempts at

automation, perhaps due in part to the evolving strategies and methodologies that exist

for this phase of design. However, over the past decade several methodologies have

coalesced around the functional decomposition and partial solution manipulation

techniques of Pahl and Beitz (Pahl and Beitz, 1988; Ulrich and Eppinger, 1995; Otto and

Wood, 1996, 1997, 2001; Hubka and Ernst Eder, 1984; Ullman, 1997; Schmidt and

Cagan, 1995; Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cuthrell, 1996).

Subfunction descriptions are necessary elements of a formal approach to identify or

derive a functional model for a product (originally called a function structure by Pahl and

Beitz (1988)) to initiate the concept generation phase of design. For this research, the

functional model derivation method as prescribed in Stone and Wood (2000) and

13

Kurfman, et al. (2003) is followed. The procedure is comprised of a five-step method

summarized as:

1. Identify input and output flows that address customer needs (or other high level

requirements).

2. Generate a black box model (a model of the overall function and input/output

flows) of the system that the performance model describes.

3. Create function chains for each input flow–i.e. “Be the flow” and imagine

traversing through the system noting each operation (e.g. function) that is

performed on you prior to leaving the system.

4. Aggregate function chains into a functional model.

5. Check that each customer need is addressed by at least one subfunction. If not,

then add or adapt functionality to meet remaining customer needs.

To briefly illustrate this technique, the functional model of an insulating cup is

shown in Figure 2.1. The black box model is constructed based on the overall product

function and includes the various energy, material, and signal flows involved in the global

functioning of the product. The detailed functional model is then derived from

subfunctions that operate on the flows listed in the black box model.

14

Customer Needs

• Does not burn
hand

• Comfortable fit
in hand

• Keeps drink hot
for extended time

• Easy to drink

• Holds a standard
Starbucks latte

• …

(a) (b)

Figure 2.1. For an insulating cup, (a) a snippet of customer needs leads to a (b) black box

and functional model of a cup following the functional model derivation method.

Functional models for any product can be generated using this technique.

Repeatability, ease in storing and sharing design information, increased scope in the

search for solutions, and tracking of input and output flows are some of the advantages of

functional models (Pahl and Beitz, 1988; Stone and Wood, 2000). When following the

functional model derivation method outlined above, designers in an experimental group

used 50% fewer terms to describe the functionality of the same product, and increased the

clarity of design communication (Kurfman, et al., 2003). On average, the experimental

group found 82% of the important subfunctions of a very detailed “control” functional

model after only one training session, indicating repeatability but not an exact science.

15

In many respects, any type of model creation to represent engineering systems is

dependent on the skills and choices of the engineer. Different engineers are likely to

report slightly differing results unless given extremely constrained scenarios. The same is

true with functional modeling. In fact, this may be a strength of functional modeling as

part of an original concept generation approach. The subtle differences between

designers’ models may promote the exploration of innovative alternatives. For the present

purpose of conceptual design, designers who follow the functional model derivation

method outlined above can generate functional models that are ‘repeatable enough’ to

generate similar solutions with the concept generator algorithm presented in Section 3.

2.3. STANDARDIZED “LANGUAGES” IN DESIGN

Use of a standardized vocabulary is a beneficial tool for efficiently applying a

computational method to a natural language process such as conceptual design. Two such

existing vocabularies were utilized during the course of this research to facilitate the

input of functional requirements and the output of conceptual solutions for a design.

These two vocabularies, the Functional Basis of Design and the Component Basis, are

described in the next two subsections.

2.3.1. The Functional Basis of Design. The lack of a precise definition for small

easily solved subfunctions has spurred research into the development of a high level

design language (sometimes called a vocabulary or taxonomy) to describe product

function and thus enable a systematic approach to functional modeling (Hundal, 1990;

Koch, et al., 1994; Malmqvist, et al., 1996; Altshuller, 1984; Kirschman and Fadel, 1998;

Kitamura and Mizoguchi, 1998, 1999; Umeda and Tomiyama, 1997; Sasajima, et al.,

16

1995). In order to make elements of the early design phases computable, researchers have

continued to pursue a standard language that unifies the previous works (Otto and Wood,

1997; Little, et al., 1997; Stone and Wood, 2000; Murdock, et al., 1997; Szykman, et al.,

1999; Hirtz, et al., 2002). The result of these recent efforts is a design language known as

the Functional Basis. Shown in Table 2.1 and Table 2.2, the hierarchically arranged Basis

terms are utilized during the generation of a black box model and functional model

(discussed in Section 2.2) in order to encapsulate the actual or desired functionality of a

product (Hirtz, et al., 2002). In this approach, the designer follows a rigorous set of steps

to define a new or redesigned product’s functionality prior to exploring specific solutions

for the design problem (Stone and Wood, 2000). The Functional Basis is intended to be

broad enough to span the entire electro-mechanical design space without repetition and

has been independently verified by other researchers such as Ahmed (Ahmed and

Wallace, 2003; Ahmed, et al., 2005) and Wood (Wood, et al., 2005; Gietka, et al., 2002).

In Table 2.1, engineering functions are categorized as 8 primary classes that are further

specified as secondary and tertiary (not shown) categories. In Table 2.2, engineering

flows are categorized as three primary classes (material, signal and energy) and then

further specified as secondary and tertiary (not shown) categories within each class.

17

Table 2.1. Function classes under the Functional Basis (for term definitions, see Hirtz, et

al., 2002).

Table 2.2. (Below) Flow classes under the Functional Basis (for term definitions, see

Hirtz, et al., 2002).

The black box model is constructed based on the overall product function and

includes the various Functional Basis energy, material, and signal flows involved in the

global functioning of the product. A detailed functional model is then derived using

Functional Basis function terms that operate on the flows from the black box model.

Repeatability, ease in storing and sharing design information, and increased scope in the

search for solutions are some of the advantages functional models that incorporate the

Functional Basis exhibit (Stone and Wood, 2000; Kurfman, et al., 2001).

18

2.3.2. Component Basis. The component naming vocabulary employed

throughout this research, termed the Component Basis, enhances the usefulness of the

information contained within the design knowledge repository by grouping similar

product artifacts into related classes (Kurtoglu, et al., 2005, 2007). For example, specific

instances of components in different products may be named "motor 1", "shaded pole

induction motor", or "dc motor". Using the Component Basis, each of the of these

components would be identified as similar and tagged as an "electric motor". Use of this

vocabulary allows for groupings of similar components to be viewed as a single more

abstract concept variant when returned as a result from a computational tool. Also, this

clustering of like components helps eliminate redundancies that bog down computations.

By eliminating these redundancies, a larger set of unique and more abstract concept

variants can be quickly generated and evaluated using the proposed computational tool.

After concept variants are selected using the generalized Component Basis names,

individual artifacts classified under the chosen Component Basis names can then be more

closely investigated to spur a more specific concept variant idea. For example, if a

returned concept variant included an "electric motor", the design repository (described in

detail in Section 2.4.) could be accessed to provide the designer with the specific

examples "motor 1", "shaded pole induction motor", or "dc motor".

2.4. DESIGN KNOWLEDGE STORAGE AND RETRIEVAL

Functional models reveal functional and flow dependencies and are useful for

capturing design knowledge from existing products. Over the course of several years, a

web-based repository of design knowledge has been developed and refined at the

19

University of Missouri–Rolla and in collaboration with the University of Texas at Austin,

Pennsylvania State University, Bucknell University, and Virginia Polytechnic Institute

and State University (Bohm, et al., 2004, 2005). This repository, which includes

descriptive product information such as functionality, component physical parameters,

manufacturing processes, failure modes, and component connectivity, now contains

detailed design knowledge on over 100 consumer products and the components that

comprise them (in total over 4500 design artifacts are currently included in the

repository).

2.4.1. Information Captured by the Repository. Several design artifact

attributes are captured when entering products into the UMR design repository database.

These attributes are stored in a relational database where each record contains an Artifact

Name as a free form text field where the user can define the name of an artifact, a Part

Family as a free form text field that can be used to catalog similar artifacts as a type or

family, and a Part Number, which is a sequential artifact number given when the artifact

populates the database. Information about the actual function of an artifact is captured in

the Subfunction field as a value from the Functional Basis described above.

Quantity, Artifact Color, Manufacturing Process, Material, and Description fields

further describe the given aspects of the particular artifact along with fields to capture

rough geometric dimensions. An Assembly field denotes whether or not the artifact is a

composite assembly or atomic, and a Supporting Function field denotes whether or not

the artifact is secondary to the product’s operation. A Component Naming field references

20

the list of standard component terms, described in Section 2.3.2., to abstractly identify the

class of the artifact.

Artifact relationships are captured by the Sub-Artifact Of field, which establishes

a parent-child relationship; the Input Artifact and Output Artifact fields, which are used to

trace flow from the current artifact to the corresponding input/output artifacts; and the

Input Flow and Output Flow fields which similarly trace the input and output flows to

other artifacts using values from the Functional Basis. With these fields, various

relationships and connections can be drawn from the repository.

2.4.2. Using the Design Repository. The repository web interface, which offers

guest and registered user access, is located at http://function.basiceng.umr.edu/

repository/. The top-level options within the web repository are Browse, Search, Design

Tools, Design Methodology Dictionary and Account Information. With the web-based

repository, a user can browse and search artifacts, generate design tools, and view a

dictionary of function and flow terms.

The Browse feature allows users to navigate through the repository. When Browse

is initially selected, all of the high-level systems within the repository are shown at the

left of the screen. The systems can be expanded such that artifacts within the system are

exposed. A hierarchical menu system allows for systems to be expanded through

subassemblies down to singular artifacts. The menu system draws information from the

Subartifact_Of field of the database to establish artifact hierarchy. Finally, when an

artifact or assembly is selected, a repository listing of the artifact is shown on the right

portion of the screen. A screenshot of the Browse feature is shown in Figure 2.2.

21

http://function.basiceng.umr.edu/repository/
http://function.basiceng.umr.edu/repository/
http://function.basiceng.umr.edu/repository/
http://function.basiceng.umr.edu/repository/

Figure 2.2. The UMR Design Repository web interface. Access to the repository may be

requested at http://function.basiceng.umr.edu/repository.

When a repository user selects the design tool option, they are presented with a

listing of the high-level systems contained in the repository and selection boxes to denote

the type of desired design tool output. Once one or more systems are selected, a summary

22

http://function.basiceng.umr.edu/repository
http://function.basiceng.umr.edu/repository

of the selected systems is presented, notifying the user of the number of artifacts within

the systems and system descriptions. The repository can currently output function-

component and design structure matrices as well as bills of materials. Because the design

tools are not stored but rather created on demand directly from the repository database,

the user will always be presented with the most up-to-date design tool.

2.4.3. The Web-Based Morphological Search. The morphological matrix

introduced by Zwicky is a now a classic technique for use in conceptual design (Zwicky,

1969). This method provides the design engineer with a simple, albeit manual, means for

bookkeeping potential physical solutions and their corresponding functionality. A

morphological matrix is traditionally created by listing all of the subfunctions for a

design and brainstorming solutions to each subfunction, listing the solutions as columns

and the subfunctions as rows (Pahl and Beitz, 1996; Otto and Wood, 2001; Ulrich and

Eppinger, 1995; Hubka and Eder, 1984; Ullman, 1997). In a manual engineering design

context, the morphological matrix is limited to the concepts generated by the engineer,

although the morphological matrix is one technique that can be used in conjunction with

overall design processes such as 6-3-5 or the reverse engineering and redesign method of

Otto and Wood (2001).

The web-based morphological search tool is an automated online tool that

designers can use to filter and browse through the product knowledge contained within

the web-based repository. Accessed through either a guest or personalized user account at

http://function.basiceng.umr.edu/repository/, a designer may reach the design tool via a

web-browser on any computer connected to the Internet. Upon logging into the design

23

http://function.basiceng.umr.edu/repository/
http://function.basiceng.umr.edu/repository/

repository, the user is presented with an options menu. To perform a morphological

search, the user navigates to the Search page and is presented with the option to perform

either a “Standard Artifact Search” or a “Morphological Chart Search”. Once

“Morphological Chart Search” is selected, the user is presented with the morphological

search options shown in Figure 2.3.

Figure 2.3. The morphological search input.

24

A list of available products is presented on the left hand side of the morphological

search input. The user can select any combination of the products listed depending on

their desired search domain. With the search base selected, the user then selects the

number of subfunctions they wish to enter through the “Subfunction:” pull-down menu.

At this time, a maximum of 10 subfunctions can be entered for a single search. If more

than 10 subfunctions exist, the user must perform multiple searches. Once the number of

subfunctions is selected, the user must specify the number of columns they wish to

appear in the search return. A maximum of 20 columns can be displayed although 10

columns typically capture most, if not all, of the possible returns.

The user can now begin to specify the subfunctions they wish to search for by

using the pull-down menus. Subfunctions are entered as a tuple representing the input

flow, subfunction and output flow. The first subfunction entered in Figure 2.3 relates to

“import human material” but is specified in the format (human material, import, human

material). For most functions, the input and output flow are identical; however, the input

and output flow for some functions (e.g. convert) are different.

With all of the desired subfunction tuples entered, the user can utilize the “Use

Component Basis Naming” checkbox to choose how search results are returned.

Checking the box categorizes returned artifacts under the Component Basis. Leaving the

box unchecked will return results categorized by the name given to a specific artifact. For

example, artifacts may be named “motor,” “electric motor” and “dc motor,” but they are

all categorized by the Component Basis as “Electric Motor.” Choosing to categorize

search results by the Component Basis will group all instances of an electric motor as

25

“Electric Motor.” Without using the Component Basis categorization, the instances of

“motor,” “electric motor” and “dc motor” would be returned distinctly.

Upon submitting the search, a new browser window is opened containing the

search results. These results for the three example subfunction tuples entered in Figure

2.3 are shown below in Figure 2.4. The left-most column of the results page displays the

subfunction search criteria and subsequent columns (up to the amount specified) show the

groupings of artifacts solving the given function. The results are sorted within each row

by their rate of return. For example, a “Housing” of some sort is found to solve “Import

Human Material” in 34.55% of the total number of solutions to “Import Human

Material.”

Figure 2.4. The morphological search results.

26

For this particular search, results were returned for “import human material” and

“guide human material” while no artifacts were found for the “stabilize human material”

criteria. To view specific instances of a returned component grouping, the user can click

on the link below the component image. Figure 2.5 shows all of the 19 artifacts classified

as a “Housing” for the “import human material” search criteria. Listed along side each

artifact is the artifact’s parent product. For example, the “Left Case Handle” artifact

originated from the Black and Decker Dustbuster. If the user wishes to view more

information about a specific artifact, they can do so by clicking the artifact name. The

screen-shot seen previously in Section 2.4.2. as Figure 2.2 shows the Browse page that

appears when “Left Case Handle” is selected. The Browse page shows additional

information such as the additional subfunctions associated with the artifact, artifact color,

material, manufacturing process, and physical parameters.

Figure 2.5. Detailed component list for “housing”.

27

2.4.4. Downloadable Design Tools. The knowledge contained in the repository is

steadily expanding and benefits from a broad base of consumer products. As indicated in

Figure 2.6, design generation tools like the function-component matrices (FCMs) and

design structure matrices (DSMs) can be readily created from single or multiple products

using the web-browser interface. The downloadable matrices can be used in a variety of

ways to enhance the design process (Bohm, et al., 2004, 2005). FCMs contain

information about the functionality of the components comprising the subset of products

chosen for analysis.

Figure 2.6. From the web-based repository (center), a designer may extract information

about component functionality in the form of a function-component matrix (FCM, left)

and component compatibility in the form of a design structure matrix (DSM, right).

28

Each nonzero cell entry, xij in the FCM matches a component classification term j

with a subfunction i that it had solved in a product that had previously been dissected and

stored in the repository, where xij is the number of instances of the jth component

exhibiting the ith functionality. For example, in the column labeled ‘gear’, common

functionality includes the rows ‘change mechanical energy’ and ‘transfer mechanical

energy’. Similarly, each DSM generated from the repository contains component

compatibility information for the components comprising the subset of products selected.

In a DSM, positive compatibility between component j and component i is indicated

when a 1 occupies the cell at dij (e.g. an electric motor and a gear). DSM cell entries set at

0 indicate that the corresponding row and column components were not directly

connected in any of the products selected to generate the DSM. Each of these matrices is

a simple but potentially powerful representation of the design knowledge from existing

designs.

2.5. TOOLS TO SUPPORT THE DESIGN PROCESS

Many tools are available, both computational and manual, to assist a designer

during various stages of the design process outlined in Figure 1.1. This section will

provide an overview of design tool research that supports various stages of the design

process and illustrates where the research presented in this dissertation fits into the

process.

2.5.1. Idea Generation Techniques. Concept generation research has traditionally

focused on developing methods that improve the quality and variety of concepts

generated. These methods are often kept simple and efficient such that designers are not

29

burdened by the details or limitations of the method. The most common concept

generation method is known as brainstorming (Osborn, 1957). The term brainstorming is

frequently applied to any idea generation technique. Brainstorming as a specific method

requires a group of individuals to follow the basic rules of 1) avoiding criticism, 2)

welcoming “wild ideas”, 3) building on one another’s ideas, and 4) preferring more ideas

than dwelling on specific ones. A more structured concept generation method can be

found in the techniques known as C-Sketch (Shah, 1998) and 6-3-5 (Rohrbach, 1969).

The latter of these sketch-based methods requires six participants to independently create

three ideas at a time in a series of five rounds. The added constraints of the method

ensure that individuals participate equally, which may be more difficult to enforce in

traditional brainstorming.

In addition to these team-based methods of concept generation, some well-

accepted approaches that do not require a set of interacting designers also exist. Lateral

thinking techniques help stimulate creative solutions using mental exercises to help

encourage broad, sideways thought during the early stages of conceptual development (de

Bono, 1970). Designing by analogy is another established approach to arrive at novel

design solutions. This method begins by first generalizing the design problem to a set of

functional requirements (or a function structure representation). Then, the functional

framework allows a designer to look for or conceive of analogous products or

components that perform the same set of functions (McAdams and Wood, 2000; Linsey,

et al., 2005). Function-means trees and morphological analysis (Zwicky, 1969) are

similar methods in which solutions to individual functional requirements are first sought

30

and then synthesized together. Apart from these approaches, one widely used method is

the Theory of Inventive Problem Solving (also known by the Russian-based acronym

TRIZ, (Altshuller, 1984)). This method provides a tabulated representation of a large

number of solution principles that have been extracted from existing patents. Another

approach is “catalog design” where concepts are generated purely through browsing a

catalog of physical elements (components, assemblies, etc.). The results are evidently

limited by the breadth of the catalog; however, the benefit lies in the presentation of

design knowledge that falls outside the designer’s expertise memory (McAdams and

Wood, 2000). The computational concept generation methods presented in this

dissertation exploit the benefits of having a catalogue of design knowledge from which to

pull new designs while leveraging functional descriptions to quickly home in on solutions

that are the most relevant to the design problem at hand.

2.5.2. Automated Design Tools. Innovations cited by Antonsson and Cagan

(2001) indicate that certain parts of larger design problems can be solved automatically

and without human expertise. However, automation in the design process is often only

employed once basic design concepts have been selected but lack specific dimensions.

Complete automation of the design process seems to be restricted by a lack of continuity

between conceptual design methods and computational design tools. Several existing

design tools primarily focus on the initial design phases, such as customer need

gathering, the mapping of requirements to functionality, or function decomposition (e.g.

Prasad, 1998; Feng, et al., 2001; Kitamura, et al., 2004). Other tools address automation

issues during the later steps of design embodiment or detail design, such as predicting

31

performance in early physical embodiment designs, analyzing kinematic designs,

predicting required assembly sequences for an early embodiment design, and defining the

detailed geometry and layout for a conceptual solution (e.g. Onyebueke, et al., 1995;

Simpson, et al., 1995; Fox, 1994; Johnson, 1998; Zha, et al., 2001; Gorti and Sriram,

1996; Homem de Mello and Sanderson, 1991; Ishii, et al., 1988; Thornton and Johnson,

1996). However, relatively few computational tools exist to assist designers during the

conceptual phase of design, where requirements must be translated into a broad array of

potential solutions that must then be roughly evaluated for predicted performance and

cost.

Some tools or approaches do directly address the generation of design solutions

from existing design knowledge, but are narrow in their application domain (e.g. Yates

and Beaman, 1995; Hayes, 1995; Finkelstein, 1998) or exist only as limited research

prototypes. For example, graph grammars have tackled specific component synthesis

problems based on a desired behavior or performance (Schmidt and Cagan, 1995, 1997;

Campbell, et al., 1999, 2000, 2003; Kurtoglu and Campbell, 2005). Similarly, catalog

design efforts can synthesize very specific products from a candidate set of components

based purely on quantitative performance input/output requirements (Ward, 1989; Ward

and Seering, 1993). Several technologies have utilized bond graphs to aid the translation

from requirements to embodiment (e.g. Welch and Dixon, 1991; Gui and Mäntylä, 1994;

Bradley, et al., 1993; Oh, et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi,

1997), but this approach limits concept generation to dynamic systems for which bond

graph relationships can be defined. Group technologies evolved as coding schemes that

32

can be used to tag and recall components within a catalog or inventory of parts (Jordan, et

al., 2005; Opitz, 1970; Opitz, et al., 1970; Opitz and Wiendahl, 1971; Girdhar and Mital,

2001a, 2001b; Shah and Bhatnagar, 1989; Henderson and Musti, 1988; Bhadra and

Fischer, 1988). Some research outlines interesting methods for a designer to move from

functional requirements to conceptual solutions (e.g. Umeda, et al., 1996; Ulrich and

Seering, 1988; Mann, 2000; Malmqvist and Svensson, 1999; Chakrabarti and Bligh,

2001) but employ little or no automation to assist a designer through the described

activities. Others employ automation (e.g. Lu and Russomanno, 1999; Deng, 2002), but

have steep learning curves or utilize knowledge in a way that is not easily generalizable

to accommodate alternative approaches. In general, suitable computational tools that

support the fuzzy leading edge of the conceptual phase are still relatively young and

underdeveloped if they exist at all. Regardless of the specific concept generation

methodology, all approaches begin by formulating the overall product function and

breaking it into small easily solved subfunctions. Solutions to the subfunctions are

sought, and the form of the device then follows from the assembly of all subfunction

solutions.

From a perspective different than the functional modeling approach discussed

above, a number of research efforts have sought to establish a generic computational

scheme for electromechanical design. While these methods have yet to capture function

on the same level understood by human designers, such approaches have been used in

attempts to synthesize new electromechanical configurations. These methods use a

variety of computer techniques including case-based reasoning (Navinchandra, et al.,

33

1991), constraint programming (Subramanian and Wang, 1995), qualitative symbolic

algebra (Williams, 1990), or geometric algebras (Palmer and Shapiro, 1993). One of the

most historically significant of these includes several approaches applying expert system

formulations to specific design problems such as the paper roller system established by

Mittal, et al. (1985).

The concept generation phase of the design process is, at best, difficult to translate

into a succinct methodology that is useful to both experienced and inexperienced

designers. Formalization of the conceptual design phase is an active, but relatively

immature, area of research. Many formal methods of conceptual design have yet to be

realized as computational algorithms. The work described in this dissertation presents an

automated, mathematically based algorithm for concept generation and early concept

evaluation capable of being adapted to multiple design applications. The specific focus of

this research is the combination and formalization of function-based synthesis, constraint

management, and design space search to create a comprehensive space of concept

variants and search it for feasible design candidates.

2.6. SUMMARY

This section presented background information that supports the automated

concept generation design tool proposed in this research. Details about existing theories

of design and how the concept generator fits into a structured design methodology were

given. Standardized vocabularies for functions and components, known as the Functional

Basis and Component Basis respectively, and a web-based repository of product artifacts

were presented as tools used by the concept generator to generate new concepts from

34

existing design knowledge. Finally, an in-depth survey of literature on computational

tools developed to support the design process was given.

35

3. AUTOMATED CONCEPT GENERATION, PART I: THEORY AND

ALGORITHM

3.1. INTRODUCTION

This section introduces the proposed algorithm used to generate concept variants

from a set of user-prescribed design requirements. First, the theory behind the proposed

algorithm is presented in Section 3.2. Next, in Section 3.3, the procedure for transforming

a set of functional requirements in the form of a functional model into a set of compatible

components that comprise a complete concept variant is presented. In Section 3.4, a

simple example demonstrating how the algorithm can be utilized is presented using a

finite set of design components, namely a set of Tinkertoy™ construction toys.

3.2. THEORY

A theoretical challenge common to all attempts to automate the early conceptual

design phase is the issue of how to convey functional relationships, or the basic purpose

of a new design problem, to a computer so that it can search, retrieve and synthesize

relevant design information. The theoretical approach of this research begins with a

functional description of a desired product based on high level requirements from a

societal need (e.g., customer needs), searches for components that solve the identified

functionality, exhaustively explores all possible combinations of those components that

can be physically integrated, ranks the resulting feasible concept variants based on

designer specified criteria, and, finally, presents those ranked concept variants to the

designer. The underpinnings of this computational theory of concept generation include

the basic ideas that functionality of a product generally maps to a repeatable set of forms

36

or components (e.g. Pahl and Beitz, 1988), that component to component connections are

important identifiers for product architecture (e.g. Pimmler and Eppinger, 1994) and that

abstract as well as concrete knowledge about products can be stored in a design

repository (e.g. Szykman, et al., 2001).

More specifically, if an existing repository of design knowledge exists which

records, at a minimum, the functionality, connections, and generalized component name

for each artifact of a set of known products, then that knowledge can be mined to create

new products that are combinations of existing artifacts. The function-component

relationships can be represented mathematically, most simply as a matrix. The same is

true for connections between components. From these mathematical representations of

design knowledge, all possible concept variants can be computed—an activity that,

except for very simple products, is too tedious and time consuming for designers. The

computations essentially mimic the key steps in function-based conceptual design:

mapping function to physical solution through a mathematical form of a morphological

matrix and connecting physical solutions together into feasible concept variants

(including the ability to capture function- and component sharing).

The number of potential, feasible concept variants resulting from the computation

can be overwhelming. Consider a morphological matrix with n subfunctions where there

exist Mi, i = 1..n, component solutions for each subfunction. The upper bound on concept

variants is combinatorial and given by:

CV
max

= M
i

i=1

n

!

(3.1.)

37

Even after filtering out infeasible concept variants based on connections, a

designer may be left with thousands of concept variants. This necessitates a ranking

aspect to any automated concept generation approach. From a minimal set of product

knowledge such as described in the previous paragraph, the frequency of component

occurrence can be calculated and used as a simple measure of the confidence in the

generated concept variant. Additional knowledge in the repository can allow for more

sophisticated ranking of generated concept variants, for example component failure rate

and types, manufacturing process, or cost. The particular approach to computing a rank

will depend upon the criteria chosen.

It is important to note that the process of the automated concept generation theory

is key here. The general theory would work with any initial, abstract representation

scheme to describe a product. It does not have to follow this particular form of functional

modeling—in fact it does not even have to utilize function. One could potentially use

customer needs as the abstract representation, for example. As long as a repository of

design information, encoded by the chosen abstract representation scheme, exists, a

generalized version of the mapping and computations presented would apply.

Moving to the specifics of the automated concept generation algorithm, an outline

the matrix-based method of concept generation is next established. The concept

generation method starts with a high level functional description of a product, expressed

in the Functional Basis, and uses component functionality along with component

compatibility to create, filter, and rank concept variants (Hirtz, et al., 2002; Bryant, et al.,

2005). The function-component matrix (FCM) and the design structure matrix (DSM)

38

describe the function-component relationships and the component-component

compatibility, respectively, of existing consumer products (Pimmler and Eppinger, 1994)

and are extracted from the web-based design repository hosted at the University of

Missouri–Rolla. The product descriptions stored in the repository allow access to

additional information such as historical occurrence and failure mode, which can be used

to help limit and rank design solutions (a rudimentary ranking based on historical

occurrence is implemented for results reported in this section).

3.3. ALGORITHM

The algorithm that uses the design knowledge contained in the repository to

generate, filter, and rank concept variants for further analysis by design engineers is

described in detail in the following sections. Figure 3.2 graphically summarizes the

theory behind each step in the concept generation scheme, while Figure 3.3 relates each

theoretical step it to the matrix-based manipulations necessary to compute the set of

filtered concept variants.

3.3.1. Step 1: Generate a Conceptual Functional Model. The concept

generation scheme begins with the functional model for either a new product to be

developed or a previously developed product that is to be redesigned. Using the

functional model derivation method presented in Section 2.2, a graphical block diagram

that defines the flows through the product and the functions that act on those flows is

created. This block diagram is then translated into a matrix form that describes the

adjacency between functions, i.e., the connection between subfunctions as defined by

their connecting flows. Step 1 under “Theory” in Figure 3.2 shows a simple generic flow

39

chain of the form used to create functional models using the Functional Basis method,

where f1-f4 are unspecified subfunctions of a product to be designed. Figure 3.2 also

illustrates the matrix equivalent of this flow chain, an adjacency matrix where a non-zero

cell entry indicates a forward connection between the row and column functions.

Figure 3.1. Visual summary of the algorithm used in the concept generator. The

information shown in Steps 1, 2, and 4 is entered by the user. The unfiltered set of

concept variants (Step 3) and set of feasible variants filtered by the component capability

information from the DSM (Step 5) are produced using matrix algebra operations shown

in Figure 3.2.

40

41

F
ig

u
re

 3
.2

.
S

u
m

m
ar

y
 o

f
th

e
m

at
ri

x
 o

p
er

at
io

n
s

fo
r

th
e

co
n
ce

p
t

g
en

er
at

io
n
 a

lg
o
ri

th
m

.

3.3.2. Step 2: Define Function-Component Relationships. The next step

utilizes design knowledge gathered from existing consumer products to define the

relationships between a component and the functions that it solves in previously

examined products. Reverse engineering techniques are applied to existing consumer

products, and information extracted from each product’s bill of materials and functional

model is stored in the web-based design repository described in Section 2.4. The

function-component relationships in the repository capture both function- and component

sharing cases. In the case of function sharing, a single artifact in the repository can be

tagged with as many functions as it solves. For component sharing, where several distinct

components are required to solve an overall function, the components are grouped as an

assembly and treated as a single artifact. Function-component matrices (FCM) for

individual products or specified groups of products can easily be generated from the

stored information. Non-zero cell entries in the FCM indicate that the component from

the column containing the cell can solve the function from the row containing the cell.

Step 2 in Figure 3.2 shows how the FCM equivalent describes the function-component

relationships in the generic example shown under the “Theory” column.

3.3.3. Step 3: Compute the Set of Concept Variants that Solve the Function

Model. Step 3 utilizes the information from Step 1 and Step 2 to create a set of design

solutions. In Step 3 under “Theory” in Figure 3.2, a component “tree” is created showing

the chains of components that could potentially solve the flow chain presented in Step 1,

based on the component-function relationship information shown in Step 2. Although the

generic example illustrated in Figure 3.2 shows a single branching tree (i.e., only one

42

component solves the first function in the chain) for Step 3, it is important to note that

multiple branching trees may be formed at this stage when multiple components have the

potential to solve the initiating function in the chain. It is also important to note that the

algorithm supports the cases of function sharing (note the repeated components C1 in the

top half of the branch in Step 3 of Figure 3.2) and component sharing (here an assembly

of components that solves a single function or an overall higher level function can be

entered as an artifact in the repository).

Computationally, if the transpose of the row vector from the FCM that

corresponds to each of the functions from the flow chain in Step 1 is matrix multiplied by

the row vector from the FCM that corresponds to the forward connected function, a

component-component matrix will be generated for each function connection in the flow

chain. This matrix multiplication is illustrated as the matrix equivalent to Step 3 in Figure

3.2. Non-zero cells within these newly created component-component matrices represent

all theoretically possible component combinations that will solve each pairing of

connected functions in the flow chain.

If these component-component matrices are then placed into the adjacency matrix

generated in Step 1, component paths can be traced through the aggregated matrix similar

to the way a path is traced along the tree shown in Step 3 under “Theory” in Figure 3.2.

Tracing every possible “path” of connections will give a list of all theoretically possible

component chain variations that solve the function chain presented in Step 1 of Figure

3.2.

43

3.3.4. Step 4: Define Component-Component Compatibility Using Existing

Design Knowledge. The next step uses additional design knowledge gathered from

existing consumer products to define the compatibility between components in the

examined products. As each product is reverse engineered, information regarding the

connection between components is extracted from assembly models (Rajagopalan, et al.,

2005) and stored in the web-based design repository described in Section 2.4.

Component-component compatibility matrices for individual or specified groups of

products can easily be generated from the stored information. Non-zero cell entries in the

component-component matrix (frequently called a design-structure matrix or DSM)

indicate that the component from the column containing the cell has been directly

connected to the component from the row containing the cell in an existing product. Step

4 in Figure 3.2 shows the DSM equivalent describing the known component-component

compatibility in the generic example shown under the “Theory” column.

3.3.5. Step 5: Filter Set of Conceptual Variants. Step 5 uses the component

compatibility information contained in the DSM to prune the tree of design solutions

computed in Step 3. Shown under the “Theory” column for Step 5 in Figure 3.2, each

component connection in each component chain is checked for known compatibility

using the stored connection information from Step 4. An ‘X’ indicates each component

connection line that is not supported by the compatibility table shown in Step 4. In the

matrix equivalent, each cell of the DSM is multiplied with the corresponding cell in each

of the function pair component-component matrices generated in Step 3. Overlaying the

DSM on each matrix created in Step 3 (via cell multiplication) has the effect of removing

44

any of the possible component connections that do not appear in the repository database.

This technique uses the “experience” contained in the repository to filter out potentially

inadequate concept variants and reduce the set of possible concept variants down to a

more manageable size. After the matrices are filtered, we can once again trace every

“path” of possible components to generate a list of feasible component chains that solve

the function chain from Step 1.

Finally, this filtered list of feasible solutions can be ranked to bubble the most

promising solutions to the top of the list based on a designer’s specified needs. For

instance, various measures of design needs (e.g. manufacturability, recyclability, failure

etc.) entered as the non-zero FCM and/or DSM entries can be used to rank and sort the

resulting conceptual design solutions generated by this method. Once the set of filtered

concept variants has been computed and ranked, a designer is then free to sift through the

generated concept variants and evaluate the application of each to the design situation at

hand.

The presented algorithm illustrates a method to quickly produce and sort a set of

conceptual designs for a new or redesigned product. Functions comprising a proposed

product’s functional model are mapped to lists of components that are capable of solving

each function. The tree of possible component chains is then pruned by eliminating

infeasible component connections according to historical component-component

compatibility. This filtered set of component chains is then ranked and presented to the

design engineer for further analysis. The following section illustrates the application of

45

the presented algorithm by manually applying it to a simplified design example using

Tinkertoy™ parts as the set of components available in a simulated design repository.

3.4. ILLUSTRATIVE EXAMPLE

A tricycle built from a standard Tinkertoy™ set, shown in Figure 3.3, is next

presented as a simple proof-of-concept example. This simplified example demonstrates

the effectiveness of the described methodology while utilizing a manageable set of

artifacts for ease of illustration.

Figure 3.3. Tinkertoy™ tricycle used as the “product” to be redesigned in the following

example.

First, a functional model of the tricycle construction was generated as described in

Step 1 of the concept generation algorithm. For demonstration purposes, the subsequent

steps of the concept generation scheme were only applied to the energy flow chain,

46

shown in Figure 3.4a, from the complete functional model. The functional model of this

flow chain begins by importing human energy across the product boundary of the tricycle

toy. The model follows the energy flow as it gets converted to translational energy and

transmitted through the product, then gets converted into rotational energy, which is

further transmitted through the product and finally converted back into translational

energy (note that we have used the tertiary categorization of flows in order to distinguish

between the rotational and translation aspects of mechanical energy). Figure 3.4b shows

the function adjacency matrix generated from the energy function chain in Figure 3.4a.

Sequential numbers are used in the function connectivity matrix for easy reference to the

connections labeled in the energy function chain.

(a)

(b)

Figure 3.4. (a) Function chain for the energy flow through the Tinkertoy™ tricycle. (b)

Function adjacency matrix describing the function connections graphically shown in (a).

47

Next, in Step 2 of the concept generation scheme, a function-component matrix

(FCM) was constructed for the complete set of Tinkertoy™ components. The FCM for

the Tinkertoy™ set was generated by assigning functionality to each component of the

Tinkertoy™ component set, which is, in effect, a mini-repository of Tinkertoys™. Note

that the component naming terms were not used in this initial proof of concept study. The

complete FCM generated for the Tinkertoy™ set is shown in Figure 3.5. For instance, the

FCM indicates that the yellow bearing component is capable of embodying the following

functionality: Guiding a solid, distributing translational energy, transmitting translational

energy, converting human energy to translational energy, and converting translational

energy to rotational energy.

Figure 3.5. Function-component matrix manually generated for the set of Tinkertoy™

components.

Using the function connectivity information from Figure 3.4b and the component

functionality from Figure 3.5, the entire set of theoretical concept variants for the

redesign was calculated during Step 3 of the concept generation algorithm. As illustrated

48

in Figure 3.6, rows for each of the connected function pairs were multiplied together to

generate the unfiltered matrices of design solutions for each function pair. These

unfiltered matrices are then embedded into the function adjacency matrix to describe the

full set of theoretical solutions.

Figure 3.6. Matrix row multiplication is used to generate the set of theoretical design

solutions for each connected function pair. Resulting matrices are embedded in the

function adjacency matrix.

In Step 4, a similar method to that used to create the FCM was employed to

construct the design structure matrix (DSM) for the set of Tinkertoy™ components. The

DSM, shown in Figure 3.7, describes the component compatibility between each

component, where 1’s entered into each cell identifies components that can be connected

together, and 0’s indicate incompatibility.

49

Figure 3.7. Design structure matrix (DSM) generated for the set of Tinkertoy™

components.

Finally, in Step 5, each cell of the DSM was multiplied by the corresponding cell

for each of the connected function pairs in order to filter out design solutions that are

infeasible due to component incompatibility. The entire set of filtered design solutions is

shown in Figure 3.8. To clarify the pertinent information, cells that contained zero values

in the original function adjacency matrix are grayed out.

50

51

F
ig

u
re

 3
.8

.
F

u
n
ct

io
n
 a

d
ja

ce
n
cy

 m
at

ri
x
 w

it
h
 e

m
b
ed

d
ed

 c
o
m

p
o
n
en

t
co

n
n
ec

ti
o
n
 i

n
fo

rm
at

io
n

th
at

 d
es

cr
ib

es
 t

h
e

co
m

p
le

te
 s

et
 o

f
fe

as
ib

le
 d

es
ig

n
 s

o
lu

ti
o
n
s

fo
r

th
e

tr
ic

y
cl

e
re

d
es

ig
n
.

Figures 3.9a-d present four of the design variants encompassed in the matrix

presented in Figure 3.8. The design variants shown are unstable asymmetric versions of

the original tricycle concept since the energy function chain generated in Step 1 does not

encompass requirements that the design be stable. The design variant in Figure 3.9a was

constructed by selecting the component connections circled in Figure 3.8. Think of the

overall matrix shown in Figure 3.8 as an adjacency matrix of embedded DSM matrices.

The overall matrix has rows and columns of functions (that describe the product under

study). This overall adjacency matrix captures the connectivity of the functions in the

functional model.

Specifically, in Figure 3.8, enter the matrix through the row labeled ‘import h.e.’

and then read over to the cell containing the embedded matrix (the non-grey cell). Read

up the column from that cell and you see the column label of ‘convert h.e. to t.e.’, the

function that is connected to import h.e. Now, within the cell containing the embedded

DSM matrix, follow the row labeled ‘blue rod’ (the first component of concept variant 1)

across to find six cells with entries of ‘1’ in them. This means the blue rod does solve the

function ‘import h.e.’ and if selected can then connect to the components ‘red wheel’

through ‘orange cap,’ as indicated by the column headings above each of the cells with a

‘1’ in them. The circle in Figure 3.8 indicates that the ‘yellow hub’ is the next component

to which we will connect. Next, find the row of the overall matrix labeled ‘convert h.e. to

t.e.’ (the next function in the functional model chain of Figure 3.4a) and then read over to

the cell with the embedded matrix. Reading up this column identifies that the next

function in the chain will be ‘transmit t.e.’ Returning to the cell, we start at the row

52

corresponding to ‘yellow hub’ (the component chosen to connect to ‘blue rod’). The

‘yellow hub’ can connect to the components ‘purple connector’ through ‘purple rod,’ as

indicated by the ‘1’ entries and, in this instance, we explore connecting to the ‘green

rod.’ Now, we move on to the third function in the chain, ‘transmit t.e.’ Locate the

‘transmit t.e.’ row in the overall matrix and read over to the cell containing the embedded

matrix. Reading up identifies that ‘convert t.e. to r.e.’ is the next function in the chain.

Within the embedded matrix, we locate the ‘green rod’ row and see that there are two

possible connections – ‘blue hub’ or ‘yellow bearing.’ In this instance, the ‘blue hub’ is

selected. Continuing on shows how the remaining two components that solve the

functionality specified in Step 1 for this concept variant are identified.

Figure 3.9. (a)-(d) Concept variants selected from the matrix of feasible solutions

presented in Figure 3.8.

53

Using this technique, a set of feasible design solutions for the product to be

designed or redesigned can be identified. Ranking of the design solutions can be

accomplished by calculating a “score” for each concept variant using stored measures of

frequency of occurrence, manufacturability, assemblability, or other measures related to

the component connections selected. The ranking is not implemented for this contrived

Tinkertoy™ example. In Section 4, the presented algorithm is automated to eliminate the

need for manual matrix manipulations and quickly produce concept variants for

evaluation.

54

4. AUTOMATED CONCEPT GENERATION, PART II: SOFTWARE

4.1. INTRODUCTION

This section presents the software implementation of the proposed algorithm

presented in Section 3. The first implementation implements the computational theory

presented in Section 3 and presents the designer with a list of possible component

solutions that satisfies the functional requirements input by a the user. Next, Section 4.3

presents a case study that uses the list-based implementation. Finally, in Section 4.4, an

improved implementation, which extends the capabilities of the software presented in

Section 4.2, is presented.

4.2. AUTOMATION OF THE CONCEPT GENERATION ALGORITHM

Using the algorithm described in Section 3, a Java-based program was created to

automatically produce a ranked list of concept variants for an input functional model

chain. The user interface, shown in Figure 4.1, firsts prompts the user for the location of

the function-component matrix (FCM) and design structure matrix (DSM) data files

generated from the web-based design repository from which the new concepts will be

created. Within the repository, the FCM and DSM design tools permit the user to select

any subset of products from the repository from which to generate these matrices,

allowing the designer to select which group of products to build new concepts from.

55

(a)

(b)

Figure 4.1. User interface for (a) inputting the FCM, DSM, and functional model for

automatic concept generation, and (b) browsing through the list of returned concept

variant chains. Actual entries correspond to the case study presented in Section 4.3.

56

Next, the user enters the number of distinct flow chains contained in the

conceptual functional model. This initial version of the concept generation software

limits flow chain entries to a single non-branching flow, requiring the user to break a full

functional model up into individual chains prior to entry into the software. The user then

selects the number of subfunctions in each flow chain and proceeds to enter the input and

output flows and subfunctions for the individual chain. At this point, concepts can be

generated and ranked for each flow chain by selecting the “Go!” button.

The number of components displayed for each concept variant can be minimized

by selecting the “Combine repeated components” checkbox. Selecting this option

instructs the program to search for repeating series of components in the concept variant

chain and collapse them down to a single instance for display, exploiting the concept of

function sharing. The option to “Include incomplete solutions” in the ranked returned

concepts is also available. This allows the user to decide whether to display concept

variant chains that may be incomplete (i.e. not all subfunctions have an associated

component solution) since the design repository may not yet contain preexisting solutions

for the entered flow/subfunction combination. If selected, incomplete variants will show

a question mark in chains where a solution with known compatibility cannot be found.

After obtaining the user input, the program filters the FCM so it contains only

those functions relevant to the user-input functional model. From this filtered FCM, or

morphological matrix, the component-component matrices for each pairing of functions

are calculated and filtered using the information contained in the DSM. The components

in both the FCM and DSM are categorized according to the terms from the component

57

naming basis presented in Section 2.3.2. Finally, all combinations of the remaining

feasible component-component connections are determined, ranked, and output as

potential component configurations for the input functional model. In the initial

implementation of the algorithm, a rudimentary ranking of the concept variants by

historical occurrence of their constituent components is calculated (note that a high

ranking result indicates that the concept variant is composed of the most commonly

occurring components). The magnitude of the cell values from the FCM supplies the

occurrence data.

Once the concept variants are created and ranked, the results are displayed in a

separate window where the user can either save the results to a text file or browse through

the variants using the interface at the bottom of the panel. By using them as a point of

departure for other non-computational creative techniques like brainstorming, these

conceptual design variants can then be further developed and/or modified by the designer

to satisfy the design requirements. The next section presents a case study for the creation

of a box-labeling device to demonstrate the effectiveness of the software in a real-world

design situation.

4.3. CASE STUDY: BOX LABELING DEVICE

This section presents a case study that demonstrates how the automated concept

generation software can effectively assist a designer during the early phases of design. A

design team was charged with creating a box-labeling device to assist workers at a local

area workshop for persons with disabilities. Prior to the designer’s solution, the task of

labeling the contents of cardboard boxes filled with sample products from a local

58

business was restricted to those workers who possessed the agility and mental capacity

required to properly hand write the information on the box. The managers at the

workshop were looking for a solution that would allow any of the workers to perform this

task regardless of level of ability, while maintaining a level of quality acceptable to the

local business that contracted the work. After determining the applicable customer needs

for the device to be designed, the conceptual functional model, shown in Figure 4.2, for

the box-labeling device was generated.

Since the current form of the software is limited to handling single, non-branching

flow chains, the functional model shown in Figure 4.2 was divided into individual non-

branching chains, as illustrated in Figure 4.3. Note that subfunctions with multiple input/

output flows appear in multiple flow chains, and that these repeated subfunctions appear

vertically adjacent to each other in Figure 4.3. These five flow chains were used as the

input into the concept generation program as demonstrated using Flow Chain C shown in

Figure 4.1a above.

Figure 4.2. (Above) Conceptual functional model for the case study of a box-labeling

device.

59

Figure 4.3. The conceptual functional model was divided into single non-branching flow

chains, labeled Flow Chains A-E, and entered into the concept generation software.

The panel shown in Figure 4.1b demonstrates how the top ranked concepts are

displayed for flow chain C. All returned concept variants for flow chain C can be viewed

using the “Previous” and “Next” buttons located at the bottom of the panel. Additionally,

the concept variant chains can be saved to a text file using the “Output File” button

located at the top of the panel. Question marks located in the component placeholders for

the returned variants indicate that no solutions were found with known compatibility with

the adjacent component. Variants containing unknown solutions may be combined to

create a more complete solution. For instance, combining the top two solutions shown in

Figure 4.1b results in a concept variant with only one unspecified component solution. It

is important to note that at the time that this case study was performed, the design

repository contained knowledge data from a limited number of consumer products. As the

60

repository has grown to house design information on over 100 consumer products to date,

the number of incomplete solutions returned is greatly reduced. Gathered from the results

returned by the algorithm, these and other top ranked component chains for each flow

chain, A-E, are displayed in Figure 4.4. Vertically adjacent components designated by the

dotted outlines indicate solutions for the same subfunction, which was repeated when the

full functional model was dissected into individual chains. For clarity, Table 4.1 shows

the definitions for the subset of Component Basis names shown in Figure 4.4.

Table 4.1. Subset of Component Basis artifacts found in the listed concept variants

(Kurtoglu, et al., 2005).

61

Figure 4.4. Conceptual component chains generated from the concept generation

software. Components grouped together vertically by the dotted outlines indicate overlap

in the component chains. This redundancy is triggered when the complete functional

model is divided into individual flow chains, causing a single subfunction to appear in

multiple flow chains.

The individual component chains, shown in Figure 4.4, can then be reassembled

to produce a complete concept variant for the product to be redesigned (see Figure 4.5).

To help clarify the component-function relationships for the concept variant chosen, the

complete concept variant, shown in Figure 4.5, was superimposed onto the functional

model from Figure 4.2.

62

Figure 4.5. Aggregated concept variant generated from the component chains shown in

Figure 4.4. Components are associated with the subfunctions from the functional model

they solve.

After generating an array of concept variants from the software, sketching

techniques can next be employed as a final step to create visual representations of

selected conceptual design variants. Using the Component Basis definitions and pictures

of specific artifacts from the web-based repository as guides, multiple embodiments of

the conceptual design ideas were generated for the box-labeling device by sketching

various configurations of the returned component solutions, one of which is shown in

Figure 4.6.

63

Figure 4.6. Conceptual design generated for the box-labeling device, inspired by the

concept generation program output.

Figure 4.7. Embodied design for the box-labeling device (cover removed to show internal

components).

64

Many concepts were generated using several different methodologies over the

course of the box-labeling project. After each of the concept variants generated by the

various methods were evaluated and ranked, the sketch shown in Figure 4.6 was chosen

as the starting point for the final box-labeling device design. Although the eventual

embodiment of the box-labeling device, shown in Figure 4.7, was modified from the

initial conceptual sketch presented in Figure 4.6 during the later stages of design, the

concept variant shown in Figure 4.5 catalyzed the idea that led to a successful end design.

4.4. MEMIC: THE INTERACTIVE MORPHOLOGICAL SEARCH

Beneficial characteristics of the web-based morphological search described in

Section 2.4.4. and the automated concept generator described in Section 4.2. were

combined into a hybrid technique in an effort to enhance the usefulness of the automated

design tool to a designer. The hybrid technique, named MEMIC or Morphological

Evaluation Machine and Interactive Conceptualizer, retains the solution accessibility that

the web-based morphological search method provides a user by listing the solutions for

each function in a matrix form, while retaining the connectivity information that the list-

based automated concept generator establishes. Thus a user can more easily choose

between multiple solutions for a given function and interactively build a complete

feasible solution. The code for the MEMIC software can be found in Appendix A.

The interactive morphological search begins by accepting a text file describing a

full functional model in the form of a function-adjacency matrix. A function-adjacency

matrix, briefly demonstrated using a simple example shown in Figure 4.8, is a translation

of a block functional diagram into matrix form, where a non-zero cell entry indicates a

65

forward connection between the row and column functions. Converting a graphical

functional model into this asymmetric matrix form yields an easy and convenient tool for

identifying the connectivity between functions, including branching connections and

connections that converge into a single function, as well as starting and ending

subfunctions (zero columns and zero rows, respectively).

(a)

(b)

Figure 4.8. (a) A simple functional model and (b) the associated function-adjacency

matrix.

66

Next, as for the list-based concept generator, a user is prompted to load tab-

delimited data files of the function-component matrix (FCM) and design structure matrix

(DSM) generated from the web-based design repository. The user interface for uploading

the files is shown in Figure 4.9a. Once each of these three data files is loaded, the “Get

concepts” button may be pressed to generate design solutions.

When the user indicates that concepts should be generated, the data files are run

through an algorithm similar to the one described in Section 3. However, to build up full

solutions more efficiently and eliminate occasional solution “dead ends” that may not be

weeded out using the automated concept generator in Section 4.2., the algorithm is

expanded to check for and remove “dead end” solutions. The solutions are then returned

to the user in the form of a morphological matrix, where the components that may be

assembled into a full solution are listed alongside the name of each subfunction in the

input functional model. If no compatible solution was found for a given subfunction, a

“?” is placed as an indicator that no known solutions were found within the database that

was also compatible with the solutions connecting to it, indicating to a designer that a

novel partial solution may need to be implemented to create a complete design.

67

(a)

(b)

Figure 4.9. The interactive morphological search user interface for (a) inputting the FCM,

DSM, and functional model for automatic concept generation, and (b) interacting with the

return conceptual solutions.

Once components are returned, the interactive morphological matrix, shown in

Figure 4.9b, allows the user to select components that solve each function in an input

68

functional model. When a solution component is selected, incompatible solutions are

shaded over and the user is no longer allowed to select them. By implementing the

concept generator output in this fashion, users can build entire concepts that, based on

historical data contained within the repository, are comprised only of components that

can physically be connected together. By using the interactive morphological matrix, a

designer is allowed to tinker with various ideas and virtually assemble a complete

solution that can be physically produced.

To be effective, the component terms presented to a designer via the interactive

morphological matrix must be meaningful and rigorously defined. To this end, the

Component Basis described in Section 2.3.2. has been enhanced by establishing a

hierarchical method to classify components and establish new classification terms. This

research is present next in Section 5.

69

5. COMPONENT CLASSIFICATION FOR KNOWLEDGE RETRIEVAL

5.1. INTRODUCTION

To facilitate the interpretation of results presented via the interactive

morphological matrix described in Section 4.4, a methodology for the systematic

placement of components into a hierarchical ontology is presented. Cues taken from the

Linnaean classification system for living organisms are used to generate a hierarchical

ontology for organizing component terms and to create a robust procedure for adding new

component terms to an existing component naming scheme. The objective of this

research is to begin constructing a hierarchical ontology that is analogous to the Linnaean

classification system with specific rules that rigorously guide component placement

within the framework. The primary motivation for this research is to develop an ontology

of distinct abstract components terms that supports computational strategies for

automated design synthesis, general design knowledge storage and reuse, efficient

communication of design information, and standardization for digital component

cataloging and searching.

5.2. MOTIVATIONS

Components are the fundamental artifacts from which physical devices are built.

In the early stages of design, a designer must take a set of specifications and constraints

and translate these design requirements into a set of compatible components that work

together to solve a desired task. As an electromechanical design evolves from a loose

conceptual sketch to a fully realized product design, designers make decisions regarding

specific component geometry and performance. While formal component representations

70

exist during the detailed stages of product development, electromechanical components

lack similar representations that support the conceptual phase of design, leaving a

designer to rely on personal experience or potentially time consuming search methods to

identify an initial broad selection of distinct conceptual component configurations for a

design. In addition, less experienced designers may find it difficult to produce a broad

array of distinctly different potential solutions, and instead may generate several similar

alternatives that may contain one or more components that are merely variations on a

theme within the realm of his or her personal experience. In the early stages of design,

specific details of component geometry and performance are less important than the

ability to represent component knowledge at a higher level of abstraction (Kuziak, et al.,

1991). The functionality of components provides a natural framework upon which such

abstractions can be built. Previous work sought to develop and later refine a component

naming convention for abstract functionally relevant component classes for first

mechanical and later electromechanical components (Greer, et al., 2003; Kurtoglu, et al.,

2005). The research presented here seeks to create a hierarchical ontology into which

both new and existing component terms may be classified. It is hoped that this hierarchy,

inspired by the animal classification system begun by Carolus Linneaus, will help ensure

that the goal of complete and exclusive inclusion of all components into the ontology will

be maintained as new terms are added.

5.2.1. Implementation of a Computational Theory for Design Synthesis.

Many researchers have explored automated design tools to improve design synthesis

activities (see Section 2.5.). Components typically constitute the fundamental building

71

blocks of these activities. Within the variety of computer aided design research, various

methodologies and tools have been developed which require a rich library of

components, however, there is no agreed upon standard component library. As a result of

this, libraries of components are independently developed in an application specific

manner. Creation of a structured framework for the classification of new and existing

components will reconcile previous efforts into a single electromechanical component

library that can be leveraged by a number of design automation methods.

5.2.2. Design Knowledge Reuse. Over the past few decades, systematic

approaches to conceptual design have emerged (see Section 2.2.). These design methods

begin by formulating the product function as a set of low level subfunctions, solutions to

which are then synthesized together to arrive at a final design. The core of the

computational synthesis methods, presented in Sections 3 and 4, that are built upon this

function-based framework is the mapping of subfunctions to components. This allows

designers to generate concept variants from a generic functional description of the

product being designed. Each of these computational methods requires a knowledge base

of “reconfigurable” standardized component objects that can be archived, searched and

reused. A defined ontology facilitates the organization of such a knowledge base so that

various computational design tools can leverage existing design knowledge.

5.2.3. Communication of Design Knowledge. The use of natural language often

leads to ambiguity in representing component design knowledge. Arbitrary and redundant

component naming results in different interpretations among designers for similar

concepts, hindering effective communication of design knowledge. By associating

72

fundamental component concepts with uniquely defined component classes and by

providing a structure for defining each term, improvements in uniformity and consistency

in the representation of components and communication of design information for

industry and design education are possible.

5.2.4. Standardization for Digital Component Cataloging. Solutions to

conceptual design problems are usually represented as a configuration of components and

interactions between them (Kurtoglu and Campbell, 2005; Liang and Paredis, 2004). The

transformation from these configurations to fully embodied design solutions requires the

specification of a system of electromechanical components that meet the overall design

requirements. Given the breadth of suppliers and production methods that exist today,

most engineered artifacts are a mix of both custom-made parts and OEM (original

equipment manufacturer) parts. As a result, the OEM suppliers compete by striving to

improve their components quality and variety. It is particularly important for them to

catalogue their solutions such that they can be efficiently retrieved and incorporated into

the design process. Technologies involving electronic representations of standard

components and resulting digital databases are becoming more prominent in engineering

design (Wallace, 1995; Culley and Webber, 1992; Hicks, et al., 2005). Contributing to

these efforts, it is hoped that this ontology provides a useful classification scheme for

vendors selling a variety of OEM components.

Motivated by these factors, a starting point for the creation of a component

ontology that is accessible to all design engineers is provided here. In the following

subsections, other approaches to cataloging components, the use of ontologies in

73

engineering design and computational synthesis, and a discussion of the biological

parallels between classifying animals and classifying components will be discussed. The

background discussions are followed by a description of the method used to create the

proposed hierarchical framework and to classify existing and new component naming

terms within it.

5.3. BACKGROUND INFORMATION

The motivation for developing a component ontology for systems design is

analogous to that of the museum curator who archives artifacts from the universe around

us as a repository of knowledge about those artifacts. Research in the field of artificial

intelligence (AI) known as knowledge capture and representation is closely related to the

work reported here. In general, an ontology is a philosophical theory about the nature of

existence, but AI researchers have adapted the term to describe “a shared and common

understanding of some domain that can be communicated between people and application

systems” (Gruber, 1994). Neches, et al., (1991) claim: “An ontology defines the basic

terms and relations comprising the vocabulary of a topic area.”

5.3.1. Artifact Classification. In this paper the view of an ontology is taken as a

construct for the classification of knowledge:

“An ontology may take a variety of forms, but necessarily it will include a

vocabulary of terms, and some specification of their meaning. This includes

definitions and an indication of how concepts are inter-related which collectively

impose a structure on the domain and constrain the possible interpretations of

terms.”(Uschold, 1998)

A rich source for information about artifact classification is found in the

ontologies used by museums. Because museums are in the business of collecting,

74

cataloging, and classifying the artifacts of human endeavor, their curators have spent

considerable energy in devising systematic means of cataloging their collections. One of

the tools employed in this classification is a lexicon. The most commonly used lexicon is

the one developed by Chenhall (1978), who stated:

“The lexicon…is based on the assumption that every man-made object was

originally created to fulfill some function or purpose and, further, that original

function is the only common denominator that is present in all of the artifacts of

man, however simple or complex.”

In Chenhall’s view, the known (or assumed) function of an object represents the

highest level of organizing principle upon which human-made artifacts can be classified

and named. A logical system for naming objects consists of a ontology, or hierarchical

ordering, based on three levels of relationships: 1) A controlled list of major categories, 2)

A controlled vocabulary of classification terms, and 3) An open vocabulary of object

names. Each of these levels is based on the function of the object:

• Major categories are a very limited set of easily remembered functional classes.

• Classification terms are carefully defined subdivisions of the major categories.

• Object names are the words used to identify individual artifacts.

The AI community takes a similar approach to component classification by using

the function and form of a component as fundamental elements in its classification. The

inclusion of function is a consistent theme in both the practical approach of Chenhall and

the virtual approach of the AI community. The presence of component function in

component naming is an important linkage between the theory of knowledge capture and

representation and the theory of design. An understanding of function is integral to the

75

design process (Pahl and Beitz, 1996; Otto and Wood, 2001); hence, a natural

relationship between components and function must exist.

Another approach to classification comes from the Linnaean system of classifying

species used in biology (Linnaei, 1937). Carolus Linnaeus began the classification of

living species during the early 1700s. Originally organizing plants by their reproductive

structures, Linnaeus laid the foundations for the modern organism classification, which

later led to striking observations and evolutionary theories about the similarities between

functional forms found between species in the natural world. In the Linnaean system, the

two classes are the genus class and the species name; these are equivalent to the

classification and object name within the Chenhall system. In Chenhall’s lexicon, the

classifications are defined very clearly, while the object names are left open ended. This

approach allows those interested in the lexicon to add to the collected knowledge

contained therein. When used properly, a classification and an object name from

Chenhall’s lexicon results in a name that is unique in all of humankind’s creations.

One difficulty in developing an ontology for components is classification

consistency. For example, does a long slender two-force member describe a link, a beam,

or a shaft? Stahovich, et al., (1993) claim that the fundamental ontology for mechanical

devices should be based on object behavior not structure. Paredis, et al., (2001) suggest

that a complete description of a component requires the addition of form to the

classification, where form specifies a particular instantiation of a component, e.g., a part

number for a motor. Both approaches imply that behavior is a key element in classifying

mechanical components. Does this clear up the issue of the long slender two force

76

member? The behavior of this component is describable using the mathematical

representation of the states of a device (Pahl and Beitz, 1996). Modeling using the state

representation of the component leads to an input/output relationship. Input/output

relationships at a more abstract level are, by definition, the function of a component,

device, or system. “A function of a product is a statement of a clear, reproducible

relationship between the available input and the desired output of a product, independent

of any particular form (Otto and Wood, 2001).” In the case of the long slender two force

member, the input/output relationship is to transmit force, where transmit force is a

function taken from the Functional Basis of Hirtz, et al., (2002). Hence, it is proposed

that the function of a component is the fundamental ontology for components.

5.3.2. Observations. In this work, common ground is found between the goal of a

basis set of component names in systems design and Chenhall’s lexicon for classifying

human-made artifacts. Because most components used in systems design are indeed

human-made artifacts, they should be describable in the lexicon of Chenhall.

Unfortunately, the lexicon does not include all possible artifact names, in fact “Artifacts

originally created to be a physical part of some other object have, in most cases, been

excluded from the lexicon” (1978). In terms of design, “artifacts originally created to be a

physical part of some other object…” describe components.

Similarly, electro-mechanical devices share characteristics with living organisms

that make the creation of a classification system analogous to the Linnaean classification,

like having distinct observable form and function traits, varied levels of complexity, and a

potential for partial overlap with traits from distinctly different components.

77

Since components cannot be adequately described in either Chenhall’s lexicon or

the Linnean classification, this function-based component ontology for systems design is

proposed in order to establish a vocabulary of terms and a set of specifications for their

inter-relationship. Therefore, similar to the way the Linnaean classification system has

spawned an international code to ensure uniqueness and distinctness in naming biological

terms, it is anticipated that the naming of new component terms under a component

ontology should employ similar procedural guidelines.

5.4. THE CLASSIFICATION HIERARCHY

Although not completely analogous, systems and their components share many

traits with animals that make classification challenging. Originally, animal classifications

were primarily based on visual observations of morphological similarity. More recently,

biologists have used molecular and biochemical data in addition to morphological data to

identify evolutionary links and classify animals under what is thought to be a more

accurate binary tree structure known as cladistics (Hennig, 1979). Components are not

evolutionary in the same sense that animals evolve from what is commonly thought to be

a series of branching points, and the goal of classification in this research is focused more

on the practical use of the proposed hierarchical ontology. For this reason, we have

chosen to initially begin with a function-based framework for the component

classification hierarchy. The hierarchical framework was initially established from the

notion that device function is an integral and critical characteristic of a component from

the perspective of concept selection during the design process (Pahl and Beitz, 1996; Otto

and Wood, 2001). As a starting point, the list of primary and secondary level function

78

terms from the Functional Basis (Hirtz, 2002), discussed in Section 2.2., were used to

designate the primary and secondary levels of the component framework.

5.4.1. Establishing the Hierarchy. In order to begin placing existing terms

(Kurtoglu, et al., 2005) into the framework, the functional traits of each device term

needed to be established, where a device (component) is defined as having “input and

output ports through which it is connected to another device (component)” (Kitamura and

Mizoguchi, 2003). The functional traits of each component term were determined by

analyzing the individual components housed within the repository of product information

and categorized under that component term. The black box functionality for each

component term was defined by identifying the most commonly occurring subfunction

(function-flow combination) assigned to each of the components classified under that

term in the repository.

5.4.2. Placing Existing Component Terms into the Hierarchy. Function

templates for each component term (see Figure 5.1) were generated to show the functions

assigned to components within a given classification. In nearly every case, a component

term would have a single function that was common among all components classified

under that term. Exceptions included components that had errors resulting from entering

the data into the repository (e.g. no conceptual functions were assigned to an electric

motor) and components that are classified as Provisioners where the functions Store and

Supply were nearly always both included as conceptual functions. The functional

information was then used to locate the appropriate placement for the component term

within the hierarchical framework.

79

Figure 5.1. (Above) Function templates were used to help establish the functional

characteristics of each component term. The templates were constructed using function

and flow information entered into the web-based repository described in Section 2.

Figure 5.2. Port templates used to help establish the functional characteristics of each

component term and to help create distinct definitions for each. Ports are indicated by

lines into and out of the component box. Circles represent material flow ports, squares

represent energy flow ports, and dashed lines with a vertical terminus represent signal

flows. Components classes with members exhibiting variable numbers of repeating object

ports are indicated by an output flow with ellipses (...), as shown for the electric wire.

80

In addition to function templates, templates that describe the major flows through

a component were also established for each component term (Figure 5.2). The set of

function and port templates for each of the components classified at this time can be

found in Appendix B. In creating the port templates, the following port definitions were

utilized:

Object port: A device port through which a flow (material, energy, or signal)

enters and then travels through the device from the input port to the output port

and is processed by the device (Hirtz, 2002; Kitamura and Mizoguchi, 2003).

Medium port: A device port through which a flow (material, energy, or signal)

enters and then travels through the device from the input port to the output port

while holding an object and enabling it to flow through the device (e.g. water can

act as a medium carrying hydraulic energy as an object through a device) (Hirtz,

2002; Kitamura and Mizoguchi, 2003).

Assembly port: A device port that acts only as a mating surface to support the

weight or stabilize the position of the device.

Flow information contained in the repository was used to identify all ports of a

particular component. This information was then generalized to create a standard

template for the component term group. For this research, port templates only include the

object and medium flows that are directly relevant to the function the component

performs (e.g. the material separated by a blade and the mechanical energy used during

the separation); waste flows, undesired flows, and reaction flows were not included (e.g.

any thermal or acoustic energy that may result from a blade interacting with a material it

is separating). Additionally, since they are not used at this point to help classify a

component term, assembly connections were generalized into a single assembly port in

each component template. Component term definitions within the hierarchical ontology

81

were standardized using flow information from the port templates in addition to common

morphological characteristics of the components within a single group. The previously

developed list of component terms was refined to adhere to the newly developed rigorous

classification structure (see Table 5.1 for an excerpt of the full list found in Appendix C).

Table 5.1. An excerpt of component terms and definitions organized using the proposed

hierarchical ontology (the full component list may be found in Appendix C).

The individual component terms and associated definitions represent the different

“species” of components. Definition of these terms is critical to the usefulness of the

ontology proposed. In animal classifications, disagreements exist over how narrowly to

define different species, i.e. whether to identify species based primarily on minor

differences (splitters (Merriam-Webster, 2005)) or major differences (lumpers (Merriam-

Webster, 2005)). Similar questions become valid when defining new or existing

component terms. For example, should an axle and a drive shaft be classified under the

82

same component term? Should a flexible hose be classified under a different component

term than a rigid tube? In the case of the axle and drive shaft, these two components solve

different functionality and would, therefore, be placed under different branches of the

proposed ontology. The flexible hose and rigid tube are functionally similar, so a decision

must be made about whether to group them together under a broad definition or separate

them into more specific groups. When defining terms, effort was made to determine

whether a new (separate) definition would be beneficial from the perspective of a

designer in the early conceptual stages of design, e.g. deciding whether to use a flexible

vs. a rigid tube to transfer a material would be less useful when initially generating

concepts than deciding whether to use a tube vs. a conveyor. To help evaluate whether

terms were defined at a low enough level of detail, additional consideration was made as

to whether generalities of performance could be made across a component term to help

evaluate ideas early in the conceptual phase of the design process.

In general, the initially selected function-based framework worked well to help

classify the existing component terms, with two notable exceptions. First, as briefly

mentioned before, in nearly all cases of a component solving the function of store, the

function of supply was also included. For this reason, the secondary level of the

component hierarchy was refined to eliminate the separate designations of a Storer and a

Supplier and instead include the secondary designation of a Material or Energy Supplier.

Secondly, under the primary level term Convert in the Functional Basis exists a single

secondary level term Convert. To eliminate redundancy in the proposed hierarchical

ontology, the secondary level term Converters was replaced with designations of a

83

Material, Energy, or Signal Converter. The complete component hierarchy can be found

in Figure 5.3.

Figure 5.3. The proposed function-based hierarchical ontology structure. Only the

component terms for the class of Separators are shown.

5.5. CLASSIFYING COMPONENTS USING THE ONTOLOGY

A rigorous procedure was established in order to determine under which

component term a previously unclassified component should be grouped within the

established hierarchical framework. The procedure developed is as follows:

1. Define the system boundary of the device.

2. Identify all input and output ports of the device across the system boundary

defined in Step 1.

3. Classify each port as an

a. Object port: A device port through which a flow (material, energy, or

signal) enters and then travels through the device from the input port to the

84

output port and is processed by the device (Hirtz, 2002; Kitamura and

Mizoguchi, 2003).

b. Medium port: A device port through which a flow (material, energy, or

signal) enters and then travels through the device from the input port to the

output port while holding an object and enabling it to flow through the

device (e.g. water can act as a medium carrying hydraulic energy as an

object through a device) (Hirtz, 2002; Kitamura and Mizoguchi, 2003).

c. Assembly port: A device port that acts only as a mating surface to support

the weight or stabilize the position of the device.

4. Identify the black box functionality of the device and the object flow(s) that it acts

on. When defining the black box functionality, the functional purpose of the

device should be identified versus the functional embodiment of the device (i.e.

the function selected should answer the question “what does this device do?”

instead of the question “how does this device work?”) For instance, the functional

purpose of a friction brake is to “stop rotational energy” and it does this by

“converting rotational energy to thermal energy”. In this case, the black box

functionality of the brake would be to “stop rotational energy.”

5. Locate device placement in classification hierarchy.

a. Label device using appropriate term.

b. If no existing term is suitable, create a new term under the relevant

hierarchical category. Generate a definition precisely defining the form of

85

the device in a manner that clearly distinguishes the new device from the

other components located under the same functional class.

5.6 ANALYTICALLY DERIVED DESIGN STRUCTURE MATRIX (DSM)

In the concept generation algorithm presented in Section 3, the first pass “filter”

for pruning the space of possible solutions utilizes component–component compatibility

information in the form of Design Structure Matrix (DSM). Although there are many

considerations to take into account when determining full compatibility between

components (e.g. spatial characteristics, energy domain constraints, etc.), a DSM contains

general “go” or “no go” component compatibility information from products that have

previously been designed and, in most cases, commercially manufactured. Therefore,

although specific compatibility parameters are not enumerated, general compatibility

between components can be utilized to implicitly weed out solutions that contain

component connections that have not been embodied before—whether due to

incompatibility issues or other design rationale.

To extend the information generated purely from repository data, a DSM was

analytically constructed using the component templates described in Section 5.4.2. For

each of the component templates shown in Appendix B, in and out energy, material, and

signal ports were analyzed. Compatibility with another component was identified as

possible if any of the ports could be “connected”, i.e. if the flow types were the same. For

instance, Figure 5.4 shows the component port template for an airfoil.

86

Figure 5.4. Component port template for an airfoil.

At this time, no component is contained in the repository that can be classified as an

airfoil. However, using the port information contained in the template, an airfoil accepts

pneumatic energy as an input and outputs mechanical energy. Looking through the

templates of the other currently classified terms, port flow comparisons can be made with

each of them. Thus, if a component outputs pneumatic energy, it is deemed possible for

that component to be compatible with an airfoil, and a “1” is entered into the

corresponding DSM cell. Similarly, if a component accepts mechanical energy as an

input, it would also be deemed as a potential compatible component and have a “1”

placed into the corresponding DSM cell. Zeros, “0”s, are placed in the DSM if a

component has no potentially compatible ports with the airfoil. Sorting through the list of

components using this procedure identifies 41 different components with the potential to

comprise a complete solution in conjunction with an airfoil. Varying on the functionality

each design fulfills, several potential airfoil-compatible examples are shown in Figure

5.5.

87

(a)

Airfoil

assembly

port(s)

pneumatic energy

(with material)

mechanical energy

(with device)

Fan

assembly

port(s)

mechanical energy

(with device)

pneumatic energy

(with material)

Spring

assembly

port(s)

mechanical energy

(with device)

mechanical energy

(with device)

(b)

Airfoil

assembly

port(s)

pneumatic energy

(with material)

mechanical energy

(with device)

Pneumatic Pump

assembly

port(s)

mechanical energy

(with device)

pneumatic energy

(with material)

Displacement Gauge

assembly

port(s)

mechanical energy

(with device)

mechanical energy

(with device)

signal

(with energy)

(c)

Airfoil

assembly

port(s)

pneumatic energy

(with material)

mechanical energy

(with device)Pressure Gauge

assembly

port(s)

pneumatic energy

(with material)

pneumatic energy

(with material)

signal

(with energy)

Flywheel

assembly

port(s)

mechanical energy

(with device)

mechanical energy

(with device)

Figure 5.5. Potential compatible components for an airfoil.

The analytical DSM, presented in Appendix D, identifies the set of compatible

components for the current set of component terms. This compatibility has been

determined solely using port information and without consideration for design rationale

with the notion of enhancing the potential for innovative solutions to be derived. By

extending the compatibility information beyond only those connections that have

occurred before, the hope is that a new combination of components could be considered

for a design and design rationale could then be reintroduced to investigate the feasibility

88

of the new idea. In this way, truly original designs would be less likely to be banished by

existing design biases regarding component compatibility.

89

6. EXPERIMENTS AND CASE STUDIES

6.1. INTRODUCTION

The research described in this section presents several verification experiments

and case studies executed to test the ability and effectiveness of the proposed

computational technology to automatically generate relevant conceptual solutions. First,

several experiments are reported which test the validity of results returned when utilized

by students in a structured design process for several design scenarios. Then, several case

studies are shown illustrating the effectiveness of the concept generator in multiple

design situations.

6.2 EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART I

To qualitatively evaluate the practicality of using the concept generator to produce

conceptual design variants early in the design process, four undergraduate researchers

from the University of Texas at Austin and the University of Missouri-Rolla were

directed to complete several different activities. In the first activity, the students were

instructed to qualitatively compare manually generated concepts against automatically

generated design solutions produced using the list-based concept generator, described in

Section 4.2, for three original design scenarios. The data collected by the students during

this methodological comparison were later studied quantitatively, and the results can be

found in Section 6.2.2. Further activities investigated the robustness of solutions returned

by the concept generator against variations in the functional modeling chains used to seed

the generation of concepts, including permutations and omissions of subfunctions. The

following sections describe, in detail, both the qualitative and quantitative comparisons of

90

the student-derived design solutions to the solutions automatically generated by the

concept generator as well as the robustness studies that the undergraduate researchers

engaged in during their activities.

6.2.1. Experimental Setup. The following subsections describe the

experimental procedure the students followed during the course of this experimental

study.

6.2.1.1. Methodological Comparison. To evaluate the validity of the design

solutions returned by the concept generator, the undergraduate researchers first

investigated how the automatically produced concept variants compared to concepts that

they had generated manually using a morphological matrix approach. In order to do this,

the students looked at three different design scenarios that investigated concepts produced

for an original design. The students were instructed to complete the manual concept

generation activities for each design scenario prior to exploring any results generated by

the concept generator software to avoid any unintentional biasing of results.

 The flowchart in Figure 6.1 shows an overview of the structure of activities.

Figure 6.1. Flowchart of the activity structure for the concept generation methodological

comparison.

91

For the methodological comparison, students generated design solutions for each

of the original design problems described below.

• Hot or cold thermal mug: This original design entailed creating a thermal mug

to be used either to keep a hot beverage hot or a cold beverage cold. The idea

was to create a thermal mug that is superior to ones currently on the market that

rely solely on insulating techniques to achieve thermal isolation. In other words,

concepts needed to be generated that not only attempted to inhibit the transfer of

heat, but also had the ability to add or remove heat to the beverage.

• Human powered power supply: For this original design, the students were

instructed to design a human-powered power supply that could reasonably

supply enough electricity consistently to power an audio-visual device or that

could be used to recharge batteries.

• Wall climbing toy: In this original design scenario, a company has begun

marketing a wall coating that contains ferrous micro-metal chips. This coating is

“attractive” to magnetic devices and walls coated with this product “look”

metallic. One potential marketing ploy for the company to increase sales of its

coating product is to sell a toy that would operate on the vertical space of the

walls (or even the ceiling). Thus, the undergraduate researchers were instructed

to generate concepts for toy products that utilize walls covered with the coating

as their play space. Since there are numerous types of potential toys for this new

application, this call for products is fairly open ended. Broad requirements for

the students to exhibit in their design included the ability to direct the toy

92

accurately to specific points on the wall, remain stationary while on the wall, be

marketable to a broad customer segment, be lightweight, have a long-lasting

power source, and be inexpensive and easy to set up.

Using the design steps shown in Figure 6.2, the undergraduate researchers

produced functional models from the customer needs they established (from customer

interviews) for each product.

Figure 6.2. The students used the steps illustrated above to generate functional models for

each product design scenario from the customer needs they established through customer

interviews.

93

For the original design scenarios, the undergraduate researchers began by

producing functional models for each product from customer needs (established from

customer interviews) using the design steps shown in Figure 6.2. Once a functional

model was generated, the students generated partial solutions for each product using a

morphological matrix. Finally, the students assembled several complete solutions for each

design from the corresponding morphological matrix, and produced design variant

sketches as well as lists of components comprising each of their designs. To avoid

pollinating the manually generated morphological matrices with ideas from the design

repository, the undergraduate researchers completed all concept generation tasks for the

original and redesign scenarios before moving on to generate designs solutions using the

concept generator software. The final step of the methodological comparison was to

generate conceptual variants for each design using the concept generator software. Since

the software user input was limited at this time, functional models had to first be

separated into sequential (non-parallel) chains, with instructions given to the

undergraduate researchers to experiment with how they chose to dissect the functional

models for entry into the program. The students were instructed to compare the results

generated by the software with those they had generated manually and make notes of any

thoughts they had on the results produced for the chains they had entered. All design

solution chains generated via the software were saved to text files that included the input

function chain that was used to generate that set of concept variants.

As an extension to the methodological comparison study performed by the

undergraduate researchers, the original design solutions generated by the students were

94

later compared quantitatively to those generated by the concept generator from the design

repository knowledge. Since the complete set of student design solutions was contained

in a morphological matrix while the complete set of solutions produced by the concept

generator consisted of lists of compatible solutions, making direct comparisons of the

solutions was difficult to achieve. In order to make more quantitative comparisons, the

design solutions generated by the students were translated into lists of compatible

solution chains that could more easily be compared to those generated by the concept

generator from the repository data, see Figure 6.3. Additionally, the results returned by

the concept generator were separated out into morphological matrices that could more

directly be compared to the morphological matrices manually generated by the students,

also shown in Figure 6.3.

95

Figure 6.3. The lists of component chains returned by the concept generator were

transformed into morphological matrices that could more easily be compared to the

morphological matrices produced by the undergraduate researchers. Similarly, the

morphological charts produced by the students were transformed into lists of feasible

component chains.

The lists of student generated compatible solution chains were created by first

manually translating each morphological matrix generated by the students into a

function-component matrix (FCM) for each product. Next, a design structure matrix

(DSM) was generated by inspection for each product. In other words, the DSM cell

entries defining solution compatibility were manually entered for each design solution

combination, e.g. a “battery” can be connected to a “wire” so a “1” would be placed in

the corresponding DSM cell to indicate compatibility. Conversely, a “bubble” is unlikely

96

to be connected to a “levee” so a “0” would be placed in the corresponding DSM cell to

indicate incompatibility. The manually constructed FCM and DSM for each product were

then used in the concept generator to seed the solutions produced for an entered function

chain. This, in effect, produced a list of design solution chains with incompatible

solutions filtered out. The concept generator derived morphological matrices were

produced by dissociating each component solution from the chain of compatible

components and recording the unique solutions produced for each function entered.

Finally, the student-derived morphological matrices were classified using the

component naming basis where applicable, in order to help facilitate comparisons with

the concept generator design solutions. This translation also helped identify and combine

similar design solutions generated by the students, e.g. under the component naming

scheme a “soda container” a “coffee pot” and a “water tank” would be classified as

different instantiations of a “reservoir”. Grouping the student solutions under the

component naming basis had the effect of grouping similar solutions and identifying

ideas generated by the students that either need a classification under the Component

Basis (e.g. electric generator) or were outside the black box boundary of the design

scenario (e.g. fountain machine). After the terms were translated into the Component

Basis, new morphological matrices, FCMs, DSMs, and sets of compatible solution chains

were generated for comparison.

6.2.1.2. Returned Results Robustness Investigation. The undergraduate

researchers next investigated the effect of how various permutations in the user-input

function chain impacted the conceptual component chains returned by the concept

97

generator software. Figure 6.4 gives an illustration of how a sample chain of functions

might be permuted for investigation in this activity. To complete this task, the students

extracted function chains from functional models they had generated for products

dissected during an earlier activity. The undergraduate researchers next determined

permutations in function adjacency that would still satisfy the functional requirements of

the product and entered each permutation into the concept generator software. Again, the

students were instructed to make notes of any thoughts they had on the results produced

for the chains they had entered. All design solution chains generated via the software

were saved to text files that included the input function chain that was used to generate

that set of concept variants.

Figure 6.4. This activity investigated the effect of chain permutation on the conceptual

results returns by the concept generator software.

6.2.1.3. Functional Model Variation Effects. The final activity focused on

investigating the effect that variations in functional modeling generation might have on

the results returned by the concept generator software. This activity, along with the

98

robustness investigation described in Section 6.2.1.2., seeks to explore how

dissimilarities in functional models produced by different designers might impact the

solutions produced by the concept generator software. In particular, in this activity, the

students looked at how the insertion or deletion of “minor” or “assumed” functionality

impacted the results generated. For instance, one person may produce the conceptual

functional model shown in Figure 6.5a, whereas another person may include more

specific functionality that deals with the “transition” from one critical function to the

next, such as the specific transfer of energy, as shown in Figure 6.5b.

Figure 6.5. (a) A person may omit implied functions a product needs to exhibit while

deriving a functional model. (b) A different person may be more explicit and include

functional “transitions” in a functional model. This activity investigates the software

results returned by function chains with slight variations in functionality.

The undergraduate researchers were instructed to think about which functions

might be considered to have “assumed” or “minor” functionality by a designer. Next, the

students extracted function chains from the functional models generated for previously

dissected products and for the original design activities presented in Section 6.2.1.1. that

either already had or could include these “minor” functions. Finally, the undergraduate

99

researchers compared the concepts produced by the software for chains with and without

the “minor” functions included. As in the previously described activities, the students

were instructed to make notes of any thoughts they had on the results produced for the

chains they had entered, and all design solution chains generated via the software were

saved to text files that included the input function chain used to generate that set of

concept variants.

The next section presents a summary of the results produced by the

undergraduates during the methodological comparison, with example results from the

hot/cold thermal mug design included.

6.2.2. Results from the Experimental Study. The following sections present the

results from the study of the methodological comparison as well as the results from the

robustness and variation study activities described. Results from the undergraduate

researchers’ evaluation activities indicated that manually generated concepts were

completely encapsulated in the concept variant results returned by the software for the

investigated design scenarios. In addition, with a few notable exceptions, the concept

generator consistently averaged a larger quantity of feasible solutions for each

subfunction than those produced manually by the students. Furthermore, results from the

software-generated conceptual designs for function chains varied by permutation or

omission indicated that similar concepts were returned for seed function chains with

minor variations.

100

6.2.2.1. Methodological Comparison Results. For the methodological

comparison, the undergraduate researchers manually developed original design solutions

for the thermal mug, human-powered power supply, and wall-climbing toy design

scenarios. They began by conducting interviews to collect customer need data for each

original scenario. Next, the students used the customer needs to establish a functional

model for each product using the method previously summarized in Figure 6.2. Using the

subfunctions from the functional models, the undergraduate researchers manually

constructed morphological charts to generate multiple partial solutions for each discrete

functional element the design needed to embody using brainstorming techniques. Finally,

the students selected a partial solution for each subfunction and sketched a complete

concept capable of solving the given design problem. This last step was repeated several

times to produce multiple concept variants for each design scenario. Figure 6.6 gives a

summary of the data manually generated by the undergraduate researchers for the thermal

mug design scenario described in Section 6.2.1.1.

101

Figure 6.6. The students began the methodological comparison for the thermal mug by

generating (a) customer needs, (b) functional models, (c) morphological charts, and (d)

complete concept sketches.

After generating similar sets of data for each of the original and redesign

scenarios, the undergraduate researchers divided the functional models they developed

during the design process into single non-branching chains of functions and entered the

102

chains separately into the concept generator software. In the case of the thermal mug

design, the hypothetical functional model was broken into 8 function chains. Next, they

compared the concepts returned by the concept generator against the complete concepts

they had assembled from their morphological charts. The undergraduate researchers

found that every flow chain they were able to gather results from returned at least one

concept extremely similar to their manually developed concepts, with most of the

matched solutions occurring toward the top of the ranked list of returned component

chains. If we first classify the students’ brainstormed solutions under the same

Component Basis classification scheme that the concept generator uses to return

components, the similar matches become identical, as shown in Figure 6.7. Each of the

original and redesign scenarios resulted in successful comparisons that were similar to the

thermal mug design example shown.

103

Figure 6.7. The students found nearly all of their manually generated concepts from their

complete design solutions matched up with top-ranked solutions returned by the concept

generator.

The lists of design solutions produced by the concept generator were saved as text

files. Once the student generated design solutions had been combined into lists of feasible

design solution chains and the software generated design solutions had been distilled into

morphological matrices, numerous observations could be made regarding the quality and

quantity of solutions produced by each method. Looking at the total number of distinct

design solutions generated during the original design scenarios, on average, the concept

generator produced more design solutions per subfunction than the students produced

manually (6.85 vs. 2.45 as shown in Table 6.1). For all observations, a student generated

partial design solution was considered unique if no other solution listed for the same

subfunction was classified the same under the component naming scheme or if it did not

104

fit any of the current component naming classifications. In other words, a design solution

(e.g. an “electric wire”) would be considered unique even if was listed as a solution to

multiple subfunctions in the morphological matrix, e.g. an “electric wire” may be listed

as a solution to both the subfunction “import electrical energy” and “transfer electrical

energy”. In this situation, the “electric wire” would be counted twice in a design solution

count; once as a solution to “import electrical energy” and once as a solution to “transfer

electrical energy”.

Table 6.1. Summary table showing the number of solutions generated for each original

design scenario. The number of subfunctions included in each morphological matrix and

the average number of solutions per subfunction for all design scenarios together is also

shown.

Tables 6.2a-c give a more detailed breakdown of the number of solutions and

feasible solution chains produced by each method for each specific original design

scenario. Data within these tables are organized by the flow chains that were entered into

the concept generator to produce corresponding chains of compatible partial solutions.

105

From these tables, we can see that the average number of solutions produced per

subfunction for nearly every flow is higher for the concept generator group vs. the

student generated group of solutions. Correspondingly, the total number of compatible

solutions produced by the concept generator from the repository of design knowledge is

typically greater than those produced by the students, with a few notable exceptions.

First, in Table 6.2a, we can see that no complete solutions were assembled by the concept

generator for “Flow 1” in the human-powered power supply design scenario. This

observation stems from the fact that, at this time, no component in the design repository

solves the subfunction “convert mechanical energy to electrical energy”. Similarly, in

Table 6.2c, the lack of solutions for “Flow 2” in the wall climber toy design scenario

results from the concept generator being unable to find a component solution to the

subfunction “secure mechanical energy” that is historically compatible with the

component found to solve the subfunctions “import mechanical energy” and “export

mechanical energy”. Additionally, for “Flow 3” in the same scenario, no complete

solutions were returned (although the student derived solutions were manually found

contained in the design repository) because the subfunctions generated by the students

were slightly varied from the models used when the components were entered into the

repository database.

106

Table 6.2. Summary tables showing the number of subfunctions in each flow extracted

from the full functional model, total number of solutions generated for all of the

subfunctions in each flow, average number of solutions per subfunction within a flow,

number of compatible solution chains able to be constructed (both partial and complete)

to solve the flow, and the total number of solution chain combinations possible (both

compatible and incompatible) for the (a) human-powered power supply, (b) hot or cold

thermal mug, and (c) wall climbing toy design scenarios.

Since quantity of results is not the only concern when evaluating the usability of a

design tool in concept generation, a comparison of the type of solutions produced by the

107

concept generator against those produced by the students was also made. Table 6.3 shows

a summary of the number of overlapping design solutions seen in both the student

generated and concept generator derived morphological matrices. For instance, if we look

at the human-powered power supply data, of the 43 distinct solutions produced by the

students, 19 matched with solutions produced by the concept generator, meaning 44.19%

of the student generated solutions were contained in the automatically generated solution

set. Of the 24 remaining solutions produced by the students, 6 were not definable under

the current version of the component naming scheme, including 3 solutions for the

subfunction “convert mechanical energy to electrical energy,” for which no solutions

currently exist in the design repository. Other times, the student generated solutions that

did not match with solutions from the concept generator and were not classifiable under

the component naming basis were either technically infeasible for the given design

scenario, e.g. using a “bubble” to “store liquid material” or using a “levee” to “guide

liquid material” for the thermal mug design, or too broad of an idea to be encapsulated by

a single component in the design repository, e.g. using a “fountain machine” to “import

liquid material”. Inspection of the results returned by the concept generator that did not

overlap with the results generated by the students showed an overwhelming majority of

viable alternatives. Only a few instances of obvious incorrect matches were identified,

and each were linked back to data entry mistakes that occurred while the repository was

being populated with product information.

108

Table 6.3. Summary table showing the number of design solutions found in both the

student generated morphological matrices and the morphological matrices derived from

the concept generator results.

6.2.2.2. Robustness Investigation Results. For the robustness evaluation activity,

several function chains were selected from products previously dissected and analyzed by

the undergraduate researchers, including a bug vacuum (a pest-removal device that

utilizes a vacuum to trap bugs), an eyeglass cleaner, and a snow cone maker. Within the

selected chains, components were swapped in a manner in which the chain still exhibited

logical functionality. The original chain and the modified chain were then run through

the concept generator software. An example of an original chain and its modified form

from the bug vacuum is shown in Figure 6.8a. In each case, the top ranked conceptual

solutions returned by each original chain input were also found highly ranked in the

109

results returned by the modified chain input. Figure 6.8b shows the top 17 results for the

original and modified chains in the bug vacuum example.

Figure 6.8. (a) Example function chain extracted from the full functional model of a bug

vacuum both in the original form and permuted form. (b) The top concept generator

results returned from the original and permuted chain shown above in (a).

110

6.2.2.3. Functional Model Variation Effects Results. Next, to investigate the

effect that function omission has on the results returned by the concept generator, several

function chains were selected from the students’ pool of existing functional models that

included functions that may be implicit in a designer-produced functional model. All

functions that might not be explicitly included were then removed from the function

chain, as shown in an example taken from the bug vacuum in Figure 6.9a. The original

and the modified function chains were both run through the concept generator. The

undergraduate researchers found that, for the chains entered, the modified function chains

returned the same basic results as the original function chains. In the bug vacuum

example shown in Figure 6.9b, the modified chain still generates concepts with the same

major components as the original despite the removed functions, In addition, the students

remarked that the number of concepts generated for the modified chain is much smaller

and more manageable than the one generated for the original chain (195 concepts vs.

43136 concepts in the bug vacuum example shown); a situation that is expected given the

combinatorial characteristics of assembling chains of solutions from . Additionally, the

modified chain returned only complete concepts (in the example shown in Figure 6.9)

while the original chain returned over 18,500 incomplete concepts.

111

Figure 6.9. (a) Example function chain extracted from the full functional model of a bug

vacuum both in the original form and with the assumed functionality omitted. (b) The top

concept generator results returned from the original and modified chain shown above in

(a).

112

6.3. EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART II

To qualitatively evaluate the practicality of using the concept generators to

produce conceptual design variants early in the design process, designers manually

generated concepts and compared them against automatically generated design solutions

for two design scenarios. The data collected during this comparison were later studied

quantitatively, and the results can be found in Section 6.3.2. The chief objective of this

study is to compare and analyze the concepts generated by hand versus those generated

by the computer design synthesis tools in a 23 factorial design of experiment. The

research participants were three undergraduate researchers from the University of Texas

at Austin and University of Missouri-Rolla with roughly two to three years of college

experience behind them. All of them have a basic understanding and experience with the

design process including concept generation techniques. Throughout the experiment, each

participant had access to a computer for documentation purposes. To avoid pollinating the

manually generated morphological matrices with ideas from the design repository, the

designers completed all manual concept generation tasks for each design scenario before

moving on to generate design solutions using the concept generators. The timeline for the

study spanned two weeks and was carried out as discussed in the following section.

6.3.1. Experimental Setup. The researchers were each presented two different

design scenarios. In the first, the participants were asked to generate concepts by

redesigning a drink mixer (Figure 6.10), a preexisting small kitchen appliance. Each

researcher had the liberty to redesign the drink mixer without any specific customer

needs to use as guidelines for the redesign process. In the second scenario, the

113

participants were asked to design a bread slicer based on a given set of customer needs

(see Table 6.4).

Figure 6.10. (Above) Original drink mixer design used during the redesign scenario.

Table 6.4. (Below) List of customer needs used for the original design of a bread slicer.

In both scenarios the functional models were generated using the primary and

secondary Functional Basis as different start points for the concept generation exercise.

114

A full factorial experiment was carried out to test, study, and analyze the impact of these

three factors on the concept generation.

• Beginning concept generation activities from a primary function structure

versus a secondary function structure.

• Generating conceptual variants using automated tools versus manually

brainstorming ideas.

• Producing conceptual variants for a redesign scenario versus an original design

scenario.

A tabular summary of the three test factors and the eight factor combinations is

shown below in Table 6.5.

Table 6.5. Summary of full factorial experimental test combinations performed by the

research participants.

115

For test combinations 1 through 4, no customer needs were provided for the

redesign of a drink mixer. The function models were generated by tearing down the drink

mixer and understanding the basic functions exhibited by the existing product rather than

by establishing the functional requirements from a set of customer needs. Hence, the

starting point for the concept generation process was not a hypothetical functional model

but the actual functional model of the product itself.

Each participant generated a functional model independently based on prior

knowledge from the product teardown (see example shown in Figure 6.11) using function

and flow terms strictly at the secondary level of the Functional Basis. A morphological

matrix of conceptual solutions was next manually generated for each subfunction in the

secondary level functional model (see Figure 6.12). Then, one brainstormed solution was

picked for each subfunction, and a complete redesign solution was sketched for the drink

mixer (see Figure 6.13).

116

Figure 6.11. (Above) Functional model using the secondary level terms of the Functional

Basis for the drink mixer redesign scenario.

Figure 6.12. Morphological matrix generated from the functional model shown in Figure

6.11 for the drink mixer redesign scenario.

117

Figure 6.13. Solution sketch generated from the morphological matrix shown in Figure

6.12 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.12

were used to produce this complete conceptual design.

Next, this process was repeated using only primary level function and flow terms

from the Functional Basis to construct the functional model. Examples of a primary

functional model, morphological matrix, and resulting embodiment sketch are shown in

Figures 6.14-6.16.

118

Figure 6.14. (Above) Functional model using the primary level terms of the Functional

Basis for the drink mixer redesign scenario.

Figure 6.15. Morphological matrix generated from the functional model shown in Figure

6.14 for the drink mixer redesign scenario.

119

Figure 6.16. Solution sketch generated from the morphological matrix shown in Figure

6.15 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.15

were used to produce this complete conceptual design.

Each of the two functional models created above (secondary and primary level)

were then run through the concept generator to generate solutions. Sample solutions

produced by the concept generator are shown in Figure 6.17.

120

Figure 6.17. Sample matrix-based concept generator output for a primary level functional

model input for the drink mixer redesign.

121

The same experimental procedure was used for the original design of a bread

slicer with one minor change. For this original design scenario, the designers began by

producing functional models (secondary and primary) for each product from customer

needs using the design steps previously shown in Figure 6.2.

As before, the three researchers independently developed primary and secondary

level functional models from which to develop conceptual solutions. Since the

researchers used no prior knowledge of existing products, the functional models

generated were purely conceptual. Concepts were generated from each of the two

functional models with and without automation. Sample results from this design scenario

are shown below in Figures 6.18-6.23.

122

Figure 6.18. (Above) Functional model using the primary level terms of the Functional

Basis for the bread slicer original design scenario.

Figure 6.19. Morphological matrix generated from the functional model shown in Figure

6.18 for the bread slicer original design scenario.

123

Figure 6.20. (Above) Solution sketch generated from the morphological matrix shown in

Figure 6.19 for the bread slicer original design scenario. Highlighted solutions shown in

Figure 6.19 were used to produce this complete conceptual design.

Figure 6.21. Functional model using the primary level terms of the Functional Basis for

the bread slicer original design scenario.

124

Figure 6.22. (Above) Morphological matrix generated from the functional model shown

in Figure 6.21 for the bread slicer original design scenario.

Figure 6.23. Solution sketch generated from the morphological matrix shown in Figure

6.22 for the bread slicer original design scenario. Highlighted solutions shown in Figure

6.22 were used to produce this complete conceptual design.

125

6.3.2. Results. The following sections present the results from the qualitative

comparisons as well as the post-investigation quantitative study. Results from the

designers’ evaluation activities indicated that, in general, both the primary and secondary

modeling levels are useful for modeling a product’s functional requirements under

different design scenarios. In general, primary level functional models are more abstract

and increase creativity in design and secondary level models increase a designer’s focus

and speed at converging on a feasible design. In addition, with a few notable exceptions,

the matrix-based concept generator consistently averaged a larger quantity of feasible

solutions for each subfunction than those produced manually by the students. In general,

the research participants felt the matrix-based concept generator helped stimulate new

creative solutions to the design problems given, but noted that the number of concepts

returned from primary level functional inputs produced was largely unmanageable and

would benefit greatly from additional constraints and filters to eliminate concepts that

were largely irrelevant to the specific design problem.

6.3.2.1. Qualitative Analysis. The concepts generated were evaluated by the

undergraduate researchers in terms of value to them during the design process. This

evaluation primarily involved qualitatively analyzing each combination of test factors and

determining the combinations of factors (i.e. primary vs. secondary level of functional

modeling, manual vs. automated concept generation) produced more diverse sets of

concepts when used to develop concepts for the redesign and original design scenarios.

Additionally, similarities among the concepts produced were also examined. Seeking the

existing design embodiment for the drink mixer as well as the brainstormed solutions for

126

each scenario among the concepts generated by the automated tools may help elucidate

the comprehensiveness, feasibility, and novelty of the generated variants. Key questions

asked during the qualitative evaluations include:

(1) Which level of model detail (primary vs. secondary) is more valuable to a

designer during the process of (re)designing a product?

(2) Do any of the solutions returned by the concept generator at the primary/

secondary level of detail give ideas for solutions that were not achieved by manual

methods?

(3) Which level of model detail (primary vs. secondary) returns results from the

automated concept generators that are more useful to a designer during the process of (re)

designing a product?

During the drink mixer redesign activities, the research participants observed that

the primary level functional model allowed for greater freedom to generate a wide

assortment of conceptual solutions, both manually and by using the automated concept

generators. By including more abstract terms to describe the functional requirements,

primary functional models help to broaden the solution space and enhance creativity and

novelty without eliminating the ideas similar to the existing design. However, many of

the solutions generated computationally from the primary level functional models by the

matrix-based concept generation method were not feasible or relevant to the given design

objective. In contrast, the concepts generated from the secondary function model were

complete and practical but tended to be too specific and too similar to the original

existing design to stimulate new creative solutions by the research participants. Hence,

127

these results lead to the conclusion that the primary level of functional model is more

valuable if a complete revision of the existing product with the same functionality is

desired, whereas the secondary level functional model will be more beneficial if only

minor revisions to the configuration of components are sought without making changes

across solution domains. For maximum versatility, the choice of a secondary or primary

functional model should be left open to the designer.

In the bread slicer original design scenario, the concepts generated from the

primary level were very diverse. The matrix-based concept generator generated numerous

concepts. However, the participants reported difficulty in parsing through the returned

concepts and narrowing down the results without any additional constraints beyond the

given set of customer needs. For the bread slider design, the secondary level functional

model generated more complete and feasible solutions, but, in general, the concepts

generated tended to be less creative when compared to those generated by the primary

functional model.

The research participants observed a critical need to filter out obscure and absurd

solutions (with respect to the specific design needs for the product to be designed) if the

designer is to proceed through the design process using the primary level functional

model, especially when the matrix-based method of automated concept generation is

employed. This filtering of solutions is complicated and is subjective to say the least, but

one proposed way to help create design boundaries for the results would be to combine

the primary and secondary level Functional Basis terms within a single functional model.

Design functions and flow domains that the designer is certain that the product needs to

128

include may be expressed at the more concrete secondary level of language, while the

primary level of language may be used to designate the less well-defined areas of the

design. This combination of detail level is anticipated to help eliminate some of the less

applicable design while still encouraging a broad array of solution exploration.

6.3.2.2. Quantitative Analysis. As an extension to the qualitative comparison

performed by the undergraduate researchers, the manual design solutions generated by

the students during each design scenario were later compared quantitatively to those

generated by the matrix-based concept generator from the design repository knowledge.

Since the student design solutions were contained in a morphological matrix while the set

of computationally generated solutions consisted of lists of compatible component

chains, direct comparisons of the solutions were difficult to achieve. In order to make

quantitative comparisons, the results returned by the matrix-based concept generator were

separated into morphological matrices that could then be directly compared to the

morphological matrices manually generated by the students. The computationally derived

morphological matrices were produced by dissociating each component solution from

each chain of compatible components and recording the unique solutions produced for

each function entered.

The functional models developed during the design process were divided into

single non-branching chains of functions and each chain was entered into the matrix-

based concept generator software. In the case of the drink mixer design, for instance, the

full conceptual functional model shown in Figure 6.11 was broken into three function

chains. The lists of design solutions produced by the matrix-based concept generator were

129

saved as text files. Once the software generated design solutions had been distilled into

morphological matrices, numerous observations could be made regarding the quantity of

solutions produced by each method. Looking at the total number of distinct design

solutions generated during each test combination, the matrix-based concept generator

produced more design solutions per subfunction than the students produced manually

(22.14 vs. 3.81 for student #1, 24.07 vs. 10.78 for student #2, and 30.20 vs. 3.78 for

student #3, as shown in Table 6.6). For each subfunction, solutions were translated to the

component naming scheme and distinct solutions refer to the number of different

component names plus any additional solutions that were not classifiable.

130

Table 6.6. Summary table showing the total number of solutions for the morphological

matrix from each testing combination. The number of subfunctions included in each

morphological matrix and the average number of solutions per subfunction are also

shown.

Table 6.7 gives a more detailed breakdown of the number of solutions and

feasible solution chains produced by each method for each design scenario. Data within

these tables are organized by the flow chains that were entered into the matrix-based

concept generator to produce corresponding chains of compatible partial solutions. These

131

tables show that the average number of solutions produced per subfunction for nearly

every flow is higher for the matrix-based concept generator group vs. the student

generated groups of solutions. Correspondingly, the total number of complete compatible

solutions produced by the matrix-based concept generator from the repository of design

knowledge is typically greater than the total number of possible combinations produced

by the students, with a few notable exceptions. First, in Table 6.7a, we can see that no

complete solutions were assembled by the matrix-based concept generator for “Flow 1”

under Student #1 or “Flow 3” under Student #3 in the drink mixer redesign scenario. This

observation stems from the fact that, at this time, no component in the design repository

solves the subfunction “mix liquid material”. Similarly, in Table 6.7a, the lack of

solutions for “Flow 2” under Student #3 for the drink mixer redesign scenario results

from the matrix-based concept generator being unable to find a component solution to the

subfunction “regulate human material.

132

Table 6.7. Summary tables showing the # of subfunctions in each flow extracted from

each functional model, total # of solutions generated for all of the subfunctions in each

flow, avg. # of solutions per subfunction within a flow, # of compatible solution chains

able to be constructed (both partial and complete) to solve the flow, and the total # of

solution chain combinations possible (both feasible and infeasible) for the (a) drink mixer

redesign, and (b) bread slicer original design scenarios.

133

Since quantity of results is not the only concern when evaluating the usability of a

design tool in concept generation, a comparison of the type of solutions produced by the

matrix-based concept generator against those produced by the students was also made.

Table 6.8 shows a summary of the number of overlapping design solutions seen in both

the student generated and computationally derived morphological matrices. For instance,

for the drink mixer data, of the 271 distinct solutions produced by the matrix-based

concept generator plus all of the three designers, 32 of the solutions were generated by

both of the two methods. This means that 32.65% of the designer-generated solutions

were contained within the automatically generated solution set, and, alternatively, 15.61%

of the concept generator results were contained within the designer-generated set of

solutions.

Table 6.8. Summary table showing the number of distinct design solutions found in both

the student generated morphological matrices and the morphological matrices derived

from the matrix-based concept generator results.

134

6.4. CASE STUDY: A DOG FOOD PACKET COUNTER

In this section, both of the previously described methods of automated concept

generation (the list-based output method and the interactive morphological matrix method

described in Section 4.2 and 4.4, respectively) along with the web-based morphological

search, described in Section 2.4.3., are evaluated using a design problem to transform an

imprecise counting and packaging line at the Rolla Area Sheltered Workshop. The

solutions generated for that design problem are used here to compare the results of

manual concept generation techniques with the results from each of the three automated

methods. The device, prototyped at the University of Missouri–Rolla (UMR), was the

product of several modern design methodologies. Initial customer interviews were

conducted, a customer needs questionnaire was developed, technical requirements were

formed, and several methods of concept generation and selection techniques were applied

to this original design project. The manual concept generation activities required the team

to meet outside of class and devote several hours of research and brainstorming to

complete. The concepts that the team generated manually during these activities are

compared to the results returned in a few minutes using each of the three automated tools

in Section 6.4.3.

6.4.1. Chi-Matrix Background. The chi-matrix method relies on a catalog of

design information that stores components and the functions they perform (Strawbridge,

2002). When a designer desires to generate concepts for a given design problem, a filter

matrix is used which contains only the functions needed for the given problem. This filter

is multiplied into the aggregate function-component matrix to produce a matrix that

contains only components that solve the needed functions. In this way a designer can

135

generate possible solutions without having to search the entire store of knowledge

manually.

6.4.2. Description of Case Study. The Rolla Area Sheltered Workshop employs

persons with mental and physical disabilities to package variety boxes of dog and cat

food sample packets for a local pet food manufacturer. In the interest of increased

productivity and a reduced incidence of repacking, a counting and packaging assistive

device was sought. The design team began by observing the previous method of

packaging used by the employees and interviewing the Workshop managers to develop an

understanding of the design problem and determine and weight the needs of the customer.

Next, the team established the functional requirements for the design by developing a

black box model and subsequent functional model, which incorporated the previously

described Functional Basis terms.

A black box model is a simple representation of product’s function with input/

output flows, which are identified from the customer needs. In the model, the product is

treated as a closed system and does not include the details of the flows and functions that

are internal to the product; only flows input into and output from the product are taken

into consideration. Figure 6.24 shows a black box model created for the sample packet

counting product. After the black box model was defined, each input flow was then

associated with subfunctions that operate on the flow and then aggregated to form a

functional model.

136

Figure 6.24. The black box model developed for the dog food packaging device.

A functional model is a description of a product or process in terms of the

elementary functions that are required to achieve its overall function or purpose. A

graphical form of a functional model is represented by a collection of subfunctions

connected by the flows on which they operate. This structure is an easy way for a

designer to see what functions must be performed without being distracted by any

particular form the artifact may take. A functional model of the dog food packaging

device is shown in Figure 6.25.

Accurately Count and Sort Dog

Food Packages

Dog Food,

Boxes, Tape, Hand

Human Energy,

Electrical Energy

Count Instructions

Packed Boxes,

Damaged Material

Acoustic Energy,

Optical Energy

137

!"#$%&
'()*

!"#$%&
+$,-*

.$/-&-$)
+$,-*

"010 !"#"" !"#"

2
(
)
*
3
*
$
4
3

5$
$
*

$

% &

+&$%1
+$,-*

'($)

+6##,7
+$,-*

*

8%()/51%
+$,-*

+

+1)/1
+$,-*

$,

!)*-9(&1
+$,-*

$$

+&$%1
+$,-*

'($)

!"#$%&
'6"()
:)1%47

$&

:;#$%&
+$,-*

$-

2
(
)
*
3
*
$
4
3

5$
$
*

2
(
)
*
3
*
$
4
3

5$
$
*

2
(
)
*
3
*
$
4
3

5$
$
*

<$4 =$$*3
'()*

>6-*1
'()*

)

+&(?-,-@1
'()*

-

'()*

<$4
=$$*

'6"()
:)1%47

A$)B1%&
2010 &$ "010

$'

A2()41
C192()-9(,
:)1%47

$*

8%()/51%
C192()-9(,
:)1%47

$+

!"#" !"#"

!"#$%&
A$)&%$,
+-4)(,

.($. '6"()
!)/&%69&-$)/

DA$6)&1*
.(9E(41/
-) F$;G

.%$91//
+-4)(,

$%

!"#$%&
A$)&%$,
+-4)(,

.($.

A219E
!)/&%69&-$)/

!)*-9(&1
+-4)(,

),

A2()41
+-4)(,

)$()'

A$)B1%&
:0:0 &$
H#&-9(,

))

:;#$%&
H#&-9(,
:)1%47

)-

A2()41
+-4)(,

)$()'

A$)B1%&
:0:0 &$
I99$6/&-9

)*

:;#$%&
I99$6/&-9
:)1%47

)+

:,19&%-9(,
:)1%47

!"#$%&
:,19&%-9(,
:)1%47

).

A2()41
:,19&%-9(,
:)1%47

)%

+6##,7
:,19&%-9(,
:)1%47

)&

+&(&6/
+-4)(,

:,19&%-9(,
:)1%47

H#&-9(,
:)1%47

I99$6/&-9
:)1%47

Figure 6.25. The functional model developed for the dog food packaging device.

Next, the design team used many different manual concept generation techniques

including the C-sketch method, Design by Analogy, the Chi Matrix approach, described

above in Section 6.4.1, and the Morphological Matrix approach, described in Section

2.4.3, to explore many different creative solutions and to generate a broad spectrum of

complete design concepts. The team generated five design concepts using the C-Sketch

method. Three of the concepts were based on mechanical and electrical systems to

transport and count the dog food packets. The fourth concept contained no moving parts

or electronics and was a simple plastic tray with color-coded slots. The fifth concept built

on concept four by adding switches and buzzers to indicate when the slots were full.

Figure 6.26 shows three such concepts developed using the C-Sketch method (C-sketch

1, C-sketch 3 and C-sketch 5 respectively).

138

C-Sketch 1 C-Sketch 2

C-Sketch 3

Figure 6.26. Concepts generated by the C-Sketch method.

Four concepts were produced using the Design by Analogy method. The first

three concepts were electro-mechanical devices using conveyors and sensors to count and

139

transport the dog food packets. The fourth concept was a plastic tray variant with rotating

handles to empty the counted dog food packets directly into the box.

Employing the Chi Matrix approach yielded five additional concepts. The first

concept was based on a case with individual dog food packet receptacle slots. A sliding

door was placed beneath the receptacles and was used to empty the slots once they are

filled directly into the packing box via a chute. The remaining four concepts incorporated

fairly simple electronics to act as counters while dog food packets were manually placed

in the box. Figure 6.27 shows concepts Chi-Matrix 1, Chi-Matrix 2, and Chi-Matrix 5 as

example solutions generated by the design team using this method. Although the method

is similar to the Morphological Matrix Search method discussed in the remainder of this

paper, the Chi Matrix solutions here were produced by hand using a different set of data.

140

Chi Matrix 1 Chi Matrix 2

Chi Matrix 5

Figure 6.27. Concepts generated by the Chi Matrix method.

Ten concepts were generated using the morphological matrix approach. All of

these concepts made use of electrical and mechanical devices to count and transport the

dog food packets. It is important to recognize at this point that this morphological matrix

was generated by hand by the design team and is not derived from the same data as the

Morphological Matrix Search operation discussed in the rest of the paper.

141

6.4.3. Evaluation of the Three Automated Methods. Using the functional model

shown in Figure 6.25 as input, results from each of the three automated methods, the

web-based morphological matrix method described in Section 2.4.3 and the list-based

and interactive morphological matrix software implementations described in Section 4,

were compared to the conceptual solutions manually generated by the students for the

dog food packet counter case study. The data used to generate the automated solutions

was produced from the online repository of product knowledge described in Section 2.4,

which currently houses detailed information on the 102 consumer products listed in Table

6.9.

Table 6.9. Information on these 102 products is currently contained within the data

repository.

142

Ten of the 31 concepts developed during the bulk-packaging device project were

chosen to compare to the morphological search results, list-based automated concept

generator results, and interactive morphological matrix results. The concepts are named

for the technique that was used for their generation. For example, “Chi-Matrix 1”

corresponds to the first concept developed by using the Chi Matrix approach. The

concepts named “Chi-Matrix 1”, “Chi-Matrix 2”, “Chi-Matrix 4”, “Chi-Matrix 5”, and

“C-Sketch 5” were identified by the original design team as their top-five concepts. The

remaining concepts were selected from the pool of 31 total concepts because they

represented well-documented complete design solutions with definable functionality.

6.4.3.1. Survey of the Data Contained within the Repository. A function-

component matrix (FCM) was downloaded from the online repository to get an initial

snapshot of the coverage that the repository had in reference to the input functional model

for the dog food packaging device. Of the 29 subfunctions identified for the bulk-

packaging device, all 29 of the subfunctions were contained within the FCM produced

from the 102 consumer products.

6.4.3.2. Preparing the Manual Concepts for Comparison. In order to compare

the results from each of the automated design tools to the concepts manually developed

for the bulk-packaging device, the concept sketches and design notes from the design

project were revisited. Since the subfunctions used as input into each of the automated

design tools originates from the initial functional model of the bulk-packaging device,

each manually produced concept was checked against the same set of subfunctions. Some

differences exist between the subfunctions identified in each of the concepts and those of

143

the original functional model. This subfunction variation is partially due to the natural

progression of the design process where customer needs are refined and the product

direction is better identified. Table 6.10 shows a mapping of the originally identified

subfunctions to each of the concepts used as a comparison in this study.

Next, each manually created concept was analyzed to determine the component

that solves each subfunction found in that concept. These results were placed into a

concept-specific function-component matrix for each manually generated concept to

assist comparison with the results from each of the automated design tools. Table 6.11

demonstrates this idea by showing the identified subfunctions and components for the

Chi-Matrix 1 concept comparison. Note that the components listed in the columns

represent only those components that were identified as part of the Chi-Matrix 1 concept.

Components that were identified to solve a specific function are denoted with a cell entry

of 1. Shaded functions identify the subfunctions from the original functional model,

which were embodied in the Chi Matrix 1 manually generated concept.

144

Table 6.10. Subfunctions from the original model that are embodied in each manually

generated solution compared.

145

 Table 6.11. Concept-specific function-component matrix for the manually generated

solution labeled Chi Matrix 1.

6.4.3.3. Comparison of Automated Results to Manually Generated Concepts.

Once the subfunction-component solution data had been extracted from each manually

developed concept, the subfunctions from the functional model shown in Figure 6.25

were entered into each of the automated design tools. The returned results for the entire

set of 29 subfunctions in the original model were compared to each of the concept-

146

specific function-component matrices to determine what percentage of the manually

generated concept was returned by each automated conceptual design tool.

Table 6.12 shows a summary of the comparisons between each manually

generated concept and automated results for each of the three tested design tools. For the

concept Chi-Matrix 1, 80.00% of the components used in the manually created concept

were returned by the morphological search while only 73.33% of the components were

found using the list-based concept generator and 66.67% by the interactive morphological

search concept generator. This means that 80.00% of the manually derived concept (using

no database of existing design knowledge) could have been derived by using the

morphological search feature of the repository and 66.67%–73.33% could have been

found or assembled using one of the concept generators. Analysis of all of the concepts

indicate that an average of 80.44% of the ten manually derived concepts could have been

automatically generated by the repository’s morphological search feature, while only an

average of 61.10% of the concepts could have been developed directly from the list-based

automated concept generator and 53.10% directly from the interactive morph search

concept generator.

147

Table 6.12 Portion of manually generated concept returned by each of the automated

design tools.

Table 6.13. (Below) Summary of the number of solutions returned by each of the

automated design tools.

The results returned by each method were also analyzed to determine the number

of complete solutions possible for a user to assemble. These results are summarized in

Table 6.13. The morph search returns an unfiltered matrix of component solutions

yielding a total of 7.04 x 1011 possible solutions with an average of 11.21 possible

solutions returned for each subfunction. The filtering of infeasible concepts based on

historical compatibility within the concept generator reduces the number of possible

complete solutions down to 8.76 x 109 with and average of 8.45 solutions returned for

each subfunction.

148

7. CONCLUSIONS

7.1. INTRODUCTION

The creative nature of design generation demands skills from a designer that must

be developed and refined through practice. Advancement in technology is usually made

by building on previous experiences and learning from past successes and failures.

However, this knowledge transfer in the broad field of product design is difficult to

accomplish. Often, few records are kept cataloging a designer’s rationale during the

decision-making processes that lead to the embodiment of a successful design solution.

Additionally, although many successful designs are easily identifiable, it can be unclear

why or how that success materialized without prior experience dissecting or designing a

similar product.

The research presented here provides a computational link between existing

design tools used to gather and organize customer needs and tools used to capture and

manipulate a designer’s sketches for further development using CAD software. This

design tool seeks to assist a designer during the conceptual phase of the design process

with computer software capable of searching a large database of design knowledge and

delivering multiple relevant and easily identifiable solutions for a design problem. The

search is facilitated by accepting standard input generated by a designer during a

structured design process. The following sections will summarize the research presented,

discuss key findings and conclusions reached during the course of the research,

enumerate key contributions of the work presented here, and establish future work that

149

will further expand the usefulness and applicability of the automated design tool

presented in various design situations.

7.2. SUMMARIES AND DISCUSSIONS

The following subsections give summaries and discussions for each of the

chapters contained in this dissertation.

7.2.1. Automated Concept Generation Design Tools. Section 3 and Section 4

present the algorithm and software implementation of an automated, mathematically-

based concept generation technique developed from an empirical study of consumer

products. Intending to facilitate the generation and evaluation of feasible concept variants

during the early phases of the design process, the goal is to utilize existing design

knowledge to rapidly produce a large array of concepts early in the design process. The

automated concept generation method not only produces numerous results, but also has

the capability to automatically rank the returned concepts based on a designer’s desired

specifications. One particular strength of the created algorithm is the generality it allows

in terms of input and output. Unlike many other research efforts into automated concept

generation which focus on the dynamic aspects of a design by utilized bond graphs (e.g.

Welch and Dixon, 1991; Gui and Mäntylä, 1994; Bradley, et al., 1993; Oh, et al., 1996;

Bracewell and Sharpe, 1996; Sieger and Salmi, 1997) or focus on applicability to specific

design situations (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998), the

design tool presented here allows for varying types of design input to be entered and

varying categories of design solutions to be combined into full solutions. In addition,

compared to traditional concept generation methods, the process presented here is quick

150

and does not require the effort of an entire team of designers. Furthermore, ongoing

research activities seem to indicate that the concept generation software is capable of

producing concept variants comparable to those produced manually by upper-class

undergraduate engineering students.

7.2.2. Component Classification Hierarchy and Procedure. The research

described in Section 5 outlines a hierarchical framework constructed to help guide the

classification of components and extend previously presented work toward a component

naming convention that led to a flat list of 114 distinct generic component terms

(Kurtoglu, et al., 2005). In addition, the framework presented uses primary and secondary

levels of specification coupled with a robustly defined procedure to help identify the

appropriate placement of terms into the hierarchy while maintaining the goals of

completeness and exclusivity in component coverage. Under this proposed framework,

components of widely varying levels of complexity (e.g. an electric wire vs. an electric

motor) may both be placed within the hierarchical structure, as long as the black box

functionality may be limited to a single function contained within the Functional Basis

list of terms. Additionally, components that exhibit functionality directly vital to the

functioning of a product (e.g. a plug and cord) are not distinguished from components

that only exhibit functionality that supports the function of a product in a more indirect

manner (e.g. a bracket that secures an electric motor in place). Finally, although

component definitions include references to component form as a way to distinguish

between the various component “species”, information regarding a component’s form or

method of manufacture is not used within the component hierarchy. For the components

151

classified thus far, complexity, type of functionality (i.e. whether it directly or indirectly

works to solve conceptual functionality), and other characteristics not function related do

not seem to negatively impact the effectiveness of the proposed framework. However, as

the number of component “species” grows, the proposed framework could be easily

adjusted to fit into a larger hierarchical framework where other component characteristics

that are deemed appropriate may be added as super-groups to the proposed hierarchy (see

Figure 7.1). As with the classification of living organisms, the classification of

components is an endeavor that will be strengthened by discourse.

Figure 7.1. The proposed hierarchy has the potential to be adapted to a larger structure if

components from other domains do not fit within the structure proposed for

electromechanical devices from consumer products.

In addition to establishing a method of consistently achieving complete and

exclusive coverage of the component space, the hierarchical ontology also establishes a

means to distinguish traditionally similarly named components that, in fact, have very

152

different functionality. Just as a black-tailed prairie dog (which is, indeed, not a dog at

all) and a common domesticated dog could be distinguished as unrelated by their

scientific names (i.e. Cynomys ludovicianus and Canis lupus familiaris), a similar formal

naming structure could be used to distinguish common component names that may be

misleadingly similar (e.g. a wheel used as a control device to steer a car vs. a wheel that

is fixed to an axle and allows for an object, such as a bicycle, to roll along the ground).

As with animal naming, the formal names may be used when clarity of meaning is

essential, while the familiar names would not lose their meanings.

Since the primary motivation behind the creation of an effective component

ontology is to assist designers during the early phases of design, a hierarchy organized by

functional purpose incorporates a level of abstraction that will allow functionally similar

but distinct components to be considered for a design. By following the presented

procedure and utilizing the proposed hierarchical structure where components are

grouped together by functional purpose and distinguished by form and functional

embodiment, it is postulated that the goals of completeness and exclusivity of term

coverage will also be effectively maintained.

7.2.3. Experimental Activities and Case Studies. Section 6 presents several

research activities designed to test the effectiveness of the proposed automated concept

generation tool throughout various stages of its development. First, research activities

performed by four undergraduate researchers at the University of Texas at Austin and the

University of Missouri–Rolla to evaluate the early list-based form of the concept

generator, described in Section 4.2, is presented. Included are a qualitative investigation

153

performed by a group of four undergraduate researchers at the University of Texas at

Austin and the University of Missouri-Rolla and a post-investigation quantitative analysis

designed to evaluate the list-based concept generator. Overall, the analyses described

demonstrate that even this early version of the implemented concept generator algorithm

holds promise as a useful design tool. The investigations presented in this section

identified many paths for further development of both the software implementation as

well as the design tools used to support this automated method of concept generation,

including the design repository and Component Basis. One identified avenue of

development for the early concept generator software, later incorporated into the second

generation implementation, was enabling a user to submit a full functional model (with

branching chains and multiple input and output flows). Another potentially useful user-

interface improvement, later implemented, was to output the generated design solutions

as a more interactive tool instead of listing the results in a ranked list of solution chains.

The interactive morphological matrix style output, described in Section 4.4, allows a

designer to “tinker” with solution variations rather than be presented with an

overwhelming list of solutions that may contain groups of variants with only mild

deviations from each other. Thus a designer is free to choose various configurations and

get instant feedback on compatibility and ranking scores on a selected design, since

metrics such as measures of failure, manufacturing and assembly costs, quality,

recyclability, or some mathematical combination of similar design characteristics can be

embedded in the seed FCM and DSM that seed the concept generator. In general,

management of the design solutions, including developing useful ranking schemes and

154

grouping similar solutions into sets, will be a key area of development, since this aspect

of the software strongly influences a designer’s perception of the software’s usefulness.

Section 6.3 presents a qualitative investigation performed by a group of three

designers at the University of Texas at Austin and the University of Missouri-Rolla and a

post-investigation quantitative analysis designed to evaluate multiple parameters within a

systematic design process; functional requirement abstraction level and manual versus

automated concept generation in original and redesign scenarios. The analyses described

in this section demonstrate that, as with any tool, a computerized design tool must either

be intuitive enough to use that a designer can naturally incorporate it into the design

process, or the benefits of using the software must be great enough to justify scaling a

learning curve to reap the advantage. As Snowden (Andrews and Snowden, 2002) states,

“...technology [is] a tool: If you pick it up and it fits in the hand, then it’s useful. If you

have to bio-reengineer your hand to fit your tool, it’s a waste of time.” To this end, as

with all useful computer applications, the automated tools proposed must be refined so

that, from a designer’s perspective, the tool does not hinder the design process. The

research presented was performed to help compare the current effectiveness of the

automated design tool and guide the further development of the method into a useful

computational conceptual design tool.

The case study described in Section 6.4 investigates the results returned by the

existing web-based morphological search tool described in Section 2.4.3, the list-based

concept generation implementation described in Section 4.2, and the interactive concept

generation software described in Section 4.4. Each of the three design tools were

155

evaluated against manually created concepts (using no database of existing design

knowledge) generated for a dog food packaging device. The web-based morphological

search tool captured an average of 80.44% of the ideas manually generated, while each of

the automated concept generator tools captured between 53.10% and 61.10% of the

manually generated ideas after filtering the incompatible solutions from those returned by

the morphological search method.

A key characteristic of the two automated concept generators compared during

this study is the filtering of incomplete solutions from the pool of concepts automatically

produced based on data contained within the database of design knowledge. Although the

filtering out of incomplete solutions begins to dramatically reduce the pool of

automatically generated solutions that a designer must parse through (in this study a

reduction from 7.04 x 1011 to 8.76 x 109 possible solutions), many feasible partial

solutions are lost, as indicated by the reduced hit percentage between the web-based

morphological search and the two automated concept generators. However, the increased

number of “misses” by each of the concept generator design tools can be addressed by

refining several existing traits of the data contained in the web-based design repository.

First, the data contained in the repository may include intermediate component

connections to link together the major components identified in the manually generated

solutions. For instance, solution pairs comprised of a battery connected to a circuit board

were filtered out because none of the products that are dissected and stored within the

repository have a battery directly in physical contact with a circuit board. This fact alone

accounts for significantly decreased correlation between the automated solutions

156

produced by the concept generators and the manually generated solutions labeled Chi

Matrix 2, Chi Matrix 4, C-Sketch 1, C-Sketch 3, and C-Sketch 5. This problem could be

alleviated by using a secondary method of compatibility identification beyond direct

physical contact, e.g. by identifying compatible input and output flow ports for a

component.

Other problems arise because of “bottlenecking” of solutions for a particular

subfunction. That is to say, if the repository data for a given subfunction is limited, the

results returned by any of the methods may produce only a single or very few solutions.

This has a dramatic effect on the morphological search automated concept generator

especially, because all solutions returned should be complete and therefore must include

the same solution for the restricted function. The best way to avoid this problem is to

continue to populate the design repository with many products from a variety of domains

and complexities.

The final problem identified as having a significant impact on the reduced hit

return from the automated concept generators relates directly to the signal flows

contained within the input functional model. Product knowledge entered into the online

repository for components that primarily have functionality dealing with signal flows

through a product suffers from inconsistencies that are not as readily seen when dealing

with components that mainly deal with materials and energies moving through a product.

Recent research at the University of Missouri–Rolla has made strides to develop

grammars to address the significant issues of inconsistency in modeling signal flows, but

157

this research has not yet been retroactively applied to products already contained in the

repository.

The design tools investigated in this study offer designers an additional approach

for generating concept variants and presents historically recorded subfunction solutions.

The high hit percentages for the morphological search further reinforces this feature of

the online design repository as a promising tool for concept generation. The lower hit

percentages for the two automated concept generators (the list-based version–Section

4.2., and interactive version–Section 4.4.) that limit the results returned to only feasible

solutions based on component compatibility suggest that a larger pool of data is needed in

order to avoid limiting the results with obstacles such as solution “bottlenecking” and

data inconsistency. However, it is important to note that although these obstacles did have

an impact on the commonality percentages calculated for the interactive morphological

search, many complete and physically feasible solutions were returned by the automated

tools that the students did not manually generate.

Two distinct advantages emerge from the use of the automated design tools. First,

the process is automated to the extent that component solutions are identified

computationally through repeatable algorithms rather than through mental retrieval.

Secondly, the aggregation of knowledge represented in a generated matrix offers a greater

degree of diversity, permanence, and portability than human recollection alone is likely to

provide. The process for retrieving knowledge from each of the design tools is quick and

does not require the efforts of an entire design team.

158

7.3. KEY CONTRIBUTIONS

The computational theory of concept generation addresses the lack of automated

methods in the early stage of conceptual design. It is based on the notion that archived

product design knowledge can be reused to create new product concepts. The theory

behind the design knowledge relationships is sound, drawn from accepted systematic

design methodologies. The representation of the various design knowledge relationships

in a mathematical form is a rather novel development. The formulation of a theoretical

construct to compute concept variants from archived knowledge breaks new ground by

helping to push engineering design concept generation activities into the realm of

artificial intelligence.

One of the key advantages of the computational theory of concept generation is

that it sets forth a path to capture and reuse corporate knowledge. This is a particular

useful notion for industry where design knowledge often resides in the minds of the more

experienced designers. This approach provides a way to capture abstract and specific

product design knowledge (in the form of a design repository) and transfer that

knowledge to less experienced designers (through browsing the repository and computing

new concept variants from the concept generator). Likewise, design education can benefit

from this approach in the education of engineering designers.

Another key advantage of this approach is that the supporting knowledge base can

grow and adapt over time. As more and more product knowledge is accumulated in a

repository, the greater the breadth (or depth, for that matter) of potential concept variants

becomes. A question that results from this is how much data is necessary to make this

concept generation algorithm pliable? Preliminary tests within our lab show that the

159

design knowledge in the UMR repository can generate 60-80% of the concept variants

that human design teams produce (the comparisons were made after the human designers

completed their design projects). In addition to the overlapping concept variants, the

concept generator algorithm produces two to four times more concept variants that are

viable than design teams. These results are based on a repository knowledge base of 102

products.

There can be too much of a good thing, however. The output of the concept

generator algorithm can reach into the tens of thousands of viable concept variants,

depending on the size of the input functional models and the make up of the knowledge

base. Ranking quickly becomes a critical method to further filter the viable concept

variants into a more manageable set. Any number of ranking approaches is possible with

the types of design knowledge stored in the repository, as the concept generator approach

does not preclude or dictate any particular type.

7.4. FUTURE WORK

The following subsections outline future research projects that could further

enhance the proposed computational design tool and its supporting technologies.

7.4.1. Extensions to the Automated Concept Generator. Although the research

presented in this dissertation has demonstrated usefulness for early design concept

generation, the effectiveness of the tool would benefit from additional research. For

instance, since conceptual design is inherently an evolutionary process, significant

benefits could be gained by further extending the dynamic functionality of the software.

When a design solution is first explored, a core set of desired functionality is known by

160

the designer, but the very act of choosing a specific solution component begins to add

additional functional requirements to a design. In its current form, the proposed

computational theory allows for an initial static set of requirements to be input, but does

not support these evolutionary changes that all designs undergo.

Additional benefits would be gained by further enhancing the presentation of

solutions to a designer. The interactive morphological search takes strides in the direction

of giving a design real-time feedback on the compatibility of a solutions, but focusing

research on taking the text-based solutions and presenting them in a visual manner (i.e.

creating a virtual prototype) would make a significant impact on how a designer interacts

with the knowledge presented. The computational theory presented in this dissertation

also very readily could be extended to present a designer with design modules by

employing the method of clustering components into design groups presented by Kusiak

and Szczerbicki (1993).

7.4.2. Ranking and Identifying “Good” Designs. Features of future software

versions should include the exploration of various ranking methods to help sort the

concept variants generated. Although using the design structure matrix as a first-pass

filter eliminates many less useful concepts from the set of design variants, metrics such as

measures of failure, manufacturing and assembly costs, quality, recyclability, or some

mathematical combination of similar design characteristics could prove to be valuable

tools for identifying the most promising variants among the hundreds (or thousands) of

potentially viable solutions found. In general, management of the design solutions,

including developing useful ranking schemes and grouping similar solutions into sets,

161

will be a key area of development, since this aspect of the software will strongly dictate

whether the introduced design tool will help or hinder the design process from the

designer’s perspective.

7.4.3. Early Design Tools for Multiple Design Contexts. The computational

theories presented in this dissertation, because they are generalized, have the potential to

impact other areas of design beyond the scope of product design. Investigations into the

different approaches and requirements that designers in different contextual situation face

may demonstrate that the established theory is adaptable to situations such as designing

process layouts (e.g. for manufacturing purposes or potentially even chemical or

biological (protein) design processes), dictating performance parameters for complex

systems (i.e. integration designs), automating previously manual processes, designing

efficient workflow layouts.

7.4.4. Component Classification Research. Further areas of improvement for

the established component templates and classification procedure includes establishing

more complete port templates that may be used to help build up more complete

conceptual ideas during the early stages of conceptual design. By knowing the number

and types of ports a component term typically has, software may be used to help guide

the evolution of a full conceptual idea, including parts needed to indirectly support the

functionality of other components. Additionally, design measure estimates (such as

measures of potential failures, manufacturability, cost, size, performance, etc.) could be

determined across each component group and used to help guide concept selection early

in the design process. Other work could include creating a forum for the discussion of

162

new and existing component terms, their placement within the hierarchical ontology, and

even the organization of the hierarchical ontology as well. Finally, the work presented

here is focused mainly on components found in consumer products. Additional work

should look at other design domains and identify how the hierarchy should be altered or

expanded to include a broader range of component types. As with the animal groupings,

the process to create a complete and robust hierarchy should be an evolutionary process

with much discussion involved.

7.4.5. Other Related Research Areas. Further areas of refinement include

enhancing the robustness of the data entry procedure for populating the design repository.

Since the validity of the results returned by the concept generator is closely tied to the

validity of the knowledge stored in the repository, the quality of returned results is

sensitive to the quality and correctness of design knowledge contained in the repository.

For instance, during the quantitative study of the data from the methodological

comparison reported in Section 6.2, an error in data entered into the design repository

was identified when the design solution of an “indicator light” turned up as a solution to

the subfunction “convert electrical energy to mechanical energy.” The entry error was

identified as an incorrectly selected component classification term, but since this

component was also compatible with the surrounding components via the identified

component connections, it was not filtered out of the compatible solutions returned by the

concept generator.

163

7.5. PARTING WORDS.

As mentioned in Section 1, Yang (2003) concludes that it is both important to

generate and solidify a large number of ideas as well as begin prototyping a design early

in the design process. Anderson’s (1981) research indicates that while experienced

designers tend to approach a design problem broadly at first, inexperienced designers

explore solutions using a depth-first approach. From this perspective, the presented

concept generation theory encourages novice designers to investigate a broad range of

solutions, as a more experienced designer may be inclined to do. The matrix-based

concept generator allows for the quick development of conceptual ideas and for

significantly different concepts to be explored through sketching, since it utilizes the

component classification scheme rather than specific component instantiations to return

results. In addition, the wide array of results returned by the concept generator supports

creativity and design research, which indicates that conceptual design activities should

contain both divergent and convergent steps (Cross, 1994; Pugh, 1991; Guilford, 1959;

Roozenburg and Eekels, 1995). The computational theory presented in this dissertation

demonstrates the potential for automated technologies to support designers during the

early stages of design and reuse existing design knowledge in a way that contributes to

innovation and creativity in product design.

164

APPENDIX A

MEMIC Software Code

--start ‘ConGen.java’ code -------------------------------------
/*---

 * Concept Generator (a.k.a Memic - Morphological Evaluation Machine and Interactive Conceptualizer)

 * This software accepts the functional description of a product to be designed and outputs a morphological matrix

 * that a designer may interact with to build and evaluate conceptual solutions.

 *

 * Version: 2.0

 * Author: Cari R. Bryant, University of Missouri-Rolla

 * Last Update: July 01, 2007

 * Disclaimer: This program is used primarily as a proof-of-concept and is not developed using rigorous Java

 * development conventions.

 ---/

package edu.umr.ide;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import javax.swing.*;

import javax.swing.border.*;

public class ConGenV2_0 {

! /*---

! * Define global variables for user GUI frames

! *--*/

! JFrame baseFrame; // Frame for user input GUI

! JPanel background; // Panel for input background

! JButton loadFM, loadFCM, loadDSM; // Buttons to load Functional Model, Function-Component Matrix, and Design

! ! ! ! Structure Matrix files

! JTextField labelFM, labelFCM, labelDSM; // Labels for file and directory displays

! JFrame resultFrame; // Frame for results output GUI

! JPanel resultBackground; // Panel for output background

! ArrayList<JTextField> selectedFields = new ArrayList<JTextField>(); // Array of selected component fields

! ArrayList<JButton> removeButtons = new ArrayList<JButton>(); // Array of removeButtons

! ArrayList<ArrayList<JButton>> fullCompArray = new ArrayList<ArrayList<JButton>>(); // Array of morph matrix

! ! ! ! ! ! ! ! ! rows

!

! Color lightblue = new Color(200,205,225); // Background color

! Color darkblue = new Color(142,148,191); // Dark accent color

! Color white = new Color(255,255,255); // Light accent color

!

! /*---

! * Define global variables for program methods

! *--*/

! String lastFMOpenPath = System.getProperty("user.home"); // Keeps track of path of last FM file opened

! String lastOpenPath = System.getProperty("user.home"); // Keeps track of path of last FCM or DSM file opened

! String lastSavePath = System.getProperty("user.home"); // Keeps track of path of last file saved

!

! ArrayList fmArray = null; // Array to hold raw FM data file data

! ArrayList fcmArray = null; // Array to hold raw FCM data file data

! ArrayList dsmArray = null; // Array to hold raw DSM data file data

! ArrayList<Subfunction> fmLinks = new ArrayList<Subfunction>(); // Array to hold link info from the functional

! ! ! ! ! ! ! model

! !

! int fmHeader = 0; // Number of header rows before column labels in FM data file

! int fcmHeader = 0; // Number of header rows before column labels in FCM data file

! int dsmHeader = 0; // Number of header rows before column labels in DSM data file

!

! ArrayList<String> masterComponentList = new ArrayList<String>(); // List of all components in DSM

! ArrayList<Integer> functionsWithoutSolutions = new ArrayList<Integer>(); // List of all subfunctions with

! ! ! ! ! ! ! ! unknown compatible solutions

! ! !

! /*---

! * Initiate program execution

! *--*/

! public static void main(String[] args) {

! ! ConGenV2_0 gui = new ConGenV2_0(); // Create new object

! ! gui.buildInputGUI(); // Run method to build the input GUI

! } // end main()

166

!

! /*---

! * Builds the graphical user interface for the user input into the concept generation program

! *---*/

! private void buildInputGUI() {

! ! /* Define and Initialize variables --*/

! ! baseFrame = new JFrame();

! ! background = new JPanel();

! ! loadFM = new JButton();

! ! loadFCM = new JButton();

! ! loadDSM = new JButton();

! ! labelFM = new JTextField();

! ! labelFCM = new JTextField();

! ! labelDSM = new JTextField();

! ! JPanel step1Panel = new JPanel(), step2Panel = new JPanel(), step3Panel = new JPanel();

! ! JPanel radioPanel = new JPanel();

! ! JRadioButton defaultComponents = new JRadioButton(), customComponents = new JRadioButton();

! ! JPanel customComponentLoadPanel = new JPanel(), loadFCMPanel = new JPanel();

! ! JPanel loadDSMPanel = new JPanel();

! ! JTextPane spacerPane = new JTextPane();

! ! JButton goButton = new JButton();

! ! /* baseFrame --*/

! ! {

! ! ! baseFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

! ! ! baseFrame.setResizable(false);

! ! ! baseFrame.setTitle("Memic (The Concept Generator v2.0)");

! ! ! baseFrame.setBackground(lightblue);

! ! ! Container baseFrameContentPane = baseFrame.getContentPane();

! ! ! baseFrameContentPane.setLayout(new BoxLayout(baseFrameContentPane, BoxLayout.Y_AXIS));

! ! ! /* background ---*/

! ! ! {

! ! ! ! background.setBorder(new EmptyBorder(10, 10, 10, 10));

! ! ! ! background.setFocusable(false);

! ! ! ! background.setMaximumSize(new Dimension(800, 320));

! ! ! ! background.setOpaque(false);

! ! ! ! background.setPreferredSize(new Dimension(800, 320));

! ! ! ! background.setMinimumSize(new Dimension(800, 320));

! ! ! ! background.setBackground(lightblue);

! ! ! ! background.setLayout(new BoxLayout(background, BoxLayout.Y_AXIS));

! ! ! ! /* step1Panel ---*/

! ! ! ! {

! ! ! ! ! step1Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 1: Import functional model."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step1Panel.setMinimumSize(new Dimension(800, 67));

! ! ! ! ! step1Panel.setFocusable(false);

! ! ! ! ! step1Panel.setOpaque(false);

! ! ! ! ! step1Panel.setBackground(lightblue);

! ! ! ! ! step1Panel.setLayout(new BoxLayout(step1Panel, BoxLayout.X_AXIS));

! ! ! ! ! /* load FM --*/

! ! ! ! ! loadFM.setText("Find File");

! ! ! ! ! loadFM.setOpaque(false);

! ! ! ! ! loadFM.addActionListener(new loadDataListener());

! ! ! ! ! step1Panel.add(loadFM);

! ! ! ! ! /* label FM ---*/

! ! ! ! ! labelFM.setText("../");

! ! ! ! ! labelFM.setEditable(false);

! ! ! ! ! labelFM.setFocusable(false);

! ! ! ! ! labelFM.setBackground(white);

! ! ! ! ! step1Panel.add(labelFM);

! ! ! ! }

! ! ! ! background.add(step1Panel);

! ! ! ! /* step2Panel ---*/

! ! ! ! {

! ! ! ! ! step2Panel.setBorder(new CompoundBorder(

167

! ! ! ! ! ! new TitledBorder("Step 2: Load component data."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step2Panel.setFocusable(false);

! ! ! ! ! step2Panel.setOpaque(false);

! ! ! ! ! step2Panel.setBackground(lightblue);

! ! ! ! ! step2Panel.setLayout(new BorderLayout());

! ! ! ! ! /* radioPanel ---*/

! ! ! ! ! {

! ! ! ! ! ! radioPanel.setBackground(lightblue);

! ! ! ! ! ! radioPanel.setLayout(new BoxLayout(radioPanel,

! ! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! !

! ! ! ! ! ! /* defaultComponents ------------------------------------*/

! ! ! ! ! ! defaultComponents.setText("Use default component data.");

! ! ! ! ! ! defaultComponents.setContentAreaFilled(false);

! ! ! ! ! ! defaultComponents.setBackground(lightblue);

! ! ! ! ! ! defaultComponents.setEnabled(true);

! ! ! ! ! ! defaultComponents.addActionListener(new

! ! ! ! ! ! ! defaultFilesListener());

! ! ! ! ! ! radioPanel.add(defaultComponents);

! ! ! ! ! ! /* customComponents -------------------------------------*/

! ! ! ! ! ! customComponents.setText("Load custom component files.");

! ! ! ! ! ! customComponents.setOpaque(false);

! ! ! ! ! ! customComponents.setContentAreaFilled(false);

! ! ! ! ! ! customComponents.setBackground(lightblue);

! ! ! ! ! ! customComponents.setSelected(true);

! ! ! ! ! ! customComponents.addActionListener(new

! ! ! ! ! ! ! customFilesListener());

! ! ! ! ! ! radioPanel.add(customComponents);

! ! ! ! ! }

! ! ! ! ! step2Panel.add(radioPanel, BorderLayout.NORTH);

! ! ! ! ! /* customComponentLoadPanel ---------------------------------------*/

! ! ! ! ! {

! ! ! ! ! ! customComponentLoadPanel.setBorder(null);

! ! ! ! ! ! customComponentLoadPanel.setBackground(lightblue);

! ! ! ! ! ! customComponentLoadPanel.setLayout(new

! ! ! ! ! ! ! BoxLayout(customComponentLoadPanel,

! ! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! !

! ! ! ! ! ! /* loadFCMPanel ---*/

! ! ! ! ! ! {

! ! ! ! ! ! ! loadFCMPanel.setBackground(lightblue);

! ! ! ! ! ! ! loadFCMPanel.setLayout(new

! ! ! ! ! ! ! ! BoxLayout(loadFCMPanel,

! ! ! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! ! ! ! /* loadFCM ------------------------------------*/

! ! ! ! ! ! ! loadFCM.setText("Load FCM");

! ! ! ! ! ! ! loadFCM.setEnabled(true);

! ! ! ! ! ! ! loadFCM.setOpaque(false);

! ! ! ! ! ! ! loadFCM.setContentAreaFilled(false);

! ! ! ! ! ! ! loadFCMPanel.add(loadFCM);

! ! ! ! ! ! ! loadFCM.addActionListener(new

! ! ! ! ! ! ! ! loadDataListener());

! ! ! ! ! ! ! /* labelFCM -----------------------------------*/

! ! ! ! ! ! ! labelFCM.setText("../");

! ! ! ! ! ! ! labelFCM.setEnabled(true);

! ! ! ! ! ! ! labelFCM.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! ! (Cursor.DEFAULT_CURSOR));

! ! ! ! ! ! ! labelFCM.setEditable(false);

! ! ! ! ! ! ! labelFCM.setFocusable(false);

! ! ! ! ! ! ! labelFCM.setBackground(white);

! ! ! ! ! ! ! loadFCMPanel.add(labelFCM);

! ! ! ! ! ! }

! ! ! ! ! ! customComponentLoadPanel.add(loadFCMPanel);

! ! ! ! ! ! /* loadDSMPanel ---*/

! ! ! ! ! ! {

168

! ! ! ! ! ! ! loadDSMPanel.setBackground(lightblue);

! ! ! ! ! ! !

! ! ! ! ! ! ! loadDSMPanel.setLayout(new BoxLayout

! ! ! ! ! ! ! ! (loadDSMPanel, BoxLayout.X_AXIS));

! ! ! ! ! ! ! /* loadDSM ------------------------------------*/

! ! ! ! ! ! ! loadDSM.setText("Load DSM");

! ! ! ! ! ! ! loadDSM.setEnabled(true);

! ! ! ! ! ! ! loadDSM.setOpaque(false);

! ! ! ! ! ! ! loadDSM.setContentAreaFilled(false);

! ! ! ! ! ! ! loadDSM.addActionListener(new

! ! ! ! ! ! ! ! loadDataListener());

! ! ! ! ! ! ! loadDSMPanel.add(loadDSM);

! ! ! ! ! ! ! /* labelDSM -----------------------------------*/

! ! ! ! ! ! ! labelDSM.setText("../");

! ! ! ! ! ! ! labelDSM.setEnabled(true);

! ! ! ! ! ! ! labelDSM.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! ! (Cursor.DEFAULT_CURSOR));

! ! ! ! ! ! ! labelDSM.setEditable(false);

! ! ! ! ! ! ! labelDSM.setFocusable(false);

! ! ! ! ! ! ! labelDSM.setBackground(Color.white);

! ! ! ! ! ! ! loadDSMPanel.add(labelDSM);

! ! ! ! ! ! }

! ! ! ! ! ! customComponentLoadPanel.add(loadDSMPanel);

! ! ! ! ! }

! ! ! ! ! step2Panel.add(customComponentLoadPanel, BorderLayout.CENTER);

! ! ! ! !

! ! ! ! ! /* spacerPane ---*/

! ! ! ! ! spacerPane.setPreferredSize(new Dimension(50, 16));

! ! ! ! ! spacerPane.setBackground(lightblue);

! ! ! ! ! spacerPane.setAutoscrolls(false);

! ! ! ! ! spacerPane.setDragEnabled(false);

! ! ! ! ! spacerPane.setEditable(false);

! ! ! ! ! spacerPane.setEnabled(false);

! ! ! ! ! spacerPane.setFocusable(false);

! ! ! ! ! spacerPane.setOpaque(false);

! ! ! ! ! step2Panel.add(spacerPane, BorderLayout.WEST);

! ! ! ! }

! ! ! ! background.add(step2Panel);

! ! ! ! /* step3Panel ---*/

! ! ! ! {

! ! ! ! ! step3Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 3: Generate interactive

! ! ! ! ! ! ! morphological matrix"),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step3Panel.setFocusable(false);

! ! ! ! ! step3Panel.setOpaque(false);

! ! ! ! ! step3Panel.setBackground(new Color(200, 205, 225));

! ! ! ! ! step3Panel.setLayout(new BorderLayout());

! ! ! ! ! /* goButton ---*/

! ! ! ! ! goButton.setText("Create concepts!");

! ! ! ! ! goButton.setContentAreaFilled(false);

! ! ! ! ! goButton.setPreferredSize(new Dimension(135, 15));

! ! ! ! ! goButton.setMinimumSize(new Dimension(135, 15));

! ! ! ! ! goButton.setMaximumSize(new Dimension(135, 15));

! ! ! ! ! goButton.addActionListener(new goButtonListener());

! ! ! ! ! step3Panel.add(goButton, BorderLayout.WEST);

! ! ! ! }

! ! ! ! background.add(step3Panel);

! ! ! }

! ! ! baseFrameContentPane.add(background);

! ! ! baseFrame.pack();

! ! ! baseFrame.setLocationRelativeTo(baseFrame.getOwner());

! ! ! baseFrame.setVisible(true);

! ! }

! !

! ! /* componentRadioButtons --*/

! ! ButtonGroup componentRadioButtons = new ButtonGroup();

! ! componentRadioButtons.add(defaultComponents);

169

! ! componentRadioButtons.add(customComponents);

! } // end buildInputGUI()

! !

! /*---

! * Listener to register the defaultComponents radio button

! * actionPerformed method:

! *! 1. Disables loadFCM and loadDSM

! *! 2. Automatically loads data from included files into the FCM and DSM arrays

! *--*/

! private class defaultFilesListener implements ActionListener {

! ! public void actionPerformed(ActionEvent custom) {

! ! ! // Disable manual loading buttons ---

! ! ! loadFCM.setEnabled(false);

! ! ! loadDSM.setEnabled(false);

! ! ! labelFCM.setEnabled(false);

! ! ! labelDSM.setEnabled(false);

! ! !

! ! ! // Automatically load data from included files

! ! ! ArrayList<Object> fcmFileArray = new ArrayList<Object>(); // Holds array of strings read

! ! ! ! ! ! ! ! ! from data file

! ! ! ArrayList<Object> dsmFileArray = new ArrayList<Object>(); // Holds array of strings read

! ! ! ! ! ! ! ! ! from data file

! ! ! File newFCMFile = new File("FCM.txt"); // Holds pathname for FCM data file to be read

! ! ! File newDSMFile = new File("DSM.txt"); // Holds pathname for DSM data file to be read

! ! ! ! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newFCMFile));

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! fcmFileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file.");

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newDSMFile));

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! dsmFileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file.");

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! !

! ! ! fcmArray = fcmFileArray; // Save data to FCM global variable

! ! ! dsmArray = dsmFileArray; // Save data to DSM global variable

! !

! ! } // end actionPerformed

! } // end defaultFilesListener

!

! /*---

! * Listener to register the customComponents radio button

! * actionPerformed method:

! *! 1. Enables loadFCM and loadDSM

! *--*/

! private class customFilesListener implements ActionListener {

! ! public void actionPerformed(ActionEvent custom) {

! ! ! loadFCM.setEnabled(true);

! ! ! loadDSM.setEnabled(true);

! ! ! labelFCM.setEnabled(true);

! ! ! labelDSM.setEnabled(true);

170

! ! }

! } // end customFilesListener

!

! /*---

! * Listener to register any of the data file load button presses

! * actionPerformed method:

! *! 1. Triggers box to select data file

! *! 2. Updates file and directory label for file chosen by user

! *--*/

! private class loadDataListener implements ActionListener {

! ! public void actionPerformed(ActionEvent load) {

! ! ! Object source = load.getSource(); // Determines source button that triggered the listener

! ! ! ArrayList returnedArray = loadFile(); // Holds array loaded from data file

! ! !

! ! ! if (returnedArray != null) { // If returned file array contains data

! ! ! ! File filePath = (File) returnedArray.get(0); // Get path of opened file

! ! ! ! returnedArray.remove(0); // Remove path from file data array

! ! ! ! if (source == loadFCM) { // If "Load FCM" button was pressed

! ! ! ! ! labelFCM.setText(filePath.getPath()); // Update FCM label field

! ! ! ! ! fcmArray = returnedArray; // Data from the opened file was for the

! ! ! ! ! ! ! FCM

! ! ! ! } else if (source == loadDSM) { // If "Load DSM" button was pressed

! ! ! ! ! labelDSM.setText(filePath.getPath()); // Update DSM label field

! ! ! ! ! dsmArray = returnedArray; // Data from the opened file was for the

! ! ! ! ! ! ! DSM

! ! ! ! } else if (source == loadFM) { // If "Find File" button was pressed

! ! ! ! ! labelFM.setText(filePath.getPath()); // Update FM label field

! ! ! ! ! fmArray = returnedArray; // Data from the opened file was for the FM

! ! ! ! }

! ! ! } // end if

! ! } // end actionPerformed

! } // end loadDataListener

! !

! /*---

! * Prompts user for file location, reads in tab-delimited file

! * data, and saves the data to a matrix

! *--*/

! private ArrayList loadFile() {

! ! File newFile = new File(lastOpenPath); // Holds pathname for data file to be read

! ! JFileChooser fileOpen = new JFileChooser(newFile); // Create new file chooser dialog box

! ! ArrayList<Object> fileArray = new ArrayList<Object>(); // Holds array of strings read from data

! ! ! ! ! ! ! file

! ! ! !

! ! int cancelOpen = fileOpen.showOpenDialog(baseFrame); // Show dialog box to open file

! ! if (cancelOpen == 0) { // Check to make sure file open dialog wasn't cancelled

! ! ! newFile = fileOpen.getSelectedFile(); // Get path and name of selected file

! ! ! lastOpenPath = newFile.getPath(); // Retain path of last file opened

! ! ! !

! ! ! fileArray.add(newFile); // Add file path to file data array

! ! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newFile));

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! fileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file.");

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! ! ! ! ! !

! ! ! return fileArray; // Return array of data read from file

! ! } else {

! ! ! return null; // Return null value

! ! } // end if

! } // end loadFile()

!

171

! /*---

! * Listener to register the goButton button press

! * actionPerformed routine:

! *! 1. Check for data compatibility between the selected FCM and DSM files

! *! 2. Filter FCM matrix using imported functional model data

! *! 3. Build and filter the mini DSMs between the function pairings

! *! 4. Extract the valid component pairs from the filtered mini DSMs

! *! *5. Build complete solutions that solve the entered function model

! *! *6. Identify highest ranking solutions

! *! 7. Build GUI of result chains

! *--*/

! private class goButtonListener implements ActionListener {

! ! public void actionPerformed(ActionEvent go) {

! ! ! ArrayList<String[]> fcmArrayFiltered = new ArrayList<String[]>();

! ! ! ! // Make array for filtered FCM

! ! ! if (fmArray == null | fcmArray == null | dsmArray == null) {

! ! ! ! // Make sure FM, FCM, and DSM files have been selected

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error: Please load all data files

! ! ! ! ! before continuing."); // Error dialog box

! ! ! } else {

! ! ! ! /* Check for FCM and DSM file compatibility--------------------------------- */

! ! ! ! boolean match = false; // True if FCM component labels match DSM component

! ! ! ! ! ! labels

! ! ! ! String [] fcmString, dsmString; // Hold label rows for each matrix

! ! ! !

! ! ! ! fcmString = (String[]) fcmArray.get(fcmHeader); // Get label row from FCM

! ! ! ! dsmString = (String[]) dsmArray.get(dsmHeader); // Get label row from DSM

! ! ! !

! ! ! ! match = Arrays.equals(fcmString,dsmString); // Component headers match?

! ! ! !

! ! ! ! if (match) { // If the FCM and DSM files are compatible

! ! ! ! ! fmLinks.clear(); // Clear list

! ! ! ! ! masterComponentList.clear(); // Clear component list

! ! ! ! !

! ! ! ! ! /* Create subFunction link set------------------------------------ */

! ! ! ! ! for (int i = (fmHeader + 1); i < fmArray.size(); i++) {

! ! ! ! ! ! // For each row in the FM matrix

! ! ! ! ! ! String[] fmRow = (String[]) fmArray.get(i);

! ! ! ! ! ! ArrayList<Integer> forConn = new ArrayList<Integer>();

! ! ! ! ! ! ! // Array of forward connections

! ! ! ! ! ! ArrayList<Integer> revConn = new ArrayList<Integer>();

! ! ! ! ! ! ! // Array of reverse connections

! ! ! ! ! ! Subfunction tempSub = new Subfunction(i, fmRow[0]);

! ! ! ! ! !

! ! ! ! ! ! for (int j = 1; j < fmRow.length; j++) {

! ! ! ! ! ! ! /* Check for forward connections-------------- */

! ! ! ! ! ! ! int cellForw = Integer.parseInt(fmRow[j]);

! ! ! ! ! ! ! ! // Get cell value

! ! ! ! ! ! ! if (cellForw > 0) {

! ! ! ! ! ! ! ! forConn.add(j); // If cell is not zero,

! ! ! ! ! ! ! ! ! add subfunction as a

! ! ! ! ! ! ! ! ! forward connection

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! ! /* Check for reverse connections-------------- */

! ! ! ! ! ! ! String[] fmCol = (String[]) fmArray.get(j);

! ! ! ! ! ! ! int cellRev = Integer.parseInt(fmCol[i]);

! ! ! ! ! ! ! ! // Get cell value

! ! ! ! ! ! ! if (cellRev > 0) {

! ! ! ! ! ! ! ! revConn.add(j); // If cell is not zero,

! ! ! ! ! ! ! ! ! add subfunction as a

! ! ! ! ! ! ! ! ! reverse connection

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! } // end for

! ! ! ! ! !

! ! ! ! ! ! tempSub.setForward(forConn);

! ! ! ! ! ! tempSub.setReverse(revConn);

! ! ! ! ! !

172

! ! ! ! ! ! fmLinks.add(tempSub);

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! /* Filter the FCM matrix with the FM data------------------------- */

! ! ! ! ! String filter = null; // String to hold filter

! ! ! ! !

! ! ! ! ! String[] headerRow = (String[]) fcmArray.get(0); // Get FCM header

! ! ! ! ! ! ! ! ! ! row

! ! ! ! ! fcmArrayFiltered.add(headerRow); // Add header row to filtered FCM

! ! ! ! ! for (int ii = (fmHeader + 1); ii < fmArray.size(); ii++) {

! ! ! ! ! ! // Get filter from each row of the input FM

! ! ! ! ! ! String[] fmRow = (String[]) fmArray.get(ii);

! ! ! ! ! ! filter = fmRow[0];

! ! ! ! ! !

! ! ! ! ! ! // For each row label in the FCM matrix

! ! ! ! ! ! boolean found = false; // Trigger to add empty FCM row

! ! ! ! ! ! for (int k = (fcmHeader + 1); k < fcmArray.size(); k++) {

! ! ! ! ! ! ! String[] fcmRow = (String[]) fcmArray.get(k);

! ! ! ! ! ! ! ! // Get FCM row

! ! ! ! ! ! !

! ! ! ! ! ! ! if (filter.equals(fcmRow[0])) {

! ! ! ! ! ! ! ! // If filter matches FCM row

! ! ! ! ! ! ! ! fcmArrayFiltered.add(fcmRow);

! ! ! ! ! ! ! ! ! // Add row to filtered FCM

! ! ! ! ! ! ! ! found = true;

! ! ! ! ! ! ! ! ! // FCM contained filter value

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! } // end for

! ! ! ! ! !

! ! ! ! ! ! if (!found) { // If row wasn't found for filter

! ! ! ! ! ! ! String[] newRow = new String

! ! ! ! ! ! ! ! [fcmString.length]; // Create a new

! ! ! ! ! ! ! ! ! ! empty row

! ! ! ! ! ! ! newRow[0] = filter; // Row header

! ! ! ! ! !

! ! ! ! ! ! ! for (int m = 1; m < newRow.length; m++) {

! ! ! ! ! ! ! ! // Fill row with zeros

! ! ! ! ! ! ! ! newRow[m] = "0"; // Indicates no

! ! ! ! ! ! ! ! ! component matches

! ! ! ! ! ! ! } // end for

! ! ! ! ! ! !

! ! ! ! ! ! ! fcmArrayFiltered.add(newRow); // Add created row

! ! ! ! ! ! ! ! to filtered matrix

! ! ! ! ! !

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! ! !

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! /* Build and filter pairwise DSM matrices------------------------- */

! for (int i = 0; i < fmLinks.size(); i++) {

! ! Subfunction functionForeward = fmLinks.get(i); // Cycle through each subfunction in the FM

! ! int functionID = functionForeward.getID(); // Get function id

! ! String functionLabel = functionForeward.getSub(); // Get function label

! ! ArrayList<Integer> connectedTo = functionForeward.getForward(); //Get forward connections

! ! ! ! ! !

! ! for (int l = 0; l < connectedTo.size(); l++) {

! ! ! int nextFunct = (Integer)connectedTo.get(l); // Get next connected function id

! ! ! Subfunction functionReverse = fmLinks.get(nextFunct-1); // Point to next connected

! ! ! ! ! ! ! ! subfunction

! ! ! ! ! ! !

! ! ! String[] func1 = (String[]) fcmArrayFiltered.get(functionID); // Get first row

! ! ! String[] func2 = (String[]) fcmArrayFiltered.get(nextFunct); // Get second row

! ! ! ! ! ! !

! ! ! if (functionLabel.equals(func1[0])) { // Double check that functions are same

! ! ! ! ! ! ! !

! ! ! ! int[][] miniDSM = new int[func1.length-1][func2.length-1]; //Holds pairwise DSM

! ! ! ! ! ! ! ! ! ! !

! ! ! ! for (int m = 1; m < func1.length; m++) { // Build mini matrix

! ! ! ! ! int cellA = Integer.parseInt(func1[m]); // Get 1st cell

! ! ! ! ! String[] dsmRow = (String[]) dsmArray.get(m); // Get DSM row

! ! ! ! ! ! ! ! !

173

! ! ! ! ! for (int n = 1; n < func2.length; n++) {

! ! ! ! ! ! int cellB = Integer.parseInt(func2[n]); // Get 2nd cell

! ! ! ! ! ! int dsmFilter; // Get filter value from DSM

! ! ! ! ! ! ! ! !

! ! ! ! ! ! if (dsmRow[n].equals(" ") | dsmRow[n].equals("")) {

! ! ! ! ! ! ! // Account for blank entry

! ! ! ! ! ! ! dsmFilter = 0; // Makes blanks equal to zero

! ! ! ! ! ! } else { // Otherwise get DSM value

! ! ! ! ! ! ! dsmFilter = Integer.parseInt(dsmRow[n]);

! ! ! ! ! ! } // end if

! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! if (dsmFilter != 0) { // If the filter is nonzero

! ! ! ! ! ! ! miniDSM[m-1][n-1] = cellA*cellB*

! ! ! ! ! ! ! ! (dsmFilter/dsmFilter); // Build DSM

! ! ! ! ! ! } else {

! ! ! ! ! ! ! miniDSM[m-1][n-1] = cellA*cellB*dsmFilter;

! ! ! ! ! ! ! ! // Build DSM

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! } // end for

! ! ! ! functionForeward.addForwardDSM(miniDSM); // Add matrix to list

! ! ! ! ! ! ! !

! ! ! ! ArrayList reverseList = functionReverse.getReverse(); // Get list of reverse

! ! ! ! ! ! ! ! ! connections

! ! ! ! int ref = functionReverse.getReverseDSMs().size(); // How many DSMs are already

! ! ! ! ! ! ! ! ! in the reverse list?

! ! ! ! ! ! ! !

! ! ! ! if (reverseList.get(ref) == (Integer)functionID) { // Check that the reverse

! ! ! ! ! ! ! ! ! DSM is in the same order

! ! ! ! ! ! ! ! ! as the reverse

! ! ! ! ! ! ! ! ! connections list

! ! ! ! ! functionReverse.addReverseDSM(miniDSM); // Add this DSM as a reverse

! ! ! ! ! ! ! ! ! DSM

! ! ! ! } else { // Else print error information

! ! ! ! ! System.out.println("Error-----Reverse DSM add mismatch-----");

! ! ! ! ! System.out.println(" Reverse connection = " + reverseList.get(ref));

! ! ! ! ! System.out.println(" Reverse DSM functionID = " + functionID);

! ! ! ! } // end if

! ! ! } else {

! ! ! ! System.out.println("Error-----Function mismatch-----");

! ! ! } // end if

! ! } // end for loop

! } // end building DSMs

! /* Build choice lists--- */

! String[] dsmRow = (String[]) dsmArray.get(0); // Get DSM header row

! ! ! ! !

! for (int i = 1; i < dsmRow.length; i++) {

! ! masterComponentList.add(dsmRow[i]); // Build component name index list

! } // end for

! ! ! ! !

! // Check for in ports and out ports

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

! ! Subfunction function = fmLinks.get(j); // Get function

! ! ArrayList<Integer> forwardConns = function.getForward(); // Get forward connections

! ! ArrayList<Integer> reverseConns = function.getReverse(); // Get reverse connections

! ! ! ! ! ! ! ! ! ! !

!

! ! // Check for in ports

! ! if (forwardConns.isEmpty()) { // If there are no forward connections

! ! ! forwardConns.add(-20); // Add that the forward connection is an out port (-20)

! ! } // end if

! ! ! ! ! !

! ! // Check for out ports

! ! if (reverseConns.isEmpty()) { // If there are no reverse connections

! ! ! reverseConns.add(-10); // Add that the reverse connection is an in port (-10)

! ! } // end if

! ! ! ! ! !

! } // end for

! ! ! ! !

! // Build choice lists for all functions

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

174

! ! Subfunction function = fmLinks.get(j); // Get next function

! ! ArrayList forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs

! ! ArrayList reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs

! ! ArrayList<ArrayList> forwardChoices = new ArrayList<ArrayList>(); // Initialize array to hold lists

! ! ! ! ! ! ! ! of choices for all forward DSM

! ! ! ! ! !

! ! for (int p = 0; p < forwardDSMList.size(); p++) { // For each forward DSM for this function

! ! ! ArrayList<ComponentInfo> thisForwCompList = new ArrayList<ComponentInfo>();

! ! ! ! // Make list of choices for current forward DSM

! ! ! int[][] tempDSM = (int[][])forwardDSMList.get(p); // Get next DSM in the list

! ! ! ! ! ! !

! ! ! for (int m = 0; m < tempDSM.length; m++) { // For each DSM row

! ! ! ! int rowAddition = 0; // Initialize variable

! ! ! ! ! !

! ! ! ! for (int n = 0; n < tempDSM[0].length; n++) { // For each DSM column

! ! ! ! ! rowAddition += tempDSM[m][n]; // Add row into a single variable

! ! ! ! } // end for

! ! ! ! ! ! ! !

! ! ! ! if (rowAddition > 0) { // If there is a successful component pair in this row

! ! ! ! ! ComponentInfo thisComponent = new ComponentInfo

! ! ! ! ! ! (masterComponentList.get(m)); // Make new component object

! ! ! ! ! thisForwCompList.add(thisComponent); // Add choice to list

! ! ! ! } // end if

! ! ! } // end for

! ! ! ! ! ! !

! ! ! if (thisForwCompList.size() > 0) {

! ! ! ! forwardChoices.add(thisForwCompList); // Add choice list to list of all forward

! ! ! ! ! ! ! ! choices

! ! ! } // end if

! ! } // end for

! ! ! ! ! !

! ! ArrayList<ArrayList> reverseChoices = new ArrayList<ArrayList>(); // Initialize array to hold lists

! ! ! ! ! ! ! ! of choices for all reverse DSM

! ! ! ! ! !

! ! for (int p = 0; p < reverseDSMList.size(); p++) { // For each reverse DSM for this function

! ! ! ArrayList<ComponentInfo> thisRevCompList = new ArrayList<ComponentInfo>();

! ! ! ! // Make list of choices for current reverse DSM

! ! ! int[][] tempDSM = (int[][])reverseDSMList.get(p); // Get next DSM in the list

! ! ! ! ! ! !

! ! ! for (int m = 0; m < tempDSM[0].length; m++) { // For each DSM column

! ! ! ! int colAddition = 0; // Initialize variable

! ! ! ! ! ! ! !

! ! ! ! for (int n = 0; n < tempDSM.length; n++) { // For each DSM row

! ! ! ! ! colAddition += tempDSM[n][m]; // Add column into a single variable

! ! ! ! } // end for

! ! ! ! ! ! ! !

! ! ! ! if (colAddition > 0) { // If there is a successful component pair in this

! ! ! ! ! ! column

! ! ! ! ! ComponentInfo thisComponent = new ComponentInfo

! ! ! ! ! ! (masterComponentList.get(m)); // Make new component object

! ! ! ! ! thisRevCompList.add(thisComponent); // Add choice to list

! ! ! ! } // end if

! ! ! } // end for

! ! ! ! ! ! !

! ! ! if (thisRevCompList.size() > 0) {

! ! ! ! reverseChoices.add(thisRevCompList); // Add choice list to list of all reverse

! ! ! ! ! ! ! ! choices

! ! ! } // end if

! ! } // end for

! ! ! ! ! !

! ! ArrayList<ComponentInfo> choiceList = new ArrayList<ComponentInfo>();

! ! ! // List of component choices to be set for current function

! ! int numConnections = forwardChoices.size() + reverseChoices.size(); // Number of occurrences needed

! ! ! ! ! ! ! ! ! for each component

! ! ! ! ! !

! ! for (String nextComponent : masterComponentList) {

! ! ! int occurrences = 0; // Initialize variable to count number of component matches

! ! ! ! ! ! !

! ! ! for (ArrayList<ComponentInfo> nextForwardList : forwardChoices) {

! ! ! ! for (ComponentInfo nextForward : nextForwardList) {

! ! ! ! ! if (nextForward.getComponent().equals(nextComponent)) {

! ! ! ! ! ! occurrences += 1; // Increment the number of occurrences

175

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! ! ! for (ArrayList<ComponentInfo> nextReverseList : reverseChoices) {

! ! ! ! for (ComponentInfo nextReverse : nextReverseList) {

! ! ! ! ! if (nextReverse.getComponent().equals(nextComponent)) {

! ! ! ! ! ! occurrences += 1; // Increment the number of occurrences

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! ! ! if (occurrences == numConnections and numConnections != 0) { // If the component is a

match ! ! ! ! ! ! ! ! ! for all links

! ! ! ! choiceList.add(new ComponentInfo(nextComponent)); // Add component to the

! ! ! ! ! ! ! ! ! choice list

! ! ! } // end if

! ! } // end for

! ! if (choiceList.isEmpty()) {

! ! ! ComponentInfo noSolution = new ComponentInfo("?");

! ! ! choiceList.add(noSolution); // Add question mark indicator

! ! ! functionsWithoutSolutions.add(function.getID()); // Add function ID to list of functions

! ! ! ! ! ! ! ! without solutions

! ! } // end if

! ! function.setChoices(choiceList);

! } // end for

! /* Build component link lists--- */

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

! ! Subfunction function = fmLinks.get(j); // Get function

! ! ArrayList<int[][]> forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs

! ! ArrayList<int[][]> reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs

! ! ArrayList<ComponentInfo> allChoices = function.getChoices(); // Get all component choices

! ! for (ComponentInfo nextChoice : allChoices) { // For each component choice

! ! ! int componentIndex = masterComponentList.indexOf(nextChoice.getComponent()); // Get DSM

! ! ! ! ! ! ! ! ! ! ! index

! ! !

! ! ! if (componentIndex >= 0) {

! ! ! ! for (int[][] tempDSM : forwardDSMList) { // For each forward DSM for this

! ! ! ! ! ! ! ! function

! ! ! ! ! ArrayList<String> foreLink = new ArrayList<String>();

! ! ! ! ! ! // Temp holder for fore links

!

! ! ! ! ! for (int n = 0; n < tempDSM[componentIndex].length; n++) {

! ! ! ! ! ! // For each DSM column in the index row

! ! ! ! ! ! if (tempDSM[componentIndex][n] != 0) {

! ! ! ! ! ! ! // If there is a link between components

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! foreLink.add(masterComponentList.get(n));

! ! ! ! ! ! ! ! // Add component to forward link list

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! if (foreLink.isEmpty()) {

! ! ! ! ! ! foreLink.add("unknown");

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! nextChoice.addForwardLinks(foreLink); // Add array to link list

! ! ! ! } // end for

! ! ! ! for (int[][] tempDSM : reverseDSMList) { // For each reverse DSM for this

! ! ! ! ! ! ! ! function

! ! ! ! ! ArrayList<String> revLink = new ArrayList<String>();

! ! ! ! ! ! // Temp holder for reverse links

! ! ! ! !

! ! ! ! ! for (int n = 0; n < tempDSM.length; n++) { // For each DSM row in the

! ! ! ! ! ! ! ! ! index column

! ! ! ! ! ! if (tempDSM[n][componentIndex] != 0) {

! ! ! ! ! ! ! // If there is a link between components

! ! ! ! ! ! ! revLink.add(masterComponentList.get(n));

! ! ! ! ! ! ! ! // Add component to reverse link list

176

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! if (revLink.isEmpty()) {

! ! ! ! ! ! revLink.add("unknown");

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! nextChoice.addReverseLinks(revLink); // Add array to link list

! ! ! ! } // end for

! ! ! } else {

! ! ! ! ArrayList<String> foreLink = new ArrayList<String>(); // Temp holder for fore

! ! ! ! ! ! ! ! ! links

! ! ! ! foreLink.add("unknown");

! ! ! ! nextChoice.addForwardLinks(foreLink); // Add array to link list

! ! ! !

! ! ! ! ArrayList<String> revLink = new ArrayList<String>(); // Temp holder for reverse

! ! ! ! ! ! ! ! ! links

! ! ! ! revLink.add("unknown");

! ! ! ! nextChoice.addReverseLinks(revLink); // Add array to link list

! ! ! } // end if

! ! } // end for

! !

! ! ArrayList<Integer> forwardConns = function.getForward(); // Get forward connections

! ! ArrayList<Integer> reverseConns = function.getReverse(); // Get reverse connections

! ! ArrayList<ComponentInfo> choiceList = function.getChoices(); // Get list of choices

! ! ! ! ! !

! ! if (forwardConns.contains(-20)) { // If there are no forward connections because of an out port

! ! ! for (ComponentInfo choice : choiceList) { // Set all component forward links as system

! ! ! ! ! ! ! outs

! ! ! ! ArrayList<String> foreport = new ArrayList<String>();

! ! ! ! ArrayList<ArrayList<String>> foreports = new ArrayList<ArrayList<String>>();

! ! ! ! foreport.add("out");

! ! ! ! foreports.add(foreport);

! ! ! ! choice.setForwardLinks(foreports);

! ! ! } // end for

! ! } // end if

! !

! ! if (reverseConns.contains(-10)) { // If there are no reverse connections because of an in port

! ! ! for (ComponentInfo choice : choiceList) { // Set all component forward links as system

! ! ! ! ! ! ! ins

! ! ! ! ArrayList<String> aftport = new ArrayList<String>();

! ! ! ! ArrayList<ArrayList<String>> aftports = new ArrayList<ArrayList<String>>();

! ! ! ! aftport.add("in");

! ! ! ! aftports.add(aftport);

! ! ! ! choice.setReverseLinks(aftports);

! ! ! } // end for

! ! } // end if

! } // end for

End shifted indentation

! ! ! ! ! buildOutputGUI();

! ! ! ! } else {

! ! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error: FCM and DSM matrices

! ! ! ! ! ! ! ! are not compatible.\nPlease choose

! ! ! ! ! ! ! ! compatible files.");

! ! ! ! ! ! ! ! // Error dialog box

! ! ! ! } // end if

! ! ! } // end if

! ! } // end actionPerformed

! } // end goButtonListener

!

! /*---

! * Builds the graphical user interface for the user input into the concept generation program

! *---*/

! private void buildOutputGUI() {

! !

! ! fullCompArray.clear(); // Clear button array

! ! removeButtons.clear(); // Clear button array

! ! selectedFields.clear(); // Clear textfield array

! !

! ! if (resultFrame != null) { // If an old result frame exists

! ! ! resultFrame.dispose(); // Get rid of old result frame before generating a new one

! ! }

177

! !

! ! /* Define and Initialize variables --*/

! ! resultFrame = new JFrame();

! ! resultBackground = new JPanel();

!

! ! JPanel step4Panel = new JPanel(), headerPanel = new JPanel(), resultsPanel = new JPanel();

! ! JTextField selectedComponentLabel = new JTextField(), blankLabel = new JTextField();

! ! JTextField subFunctionLabel = new JTextField(), componentLabel = new JTextField();

! ! JScrollPane resultsScrollPane = new JScrollPane();

! !

! ! /* resultFrame --*/

! ! {

! ! ! resultFrame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

! ! ! resultFrame.setResizable(true);

! ! ! Container resultFrameContentPane = resultFrame.getContentPane();

! ! ! resultFrameContentPane.setLayout(new BorderLayout(10, 10));

! ! ! /* resultBackground ---*/

! ! ! {

! ! ! ! resultBackground.setBorder(new EmptyBorder(10, 10, 10, 10));

! ! ! ! resultBackground.setBackground(lightblue);

! ! ! ! resultBackground.setLayout(new BoxLayout(resultBackground, BoxLayout.Y_AXIS));

! ! ! ! /* step4Panel ---*/

! ! ! ! {

! ! ! ! ! step4Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 4: Build and evaluate conceptual

! ! ! ! ! ! ! solutions."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step4Panel.setBackground(lightblue);

! ! ! ! ! step4Panel.setLayout(new BorderLayout());

! ! ! ! ! /* headerPanel --*/

! ! ! ! ! {

! ! ! ! ! ! headerPanel.setMinimumSize(new Dimension(427, 35));

! ! ! ! ! ! headerPanel.setMaximumSize(new Dimension(427, 35));

! ! ! ! ! ! headerPanel.setLayout(new BoxLayout(headerPanel,

! ! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! ! ! /* selectedComponentLabel -------------------------------*/

! ! ! ! ! ! selectedComponentLabel.setText("Selected");

! ! ! ! ! ! selectedComponentLabel.setBorder(new EmptyBorder(0,0,0,0));

! ! ! ! ! ! selectedComponentLabel.setHorizontalAlignment

! ! ! ! ! ! ! (SwingConstants.CENTER);

! ! ! ! ! ! selectedComponentLabel.setMaximumSize(new Dimension(155,

! ! ! ! ! ! ! ! ! ! ! 35));

! ! ! ! ! ! selectedComponentLabel.setPreferredSize(new Dimension(155,

! ! ! ! ! ! ! ! ! ! ! 35));

! ! ! ! ! ! selectedComponentLabel.setMinimumSize(new Dimension(155,

! ! ! ! ! ! ! ! ! ! ! 35));

! ! ! ! ! ! selectedComponentLabel.setBackground(darkblue);

! ! ! ! ! ! selectedComponentLabel.setFocusable(false);

! ! ! ! ! ! selectedComponentLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(selectedComponentLabel);

! ! ! ! ! ! /* blankLabel ---*/

! ! ! ! ! ! blankLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! blankLabel.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! ! blankLabel.setMaximumSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setPreferredSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setMinimumSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setBackground(darkblue);

! ! ! ! ! ! blankLabel.setFocusable(false);

! ! ! ! ! ! blankLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(blankLabel);

! ! ! ! ! ! /* subFunctionLabel -------------------------------------*/

! ! ! ! ! ! subFunctionLabel.setText("Subfunctions");

! ! ! ! ! ! subFunctionLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! subFunctionLabel.setHorizontalAlignment

! ! ! ! ! ! ! ! (SwingConstants.CENTER);

! ! ! ! ! ! subFunctionLabel.setMaximumSize(new Dimension(155, 35));

178

! ! ! ! ! ! subFunctionLabel.setMinimumSize(new Dimension(155, 35));

! ! ! ! ! ! subFunctionLabel.setPreferredSize(new Dimension(155, 35));

! ! ! ! ! ! subFunctionLabel.setBackground(darkblue);

! ! ! ! ! ! subFunctionLabel.setFocusable(false);

! ! ! ! ! ! subFunctionLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(subFunctionLabel);

! ! ! ! ! ! /* componentLabel ---------------------------------------*/

! ! ! ! ! ! componentLabel.setText("Component Solutions -->");

! ! ! ! ! ! componentLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! componentLabel.setBackground(darkblue);

! ! ! ! ! ! componentLabel.setFocusable(false);

! ! ! ! ! ! componentLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(componentLabel);

! ! ! ! ! }

! ! ! ! ! step4Panel.add(headerPanel, BorderLayout.NORTH);

! ! ! ! ! /* resultsScrollPane --*/

! ! ! ! ! {

! ! ! ! ! ! int boxHeight = 30, boxWidth = 150;

! ! ! ! ! ! int spaceTall = 80;

! ! ! ! ! ! int scrollPaneHeight = 400, scrollPaneWidth = 1000;

! ! ! ! ! ! int scrollPanelHeight = spaceTall*(fmArray.size()-1),

! ! ! ! ! ! scrollPanelWidth = 1000;

! ! ! ! ! ! int compScrollPaneHeight = spaceTall;

! ! ! ! ! ! int compScrollPaneWidth = 600;

! ! ! ! ! ! rowPanelHeight = spaceTall, rowPanelWidth = 1000;

! ! ! ! ! !

! ! ! ! ! ! resultsScrollPane.setHorizontalScrollBarPolicy

! ! ! ! ! ! ! (ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

! ! ! ! ! ! resultsScrollPane.setMinimumSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

! ! ! ! ! ! resultsScrollPane.setMaximumSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

! ! ! ! ! ! resultsScrollPane.setPreferredSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! ! /* resultsPanel ---*/

! ! {

! ! ! resultsPanel.setMinimumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setMaximumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setPreferredSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setLayout(new BoxLayout(resultsPanel, BoxLayout.Y_AXIS));

! ! !

! ! ! /* Populate panels ----------------------------*/

! ! ! for (int i = 0; i < fmLinks.size(); i++) {

! ! ! ! Subfunction tempFunction = fmLinks.get(i);

! ! ! ! /* Full row panel -------------------*/

! ! ! ! JPanel rowPanel = new JPanel();

! ! ! ! rowPanel.setMinimumSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setMaximumSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setPreferredSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setLayout(new BoxLayout(rowPanel, BoxLayout.X_AXIS));

! ! ! !

! ! ! ! {

! ! ! ! ! /* Component selections ---*/

! ! ! ! ! JTextField selectedComponent = new JTextField();

! ! ! ! ! selectedComponent.setBackground(Color.white);

! ! ! ! ! selectedComponent.setAutoscrolls(false);

! ! ! ! ! selectedComponent.setBorder(new BevelBorder(BevelBorder.LOWERED));

! ! ! ! ! selectedComponent.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! selectedComponent.setMinimumSize(new Dimension(boxWidth, boxHeight));

! ! ! ! ! selectedComponent.setMaximumSize(new Dimension(boxWidth, boxHeight));

! ! ! ! ! selectedComponent.setPreferredSize(new Dimension(boxWidth,

! ! ! ! ! ! ! ! ! boxHeight));

! ! ! ! ! selectedComponent.setText("None");

! ! ! ! ! selectedComponent.setEditable(false);

! ! ! ! ! selectedFields.add(selectedComponent);

! ! ! ! !

179

! ! ! ! ! /* Remove buttons ---*/

! ! ! ! ! JButton removeButton = new JButton();

! ! ! ! ! removeButton.setText("Remove");

! ! ! ! ! removeButton.addActionListener(new removeButtonListener());

! ! ! ! ! removeButtons.add(removeButton);

! ! ! ! !

! ! ! ! ! /* Subfunction fields ---*/

! ! ! ! ! JPanel subFunctionPanel = new JPanel();

! ! ! ! ! subFunctionPanel.setBorder(new EmptyBorder(20,5,5,0));

! ! ! ! ! subFunctionPanel.setLayout(new BoxLayout(subFunctionPanel,

! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! JTextArea subFunction = new JTextArea();

! ! ! ! ! subFunction.setAutoscrolls(false);

! ! ! ! ! subFunction.setLineWrap(true);

! ! ! ! ! subFunction.setWrapStyleWord(true);

! ! ! ! ! subFunction.setMinimumSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setMaximumSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setOpaque(false);

! ! ! ! ! subFunction.setText(tempFunction.getSub());

! ! ! ! ! subFunction.setPreferredSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setEditable(false);

! ! ! ! ! subFunctionPanel.add(subFunction);

! ! ! ! !

! ! ! ! ! /* compScrollPane ---*/

! ! ! ! ! JScrollPane compScrollPane = new JScrollPane();

! ! ! ! ! compScrollPane.setVerticalScrollBarPolicy

! ! ! ! ! ! (ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER);

! ! ! ! ! compScrollPane.setMinimumSize(new Dimension(compScrollPaneWidth,

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! compScrollPane.setMaximumSize(new Dimension(compScrollPaneWidth,

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! compScrollPane.setPreferredSize(new Dimension(compScrollPaneWidth,

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! !

! ! ! ! ! /* Component fields ---*/

! ! ! ! ! ArrayList<JButton> componentArray = new ArrayList<JButton>();

! ! ! ! ! ArrayList components = tempFunction.getChoices();

! ! ! ! ! int numComps = components.size();

! ! ! ! ! int compPanelHeight = boxHeight,

! ! ! ! ! compPanelWidth = boxWidth * numComps;

! ! ! ! !

! ! ! ! ! /* Component row panel --*/

! ! ! ! ! JPanel compRowPanel = new JPanel();

! ! ! ! ! compRowPanel.setMinimumSize(new Dimension(compPanelWidth,

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setMaximumSize(new Dimension(compPanelWidth,

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setPreferredSize(new Dimension(compPanelWidth,

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setLayout(new BoxLayout(compRowPanel,

! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! !

! ! ! ! ! for (int j = 0; j < components.size(); j++) {

! ! ! ! ! ! JButton component = new JButton();

! ! ! ! ! ! ComponentInfo nextComp = (ComponentInfo) components.get(j);

! ! ! ! ! ! ! // Get next component in list

! ! ! ! ! ! component.setText(nextComp.getComponent());

! ! ! ! ! ! component.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! ! component.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! (Cursor.HAND_CURSOR));

! ! ! ! ! ! component.setMinimumSize(new Dimension(95, 35));

! ! ! ! ! ! component.setMaximumSize(new Dimension(150, 35));

! ! ! ! ! ! component.addActionListener(new selectComponentListener());

! ! ! ! ! ! compRowPanel.add(component);

! ! ! ! ! ! componentArray.add(component);

! ! ! ! ! }

! ! ! ! ! compScrollPane.setViewportView(compRowPanel);

! ! ! ! ! fullCompArray.add(componentArray);

! ! ! ! ! rowPanel.add(selectedComponent);

! ! ! ! ! rowPanel.add(removeButton);

! ! ! ! ! rowPanel.add(subFunctionPanel);

! ! ! ! ! rowPanel.add(compScrollPane);

180

! ! ! ! }! !

! ! ! ! resultsPanel.add(rowPanel);

! ! ! } // end for loop

! ! }

End shifted indentation

! ! ! ! ! ! resultsScrollPane.setViewportView(resultsPanel);

! ! ! ! ! }

! ! ! ! ! step4Panel.add(resultsScrollPane, BorderLayout.CENTER);

! ! ! ! }

! ! ! ! resultBackground.add(step4Panel);

! ! ! }

! ! ! resultFrameContentPane.add(resultBackground, BorderLayout.CENTER);

! ! ! resultFrame.pack();

! ! ! resultFrame.setLocationRelativeTo(resultFrame.getOwner());

! ! ! resultFrame.setVisible(true);

! ! } // end resultsFrame

! } // end buildOutputGUI()

!

! /*---

! * Listener to register any component selection click:

! *! 1. Determines which component was selected

! *! 2. Deselects other components for that function

! *! 3. Updates the results displayed

! *---*/

! private class selectComponentListener implements ActionListener {

! ! public void actionPerformed(ActionEvent select) {

! ! ! Object source = select.getSource(); // Determines button selection that triggered the

! ! ! ! ! ! listener

! ! ! int functionNum = -1; // Initialize function number

! ! ! String selectedComponent = null; // Initialize selected component

! ! !

! ! ! // Determine which component button was selected

! ! ! for (ArrayList<JButton> compButtonList : fullCompArray) {

! ! ! ! for (JButton compButton : compButtonList) {

! ! ! ! ! if (compButton == source) {

! ! ! ! ! ! functionNum = fullCompArray.indexOf(compButtonList);

! ! ! ! ! ! JTextField updateSelect = selectedFields.get(functionNum);

! ! ! ! ! ! selectedComponent = compButton.getText();

! ! ! ! ! ! updateSelect.setText(selectedComponent);

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! !

! ! ! // Deselect other components for that function

! ! ! ArrayList<JButton> desButtonList = fullCompArray.get(functionNum);

! ! !

! ! ! for (JButton desButton : desButtonList) { // For each component choice for this function

! ! ! ! if (desButton.getText() != selectedComponent) { // If the component is not the

! ! ! ! ! ! ! ! ! one that was selected

! ! ! ! ! desButton.setEnabled(false); // Deactivate the button

! ! ! ! } // end if

! ! ! } // end for

! ! ! updateResults(); // Refresh output to eliminate incompatible choices

! ! !

! ! } // actionPerformed

! } // end componentSelectedListener

!

! /*---

! * Listener to register any remove button activation:

! *! 1. Determines which textfield was selected

! *! 2. Reactivates other components for that function

! *! 3. Updates the results displayed

! *---*/

! private class removeButtonListener implements ActionListener {

! ! public void actionPerformed(ActionEvent remove) {

! ! ! Object source = remove.getSource(); // Determines textfield selection that triggered the

! ! ! ! ! ! listener

! ! ! int functionNum = -1; // Initialize function number

! ! !

181

! ! ! // Determine which remove button was selected

! ! ! for (JButton removeButton : removeButtons) {

! ! ! ! if (removeButton == source) {

! ! ! ! ! functionNum = removeButtons.indexOf(removeButton);

! ! ! ! ! ! // Get index of function that had the component removed

! ! ! ! ! JTextField updateSelect = selectedFields.get(functionNum);

! ! ! ! ! ! // Get text field for selected component

! ! ! ! ! updateSelect.setText("None"); // Update text field to remove

! ! ! ! ! ! ! ! component choice

! ! ! ! } // end if

! ! ! } // end for

! ! !

! ! ! for (JTextField nextSelected : selectedFields) { // For each selected text field

! ! ! ! if (nextSelected.getText().equalsIgnoreCase("None")) {

! ! ! ! ! // If there is no component selected

! ! ! ! ! int selectedIndex = selectedFields.indexOf(nextSelected);

! ! ! ! ! ! // Get index of current selection text field

! ! ! ! ! ArrayList<JButton> nextComponentList = fullCompArray.get

! ! ! ! ! ! (selectedIndex); // Get corresponding component button list

! ! ! ! !

! ! ! ! ! for (JButton nextComponent : nextComponentList) {

! ! ! ! ! ! // For each component GUI button

! ! ! ! ! ! nextComponent.setEnabled(true); // Activate button

! ! ! ! ! } // end for

! ! ! ! } // end if

! ! ! } // end for

! ! !

! ! ! updateResults(); // Refresh output to eliminate incompatible choices

! ! !

! ! } // end actionPerformed

! } // end remove Button Listener

!

! /*---

! * Updates the graphical user interface for the interactive output frame by eliminating

! * incompatible choices.

! *---*/

! private void updateResults() {

! ! boolean change = false;

! ! do {

! ! ! change = false;! ! !

! ! ! for (int i = 0; i < fmLinks.size(); i++) { // For each subfunction

! ! ! ! Subfunction f = fmLinks.get(i); // Get next subfunction

! ! ! ! ArrayList<ComponentInfo> choicesForF = f.getChoices();

! ! ! ! ! // Get list of component choices for this subfunction

! ! ! ! ArrayList<Integer> fConnections = f.getForward(); // Get forward connected

! ! ! ! ! ! ! ! ! functions

! ! ! ! ArrayList<Integer> aConnections = f.getReverse(); // Get reverse connected

! ! ! ! ! ! ! ! ! functions

! ! ! ! JTextField selectedField = selectedFields.get(i);

! ! ! ! ! // Get selected component text field for this function

! ! ! ! ArrayList<JButton> componentButtonList = fullCompArray.get(i);

! ! ! ! ! // GUI buttons for this function's components

! ! ! ! ArrayList<String> activeValidForeComps = new ArrayList<String>();

! ! ! ! ! // List of active valid components from forward connections

! ! ! ! ArrayList<String> activeValidAftComps = new ArrayList<String>();

! ! ! ! ! // List of active valid components from reverse connections

! ! ! !

! ! ! ! if (selectedField.getText().equalsIgnoreCase("None")) {

! ! ! ! ! // If a component has not yet been selected for the current component

! ! ! ! ! for (int fConnectID : fConnections) { // For each forward connected

! ! ! ! ! ! ! ! ! function

! ! ! ! ! ! if (fConnectID > 0) { // If the forward connection is not

! ! ! ! ! ! ! ! an out port

! ! ! ! ! ! ! ArrayList<JButton> nextForwardButtons =

! ! ! ! ! ! ! ! fullCompArray.get(fConnectID-1);

! ! ! ! ! ! ! ! // Get GUI button array for next

! ! ! ! ! ! ! ! forward connected function

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! ! ! for (JButton nextForwardButton :

182

! ! ! ! nextForwardButtons) { // For each GUI button

! ! ! ! if (nextForwardButton.isEnabled()) { // If the button is still active

! ! ! ! ! String componentText = new String();

! ! ! ! ! ! ! ! !

! ! ! ! ! if (nextForwardButton.getText() == "?") { // If forward component is

! ! ! ! ! ! ! ! ! unknown

! ! ! ! ! ! componentText = "unknown"; // Set text to "unknown"

! ! ! ! ! } else {

! ! ! ! ! ! componentText = nextForwardButton.getText();

! ! ! ! ! ! ! // Set text to button text

! ! ! ! ! } // end if

! ! ! ! ! ! ! ! !

! ! ! ! ! if (!activeValidForeComps.contains(componentText)) {

! ! ! ! ! ! // If component name is not already in the list

! ! ! ! ! ! activeValidForeComps.add(componentText);

! ! ! ! ! ! ! // Add the active valid component to the list

! ! ! ! ! } // end if

! ! ! ! } // end if

! ! ! } // end for

! ! } // end if

! } // end for

!

! for (int aConnectID : aConnections) { // For each reverse connected function

! ! if (aConnectID > 0) { // If the reverse connection is not an in port

! ! ! ArrayList<JButton> nextReverseButtons = fullCompArray.get(aConnectID-1);

! ! ! ! // Get GUI button array for next reverse connected function

! ! !

! ! ! for (JButton nextReverseButton : nextReverseButtons) { // For each GUI button

! ! ! ! if (nextReverseButton.isEnabled()) { // If the button is still active

! ! ! ! ! String componentText = new String();

! ! !

! ! ! ! ! if (nextReverseButton.getText() == "?") { // If forward component is

! ! ! ! ! ! ! ! ! unknown

! ! ! ! ! ! componentText = "unknown"; // Set text to "unknown"

! ! ! ! ! } else {

! ! ! ! ! ! componentText = nextReverseButton.getText();

! ! ! ! ! ! ! // Set text to button text

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! if (!activeValidAftComps.contains(componentText)) {

! ! ! ! ! ! // If component name is not already in the list

! ! ! ! ! ! activeValidAftComps.add(componentText);

! ! ! ! ! ! ! // Add the active valid component to the list

! ! ! ! ! } // end if

! ! ! ! } // end if

! ! ! } // end for

! ! } // end if

! } // end for

! for (int j = 0; j < choicesForF.size(); j++) { // For each component choice in the current function's choice

! ! ! ! ! ! list

! ! ComponentInfo choice = choicesForF.get(j); // Get next component choice

! ! JButton choiceButton = componentButtonList.get(j); // Get component GUI button

! ! ArrayList<ArrayList<String>> foreLinks = choice.getForwardLinks(); // Get the component's forward

! ! ! ! ! ! ! ! links

! ! ArrayList<ArrayList<String>> aftLinks = choice.getReverseLinks(); // Get the component's reverse

! ! ! ! ! ! ! ! links

! !

! ! boolean noValidForeLinks = true;

! ! boolean outport = false;

! ! for (ArrayList<String> nextForeLinks : foreLinks) { // For each valid forward component link list

! ! ! ! ! ! ! for current component

! ! ! for (String nextForeLink : nextForeLinks) { // For each valid forward component for

! ! ! ! ! ! ! current component

! ! ! ! for (String validForeLink : activeValidForeComps) {

! ! ! ! ! // Compare against each active valid forward component

! ! ! ! ! if (nextForeLink.equalsIgnoreCase(validForeLink)) {

! ! ! ! ! ! // If there is a matching active link

! ! ! ! ! ! noValidForeLinks = false; // Change boolean value

! ! ! ! ! } // end if

! ! ! ! } // end for

183

! ! ! ! if (nextForeLink == "out") { // Check for an out port

! ! ! ! ! outport = true; // Change boolean value

! ! ! ! } // end if

! ! ! ! if (nextForeLink == "unknown" and nextForeLinks.size() == 1) {

! ! ! ! ! noValidForeLinks = false; // Change boolean value

! ! ! ! }

! ! ! } // end for

! ! } // end for

! !

! ! if (foreLinks.size() == 1 and noValidForeLinks and outport) { // If there is only one output, no

valid

! ! ! ! ! ! ! ! links, and the output is an out port

! ! ! noValidForeLinks = false; // Change boolean value

! ! }

! !

! ! boolean noValidAftLinks = true;

! ! boolean inport = false;

! ! for (ArrayList<String> nextAftLinks : aftLinks) { // For each valid reverse component link list for

! ! ! ! ! ! ! current component

! ! ! for (String nextAftLink : nextAftLinks) { // For each valid reverse component for current

! ! ! ! ! ! ! component

! ! ! ! for (String validAftLink : activeValidAftComps) { // Compare against each

! ! ! ! ! ! ! ! ! active valid reverse

! ! ! ! ! ! ! ! ! component

! ! ! ! ! if (nextAftLink.equalsIgnoreCase(validAftLink)) { // If there is a

! ! ! ! ! ! ! ! ! ! matching active

! ! ! ! ! ! ! ! ! ! link

! ! ! ! ! ! noValidAftLinks = false; // Change boolean value

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! ! if (nextAftLink == "in") { // Check for an in port

! ! ! ! ! inport = true; // Change boolean value

! ! ! ! } // end if

! ! ! !

! ! ! ! if (nextAftLink == "unknown" and nextAftLinks.size() == 1) {

! ! ! ! ! noValidAftLinks = false; // Change boolean value

! ! ! ! }

! ! ! } // end for

! ! } // end for

! !

! ! if (aftLinks.size() == 1 and noValidAftLinks and inport) { // If there is only one input, no valid

! ! ! ! ! ! ! links, and the input is an in port

! ! ! noValidAftLinks = false; // Change boolean value

! ! }

! !

! ! if ((noValidForeLinks | noValidAftLinks)andchoiceButton.getText() !="?" and choiceButton.isEnabled

()) {

! ! ! // If the current component has no active forward or reverse links

! ! ! choiceButton.setEnabled(false); // Deactivate the component

! ! ! //change = true; // Indicate a change has been made

! ! } // end if

! } // end for! ! !

} // end if

End shifted indentation

! ! ! } // end for

! ! } while (change);

! } // end updateResults

} // end ConGenV2_0

--end ‘ConGen.java’ code --------------------------------------

184

------------------------------------start ‘Subfunction.java’ code ------------------------------------
package edu.umr.ide;

import java.util.ArrayList;

public class Subfunction {

! int id = -1; // Unique assigned to the subfunction

! String functionLabel = null; // Subfunction label from functional model

! ArrayList<Integer> forwardConnect = new ArrayList<Integer>(); // Other subfunction ids that this subfunction

! ! ! ! ! ! ! connects to

! ArrayList<Integer> reverseConnect = new ArrayList<Integer>(); // Other subfunction ids that are connected to

! ! ! ! ! ! ! this subfunction

! ArrayList<int[][]> forwardDSMs = new ArrayList<int[][]>(); // Collection of forward DSMs for this function

! ArrayList<int[][]> reverseDSMs = new ArrayList<int[][]>(); // Collection of reverse DSMs for this function

! ArrayList<ComponentInfo> choices = new ArrayList<ComponentInfo>(); // Component choices to fulfil this

! ! ! ! ! ! ! ! function

!

! public Subfunction() {

! ! id = -1; // Set id

! ! functionLabel = null; // Set label

! }

! public Subfunction(int functID, String funct) {

! ! id = functID; // Set id

! ! functionLabel = funct; // Set label

! }

!

! public int getID() {

! ! return id;

! }

!

! public String getSub() {

! ! return functionLabel;

! }

!

! public void setForward(ArrayList<Integer> forward) {

! ! forwardConnect = forward;

! }

!

! public ArrayList<Integer> getForward() {

! ! return forwardConnect;

! }

!

! public void setReverse(ArrayList<Integer> reverse) {

! ! reverseConnect = reverse;

! }

!

! public ArrayList<Integer> getReverse() {

! ! return reverseConnect;

! }

!

! public void setForwardDSMs(ArrayList<int[][]> dsm) {

! ! forwardDSMs = dsm;

! }

!

! public ArrayList<int[][]> getForwardDSMs() {

! ! return forwardDSMs;

! }

!

! public void addForwardDSM(int[][] singleDSM) {

! ! forwardDSMs.add(singleDSM); // Add single DSM to array

! }

!

! public void setReverseDSMs(ArrayList<int[][]> dsm) {

! ! reverseDSMs = dsm;

! }

!

! public ArrayList<int[][]> getReverseDSMs() {

! ! return reverseDSMs;

! }

!

! public void addReverseDSM(int[][] singleDSM) {

185

! ! reverseDSMs.add(singleDSM); // Add single DSM to array

! }

!

! public ArrayList<ComponentInfo> getChoices() {

! ! return choices;

! }

!

! public void setChoices(ArrayList<ComponentInfo> newChoices) {

! ! choices = newChoices;

! }

!

! public void addChoice(ComponentInfo choiceToAdd) {

! ! choices.add(choiceToAdd);

! }

!

! public void removeChoice(int removeIndex) {

! ! choices.remove(removeIndex);

! }

} // end Subfunction

-------------------------------------end ‘Subfunction.java’ code ------------------------------------

186

----------------------------------start ‘ComponentInfo.java’ code ----------------------------------
package edu.umr.ide;

import java.util.ArrayList;

public class ComponentInfo {

! String componentName; // Component label

! ArrayList<ArrayList<String>> forwardLinks = new ArrayList<ArrayList<String>>();

! ! // Components that this component is forward linked to

! ArrayList<ArrayList<String>> reverseLinks = new ArrayList<ArrayList<String>>();

! ! // Components that this component is reverse linked to

! // Establish constructors!

! public ComponentInfo() {

! ! componentName = "?"; // Default component name

! }

!

! public ComponentInfo(String label) {

! ! componentName = label; // Set component name to the label input

! }

!

!

! // Methods for retrieving general component information

! public String getComponent() {

! ! return componentName; // Return the name of the component

! }

!

! public ArrayList<ArrayList<String>> getForwardLinks() {

! ! return forwardLinks; // Return the array of components that are forward linked this component

! }!

!

! public ArrayList<ArrayList<String>> getReverseLinks() {

! ! return reverseLinks; // Return the array of components that are forward linked this component

! }

!

! // Methods for establishing general component information

! public void setComponent(String label) {

! ! componentName = label; // Sets the name of the component

! }

!

! public void setForwardLinks(ArrayList<ArrayList<String>> links) {

! ! forwardLinks = links; // Set the forward links for this component

! }

!

! public void setReverseLinks(ArrayList<ArrayList<String>> links) {

! ! reverseLinks = links; // Set the forward links for this component

! }

!

!

! // Methods for adding to existing component information

! public void addForwardLinks(ArrayList<String> forelinks) {

! ! forwardLinks.add(forelinks); // Add to forwardLinks list

! }

! !

! public void addReverseLinks(ArrayList<String> revlinks) {

! ! reverseLinks.add(revlinks); // Add to reverseLinks list

! }

} // end ComponentInfo

----------------------------------end ‘ComponentInfo.java’ code -----------------------------------

APPENDIX B

Component Templates

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

APPENDIX C

Hierarchical Component Term List

224

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Brancher

Separator

Abrasive
A device or material that uses texture on a surface to remove any portion of a firm (non-

fluid) material.

Blade
A device or material consisting of a broad flat or concave edge used to separate a firm

(non-fluid) material.

Centrifuge
A device that uses centrifugal force via a rapidly rotating container to separate fluid

materials.

Divider A device that divides a material into smaller separate areas.

Material Filter
A device or material consisting of a pattern of holes, slits, or pores used to separate

constituents of a fluid mixture.

Permeable Membrane
A material filter that uses a fine, porous, flexible material to separate particles from the

surrounding mixture.

Rake
A material filter that uses a series of parallel slits or tines to separate particles from the

surrounding mixture.

Screen
A material filter that uses a mesh structure to separate particles from the surrounding

mixture.

Scrub Brush
A device that uses bristles attached to a surface to remove any portion of a firm (non-

fluid) material.

Vibrator
A device that uses frequency oscillations to separate or dislodge a firm (non-fluid)

material.

Distributor

Brush A device that uses bristles to distribute a fluid material over a surface.

Diverter
A device or structure that distributes a flow of material into multiple directions by way of

its geometry.

Electric Distributor A device used to systematically allocate electrical energy along multiple paths.

Nozzle
A device at the end of a pipe, hose, or tube used to distribute a continuous flow of fluid

material.

Channeler

Importer/Exporter

Electric Cord A device used to bring electrical energy into a system from an external receptacle.

Housing
A protective cover primarily used to bring flows into or out of a system that is also

designed to contain or support components within it.

Transferor

Belt
A device shaped as an endless loop of flexible material between two rotating shafts or

pulleys used to transmit mechanical energy.

Carousel A device used to move material in a continuous circular path.

Clutch
A device used to transmit rotational energy between two shafts that may be (dis)engaged

smoothly.

Conveyor A device used to move material in a linear path.

Electric Conductor A device used to transmit electrical energy from one component to another.

Electric Plate An electric conductor in the form of a thin, flat sheet or strip.

Electric Wire An electric conductor in the form of a thin, flexible thread or rod.

Electric Plug
A device in the form of a plug that transmits electrical energy via a detachable connection

with an electric socket.

Electric Socket
A device in the form of a receptacle that transmits electrical energy via a detachable

connection with an electric plug.

EM Transmitter
A device that transmits electromagnetic (EM) signals (such as infrared or RF) over a non-

wired medium.

Component Terms & Definitions

225

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Component Terms & Definitions

Extender
A device that transmits mechanical energy between two elements of any jointed

apparatus as they are drawn away from each other.

Heat Exchanger A device used to transmit heat from one medium to another.

Pipe
A device in the forma of a hollow cylinder that transmits hydraulic or pneumatic energy by

transferring fluid material under pressure.

Projectile A device that transmits mechanical energy by being thrown or propelled through the air.

Rotational Coupler A device used to connect coaxial shafts for power transmission from one to the other.

Shaft
A device in the form of a cylindrical bar used to support rotating pieces or to transmit

power or motion by rotation.

Thermal Conductor A device used to transmit thermal energy from one component to another.

Thermal Plate A thermal conductor in the form of a thin, flat sheet or strip.

Thermal Wire A thermal conductor in the form of a thin, flexible thread or rod.

Guider

Bearing

A device in the form of a sphere or cylinder (or in an arrangement of spheres or cylinders)

that is placed between moving parts to allow them to move easily relative to each other

along a path.

Hinge
A device that allows rigidly connected materials to rotate relative to each other about an

axis, such as the revolution of a lid, valve, gate or door, etc.

Link
A device connecting two or more components that transmits motive power from one part

to another along a specific path.

Sled
A device either under or within a machine used to facilitate the sliding of components

relative to each another along a path.

Tube
A device in the form of a hollow cylinder used to direct a fluid material (that is not under

pressure) along a path.

Connector

Coupler

Clamp
A device used to hold two or more components together that is readily (dis)engageable

without the use of an external tool.

Fastener
A device used to hold two or more components together indefinitely with great effort or

an external tool required to separate the joined components.

Glue A fastener in the form of an adhesive substance.

Key
A fastener in the form of a piece of material that is inserted between other pieces, usually

a pin-, bolt-, or wedge-like artifact fitting into a hole or space.

Nut-Bolt
A fastener in the form of a threaded pin that screws into a usually square or hexagonal

material through a threaded hole.

Retaining Clip A fastener in the form of a brace, band, or clasp.

Rivet
A fastener in the form of a heavy pin having a head at one end with the other end

hammered flat after being passed through holes in the joined pieces.

Screw A fastener in the form of a threaded pin, which does not require a nut to remain secure.

Solder A fastener in the form of a low-melting alloy used to join less fusible metals.

Mixer

Agitator
A device used to maintain fluidity and plasticity, and to prevent segregation of liquids and

solids in liquids, such as concrete and mortar.

Carburetor A device used to mix air with a fine spray of liquid fuel.

Magnitude Controller

Actuator

Door
A device in the form of a movable barrier, usually turning on hinges or sliding in a groove,

and serving to close or open a passage into a space.

226

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Component Terms & Definitions

Electric Switch A device for making or breaking the flow of electrical energy in an electrical circuit.

Latch Release A device that is designed to hold or free a mechanism as required.

Regulator

Potentiometer A device used to adjust the flow of electrical energy in an electric circuit.

Thermostat A device used to adjust temperature by starting or stopping the supply of heat.

Transistor
A semiconductor device with three connections capable of regulating the flow of electrical

energy in an electrical circuit.

Valve
A device by which the flow of a fluid material may be adjusted by opening, shutting, or

partially obstructing one or more ports or passageways.

Varistor A device used to adjust the flow of electrical energy in an electric circuit.

Changer

Capacitor A device used to alter a signal by storing an electrical charge.

Choke A device in the form of a restriction in a pipe that reduces the flow of a fluid material.

Electrical Transformer
A device used to change the voltage of an alternating electric current via a magnetic

coupling between two separate circuits.

Inclined Plane
A device in the form of a surface sloped at an angle to a reference surface, which provides

a mechanical advantage for raising loads.

Inductor A device used to alter a signal by storing energy as a magnetic field.

Lens
A device in the form of a translucent substance used to alter the path of optical energy

transmitted through it.

Lever
A device fixed at a fulcrum and acted on at two other points by two forces, each tending

to cause it to rotate in opposite directions round the fulcrum.

Mechanical Transformer
A device that alters the flow of mechanical energy during the process of transmitting force

and motion between rotating or translating components.

Gear
A mechanical transformer in the form of a disc or plate that transmits mechanical energy

to another device by means of teeth.

Pulley
A mechanical transformer in the form of a wheel or drum fixed on a shaft and turned by a

belt, chain, or strap.

Sprocket A mechanical transformer in the form of a toothed wheel that engages a power chain.

Mold A hollow device used to give shape to a molten or hot fluid when it cools and hardens.

Needle
A device in the form of a slender, usually pointed, rod used to amplify a mechanical

rotation on a dial or other measuring instrument.

Punch A device used to make holes, impress a design, or stamp a die into a firm material.

Resistor
A device that alters the flow of electrical energy by resisting the passage of electrical

current.

Signal Filter A device that alters the frequency spectrum of signals passing through it.

Stuffing A device used to fill up hollows and to fill out or expand the outlines of the body.

Stoppers

Acoustic Insulator A device used to prevent the passage of sound, or vibration.

Cap
A device in the form of a firm material secured to and used to prevent the flow of material

into a hole or aperture.

Check Valve A device that allows a fluid to flow in only one direction.

227

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Component Terms & Definitions

Cover A device that overspreads an object, which is used to hide, defend, or shelter a material.

Cushion
A device in the form of a soft pad or bumper used to prevent the transmission of

mechanical energy from jarring, friction, or pressure.

Diode A semiconductor device which allows current to flow in only one direction.

Electric Insulator A device used to prevent the passage of electrical energy.

Friction Enhancer A device in the form of a material used to reduce heat and increase friction.

Fuse
A device that breaks the flow of electrical energy in an electrical circuit in response to an

excessive current.

Seal
A device used prevent the flow of a fluid material, especially at a place where two

surfaces meet.

Stop
A device in the form of a rigid structure that is automatically activated by a predetermined

displacement to limit the operation of a system.

Thermal Insulator A device used to prevent the passage of thermal energy.

Converter

Material Converter

Catalytic Converter
A device used to chemically transform a harmful gas material into one or more inert

forms.

Condenser A device used to transform a gas material into a liquid material.

Evaporator A device used to transform a liquid material into a gas material.

Energy Converter

Airfoil
A device with curved surfaces used to transform pneumatic energy into translational

energy.

Armature A device used to transform magnetic energy into rotational energy.

Burner A device used to transform chemical energy into thermal energy.

Cam
A device in the form of an eccentric curved wheel or disc used to transform rotational

energy into reciprocating translational energy.

Crank A device used to transform reciprocating translational energy into rotational energy.

Electric Motor A device used to transform electrical energy into mechanical energy.

Electromagnet A device used to transform electrical energy into magnetic energy.

Fan
A device in the form of a rotating shaft with two or more broad, angled blades attached

used to transform rotational energy into pneumatic energy.

Generator A device used to transform mechanical energy into electrical energy.

Heating Element A device used to transform electrical energy into thermal energy.

Hydraulic Piston
A device in the form of a cylinder tightly fitted inside a tube used to transform hydraulic

energy into translational energy.

Hydraulic Pump
A device used to transform mechanical energy into hydraulic energy by altering the

pressures within a system.

IC Motor
A device used to transform chemical energy in the form of liquid fuel into mechanical

energy.

Light Source
A device used to transform electrical energy into the spectrum of electromagnetic energy

visible to humans.

Pneumatic Piston
A device in the form of a cylinder tightly fitted inside a tube used to transform pneumatic

energy into translational energy.

228

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Component Terms & Definitions

Pneumatic Pump
A device used to transform mechanical energy into pneumatic energy by altering the

pressures within a system.

Screw Propeller
A device in the form of a rotating shaft with two or more broad, angled blades attached

used to transform rotational energy into hydraulic energy.

Speaker A device used to transform an electrical signal into acoustic energy.

Wheel
A device in the form of a disc or circle used to transform translational energy applied at

the hub into rotational energy.

Signal Converter

Knob A device used to transform human energy into a control signal.

Provisioner

Material Supplier

Bladder
A device in the form of a hollow, expandable sac or membrane with a narrow opening

used to accumulate and dispense a material.

Container A device in the form of a closed canister used to accumulate and dispense a material.

Pressure Vessel
A device in the form of a sealed tank used to accumulate and dispense a pressurized fluid

material.

Reservoir A device in the form of an open tank used to accumulate and dispense a material.

Energy Supplier

Battery
A device used to accumulate and dispense electrical energy by means of a chemical

reaction.

Flywheel A device used to accumulate and dispense rotational energy via angular momentum.

Spring
A device used to accumulate and dispense mechanical energy via the elastic properties of

the device's material properties.

Signal Supplier

Signaler

Sensor

Ammeter A device used to determine the current through an electric circuit.

Displacement Gauge A device used to determine translational or rotational distance in a system.

EM Sensor A device used to detect an electromagnetic signal.

Level Gauge
A device in the form of an external plate or face on which the amount of a fluid material is

determined.

Pressure Gauge A device used to determine the pressure from hydraulic or pneumatic energy in a system.

Speed Gauge A device used to determine velocity in a system.

Voltmeter A device used to determine the voltage across a portion of an electric circuit.

Indicator

Visual Indicator A device used to visibly indicate a signal.

Analog Display A visual indicator in the form of a continuously variable dial or gauge.

Digital Display A visual indicator in the form of a discrete readout or gauge.

Flag A visual indicator in the form of a physical banner or marker.

Indicator Light A visual indicator in the form of a single bulb.

Auditory Indicator A device used to acoustically indicate a signal.

229

Primary

Component

Classification

Secondary

Component

Classification

Component Term
Component

Subset
Definition

Component Terms & Definitions

Bell An auditory indicator in the form of a hollow object that is struck to produce vibration.

Buzzer An auditory indicator in the form of an electronic device that emits a buzzing noise.

Recording An auditory indicator in the form of stored acoustic information that is replayed.

Processor

Circuit Board A device in the form of a printed circuit used to perform systematic operations on a signal.

Supporter

Stabilizer

Insert
A device in the form of a material around which another material sets, solidifies, or is

formed and used to strengthen or prevent a material from overturning.

Support A device that holds up or sustains the weight of a body.

Securer

Bracket

A device in the form of a piece or combination of pieces, usually triangular in general

shape, projecting from, or fastened to, a wall, or other surface, to secure heavy bodies or

angles.

Positioner

Handle
A device used to place a human hand in an appropriate configuration for grasping or

interacting.

Washer
A device in the form of a disk or ring used to provide spacing between components

located on a axle or shaft.

230

APPENDIX D

Analytical Design Structure Matrix

231

Abrasive

Acoustic Insulator

Agitator

Airfoil

Ammeter

Analog Display

Armature

Battery

Bearing

Bell

Belt

Bladder

Blade

Brush

Burner

Buzzer

Cam

Cap

Capacitor

Carburetor

Carousel

Catalytic Converter

Centrifuge

Check Valve

Choke

Circuit Board

Clamp

Clutch

Condenser

Container

Conveyor

Cover

Crank

Cushion

Digital Display

Diode

Displacement Gauge

Diverter

Divider

Door

Electric Cord

Electric Distributor

Electric Insulator

Electric Motor

Electric Plate

Electric Plug

Electric Socket

Electric Switch

Electric Wire

Electrical Transformer

Electromagnet

EM Sensor

EM Transmitter

Evaporator

Fan

Flag

Flywheel

Friction Enhancer

Fuse

Gear

Generator

Glue

Handle

Heat Exchanger

Heating Element

Hinge

Housing

Hydraulic Piston

Hydraulic Pump

IC Motor

Inclined Plane

Indicator Light

Inductor

Insert

Key

Knob

Latch Release

Lens

Level Gauge

Lever

Light Source

Link

Mold

A
b

r
a
s
iv

e
1

0
0

0
0

1
0

0
1

1
1

1
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
1

0
0

0
1

1
0

1
0

0
0

0
0

0
1

0
0

1
0

1
0

A
c
o

u
s
ti

c
 I

n
s
u

la
to

r
0

1
0

0
0

1
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
g

it
a
to

r
0

0
1

0
0

1
0

0
0

1
0

1
1

1
0

0
0

0
0

1
1

1
1

0
0

0
1

0
1

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
0

1
1

1
0

1
1

0
0

0
0

0
0

1
1

0
0

0
1

0
0

0
1

A
ir

fo
il

0
0

0
1

0
1

0
0

1
1

1
0

1
0

0
0

1
0

0
0

1
0

1
1

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

1
0

0
1

0
1

0

A
m

m
e
te

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

A
n

a
lo

g
 D

is
p

la
y

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1

A
r
m

a
tu

r
e

0
0

0
0

0
1

1
0

1
1

1
0

1
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
1

0

B
a
tt

e
r
y

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

B
e
a
r
in

g
1

0
0

1
0

1
1

0
1

1
1

0
1

0
0

0
1

0
0

0
1

0
1

0
0

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

1
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
0

0
0

0
1

1
1

1
1

0
0

0
0

0
0

0
1

1
0

1
0

B
e
ll

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1

B
e
lt

1
0

0
1

0
1

1
0

1
1

1
0

1
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

0
0

1
1

0
1

0

B
la

d
d

e
r

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
0

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

1

B
la

d
e

1
0

1
1

0
1

1
0

1
1

1
1

1
1

0
0

0
1

0
0

1
0

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

1
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

1

B
r
u

s
h

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

0
1

1
0

0
1

1
1

0
1

0
0

0
1

1
0

1
0

0
1

0
1

0

B
u

r
n

e
r

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
1

0
1

0
1

0
1

1
0

0
0

1
1

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0

B
u

z
z
e
r

0
1

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

C
a
m

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

C
a
p

1
0

0
0

0
1

0
0

0
1

0
1

1
1

1
0

0
1

0
1

1
0

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

C
a
p

a
c
it

o
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

C
a
r
b

u
r
e
to

r
0

0
1

0
0

1
0

0
0

1
0

1
0

0
1

0
0

1
0

1
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
1

1
1

0
0

0
0

0
0

1
0

0
0

0
0

0
1

C
a
r
o

u
s
e
l

1
0

1
1

0
1

1
0

1
1

1
1

1
1

0
0

1
1

0
0

1
0

0
0

1
0

1
1

1
1

1
1

1
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

0
1

0
0

0
1

1
1

0
1

1
0

0
1

1
0

1
0

1
1

0
1

1

C
a
ta

ly
ti

c
 C

o
n

v
e
r
te

r
0

0
1

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

C
e
n

tr
if

u
g

e
0

0
1

1
0

1
1

0
1

1
1

1
1

0
0

0
1

1
0

0
0

0
1

1
1

0
0

1
1

1
0

1
1

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

1
0

1
0

1
0

1
1

1
1

1
1

0
0

1
1

0
1

0
1

1
0

1
1

C
h

e
c
k
 V

a
lv

e
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

1
1

1
1

0
0

0
1

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

1
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

C
h

o
k
e

0
0

0
0

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
0

1
0

1
1

1
0

0
0

1
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1

C
ir

c
u

it
 B

o
a
r
d

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

C
la

m
p

0
0

1
0

0
1

0
0

0
1

0
1

1
0

0
0

0
1

0
0

1
0

0
0

0
0

1
0

0
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
1

1
0

0
0

0
0

0
1

1
0

1
0

0
1

0
1

0

C
lu

tc
h

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

0
1

1
0

1
1

0
1

0

C
o

n
d

e
n

s
e
r

0
0

1
0

0
1

0
0

0
1

0
1

1
0

1
0

0
1

0
1

1
1

1
1

1
0

0
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1

C
o

n
ta

in
e
r

1
0

1
0

0
1

0
0

0
1

0
1

1
1

1
0

0
1

0
0

1
0

1
1

1
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
1

0
1

1
1

1
0

0
0

0
1

1
0

1
0

1
0

0
0

1

C
o

n
v
e
y
o

r
1

0
1

1
0

1
1

0
1

1
1

1
1

1
0

0
1

1
0

0
1

0
0

0
0

0
1

1
1

1
1

1
1

1
0

0
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

1
0

0
0

1
1

1
0

1
1

0
0

1
1

0
1

0
1

1
0

1
1

C
o

v
e
r

1
0

1
0

0
1

0
0

0
1

0
1

1
1

1
0

0
1

0
1

1
1

1
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

C
r
a
n

k
0

0
0

1
0

1
1

0
1

1
1

0
0

0
0

0
1

0
0

0
1

0
1

0
0

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
0

0
0

0
1

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

C
u

s
h

io
n

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

D
ig

it
a
l

D
is

p
la

y
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

D
io

d
e

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

D
is

p
la

c
e
m

e
n

t
G

a
u

g
e

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

D
iv

e
r
te

r
1

0
1

0
0

1
0

0
0

1
0

1
1

1
1

0
0

1
0

1
1

1
1

1
1

0
1

0
1

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

D
iv

id
e
r

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
0

0
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

D
o

o
r

1
0

1
0

0
1

0
0

0
1

0
1

1
1

1
0

0
1

0
0

1
0

0
0

0
0

1
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1

E
le

c
tr

ic
 C

o
r
d

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
 D

is
tr

ib
u

to
r

0
0

0
1

1
1

1
1

1
1

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
 I

n
s
u

la
to

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

E
le

c
tr

ic
 M

o
to

r
0

0
0

0
1

1
0

1
1

1
1

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

0
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

E
le

c
tr

ic
 P

la
te

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
 P

lu
g

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
 S

o
c
k
e
t

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
 S

w
it

c
h

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

0

E
le

c
tr

ic
 W

ir
e

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

ic
a
l

T
r
a
n

s
fo

r
m

e
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
le

c
tr

o
m

a
g

n
e
t

0
0

0
0

1
1

1
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

E
M

 S
e
n

s
o

r
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

E
M

 T
r
a
n

s
m

it
te

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

1
1

0
0

0
0

0
0

0
1

0
0

E
v
a
p

o
r
a
to

r
0

0
1

0
0

1
0

0
0

1
0

1
1

0
1

0
0

1
0

1
0

1
1

1
1

0
0

0
1

1
0

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

1
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

F
a
n

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

0
1

0
1

1
0

0
1

1
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
1

0
1

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

1
0

1
1

0
1

0

F
la

g
0

0
1

1
0

0
1

0
1

1
1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

1
1

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

F
ly

w
h

e
e
l

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

F
r
ic

ti
o

n
 E

n
h

a
n

c
e
r

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

1
1

1
1

1
0

0
0

0
1

1
0

1
1

0
1

0

F
u

s
e

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

0

G
e
a
r

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

G
e
n

e
r
a
to

r
0

0
0

1
1

1
1

1
1

1
1

0
0

0
0

1
1

0
1

0
0

0
0

0
0

1
0

1
0

0
0

0
1

1
1

1
1

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
1

1
1

1
1

1
1

0
0

0
1

0
1

1
0

1
1

0
1

0
0

0
1

0
1

1
1

1
0

G
lu

e
0

0
1

0
0

1
0

0
0

1
0

1
1

1
0

0
0

0
0

0
1

0
1

0
0

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

H
a
n

d
le

1
0

1
0

0
1

0
0

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

0
0

1
0

0
0

1
0

0
0

1
0

0
0

0
0

1
0

0
1

0
1

0

H
e
a
t

E
x
c
h

a
n

g
e
r

0
0

1
0

0
1

0
0

0
1

0
0

0
0

1
0

0
1

0
1

0
0

1
1

1
0

0
0

1
1

0
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

H
e
a
ti

n
g

 E
le

m
e
n

t
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

H
in

g
e

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

H
o

u
s
in

g
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

H
y
d

r
a
u

li
c
 P

is
to

n
1

0
0

0
0

1
0

0
1

1
1

0
0

1
0

0
1

0
0

1
1

0
1

1
1

0
0

1
1

1
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

1
1

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
1

0
1

1
0

1
0

H
y
d

r
a
u

li
c
 P

u
m

p
0

0
0

0
0

1
1

0
1

1
1

0
0

0
1

0
1

0
0

1
0

0
1

1
1

0
0

1
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
1

1
0

1
0

0
0

0
0

0
0

0
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

I
C

 M
o

to
r

1
0

0
0

1
1

0
1

1
1

1
0

0
1

0
1

1
0

1
0

1
0

1
0

0
1

0
1

0
0

1
0

1
1

1
1

1
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
0

0
0

0
0

0
0

1
1

1
0

1
0

0
0

1
0

1
1

1
1

0

I
n

c
li

n
e
d

 P
la

n
e

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

I
n

d
ic

a
to

r
 L

ig
h

t
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

I
n

d
u

c
to

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

0
0

0
1

0
1

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

I
n

s
e
r
t

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

K
e
y

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

K
n

o
b

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0

L
a
tc

h
 R

e
le

a
s
e

1
0

0
1

0
1

1
0

0
1

0
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

1
1

0
1

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

0
1

1
1

1
0

0
0

0
1

1
0

1
1

0
1

0

L
e
n

s
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

232

Abrasive

Acoustic Insulator

Agitator

Airfoil

Ammeter

Analog Display

Armature

Battery

Bearing

Bell

Belt

Bladder

Blade

Brush

Burner

Buzzer

Cam

Cap

Capacitor

Carburetor

Carousel

Catalytic Converter

Centrifuge

Check Valve

Choke

Circuit Board

Clamp

Clutch

Condenser

Container

Conveyor

Cover

Crank

Cushion

Digital Display

Diode

Displacement Gauge

Diverter

Divider

Door

Electric Cord

Electric Distributor

Electric Insulator

Electric Motor

Electric Plate

Electric Plug

Electric Socket

Electric Switch

Electric Wire

Electrical Transformer

Electromagnet

EM Sensor

EM Transmitter

Evaporator

Fan

Flag

Flywheel

Friction Enhancer

Fuse

Gear

Generator

Glue

Handle

Heat Exchanger

Heating Element

Hinge

Housing

Hydraulic Piston

Hydraulic Pump

IC Motor

Inclined Plane

Indicator Light

Inductor

Insert

Key

Knob

Latch Release

Lens

Level Gauge

Lever

Light Source

Link

Mold

L
e
v
e
l

G
a
u

g
e

0
0

1
0

0
1

0
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
1

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

L
e
v
e
r

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

1
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

L
ig

h
t

S
o

u
r
c
e

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
0

1
0

0
0

0
1

0
0

1
0

0

L
in

k
1

0
0

1
0

1
1

0
1

1
1

0
0

1
0

0
1

0
0

0
1

0
1

0
0

0
1

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
1

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

M
o

ld
0

0
1

0
0

1
0

0
0

1
0

1
1

0
0

0
0

1
0

1
1

0
1

1
1

0
0

0
1

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

N
e
e
d

le
1

0
0

1
0

1
1

0
1

1
1

0
0

1
0

0
1

0
0

0
1

0
1

0
0

0
0

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

N
o

z
z
le

1
0

1
0

0
1

0
0

0
1

0
1

1
1

1
0

0
1

0
1

0
1

1
1

1
0

0
0

1
1

0
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1

N
u

t-
B

o
lt

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

P
e
r
m

e
a
b

le
 M

e
m

b
r
a
n

e
1

0
1

0
0

1
0

0
0

1
0

1
1

1
0

0
0

1
0

1
1

0
1

1
1

0
0

0
0

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

P
ip

e
0

0
1

1
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

1
1

1
1

0
1

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

P
n

e
u

m
a
ti

c
 P

is
to

n
1

0
0

0
0

1
0

0
1

1
1

0
0

1
0

0
1

0
0

1
1

1
0

1
1

0
0

1
1

1
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

1
0

1
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

1
0

1
0

P
n

e
u

m
a
ti

c
 P

u
m

p
0

0
0

1
0

1
1

0
1

1
1

0
0

0
1

0
1

0
0

1
0

1
0

1
1

0
0

1
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
1

1
0

1
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

1
0

1
0

P
o

te
n

ti
o

m
e
te

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

0
0

0
1

0
0

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
0

P
r
e
s
s
u

r
e
 G

a
u

g
e

0
0

0
1

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
1

0
1

1
1

1
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0

P
r
e
s
s
u

r
e
 V

e
s
s
e
l

0
0

1
0

0
1

0
0

0
1

0
0

0
0

1
0

0
0

0
1

0
1

1
1

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1

P
u

ll
e
y

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

P
u

n
c
h

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
a
k
e

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

R
e
c
o

r
d

in
g

0
1

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

R
e
s
e
r
v
o

ir
1

0
1

0
0

1
0

0
0

1
0

1
1

1
1

0
0

1
0

1
1

0
1

1
1

0
0

0
1

1
1

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

R
e
s
is

to
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

R
e
ta

in
in

g
 C

li
p

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

R
iv

e
t

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

R
o

ta
ti

o
n

a
l

C
o

u
p

le
r

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

1
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

S
c
r
e
e
n

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
0

1
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

S
c
r
e
w

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

S
c
r
e
w

 P
r
o

p
e
ll

e
r

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
1

0
0

1
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
1

0
0

0
1

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

1

S
e
a
l

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
1

1
1

1
0

0
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

S
h

a
ft

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

S
ig

n
a
l

F
il

te
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

S
le

d
1

0
0

1
0

1
1

0
1

1
1

0
0

1
0

0
1

0
0

0
1

0
1

0
0

0
1

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

S
o

ld
e
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

1
0

0

S
p

e
a
k
e
r

0
1

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

1
0

0

S
p

e
e
d

 G
a
u

g
e

0
0

0
1

0
1

1
0

1
1

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

0
1

1
1

1
0

0
0

0
0

1
1

1
1

0
1

0

S
p

r
in

g
1

0
0

1
0

1
1

0
1

1
1

0
0

1
0

0
1

0
0

0
1

0
1

0
0

0
1

1
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
0

1
1

0
1

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

S
p

r
o

c
k
e
t

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

S
to

p
1

0
0

1
0

1
1

0
1

1
1

0
0

1
0

0
1

0
0

0
1

0
1

0
0

0
1

0
0

0
1

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

1
0

1
1

0
1

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

S
tu

ff
in

g
0

0
1

0
0

1
0

0
0

1
0

1
1

1
0

0
0

0
0

0
1

0
1

0
0

0
1

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

S
u

p
p

o
r
t

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

T
h

e
r
m

a
l

I
n

s
u

la
to

r
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
h

e
r
m

a
l

P
la

te
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
h

e
r
m

a
l

W
ir

e
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
h

e
r
m

o
s
ta

t
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

T
r
a
n

s
is

to
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
0

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

0

T
u

b
e

1
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
1

0
1

1
1

1
1

1
0

0
0

1
1

1
1

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1

V
a
lv

e
1

0
1

0
0

1
0

0
0

1
0

0
0

1
1

0
0

1
0

1
0

1
1

1
1

0
0

0
1

1
0

1
0

0
0

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

1
1

1
0

0
0

1
1

0
0

0
0

0
0

1
0

0
0

0
0

0
1

V
a
r
is

to
r

0
0

0
0

1
1

0
1

0
1

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

1
1

0
0

1
0

0
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

0

V
ib

r
a
to

r
0

1
1

0
0

1
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

1
1

0
0

0
0

1
1

1
1

0
0

0
0

0
1

0
1

1
0

1
0

V
o

lt
m

e
te

r
0

0
0

0
1

1
0

1
0

1
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

0
1

0
1

1
0

0
1

0
0

0
0

1
0

1
1

0
0

0
0

1
0

0
1

0
0

W
a
s
h

e
r

0
0

1
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0

W
h

e
e
l

1
0

0
1

0
1

1
0

1
1

1
0

0
1

0
0

1
0

0
0

1
0

1
0

0
0

1
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
1

1
0

0
0

0
1

1
1

1
0

0
0

0
0

1
0

1
1

0
1

0

233

A
b

r
a
s
iv

e

A
c
o

u
s
ti

c
 I

n
s
u

la
to

r

A
g

it
a
to

r

A
ir

fo
il

A
m

m
e
te

r

A
n

a
lo

g
 D

is
p

la
y

A
r
m

a
tu

r
e

B
a
tt

e
r
y

B
e
a
r
in

g

B
e
ll

B
e
lt

B
la

d
d

e
r

B
la

d
e

B
r
u

s
h

B
u

r
n

e
r

B
u

z
z
e
r

C
a
m

C
a
p

C
a
p

a
c
it

o
r

C
a
r
b

u
r
e
to

r

C
a
r
o

u
s
e
l

C
a
ta

ly
ti

c
 C

o
n

v
e
r
te

r

C
e
n

tr
if

u
g

e

C
h

e
c
k
 V

a
lv

e

C
h

o
k
e

C
ir

c
u

it
 B

o
a
r
d

C
la

m
p

C
lu

tc
h

C
o

n
d

e
n

s
e
r

C
o

n
ta

in
e
r

C
o

n
v
e
y
o

r

C
o

v
e
r

C
r
a
n

k

C
u

s
h

io
n

D
ig

it
a
l
D

is
p

la
y

D
io

d
e

D
is

p
la

c
e
m

e
n

t
G

a
u

g
e

D
iv

e
r
te

r

D
iv

id
e
r

D
o

o
r

E
le

c
tr

ic
 C

o
r
d

E
le

c
tr

ic
 D

is
tr

ib
u

to
r

E
le

c
tr

ic
 I

n
s
u

la
to

r

E
le

c
tr

ic
 M

o
to

r

E
le

c
tr

ic
 P

la
te

E
le

c
tr

ic
 P

lu
g

E
le

c
tr

ic
 S

o
c
k
e
t

E
le

c
tr

ic
 S

w
it

c
h

E
le

c
tr

ic
 W

ir
e

E
le

c
tr

ic
a
l
T
r
a
n

s
fo

r
m

e
r

E
le

c
tr

o
m

a
g

n
e
t

E
M

 S
e
n

s
o

r

E
M

 T
r
a
n

s
m

it
te

r

E
v
a
p

o
r
a
to

r

F
a
n

F
la

g

F
ly

w
h

e
e
l

F
r
ic

ti
o

n
 E

n
h

a
n

c
e
r

F
u

s
e

G
e
a
r

G
e
n

e
r
a
to

r

G
lu

e

H
a
n

d
le

H
e
a
t

E
x
c
h

a
n

g
e
r

H
e
a
ti

n
g

 E
le

m
e
n

t

H
in

g
e

H
o

u
s
in

g

H
y
d

r
a
u

li
c
 P

is
to

n

H
y
d

r
a
u

li
c
 P

u
m

p

I
C

 M
o

to
r

I
n

c
li
n

e
d

 P
la

n
e

I
n

d
ic

a
to

r
 L

ig
h

t

I
n

d
u

c
to

r

I
n

s
e
r
t

K
e
y

K
n

o
b

L
a
tc

h
 R

e
le

a
s
e

L
e
n

s

Needle

Nozzle

Nut-Bolt

Permeable Membrane

Pipe

Pneumatic Piston

Pneumatic Pump

Potentiometer

Pressure Gauge

Pressure Vessel

Pulley

Punch

Rake

Recording

Reservoir

Resistor

Retaining Clip

Rivet

Rotational Coupler

Screen

Screw

Screw Propeller

Seal

Shaft

Signal Filter

Sled

Solder

Speaker

Speed Gauge

Spring

Sprocket

Stop

Stuffing

Support

Thermal Insulator

Thermal Plate

Thermal Wire

Thermostat

Transistor

Tube

Valve

Varistor

Vibrator

Voltmeter

Washer

Wheel

1
1

0
1

0
1

0
0

0
0

1
0

1
0

1
0

0
0

1
1

0
0

1
1

0
1

0
0

0
1

1
1

0
0

0
0

0
0

0
1

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

1
1

1
0

0
0

0
1

0
1

1
0

1
0

1
1

0
1

1
0

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

1
0

1
0

1
0

1
0

0
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0
0

0
0

1
1

1
1

1
1

1
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

1
1

0
0

0
0

0
0

0
1

1
0

1
0

1
1

0
1

1
0

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

0
0

1
0

1
0

0
1

1
1

0
0

0
0

0
0

0
1

1
0

1
0

1
1

0
1

1
0

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

0
0

1
0

1
0

1
1

1
1

0
1

0
0

0
0

1
1

1
0

1
0

1
1

1
1

1
0

1
1

0
1

0
0

0
1

1
1

1
1

0
0

0
0

0
1

1
0

0
0

1
1

0
1

0
0

1
0

1
0

1
1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
1

0
1

1
1

1
0

1
1

0
0

1
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

1
1

0
1

0
0

0
0

1
1

1
0

1
0

1
1

1
1

1
0

1
1

0
1

0
0

1
1

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
1

1
1

1
0

0
0

1
1

1
1

0
0

1
0

1
1

1
1

1
1

1
1

0
1

0
0

0
1

1
1

1
1

0
0

0
0

0
1

1
0

1
0

0
1

0
1

0
1

1
1

1
0

1
1

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
1

0
1

1
1

1
0

1
1

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

1
0

1
0

0
0

0
0

0
1

0
0

0
0

1
1

1
0

1
0

0
0

0
1

0
0

0
1

0
1

1
1

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
0

1
1

1
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
1

1
1

1
1

1
0

1
1

0
1

0
0

1
0

1
1

0
0

1
0

1
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
1

1
0

1
0

0
0

1
0

1
1

0
1

0
0

0
0

1
1

1
0

1
0

1
1

1
1

1
0

1
1

0
1

0
0

1
1

1
1

1
1

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
1

0
0

1
1

1
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
0

1
1

0
0

1
1

1
0

0
0

1
0

0
0

1
0

0
0

1
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
0

0
1

0
1

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
1

0
1

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

1
1

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1

0
0

0
0

0
0

0
1

1
0

1
0

0
1

0
1

0
0

0
0

1
0

1
1

0
0

0
0

1
0

0
0

0
1

0
1

1
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

1
1

1
1

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

1
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

1
0

0
0

1
1

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

1
0

1
0

0
1

1
0

0
0

1
0

0
0

1
1

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

1
0

1
0

0
1

1
0

0
0

0
0

0
1

0
0

1
0

0
1

0
1

0
0

1
0

0
1

0
1

1
1

1
1

1
1

1
1

0
0

0
0

0
0

1
0

0
1

1
1

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

234

A
b

r
a
s
iv

e
L
e
v
e
l

G
a
u

g
e

L
e
v
e
r

L
ig

h
t

S
o

u
r
c
e

L
in

k

M
o

ld

N
e
e
d

le

N
o

z
z
le

N
u

t-
B

o
lt

P
e
r
m

e
a
b

le
 M

e
m

b
r
a
n

e

P
ip

e

P
n

e
u

m
a
ti

c
 P

is
to

n

P
n

e
u

m
a
ti

c
 P

u
m

p

P
o

te
n

ti
o

m
e
te

r

P
r
e
s
s
u

r
e
 G

a
u

g
e

P
r
e
s
s
u

r
e
 V

e
s
s
e
l

P
u

ll
e
y

P
u

n
c
h

R
a
k
e

R
e
c
o

r
d

in
g

R
e
s
e
r
v
o

ir

R
e
s
is

to
r

R
e
ta

in
in

g
 C

li
p

R
iv

e
t

R
o

ta
ti

o
n

a
l

C
o

u
p

le
r

S
c
r
e
e
n

S
c
r
e
w

S
c
r
e
w

 P
r
o

p
e
ll

e
r

S
e
a
l

S
h

a
ft

S
ig

n
a
l

F
il

te
r

S
le

d

S
o

ld
e
r

S
p

e
a
k
e
r

S
p

e
e
d

 G
a
u

g
e

S
p

r
in

g

S
p

r
o

c
k
e
t

S
to

p

S
tu

ff
in

g

S
u

p
p

o
r
t

T
h

e
r
m

a
l

I
n

s
u

la
to

r

T
h

e
r
m

a
l

P
la

te

T
h

e
r
m

a
l

W
ir

e

T
h

e
r
m

o
s
ta

t

T
r
a
n

s
is

to
r

T
u

b
e

V
a
lv

e

V
a
r
is

to
r

V
ib

r
a
to

r

V
o

lt
m

e
te

r

W
a
s
h

e
r

W
h

e
e
l

Needle

Nozzle

Nut-Bolt

Permeable Membrane

Pipe

Pneumatic Piston

Pneumatic Pump

Potentiometer

Pressure Gauge

Pressure Vessel

Pulley

Punch

Rake

Recording

Reservoir

Resistor

Retaining Clip

Rivet

Rotational Coupler

Screen

Screw

Screw Propeller

Seal

Shaft

Signal Filter

Sled

Solder

Speaker

Speed Gauge

Spring

Sprocket

Stop

Stuffing

Support

Thermal Insulator

Thermal Plate

Thermal Wire

Thermostat

Transistor

Tube

Valve

Varistor

Vibrator

Voltmeter

Washer

Wheel

1
1

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

1
0

0
0

0
1

0
0

0
0

1
0

0
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

0
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
0

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
1

1
0

1
1

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

1
1

1
0

1
1

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
1

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

1
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

1
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

1
1

0
1

0
1

1
0

0
0

1
0

1
0

1
0

0
0

1
1

0
0

1
1

0
1

0
0

1
1

1
1

1
0

0
0

0
0

0
1

1
0

1
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

1
0

1
1

0
0

0
0

0
0

0
0

0
0

1
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

1
0

0
0

0
1

1
0

0
0

1
0

0
0

0
0

0
0

1
0

0
1

0
1

0
1

0
0

1
1

1
1

0
1

0
0

0
0

0
0

0
0

1
0

0
1

235

REFERENCES

Al-Hakim, L., Kusiak, A. and Mathew, J., 2000. “A Graph-Theoretic Approach to

Conceptual Design with Functional Perspectives,” Computer-Aided Design, 32

(14): 867–875.

Altschuller G., 1984. Creativity as an Exact Science, New York, New York, Gordon and

Breach.

Akman, V., ten Haagen, P.J.W., and Tomiyama, T., 1990. “A Fundamental and Theoretical

Framework for an Intelligent CAD System,” Computer-Aided Design, 22(6):

352–368.

Anderson, J.R., 1981. Cognitive Skills and Their Acquisition, Hillsdale, NJ, Lawrence

Erlbaum Association.

Andrews P. and Snowden D., 2002. “Next Generation Knowledge Management: The

Complexity of Humans,” Executive Tek Report, IBM Global Services.

Antonsson, E. K., Cagan, J., 2001. Formal Engineering Design Synthesis, Cambridge

University Press.

Bhadra, A. and Fischer, G.W., 1988. “A New GT Classification Approach: A Database

with Graphical Dimensions,” Manufacturing Review, 1(1): 44–49.

Bohm, M., and Stone, R., 2004. “Representing Functionality to Support Reuse:

Conceptual and Supporting Functions,” Proceedings of DETC’04, Salt Lake City,

UT, DETC2004-57693.

Bohm M.R., Stone R.B., Szykman S., 2004. "Representing Functionality to Support

Reuse: Conceptual and Supporting Functions," Proceedings of ASME DETC and

CIE Conferences, September 28-October 2, Salt Lake City, Utah,

DETC2004-57693.

236

Bohm, M., Stone, R. and Szykman, S., 2005. “Enhancing Virtual Product Representations

for Advanced Design Repository Systems,” Journal of Computer Information

Science in Engineering, 5(4): 360–372.

Black, I., 1990. “Embodiment Design: Facilitating a Simultaneous Approach to

Mechanical CAD,” Computer-Aided Engineering Journal, 7: 49–53.

Bracewell, R.H. and Sharpe, J.E.E., 1996. “Functional Descriptions Used in Computer

Support for Qualitative Scheme Generation–’Schemebuilder’,” Artificial

Intelligence for Engineering Design, Analysis and Manufacture (AIEDAM), 10(4):

333–345.

Bradley, D.A., Bracewell, R.H., and Chaplin, R.V., 1993. “Engineering Design and

Mechatronics: The Schemebuilder Project,” Research in Engineering Design, 4:

241–248.

Campbell, M.I., Cagan, J., Kotovsky, K., 1999. "A-Design: An Agent-Based Approach to

Conceptual Design in a Dynamic Environment," Research in Engineering Design,

2: 172–192.

Campbell, M.I., Cagan, J., Kotovsky, K., 2000. "Agent-Based Synthesis of Electro-

mechanical Design Configurations," Journal of Mechanical Design, 122: 61–69.

Campbell, M.I., Cagan, J, and Kotovsky, K., 2001. “Learning From Design Experience:

Todo/Taboo Guidance,” Proceedings of the 2001 ASME Design Engineering

Technical Conferences and Computers in Engineering Conference, DETC01/

DTM-21687, Pittsburgh, PA.

Campbell M.I., Cagan J., Kotovsky K., 2003. "The A-Design Approach to Managing

Automated Design Synthesis," Research in Engineering Design, 14: 12–24.

237

Cera, C.D., Regli, W.C., Braude, I., Shapirstein, Y. and Foster, C.V., 2002. “A

Collaborative 3D Environment for Authoring Design Semantics,” IEEE Computer

Graphics and Applications: Graphics in Advanced Computer-Aided Design, May/

June: 43–55.

Chakrabarti, A. and Bligh, T.P., 2001. “A Scheme for Functional Reasoning in

Conceptual Design,” Design Studies, 22(6): 493–516.

Chenhall, R. G., 1978. Nomenclature for Museum Cataloging: A System for Classifying

Man-Made Objects, American Association for State and Local History, Nashville,

TN.

Cutherell, D., 1996. “Chapter 16: Product Architecture,” The PDMA Handbook of New

Product Development, M. Rosenau Jr., et al., ed., John Wiley and Sons.

Cross, N., 1994. Engineering Design Methods: Strategies for Product Design, 2nd Ed.,

John Wiley and Sons, Chichester, UK.

Culley, S. J., and Webber, S. J., 1992. “Implementation Requirements for Electronic

Standard Component Catalogues,” Proceedings Institution of Mechanical

Engineers, Journal of Engineering Manufacture: Part B, 206: 253–260.

de Bono, E., 1970. Lateral Thinking: Creativity Step by Step, Harper and Row,

Publishers, Inc. New York, NY.

Deng, Y.M., 2002. “Function and Behavior Representation in Conceptual Mechanical

Design,” Artificial Intelligence for Engineering Design, Analysis and

Manufacture (AIEDAM), 16: 343–362.

Du, X. and Chen, W., 2004. "Sequential Optimization and Reliability Assessment for

Probabilistic Design," Journal of Mechanical Design, 126(2): 225–233.

238

Eggli, L., Ching-yao, H., Bruderlin, B.D. and Elber, G., 1997. “Inferring 3D Models from

Freehand Sketches and Constraints,” Computer-Aided Design, 29(2): 101–112.

Feng, C.X., Li, P.G., and Liang, M., 2001. “Fuzzy Mapping of Requirements onto

Functions in Detail Design,” Computer-Aided Design, 33: 425–437.

Finkelstein, L., El-hami, M., and Ginger, R., 1998. “Conceptual Design of Instrument

Systems Utilising Physical Laws,” Measurement, 23: 9–13.

Fox, E.P., 1994. “The Pratt and Whitney Probabilistic Design System,” 35th AIAA/

ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials

Conference, AIAA-94-1442-CP, April.

Girdhar, A. and Mital, A., 2001a. “Expanding Group Technology Part Coding for

Functionality: Part I–Developing a Functional Basis for Classification,”

International Journal of Industrial Engineering–Applications and Practice, 8(3):

186–197.

Girdhar, A. and Mital, A., 2001b. “Expanding Group Technology Part Coding for

Functionality: Part II–Functional Classification of Workparts and Application to

Design,” International Journal of Industrial Engineering–Applications and

Practice, 8 (3): 198–209.

Glover J., Ronning R. and Reynolds C., (eds.), 1989. Handbook of Creativity, Plenum,

London, UK.

Gorti, S.R. and Sriram, R.D., 1996. “ From Symbol to Form: A Framework for

Conceptual Design,” Computer-Aided Design, 28(11): 853–870.

Greer J.L., Stock M.E., Stone R.B., Wood K.L., 2003. "Enumerating the Component

Space: First Steps toward a Design Naming Convention for Mechanical Parts,"

Proceedings of ASME DETC and CIE Conferences, September 2-6, 2003,

Chicago, Illinois, DETC03/DTM-48666.

239

Gruber, T. R., 1994. “Toward Principles for the Design of Ontologies Used for

Knowledge Sharing,” International Journal of Human Computer Studies, 43(5/6):

907–928.

Gui, J.K. and Mäntylä, M., 1994. “Functional Understanding of Assembly Modelling,”

Computer-Aided Design, 26(6): 435-451.

Guilford, J.P., 1959. ‘Traits of Creativity’, in P.E. Vernon (ed.), Creativity, Penguin,

Harmondsworth.

Hayes, C.C., 1995. “Use of Function Information to Create Redesign Suggestions,”

Proceedings of the 8th Florida Artificial Intelligence Research Symposium

(FLAIRS), 309–313.

Hearst, M.A., Gross, M.D., Landay, J.A. and Stahovich, T.F., 1998. “Sketching Intelligent

Systems,” IEEE Intelligent Systems, 13(3): 10–19.

Henderson, M. and Musti, S., 1988. “Automated Group Technology Part Coding from a

Three-Dimensional CAD Database,” Journal of Engineering in Industry, 110(3):

278–287.

Hennig, Willi, 1979. Phylogenetic systematics (tr. D. Dwight Davis and Rainer Zangerl).

Urbana, IL: Univ. of Illinois Press (reprinted 1999).

Hicks, B. J., Culley, S. J., and Mullineux, G., 2005. “The Modeling of Engineering

Systmes for their Computer Based Embodiment with Standard Components,”

Journal of Mechanical Design, 127, pp. 414–432.

Hirtz, J.M., Stone, R.B., McAdams, D.A., Szykman, S., Wood, K.L., 2002. "A Functional

Basis for Engineeering Design: Reconciling and Evolving Previous Efforts,"

Research in Engineering Design, 13(2), pp. 65–82.

240

Homem de Mello, L.S. and Sanderson, A.C., 1991. “A Correct and Complete Algorithm

for the Generation of Mechanical Assembly Sequences,” IEEE Transactions on

Robotics and Automation, 7(2): 228–240.

Hubka, V. and Eder, W., 1984. Theory of Technical Systems, Springer-Verlag, Berlin.

Hwang, T. and Ullman, D., 1990. “The Design Capture System: Capturing Back-of-the-

Envelope Sketches,” Journal of Engineering Design, 1(4): 339–353.

Ishii, K., Adler, R., and Barkan, P., 1988. “Application of Design Compatibility Analysis

to Simultaneous Engineering,” Artificial Intelligence for Engineering Design and

Manufacture (AIEDAM), 2(1): 53–65.

Ivashkok, M., 2004. ACCEL: a Tool Supporting Concept Generation in the Early Design

Phase. PhD thesis, The Eindhoven University of Technology, Eindhoven, The

Netherlands.

Johnson, A., 1998. “An Open Architecture Approach to Kinematic Analysis for

Computer-Aided Embodiment Design,” Computer-Aided Design, 30(3): 199–204.

Jordan, R., Van Wie, M., Stone, R.B., Wang, J., and Terpenny, J., 2005. “A Group

Technology Based Representation for Product Portfolios,” Proceedings of

IDETC/CIE 2005, DETC2005-85313, Long Beach, CA.

Kitamura, Y. and Mizoguchi, R., 2003. “Ontology-based Description of Functional

Design Knowledge and its Use in a Functional Way Server,” Expert Systems with

Application, 24(2): 153–166.

Kitamura, Y., Kashiwase, M., Fuse, M., and Mizoguchi, R., 2004. “Deployment of an

Ontological Framework of Functional Design Knowledge,” Advanced

Engineering Informatics, 18: 115–127.

241

Kurfman, M.A., Stone, R.B., Rajan, J.R., Wood, K.L., 2001. "Functional Modeling

Experimental Studies," Proceedings of ASME DETC and CIE Conferences,

September 9-12, Pittsburgh, Pennsylvania, DETC2001/DTM-21709.

Kurtoglu, T., Campbell, M.I., 2005. “Automated Synthesis of Elctromechanical Design

Configurations from Empirical Analysis of Function to Form Mapping.” Research

in Engineering Design, (In review).

Kurtoglu, T., Campbell, M.I., Bryant, C.R., Stone, R.B., McAdams, D.A., 2005.

“Deriving a Component Basis for Computational Functional Synthesis.

Proceedings of International Conference on Engineering Design,” ICED05,

August 15-18, Melbourne, Australia.

Kurtoglu, T., Campbell, M.I., Bryant, C.R., Stone, R.B., 2007. “A Component Taxonomy

as a Framework for Computational Design Synthesis,” Journal of Computer and

Information Science in Engineering, (Accepted for publication).

Kusiak, A. and Szczerbicki, E., 1993. “Transformation from Conceptual to Embodiment

Design,” IIE Transactions, 25(4): 6–11.

Kusiak, A., Szczerbicki, E., and Vujosevic, R., 1991. “Intelligent Design Synthesis: An

Object-Oriented Approach,” International Journal of Production Research, 29(7):

1291–1308.

Liang V, Paredis, C.J.J., 2004. “A Port Ontology for Conceptual Design of Systems,”

Journal of Computing and Information Science in Engineering, 4: 206–217.

Linnaei, Caroli, 1937. Determinationes In Hortum Siccum Joachimi Burseri: the text of

the manuscript in the Linnaean collections, ed. Spencer Savage, Printed for the

Linnaean Society by Taylor and Francis, London.

242

Linsey, J.S.., Green, M.G., Murphy, J.T., Wood, K.L., Markman, A.B., 2005.

“Collabrating to Success: An Experimental Study of Group Idea Generation

Techniques,” Proceedings of DETC2005, Sept. 24-28, Long Beach, California.

Lipson, H. and Shpitalni, M., 2000. “Conceptual Design and Analysis by Sketching,”

Artificial Intelligence for Engineering Design, Analysis, and Manufacturing

(AIEDAM), 14(5): 391–402.

Lu, C. and Russomanno, D.J., 1999. “KAT: A Knowledge Acquisition Tool for Acquiring

Functional Knowledge Based Upon the No-Causality-in-Function Principle,”

Proceedings of the 1999 ACM Symposium on Applied Computing, 8–13.

Malmqvist, J. and Svensson, D., 1999. “A Design Theory Based Approach Towards

Including QFD Data in Product Models,” Proceedings of the 1999 ASME Design

Engineering and Technical Conferences, September12-15, Las Vegas, Nevada.

Mann, D., 2000. “Towards a Generic Systematic Problem Solving and Innovation Design

Methodology,” Proceedings of the 2000 ASME Design Engineering and Technical

Conferences, September 10-13, Baltimore, Maryland.

McAdams, D. and Wood, K., 2000. “Quantitative Measures for Design By Analogy,”

DETC2000/DTM-14562, Proceedings of DETC2000, Balitmore, MD.

Merriam-Webster Online, www.Merriam-Webster.com, copyright 2005 by Merriam-

Webster, Incorporated.

Mittal, S., Dym, C., and Morjara, M., 1985. “PRIDE: An Expert system for the Design of

Paper Handling Systems,” IEEE Computer, 19(7): 102–114.

Moore, C.J., Miles, J.C., Rees, D.W.G., 1997. “Decision Support for Conceptual Bridge

Design,” Artificial Intelligence in Engineering, 11(3): 259–272.

243

http://www.Merriam-Webster.com
http://www.Merriam-Webster.com

Navinchandra D., Sycara K.P., Narasimhan S., 1991. “Behavioral Synthesis in CADET, a

Case-Based Design Tool,” Proceedings Seventh IEEE Conference on Artificial

Intelligence Applications, February,

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T. and Swartout, W. R.,

1991, “Enabling technology for Knowledge Sharing,” AI Magazine, 36–56.

Oh, V.K., Chaplin, R.V., Yan, X.T., Sharpe, J.E.E., 1996. “A Generic Framework for the

Description of Components in the Design and Simulation of Mechatronic

Products,” Mechatronics–The Basis for New Industrial Development,

Southampton, Boston, Computational Mechanics Publications, 515–520.

Onyebueke, L.C., Onwubiko, C., and Chen, F.C., 1995. “Probabilistic Design

Methodology and the Application of Probabilistic Fault Tree Analysis to Machine

Design,” Proceedings of the 1995 ASME Design Engineering Technical

Conferences, DE-Vol. 83.

Opitz, H., 1970. A Classification System to Describe Workpiece,. Pergamon Press, Ltd.,

Oxford, New York.

Opitz, H,, Eversheim, W,, and Wiendahl, H.P., 1969. “Workpiece Classification and its

Industrial Application,” International Journal of Machine Tool Design Research,

9: 39–50.

Opitz, H. and Wiendahl, H.P., 1971. “Group Technology and Manufacturing Systems for

Small and Medium Quantity Production,” International Journal of Production

Research, 9 (1): 181–203.

Osborn, A., 1957. Applied Imagination, Scribner, New York, NY.

Otto, K. and Wood, K., 1996. “A Reverse Engineering and Redesign Methodology for

Product Evolution,” Proceedings of the 1996 ASME Design Theory and

Methodology Conference, Irvine, CA, DETC96/DTM-1523.

244

Otto, K. and Wood, K., 1997, “Conceptual and Configuration Design of Products and

Assemblies,” ASM Handbook, Materials Selection and Design, 20, ASM

International.

Otto, K. and Wood, K., 2001. Product Design. Prentice Hall, Upper Saddle River, NJ.

Pahl, G., and Beitz, W., 1996. Engineering Design—A Systematic Approach, 2nd edition,

Springer, London.

Palmer, R.S. and Shapiro, V., 1993. “Chain Models of Physical Behavior for Engineering

Analysis and Design,” Research in Engineering Design, 5: 161–184.

Paredis, C. J. J., Diaz-Calderon, A., Sinha, R., Khosla, P. K., 2001. “Composable Models

for Simulation-Based Design,” Engineering with Computers, 17: 112–128,

Springer-Verlag, London.

Pimmler, T. and Eppinger, S., 1994, “Integration Analysis of Product Decompositions,”

Proceedings of the ASME Design Theory and Methodology Conference, 68.

Prasad B., 1998. “Review of QFD and Related Deployment Techniques,” Journal of

Manufacturing Systems, 17(3): 221–235.

Pugh, S., 1991. Total Design, Addison Wesley, Wokingham, UK.

Qin, S.F., Wright, D.K. and Jordano, I.N., 2000. “From On-line Sketching to 2D and 3D

Geometry: A System Based on Fuzzy Knowledge,” Computer-Aided Design, 32

(14): 851–866.

Radcliffe, D. and Lee, T.Y., 1989. “Design Methods Used by Undergraduate Engineering

Students,” Design Studies, 10(4): 199–207.

Rohrbach, B., 1969. “Kreativ nach Regeln – Methode 635, eine Neue Technik zum Lösen

von Problemen,” Absatzwirtschaft, 12: 73–75.

245

Roozenburg, N.F.M. and Eekels, J., 1995. Product Design: Fundamentals and Methods,

Wiley, Chichester, UK.

Schmidt, L. and Cagan, J., 1995. “Recursive Annealing: A Computational Model for

Machine Design,” Research in Engineering Design, 7(2): 102–125.

Schmidt, L. and Cagan, J., 1997. “GGREADA: A Graph Grammar-Based Machine

Design Algorithm,” Research in Engineering Design, 9(4): 195–213.

Serran, D. and Gossard, D., 1992. “Tools and Techniques for Conceptual Design,”

Artificial Intelligence in Engineering Design: Design Representation and Models

of Routine Design, Academic Press, San Diego, 71–116.

Shah, J. J., 1998. “Experimental Investigation of Progressive Idea Generation Techniques

in Engineering Design,” Proceedings of the DETC’98, 1998 ASME Design

Engineering Technical Conferences, Atlanta, GA.

Shah, J. and Bhatnagar, A., 1989. “Group Technology Classification from Feature Based

Geometric Models,” Manufacturing Review, 2(3): 204–213.

Shimomura, Y., Tanigawa, S., Takeda, H., Umeda, Y. and Tomiyama, T., 1996.

“Functional Evaluation Based on Function Content,” Proceedings of the 1996

ASME Design Theory and Methodology Conference, Irvine, CA, DETC96/

DTM-1532.

Sieger, D.B. and Salmi, R.E., 1997. “Knowledge Representation Tool for Conceptual

Development of Product Designs,” IEEE International Conference on Systems,

Man, and Cybernetics ‘Computational Cybernetics and Simulation,’ 2: 1936–

1941.

246

Simpson, T.W., Bauer, M.D., Allen, J.K., and Mistree, F., 1995. “Implementation of DFA

in Conceptual and Embodiment Design Using Decision Support Problems,”

Proceedings of the 1995 ASME Design Engineering Technical Conferences, DE-

Vol. 82.

Sridharan P., Campbell M.I., 2005. "A Study on the Grammatical Construction of

Function Structures," Artificial Intelligence in Engineering Design, Analysis, and

Manufacture, 19: 139–160.

Stahovich, T. F., Davis, R., Shrobe, H., 1993. “An Ontology of Mechanical Devices,”

AAAI-93, Working Notes, Reasoning About Function, 137–140.

Stone, R. and Wood, K., 2000. “Development of a Functional Basis for Design,” Journal

of Mechanical Design, 122(4): 359–370.

Strawbridge, Z., McAdams, D. A. and Stone, R. B., 2002, “A Computational Approach to

Conceptual Design,” DETC02/DTM-34001, Proceedings of DETC2002, ASME,

Montreal, Canada.

Sturgill, M., Cohen, E. and Riesenfel, R.F., 1995. “Feature-Based 3-D Sketching for

Early Stage Design,” Proceedings of the ASME Computers in Engineering

Conference, ASME Press, New York, 545–552.

Subramanian, D. and Wang, C.S., 1995. “Kinematic Synthesis with Configuration

Spaces,” Research in Engineering Design, 7(3): 193–213.

Suh N.P., 1995. "Axiomatic Design of Mechanical Systems," Journal of Mechanical

Design, 117: 2–10.

Thornton, A.C. and Johnson, A.L., 1996. “CADET: A Software Support Tool for

Constraint Processes in Embodiment Design,” Research in Engineering in

Design, 8: 1–13.

247

Ullman, D., 1997. The Mechanical Design Process, 2nd Ed., McGraw-Hill.

Ulrich, K. and Eppinger, S., 1995. Product Design and Development, McGraw-Hill.

Ulrich, K. and Seering, W., 1988. “Computation and Conceptual Design,” Robotics and

Computer-Integrated Manufacturing, 4(3/4): 309–315.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., 1996.

“Supporting Conceptual Design Based on the Function-Behavior-State Modeler,”

Artificial Intelligence for Engineering Design, Analysis and Manufacture

(AIEDAM), 10(4): 275–288.

Uschold, M., 1998. “Knowledge level modeling: Concepts and terminology.,” Knowledge

Engineering Review, 13(1). Also available as AIAI-TR-196 from AIAI, The

University of Edinburgh.

van den Berg, N., Dutilh, C., Huppes, G., 1995. “Beginning LCA: A Guide into

Environmental Life Cycle Assessment,” Center of Environmental Science, Leiden

University, Unilever and CML.

Wallace, A. P., 1995. The Modelling of Engineering Assemblies Based on Standard

Catalogue Components, University of Bath, UK.

Ward, A., 1989. A Theory of Quantitative Inference Applied to a Mechanical Design

Compiler, Dissertation, Massachusetts Institute of Technology.

Ward, A. and Seering, W., 1993. “Quantitative Inference in a Mechanical Design

'Compiler',” Journal of Mechanical Design, 115: 29-35.

Welch, R.V. and Dixon, J.R., 1991. “Conceptual Design of Mechanical Systems,”

Proceedings of the Design Theory and Methodology Conference, DE-Vol. 31.

248

Williams, B.C., 1990. “Interaction-based invention: designing novel devices from first

principles,” AAAI-90 Proceedings. Eighth National Conference on Artificial

Intelligence, Boston, MA, 1: 349–356.

Wodehouse, A., Grierson, H., Ion, W.J., Juster, N., Lynn, A. and Stone, A.L., 2004.

“Tikiwiki: A Tool to Support Engineering Design Students in Concept

Generation,” International Engineering and Product Design Education

Conference, Delft, the Netherlands, September 2-3 2004.

Yang, M.C., 2003. “Concept Generation and Sketching: Correlations with Design

Outcome.” Proceedings of ASME Design Engineering Technical Conferences,

Chicago, IL, September 2-6, DETC2003/DTM-48677.

Yates, III, W.D. and Beaman, D.M., 1995. “Design Simulation to Improve Product

Reliability,” Proceedings of the Annual Reliability and Maintainability

Symposium, 193–199.

Zha, X.F., Du, H.J., and Qiu, J.H., 2001. “Knowledge-Based Approach and System for

Assembly Oriented Design, Part I: The Approach,” Engineering Applications of

Artificial Intelligence, 14(1): 61–75.

Zwicky, F., 1969. Discovery, Invention, Research-Through the Morphological Approach,

The Macmillian Company, Toronto.

249

VITA

Cari Rihan Bryant was born on March 3, 1977 to F. Allen and G. Deon Bryant in

Wichita, Kansas and was raised in Kansas City, Missouri. After graduating from Raytown

High School in 1995, she attended the University of Missouri–Rolla. In 2000, she

received her Bachelor of Science degree in mechanical engineering from UMR and

entered the Master’s Degree program in mechanical engineering at the University of

Michigan in Ann Arbor, Michigan. In 2003, after earning a Master’s Degree in

mechanical engineering and a Master’s Degree in biomedical engineering from UMich,

she returned to the University of Missouri–Rolla to work on a doctoral degree in

mechanical engineering. She completed her Ph.D. in July of 2007 and joined the faculty

at the Pennsylvania State University in August 2007 as an Assistant Professor of

Engineering Design and Mechanical Engineering, where she was awarded the James F.

Will Career Development Professorship.

