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ABSTRACT

Advancement in technology  is usually made by  building on previous experiences 

and learning from past successes and failures. However, knowledge transfer in the broad 

field of product design is often difficult to accomplish. Research has shown that 

successful component configurations, observed from existing products, can be dissected 

and stored for reuse; but few computational tools exist to assist designers during the 

conceptual phase of design. Many well-known manual methods (e.g. brainstorming, 

intrinsic and extrinsic searches, and morphological analysis) rely heavily on individual 

bias and experience and are often time intensive, laborious tasks that may not catch 

solutions that are functionally analogous, but seemingly unrelated.

This research presents an automated concept generation tool that augments 

traditional activities during the conceptual phase of design. The automated concept 

generator draws on the existing knowledge contained within a repository of existing 

design solutions to quickly produce numerous feasible concepts early in the design 

process that  each satisfy the functional requirements for a design problem. The 

computational algorithm enables the development of a computerized design tool that 

complements other concept generation activities, such as brainstorming and 

morphological analyses. By quickly presenting numerous concepts from products that 

have already been developed, this design tool provides a broader set of initial concepts 

for evaluation than a designer may generate alone when limited by his/her personal 

experiences.
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1. INTRODUCTION

Product design involves the transformation of a set of established requirements 

into a physical device capable of satisfying those requirements. The early stages of 

design, especially  the stages involving concept generation and evaluation, are notoriously 

difficult to study because much of the processes occur subtly within a designer’s head. 

Because of the challenges associated with automating such an intrinsic and nuanced task, 

designers are faced with complex decisions to make during these early stages of design 

with few tools available to help  manage the process. Designers can often feel 

overwhelmed by  the idea of generating not just one but a broad array of solutions to a 

given design problem, especially if external pressure is being applied to develop an 

appropriate solution quickly. This combination of discomfort and pressure usually  leads a 

designer to hastily rush through this critical phase of the design process. Consequently, 

designers, especially those with less experience, often fail to pursue and adequately 

evaluate an appropriate number of alternatives before selecting a design to embody. The 

research presented here seeks to support a designer during the conceptual phase of the 

design process with an automated tool capable of quickly  searching a large database of 

design knowledge and delivering multiple relevant and easily identifiable conceptual 

solutions for a designer to pursue.

 

1.1. PRODUCT DESIGN OVERVIEW

Figure 1.1 diagrams common activities a designer must go through during the 

development of a design—from clarifying the needs the device must fulfill through 



generating the detailed embodiment of its structure. Many structured methods have 

emerged to help guide designers during the various stages of the design process (Pahl and 

Beitz, 1996; Otto and Wood, 2001; Ulrich and Eppinger, 1995). In particular, the 

systematic approach of Pahl and Beitz (1996) and Hubka and Eder (1984), representing 

European schools of design, has spawned many  variant methodologies in American 

design literature (Ulrich and Eppinger, 1995; Ullman, 1997; Schmidt and Cagan, 1995; 

Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cutherell, 1996; Otto and Wood, 

1996, 1997). These methodologies (e.g. Pahl and Beitz, 1996 and Otto and Wood, 2001) 

take a designer through a specific set of steps devised to help dissect a design problem 

and build conceptual solutions based on the functionality  that a product needs to exhibit. 

Functional modeling methods directly extract the functionality a solution must fulfill 

from the established customer needs, ideally removing designer biases that may  be 

introduced by focusing on specific solutions too early  in the design process. This act of 

abstraction helps a designer generate more creative and complete conceptual solutions 

and balance design choices between different components with the same functionality 

(Pahl and Beitz, 1996).
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Figure 1.1. Steps of the planning and design process (adapted from Pahl and Beitz, 1996.)

1.2. PROBLEM DESCRIPTION

Although systematic methodologies exist, Ivashok (2004) discusses the resistance 

designers seem to have toward applying them to generate initial design solutions and 

states that designers tend to quickly  descend on potential solutions as a means to further 

define and understand a design problem. However, despite the tendency of designers to 

be resistant in employing rigid methods early in the design process (Cross, 1994), 

evidence also supports the idea that structured approaches can be helpful to students and 

demonstrates a positive correlation between a structured approach and both the quantity 

and quality of student designs (Radcliffe and Lee, 1989). Additionally, during the early 

stages of the design process, designers tend to focus more on loose representations of 

conceptual ideas, such as sketches and short descriptions, in order to begin to define a 

design solution. Yang (2003) concludes that, in the context of student design teams, it is 

important to generate and solidify  a large number of ideas as well as begin prototyping a 

design early in the design process. These ideas seem to point toward the need for the 

seemingly tedious stages of systematic design to employ some level of automation to 

3



help  integrate the benefits of a structured method with the more natural activities of a 

designer—a need that is most evident during the early phases of conceptual development. 

 The fuzzy front end of the conceptual design process has seen few attempts at 

automation, perhaps due in part to the evolving strategies and methodologies that exist 

for this phase of design. Many non-computational methods exist (e.g. techniques 

designed to stimulate creative solutions (Glover, et al., 1989; de Bono, 1970) or use 

design rationale from successful designs (Navinchandra, et al., 1991; Altschuller, 1984; 

Suh, 1995)) but do not employ any  automated tools to help guide a designer. 

Furthermore, redesign tools (e.g. Quality Function Deployment (Prasad, 1998) and Life 

Cycle Analysis (van den Berg, et al., 1995)) may prove initially  confusing to an 

inexperienced designer. Computational tools that support the conceptual stage of design 

do exist, but  often these tools address areas that support other aspects of conceptual 

design such as initial requirements gathering (e.g. organizational tools such as the 

TikiWiki project (Wodehouse, et al., 2004)), the creation of function structures (e.g. the 

function grammar tool developed by Sridharan and Campbell (2005)), or optimization of 

well-established concepts (e.g. (Du and Chen, 2004)) rather than the generation of design 

solutions from existing design knowledge. Computational tools have been developed to 

assist a designer during the transition between defining a design’s function and 

establishing its form, but often these approaches either limit the scope of design problems 

they  are applicable to (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998), 

restrict concept  generation to dynamic systems where a bond graph can be readily 

utilized (e.g. Welch and Dixon, 1991; Gui and Mäntylä, 1994; Bradley, et al., 1993; Oh, 

4



et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi, 1997; Campbell, et al., 1999, 

2000, 2003), or utilize user interfaces that a novice designer may find difficult  to interpret 

(e.g. Lu and Russomanno, 1999; Deng, 2002).

Conventional CAD programs are not designed to foster interactivity and creativity 

during the early stages of design (Akman, et al., 1990), and suitable computational tools 

that support the fuzzy leading edge of the conceptual phase are still relatively  young and 

underdeveloped. One area of research explores the development of computer tools that 

enable 2D designer sketches to be quickly transformed into 3D parameterized models, 

which can then be evaluated for the given design problem. Hearst, et al. (1998) state that 

computerized sketching research seeks to create an environment that encourages 

collaboration and modification in contrast to current computer interfaces that feel too 

formal and precise to stimulate creativity. However, computerized sketching tools (e.g. 

Lipson and Shpitalni, 2000; Qin, et al., 2000; Eggli, et al., 1997; Sturgill, et al., 1995; 

Hwang and Ullman, 1990), although potentially useful, seem geared more toward 

capturing a designer’s ideas for further development early in the design process and do 

not seem to address the origination of the ideas to sketch. Other computer-aided 

conceptual design tools apply function-based associations to graphically describe the 

elements of a mechanical assembly (Serran and Gossard, 1992; Al-Hakim, et al., 2000; 

Moore, et al., 1997). Often, though, function and flow semantics are only assigned to a 

conceptual design after the structure has been chosen for manipulation by the software 

(e.g. the Multi User Groups research platform (Cera, et al., 2002)), thus diluting any 

benefits that may be gained by first abstracting a problem.

5



1.3. MOTIVATION

An increasing emphasis is placed on generating the best design early in the design 

process as companies strive to reduce costs and develop more reliable designs with 

minimal environmental impact at all stages of a product’s life cycle. This drive toward 

perfecting a design (both from a marketing and manufacturing standpoint) in its infancy 

requires that experience from completed designs be retained and reused so that accurate 

decisions are made as early  as possible, when design changes cost  the company much 

less, as shown in Figure 1.2. Often, this experience is retained in the mind of a tenured 

employee and is given as sagely advice to a fellow designer seeking counsel about a 

design decision. All too often, the tenured employee reaches retirement and the company 

is faced with either losing decades of valuable experience or spending significant 

amounts of money seeking consultation from the retired employee. 
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Figure 1.2. Allocated and expended costs during design development and manufacture. 

(adapted from Black, 1990).

 Research has shown that successful component configurations, observed from 

existing products, can readily  be dissected and stored for reuse (Bohm, et al., 2005; 

Bohm and Stone, 2004). But, even if experience in the form of design knowledge is 

accessible, both the experienced and inexperienced designer may feel compelled to 

become fixated on a particular solution or domain restricted set of solutions based on 

instinct or, perhaps, a subconscious desire to pursue an initial ‘gut  feeling.’ Designers 

traditionally  have a limited number of options available to them to help generate multiple 

feasible design solutions to evaluate.

Many well-known manual methods for generating multiple ideas (e.g. 

brainstorming, intrinsic and extrinsic searches, and morphological analysis) are designed 

to stimulate a designer’s creativity but ultimately still rely heavily  on individual bias and 
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experience. Ideation is typically limited by  experience, and experienced designers tend to 

pursue a larger array of solutions early  in the design process. Structured design 

methodologies seek to encourage the generation and evaluation of a broad array of 

conceptual designs by leading a designer through a series of guided stages. When 

directed to generate multiple solutions for a given problem within a structured design 

process, designers with limited experience are often able to produce a few feasible 

concepts, but  many of the ideas they produce are technically or realistically infeasible or 

merely minor variations of similarly  themed solutions. Researching alternative solutions 

could potentially yield new concepts, but inexperienced designers are often still limited to 

searching for preexisting solutions to the same design problem. This raises the question 

of how one searches for something when (s)he does not know it exists?

Traditional methods for researching alternative ideas include interviewing more 

knowledgeable people, searching for relevant patents, performing an Internet (web) 

search, browsing through catalogs, or reverse engineering existing designs. Interviews 

may still be limited by  the experiences of the person being interviewed, and the 

interviewee’s biases may inhibit an inexperienced designer from pursuing a non-

traditional solution. Patent databases, while vast, are not searchable in a manner that 

readily fosters innovation and often are only  useful for focused searches into specific 

technologies. Web searches and catalogs are also vast sources of knowledge, but personal 

experience can severely narrow a designer’s search, and the amount of available 

information may prove too daunting to effectively  parse through. Reverse engineering 
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existing products is potentially costly and time consuming and little information may be 

gained by dissecting only one or two products.

1.4. HYPOTHESIS AND OBJECTIVES

The challenge in creating useful conceptual design tools lies in finding innovative 

ways to help guide a designer toward the best solution(s) by  building on existing design 

experience while simultaneously discouraging tendencies to make choices or evaluations 

based on hunches or biased methods. The following subsections elaborate on the research 

hypothesis driving this the research and the specific objectives accomplished by 

addressing this challenge.

1.4.1. Hypothesis.  Using a database of stored design knowledge as a library, a

computational design tool can be created that is capable of quickly generating multiple 

feasible solutions for a generic design problem. This study focuses on creating a design 

tool that integrates into a structured design methodology, transforms user-defined design 

specifications into a broad array of conceptual designs, and helps a designer evaluate the 

solutions returned. By  quickly  presenting numerous concepts from products that have 

already been developed, this design tool can provide a broader set of concepts to evaluate 

than a designer may generate alone when limited by his/her personal experiences.  

1.4.2. Objectives.  The objectives of this dissertation are to:

I. Create a computational theory for generating and filtering conceptual solutions 

for  a design problem using designer-defined functional requirements and 

existing design knowledge mined from a repository of design knowledge.
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II. Define a structured methodology for classifying the component terms used to 

communicate the generated conceptual solutions to the designer.

III. Implement the concept generator theory  and algorithms as a software tool 

(hereafter referred to as the concept generator tool) to present feasible 

and relevant design alternatives to a designer. The software will be validated by: 

A. Showing the capability of the concept generator tool to produce design 

solutions comparable to those produced by upper level engineering students.

B. Showing the capability  of the concept generator to reproduce design 

solutions for existing products that do not directly comprise any  of the 

information stored in the repository of design knowledge.

C. Showing the capability of the concept generator to produce conceptual ideas 

for a new product design.

1.5. ORGANIZATION

The layout of this document is arranged to coordinate with the main objectives. 

First the reader is given a detailed look at the state of the art in design and especially 

conceptual design, as well as a detailed introduction to the specific existing design 

technologies that are used to support the automated design tool presented in this 

dissertation. The three chapters (Sections 3–5) following the background (Section 2) 

present the main contributions that this research delivers, namely a comprehensive 

generalized algorithm for the automatic generation of conceptual solutions and the 

technologies created to support its applied use. Later chapters present experiments and 

10



case studies performed to validate the research presented in Sections 3–5 and test the 

current limitations of the proposed technology.

Synopses of the included subject matter by chapter:

Section 2 gives the reader background information pertaining to all of the 

remaining chapters. This chapter covers an overview of the existing methodological 

framework and computational tools that form the base for the work presented in Sections 

3–6. This chapter also covers the state of the art in computational design tools that 

support various stages of the design process.

Section 3 presents the algorithm that the concept generator uses to transform the 

user-defined input into conceptual ideas. A simple example using a finite repository  of 

parts from a popular children’s toy  is included to help demonstrate how new conceptual 

solutions are created using the described algorithm,

Section 4 presents the software created from the algorithm described in Section 3. 

Two versions of the Java-based program are described; one with limited functionality that 

was initially used to test the efficacy of the algorithm in a real design scenario (described 

in Section 6), and one with expanded functionality capable of supporting a full graphical 

model of the requirements generated during a structured design process.

Section 5 presents the structured methodology created for classifying components 

under a proposed hierarchical structure, similar to ones used for the classification of 

living organisms. Additionally, function and port templates are proposed for each term to 

help  establish a more rigorous structure for the inclusion of design data into the 

repository used to generate new conceptual solutions.
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Section 6 presents a series of experiments and case studies performed to test the 

viability and usability  of the proposed concept generator algorithm and implementation. 

Two studies involving independent student evaluations of an implementation of the 

computational tool are first presented. Finally, a case study  investigating the effectiveness 

of the proposed computational tool is included.

The final section, Section 7, concludes the work presented, outlines the 

contributions made, and establishes future avenues of investigation that build on the 

research presented. Appendices and a list of References can be found immediately 

following Section 7.
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2. BACKGROUND

2.1. INTRODUCTION

The following section begins with a review of the state of the art in conceptual 

design research and areas that support automated concept generation. In particular, we 

first review systematic approaches to conceptual design and then focus on specific 

product function and component representations and design knowledge collection 

techniques on which the automated concept generation theory is built. Finally, a review 

of existing computational tools that support designers throughout various stages of the 

design process is presented.

2.2. STRUCTURED DESIGN METHODS

The fuzzy front end of the conceptual design process has seen few attempts at 

automation, perhaps due in part to the evolving strategies and methodologies that exist 

for this phase of design. However, over the past decade several methodologies have 

coalesced around the functional decomposition and partial solution manipulation 

techniques of Pahl and Beitz (Pahl and Beitz, 1988; Ulrich and Eppinger, 1995; Otto and 

Wood, 1996, 1997, 2001; Hubka and Ernst Eder, 1984; Ullman, 1997; Schmidt and 

Cagan, 1995; Pimmler and Eppinger, 1994; Shimomura, et al., 1996; Cuthrell, 1996). 

Subfunction descriptions are necessary elements of a formal approach to identify or 

derive a functional model for a product (originally called a function structure by Pahl and 

Beitz (1988)) to initiate the concept  generation phase of design. For this research, the 

functional model derivation method as prescribed in Stone and Wood (2000) and 
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Kurfman, et al. (2003) is followed. The procedure is comprised of a five-step method 

summarized as:

1. Identify input and output flows that address customer needs (or other high level 

requirements).

2. Generate a black box model (a model of the overall function and input/output 

flows) of the system that the performance model describes.

3. Create function chains for each input flow–i.e. “Be the flow” and imagine 

traversing through the system noting each operation (e.g. function) that is 

performed on you prior to leaving the system.

4. Aggregate function chains into a functional model.

5. Check that each customer need is addressed by  at least one subfunction. If not, 

then add or adapt functionality to meet remaining customer needs.

To briefly illustrate this technique, the functional model of an insulating cup is 

shown in Figure 2.1. The black box model is constructed based on the overall product 

function and includes the various energy, material, and signal flows involved in the global 

functioning of the product. The detailed functional model is then derived from 

subfunctions that operate on the flows listed in the black box model.
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Customer Needs

• Does not burn 
hand

• Comfortable fit 
in hand

• Keeps drink hot 
for extended time

• Easy to drink

• Holds a standard 
Starbucks latte

• …

(a) (b)

Figure 2.1. For an insulating cup, (a) a snippet of customer needs leads to a (b) black box 

and functional model of a cup following the functional model derivation method.

Functional models for any  product can be generated using this technique. 

Repeatability, ease in storing and sharing design information, increased scope in the 

search for solutions, and tracking of input and output flows are some of the advantages of 

functional models (Pahl and Beitz, 1988; Stone and Wood, 2000). When following the 

functional model derivation method outlined above, designers in an experimental group 

used 50% fewer terms to describe the functionality of the same product, and increased the 

clarity  of design communication (Kurfman, et al., 2003). On average, the experimental 

group found 82% of the important subfunctions of a very detailed “control” functional 

model after only one training session, indicating repeatability but not an exact science. 
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In many respects, any type of model creation to represent engineering systems is 

dependent on the skills and choices of the engineer. Different engineers are likely to 

report slightly differing results unless given extremely constrained scenarios. The same is 

true with functional modeling. In fact, this may be a strength of functional modeling as 

part of an original concept generation approach. The subtle differences between 

designers’ models may promote the exploration of innovative alternatives. For the present 

purpose of conceptual design, designers who follow the functional model derivation 

method outlined above can generate functional models that are ‘repeatable enough’ to 

generate similar solutions with the concept generator algorithm presented in Section 3.

2.3. STANDARDIZED “LANGUAGES” IN DESIGN

Use of a standardized vocabulary is a beneficial tool for efficiently applying a 

computational method to a natural language process such as conceptual design. Two such 

existing vocabularies were utilized during the course of this research to facilitate the 

input of functional requirements and the output of conceptual solutions for a design. 

These two vocabularies, the Functional Basis of Design and the Component Basis, are 

described in the next two subsections.

2.3.1. The Functional Basis of Design.  The lack of a precise definition for small  

easily solved subfunctions has spurred research into the development of a high level 

design language (sometimes called a vocabulary  or taxonomy) to describe product 

function and thus enable a systematic approach to functional modeling (Hundal, 1990; 

Koch, et al., 1994; Malmqvist, et al., 1996; Altshuller, 1984; Kirschman and Fadel, 1998; 

Kitamura and Mizoguchi, 1998, 1999; Umeda and Tomiyama, 1997; Sasajima, et al., 
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1995). In order to make elements of the early  design phases computable, researchers have 

continued to pursue a standard language that unifies the previous works (Otto and Wood, 

1997; Little, et al., 1997; Stone and Wood, 2000; Murdock, et al., 1997; Szykman, et al., 

1999; Hirtz, et al., 2002). The result of these recent  efforts is a design language known as 

the Functional Basis. Shown in Table 2.1 and Table 2.2, the hierarchically arranged Basis 

terms are utilized during the generation of a black box model and functional model 

(discussed in Section 2.2) in order to encapsulate the actual or desired functionality of a 

product (Hirtz, et al., 2002). In this approach, the designer follows a rigorous set of steps 

to define a new or redesigned product’s functionality prior to exploring specific solutions 

for the design problem (Stone and Wood, 2000). The Functional Basis is intended to be 

broad enough to span the entire electro-mechanical design space without repetition and 

has been independently verified by other researchers such as Ahmed (Ahmed and 

Wallace, 2003; Ahmed, et al., 2005) and Wood (Wood, et al., 2005; Gietka, et al., 2002). 

In Table 2.1, engineering functions are categorized as 8 primary classes that are further 

specified as secondary and tertiary (not shown) categories. In Table 2.2, engineering 

flows are categorized as three primary classes (material, signal and energy) and then 

further specified as secondary and tertiary (not shown) categories within each class.
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Table 2.1. Function classes under the Functional Basis (for term definitions, see Hirtz, et 

al., 2002).

Table 2.2. (Below) Flow classes under the Functional Basis (for term definitions, see 

Hirtz, et al., 2002).

The black box model is constructed based on the overall product function and 

includes the various Functional Basis energy, material, and signal flows involved in the 

global functioning of the product. A detailed functional model is then derived using 

Functional Basis function terms that operate on the flows from the black box model. 

Repeatability, ease in storing and sharing design information, and increased scope in the 

search for solutions are some of the advantages functional models that incorporate the 

Functional Basis exhibit (Stone and Wood, 2000; Kurfman, et al., 2001).
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2.3.2. Component  Basis.   The component naming vocabulary employed

throughout this research, termed the Component Basis, enhances the usefulness of the 

information contained within the design knowledge repository  by  grouping similar  

product artifacts into related classes (Kurtoglu, et al., 2005, 2007). For example, specific 

instances of components in different products may be named "motor 1", "shaded pole 

induction motor", or "dc motor". Using the Component  Basis, each of the of these 

components would be identified as similar and tagged as an "electric motor". Use of this 

vocabulary allows for groupings of similar components to be viewed as a single more 

abstract concept  variant when returned as a result from a computational tool. Also, this 

clustering of like components helps eliminate redundancies that bog down computations. 

By eliminating these redundancies, a larger set of unique and more abstract concept 

variants can be quickly generated and evaluated using the proposed computational tool. 

After concept variants are selected using the generalized Component Basis names, 

individual artifacts classified under the chosen Component Basis names can then be more 

closely investigated to spur a more specific concept variant idea. For example, if a 

returned concept variant included an "electric motor", the design repository (described in 

detail in Section 2.4.) could be accessed to provide the designer with the specific 

examples "motor 1", "shaded pole induction motor", or "dc motor".

2.4. DESIGN KNOWLEDGE STORAGE AND RETRIEVAL

Functional models reveal functional and flow dependencies and are useful for  

capturing design knowledge from existing products. Over the course of several years, a 

web-based repository of design knowledge has been developed and refined at the 
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University  of Missouri–Rolla and in collaboration with the University of Texas at Austin, 

Pennsylvania State University, Bucknell University, and Virginia Polytechnic Institute 

and State University  (Bohm, et al., 2004, 2005). This repository, which includes 

descriptive product information such as functionality, component physical parameters, 

manufacturing processes, failure modes, and component connectivity, now contains 

detailed design knowledge on over 100 consumer products and the components that 

comprise them (in total over 4500 design artifacts are currently included in the 

repository).

2.4.1. Information Captured by the Repository.  Several design artifact

attributes are captured when entering products into the UMR design repository database. 

These attributes are stored in a relational database where each record contains an Artifact 

Name as a free form text  field where the user can define the name of an artifact, a Part 

Family as a free form text field that can be used to catalog similar artifacts as a type or 

family, and a Part Number, which is a sequential artifact number given when the artifact 

populates the database. Information about the actual function of an artifact is captured in 

the Subfunction field as a value from the Functional Basis described above.

Quantity, Artifact Color, Manufacturing Process, Material, and Description fields 

further describe the given aspects of the particular artifact along with fields to capture 

rough geometric dimensions. An Assembly field denotes whether or not the artifact is a 

composite assembly or atomic, and a Supporting Function field denotes whether or not 

the artifact is secondary  to the product’s operation. A Component Naming field references 
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the list of standard component terms, described in Section 2.3.2., to abstractly identify the 

class of the artifact.

Artifact relationships are captured by the Sub-Artifact Of field, which establishes 

a parent-child relationship; the Input Artifact and Output Artifact fields, which are used to 

trace flow from the current artifact to the corresponding input/output artifacts; and the 

Input Flow and Output Flow fields which similarly  trace the input and output flows to 

other artifacts using values from the Functional Basis. With these fields, various 

relationships and connections can be drawn from the repository.

2.4.2. Using the Design Repository.  The repository web interface, which offers

guest and registered user access, is located at http://function.basiceng.umr.edu/

repository/. The top-level options within the web repository are Browse, Search, Design 

Tools, Design Methodology Dictionary and Account Information. With the web-based 

repository, a user can browse and search artifacts, generate design tools, and view a 

dictionary of function and flow terms. 

The Browse feature allows users to navigate through the repository. When Browse 

is initially  selected, all of the high-level systems within the repository are shown at the 

left of the screen. The systems can be expanded such that artifacts within the system are 

exposed. A hierarchical menu system allows for systems to be expanded through 

subassemblies down to singular artifacts. The menu system draws information from the 

Subartifact_Of field of the database to establish artifact hierarchy. Finally, when an 

artifact or assembly is selected, a repository listing of the artifact is shown on the right 

portion of the screen. A screenshot of the Browse feature is shown in Figure 2.2.
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Figure 2.2. The UMR Design Repository web interface. Access to the repository may be 

requested at http://function.basiceng.umr.edu/repository.

When a repository user selects the design tool option, they are presented with a 

listing of the high-level systems contained in the repository  and selection boxes to denote 

the type of desired design tool output. Once one or more systems are selected, a summary 
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of the selected systems is presented, notifying the user of the number of artifacts within 

the systems and system descriptions. The repository can currently output function-

component and design structure matrices as well as bills of materials. Because the design 

tools are not stored but rather created on demand directly from the repository  database, 

the user will always be presented with the most up-to-date design tool.

2.4.3. The Web-Based Morphological Search.  The morphological matrix

introduced by Zwicky is a now a classic technique for use in conceptual design (Zwicky, 

1969). This method provides the design engineer with a simple, albeit  manual, means for 

bookkeeping potential physical solutions and their corresponding functionality. A 

morphological matrix is traditionally created by listing all of the subfunctions for a 

design and brainstorming solutions to each subfunction, listing the solutions as columns 

and the subfunctions as rows (Pahl and Beitz, 1996; Otto and Wood, 2001; Ulrich and 

Eppinger, 1995; Hubka and Eder, 1984; Ullman, 1997). In a manual engineering design 

context, the morphological matrix is limited to the concepts generated by the engineer, 

although the morphological matrix is one technique that can be used in conjunction with 

overall design processes such as 6-3-5 or the reverse engineering and redesign method of 

Otto and Wood (2001).

The web-based morphological search tool is an automated online tool that 

designers can use to filter and browse through the product knowledge contained within 

the web-based repository. Accessed through either a guest or personalized user account at 

http://function.basiceng.umr.edu/repository/, a designer may reach the design tool via a 

web-browser on any computer connected to the Internet. Upon logging into the design 
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repository, the user is presented with an options menu. To perform a morphological 

search, the user navigates to the Search page and is presented with the option to perform 

either a “Standard Artifact Search” or a “Morphological Chart Search”. Once 

“Morphological Chart Search” is selected, the user is presented with the morphological 

search options shown in Figure 2.3.

Figure 2.3. The morphological search input.
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A list  of available products is presented on the left hand side of the morphological 

search input. The user can select any combination of the products listed depending on 

their desired search domain. With the search base selected, the user then selects the 

number of subfunctions they  wish to enter through the “Subfunction:” pull-down menu. 

At this time, a maximum of 10 subfunctions can be entered for a single search. If more 

than 10 subfunctions exist, the user must perform multiple searches. Once the number of 

subfunctions is selected, the user must specify  the number of columns they  wish to 

appear in the search return. A maximum of 20 columns can be displayed although 10 

columns typically capture most, if not all, of the possible returns. 

The user can now begin to specify the subfunctions they wish to search for by 

using the pull-down menus. Subfunctions are entered as a tuple representing the input 

flow, subfunction and output flow. The first subfunction entered in Figure 2.3 relates to 

“import human material” but is specified in the format (human material, import, human 

material). For most functions, the input and output flow are identical; however, the input 

and output flow for some functions (e.g. convert) are different.

With all of the desired subfunction tuples entered, the user can utilize the “Use 

Component Basis Naming” checkbox to choose how search results are returned. 

Checking the box categorizes returned artifacts under the Component Basis. Leaving the 

box unchecked will return results categorized by the name given to a specific artifact. For 

example, artifacts may be named “motor,” “electric motor” and “dc motor,” but they  are 

all categorized by the Component Basis as “Electric Motor.” Choosing to categorize 

search results by the Component Basis will group all instances of an electric motor as 
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“Electric Motor.” Without using the Component Basis categorization, the instances of 

“motor,” “electric motor” and “dc motor” would be returned distinctly. 

Upon submitting the search, a new browser window is opened containing the 

search results. These results for the three example subfunction tuples entered in Figure  

2.3 are shown below in Figure 2.4. The left-most column of the results page displays the 

subfunction search criteria and subsequent columns (up  to the amount specified) show the 

groupings of artifacts solving the given function. The results are sorted within each row 

by their rate of return. For example, a “Housing” of some sort is found to solve “Import 

Human Material” in 34.55% of the total number of solutions to “Import Human 

Material.”

Figure 2.4. The morphological search results.
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For this particular search, results were returned for “import human material” and 

“guide human material” while no artifacts were found for the “stabilize human material” 

criteria. To view specific instances of a returned component grouping, the user can click 

on the link below the component image. Figure 2.5 shows all of the 19 artifacts classified 

as a “Housing” for the “import human material” search criteria. Listed along side each 

artifact is the artifact’s parent product. For example, the “Left Case Handle” artifact 

originated from the Black and Decker Dustbuster. If the user wishes to view more 

information about a specific artifact, they can do so by clicking the artifact name. The 

screen-shot seen previously in Section 2.4.2. as Figure 2.2 shows the Browse page that 

appears when “Left Case Handle” is selected. The Browse page shows additional 

information such as the additional subfunctions associated with the artifact, artifact color, 

material, manufacturing process, and physical parameters.

Figure 2.5. Detailed component list for “housing”.
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2.4.4. Downloadable Design Tools.  The knowledge contained in the repository is

steadily expanding and benefits from a broad base of consumer products. As indicated in 

Figure 2.6, design generation tools like the function-component matrices (FCMs) and 

design structure matrices (DSMs) can be readily created from single or multiple products 

using the web-browser interface. The downloadable matrices can be used in a variety of 

ways to enhance the design process (Bohm, et al., 2004, 2005). FCMs contain 

information about the functionality of the components comprising the subset of products 

chosen for analysis.

Figure 2.6. From the web-based repository (center), a designer may extract information 

about component functionality in the form of a function-component matrix (FCM, left) 

and component compatibility in the form of a design structure matrix (DSM, right).
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Each nonzero cell entry, xij in the FCM  matches a component classification term j 

with a subfunction i that it had solved in a product that had previously  been dissected and 

stored in the repository, where xij is the number of instances of the jth component 

exhibiting the ith functionality. For example, in the column labeled ‘gear’, common 

functionality includes the rows ‘change mechanical energy’ and ‘transfer mechanical 

energy’. Similarly, each DSM generated from the repository contains component 

compatibility information for the components comprising the subset of products selected. 

In a DSM, positive compatibility between component j and component i is indicated 

when a 1 occupies the cell at dij (e.g. an electric motor and a gear). DSM cell entries set at 

0 indicate that the corresponding row and column components were not directly 

connected in any of the products selected to generate the DSM. Each of these matrices is 

a simple but potentially  powerful representation of the design knowledge from existing 

designs.

2.5. TOOLS TO SUPPORT THE DESIGN PROCESS

Many tools are available, both computational and manual, to assist a designer 

during various stages of the design process outlined in Figure 1.1. This section will 

provide an overview of design tool research that supports various stages of the design 

process and illustrates where the research presented in this dissertation fits into the 

process.

2.5.1. Idea Generation Techniques.  Concept generation research has traditionally

focused on developing methods that improve the quality and variety of concepts 

generated. These methods are often kept simple and efficient  such that designers are not 
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burdened by  the details or limitations of the method. The most common concept 

generation method is known as brainstorming (Osborn, 1957). The term brainstorming is 

frequently applied to any idea generation technique. Brainstorming as a specific method 

requires a group of individuals to follow the basic rules of 1) avoiding criticism, 2) 

welcoming “wild ideas”, 3) building on one another’s ideas, and 4) preferring more ideas 

than dwelling on specific ones. A more structured concept generation method can be 

found in the techniques known as C-Sketch (Shah, 1998) and 6-3-5 (Rohrbach, 1969). 

The latter of these sketch-based methods requires six participants to independently create 

three ideas at a time in a series of five rounds. The added constraints of the method 

ensure that individuals participate equally, which may be more difficult to enforce in 

traditional brainstorming. 

In addition to these team-based methods of concept generation, some well-

accepted approaches that do not require a set of interacting designers also exist. Lateral 

thinking techniques help stimulate creative solutions using mental exercises to help 

encourage broad, sideways thought during the early stages of conceptual development (de 

Bono, 1970). Designing by analogy is another established approach to arrive at novel 

design solutions. This method begins by first generalizing the design problem to a set of 

functional requirements (or a function structure representation). Then, the functional 

framework allows a designer to look for or conceive of analogous products or 

components that perform the same set of functions (McAdams and Wood, 2000; Linsey, 

et al., 2005). Function-means trees and morphological analysis (Zwicky, 1969) are 

similar methods in which solutions to individual functional requirements are first sought 
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and then synthesized together. Apart from these approaches, one widely used method is 

the Theory of Inventive Problem Solving (also known by the Russian-based acronym 

TRIZ, (Altshuller, 1984)). This method provides a tabulated representation of a large 

number of solution principles that have been extracted from existing patents. Another 

approach is “catalog design” where concepts are generated purely through browsing a 

catalog of physical elements (components, assemblies, etc.). The results are evidently 

limited by the breadth of the catalog; however, the benefit lies in the presentation of 

design knowledge that falls outside the designer’s expertise memory (McAdams and 

Wood, 2000). The computational concept generation methods presented in this 

dissertation exploit the benefits of having a catalogue of design knowledge from which to 

pull new designs while leveraging functional descriptions to quickly home in on solutions 

that are the most relevant to the design problem at hand.

2.5.2. Automated Design Tools.  Innovations cited by Antonsson and Cagan

(2001) indicate that certain parts of larger design problems can be solved automatically 

and without human expertise. However, automation in the design process is often only 

employed once basic design concepts have been selected but lack specific dimensions. 

Complete automation of the design process seems to be restricted by a lack of continuity 

between conceptual design methods and computational design tools. Several existing 

design tools primarily focus on the initial design phases, such as customer need 

gathering, the mapping of requirements to functionality, or function decomposition (e.g. 

Prasad, 1998; Feng, et al., 2001; Kitamura, et al., 2004). Other tools address automation 

issues during the later steps of design embodiment or detail design, such as predicting 

31



performance in early physical embodiment designs, analyzing kinematic designs, 

predicting required assembly  sequences for an early embodiment design, and defining the 

detailed geometry and layout for a conceptual solution (e.g. Onyebueke, et al., 1995; 

Simpson, et al., 1995; Fox, 1994; Johnson, 1998; Zha, et al., 2001; Gorti and Sriram, 

1996; Homem de Mello and Sanderson, 1991; Ishii, et al., 1988; Thornton and Johnson, 

1996). However, relatively few computational tools exist to assist designers during the 

conceptual phase of design, where requirements must be translated into a broad array of 

potential solutions that must then be roughly evaluated for predicted performance and 

cost.

Some tools or approaches do directly  address the generation of design solutions 

from existing design knowledge, but are narrow in their application domain (e.g. Yates 

and Beaman, 1995; Hayes, 1995; Finkelstein, 1998) or exist  only as limited research 

prototypes. For example, graph grammars have tackled specific component synthesis 

problems based on a desired behavior or performance (Schmidt and Cagan, 1995, 1997; 

Campbell, et al., 1999, 2000, 2003; Kurtoglu and Campbell, 2005). Similarly, catalog 

design efforts can synthesize very specific products from a candidate set of components 

based purely on quantitative performance input/output requirements (Ward, 1989; Ward 

and Seering, 1993). Several technologies have utilized bond graphs to aid the translation 

from requirements to embodiment (e.g. Welch and Dixon, 1991; Gui and Mäntylä, 1994; 

Bradley, et al., 1993; Oh, et al., 1996; Bracewell and Sharpe, 1996; Sieger and Salmi, 

1997), but this approach limits concept generation to dynamic systems for which bond 

graph relationships can be defined. Group technologies evolved as coding schemes that 
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can be used to tag and recall components within a catalog or inventory of parts (Jordan, et 

al., 2005; Opitz, 1970; Opitz, et al., 1970; Opitz and Wiendahl, 1971; Girdhar and Mital, 

2001a, 2001b; Shah and Bhatnagar, 1989; Henderson and Musti, 1988; Bhadra and 

Fischer, 1988). Some research outlines interesting methods for a designer to move from 

functional requirements to conceptual solutions (e.g. Umeda, et al., 1996; Ulrich and 

Seering, 1988; Mann, 2000; Malmqvist and Svensson, 1999; Chakrabarti and Bligh, 

2001) but employ little or no automation to assist a designer through the described 

activities. Others employ automation (e.g. Lu and Russomanno, 1999; Deng, 2002), but 

have steep learning curves or utilize knowledge in a way  that is not easily generalizable 

to accommodate alternative approaches. In general, suitable computational tools that 

support the fuzzy  leading edge of the conceptual phase are still relatively young and 

underdeveloped if they exist at all. Regardless of the specific concept generation 

methodology, all approaches begin by formulating the overall product function and 

breaking it  into small easily  solved subfunctions. Solutions to the subfunctions are 

sought, and the form of the device then follows from the assembly of all subfunction 

solutions. 

From a perspective different than the functional modeling approach discussed 

above, a number of research efforts have sought to establish a generic computational 

scheme for electromechanical design. While these methods have yet to capture function 

on the same level understood by human designers, such approaches have been used in 

attempts to synthesize new electromechanical configurations. These methods use a 

variety of computer techniques including case-based reasoning (Navinchandra, et al., 
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1991), constraint programming (Subramanian and Wang, 1995), qualitative symbolic 

algebra (Williams, 1990), or geometric algebras (Palmer and Shapiro, 1993). One of the 

most historically significant of these includes several approaches applying expert system 

formulations to specific design problems such as the paper roller system established by 

Mittal, et al. (1985). 

The concept generation phase of the design process is, at best, difficult  to translate 

into a succinct methodology  that is useful to both experienced and inexperienced 

designers. Formalization of the conceptual design phase is an active, but relatively 

immature, area of research. Many formal methods of conceptual design have yet to be 

realized as computational algorithms. The work described in this dissertation presents an 

automated, mathematically  based algorithm for concept generation and early concept 

evaluation capable of being adapted to multiple design applications. The specific focus of 

this research is the combination and formalization of function-based synthesis, constraint 

management, and design space search to create a comprehensive space of concept 

variants and search it for feasible design candidates.

2.6. SUMMARY

This section presented background information that  supports the automated 

concept generation design tool proposed in this research. Details about existing theories 

of design and how the concept generator fits into a structured design methodology were 

given. Standardized vocabularies for functions and components, known as the Functional 

Basis and Component Basis respectively, and a web-based repository of product  artifacts 

were presented as tools used by the concept generator to generate new concepts from 
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existing design knowledge. Finally, an in-depth survey  of literature on computational 

tools developed to support the design process was given.
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3. AUTOMATED CONCEPT GENERATION, PART I: THEORY AND 

ALGORITHM

3.1. INTRODUCTION

This section introduces the proposed algorithm used to generate concept variants 

from a set  of user-prescribed design requirements. First, the theory behind the proposed 

algorithm is presented in Section 3.2. Next, in Section 3.3, the procedure for transforming 

a set of functional requirements in the form of a functional model into a set of compatible 

components that comprise a complete concept variant is presented. In Section 3.4, a 

simple example demonstrating how the algorithm can be utilized is presented using a 

finite set of design components, namely a set of Tinkertoy™ construction toys.

3.2. THEORY

A theoretical challenge common to all attempts to automate the early conceptual 

design phase is the issue of how to convey  functional relationships, or the basic purpose 

of a new design problem, to a computer so that it can search, retrieve and synthesize 

relevant design information. The theoretical approach of this research begins with a 

functional description of a desired product based on high level requirements from a 

societal need (e.g., customer needs), searches for components that solve the identified 

functionality, exhaustively  explores all possible combinations of those components that 

can be physically integrated, ranks the resulting feasible concept  variants based on 

designer specified criteria, and, finally, presents those ranked concept variants to the 

designer. The underpinnings of this computational theory of concept generation include 

the basic ideas that functionality of a product generally maps to a repeatable set of forms 
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or components (e.g. Pahl and Beitz, 1988), that  component to component connections are 

important identifiers for product architecture (e.g. Pimmler and Eppinger, 1994) and that 

abstract as well as concrete knowledge about products can be stored in a design 

repository (e.g. Szykman, et al., 2001). 

More specifically, if an existing repository of design knowledge exists which 

records, at  a minimum, the functionality, connections, and generalized component name 

for each artifact of a set of known products, then that knowledge can be mined to create 

new products that are combinations of existing artifacts. The function-component 

relationships can be represented mathematically, most simply as a matrix. The same is 

true for connections between components. From these mathematical representations of 

design knowledge, all possible concept variants can be computed—an activity  that, 

except for very  simple products, is too tedious and time consuming for designers. The 

computations essentially mimic the key steps in function-based conceptual design: 

mapping function to physical solution through a mathematical form of a morphological 

matrix and connecting physical solutions together into feasible concept variants 

(including the ability to capture function- and component sharing). 

The number of potential, feasible concept variants resulting from the computation 

can be overwhelming. Consider a morphological matrix with n subfunctions where there 

exist Mi, i = 1..n, component solutions for each subfunction. The upper bound on concept 

variants is combinatorial and given by:

 

 

CV
max

= M
i

i=1

n

!
 

(3.1.)
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Even after filtering out infeasible concept variants based on connections, a 

designer may be left with thousands of concept variants. This necessitates a ranking 

aspect to any automated concept generation approach. From a minimal set of product 

knowledge such as described in the previous paragraph, the frequency of component 

occurrence can be calculated and used as a simple measure of the confidence in the 

generated concept  variant. Additional knowledge in the repository can allow for more 

sophisticated ranking of generated concept variants, for example component failure rate 

and types, manufacturing process, or cost. The particular approach to computing a rank 

will depend upon the criteria chosen.

It is important to note that the process of the automated concept generation theory 

is key here. The general theory would work with any initial, abstract representation 

scheme to describe a product. It does not have to follow this particular form of functional 

modeling—in fact it does not even have to utilize function. One could potentially use 

customer needs as the abstract representation, for example. As long as a repository of 

design information, encoded by the chosen abstract representation scheme, exists, a 

generalized version of the mapping and computations presented would apply. 

Moving to the specifics of the automated concept generation algorithm, an outline 

the matrix-based method of concept generation is next established. The concept 

generation method starts with a high level functional description of a product, expressed 

in the Functional Basis, and uses component functionality  along with component 

compatibility to create, filter, and rank concept variants (Hirtz, et al., 2002; Bryant, et al., 

2005). The function-component matrix (FCM) and the design structure matrix (DSM) 
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describe the function-component relationships and the component-component 

compatibility, respectively, of existing consumer products (Pimmler and Eppinger, 1994) 

and are extracted from the web-based design repository hosted at the University of 

Missouri–Rolla. The product descriptions stored in the repository  allow access to 

additional information such as historical occurrence and failure mode, which can be used 

to help limit and rank design solutions (a rudimentary  ranking based on historical 

occurrence is implemented for results reported in this section).

3.3. ALGORITHM

The algorithm that uses the design knowledge contained in the repository to 

generate, filter, and rank concept variants for further analysis by design engineers is 

described in detail in the following sections. Figure 3.2 graphically summarizes the 

theory  behind each step in the concept generation scheme, while Figure 3.3 relates each 

theoretical step it to the matrix-based manipulations necessary to compute the set of 

filtered concept variants.

3.3.1. Step 1: Generate a Conceptual Functional Model.   The concept

generation scheme begins with the functional model for either a new product to be 

developed or a previously  developed product that is to be redesigned. Using the 

functional model derivation method presented in Section 2.2, a graphical block diagram 

that defines the flows through the product and the functions that act on those flows is 

created. This block diagram is then translated into a matrix form that describes the 

adjacency between functions, i.e., the connection between subfunctions as defined by 

their connecting flows. Step 1 under “Theory” in Figure 3.2 shows a simple generic flow 
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chain of the form used to create functional models using the Functional Basis method, 

where f1-f4 are unspecified subfunctions of a product to be designed. Figure 3.2 also 

illustrates the matrix equivalent of this flow chain, an adjacency matrix where a non-zero 

cell entry indicates a forward connection between the row and column functions.

Figure 3.1. Visual summary of the algorithm used in the concept generator. The 

information shown in Steps 1, 2, and 4 is entered by the user. The unfiltered set of 

concept variants (Step 3) and set of feasible variants filtered by the component capability 

information from the DSM (Step 5) are produced using matrix algebra operations shown 

in Figure 3.2.
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3.3.2. Step 2: Define Function-Component Relationships.  The next step

utilizes design knowledge gathered from existing consumer products to define the 

relationships between a component and the functions that it  solves in previously 

examined products. Reverse engineering techniques are applied to existing consumer 

products, and information extracted from each product’s bill of materials and functional 

model is stored in the web-based design repository described in Section 2.4. The 

function-component relationships in the repository capture both function- and component 

sharing cases. In the case of function sharing, a single artifact in the repository can be 

tagged with as many functions as it solves. For component sharing, where several distinct 

components are required to solve an overall function, the components are grouped as an 

assembly  and treated as a single artifact. Function-component matrices (FCM) for 

individual products or specified groups of products can easily  be generated from the 

stored information. Non-zero cell entries in the FCM indicate that the component from 

the column containing the cell can solve the function from the row containing the cell. 

Step 2 in Figure 3.2 shows how the FCM equivalent describes the function-component 

relationships in the generic example shown under the “Theory” column.

3.3.3. Step 3: Compute the Set of Concept Variants that Solve the Function 

Model.  Step 3 utilizes the information from Step 1 and Step 2 to create a set of design

solutions. In Step 3 under “Theory” in Figure 3.2, a component “tree” is created showing 

the chains of components that could potentially solve the flow chain presented in Step 1, 

based on the component-function relationship information shown in Step  2. Although the 

generic example illustrated in Figure 3.2 shows a single branching tree (i.e., only one 
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component solves the first  function in the chain) for Step 3, it is important to note that 

multiple branching trees may be formed at this stage when multiple components have the 

potential to solve the initiating function in the chain. It  is also important to note that the 

algorithm supports the cases of function sharing (note the repeated components C1 in the 

top half of the branch in Step 3 of Figure 3.2) and component sharing (here an assembly 

of components that solves a single function or an overall higher level function can be 

entered as an artifact in the repository).

Computationally, if the transpose of the row vector from the FCM that 

corresponds to each of the functions from the flow chain in Step  1 is matrix multiplied by 

the row vector from the FCM that corresponds to the forward connected function, a 

component-component matrix will be generated for each function connection in the flow 

chain. This matrix multiplication is illustrated as the matrix equivalent to Step 3 in Figure 

3.2. Non-zero cells within these newly created component-component matrices represent 

all theoretically possible component combinations that will solve each pairing of 

connected functions in the flow chain. 

If these component-component matrices are then placed into the adjacency matrix 

generated in Step  1, component paths can be traced through the aggregated matrix similar 

to the way a path is traced along the tree shown in Step  3 under “Theory” in Figure 3.2. 

Tracing every possible “path” of connections will give a list of all theoretically possible 

component chain variations that  solve the function chain presented in Step 1 of Figure 

3.2.
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3.3.4. Step 4: Define Component-Component Compatibility Using Existing 

Design Knowledge.  The next step uses additional design knowledge gathered from

existing consumer products to define the compatibility  between components in the 

examined products. As each product is reverse engineered, information regarding the 

connection between components is extracted from assembly models (Rajagopalan, et al., 

2005) and stored in the web-based design repository described in Section 2.4. 

Component-component compatibility matrices for individual or specified groups of 

products can easily  be generated from the stored information. Non-zero cell entries in the 

component-component matrix (frequently called a design-structure matrix or DSM) 

indicate that the component from the column containing the cell has been directly 

connected to the component from the row containing the cell in an existing product. Step 

4 in Figure 3.2 shows the DSM equivalent  describing the known component-component 

compatibility in the generic example shown under the “Theory” column.

3.3.5. Step 5: Filter Set of Conceptual Variants.   Step 5 uses the component

compatibility information contained in the DSM to prune the tree of design solutions 

computed in Step 3. Shown under the “Theory” column for Step 5 in Figure 3.2, each 

component connection in each component chain is checked for known compatibility 

using the stored connection information from Step  4. An ‘X’ indicates each component 

connection line that is not supported by  the compatibility  table shown in Step  4. In the 

matrix equivalent, each cell of the DSM  is multiplied with the corresponding cell in each 

of the function pair component-component matrices generated in Step 3. Overlaying the 

DSM on each matrix created in Step 3 (via cell multiplication) has the effect of removing 
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any of the possible component connections that do not appear in the repository database. 

This technique uses the “experience” contained in the repository to filter out potentially 

inadequate concept variants and reduce the set of possible concept variants down to a 

more manageable size. After the matrices are filtered, we can once again trace every 

“path” of possible components to generate a list  of feasible component chains that solve 

the function chain from Step 1.

Finally, this filtered list of feasible solutions can be ranked to bubble the most 

promising solutions to the top of the list based on a designer’s specified needs. For 

instance, various measures of design needs (e.g. manufacturability, recyclability, failure 

etc.) entered as the non-zero FCM and/or DSM entries can be used to rank and sort the 

resulting conceptual design solutions generated by this method. Once the set of filtered 

concept variants has been computed and ranked, a designer is then free to sift through the 

generated concept variants and evaluate the application of each to the design situation at 

hand.

The presented algorithm illustrates a method to quickly produce and sort a set of 

conceptual designs for a new or redesigned product. Functions comprising a proposed 

product’s functional model are mapped to lists of components that are capable of solving 

each function. The tree of possible component chains is then pruned by  eliminating 

infeasible component connections according to historical component-component 

compatibility. This filtered set of component chains is then ranked and presented to the 

design engineer for further analysis. The following section illustrates the application of 
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the presented algorithm by manually applying it to a simplified design example using 

Tinkertoy™ parts as the set of components available in a simulated design repository.

3.4. ILLUSTRATIVE EXAMPLE

A tricycle built from a standard Tinkertoy™ set, shown in Figure 3.3, is next 

presented as a simple proof-of-concept example. This simplified example demonstrates 

the effectiveness of the described methodology while utilizing a manageable set of 

artifacts for ease of illustration. 

Figure 3.3. Tinkertoy™ tricycle used as the “product” to be redesigned in the following 

example.

First, a functional model of the tricycle construction was generated as described in 

Step 1 of the concept generation algorithm. For demonstration purposes, the subsequent 

steps of the concept generation scheme were only applied to the energy flow chain, 
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shown in Figure 3.4a, from the complete functional model. The functional model of this 

flow chain begins by importing human energy  across the product boundary of the tricycle 

toy. The model follows the energy flow as it gets converted to translational energy and 

transmitted through the product, then gets converted into rotational energy, which is 

further transmitted through the product and finally converted back into translational 

energy (note that  we have used the tertiary categorization of flows in order to distinguish 

between the rotational and translation aspects of mechanical energy). Figure 3.4b shows 

the function adjacency matrix generated from the energy function chain in Figure 3.4a. 

Sequential numbers are used in the function connectivity matrix for easy reference to the 

connections labeled in the energy function chain.

(a)

(b)

 

Figure 3.4. (a) Function chain for the energy flow through the Tinkertoy™ tricycle. (b) 

Function adjacency matrix describing the function connections graphically shown in (a).
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Next, in Step  2 of the concept  generation scheme, a function-component matrix 

(FCM) was constructed for the complete set of Tinkertoy™ components. The FCM for 

the Tinkertoy™ set was generated by  assigning functionality to each component of the 

Tinkertoy™ component set, which is, in effect, a mini-repository of Tinkertoys™. Note 

that the component naming terms were not used in this initial proof of concept study. The 

complete FCM  generated for the Tinkertoy™ set is shown in Figure 3.5. For instance, the 

FCM  indicates that the yellow bearing component is capable of embodying the following 

functionality: Guiding a solid, distributing translational energy, transmitting translational 

energy, converting human energy  to translational energy, and converting translational 

energy to rotational energy. 

Figure 3.5. Function-component matrix manually generated for the set of Tinkertoy™ 

components.

Using the function connectivity information from Figure 3.4b and the component 

functionality from Figure 3.5, the entire set of theoretical concept variants for the 

redesign was calculated during Step 3 of the concept generation algorithm. As illustrated 
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in Figure 3.6, rows for each of the connected function pairs were multiplied together to 

generate the unfiltered matrices of design solutions for each function pair. These 

unfiltered matrices are then embedded into the function adjacency matrix to describe the 

full set of theoretical solutions.

Figure 3.6. Matrix row multiplication is used to generate the set of theoretical design 

solutions for each connected function pair. Resulting matrices are embedded in the 

function adjacency matrix.

In Step  4, a similar method to that  used to create the FCM was employed to 

construct the design structure matrix (DSM) for the set of Tinkertoy™ components. The 

DSM, shown in Figure 3.7, describes the component compatibility between each 

component, where 1’s entered into each cell identifies components that can be connected 

together, and 0’s indicate incompatibility.
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Figure 3.7. Design structure matrix (DSM) generated for the set of Tinkertoy™ 

components.

Finally, in Step 5, each cell of the DSM was multiplied by the corresponding cell 

for each of the connected function pairs in order to filter out design solutions that are 

infeasible due to component incompatibility. The entire set of filtered design solutions is 

shown in Figure 3.8. To clarify the pertinent information, cells that contained zero values 

in the original function adjacency matrix are grayed out. 
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Figures 3.9a-d present four of the design variants encompassed in the matrix 

presented in Figure 3.8. The design variants shown are unstable asymmetric versions of 

the original tricycle concept since the energy function chain generated in Step 1 does not 

encompass requirements that the design be stable. The design variant in Figure 3.9a was 

constructed by  selecting the component connections circled in Figure 3.8. Think of the 

overall matrix shown in Figure 3.8 as an adjacency matrix of embedded DSM  matrices. 

The overall matrix has rows and columns of functions (that describe the product under 

study). This overall adjacency matrix captures the connectivity  of the functions in the 

functional model. 

Specifically, in Figure 3.8, enter the matrix through the row labeled ‘import h.e.’ 

and then read over to the cell containing the embedded matrix (the non-grey cell). Read 

up the column from that cell and you see the column label of ‘convert h.e. to t.e.’, the 

function that is connected to import h.e. Now, within the cell containing the embedded 

DSM matrix, follow the row labeled ‘blue rod’ (the first component of concept variant 1) 

across to find six cells with entries of ‘1’ in them. This means the blue rod does solve the 

function ‘import  h.e.’ and if selected can then connect to the components ‘red wheel’ 

through ‘orange cap,’ as indicated by the column headings above each of the cells with a 

‘1’ in them. The circle in Figure 3.8 indicates that the ‘yellow hub’ is the next component 

to which we will connect. Next, find the row of the overall matrix labeled ‘convert h.e. to 

t.e.’ (the next function in the functional model chain of Figure 3.4a) and then read over to 

the cell with the embedded matrix. Reading up this column identifies that the next 

function in the chain will be ‘transmit t.e.’ Returning to the cell, we start at the row 
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corresponding to ‘yellow hub’ (the component chosen to connect to ‘blue rod’). The 

‘yellow hub’ can connect to the components ‘purple connector’ through ‘purple rod,’ as 

indicated by the ‘1’ entries and, in this instance, we explore connecting to the ‘green 

rod.’ Now, we move on to the third function in the chain, ‘transmit t.e.’ Locate the 

‘transmit t.e.’ row in the overall matrix and read over to the cell containing the embedded 

matrix. Reading up identifies that ‘convert t.e. to r.e.’ is the next function in the chain. 

Within the embedded matrix, we locate the ‘green rod’ row and see that there are two 

possible connections – ‘blue hub’ or ‘yellow bearing.’ In this instance, the ‘blue hub’ is 

selected. Continuing on shows how the remaining two components that solve the 

functionality specified in Step 1 for this concept variant are identified.

Figure 3.9. (a)-(d) Concept variants selected from the matrix of feasible solutions 

presented in Figure 3.8.

53



Using this technique, a set of feasible design solutions for the product to be 

designed or redesigned can be identified. Ranking of the design solutions can be 

accomplished by  calculating a “score” for each concept variant using stored measures of 

frequency of occurrence, manufacturability, assemblability, or other measures related to 

the component connections selected. The ranking is not implemented for this contrived 

Tinkertoy™ example. In Section 4, the presented algorithm is automated to eliminate the 

need for manual matrix manipulations and quickly produce concept variants for 

evaluation.

54



4. AUTOMATED CONCEPT GENERATION, PART II: SOFTWARE

4.1. INTRODUCTION

This section presents the software implementation of the proposed algorithm 

presented in Section 3. The first implementation implements the computational theory 

presented in Section 3 and presents the designer with a list of possible component 

solutions that satisfies the functional requirements input by a the user. Next, Section 4.3 

presents a case study that uses the list-based implementation. Finally, in Section 4.4, an 

improved implementation, which extends the capabilities of the software presented in 

Section 4.2, is presented.

4.2. AUTOMATION OF THE CONCEPT GENERATION ALGORITHM

Using the algorithm described in Section 3, a Java-based program was created to 

automatically produce a ranked list of concept variants for an input functional model 

chain. The user interface, shown in Figure 4.1, firsts prompts the user for the location of 

the function-component matrix (FCM) and design structure matrix (DSM) data files 

generated from the web-based design repository  from which the new concepts will be 

created. Within the repository, the FCM and DSM design tools permit the user to select 

any subset of products from the repository from which to generate these matrices, 

allowing the designer to select which group of products to build new concepts from.
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(a)

(b)

Figure 4.1. User interface for (a) inputting the FCM, DSM, and functional model for 

automatic concept generation, and (b) browsing through the list of returned concept 

variant chains. Actual entries correspond to the case study presented in Section 4.3.
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Next, the user enters the number of distinct flow chains contained in the 

conceptual functional model. This initial version of the concept generation software 

limits flow chain entries to a single non-branching flow, requiring the user to break a full 

functional model up  into individual chains prior to entry into the software. The user then 

selects the number of subfunctions in each flow chain and proceeds to enter the input and 

output flows and subfunctions for the individual chain. At this point, concepts can be 

generated and ranked for each flow chain by selecting the “Go!” button. 

The number of components displayed for each concept variant can be minimized 

by selecting the “Combine repeated components” checkbox. Selecting this option 

instructs the program to search for repeating series of components in the concept variant 

chain and collapse them down to a single instance for display, exploiting the concept of 

function sharing. The option to “Include incomplete solutions” in the ranked returned 

concepts is also available. This allows the user to decide whether to display concept 

variant chains that may be incomplete (i.e. not all subfunctions have an associated 

component solution) since the design repository may  not yet contain preexisting solutions 

for the entered flow/subfunction combination. If selected, incomplete variants will show 

a question mark in chains where a solution with known compatibility cannot be found.  

After obtaining the user input, the program filters the FCM so it contains only 

those functions relevant to the user-input functional model. From this filtered FCM, or 

morphological matrix, the component-component matrices for each pairing of functions 

are calculated and filtered using the information contained in the DSM. The components 

in both the FCM  and DSM are categorized according to the terms from the component 
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naming basis presented in Section 2.3.2. Finally, all combinations of the remaining 

feasible component-component connections are determined, ranked, and output as 

potential component configurations for the input functional model.  In the initial 

implementation of the algorithm, a rudimentary ranking of the concept variants by 

historical occurrence of their constituent components is calculated (note that a high 

ranking result  indicates that the concept variant is composed of the most commonly 

occurring components). The magnitude of the cell values from the FCM supplies the 

occurrence data. 

Once the concept variants are created and ranked, the results are displayed in a 

separate window where the user can either save the results to a text file or browse through 

the variants using the interface at the bottom of the panel. By using them as a point of 

departure for other non-computational creative techniques like brainstorming, these 

conceptual design variants can then be further developed and/or modified by the designer 

to satisfy the design requirements. The next section presents a case study for the creation 

of a box-labeling device to demonstrate the effectiveness of the software in a real-world 

design situation.

4.3. CASE STUDY: BOX LABELING DEVICE

This section presents a case study that demonstrates how the automated concept 

generation software can effectively assist  a designer during the early  phases of design. A 

design team was charged with creating a box-labeling device to assist workers at  a local 

area workshop  for persons with disabilities. Prior to the designer’s solution, the task of 

labeling the contents of cardboard boxes filled with sample products from a local 
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business was restricted to those workers who possessed the agility and mental capacity 

required to properly hand write the information on the box. The managers at the 

workshop were looking for a solution that would allow any of the workers to perform this 

task regardless of level of ability, while maintaining a level of quality acceptable to the 

local business that contracted the work. After determining the applicable customer needs 

for the device to be designed, the conceptual functional model, shown in Figure 4.2, for 

the box-labeling device was generated.

Since the current form of the software is limited to handling single, non-branching 

flow chains, the functional model shown in Figure 4.2 was divided into individual non-

branching chains, as illustrated in Figure 4.3. Note that subfunctions with multiple input/

output flows appear in multiple flow chains, and that these repeated subfunctions appear 

vertically adjacent to each other in Figure 4.3. These five flow chains were used as the 

input into the concept generation program as demonstrated using Flow Chain C shown in 

Figure 4.1a above.

Figure 4.2. (Above) Conceptual functional model for the case study of a box-labeling 

device.
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Figure 4.3. The conceptual functional model was divided into single non-branching flow 

chains, labeled Flow Chains A-E, and entered into the concept generation software.

The panel shown in Figure 4.1b demonstrates how the top ranked concepts are 

displayed for flow chain C. All returned concept variants for flow chain C can be viewed 

using the “Previous” and “Next” buttons located at the bottom of the panel. Additionally, 

the concept variant chains can be saved to a text file using the “Output File” button 

located at the top of the panel. Question marks located in the component placeholders for 

the returned variants indicate that no solutions were found with known compatibility  with 

the adjacent component. Variants containing unknown solutions may  be combined to 

create a more complete solution. For instance, combining the top two solutions shown in 

Figure 4.1b results in a concept variant with only  one unspecified component solution. It 

is important to note that at the time that this case study  was performed, the design 

repository  contained knowledge data from a limited number of consumer products. As the 
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repository  has grown to house design information on over 100 consumer products to date, 

the number of incomplete solutions returned is greatly  reduced. Gathered from the results 

returned by  the algorithm, these and other top ranked component chains for each flow 

chain, A-E, are displayed in Figure 4.4. Vertically adjacent components designated by the 

dotted outlines indicate solutions for the same subfunction, which was repeated when the 

full functional model was dissected into individual chains. For clarity, Table 4.1 shows 

the definitions for the subset of Component Basis names shown in Figure 4.4. 

Table 4.1. Subset of Component Basis artifacts found in the listed concept variants 

(Kurtoglu, et al., 2005).

61



Figure 4.4. Conceptual component chains generated from the concept generation 

software. Components grouped together vertically by the dotted outlines indicate overlap 

in the component chains. This redundancy is triggered when the complete functional 

model is divided into individual flow chains, causing a single subfunction to appear in 

multiple flow chains.

The individual component chains, shown in Figure 4.4, can then be reassembled 

to produce a complete concept variant for the product to be redesigned (see Figure 4.5). 

To help clarify the component-function relationships for the concept variant chosen, the 

complete concept variant, shown in Figure 4.5, was superimposed onto the functional 

model from Figure 4.2.
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Figure 4.5. Aggregated concept variant generated from the component chains shown in 

Figure 4.4. Components are associated with the subfunctions from the functional model 

they solve.

After generating an array of concept variants from the software, sketching 

techniques can next be employed as a final step to create visual representations of 

selected conceptual design variants. Using the Component Basis definitions and pictures 

of specific artifacts from the web-based repository  as guides, multiple embodiments of 

the conceptual design ideas were generated for the box-labeling device by sketching 

various configurations of the returned component solutions, one of which is shown in 

Figure 4.6. 
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Figure 4.6. Conceptual design generated for the box-labeling device, inspired by the 

concept generation program output.

Figure 4.7. Embodied design for the box-labeling device (cover removed to show internal 

components).
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Many concepts were generated using several different methodologies over the 

course of the box-labeling project. After each of the concept variants generated by the 

various methods were evaluated and ranked, the sketch shown in Figure 4.6 was chosen 

as the starting point for the final box-labeling device design. Although the eventual 

embodiment of the box-labeling device, shown in Figure 4.7, was modified from the 

initial conceptual sketch presented in Figure 4.6 during the later stages of design, the 

concept variant shown in Figure 4.5 catalyzed the idea that led to a successful end design.

4.4. MEMIC: THE INTERACTIVE MORPHOLOGICAL SEARCH

Beneficial characteristics of the web-based morphological search described in 

Section 2.4.4. and the automated concept generator described in Section 4.2. were 

combined into a hybrid technique in an effort to enhance the usefulness of the automated 

design tool to a designer. The hybrid technique, named MEMIC or Morphological 

Evaluation Machine and Interactive Conceptualizer, retains the solution accessibility that 

the web-based morphological search method provides a user by listing the solutions for 

each function in a matrix form, while retaining the connectivity  information that the list-

based automated concept generator establishes. Thus a user can more easily  choose 

between multiple solutions for a given function and interactively  build a complete 

feasible solution. The code for the MEMIC software can be found in Appendix A.

The interactive morphological search begins by accepting a text file describing a 

full functional model in the form of a function-adjacency matrix. A function-adjacency 

matrix, briefly  demonstrated using a simple example shown in Figure 4.8, is a translation 

of a block functional diagram into matrix form, where a non-zero cell entry  indicates a 
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forward connection between the row and column functions. Converting a graphical 

functional model into this asymmetric matrix form yields an easy and convenient tool for 

identifying the connectivity between functions, including branching connections and 

connections that  converge into a single function, as well as starting and ending 

subfunctions (zero columns and zero rows, respectively).

(a)

(b)

Figure 4.8. (a) A simple functional model and (b) the associated function-adjacency 

matrix.
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Next, as for the list-based concept generator, a user is prompted to load tab-

delimited data files of the function-component matrix (FCM) and design structure matrix 

(DSM) generated from the web-based design repository. The user interface for uploading 

the files is shown in Figure 4.9a. Once each of these three data files is loaded, the “Get 

concepts” button may be pressed to generate design solutions.

When the user indicates that concepts should be generated, the data files are run 

through an algorithm similar to the one described in Section 3. However, to build up full 

solutions more efficiently and eliminate occasional solution “dead ends” that may not be 

weeded out using the automated concept generator in Section 4.2., the algorithm is 

expanded to check for and remove “dead end” solutions. The solutions are then returned 

to the user in the form of a morphological matrix, where the components that may be 

assembled into a full solution are listed alongside the name of each subfunction in the 

input functional model. If no compatible solution was found for a given subfunction, a 

“?” is placed as an indicator that no known solutions were found within the database that 

was also compatible with the solutions connecting to it, indicating to a designer that a 

novel partial solution may need to be implemented to create a complete design.
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(a)

(b)

Figure 4.9. The interactive morphological search user interface for (a) inputting the FCM,

DSM, and functional model for automatic concept generation, and (b) interacting with the

return conceptual solutions.

Once components are returned, the interactive morphological matrix, shown in 

Figure 4.9b, allows the user to select components that solve each function in an input 
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functional model. When a solution component is selected, incompatible solutions are 

shaded over and the user is no longer allowed to select them. By  implementing the 

concept generator output in this fashion, users can build entire concepts that, based on 

historical data contained within the repository, are comprised only  of components that 

can physically be connected together. By using the interactive morphological matrix, a 

designer is allowed to tinker with various ideas and virtually assemble a complete 

solution that can be physically produced.

To be effective, the component terms presented to a designer via the interactive 

morphological matrix must be meaningful and rigorously defined. To this end, the 

Component Basis described in Section 2.3.2. has been enhanced by establishing a 

hierarchical method to classify components and establish new classification terms. This 

research is present next in Section 5.
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5. COMPONENT CLASSIFICATION FOR KNOWLEDGE RETRIEVAL 

5.1. INTRODUCTION

To facilitate the interpretation of results presented via the interactive 

morphological matrix described in Section 4.4, a methodology for the systematic 

placement of components into a hierarchical ontology is presented. Cues taken from the 

Linnaean classification system for living organisms are used to generate a hierarchical 

ontology  for organizing component terms and to create a robust procedure for adding new 

component terms to an existing component naming scheme. The objective of this 

research is to begin constructing a hierarchical ontology that is analogous to the Linnaean 

classification system with specific rules that rigorously guide component placement 

within the framework. The primary motivation for this research is to develop  an ontology 

of distinct abstract components terms that supports computational strategies for 

automated design synthesis, general design knowledge storage and reuse, efficient 

communication of design information, and standardization for digital component 

cataloging and searching.

5.2. MOTIVATIONS

Components are the fundamental artifacts from which physical devices are built. 

In the early stages of design, a designer must take a set of specifications and constraints 

and translate these design requirements into a set of compatible components that work 

together to solve a desired task. As an electromechanical design evolves from a loose 

conceptual sketch to a fully realized product design, designers make decisions regarding 

specific component geometry and performance. While formal component representations 
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exist during the detailed stages of product development, electromechanical components 

lack similar representations that  support the conceptual phase of design, leaving a 

designer to rely  on personal experience or potentially  time consuming search methods to 

identify an initial broad selection of distinct conceptual component configurations for a 

design. In addition, less experienced designers may  find it difficult to produce a broad 

array  of distinctly different potential solutions, and instead may generate several similar 

alternatives that may  contain one or more components that are merely variations on a 

theme within the realm of his or her personal experience. In the early  stages of design, 

specific details of component geometry and performance are less important than the 

ability  to represent component knowledge at a higher level of abstraction (Kuziak, et al., 

1991). The functionality of components provides a natural framework upon which such 

abstractions can be built. Previous work sought to develop and later refine a component 

naming convention for abstract functionally relevant component classes for first 

mechanical and later electromechanical components (Greer, et al., 2003; Kurtoglu, et al., 

2005). The research presented here seeks to create a hierarchical ontology into which 

both new and existing component terms may be classified. It is hoped that this hierarchy, 

inspired by the animal classification system begun by Carolus Linneaus, will help ensure 

that the goal of complete and exclusive inclusion of all components into the ontology will 

be maintained as new terms are added.

5.2.1. Implementation of a Computational Theory for Design Synthesis.

Many researchers have explored automated design tools to improve design synthesis 

activities (see Section 2.5.). Components typically constitute the fundamental building 
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blocks of these activities. Within the variety of computer aided design research, various 

methodologies and tools have been developed which require a rich library of 

components, however, there is no agreed upon standard component library. As a result of 

this, libraries of components are independently developed in an application specific 

manner. Creation of a structured framework for the classification of new and existing 

components will reconcile previous efforts into a single electromechanical component 

library that can be leveraged by a number of design automation methods.

5.2.2. Design Knowledge Reuse.   Over the past few decades, systematic

approaches to conceptual design have emerged (see Section 2.2.). These design methods 

begin by formulating the product function as a set  of low level subfunctions, solutions to 

which are then synthesized together to arrive at a final design. The core of the 

computational synthesis methods, presented in Sections 3 and 4, that are built upon this 

function-based framework is the mapping of subfunctions to components. This allows 

designers to generate concept variants from a generic functional description of the 

product being designed. Each of these computational methods requires a knowledge base 

of “reconfigurable” standardized component objects that can be archived, searched and 

reused. A defined ontology facilitates the organization of such a knowledge base so that 

various computational design tools can leverage existing design knowledge.

5.2.3. Communication of Design Knowledge.  The use of natural language often

leads to ambiguity in representing component design knowledge. Arbitrary and redundant 

component naming results in different interpretations among designers for similar 

concepts, hindering effective communication of design knowledge. By associating 

72



fundamental component concepts with uniquely defined component classes and by 

providing a structure for defining each term, improvements in uniformity and consistency 

in the representation of components and communication of design information for 

industry and design education are possible.

5.2.4. Standardization for Digital Component Cataloging.   Solutions to

conceptual design problems are usually  represented as a configuration of components and 

interactions between them (Kurtoglu and Campbell, 2005; Liang and Paredis, 2004). The 

transformation from these configurations to fully embodied design solutions requires the 

specification of a system of electromechanical components that meet the overall design 

requirements. Given the breadth of suppliers and production methods that exist today, 

most engineered artifacts are a mix of both custom-made parts and OEM (original 

equipment manufacturer) parts. As a result, the OEM suppliers compete by  striving to 

improve their components quality  and variety. It is particularly  important for them to 

catalogue their solutions such that  they can be efficiently retrieved and incorporated into 

the design process. Technologies involving electronic representations of standard 

components and resulting digital databases are becoming more prominent in engineering 

design (Wallace, 1995; Culley and Webber, 1992; Hicks, et al., 2005). Contributing to 

these efforts, it  is hoped that this ontology provides a useful classification scheme for 

vendors selling a variety of OEM components.

Motivated by these factors, a starting point  for the creation of a component 

ontology  that is accessible to all design engineers is provided here. In the following 

subsections, other approaches to cataloging components, the use of ontologies in 
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engineering design and computational synthesis, and a discussion of the biological 

parallels between classifying animals and classifying components will be discussed. The 

background discussions are followed by a description of the method used to create the 

proposed hierarchical framework and to classify existing and new component naming 

terms within it.

5.3. BACKGROUND INFORMATION

The motivation for developing a component ontology  for systems design is 

analogous to that of the museum curator who archives artifacts from the universe around 

us as a repository  of knowledge about those artifacts. Research in the field of artificial 

intelligence (AI) known as knowledge capture and representation is closely related to the 

work reported here. In general, an ontology  is a philosophical theory about the nature of 

existence, but AI researchers have adapted the term to describe “a shared and common 

understanding of some domain that can be communicated between people and application 

systems” (Gruber, 1994). Neches, et al., (1991) claim: “An ontology defines the basic 

terms and relations comprising the vocabulary of a topic area.”

5.3.1. Artifact Classification.  In this paper the view of an ontology is taken as a

construct for the classification of knowledge:

“An ontology may take a variety of forms, but necessarily it will include a 

vocabulary of terms, and some specification of their meaning. This includes 

definitions and an indication of how concepts are inter-related which collectively 

impose a structure on the domain and constrain the possible interpretations of 

terms.”(Uschold, 1998)

A rich source for information about artifact classification is found in the 

ontologies used by  museums. Because museums are in the business of collecting, 
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cataloging, and classifying the artifacts of human endeavor, their curators have spent 

considerable energy in devising systematic means of  cataloging their collections. One of 

the tools employed in this classification is a lexicon. The most commonly  used lexicon is 

the one developed by Chenhall (1978), who stated:

“The lexicon…is based on the assumption that every man-made object  was 

originally  created to fulfill some function or purpose and, further, that original 

function is the only  common denominator that is present in all of the artifacts of 

man, however simple or complex.” 

In Chenhall’s view, the known (or assumed) function of an object represents the 

highest level of organizing principle upon which human-made artifacts can be classified 

and named. A logical system for naming objects consists of a ontology, or hierarchical 

ordering, based on three levels of relationships: 1) A controlled list of major categories, 2) 

A controlled vocabulary of classification terms, and 3) An open vocabulary of object 

names. Each of these levels is based on the function of the object:

• Major categories are a very limited set of easily remembered functional classes.

• Classification terms are carefully defined subdivisions of the major categories.

• Object names are the words used to identify individual artifacts.

The AI community takes a similar approach to component classification by using 

the function and form of a component as fundamental elements in its classification. The 

inclusion of function is a consistent theme in both the practical approach of Chenhall and 

the virtual approach of the AI community. The presence of component function in 

component naming is an important linkage between the theory of knowledge capture and 

representation and the theory  of design. An understanding of function is integral to the 
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design process (Pahl and Beitz, 1996; Otto and Wood, 2001); hence, a natural 

relationship between components and function must exist. 

Another approach to classification comes from the Linnaean system of classifying 

species used in biology (Linnaei, 1937). Carolus Linnaeus began the classification of 

living species during the early  1700s. Originally  organizing plants by their reproductive 

structures, Linnaeus laid the foundations for the modern organism classification, which 

later led to striking observations and evolutionary theories about the similarities between 

functional forms found between species in the natural world. In the Linnaean system, the 

two classes are the genus class and the species name; these are equivalent to the 

classification and object name within the Chenhall system. In Chenhall’s lexicon, the 

classifications are defined very clearly, while the object names are left open ended. This 

approach allows those interested in the lexicon to add to the collected knowledge 

contained therein. When used properly, a classification and an object name from 

Chenhall’s lexicon results in a name that is unique in all of humankind’s creations. 

One difficulty in developing an ontology for components is classification 

consistency. For example, does a long slender two-force member describe a link, a beam, 

or a shaft? Stahovich, et al., (1993) claim that the fundamental ontology  for mechanical 

devices should be based on object behavior not structure. Paredis, et al., (2001) suggest 

that a complete description of a component requires the addition of form to the 

classification, where form specifies a particular instantiation of a component, e.g., a part 

number for a motor. Both approaches imply  that behavior is a key element in classifying 

mechanical components. Does this clear up  the issue of the long slender two force 
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member? The behavior of this component is describable using the mathematical 

representation of the states of a device (Pahl and Beitz, 1996). Modeling using the state 

representation of the component leads to an input/output relationship. Input/output 

relationships at a more abstract level are, by  definition, the function of a component, 

device, or system. “A function of a product is a statement of a clear, reproducible 

relationship  between the available input and the desired output of a product, independent 

of any particular form (Otto and Wood, 2001).” In the case of the long slender two force 

member, the input/output relationship is to transmit force, where transmit force is a 

function taken from the Functional Basis of Hirtz, et al., (2002). Hence, it is proposed 

that the function of a component is the fundamental ontology for components.  

5.3.2. Observations. In this work, common ground is found between the goal of a

basis set of component names in systems design and Chenhall’s lexicon for classifying 

human-made artifacts. Because most components used in systems design are indeed 

human-made artifacts, they  should be describable in the lexicon of Chenhall. 

Unfortunately, the lexicon does not include all possible artifact names, in fact  “Artifacts 

originally  created to be a physical part  of some other object have, in most cases, been 

excluded from the lexicon” (1978). In terms of design, “artifacts originally created to be a 

physical part of some other object…” describe components. 

Similarly, electro-mechanical devices share characteristics with living organisms 

that make the creation of a classification system analogous to the Linnaean classification, 

like having distinct observable form and function traits, varied levels of complexity, and a 

potential for partial overlap with traits from distinctly different components.
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Since components cannot be adequately  described in either Chenhall’s lexicon or 

the Linnean classification, this function-based component ontology for systems design is 

proposed in order to establish a vocabulary of terms and a set of specifications for their 

inter-relationship. Therefore, similar to the way the Linnaean classification system has 

spawned an international code to ensure uniqueness and distinctness in naming biological 

terms, it is anticipated that the naming of new component terms under a component 

ontology should employ similar procedural guidelines.

5.4. THE CLASSIFICATION HIERARCHY

Although not completely  analogous, systems and their components share many 

traits with animals that make classification challenging. Originally, animal classifications 

were primarily based on visual observations of morphological similarity. More recently, 

biologists have used molecular and biochemical data in addition to morphological data to 

identify evolutionary  links and classify animals under what is thought to be a more 

accurate binary tree structure known as cladistics (Hennig, 1979). Components are not 

evolutionary  in the same sense that animals evolve from what is commonly thought to be 

a series of branching points, and the goal of classification in this research is focused more 

on the practical use of the proposed hierarchical ontology. For this reason, we have 

chosen to initially  begin with a function-based framework for the component 

classification hierarchy. The hierarchical framework was initially established from the 

notion that device function is an integral and critical characteristic of a component from 

the perspective of concept selection during the design process (Pahl and Beitz, 1996; Otto 

and Wood, 2001). As a starting point, the list of primary and secondary  level function 
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terms from the Functional Basis (Hirtz, 2002), discussed in Section 2.2., were used to 

designate the primary and secondary levels of the component framework.

5.4.1. Establishing the Hierarchy.  In order to begin placing existing terms

(Kurtoglu, et al., 2005) into the framework, the functional traits of each device term 

needed to be established, where a device (component) is defined as having “input and 

output ports through which it is connected to another device (component)” (Kitamura and 

Mizoguchi, 2003). The functional traits of each component term were determined by 

analyzing the individual components housed within the repository of product information 

and categorized under that component term. The black box functionality for each 

component term was defined by identifying the most commonly occurring subfunction 

(function-flow combination) assigned to each of the components classified under that 

term in the repository.

5.4.2. Placing Existing Component Terms into the Hierarchy.  Function 

templates for each component term (see Figure 5.1) were generated to show the functions 

assigned to components within a given classification. In nearly every case, a component 

term would have a single function that was common among all components classified 

under that term. Exceptions included components that had errors resulting from entering 

the data into the repository  (e.g. no conceptual functions were assigned to an electric 

motor) and components that are classified as Provisioners where the functions Store and 

Supply were nearly  always both included as conceptual functions. The functional 

information was then used to locate the appropriate placement for the component term 

within the hierarchical framework.
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Figure 5.1. (Above) Function templates were used to help establish the functional 

characteristics of each component term. The templates were constructed using function 

and flow information entered into the web-based repository described in Section 2.

Figure 5.2. Port templates used to help establish the functional characteristics of each 

component term and to help create distinct definitions for each. Ports are indicated by 

lines into and out of the component box. Circles represent material flow ports, squares 

represent energy flow ports, and dashed lines with a vertical terminus represent signal 

flows. Components classes with members exhibiting variable numbers of repeating object

ports are indicated by an output flow with ellipses (...), as shown for the electric wire.
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In addition to function templates, templates that describe the major flows through 

a component were also established for each component term (Figure 5.2). The set  of 

function and port templates for each of the components classified at this time can be 

found in Appendix B. In creating the port templates, the following port definitions were 

utilized:

Object port: A device port through which a flow (material, energy, or signal) 

enters and then travels through the device from the input port to the output port 

and is processed by the device (Hirtz, 2002; Kitamura and Mizoguchi, 2003). 

Medium port: A device port through which a flow (material, energy, or signal) 

enters and then travels through the device from the input port to the output port 

while holding an object and enabling it to flow through the device (e.g. water can 

act as a medium carrying hydraulic energy as an object through a device) (Hirtz, 

2002; Kitamura and Mizoguchi, 2003).

Assembly port: A device port that acts only as a mating surface to support the 

weight or stabilize the position of the device.

Flow information contained in the repository was used to identify all ports of a 

particular component. This information was then generalized to create a standard 

template for the component term group. For this research, port templates only  include the 

object and medium flows that are directly  relevant to the function the component 

performs (e.g. the material separated by a blade and the mechanical energy used during 

the separation); waste flows, undesired flows, and reaction flows were not included (e.g. 

any thermal or acoustic energy that may result from a blade interacting with a material it 

is separating). Additionally, since they are not used at this point to help classify  a 

component term, assembly  connections were generalized into a single assembly port in 

each component template. Component term definitions within the hierarchical ontology 
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were standardized using flow information from the port templates in addition to common 

morphological characteristics of the components within a single group. The previously 

developed list of component terms was refined to adhere to the newly developed rigorous  

classification structure (see Table 5.1 for an excerpt of the full list found in Appendix C).

Table 5.1. An excerpt of component terms and definitions organized using the proposed 

hierarchical ontology (the full component list may be found in Appendix C).

The individual component terms and associated definitions represent the different 

“species” of components. Definition of these terms is critical to the usefulness of the 

ontology  proposed. In animal classifications, disagreements exist over how narrowly to 

define different species, i.e. whether to identify species based primarily  on minor 

differences (splitters (Merriam-Webster, 2005)) or major differences (lumpers (Merriam-

Webster, 2005)). Similar questions become valid when defining new or existing 

component terms. For example, should an axle and a drive shaft be classified under the 
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same component term? Should a flexible hose be classified under a different component 

term than a rigid tube? In the case of the axle and drive shaft, these two components solve 

different functionality and would, therefore, be placed under different branches of the 

proposed ontology. The flexible hose and rigid tube are functionally  similar, so a decision 

must be made about whether to group them together under a broad definition or separate 

them into more specific groups. When defining terms, effort was made to determine 

whether a new (separate) definition would be beneficial from the perspective of a 

designer in the early conceptual stages of design, e.g. deciding whether to use a flexible 

vs. a rigid tube to transfer a material would be less useful when initially generating 

concepts than deciding whether to use a tube vs. a conveyor. To help  evaluate whether 

terms were defined at a low enough level of detail, additional consideration was made as 

to whether generalities of performance could be made across a component term to help 

evaluate ideas early in the conceptual phase of the design process.

In general, the initially selected function-based framework worked well to help 

classify  the existing component terms, with two notable exceptions. First, as briefly 

mentioned before, in nearly  all cases of a component solving the function of store, the 

function of supply was also included. For this reason, the secondary  level of the 

component hierarchy was refined to eliminate the separate designations of a Storer and a 

Supplier and instead include the secondary  designation of a Material or Energy Supplier. 

Secondly, under the primary level term Convert in the Functional Basis exists a single 

secondary  level term Convert. To eliminate redundancy in the proposed hierarchical 

ontology, the secondary level term Converters was replaced with designations of a 
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Material, Energy, or Signal Converter. The complete component hierarchy can be found 

in Figure 5.3.

Figure 5.3. The proposed function-based hierarchical ontology structure. Only the 

component terms for the class of Separators are shown.

5.5. CLASSIFYING COMPONENTS USING THE ONTOLOGY

A rigorous procedure was established in order to determine under which 

component term a previously unclassified component should be grouped within the 

established hierarchical framework. The procedure developed is as follows:

1. Define the system boundary of the device.

2. Identify all input and output ports of the device across the system boundary 

defined in Step 1.

3. Classify each port as an

a. Object port: A device port through which a flow (material, energy, or 

signal) enters and then travels through the device from the input port  to the 
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output port and is processed by the device (Hirtz, 2002; Kitamura and 

Mizoguchi, 2003). 

b. Medium port: A device port  through which a flow (material, energy, or 

signal) enters and then travels through the device from the input port  to the 

output port while holding an object  and enabling it to flow through the 

device (e.g. water can act as a medium carrying hydraulic energy as an 

object through a device) (Hirtz, 2002; Kitamura and Mizoguchi, 2003).

c. Assembly port: A device port that acts only as a mating surface to support 

the weight or stabilize the position of the device.

4. Identify the black box functionality of the device and the object flow(s) that it acts 

on. When defining the black box functionality, the functional purpose of the 

device should be identified versus the functional embodiment of the device (i.e. 

the function selected should answer the question “what does this device do?” 

instead of the question “how does this device work?”) For instance, the functional 

purpose of a friction brake is to “stop rotational energy” and it does this by 

“converting rotational energy to thermal energy”. In this case, the black box 

functionality of the brake would be to “stop rotational energy.”

5. Locate device placement in classification hierarchy.

a. Label device using appropriate term.

b. If no existing term is suitable, create a new term under the relevant 

hierarchical category. Generate a definition precisely defining the form of 
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the device in a manner that clearly distinguishes the new device from the 

other components located under the same functional class.

5.6 ANALYTICALLY DERIVED DESIGN STRUCTURE MATRIX (DSM)

In the concept generation algorithm presented in Section 3, the first pass “filter” 

for pruning the space of possible solutions utilizes component–component compatibility  

information in the form of Design Structure Matrix (DSM). Although there are many 

considerations to take into account when determining full compatibility between 

components (e.g. spatial characteristics, energy domain constraints, etc.), a DSM contains 

general “go” or “no go” component compatibility information from products that have 

previously  been designed and, in most cases, commercially manufactured. Therefore, 

although specific compatibility parameters are not enumerated, general compatibility 

between components can be utilized to implicitly  weed out solutions that contain 

component connections that have not been embodied before—whether due to 

incompatibility issues or other design rationale.

To extend the information generated purely from repository data, a DSM was 

analytically constructed using the component templates described in Section 5.4.2. For 

each of the component templates shown in Appendix B, in and out energy, material, and 

signal ports were analyzed. Compatibility  with another component was identified as 

possible if any of the ports could be “connected”, i.e. if the flow types were the same. For 

instance, Figure 5.4 shows the component port template for an airfoil.
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Figure 5.4. Component port template for an airfoil.

At this time, no component is contained in the repository that can be classified as an 

airfoil. However, using the port information contained in the template, an airfoil accepts 

pneumatic energy  as an input and outputs mechanical energy. Looking through the 

templates of the other currently classified terms, port flow comparisons can be made with 

each of them. Thus, if a component outputs pneumatic energy, it is deemed possible for 

that component to be compatible with an airfoil, and a “1” is entered into the 

corresponding DSM cell. Similarly, if a component accepts mechanical energy  as an 

input, it would also be deemed as a potential compatible component and have a “1” 

placed into the corresponding DSM cell. Zeros, “0”s, are placed in the DSM if a 

component has no potentially compatible ports with the airfoil. Sorting through the list of 

components using this procedure identifies 41 different components with the potential to 

comprise a complete solution in conjunction with an airfoil. Varying on the functionality 

each design fulfills, several potential airfoil-compatible examples are shown in Figure 

5.5.
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Figure 5.5. Potential compatible components for an airfoil. 

The analytical DSM, presented in Appendix D, identifies the set of compatible 

components for the current set of component terms. This compatibility has been 

determined solely  using port information and without consideration for design rationale 

with the notion of enhancing the potential for innovative solutions to be derived. By 

extending the compatibility information beyond only those connections that have 

occurred before, the hope is that a new combination of components could be considered 

for a design and design rationale could then be reintroduced to investigate the feasibility 
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of the new idea. In this way, truly original designs would be less likely to be banished by 

existing design biases regarding component compatibility.
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6. EXPERIMENTS AND CASE STUDIES

6.1. INTRODUCTION

The research described in this section presents several verification experiments 

and case studies executed to test  the ability  and effectiveness of the proposed 

computational technology to automatically generate relevant conceptual solutions. First, 

several experiments are reported which test the validity of results returned when utilized 

by students in a structured design process for several design scenarios. Then, several case 

studies are shown illustrating the effectiveness of the concept generator in multiple 

design situations.

6.2 EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART I

To qualitatively  evaluate the practicality of using the concept generator to produce 

conceptual design variants early in the design process, four undergraduate researchers 

from the University  of Texas at Austin and the University  of Missouri-Rolla were 

directed to complete several different activities. In the first activity, the students were 

instructed to qualitatively compare manually generated concepts against automatically 

generated design solutions produced using the list-based concept generator, described in 

Section 4.2, for three original design scenarios. The data collected by the students during 

this methodological comparison were later studied quantitatively, and the results can be 

found in Section 6.2.2. Further activities investigated the robustness of solutions returned 

by the concept generator against variations in the functional modeling chains used to seed 

the generation of concepts, including permutations and omissions of subfunctions. The 

following sections describe, in detail, both the qualitative and quantitative comparisons of 
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the student-derived design solutions to the solutions automatically generated by the 

concept generator as well as the robustness studies that the undergraduate researchers 

engaged in during their activities.

6.2.1. Experimental Setup.   The  following subsections describe the

experimental procedure the students followed during the course of this experimental 

study.

6.2.1.1. Methodological Comparison.  To evaluate the validity of the design

solutions returned by the concept generator, the undergraduate researchers first 

investigated how the automatically  produced concept variants compared to concepts that 

they  had generated manually using a morphological matrix approach. In order to do this, 

the students looked at three different design scenarios that investigated concepts produced 

for an original design. The students were instructed to complete the manual concept 

generation activities for each design scenario prior to exploring any results generated by 

the concept generator software to avoid any unintentional biasing of results.

 The flowchart in Figure 6.1 shows an overview of the structure of activities.

Figure 6.1. Flowchart of the activity structure for the concept generation methodological 

comparison.
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For the methodological comparison, students generated design solutions for each 

of the original design problems described below. 

• Hot or cold thermal mug: This original design entailed creating a thermal mug 

to be used either to keep a hot beverage hot or a cold beverage cold. The idea 

was to create a thermal mug that is superior to ones currently on the market that 

rely  solely  on insulating techniques to achieve thermal isolation. In other words, 

concepts needed to be generated that not only attempted to inhibit the transfer of 

heat, but also had the ability to add or remove heat to the beverage.

• Human powered power supply: For this original design, the students were 

instructed to design a human-powered power supply that could reasonably 

supply enough electricity consistently to power an audio-visual device or that 

could be used to recharge batteries.

• Wall climbing toy: In this original design scenario, a company has begun 

marketing a wall coating that contains ferrous micro-metal chips. This coating is 

“attractive” to magnetic devices and walls coated with this product “look” 

metallic. One potential marketing ploy for the company to increase sales of its 

coating product is to sell a toy that would operate on the vertical space of the 

walls (or even the ceiling). Thus, the undergraduate researchers were instructed 

to generate concepts for toy products that utilize walls covered with the coating 

as their play space. Since there are numerous types of potential toys for this new 

application, this call for products is fairly open ended. Broad requirements for 

the students to exhibit in their design included the ability to direct the toy 
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accurately to specific points on the wall, remain stationary while on the wall, be 

marketable to a broad customer segment, be lightweight, have a long-lasting 

power source, and be inexpensive and easy to set up.

Using the design steps shown in Figure 6.2, the undergraduate researchers 

produced functional models from the customer needs they  established (from customer 

interviews) for each product.

Figure 6.2. The students used the steps illustrated above to generate functional models for 

each product design scenario from the customer needs they established through customer 

interviews.
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For the original design scenarios, the undergraduate researchers began by 

producing functional models for each product from customer needs (established from 

customer interviews) using the design steps shown in Figure 6.2. Once a functional 

model was generated, the students generated partial solutions for each product using a 

morphological matrix. Finally, the students assembled several complete solutions for each 

design from the corresponding morphological matrix, and produced design variant 

sketches as well as lists of components comprising each of their designs. To avoid 

pollinating the manually generated morphological matrices with ideas from the design 

repository, the undergraduate researchers completed all concept generation tasks for the 

original and redesign scenarios before moving on to generate designs solutions using the 

concept generator software. The final step of the methodological comparison was to 

generate conceptual variants for each design using the concept  generator software. Since 

the software user input was limited at this time, functional models had to first be 

separated into sequential (non-parallel) chains, with instructions given to the 

undergraduate researchers to experiment with how they chose to dissect the functional 

models for entry into the program. The students were instructed to compare the results 

generated by  the software with those they had generated manually  and make notes of any 

thoughts they had on the results produced for the chains they had entered. All design 

solution chains generated via the software were saved to text files that included the input 

function chain that was used to generate that set of concept variants.

As an extension to the methodological comparison study performed by  the 

undergraduate researchers, the original design solutions generated by the students were 
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later compared quantitatively to those generated by  the concept generator from the design 

repository  knowledge. Since the complete set of student  design solutions was contained 

in a morphological matrix while the complete set of solutions produced by the concept 

generator consisted of lists of compatible solutions, making direct  comparisons of the 

solutions was difficult to achieve. In order to make more quantitative comparisons, the 

design solutions generated by the students were translated into lists of compatible 

solution chains that could more easily be compared to those generated by  the concept 

generator from the repository data, see Figure 6.3. Additionally, the results returned by 

the concept generator were separated out into morphological matrices that could more 

directly  be compared to the morphological matrices manually generated by the students, 

also shown in Figure 6.3.
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Figure 6.3. The lists of component chains returned by the concept generator were 

transformed into morphological matrices that could more easily be compared to the 

morphological matrices produced by the undergraduate researchers. Similarly, the 

morphological charts produced by the students were transformed into lists of feasible 

component chains.

The lists of student generated compatible solution chains were created by  first 

manually  translating each morphological matrix generated by the students into a 

function-component matrix (FCM) for each product. Next, a design structure matrix 

(DSM) was generated by  inspection for each product. In other words, the DSM  cell 

entries defining solution compatibility were manually  entered for each design solution 

combination, e.g. a “battery” can be connected to a “wire” so a “1” would be placed in 

the corresponding DSM  cell to indicate compatibility. Conversely, a “bubble” is unlikely 
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to be connected to a “levee” so a “0” would be placed in the corresponding DSM cell to 

indicate incompatibility. The manually constructed FCM  and DSM  for each product were 

then used in the concept generator to seed the solutions produced for an entered function 

chain. This, in effect, produced a list of design solution chains with incompatible 

solutions filtered out. The concept generator derived morphological matrices were 

produced by dissociating each component solution from the chain of compatible 

components and recording the unique solutions  produced for each function entered.

Finally, the student-derived morphological matrices were classified using the 

component naming basis where applicable, in order to help facilitate comparisons with 

the concept generator design solutions. This translation also helped identify and combine 

similar design solutions generated by the students, e.g. under the component naming 

scheme a “soda container” a “coffee pot” and a “water tank” would be classified as 

different instantiations of a “reservoir”. Grouping the student solutions under the 

component naming basis had the effect of grouping similar solutions and identifying 

ideas generated by the students that either need a classification under the Component 

Basis (e.g. electric generator) or were outside the black box boundary of the design 

scenario (e.g. fountain machine). After the terms were translated into the Component 

Basis, new morphological matrices, FCMs, DSMs, and sets of compatible solution chains 

were generated for comparison. 

6.2.1.2. Returned Results Robustness Investigation.   The undergraduate

researchers next investigated the effect of how various permutations in the user-input 

function chain impacted the conceptual component chains returned by  the concept 
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generator software. Figure 6.4 gives an illustration of how a sample chain of functions 

might be permuted for investigation in this activity. To complete this task, the students 

extracted function chains from functional models they had generated for products 

dissected during an earlier activity. The undergraduate researchers next determined 

permutations in function adjacency  that would still satisfy the functional requirements of 

the product and entered each permutation into the concept generator software. Again, the 

students were instructed to make notes of any thoughts they had on the results produced 

for the chains they  had entered. All design solution chains generated via the software 

were saved to text files that included the input function chain that was used to generate 

that set of concept variants.

Figure 6.4. This activity investigated the effect of chain permutation on the conceptual 

results returns by the concept generator software.

6.2.1.3. Functional Model Variation Effects.   The final activity focused on

investigating the effect that variations in functional modeling generation might have on 

the results returned by  the concept generator software. This activity, along with the 
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robustness investigation described in Section 6.2.1.2., seeks to explore how 

dissimilarities in functional models produced by different designers might impact the 

solutions produced by the concept generator software. In particular, in this activity, the 

students looked at how the insertion or deletion of “minor” or “assumed” functionality 

impacted the results generated. For instance, one person may produce the conceptual 

functional model shown in Figure 6.5a, whereas another person may include more 

specific functionality  that deals with the “transition” from one critical function to the 

next, such as the specific transfer of energy, as shown in Figure 6.5b. 

Figure 6.5. (a) A person may omit implied functions a product needs to exhibit while 

deriving a functional model. (b) A different person may be more explicit and include 

functional “transitions” in a functional model. This activity investigates the software 

results returned by function chains with slight variations in functionality.

The undergraduate researchers were instructed to think about which functions 

might be considered to have “assumed” or “minor” functionality by a designer. Next, the 

students extracted function chains from the functional models generated for previously 

dissected products and for the original design activities presented in Section 6.2.1.1. that 

either already had or could include these “minor” functions. Finally, the undergraduate 
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researchers compared the concepts produced by the software for chains with and without 

the “minor” functions included. As in the previously  described activities, the students 

were instructed to make notes of any thoughts they had on the results produced for the 

chains they  had entered, and all design solution chains generated via the software were 

saved to text files that included the input function chain used to generate that set of 

concept variants.

The next section presents a summary of the results produced by  the 

undergraduates during the methodological comparison, with example results from the 

hot/cold thermal mug design included.

6.2.2. Results from the Experimental Study.  The following sections present the

results from the study of the methodological comparison as well as the results from the 

robustness and variation study activities described. Results from the undergraduate 

researchers’ evaluation activities indicated that  manually generated concepts were 

completely encapsulated in the concept variant results returned by the software for the 

investigated design scenarios. In addition, with a few notable exceptions, the concept 

generator consistently averaged a larger quantity of feasible solutions for each 

subfunction than those produced manually by  the students. Furthermore, results from the 

software-generated conceptual designs for function chains varied by permutation or 

omission indicated that similar concepts were returned for seed function chains with 

minor variations.
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6.2.2.1. Methodological Comparison Results.   For  the methodological

comparison, the undergraduate researchers manually  developed original design solutions 

for the thermal mug, human-powered power supply, and wall-climbing toy design 

scenarios. They began by conducting interviews to collect customer need data for each 

original scenario. Next, the students used the customer needs to establish a functional 

model for each product using the method previously summarized in Figure 6.2. Using the 

subfunctions from the functional models, the undergraduate researchers manually 

constructed morphological charts to generate multiple partial solutions for each discrete 

functional element the design needed to embody using brainstorming techniques. Finally, 

the students selected a partial solution for each subfunction and sketched a complete 

concept capable of solving the given design problem. This last step was repeated several 

times to produce multiple concept variants for each design scenario. Figure 6.6 gives a 

summary  of the data manually generated by the undergraduate researchers for the thermal 

mug design scenario described in Section 6.2.1.1.
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Figure 6.6. The students began the methodological comparison for the thermal mug by 

generating (a) customer needs, (b) functional models, (c) morphological charts, and (d) 

complete concept sketches.

After generating similar sets of data for each of the original and redesign 

scenarios, the undergraduate researchers divided the functional models they developed 

during the design process into single non-branching chains of functions and entered the 
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chains separately into the concept generator software. In the case of the thermal mug 

design, the hypothetical functional model was broken into 8 function chains. Next, they 

compared the concepts returned by the concept generator against the complete concepts 

they  had assembled from their morphological charts. The undergraduate researchers 

found that every flow chain they were able to gather results from returned at least one 

concept extremely similar to their manually developed concepts, with most of the 

matched solutions occurring toward the top  of the ranked list  of returned component 

chains. If we first classify the students’ brainstormed solutions under the same 

Component Basis classification scheme that the concept generator uses to return 

components, the similar matches become identical, as shown in Figure 6.7. Each of the 

original and redesign scenarios resulted in successful comparisons that were similar to the 

thermal mug design example shown.
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Figure 6.7. The students found nearly all of their manually generated concepts from their 

complete design solutions matched up with top-ranked solutions returned by the concept 

generator.

The lists of design solutions produced by the concept generator were saved as text 

files. Once the student generated design solutions had been combined into lists of feasible 

design solution chains and the software generated design solutions had been distilled into 

morphological matrices, numerous observations could be made regarding the quality and 

quantity of solutions produced by each method. Looking at the total number of distinct 

design solutions generated during the original design scenarios, on average, the concept 

generator produced more design solutions per subfunction than the students produced 

manually  (6.85 vs. 2.45 as shown in Table 6.1). For all observations, a student generated 

partial design solution was considered unique if no other solution listed for the same 

subfunction was classified the same under the component naming scheme or if it did not 
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fit any of the current component naming classifications. In other words, a design solution 

(e.g. an “electric wire”) would be considered unique  even if was listed as a solution to 

multiple subfunctions in the morphological matrix, e.g. an “electric wire” may  be listed 

as a solution to both the subfunction “import electrical energy” and “transfer electrical 

energy”. In this situation, the “electric wire” would be counted twice in a design solution 

count; once as a solution to “import electrical energy” and once as a solution to “transfer 

electrical energy”. 

Table 6.1. Summary table showing the number of solutions generated for each original 

design scenario. The number of subfunctions included in each morphological matrix and 

the average number of solutions per subfunction for all design scenarios together is also 

shown.

Tables 6.2a-c give a more detailed breakdown of the number of solutions and 

feasible solution chains produced by each method for each specific original design 

scenario. Data within these tables are organized by the flow chains that were entered into 

the concept generator to produce corresponding chains of compatible partial solutions. 
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From these tables, we can see that the average number of solutions produced per 

subfunction for nearly every flow is higher for the concept  generator group vs. the 

student generated group of solutions. Correspondingly, the total number of compatible 

solutions produced by  the concept generator from the repository  of design knowledge is 

typically greater than those produced by the students, with a few notable exceptions. 

First, in Table 6.2a, we can see that no complete solutions were assembled by  the concept 

generator for “Flow 1” in the human-powered power supply design scenario. This 

observation stems from the fact that, at this time, no component in the design repository 

solves the subfunction “convert mechanical energy to electrical energy”. Similarly, in 

Table 6.2c, the lack of solutions for “Flow 2” in the wall climber toy design scenario 

results from the concept generator being unable to find a component solution to the 

subfunction “secure mechanical energy” that is historically  compatible with the 

component found to solve the subfunctions “import mechanical energy” and “export 

mechanical energy”. Additionally, for “Flow 3” in the same scenario, no complete 

solutions were returned (although the student derived solutions were manually  found 

contained in the design repository) because the subfunctions generated by the students 

were slightly  varied from the models used when the components were entered into the 

repository database.
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Table 6.2. Summary tables showing the number of subfunctions in each flow extracted 

from the full functional model, total number of solutions generated for all of the 

subfunctions in each flow, average number of solutions per subfunction within a flow, 

number of compatible solution chains able to be constructed (both partial and complete) 

to solve the flow, and the total number of solution chain combinations possible (both 

compatible and incompatible) for the (a) human-powered power supply, (b) hot or cold 

thermal mug, and (c) wall climbing toy design scenarios.

Since quantity of results is not the only  concern when evaluating the usability of a 

design tool in concept generation, a comparison of the type of solutions produced by the 
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concept generator against those produced by the students was also made. Table 6.3 shows 

a summary of the number of overlapping design solutions seen in both the student 

generated and concept generator derived morphological matrices. For instance, if we look 

at the human-powered power supply data, of the 43 distinct solutions produced by the 

students, 19 matched with solutions produced by the concept generator, meaning 44.19% 

of the student generated solutions were contained in the automatically  generated solution 

set. Of the 24 remaining solutions produced by the students, 6 were not definable under 

the current version of the component  naming scheme, including 3 solutions for the 

subfunction “convert mechanical energy  to electrical energy,” for which no solutions 

currently exist in the design repository. Other times, the student generated solutions that 

did not match with solutions from the concept generator and were not classifiable under 

the component naming basis were either technically infeasible for the given design 

scenario, e.g. using a “bubble” to “store liquid material” or using a “levee” to “guide 

liquid material” for the thermal mug design, or too broad of an idea to be encapsulated by 

a single component in the design repository, e.g. using a “fountain machine” to “import 

liquid material”. Inspection of the results returned by the concept generator that did not 

overlap with the results generated by the students showed an overwhelming majority of 

viable alternatives. Only a few instances of obvious incorrect matches were identified, 

and each were linked back to data entry mistakes that occurred while the repository  was 

being populated with product information.

108



Table 6.3. Summary table showing the number of design solutions found in both the 

student generated morphological matrices and the morphological matrices derived from 

the concept generator results.

6.2.2.2. Robustness Investigation Results.  For the robustness evaluation activity,

several function chains were selected from products previously  dissected and analyzed by 

the undergraduate researchers, including a bug vacuum (a pest-removal device that 

utilizes a vacuum to trap bugs), an eyeglass cleaner, and a snow cone maker. Within the 

selected chains, components were swapped in a manner in which the chain still exhibited 

logical functionality. The original chain and the modified chain were then run  through 

the concept generator software. An example of an original chain and its modified form 

from the bug vacuum is shown in Figure 6.8a. In each case, the top ranked conceptual 

solutions returned by each original chain input were also found highly ranked in the 
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results returned by the modified chain input. Figure 6.8b shows the top 17 results for the 

original and modified chains in the bug vacuum example.

Figure 6.8. (a) Example function chain extracted from the full functional model of a bug 

vacuum both in the original form and permuted form. (b) The top concept generator 

results returned from the original and permuted chain shown above in (a).
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6.2.2.3. Functional Model Variation Effects Results.   Next, to investigate the

effect that function omission has on the results returned by the concept generator, several 

function chains were selected from the students’ pool of existing functional models that 

included functions that may  be implicit  in a designer-produced functional model. All 

functions that might not be explicitly included were then removed from the function 

chain, as shown in an example taken from the bug vacuum in Figure 6.9a. The original 

and the modified function chains were both run through the concept generator. The 

undergraduate researchers found that, for the chains entered, the modified function chains 

returned the same basic results as the original function chains. In the bug vacuum 

example shown in Figure 6.9b, the modified chain still generates concepts with the same 

major components as the original despite the removed functions,  In addition, the students 

remarked that the number of concepts generated for the modified chain is much smaller 

and more manageable than the one generated for the original chain (195 concepts vs. 

43136 concepts in the bug vacuum example shown); a situation that is expected given the 

combinatorial characteristics of assembling chains of solutions from . Additionally, the 

modified chain returned only  complete concepts (in the example shown in Figure 6.9) 

while the original chain returned over 18,500 incomplete concepts.
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Figure 6.9. (a) Example function chain extracted from the full functional model of a bug 

vacuum both in the original form and with the assumed functionality omitted. (b) The top 

concept generator results returned from the original and modified chain shown above in 

(a).
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6.3. EXPERIMENT: UNDERGRADUATE INVESTIGATION, PART II

To qualitatively evaluate the practicality of using the concept generators to 

produce conceptual design variants early in the design process, designers manually 

generated concepts and compared them against automatically generated design solutions 

for two design scenarios. The data collected during this comparison were later studied 

quantitatively, and the results can be found in Section 6.3.2. The chief objective of this 

study is to compare and analyze the concepts generated by hand versus those generated 

by the computer design synthesis tools in a 23 factorial design of experiment. The 

research participants were three undergraduate researchers from the University of Texas 

at Austin and University of Missouri-Rolla with roughly two to three years of college 

experience behind them. All of them have a basic understanding and experience with the 

design process including concept generation techniques. Throughout the experiment, each 

participant had access to a computer for documentation purposes. To avoid pollinating the 

manually  generated morphological matrices with ideas from the design repository, the 

designers completed all manual concept generation tasks for each design scenario before 

moving on to generate design solutions using the concept generators. The timeline for the 

study spanned two weeks and was carried out as discussed in the following section.

6.3.1. Experimental Setup.  The researchers were each presented two different

design scenarios. In the first, the participants were asked to generate concepts by 

redesigning a drink mixer (Figure 6.10), a preexisting small kitchen appliance. Each 

researcher had the liberty to redesign the drink mixer without  any  specific customer 

needs to use as guidelines for the redesign process. In the second scenario, the 
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participants were asked to design a bread slicer based on a given set of customer needs 

(see Table 6.4).

Figure 6.10. (Above) Original drink mixer design used during the redesign scenario.

Table 6.4. (Below) List of customer needs used for the original design of a bread slicer.

In both scenarios the functional models were generated using the primary  and 

secondary  Functional Basis as different start points for the concept generation exercise. 
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A full factorial experiment was carried out to test, study, and analyze the impact of these 

three factors on the concept generation.

• Beginning concept generation activities from a primary function structure 

versus a secondary function structure.

• Generating conceptual variants using automated tools versus manually 

brainstorming ideas.

• Producing conceptual variants for a redesign scenario versus an original design 

scenario.

A tabular summary  of the three test  factors and the eight factor combinations is 

shown below in Table 6.5. 

Table 6.5. Summary of full factorial experimental test combinations performed by the 

research participants.
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For test combinations 1 through 4, no customer needs were provided for the 

redesign of a drink mixer. The function models were generated by tearing down the drink 

mixer and understanding the basic functions exhibited by the existing product rather than 

by establishing the functional requirements from a set of customer needs. Hence, the 

starting point for the concept generation process was not a hypothetical functional model 

but the actual functional model of the product itself. 

Each participant generated a functional model independently  based on prior 

knowledge from the product teardown (see example shown in Figure 6.11) using function 

and flow terms strictly at  the secondary  level of the Functional Basis. A morphological 

matrix of conceptual solutions was next manually  generated for each subfunction in the 

secondary  level functional model (see Figure 6.12). Then, one brainstormed solution was 

picked for each subfunction, and a complete redesign solution was sketched for the drink 

mixer (see Figure 6.13). 
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Figure 6.11. (Above) Functional model using the secondary level terms of the Functional 

Basis for the drink mixer redesign scenario.

Figure 6.12. Morphological matrix generated from the functional model shown in Figure 

6.11 for the drink mixer redesign scenario.
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Figure 6.13. Solution sketch generated from the morphological matrix shown in Figure 

6.12 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.12 

were used to produce this complete conceptual design.

Next, this process was repeated using only  primary level function and flow terms 

from the Functional Basis to construct the functional model. Examples of a primary 

functional model, morphological matrix, and resulting embodiment sketch are shown in 

Figures 6.14-6.16.
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Figure 6.14. (Above) Functional model using the primary level terms of the Functional 

Basis for the drink mixer redesign scenario.

Figure 6.15. Morphological matrix generated from the functional model shown in Figure 

6.14 for the drink mixer redesign scenario.
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Figure 6.16. Solution sketch generated from the morphological matrix shown in Figure 

6.15 for the drink mixer redesign scenario. Highlighted solutions shown in Figure 6.15 

were used to produce this complete conceptual design.

Each of the two functional models created above (secondary and primary level) 

were then run through the concept generator to generate solutions. Sample solutions 

produced by the concept generator are shown in Figure 6.17.
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Figure 6.17. Sample matrix-based concept generator output for a primary level functional

model input for the drink mixer redesign.
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The same experimental procedure was used for the original design of a bread 

slicer with one minor change. For this original design scenario, the designers began by 

producing functional models (secondary and primary) for each product from customer 

needs using the design steps previously shown in Figure 6.2. 

As before, the three researchers independently developed primary and secondary 

level functional models from which to develop conceptual solutions. Since the 

researchers used no prior knowledge of existing products, the functional models 

generated were purely conceptual. Concepts were generated from each of the two 

functional models with and without automation. Sample results from this design scenario 

are shown below in Figures 6.18-6.23.
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Figure 6.18. (Above) Functional model using the primary level terms of the Functional 

Basis for the bread slicer original design scenario.

Figure 6.19. Morphological matrix generated from the functional model shown in Figure 

6.18 for the bread slicer original design scenario.
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Figure 6.20. (Above) Solution sketch generated from the morphological matrix shown in 

Figure 6.19 for the bread slicer original design scenario. Highlighted solutions shown in 

Figure 6.19 were used to produce this complete conceptual design.

Figure 6.21. Functional model using the primary level terms of the Functional Basis for 

the bread slicer original design scenario.
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Figure 6.22. (Above) Morphological matrix generated from the functional model shown 

in Figure 6.21 for the bread slicer original design scenario.

Figure 6.23. Solution sketch generated from the morphological matrix shown in Figure 

6.22 for the bread slicer original design scenario. Highlighted solutions shown in Figure 

6.22 were used to produce this complete conceptual design.
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6.3.2. Results.   The following sections present the results from the qualitative

comparisons as well as the post-investigation quantitative study. Results from the 

designers’ evaluation activities indicated that, in general, both the primary and secondary 

modeling levels are useful for modeling a product’s functional requirements under 

different design scenarios. In general, primary  level functional models are more abstract 

and increase creativity  in design and secondary level models increase a designer’s focus 

and speed at converging on a feasible design. In addition, with a few notable exceptions, 

the matrix-based concept generator consistently averaged a larger quantity of feasible 

solutions for each subfunction than those produced manually  by the students. In general, 

the research participants felt the matrix-based concept generator helped stimulate new 

creative solutions to the design problems given, but noted that the number of concepts 

returned from primary  level functional inputs produced was largely unmanageable and 

would benefit greatly from additional constraints and filters to eliminate concepts that 

were largely irrelevant to the specific design problem.

6.3.2.1. Qualitative Analysis.  The concepts generated were evaluated by the

undergraduate researchers in terms of value to them during the design process. This 

evaluation primarily  involved qualitatively  analyzing each combination of test factors and 

determining the combinations of factors (i.e. primary vs. secondary level of functional 

modeling, manual vs. automated concept generation) produced more diverse sets of 

concepts when used to develop concepts for the redesign and original design scenarios. 

Additionally, similarities among the concepts produced were also examined. Seeking the 

existing design embodiment for the drink mixer as well as the brainstormed solutions for 
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each scenario among the concepts generated by  the automated tools may help  elucidate 

the comprehensiveness, feasibility, and novelty of the generated variants. Key questions 

asked during the qualitative evaluations include: 

(1) Which level of model detail (primary vs. secondary) is more valuable to a 

designer during the process of (re)designing a product?

(2) Do any of the solutions returned by  the concept generator at the primary/

secondary  level of detail give ideas for solutions that  were not achieved by manual 

methods?

(3) Which level of model detail (primary vs. secondary) returns results from the 

automated concept generators that are more useful to a designer during the process of (re)

designing a product?

During the drink mixer redesign activities, the research participants observed that 

the primary level functional model allowed for greater freedom to generate a wide 

assortment of conceptual solutions, both manually and by using the automated concept 

generators. By including more abstract terms to describe the functional requirements, 

primary functional models help  to broaden the solution space and enhance creativity and 

novelty without eliminating the ideas similar to the existing design. However, many  of 

the solutions generated computationally  from the primary level functional models by  the 

matrix-based concept generation method were not feasible or relevant to the given design 

objective. In contrast, the concepts generated from the secondary function model were 

complete and practical but tended to be too specific and too similar to the original 

existing design to stimulate new creative solutions by the research participants. Hence, 
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these results lead to the conclusion that the primary  level of functional model is more 

valuable if a complete revision of the existing product with the same functionality is 

desired, whereas the secondary level functional model will be more beneficial if only 

minor revisions to the configuration of components are sought without making changes 

across solution domains. For maximum versatility, the choice of a secondary or primary 

functional model should be left open to the designer.

In the bread slicer original design scenario, the concepts generated from the 

primary level were very diverse. The matrix-based concept generator generated numerous 

concepts. However, the participants reported difficulty in parsing through the returned 

concepts and narrowing down the results without any additional constraints beyond the 

given set of customer needs. For the bread slider design, the secondary level functional 

model generated more complete and feasible solutions, but, in general, the concepts 

generated tended to be less creative when compared to those generated by  the primary 

functional model.

The research participants observed a critical need to filter out obscure and absurd 

solutions (with respect to the specific design needs for the product to be designed) if the 

designer is to proceed through the design process using the primary level functional 

model, especially  when the matrix-based method of automated concept generation is 

employed. This filtering of solutions is complicated and is subjective to say the least, but 

one proposed way to help create design boundaries for the results would be to combine 

the primary and secondary  level Functional Basis terms within a single functional model. 

Design functions and flow domains that the designer is certain that the product needs to 
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include may  be expressed at the more concrete secondary level of language, while the 

primary level of language may be used to designate the less well-defined areas of the 

design. This combination of detail level is anticipated to help eliminate some of the less 

applicable design while still encouraging a broad array of solution exploration.

6.3.2.2. Quantitative Analysis.   As an extension to the qualitative comparison

performed by  the undergraduate researchers, the manual design solutions generated by 

the students during each design scenario were later compared quantitatively to those 

generated by  the matrix-based concept generator from the design repository knowledge. 

Since the student design solutions were contained in a morphological matrix while the set 

of computationally generated solutions consisted of lists of compatible component 

chains, direct comparisons of the solutions were difficult to achieve. In order to make 

quantitative comparisons, the results returned by  the matrix-based concept generator were 

separated into morphological matrices that could then be directly compared to the 

morphological matrices manually  generated by  the students. The computationally derived 

morphological matrices were produced by dissociating each component solution from 

each chain of compatible components and recording the unique solutions produced for 

each function entered. 

The functional models developed during the design process were divided into 

single non-branching chains of functions and each chain was entered into the matrix-

based concept generator software. In the case of the drink mixer design, for instance, the 

full conceptual functional model shown in Figure 6.11 was broken into three function 

chains. The lists of design solutions produced by the matrix-based concept generator were 
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saved as text files. Once the software generated design solutions had been distilled into 

morphological matrices, numerous observations could be made regarding the quantity of 

solutions produced by each method. Looking at the total number of distinct design 

solutions generated during each test combination, the matrix-based concept generator 

produced more design solutions per subfunction than the students produced manually 

(22.14 vs. 3.81 for student #1, 24.07 vs. 10.78 for student #2, and 30.20 vs. 3.78 for 

student #3, as shown in Table 6.6). For each subfunction, solutions were translated to the 

component naming scheme and distinct solutions refer to the number of different 

component names plus any additional solutions that were not classifiable.
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Table 6.6. Summary table showing the total number of solutions for the morphological 

matrix from each testing combination. The number of subfunctions included in each 

morphological matrix and the average number of solutions per subfunction are also 

shown.

Table 6.7 gives a more detailed breakdown of the number of solutions and 

feasible solution chains produced by each method for each design scenario. Data within 

these tables are organized by  the flow chains that were entered into the matrix-based 

concept generator to produce corresponding chains of compatible partial solutions. These 
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tables show that the average number of solutions produced per subfunction for nearly 

every  flow is higher for the matrix-based concept generator group vs. the student 

generated groups of solutions. Correspondingly, the total number of complete compatible 

solutions produced by the matrix-based concept generator from the repository  of design 

knowledge is typically  greater than the total number of possible combinations produced 

by the students, with a few notable exceptions. First, in Table 6.7a, we can see that no 

complete solutions were assembled by  the matrix-based concept generator for “Flow 1” 

under Student #1 or “Flow 3” under Student #3 in the drink mixer redesign scenario. This 

observation stems from the fact that, at this time, no component in the design repository 

solves the subfunction “mix liquid material”. Similarly, in Table 6.7a, the lack of 

solutions for “Flow 2” under Student #3 for the drink mixer redesign scenario results 

from the matrix-based concept generator being unable to find a component solution to the 

subfunction “regulate human material.
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Table 6.7. Summary tables showing the # of subfunctions in each flow extracted from 

each functional model, total # of solutions generated for all of the subfunctions in each 

flow, avg. # of solutions per subfunction within a flow, # of compatible solution chains 

able to be constructed (both partial and complete) to solve the flow, and the total # of 

solution chain combinations possible (both feasible and infeasible) for the (a) drink mixer 

redesign, and (b) bread slicer original design scenarios.
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Since quantity of results is not the only  concern when evaluating the usability of a 

design tool in concept generation, a comparison of the type of solutions produced by the 

matrix-based concept generator against those produced by the students was also made. 

Table 6.8 shows a summary of the number of overlapping design solutions seen in both 

the student generated and computationally  derived morphological matrices. For instance, 

for the drink mixer data, of the 271 distinct solutions produced by  the matrix-based 

concept generator plus all of the three designers, 32 of the solutions were generated by 

both of the two methods. This means that 32.65% of the designer-generated solutions 

were contained within the automatically  generated solution set, and, alternatively, 15.61% 

of the concept generator results were contained within the designer-generated set of 

solutions. 

Table 6.8. Summary table showing the number of distinct design solutions found in both 

the student generated morphological matrices and the morphological matrices derived 

from the matrix-based concept generator results.
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6.4. CASE STUDY: A DOG FOOD PACKET COUNTER

In this section, both of the previously described methods of automated concept 

generation (the list-based output method and the interactive morphological matrix method 

described in Section 4.2 and 4.4, respectively) along with the web-based morphological 

search, described in Section 2.4.3., are evaluated using a design problem to transform an 

imprecise counting and packaging line at the Rolla Area Sheltered Workshop. The 

solutions generated for that design problem are used here to compare the results of 

manual concept generation techniques with the results from each of the three automated 

methods. The device, prototyped at the University of Missouri–Rolla (UMR), was the 

product of several modern design methodologies. Initial customer interviews were 

conducted, a customer needs questionnaire was developed, technical requirements were 

formed, and several methods of concept generation and selection techniques were applied 

to this original design project. The manual concept generation activities required the team 

to meet outside of class and devote several hours of research and brainstorming to 

complete. The concepts that the team generated manually during these activities are 

compared to the results returned in a few minutes using each of the three automated tools 

in Section 6.4.3.

6.4.1. Chi-Matrix Background.   The chi-matrix method relies on a catalog of

design information that stores components and the functions they perform (Strawbridge, 

2002). When a designer desires to generate concepts for a given design problem, a filter 

matrix is used which contains only  the functions needed for the given problem. This filter 

is multiplied into the aggregate function-component matrix to produce a matrix that 

contains only components that  solve the needed functions. In this way a designer can 
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generate possible solutions without having to search the entire store of knowledge 

manually.

6.4.2. Description of Case Study.   The Rolla Area Sheltered Workshop employs

persons with mental and physical disabilities to package variety  boxes of dog and cat 

food sample packets for a local pet food manufacturer. In the interest of increased 

productivity  and a reduced incidence of repacking, a counting and packaging assistive 

device was sought. The design team began by  observing the previous method of 

packaging used by the employees and interviewing the Workshop managers to develop  an 

understanding of the design problem and determine and weight the needs of the customer. 

Next, the team established the functional requirements for the design by developing a 

black box model and subsequent functional model, which incorporated the previously 

described Functional Basis terms.

A black box model is a simple representation of product’s function with input/

output flows, which are identified from the customer needs. In the model, the product is 

treated as a closed system and does not include the details of the flows and functions that 

are internal to the product; only flows input into and output from the product are taken 

into consideration. Figure 6.24 shows a black box model created for the sample packet 

counting product. After the black box model was defined, each input flow was then 

associated with subfunctions that operate on the flow and then aggregated to form a 

functional model.

136



Figure 6.24. The black box model developed for the dog food packaging device.

A functional model is a description of a product or process in terms of the 

elementary functions that are required to achieve its overall function or purpose. A 

graphical form of a functional model is represented by a collection of subfunctions 

connected by the flows on which they  operate. This structure is an easy way for a 

designer to see what functions must be performed without being distracted by any 

particular form the artifact may take. A functional model of the dog food packaging 

device is shown in Figure 6.25.
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Figure 6.25. The functional model developed for the dog food packaging device.

Next, the design team used many different manual concept  generation techniques 

including the C-sketch method, Design by  Analogy, the Chi Matrix approach, described 

above in Section 6.4.1, and the Morphological Matrix approach, described in Section 

2.4.3, to explore many different creative solutions and to generate a broad spectrum of 

complete design concepts. The team generated five design concepts using the C-Sketch 

method. Three of the concepts were based on mechanical and electrical systems to 

transport and count the dog food packets. The fourth concept contained no moving parts 

or electronics and was a simple plastic tray  with color-coded slots. The fifth concept built 

on concept four by adding switches and buzzers to indicate when the slots were full. 

Figure 6.26 shows three such concepts developed using the C-Sketch method (C-sketch 

1, C-sketch 3 and C-sketch 5 respectively).
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C-Sketch 1 C-Sketch 2

C-Sketch 3

Figure 6.26. Concepts generated by the C-Sketch method.

Four concepts were produced using the Design by Analogy method. The first 

three concepts were electro-mechanical devices using conveyors and sensors to count and 
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transport the dog food packets. The fourth concept was a plastic tray variant with rotating 

handles to empty the counted dog food packets directly into the box.

Employing the Chi Matrix approach yielded five additional concepts. The first 

concept was based on a case with individual dog food packet receptacle slots. A sliding 

door was placed beneath the receptacles and was used to empty the slots once they are 

filled directly into the packing box via a chute. The remaining four concepts incorporated 

fairly simple electronics to act as counters while dog food packets were manually placed 

in the box. Figure 6.27 shows concepts Chi-Matrix 1, Chi-Matrix 2, and Chi-Matrix 5 as 

example solutions generated by the design team using this method. Although the method 

is similar to the Morphological Matrix Search method discussed in the remainder of this 

paper, the Chi Matrix solutions here were produced by hand using a different set of data.
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Chi Matrix 1 Chi Matrix 2

Chi Matrix 5

Figure 6.27. Concepts generated by the Chi Matrix method.

Ten concepts were generated using the morphological matrix approach. All of 

these concepts made use of electrical and mechanical devices to count and transport the 

dog food packets. It is important to recognize at  this point that this morphological matrix 

was generated by hand by the design team and is not derived from the same data as the 

Morphological Matrix Search operation discussed in the rest of the paper.
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6.4.3. Evaluation of the Three Automated Methods.  Using the functional model

shown in Figure 6.25 as input, results from each of the three automated methods, the 

web-based morphological matrix method described in Section 2.4.3 and the list-based 

and interactive morphological matrix software implementations described in Section 4, 

were compared to the conceptual solutions manually  generated by  the students for the 

dog food packet counter case study. The data used to generate the automated solutions 

was produced from the online repository of product knowledge described in Section 2.4, 

which currently  houses detailed information on the 102 consumer products listed in Table 

6.9. 

Table 6.9. Information on these 102 products is currently contained within the data 

repository.
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Ten of the 31 concepts developed during the bulk-packaging device project  were 

chosen to compare to the morphological search results, list-based automated concept 

generator results, and interactive morphological matrix results. The concepts are named 

for the technique that was used for their generation. For example, “Chi-Matrix 1” 

corresponds to the first concept developed by using the Chi Matrix approach. The 

concepts named “Chi-Matrix 1”, “Chi-Matrix 2”, “Chi-Matrix 4”, “Chi-Matrix 5”, and 

“C-Sketch 5” were identified by the original design team as their top-five concepts. The 

remaining concepts were selected from the pool of 31 total concepts because they 

represented well-documented complete design solutions with definable functionality.

6.4.3.1. Survey of the Data Contained within the Repository.   A function-

component matrix (FCM) was downloaded from the online repository to get an initial 

snapshot of the coverage that the repository had in reference to the input functional model 

for the dog food packaging device. Of the 29 subfunctions identified for the bulk-

packaging device, all 29 of the subfunctions were contained within the FCM produced 

from the 102 consumer products. 

6.4.3.2. Preparing the Manual Concepts for Comparison.   In order to compare

the results from each of the automated design tools to the concepts manually  developed 

for the bulk-packaging device, the concept sketches and design notes from the design 

project were revisited. Since the subfunctions used as input into each of the automated 

design tools originates from the initial functional model of the bulk-packaging device, 

each manually  produced concept was checked against the same set of subfunctions. Some 

differences exist between the subfunctions identified in each of the concepts and those of 
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the original functional model. This subfunction variation is partially due to the natural 

progression of the design process where customer needs are refined and the product 

direction is better identified. Table 6.10 shows a mapping of the originally  identified 

subfunctions to each of the concepts used as a comparison in this study.

Next, each manually created concept was analyzed to determine the component 

that solves each subfunction found in that  concept. These results were placed into a 

concept-specific function-component matrix for each manually  generated concept to 

assist comparison with the results from each of the automated design tools. Table 6.11 

demonstrates this idea by showing the identified subfunctions and components for the 

Chi-Matrix 1 concept comparison. Note that the components listed in the columns 

represent only  those components that were identified as part of the Chi-Matrix 1 concept. 

Components that  were identified to solve a specific function are denoted with a cell entry 

of 1. Shaded functions identify the subfunctions from the original functional model, 

which were embodied in the Chi Matrix 1 manually generated concept.
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Table 6.10. Subfunctions from the original model that are embodied in each manually 

generated solution compared.
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 Table 6.11. Concept-specific function-component matrix for the manually generated 

solution labeled Chi Matrix 1.

6.4.3.3. Comparison of Automated Results to Manually Generated Concepts.

Once the subfunction-component solution data had been extracted from each manually 

developed concept, the subfunctions from the functional model shown in Figure 6.25 

were entered into each of the automated design tools. The returned results for the entire 

set of 29 subfunctions in the original model were compared to each of the concept-
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specific function-component matrices to determine what percentage of the manually 

generated concept was returned by each automated conceptual design tool. 

Table 6.12 shows a summary of the comparisons between each manually 

generated concept and automated results for each of the three tested design tools. For the 

concept Chi-Matrix 1, 80.00% of the components used in the manually created concept 

were returned by  the morphological search while only 73.33% of the components were 

found using the list-based concept generator and 66.67% by the interactive morphological 

search concept generator. This means that 80.00% of the manually derived concept (using 

no database of existing design knowledge) could have been derived by  using the 

morphological search feature of the repository and 66.67%–73.33% could have been 

found or assembled using one of the concept generators. Analysis of all of the concepts 

indicate that an average of 80.44% of the ten manually derived concepts could have been 

automatically generated by the repository’s morphological search feature, while only  an 

average of 61.10% of the concepts could have been developed directly from the list-based 

automated concept generator and 53.10% directly from the interactive morph search 

concept generator.
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Table 6.12 Portion of manually generated concept returned by each of the automated 

design tools.

Table 6.13. (Below) Summary of the number of solutions returned by each of the 

automated design tools.

The results returned by  each method were also analyzed to determine the number 

of complete solutions possible for a user to assemble. These results are summarized in 

Table 6.13. The morph search returns an unfiltered matrix of component solutions 

yielding a total of 7.04 x 1011 possible solutions with an average of 11.21 possible 

solutions returned for each subfunction. The filtering of infeasible concepts based on 

historical compatibility within the concept generator reduces the number of possible 

complete solutions down to 8.76 x 109 with and average of 8.45 solutions returned for 

each subfunction.
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7. CONCLUSIONS

7.1. INTRODUCTION

The creative nature of design generation demands skills from a designer that must 

be developed and refined through practice. Advancement in technology is usually made 

by building on previous experiences and learning from past successes and failures. 

However, this knowledge transfer in the broad field of product design is difficult to 

accomplish. Often, few records are kept cataloging a designer’s rationale during the 

decision-making processes that lead to the embodiment of a successful design solution. 

Additionally, although many successful designs are easily identifiable, it can be unclear 

why or how that success materialized without prior experience dissecting or designing a 

similar product.

The research presented here provides a computational link between existing 

design tools used to gather and organize customer needs and tools used to capture and 

manipulate a designer’s sketches for further development using CAD software. This 

design tool seeks to assist a designer during the conceptual phase of the design process 

with computer software capable of searching a large database of design knowledge and 

delivering multiple relevant and easily  identifiable solutions for a design problem. The 

search is facilitated by accepting standard input generated by a designer during a 

structured design process. The following sections will summarize the research presented, 

discuss key  findings and conclusions reached during the course of the research, 

enumerate key  contributions of the work presented here, and establish future work that 
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will further expand the usefulness and applicability of the automated design tool 

presented in various design situations.

7.2. SUMMARIES AND DISCUSSIONS

The following subsections give summaries and discussions for each of the 

chapters contained in this dissertation.

7.2.1. Automated Concept Generation Design Tools.    Section 3 and Section 4

present the algorithm and software implementation of an automated, mathematically-

based concept generation technique developed from an empirical study of consumer 

products. Intending to facilitate the generation and evaluation of feasible concept variants 

during the early phases of the design process, the goal is to utilize existing design 

knowledge to rapidly produce a large array of concepts early  in the design process. The 

automated concept generation method not only produces numerous results, but also has 

the capability to automatically rank the returned concepts based on a designer’s desired 

specifications. One particular strength of the created algorithm is the generality  it  allows 

in terms of input and output. Unlike many  other research efforts into automated concept 

generation which focus on the dynamic aspects of a design by utilized bond graphs (e.g. 

Welch and Dixon, 1991; Gui and Mäntylä, 1994; Bradley, et al., 1993; Oh, et al., 1996; 

Bracewell and Sharpe, 1996; Sieger and Salmi, 1997) or focus on applicability to specific 

design situations (e.g. Yates and Beaman, 1995; Hayes, 1995; Finkelstein, 1998), the 

design tool presented here allows for varying types of design input to be entered and 

varying categories of design solutions to be combined into full solutions. In addition, 

compared to traditional concept  generation methods, the process presented here is quick 
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and does not require the effort of an entire team of designers. Furthermore, ongoing 

research activities seem to indicate that the concept generation software is capable of 

producing concept variants comparable to those produced manually by upper-class 

undergraduate engineering students.

7.2.2. Component Classification Hierarchy and Procedure.    The research

described in Section 5 outlines a hierarchical framework constructed to help guide the 

classification of components and extend previously presented work toward a component 

naming convention that led to a flat list  of 114 distinct generic component terms 

(Kurtoglu, et al., 2005). In addition, the framework presented uses primary and secondary 

levels of specification coupled with a robustly  defined procedure to help  identify the 

appropriate placement of terms into the hierarchy while maintaining the goals of 

completeness and exclusivity in component coverage. Under this proposed framework, 

components of widely varying levels of complexity (e.g. an electric wire vs. an electric 

motor) may both be placed within the hierarchical structure, as long as the black box 

functionality may be limited to a single function contained within the Functional Basis 

list of terms. Additionally, components that exhibit functionality directly  vital to the 

functioning of a product  (e.g. a plug and cord) are not distinguished from components 

that only exhibit functionality that supports the function of a product in a more indirect 

manner (e.g. a bracket that secures an electric motor in place). Finally, although 

component definitions include references to component form as a way to distinguish 

between the various component “species”, information regarding a component’s form or 

method of manufacture is not used within the component hierarchy. For the components 
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classified thus far, complexity, type of functionality (i.e. whether it directly or indirectly 

works to solve conceptual functionality), and other characteristics not function related do 

not seem to negatively impact the effectiveness of the proposed framework. However, as 

the number of component “species” grows, the proposed framework could be easily 

adjusted to fit into a larger hierarchical framework where other component characteristics 

that are deemed appropriate may be added as super-groups to the proposed hierarchy (see 

Figure 7.1). As with the classification of living organisms, the classification of 

components is an endeavor that will be strengthened by discourse.

Figure 7.1. The proposed hierarchy has the potential to be adapted to a larger structure if 

components from other domains do not fit within the structure proposed for 

electromechanical devices from consumer products.

In addition to establishing a method of consistently achieving complete and 

exclusive coverage of the component space, the hierarchical ontology also establishes a 

means to distinguish traditionally  similarly named components that, in fact, have very 
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different functionality. Just as a black-tailed prairie dog (which is, indeed, not a dog at 

all) and a common domesticated dog could be distinguished as unrelated by their 

scientific names (i.e. Cynomys ludovicianus and Canis lupus familiaris), a similar formal 

naming structure could be used to distinguish common component names that may be 

misleadingly similar (e.g. a wheel used as a control device to steer a car vs. a wheel that 

is fixed to an axle and allows for an object, such as a bicycle, to roll along the ground). 

As with animal naming, the formal names may be used when clarity of meaning is 

essential, while the familiar names would not lose their meanings.

Since the primary motivation behind the creation of an effective component 

ontology  is to assist designers during the early  phases of design, a hierarchy  organized by 

functional purpose incorporates a level of abstraction that will allow functionally similar 

but distinct components to be considered for a design. By following the presented 

procedure and utilizing the proposed hierarchical structure where components are 

grouped together by functional purpose and distinguished by form and functional 

embodiment, it is postulated that the goals of completeness and exclusivity of term 

coverage will also be effectively maintained.

7.2.3. Experimental Activities and Case Studies.    Section 6 presents several

research activities designed to test the effectiveness of the proposed automated concept 

generation tool throughout various stages of its development. First, research activities 

performed by four undergraduate researchers at the University of Texas at Austin and the 

University  of Missouri–Rolla to evaluate the early  list-based form of the concept 

generator, described in Section 4.2, is presented. Included are a qualitative investigation 
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performed by a group of four undergraduate researchers at the University of Texas at 

Austin and the University of Missouri-Rolla and a post-investigation quantitative analysis 

designed to evaluate the list-based concept generator. Overall, the analyses described 

demonstrate that even this early version of the implemented concept generator algorithm 

holds promise as a useful design tool. The investigations presented in this section 

identified many paths for further development of both the software implementation as 

well as the design tools used to support  this automated method of concept generation, 

including the design repository and Component Basis. One identified avenue of 

development for the early concept generator software, later incorporated into the second 

generation implementation, was enabling a user to submit a full functional model (with 

branching chains and multiple input and output flows). Another potentially useful user-

interface improvement, later implemented, was to output the generated design solutions 

as a more interactive tool instead of listing the results in a ranked list of solution chains. 

The interactive morphological matrix style output, described in Section 4.4, allows a 

designer to “tinker” with solution variations rather than be presented with an 

overwhelming list of solutions that may contain groups of variants with only  mild 

deviations from each other. Thus a designer is free to choose various configurations and 

get instant feedback on compatibility and ranking scores on a selected design, since 

metrics such as measures of failure, manufacturing and assembly costs, quality, 

recyclability, or some mathematical combination of similar design characteristics can be 

embedded in the seed FCM and DSM that seed the concept generator. In general, 

management of the design solutions, including developing useful ranking schemes and 
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grouping similar solutions into sets, will be a key area of development, since this aspect 

of the software strongly influences a designer’s perception of the software’s usefulness.

Section 6.3 presents a qualitative investigation performed by a group of three 

designers at the University of Texas at Austin and the University of Missouri-Rolla and a 

post-investigation quantitative analysis designed to evaluate multiple parameters within a 

systematic design process; functional requirement abstraction level and manual versus 

automated concept generation in original and redesign scenarios. The analyses described 

in this section demonstrate that,  as with any  tool, a computerized design tool must either 

be intuitive enough to use that a designer can naturally  incorporate it into the design 

process, or the benefits of using the software must be great enough to justify scaling a 

learning curve to reap  the advantage. As Snowden (Andrews and Snowden, 2002) states, 

“...technology  [is] a tool: If you pick it  up and it fits in the hand, then it’s useful. If you 

have to bio-reengineer your hand to fit your tool, it’s a waste of time.” To this end, as 

with all useful computer applications, the automated tools proposed must be refined so 

that, from a designer’s perspective, the tool does not hinder the design process. The 

research presented was performed to help  compare the current effectiveness of the 

automated design tool and guide the further development of the method into a useful 

computational conceptual design tool.

The case study described in Section 6.4 investigates the results returned by the  

existing web-based morphological search tool described in Section 2.4.3, the list-based 

concept generation implementation described in Section 4.2, and the interactive concept 

generation software described in Section 4.4. Each of the three design tools were 
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evaluated against manually created concepts (using no database of existing design 

knowledge) generated for a dog food packaging device. The web-based morphological 

search tool captured an average of 80.44% of the ideas manually generated, while each of 

the automated concept generator tools captured between 53.10% and 61.10% of the 

manually  generated ideas after filtering the incompatible solutions from those returned by 

the morphological search method.

A key characteristic of the two automated concept generators compared during 

this study is the filtering of incomplete solutions from the pool of concepts automatically 

produced based on data contained within the database of design knowledge. Although the 

filtering out of incomplete solutions begins to dramatically reduce the pool of 

automatically generated solutions that a designer must parse through (in this study a 

reduction from 7.04 x 1011 to 8.76 x 109 possible solutions), many feasible partial 

solutions are lost, as indicated by the reduced hit percentage between the web-based 

morphological search and  the two automated concept generators. However, the increased 

number of “misses” by each of the concept generator design tools can be addressed by 

refining several existing traits of the data contained in the web-based design repository. 

First, the data contained in the repository  may include intermediate component 

connections to link together the major components identified in the manually generated 

solutions. For instance, solution pairs comprised of a battery  connected to a circuit board 

were filtered out because none of the products that are dissected and stored within the 

repository  have a battery directly  in physical contact with a circuit board. This fact alone 

accounts for significantly decreased correlation between the automated solutions 
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produced by  the concept generators and the manually generated solutions labeled Chi 

Matrix 2, Chi Matrix 4, C-Sketch 1, C-Sketch 3, and C-Sketch 5. This problem could be 

alleviated by using a secondary method of compatibility identification beyond direct 

physical contact, e.g. by identifying compatible input and output flow ports for a 

component.

Other problems arise because of “bottlenecking” of solutions for a particular 

subfunction. That is to say, if the repository  data for a given subfunction is limited, the 

results returned by any of the methods may  produce only a single or very few solutions. 

This has a dramatic effect on the morphological search automated concept generator 

especially, because all solutions returned should be complete and therefore must  include 

the same solution for the restricted function. The best way  to avoid this problem is to 

continue to populate the design repository with many products from a variety  of domains 

and complexities.

The final problem identified as having a significant impact on the reduced hit 

return from the automated concept generators relates directly to the signal flows 

contained within the input functional model. Product knowledge entered into the online 

repository  for components that primarily have functionality dealing with signal flows 

through a product suffers from inconsistencies that are not as readily  seen when dealing 

with components that mainly  deal with materials and energies moving through a product. 

Recent research at the University of Missouri–Rolla has made strides to develop 

grammars to address the significant issues of inconsistency  in modeling signal flows, but 
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this research has not yet been retroactively applied to products already contained in the 

repository.

The design tools investigated in this study offer designers an additional approach 

for generating concept variants and presents historically recorded subfunction solutions. 

The high hit percentages for the morphological search further reinforces this feature of 

the online design repository as a promising tool for concept generation. The lower hit 

percentages for the two automated concept generators (the list-based version–Section 

4.2., and interactive version–Section 4.4.) that limit the results returned to only  feasible 

solutions based on component compatibility suggest that a larger pool of data is needed in 

order to avoid limiting the results with obstacles such as solution “bottlenecking” and 

data inconsistency. However, it  is important to note that although these obstacles did have 

an impact on the commonality percentages calculated for the interactive morphological 

search, many complete and physically  feasible solutions were returned by the automated 

tools that the students did not manually generate. 

Two distinct advantages emerge from the use of the automated design tools. First, 

the process is automated to the extent that component solutions are identified 

computationally through repeatable algorithms rather than through mental retrieval. 

Secondly, the aggregation of knowledge represented in a generated matrix offers a greater 

degree of diversity, permanence, and portability than human recollection alone is likely  to 

provide. The process for retrieving knowledge from each of the design tools is quick and 

does not require the efforts of an entire design team.
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7.3. KEY CONTRIBUTIONS

The computational theory of concept generation addresses the lack of automated 

methods in the early stage of conceptual design. It is based on the notion that archived 

product design knowledge can be reused to create new product concepts. The theory 

behind the design knowledge relationships is sound, drawn from accepted systematic 

design methodologies. The representation of the various design knowledge relationships 

in a mathematical form is a rather novel development. The formulation of a theoretical 

construct to compute concept variants from archived knowledge breaks new ground by 

helping to push engineering design concept generation activities into the realm of 

artificial intelligence.

One of the key  advantages of the computational theory of concept generation is 

that it sets forth a path to capture and reuse corporate knowledge. This is a particular 

useful notion for industry where design knowledge often resides in the minds of the more 

experienced designers. This approach provides a way to capture abstract and specific 

product design knowledge (in the form of a design repository) and transfer that 

knowledge to less experienced designers (through browsing the repository and computing 

new concept variants from the concept generator). Likewise, design education can benefit 

from this approach in the education of engineering designers. 

Another key advantage of this approach is that the supporting knowledge base can 

grow and adapt over time. As more and more product knowledge is accumulated in a 

repository, the greater the breadth (or depth, for that matter) of potential concept variants 

becomes. A question that results from this is how much data is necessary to make this 

concept generation algorithm pliable? Preliminary tests within our lab show that the 
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design knowledge in the UMR repository can generate 60-80% of the concept variants 

that human design teams produce (the comparisons were made after the human designers 

completed their design projects). In addition to the overlapping concept variants, the 

concept generator algorithm produces two to four times more concept variants that  are 

viable than design teams. These results are based on a repository  knowledge base of 102 

products.

There can be too much of a good thing, however. The output of the concept 

generator algorithm can reach into the tens of thousands of viable concept variants, 

depending on the size of the input functional models and the make up of the knowledge 

base. Ranking quickly becomes a critical method to further filter the viable concept 

variants into a more manageable set. Any number of ranking approaches is possible with 

the types of design knowledge stored in the repository, as the concept generator approach 

does not preclude or dictate any particular type.

7.4. FUTURE WORK

The following subsections outline future research projects that could further 

enhance the proposed computational design tool and its supporting technologies. 

7.4.1. Extensions to the Automated Concept Generator.  Although the research  

presented in this dissertation has demonstrated usefulness for early design concept 

generation, the effectiveness of the tool would benefit  from additional research. For 

instance, since conceptual design is inherently an evolutionary process, significant 

benefits could be gained by further extending the dynamic functionality  of the software. 

When a design solution is first explored, a core set of desired functionality  is known by 
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the designer, but the very act of choosing a specific solution component begins to add 

additional functional requirements to a design. In its current form, the proposed 

computational theory allows for an initial static set of requirements to be input, but does 

not support these evolutionary changes that all designs undergo.

Additional benefits would be gained by  further enhancing the presentation of 

solutions to a designer. The interactive morphological search takes strides in the direction 

of giving a design real-time feedback on the compatibility of a solutions, but focusing  

research on taking the text-based solutions and presenting them in a visual manner (i.e. 

creating a virtual prototype) would make a significant impact on how a designer interacts 

with the knowledge presented. The computational theory  presented in this dissertation 

also very readily could be extended to present a designer with design modules by 

employing the method of clustering components into design groups presented by Kusiak 

and Szczerbicki (1993).

7.4.2. Ranking and Identifying “Good” Designs.  Features of future software

versions should include the exploration of various ranking methods to help  sort the 

concept variants generated. Although using the design structure matrix as a first-pass 

filter eliminates many less useful concepts from the set of design variants, metrics such as 

measures of failure, manufacturing and assembly costs, quality, recyclability, or some 

mathematical combination of similar design characteristics could prove to be valuable 

tools for identifying the most promising variants among the hundreds (or thousands) of 

potentially viable solutions found. In general, management of the design solutions, 

including developing useful ranking schemes and grouping similar solutions into sets, 
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will be a key area of development, since this aspect of the software will strongly dictate 

whether the introduced design tool will help  or hinder the design process from the 

designer’s perspective.

7.4.3. Early Design Tools for Multiple Design Contexts.  The computational

theories presented in this dissertation, because they are generalized, have the potential to 

impact other areas of design beyond the scope of product design. Investigations into the 

different approaches and requirements that designers in different contextual situation face 

may demonstrate that the established theory is adaptable to situations such as designing  

process layouts (e.g. for manufacturing purposes or potentially even chemical or 

biological (protein) design processes), dictating performance parameters for complex 

systems (i.e. integration designs), automating previously manual processes, designing 

efficient workflow layouts.

7.4.4. Component Classification Research.  Further areas of improvement for

the established component templates and classification procedure includes establishing 

more complete port  templates that  may  be used to help  build up more complete 

conceptual ideas during the early stages of conceptual design. By  knowing the number 

and types of ports a component term typically has, software may be used to help guide 

the evolution of a full conceptual idea, including parts needed to indirectly  support the 

functionality of other components. Additionally, design measure estimates (such as 

measures of potential failures, manufacturability, cost, size, performance, etc.) could be 

determined across each component group and used to help guide concept selection early 

in the design process. Other work could include creating a forum for the discussion of 
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new and existing component terms, their placement within the hierarchical ontology, and 

even the organization of the hierarchical ontology as well. Finally, the work presented 

here is focused mainly on components found in consumer products. Additional work 

should look at other design domains and identify how the hierarchy should be altered or 

expanded to include a broader range of component types. As with the animal groupings, 

the process to create a complete and robust hierarchy should be an evolutionary process 

with much discussion involved.

7.4.5. Other Related Research Areas.  Further areas of refinement include

enhancing the robustness of the data entry procedure for populating the design repository. 

Since the validity  of the results returned by the concept generator is closely tied to the 

validity  of the knowledge stored in the repository, the quality of returned results is 

sensitive to the quality  and correctness of design knowledge contained in the repository. 

For instance, during the quantitative study of the data from the methodological 

comparison reported in Section 6.2, an error in data entered into the design repository 

was identified when the design solution of an “indicator light” turned up as a solution to 

the subfunction “convert electrical energy  to mechanical energy.” The entry error was 

identified as an incorrectly selected component classification term, but since this 

component was also compatible with the surrounding components via the identified 

component connections, it was not filtered out of the compatible solutions returned by the 

concept generator.
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7.5. PARTING WORDS.

As mentioned in Section 1, Yang (2003) concludes that it is both important to 

generate and solidify  a large number of ideas as well as begin prototyping a design early 

in the design process. Anderson’s (1981) research indicates that while experienced 

designers tend to approach a design problem broadly at  first, inexperienced designers 

explore solutions using a depth-first approach. From this perspective, the presented 

concept generation theory encourages novice designers to investigate a broad range of 

solutions, as a more experienced designer may be inclined to do. The matrix-based 

concept generator allows for the quick development of conceptual ideas and for 

significantly different concepts to be explored through sketching, since it  utilizes the 

component classification scheme rather than specific component instantiations to return 

results. In addition, the wide array of results returned by the concept generator supports 

creativity and design research, which indicates that conceptual design activities should 

contain both divergent and convergent steps (Cross, 1994; Pugh, 1991; Guilford, 1959; 

Roozenburg and Eekels, 1995). The computational theory presented in this dissertation 

demonstrates the potential for automated technologies to support designers during the 

early stages of design and reuse existing design knowledge in a way that contributes to 

innovation and creativity in product design.
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APPENDIX A

MEMIC Software Code



----------------------------------------start ‘ConGen.java’ code -------------------------------------
/*---------------------------------------------------------------------------------------------------------------------

 * Concept Generator (a.k.a Memic - Morphological Evaluation Machine and Interactive Conceptualizer)

 * This software accepts the functional description of a product to be designed and outputs a morphological matrix 

 * that a designer may interact with to build and evaluate conceptual solutions.

 * 

 * Version: 2.0

 * Author: Cari R. Bryant, University of Missouri-Rolla

 * Last Update: July 01, 2007

 * Disclaimer: This program is used primarily as a proof-of-concept and is not developed using rigorous Java 

 * development conventions.

 *-------------------------------------------------------------------------------------------------------------------*/

package edu.umr.ide;

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.util.*;

import javax.swing.*;

import javax.swing.border.*;

public class ConGenV2_0 {

! /*---------------------------------------------------------------------------------------------

! * Define global variables for user GUI frames

! *----------------------------------------------------------------------------------------------*/

! JFrame baseFrame; // Frame for user input GUI

! JPanel background; // Panel for input background

! JButton loadFM, loadFCM, loadDSM; // Buttons to load Functional Model, Function-Component Matrix, and Design 

! ! ! !        Structure Matrix files

! JTextField labelFM, labelFCM, labelDSM; // Labels for file and directory displays

! JFrame resultFrame; // Frame for results output GUI

! JPanel resultBackground; // Panel for output background

! ArrayList<JTextField> selectedFields = new ArrayList<JTextField>(); // Array of selected component fields

! ArrayList<JButton> removeButtons = new ArrayList<JButton>(); // Array of removeButtons

! ArrayList<ArrayList<JButton>> fullCompArray = new ArrayList<ArrayList<JButton>>(); // Array of morph matrix 

! ! ! ! ! ! ! ! !       rows

!

! Color lightblue = new Color(200,205,225); // Background color

! Color darkblue = new Color(142,148,191); // Dark accent color

! Color white = new Color(255,255,255); // Light accent color

!

! /*---------------------------------------------------------------------------------------------

! * Define global variables for program methods

! *----------------------------------------------------------------------------------------------*/

! String lastFMOpenPath = System.getProperty("user.home"); // Keeps track of path of last FM file opened

! String lastOpenPath = System.getProperty("user.home"); // Keeps track of path of last FCM or DSM file opened

! String lastSavePath = System.getProperty("user.home"); // Keeps track of path of last file saved

!

! ArrayList fmArray = null; // Array to hold raw FM data file data

! ArrayList fcmArray = null; // Array to hold raw FCM data file data

! ArrayList dsmArray = null; // Array to hold raw DSM data file data

! ArrayList<Subfunction> fmLinks = new ArrayList<Subfunction>(); // Array to hold link info from the functional 

! ! ! ! ! ! !       model

! !

! int fmHeader = 0; // Number of header rows before column labels in FM data file

! int fcmHeader = 0; // Number of header rows before column labels in FCM data file

! int dsmHeader = 0; // Number of header rows before column labels in DSM data file

!

! ArrayList<String> masterComponentList = new ArrayList<String>(); // List of all components in DSM

! ArrayList<Integer> functionsWithoutSolutions = new ArrayList<Integer>(); // List of all subfunctions with 

! ! ! ! ! ! ! !       unknown compatible solutions

! ! !

! /*---------------------------------------------------------------------------------------------

! * Initiate program execution

! *----------------------------------------------------------------------------------------------*/

! public static void main(String[] args) {

! ! ConGenV2_0 gui = new ConGenV2_0(); // Create new object

! ! gui.buildInputGUI(); // Run method to build the input GUI

! } // end main()
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!

! /*---------------------------------------------------------------------------------------------

!  * Builds the graphical user interface for the user input into the concept generation program

!  *---------------------------------------------------------------------------------------------*/

! private void buildInputGUI()  {

! ! /* Define and Initialize variables ----------------------------------------------------------*/

! ! baseFrame = new JFrame();

! ! background = new JPanel();

! ! loadFM = new JButton();

! ! loadFCM = new JButton();

! ! loadDSM = new JButton();

! ! labelFM = new JTextField();

! ! labelFCM = new JTextField();

! ! labelDSM = new JTextField();

! ! JPanel step1Panel = new JPanel(), step2Panel = new JPanel(), step3Panel = new JPanel();

! ! JPanel radioPanel = new JPanel();

! ! JRadioButton defaultComponents = new JRadioButton(), customComponents = new JRadioButton();

! ! JPanel customComponentLoadPanel = new JPanel(), loadFCMPanel = new JPanel();

! ! JPanel loadDSMPanel = new JPanel();

! ! JTextPane spacerPane = new JTextPane();

! ! JButton goButton = new JButton();

! ! /* baseFrame ------------------------------------------------------------------------------*/

! ! {

! ! ! baseFrame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);

! ! ! baseFrame.setResizable(false);

! ! ! baseFrame.setTitle("Memic (The Concept Generator v2.0)");

! ! ! baseFrame.setBackground(lightblue);

! ! ! Container baseFrameContentPane = baseFrame.getContentPane();

! ! ! baseFrameContentPane.setLayout(new BoxLayout(baseFrameContentPane, BoxLayout.Y_AXIS));

! ! ! /* background ---------------------------------------------------------------------*/

! ! ! {

! ! ! ! background.setBorder(new EmptyBorder(10, 10, 10, 10));

! ! ! ! background.setFocusable(false);

! ! ! ! background.setMaximumSize(new Dimension(800, 320));

! ! ! ! background.setOpaque(false);

! ! ! ! background.setPreferredSize(new Dimension(800, 320));

! ! ! ! background.setMinimumSize(new Dimension(800, 320));

! ! ! ! background.setBackground(lightblue);

! ! ! ! background.setLayout(new BoxLayout(background, BoxLayout.Y_AXIS));

! ! ! ! /* step1Panel ---------------------------------------------------------------*/ 

! ! ! ! {

! ! ! ! ! step1Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 1: Import functional model."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step1Panel.setMinimumSize(new Dimension(800, 67));

! ! ! ! ! step1Panel.setFocusable(false);

! ! ! ! ! step1Panel.setOpaque(false);

! ! ! ! ! step1Panel.setBackground(lightblue);

! ! ! ! ! step1Panel.setLayout(new BoxLayout(step1Panel, BoxLayout.X_AXIS));

! ! ! ! ! /* load FM --------------------------------------------------------*/

! ! ! ! ! loadFM.setText("Find File");

! ! ! ! ! loadFM.setOpaque(false);

! ! ! ! ! loadFM.addActionListener(new loadDataListener());

! ! ! ! ! step1Panel.add(loadFM);

! ! ! ! ! /* label FM -------------------------------------------------------*/

! ! ! ! ! labelFM.setText("../");

! ! ! ! ! labelFM.setEditable(false);

! ! ! ! ! labelFM.setFocusable(false);

! ! ! ! ! labelFM.setBackground(white);

! ! ! ! ! step1Panel.add(labelFM);

! ! ! ! }

! ! ! ! background.add(step1Panel);

! ! ! ! /* step2Panel ---------------------------------------------------------------*/ 

! ! ! ! {

! ! ! ! ! step2Panel.setBorder(new CompoundBorder(

167



! ! ! ! ! ! new TitledBorder("Step 2: Load component data."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step2Panel.setFocusable(false);

! ! ! ! ! step2Panel.setOpaque(false);

! ! ! ! ! step2Panel.setBackground(lightblue);

! ! ! ! ! step2Panel.setLayout(new BorderLayout());

! ! ! ! ! /* radioPanel -----------------------------------------------------*/

! ! ! ! ! {

! ! ! ! ! ! radioPanel.setBackground(lightblue);

! ! ! ! ! ! radioPanel.setLayout(new BoxLayout(radioPanel, 

! ! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! !

! ! ! ! ! ! /* defaultComponents ------------------------------------*/

! ! ! ! ! ! defaultComponents.setText("Use default component data.");

! ! ! ! ! ! defaultComponents.setContentAreaFilled(false);

! ! ! ! ! ! defaultComponents.setBackground(lightblue);

! ! ! ! ! ! defaultComponents.setEnabled(true);

! ! ! ! ! ! defaultComponents.addActionListener(new 

! ! ! ! ! ! ! defaultFilesListener());

! ! ! ! ! ! radioPanel.add(defaultComponents);

! ! ! ! ! ! /* customComponents -------------------------------------*/

! ! ! ! ! ! customComponents.setText("Load custom component files.");

! ! ! ! ! ! customComponents.setOpaque(false);

! ! ! ! ! ! customComponents.setContentAreaFilled(false);

! ! ! ! ! ! customComponents.setBackground(lightblue);

! ! ! ! ! ! customComponents.setSelected(true);

! ! ! ! ! ! customComponents.addActionListener(new 

! ! ! ! ! ! ! customFilesListener());

! ! ! ! ! ! radioPanel.add(customComponents);

! ! ! ! ! }

! ! ! ! ! step2Panel.add(radioPanel, BorderLayout.NORTH);

! ! ! ! ! /* customComponentLoadPanel ---------------------------------------*/

! ! ! ! ! {

! ! ! ! ! ! customComponentLoadPanel.setBorder(null);

! ! ! ! ! ! customComponentLoadPanel.setBackground(lightblue);

! ! ! ! ! ! customComponentLoadPanel.setLayout(new 

! ! ! ! ! ! ! BoxLayout(customComponentLoadPanel, 

! ! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! !

! ! ! ! ! ! /* loadFCMPanel -----------------------------------------*/

! ! ! ! ! ! {

! ! ! ! ! ! ! loadFCMPanel.setBackground(lightblue);

! ! ! ! ! ! ! loadFCMPanel.setLayout(new 

! ! ! ! ! ! ! ! BoxLayout(loadFCMPanel, 

! ! ! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! ! ! ! /* loadFCM ------------------------------------*/

! ! ! ! ! ! ! loadFCM.setText("Load FCM");

! ! ! ! ! ! ! loadFCM.setEnabled(true);

! ! ! ! ! ! ! loadFCM.setOpaque(false);

! ! ! ! ! ! ! loadFCM.setContentAreaFilled(false);

! ! ! ! ! ! ! loadFCMPanel.add(loadFCM);

! ! ! ! ! ! ! loadFCM.addActionListener(new 

! ! ! ! ! ! ! ! loadDataListener());

! ! ! ! ! ! ! /* labelFCM -----------------------------------*/

! ! ! ! ! ! ! labelFCM.setText("../");

! ! ! ! ! ! ! labelFCM.setEnabled(true);

! ! ! ! ! ! ! labelFCM.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! ! (Cursor.DEFAULT_CURSOR));

! ! ! ! ! ! ! labelFCM.setEditable(false);

! ! ! ! ! ! ! labelFCM.setFocusable(false);

! ! ! ! ! ! ! labelFCM.setBackground(white);

! ! ! ! ! ! ! loadFCMPanel.add(labelFCM);

! ! ! ! ! ! }

! ! ! ! ! ! customComponentLoadPanel.add(loadFCMPanel);

! ! ! ! ! ! /* loadDSMPanel -----------------------------------------*/

! ! ! ! ! ! {
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! ! ! ! ! ! ! loadDSMPanel.setBackground(lightblue);

! ! ! ! ! ! !

! ! ! ! ! ! ! loadDSMPanel.setLayout(new BoxLayout

! ! ! ! ! ! ! ! (loadDSMPanel, BoxLayout.X_AXIS));

! ! ! ! ! ! ! /* loadDSM ------------------------------------*/

! ! ! ! ! ! ! loadDSM.setText("Load DSM");

! ! ! ! ! ! ! loadDSM.setEnabled(true);

! ! ! ! ! ! ! loadDSM.setOpaque(false);

! ! ! ! ! ! ! loadDSM.setContentAreaFilled(false);

! ! ! ! ! ! ! loadDSM.addActionListener(new 

! ! ! ! ! ! ! ! loadDataListener());

! ! ! ! ! ! ! loadDSMPanel.add(loadDSM);

! ! ! ! ! ! ! /* labelDSM -----------------------------------*/

! ! ! ! ! ! ! labelDSM.setText("../");

! ! ! ! ! ! ! labelDSM.setEnabled(true);

! ! ! ! ! ! ! labelDSM.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! ! (Cursor.DEFAULT_CURSOR));

! ! ! ! ! ! ! labelDSM.setEditable(false);

! ! ! ! ! ! ! labelDSM.setFocusable(false);

! ! ! ! ! ! ! labelDSM.setBackground(Color.white);

! ! ! ! ! ! ! loadDSMPanel.add(labelDSM);

! ! ! ! ! ! }

! ! ! ! ! ! customComponentLoadPanel.add(loadDSMPanel);

! ! ! ! ! }

! ! ! ! ! step2Panel.add(customComponentLoadPanel, BorderLayout.CENTER);

! ! ! ! !

! ! ! ! ! /* spacerPane -----------------------------------------------------*/

! ! ! ! ! spacerPane.setPreferredSize(new Dimension(50, 16));

! ! ! ! ! spacerPane.setBackground(lightblue);

! ! ! ! ! spacerPane.setAutoscrolls(false);

! ! ! ! ! spacerPane.setDragEnabled(false);

! ! ! ! ! spacerPane.setEditable(false);

! ! ! ! ! spacerPane.setEnabled(false);

! ! ! ! ! spacerPane.setFocusable(false);

! ! ! ! ! spacerPane.setOpaque(false);

! ! ! ! ! step2Panel.add(spacerPane, BorderLayout.WEST);

! ! ! ! }

! ! ! ! background.add(step2Panel);

! ! ! ! /* step3Panel ---------------------------------------------------------------*/

! ! ! ! {

! ! ! ! ! step3Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 3: Generate interactive 

! ! ! ! ! ! ! morphological matrix"),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step3Panel.setFocusable(false);

! ! ! ! ! step3Panel.setOpaque(false);

! ! ! ! ! step3Panel.setBackground(new Color(200, 205, 225));

! ! ! ! ! step3Panel.setLayout(new BorderLayout());

! ! ! ! ! /* goButton -------------------------------------------------------*/

! ! ! ! ! goButton.setText("Create concepts!");

! ! ! ! ! goButton.setContentAreaFilled(false);

! ! ! ! ! goButton.setPreferredSize(new Dimension(135, 15));

! ! ! ! ! goButton.setMinimumSize(new Dimension(135, 15));

! ! ! ! ! goButton.setMaximumSize(new Dimension(135, 15));

! ! ! ! ! goButton.addActionListener(new goButtonListener());

! ! ! ! ! step3Panel.add(goButton, BorderLayout.WEST);

! ! ! ! }

! ! ! ! background.add(step3Panel);

! ! ! }

! ! ! baseFrameContentPane.add(background);

! ! ! baseFrame.pack();

! ! ! baseFrame.setLocationRelativeTo(baseFrame.getOwner());

! ! ! baseFrame.setVisible(true);

! ! }

! !

! ! /* componentRadioButtons ------------------------------------------------------------------------*/

! ! ButtonGroup componentRadioButtons = new ButtonGroup();

! ! componentRadioButtons.add(defaultComponents);
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! ! componentRadioButtons.add(customComponents);

! } // end buildInputGUI()

! !

! /*---------------------------------------------------------------------------------------------

! * Listener to register the defaultComponents radio button

! * actionPerformed method:

! *! 1. Disables loadFCM and loadDSM

! *! 2. Automatically loads data from included files into the FCM and DSM arrays

! *----------------------------------------------------------------------------------------------*/

! private class defaultFilesListener implements ActionListener {

! ! public void actionPerformed(ActionEvent custom) {

! ! ! // Disable manual loading buttons ---------------------------------------------------

! ! ! loadFCM.setEnabled(false);

! ! ! loadDSM.setEnabled(false);

! ! ! labelFCM.setEnabled(false);

! ! ! labelDSM.setEnabled(false);

! ! !

! ! ! // Automatically load data from included files

! ! ! ArrayList<Object> fcmFileArray = new ArrayList<Object>(); // Holds array of strings read 

! ! ! ! ! ! ! ! !  from data file

! ! ! ArrayList<Object> dsmFileArray = new ArrayList<Object>(); // Holds array of strings read 

! ! ! ! ! ! ! ! !  from data file

! ! ! File newFCMFile = new File("FCM.txt"); // Holds pathname for FCM data file to be read

! ! ! File newDSMFile = new File("DSM.txt"); // Holds pathname for DSM data file to be read

! ! ! ! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newFCMFile)); 

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! fcmFileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file."); 

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newDSMFile)); 

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! dsmFileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file."); 

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! !

! ! ! fcmArray = fcmFileArray; // Save data to FCM global variable

! ! ! dsmArray = dsmFileArray; // Save data to DSM global variable

! !

! ! } // end actionPerformed

! } // end defaultFilesListener

!

! /*---------------------------------------------------------------------------------------------

! * Listener to register the customComponents radio button

! * actionPerformed method:

! *! 1. Enables loadFCM and loadDSM

! *----------------------------------------------------------------------------------------------*/

! private class customFilesListener implements ActionListener {

! ! public void actionPerformed(ActionEvent custom) {

! ! ! loadFCM.setEnabled(true);

! ! ! loadDSM.setEnabled(true);

! ! ! labelFCM.setEnabled(true);

! ! ! labelDSM.setEnabled(true);
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! ! }

! } // end customFilesListener

!

! /*---------------------------------------------------------------------------------------------

! * Listener to register any of the data file load button presses

! * actionPerformed method:

! *! 1. Triggers box to select data file

! *! 2. Updates file and directory label for file chosen by user

! *----------------------------------------------------------------------------------------------*/

! private class loadDataListener implements ActionListener {

! ! public void actionPerformed(ActionEvent load) {

! ! ! Object source = load.getSource(); // Determines source button that triggered the listener

! ! ! ArrayList returnedArray = loadFile(); // Holds array loaded from data file

! ! !

! ! ! if (returnedArray != null) { // If returned file array contains data

! ! ! ! File filePath = (File) returnedArray.get(0); // Get path of opened file

! ! ! ! returnedArray.remove(0); // Remove path from file data array

! ! ! ! if (source == loadFCM) { // If "Load FCM" button was pressed

! ! ! ! ! labelFCM.setText(filePath.getPath()); // Update FCM label field

! ! ! ! ! fcmArray = returnedArray; // Data from the opened file was for the 

! ! ! ! ! ! !          FCM

! ! ! ! } else if (source == loadDSM) { // If "Load DSM" button was pressed

! ! ! ! ! labelDSM.setText(filePath.getPath()); // Update DSM label field

! ! ! ! ! dsmArray = returnedArray; // Data from the opened file was for the 

! ! ! ! ! ! !          DSM

! ! ! ! } else if (source == loadFM) { // If "Find File" button was pressed

! ! ! ! ! labelFM.setText(filePath.getPath()); // Update FM label field

! ! ! ! ! fmArray = returnedArray; // Data from the opened file was for the FM

! ! ! ! }

! ! ! } // end if

! ! } // end actionPerformed

! } // end loadDataListener

! !

! /*---------------------------------------------------------------------------------------------

! * Prompts user for file location, reads in tab-delimited file 

! * data, and saves the data to a matrix

! *----------------------------------------------------------------------------------------------*/

! private ArrayList loadFile() {

! ! File newFile = new File(lastOpenPath); // Holds pathname for data file to be read

! ! JFileChooser fileOpen = new JFileChooser(newFile); // Create new file chooser dialog box

! ! ArrayList<Object> fileArray = new ArrayList<Object>(); // Holds array of strings read from data 

! ! ! ! ! ! !         file

! ! ! !

! ! int cancelOpen = fileOpen.showOpenDialog(baseFrame); // Show dialog box to open file

! ! if (cancelOpen == 0) { // Check to make sure file open dialog wasn't cancelled

! ! ! newFile = fileOpen.getSelectedFile(); // Get path and name of selected file

! ! ! lastOpenPath = newFile.getPath(); // Retain path of last file opened

! ! ! !

! ! ! fileArray.add(newFile); // Add file path to file data array

! ! ! !

! ! ! try { // Try to read data from file

! ! ! ! BufferedReader reader = new BufferedReader(new FileReader(newFile)); 

! ! ! ! ! // Read stream

! ! ! ! String line = null; // Initialize variable to get data

! ! ! ! while ((line = reader.readLine()) != null) { // Read in data until end of file

! ! ! ! ! String[] splitLine = line.split("\t"); // Split line string at tabs

! ! ! ! ! fileArray.add(splitLine); // Add split line strings to file array

! ! ! ! }

! ! ! ! reader.close(); // Close read stream

! ! ! } catch (Exception e) {

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error reading file."); 

! ! ! ! ! // Error dialog box

! ! ! ! e.printStackTrace();

! ! ! } // end try

! ! ! ! ! ! !

! ! ! return fileArray; // Return array of data read from file

! ! } else {

! ! ! return null; // Return null value

! ! } // end if

! } // end loadFile()

!
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! /*---------------------------------------------------------------------------------------------

! * Listener to register the goButton button press

! * actionPerformed routine:

! *! 1. Check for data compatibility between the selected FCM and DSM files

! *! 2. Filter FCM matrix using imported functional model data

! *! 3. Build and filter the mini DSMs between the function pairings

! *! 4. Extract the valid component pairs from the filtered mini DSMs

! *! *5. Build complete solutions that solve the entered function model

! *! *6. Identify highest ranking solutions

! *! 7. Build GUI of result chains

! *----------------------------------------------------------------------------------------------*/

! private class goButtonListener implements ActionListener {

! ! public void actionPerformed(ActionEvent go) {

! ! ! ArrayList<String[]> fcmArrayFiltered = new ArrayList<String[]>(); 

! ! ! ! // Make array for filtered FCM

! ! ! if (fmArray == null | fcmArray == null | dsmArray == null) { 

! ! ! ! // Make sure FM, FCM, and DSM files have been selected

! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error: Please load all data files 

! ! ! ! ! before continuing."); // Error dialog box

! ! ! } else {

! ! ! ! /* Check for FCM and DSM file compatibility--------------------------------- */

! ! ! ! boolean match = false; // True if FCM component labels match DSM component 

! ! ! ! ! !       labels

! ! ! ! String [] fcmString, dsmString; // Hold label rows for each matrix

! ! ! !

! ! ! ! fcmString = (String[]) fcmArray.get(fcmHeader); // Get label row from FCM

! ! ! ! dsmString = (String[]) dsmArray.get(dsmHeader); // Get label row from DSM

! ! ! !

! ! ! ! match = Arrays.equals(fcmString,dsmString); // Component headers match?

! ! ! !

! ! ! ! if (match) { // If the FCM and DSM files are compatible

! ! ! ! ! fmLinks.clear(); // Clear list

! ! ! ! ! masterComponentList.clear(); // Clear component list

! ! ! ! !

! ! ! ! ! /* Create subFunction link set------------------------------------ */

! ! ! ! ! for (int i = (fmHeader + 1); i < fmArray.size(); i++) { 

! ! ! ! ! ! // For each row in the FM matrix 

! ! ! ! ! ! String[] fmRow = (String[]) fmArray.get(i);

! ! ! ! ! ! ArrayList<Integer> forConn = new ArrayList<Integer>(); 

! ! ! ! ! ! ! // Array of forward connections

! ! ! ! ! ! ArrayList<Integer> revConn = new ArrayList<Integer>(); 

! ! ! ! ! ! ! // Array of reverse connections

! ! ! ! ! ! Subfunction tempSub = new Subfunction(i, fmRow[0]);

! ! ! ! ! !

! ! ! ! ! ! for (int j = 1; j < fmRow.length; j++) {

! ! ! ! ! ! ! /* Check for forward connections-------------- */

! ! ! ! ! ! ! int cellForw = Integer.parseInt(fmRow[j]); 

! ! ! ! ! ! ! ! // Get cell value

! ! ! ! ! ! ! if (cellForw > 0) {

! ! ! ! ! ! ! ! forConn.add(j); // If cell is not zero, 

! ! ! ! ! ! ! ! !          add subfunction as a 

! ! ! ! ! ! ! ! !          forward connection

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! ! /* Check for reverse connections-------------- */

! ! ! ! ! ! ! String[] fmCol = (String[]) fmArray.get(j);

! ! ! ! ! ! ! int cellRev = Integer.parseInt(fmCol[i]); 

! ! ! ! ! ! ! ! // Get cell value

! ! ! ! ! ! ! if (cellRev > 0) {

! ! ! ! ! ! ! ! revConn.add(j); // If cell is not zero, 

! ! ! ! ! ! ! ! !          add subfunction as a 

! ! ! ! ! ! ! ! !          reverse connection

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! } // end for

! ! ! ! ! !

! ! ! ! ! ! tempSub.setForward(forConn);

! ! ! ! ! ! tempSub.setReverse(revConn);

! ! ! ! ! !

172



! ! ! ! ! ! fmLinks.add(tempSub);

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! /* Filter the FCM matrix with the FM data------------------------- */

! ! ! ! ! String filter = null; // String to hold filter

! ! ! ! !

! ! ! ! ! String[] headerRow = (String[]) fcmArray.get(0); // Get FCM header 

! ! ! ! ! ! ! ! ! !   row

! ! ! ! ! fcmArrayFiltered.add(headerRow); // Add header row to filtered FCM

! ! ! ! ! for (int ii = (fmHeader + 1); ii < fmArray.size(); ii++) { 

! ! ! ! ! ! // Get filter from each row of the input FM

! ! ! ! ! ! String[] fmRow = (String[]) fmArray.get(ii);

! ! ! ! ! ! filter = fmRow[0];

! ! ! ! ! !

! ! ! ! ! ! // For each row label in the FCM matrix

! ! ! ! ! ! boolean found = false; // Trigger to add empty FCM row

! ! ! ! ! ! for (int k = (fcmHeader + 1); k < fcmArray.size(); k++) {

! ! ! ! ! ! ! String[] fcmRow = (String[]) fcmArray.get(k); 

! ! ! ! ! ! ! ! // Get FCM row

! ! ! ! ! ! !

! ! ! ! ! ! ! if (filter.equals(fcmRow[0])) { 

! ! ! ! ! ! ! ! // If filter matches FCM row

! ! ! ! ! ! ! ! fcmArrayFiltered.add(fcmRow); 

! ! ! ! ! ! ! ! ! // Add row to filtered FCM

! ! ! ! ! ! ! ! found = true; 

! ! ! ! ! ! ! ! ! // FCM contained filter value

! ! ! ! ! ! ! } // end if

! ! ! ! ! ! } // end for

! ! ! ! ! !

! ! ! ! ! ! if (!found) { // If row wasn't found for filter

! ! ! ! ! ! ! String[] newRow = new String

! ! ! ! ! ! ! ! [fcmString.length]; // Create a new 

! ! ! ! ! ! ! ! ! !    empty row

! ! ! ! ! ! ! newRow[0] = filter; // Row header

! ! ! ! ! !

! ! ! ! ! ! ! for (int m = 1; m < newRow.length; m++) { 

! ! ! ! ! ! ! ! // Fill row with zeros

! ! ! ! ! ! ! ! newRow[m] = "0"; // Indicates no 

! ! ! ! ! ! ! ! ! component matches

! ! ! ! ! ! ! } // end for

! ! ! ! ! ! !

! ! ! ! ! ! ! fcmArrayFiltered.add(newRow); // Add created row 

! ! ! ! ! ! ! ! to filtered matrix

! ! ! ! ! !

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! ! !

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! /* Build and filter pairwise DSM matrices------------------------- */

! for (int i = 0; i < fmLinks.size(); i++) {

! ! Subfunction functionForeward = fmLinks.get(i); // Cycle through each subfunction in the FM

! ! int functionID = functionForeward.getID(); // Get function id

! ! String functionLabel = functionForeward.getSub(); // Get function label

! ! ArrayList<Integer> connectedTo = functionForeward.getForward(); //Get forward connections

! ! ! ! ! !

! ! for (int l = 0; l < connectedTo.size(); l++) {

! ! ! int nextFunct = (Integer)connectedTo.get(l); // Get next connected function id

! ! ! Subfunction functionReverse = fmLinks.get(nextFunct-1); // Point to next connected 

! ! ! ! ! ! ! !          subfunction

! ! ! ! ! ! !

! ! ! String[] func1 = (String[]) fcmArrayFiltered.get(functionID); // Get first row

! ! ! String[] func2 = (String[]) fcmArrayFiltered.get(nextFunct); // Get second row

! ! ! ! ! ! !

! ! ! if (functionLabel.equals(func1[0])) { // Double check that functions are same

! ! ! ! ! ! ! !

! ! ! ! int[][] miniDSM = new int[func1.length-1][func2.length-1]; //Holds pairwise DSM

! ! ! ! ! ! ! ! ! ! !

! ! ! ! for (int m = 1; m < func1.length; m++) { // Build mini matrix

! ! ! ! ! int cellA = Integer.parseInt(func1[m]); // Get 1st cell

! ! ! ! ! String[] dsmRow = (String[]) dsmArray.get(m); // Get DSM row

! ! ! ! ! ! ! ! !
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! ! ! ! ! for (int n = 1; n < func2.length; n++) {

! ! ! ! ! ! int cellB = Integer.parseInt(func2[n]); // Get 2nd cell

! ! ! ! ! ! int dsmFilter; // Get filter value from DSM

! ! ! ! ! ! ! ! !

! ! ! ! ! ! if (dsmRow[n].equals(" ") | dsmRow[n].equals("")) { 

! ! ! ! ! ! ! // Account for blank entry

! ! ! ! ! ! ! dsmFilter = 0; // Makes blanks equal to zero

! ! ! ! ! ! } else { // Otherwise get DSM value

! ! ! ! ! ! ! dsmFilter = Integer.parseInt(dsmRow[n]);

! ! ! ! ! ! } // end if

! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! if (dsmFilter != 0) { // If the filter is nonzero

! ! ! ! ! ! ! miniDSM[m-1][n-1] = cellA*cellB* 

! ! ! ! ! ! ! ! (dsmFilter/dsmFilter); // Build DSM

! ! ! ! ! ! } else {

! ! ! ! ! ! ! miniDSM[m-1][n-1] = cellA*cellB*dsmFilter; 

! ! ! ! ! ! ! ! // Build DSM

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! } // end for

! ! ! ! functionForeward.addForwardDSM(miniDSM); // Add matrix to list

! ! ! ! ! ! ! !

! ! ! ! ArrayList reverseList = functionReverse.getReverse(); // Get list of reverse 

! ! ! ! ! ! ! ! !        connections

! ! ! ! int ref = functionReverse.getReverseDSMs().size(); // How many DSMs are already 

! ! ! ! ! ! ! ! !     in the reverse list?

! ! ! ! ! ! ! !

! ! ! ! if (reverseList.get(ref) == (Integer)functionID) { // Check that the reverse 

! ! ! ! ! ! ! ! !     DSM is in the same order 

! ! ! ! ! ! ! ! !     as the reverse 

! ! ! ! ! ! ! ! !     connections list

! ! ! ! ! functionReverse.addReverseDSM(miniDSM); // Add this DSM as a reverse 

! ! ! ! ! ! ! ! !    DSM

! ! ! ! } else { // Else print error information

! ! ! ! ! System.out.println("Error-----Reverse DSM add mismatch-----");

! ! ! ! ! System.out.println("  Reverse connection = " + reverseList.get(ref)); 

! ! ! ! ! System.out.println("     Reverse DSM functionID = " + functionID); 

! ! ! ! } // end if

! ! ! } else {

! ! ! ! System.out.println("Error-----Function mismatch-----");

! ! ! } // end if

! ! } // end for loop

! } // end building DSMs

! /* Build choice lists--------------------------------------------------------------------------- */

! String[] dsmRow = (String[]) dsmArray.get(0); // Get DSM header row

! ! ! ! !

! for (int i = 1; i < dsmRow.length; i++) {

! ! masterComponentList.add(dsmRow[i]); // Build component name index list

! } // end for

! ! ! ! !

! // Check for in ports and out ports

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

! ! Subfunction function = fmLinks.get(j); // Get function 

! ! ArrayList<Integer> forwardConns = function.getForward(); // Get forward connections

! ! ArrayList<Integer> reverseConns = function.getReverse(); // Get reverse connections

! ! ! ! ! ! ! ! ! ! !

!

! ! // Check for in ports

! ! if (forwardConns.isEmpty()) { // If there are no forward connections

! ! ! forwardConns.add(-20); // Add that the forward connection is an out port (-20)

! ! } // end if 

! ! ! ! ! !

! ! // Check for out ports

! ! if (reverseConns.isEmpty()) { // If there are no reverse connections

! ! ! reverseConns.add(-10); // Add that the reverse connection is an in port (-10)

! ! } // end if

! ! ! ! ! !

! } // end for

! ! ! ! !

! // Build choice lists for all functions

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model
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! ! Subfunction function = fmLinks.get(j); // Get next function

! ! ArrayList forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs

! ! ArrayList reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs

! ! ArrayList<ArrayList> forwardChoices = new ArrayList<ArrayList>(); // Initialize array to hold lists 

! ! ! ! ! ! ! !          of choices for all forward DSM

! ! ! ! ! !

! ! for (int p = 0; p < forwardDSMList.size(); p++) { // For each forward DSM for this function

! ! ! ArrayList<ComponentInfo> thisForwCompList = new ArrayList<ComponentInfo>(); 

! ! ! ! // Make list of choices for current forward DSM

! ! ! int[][] tempDSM = (int[][])forwardDSMList.get(p); // Get next DSM in the list

! ! ! ! ! ! !

! ! ! for (int m = 0; m < tempDSM.length; m++) { // For each DSM row

! ! ! ! int rowAddition = 0; // Initialize variable

! ! ! ! ! !

! ! ! ! for (int n = 0; n < tempDSM[0].length; n++) { // For each DSM column

! ! ! ! ! rowAddition += tempDSM[m][n]; // Add row into a single variable

! ! ! ! } // end for

! ! ! ! ! ! ! !

! ! ! ! if (rowAddition > 0) { // If there is a successful component pair in this row

! ! ! ! ! ComponentInfo thisComponent = new ComponentInfo

! ! ! ! ! ! (masterComponentList.get(m)); // Make new component object

! ! ! ! ! thisForwCompList.add(thisComponent); // Add choice to list

! ! ! ! } // end if

! ! ! } // end for

! ! ! ! ! ! !

! ! ! if (thisForwCompList.size() > 0) {

! ! ! ! forwardChoices.add(thisForwCompList); // Add choice list to list of all forward 

! ! ! ! ! ! ! !  choices

! ! ! } // end if

! ! } // end for

! ! ! ! ! !

! ! ArrayList<ArrayList> reverseChoices = new ArrayList<ArrayList>(); // Initialize array to hold lists 

! ! ! ! ! ! ! !          of choices for all reverse DSM

! ! ! ! ! !

! ! for (int p = 0; p < reverseDSMList.size(); p++) { // For each reverse DSM for this function

! ! ! ArrayList<ComponentInfo> thisRevCompList = new ArrayList<ComponentInfo>(); 

! ! ! ! // Make list of choices for current reverse DSM

! ! ! int[][] tempDSM = (int[][])reverseDSMList.get(p); // Get next DSM in the list

! ! ! ! ! ! !

! ! ! for (int m = 0; m < tempDSM[0].length; m++) { // For each DSM column

! ! ! ! int colAddition = 0; // Initialize variable

! ! ! ! ! ! ! !

! ! ! ! for (int n = 0; n < tempDSM.length; n++) { // For each DSM row

! ! ! ! ! colAddition += tempDSM[n][m]; // Add column into a single variable

! ! ! ! } // end for

! ! ! ! ! ! ! !

! ! ! ! if (colAddition > 0) { // If there is a successful component pair in this 

! ! ! ! ! !       column

! ! ! ! ! ComponentInfo thisComponent = new ComponentInfo

! ! ! ! ! ! (masterComponentList.get(m)); // Make new component object

! ! ! ! ! thisRevCompList.add(thisComponent); // Add choice to list

! ! ! ! } // end if

! ! ! } // end for

! ! ! ! ! ! !

! ! ! if (thisRevCompList.size() > 0) {

! ! ! ! reverseChoices.add(thisRevCompList); // Add choice list to list of all reverse 

! ! ! ! ! ! ! ! choices

! ! ! } // end if 

! ! } // end for

! ! ! ! ! !

! ! ArrayList<ComponentInfo> choiceList = new ArrayList<ComponentInfo>(); 

! ! ! // List of component choices to be set for current function

! ! int numConnections = forwardChoices.size() + reverseChoices.size(); // Number of occurrences needed 

! ! ! ! ! ! ! ! !  for each component

! ! ! ! ! !

! ! for (String nextComponent : masterComponentList) {

! ! ! int occurrences = 0; // Initialize variable to count number of component matches

! ! ! ! ! ! !

! ! ! for (ArrayList<ComponentInfo> nextForwardList : forwardChoices) {

! ! ! ! for (ComponentInfo nextForward : nextForwardList) {

! ! ! ! ! if (nextForward.getComponent().equals(nextComponent)) {

! ! ! ! ! ! occurrences += 1; // Increment the number of occurrences
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! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! ! ! for (ArrayList<ComponentInfo> nextReverseList : reverseChoices) {

! ! ! ! for (ComponentInfo nextReverse : nextReverseList) {

! ! ! ! ! if (nextReverse.getComponent().equals(nextComponent)) {

! ! ! ! ! ! occurrences += 1; // Increment the number of occurrences

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! ! ! if (occurrences == numConnections and numConnections != 0) { // If the component is a 

match ! ! ! ! ! ! ! ! !   for all links

! ! ! ! choiceList.add(new ComponentInfo(nextComponent)); // Add component to the 

! ! ! ! ! ! ! ! !    choice list

! ! ! } // end if

! ! } // end for

! ! if (choiceList.isEmpty()) {

! ! ! ComponentInfo noSolution = new ComponentInfo("?");

! ! ! choiceList.add(noSolution); // Add question mark indicator

! ! ! functionsWithoutSolutions.add(function.getID()); // Add function ID to list of functions 

! ! ! ! ! ! ! !   without solutions

! ! } // end if

! ! function.setChoices(choiceList);

! } // end for

! /* Build component link lists------------------------------------------------------------------- */

! for (int j = 0; j < fmLinks.size(); j++) { // For each function in the model

! ! Subfunction function = fmLinks.get(j); // Get function 

! ! ArrayList<int[][]> forwardDSMList = function.getForwardDSMs(); // Get all forward connected DSMs

! ! ArrayList<int[][]> reverseDSMList = function.getReverseDSMs(); // Get all reverse connected DSMs

! ! ArrayList<ComponentInfo> allChoices = function.getChoices(); // Get all component choices

! ! for (ComponentInfo nextChoice : allChoices) { // For each component choice

! ! ! int componentIndex = masterComponentList.indexOf(nextChoice.getComponent()); // Get DSM 

! ! ! ! ! ! ! ! ! ! ! index

! ! !

! ! ! if (componentIndex >= 0) {

! ! ! ! for (int[][] tempDSM : forwardDSMList) { // For each forward DSM for this 

! ! ! ! ! ! ! !     function

! ! ! ! ! ArrayList<String> foreLink = new ArrayList<String>(); 

! ! ! ! ! ! // Temp holder for fore links

!

! ! ! ! ! for (int n = 0; n < tempDSM[componentIndex].length; n++) { 

! ! ! ! ! ! // For each DSM column in the index row

! ! ! ! ! ! if (tempDSM[componentIndex][n] != 0) { 

! ! ! ! ! ! ! // If there is a link between components

! ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! ! foreLink.add(masterComponentList.get(n)); 

! ! ! ! ! ! ! ! // Add component to forward link list

! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! if (foreLink.isEmpty()) {

! ! ! ! ! ! foreLink.add("unknown");

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! nextChoice.addForwardLinks(foreLink); // Add array to link list

! ! ! ! } // end for

! ! ! ! for (int[][] tempDSM : reverseDSMList) { // For each reverse DSM for this 

! ! ! ! ! ! ! !     function

! ! ! ! ! ArrayList<String> revLink = new ArrayList<String>(); 

! ! ! ! ! ! // Temp holder for reverse links

! ! ! ! !

! ! ! ! ! for (int n = 0; n < tempDSM.length; n++) { // For each DSM row in the 

! ! ! ! ! ! ! ! !       index column

! ! ! ! ! ! if (tempDSM[n][componentIndex] != 0) { 

! ! ! ! ! ! ! // If there is a link between components

! ! ! ! ! ! ! revLink.add(masterComponentList.get(n)); 

! ! ! ! ! ! ! ! // Add component to reverse link list
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! ! ! ! ! ! } // end if

! ! ! ! ! } // end for

! ! ! ! !

! ! ! ! ! if (revLink.isEmpty()) {

! ! ! ! ! ! revLink.add("unknown");

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! nextChoice.addReverseLinks(revLink); // Add array to link list

! ! ! ! } // end for

! ! ! } else {

! ! ! ! ArrayList<String> foreLink = new ArrayList<String>(); // Temp holder for fore 

! ! ! ! ! ! ! ! !        links

! ! ! ! foreLink.add("unknown");

! ! ! ! nextChoice.addForwardLinks(foreLink); // Add array to link list

! ! ! !

! ! ! ! ArrayList<String> revLink = new ArrayList<String>(); // Temp holder for reverse 

! ! ! ! ! ! ! ! !       links

! ! ! ! revLink.add("unknown");

! ! ! ! nextChoice.addReverseLinks(revLink); // Add array to link list

! ! ! } // end if

! ! } // end for

! !

! ! ArrayList<Integer> forwardConns = function.getForward(); // Get forward connections

! ! ArrayList<Integer> reverseConns = function.getReverse(); // Get reverse connections

! ! ArrayList<ComponentInfo> choiceList = function.getChoices(); // Get list of choices

! ! ! ! ! !

! ! if (forwardConns.contains(-20)) { // If there are no forward connections because of an out port

! ! ! for (ComponentInfo choice : choiceList) { // Set all component forward links as system 

! ! ! ! ! ! !      outs

! ! ! ! ArrayList<String> foreport = new ArrayList<String>();

! ! ! ! ArrayList<ArrayList<String>> foreports = new ArrayList<ArrayList<String>>();

! ! ! ! foreport.add("out");

! ! ! ! foreports.add(foreport);

! ! ! ! choice.setForwardLinks(foreports);

! ! ! } // end for

! ! } // end if

! !

! ! if (reverseConns.contains(-10)) { // If there are no reverse connections because of an in port

! ! ! for (ComponentInfo choice : choiceList) { // Set all component forward links as system 

! ! ! ! ! ! !      ins

! ! ! ! ArrayList<String> aftport = new ArrayList<String>();

! ! ! ! ArrayList<ArrayList<String>> aftports = new ArrayList<ArrayList<String>>();

! ! ! ! aftport.add("in");

! ! ! ! aftports.add(aftport);

! ! ! ! choice.setReverseLinks(aftports);

! ! ! } // end for

! ! } // end if

! } // end for

************************************************End shifted indentation************************************************

! ! ! ! ! buildOutputGUI();

! ! ! ! } else {

! ! ! ! ! JOptionPane.showMessageDialog(baseFrame, "Error: FCM and DSM matrices 

! ! ! ! ! ! ! ! are not compatible.\nPlease choose 

! ! ! ! ! ! ! ! compatible files."); 

! ! ! ! ! ! ! ! // Error dialog box

! ! ! ! } // end if

! ! ! } // end if 

! ! } // end actionPerformed

! } // end goButtonListener

!

! /*---------------------------------------------------------------------------------------------

!  * Builds the graphical user interface for the user input into the concept generation program

!  *---------------------------------------------------------------------------------------------*/

! private void buildOutputGUI()  {

! !

! ! fullCompArray.clear(); // Clear button array

! ! removeButtons.clear(); // Clear button array

! ! selectedFields.clear(); // Clear textfield array

! !

! ! if (resultFrame != null) { // If an old result frame exists

! ! ! resultFrame.dispose(); // Get rid of old result frame before generating a new one

! ! }
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! !

! ! /* Define and Initialize variables ----------------------------------------------------------*/

! ! resultFrame = new JFrame();

! ! resultBackground = new JPanel();

!

! ! JPanel step4Panel = new JPanel(), headerPanel = new JPanel(), resultsPanel = new JPanel();

! ! JTextField selectedComponentLabel = new JTextField(), blankLabel = new JTextField(); 

! ! JTextField subFunctionLabel = new JTextField(), componentLabel = new JTextField();

! ! JScrollPane resultsScrollPane = new JScrollPane();

! !

! ! /* resultFrame ----------------------------------------------------------------------------*/

! ! {

! ! ! resultFrame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);

! ! ! resultFrame.setResizable(true);

! ! ! Container resultFrameContentPane = resultFrame.getContentPane();

! ! ! resultFrameContentPane.setLayout(new BorderLayout(10, 10));

! ! ! /* resultBackground -------------------------------------------------------------------*/

! ! ! {

! ! ! ! resultBackground.setBorder(new EmptyBorder(10, 10, 10, 10));

! ! ! ! resultBackground.setBackground(lightblue);

! ! ! ! resultBackground.setLayout(new BoxLayout(resultBackground, BoxLayout.Y_AXIS));

! ! ! ! /* step4Panel ---------------------------------------------------------------*/

! ! ! ! {

! ! ! ! ! step4Panel.setBorder(new CompoundBorder(

! ! ! ! ! ! new TitledBorder("Step 4: Build and evaluate conceptual 

! ! ! ! ! ! !         solutions."),

! ! ! ! ! ! new EmptyBorder(5, 5, 5, 5)));

! ! ! ! ! step4Panel.setBackground(lightblue);

! ! ! ! ! step4Panel.setLayout(new BorderLayout());

! ! ! ! ! /* headerPanel ----------------------------------------------------*/

! ! ! ! ! {

! ! ! ! ! ! headerPanel.setMinimumSize(new Dimension(427, 35));

! ! ! ! ! ! headerPanel.setMaximumSize(new Dimension(427, 35));

! ! ! ! ! ! headerPanel.setLayout(new BoxLayout(headerPanel, 

! ! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! ! ! /* selectedComponentLabel -------------------------------*/

! ! ! ! ! ! selectedComponentLabel.setText("Selected");

! ! ! ! ! ! selectedComponentLabel.setBorder(new EmptyBorder(0,0,0,0));

! ! ! ! ! ! selectedComponentLabel.setHorizontalAlignment

! ! ! ! ! ! ! (SwingConstants.CENTER);

! ! ! ! ! ! selectedComponentLabel.setMaximumSize(new Dimension(155, 

! ! ! ! ! ! ! ! ! ! !   35));

! ! ! ! ! ! selectedComponentLabel.setPreferredSize(new Dimension(155, 

! ! ! ! ! ! ! ! ! ! !   35));

! ! ! ! ! ! selectedComponentLabel.setMinimumSize(new Dimension(155, 

! ! ! ! ! ! ! ! ! ! !   35));

! ! ! ! ! ! selectedComponentLabel.setBackground(darkblue);

! ! ! ! ! ! selectedComponentLabel.setFocusable(false);

! ! ! ! ! ! selectedComponentLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(selectedComponentLabel);

! ! ! ! ! ! /* blankLabel -------------------------------------------*/

! ! ! ! ! ! blankLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! blankLabel.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! ! blankLabel.setMaximumSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setPreferredSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setMinimumSize(new Dimension(80, 35));

! ! ! ! ! ! blankLabel.setBackground(darkblue);

! ! ! ! ! ! blankLabel.setFocusable(false);

! ! ! ! ! ! blankLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(blankLabel);

! ! ! ! ! ! /* subFunctionLabel -------------------------------------*/

! ! ! ! ! ! subFunctionLabel.setText("Subfunctions");

! ! ! ! ! ! subFunctionLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! subFunctionLabel.setHorizontalAlignment

! ! ! ! ! ! ! !       (SwingConstants.CENTER);

! ! ! ! ! ! subFunctionLabel.setMaximumSize(new Dimension(155, 35));
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! ! ! ! ! ! subFunctionLabel.setMinimumSize(new Dimension(155, 35));

! ! ! ! ! ! subFunctionLabel.setPreferredSize(new Dimension(155, 35));

! ! ! ! ! ! subFunctionLabel.setBackground(darkblue);

! ! ! ! ! ! subFunctionLabel.setFocusable(false);

! ! ! ! ! ! subFunctionLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(subFunctionLabel);

! ! ! ! ! ! /* componentLabel ---------------------------------------*/

! ! ! ! ! ! componentLabel.setText("Component Solutions -->");

! ! ! ! ! ! componentLabel.setBorder(new EmptyBorder(0, 0, 0, 0));

! ! ! ! ! ! componentLabel.setBackground(darkblue);

! ! ! ! ! ! componentLabel.setFocusable(false);

! ! ! ! ! ! componentLabel.setEditable(false);

! ! ! ! ! ! headerPanel.add(componentLabel);

! ! ! ! ! }

! ! ! ! ! step4Panel.add(headerPanel, BorderLayout.NORTH);

! ! ! ! ! /* resultsScrollPane ----------------------------------------------*/

! ! ! ! ! {

! ! ! ! ! ! int boxHeight = 30, boxWidth = 150;

! ! ! ! ! ! int spaceTall = 80;

! ! ! ! ! ! int scrollPaneHeight = 400, scrollPaneWidth = 1000;

! ! ! ! ! ! int scrollPanelHeight = spaceTall*(fmArray.size()-1), 

! ! ! ! ! !     scrollPanelWidth = 1000;

! ! ! ! ! ! int compScrollPaneHeight = spaceTall;

! ! ! ! ! ! int compScrollPaneWidth = 600;

! ! ! ! ! !     rowPanelHeight = spaceTall, rowPanelWidth = 1000;

! ! ! ! ! !

! ! ! ! ! ! resultsScrollPane.setHorizontalScrollBarPolicy

! ! ! ! ! ! ! (ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

! ! ! ! ! ! resultsScrollPane.setMinimumSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

! ! ! ! ! ! resultsScrollPane.setMaximumSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

! ! ! ! ! ! resultsScrollPane.setPreferredSize(new Dimension

! ! ! ! ! ! ! (scrollPaneWidth, scrollPaneHeight));

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! ! /* resultsPanel -----------------------------------------*/

! ! {

! ! ! resultsPanel.setMinimumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setMaximumSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setPreferredSize(new Dimension(scrollPanelWidth, scrollPanelHeight));

! ! ! resultsPanel.setLayout(new BoxLayout(resultsPanel, BoxLayout.Y_AXIS));

! ! !

! ! ! /* Populate panels ----------------------------*/

! ! ! for (int i = 0; i < fmLinks.size(); i++) {

! ! ! ! Subfunction tempFunction = fmLinks.get(i);

! ! ! ! /* Full row panel -------------------*/

! ! ! ! JPanel rowPanel = new JPanel();

! ! ! ! rowPanel.setMinimumSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setMaximumSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setPreferredSize(new Dimension(rowPanelWidth, rowPanelHeight));

! ! ! ! rowPanel.setLayout(new BoxLayout(rowPanel, BoxLayout.X_AXIS));

! ! ! !

! ! ! ! {

! ! ! ! ! /* Component selections ---*/

! ! ! ! ! JTextField selectedComponent = new JTextField();

! ! ! ! ! selectedComponent.setBackground(Color.white);

! ! ! ! ! selectedComponent.setAutoscrolls(false);

! ! ! ! ! selectedComponent.setBorder(new BevelBorder(BevelBorder.LOWERED));

! ! ! ! ! selectedComponent.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! selectedComponent.setMinimumSize(new Dimension(boxWidth, boxHeight));

! ! ! ! ! selectedComponent.setMaximumSize(new Dimension(boxWidth, boxHeight));

! ! ! ! ! selectedComponent.setPreferredSize(new Dimension(boxWidth,

! ! ! ! ! ! ! ! !          boxHeight));

! ! ! ! ! selectedComponent.setText("None");

! ! ! ! ! selectedComponent.setEditable(false);

! ! ! ! ! selectedFields.add(selectedComponent);

! ! ! ! !
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! ! ! ! ! /* Remove buttons -------------------------------------------------*/

! ! ! ! ! JButton removeButton = new JButton();

! ! ! ! ! removeButton.setText("Remove");

! ! ! ! ! removeButton.addActionListener(new removeButtonListener());

! ! ! ! ! removeButtons.add(removeButton);

! ! ! ! !

! ! ! ! ! /* Subfunction fields ---------------------------------------------*/

! ! ! ! ! JPanel subFunctionPanel = new JPanel();

! ! ! ! ! subFunctionPanel.setBorder(new EmptyBorder(20,5,5,0));

! ! ! ! ! subFunctionPanel.setLayout(new BoxLayout(subFunctionPanel, 

! ! ! ! ! ! BoxLayout.Y_AXIS));

! ! ! ! ! JTextArea subFunction = new JTextArea();

! ! ! ! ! subFunction.setAutoscrolls(false);

! ! ! ! ! subFunction.setLineWrap(true);

! ! ! ! ! subFunction.setWrapStyleWord(true);

! ! ! ! ! subFunction.setMinimumSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setMaximumSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setOpaque(false);

! ! ! ! ! subFunction.setText(tempFunction.getSub());

! ! ! ! ! subFunction.setPreferredSize(new Dimension(boxWidth, boxHeight*2));

! ! ! ! ! subFunction.setEditable(false);

! ! ! ! ! subFunctionPanel.add(subFunction);

! ! ! ! !

! ! ! ! ! /* compScrollPane -------------------------------------------------*/

! ! ! ! ! JScrollPane compScrollPane = new JScrollPane();

! ! ! ! ! compScrollPane.setVerticalScrollBarPolicy

! ! ! ! ! ! (ScrollPaneConstants.VERTICAL_SCROLLBAR_NEVER);

! ! ! ! ! compScrollPane.setMinimumSize(new Dimension(compScrollPaneWidth, 

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! compScrollPane.setMaximumSize(new Dimension(compScrollPaneWidth, 

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! compScrollPane.setPreferredSize(new Dimension(compScrollPaneWidth, 

! ! ! ! ! ! compScrollPaneHeight));

! ! ! ! ! !

! ! ! ! ! /* Component fields -----------------------------------------------*/

! ! ! ! ! ArrayList<JButton> componentArray = new ArrayList<JButton>();

! ! ! ! ! ArrayList components = tempFunction.getChoices();

! ! ! ! ! int numComps = components.size();

! ! ! ! ! int compPanelHeight = boxHeight,

! ! ! ! !     compPanelWidth = boxWidth * numComps;

! ! ! ! !

! ! ! ! ! /* Component row panel --------------------------------------------*/

! ! ! ! ! JPanel compRowPanel = new JPanel();

! ! ! ! ! compRowPanel.setMinimumSize(new Dimension(compPanelWidth, 

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setMaximumSize(new Dimension(compPanelWidth, 

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setPreferredSize(new Dimension(compPanelWidth, 

! ! ! ! ! ! compPanelHeight));

! ! ! ! ! compRowPanel.setLayout(new BoxLayout(compRowPanel, 

! ! ! ! ! ! BoxLayout.X_AXIS));

! ! ! ! !

! ! ! ! ! for (int j = 0; j < components.size(); j++) {

! ! ! ! ! ! JButton component = new JButton();

! ! ! ! ! ! ComponentInfo nextComp = (ComponentInfo) components.get(j);

! ! ! ! ! ! ! // Get next component in list

! ! ! ! ! ! component.setText(nextComp.getComponent());

! ! ! ! ! ! component.setHorizontalAlignment(SwingConstants.CENTER);

! ! ! ! ! ! component.setCursor(Cursor.getPredefinedCursor

! ! ! ! ! ! ! (Cursor.HAND_CURSOR));

! ! ! ! ! ! component.setMinimumSize(new Dimension(95, 35));

! ! ! ! ! ! component.setMaximumSize(new Dimension(150, 35));

! ! ! ! ! ! component.addActionListener(new selectComponentListener());

! ! ! ! ! ! compRowPanel.add(component);

! ! ! ! ! ! componentArray.add(component);

! ! ! ! ! }

! ! ! ! ! compScrollPane.setViewportView(compRowPanel);

! ! ! ! ! fullCompArray.add(componentArray);

! ! ! ! ! rowPanel.add(selectedComponent);

! ! ! ! ! rowPanel.add(removeButton);

! ! ! ! ! rowPanel.add(subFunctionPanel);

! ! ! ! ! rowPanel.add(compScrollPane);
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! ! ! ! }! !

! ! ! ! resultsPanel.add(rowPanel);

! ! ! } // end for loop

! ! }

************************************************End shifted indentation************************************************

! ! ! ! ! ! resultsScrollPane.setViewportView(resultsPanel);

! ! ! ! ! }

! ! ! ! ! step4Panel.add(resultsScrollPane, BorderLayout.CENTER);

! ! ! ! }

! ! ! ! resultBackground.add(step4Panel);

! ! ! }

! ! ! resultFrameContentPane.add(resultBackground, BorderLayout.CENTER);

! ! ! resultFrame.pack();

! ! ! resultFrame.setLocationRelativeTo(resultFrame.getOwner());

! ! ! resultFrame.setVisible(true);

! ! } // end resultsFrame

! } // end buildOutputGUI()

!

! /*---------------------------------------------------------------------------------------------

! * Listener to register any component selection click:

! *! 1. Determines which component was selected

! *! 2. Deselects other components for that function

! *! 3. Updates the results displayed

! *---------------------------------------------------------------------------------------------*/

! private class selectComponentListener implements ActionListener {

! ! public void actionPerformed(ActionEvent select) {

! ! ! Object source = select.getSource(); // Determines button selection that triggered the 

! ! ! ! ! !          listener

! ! ! int functionNum = -1; // Initialize function number

! ! ! String selectedComponent = null; // Initialize selected component

! ! !

! ! ! // Determine which component button was selected

! ! ! for (ArrayList<JButton> compButtonList : fullCompArray) {

! ! ! ! for (JButton compButton : compButtonList) {

! ! ! ! ! if (compButton == source) {

! ! ! ! ! ! functionNum = fullCompArray.indexOf(compButtonList);

! ! ! ! ! ! JTextField updateSelect = selectedFields.get(functionNum);

! ! ! ! ! ! selectedComponent = compButton.getText();

! ! ! ! ! ! updateSelect.setText(selectedComponent);

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! } // end for

! !

! ! ! // Deselect other components for that function

! ! ! ArrayList<JButton> desButtonList = fullCompArray.get(functionNum);

! ! !

! ! ! for (JButton desButton : desButtonList) { // For each component choice for this function

! ! ! ! if (desButton.getText() != selectedComponent) { // If the component is not the 

! ! ! ! ! ! ! ! !  one that was selected

! ! ! ! ! desButton.setEnabled(false); // Deactivate the button

! ! ! ! } // end if

! ! ! } // end for

! ! ! updateResults(); // Refresh output to eliminate incompatible choices

! ! !

! ! } // actionPerformed

! } // end componentSelectedListener

!

! /*---------------------------------------------------------------------------------------------

! * Listener to register any remove button activation:

! *! 1. Determines which textfield was selected

! *! 2. Reactivates other components for that function

! *! 3. Updates the results displayed

! *---------------------------------------------------------------------------------------------*/

! private class removeButtonListener implements ActionListener {

! ! public void actionPerformed(ActionEvent remove) {

! ! ! Object source = remove.getSource(); // Determines textfield selection that triggered the 

! ! ! ! ! !          listener

! ! ! int functionNum = -1; // Initialize function number

! ! !
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! ! ! // Determine which remove button was selected

! ! ! for (JButton removeButton : removeButtons) {

! ! ! ! if (removeButton == source) {

! ! ! ! ! functionNum = removeButtons.indexOf(removeButton); 

! ! ! ! ! ! // Get index of function that had the component removed

! ! ! ! ! JTextField updateSelect = selectedFields.get(functionNum); 

! ! ! ! ! ! // Get text field for selected component

! ! ! ! ! updateSelect.setText("None"); // Update text field to remove 

! ! ! ! ! ! ! !    component choice

! ! ! ! } // end if

! ! ! } // end for

! ! !

! ! ! for (JTextField nextSelected : selectedFields) { // For each selected text field

! ! ! ! if (nextSelected.getText().equalsIgnoreCase("None")) { 

! ! ! ! ! // If there is no component selected

! ! ! ! ! int selectedIndex = selectedFields.indexOf(nextSelected); 

! ! ! ! ! ! // Get index of current selection text field

! ! ! ! ! ArrayList<JButton> nextComponentList = fullCompArray.get

! ! ! ! ! ! (selectedIndex); // Get corresponding component button list

! ! ! ! !

! ! ! ! ! for (JButton nextComponent : nextComponentList) { 

! ! ! ! ! ! // For each component GUI button

! ! ! ! ! ! nextComponent.setEnabled(true); // Activate button

! ! ! ! ! } // end for

! ! ! ! } // end if

! ! ! } // end for

! ! !

! ! ! updateResults(); // Refresh output to eliminate incompatible choices

! ! !

! ! } // end actionPerformed

! } // end remove Button Listener

!

! /*---------------------------------------------------------------------------------------------

!  * Updates the graphical user interface for the interactive output frame by eliminating

!  * incompatible choices.

!  *---------------------------------------------------------------------------------------------*/

! private void updateResults() { 

! ! boolean change = false;

! ! do {

! ! ! change = false;! ! !

! ! ! for (int i = 0; i < fmLinks.size(); i++) { // For each subfunction

! ! ! ! Subfunction f = fmLinks.get(i); // Get next subfunction

! ! ! ! ArrayList<ComponentInfo> choicesForF = f.getChoices(); 

! ! ! ! ! // Get list of component choices for this subfunction

! ! ! ! ArrayList<Integer> fConnections = f.getForward(); // Get forward connected 

! ! ! ! ! ! ! ! !    functions

! ! ! ! ArrayList<Integer> aConnections = f.getReverse(); // Get reverse connected 

! ! ! ! ! ! ! ! !    functions

! ! ! ! JTextField selectedField = selectedFields.get(i); 

! ! ! ! ! // Get selected component text field for this function

! ! ! ! ArrayList<JButton> componentButtonList = fullCompArray.get(i); 

! ! ! ! ! // GUI buttons for this function's components

! ! ! ! ArrayList<String> activeValidForeComps = new ArrayList<String>(); 

! ! ! ! ! // List of active valid components from forward connections

! ! ! ! ArrayList<String> activeValidAftComps = new ArrayList<String>(); 

! ! ! ! ! // List of active valid components from reverse connections

! ! ! !

! ! ! ! if (selectedField.getText().equalsIgnoreCase("None")) { 

! ! ! ! ! // If a component has not yet been selected for the current component

! ! ! ! ! for (int fConnectID : fConnections) { // For each forward connected 

! ! ! ! ! ! ! ! !  function

! ! ! ! ! ! if (fConnectID > 0) { // If the forward connection is not 

! ! ! ! ! ! ! !      an out port

! ! ! ! ! ! ! ArrayList<JButton> nextForwardButtons = 

! ! ! ! ! ! ! ! fullCompArray.get(fConnectID-1); 

! ! ! ! ! ! ! ! // Get GUI button array for next 

! ! ! ! ! ! ! !    forward connected function

******************Indentation on the following sections is shifted left 4 tabs to help avoid confusion*****************

! ! ! for (JButton nextForwardButton : 
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! ! ! ! nextForwardButtons) { // For each GUI button

! ! ! ! if (nextForwardButton.isEnabled()) { // If the button is still active

! ! ! ! ! String componentText = new String();

! ! ! ! ! ! ! ! !

! ! ! ! ! if (nextForwardButton.getText() == "?") { // If forward component is 

! ! ! ! ! ! ! ! !      unknown

! ! ! ! ! ! componentText = "unknown"; // Set text to "unknown"

! ! ! ! ! } else {

! ! ! ! ! ! componentText = nextForwardButton.getText(); 

! ! ! ! ! ! ! // Set text to button text

! ! ! ! ! } // end if

! ! ! ! ! ! ! ! !

! ! ! ! ! if (!activeValidForeComps.contains(componentText)) { 

! ! ! ! ! ! // If component name is not already in the list

! ! ! ! ! ! activeValidForeComps.add(componentText); 

! ! ! ! ! ! ! // Add the active valid component to the list

! ! ! ! ! } // end if

! ! ! ! } // end if

! ! ! } // end for

! ! } // end if

! } // end for

!

! for (int aConnectID : aConnections) { // For each reverse connected function

! ! if (aConnectID > 0) { // If the reverse connection is not an in port

! ! ! ArrayList<JButton> nextReverseButtons = fullCompArray.get(aConnectID-1); 

! ! ! ! // Get GUI button array for next reverse connected function

! ! !

! ! ! for (JButton nextReverseButton : nextReverseButtons) { // For each GUI button

! ! ! ! if (nextReverseButton.isEnabled()) { // If the button is still active

! ! ! ! ! String componentText = new String(); 

! ! !

! ! ! ! ! if (nextReverseButton.getText() == "?") { // If forward component is 

! ! ! ! ! ! ! ! !      unknown

! ! ! ! ! ! componentText = "unknown"; // Set text to "unknown"

! ! ! ! ! } else {

! ! ! ! ! ! componentText = nextReverseButton.getText(); 

! ! ! ! ! ! ! // Set text to button text

! ! ! ! ! } // end if

! ! ! ! !

! ! ! ! ! if (!activeValidAftComps.contains(componentText)) { 

! ! ! ! ! ! // If component name is not already in the list

! ! ! ! ! ! activeValidAftComps.add(componentText); 

! ! ! ! ! ! ! // Add the active valid component to the list

! ! ! ! ! } // end if

! ! ! ! } // end if

! ! ! } // end for

! ! } // end if

! } // end for

! for (int j = 0; j < choicesForF.size(); j++) { // For each component choice in the current function's choice 

! ! ! ! ! ! list

! ! ComponentInfo choice = choicesForF.get(j); // Get next component choice

! ! JButton choiceButton = componentButtonList.get(j); // Get component GUI button

! ! ArrayList<ArrayList<String>> foreLinks = choice.getForwardLinks(); // Get the component's forward 

! ! ! ! ! ! ! !           links

! ! ArrayList<ArrayList<String>> aftLinks = choice.getReverseLinks(); // Get the component's reverse 

! ! ! ! ! ! ! !          links

! !

! ! boolean noValidForeLinks = true;

! ! boolean outport = false;

! ! for (ArrayList<String> nextForeLinks : foreLinks) { // For each valid forward component link list 

! ! ! ! ! ! !      for current component

! ! ! for (String nextForeLink : nextForeLinks) { // For each valid forward component for 

! ! ! ! ! ! !        current component

! ! ! ! for (String validForeLink : activeValidForeComps) { 

! ! ! ! ! // Compare against each active valid forward component

! ! ! ! ! if (nextForeLink.equalsIgnoreCase(validForeLink)) { 

! ! ! ! ! ! // If there is a matching active link

! ! ! ! ! ! noValidForeLinks = false; // Change boolean value

! ! ! ! ! } // end if

! ! ! ! } // end for
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! ! ! ! if (nextForeLink == "out") { // Check for an out port

! ! ! ! ! outport = true; // Change boolean value

! ! ! ! } // end if

! ! ! ! if (nextForeLink == "unknown" and nextForeLinks.size() == 1) {

! ! ! ! ! noValidForeLinks = false; // Change boolean value

! ! ! ! }

! ! ! } // end for

! ! } // end for

! !

! ! if (foreLinks.size() == 1 and noValidForeLinks and outport) { // If there is only one output, no 

valid 

! ! ! ! ! ! ! !  links, and the output is an out port 

! ! ! noValidForeLinks = false; // Change boolean value

! ! }

! !

! ! boolean noValidAftLinks = true;

! ! boolean inport = false; 

! ! for (ArrayList<String> nextAftLinks : aftLinks) { // For each valid reverse component link list for 

! ! ! ! ! ! !    current component

! ! ! for (String nextAftLink : nextAftLinks) { // For each valid reverse component for current 

! ! ! ! ! ! !      component

! ! ! ! for (String validAftLink : activeValidAftComps) { // Compare against each 

! ! ! ! ! ! ! ! !    active valid reverse 

! ! ! ! ! ! ! ! !    component

! ! ! ! ! if (nextAftLink.equalsIgnoreCase(validAftLink)) { // If there is a 

! ! ! ! ! ! ! ! ! !    matching active 

! ! ! ! ! ! ! ! ! !    link

! ! ! ! ! ! noValidAftLinks = false; // Change boolean value

! ! ! ! ! } // end if

! ! ! ! } // end for

! ! ! ! if (nextAftLink == "in") { // Check for an in port

! ! ! ! ! inport = true; // Change boolean value

! ! ! ! } // end if

! ! ! !

! ! ! ! if (nextAftLink == "unknown" and nextAftLinks.size() == 1) {

! ! ! ! ! noValidAftLinks = false; // Change boolean value

! ! ! ! }

! ! ! } // end for

! ! } // end for

! !

! ! if (aftLinks.size() == 1 and noValidAftLinks and inport) { // If there is only one input, no valid 

! ! ! ! ! ! !         links, and the input is an in port 

! ! ! noValidAftLinks = false; // Change boolean value

! ! }

! !

! ! if ((noValidForeLinks | noValidAftLinks)andchoiceButton.getText() !="?" and choiceButton.isEnabled

()) {

! ! ! // If the current component has no active forward or reverse links

! ! ! choiceButton.setEnabled(false); // Deactivate the component

! ! ! //change = true; // Indicate a change has been made

! ! } // end if

! } // end for! ! !

} // end if

************************************************End shifted indentation************************************************

! ! ! } // end for

! ! } while (change);

! } // end updateResults

} // end ConGenV2_0

----------------------------------------end ‘ConGen.java’ code --------------------------------------
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------------------------------------start ‘Subfunction.java’ code ------------------------------------
package edu.umr.ide;

import java.util.ArrayList;

public class Subfunction {

! int id = -1; // Unique assigned to the subfunction

! String functionLabel = null; // Subfunction label from functional model 

! ArrayList<Integer> forwardConnect = new ArrayList<Integer>(); // Other subfunction ids that this subfunction 

! ! ! ! ! ! !      connects to

! ArrayList<Integer> reverseConnect = new ArrayList<Integer>(); // Other subfunction ids that are connected to 

! ! ! ! ! ! !      this subfunction

! ArrayList<int[][]> forwardDSMs = new ArrayList<int[][]>(); // Collection of forward DSMs for this function

! ArrayList<int[][]> reverseDSMs = new ArrayList<int[][]>(); // Collection of reverse DSMs for this function

! ArrayList<ComponentInfo> choices = new ArrayList<ComponentInfo>(); // Component choices to fulfil this 

! ! ! ! ! ! ! ! function

!

! public Subfunction() {

! ! id = -1; // Set id

! ! functionLabel = null; // Set label

! }

! public Subfunction(int functID, String funct) {

! ! id = functID; // Set id

! ! functionLabel = funct; // Set label

! }

!

! public int getID() {

! ! return id;

! }

!

! public String getSub() {

! ! return functionLabel;

! }

!

! public void setForward(ArrayList<Integer> forward) {

! ! forwardConnect = forward;

! }

!

! public ArrayList<Integer> getForward() {

! ! return forwardConnect;

! }

!

! public void setReverse(ArrayList<Integer> reverse) {

! ! reverseConnect = reverse;

! }

!

! public ArrayList<Integer> getReverse() {

! ! return reverseConnect;

! }

!

! public void setForwardDSMs(ArrayList<int[][]> dsm) {

! ! forwardDSMs = dsm;

! }

!

! public ArrayList<int[][]> getForwardDSMs() {

! ! return forwardDSMs;

! }

!

! public void addForwardDSM(int[][] singleDSM) {

! ! forwardDSMs.add(singleDSM); // Add single DSM to array

! }

!

! public void setReverseDSMs(ArrayList<int[][]> dsm) {

! ! reverseDSMs = dsm;

! }

!

! public ArrayList<int[][]> getReverseDSMs() {

! ! return reverseDSMs;

! }

!

! public void addReverseDSM(int[][] singleDSM) {
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! ! reverseDSMs.add(singleDSM); // Add single DSM to array

! }

!

! public ArrayList<ComponentInfo> getChoices() {

! ! return choices;

! }

!

! public void setChoices(ArrayList<ComponentInfo> newChoices) {

! ! choices = newChoices;

! }

!

! public void addChoice(ComponentInfo choiceToAdd) {

! ! choices.add(choiceToAdd);

! }

!

! public void removeChoice(int removeIndex) {

! ! choices.remove(removeIndex);

! }

} // end Subfunction

-------------------------------------end ‘Subfunction.java’ code ------------------------------------
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----------------------------------start ‘ComponentInfo.java’ code ----------------------------------
package edu.umr.ide;

import java.util.ArrayList;

public class ComponentInfo {

! String componentName; // Component label

! ArrayList<ArrayList<String>> forwardLinks = new ArrayList<ArrayList<String>>(); 

! ! // Components that this component is forward linked to

! ArrayList<ArrayList<String>> reverseLinks = new ArrayList<ArrayList<String>>(); 

! ! // Components that this component is reverse linked to

! // Establish constructors!

! public ComponentInfo() {

! ! componentName = "?"; // Default component name

! }

!

! public ComponentInfo(String label) {

! ! componentName = label; // Set component name to the label input

! }

!

!

! // Methods for retrieving general component information

! public String getComponent() {

! ! return componentName; // Return the name of the component

! }

!

! public ArrayList<ArrayList<String>> getForwardLinks() {

! ! return forwardLinks; // Return the array of components that are forward linked this component

! }!

!

! public ArrayList<ArrayList<String>> getReverseLinks() {

! ! return reverseLinks; // Return the array of components that are forward linked this component

! }

!

! // Methods for establishing general component information

! public void setComponent(String label) {

! ! componentName = label; // Sets the name of the component

! }

!

! public void setForwardLinks(ArrayList<ArrayList<String>> links) {

! ! forwardLinks = links; // Set the forward links for this component

! }

!

! public void setReverseLinks(ArrayList<ArrayList<String>> links) {

! ! reverseLinks = links; // Set the forward links for this component

! }

!

!

! // Methods for adding to existing component information

! public void addForwardLinks(ArrayList<String> forelinks) {

! ! forwardLinks.add(forelinks); // Add to forwardLinks list

! }

! !

! public void addReverseLinks(ArrayList<String> revlinks) {

! ! reverseLinks.add(revlinks); // Add to reverseLinks list

! }

} // end ComponentInfo

----------------------------------end ‘ComponentInfo.java’ code -----------------------------------
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Primary 

Component 

Classification

Secondary 

Component 

Classification

Component Term
Component 

Subset
Definition

Brancher

Separator

Abrasive
A device or material that uses texture on a surface to remove any portion of a firm (non-

fluid) material.

Blade
A device or material consisting of a broad flat or concave edge used to separate a firm 

(non-fluid) material.

Centrifuge
A device that uses centrifugal force via a rapidly rotating container to separate fluid 

materials.

Divider A device that divides a material into smaller separate areas.

Material Filter
A device or material consisting of a pattern of holes, slits, or pores used to separate 

constituents of a fluid mixture.

Permeable Membrane
A material filter that uses a fine, porous, flexible material to separate particles from the 

surrounding mixture. 

Rake
A material filter that uses a series of parallel slits or tines to separate particles from the 

surrounding mixture.

Screen
A material filter that uses a mesh structure to separate particles from the surrounding 

mixture.

Scrub Brush
A device that uses bristles attached to a surface to remove any portion of a firm (non-

fluid) material.

Vibrator
A device that uses frequency oscillations to separate or dislodge a firm (non-fluid) 

material.

Distributor

Brush A device that uses bristles to distribute a fluid material over a surface.

Diverter
A device or structure that distributes a flow of material into multiple directions by way of 

its geometry.

Electric Distributor A device used to systematically allocate electrical energy along multiple paths. 

Nozzle
A device at the end of a pipe, hose, or tube used to distribute a continuous flow of fluid 

material.

Channeler

Importer/Exporter

Electric Cord A device used to bring electrical energy into a system from an external receptacle.

Housing
A protective cover primarily used to bring flows into or out of a system that is also 

designed to contain or support components within it.

Transferor

Belt
A device shaped as an endless loop of flexible material between two rotating shafts or 

pulleys used to transmit mechanical energy.

Carousel A device used to move material in a continuous circular path.

Clutch
A device used to transmit rotational energy between two shafts that may be (dis)engaged 

smoothly.

Conveyor A device used to move material in a linear path.

Electric Conductor A device used to transmit electrical energy from one component to another.

Electric Plate An electric conductor in the form of a thin, flat sheet or strip.

Electric Wire An electric conductor in the form of a thin, flexible thread or rod.

Electric Plug
A device in the form of a plug that transmits electrical energy via a detachable connection 

with an electric socket.

Electric Socket
A device in the form of a receptacle that transmits electrical energy via a detachable 

connection with an electric plug. 

EM Transmitter
A device that transmits electromagnetic (EM) signals (such as infrared or RF) over a non-

wired medium.

Component Terms & Definitions
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Component 

Classification

Secondary 

Component 

Classification

Component Term
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Subset
Definition

Component Terms & Definitions

Extender
A device that transmits mechanical energy between two elements of any jointed 

apparatus as they are drawn away from each other.

Heat Exchanger A device used to transmit heat from one medium to another.

Pipe
A device in the forma of a hollow cylinder that transmits hydraulic or pneumatic energy by 

transferring fluid material under pressure.

Projectile A device that transmits mechanical energy by being thrown or propelled through the air.

Rotational Coupler A device used to connect coaxial shafts for power transmission from one to the other.

Shaft
A device in the form of a cylindrical bar used to support rotating pieces or to transmit 

power or motion by rotation.

Thermal Conductor A device used to transmit thermal energy from one component to another.

Thermal Plate A thermal conductor in the form of a thin, flat sheet or strip.

Thermal Wire A thermal conductor in the form of a thin, flexible thread or rod.

Guider

Bearing

A device in the form of a sphere or cylinder (or in an arrangement of spheres or cylinders) 

that is placed between moving parts to allow them to move easily relative to each other 

along a path.

Hinge
A device that allows rigidly connected materials to rotate relative to each other about an 

axis, such as the revolution of a lid, valve, gate or door, etc.

Link
A device connecting two or more components that transmits motive power from one part 

to another along a specific path.

Sled
A device either under or within a machine used to facilitate the sliding of components 

relative to each another along a path.

Tube
A device in the form of a hollow cylinder used to direct a fluid material (that is not under 

pressure) along a path.

Connector

Coupler

Clamp
A device used to hold two or more components together that is readily (dis)engageable 

without the use of an external tool.

Fastener
A device used to hold two or more components together indefinitely with great effort or 

an external tool required to separate the joined components.

Glue A fastener in the form of an adhesive substance.

Key
A fastener in the form of a piece of material that is inserted between other pieces, usually 

a pin-, bolt-, or wedge-like artifact fitting into a hole or space.

Nut-Bolt
A fastener in the form of a threaded pin that screws into a usually square or hexagonal 

material through a threaded hole.

Retaining Clip A fastener in the form of a brace, band, or clasp.

Rivet
A fastener in the form of a heavy pin having a head at one end with the other end 

hammered flat after being passed through holes in the joined pieces.

Screw A fastener in the form of a threaded pin, which does not require a nut to remain secure. 

Solder A fastener in the form of a low-melting alloy used to join less fusible metals.

Mixer

Agitator
A device used to maintain fluidity and plasticity, and to prevent segregation of liquids and 

solids in liquids, such as concrete and mortar.

Carburetor A device used to mix air with a fine spray of liquid fuel.

Magnitude Controller

Actuator

Door
A device in the form of a movable barrier, usually turning on hinges or sliding in a groove, 

and serving to close or open a passage into a space.
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Component Terms & Definitions

Electric Switch A device for making or breaking the flow of electrical energy in an electrical circuit.

Latch Release A device that is designed to hold or free a mechanism as required.

Regulator

Potentiometer A device used to adjust the flow of electrical energy in an electric circuit.

Thermostat A device used to adjust temperature by starting or stopping the supply of heat.

Transistor
A semiconductor device with three connections capable of regulating the flow of electrical 

energy in an electrical circuit.

Valve
A device by which the flow of a fluid material may be adjusted by opening, shutting, or 

partially obstructing one or more ports or passageways.

Varistor A device used to adjust the flow of electrical energy in an electric circuit.

Changer

Capacitor A device used to alter a signal by storing an electrical charge.

Choke A device in the form of a restriction in a pipe that reduces the flow of a fluid material.  

Electrical Transformer
A device used to change the voltage of an alternating electric current via a magnetic 

coupling between two separate circuits.

Inclined Plane
A device in the form of a surface sloped at an angle to a reference surface, which provides 

a mechanical advantage for raising loads.

Inductor A device used to alter a signal by storing energy as a magnetic field.

Lens
A device in the form of a translucent substance used to alter the path of optical energy 

transmitted through it.

Lever
A device fixed at a fulcrum and acted on at two other points by two forces, each tending 

to cause it to rotate in opposite directions round the fulcrum.

Mechanical Transformer
A device that alters the flow of mechanical energy during the process of transmitting force 

and motion between rotating or translating components.

Gear
A mechanical transformer in the form of a disc or plate that transmits mechanical energy 

to another device by means of teeth.

Pulley
A mechanical transformer in the form of a wheel or drum fixed on a shaft and turned by a 

belt, chain, or strap.

Sprocket A mechanical transformer in the form of a toothed wheel that engages a power chain. 

Mold A hollow device used to give shape to a molten or hot fluid when it cools and hardens.

Needle
A device in the form of a slender, usually pointed, rod used to amplify a mechanical 

rotation on a dial or other measuring instrument.

Punch A device used to make holes, impress a design, or stamp a die into a firm material.

Resistor
A device that alters the flow of electrical energy by resisting the passage of electrical 

current.

Signal Filter A device that alters the frequency spectrum of signals passing through it.

Stuffing A device used to fill up hollows and to fill out or expand the outlines of the body.

Stoppers

Acoustic Insulator A device used to prevent the passage of sound, or vibration.

Cap
A device in the form of a firm material secured to and used to prevent the flow of material 

into a hole or aperture.

Check Valve A device that allows a fluid to flow in only one direction.
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Component Terms & Definitions

Cover A device that overspreads an object, which is used to hide, defend, or shelter a material.

Cushion
A device in the form of a soft pad or bumper used to prevent the transmission of 

mechanical energy from jarring, friction, or pressure.

Diode A semiconductor device which allows current to flow in only one direction.

Electric Insulator A device used to prevent the passage of electrical energy.

Friction Enhancer A device in the form of a material used to reduce heat and increase friction.

Fuse
A device that breaks the flow of electrical energy in an electrical circuit in response to an 

excessive current. 

Seal
A device used prevent the flow of a fluid material, especially at a place where two 

surfaces meet.

Stop
A device in the form of a rigid structure that is automatically activated by a predetermined 

displacement to limit the operation of a system.

Thermal Insulator A device used to prevent the passage of thermal energy.

Converter

Material Converter

Catalytic Converter
A device used to chemically transform a harmful gas material into one or more inert 

forms.

Condenser A device used to transform a gas material into a liquid material.

Evaporator A device used to transform a liquid material into a gas material.

Energy Converter

Airfoil
A device with curved surfaces used to transform pneumatic energy into translational 

energy.

Armature A device used to transform magnetic energy into rotational energy.

Burner A device used to transform chemical energy into thermal energy.

Cam
A device in the form of an eccentric curved wheel or disc used to transform rotational 

energy into reciprocating translational energy.

Crank A device used to transform reciprocating translational energy into rotational energy.

Electric Motor A device used to transform electrical energy into mechanical energy.

Electromagnet A device used to transform electrical energy into magnetic energy.

Fan
A device in the form of a rotating shaft with two or more broad, angled blades attached 

used to transform rotational energy into pneumatic energy.

Generator A device used to transform mechanical energy into electrical energy.

Heating Element A device used to transform electrical energy into thermal energy.

Hydraulic Piston
A device in the form of a cylinder tightly fitted inside a tube used to transform hydraulic 

energy into translational energy.

Hydraulic Pump
A device used to transform mechanical energy into hydraulic energy by altering the 

pressures within a system.

IC Motor
A device used to transform chemical energy in the form of liquid fuel into mechanical 

energy.

Light Source
A device used to transform electrical energy into the spectrum of electromagnetic energy 

visible to humans.

Pneumatic Piston
A device in the form of a cylinder tightly fitted inside a tube used to transform pneumatic 

energy into translational energy.
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Component Terms & Definitions

Pneumatic Pump
A device used to transform mechanical energy into pneumatic energy by altering the 

pressures within a system.

Screw Propeller
A device in the form of a rotating shaft with two or more broad, angled blades attached 

used to transform rotational energy into hydraulic energy.

Speaker A device used to transform an electrical signal into acoustic energy.

Wheel
A device in the form of a disc or circle used to transform translational energy applied at 

the hub into rotational energy.

Signal Converter

Knob A device used to transform human energy into a control signal.

Provisioner

Material Supplier

Bladder
A device in the form of a hollow, expandable sac or membrane with a narrow opening 

used to accumulate and dispense a material.

Container A device in the form of a closed canister used to accumulate and dispense a material.

Pressure Vessel
A device in the form of a sealed tank used to accumulate and dispense a pressurized fluid 

material.

Reservoir A device in the form of an open tank used to accumulate and dispense a material.

Energy Supplier

Battery
A device used to accumulate and dispense electrical energy by means of a chemical 

reaction.

Flywheel A device used to accumulate and dispense rotational energy via angular momentum.

Spring
A device used to accumulate and dispense mechanical energy via the elastic properties of 

the device's material properties.

Signal Supplier

Signaler

Sensor

Ammeter A device used to determine the current through an electric circuit.

Displacement Gauge A device used to determine translational or rotational distance in a system.

EM Sensor A device used to detect an electromagnetic signal.

Level Gauge
A device in the form of an external plate or face on which the amount of a fluid material is 

determined.

Pressure Gauge A device used to determine the pressure from hydraulic or pneumatic energy in a system.

Speed Gauge A device used to determine velocity in a system.

Voltmeter A device used to determine the voltage across a portion of an electric circuit.

Indicator

Visual Indicator A device used to visibly indicate a signal.

Analog Display A visual indicator in the form of a continuously variable dial or gauge.

Digital Display A visual indicator in the form of a discrete readout or gauge.

Flag A visual indicator in the form of a physical banner or marker.

Indicator Light A visual indicator in the form of a single bulb.

Auditory Indicator A device used to acoustically indicate a signal.
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Component Terms & Definitions

Bell An auditory indicator in the form of a hollow object that is struck to produce vibration.

Buzzer An auditory indicator in the form of an electronic device that emits a buzzing noise.

Recording An auditory indicator in the form of stored acoustic information that is replayed.

Processor

Circuit Board A device in the form of a printed circuit used to perform systematic operations on a signal.

Supporter

Stabilizer

Insert
A device in the form of a material around which another material sets, solidifies, or is 

formed and used to strengthen or prevent a material from overturning.

Support A device that holds up or sustains the weight of a body.

Securer

Bracket

A device in the form of a piece or combination of pieces, usually triangular in general 

shape, projecting from, or fastened to, a wall, or other surface, to secure heavy bodies or 

angles.

Positioner

Handle
A device used to place a human hand in an appropriate configuration for grasping or 

interacting.

Washer
A device in the form of a disk or ring used to provide spacing between components 

located on a axle or shaft.
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