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ABSTRACT

Due to the drastic increase in orbital debris about the Earth, the likelihood for new

and current mission satellites to collide with other objects grows. When a mission satel-

lite is placed in a highly populated orbit in the vicinity of other satellites or debris, it is

necessary to consider the probability of collision to assess any possible conjunctions. The

computation of the collision probability is heavily dependent on the relative position and

velocity of the objects during conjunction, as well as the combined covariance. There are

two main types of analytic collision probability computations; the first assumes that the

objects in conjunction are characterized by linear relative motion at the time of closest

approach, and the second assumes that the objects will maintain highly nonlinear relative

motion.

The size of the covariances of both objects plays a significant role in the computa-

tion of collision probability. In order to decrease the size of the combined covariance, both

objects will be tracked through time, generating measurements from the states of position

and velocity. These measurements are utilized by an extended Kalman filter to develop a

more confident estimate of the relative position, velocity, and covariance, which will affect

the size of the combined covariance and ultimately alter the probability of collision. This

allows a method of analyzing the probability of collision for any case, as it will no longer

be a single and somewhat arbitrary value.

To further understand the analysis on the probability of collision, Monte Carlo trials

are conducted to validate the effects of observation on the probability of collision. These

trials offer insight to every collision probability application and can be utilized more effec-

tively to gage whether or not a satellite should maneuver.
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SECTION

1. INTRODUCTION

Due to the drastic increase of orbiting satellites, interest in potential collisions be-

tween mission satellites and orbital debris or some other satellite has grown. NASA defines

orbital debris as any man-made object in Earth’s orbit without a purpose (Hall (2019)). In

2013, NASA reported more than 21,000 pieces of tracked orbital debris that were at least

the size of a softball. NASA also estimates around 500,000 pieces of debris about the size

of a marble and at least 100 million pieces of tiny, untrackable orbital debris (Hall (2019)).

Each new satellite not only has to be “aware” of all this debris, but also of other satellites.

As of 2014, there were about 1,100 orbiting active satellites, and this number has only risen

exponentially since then. New satellites have to be aware of the debris population as well

as other satellites.

Interestingly, most of the Earth’s debris originates from man-made objects launched

into space over the last fifty years. The first examination of orbital debris affecting a mission

spacecraft was during the Apollo program in 1966. At the time, the debris was sufficiently

low enough that no action had to be taken, but the increase in debris over these fifty years

could be detrimental to future launches (Kessler (1981)). It is a well-known fact that the

first artificial satellite placed in orbit was Sputnik I by the Soviet Union on October 2nd,

1957. However, Sputnik I did not contribute to the cloud of orbital debris, as it burned up

in the atmosphere during reentry a month after launch; the core stage of the rocket was

soon to follow a month later. The debris issue arguably began with the launch of Vanguard

I by the United States in March, 1958. This satellite stopped transmitting six years after its

launch, but remains in a medium Earth orbit (MEO) to this day and is expected to remain

for nearly 200 years (Green and Lomask (1970), and Easton and Votaw (1959)). In 1959,



2

two additional Vanguard satellites were launched, and they too remain inactive in similar

orbits. All three of these satellites are now considered as orbital debris. Currently, the

United States Air Force catalogs every object larger than 10 cm, that enters Earth’s orbit.

When a cataloged object is damaged, each new fragment is then cataloged with a specific,

individual identifier (Kelso (1997)). There are a few ways that orbital debris is generated

from these mission satellites: mission related operations, accidental debris, and intentional

acts resulting in debris.

Mission related debris is formed from the normal implementation, use, and disinte-

gration of mission satellites. For example, when a satellite detaches from the upper stage

of a launch vehicle, an explosive bolt is used to separate the components. This explosion

causes small fragments to break off from the launch vehicle, creating debris. This debris

may seem trivial and small, but in some orbits, these pieces of “junk”can travel up to tens

of km/s, which will seriously damage a mission satellite (Council (1995)). Another source

of debris is when a protective shield or some piece of hardware disintegrates and separates

entirely from a decommissioned satellite.

Accidental debris is generated from unforeseen events, such as an astronaut losing

equipment while working on the exterior of the International Space Station (ISS). In 1965,

a thermal glove drifted out of an open hatch of the Gemini IV capsule. In 1966, Mike

Collins dropped a camera while working on the outside of the Gemini X capsule. In 2008,

Heidemarie Stefanyshyn-Piper lost a tool-bag, roughly the size of a backpack, while clean-

ing a spill outside the ISS (Hall (2019)). However, accidental debris is mostly from the

result of a collision or explosion.

During the Cold War, the ability to control the realm of space came into question

and introduced the means of intentional debris. Between 1968 and 1985, the United States

and the Soviet Union developed anti-satellite weapons. The United States developed a

weapon that would destroy a target with a direct impact. The Soviet Union designed a

weapon to explode near a target and use the shrapnel to destroy the satellite. Both methods
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would exponentially increase the amount of orbiting debris. By 1990, twelve tests of these

weapons had produced 7% of the cataloged orbital debris (U.S. Congress (1990)). Unfor-

tunately, these actions were not limited to the duration of the Cold War; in 2007, China

destroyed a Chinese weather satellite using a ballistic missile. Similarly, in 2019, India

destroyed a satellite in low Earth orbit using a ground-to-space missile.

The issue of debris now orbiting the Earth causes potential catastrophic events for

any current or future mission satellites. This crisis will only increase as it is becoming more

difficult to regulate the number of satellites that other countries or corporations launch into

orbit. For example, SpaceX is currently working on a satellite constellation project called

Starlink to implement a new space-based Internet communication system. In November of

2018, the FCC approved SpaceX to launch 7,518 broadband satellites, in addition to the

4,425 satellites that were approved in March earlier that year (Harris (2019)). Eventually,

all of these satellites will be decommissioned and could potentially cause more debris if

there is not a successful means of destroying the constellation during reentry.

With the vast amount of orbiting debris, the likelihood of a collision increases for

every new satellite. As a result, each collision contributes more debris to the cloud, thus fur-

ther increasing the likelihood of future collisions. The current way of detecting a collision

is by computing the probability that a mission satellite will come into contact with debris

or another satellite, then comparing that value to some arbitrary user set threshold value. If

the probability of collision is larger than the threshold value, a maneuver is performed to

place the satellite onto a new trajectory. Picking the threshold value is somewhat arbitrary;

it is essentially a comfort number for the user to discern what amount of probability of col-

lision is acceptable not to maneuver. The order of this threshold value is generally between

10−4 and 10−5 (Chan (2008)). However, this threshold value may require some satellites to

maneuver when the debris would not have collided, wasting precious fuel. An additional

issue with maneuvering is that the primary spacecraft could be placed into a new trajectory
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with a new collision from a different secondary object. One of the goals for this work is to

investigate a method of observing and tracking the objects through time in order to better

describe the probability of collision.

This work presents various methods to calculate the probability of a collision be-

tween a primary spacecraft and some arbitrary, secondary object. The computation is heav-

ily dependent on the relative positions, velocities, and the sum of the covariances for both

objects at the time of closest approach. The emphasis of this work is not only to compare

the presented methods but also to analyze the effects of observations on the probability of

collision. Additional measurements from the observations tend to shrink the combined co-

variance of the two objects, altering the probability of collision. Depending on the case, the

collision may be proven false, or it may become more definitive. The overall result in the

observation method increases the understanding of all collision probability computations,

producing an alternative to maneuvering to avoid an imminent collision.

This work defines the relative encounter frame; where all collision probabilities will

be computed, in Section 2 as well as present preliminary Monte Carlo simulations. Sec-

tion 3 discusses analytical methods that assume linear relative motion, as well as analytical

methods leveraging the assumption of nonlinear relative motion to compute the probabil-

ity of collision. Section 4 introduces the concept of taking measurements on the objects

traveling through time, while Section 5 analyzes the effects of these measurements on the

computation of collision probability. The conclusion to this work is provided in Section 6.
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2. BACKGROUND

Currently, the most accepted model for determining the probability of collision re-

volves around assuming a Gaussian distribution to describe the position uncertainty for

each object. The probability of collision is heavily dependent on a Gaussian assumption on

the distribution of the relative positions, but there has been some work on approximating

the collision probability if this assumption is not entirely Gaussian by utilizing Gaussian

mixtures (DeMars et al. (2014)). Therefore, the probability computation for a colliding

pair of objects is formulated in terms of a combined covariance matrix producing a general

Gaussian distribution in three dimensions. The combined covariance matrix is found by

summing the individual covariance matrices of each object, expressed in the same coor-

dinate system. This is possible if the measurements used for the orbit determination for

each object are independent or uncorrelated, which is true for most mission applications

(Coppola et al. (2005)).

This work assumes that the knowns are initial position, velocity, and respective

covariances for each object, given in some inertial frame (usually Earth Centered Inertial

frame) at epoch. The state vectors contain the respective position and velocities, such that

xp =

[
xp, yp, zp, ẋp, ẏp, żp

] T
and xs =

[
xs , ys , zs , ẋs , ẏs , żs

] T
,

where p denotes the primary spacecraft and s denotes the secondary object. This work

presents a comparison between various computational methods utilizing six of Alfano’s 12

cases (Alfano (2009)) outlined in Section 2.3.

The states are propagated through time with the covariance using a simple two

body propagator to a point of conjunction, defined as the point of minimum separation

distance between the primary spacecraft and secondary object. This point of conjunction is
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known as the time of closest approach (TCA) and will be referred to as such. At TCA, the

positional covariance matrices of each object are summed and centered about the secondary

object. Similarly, the volume of each object will be combined and attributed to the primary

spacecraft as shown in Figure 2.1. For the scope of this work, the volume of each object can

be approximated by circumscribing spheres of radius rp and rs for the primary spacecraft

and secondary object, respectively. A combined hard-body sphere is then generated with

radius Ra = rp + rs and is centered about the primary spacecraft.

vps
Hard-body sphere
attributed to primary

1σ Combined error ellipsoid
attributed to secondary

Figure 2.1. Imminent collision between two objects

A collision may occur if the hard-body sphere occupies the same space as the com-

bined covariance ellipsoid. Over the span of the encounter, the hard-body sphere sweeps

out a cylindrical volume through the combined covariance ellipsoid as shown in Figure 2.2.

Cylindrical volume swept
out by hard-body sphere

Figure 2.2. Cylinder swept out through error ellipsoid

The general, applicable case follows this trend of rectilinear motion during the en-

counter region; for the remainder of this work, these cases will be referred to as linear

cases. The linearity of a case is apparent if the relative encounter velocity causes a straight

cylinder that is larger than the distance traversed through a mσ shell. The value m is a user

defined scalar that will alter the size of the covariance shell, typically the user should set
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this value to be between 3 and 8. This range will increase the volume of the shell, encom-

passing conjunction possibilities from 97.070911% to 99.999999% (Alfano (2009)). The

initial covariance data at epoch used in this work will be given as 1σ, the user must scale

this by the factor m to accommodate a larger encounter region, producing accurate results.

There are rare cases when the relative velocity is too low to meet the linearity requirement

and the cylinder curves throughout the encounter; these cases are referred to as nonlinear

and will be examined further in later sections. The collision probability is then obtained by

integrating the relative position probability density function over the swept out volume dur-

ing the encounter. The relative position probability density between the primary spacecraft

and the secondary object is given by

f (x , y, z) =
1√

(2π)3 |C|
exp(−

1
2

rpsC−1rps),

where rps is the relative position between the primary spacecraft and the secondary ob-

ject, and C is the combined covariance matrix. The encounter frame will be thoroughly

defined in later sections, but let the ŷ-axis be along the relative velocity direction from the

secondary object to the primary spacecraft. Let the ẑ-axis be defined along the direction

of the cross product between the primary spacecraft’s velocity vector and the secondary

object’s velocity vector. The x̂-axis then completes the right-handed triad. The origin of

this coordinate system is centered on the secondary object. Therefore, the probability of

collision is

P =
$

V
f (x , y, z)dxdydz, (2.1)

where V is the volume swept out in the covariance ellipsoid by the sphere of radius Ra.

During the encounter, the relative trajectory of the two objects is assumed to be a straight

line. From a quantitative view, the orbiting velocities are of the order of several km/s and

the time spent in the encounter region is only a fraction of a second or at most a few seconds,

so the gravitational effects are negligible. This allows the trajectories to follow rectilinear
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motion over a large region− tens or hundreds of standard deviations, which is much larger

than the 3σ required for linearity. Producing a long cylinder swept out by the volume of

the hard-body sphere, essentially extending along the ŷ-direction from −∞ to +∞. Thus,

simplifying the 3-dimensional probability density function (pdf) to a 2-dimensional pdf.

The relative position is described by the following bivariate Gaussian pdf

f (x , z) =
1

2πσxσz

√
1 − ρ2

xz

×

exp
(
−

[ (
x
σx

) 2

− 2ρxz

(
x
σx

) (
z
σz

)
+

(
z
σz

) 2 ]
/
(
2(1 − ρ2

xz)
) )
, (2.2)

where σx and σz are the standard deviations in the x̂-direction and ẑ-direction, respectively;

with the correlation, ρxz, between the two. The probability of collision becomes

P =
"

A
f (x , z)dxdz, (2.3)

where A is the collision cross section area circle with radius Ra. The methods presented in

the following sections approximate the collision probability based on the relative rectilinear

motion between the orbiting objects.

2.1. THE ENCOUNTER FRAME

The analytical methods for computing collision probability between orbiting ob-

jects require the positions, velocities, and respective covariances of each object to be con-

verted into a relative encounter frame at TCA. During the time of closest approach, the

encounter frame is defined with the ŷm-axis in the direction of the relative velocity of the
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primary spacecraft from the secondary object (Chan (2008)), such that

vps = vp − vs (2.4)

ŷm =
vps

| |vps | |
.

The ẑm-axis is defined in the direction of the cross product of the two velocity vectors

n = vp × vs (2.5)

ẑm =
n
| |n| |
.

The x̂m-axis completes the right-handed triad. The (x̂m,ẑm)-plane is referred to as the en-

counter plane. The combined covariance ellipsoid and the hard-body sphere are projected

onto this encounter plane as an ellipse and circle respectively. This (x̂m,ŷm,ẑm) coordinate

system acts as an intermediate encounter frame transformed from the inertial frame to the

utilized encounter coordinate frame, which requires another transformation. The first trans-

formation uses the matrix Tm
i , defined by a directional cosine matrix relating the inertial

frame to the (x̂m,ŷm,ẑm) coordinate system.

Tm
i =


x̂i · x̂m x̂i · ŷm x̂i · ẑm

ŷi · x̂m ŷi · ŷm ŷi · ẑm

ẑi · x̂m ẑi · ŷm ẑi · ẑm

 . (2.6)

The (x̂i,ŷi,ẑi) frame here denotes the inertial frame and should not be confused with the

(x̂,ŷ,ẑ) encounter frame defined later. Once transformed, the encounter frame is then ro-

tated about the ŷm-axis until a new plane defines the x̂-axis such that the primary object is

nominally located at the point (xe,0,0), where xe is the nominal miss distance, otherwise

known as the minimum separation distance at closest approach. The new ŷ-axis is located

along the same direction as the ŷm-axis. The ẑ-axis completes the right-handed triad. It is
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an important note that the (x̂,ẑ)-plane coincides with the (x̂m,ẑm)-plane, but that the x̂-axis

does not coincide with the x̂m-axis, and that the ẑ-axis does not coincide with the ẑm-axis.

To meet the condition defined for the x̂ axis, let it be along the direction of the relative

position vector rps in the (x̂m,ŷm,ẑm) coordinate frame, given by

rps = rp − rs (2.7)

x̂ =
rps

| |rps | |
.

The rotation to the new encounter frame axes requires a transformation matrix Te
m, which

is defined by a rotation about the ŷm-axis, utilizing the angle γ. This transformation matrix

is

Te
m =


cos(γ) 0 sin(γ)

0 1 0

− sin(γ) 0 cos(γ)

 , (2.8)

where, the rotation angle γ is

γ = arctan
(

rps,z

rps,x

)
.

The positions, velocities, and covariances must be transformed from the inertial frame to

the (x̂,ŷ,ẑ) encounter coordinate system at TCA. Once in this frame, the two individual

covariance matrices can be summed to form the combined covariance matrix

C = Cp + Cs ,

where Cp and Cs are the primary spacecraft’s covariance and the secondary object’s co-

variance, respectively, at TCA. Figure 2.3 illustrates how the two objects will be oriented

in the two encounter coordinate planes.
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x̂m

ẑm

x̂

ẑ

γ

Hard-body
circle

1σ Combined
error ellipsoid

SecondaryO

Primary
at (xe,0,0)

Figure 2.3. Rotation from the ( x̂m , ẑm) plane to the ( x̂ , ẑ) plane

In this (x̂,ŷ,ẑ) encounter coordinate system, the combined covariance becomes

C =


σ2

xx ρxy ρxz

ρxy σ2
yy ρyz

ρxz ρyz σ
2
zz

 .

This yields a very undesirable cross term when any of the correlation terms ρi j are non-

zero. Meaning, the Gaussian pdf used to describe the relative position can be reduced by

eliminating the correlation terms, ρi j . To simplify the analysis, the (x̂,ẑ) plane needs to be

rotated again to a (x̂′,ẑ′) plane, defined along the principle axes of the combined covariance

ellipsoid. The transformation matrix T that defines this rotation can be found by taking the

transpose of an eigenvector matrix. Taking the eigenvector of any covariance matrix will

produce the directions of the principle axes for the matrix. This transformation matrix de-

fines the x̂′-axis along the major axis of the combined error ellipsoid, and the ẑ′-axis along

the minor axis. This transformation matrix can also be simply defined by using the prop-

erties of the combined covariance matrix to obtain the angle α and using another rotation

transformation about the ŷ′-axis. This is done by calculating α using Equation (2.9) and
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plugging the result into Equation (2.8), replacing the γ.

α =
1
2

arctan
(
2ρxz − σxxσzz

σ2
xx − σ

2
zz

)
(2.9)

T =


cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)

 .

Because the ellipsoid and the sphere have been projected onto this 2-dimensional (x̂′,ẑ′)-plane,

we only need to focus on the x̂′ and ẑ′ elements for further analysis. This rotation yields

the covariance matrix C′:

C′ =


σ′2x 0 0

0 σ′2y 0

0 0 σ′2z

 .

Once the position, velocities, and combined covariance are transformed into this (x̂′,ẑ′)

encounter plane, they are input into the collision probability computations.

2.2. MINIMUM SEPARATION DISTANCE

A general process to calculate the nominal miss distance or minimum separation

distance at TCA is given in (Chan (2008)). As before, let vp and vs denote the velocities

of the primary spacecraft, P, and the secondary object, S. Also, denote n as the vector

defined by the cross product of these two vectors, shown in Equation (2.5). Note that the

two velocity vectors are generally assumed to be nonparallel, as cases with parallel vectors

are virtually nonexistent; however, Chan provides some insight on these rare cases (Chan

(2008)). Two planes are constructed that are perpendicular to n: one plane contains the

vector vp and the other contains the vector vs. Let H denote the height between these two

planes.
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φ

J

K
I

Q

P

Simage
Ls

Lp

Figure 2.4. Primary plane with projected secondary elements

To analyze the rectilinear motion of the two objects, they must be comparable within

a single plane. Therefore, let the vector vs be projected onto the plane containing vp. As

the secondary object moves along the path of vs, its projected image Simage moves along

the path of the projected vs. This can be seen in Figure 2.4. Let Q denote the intersection

point between vp and the projected vs, and let φ be the angle between them. Figure 2.4 also

illustrates points P and Simage at any instant of time, t, where I and J denote their respective

distances from point Q. The value K is the distance between the primary spacecraft, P, and

the projection of the secondary spacecraft, Simage, using the law of cosines provides

K2 = I2 + J2 ± 2I J cos φ. (2.10)

The magnitudes of vp and vs can be related by some scaling, λ, such that

| |vs | | = λ | |vp | |,

the scalar λ must then satisfy the relationship of

dJ
dI
= ±λ. (2.11)
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The necessary condition for achieving the minimum distance, K , is

dK
dI
= 0. (2.12)

Substituting Equations (2.11) and (2.12) into Equation (2.10), one obtains the following

condition for minimum separation in the projective plane:

I∗

J∗
= ±

(
λ − cos φ

1 − λ cos φ

)
, (2.13)

where I∗ and J∗ denote the values of I and J at minimum separation, respectively. At

the point of minimum separation, the points P, Q, and Simage form a set of similar trian-

gles, thus simplifying analysis on this system. Using Equation (2.13) to substitute for J in

Equation (2.10) yields (
K∗

) 2
= κ2

(
I∗

) 2 , (2.14)

where K∗ is the value of K at minimum separation, and κ is

κ2 = 1 +
(
1 − λ cos φ
λ − cos φ

) 2

.

Now, considering the encounter between the two objects in the three-dimensional region as

shown in Figure 2.5, let M denote the minimum separation distance between them, such

that

M2 = H2 +
(
K∗

) 2 .

Let Lp and Ls denote the distances of the primary spacecraft P and secondary image Simage

from the point Q at time t0. Let tm denote the time corresponding to the point of minimum

separation. Equating the time it takes each object to reach the point of minimum separation

yields
Lp − I∗

vp
=

Ls ± J∗

vs
. (2.15)
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It is important to note that the sign of J∗ is dictated by the placement of Simage in relation

to the point Q. If the projected image is to the right of Q then the sign is positive, and to

the left of point Q, the sign is negative. Substituting Equation (2.13) into Equation (2.15)

Secondary
Object

Primary
Spacecraft

xe

Figure 2.5. Minimum separation distance at TCA (modified from Chan (2008))

yields

Lp − I∗ =
1
λ

[
Ls + I∗

(
1 − λ cos φ
λ − cos φ

) ]
. (2.16)

Solving for I∗ from Equation (2.16), it follows that

I∗ =
(
λLp − Ls

) (
λ − cos φ

)
1 − 2λ cos φ + λ2 . (2.17)

The time to minimum separation is therefore given by

tm = t0 +

(
Lp − I∗

vp

)
.

The next step is to calculate the beginning positions of each object on this primary plane,

Lp for the primary spacecraft and Ls for the secondary object. To do this, the positions and

velocities of each object must be in the (x̂m,ŷm,ẑm) intermediate encounter frame defined in

Section 2. Therefore, the state vectors for both objects at TCA must be transformed from

the inertial (xi,yi,zi) frame to the (xm,ym,zm) frame using the defined transformation matrix
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Tm
i , resulting in

Rp = Tm
i rp

Rs = Tm
i rs (2.18)

Vp = Tm
i vp

Vs = Tm
i vs .

The vectors Rp = (Xp,Yp, Zp) and Rs = (Xs ,Ys , Zs) are projected onto the (X ,Y ) plane

by dropping the Z components. These projected points are denoted by A = (Xp,Yp) and

B = (Xs ,Ys). The velocity vectors are also projected onto this plane and have directional

components Vp = (Up,Vp) and Vs = (Us ,Vs). There are now two straight lines on the

plane, one passing through point A with the Vp components and one passing through the

point B with the Vs components. The equations of these lines are

Y =
Vp

Up

(
X − Xp

)
+ Yp (2.19)

Y =
Vs

Us

(
X − Xs

)
+ Ys . (2.20)

These lines will intersect at some point D = (Xi ,Yi). Setting these equations equal and

solving for Xi yields

Xi =

(
Ys − Yp

)
+

(
Vp/Up

)
Xp −

(
Vs/Us

)
Xs(

Vp/Up

)
−

(
Vs/Us

) (2.21)
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Substituting Equation (2.21) into Equation (2.20) allows one to obtain an expression for Yi

as a function of Xi, and the components of the positions. Next, the distances Lp and Ls are

computed in relation to point Q by

Lp =

√
(Xi − Xp)2 + (Yi − Yp)2 (2.22)

Ls =
√

(Xi − Xs)2 + (Yi − Ys)2. (2.23)

Equations (2.22) and (2.23) are substituted into Equation (2.17) to obtain I∗, which is then

used in Equation (2.14) to calculate the minimum separation, K∗, in the projection plane.

The height between the planes, H , is given by

H = |n̂ · (rp − rs) |,

with the positional vectors, rp and rs, in the (xm , ym , zm) intermediate encounter frame.

The minimum separation, M , in the three-dimensional space (xe) is obtained by

xe = M =
√

H2 + (K∗)2.

The value for the minimum separation distance, xe, is extremely important when calculat-

ing the collision probability using any method because indicates if the hard-body sphere is

within the volume of the combined covariance ellipsoid. Note that if the state vectors for

both objects are correctly converted into the final (x̂,ŷ,ẑ) encounter frame, then the rela-

tive distance in the x̂-direction between the two objects should be equal to the minimum

separation distance found through this process. There is some interesting work on using a

chi-squared distribution of the minimum separation distance, rather than the Gaussian dis-

tribution describing relative position uncertainty, to approximate the probability of collision

(Chan (2011)).
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2.3. TEST CASES

Alfano presented twelve test cases that are useful when comparing methods for

computing collision probability, this work utilizes six of the test cases. Most of the se-

lected cases involve a primary spacecraft and a secondary object in geosynchronous Earth

orbits (GEO), while the remaining cases operate in low Earth orbits (LEO). For three of the

cases, the relative velocity between the primary and secondary objects is large, meaning

that the distance traversed by the primary spacecraft through the encounter region is larger

than the size of the ellipsoidal covariance shell, in direction of the relative velocity. The

aforementioned straight cylinder is formed from the path of the primary traversing the en-

counter region, allowing the high relative velocity cases to be referred to as linear because

the cylinder would be larger than the ellipsoid. The remaining three cases have low relative

velocities, meaning that the cylinder is no longer straight, but is now curved, causing a

nonlinear relative motion between the two objects during the encounter. These low relative

velocity cases are referred to as nonlinear, Table 2.1 outlines the specific cases.

Table 2.1. Alfano’s test cases

Orbit Relative Velocity [m/s] Linearity Hard-body radius [m]
Case 1 GEO 0.0141424 Nonlinear 15
Case 2 GEO 0.0141424 Nonlinear 4
Case 3 GEO 16.066923 Linear 15
Case 4 GEO 0.0190334 Nonlinear 15
Case 5 LEO 0.5196224 Linear 10
Case 6 LEO 0.1732265 Linear 10

The positions, velocities, and covariances for each object at both epoch and TCA

can be found in the Appendix.

2.3.1. Case 1. Case 1 involves two satellites in GEO, with nonlinear relative mo-

tion. The nominal miss distance, xe, is less than the combined object radius, Ra = 15 [m],

at the point of closest approach, meaning that all methods computing the probability of col-
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lision should register some finite value that a collision could occur. The objects in this case

will reach conjunction (i.e. time of closest approach) 280,800 seconds after epoch, with a

relative velocity of 0.0141424 [m/s]. This low relative velocity indicates that the primary

will spend a vast amount of time in the encounter region, possibly tens of thousands of

seconds.

2.3.2. Case 2. Case 2 is identical in trajectory and covariance to Case 1, but has a

smaller combined object radius, Ra = 4 [m]. At TCA, the combined hard-body will only be

partially encompassed by the ellipsoid, meaning that there should be a collision recorded,

but it should be less than the collision probability computed from Case 1. Case 1 and 2 are

valuable assets when analyzing methods because the cases are easily comparable. Due to

Case 2 having the exact trajectories and covariances as Case 1, then, the objects will reach

the conjunction at the same time, 280,800 seconds after epoch, with a relative velocity of

0.0141424 [m/s]. This low relative velocity indicates that the primary will spend a vast

amount of time in the encounter region, possibly tens of thousands of seconds.

2.3.3. Case 3. Case 3 involves linear relative motion between two objects in GEO,

where the nominal miss distance at TCA is less than the combined object radius, Ra = 15

[m], meaning that the methods presented in this work should produce some probability

of collision. Case 3 and Case 1 have the same hard-body radius, offering a nice way of

comparing a nonlinear and linear case. The objects in this case will reach the conjunction

280,800 seconds after epoch, with a relative velocity of 16.0669 [m/s]. The relative velocity

in Case 3 is orders of magnitude larger than the relative velocity of any other case, which

could prove detrimental to the computation of some methods. This high relative velocity

indicates that the primary object will be in the encounter region for fractions of a second.

2.3.4. Case 4. Case 4 involves two objects in GEO with nonlinear relative motion,

where the nominal miss distance is greater than the combined object radius, Ra = 15 [m].

The objects in this case will reach the conjunction 250,560 seconds after epoch, with a

relative velocity of 0.0190334 [m/s]. This is among the lowest relative velocity for the
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cases in GEO, which could have just as much of an effect on the computational methods

as Case 3. The low relative velocity enables highly nonlinear motion in this specific case,

consequently, most of the collision probability will not be generated about TCA, like most

cases, but instead throughout the encounter region.

2.3.5. Case 5. Case 5 involves two LEO objects, where the nominal miss distance

at TCA is less than the combined object radius, Ra = 10 [m]. The parameters in Case 5

offer an inverse scenario to that of Case 2; where the primary spacecraft in Case 2 was only

partially inside the ellipsoid, the primary in Case 5 is completely within the ellipsoid. All

methods to calculate collision probability should result in a probability for Case 5. The

objects in this case will reach the conjunction 172,800 seconds after epoch, with a relative

velocity of 0.5196224 [m/s]. Case 5 and 6 have the shortest time to conjunction out of any

of the methods, meaning that the covariances of each object in these cases could be lower

than the other four cases, resulting in smaller ellipsoids.

2.3.6. Case 6. Case 6 also involves two LEO objects, where the nominal miss

distance at TCA is less than the combined object radius, Ra = 10 [m]. Case 6 is unique

due to the nature of the relative velocity between the two objects, the path generated from

the relative velocity by the primary spacecraft creates a straight cylinder spanning longer

than the ellipsoid, but just barely. Meaning, that this relative velocity is right on the edge

of being low, so some algorithms could treat this as a nonlinear case. The objects in this

case will reach the conjunction 172,800 seconds after epoch, with a relative velocity of

0.1732265 [m/s].

2.4. THE MONTE CARLO METHOD

An accurate form of calculating spacecraft collision probability is by utilizing a

Monte Carlo simulation with a sufficient number of samples. This is done by generating

samples from a Gaussian distribution about the mean using the covariance and essentially

counting how many of those samples collide with each other. The general process for
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the Monte Carlo method involves propagating given position, velocity, and covariances

to the point of conjunction. Then at TCA, generate n samples about the mean using the

covariance. Setting the number of samples, n, to 1 × 108 has been proven to be sufficient

(Alfano (2009)). The samples can be generated by taking the lower triangular Cholesky

factorization of both objects’ full state covariances at TCA. The Cholesky factor is defined

as P = SST . The samples are generated about the mean as

xp = mp,TC A + Spν1 (2.24)

xs = ms,TC A + Ssν2, (2.25)

where m is the states, position and velocity, of each object at TCA, ν1 and ν2 are vectors

of normally distributed random numbers. It is important to note that the randomized vector

for both populating equations above is different. All of the samples are then converted

into Keplerian orbital elements from Cartesian (Prussing and Conway (2013)) and (Hintz

(2008)), i.e.

[
x , y, z, ẋ , ẏ, ż

]
⇒

[
a, e, i,Ω, ω,M

]
,

where the inputs are the Cartesian positions and velocities of each object (x , y, z, ẋ , ẏ, ż),

a is the semi-major axis of the elliptical orbit, e is the eccentricity of the orbit, i is the incli-

nation, Ω is the right ascension of the ascending node, ω is the argument of periapsis, and

M is the mean anomaly. These Keplerian samples are then propagated both forward and

backward in time one quarter of the primary spacecraft’s orbital period from TCA. This one

quarter of an orbit in each direction is sufficient to encompass the entire encounter region,

this will be thoroughly shown in Section 3. This becomes the span of the conjunction that is

analyzed for the collision probability and should encompass half an orbital period (Alfano

(2009)). For all time steps, the Keplerian orbital elements are converted back into Cartesian

coordinates. Then, starting with the closest time to epoch, a collision is recorded if the dif-
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ference in the positions of both objects is smaller than the radius of the hard-body sphere.

That is, if ri and rj are the positions of the samples in Cartesian coordinates generated from

the primary spacecraft and secondary object respectively, at each time step, a collision is

recorded if | |ri − rj | | ≤ Ra.The instantaneous probability of collision then becomes the

number of recorded collisions at each time step divided by the number of samples used in

the Monte Carlo simulation; that is

PC,inst =
ncollision

n
,

where ncollision is the number of particles or samples that collided. Although the instanta-

neous probability of collision is an accurate measure of collision, it does not analyze the

probability over the entire time span. For an accurate measure of the cumulative probabil-

ity, PC,inst must be integrated over the span of the encounter. However, this will provide a

misleading result due to the nature of the instantaneous collision probability counting sim-

ilar collisions multiple times. Therefore, a check must be implemented to remove samples

from the cloud of samples as they collide so that they cannot be recounted in future time

steps. This will generate a unique instantaneous collision probability PC,unique. An accu-

rate measure of the collision probability over the span can now be found as (Burton et al.

(2018))

PC,cum =

∫ t1

t2

PC,uniquedt.

It is important to note that PC,cum must always be at least the value of PC,inst . Figure 2.6

shows the relation between the three probabilities of collision explained using the data from

Case 1.

Figure 2.6 illustrates the growth in the cumulative collision probability over the

duration of the encounter with large increases when the instantaneous collision probability

peaks. It is difficult, however, to see the change of the unique collision probability in this

plot. Figure 2.7 illustrates the unique collision probability of the span of the encounter.
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Figure 2.6. Relation of the three probabilities using Case 1
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Figure 2.7. Unique probability of collision for Case 1

Figure 2.7 brings to light that the unique collision probability has a relatively un-

noticeable change over the span of the encounter when compared to the instantaneous cal-

culation. The peaks for the unique probability of collision occur during the same times as
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Table 2.2. Comparison of the Keplerian Monte Carlo to Alfano’s results

Alfano’s PC,cum Keplerian MC Error
Results [1 × 109] PC,cum [1 × 107] [%]

Case 1 0.2174671 0.2167888 0.3119
Case 2 0.0157366 0.0155358 1.2761
Case 3 0.1008464 0.0996768 1.1598
Case 4 0.0730895 0.0736101 0.7122
Case 5 0.0444989 0.0444666 0.0726
Case 6 0.0043005 0.0043201 0.4558

the instanteous and cumulative collision probabilities, which is to be expected. Figure 2.7

makes it apparent that the cumulative collision probability is sum of the unique probability,

even if it is difficult to visualize in Figure 2.6.

2.4.1. Numerical Implementation. The three cases of greatest value are Cases 1,

2, and 3, because they lie on such similar trajectories, and the largest difference between

them is their respective relative velocities. As shown in Table 2.2, the results for each case

are compared to Alfano’s results of a Monte Carlo simulation with 1 × 109 samples. It

is apparent that the data produced from the Keplerian Monte Carlo method with 1 × 107

samples is within 1.3% accuracy of the 1 × 109 results (Alfano (2009)). Therefore, the

assumption of utilizing only 1 × 107 samples is sufficient for the scope of this analysis.

It is an important note that for the linear cases 3, 5, and 6 the total computation time for

a Keplerian Monte Carlo simulation with 1 × 107 samples took between 2 and 4 hours.

Alternatively, the remaining nonlinear cases using the same number of samples required

16 to 20 hours to complete the process. A thorough analysis of each case is presented in

the following section to examine the ability of the Keplerian Monte Carlo simulations to

accurately describe the collision probability for specific cases.
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2.4.1.1. Case 1. Case 1 involves nonlinear relative motion for two geosynchronous

(GEO) satellites, where the nominal miss distance, xe, is less than the combined object ra-

dius (Ra = 15 [m]). The Monte Carlo results in this work only differ by 0.3% from Alfano’s

proposed results, and this case required 16 and a half hours to process. Case 1 has been

illustrated in the context of the aforementioned method, so there is no need to examine it

further. However, the cumulative probability grows throughout time, mostly during two

peaks, the largest occurring around TCA. If the time span of forward and backward propa-

gation is expanded further, the cumulative probability continues to grow with various peaks.

This is due to future possible encounter regions and should not be confused with the one of

interest at TCA.

2.4.1.2. Case 2. This case also involves nonlinear relative motion for two GEO

satellites and is identical in trajectory and covariance, but has a smaller combined object

radius (Ra = 4 [m]). This case is interesting because at TCA, the nominal miss distance

should exceed the hard-body radius. There is just over a 1% difference between the results

from the Keplerian propagation of the Monte Carlo method when compared to the 1 × 109

results that Alfano proposes. This case with 1 × 107 samples required a run time of just

over 16 hours. The probabilities over the span of the encounter can be seen in Figure 2.8.

Figure 2.8 illustrates that there is a spike in the cumulative probability at TCA,

which is to be expected, but there is an additional spike about 11, 000 seconds later. This

occurs because the primary object has “wandered ” back into the covariance ellipsoid due

to the highly nonlinear relative motion. This additional spike justifies the duration of the

half orbit time span to encompassing the entire encounter region.

2.4.1.3. Case 3. This case involves linear relative motion for two geosynchronous

orbits, where the nominal miss distance at TCA is less than the combined object radius

(Ra = 15 [m]), meaning that there should be an imminent collision. Note that this is the

same hard-body radius as the first test case, making the first and third cases ideal for testing

and comparing methods. There is a surprisingly large discrepancy of 1.2% between this
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Figure 2.8. Cumulative probability of collision for Case 2 using Monte Carlo simulations
[1 × 107 samples]

Monte Carlo and Alfano’s published results, which could simply come from the relative

velocity of this case being 16.6 [m/s] when all the other cases are less than 1 [m/s]. This

could also be a source of error from numerical integration accuracy during the propagation

steps or from the lack of sampling. If given enough samples, this Keplerian Monte Carlo

method may converge to the same results. This case was the most efficient as it only took

2 hours to produce results.

Figure 2.9 illustrates the probabilities computed for Case 3. As expected for a linear

encounter, there is only one spike at TCA, and the slope of the cumulative probability is

very near zero at both ends of the time span.

2.4.1.4. Case 4. This case involves nonlinear relative motion for two satellites in

geosynchronous orbits, where the nominal miss distance is greater than the combined ob-

ject radius (Ra = 15 [m]). There is less than a 1% difference between the published results

and the produced results in this work. This case required the most time out of all the runs

with 22 hours.
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Figure 2.10. Cumulative probability of collision for Case 4 using Monte Carlo simulations
[1 × 107 samples]

Figure 2.10 illustrates a case where the spike in collision probability is not near

TCA. This is due to the particular combination of relative motion and covariance shape.

Later, it will be seen that this can greatly affect some of the analytical methods.



28

2.4.1.5. Case 5. This case involves two low Earth orbiting (LEO) satellites, where

the nominal miss distance at TCA is less than the combined object radius (Ra = 10 [m]).

This is another interesting case because the entire hard-body object is essentially engulfed

within the combined covariance ellipsoid; with the other cases, the object is only partially

or barely inside the ellipsoid. This will have an interesting effect on the analytical methods

in later sections. The Keplerian Monte Carlo results differ by less than 0.01% for this case

as seen in Table 2.2.
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Figure 2.11. Cumulative probability of collision for Case 5 using Monte Carlo simulations
[1 × 107 samples]

Figure 2.11 illustrates that this case is in fact following linear relative motion at

TCA, because the slope in the cumulative collision probability is essentially zero at both

ends of the time span. Another interesting aspect is that this linear case does not have as

sharp of a peak at TCA as Case 3; it is seemingly more gradual of an incline. This could

simply be due to the difference in scaling, as Case 3 is examined over a longer time span.

2.4.1.6. Case 6. The final case considered is another linear case in LEO, where the

nominal miss distance at TCA is less than the combined object radius (Ra = 10 [m]). This

case examines the extremity of having a relative velocity that is essentially linear, but would
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be better examined as nonlinear. The relative velocity is low enough that the cylinder may

begin to curve throughout the encounter region, transforming it to a nonlinear case. The

probability of collision result for this case differs from Alfano’s published result by only

0.5%.
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Figure 2.12. Cumulative probability of collision for Case 6 using Monte Carlo simulations
[1 × 107 samples]

Figure 2.12 is similar to the results of Case 5, which is to be expected as they are

both linear relative motion in LEO. There is a gradual increase in cumulative probability

around TCA, and the slope at both ends of the time is once again essentially zero.

For an actual implementation of computing the probability of collision for a space-

craft, one would need to increase the number of samples by at least one factor of 10 (1×108

samples), which would exponentially increase the computational time for this Monte Carlo

simulation. Therefore, other methods must be investigated to approximate the probability

of collision without being as computationally demanding.
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3. ANALYTICAL METHODS

3.1. LINEAR METHODS

To improve computational efficiency, one may turn to an analytical method to ap-

proximate the probability of a spacecraft colliding with a secondary object. An analytical

method utilizes the relative position, relative velocity, and combined covariance of both

objects at TCA in the encounter frame defined in Section 2. A simple linear extension to

the analytical methods will approximate a solution under the assumption that the relative

velocity will sweep out a straight, right cylinder through the encounter region, meaning

that the method will only approximate a single solution at the point of closest approach.

The linear methods assume rectilinear relative motion at the time of closest approach and

assume that the relative velocity is large enough that the path of the primary object through

the encounter region is a straight line.

The objective of this next section is to evaluate the linear methods’ ability to ap-

proximate the cumulative probability of collision using an analytical process. The linear

methods investigated in this work come from the works of Patera (Patera (2005)) and Al-

fano (Alfano (2005)). These methods operate by converting the position, velocity, and

covariances of each object at TCA into the relative encounter frame defined earlier. Utiliz-

ing this information, each method analytically approximates the quantity of the hard body

sphere within the combined ellipsoid. This process is only interested in the projection of

these three-dimensional surfaces onto the two-dimensional (x̂,ẑ)-plane.

3.1.1. Patera’s Method. Once a spacecraft is identified to have a collision risk

with an object, both objects are propagated to a time near the closest approach, where their

relative motion is assumed linear. Once propagated, the Cartesian states and covariances

of each object are converted into the encounter frame and are then used to determine the
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Figure 3.1. Projected hard-body and covariance ellipsoid on the encounter plane (modified
from Patera (2005))

distance of minimum separation. The combined position error covariance ellipsoid and

hard-body sphere are generated, then centered about the secondary object and primary

spacecraft, respectively. It is important to note that the center of the secondary object

is treated as the origin of the encounter coordinate system. The ellipsoid and hard-body

sphere are projected onto the (x̂,ẑ) encounter plane as an ellipse and circle, respectively,

as illustrated in Figure 3.1. The collision probability is then the integral of the probability

density defining the relative position over the hard-body area, as presented in Equation

(2.3). Patera, however uses an interesting technique of integrating over the perimeter of the

hard-body instead, resulting in

P =
1

2π

∮
perimeter

[
1 − exp

(
−r2

2σ2

) ]
dε , (3.1)

where P is the probability of collision, r is the distance to the hard-body perimeter from the

center of the secondary object, and ε is the contour integration parameter. The axis having

the largest position error standard deviation, σx , makes an angle α with the x̂-axis. The

largest standard deviation is also used for σ in Equation (3.1) (Patera (2001)). Figure 3.1

also shows the path along the perimeter that the integration will take. Equation (3.1) can

be converted to a definite integral by changing to polar coordinates.
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Let the polar coordinate system be centered at (R, 0), where R is the minimum

separation distance, xe, expressed in polar coordinates. For the remainder of this work, it

will be referred to as just xe. Any points on the hard-body perimeter are then defined as

x = xe + ρ cos(θ) (3.2)

z = ρ sin(θ),

where ρ is the radial position and θ is the angular position of a point on the perimeter. A

spherical assumption is used, such that the hard-body radius, Ra, is used for ρ. Once all

the input data is defined within the (x̂′, ẑ′) encounter plane defined earlier, a scale change

is completed to transform the perimeter points to a symmetrized coordinate frame, shown

in Figure 3.2 and given by

x′

z′

 =
1 0

0 f


x

z

 ,
where f is the ratio of the standard deviation in the x-axis to the standard deviation of the

position in the z axis, i.e.

f =
σ′x
σ′z
.

This scale change reshapes the combined covariance ellipse into a circle and the hard-body

circle into an ellipse. To simplify the integration, the contour integration parameter ε in

Equation (3.1) is related to θ by

tan(ε ) =
f Ra cos(α) sin(θ) − xe f sin(α) − f Ra sin(α) cos(θ)

xe cos(α) + Ra cos(α) cos(θ) + Ra sin(α) sin(θ)
,

or

tan(ε ) =
f Ra sin(θ − α) − xe f sin(α)
xe cos(α) + Ra cos(θ − α)

. (3.3)
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Figure 3.2. Projected hard-body and covariance ellipsoid on the symmetrized encounter
plane (modified from Patera (2005))

The derivative of Equation (3.3) with respect to ε is

dε
dθ
= cos2(ε )

d
[
tan(ε )

]
dθ

=
f R2

a + f Ra xe cos(θ) + xe f R′a
r2 , (3.4)

where

r2 =

√
(x′)2 + (y′)2

=

[
xe + Ra cos(θ)

] 2 [
cos2(α) + f 2 sin2(α)

]
+ R2

a sin2(θ)
[

sin2(α) + f 2 cos2(α)
]

+ 2Ra (1 − f 2) cos(α) sin(α) sin(θ)
[
xe + Ra cos(θ)

]
,

and

R′a =
dRa

dθ
.

Leveraging Equation (3.4), Equation (3.1) can be transformed from a contour integral to a

definite integral, given by

P =
1

2π

∫ 2π

0

[
f R2

a + xe f Ra cos(θ) + xe f R′a sin(θ)
r2

] [
1 − exp

(
−r2

2σ2

) ]
dθ. (3.5)
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Equation (3.5) provides an accurate method for computing collision probability for most

applications. This will been seen later with a comparison of all of the methods for each of

the six cases. It is important to note that, for spherical hard-bodies, Ra is a constant; there-

fore, the R′a term vanishes. If, however, one chooses to examine the effects of different

shapes defining the hard-body, then R′a would be retained (Patera (2005)). For implemen-

tation, one can transform the integral in Equation (3.5) to a finite sum, from zero to 2θ
n ,

where n is a user set number of desired steps. The number of steps to achieve accurate re-

sults from Equation (3.5) may differ between cases; this will be examined in later sections.

3.1.2. Alfano’s Method. Alfano’s method differs from Patera’s by utilizing a sum-

mation to approximate the one-dimensional integral rather than integrating over the perime-

ter or area of the hard-body (Alfano (2005)). Similar to the other methods, at the point of

closest approach, the combined covariance ellipsoid and hard-body are projected onto the

plane perpendicular to the relative velocity, otherwise known as the encounter plane. The

collision probability is then calculated by the amount of area of the hard-body within the

projected two-dimensional covariance ellipse. The result for the probability of collision is

given by the double integral shown in Equation (2.3), which can be reduced to a single

integral by using an error function. Alfano’s method utilizes Simpson’s one-third rule to

approximate this single integral.

This method requires the inputs of σ′x and σ′z, which should be the standard devi-

ations of the major and minor axes of the projected, combined covariance ellipse, respec-

tively. Additional required parameters are the position of the primary spacecraft relative

to the secondary object on the projected plane, xp and zp, and the radius of the combined

object, Ra. The position of the primary relative to the secondary can be expressed as

xp = xe cos(α) (3.6)

zp = −xe sin(α).
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The angle α is the same angle used to rotate the (x̂,ẑ) encounter plane to the (x̂′,ẑ′) plane,

where each axis is directed along the major and minor axes of the combined covariance

ellipse. The two-dimensional probability equation for the primary spacecraft relative to the

secondary is given by

P =
1

2πσ′xσ′z

∫ ρ

−ρ

∫ √
ρ2−x2

−
√
ρ2−x2

exp

−1
2

( x + xp

σ′x

) 2

+

(
z + zp

σ′z

) 2  dzdx. (3.7)

Throughout in this section, ρ represents the hard-body radius, Ra. Equation (3.7) can be

reduced to a single integral through the use of the error function as

P =
1

√
8πσ′x

∫ ρ

−ρ

erf

 zp +
√
ρ2 − x2

√
2σ′z

 + erf

−zp +
√
ρ2 − x2

√
2σ′z




× exp

−(x + xp)2

2(σ′x)2

 dx , (3.8)

where erf in Equation (3.8) refers to the error function and is usually readily available in

mathematical software packages. Alfano simplifies this one-dimensional error function

integral into an n-series expression via the change of variables (Alfano (2005))

x =
ρ(2i − n)

n
, (3.9)

and

dx =
2ρ
n
. (3.10)
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Substituting Equations (3.9) and (3.10) into Equation (3.8), the probability of collision

becomes

P =
2ρ

√
8πσ′xn

n∑
i=0


erf

 zp +
2ρ
n

√
(n − i)i

√
2σ′z

 + erf

−zp +
2ρ
n

√
(n − i)i

√
2σ′z




× exp

−
(
ρ(2i−n)

n + xp
) 2

2(σ′x)2


 . (3.11)

If desired, Equation (3.11) can be simplified further to admit a computationally lighter

implementation by using Simpson’s one-third rule and breaking the series into m-even and

m-odd components (Alfano (2005)), where a sufficient number for the m terms is given by

m = int


5Ra

min
(
σ′x , σ

′
z ,

√(
xp

) 2
+

(
zp

) 2
)
 .

Otherwise, Equation (3.11) requires the number of steps, n, to be specified; for the scope

of this work, n is typically taken to be the same number of steps that is used in calculating

collision probability with Patera’s method. Otherwise, 360 steps will be sufficient for most

cases; this will be explained further when discussing implementation of the cases.

3.1.3. Numerical Implementation. Each of the six cases described in Section 2.3

is processed using both of the presented linear analytical methods; the results of the cases

are summarized in Table 3.1. There is no need to examine the plots of these results, as

every case yields a zero slope at all time steps and a vertical peak to the solution at TCA.

This is due to the nature of the analytic linear methods; these methods only examine the

collision probability generated at the point of closest approach. All of the plots will have

similar trends to that of Case 3 shown in Figure 2.9, which was obtained with the Monte

Carlo approach.
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Table 3.1. Comparison of linear and Monte Carlo results

Patera’s Method Alfano’s Method MC PC,cum
PC,cum PC,cum [1 × 107]

Case 1 0.146791 0.146747 0.216789
Case 2 0.006248 0.006222 0.015536
Case 3 0.100381 0.100351 0.099677
Case 4 0.050669 0.049323 0.073610
Case 5 0.044506 0.044493 0.044467
Case 6 0.004346 0.004334 0.004320

For most of the cases considered, a value of n = 100 proves to be sufficient; how-

ever, Case 5 produces inaccurate results with this value. This is because the hard-body

sphere is completely within the combined covariance ellipsoid. The value of n must be

increased to ensure that the entire hard-body sphere is considered; the value of n in this

case should be 360. For simplicity, all the results presented in Table 3.1 are computed with

n = 360. Since these are an analytical methods, the increase in the value n does not signif-

icantly contribute to a decrease in computational efficiency. One interesting observation is

that Case 6 is still approximated within 1% error with respect to the Monte Carlo results,

even though this case was just barely defined as linear. These results illustrate the accuracy

of the analytic solutions when approximating the probability of collision for linear relative

motion. When one tries to compute the collision probability of a nonlinear relative motion

case with a linear analytic method, however, the approximation will always underestimate

the true probability. This trend can be seen in all of the nonlinear cases attempted, such

as Cases 1, 2, and 4. This is because the methods are only approximating the collision

probability of a single point, and cases with highly nonlinear relative motion tend to stay

within the encounter region for much longer than several seconds, invalidating the use of
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the linear analytical methods with nonlinear cases. To consider the entire time span, an

analytical method must be used at varying time steps with varying covariances, positions,

and velocities.

3.2. NONLINEAR METHODS

The numerical implementation of the linear methods demonstrates that the linear

analytical solutions can have difficulties approximating cases that involve low relative ve-

locity objects. This is due to the assumption of a static combined covariance over the

encounter, as well as the decoupling of the parameters within the ŷ-direction. These as-

sumptions are sufficient for high relative velocity objects since the encounter region is tra-

versed in such minuscule time spans (usually fractions of a second to a couple of seconds),

so the relative motion can be seen as linear, and the conjunction only needs to be exam-

ined at a single time step. Low relative velocity cases, however, may not be linear through

this encounter region because it could take up to hundreds or even thousands of seconds to

traverse the conjunction. This means that the velocity changes through time, similarly, the

covariance shell changes through time.

S

P

−∞

+∞

Linear
Region

Figure 3.3. Linear trajectory over the encounter region (modified from (Patera (2003)))
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Figure 3.3 illustrates the path of a linear trajectory for relative motion across the

encounter frame. In theory, one should be able to pick an arbitrary point at some time step

within the linear region and calculate essentially the same probability as would be com-

puted from a linear method at TCA. Therefore, one does not necessarily have to propagate

the objects to TCA for a linear case, only to the beginning of the linear region. This would,

however, add complexities to the propagator, so for simplicity sake, one should simply

propagate the objects to the point of closest approach to utilize the methods. Figure 3.4,

on the other hand, illustrates the case where low relative velocity drastically decreases the

linear region to a fraction of the combined covariance ellipsoid.

S

P

−∞

+∞

Figure 3.4. Nonlinear trajectory over the encounter region (modified from Patera (2003))

Revisiting the linear cases, i.e. Cases 3, 5, and 6, it is possible to decouple any

probability that is generated from the parameters in the ŷ-direction. Forming a straight

cylinder extending from −∞ to +∞, integration along the ŷ-direction yields a probability

of one. In these low relative velocity cases, however, the cylinder formed at TCA will

have finite extent that does not span the entire encounter region. To approach this problem,

one needs to calculate the time span that the two objects occupy the encounter region,

i.e. when the primary spacecraft is within the combined covariance ellipsoid. Then, at
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each time step, a right cylinder with the length along the direction of the relative velocity

vector, vps, is formed. Each cylinder has a corresponding collision probability based on the

three-dimensional properties. The cumulative probability for the encounter region is then

determined as the sum of all of the individual probabilities. This method is referred to as

the adjoining cylinders method (Alfano (2008)).

3.2.1. Adjoining Cylinders. The first step in the adjoining cylinders method, and

any other, is to begin with the position, velocity, and covariance in the inertial frame at

TCA. This data is then propagated forward and backward in time until a specified limit is

reached. To cover the entire encounter span, one quarter of an orbit in each direction of

time is usually sufficient. At each time step, a right cylinder is formed, the length of which

depends on the relative velocity at TCA, and the radius of the cylinder is the same as the

radius of the hard-body sphere, because the hard-body sphere is the object sweeping out

the cylinder at each time step. For an accuracy check on defining the size of the cylinders,

a method of defining a linearity requirement is presented in (Alfano (2008)). Over each

cylinder, the relative motion is assumed to be linear and the covariance is assumed to be

constant, this is only true if all the cylinders are sufficiently small. The time step containing

the relative velocity at TCA defines the length of the cylinder; therefore, smaller time steps

define proportionally smaller right cylinders. This time step is case dependent. At each

time step, the objects, as well as their positions and covariances, are transformed into an

encounter frame that normalizes the combined covariance. In this frame, each cylinder

section has a two-dimensional probability, P2d , and a one-dimensional probability, P1d .

The product of these two probabilities yields the sectional probability of collision for the

individual cylinder. The sum of all of the sectional probabilities yields the cumulative

probability of collision for the encounter.
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3.2.1.1. Normalized encounter frame. In the inertial frame, the covariance of the

primary spacecraft is summed with the covariance of the secondary object,such that

C = Cp + Cs .

A transformation, Tp
i , is then conducted to align a new coordinate frame to be along the

axes of this three-dimensional combined covariance ellipsoid. Consider the spectral de-

composition of C, given by

C = VλVT ,

where V is a square matrix whose ith column is the ith eigenvector of C and λ is a square

diagonal matrix whose ith element is the ith eigenvalue of C. The transformation matrix,

Tp
i , is formed as the transpose of the eigenvector matrix, such that

Tp
i = VT .

All of the objects’ positions, velocities, and covariances must then be converted into a

scaled system defined by the scaling matrix S, where

S = λ −1/2.

This scaling transformation normalizes the covariance and scales all other data values re-

spectively. To analyze the probability of collision between the objects, all positions, ve-

locities, and covariances must be in one relative frame, so another transformation must

be completed to scale these normalized components into the previously defined relative

encounter frame. Simply put, the normalized components are transformed back into the

inertial frame using the transpose of the transformation matrix Tp
i , then the directional co-

sine matrix defined in Equation (2.8) in Section 2 is used to rotate the data into the relative
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encounter frame. The transformation from inertial to a scaled inertial using the eigenvalues

becomes

M = Ti
pSTp

i (3.12)
xscale

yscale

zscale


=M


x

y

z


(3.13)

Cscale =MCMT ,

resulting in,

Cscale =


σ(1) 0 0

0 σ(1) 0

0 0 σ(1)

 = I3×3, (3.14)

where σ(1) = 1.

The same transformation matrices previously used to rotate the system into the

relative encounter frame can now be applied. Without the normalized scale change, if the

combined covariance ellipsoid was in the encounter frame, then the principle directions

would not be aligned with the axes; in some cases they could be essentially aligned, but not

exactly aligned. This develops complexities when defining the encounter region in terms

of relative positions and velocities. In the scale encounter frame, the combined covariance

ellipsoid will become a sphere, and due to the nature of a unit sphere, when the user aligns

the system to be in the relative encounter frame, the principle axes no longer matter because

a sphere does not have principle axes. An important note is that, due to the covariance,

position, and velocities being converted by a scale change, the hard-body sphere must

also undergo a scale change. Doing so transforms the hard-body sphere into a hard-body



43

ellipsoid, where the semi-axes of the ellipsoid are

REllipse = RaS =


ρx 0 0

0 ρy 0

0 0 ρz

 .

With the scaled positions and scaled velocities of each object in terms, once again, of the

Cartesian inertial frame, rotate the data to the normalized encounter frame by


xnorm

ynorm

znorm


= Ue

mUm
i


xscale

yscale

zscale.


The transformation matrices Um

i and Ue
m can be found as Equations (2.6) and (2.8) in the

encounter frame section of Section 2.

Due to the nature of the combined covariance sphere, there is no need for an addi-

tional rotation to the principle axes because they become arbitrary. Meaning that a means

to identify the time span of the encounter region is now possible. Starting from the time

closest to epoch, the positions, velocities, and covariance at each time step are converted

into the normalized encounter frame, and is compared to the relative position vector along

the ŷ-direction, i.e. the y-component of the relative position vector in the normalized en-

counter frame (rps,y = rp,y − rs,y), to the standard deviation in the ŷ-direction, σy,norm, or

σ(1) in the normalized encounter frame. This process is not possible if the encounter coor-

dinate frame is not aligned with the principle axes of the combined covariance ellipsoid, but

because this new scale change normalizes the ellipsoid to a sphere, this process becomes

possible. In this frame, all the standard deviations are 1, as shown in Equation (3.14). If the

relative position vector is larger than the standard deviation in the ŷ-direction at any time

step, then that data is omitted from further processing. This process is continued until the

furthest time step from epoch has been omitted. If the final time step is not omitted, then
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the overall time span of propagating forward and backward should be expanded. There

should be some times at the beginning and at the end of the time span that are omitted to

verify that all of the encounter region is accounted for. The cylinders are formed about

the time steps that remain, then the one-dimensional and two-dimensional probabilities are

computed for each cylinder at its corresponding time step.

3.2.1.2. One dimensional probability. Each time step acts as the center of a straight

cylinder, the ends of the cylinder are defined as Ri and R f , which are based on the relative

velocity along the ŷ-direction in the normalized encounter frame at TCA and the time step

between processed times. The relative velocity along the ŷ-direction should essentially be

all the velocity because the ŷ-axis is defined as being along the relative velocity vector. The

ends of the cylinder are given by

Ri = rps,y − δR (3.15)

R f = rps,y + δR,

where

δR = vps,y

(
∆t
2

)
,

rps,y and vps,y are the ŷ-components of the relative position and velocity in the normalized

encounter frame, respectively, and ∆t is the specified time step, which also defines the size

of the cylinders.

Now that all the data is in the normalized encounter frame with a spherical covari-

ance shell describing a symmetric probability density, the probability density along each

axis can be decoupled from the other axes. Revisiting the cumulative collision probability

integral from Equation (2.1), it follows that

P =
1

(2π)3/2

$
V

exp
[
−(x2 + y2 + z2)

2

]
dxdydz. (3.16)
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The limits of integration for this three-dimensional integral are defined by the volume of the

cylinder swept out by the sphere. It becomes convenient to transform Equation (3.16) into

cylindrical coordinates with the ŷ-axis aligned with the axis of the cylinder. The cumulative

collision probability is given by

P =
1

(2π)3/2

$
V

exp
(
−y2

2

)
exp

(
−r2

2

)
rdrdθdy,

where r is the radial distance from the secondary to the primary, and θ is the angle between r

and the x̂norm-axis. The integration along each time increment assumes that the probability,

hard-body area, and relative velocity are constant for each time step. At each step, the

integration can be performed, yielding

P =
[

1
√

2π

∫ R f

Ri
exp

(
−y2

2

)
dy

]
1

2π

∮
perimeter

[
1 − exp

(
−r2

2

) ]
dθ. (3.17)

Now, the probability density defined in the direction along the relative velocity vector,

ŷ-direction, is decoupled from the probability density described by the (x̂norm, ẑnorm)-encounter

plane. There are a finite number of cylindrical volumes, each with an associated collision

probability that is formed as the product of the two decoupled probabilities. If the relative

velocity and the covariance are constant over the encounter, then the cylinders form a single

cylinder extending from −∞ to +∞; in this case, the integration of the first bracketed term

in Equation (3.17) is equal to one, and the cumulative collision probability from Equation

(3.17) becomes

PC =
1

2π

∮
perimeter

[
1 − exp

(
−r2

2

) ]
dθ (3.18)

Equation (3.18) is a version of Equation (3.5) used in the proof of Patera’s method in Sec-

tion 3.1.1, meaning that when given an infinite cylinder, the probability of collision along

the relative velocity vector, or ŷ-direction, is one. Validating that the adjoining cylinders

method can be applied to linear and nonlinear cases.
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To simplify the computation of the probability along the relative velocity direction,

apply the cumulative distribution function of a Gaussian distribution, q(x), which states

∫ b

a
q(x)dx =

1
2

[
erf

(
b − m
√

2P

)
− erf

(
a − m
√

2P

) ]
, (3.19)

where m and P are, respectively, the mean and covariance of the Gaussian distribution.

Applying Equation (3.19) to the first bracketed term in Equation (3.17), noting that a = Ri,

b = R f , m = 0, and P = 1, it follows that

P1d =
1
2

[
erf

(
R f
√

2

)
− erf

(
Ri
√

2

) ]
, (3.20)

Thus providing a solution for the decoupled probability of collision along the axis defined

by the relative velocity vector. The next step is to calculate the remaining two dimensional

probability for each time step.

3.2.1.3. Two dimensional probability. After decoupling the probabilities, the two-

dimensional probability density function is given by Equation (3.18), which can be simpli-

fied to Patera’s linear method of Equation (3.5), or

PC =
1

2π

∫ 2π

0

[
f R2

a + xe f Ra cos(θ) + xe f R′a sin(θ)
r2

] [
1 − exp

(
−r2

2σ2

) ]
dθ, (3.21)

Due to the aligning of the relative encounter frame with the covariance ellipsoidal axes

and symmetrizing to unity, f in Equation (3.21) does not appear because all the standard

deviations are 1. This new rotation also converts the hard-body shape into an ellipse with

magnitudes ρx and ρz defining the two-dimensional ellipse on the normalized encounter

plane, located at (xnorm, znorm). The center is the x and z components of the relative

position vector in the normalized encounter frame. After much manipulation, a series can
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be formed to represent the two-dimensional probability computation as (Alfano (2008))

P2d =
ρx ρz

n

n∑
i=1

1 + xnorm

ρx
cos

(
2iπ
n

)
+

znorm

ρz
sin

(
2iπ
n

)
1
α2

i

1 − exp

 α2
i

−2

    ,
(3.22)

where

α2
i =

(
ρx cos

(
2iπ
n

)
+ xnorm

) 2

+

(
ρz sin

(
2iπ
n

)
+ znorm

) 2

.

It is important to note that this is a manipulation of Patera’s method in the normalized

encounter frame. The n in the summation of Equation (3.22) is the same n = 360 that is

used when computing the series version of Patera’s linear method from Equation (3.5). An

alternative to this version of the two-dimensional probability of collision is to simply utilize

the linear methods that have come before; in theory, the computed probability should come

out essentially the same, and this will be investigated in the next section. The cumulative

collision probability for the adjoining cylinders nonlinear method becomes

PC,cum =

N∑
n=1

P1d P2d ,

where N is the number of cylinders that is generated by the defined step size.

3.2.2. Numerical Implementation. When implementing the adjoining cylinders

method, it becomes imperative to incorporate enough of a time span to completely evalu-

ate the encounter region; otherwise, the method will drastically underestimate the collision

probability. It is also crucial not to overestimate the time span, because there will be poten-

tial “conjunctions” in the future, or at least the algorithms will see them as conjunctions.

The collision probability computed at these times will be minuscule in comparison to those

at TCA, but will still corrupt the results, by overestimating the true probability of collision.

These other conjunctions can be seen in Figure 3.5, which shows that the encounter re-

gion of interest is sufficiently within the bounds of the one quarter orbit propagation, both
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Figure 3.5. Relative distance between the primary spacecraft and the secondary object

forward and backward in time from TCA. Each valley in Figure 3.5 represents a possible

encounter region, but the only one of interest is the most severe region, or the one that will

perpetuate the largest probability of collision.

The results for all six cases are given in Table 3.2, it is clear in these results that all

but one of the cases is sufficiently approximated. All of the cases tested utilized a time step

of 0.5 seconds for the propagation both forward and backward to produce the cylinders.

Table 3.2. Comparison of nonlinear to Monte Carlo results

Adj. Cylinders Adj. Cylinders MC PC,cum
Patera’s 2-d PC,cum Eq. (3.22) PC,cum [1 × 107]

Case 1 0.218586 0.218165 0.216789
Case 2 0.016397 0.016239 0.015536
Case 3 0.100380 0.100353 0.099677
Case 4 2.0633 × 10−5 1.4552 × 10−5 0.073610
Case 5 0.044399 0.044385 0.044467
Case 6 0.004232 0.004223 0.004320
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An interesting outcome of Table 3.2 is that the results from using the adjoining

cylinders with a two-dimensional probability calculated using Patera’s linear method and

the normalized two-dimensional method in Equation (3.22) only differ by 0.2%. There-

fore, it is not critically important which method is chosen to calculate the two-dimensional

probability, thus providing a degree of flexibility. There are more linear methods that are

not covered in this work that could also be implemented in place for the two-dimensional

probability computation. Another important aspect to the adjoining cylinders method is

that these results required at most one minute to compute the collision probability for any

case, including those involving highly nonlinear relative motion. This is drastically more

computationally efficient than the Monte Carlo simulations and more accurate for almost

every case than the linear methods.

3.2.2.1. Case 1. Knowing that Case 1 involves low relative velocity between two

satellites in GEO, the nonlinear adjoining cylinders method should be able to accurately

approximate the value of collision probability. The results from the adjoining cylinders

method using the presented, normalized, two-dimensional probability computation differ

by only 0.8% from the Monte Carlo results. It is clear that the nonlinear, adjoining cylinders

method drastically improves upon the accuracy from the analytic linear methods, regardless

of which two-dimensional implementation is used. The cumulative probability is illustrated

in Figure 3.6.

Figure 3.6 is similar to the one presented for Case 1 in the Monte Carlo section,

Figure 2.6, with two similar peaks, one around TCA and one 11,000 seconds later. It is

crucial to use the same propagation time forward and backward with the adjoining cylin-

ders method as was used in the Monte Carlo simulations; otherwise, the method will un-

derestimate the collision probability.
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Figure 3.6. Cumulative probability for Case 1 using the adjoining cylinders method

3.2.2.2. Case 2. This case is essentially the same as Case 1; however, the hard-

body radius is less than the nominal miss distance, effectively lowering the overall proba-

bility of collision. The values from the adjoining cylinders method differ by less than 5%

from the Monte Carlo simulations. Figure 3.7 shows the cumulative probability of this case

over the encounter region.

Figure 3.7 shows similar results to the Monte Carlo simulations as seen in Figure 2.8

with peaks occurring at the same time steps. An interesting observation is that this method

overestimates the true probability of collision for this case and Case 1, which becomes the

motivation for Section 5.

3.2.2.3. Case 3. This case involves linear relative motion in GEO; therefore, using

a nonlinear method is not necessarily required, but the results show that approximation

is essentially the same as was produced by the linear methods. In all of the linear cases,

the one-dimensional probability should approach 1, as was discussed in Section 3.2.1.2,

and the results produced in this work reflect that. Figure 3.8 illustrates the cumulative

probability of collision expected from this approximation.
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Figure 3.7. Cumulative probability for Case 2 using the adjoining cylinders method
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Figure 3.8. Cumulative probability for Case 3 using the adjoining cylinders method

Figure 3.8 shows that the method only picks out a single time for the encounter

region. Most likely, this time is exactly at TCA because, for a true linear relative motion

case, the only time step within the combined covariance shell should be right at the point of



52

closest approach. This specific case contains a steeper peak than the other linear cases due

to the relative velocity being a factor of 10 greater than the relative velocity of any other

case.

3.2.2.4. Case 4. An important note when implementing this method is that utiliz-

ing the relative velocity at TCA to define the length of the cylinders causes overlaps and

gaps between them. This introduces some amount of error, which can be seen effectively

in the implementation of Case 4. A refinement can be implemented at the edges of the

cylinders so they merely touch and do not overlap (Alfano (2008)). The sizing of the cylin-

ders is the most difficult task when implementing this method; any slight change among

the cylinders catastrophically affects the results.

Case 4 shows the inaccuracies that can be generated from the gaps and overlaps

of the adjoining cylinders. It is the inaccuracies of cases such as this one that drives the

need to develop an alternative mitigation technique to simply maneuvering. Using the most

accurate method that was derived in this work, the collision probability is still drastically

underestimated. This would cause a mission spacecraft to not maneuver; however, from

the Monte Carlo results in Table 2.2, it is apparent that there is a true possibility of a

collision. Figure 3.9 shows that the cumulative probability follows the same shape as the

Monte Carlo simulations but the cylinders miss enough of the encounter region that the

probability is vastly underestimated.

Figure 3.9 illustrates that the probability of collision only begins to be accumu-

lated some time after TCA and then continues to grow until plateauing when the primary

spacecraft exits the encounter region.

3.2.2.5. Case 5. The results for Case 5 are essentially the same to those seen in the

linear methods and Monte Carlo sections. This is a linear case with high relative velocity,

and any of the methods will be able to accurately approximate the probability of collision.

The trend of the cumulative probability can be seen in Figure 3.10.
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Figure 3.9. Cumulative probability for Case 4 using the adjoining cylinders method
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Figure 3.10. Cumulative probability for Case 5 using the adjoining cylinders method

Figure 3.10 shows that there is only a gradual peak in probability near TCA, which

is what would be expected of a linear case. The sharp edges in Figure 3.10 illustrate the

probability across each individual cylinder; if the step size of the propagation is decreased,
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the number of cylinders would increase, smoothing out overall curve. However, this in-

crease in cylinders would not increase the accuracy for the cumulative probability in this

case because the time step of half a second is still sufficient.

3.2.2.6. Case 6. This case is similar to the previous one; it is a linear scenario

in LEO, and any of the methods should be able to approximate the collision probability.

One interesting aspect to this case is that the nonlinear method applied records multiple

times when the hard-body object is within the combined covariance shell. This case is on

the edge of being nonlinear, and the method treats it as such, so it becomes an interesting

outcome to see such similar results to the linear methods. The trend of the cumulative

collision probability can be seen in Figure 3.11. Figure 3.11 illustrates that this case can be

considered as either linear or nonlinear and still produce accurate estimations of the Monte

Carlo results.
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Figure 3.11. Cumulative probability for Case 6 using the adjoining cylinders method
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4. BRIEF REVIEW OF KALMAN FILTERING

Given the developments thus far, it is apparent that the probability of collision is

heavily dependent on not only the relative positions and velocities of the two objects, but

also on the size of the combined covariance ellipsoid. The larger this ellipsoid, the higher

likelihood that the hard-body sphere will occupy the same space, potentially increasing

the probability of collision. In an attempt to decrease the likelihood of the hard-body

occupying the ellipsoid, the combined covariance ellipsoid will have to shrink. The size of

the ellipsoid is based on the confidence of the propagated position estimates of both objects.

Currently, the covariance grows as these objects are propagated through time. To bound this

growth, measurements of the states can be taken and used to refine the estimates of position

and velocity, increasing the confidence in the states. Orbit determination accuracy can also

have a large effect on the measurements taken in this work (Gottlieb et al. (2001)).

There are various methods of taking measurements to track objects as they orbit

the Earth; for instance ground-based optical measurements or Global Positioning System

(GPS) measurements can be used. Measurements are functionally dependent on the true

states of the observed object through time. Optical measurements represent two angles that

can be used to define the line of sight to the object at any time. The angles observed are

dependent on the location of the observer. For example, astronauts on the International

Space Station (ISS) could be using optical angle measurements to predict if a debris object

will collide with them. The angles are then formed in a relative frame to the ISS (i.e. the

observer). However, most angles-only measurements come from an optical observer on

the surface of the Earth, such as the ground-based electro-optical deep space surveillance

(GEODSS) site in Maui (Burgio and Grant (2011)). Angles measurement data can be uti-

lized via a measurement model to correct estimated states, which will be seen in Section

5. The angles that will be used in this work are the right ascension, α, and declination, δ,
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of the object at any time. Right ascension is the angular distance of an object measured

eastward along the celestial equator from the vernal equinox, and declination is the an-

gular distance measured from the equatorial plane to the object (Vallado (2004)). These

astronomical coordinates specify the object in the equatorial coordinate system. While any

measurements can be used in the estimation process, angles-only measurements are used

in this work due to their prevalence in space object tracking methods.

It is important to note that there are some limitations to using optical measurements,

such as the fact that measurements can only be taken at night, when the objects are visible.

The objects have to be overhead, some degree above the horizontal of the observer, meaning

that there is a limited time span at night that measurements can be taken. The limitations

of measurements will be negligible in the scope of this work, as the goal is to simply

illustrate the effects that measurements have on the probability of collision. Aside from

taking measurements, there has been some discussion on better understanding the value of

probability of collision itself because it can be seemingly arbitrary in some cases (Hejduk

and Johnson (2016)).

4.1. KALMAN FILTER

With the chosen means of taking measurements, a model is now needed to imple-

ment the new information and develop an improved estimate of the states. One approach

is to apply a Kalman filter to the propagation and updates of the state estimates and their

associated covariances. A Kalman filter is an algorithm developed by Rudolph Kalman,

used to process error-corrupted measurement data to better determine the parameters or

variables associated with the process that generated the measurements (Lear (1985)). This

means that angles-only measurements, such as α and δ, can be input into the filter, and

the outputs will be estimates of the object’s position and velocity at some time as well as

the confidence in the estimates compared to the truth, i.e. the covariance. Kalman filtering

has been used for many applications, including landing the lunar module on the surface of
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the Moon (McGee and Schmidt (1985)). A Kalman filter processed Earth-based Doppler

data as the lunar module approached the surface of the Moon and a real-time correction

was voice-linked to the astronauts to adjust their position to ensure an accurate landing.

Kalman filters have become useful and popular in modern estimation problems, especially

those requiring real-time solutions.

The Kalman filter is typically composed of two stages, a propagation stage and an

update stage. The propagation stage predicts the estimated states and covariance of the

system one time step into the future. The update stage corrects the predicted states using

measurements for a more confident estimation.

Assume that the system dynamics are given by,

ẋ(t) = F(t)x(t) +M(t)w(t), (4.1)

where F(t) is the linear dynamics of the states, x(t), at some time, t. The states for this

application are the position and velocity of an object in Cartesian coordinates. In Equation

(4.1), M(t) is a shape matrix that maps the zero-mean white-noise process, w(t), into the

dynamics. It is assumed that the initial state has a mean m(t0) = m0 and a covariance

P(t0) = P0. The mean of the state is taken to be a function of time, given by

m(t) = E[x(t)],

where E[] is the expectation operator. Taking the time rate of change yields

ṁ(t) = E[ẋ(t)].

Appyling the expectation operator to the system dynamics yields

ṁ(t) = E [F(t)x(t)] + E [M(t)w(t)] .
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Assuming F(t) and M(t) to be deterministic and recalling that the process noise is zero-

mean, the time rate of change of the mean becomes

ṁ(t) = F(t)m(t). (4.2)

This becomes the prediction step for the mean, but a similar equation is needed for the

prediction of the covariance. A similar, but lengthy derivation provides the covariance

prediction equation as (Kalman, 1960)

Ṗ(t) = F(t)P(t) + P(t)FT (t) +M(t)Qs (t)MT (t), (4.3)

where Qs is the power spectral density, which is constant for white-noise processes. The

mean and covariance from the previous update are given by

m(tk−1) = m+k−1 and P(tk−1) = P+k−1,

where the (+) superscripts denote the mean and covariance after an update and the (−)

superscripts will denote the mean and covariance after a propagation. Propagating the

equations for the mean and covariance from t = tk−1 (the time of the previous update) to

the time of the next measurement, t = tk yields the propagated mean and covariance, which

are referred to as the a priori mean and covariance. The a priori mean and covariance are

m−k = m(tk ) and P−k = P(tk ),

where m(tk ) is the result of integrating Equation (4.2) from tk−1 to tk and P(tk ) is the result

of integrating Equation (4.3) from tk−1 to tk . At time tk the measurement zk , which is a

function of the state, is given by

zk = Hkxk + Lkvk ,
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where vk is the measurement noise, which is assumed to be a zero mean white-noise se-

quence with covariance Rk . The new information provided by the measurement is then

used to update the a priori mean and covariance of the state. Assuming that the posteriori

mean is given by a linear combination of the a priori mean and the new measurement data,

the posteriori estimate is

m+k = m−k +Kk [zk − ẑk] ,

where ẑk is the expected measurement, which is based on the a priori state, and is given by

ẑk = Hkm−k . (4.4)

In Equation (4.4), Hk is the measurement mapping matrix that transforms the a priori mean

into a measurement. The Kk is the linear Kalman gain, given as

Kk = CkW−1
k ,

which is dependent on the innovations covariance, Wk , and the cross covariance Ck , these

covariances are

Wk = HkP−k HT
k + LkRkLT

k

Ck = P−k HT
k ,

where it is assumed that Hk and Lk are deterministic and that the state is uncorrelated with

measurement noise. Given the Kalman gain, innovation covariance, and cross covariance,

the update step for the covariance is given by

P+k = P−k − CkKT
k − KkCT

k +KkWkKT
k .
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The equations used to propagate, take measurements, and update have now been presented

in the scope of a Kalman filter. To summarize, these equations are used to take the ini-

tial estimated states of position and velocity in Cartesian coordinates and propagate them

forward from some time, tk−1, to tk , which is one time step into the future. Then, mea-

surements are taken at tk and used to update the estimate to form more confidence in the

states. This process is then repeated until some defined time is reached; for the scope of

this work, the end time should be the time of closest approach, when both objects will be

in conjunction. It is important to note that the Kalman filter strictly works on linear sys-

tems, which is inadequate in this case because the propagation of an object in orbit obeys a

nonlinear dynamical model, and α and δ are nonlinear. Therefore, the Kalman filter must

be modified to account for this nonlinearity.

4.2. NONLINEAR EXTENSIONS TO THE KALMAN FILTER

The Kalman filter operates on linear dynamical/observational systems, but some

systems involve nonlinear dynamics, nonlinear measurements, or in this case, both. The

scope of this work involves an object under the influence of two-body dynamics, which

obeys a set a nonlinear differential equations in Cartesian coordinates; the angles-only mea-

surements used in this process will also obey a set of nonlinear differential equations. To

modify the Kalman filter to handle nonlinear systems, the extended Kalman filter (EKF)

was developed. The EKF handles nonlinearity through the use of linearization. Using the

EKF technique, estimated trajectories can be shown to converge to the true trajectories,

even with large initial trajectory estimation errors (Grewal and Andews (2010)). In this

variation, the nonlinear dynamical system is given by,

ẋ(t) = f(x(t)) +M(t)w(t),
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Where f(x(t)) is now the nonlinear dynamics of the states, x(t), at some time t. Once again,

the time varying mean of the state is

m(t) = E[x(t)],

Taking the time derivative of this function and simplifying yields

ṁ(t) = E[ẋ(t)].

Applying the nonlinear system dynamics, it follows that

ṁ(t) = E [f(x(t))] + E [M(t)w(t)] (4.5)

To linearize the nonlinear dynamics, f(x(t)) can be expressed as a first-order Taylor series

expansion about the mean as

f(x(t)) = f(m(t)) + F(m(t))(x(t) −m(t)) + H.O.T.,

where H.O.T. denotes any higher order terms larger than a first order in the Taylor series

and F(m(t)) is the dynamics Jacobian, defined as (Sorenson (1985))

F(m(t)) =

∂f(x(t))
∂x(t)

∣∣∣∣∣∣
x(t)=m(t)

 .
Substituting the first order Taylor series expansion into the expected value of the dynamics,

Equation (4.5), yields

ṁ(t) = E [f(m(t)) + F(m(t))(x(t) −m(t))] + E [M(t)w(t)] .
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Define the error in the mean with respect to the true state to be

e(t) = x(t) −m(t).

Now, assuming that f(m(t)), F(m(t)), and M(t) are deterministic and recalling that the

process noise, w(t), is taken to be zero-mean, the expected value of the nonlinear dynamics

becomes

ṁ = f(m(t)) + F(m(t))E [e(t)] . (4.6)

Also assuming that the estimate is unbiased, i.e. that e(t) is a zero mean process, then

Equation (4.6) yields

ṁ = f(m(t)). (4.7)

This is the differential equation governing the forward evolution of the mean through time.

The confidence in the mean, or the state estimation error covariance is found via

P(t) = E
[
e(t)eT (t)

]
.

The derivation for the covariance prediction equation follows the same procedure as that

used for the Kalman filter, but replacing the dynamics Jacobian, F(m(t)), in place of F(t),

yielding

Ṗ(t) = F(m(t))P(t) + P(t)FT (m(t)) +M(t)Qs (t)MT (t). (4.8)

The mean and covariance are numerically integrated across the interval t ∈ [tk−1 tk] using

Equations (4.7) and (4.8) with the initial conditions

m(tk−1) = m+k−1 and P(tk−1) = P+k−1.
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The values obtained after integrating Equations (4.7) and (4.8) over the time span become

the a priori mean and covariance, m−k and P−k . At time tk , measurements are taken to be of

the form

zk = h(xk ) + Lkvk , (4.9)

where vk is still assumed to be a zero mean, white noise with covariance Rk . Noting that

the measurement model in Equation (4.9) is nonlinear, one can linearize in a similar method

as with the dynamics model. Taking the expected value of Equation (4.9) yields

ẑ = E [zk] = E [h(xk )] + E [Lkvk] .

Linearizing the measurement function about the a priori mean expressed as a first-order

Taylor series expansion via

h(xk ) = h(m−k ) +H(m−k )(xk −m−k ) + H.O.T.,

where H((m−k )) is the measurement Jacobian and is defined as

H(m−k ) =
[
∂h(xk )
∂xk

∣∣∣∣∣∣
x=m

]
,

where x = xk and m = m−k in the evaluation operator. Substituting the first-order Taylor

series expression for the measurement model into the expected value of the measurement

model yields

ẑk = E
[
h(m−k )

]
+ E

[
H(m−k )e−k

]
+ E [Lkvk] .
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Assuming that h(m−k ), H(m−k ), and Lk are deterministic, recalling that the measurement

noise is taken to be zero-mean, and assuming that the prediction error is to be zero-mean

(unbiased), the expected value of the measurement is

ẑk = h(m−k ).

Once again, this new information is needed to update the mean and covariance. The update

equation for the mean is given exactly as before, such that

m+k = m−k +Kk (zk − ẑk ),

where ẑk is still the expected measurement from the a priori mean. The equation to update

the a priori covariance also remains the same, such that

P+k = P−k − CkKT
k − KkCT

k +KkWkKT
k ,

where the Kalman gain, Kk , is given by

Kk = CkW−1
k ,

where Ck is the cross covariance, and Wk is the innovations covariance, which are defined

as

Ck = E
[
(xk −m−k )(zk − ẑk )T

]
(4.10)

Wk = E
[
(zk − ẑk )(zk − ẑk )T

]
.
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Substituting in the measurement model, expected measurement, and recalling that H(m−k )

and Lk are deterministic, yields

Wk = H(m−k )P−k HT (m−k ) + LkRkLT
k (4.11)

Ck = P−k HT (m−k ).

The nonlinear extension to the Kalman filter has now been presented. Note that the EKF

is a linear filter used for nonlinear systems. This work will use an EKF with angles only

measurements, right ascension and declination, to better estimate the states of one or both

of the objects at TCA. Thus, it is expected that a decrease in the uncertainty of the positions

of the objects will be achieved, ultimately shrinking the size of the combined covariance

ellipsoid.

It is an important note that there are various filters that can be used in place of the

EKF, such as the Unscented Kalman filter (Julier and Uhlmann (1997)).
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5. EFFECTS OF MEASUREMENTS ON THE PROBABILITY OF COLLISION

With the general EKF framework at hand, one requires expressions for the dynamics

Jacobian, measurement Jacobian, and the nonlinear dynamical system used to propagate the

states forward in time. Sections 5.1 and 5.2 will derive all of these expressions in terms of

observing and taking measurements of an object in orbit. It is an important note that this

work utilizes simple two body motion to describe the orbiting objects, which is sufficient

for the scope of this work. The dynamics Jacobian and nonlinear dynamical model used

to propagate the states presented in Section 5.2 are standard for any two body motion

propagation. The measurement Jacobian presented in Section 5.2 is standard for an EKF

only utilizing right ascension and declination measurements. This work will implement an

EKF to estimate the states and covariance of the primary object to discern the effect that

measurements will have on the probability collision. As well as using an EKF on both

objects to discern if more measurements within the system will have a similar effect on the

probability of collision.

5.1. ELEMENTS OF THE EKF

Keeping the framework of the EKF in mind, the Jacobians for both the measure-

ment and the dynamical models have to be constructed. This work utilizes angles-only

measurements in the form of right ascension, α, and declination, δ, defined as

α = arctan
(
ρy

ρx

)
(5.1)

δ = arctan

 ρz√
(ρx)2 + (ρy)2

 , (5.2)
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where the components of ρ = [ρx , ρy , ρz]T are found as the difference between the position

of the object object under observation, r, and the position of a ground-based observer q;

that is,

ρ = r − q. (5.3)

Note that r and q are both given with respect to the center of the Earth in the Earth cen-

tered inertial frame. For this work, the observer is placed on the surface of the Earth, along

the radial direction of the tracked object at epoch. Meaning that if measurements are be-

ing taken of the primary spacecraft, then the observer would be located on the surface of

the Earth along the radial axis of the primary spacecraft; the same can be done with the

secondary object. The observer can not be stationary with respect to the inertial frame,

however, as it will remain fixed to the Earth while the observed object is orbiting. Noting

that the observer is fixed to the Earth, then the time rate of change of the observer position

at any time can by found using the transport theorem, or basic kinematics equation as

q̇ =
I d
dt
{q} =

Rd
dt
{q} + ωR/I × q = ωR/I × q,

where the notation d
dt {} denotes the time rate of change of some vector; and where I and R

denote the inertial and rotating frames of the Earth, respectively, and ωR/I is

ωR/I =

[
0 0 ω

] T
,

where ω is the angular velocity of the Earth (7.292115 [rad/s]). Note that d
dt {q}, with

respect to the rotating frame, R, is zero in this case because the observer is fixed to the

Earth. The velocity of the observer, q̇, is used to propagate the position of the observer

through time. The velocity, however, does not remain constant; it, too, will evolve through
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time according to

q̈ =
I d
dt
{q̇} =

Rd
dt
{q̇} + ωR/I × q̇ = ωR/I × ωR/I × q.

As the observer’s position and velocity propagate through time, so must the object’s posi-

tion and velocity. Initializing the propagation process with the positions and velocities of

the object at epoch; keeping in mind that the position of each object will evolve through

time based on the velocity at that time step, the velocity should then evolve by the acceler-

ation at that time step. Given the position of an object, the acceleration is found from the

nonlinear differential equation for the two-body problem, given by

r̈ +
µ

| |r| |3
r = 0, (5.4)

where µ is the gravitational parameter of Earth (Prussing and Conway (2013)) and | |r| | = r ,

which is the magnitude of the position vector of the object. Solving for the acceleration of

the object yields

r̈ = −
µ

| |r| |3
r = −

µ

| |r| |3
[
x y z

] T
=

[
ẍ ÿ z̈

] T
. (5.5)

Equation (5.5) describes the acceleration of the object through time. The states of position

and velocity will then evolve through time as

ẋ = f(x(t)) =
[
ẋ ẏ ż ẍ ÿ z̈

] T
, (5.6)

where ẋ, ẏ, and ż are the Cartesian components of the velocities of the object in the inertial

frame. One can now propagate the observer’s position and velocity, q and q̇, and the true

position and velocity of the observed object, x(t), to time t. At time t, measurements can be

generated in the form of right ascension and declination according to Equations (5.1) and
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(5.2). These measurements are given by the true right ascension and declination corrupted

by some white noise as

zk =

αδ
 + vk ,

where vk is a zero mean with covariance

Rk =

100 0

0 100

 . (5.7)

It is important to note that Rk is in (arcseconds)2, and the measurements, α and δ, are in

arcseconds. Note that the Lk in Equation (4.9) is an identity matrix. The measurements,

zk , are then passed into the EKF to estimate the states of the observed object.

5.2. CONSTRUCTING THE EKF

The EKF is initialized with the mean, m+k−1, and covariance, P+k−1, where the initial

mean, m+k−1, is taken as the position and velocity of the observed object at epoch, and

the initial covariance, P+k−1, is the covariance of the observed object at epoch. The initial

mean and covariance are then propagated using Equations (4.7) and (4.8) by numerically

integrating to time tk to obtain the a priori mean and covariance. Note that the power

spectral density, Qs, in Equation (4.8) is zero for this work. The nonlinear dynamical

model that predicts the states of the mean are the same derived in Equation (5.6). The

covariance propagation, however, requires the formation of the dynamics Jacobian, which
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is defined by

F(x(t)) =


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∂ẋ
∂ẋ
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∂ẋ

∂ż
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.

With the equation of motion for the observed object known from Equation (5.6), and know-

ing that the position of the object evolves based on the velocity, the Jacobian becomes

F =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−µ

r3 +
3µx2

r5
3µxy

r5
3µxz

r5 0 0 0

3µyx
r5 −

µ

r3 +
3µy2

r5
3µyz

r5 0 0 0

3µzx
r5

3µzy
r5 −

µ

r3 +
3µz2

r5 0 0 0



.

Now, one has the capability of obtaining the a priori mean and covariance by numerically

integrating Equations (4.7) and (4.8) to time tk .

The posteriori mean and covariance are found by processing the measurements, ẑk .

Recall that the expected measurement is computed as

ẑ =

α̂δ̂
 ,

where α̂ and δ̂ are computed by evaluating Equations (5.1) and (5.2) at m−k . The estimated

measurement, ẑk , depends on the relative position between the observer at time tk and the

a priori mean, whereas zk depends on the relative position between the observer at time tk

and the true position of the object within x(t) defined in Equation (5.3). In the EKF, the
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measurements need to be mapped into the dynamics space to be used for the update step

via the measurement Jacobian formed by

H =


∂α
∂x

∂α
∂y

∂α
∂z

∂α
∂ẋ

∂α
∂ẏ

∂α
∂ż

∂δ
∂x

∂δ
∂y

∂δ
∂z

∂δ
∂ẋ

∂δ
∂ẏ

∂δ
∂ż

 .
Calculating the measurement Jacobian from Equations (5.1) and (5.2) yields

H =

H11 H12 0 0 0 0

H21 H22 H23 0 0 0

 ,
where

H11 = −
ρy

(ρx)2 + (ρy)2

H12 = −
ρx

(ρx)2 + (ρy)2

H21 = −
ρz ρx

((ρx)2 + (ρy)2)
√

(ρx)2 + (ρy)2 + (ρz)2

H22 =
ρz ρy

((ρx)2 + (ρy)2)
√

(ρx)2 + (ρy)2 + (ρz)2

H23 =

√
(ρx)2 + (ρy)2

(ρx)2 + (ρy)2 + (ρz)2 ,

where it is reminded that ρ =
[
ρx , ρy , ρz

] T
is the relative position of the estimated object

with respect to the observer. Now, everything needed to update the a prior estimate to the

a posteriori is readily available and is done by

m+k = m−k +Kk (zk − ẑk ) .
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The a posteriori covariance can also be generated by

P+k = P−k − CkKT
k − KkCT

k +KkWkKT
k ,

where

Kk = CkW−1
k

Wk = HkP−k HT
k + Rk

Ck = P−k HT
k .

The a posteriori mean and covariance are then propagated to the next time step, forming

a new set of a priori mean and covariance, forming an iterative process. This is continued

until a specified time is reach, in this case, TCA.

5.3. IMPLEMENTING SELECT CASES

Three cases are chosen to investigate the effects of processing data via the EKF on

the probability of collision. The three chosen cases are Cases 1, 2, and 5. Case 1 is simply

chosen due to the fact that it has the exact same trajectory as Case 2, making them easy to

compare. Case 2 is chosen because the combined hard-body sphere should partially overlap

the covariance ellipsoid. If the covariance shrinks due to processing measurements in this

case, then the probability of collision should decrease. The inverse can be said about Case

5, which has a hard-body sphere that is completely engulfed by the covariance ellipsoid.

Cases 1 and 2 both involve two objects in GEO, and they both require 280, 800 seconds

after epoch to reach the conjunction time (TCA). These cases are implemented using 60

measurements, centered at the time halfway between epoch and TCA, defined as Tm. Case

5 involves two objects in LEO, which has a much smaller period than the cases in GEO.

Therefore, only 20 measurements are considered to estimate the state of the object. It is
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Table 5.1. Effects of measurements of the primary object on probability of collision

Patera’s Linear Adj. Cylinders Adj. Cylinders
Method PC,cum Patera’s 2-d PC,cum Normalized PC,cum

Case 1 0.132245 0.196259 0.195181
Case 2 0.005739 0.012380 0.012014
Case 5 0.052903 0.052091 0.051980

important to note that the observer generating the measurements is simply placed on the

surface of the Earth relative to the radial axis of the observed object. While this does not

indicate a real application observer, it is sufficient for the scope of this work. Extending

the implementation of this process to utilize real observation sites is reasonably straight

forward.

The implementation of Cases 1, 2, and 5 involve taking measurements of only the

primary object, then using those measurements in the defined EKF to refine the state esti-

mates and reduce the uncertainty in the estimate. A second implementation is conducted

in which measurements of both the primary and secondary objects are used to refine the

state estimates of both objects. In both implementations, it is expected that the refined state

estimates will lead to an alteration of the probability of collision.

5.3.1. Measurements on Only Primary Spacecraft. Implementing the first sce-

nario, where only measurements of the primary object yields the results, shown in Table

5.1. It is important to note that all of the collision probability in the results presented in this

section are computed from the nonlinear adjoining cylinders method using Equation (3.22)

for the two dimensional contributions.

5.3.1.1. Case 1. From the nonlinear results in Section 3.2.2, it is known that the

adjoining cylinders nonlinear method estimated the probability of collision for Case 1 to

be 0.218165 using Equation (3.22). Taking measurements of only the primary object leads
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to the covariance (in [m] and [m/s]) at TCA of the primary object being

Cp =


6272.6915 −363.22411 −2.0790739 × 10−7

−363.22410 21.806126 1.1943 × 10−8

−2.0791 × 10−7 1.1943 × 10−8 1.2050205

 . (5.8)

Comparing Equation (5.8) to the value given by Equation (1) in the Appendix, it is seen that

a slightly smaller covariance of this object at TCA is obtained by processing measurement

data. The effect that these measurements has on the probability of collision can be seen in

Figure 5.1.
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Figure 5.1. Cumulative probability of collision for Case 1 with primary-only measurements

Figure 5.1 illustrates that the probability of collision decreased for Case 1 by nearly

11% to 0.195181 as seen in Table 5.1. This probability of collision now indicates that there

will still be a collision, but the combined hard-body sphere is not entirely encompassed

within the covariance ellipsoid during the entire encounter region. The states of the primary

object from the EKF in Case 1 can be seen in Figures 5.2 and 5.3.
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Figure 5.2. Position errors and uncertainties for Case 1 with primary-only measurements

The orange lines in Figures 5.2 and 5.3 denote the 3σ interval defined by the a

priori and a posteriori covariance, and the position and velocity errors, denoted by the blue

lines, are generated by the difference between the estimated state and the true state of the

observed object. For Case 1, 60 measurements are simulated, centered about the time Tm =

140,400 seconds from epoch, which is half of the time to conjunction. The effect of the

measurements can plainly be seen in Figures 5.2 and 5.3, as the squiggly lines that appear

as disturbances to the flat estimate change. Figures 5.2 and 5.3 illustrate that the state

estimates barely change over each time step, but tend to drift, either up or down, depending

on the state component. It is important to note that the position error and velocity error in

the z-direction appear as horizontal lines with no disturbances, this is because the states of
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Figure 5.3. Velocity errors for Case 1 with primary-only measurements

these components are so close to zero that the measurements barely drift the states from

zero before they inevitably drift back, the drift is so negligibly small that it appears as if

measurements have no effect on these components.

If one expands the limits of Figures 5.2 and 5.3 to encompass the entire time from

epoch to TCA, then a highly oscillatory motion appears. The highly oscillatory motion

within the errors and intervals is generated by the multiple orbital periods that occur during

the propagation from epoch to TCA.

5.3.1.2. Case 2. From the nonlinear results in Section 3.2.2, it is known that the

nonlinear adjoining cylinders method estimated the probability of collision for Case 2 to be

0.016239 using Equation (3.22). Taking and processing measurements of only the primary
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object results in the covariance (in [m] and [m/s]) of the primary object at TCA to be

Cp =


6272.6915 −363.22402 −2.0791 × 10−7

−363.22402 21.806116 1.1943 × 10−8

−2.0791 × 10−7 1.1943 × 10−8 1.2050205

 , (5.9)

which is a slight decrease from the original covariance of the primary object at TCA, as

seen in the Appendix. This once again shows that only 60 measurements, each one second

apart during a time span of 280,800 seconds, can affect the covariance of the states. The

effect that these measurements have on the probability of collision can be seen in Figure

5.4.
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Figure 5.4. Cumulative probability of collision for Case 2 with primary-only measurements

Figure 5.4 illustrates that the collision probability dropped by 26% to 0.012014

from the original value, 0.016239. This is a significant decrease in collision probability for

only utilizing 60 measurements. The state estimation errors and associated uncertainties of

the primary object from the EKF in Case 2 can be seen in Figures 5.5 and 5.6.
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Figure 5.5. Position errors for Case 2 with primary-only measurements

Figures 5.5 and 5.6 illustrate similar estimates as those from Case 1. The trajec-

tories of the primary spacecraft between Case 1 and Case 2 are the exact same, and the

estimates are extremely close, the difference coming from the random numbers attributed

to the measurements. The measurements in Figures 5.5 and 5.6 are seen to have very little

effect on the states and almost no discernible effect updating the covariance, but the final

value of the covariance at TCA can be seen as a decrease from the original value. If one

were to expand the times of Figures 5.5 and 5.6, the same highly oscillatory motion de-

scribed for Case 1 would be seen. The reasoning for only illustrating this small amount of

the EKF results is to view the effects of taking measurements and updating the mean and

covariance have on the states, mainly the placement of the primary object and the size of

the combined covariance ellipsoid at TCA.
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Figure 5.6. Velocity errors for Case 2 with primary-only measurements

5.3.1.3. Case 5. From the nonlinear results in Section 3.2.2, it is known that the

nonlinear adjoining cylinders method estimated the probability of collision for Case 5 to

be 0.044385. This case only utilizes 20 measurements centered about half the time from

epoch to TCA, which 86,400 seconds after epoch. Taking 20 measurements of only the

primary object shrinks the covariance (in [m] and [m/s]) of the primary object to

Cp =


0.03708312 −7.80692029 −7.80691709

−7.80692029 3293.5183 3293.4385

−7.80691709 3293.4385 3293.5156

 , (5.10)
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which is about half the original covariance of the primary object at TCA, as seen in Equa-

tion (5) in the Appendix. This is a significant decrease in covariance compared to the first

two cases. Case 5 is the only case involving LEO motion from the three selected cases;

therefore, the number of measurements is decreased from 60 to 20, but there is still an

immense difference in the change of covariance, partly because the size hard-body sphere

is fixed so the data is more informative. The effect that the 20 measurements have on the

probability of collision can be seen in Figure 5.7.
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Figure 5.7. Cumulative probability of collision for Case 5 with primary-only measurements

Figure 5.7 illustrates that the probability of collision increased 17% from 0.044385

to 0.051980. This is the first case that the probability of collision increases from a decrease

in covariance. This becomes exceptionally important, because it can be seen that utilizing

measurements to update the states of the objects, decreasing the size of the covariance, can

in fact result in a more definite possibility of collision. This begins to validate the idea

that measurements can be taken of the primary object in order to obtain a more confident
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probability of collision, providing an alternative to simply maneuvering based on a thresh-

old value. The states of the primary object from the effects of updating via the generated

measurements can be seen in Figures 5.8 and 5.9.

−300−250−200−150−100 −50 0 50 100 150 200 250 300
−200
−100

0
100
200

−300−250−200−150−100 −50 0 50 100 150 200 250 300

−20

0

20

Po
si

tio
n

E
rr

or
[m

]

−300−250−200−150−100 −50 0 50 100 150 200 250 300

−20

0

20

Time from Tm [seconds]

Figure 5.8. Position errors for Case 5 with primary-only measurements

Figures 5.8 and 5.9 illustrate the oscillatory motion in the covariance, described in

the results section for Cases 1 and 2. Figures 5.8 and 5.9 show how the covariance generally

grows over time, then has a sharp decrease as it is updated with the new measurement

information. At the same time, the position and velocity errors can be seen to stray from

the zero-line due to the noise in the measurements.

5.3.1.4. Monte Carlo study. The random measurement noise used to corrupt the

measurements results in random outcomes for the results. Without a set random number

seed, the measurements will affect the covariance and the states in a way that may possibly

result in either a growth or decrease in collision probability for any chosen case. Suppose

that the primary object is originally located just outside of the combined covariance el-
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Figure 5.9. Velocity errors for Case 5 with primary-only measurements

lipsoid, the hard-body sphere would barely cross the ellipsoid, generating some value of

collision probability. Processing one possible set of measurements may place the new pri-

mary deeper inside the ellipsoid, increasing the collision probability. Processing a different

set of measurements over the exact same interval may place the primary object further out-

side the ellipsoid, decreasing the collision probability. The question then has to be asked,

what is the overall effect of the measurements on the probability of collision? A Monte

Carlo simulation is conducted to evaluate this process with 200 trials on a single case. Case

5 is chosen because it can be deduced from the relative geometry that a decrease in covari-

ance should increase the overall probability of collision. Figure 5.10 shows the results of

these 200 trials on Case 5 through the effect of measurements of only the primary object.
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Figure 5.10. Histograms of the trials for the probability of collision for Case 5

The first subplot in Figure 5.10 are the results for the 200 trials where the probability

of collision is calculated with Patera’s linear method. The remaining two subplots are the

probability of collision results of the 200 trials calculated by the two nonlinear adjoining

cylinders methods introduced in Section 3. The black vertical line in all three subplots

denotes the probability of collision for Case 5 without any measurements. It is clear from

the results of Figure 5.10 that at least two-thirds of the trials from Case 5, the probability of

collision increased. However, the random numbers used to corrupt the measurements can

cause the collision probability of Case 5 to drop as low as 0.015.

5.3.2. Measurements on Both Objects. If taking measurements to update the

states of one object were to decrease the probability of collision, then taking measurements

of both objects could decrease the probability of collision further. This section implements

the exact same process as observing only the primary object, but now both objects are

observed for the same three cases during the same times. Cases 1 and 2 utilize 60 mea-
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Table 5.2. Effects of measurements on both objects on probability of collision

Patera’s Linear Adj. Cylinders Adj. Cylinders
Method PC,cum Patera’s 2-d PC,cum Normalized PC,cum

Case 1 0.143477 0.207722 0.207134
Case 2 0.006139 0.014338 0.014128
Case 5 0.068887 0.070144 0.070033

surements for each object and Case 5 uses 20, all centered about the time halfway between

epoch and TCA. The results for the three chosen cases can be seen in Table 5.2 and will be

discussed further in later sections.

5.3.2.1. Case 1. From Section 5.3.1.1, the probability of collision for Case 1 is

0.195181 using measurements to update the estimates of the primary object and is 0.218165

without measurements. Taking measurements of the secondary object decreases the sec-

ondary object’s covariance (in [m] and [m/s]) at TCA to

Cs =


6272.8949 −363.24390 −4.3434 × 10−5

−363.24390 21.807376 2.4636 × 10−6

−4.3434 × 10−5 2.4636e − 06 1.2046558

 . (5.11)

This is extremely similar to the primary object’s covariance after measurement based up-

dates, which is an expected result. With both the primary and secondary objects’ covariance

decreased from the original, which is given in the Appendix, the confidence in the resulting

probability of collision should increase. The effect that processing measurements on both

objects has on the probability of collision can be seen in Figure 5.11.

Figure 5.11 illustrates that the probability of collision decreased by only 5% from

0.218165, without measurements, to 0.207134. This is an interesting result because this

is an increase from the probability of collision found when implementing only measuring

the primary object, 0.195181. This could be a result of the random corruption from the
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Figure 5.11. Cumulative probability of collision for Case 1, measuring both objects

measurements, as discussed earlier, or this could in fact be a further level of confidence in

the probability of collision by taking additional measurements. The states of the secondary

object using the measurements to update the states can be seen in Figures 5.12 and 5.13.

The estimates in the primary object remain the exact same as in section 5.3.1.1, due

to processing the same data, so only the secondary object will be discussed in this section.

The same trends in the measurement based updates on the estimated states for the primary

object can be seen in Figures 5.12 and 5.13 for the secondary object. The state estimation

errors all tend to sit on a horizontal line near zero until the time of the measurements, then

the state errors tend to drift away, but then converge to the straight line. If the times in

Figures 5.12 and 5.13 were extended, the same highly oscillatory motion from the multiple

orbits would occur.

5.3.2.2. Case 2. From Section 5.3.1.2, the probability of collision for Case 2 is

0.012014 using measurements on only the primary object and is 0.016239 when utilizing

no measurements. Taking measurements of the secondary object decreases the covariance



86

−300−250−200−150−100 −50 0 50 100 150 200 250 300
−100
−50

0
50

100

−300−250−200−150−100 −50 0 50 100 150 200 250 300
−100

0

100

Po
si

tio
n

E
rr

or
[m

]

−300−250−200−150−100 −50 0 50 100 150 200 250 300
−4
−2

0
2
4

Time from Tm [seconds]

Figure 5.12. Position errors for Case 1, measuring both objects

(in [m] and [m/s]) of the secondary object at TCA to

Cs =


6272.8949 −363.24382 −4.3434 × 10−5

−363.24382 21.807365 2.4636 × 10−6

−4.3434 × 10−5 2.4636 × 10−6 1.2046558

 . (5.12)

This is an extremely similar covariance as seen in Section 5.3.1.1; typically, the covariances

for the secondary objects in Cases 1 and 2 would be exactly the same because Case 1 and

2 follow the exact same trajectory. The difference between these covariances comes from

the random measurement noise used to corrupt the measurements that are processed in the

EKF. The effect that taking measurements on both objects has on the probability of collision

can be seen in Figure 5.14.
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Figure 5.13. Velocity errors for Case 1, measuring both objects
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Figure 5.14. Cumulative probability of collision for Case 2, measuring both objects
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Figure 5.14 displays the same trend that was seen in Case 1 with both measured

objects. The probability of collision for Case 2 decreases from the original probability,

0.016239 by 13% to 0.014128. This is, however, still an increase in probability from the

computation using only measurements based on the primary object, 0.012014. A similar

Monte Carlo method that was completed on Case 5 should be done to validate whether

the computation of collision probability is gaining accuracy from taking measurements for

both objects or if the results for Cases 1 and 2 are simply due to the discrepancies in random

measurement noise. The state estimation errors of the secondary object are seen in Figures

5.15 and 5.16.
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Figure 5.15. Position errors for Case 2, measuring both objects
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Figure 5.16. Velocity errors for Case 2, measuring both objects

Once again, Figures 5.15 and 5.16 illustrate similar estimates as Case 1. This is

attributed to the general nature of Cases 1 and 2, where both of the initial positions, veloc-

ities, and covariances are exactly the same. The only difference between the cases, as seen

in Figures 5.15 and 5.16, is that the effects of the random measurement noise. Without the

processed measurements, the estimates would remain exactly the same.

5.3.2.3. Case 5. From Section 5.3.1.3, the probability of collision for Case 5 is

0.051980 using measurements of only the primary object and is 0.044385 when utilizing

no measurements. The effects of the 20 measurements on the covariance (in [m] and [m/s])
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of the secondary object at TCA can be seen by

Cs =


0.0362050 −7.6213574 −7.6205048

−7.6213574 3294.9035 3294.4564

−7.6205048 3294.4564 3294.1663

 . (5.13)

This is similar to the covariance of the primary object, seen in Section 5.3.1.3, which is

also half of the original covariance of the secondary object at TCA without measurements.

This significant decrease in both of the objects’ covariances will have an immense effect on

the probability of collision. The effect that the measurements of both objects have on the

probability of collision can be seen in Figure 5.17.
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Figure 5.17. Cumulative probability of collision for Case 5, measuring both objects

Figure 5.17 illustrates an immense jump the in probability of collision, as the value

increases to 0.070033, which is about 58% greater than the original probability, 0.044385.

This is a significant increase in the probability of collision and could prove useful, as it
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shows that a drastic decrease in covariance could increase the collision probability if the

primary object remains completely engulfed within the covariance ellipsoid at TCA, which

is the situation in Case 5.

Figures 5.18 and 5.19 illustrate that the states of the secondary object update ex-

tremely similar to the primary object, as seen in Section 5.3.1.3. The covariance can be

seen to readjust and gain confidence at the time of the measurements in Figures 5.18 and

5.19.
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Figure 5.18. Position errors for Case 5, measuring both objects

Cases 1, 2, and 5 illustrate that the probability of collision is extremely sensitive to

the size of the covariance. The probability of collision is also sensitive to the location of

the primary with respect to the combined covariance ellipsoid, as seen in both Cases 2 and

5. In either case, the probability of collision can either increase or decrease, dependent on

the random noise measurements, making it imperative to analyze all measurement effects

with Monte Carlo trials.
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Figure 5.19. Velocity errors for Case 5, measuring both objects
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6. CONCLUSION

In this work, various methods of calculating the probability of collision were pre-

sented and compared. For cases involving low relative velocity motion, the nonlinear ad-

joining cylinders method is recommended to calculate the collision probability between

two objects. If the case in question involves two objects with high relative velocity motion,

then any of the analytical methods presented in this work will suffice. It should be kept

in mind that cases with extremely low relative velocities may behave highly nonlinearly

at the time of closest approach (TCA), causing the adjoining cylinders method to struggle

to correctly estimate the probability of collision. To effectively analyze the probability of

collision for a highly nonlinear case, the adjoining cylinders method needs to be readjusted

so there are no overlaps or gaps. This can be done by shifting the endpoints to begin at cer-

tain points in time instead of the current method of building the endpoints of the cylinders

based on the relative velocity at TCA.

Beyond presenting and comparing analytical methods, the intent of this work was

to analyze the effects of utilizing measurements to update the estimates of the objects on

the probability of collision in order to offer an alternative to maneuvering. Currently, if a

conjunction is deemed to have too high of a collision risk when compared to a specified

threshold value, a maneuver is performed. However, based on the results in Section 5, it is

clear that measurements not only have an effect on the covariance, but also on the probabil-

ity of collision. Measurements could therefore be used to gain a better understanding of the

probability of collision for each case in order to truly understand if a spacecraft maneuver

is required.

The observers used in this work were simply generated at some arbitrary point on

the surface of the Earth, which is not realistic in the scope of an actual mission application.

For more realistic results, it would be recommended that the observers be set at a real ob-
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servation location. If two objects are to be tracked, then multiple sites should be tasked to

track one of the objects at the same time then coordinate the results to form the measure-

ments to be input into the EKF. This should allow for an effective increase on accuracy for

the probability of collision.

The measurements were used to gain confidence in the position and velocity states

of one or both of the tracked objects, as seen by the decrease in the covariance. Utilizing

the estimated states and covariances from the EKF to recompute the probability of collision

was found to result in an increase or decrease in the probability of collision. The effects on

the change in probability of collision is an outcome from the random noise used to generate

the measurements. Several trial runs should be used on the process with the measurements

to develop a trend to analyze whether the probability of collision for a specific case is likely

to increase or decrease from the measurement-based updates. It is clear that the covariance

did not alter greatly when tracking the objects in the GEO cases, this is due to the fact that

the measurement noise was generated from a 10 arcsecond value. This value is sufficient

to update the covariance in the LEO case, but to gain more confidence in the states, one

would need a more accurate measurement of the system.

Future work from the results presented in this work should involve a re-examination

of the bounds of the endpoints of each individual cylinder within the adjoining cylinders

method. Future work could also include the effects of tracking both objects at different

times on the probability of collision; for example, tracking the primary object for 40 sec-

onds right after epoch and tracking the secondary object for 20 seconds right before con-

junction. It could also be interesting to see how a different filtering system, such as the

unscented Kalman filter, would estimate the states and covariances, and the effect that has

on the probability of collision. An extension of this work would be to examine optimization

utilizing the tracking of both objects to better understand a necessary maneuver.
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APPENDIX

THE 6 SELECTED TEST CASES

1. CASE 1

The position and velocity of the primary object at epoch is

rp =

[
−33552459.274056 −23728303.048015 0.0

]
[m]

vp =

[
−1828.9971793970 2534.1074695609 0.0

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−33547125.485964 −23734789.446136 −2.8340295187

]
[m]

vs =

[
−1829.5395947473 2533.7604928826 0.0003025433

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are



96

Cp =



0.057125290239 -0.023727388103 0.0 0.0 0.0 0.0

-0.023727388103 0.072874709760 0.0 0.0 0.0 0.0

0.0 0.0 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8



Cs =



0.057135052 -0.023730626 -2.833 × 10−9 0.0 0.0 0.0

-0.023730626 0.072864947 3.924 × 10−9 0.0 0.0 0.0

-2.833 × 10−9 3.924 × 10−9 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8


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The time of closest approach (TCA) occurs 280800 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
153321.16965476 41874161.3623902 0

]
[m]

vp =

[
3066.87442751798 −11.3641133112826 0

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
153321.667331387 41874161.8628867 4.99996644336043

]
[m]

vs =

[
3066.86442727559 −11.3541130234207 −1.356914987 × 10−6

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



6494.08 -376.118 0.0 0.015991 -0.49426 0.0

-376.118 22.5571 0.0 -0.00099 0.02857 0.0

0.0 0.0 1.20504 0.0 0.0 -6.071 × 10−5

0.015991 -0.00099 0.0 4.438 × 10−8 -1.212 × 10−6 0.0

-0.49426 0.028568 0.0 -1.212 × 10−6 3.762 × 105 0.0

0.0 0.0 -6.071 × 10−5 0.0 0.00 3.390 × 10−9



(1)

Cs =



6494.22 -376.135 -4.491 × 10−5 0.01599 -0.49427 -5.902 × 10−8

-376.135 22.5583 2.549 × 10−6 -0.00099 0.02857 3.418 × 10−9

-4.491 × 10−5 2.549 × 10−6 1.20468 -1.180 × 10−10 3.419 × 10−9 -6.071 × 10−5

0.01599 -0.00099 -1.180 × 10−10 4.439 × 10−8 -1.212 × 10−6 -1.448 × 10−13

-0.49427 0.028569 3.418 × 10−9 -1.212 × 10−6 3.762 × 10−5 4.492 × 10−12

-5.902 × 10−8 3.418 × 10−9 -6.071 × 10−5 -1.448 × 10−13 4.492 × 10−12 3.392 × 10−9


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2. CASE 2

The position and velocity of the primary object at epoch is

rp =

[
− 33552458.925202 −23728303.531359 0.0

]
[m]

vp =

[
−1828.9972161528 2534.1074435672 0.0

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−33547125.137007 −23734789.929413 −2.8340295764

]
[m]

vs =

[
−1829.5396314989 2533.7604668807 0.0003025433

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are
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Cp =



0.057125290923276 −0.023727388329881 0.0 0.0 0.0 0.0

−0.023727388329881 0.072874709076724 0.0 0.0 0.0 0.0

0.0 0.0 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8



Cs =



0.05713505341 −0.023730626101 −2.83355 × 10−9 0.0 0.0 0.0

−0.023730626101 0.072864946588 3.92423 × 10−9 0.0 0.0 0.0

−2.83355 × 10−9 3.92423 × 10−9 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8


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The time of closest approach (TCA) occurs 280800 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
153320.58467023 41874161.3645583 0.0

]
[m]

vp =

[
3066.8744276767 −11.3640699516664 0.0

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
153321.082302062 41874161.8650566 4.99996647748931

]
[m]

vs =

[
3066.86442743414 −11.3540696602929 −1.356911578 × 10−6

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



6494.0806 −376.11793 0.0 0.01599093 −0.4942615 0.0

−376.11793 22.557075 0.0 −0.0009883 0.0285679 0.0

0.0 0.0 1.2050448 0.0 0.0 −6.071 × 10−5

0.01599093 −0.0009883 0.0 4.438 × 10−8 −1.212 × 10−6 0.0

−0.4942615 0.02856788 0.0 −1.212 × 10−6 3.762 × 105 0.0

0.0 0.0 −6.071 × 10−5 0.0 0.0 3.390 × 10−9



(2)

Cs =



6494.2259 −376.13547 −4.491 × 10−5 0.0159936 −0.4942719 −5.902 × 10−8

−376.13547 22.558256 2.549 × 10−6 −0.0009885 0.0285692 3.418 × 10−9

−4.491 × 10−5 2.549 × 10−6 1.2046799 −1.180 × 10−10 3.419 × 10−9 −6.071 × 10−5

0.0159936 −0.0009885 −1.180 × 10−10 4.439 × 108 −1.212 × 10−6 −1.448 × 10−13

−0.4942719 0.02856918 3.418 × 10−9 −1.212 × 10−6 3.762 × 10−5 4.492 × 10−12

−5.902 × 10−8 3.418 × 10−9 −6.071 × 10−5 −1.448 × 10−13 4.492 × 10−12 3.392 × 10−9


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3. CASE 3

The position and velocity of the primary object at epoch is

rp =

[
−33552760.26664 −23727886.012085 0.0

]
[m]

vp =

[
−1828.9654659653 2534.1298970058 0.0

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−33161707.806638 −24056602.536394 122462.53057353

]
[m]

vs =

[
−1859.4197012053 2523.7257583343 6.9196063841

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are
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Cp =



0.057124700466574 −0.023727192359376 0.0 0.0 0.0 0.0

−0.023727192359376 0.072875299533426 0.0 0.0 0.0 0.0

0.0 0.0 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8



Cs =



0.057592112492 −0.02387716308 −0.0000654669 0.0 0.0 0.0

−0.02387716308 0.072407643880 0.0000888559 0.0 0.0 0.0

−0.0000654669 0.0000888559 0.0400002436273 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8


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The time of closest approach (TCA) occurs 280800 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
153825.880402651 41874159.4891089 0.0

]
[m]

vp =

[
3066.87429032037 −11.4015229317906 0.0

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
153825.770713806 41874161.8046658 3.21944850575784

]
[m]

vs =

[
3066.86428799712 −0.0354534936458784 −11.3560258390883

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



6494.0697 −376.19687 0.0 0.0159849 −0.4942613 0.0

−376.19687 22.566257 0.0 −0.0009882 0.0285739 0.0

0.0 0.0 1.205046 0.0 0.0 −6.071 × 10−5

0.0159849 −0.0009882 0.0 4.435 × 10−8 −1.212 × 10−6 0.0

−0.4942613 0.0285739 0.0 −1.212 × 10−6 3.762 × 10−5 0.0

0.0 0.0 −6.071 × 10−5 0.0 0.0 3.390 × 10−9



(3)

Cs =



6539.7169 −354.46196 −24.215837 0.0161379 −0.4975674 −6.678 × 10−5

−354.46196 19.985432 1.3127637 −0.0009366 0.0269101 3.837 × 10−6

−24.215837 1.3127637 1.2675008 −5.999e − 05 0.0018428 −6.024 × 10−5

0.0161379 −0.0009366 −5.999 × 10−5 4.479 × 10−8 −1.223 × 10−6 −1.698 × 10−10

−0.4975674 0.02691012 0.0018428 −1.223 × 10−6 3.7862 × 10−5 5.047 × 10−9

−6.678 × 10−5 3.837 × 10−6 −6.024 × 10−5 −1.698 × 10−10 5.047 × 10−9 3.446 × 10−9


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4. CASE 4

The position and velocity of the primary object at epoch is

rp =

[
−30285329.869738 −27707671.298553 0.0

]
[m]

vp =

[
−2131.9561967731 2289.9864650781 0.0

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−30289645.651968 −27703079.378773 −3.5557323237

]
[m]

vs =

[
−2131.6028955093 2290.3175429528 0.0002668288

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are
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Cp =



0.063215391925112 −0.024936222128042 0.0 0.0 0.0 0.0

−0.024936222128042 0.066784608074888 0.0 0.0 0.0 0.0

0.0 0.0 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8



Cs =



0.063207674212 −0.024935668595 −2.90508 × 10−9 0.0 0.0 0.0

−0.024935668595 0.066792325788 3.12138 × 10−9 0.0 0.0 0.0

−2.90508 × 10−9 3.12138 × 10−9 0.04 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8


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The time of closest approach (TCA) occurs 250560 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
−28570246.9654646 −29444249.7488823 0.0

]
[m]

vp =

[
−2264.38498740899 2161.38908399998 0.0

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
−28570365.77831 −29444187.0221777 −3.75799801838644

]
[m]

vs =

[
−2264.37610255555 2161.40591449933 0.000250330649170032

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



3149.7592 −3009.1232 0.0 −0.2330265 −0.2322077 0.0

−3009.1232 2874.8534 0.0 0.2226141 0.2218381 0.0

0.0 0.0 0.0459368 0.0 0.0 −7.602 × 10−6

−0.2330265 0.2226141 0 1.724 × 10−5 1.718 × 10−5 0.0

−0.2322077 0.2218381 0 1.718 × 10−5 1.712 × 10−5 0.0

0.0 0.0 −7.602 × 10−6 0.0 0.0 9.966 × 10−9



(4)

Cs =



3149.8 −3009.2 −0.00034854 −0.23303 −0.23221 −2.9683 × 10−8

−3009.2 2875 0.00033299 0.22262 0.22184 2.8358 × 10−8

−0.00034854 0.00033299 0.045967 2.5785e − 08 2.5696e − 08 −7.6215 × 10−6

−0.23303 0.22262 2.5785 × 10−8 1.7245 × 10−5 1.7184 × 10−5 2.1965 × 10−12

−0.23221 0.22184 2.5696 × 10−8 1.7184 × 10−5 1.7124 × 10−5 2.1877 × 10−12

−2.9683 × 10−8 2.8358 × 10−8 −7.6215 × 10−6 2.1965 × 10−12 2.1877 × 10−12 9.9656 × 10−9


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5. CASE 5

The position and velocity of the primary object at epoch is

rp =

[
−6384206.8367291 −1809788.8923854 −1809788.8923854

]
[m]

vp =

[
2832.7325382671 −4996.3701601034 −4996.3701601034

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−6384500.2941289 −1809180.343264 −1808975.9125458

]
[m]

vs =

[
2831.9641937123 −4996.9514349091 −4996.3957233165

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are
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Cp =



0.04692331661 −0.01221133731 −0.01221133731 0.0 0.0 0.0

−0.01221133731 0.08653834169 −0.003461658306 0.0 0.0 0.0

−0.01221133731 −0.003461658306 0.08653834169 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8



Cs =



0.046919356993 −0.01220909565 −0.01220771607 0.0 0.0 0.0

−0.01220909565 0.086539930551 −0.003459678474 0.0 0.0 0.0

−0.01220771607 −0.003459678474 0.086540712456 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−8 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−8 0.0

0.0 0.0 0.0 0.0 0.0 1 × 10−8


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The time of closest approach (TCA) occurs 172800 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
6878090.42688427 −18088.0480546556 −18088.0480546556

]
[m]

vp =

[
28.3121285934114 5382.88885559858 5382.88885559858

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
6878089.41881137 −18086.0593684701 −18087.043190241

]
[m]

vs =

[
28.6121377430165 5383.18886578179 5382.5888576694

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



0.062678 −18.67 −18.67 0.02921 −0.00016679 −0.00016679

−18.67 7904 7904 −12.38 0.064451 0.064419

−18.67 7904 7904 −12.38 0.064419 0.064451

0.02921 −12.38 −12.38 0.019392 −0.0001009 −0.0001009

−0.00016679 0.064451 0.064419 −0.0001009 5.4881 × 10−7 5.2467 × 10−7

−0.00016679 0.064419 0.064451 −0.0001009 5.2467 × 10−7 5.4881 × 10−7



(5)

Cs =



0.060621 −18.231 −18.229 0.028521 −0.0001632 −0.00016319

−18.231 7905.4 7904.4 −12.382 0.064456 0.064423

−18.229 7904.4 7903.6 −12.38 0.064418 0.064447

0.028521 −12.382 −12.38 0.019393 −0.0001009 −0.0001009

−0.0001632 0.064456 0.064418 −0.0001009 5.4881 × 10−7 5.2466 × 10−7

−0.00016319 0.064423 0.064447 −0.0001009 5.2466 × 10−7 5.4878 × 10−7


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6. CASE 6

The position and velocity of the primary object at epoch is

rp =

[
−6345736.9319327 −1876218.4567378 −1876218.4567378

]
[m]

vp =

[
2936.7099630585 −4966.263070953 −4966.263070953

]
[m/s].

The position and velocity of the secondary object at epoch is

rs =

[
−6345839.97926 −1876012.2715538 −1875945.3383511

]
[m]

vs =

[
2936.4524265637 −4966.4623670708 −4966.2765632153

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at epoch, respec-

tively, are



116

Cp =



4.7440894789163 −1.258327906777 −1.258327906777 0.0 0.0 0.0

−1.258327906777 6.1279552605419 2.1279552605419 0.0 0.0 0.0

−1.258327906777 2.1279552605419 6.1279552605419 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−6 1 × 10−22 1 × 10−22

0.0 0.0 0.0 1 × 10−22 1 × 10−6 1 × 10−22

0.0 0.0 0.0 1 × 10−22 1 × 10−22 1 × 10−6



Cs =



4.7439512624 −1.2582550000 −1.258207926 0.0 0.0 0.0

−1.2582550000 6.1281039833 2.128024367 0.0 0.0 0.0

−1.258207926 2.128024367 6.127944754 0.0 0.0 0.0

0.0 0.0 0.0 1 × 10−6 0.0 0.0

0.0 0.0 0.0 0.0 1 × 10−6 1 × 10−22

0.0 0.0 0.0 0.0 1 × 10−22 1 × 10−6


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The time of closest approach (TCA) occurs 172800 seconds after epoch. The posi-

tion and velocity of the primary object at TCA is

rp =

[
6877718.80777668 53694.8624938714 53694.8624938714

]
[m]

vp =

[
−84.0444719409842 5382.59802357631 5382.59802357631

]
[m/s].

The position and velocity of the secondary object at TCA is

rs =

[
6877719.80536988 53695.8588902137 53696.8637016744

]
[m]

vs =

[
−83.944457617452 5382.69801757 5382.49799313066

]
[m/s].

The covariances (in [m] and [m/s]) of the primary and secondary objects at TCA, respec-

tively, are
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Cp =



428.54 −18362 −18362 28.762 0.14901 0.14901

−18362 7.9019 × 105 7.9019e × 105 −1237.9 −6.4762 −6.4774

−18362 7.9019 × 105 7.9019 × 105 −1237.9 −6.4774 −6.4762

28.762 −1237.9 −1237.9 1.9392 0.010149 0.010149

0.14901 −6.4762 −6.4774 0.010149 5.5063 × 10−5 5.3513 × 10−5

0.14901 −6.4774 −6.4762 0.010149 5.3513 × 10−5 5.5063 × 10−5



(6)

Cs =



427.86 −18348 −18347 28.739 0.14889 0.1489

−18348 7.9024 × 105 7.902 × 105 −1237.9 −6.4765 −6.478

−18347 7.902 × 105 7.9018 × 105 −1237.9 −6.4775 −6.4766

28.739 −1237.9 −1237.9 1.9393 0.010149 0.01015

0.14889 −6.4765 −6.4775 0.010149 5.5066 × 10−5 5.3518 × 10−5

0.1489 −6.478 −6.4766 0.01015 5.3518 × 10−5 5.5071 × 10−5


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