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ABSTRACT 

This dissertation, consisting of three papers, presents the mechanical integrity and 

behavior of thin films and their applications in Micro-electromechanical Systems 

(MEMS). In the first paper, a solid-mechanics model is derived for the electromechanical 

deformation of a thin film in a capacitive MEMS-RF-switch and the associated “pull-in” 

phenomenon for both a 1-D rectangular bridge and a 2-D axisymmetric plate. The ratio of 

film-pad gap to film thickness (g/h) is found to play a significant role in the device 

behavior. The proposed analytical solution has some advantages over the existing models 

in formulating the design criteria.  

In the second paper, an elastic model is constructed to account for “pull-in” in 

terms of the applied voltage, the residual stress, and the film-pad gap for a 2-D 

axisymmetric film. The new model determines the validity range of the classical solution 

and accounts for the deviation for large elastic strain and high membrane stress.  Both 

tensile and compressive residual stresses are allowed.  New design criteria are derived for 

MEMS devices. 

In the third paper, an elastic model is constructed to account for the phenomena 

for ranges of film-pad gap, residual stress, and fringing field effects for a 1-D rectangular 

bridge. The results compare favorably with finite element analysis (FEA) in the literature, 

and possess much advantage over other available closed-form solutions.  

In Appendix A, a rigorous theoretical model is constructed for the contact 

mechanics of the transition from pre- to post- “pull-in” and the elastic recovery of the 

film at the removal of external electrostatic potential. The contact mechanics theory is 

extended for the design criteria of microstructure presented in Appendix B. 
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INTRODUCTION 

Electric actuated thin films are widely used in micro-electromechanical systems 

(MEMS) such as radio frequency switches (RF-switches), micro-pumps and valves, and 

electrostatic actuators. This dissertation will focus on the operation of a MEMS-RF-

switch. In a typical MEMS-RF-switch, a mechanically suspended 1-D rectangular or 2-D 

axisymmetric thin film is pulled by an electrostatic voltage (V0) applied to an electrode-

pad directly underneath. When V0 exceeds a certain “pull-in” threshold, V0
*, the thin film 

makes direct contact with the pad so that either an “on” or “off” signal is induced, and 

when the voltage is removed, the thin film resumes its original undeformed configuration. 

To understand the device operation and to optimize the design parameters (e.g., 

dimension of the thin film), it is necessary to construct a rigorous elastic model for the 

electromechanical interaction. 

One major difficulty in formulating the exact electromechanical behavior is the 

nonlinear governing solid-mechanics equation, which forbids an analytical solution. To 

simplify this problem, the classical “lumped model” in the literature assumes a rigid 

rectangular plate with one surface attached to an elastic recoil spring, while another 

surface interacts with a rigid substrate via the attractive electrostatic forces. This simple 

model predicts a “pull-in” deflection when the mid-span of the film deforms to reach 1/3 

of the film-pad gap. More sophisticated closed-form models are available in the literature 

to account for the fringing field as a result of the finite thin film width (1-D rectangular 

case) and residual stress due to fabrication and operation. Other numerical approaches 

using variational method with series of predetermined orthogonal trial functions and 

finite element analysis (FEA) are devised to solve for the device “pull-in” voltage. 
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Several limitations are noted: (i) all these solutions in literature are inconsistent with one 

another, because some models are based on pure plate-bending of the thin film, some on 

pure membrane-stretching and some on some well-defined mathematical functions, (ii) 

the thin film profile takes on a fixed shape that is unable to account for changes due to 

mixed plate-bending and membrane-stretching, (iii) the numerical procedures must be 

repeated for new design in device geometry and dimension, and (iv) the coupled 

electromagnetic and mechanical parameters do not lead to well-defined design criteria.  

In this dissertation, the electromagnetic and mechanical components of the 

MEMS-RF-switch are decoupled based on an assumption that the electrostatic field in the 

narrow film-pad gap is uniform, resulting in an exact analytical solution. The new 

solution is capable of formulating new design criteria, as the film dimensions vary over 

wide ranges of thickness and span. The critical operational parameters, such as pull-in 

voltage and critical film-pad gap, are also derived. Deviation resulting from the uniform 

field assumption is assessed. The fringing field effects due to finite film width are 

considered (1-D rectangular case).  

It is common for thin films to suffer from tensile / compressive residual stress 

during device fabrication and operation due to mismatch of the thermal expansion 

coefficients of the film and the substrate. Extreme residual stresses in thin films can lead 

to buckling, cracking, and even failure of the device. In this dissertation, the “pull-in” 

phenomena for a 1-D rectangular or a 2-D axisymmetric thin film are also derived 

incorporating the intrinsic film tensile / compressive membrane stress.  The results are 

useful in formulating design criteria and in assessing the device performance.  
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  When the applied electrostatic potential exceeds a certain threshold, V0
*, the film 

makes direct contact with the pad, leading to “pull-in” or an “on” state. If the applied 

electrostatic potential is turned off, the thin film is supposed to return its undeformed 

shape or “off” state. But the thin film may adhere to the pad even without the external 

electric field due to the van der Waals interactions, stray charges left at the interface, and 

meniscus formation due to water condensation. In this dissertation, a rigorous theoretical 

model is constructed for the contact mechanics of the transition from pre- to post- “pull-

in” and the elastic recovery of the film at the removal of external electrostatic potential. A 

critical film-pad gap, g/h, is determined to prevent device stiction failure. The theoretical 

results have significant impacts on the design and fabrication of many MEMS devices 

and nano structures.  



 

 

4

PAPER I 

Analysis of 1-D and 2-D Thin Film “Pull-in” Phenomena under the 

Influence of an Electrostatic Potential 

Gang Duan and Kai-Tak Wan 

Mechanical Engineering, University of Missouri-Rolla, Rolla, MO 65409-0050 

 

Abstract 

A thin 1-D rectangular or 2-D axisymmetric film is clamped at the perimeter. In 

the presence of an electrostatic potential (V0
*) applied to a pad directly underneath the 

film leads to a “pull-in” phenomenon. The electromagnetic energy stored in the 

capacitive film-pad dielectric gap is decoupled from the mechanical deformation of the 

film using the Dugdale-Barenblatt-Maugis cohesive zone approximation. The ratio of 

film-pad gap (g) to film thickness (h), or, (g / h), is found to play a crucial role in the 

electromechancial behavior of the film. Solution spanning a wide range of (g/h) is found 

such that V0
* ∝ (g/h)3/2 for (g/h) < 0.5 and V0

* ∝ (g/h)5/2 for (g/h) > 5. The new model 

leads to new design criteria for MEMS-RF-switches. 

 

Keywords: MEMS, RF-switch, electrostatic potential, surface forces, pull-in phenomena 

 

1. Introduction 

 When a thin film clamped at the perimeter is subjected to an external force (e.g. 

electrostatic potential, long-range intersurface forces), “pull-in” occurs when a tunable 
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surface force reaches a threshold or when the film is brought into close proximity of a 

substrate. There are numerous applications of this phenomenon, e.g. micro-actuators [1, 2], 

micro-pumps [3-5], and strain gauges [6]. In this paper, we will focus on the operation of a 

MEMS device and will allude to measurement of the range and magnitude of intersurface 

forces. In a typical MEMS-RF-switch, a mechanically suspended bridge is pulled by an 

electrostatic voltage (V0) applied to an electrode-pad directly underneath (Figure 1) [7-11]. 

When V0 exceeds a certain “pull-in” threshold, V0
*, the bridge makes direct contact with 

the pad so that either an “on” or “off” signal is induced; and when the voltage is removed, 

the bridge resumes its original undeformed configuration that induces the complementary 

signal. Note that the electrode-pad falls short of the bridge span in virtually all actual RF-

switches, but the assumption of the same length is the most common adopted by literature. 

There is also a 2-D version of this switch where a circular bridge is clamped at the 

perimeter. To understand the device operation and to optimize the design parameters (e.g., 

dimension of the bridge), it is necessary to construct a rigorous elastic model for the 

electromechanical interaction. 

The rudimentary “lumped model” assumes a rigid rectangular plate with one 

surface attached to an elastic recoil spring while another surface interacts with a rigid 

substrate via the attractive electrostatic forces. This simple parallel-plate capacitor model 

predicts a “pull-in” event (i.e. a spontaneous collapse of the bridge onto the electrostatic 

pad) to occur when the mid-span of the bridge reaches 1/3 of the bridge-pad gap [12, 13]. 

More sophisticated models become available recently to account for the fringing field as 

a result of the finite bridge width, residual stress due to fabrication and thermal expansion, 

and inclusion of air-cushion etc [14-16]. One major difficulty in formulating the exact 
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electro-mechanical behavior is the nonlinear governing solid-mechanics equation which 

forbids an analytical solution. In the literature, numerical approaches using variational 

method with series of predetermined orthogonal trial functions and finite element 

analysis (FEA) are devised to solve for the bridge profile and the associated device 

behavior [2, 12, 13, 15, 17, 18]. Several limitations are noted: (i) these solutions do not agree 

with one another, because some models are based on pure plate-bending of the bridge, 

some on pure membrane-stretching and some on some well-defined mathematical 

functions, (ii) since the normalized bridge profile takes on a fixed shape that is unable to 

account for changes due to mixed plate-bending and membrane-stretching, (iii) the 

numerical routine must be repeated for new design in device geometry and dimension, (iv) 

the coupled electromagnetic and mechanical parameters do not lead to well defined 

design criteria. A latest approach [19] is to adopt the Galerkin method where the 

electrostatic potential is expressed in a Taylor series with the terms higher than w4 

ignored. The method is also limited to a specific set of dimension and working 

parameters and might need to be repeated to cover a range of bridge stiffness and 

thickness. A comparison between the Galerkin method and our new model will be 

discussed. 

 In this paper, the electromagnetic and mechanical components will be decoupled 

based on an assumption that the electrostatic field in the bridge-pad gap is uniform, 

resulting in an exact analytical solution. Despite the inevitable inaccuracy involved, the 

new solution is capable of formulating new design criteria as the bridge gets thinner and 

shorter. The critical operational parameters such as pull-in voltage and critical bridge-pad 

gap will also be derived. Deviation resulting from the uniform field assumption will be 
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assessed. Edge effects due to finite bridge width and anticlastic deformation are also 

ignored. The 1-D model will be extended to 2-D. 

 

2. Theory 

Figure 1 shows a rectangular bridge mechanically clamped at the two opposite 

ends and suspended above an electrostatic pad which is a distance, g, below and has 

identical length as the bridge. The bridge is assumed to be free of pre-stress or residual 

stress and possesses a unit width, length, 2ℓ, thickness, h, elastic modulus, E, Poisson’s 

ratio, v, and flexural rigidity, 3 2/12(1 )Ehκ = − ν . An electrical potential, V0, is applied to 

the pad to set up a uniform electric field. The bridge is compelled and deformed by 

bending and a longitudinal membrane stress, σ, to a profile, w(x), governed by the 

classical von Karman equation [20, 21]: 

2
4 2 0 0

2

1           ( )             
2 ( )

Plate- Membrane-
Electrostatic forcebending stretching

Mechanical deformation

Vw h w
g w

⎛ ⎞ε
− κ ∇ + σ ∇ = −⎜ ⎟ −⎝ ⎠

 (1) 

where ε0 is the permittivity of free space, and 2∇  is the Laplacian operator in the 

rectilinear or curvilinear coordinate systems. The right hand side of (1) denotes the 

electrostatic force on the bridge, while the left hand side represents the mechanical 

response of the bridge in terms of the two deformation modes of plate-bending and 

membrane-stretching. Since w(x) appears on both sides of (1), the coupled electro-

mechanical equation leads to nonlinearity and thus forbids an analytical solution. To 

decouple the two components, the Dugdale-Barenblatt-Maugis cohesion zone 

approximation [22] is adopted here. The electrostatic force is replaced by a uniform 
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mechanical pressure, p, which is related to the applied voltage by averaging the traction 

over the bridge span. Equation (1) will first be solved for a 1-D rectangular switch, 

followed by an extension to a 2-D axisymmetric film where (1) remains valid for the 

radial profile, w(r). 

 

2.1. A 1-D rectangular switch 

For a 1-D switch, a rectangular film is clamped at the opposite ends. A set of 

normalized parameters is defined in Table 1. Note that β gauges the ratio of membrane 

stress to film rigidity such that (i) β ≈ 0 corresponds to a plate-bending dominant 

deformation in a thick and stiff bridge and (ii) β → ∞ refers to membrane-stretching 

dominant deformation in a thin and flexible bridge. A few boundary conditions are noted:  

(i) At the clamped ends,  wx=0 = 0,    or,  ωξ=0 = 0; 

(∂w/∂x)x=0 = 0,  or, (∂ω/∂ξ)ξ=0 = 0; 

(ii) At the center,   (∂w/∂x)x=ℓ = 0,  or,  (∂ω/∂ξ)ξ=1 = 0. 

Applying the cohesive zone approximation, (1) becomes 

4 2   ( )   w h w p−κ ∇ + σ ∇ = − ,   or,       
4 2

2
4 2

d d
d d

ω ω
− β = ρ

ξ ξ
 (2) 

with the equivalent pressure 

2
0 0

2

 2

 0

1   
4 [ ( )]
Vp dx

g w x
ε

=
−∫ ,   or,    2

0 2

 1

 0

1
[ ( )]

dρ = υ ξ
γ − ω ξ∫  (3) 

Equation (2) can be reduced to a second order linear differential equation [23] that leads to 

an exact analytical bridge profile  
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3

1 [cosh( ) 1] sinh( )
tanh

2⎧ ⎫⎛ ⎞⎛ ⎞ 1 ξ⎪ ⎪ω = ρ βξ − − βξ + β ξ −⎨ ⎬⎜ ⎟⎜ ⎟β β 2⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (4) 

with a central deflection, ω0 = ω(ξ=1),  

( )3

1 cosh 1 sinh
tanh0

⎛ ⎞ ⎧ ⎫1 β
ω = ρ β − − β +⎨ ⎬⎜ ⎟β β 2⎝ ⎠ ⎩ ⎭

 (5) 

Note that (4) is a rigorous solution of (2), rather than a pre-determined profile as 

in most variational methods in the literature (c.f. Table 3). Figure 2 shows the changing 

bridge profiles for a range of β. The volume of the reduced dielectric space between the 

bridge and pad is found by integrating (4), 

 2

 0
V w dx= ∫ ,   or,     

2

4

 1

 0
2 1

tanh
d

⎛ ⎞⎛ ⎞2 β β
ϑ = ω ξ = ρ + −⎜ ⎟⎜ ⎟β 3 β⎝ ⎠⎝ ⎠∫  (6) 

The uniform membrane stress on the bridge can be found by elementary elasticity [23, 24] 

2

2

 2

 0

1    
2 1 2

E dw dx
dx

1 ⎛ ⎞ ⎛ ⎞σ = ⎜ ⎟ ⎜ ⎟− ν⎝ ⎠ ⎝ ⎠∫ , or,      
2

2
 1

 0
6 d⎛ ⎞∂ω

β = ξ⎜ ⎟∂ξ⎝ ⎠∫  (7) 

Substituting (4) into (7) yields 

4

1/ 22 2

sinh

(6 )cosh(2 ) 9 cosh sinh 6 4

β β
ρ =

⎡ ⎤+ β β − β β β − − β⎣ ⎦
 (8)  

By eliminating β from (5) and (8), the mechanical response, ρ(ω0) can be obtained, 

though it is a mathematically formidable task because of the transcendental functions 

sinh(x) and cosh(x). An alternative to derive the exact form of ρ(ω0) is to trace a 

parametric plot of ρ(ω0) by taking β as a varying parameter since both ρ and ω0 are 

functions of  β (Figure 3). The bending to stretching transition can be expressed in an 

alternative manner as   
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( )nk 0
βρ = (β) ω  (9) 

where both k(β) and n(β) are well defined functions of β. If ρ(ω0) is shown in a log-log 

plot, n(β) is the gradient and is defined as  

0

0 0

(log )
(log )

d dn
d d

⎛ ⎞ω
= ⎜ ⎟ρ ⎝ ⎠

ρ ρ=
ω ω

 (10)

 

The exact form of n(β) can be found by Mathematica™, though it is too lengthy to be 

given here. Figure 4 shows n as a function of β with 1 ≤ n ≤ 3.  

Deformation of the bridge is bounded by two limiting cases. In case of a thick and 

stiff bridge, the deformation is small (ω0 < 0.5), the membrane stress is negligible (σ ≈ 0 

and β ≈ 0), and only plate-bending is present. It can be easily shown that (4), (5), (6) and 

(10) reduce to ωbend = (ρ/24) ξ2 (ξ  −  2)2, ρ = 24ω0, ϑ  = (16/15) ω0, and n = 1 respectively, 

which is consistent with the classical Timoshenko’s linear solution [24] shown in Figures 

2-4 as asymptotes. In case of a thin and flexible bridge with a zero bending inertia (κ = 0), 

the deformation is large (ω0 > 5), the normalized membrane stress becomes infinite (β → 

∞) and only membrane-stretching is present. The bridge behavior now becomes ωstretch = 

(ρ/ β2) (ξ  −   ξ2/2), ρ = 16ω0
3, ϑ  = (4/3) ω0, and n = 3. Note that ωstretch is parabolic such 

that (∂ω/∂ξ)ξ=1 = 0 and (∂ω/∂ξ)ξ=0 → ∞, which violates boundary condition (i). However, 

a film with zero flexural rigidity does not require a differentiable profile at the clamped 

edges. Figures 2-4 show the membrane-stretching asymptotes. Note that ρ(ω0) for 

membrane-stretching is cubic (Figure 3) and is consistent with our earlier results for 

rectangular film deformed by a central line load [23, 25]. When the deformation is 

intermediate (0.5 < ω0 < 5), mixed bending-stretching must be considered. The transition 
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can be arbitrarily taken as the intersection between the two limiting cases in Figure 3 and 

is roughly ω0 ≈ 1.20. Here 1 < n < 3 and 16/15 < ( ϑ /ω0) < 4/3.  

There are two ways to investigate the electromechanical behavior of the RF-

switch: (i) The first and most common method is to balance the mechanical force due to 

bridge deformation (c.f. (5) and (8)) and the electrostatic attraction due to applied voltage 

(3), and (ii) a balance of electromagnetic and mechanical energy involved. The stretching 

limit is chosen in this section to demonstrate the general behavior that is applicable also 

to mixed bending-stretching films. Figure 5 shows the mechanical and electrostatic forces 

for a range of applied voltage. When the applied voltage increases from null, there are 

two distinct intersections between the force curves at A and B as shown. It will become 

apparent that A corresponds to a stable configuration while B is unstable. As υ0 increases 

further, (ω0)A and (ω0)B move closer until they converge to C. Further increase in υ0 > υ0
* 

(with the superscript asterisk denoting “pull-in” hereafter) leads to “pull-in”, i.e. 

spontaneous collapse of the bridge onto the electrode-pad. The electromechanical force 

balance is maintained along path OAC.  

The device behavior can be further scrutinized by a simple energy balance. The 

total energy of the system is given by UT = UC – UE , where UC and UE are the energies 

stored in the capacitive dielectric medium at the bridge-pad gap and in the elastic bridge 

respectively,  

EU p dV= −∫ ,                    or,         
 

0
( )  E d

β ∂ϑ
Σ = − ρ β β

∂β∫  (11) 

 
2

0 0
 2

0

1   
2 ( )C
VU dx

g w x
ε

= −
−∫ ,   or,   

 1
2

0
 0

12  
( , )C dΣ = − υ ξ

γ − ω β ξ∫  (12) 
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Figure 6 shows the energetics of the device. Since the bridge is bounded by the 

gap, 0 ≤ w0 ≤ g, or, 0 ≤ (ω0/γ) ≤ 1. As υ0 increases from null, the bridge deforms. 

Therefore, both ΣE and ΣC are monotonic decreasing in (ω0/γ), and ΣT = ΣC – ΣE is shown 

as OABC. At a non-zero υ0, the bridge moves to a stable equilibrium at A where ΣT is 

minimal. An unstable equilibrium is found at B. Figures 7a and 7b show ΣT (ω0) for a 

range of fixed υ0 and ΣT (υ0, ω0) respectively. As υ0 increases, (ω0)A and (ω0)B move 

close to each other and eventually merge at C corresponding to a neutral equilibrium. 

Further increase in υ0 leads to “pull-in”. Energy balance is maintained along path OAA′C. 

The branch CB′B is obtained mathematically but is inaccessible physically. The stable 

equilibrium at A can be found by putting (∂ΣT / ∂ω0) = 0 and [∂2 ΣT / ∂(ω0)2] < 0. At 

“pull-in” at C, [∂2ΣT / ∂(ω0)2] = 0, resulting in a point of inflexion. Exact solution for the 

pull-in parameters ω0
* and υ0

* can be derived for the limiting cases of bending and 

stretching only, while the mixed bending-stretching behavior requires numerical 

integration.  

The switch behavior depends significantly on the bridge-pad gap. Figure 8 shows 

(ω0
*/γ) as a function of the bridge-pad gap γ. In theory, the force and energy balance 

should yield identical results. However, the cohesive zone approximation leads to a small 

inconsistency as shown in the shaded region, which cannot be resolved by the present 

model. Pull-in is expected anywhere within this zone. In fact, Figure 5 shows υ0
* = 1.02 

(force balance) while Figure 7 shows υ0
* = 0.92 (energy balance) for the stretching limit. 

A bending-stretching transition occurs roughly at g ≈ 1.2 h, i.e. when the bridge-pad gap 

is twice the bridge thickness. A thick and stiff bridge combined with a small gap with g < 

0.5 h leads to a bending dominant mode, while a thin (and flexible) bridge with a large 
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gap with g > 5h leads to a stretching dominant behavior. Bridges with the intermediate 

thickness and gap (0.5 h < g < 5 h) requires the full bending-stretching solution. Force 

balance requires 0.455 ≤ (w0
*/g) ≤ 0.679 and energy balance requires 0.397 ≤ (w0

*/g) ≤ 

0.658, with the lower and upper limits referring to the pure bending and pure stretching 

modes, respectively.  

Figure 9 shows the pull-in voltage υ0
* as a function of the bridge-pad gap. It can 

be easily shown that υ0
* ∝ γ 3/2 in the plate-bending limit and υ0

* ∝ γ 5/2 in the membrane-

stretching limit. A small difference between force and energy balances is found as shown 

by the narrow shaded strip. In the bending limit, υ0
* = 2.342 γ 3/2 (force balance) and υ0

* 

= 2.101 γ 3/2 (energy balance). In the stretching limit, υ0
* = 1.023 γ 5/2 (force balance) and 

υ0
*

 = 0.916 γ 5/2 (energy balance). Bending-stretching transition occurs roughly at g ≈ 2.5 

h when the limiting cases intersect. 

 

2.2. A 2-D axisymmetric switch 

Figure 10 shows a 2-D axisymmetric MEMS-RF-switch clamped at the circular 

perimeter. The set of normalized parameters is redefined as in Table 2. The elastic 

deformation equation (1) remains valid, though the exact solution to the axisymmetric 

problems requires a nonlinear von Karman equation in cylindrical coordinates to be 

solved. To avoid the mathematical complexity, an average stress approximation is 

adopted (i.e. σ = σr = σt) in association with the cohesive zone approximation. The 

boundary conditions are given by: 

(iii) At the clamped circumference,  wr = a = 0,    or,  ωξ=1 =  0; 

(∂w/∂r)r = a =  0, or, (∂ω/∂ξ)ξ=1 = 0; 
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(iv) At the center,               (∂w/∂r)r = a = 0,  or,  (∂ω/∂ξ)ξ=1 = 0.  

Equation (1) is reduced to the modified Bessel equation [23] with the profile gradient 

given by 

( )
2

2 2 2 3
2

d d+ 1+ =
d d

θ θ
ξ ξ − β ξ θ ρ ξ

ξ ξ
 (13) 

with the apparent mechanical pressure on the film is given by 

2
0 0

2 2
 0

2   
2 [ ( )]

aV rp d r
a g w r

ε π
=

π −∫ ,   or,    2
0 2

 1

 0 [ ( )]
dξ

ρ = υ ξ
γ − ω ξ∫  (14) 

Equation (14) can be solved analytically to yield the film profile 

( ) ( ) ( ) ( ) ( )2
1 0 03

1

1= 1  + 
2

I I I
I

⎛ ⎞ β⎧ ⎫ω ρ − ξ β βξ − β⎜ ⎟ ⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (15) 

with a central deflection, ω0 = ω(ξ = 0),  

( ) ( ) ( )0 1 03
1

1= 1
2

I I
I

⎛ ⎞ β⎧ ⎫ω ρ β − β +⎜ ⎟ ⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (16) 

The corresponding average membrane stress is given by 

2

2 2
 0

1     
2 1

aE d w rd r
a d r

⎛ ⎞⎛ ⎞σ = ⎜ ⎟⎜ ⎟− ν⎝ ⎠ ⎝ ⎠∫ , or,     
2

2
 1

 0
6 d⎛ ⎞∂ω

β = ξ ξ⎜ ⎟∂ξ⎝ ⎠∫  (17) 

which yields a relation between pressure and membrane stress 

  
ρ =  

β7 / 2 I1(β)
{(9β / 2) I1(β)2 − 3I2(β) [β I0(β) + 4I1(β)]}1/ 2  (18) 

The volume of the reduced dielectric space is found to be  

 0
2

a
V w r d r= ∫ π ,   or,         

 1

 0
2 dϑ = ωξ ξ∫  (19) 
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The mechanical response, ρ(ω0), can be obtained by eliminating β from (16) and 

(18). The bending to stretching transition ( )nk 0
βρ = (β) ω  is similar to the 1-D counterpart 

with 1 ≤ n ≤ 3. The limiting plate-bending solution becomes ωbend = (ρ/32) (1 − ξ2 ) 2, ρ = 

32ω0, n = 1, and ϑ  = (1/3) ω0. The limiting membrane-stretching solution becomes 

ωstretch = (ρ  / 2β2) (1 − ξ2 ), ρ = 12ω0
3, n = 3, and ϑ  = (1/2) ω0. 

The energetics and “pull-in” phenomenon for a 2-D film is derived by the similar 

energy balance method as in the 1-D model. Figures 11a and 11b show ΣT (ω0) for a 

range of fixed υ0 and ΣT (υ0, ω0) respectively. The trajectory OAA′C traces the energy 

balance locus, and “pull-in” occurs at C. Figure 12 shows (ω0
*/γ) as a function of γ. A 

shaded region of uncertainty is found because of the discrepancies due to the average 

membrane stress approximation and the cohesive zone approximation. Figure 13 shows 

υ0
*(γ). Similar to the 1-D model, υ0

* ∝ γ 3/2 is expected in the bending limit and υ0
* ∝ 

γ 5/2 in the stretching limit. In summary, υ0
* = 4.483 γ  3/2 (force balance) and υ0

* = 3.773 

γ 3/2 (energy balance) in the bending limit (γ  < 2); υ0
* = 1.591 γ  5/2 (force balance) and 

υ0
*

 = 1.338 γ 5/2 (energy balance) in the stretching limit (γ  > 4); and the bending-

stretching transition at γ ≈ 3. 

 

3. Discussion 

 A solid-mechanics model is derived for the electromechanical deformation of a 

bridge in a capacitive MEMS-RF-switch and the associated “pull-in” phenomenon for 

both 1-D and 2-D. The analytical solution has some advantages over the existing models 

in formulating the design criteria. Firstly, the combinatorial influences on the device are 
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derived analytically [26] in terms of (i) materials parameters: elastic modulus, Poisson 

ratio, and flexural rigidity of bridge; (ii) geometrical parameters: bridge-pad gap 

separation, bridge length and thickness; and (iii) structural index: mixed bending-

stretching deformation, and the limiting cases of pure bending and pure stretching. 

Secondly, the ratio of gap to bridge thickness (g / h) is found to play a critical role in 

determining the pull-in voltage. The relations for a bending bridge (υ0
* ∝ γ 3/2) and a 

stretching bridge (υ0
* ∝ γ 5/2) are crucial in designing the device and assessing the 

performance, especially when the device dimensions shrink from micro- (MEMS) to 

nano- scale (NEMS). Note that the actual (g / h) ratio in most actual devices falls in the 

range of 0.5 to 5. The pull-in voltage in the plate-bending limit is consistent with 

literature [17, 27], but the bending-stretching transition and the stretching limit are virtually 

unavailable in current literature. Table 3 compares the present work with various existing 

models. It is remarkable that the celebrated lumped model predicts the smallest (w0
*/g) = 

1/3 and predicts “pull-in” to occur before the actual critical applied voltage is reached. 

Our new model essentially covers the entire range of literature values (besides the 

lumped model) and shows bending-stretching transition is the main cause of 

inconsistencies in the literature values. Most existing models do not allow bridge profile 

change (w/w0) as the gap widens and are therefore incapable of predicting the bending-

stretching in the electromechanical behavior. Thirdly, when an AC voltage is applied to 

the electrode-pad, the resonance frequency of the bridge is determined by the governing 

constitutive relation, ρ ∝ (ω0)n, with n = 1 for thick and stiff bridge and n = 3 for thin and 

flexible bridge. In the linear bending region, resonance can be investigated using the 

simple harmonic motion equation, but deviation is expected as the gap widens. For 
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instance, the non-linear van der Pol equation will be needed to solve for n = 3 [28]. Failure 

to realize the bending-stretching transition in design will undermine the device 

performance. 

The present model can be extended to include other important parameters not 

covered above. For instance, residual stress (σ0) due to thermal mismatch is inevitable 

during device fabrication and operation. To accommodate its effect, the total membrane 

stress in equation (1) is rewritten as σ = σ0 + σm where σm is the concomitant stress due to 

change in bridge profile. Similarly, σ in equation (7) will be replaced by σm. The new 

constitutive relation and the subsequent pull-in parameters will yield useful information 

for switch design and can be checked against literature (e.g. [18, 19]), though it is beyond 

the present scope. Another interesting extension is that of “pull-off”. When the 

electrostatic potential is turned off, the bridge adhered to the pad is expected to detach 

from the substrate and resume its undeformed geometry reversibly. However, in the 

presence of undesirable intersurface forces (e.g., capillary at high relative humidity, stray 

charges on surfaces), the bridge must overcome the energy barrier in order to delaminate 

from the substrate. The thin film delamination mechanics can be obtained using the 

present model. In fact, we have investigated the delamination mechanics of a clamped 

circular film earlier for an ideal zero-range surface force, and derived the critical 

mechanical force, bridge-pad gap and radius at “pull-off” [29]. The model can be modified 

to allow transformation from 2-D to 1-D.  

Another related area alluded in Introduction is the measurement of long-range 

intrinsic surface forces such as van der Waals potentials, stray charges left at the interface 

etc. Such interactions can be incorporated into the present model by assigning an extra 
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term on the right hand side of (1) according to the Dugdale-Barenblatt-Maugis cohesive 

zone theory. In an earlier paper, we reported how a small graphite cylinder compelled a 

clamped silicone film into adhesive contact by means of a long-range surface force [30]. A 

solid-mechanics model was also constructed to account for the subsequent delamination 

and “pull-off”. The present theoretical model here presents a thorough analysis for the 

“pull-in” event prior to the adhesion contact between the two adherends, and is capable 

of analyzing the magnitude and range of surface forces involved. Since the intersurface 

force potential is not tunable as the MEMS switch but a fixed function depending on the 

materials nature and the dielectric gap, one necessary modification to the present model is 

to allow the film-substrate gap to vary. Detailed analysis is beyond the scope of the 

present work. 

 

4. Conclusion 

 Understanding the performance of a MEMS-RF-switch in terms of the device 

geometry, materials and structure is crucial in design criteria. In this study, a rigorous 

analytical elastic model is derived to account for the bridge deformed geometry and its 

effects on the pull-in voltage and other pull-in parameters. The ratio of bridge-pad gap to 

bridge thickness (g/h) is found to play a significant role in the device behavior. 
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Table 1. Normalized parameters for the 1-D model. 

Coordinates and profile 
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1/ 24
0

0 032 h
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p

h
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Energies involved 
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Table 2. Normalized parameters for the 2-D model. 

Coordinates and profile 
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Table 3. Comparison of the pull-in parameter (w0
*/g).  

Methods Pull-in (w0
*/g) 

1-D and 2-D Lumped model [12, 13] 

Assumption: rigid plates with one attached to an 

elastic spring and another stationary 

1/3 = 0.3333 

1-D Variational method [15] 

Trial function: 2
0 cos ( )ω = ω πξ  

1/3 = 0.3333 

1-D Variational method [18] 

Trial function: 2 2
0 ( 1)ω = ω ξ ξ −  

~ 0.45 

1-D Energy Method for multi-layered bridge [17] 

Trial function: 0( / 2) [1 cos(2 )]ω = ω + πξ  
0.40 – 0.67 

1-D Galerkin Method [19] 
     0.55 (zero residual stress) 

     0.42 – 0.63 (range of residual stress) 

1-D Present Work 
0.4545 – 0.6791 (Force balance) 

0.3970 – 0.6583 (Energy balance) 

  

2-D Variational Method [2] 

       Trial function: 

ω =C1J0(Ωm1/ 2r)+C2I0(Ωm1/ 2 r) 

~ 0.40 

2-D Present Work 
     0.5723 – 0.7500 (Force balance) 

     0.4633 – 0.7135 (Energy balance) 
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Figure 1 Sketch of a typical MEMS-RF-switch. The suspended bridge deforms in the 

presence of an electrostatic force induced by the electrode-pad directly underneath. 

 

  

 

 

 

 

h 

w0 

2ℓ 

x 

g 

Electrostatic Pad 

      Bridge 



 

 

26

Radial displacement, ξ = x / 

0.0 0.2 0.4 0.6 0.8 1.0

B
rid

ge
 p

ro
fil

e,
 ω

/ω
0 =

  w
/w

0

0.0

0.2

0.4

0.6

0.8

1.0

Bending limit(β = 0)
ω = (ρ / 24) ξ2 (ξ-2)2

β = 3

β = 7

β = 15

Stretching limit(infinite β)
ω = (ρ / β2)  (ξ − ξ2/2)

 

Figure 2 Normalized bridge deformed profile as a function of membrane stress. The 

bridge anchors at ξ = 0 and has its mid-span at ξ = 1. The dashed curves show the plate-

bending and membrane-stretching limits. 
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Figure 3 Mechanical response of the bridge under a uniform pressure across the span. 

The dashed curves show the plate-bending and membrane-stretching limits. 
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Bridge displacement, ω0 = w0 / h
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Figure 4 The gradient n(ω0) of the mechanical response ρ(ω0). 
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Bridge displacement, ω0 / γ = w0 / g
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Figure 5 Forces acting on the bridge in the stretching limit. With the attractive 

electrostatic force shown as dashed curves for a range of applied voltage, and the cubic 

mechanical force on the bridge shown as dark curve (OACB). Stable equilibrium is 

maintained along the path OAC. “Pull-in” occurs at C. 
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Bridge displacement, ω0 / γ = w0 / g
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Figure 6 Energetics of the MEMS-RF-switch with υ0 = 1.00 in the stretching limit. 

Various energy terms as functions of bridge central displacement are shown. 
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Bridge displacement, ω0 / γ = w0 / g
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Figure 7(a) Total energy as a function of central bridge displacement for a range of 

applied voltage in the stretching limit. Stable equilibrium is maintained along the path 

OAA′C. Path CB′B is unstable and physically inaccessible. “Pull-in” occurs at C. 
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Figure 7(b) Total energy as a function of both central bridge displacement and applied 

voltage. 
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Figure 8 Pull-in (w0
*/g) as a function of the bridge-pad gap. Both force and energy 

balances are shown. Pull-in occurs within the shaded area. 
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Figure 9 Pull-in voltage as a function of the bridge-pad gap. Both force and energy 

balances are shown. Pull-in occurs within the shaded area. The dashed lines show the 

plate-bending and membrane-stretching limits. 
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Figure 10 Sketch of a 2-D axisymmetric MEMS-RF-switch. 
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Film displacement, ω0 / γ =w0 / g
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Figure 11(a) Total energy ΣT(ω0, υ0) for fixed υ0 in the stretching limit. “Pull-in” occurs 

at C. 
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Figure 11(b) Total energy ΣT(ω0, υ0). 
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Figure 12 Pull-in (w0

*/g) as a function of the film-pad gap. 
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Figure 13 Pull-in voltage as a function of the film-pad gap. Pull-in occurs within the 

shaded area. 
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PAPER II 

“Pull-in” of a Pre-stressed Thin Film by an Electrostatic Potential:       

A 2-D Axisymmetric Plate 

Gang Duan 1, Kai-tak Wan 1, 2,  

1 Mechanical Engineering, 2 Chemical & Biological Engineering, University of Missouri-

Rolla, Rolla, MO 65409-0050, USA 

 

Abstract   

A 2-D axisymmetric pre-stressed film clamped at the periphery is loaded by an 

electrostatic potential applied to a pad directly underneath. Upon a critical applied 

potential, “pull-in” occurs and the film is compelled to make direct contact with the pad. 

An elastic model is constructed to account for “pull-in” in terms of the applied voltage, 

the residual stress, and the film-pad gap based on two complementary methods, namely, 

the force balance and the energy balance.  The new model determines the validity range 

of the classical solution and accounts for the deviation for large elastic strain and high 

tensile membrane stress.  Both tensile and compressive residual stresses are allowed.  

New design criteria are derived for MEMS devices.  

 

Keywords: thin film, residual stress, pull-in, electrostatic potential 
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1. Introduction 

 Electric actuated thin films are widely used in micro-electromechanical systems 

(MEMS) such as radio frequency switches (RF-switches)[1-3], micro-pumps and valves[4-7], 

and electrostatic actuators [8, 9]. Moveable parts in the form of thin films oftentimes suffer 

from tensile / compressive residual stress due to mismatch of the thermal expansion 

coefficients (CTE) of the film and the substrate during fabrication processes and device 

operation. Extreme residual stresses in ultra-thin films can lead to buckling, cracking, and 

even failure of the device. In a typical 2D RF-switch (Figure 1), an electrostatic potential 

applied to a pad compels the mechanically suspended thin film directly above to contact 

leading to a film-pad interface and thus “pull-in”. In our previous study [13], “pull-in” of a 

1D bridge and 2D circular film free of residual stress was investigated using two 

complementary methods: (i) force balance and (ii) energy balance. In this paper, we 

reexamine the “pull-in” phenomenon for a 2D film subject to an intrinsic residual stress.  

The trends and graphs discussed will be useful in formulating design criteria and in 

assessing the device performance.  

 

2. Theory  

2.1. Mechanical deformation of the film  

Figure 1 shows an axisymmetric film clamped at the periphery with radius, a, 

thickness, h, elastic modulus, E, Poisson’s ratio, v, flexural rigidity, 3 2/12(1 )Eh vκ = − , 

subjected to an intrinsic equibiaxial residual stress, 0σ , with 0σ > 0 corresponding to 

tensile stress and 0σ  < 0 compressive stress. The electrostatic pad with the same radius as 

the film is separated from the film by a distance, g.  An electrical potential, 0V , applied to 
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the pad sets up a uniform electric field in the gap and compels the film to deform to a 

profile, w(r). A concomitant longitudinal stress, mσ , arising from the film deformation 

leads to a total stress of  

0mσ = σ + σ  (1) 

For simplicity, a set of normalized variables listed in Table 1 is adopted hereafter. 

Depending on the relative magnitude of mσ  and 0σ , the resultant stress can be either 

tensile (σ > 0 and β2 > 0) or compressive (σ < 0, β2 < 0 and β = i |β| with i = 1− ).  

Based on linear elasticity, the film profile is governed by [10-12] 

2
4 2 0 0

2

1    ( )   =   
2 ( )
Vw h w

g w
⎛ ⎞ε

−κ ∇ + σ ∇ − ⎜ ⎟ −⎝ ⎠
        (2) 

where ε0 is the permittivity of free space and 2∇ is the Laplacian operator in cylindrical 

coordinates. The left-hand side denotes the mechanical deformation of the film, and the 

right-hand side is the electrostatic attraction. The nonlinear equation (2) forbids an 

analytical solution because w appears on both sides. Following the theoretical framework 

in our previous paper, the electromagnetic and mechanical components are decoupled by 

the Dugdale-Barenblatt-Maugis cohesion zone approximation [13]. The electrostatic force 

is replaced by an equivalent uniform pressure, p, which is taken to be the average traction 

on the film. The boundary conditions are given by 0
r a

w
=

= , ( / ) 0
r a

w r
=

∂ ∂ = , and 

0
( / ) 0

r
w r

=
∂ ∂ = . Equation (2) is integrated with respect to r once, yielding (3), where 

/θ = ∂ω ∂ξ  is the profile gradient. 

2
2 2 2 3

2  +  (1+ )  =   ∂ θ ∂θ
ξ ξ − β ξ θ ρ ξ

∂ξ ∂ξ
 (3) 
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The boundary conditions are rewritten as
 1

0
ξ=

ω = ,
1

( / ) 0
ξ=

∂ω ∂ξ = , 

and
 0

( / ) 0
ξ=

∂ω ∂ξ = . 

The average mechanical pressure is related to the electric field by 

2
0 2

 1

 0
  

[ ( )]
dξ

ρ = υ ξ
γ − ω ξ∫  (4) 

An analytical solution to (3) is found to be  

2
1 0 03

1

1 =  (1 ) ( ) + ( ) ( )
( ) 2

t I I I
I

⎛ ⎞ β⎧ ⎫ω ρ − ξ β βξ − β⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (5a) 

2
1 0 03

1

1 =  ( 1 ) ( ) + ( ) ( )
( ) 2

c J J J
J

⎛ ⎞ β⎧ ⎫ω ρ − + ξ β βξ − β⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (5b) 

where the superscripts t and c denote tensile and compressive stresses, respectively, and 

Jn(ξ) and In(ξ) are the nth order Bessel function and modified Bessel function of the first 

kind, respectively. The central deflection, 0 0ξ=
ω = ω , is given by  

0 1 03
1

1 =  ( ) ( )  1
( ) 2

t I I
I

⎛ ⎞ β⎧ ⎫ω ρ β − β +⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (6a) 

0 1 03
1

1 =  ( ) ( )  1
( ) 2

c J J
J

⎛ ⎞ β⎧ ⎫ω ρ − β − β +⎨ ⎬⎜ ⎟β β ⎩ ⎭⎝ ⎠
 (6b) 

The concomitant stress on the film is found by integrating the radial and circumferential 

elastic strains, and is given by  

2
2

 1

 0
6    . ( )]m d f 2⎛ ⎞∂ω

β = ξ ξ = [ρ β⎜ ⎟∂ξ⎝ ⎠∫   (7) 

with  
2 1/ 2

1 2 0 1
5/ 2

1

{(9 / 2) ( ) 3 ( ) [  ( ) 4 ( )]}( )  
( )

t I I I If
I

β β − β β β + β
β =

β β
 (8a) 
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and 

2 1/ 2
1 2 0 1

5/ 2
1

{(9 / 2) ( ) 3 ( ) [  ( ) 4 ( )]}( )  
( )

c J J J Jf
J

β β − β β β − β
β =

β β
 (8b) 

In the case of a large compressive residual stress, the film buckles according to the Euler 

criterion (denoted by the superscript † hereafter), †
0 0σ ≤ σ , with 

† 2
0 1 2j

a h
κ⎛ ⎞σ = − ⎜ ⎟

⎝ ⎠
      or       † 2 2

0 1( ) 14.7jβ = − ≈ −  (9) 

where j1 = 3.8317 is the first zero of 1J  with 1 1( ) 0J j =  [14]. As †
0 0β → β , cf  approaches 

infinity and buckling occurs. In fact, intrinsic buckling is inevitable even in the absence 

of an electric field when  β0
2 < − j1

2 . The elastic solution does not specify a positive or 

negative curvature of the buckled film, but the film is taken here to buckle towards the 

electrostatic pad.  

Figure 2 shows the film profile for a range of stress. Figure 3 shows the 

mechanical response, ρ(ω0). There are two relevant limiting cases. In the case of a thick 

and stiff film, the deformation is small (ω0 < 0.5), the concomitant stress is negligible (βm 

≈ 0), and the pre-stressed film is dominated by plate-bending. In such limit, the 

mechanical response (6a) and (6b) reduces to a linear relation,  

3
0 1 0

0
0 0 0 1 0

( )
2 2 ( ) ( )

t tI
I I

⎡ ⎤2β β
ρ = ω⎢ ⎥

− β + β β⎢ ⎥⎣ ⎦
                 (10a) 

3
0 1 0

0
0 0 0 1 0

( )
2 2 ( ) ( )

c cJ
J J

⎡ ⎤2β β
ρ = ω⎢ ⎥

− β −β β⎢ ⎥⎣ ⎦
 (10b) 

respectively.  The square brackets in (10a) and (10b) are constants for fixed residual 

stress, but increase with an increasing 0β  alluding to strain hardening. It can be easily 
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shown that our solution is consistent with the Timoshenko solution for 0β  = 0 [10]. 

Another limiting case is that of a thin and flexible film with κ ≈ 0. Here the film stress 

virtually approaches infinity, β → ∞, and membrane-stretching dominates. Both (6a) and 

(6b) reduce to  

3 2
0 012 2  0ρ = ω + β ω  (11) 

where the first cubic term is the direct consequence of the concomitant stress, and the 

second linear term arises from the residual stress. There is no distinction here between 

tensile and compressive residual stress because the concomitant stress dominates. For 

0mβ β  and mβ ≈ β , the linear term in (11) vanishes, 3
012ρ ≈ ω , and ρ(ω0) approaches 

the membrane-stretching limit independent of residual stress. The linear (10) and cubic 

(11) asymptotes are shown in Figure 3. The transition from pure bending to pure 

stretching is discussed as follows. For 2 2
0 1jβ > − , an increasing residual stress requires the 

linear-cubic transition to occur at a larger ω0. At the critical buckling limit 2 2
0 1jβ = − , the 

linear-cubic transition is pushed to †
0ω  = 0 with the linear part of (11) completely 

eliminated. For 2 2
0 1jβ < − , buckling occurs spontaneously even in the absence of the 

applied field, and the central deflection becomes  

 

22† †0 1
0 0 0

1 0 1

( ) 1
3   ( )
J j

j J j

⎡ ⎤−
ω = β − β⎢ ⎥

⎣ ⎦
  ≈ 0.5248  β0

2
− j1

2  (12) 

which is a monotonic increasing function of 2
0β . If the film-pad gap falls below this 

critical value ( †
0γ < ω ), then the film spontaneously touches the pad below and the device 

fails. The maximum compressive residual stress a working device can tolerate is found by 
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rearranging (12) to yield 2 2
0 max( ) 3.6309 14.6819β ≈ γ + . Increasing the external load 

requires the mechanical response to approach 3
012ρ = ω . Figure 4 shows a contour plot of 

2
0 0( )ω β  for fixed ρ as indicated. The curve ρ = 0 intersects the 2

0β −axis at † 2 2
0 1( ) jβ = − , 

which defines the physically inaccessible region due to buckling (shaded area). All 

2
0 0( )ω β  curves are monotonic decreasing, because the presence of residual stress stiffens 

the film and reduces the central displacement.  

 
2.2. Coupled electromagnetic and mechanical behavior 

The electromechanical behavior of the device can be derived by two methods: (i) 

an electromagnetic attraction and mechanical force balance, or (ii) a thermodynamic 

energy balance. The limiting case of a thin and flexible film is chosen to demonstrate 

both methods. Figure 5 shows the mechanical restoring force, MF  (solid curve), and 

electrostatic force, CF  (dashed curves), for a range of applied voltage at fixed residual 

stress ( 2
0β  = 25). When the applied voltage increases from null, the two force curves 

intersect at A which corresponds to a stable configuration with 0 0( / ) ( / )M CF w F w∂ ∂ > ∂ ∂ , 

and at B which corresponds to an unstable and physically inaccessible configuration 

with 0 0( / ) ( / )M CF w F w∂ ∂ < ∂ ∂ .  When the external voltage reaches *
0υ (with the asterisk 

denoting “pull-in” hereafter), the FM and CF  curves intersect only at one point, C, 

with 0 0( / ) ( / )M CF w F w∂ ∂ = ∂ ∂ , corresponding to the last stable configuration. Further 

increase beyond *
0υ  leads to “pull-in” and the film spontaneously collapses onto the pad.  

Force balance is maintained along the stable path OAC.  
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An alternative way to derive the electromechanical behavior is an energy balance. 

The total energy of the film-pad system can be written as  

2
0 0

 

0
     

2T

aV rU dr p dV
g w

ε
= − +

−∫ ∫     or    
 1

2
0

 0
    T d dξ

Σ = −υ ξ + ρ ϑ
γ − ω∫ ∫ (13) 

with V as the volume of the film-pad gap. The first term on the right-hand side denotes 

the energy stored in the capacitive dielectric film-pad gap, and the second term represents 

the elastic energy stored in the deformed film. Figure 6 shows a family of ΣT(ω0) for a 

fixed residual stress 2
0β  = 25 and a range of υ0. The curve OAA′C joining the local 

minima represents the stable path, while CB′B is unstable and physically inaccessible. At 

C, *
0 0υ = υ , the local minimum and maximum merge to form an inflexion 

with 2 2
0 0( / ) [ / ( ) ] 0T T∂Σ ∂ω = ∂ Σ ∂ ω = , corresponding to a neutral equilibrium. “Pull-in” 

occurs once *
0υ  is exceeded.   

In theory, the force and energy balances should yield identical results. However, 

the cohesive zone approximation leads to a small inconsistency, *
0υ  = 5.1565 from the 

force balance and *
0υ  = 4.6585 from the energy balance, as shown in figures 5 and 6. This 

discrepancy cannot be resolved by the present model, as actual pull-in occurs between 

these two limits. Figures 7-10 show the coupling effects of the residual stress and the 

film-pad gap for both the force balance (grey) and energy balance (dark). Figures 7 and 8 

show the pull-in displacement *
0( / )ω γ  and the corresponding pull-in voltage *

0υ  as a 

function of the film-pad gap, respectively. Figures 9 and 10 show the same quantities as 

functions of residual stress.  
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In Figure 7, the two families of curves do not coincide but are close to each other. 

A small gap (γ  ≤ 0.1) requires 0mβ ≈  and 0β ≈ β , and *
0( / )ω γ  tends to a constant 

depending on the magnitude of 0β . Numerical computation shows that force balance 

yields 0.5278≤ *
0( / )ω γ  ≤ 0.8007 and energy balance yields 0.4458 ≤ *

0( / )ω γ  ≤ 0.7349. 

Conversely, a large gap (γ ≥10) requires 0mβ β  and mβ ≈ β , and therefore all curves 

converge at a large γ. At γ = 10, force balance requires 0.7105 ≤ *
0( / )ω γ  ≤ 0.7552, and 

energy balance requires 0.6639 ≤ *
0( / )ω γ  ≤ 0.7215. Figure 8 shows the corresponding 

*
0υ (γ). Two asymptotes are also shown as dashed curves: (i) *

0υ  ∝ γ 3/2 for plate-bending 

dominated films with β0 = 0 and small gaps with γ ≤ 0.1, and (ii) *
0υ  ∝ γ 5/2 for 

membrane-stretching dominated films with β0 = 0 and large gaps with γ  ≥ 10.  Non-

buckled films with 2
0β  > – j1

2 experience the bending-stretching transition at a larger γ as 

2
0β  increases. The critically buckled film with 2

0β  = – j1
2 does not have a bending-

stretching transition, and *
0υ  ∝ γ 5/2 always holds. Intrinsically buckled films with 2

0β  < – 

j1
2 possess a monotonic increasing *

0υ , and they approach the *
0υ  ∝ γ 5/2 asymptote at a 

high γ.  Figure 9 shows the monotonic decreasing *
0( / )ω γ  as a function of film-stiffening 

residual stress. Films with a large γ  show the least dependency on the residual stress 

because the concomitant stress dominates, and *
0( / )ω γ  tends to be constant at a large γ. 

For instance, at γ = 10, *
0( / )ω γ   only varies  from 0.7728 to 0.7263 (force balance) and 

from 0.7407 to 0.6867 (energy balance) in the range of −50 < 2
0β  < 50.  In case of a 

smaller gap, intrinsic buckling at a large compressive residual stress forces the film to 
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touch the pad *
0( )ω = γ  even in the absence of an electric field (  υ0

* = 0 ).  Such 

involuntary pull-in is seen at γ = 2 with 2
0β  = –29 and at γ = 0.1 with 2 2

0 1jβ ≈ − . Figure 10 

shows the monotonic increasing function of pull-in voltage versus residual stress. Films 

with a small γ  are dominated by the residual stress, while a large γ (e.g., γ = 10) has less 

dependency on β0 because 0mβ β . Involuntary pull-in is again expected for large 

enough compressive stress.  

3. Discussion 

The proposed model has distinct advantages over some existing models in 

framing the design criteria for microdevices. For example, Osterberg and Senturia [8] 

proposed a formula, * 3/ 2
0 3.6987υ ≈ γ , for the pull-in voltage of a circular plate without 

residual stress based on both theoretical modeling and experimental data.  Juillard and 

Colinet [15] argued that the formula was invalid for a large film-pad gap γ, but did not 

suggest an exact solution.  For a small gap and stress free film, our model predicts 

* 3/ 2
0 4.4836υ = γ (force balance) and * 3/ 2

0 3.7730υ = γ  (energy balance), which is 

essentially consistent with Osterberg.  On the other hand, a large gap requires 

* 5/ 2
0 1.5910υ = γ  (force balance) and * 5/ 2

0 1.3375υ = γ (energy balance), which is vastly 

different from the small gap behavior.  Transitional behavior from “small” to “large” gap 

is found to occur at 3γ ≈  by our model, which sets an upper validity limit to the classical 

Osterberg solution.  Apart from the influence of gap dimension, our model further allows 

a non-zero residual stress to be incorporated.  The maximum compressive stress 

susceptible to plate buckling is found to be 2
0β  = – j1

2 and the pull-in voltage obeys 
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* 5/ 2
0υ ∝ γ  exclusively and †

0ω  = 0.  Increasing residual stress in the tensile mode strain 

hardens the plate and shifts the transition to * 5/ 2
0υ ∝ γ  at a larger gap.  

It is worthwhile to note some application of our model in other micro-devices. In 

an electrostatic driven micro-pump or strain gauges with circular diaphragms, some 

authors assumed a central point load to represent the nonlinear electrostatic force, while 

others assume a uniform pressure [5-7, 16]. The circular films are usually modeled to 

undergo either pure plate-bending or pure membrane-stretching but never mixed bending-

stretching mode. Typical profiles and volume of a bending plate is given by ω = ω0 (1 

− ξ2)2 and ϑ  = 1/3, and a stretching membrane ω = ω0 (1 − ξ2) and ϑ  = 1/2.  Our model 

yields a profile that spans the full bending-stretching spectrum and also predicts a 

continuous volume change from 1/3 to 1/2 [13]. Further correction as a result of non-zero 

residual stress can also be derived easily from the current model.  These results are 

important parameters in designing and evaluating fluid flow rate especially in a micro-

fluidics channel.  

The proposed model can also be used to characterize a capacitive Micromachined 

Ultrasonic Transducers (cMUT).  Nikoozadeh et al. [17] proposed a model for the 

axisymmetric thin film in cMUT based on the classical Timoshenko plate-bending 

solution. Caliano et al. [18] assumed the standard Bessel function for the film profile as in 

a drum head undergoing either pure plate-bending or pure membrane-stretching but not 

bending-stretching.  Vogl et al. [19-20] considered a reduced-order Galerkin model for a 

vibrating bending plate with non-zero residual stress and derived the film profile to be  

 
1

( )  ( )
N

s s
s

w r c r
=

= φ∑   with 
1/ 2 1/ 2

0 0
1/ 2 1/ 2

0 0

( ) ( )( )
( ) ( )

s s
s

s s

J r I rr
J I

Ω Ω
φ = −

Ω Ω
 



 

 

51

where sφ  is the sth shape function and 2 4 2( / )s shaΩ = ρ κ ω  is the sth eigenvalue with sω  

the natural frequency of vibration and ρ the mass density of the film. For a small film-pad 

gap (γ = 0.3), the series solution leads to a pull-in displacement, *
0 / 0.4750ω γ ≈ , which 

falls in the range of *
0 / 0.4661ω γ ≈  (energy balance) to 0.5756 (force balance) in our 

model.  Note that all of the aforementioned models in the literature do not consider the 

concomitant stress and are therefore incapable to portray the bending-stretching transition.  

On the other hand, our model accounts for neither film vibration triggered by an AC 

signal nor air-cushion in the film-substrate gap, though the Dugdale-Barenblatt-Maugis 

cohesion zone approximation adopted here could lead to better analytical solutions and 

thus better design criteria.  

4. Conclusion 

 An analytical elastic model is derived for a pre-stressed 2-D axisymmetric film 

that is applicable to MEMS-RF-switch and micro-pumps in terms of the measurable 

quantities. The coupling effects of residual stress and the ratio of the film-pad gap to film 

thickness (g/h), or γ, are found to play a significant role in the device behavior. A small 

film-pad gap with γ < 0.5 requires * 3/ 2
0υ ∝ γ , and the residual stress effects dominate due 

to a small concomitant stress ( 0 mβ β ).  In contrary, a large film-pad gap with γ > 5 

requires * 5/ 2
0υ ∝ γ , and the residual stress effects diminish as a result of a large 

concomitant stress ( 0mβ ≥ β ).  The results obtained are crucial to improve the design 

criteria. 
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Table 1. Normalized parameters. 

Coordinates and profile 
1 r
a

⎛ ⎞
⎜ ⎟
⎝ ⎠

ξ = , 1 w
h

⎛ ⎞ω ⎜ ⎟
⎝ ⎠

= , 1 w
h0 0

⎛ ⎞ω ⎜ ⎟
⎝ ⎠

= , 2

1 V
a h

⎛ ⎞
⎜ ⎟
⎝ ⎠

ϑ =
π

 

Device geometry  

(film-pad gap) 
1 g
h

⎛ ⎞γ ⎜ ⎟
⎝ ⎠

=  

Electrostatic potential 

(applied voltage) 

1/ 24
0

0 032
a
h

V⎛ ⎞ε
⎜ ⎟κ⎝ ⎠

υ =  

Membrane stress 
1/ 22

1/ 2
m m

a h⎛ ⎞
σ⎜ ⎟κ⎝ ⎠

β = ,
1/ 22

1/ 2
0 0

a h⎛ ⎞
σ⎜ ⎟κ⎝ ⎠

β = , 2 2 2
0m +β = β β  

Equivalent pressure 
4

2
pa

h
⎛ ⎞

ρ ⎜ ⎟
⎝ ⎠

=
κ

 

Energies involved 
2

22T T
a

h
U⎛ ⎞

⎜ ⎟πκ⎝ ⎠
Σ =  

 

 

 

 



 

 

56

h 

w0 

2a 
r 

g 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Sketch of a 2-D axisymmetric MEMS-RF-switch. The deformed profile of the 

film under an electrostatic force induced by the pad directly underneath is shown. 
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Radial displacement, ξ = r / a
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Figure 2 Normalized deformed profiles for a range of total stress.  The circular film, 

centered at ξ = 0, is clamped at ξ = 1. The dashed curves show the limits of pure 

membrane-stretching and spontaneous buckling. 
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Central deflection, ω0 = w0 / h
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Figure 3 Mechanical response of a pre-stressed film deformed by a uniform pressure. The 

dashed curves show the limiting cases of pure plate-bending and pure membrane-

stretching with zero residual stress. Grey lines show the central deflection of spontaneous 

buckling. 
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Residual stress, β0
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Figure 4 Central deflection of film under a uniform pressure for a range of residual stress. 

The dashed curve shows the spontaneous buckling limit (ρ = 0). 
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Central deflection, ω0 / γ = w0 / g
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Figure 5 A film subjected to the attractive electrostatic force. Stable equilibrium is 

maintained along OAC, and “pull-in” occurs at C. 
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Central deflection, ω0 / γ = w0 / g
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Figure 6 Total energy as a function of film central deflection for fixed residual stress and 

a range of applied voltage. Stable equilibrium is maintained along OAA′C, and “pull-in” 

occurs at C. Path CB′B is unstable and physically inaccessible.  
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Film-pad gap, γ = g / h
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Figure 7 Pull-in displacement as a function of the film-pad gap for a range of residual 

stress. With force balance (grey curves) and energy balance (dark curves). 
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Film-pad gap, γ = g / h
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Figure 8 Pull-in voltage as a function of the film-pad gap for a range of residual stress. 

With force balance (grey curves) and energy balance (dark curves). Dashed lines show 

the plate-bending and membrane-stretching limits with zero residual stress. Dotted lines 

show the central deflection of spontaneous buckling. 
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Residual stress, β0
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Figure 9 Pull-in displacement as a function of the residual stress for a range of film-pad 

gap. With force balance (grey curves) and energy balance (dark curves). 
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Residual stress, β0
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Figure 10 Pull-in voltage as a function of the residual stress for a range of film-pad gap. 

With force balance (grey curves) and energy balance (dark curves). 
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PAPER III 

“Pull-in” of a Pre-stressed Thin Film by an Electrostatic Potential:       

A 1-D Rectangular Bridge 

Gang Duan, Kai-tak Wan 

Mechanical Engineering, University of Missouri-Rolla, Rolla, MO 65409-0050 

 

Abstract 

A 1-D rectangular pre-stressed thin film clamped at two opposite ends is loaded 

by an electrostatic potential applied to a pad directly underneath. The pre-stress is 

allowed to be either tensile or compressive in nature. At a critical applied potential, the 

film becomes unstable and makes direct contact with the pad, leading to “pull-in”. A 

simple elastic model is constructed to account for the phenomenon for ranges of film-pad 

gap and residual stress. The results compare favorably with finite element analysis (FEA) 

in the literature and possess some advantages over other available closed-form solutions.  

 

Keywords: thin film, residual stress, pull-in, electrostatic potential 

 

1. Introduction 

 In our previous paper [1], we derived the electromechanical behavior of a 2-D 

axisymmetric membrane clamped at the periphery, and discussed a number of 

applications in RF-switches and micro-pumps. The present paper is an extension to a 1-D 

bridge, i.e. rectangular membrane, clamped at the opposite ends with an electrostatic pad 
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directly underneath.  Results from this model, especially the “pull-in” behavior, are 

rigorously compared with the literature. In addition to our previous work, tensile / 

compressive membrane stress and the fringing field effects due to finite bridge width are 

also considered. 

 

2. Theory  

2.1. Mechanical deformation of the film  

Figure 1 shows a bridge of thickness, h, width, b, and length, 2ℓ, clamped at two 

opposite ends. An electrostatic pad of the same width and same length lies directly 

underneath with a bridge-gap separation, g. The bridge possesses a longitudinal residual 

stress, σ0 (σ0 > 0 for tensile and σ0 < 0 for compressive). The bridge, possessing an 

elastic modulus, E, Poisson’s ratio, ν, and flexural rigidity, κ = Ebh3/12(1−ν2), is 

compelled by a pad voltage, V0, deforming it into a profile, w(x). A concomitant 

membrane stress, σm, as a result of the bridge deformation, results in a total membrane 

stress, σ = σm + σ0. For simplicity, a list of normalized variables given in Table 1 is used 

hereafter. The total membrane stress, β2, can be either tensile (β2 > 0) or compressive (β2 

< 0 or β = i |β| with i = 1− ).  Linear elasticity requires [2-5] 

2
4 2 0 0

2    ( )   =   1 0.65
2 ( )
Vw bw hb w

b g w
⎛ ⎞ε⎛ ⎞−κ ∇ + σ ∇ − + ⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

        (1) 

where ε0 is the permittivity of free space and ∇2 ≡ ∂2 / ∂x2  is the Laplacian operator. The 

mechanical deformation of the bridge (LHS) is balanced by the electrostatic attraction 

(RHS) with the fringing field effects governed by the first bracket.  The nonlinear 

differential equation (1) can be solved using the Dugdale-Barenblatt-Maugis cohesion 
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zone approximation as in our previous work [6]. The electrostatic force in (1) is replaced 

by a uniform pressure, p, yielding 

2    ′′′′ ′′ω − β ω = ρ  (2) 

where ′ = d/dξ. If pressure leading to bridge deformation is given by ρM and that as a 

result of electromagnetic attraction is ρC, then M Cρ = ρ = ρ  at equilibrium.  The 

electromagnetic pressure is averaged over the bridge span and is given by 

2
0 2

 1

 0

( ) 11 0.65
[ ( )]C dω ξ⎛ ⎞ρ = υ + ξ⎜ ⎟τ γ − ω ξ⎝ ⎠∫  (3) 

The boundary conditions are given by ω|ξ=0 = 0, (∂ω/∂ξ)|ξ=0 = 0, and (∂ω/∂ξ)|ξ=1 = 0. In 

case of tensile residual stress, an analytical solution to (2) is found to be  

3

1 [cosh( ) 1] sinh( )
tanhM

2⎧ ⎫⎛ ⎞⎛ ⎞ 1 ξ⎪ ⎪ω = ρ βξ − − βξ + β ξ −⎨ ⎬⎜ ⎟⎜ ⎟β β 2⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (4) 

with a central deflection, ω0 = ω|ξ=1, given by 

( )0 3

1 cosh 1 sinh
tanhM

⎛ ⎞ ⎧ ⎫1 β
ω = ρ β − − β +⎨ ⎬⎜ ⎟β β 2⎝ ⎠ ⎩ ⎭

 (5) 

The concomitant membrane stress is found to be  

2
2

2 2

  6 2

 1

 0
 6

(6 )cosh(2 ) 9 sinh cosh 6 4   
sinh

  

m

M

d

2

⎛ ⎞∂ω
β =  ξ⎜ ⎟∂ξ⎝ ⎠

⎡ ⎤+ β β − β β β − − β
= ρ ⎢ ⎥β β⎣ ⎦

∫
  (6) 

In case of compressive residual stress, all β’s are replaced by i |β| such that sinh(ix) = i 

sin(x), cosh(ix) = cos(x), and tanh(ix) = i tan(x). When 2
0β = ( )2† 2

0β = −π , mβ  approaches 

infinity and the bridge intrinsically buckles towards the pad even in the absence of 

external field. The superscript † denotes buckling. This is in consistent with the Euler 
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criterion, † 2 2
0 ( / )bhσ = −π κ  which sets an upper bound for the compressive residual 

stress [7].  

 

2.2. The electro-mechanical behavior 

The coupled electromagnetic and mechanical behavior of the bridge is here 

derived by (i) a force balance and (ii) a thermodynamic energy balance. As stated in our 

previous work [6], the two approaches are expected to yield the same result, but the 

cohesive zone approximation leads to some differences. In the force balance, the 

electromagnetic pressure obtained from (3) equals to the mechanical pressure from (6), 

yielding a stable equilibrium configuration, M Cρ = ρ . At “pull-in”, υ0 = *
0υ  and 

M m C m∂ ρ ∂β = ∂ ρ ∂β . An incremental increase with υ0 > *
0υ  leads to “pull-in” and the 

bridge spontaneously collapses onto the pad. Alternatively, in an energy balance, total 

energy of the device is written as the sum of energy stored in the capacitive dielectric 

medium at the bridge-pad gap and the elastic energy stored in the bridge, such that  

2
0 0

2

0
   1 0.65     

2T
V w b dxU p dV

b g w
ε ⎛ ⎞= − + +⎜ ⎟ −⎝ ⎠∫ ∫   

or  2
0

1

0
  2   1 0.65      T

d dω ξ⎛ ⎞Σ = − υ + + ρ ϑ⎜ ⎟τ γ − ω⎝ ⎠∫ ∫  (7) 

with V the volume of the bridge-pad gap.  Stable equilibrium is maintained when (∂ΣT / 

∂βm) = 0 and [∂2ΣT / ∂( βm)2] < 0. At 0υ  = *
0υ , (∂ΣT / ∂ βm) = [∂2ΣT / ∂( βm)2] = 0, i.e. 

neutral equilibrium.  
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The bridge width plays a significant role in the device behavior because of the 

fringing effects. We will first discuss the limit of an infinite width τ → ∞ before 

addressing finite τ. Figures 2-3 show graphically the device behavior according to force 

balance (grey) and energy balance (dark) with a large film width τ → ∞. Figure 2 shows 

the bridge deformation as a function of applied voltage for a fixed gap (γ = 1) and a range 

of residual stresses as indicated. As υ0 increases from null, stable equilibrium is 

maintained until “pull-in” occurs when ω0(υ0) meets the “pull-in” curve *
0ω ( *

0υ ), i.e. 

curve OABCDE. It is interesting to note that *
0ω  ≈ 0.4 is virtually independent of tensile 

residual stress ( 2
0β  ≥ 0), but *

0ω  increases sharply for an increasing compressive stress 

( 2
0β  < 0). Involuntary “pull-in” and device failure occur at point O with 2

0β  = ( )2†
0β . 

Figure 3 shows *
0υ (γ). Deformation of a thick and stiff bridge and small gap (γ  ≤ 0.1) is 

dominated by plate-bending and *
0υ  ∝ γ 3/2. In contrary, in a thin and flexible bridge with 

a large gap (γ  ≥ 10) membrane-stretching prevails and *
0υ  ∝ γ 5/2. Non-buckled bridge 

with 2
0β  > –π2 exercises a bending-stretching transition at larger γ as 2

0β  increases. When 

the bridge buckles with 2
0β  = –π2, the bending-stretching transition disappears such that 

*
0υ  ∝ γ 5/2.  A finite bridge width causes the device behavior to deviate from the infinite τ-

limit. Figures 4 and 5 show *
0ω (γ) and *

0υ (γ) for a range of τ based on force balance, 

respectively. The τ → ∞ limit serves as upper bound in both cases. Significant deviation 

is expected for larger gaps (γ > 0.1). 
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3. Discussion 

It is worthwhile to compare our model with closed-form models, FEA results, and 

experimental data in literature. Osterberg and Senturia [2] reported CoventorWare FEA 

data for a range of device dimension, which were experimentally verified. Six device 

specifications for wide bridge and small gap are listed in Table 2. The pull-in voltage 

from our model and other published closed-form models are listed in Table 3 for 

comparison. All models other than Osterberg’s [8-10] are derived from the classical 

lumped-model where a stiff and non-deformable bridge is attached to a theoretical spring 

to supply the mechanical restoring force. The effective spring constant accounts for the 

intrinsic elastic properties, residual stress and membrane stretching. Such simple model 

has a number of significant shortcomings. For instance, the non-deformable bridge leads 

to a “pull-in” deflection of *
0ω / γ = 1/3, independent of membrane stress and bridge-pad 

gap, which is clearly counterintuitive and contradictory to experimental measurements. 

Another consequence is the error in estimating the “pull-in” voltage.  Some authors 

introduce a correction coefficient to minimize the deviation from FEA, e.g. *
0υ  = α × 

( *
0υ )model with α = 1.09 obtained by curve-fitting for wide film with small gap [10].  

Comparison can also be made for bridges with large gap shown in Table 4. The pull-in 

voltage predicted from FEA, closed-form models, and our model are listed in Table 5. 

Osterberg’s empirical model [2] and O’Mahony’s model [9] do not account for concomitant 

stress especially in case of large deflection and thus deviate significantly from FEA in 

case 9.  Tilmans’ model [11] considers neither the fringing field nor the concomitant stress 

and thus leads to large deviation in cases 7 and 9. Chowdhury’s model [10], though 

allowing nonlinear stretching for large deflection and fringing field, is essentially an 
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extension of the lumped model and thus requires introduction of a correction factor to 

minimize the deviation. Pamidighantam’s model [8], also based on the lumped-model, 

seems to predict a better pull-in voltage (Table 5), but a different correction factor is 

chosen for individual device dimension.  A distinct advantage of the present model is the 

rigorous derivation of the deformed bridge profile and the associated “pull-in” from the 

first principles.  It is clear from Table 3 that the energy method yields consistent results 

comparable to FEA. The force method leads to a large deviation at roughly 11% in all 

cases, due to the fact that the pressure variation along the bridge span is wiped out. 

Another important consequence of the present model is that the “pull-in” deflection and 

voltage are expressed in terms of (i) materials parameters: stiffness, flexural rigidity, and 

residual stress of the bridge, (ii) geometrical parameters: film length, width, thickness, 

and bridge-pad gap, and (iii) structural index: mixed bending-stretching deformation 

mode. These provide important design criteria for the device performance and reliability.  

Recently, Zhang and Zhao [12] elegantly expressed the deformed bridge profile in 

terms of a Taylor series and adopted the Galerkin method to solve the nonlinear 

differential equation (1).  While ignoring the fringing field, the pull-in central deflection 

is found to be 0.42 < ( *
0 /ω γ ) < 0.68, which falls into the range predicted by the present 

model.  Besides the consistency, our model explains the physical cause of the spread, 

namely, the transition from plate-bending to membrane-stretching in the presence of 

residual stresses. The relation between pull-in displacement and residual stress 

* 2
0 0( )ω β  computed by Zhang are also consistent with the present model as shown in 

Figure 6. Most of Zhang’s data fall within the window bounded by force balance and 

energy balance, and are in fact in the vicinity of the force balance. The small deviation is 



 

 

73

likely the consequence of round-up errors and the bending-stretching transition. The 

buckling limit is 2
0β  = – π2.  The contact limit represents the critical compressive residual 

stress required to force the bridge to touch the pad in the mid-span, and is here given by 

2
0β  = –14.4. The data point for 2

0β  = −25 by Zhang falls out of the allowable range. 

 

4. Conclusion 

 A rigorous analytical elastic model is derived to account for the electromechanical 

behavior of a pre-stressed 1-D rectangular bridge in terms of the device geometry, 

materials, and structure. The coupling effects of residual stress and the ratio of the film-

pad gap and film width to film thickness, (b/h) and (g/h), are found to play a significant 

role in the device behavior. A small film-pad gap, γ < 0.5, requires υ0
* ∝ γ 3/2 and the 

residual stress effects dominates due to a small concomitant membrane stress (β0 >> βm) 

and fringing field effect. A large film-pad gap, γ > 5, requires υ0
* ∝ γ 5/2 for wide film, 

and the behavior approaches υ0
* ∝ γ 3/2  with a decreasing film width because of a large 

concomitant membrane stress (βm ≥ β0). The results are consistent with published data in 

the public domain. The trends and graphs obtained are crucial in designing MEMS 

switches.  
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Table 2. Device with wide film and small gap (E = 169GPa, ν = 0.06, width b = 50μm, h = 

3 μm, g = 1μm) 

Specifications Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Film length, 2ℓ (μm) 250 250 250 350 350 350 

Residual stress, σ0 (MPa) 0 100 −25 0 100 −25 

 

 

 

 

Table 3. Pull-in voltage, *
0V , for wide film and small gap indicated in Table 2. The 

parentheses are the percentage deviation from CW FEA.  

Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

CW FEA  40.1 57.6 33.6 20.3 35.8 13.7 

Ref. [2] 39.5 (1.5%) 56.9(1.2%) 33.7(0.3%) 20.2(0.5%) 35.4(1.1%) 13.8(0.7%)

Ref. [11] 39.31(2.0%) 57.45(0.3%) 33.26(1.0%) 20.06(1.2%) 36.02(0.6%) 13.35(2.6%)

Ref. [8] 40.38(0.7%) 58.87(2.2%) 34.12(1.5%) 20.6(1.5%) 36.77(2.7%) 13.63(0.5%)

Ref. [9] 39.1(2.5%) 56.85(1.3%) 33.22(1.1%) 19.95(1.7%) 35.6(0.6%) 13.45(1.8%)

Ref. [10] 39.6(1.3%) 57.4(0.3%) 33.71(0.3%) 20.2(0.5%) 35.91(0.3%) 13.71(0.1%)

Present 

Model 

Force 

balance 
44.3(10.4%) 64.7(12.3%) 37.2(10.7%) 22.6(11.3%) 40.2(12.3%) 14.5(5.8%)

Energy 

balance 
39.5(1.5%) 58.26(1.1%) 33.0(1.8%) 20.2(0.5%) 36.4 (1.7%) 13.6(0.7%)
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Table 4. Device specifications for large gap (2ℓ  = 300μm and ν = 0.33) 

Specifications Case 7 Case 8 Case 9 

Elastic modulus (GPa) 77 70 77 

Film width (μm) 0.5 10 50 

Film thickness (μm) 1 1 0.5 

Film-pad gap (μm) 1 2 6 

Residual stress (MPa) 0 60 0 

 

 

 

Table 5. Pull-in voltage, *
0V , for large gap indicated in Table 4.  

Model Case 7 Case 8 Case 9 

CW FEA (standard) 2.81 39.7 90.0 

Ref. [2] 2.63(6.4%)  35.5(10.6%)  18.1(79.8%) 

Ref. [11]  3.54(26.0%)  38.6(2.8%)  18.4(79.5%) 

Ref. [8]  2.87(2.1%)  37.7(5.0%)  75.8(15.4%) 

Ref. [9] 2.57(8.5%) 36.2(8.8%)  19.5(78.2%) 

Ref. [10] 2.16(23.1%) 43.9(10.6%)  67.9(24.2%) 

Present Model  

Force balance  3.8(35.2%)  47.8(20.4%)  119.5(33.3%) 

Energy balance  2.65(5.7%)  42.5(7.0%)  105.9(18.1%) 
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Figure 1 Sketch of the MEMS-RF-switch. The deformed profile of the film under an 

electrostatic force induced by the pad directly underneath is shown.  
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Figure 2 Film central deflection as a function of the applied electrostatic voltage. The 

dashed curves show the film behavior before pull-in, and the solid curves show the pull-

in central deflection. Force balance (grey curves) and energy balance (dark curves). 
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Figure 3 Pull-in voltage as a function of the film-pad gap with a range of residual stress. 

Force balance (grey curves) and energy balance (dark curves). The dashed curves show 

the plate-bending and membrane-stretching limits with zero residual stress.  
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Figure 4 Pull-in displacement (w0
*/g) as a function of the film-pad gap with a range of 

film width. Force balance (grey curves) and energy balance (dark curves). 
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Figure 5 Pull-in voltage (υ0
*) as a function of the film-pad gap with a range of film width. 

The dashed curves show the plate-bending and membrane-stretching limits with zero 

residual stress.  
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Figure 6 Pull-in displacement (w0
*/g) as a function of residual stress. The two curves are 

derived using the present model, and the data points are given by Zhang et al [12].  
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Thin Film Adhesion in the Presence of an External Electric Field 

Gang Duan and Kai-tak Wan 

Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, 

Rolla, MO 65401, USA 

 

1. Introduction 

  Electric actuated thin films are widely used in micro-electromechanical systems 

(MEMS) such as radio frequency switches (RF-switches), micropumps, and electrostatic 

actuators. In a typical MEMS-RF-switch, a rectangular thin film is clamped at both ends 

in the presence of an electrostatic potential (V0) applied to a pad directly underneath the 

film. When the applied electrostatic potential exceeds a certain threshold, V0
*, the film 

makes direct contact with the pad, leading to “pull-in”. The critical “pull-in” voltage (V0
*) 

& displacement (ω0
*) were predicted in our previous work [1]. In this paper, a rigorous 

theoretical model is constructed for the contact mechanics of the transition from pre- to 

post- “pull-in” and the elastic recovery of the film at the removal of external electrostatic 

potential. The model provides (i) structural index of the film: mixed plate-bending and 

membrane-stretching; (ii) geometrical parameters: film-pad gap, film thickness and 

length span; and (iii) material parameters of the film: elastic modulus and Poisson ratio. 

A critical film-pad gap, †γ , is determined. Should the gap fall below †γ , the film can no 

longer return to the undeformed planar geometry due to the adhesion even at the removal 

of external electrostatic potential. The theoretical results have significant impacts on the 

design and fabrication of many MEMS devices and nano structures.  
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2. Theory 

2.1. 1-D electromechanical RF-switch 

Figure 1 shows a 1-D rectangular thin film clamped at the two opposite ends and 

suspended above an electrode-pad with a distance, g, and a dielectric layer coated on the 

pad with thickness, g0. The film is assumed to be free of pre-stress and possesses a unit 

width, length, 2 , thickness, h, elastic modulus, E, Poisson’s ratio, v, flexural rigidity, 

κ=Εh3/12(1− v2). A uniform electric field is set up by an electrical potential, V0. The film 

is compelled and deformed to a profile, w(x) with central displacement w0.  

h

g

g
0

2
x

w0

 

Fig.1. an RF-switch pre-“pull-in”. 

When the applied electrostatic potential exceeds a certain threshold, V0
*, the film makes 

direct contact with the pad, leading to “pull-in”, with contact length, 2c, shown in Figure 

2.  
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Fig.2. an RF-switch post-“pull-in”. 
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 After the “pull-in” phenomenon takes place, the thin film is compelled and 

deformed by bending and a longitudinal membrane stress, σ, to a profile, w(x), governed 

by [2,3] 

2
4 2 0 0

2

1         ( )           
2 ( )

Plate- Membrane-
Electrostatic forcebending stretching

Vw h w
g w

⎛ ⎞ε
− κ ∇ + σ ∇ = −⎜ ⎟ −⎝ ⎠

                    (1) 

With boundary conditions: wx=0 = 0, (∂w/∂x)x=0 = 0, and (∂w/∂x)x=ℓ− c = 0. The coupled 

electro-mechanical behavior leads to nonlinearity of (1) and therefore forbids an 

analytical solution. The Dugdale-Barenblatt-Maugis cohesive zone model is adopted to 

decouple the two components and the electrostatic force (RHS of (1)) is replaced by a 

uniform mechanical pressure, p, given by 

( )
2

0 0
2

 

 0

1   
2 [ ( )]

cVp dx
c g w x

−ε
=

− −∫  (2) 

Solving (1) analytically, the film profile becomes 

[ ]
3

cosh ( )1
sinh( ) tanh

2⎧ ⎫λ β λ − ξ ⎛ ⎞⎛ ⎞ λ ξ⎪ ⎪ω = ρ − + β λξ −⎨ ⎬⎜ ⎟⎜ ⎟β βλ βλ 2⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (3) 

The normalized parameters are defined as ξ = x/ℓ, ω = w/h, γ = g/h, α=g0/g, λ=1−c/ℓ, ρ = 

(ℓ4/κh) p, β = (ℓ2h/κ)1/2σ1/2, υ0 = (ε0ℓ4/2κh3) 1/2V0, and Σ=(ℓ3/κh2)U. A simple energy 

balance is constructed as follows. The total energy of the system is given by UT = UC – 

UE, where UC is energy stored in the dielectric gap, and UE is elastic energy stored in the 

film. With 

[ ]
2

10 0
 

0
 ( )  

2C

cVU g w x dx−
−ε

= − −∫                                                       (4) 

and  
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2 42

2
0 0

Bending Energy Stretching Energy

E

c cw Eh wU dx dx
x x

− −⎛ ⎞κ ∂ ∂⎛ ⎞= − ⎜ ⎟ ⎜ ⎟2 ∂ 4 ∂⎝ ⎠⎝ ⎠
−∫ ∫                                    (5) 

The stable equilibrium can be found by putting (∂UT / ∂c) = 0 and [∂2UT / ∂c2] < 0, or 

(∂ΣT / ∂λ) = 0 and [∂2ΣT / ∂λ2] < 0. The general behavior of the thin film requires 

numerical integration. The bending limit is chosen in this section to demonstrate the 

general behavior that is applicable also to mixed bending-stretching films. At equilibrium, 

λ can be found by  

( ) ( )1/ 43 / 4 2 3

0

2 2γ α − α + α
λ =

υ
                                                                      (6) 

The pull-in voltage for energy balance is * 3/ 2
0 2.1008υ = γ  from our previous work. [1] So 

the pull-in λ* is given by 

( )1/ 4* 2 31.1603 2λ = α − α + α                                                                    (7) 

At the critical applied voltage υ0
*, “pull-in” occurs and the film slams onto the pad. The 

pull-in λ* only depends on the dielectric layer thickness, α, and λ* increases with the 

increases of α, as shown in Figure 3. When the applied voltage υ0 is larger than the “pull-

in” voltage υ0
*, the contact length between film and pad increases, or λ decreases. The 

critical pull-in λ* (point A, B, and C) separates physically inaccessible region (grey dash 

line) from the pull-in phenomenon. 
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Fig.3. “Pull-in” non-contact length. 

 

2.2. Interfacial adhesion of a 1-D rectangular thin film 

The above 1-D model predicts the “pull-in” contact length for a certain applied 

voltage. In this section, we discuss the contact mechanics between the film and the pad 

post- “pull-in”. Adhesion occurs when the film makes contact with the pad. Upon 

grounding the pad, the adhesive interface is supported by short-range attractions such as 

van der Waals interaction and water meniscus due to relative humidity in the 

environment. When the electrostatic potential is removed, the total energy of the system 

thus becomes UT = UE −US, where UE and US = γs (2c) are the elastic and surface energy, 

with γs, or Γ= (ℓ4/κh2) γs, the film-pad interfacial adhesion energy. The system total 

energy is illustrated in Figure 4 for a RF-switch with film-pad gap γ=1, α=0.05, and 

Γ=200, following the trajectory ABC. 
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Fig.4. post- “Pull-in” system energy. 

The unstable equilibrium (point B) can be found by putting (∂UT / ∂c) = 0 and 

[∂2UT / ∂c2] > 0, or (∂ΣT / ∂λ) = 0 and [∂2ΣT / ∂λ2] > 0. At equilibrium, “pull-off” †λ  

becomes 

( ) ( ) 1/ 21/ 4

1/ 4

† 6 / 52 1
λ =

Γ

− α γ⎡ ⎤⎣ ⎦                                         (8) 

When †λ < λ , the system total energy increases with the increase of λ, so the system is 

stable. While λ goes beyond the unstable equilibrium point B, a spontaneous 

delamination between film and pad begins, the delamination is unstable, in that, the 

contact length shrinks spontaneously to zero and the film snaps from the pad. The critical 

film-pad gap †γ leading to a spontaneous “pull-off” can be obtained by putting the “pull-

in” *λ equals the “pull-off” †λ  , 

2
† 012

5
γ =

υ
αΓ

                                                                                               (9) 
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3. Discussion 

From the elastic model derived for the post- “pull-in” behavior of a thin film in a 1-

D rectangular RF-switch, it is shown the critical “pull-in” *λ only depends on the 

dielectric layer thickness, so a smaller dielectric layer can increase the “pull-in” contact 

length, leading to a larger film-pad contact area, thus a larger adhesion energy between 

the film and pad. When the film-pad gap, γ, is designed such that γ < γ†, removal of the 

electrostatic potential does not detach the film but leaves it in adhesive contact with the 

pad with a contact length given by (6). The critical film-pad gap †γ is crucial in designing 

the device and assessing the performance, especially when the device dimensions shrink 

from micro- (MEMS) to nano- scale (NEMS). Failure to realize critical “pull-off” †γ in 

design might render the device incapable to perform [4]. 

The results shown can be used to formulate certain design criteria: a larger “pull-in” 

contact length as a result of a higher operation potential or a smaller dielectric layer 

thickness will increase the adhesion energy between the film and pad, this implies a larger 

film-pad gap is needed for the film to obtain enough elastic energy to overcome the 

adhesion energy and return to “pull-off” state. 

 

4. Conclusions 

       The post- “pull-in” behaviors of MEMS-RF-switch are derived. The trends and 

graphs given here will have significant impacts on the design and fabrication of many 

MEMS devices; especially those involve moveable rectangular thin films.  
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APPENDIX B 

 

ADHESION-DELAMINATION MECHANICS:  
APPLICATION TO MICRO BEAM NETWORK AND NANO STRUCTURES 
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The following is an extension of my work towards nano structures, and is already 

published in J Appl Phys [1]. The journal paper comprises contributions from me and 

another graduate student in Dr. Wan’s research group, Ming-Fung Wong.  Following is 

my own contribution in the paper, excluding Wong’s work. The theoretical model is a 

rigorously constructed for the delamination mechanics of a pre-stressed rectangular film 

adhered to a rigid punch using a thermodynamic energy balance shown in Figure 1.  

 

Fig.1. Sketch of the punch-film system 

The total energy of the film-punch system is given by UT = UP + UE + US, where 

the potential energy of the applied load, UP = F w0; the elastic energy stored in the 

overhanging non-contact film, UE = –(½) UP = –(½) F w0, as a result of the linear F(w0); 

and the surface energy at the adhesive contact interface, US = γ c. Delamination occurs 

when ∂UT /∂c > 0. At equilibrium, the equal sign holds. As delamination proceeds, the 

contact area shrinks from both contact edges until equilibrium condition is satisfied. At 

every equilibrium stage of delamination, the punch displacement is related to the contact 

length w0(c). When the punch displacement reaches a critical value, a “pinch-off” (stable 

shrinking of the contact area to a line) is predicted.  
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Wu et al. [2] constructed micro beam network free of residual stress. The structure 

is prone to collapse if the individual beam length exceeds the detachment length, ld, the 

maximum beam length to avoid stiction. When two adjacent beams separated by 2w0
* 

adhere (Figure 2), Wu assumes a parabolic deformed beam profile. 

 

Fig.2. Sketch of two adjacent adhered micro-beams adhered 

An energy method similar to the model [1] is used to derive  

1/ 43
* 1/ 2

0 = ( )d
Ehl C w

⎡ ⎤
⎢ ⎥γ⎣ ⎦

 (1) 

with C = (128/5)1/2 ≈ 2.25. Dimension analysis shows that the square bracket in (1) is a 

correct scaling parameter. There are, however, a number of minor inconsistencies when 

compared with the model [1]. Assuming a parabolic beam profile, the energy balance 

using the formulation [1] yields (1) with C = 2, and E is replaced by E / (1 – ν2).  The 

parabolic profile, in fact, posts difficulty because it does not satisfy the boundary 

condition at the clamped edge, dw/dx = 0 at x = l. If the correct profile (2) is used [1]  

2 31 1 (1 ) (1 )  (1 )
4 6

⎡ ⎤ω = ϕ − λ − ξ − − ξ⎢ ⎥⎣ ⎦
 (2) 

the energy method requires C = (48)1/4 ≈ 2.632. If the beams are subject to tensile 

residual stress as a result of thermal mismatch, shrinkage, or swelling, (1) remains valid 

as long as the residual stress σ0 is smaller than  
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1/ 2
†

0 2 *
0

2 1 = 
27(1 )

Eh
w

⎡ ⎤γ
σ ⎢ ⎥− ν⎣ ⎦

 (3) 

For σ0 > σ0
†, the beam stretching solution serves as a better solution. The profile is given 

by 2(1 )ω = ϕ − ξ β [1] and the detachment length becomes  

1/ 4
*

0
12 = d

Ehl w⎡ ⎤
⎢ ⎥γ⎣ ⎦

 (4) 

The detachment length scales as ld ∂ (w0
*)1/2 when the deformation is small and bending 

is dominant, and becomes ld ∂ w0
* when the deformation is large and beam stretching 

prevails. It is doubtful that a stretching-dominant deformation will occur, because the 

micro structure needs some degree of rigidity to retain its integrity and geometry. 
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