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ABSTRACT 

Background & Hypothesis 

It has become clear that ALDH1 genes are involved in the pathobiology of various human cancers. 

Several lines of evidence indicated that ALDH1 gene expression in tumors may be associated with 

clinical prognosis outcomes. This hypothesis of our study is that ALDH1 genes may be used to predict 

human cancer prognosis. In order to test this hypothesis, a systematic review of published articles, a 

meta-analysis using Random-Effects model was conducted to assess the association between ALDH1 

genes and clinicopathological features as well as survival outcomes.  

 

Methods  

Using PubMed, EMBASE and Web of Science, this study identified original English researches targeted 

for association between ALDH1 genes and cancer prognosis for more than 20 patients during survival 

analysis follow-up. This meta-analysis included original studies that evaluated a major clinical 

outcomes (overall survival, disease progression, recurrence, and metastasis) in agnostic format for a 

variety of cancer types and ALDH1 genes. Association of ALDH1 expression and clinicopathological 

outcomes were evaluated using the Review Manager 5.3 software. 

 

Results 

One hundred and twenty one original researches were eligible for inclusion in this meta-analysis. 

ALDH1 expression was significantly associated with poor overall survival of breast cancer, colon cancer, 

non-small cell lung cancer, and ovarian cancer. ALDH1 expression was also associated with poor 

prognosis of disease-free survival of breast cancer, non-small cell lung cancer, and rectal cancer. This 

meta-analysis showed no association of ALDH1 expression with prognosis of esophageal squamous 

carcinoma and Head and Neck Squamous Cell Carcinoma (HNSCC).  

 

Conclusion 

Expression of ALDH1 genes is associated with poor prognosis of breast cancer, colon cancer, non-small 

cell lung cancer, ovarian cancer and rectal cancer.  
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Background and Rationale       

The human aldehyde dehydrogenase (ALDH) gene superfamily comprises nineteen genes that are 

classified into eleven families and four subfamilies family. The ALDH genes encode proteins (isozymes) 

that are catalytically-active, although some ALDH proteins appear to be catalytically-inactive. The 

ALDH gene family also play an important physiological role in encoding proteins, leading to the 

formation of either catalytically-active or catalytically-inactive proteins [1]. ALDH isoenzymes 

participate in numerous biological processes mainly by catalyzing the oxidation of a wide spectrum of 

aldehyde to carboxylic acids [2]. Aldehydes are highly reactive molecules that are generated during the 

metabolism of either endogenous (e.g., amino acids, neurotransmitters, and carbohydrates) or 

exogenous (cigarette smoke, food) agents [3]. The ALDH proteins ubiquitously exist in nearly all 

subcellular tissues [4], with the majority of the ALDHs broadly distributed in tissues and hence display 

distinct substrate specificity [5].  

 

Historically the ALDH1 and ALDH2 genes are the most commonly studied enzymes that are responsible 

for aldehyde oxidation and the enzymes have the highest concentration in the liver [6]. The significance 

of ALDHs in physiological processes is based on compelling evidence that mutations and genetic 

polymorphisms in ALDH genes are associated with phenotypes that extensively exist in humans and 

rodents [7], such as alcohol-related diseases [8], cancer [9] and other neuro and endocrine diseases  [10, 

11]. In addition to the association between mutations in ALDH genes and clinical phenotypes, studies 

with transgenic knockout mice further support the notion that ALDHs are crucial in less-studied 

physiological functions such as embryogenesis and development [12].     

      

The ALDH1 family is consists of six enzymes including ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, 

ALDH1L1 and ALDH1L2.  ALDH1 genes catalyzes the detoxification of endogenous as well as 

exogenous aldehydes, oxidization of retinol to synthesize retinoic acid [13]. ALDH1 is responsible for 

the oxidation of intracellular aldehydes [14], contributing to the oxidation of retinol to retinoic acid in 

stem cell differentiation process and has been widely identified as a novel tumor stem-like cell marker 

in malignancies. ALDH1 is highly expressed in many stem and progenitor cells in several tissue types, 



3 

which is believed to play a role in cancer [15]. As stem cells can asymmetrically divide into stem cell 

or progenitor cell, and cancer is often regarded as uncontrolled proliferation of such stem cell [16]. 

Hence ALDH1 may be a biomarker of stemness. To date, ALDH1 activity has been used as a stem cell 

marker for head and neck squamous cell carcinoma [17], lung cancer [18], prostate cancer [19], 

pancreas cancer [20] and breast cancer [21]. ALDH1-positive cells can generate tumors from 

xenotransplantation situation, thus ALDH1 might be used to describe the long-time-sought cancer stem 

cells and even cancer prognosis [22]. According to Ginestier [23], the expression of ALDH1 in tumor 

cells can disclose an earlier phase of progenitor cells. In addition, ALDH1-positive tumor cells may 

have inherited aggressive properties including ability to self-renew, high proliferation potential, and 

resistance to damaging agents. ALDH1 expression is associated with self-renewal of normal cells and 

can be a predictor of poor prognosis among cancer patients [24]. The molecular level of ALDH1 

researches can be transferred to practical utility of ALDH1 in clinical diagnosis and prognosis. 

 

The primary function of ALDH1A1 concerns with encoding a homotetramer, which are ubiquitously 

distributed in epithelium of various organs such as testis, brain, eye lens, liver, kidney, lung and retina 

[25]. Recent studies suggest that ALDH1A1 may play an important role in cancer therapeutics prognosis 

effect and mechanism [26], which may result from a decrease in effectiveness of anticancer drugs. 

Because ALDH1A1 can detoxify major active aldehyde metabolites especially in breast cancer, 

ALDH1A1 expression in the breast is associated with unfavorable clinical outcomes [21]. So breast 

cancer patients who expressed lower ALDH1A1 expression status were likely to respond to CP-based 

treatment significantly more compared to those who have higher ALDH1A1 expression level. Previous 

studies also indicated that ALDH1A1 may be a predictor of the drug’s therapeutic effectiveness among 

non-small cell lung cancer patients [27]. ALDH1A1 is not only a potential marker of cancer stem cells, 

but also involves in the formation of tumor-initiating cells in ovarian tissues [28].  Besides this, a variety 

of non-cancerous cells including hematopoietic progenitor cells can express higher ALDH1A1 levels 

[4]. Original researches also indicated ALDH1 positive status is associated with epithelial-mesenchymal 

transition, the process of which is considered to be prerogative in tumor metastases [29]. ALDH1A1 

positive cells are enriched in CSCs and are associated with progression of bladder cancer [30]. Also the 
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ALDH1A1 positive cells define invasive CSCs and ALDH1A1 predicts poor prognosis in esophageal 

squamous cell carcinoma [31]. ALDH1A1 can downregulate certain cancers and has also been shown 

to interact with certain anticancer drugs including daunorubicin and flavopiridol [32].  

 

Like ALDH1A1, the isoenzyme of ALDH1A2 also has the function of encoding a cytosolic 

homotetramer, which are expressed and exist in various embryonic tissues [33].  ALDH1A2 plays a 

crucial role in regulating RA synthesis, therefore ALDH1A2 may affect cell growth and differentiation 

as well as apoptosis, leading to an anticancer effect [4]. Previous studies indicated ALDH1A2 is a 

candidate tumor suppressor for prostate cancer [34]. ALDH1A2 may be an excellent potential target for 

individualized treatment for gastric cancer patients because ALDH1A2 demonstrates the association 

with prognosis [35]. Other studies also suggest the implication of ALDH1A2 in for non-small cell lung 

cancer [36]. Low ALDH1A2 expression is associated with unfavorable recurrence-free survival in non-

small cell lung cancer patients [37]. 

 

Expression of ALDH1A3 has been found in a variety of organs such as salivary gland [38], stomach 

[39], breast [40], kidney [41] and fetal nasal mucosa [42]. ALDH1A3 has been shown to play a critical 

role in development of human tissues. Several studies have demonstrated that ALDH1A3 deficiency 

may be correlated with prognosis of certain cancer types.  Like ALDH1A1 and ALDH1A2, ALDH1A3 

is also a cytosolic homodimer and participates in the synthesis of RA and even embryonic development 

[43].  ALDH1A3 can be expressed in various late-stage embryonic and adult rodent tissues. Negative 

ALDH1A3 expression in mouse embryos is leading such mice more likely to die from defects in nasal 

development [44]. Previous studied reported that low ALDH1A3 expression status may play a critical 

role in a variety of cancers [4]. ALDH1A3 expression has been found to be downregulated in human 

breast cancer MCF-7 cells [45] and upregulated by induction of wild type p53 in cultured human colon 

cancer cells [46]. ALDH1A3 has been proposed as a prognostic marker for nonmuscle invasive bladder 

cancer [47]. ALDH1A3 expression is methylation-silenced in gastric cancer cells [48] and can be 

induced by the antitumor agent IL-13 cytotoxin in glioblastoma cells [49], which results in different 

prognosis outcomes in those tumor cells. ALDH1A3 belongs to the five candidate genes(Aldh1a3, Chd2, 
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Nipa2, Pcsk6, and Tubgcp5) within a region related to mammary tumorigenesis [50]. In humans, 

ALDH1A3 expression may be associated with enhancing malignant behavior of certain cancer types, 

and ALDH1A3 might be a new therapeutic target for cancer treatment [51].      

         

ALDH1B1 is a mitochondrial protein expressed and exist extensively in various human tissues including 

liver, testis, kidney, skeletal muscle, heart, placenta, brain and lung [52]. Recent studies have shown 

that ALDH1B1 is involved in the metabolism of the ethanol-derived acetaldehyde and may represent a 

link between alcohol consumption and diabetes [53].  ALDH1B1 might be a crucial isozyme for colon 

cancer tumorigenesis, because ALDH1B1 can modulate related signal pathways [53]. ALDH1B1 

displays relatively high affinity for acetaldehyde and is believed to play a major role in acetaldehyde 

oxidation in vivo [54].  

 

The primary function of ALDH1L1 concerns with catalyzing the formation of tetrahydrofolate from 10-

formyltetrahydrofolate [55]. ALDH1L1 also has the function of cellular proliferation, so ALDH1L1 

might be closely associated with cancer formation and progression. The positive expression of 

ALDH1L1 in different cancer cell can result in suppressed cellular proliferation and increased 

cytotoxicity, which might be attributed to its catalytic function[56]. ALDH1L1 is significantly 

downregulated in human liver, lung, prostate, pancreas and ovarian cancers, which may enhance tumor 

proliferation [57]. There consists with two intronic SNPs in ALDH1L1 and they are associated with one 

increasing and one decreasing risk respectively for breast cancer patients, indicating potential influence 

on breast cancer [58]. What’s more, ALDH1L1 is reported to have protective role for retinal cells [59]. 

Lower retinal tetrahydrofolate levels can affect ALDH1L1 in formate oxidation because of its additional 

role of methanol toxicity [4]. ALDH1L1 may work as a good target for personal treatment among gastric 

cancer patients, and ALDH1L1 may be associated with better overall survival in breast cancer patients 

[38]. ALDH1L2 is one of the most recently found isoenzyme in ALDH superfamily and is mainly 

expressed in spleen and corpus callosum tissue [60]. According to limited researches found, breast 

cancer treatment that uses anti-inflammatory agent can upregulate ALDH1L2 expression [61]. 
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The total studies above indicate that enhanced ALDH1 expression might be a hallmark for cancer stem 

cells(CSC) [62] and cancer stem cells are believed to possess characteristics of tumorigenesis in 

particular cancer types [16]. The objective of this study was to systematically investigate the 

significance of ALDH1 genes for prognosis and clinical outcomes in cancer patients.  Hazard Ratio can 

represent instantaneous risk over the follow-up time period and can indicate risks for the cumulative 

follow-up period [63]. The survival analysis involves a series of follow-up time intervals between a 

fixed starting point and the terminating event and in this study it’s the death of cancer patient [64]. The 

calculation of Hazard Ratio differs from Relative Risk or Odds Ratio in case-control studies is that the 

time contribution of individual cancer patients vary by the time of termination and their full survival 

times remain unknown. The Kaplan-Meier survival curve and log-rank test to investigate difference 

between two groups are examples of univariate analysis method, in which survival is described with 

respect to the factor while ignoring other variables’ influence [65] . It’s more common in clinical 

researches that more than one covariates or variables will exert influence on cancer patients’ prognosis, 

including different genotypes, drug treatment, age, race or combination of these covariates. Therefore, 

it’s more desirable to adjust these covariates while investigating the cancer patients’ survival in relation 

to ALDH1 status. In previous survival analysis of cancer patients with ALDH, Hazard Ratio is the 

comparison of death or recurrence corresponding to survival in patients between ALDH-positive and 

ALDH-negative groups. The Cox Regression model [66] seeks to describe association between the 

event incidence by hazard function and a set of covariates and the hazard is the instantaneous event 

probability at a given time or the probability that an individual cancer patient under follow-up time 

period the event in a time interval centered around that point.  

 

In meta-analysis, the clinical outcomes for time-to-event survival analysis is Hazard Ratio for overall 

survival or disease-free survival. However, not all studies include individual patient data and carry out 

the Cox regression analysis for Hazard Ratio. Methods are still available to obtain HRs associated 

statistics by carefully manipulating the published data that only include Hazard Ratio or Kaplan-Meier 

curve[67]. It may be possible to extract data from published Kaplan-Meier curves by digitizing data 

from a number of time intervals on the curves and then pool across these time intervals within a trial to 
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estimate HR that can represent the entire curve. The practical method proposed by Tierney[67] for 

incorporating summary hazard ratio into meta-analysis can provide stronger analysis because excluding 

researches that didn’t calculate HR may introduce a bias and may not report the necessary statistical 

information to allow estimation of entire HRs. More often, the researches can present the outcomes in 

different ways and by different cut-off point standard.  

  

This study helps fill the gap of the efficacy and time-to-event association between candidate ALDH 

genes with various cancer types. This study provides a more comprehensive review for ALDH1 genes 

and cancer types, the result of which shed interesting light on whether ALDH1 is a good biomarker for 

cancer patient prognosis. The association of ALDH1 and clinicopathological features of cancer patients 

with corresponding prognostic outcomes remain controversial. The clinical significance of this meta-

analysis study is the implementation ALDH1 in clinical prognosis prediction broadens the research area 

of the already studied enzyme and pushes forward clinical utility in improving quality of cancer patients.  
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Methods 

The articles for this meta-analysis study is identified by searching the PubMed, EMBASE and Web of 

Science databases. We searched English language studies that analyzed the associations between 

ALDH1 genes expression and prognosis in cancer patients. The search strategy used the clinical queries 

prognosis filter in databases mentioned above. And the key words for searching are as following: 

(Prognosis/Broad[filter])AND(ALDH1 OR ALDH1A1 OR ALDH1A2 OR ALDH1A3 OR ALDH1B1 

OR ALDH1L1 OR ALDH1L2)AND(cancer OR tumor OR neoplas* OR malignan* OR metastat* OR 

recurrence) AND(Humans[Mesh] AND English[lang]). 

 

The search results were then screened according to the following inclusion criteria:  

1) evaluation of the association between ALDH1 genes expression and overall survival(OS) or disease-

free survival(DFS) or other prognostic factors among all types of cancer patients;  

2) inclusion of validated data to calculate hazard ratio(HR) with a 95% confidence interval(95%CI) for 

Overall Survival, Disease-Free Survival, or other prognostic outcomes among cancer patients; 

3) inclusion of Kaplan-Meier survival curve to carry out data extraction and calculate unadjusted hazard 

ratio(HR) based on follow-up information; 

4) English language original researches; 

5) inclusion of original researches with sufficient sample size of more than twenty patients; 

6) articles published as original researches. Reviews were excluded.  

 

The following five criteria were implemented to assess the quality of the original researches:  

1) appropriate research design for survival analysis in cancer patients;  

2) meeting the inclusion criteria stated in the previous paragraph;  

3) clear research objectives for ALDH1 genes prognosis for different types of cancers;  

4) appropriate statistical analysis for Hazard Ratio of clinical outcomes in prognosis prediction,  

5) consideration of research bias and standardization.  
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The following information was extracted from each published researches: title, first author, publication 

year, key words, number of patients, histopathological cancer type, analysis method applied, cutoff 

value of ALDH1 expression, Hazard Ratio, 95%CI for HR, p-value, Kaplan-Meier curve. The original 

researches for screening and reviewing were before February 29, 2016.  

 

Definitions and Standardizations 

This study used a priori defined standardized outcomes and definitions for ALDH1 status to avoid 

subjective selection of outcomes and definitions across studies as much as possible. Expression of 

ALDH1 is measured by immunohistochemistry as part of the large gene analysis. For 

immunohistochemistry, we define ALDH1-positive status as nuclear staining in tumor cells or at least 

moderate staining in qualitative scales. The cut-off point may vary across included publications. If 

different ALDH1-positive status were used, the cut-off point is recorded according the original papers. 

The comparison groups for Hazard Ratio or Relative Risk in the survival analysis were transformed and 

standardized to ALDH1-positive group vs. ALDH1-negative group, with negative expression as the 

reference. The main outcome was Hazard Ratio for Overall Survival or Disease-Free Survival by Cox 

Regression Analysis. To avoid bias that may arise, if investigators select the follow-up period to report 

according to the results at each follow-up interval, we standardized definitions to include 24 months of 

follow-up in all studies. Cox models that allow estimation of a hazard ratio for the entire follow-up 

survival analysis are not routinely presented in ALDH1 studies.  

 

Data Extraction      

For each individual research, we recorded author name, journal and year of publication, sample size, 

cancer type, demographics, gene and ALDH1 status for immunohistochemistry analyses, definition of 

a ALDH1- positive status, cox model analysis used, outcome, HR, 95%CI, p-value during the analysis, 

overall survival, disease-free survival. For papers didn’t include Hazard Ratio, we used Kaplan-Meier 

survival curve and methods based on Tierney to calculate the Hazard Ratio for the study. The 

PlotDigitizer was used to extract the data from Kaplan-Meier curve. According to Tierney[67], the 

Hazard Ratio can be calculated in each time interval and two groups. The data taken into calculation 
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include following steps:1) event-free at the start of the interval, 2) censored during the interval, 3) at 

risk during the interval, 4) the number of events during each time interval, 5) O-E, V and HR for each 

time interval, 6) O-E, V and HR for the entire Kaplan-Meier curve. PlotDigitizer can extract data for 

numbers event-free at the start of specific time interval for ALDH1-positive group and ALDH1-negative 

group. Overall HR and 95%CI can be calculated by the Calculations Spreadsheet provided by Tierney 

[67].  

 

Statistical Analysis 

To determine poor clinical outcome associated with each category of ALDH1 genes and cancer types, 

hazard ratio (HR) from time-to-event analyses was extracted along with the 95% confidence interval as 

well as ALDH1 expression level. When the 95% confidence interval was not available from original 

papers, two methods were used to validate the data of such studies. 95%CI can be calculated by HR and 

p-value, or 95%CI can be approximated from Kaplan-Meier curve. The association of the expression 

of ALDH1 and the general prognostic markers is assessed for breast cancer, colon cancer, esophageal 

squamous cell, head and neck squamous carcinoma, non-small cell lung cancer, ovarian cancer and 

rectal cancer, and the survival outcomes including overall survival, disease-free survival or other 

prognosis outcomes. The published data and figures from original papers were used to assess the HR 

according to the methods described by Parmar et al[68]. Adjusted Hazard Ratio was calculated by 

multivariate analysis based on Cox Regression Model, and unadjusted Hazard Ratio was calculated by 

univariate analysis. The Hazard Ratio calculated from Kaplan-Meier curve was unadjusted Hazard 

Ratio. Both adjusted and unadjusted Hazard Ratio were included in this meta-analysis and were 

categorized into different subgroups. The original research articles that meet the inclusion criteria of 

this meta-analysis should be included, even if unadjusted Hazard Ratio for such articles needs to be 

calculated from Kaplan-Meier curve. To exclude such articles may introduce bias for this meta-analysis. 

Forest plots of Hazard Ratios of survival analysis were constructed to show the association between 

ALDH1 gene expression and overall survival or disease-free survival, the outcomes of which were end 

points in this meta-analysis. The p-values for Hazard Ratios were two-sided, with the significance cut-

off point setting at smaller than 0.05.   
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The heterogeneity assumption was calculated by using a Q-test, and P-values greater than 0.05 indicated 

a lack of heterogeneity among studies. Hence the differences for subgroup studies were due to chance 

and fixed-effect model was used. Otherwise, a random-effect model (DerSimonian-Laird method) was 

used. I2 was chosen as the indicator for subgroup heterogeneity study and the cutoff standard for 

choosing fixed-effect model or random-effect model was based on whether I2>50% and whether p>0.05. 

In addition, in order to see whether individual studies will influence on the pooled effect, a sensitivity 

analysis was performed. The sensitivity analysis sequentially excluded each individual study in each 

meta-analysis and examined whether the pooled HRs were significantly changed. Funnel plots and 

Egger’s test were constructed to estimate the possible evidence for publication bias. The funnel plots 

included each individual studies with each point positioning in different X-axis(Hazard Ratio of the 

study) and Y-axis(standard error of LogHR). The expected findings of smaller studies will distribute 

randomly centered around the pooled Hazard ratio. And in comparison, larger studies will show tighter 

cluster around the pooled Hazard Ratio. If there’s publication bias, the funnel plots will show an 

asymmetric distribution. If no significant publication bias exists, all the studies will show a symmetric 

triangular funnel on funnel plots. All statistics are processed by Review Manager 5.3(The Nordic 

Cochrane Center, The Cochrane Collaboration, Copenhagen, Denmark). Generic Inverse Variance 

Method is applied in Review Manager to conduct Hazard Ratio meta-analysis. 
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Results 

 

Figure 1. Flow diagram showing the inclusion and exclusion of studies on ALDH1 genes and all possible cancer prognosis.  

 

Figure 1 and Table 1 show the flow of inclusion and exclusion process of studies on ALDH1 genes and 

all possible cancer patients’ prognosis. A total number of one hundred and twenty one papers met the 

inclusion criteria for this meta-analysis after screening abstracts and reviewing original papers. Four 

thousand three hundred and fifty four papers were identified from PubMed, EMBASE or Web of 

Science database. After excluding duplicated papers, one thousand and twenty three papers were 
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screened for abstract. Three hundred and seventy seven papers were excluded based on screening result, 

because such studies were cellular mechanism study rather than patients survival analysis. Seven 

hundred and forty five papers were fully read and five hundred and fifty six full-text papers were 

excluded. The exclusion reasons include: thirteen papers were animal studies with no population data, 

one hundred and eighty three papers were cancer stem cell studies, one hundred and ninety-six papers 

lacked follow-up information and only reported gene expression of ALDH1 genes, forty-four papers 

were reviews, and twenty one papers were published in other languages. Among the remaining one 

hundred and eighty nine eligible papers for systematic review, sixty-eight papers were excluded from 

meta-analysis. The reasons include same study cohorts across researches, insufficient sample size (<20), 

inadequate data for Hazard Ratio calculation and only reported p-value, logically inconsistent Hazard 

Ratio. In the end, a total number of one hundred and twenty one original researches were eligible for 

this meta-analysis.  

 

Table 1.  Flow table showing number of inclusion and exclusion of this meta-analysis studies. 

 ALDH1 ALDH1A1 ALDH1A2 ALDH1A3 ALDH1B1 ALDH1L1 ALDH1L2 
Total published paper 
(PubMed, EMBase and Web 
of Science) 

3064 860 111 186 63 60 10 

Remaining papers after 
excluding duplicates 595 252 48 68 22 28 10 

Remaining papers after 
screening (abstract only) 396 241 33 46 10 19 0 

Remaining papers after full-
text review 111 51 5 13 1 8 0 

Number of unique papers 
for each category (after 
excluding the ones with 
insufficient data)  

68 40 5 10 1 4 0 

Total number of unique 
papers for the meta-analysis 121 

 

 

Table 2.1 Eligible studies for ALDH1 on cancer prognosis (not specifying the ALDH1 family). First author, cancer type, patient size, cut-off 
point for ALDH expression, analysis method and outcomes are recorded. 

First author Cancer type 
Patient 

Number gene 
Cut-off point for 

ALDH expression 
Analysis 
method Outcomes 

Liu[25] astrocytoma 76 ALDH1 0 adjusted OS, DFS 

Goudarzi[69] astrocytoma 36 ALDH1 0 unadjusted CS 

Ito[70] axillary lymph node metastases 47 ALDH1 0 adjusted DFS 

Xu[71] bladder cancer 227 ALDH1 0 adjusted OS, DFS 
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Mieog[72] breast cancer 193 ALDH1 0 adjusted OS, DFS 

Mieog[72] breast cancer 61 ALDH1 0 unadjusted OS, DFS 

Yasuyo[73]** breast cancer 257 ALDH1 0 adjusted OS, DFS 

Yasuyo[73]** breast cancer 106 ALDH1 0 adjusted DFS 
Charafe-

Jauffret[74] breast cancer 77 ALDH1 0 adjusted MFS, SS 

Sakakibara[75] breast cancer 115 ALDH1 0 adjusted OS 

Tan[76]* breast cancer 139 ALDH1 0 unadjusted DFS 

Zhong[77] breast cancer 121 ALDH1 0 adjusted DFS 

Genestier[28] breast cancer 577 ALDH1 0 adjusted OS 

Kang[78]* breast cancer 390 ALDH1 0 unadjusted OS, DFS 

Bane[79]* breast cancer 255 ALDH1 NA unadjusted OS 

Ito[73]** breast cancer 47 ALDH1 0 adjusted DFS 

Zheng[80] breast cancer 65 ALDH1 0 adjusted OS 

Nogami[81] breast cancer 40 ALDH1 0 unadjusted DFS 

Neumeister[82] breast cancer 642 ALDH1 NA adjusted OS 

Huang[83] breast cancer 552 ALDH1 0 unadjusted DFS 

Zhou[84] breast cancer 61 ALDH1 0 adjusted OS 

Yu[85]* breast cancer 96 ALDH1 0 unadjusted DFS 

Morimoto[86] breast cancer 203 ALDH1 0 adjusted OS 

Bednarz-Knoll[87] breast cancer 330 ALDH1 0 adjusted OS, DFS 

Dong[88] breast cancer 161 ALDH1 0 adjusted OS, DFS 

Kim[89] breast cancer 227 ALDH1 0 unadjusted OS 

Brot[90] breast cancer 140 ALDH1 0 adjusted OS 

Hashimoto[91]* breast cancer 92 ALDH1 0 unadjusted OS, DFS 

Lee[92] breast cancer 184 ALDH1 0 adjusted DFS 

Santilli[93] breast cancer 110 ALDH1 NA adjusted MFS, SS 

Pistelli[94] breast cancer 81 ALDH1 0 unadjusted OS 

Yao[95] cervical cancer 198 ALDH1 0 adjusted CS 

Xie[96] cervical cancer 52 ALDH1 0 adjusted OS, DFS 

Hou[97] cervical cancer 179 ALDH1 NA adjusted OS, DFS 
Goossens-

Beumer[98] colon cancer 232 ALDH1 NA adjusted OS, DFS, DSS 

Zhou[99]* colon cancer 60 ALDH1 20% unadjusted CS 

O'Dwyer[100] colon cancer 28 ALDH1 0 unadjusted CS 

Vogler[101] colon cancer 60 ALDH1 0 adjusted OS 

Rahadiani[102] endometrioid adenocarcinoma 98 ALDH1 0 adjusted OS, DFS 
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Honing[102] esophageal squamous cancer 94 ALDH1 NA unadjusted OS, DFS 

Minato[103]** esophageal squamous cancer 56 ALDH1 0 adjusted DFS 

Minato[103]** esophageal squamous cancer 40 ALDH1 0 adjusted DFS 

Minato[103]** esophageal squamous cancer 56 ALDH1 0 adjusted DFS 

Wang[104] esophageal squamous cancer 79 ALDH1 0 adjusted OS 

Hwang[105]* esophageal squamous cancer 41 ALDH1 0% unadjusted CS 

Ji[106] esophageal squamous cancer 138 ALDH1 NA adjusted OS 

Ajani[107] esophageal squamous cancer 167 ALDH1 0 unadjusted OS, DFS 

Kim[108] 
Eyelid Sebaceous Gland 

Carcinoma 50 ALDH1 NA adjusted MFS, SS 

Suzuki[109] liver cancer 49 ALDH1 NA unadjusted DFS 

Morise[110] lung cancer 105 ALDH1 0 adjusted OS, DFS 

Okudela[111] lung cancer 177 ALDH1 85% adjusted DFS 

Zenke[112] lung cancer 52 ALDH1 NA adjusted DFS 

Liu[113] oral cancer 141 ALDH1 0 adjusted OS 

Ayub[114] ovarian cancer 55 ALDH1 0 adjusted OS, DFS 

Liebscher[115] ovarian cancer 112 ALDH1 0 adjusted OS 

Kuroda[116]* ovarian cancer 123 ALDH1 0 unadjusted DFS 

Chen[117] ovarian cancer 80 ALDH1 0 adjusted OS 

Mizuno[118]* ovarian cancer 81 ALDH1 10% adjusted OS 

Huang[119] ovarian cancer 232 ALDH1 NA adjusted OS 

Wang[120] ovarian cancer 84 ALDH1 50% adjusted OS 

Chang[121]* ovarian cancer 442 ALDH1 20% adjusted OS 

Avoranta[122] rectal cancer 197 ALDH1 0 adjusted DFS 

Seung[123] rectal cancer 51 ALDH1 NA adjusted OS, DFS 

Deng[124]* rectal cancer 64 ALDH1 21% unadjusted DFS 

Yoon[125] rectal cancer 145 ALDH1 0 adjusted DFS, CSS 
Goossens-

Beumer[101]** rectum cancer 73 ALDH1 NA adjusted OS, DFS, DSS 

Liu[126] renal pelvis carcinoma 114 ALDH1 0 unadjusted OS, DFS 

Huang[127] 
tongue squamous cell 

carcinoma 66 ALDH1 >1 unadjusted OS 

Kitamura[128] urinary cancer 226 ALDH1 0 adjusted CSS 

Wu[129]* volvar squamous cancer 154 ALDH1 0 unadjusted DFS 
NA: not applicable 
*: The Hazard Ratio of these articles were calculated from Kaplan-Meier curve. 
**: These articles included more than one cohort of analysis. 
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Table 2.2: Eligible studies for ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1 and ALDH1L1 on cancer prognosis.  First author, cancer type, 
patient size, cut-off point for ALDH expression, analysis method and outcomes are recorded. 

First author Cancer type Patient Number Gene 
Cut-off point for 

ALDH expression 
Analysis 
method Outcomes 

Su[30]* bladder cancer 216 ALDH1A1 NA unadjusted OS 

Khoury[130] breast cancer 513 ALDH1A1 NA adjusted OS, DFS 

Liu[131] breast cancer 596 ALDH1A1 0 adjusted OS, DFS 

Wei[132] breast cancer 92 ALDH1A1 NA adjusted OS, DFS 

Ali[133] breast cancer 2392 ALDH1A1 4 adjusted OS 

Wu[134] breast cancer 3455 ALDH1A1 NA unadjusted OS 

Zhong[134] breast cancer 147 ALDH1A1 0 adjusted DFS 

Zhou[135] breast cancer 119 ALDH1A1 10% adjusted OS 

Sjöström[136] breast cancer 426 ALDH1A1 10% adjusted DFS 

Kahlert[137] 
colon and rectal 

cancer 996 ALDH1A1 NS unadjusted OS, DFS 

Xu[138] colon cancer 107 ALDH1A1 >1 adjusted OS 

Yang[31]* 

esophageal 
squamous 
carcinoma 134 ALDH1A1 NA unadjusted OS 

Li[139] gastric cancer 216 ALDH1A1 0 adjusted OS, DFS 

Shen[35] gastric canceer 876 ALDH1A1 0 unadjusted OS 

Adam[140] glioblastoma 93 ALDH1A1 0 adjusted OS 

Xu[141] glioma 237 ALDH1A1 5 adjusted OS 

Qian[142] HNSCC 81 ALDH1A1 0 adjusted DFS 

Koukourakis[143] HNSCC 74 ALDH1A1 5% adjusted DFS 

Xu[144]* HNSCC 96 ALDH1A1 1.3 unadjusted OS, DFS 

Leinung[145]* HNSCC 48 ALDH1A1 0 unadjusted OS 

Martin[146] larygeal cancer 84 ALDH1A1 0% adjusted DFS 

Tanaka[147] liver cancer 60 ALDH1A1 >1 adjusted DFS 

Jiang[148] lung cancer 303 ALDH1A1 10% unadjusted OS 

Li[149] lung cancer 179 ALDH1A1 0 adjusted OS 

Sullivan[150] lung cancer 282 ALDH1A1 NA unadjusted OS 

Shimada[151] lung cancer 103 ALDH1A1 5% adjusted OS 

Dimou[152]** lung cancer 

134 

ALDH1A1 

0 unadjusted DFS 

296 0 unadjusted DFS 

You[36]** lung cancer 1926 ALDH1A1 NA unadjusted OS 

Alamgeer[153] lung cancer 205 ALDH1A1 NA adjusted OS, DFS 

Gao[154] lung cancer 133 ALDH1A1 0 adjusted OS 

Kaminagakura[155]** 
oral squamous cell 

carcinoma 100 ALDH1A1 10% unadjusted DFS 

Ishiguro[156] ovarian cancer 90 ALDH1A1 NA unadjusted OS, DFS 
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Chui[157] ovarian cancer 558 ALDH1A1 0 unadjusted OS 

Kahlert[158] pancreatic cancer 97 ALDH1A1 4 adjusted OS 

Xing[159] 
papillary thyroid 

carcinoma 247 ALDH1A1 NA adjusted DFS 

Li[160] prostate cancer 163 ALDH1A1 10% adjusted OS, CSS 

Magnen[161]* prostate cancer 85 ALDH1A1 NA unadjusted OS 

Sung[162]* 
pulmonary 

adenocarcinoma 97 ALDH1A1 NA unadjusted OS, DFS 

Wang[163] renal cancer 95 ALDH1A1 NA unadjusted OS, DFS 

Aguilera[164]* 
Sporadic colorectal 

cancer 699 ALDH1A1 0 unadjusted OS 

Wu[138]** breast cancer 3455 ALDH1A2 NA unadjusted OS 

Shen[35] gastric canceer 876 ALDH1A2 0 unadjusted OS 

Seidensaal[165] HNSCC 101 ALDH1A2 NA adjusted OS, DFS 

You[38]** 
non-small cell lung 

cancer 1926 ALDH1A2 NA unadjusted OS 

Kostareli[166]* 
oropharyngeal 

squamous cancer 115 ALDH1A2 NA unadjusted OS, DFS 

Kim[47]* bladder cancer 163 ALDH1A3 0% adjusted DFS 

Marcato[167] breast cancer 176 ALDH1A3 NA adjusted OS 

Jiang[168] breast cancer 144 ALDH1A3 0% adjusted OS 

Liu[131] breast cancer 596 ALDH1A3 0 adjusted OS, DFS 

Wu[138] breast cancer 3455 ALDH1A3 NA unadjusted OS 

Qiu[169]* breast cancer 125 ALDH1A3 0 unadjusted OS 

Shen[37] gastric canceer 876 ALDH1A3 0 unadjusted OS 

Chen[170]* glioma 

177 

ALDH1A3 

NA unadjusted OS 

443 NA unadjusted OS 

You[38]** 
non-small cell lung 

cancer 1926 ALDH1A3 NA unadjusted OS 

Casanova-Salas[171] prostate cancer 

46 

ALDH1A3 

0 adjusted OS 

80 0 adjusted OS 

You[38]** lung 1926 ALDH1B1 NA unadjusted OS 

Wu[138]** breast cancer 3455 ALDH1L1 NA unadjusted OS 

Shen[37]** gastric canceer 876 ALDH1L1 0 unadjusted OS 

Chen[172] liver cancer 112 ALDH1L1 0 adjusted OS 

You[38]** lung 1926 ALDH1L1 NA unadjusted OS 
NA: not applicable 
*: The Hazard Ratio of these articles were calculated from Kaplan-Meier curve. 
**: These articles included more than one cohort of analysis. 
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Table 2.1 listed the characteristics of eligible studies to examine association of ALDH1 genes and cancer 

prognosis. Sixty eight papers were eligible and it covers nineteen different cancer types. This sixty eight 

papers didn’t specify the ALDH1 genes. Through the inclusion flow process, we can find the majority 

of original researches didn’t specify ALDH1 genes isozymes. This might be due to the limitation of 

experiment design, the budget for identifying gene marker. Some paper incorporated ALDH1 as 

ALDH1A1, perhaps ALDH1A1 was the main and largest gene type for ALDH1 genes. However, in this 

meta-analysis, we separate the original researches of ALDH1 as a specific subgroup. Table 2.2 listed 

the characteristics of eligible studies for ALDH1A1, ALDH1A2, ALDH1A3, ALDH1B1, and 

ADLH1L1. Forty papers were available for ALDH1A1 and prognosis studies and they covered eighteen 

cancer types. Five papers examined prognosis effect of ALDH1A2 and five different cancers. Ten 

papers targeted on ALDH1A3 and six cancer types were studied. Only one paper was available for 

ALDH1B1. Four papers studied ALDH1L1 and four cancer types. Two papers [38, 139] categorized 

ALDH1 genes into each specific subgroups, thus records were repeated for available study number and 

patient number included. 
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Figure 2.1 Association between ALDH1 genes and Overall Survival for breast cancer 
 
Figure 2.1 shows the results of the meta-analysis of ALDH1, ALDH1A1, ALDH1A3 expression in 

prognosis of overall survival in breast cancer patients, for which sixteen papers were available for 

association with ALDH1, six papers were available for association with ALDH1A1 and five papers were 

available for association with ALDH1A3. A total number of 11,983 breast cancer patients were 

identified by three ALDH1 genes and were evaluated for overall survival as a clinical outcome. The 

pooled hazard ratio for overall survival using Random Effect Model between ALDH1 genes positive 

patients and ALDH1 genes negative patients is 1.83, with 95%CI of (1.46, 2.28), which suggested 

ALDH1 genes were a significant poor prognosis predictor for overall survival in breast cancer 
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patients(p<0.001). ALDH1 genes show different prognosis effect when the HR is calculated by 

multivariate analysis of Cox Regression model with controlling covariates and univariate analysis 

without controlling covariates, because adjusted HRs are less biased. The Hazard Ratio for adjusted 

Overall Survival is 2.52(95%CI: 1.77, 3.60) between breast cancer patients with ALDH1 positive 

expression and breast cancer patients with ALDH1 negative expression (p<0.001). In comparison, the 

Hazard Ratio for unadjusted Overall Survival falls to 0.98(95%CI: 0.57, 1.67) between the ALDH1 

positive and negative caner patients. Similarly, the Hazard Ratio for adjusted Overall Survival is 

2.65(95%CI: 0.98, 7.12) for breast cancer patients ALDH1A1 positive expression compared to patients 

with negative expression. For ALDH1A3, the Hazard Ratio for multivariate Overall Survival is 

1.75(95%CI: 1.02, 2.97) for breast cancer patients with positive expression versus patients with negative 

expression. The Hazard Ratio falls to 1.09(95%CI: 0.97, 1.22) for univariate Overall Survival for breast 

cancer patients with positive ALDH1A3 expression and negative ALDH1A3 expression. The I2 of 

Heterogeneity analysis indicated the overall studies and subgroup studies have significant heterogeneity 

for the association between ALDH1 genes and breast cancer overall survival (I2>50%, p<0.05), thus 

random-effect model is applied for this meta-analysis. This forest plot indicated that Overall Survival 

with adjusted HR of ALDH1 genes predicts a significant poor prognosis for breast cancer patients, while 

Overall Survival with unadjusted HR may not be a significant prognosis predictor for breast cancer 

patients. In sensitivity analysis, each study was sequentially excluded to examine if change in the pooled 

Hazard Ratio was significant. No significant change was found for meta-analysis between ALDH1 

genes and overall survival in breast cancer. 
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Figure 2.2. Association between ALDH1 genes and Disease-Free Survival in Breast Cancer 

 

Figure 2.3 Association between ALDH1 genes and Disease-Free Survival in Breast Cancer after sensitivity analysis. 
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Figure 2.2 is the forest plot of indicating expression of ALDH1, ALDH1A1, ALDH1A3 in prognosis of 

disease-free survival (DFS) in breast cancer patients, for which twenty papers were included for this 

analysis. A total number of 4,073 breast cancer patients were identified by ALDH1, ALDH1A1 and 

ALDH1A3 in subgroup analysis. The pooled Hazard Ratio for disease-free survival between breast 

cancer patients with ALDH1 genes positive expression and patients with negative expression is 2.15 

with 95%CI of (1.45, 3.18) and the poor prognosis for disease-free survival is significant (p<0.001). 

For the ALDH1 genes subgroup, the hazard ratio for adjusted DFS is 2.00(1.24, 3.23) in breast cancer 

patients with positive ALDH1 expression versus patients with negative expression. The hazard ratio for 

DFS in breast cancer patients was 2.28(0.58, 8.94) when the multivariate analysis is switched to 

univariate analysis. The adjusted HR for DFS is 2.02(0.86, 4.74) for breast cancer patients with positive 

ALDH1A1 expression in comparison to patients with negative ALDH1A1 expression. Based on the 

heterogeneity results, the subgroup for ALDH1 and unadjusted DFS in breast cancer patients showed 

insignificant heterogeneity (I2<50, p=0.11). But the pooled HR analysis and other subgroups show 

significant heterogeneity (I2>50, p<0.05). So random-effect model is used for meta-analysis between 

ALDH1 genes and prognosis of disease-free survival in breast cancer patients. This forest plot indicated 

that adjusted Disease-Free Survival of ALDH1 genes predicts a significant poor prognosis for breast 

cancer patients, while unadjusted Disease-Free Survival may not be a significant prognosis predictor 

for breast cancer patients. In Mieog’s study [69], patients were categorized into two groups based on 

their age (.>65ys) and the disease-free survival were conducted respectively in these two cohorts. When 

conducting sensitivity analysis for this meta-analysis, we found research by Charafe-Jauffret [71] for 

association of ALDH1 and adjusted DFS among breast cancer patients exerted significant changes for 

the pooled Hazard Ratio. This original research concluded by Kaplan Meier univariate analysis for 

metastasis free survival of 74 inflammatory breast carcinomas, without controlling the covariates that 

may contribute to disease-free survival. After deleting the result of this study, the pooled unadjusted 

Hazard Ratio of disease-free survival related to ALDH1 genes among breast cancer patients falls to 1.28 

(95%CI: 0.83, 1.96). The overall Hazard Ratio of disease-free survival is 1.61 (95%CI: 1.26, 2.06) 

between breast cancer patients who expressed ALDH1 genes and who didn’t, as showed in Figure 2.3 

after conducting sensitivity analysis.  



23 

 

Figure 3. Association between ALDH1 genes and Overall Survival in Colon Cancer 

Figure 3 is the forest plot to show the association of ALDH1 genes expression and prognosis of overall 

survival in colon cancer patients. Six studies were included into this meta-analysis and a total number 

of 2,135 colon cancer patients were followed up for overall survival analysis. The pooled Hazard Ratio 

for Overall Survival in Colon Cancer between patients with positive expression of ALDH1 genes and 

patients with negative expression of ALDH1 genes is 2.13(95%CI: 0.97, 4.66) and HR of OS is 

significant predictor for poor prognosis. The adjusted Hazard Ratio of overall survival in colon cancer 

patients with positive ALDH1 expression is 6.50(95%CI: 3.17, 13.33) in comparison to colon cancer 

patients with negative ALDH1 expression. This Hazard Ratio calculated by Cox Regression Model is 

significant (p<0.001). The unadjusted Hazard Ratio for Overall Survival in colon cancer patients with 

positive ALDH1 gene is 0.78(95%CI: 0.29, 2.11) in comparison to patients with negative ALDH1 

expression and this unadjusted HR is not significant (p=0.631). The adjusted Hazard Ratio for Overall 

survival in colon cancer patients with positive ALDH1A1 expression is 2.11(95%CI: 1.32, 3.38) versus 

patients with negative ALDH1A1 expression. And the unadjusted Hazard Ratio for Overall Survival 

between positive ALDH1A1 expression patients and negative expression patients is 2.44(95%CI: 1.29, 

4.61). For ALDH1A1 subgroups, only one paper was included specifically for each of the two subgroups. 

The test for subgroup differences indicated the heterogeneity was significant among the papers in 
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different subgroups (I2>50%, p=0.006). Random-effect model was conducted in this meta-analysis to 

examine association between ALDH1 genes and Overall Survival in Colon Cancer. This forest plot 

indicated that ALDH1 genes for adjusted Overall Survival among colon cancer patients predict a 

significant poor prognosis, while ALDH1 genes may not be a significant prognosis predictor for colon 

cancer patients with unadjusted Overall Survival. In the sensitivity analysis, the original researches from 

Goossens-Beumer [95] and Zhou [96] would change the pooled Hazard Ratio significantly. But based 

on the limited availability of researches on colon cancer prognosis, more investigation was required for 

prognosis effect. The cut-off points in these two studies were 50% and 20% respectively, which means 

after standardizing expression cut-off points, the hazard ratio can be larger than this estimation. 

 

 

Figure 4.1 Association between ALDH1 genes and Overall Survival in Esophageal Squamous Carcinoma 

 

 

Figure 4.2 Association between ALDH1 genes and Disease-Free Survival in Esophageal Squamous Carcinoma 
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Figure 4.1 and Figure 4.2 are the forest plots that examine association between ALDH1 genes and 

Overall Survival as well as Disease-Free Survival among patients with Esophageal Squamous 

Carcinoma. Six papers were available for overall survival meta-analysis for esophageal squamous 

carcinoma and a total number of 652 patients were followed up for overall survival. The pooled Hazard 

Ratio of overall survival is 1.22 (95%CI: 0.82, 1.81) between esophageal squamous carcinoma patients 

who had positive ALDH1 gene expression and who had negative ALDH1 gene expression. This poor 

prognosis prediction of overall survival is not significant (p=0.33). The heterogeneity among papers for 

overall survival analysis is significant (I2>50%, p=0.03), thus random-effect model was implemented 

in this analysis. For subgroup differences test, the heterogeneity among papers that reported overall 

survival using Cox Regression Model is not significant (I2<50%, p=0.61) and heterogeneity among 

papers that reported univariate overall survival is significant(I2>50%, p=0.02). The pooled adjusted 

Hazard Ratio of overall survival is 1.49 (95%CI: 1.07, 2.08) between esophageal squamous carcinoma 

patients who had positive ALDH1 expression and who had negative ALDH1 expression. The poor 

prognosis prediction of ALDH1 for adjusted overall survival is significant (p=0.02), however only two 

papers were analyzed for this prognosis. The pooled unadjusted Hazard Ratio of overall survival is 

1.14(95%CI: 0.61, 2.13) for esophageal squamous carcinoma between patients with positive ALDH1 

and patients with negative ALDH1 expression. Four papers and 260 patients were included and the 

association is not significant (p=0.74). Based on such findings, it’s ideal for original researches to carry 

out multivariate analysis for adjusted Hazard Ratio to evaluate the association between ALDH1 genes 

and prognosis for cancer patients. The sensitivity analysis didn’t find any individual research would 

significantly alter the pooled Hazard Ratio. 

 

Three papers and 412 esophageal squamous carcinoma patients were included for meta-analysis of 

association of ALDH1 expression and disease-free survival prognosis. The heterogeneity is significant 

in this meta-analysis (I2>50%, p<0.001) and significant for both subgroup analysis (p<0.001), thus 

random-effect model was used for pooled Hazard Ratio analysis. The pooled Hazard Ratio for disease-

free survival including adjusted HR and unadjusted HR for esophageal squamous carcinoma is 1.84 

(95%CI: 0.70, 4.84) between patients with positive ALDH1 expression and patients with negative 
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ALDH1 expression. From the pooled HR, ALDH1 did not predict a significant poor prognosis for 

recurrence of esophageal squamous carcinoma (p=0.64). The adjusted disease-free survival of 

esophageal cancer patients included three different cohorts from one paper included surgery without 

induction therapy group (OP), surgery with neoadjuvant chemotherapy group (NAC) and initial 

systemic chemotherapy group (CT).  In the OP and NAC groups, multivariate analysis found that 

ALDH1 was independently associated with postoperative recurrence and prognosis (OP group, P = 

0.004 and 0.016, respectively; NAC group, P = 0.026 and 0.014, respectively).  Among the ALDH1-

negative clinical stage II/III patients, the OP and NAC groups displayed better prognoses than the CT 

group (P<0.001). However, among the ALDH1-positive clinical stage II/III patients, the OP and NAC 

groups displayed poorer prognoses than the CT group (P = 0.049). For the unadjusted disease-free 

survival analysis, two papers indicated two different prognosis effect, a significant poor prognosis with 

Hazard Ratio 3.87 (95%CI: 1.47, 10.16) and a significant good prognosis with Hazard Ratio 0.55 

(95%CI: 0.34, 0.89). The patients who showed poor prognosis of disease-free survival with esophageal 

squamous carcinoma underwent preoperative chemoradiation, so the different prognosis effects might 

be due to the diversified treatment for patients. The treatment patients received can be an important 

covariate that will influence the hazard ratio if not controlled by Cox Regression Model. Based on the 

limited researches found for disease free survival of esophageal squamous carcinoma patients and 

ALDH1 prognosis effect, the sensitivity analysis may not fit in this case. 

 

 

 

Figure 5. Association between ALDH1 genes and Disease-Free Survival in Head and Neck Squamous Cell Carcinoma 
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Five papers were included for meta-analysis of association between ALDH1 genes expression and 

disease-free survival in Head and Neck Squamous Cell Carcinoma(HNSCC). A total number of 388 

HNSCC patients were included in this association analysis. The pooled Hazard Ratio for disease-free 

survival in HNSCC patients with positive ALDH1 genes expression is 1.04(95%CI: 0.55, 1.96) in 

comparison to patients with negative expression. The Hazard Ratio for disease-free survival included 

both adjusted HR and unadjusted HR [143]. The heterogeneity of the five papers is significant (I2>50%, 

p=0.05), indicating more investigation should be conducted to examine the association of ALDH1 genes 

expression and HNSCC prognosis.. The pooled HR didn’t show that ALDH1 genes are significant poor 

prognosis of disease-free survival among HNSCC patients. This meta-analysis didn’t separate 

univariate disease-free survival and multivariate disease-free survival as subgroups based on papers 

identified. Based on the limited availability of researches found and the subgroups analysis, sensitivity 

analysis was not conducted in this meta-analysis. 

 

Figure6.1  Association between ALDH1 genes and Overall Survival in Non-Small Cell Lung Cancer 

 

Figure 6.1 is the forest plot to show the association of ALDH1 genes expression and overall survival in 

non-small cell lung cancer(NSCLC) patients. Seven papers were included into this meta-analysis and a 

total number of 2995 NSCLC patients were followed up for overall survival. The pooled Hazard Ratio 

for Overall Survival is 1.94 (95%CI: 1.23, 3.07) between NSCLC patients with positive ALDH1 genes 
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expression versus patients with negative ALDH1 genes expression, and the prediction for poor 

prognosis is significant (p=0.004). The heterogeneity result indicated a significant heterogeneity for 

subgroup differences (I2>50%, p<0.01), with the heterogeneity in subgroup of ALDH1A1 and adjusted 

OS not significant (I2=0%, p=0.50), heterogeneity in subgroup of ALDH1A1 and unadjusted OS 

significant (I2>50%, p<0.01). Random-effect model is conducted for this meta-analysis in ALDH1 

genes and OS in NSCLC patients. The adjusted Hazard Ratio by multivariate analysis of overall survival 

in NSCLC is 2.74 (95%CI: 2.03, 3.69) between patients with positive ALDH1A1 expression and patients 

with negative ALDH1A1 expression (p<0.001). The unadjusted Hazard Ratio by univariate analysis of 

overall survival in NSCLC is 1.18(95%CI: 1.23, 3.07) between patients with positive ALDH1A1 

expression and patients with negative ALDH1A1 expression (p=0.45). The difference in prediction of 

NSCLC overall survival can be attributed to other covariates that may contribute to this association. 

Based on sensitivity analysis, no individual researches significantly altered the pooled Hazard Ratio. 

 

Figure 6.2 Association between ALDH1 genes and Disease-Free Survival in Non-Small Cell Lung Cancer 

 

Figure 6.2 is the forest plot to show the association of ALDH1 genes expression and disease-free 

survival prognosis among NSCLC patients. Five papers were included in this meta-analysis and a total 

of 937 patients were followed-up for disease-free survival analysis. This meta-analysis was categorized 

into two subgroups, association of ALDH1 genes and adjusted Disease-free survival in NSCLC and 

association of ALDH1A1 expression and adjusted DFS in NSCLC. The pooled Hazard Ratio of disease-

free survival is 1.32(95%CI: 0.65, 2.66) for NSCLC patients with positive ALDH1 genes expression in 
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comparison to NSCLC patients with negative ALDH1 expression. This pooled Hazard Ratio is not 

significant and the pooled Hazard Ratio between the two subgroups indicated different prognosis effects. 

The Hazard Ratio for disease-free survival in NSCLC patients by Cox Regression Model is 2.50(95%CI: 

1.51, 4.12) between patients who expressed ALDH1 and patients who didn’t express ALDH1. The 

association is significant (p<0.001) and heterogeneity is not significant (p=0.81). The Hazard Ratio for 

disease-free survival in NSCLC patients by Cox Regression Model is 0.75(95%CI: 0.28, 1.97) between 

patients who expressed ALDH1A1 and patients who didn’t express ALDH1A1. This prognosis 

association is insignificant (p=0.55) and heterogeneity is significant (p<0.001). Random-Effect model 

is used to conduct this meta-analysis. The sensitivity analysis didn’t find significant change of 

individual research on pooled Hazard Ratio. The original research by Dimou [151] included two cohort 

of Yale cohort and Sotirial/Patras cohort, and followed-up the cohort separately and provided two 

hazard ratio for disease-free survival for NSCLC. To sum up, ALDH1 might be a poor prognosis for 

disease-free survival among patients suffering non-small cell lung cancer. 

 

 

Figure 7. Association between ALDH1 genes and OS prognosis in ovarian cancer 

 

Figure 7 is the forest plot to examine association between ALDH1 genes expression and overall survival 

prognosis in ovarian cancer. Nine papers and a total of 1,257 ovarian cancer patients were included for 
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this overall survival meta-analysis. Random-effect model was used because the heterogeneity is 

significant for subgroups (p<0.05). The pooled Hazard Ratio for overall survival of ovarian cancer is 

1.48 (95%CI: 1.12, 1.96) between patients who expressed ALDH1 genes and who didn’t ALDH1 genes 

and the overall survival prognosis is significant (p<0.001). For patients who expressed ALDH1 genes 

and who didn’t express, the hazard ratio for overall survival is 1.68 (95%CI: 1.02, 2.76) and the 

association is significant (p=0.04). The unadjusted Hazard Ratios for overall survival of ovarian cancer 

between patients who expressed ALDH1 and who didn’t, between patients who expressed ALDH1A1 

and who didn’t are 1.85(95%CI: 0.94, 3.63) and 1.40(95%CI: 0.68, 2.86) and they are not significant 

(p<0.05). The cut-off points in deciding positive and negative ALDH1 genes expression are not uniform, 

with some original researches setting 0%, and some setting 10%, or 50%. The univariate analysis for 

overall survival among ovarian cancer patients might be influenced by other factors. The sensitivity 

analysis didn’t find a significant change in pooled Hazard Ratio of overall survival for ovarian cancer 

when taking away each individual study. 

 

 

Figure 8. Association between ALDH1 genes and prognosis in Rectal Cancer 

 

Figure 8 is the forest plot to examine the association of ALDH1 genes and prognosis in rectal cancer 

patients. Four papers were included in the meta-analysis and a total of 481 rectal cancer patients were 

analyzed for disease-free survival prognosis. The heterogeneity of overall researches and subgroup 

researches was not significant (p>0.05), so fixed-model model was used in this meta-analysis. The 

papers we found for rectal cancer analysis only included ALDH1 genes expression, and the prognosis 
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included overall survival and disease-free survival. The pooled Hazard Ratio of disease-free survival 

for rectal cancer patients is 2.57 (95%CI: 1.15, 5.73) between patients who expressed ALDH1 genes 

and who didn’t express it. This pooled Hazard Ratio for disease-free survival is significant (p=0.02). In 

this meta-analysis, the unadjusted DFS hazard ratio was calculated from Kaplan-Meier curve. But in 

the original paper, multivariate Cox analysis showed postoperative ALDH1 independently predicted 

poor prognosis in patients with rectal cancer who received radiochemotherapy (P=0.0095). The pooled 

disease-free survival of rectal cancer patients indicated that ALDH1 is a significant poor prognosis 

predictor for disease-free survival. This result provides a potential prognosis research field for rectal 

cancer, which hasn’t been investigated much by researchers. The sensitivity analysis didn’t find 

significant change in pooled Hazard Ratio of disease free survival when sequentially excluding each 

study from the meta-analysis. 

 

 

Figure 9.1 Association between ALDH1A2 and prognosis in different cancers 

 

Figure 9.1 is the forest plot to examine the association of ALDH1A2 expression status and overall 

survival in cancer patients. Five papers specified ALDH1A2 expression in five different cancer types 

including breast cancer, gastric cancer, head and neck squamous cell carcinoma, non-small cell lung 

cancer and oropharyngeal squamous cancer and a total number of 5905 patients were analyzed for 

overall survival. The heterogeneity is significant in this meta-analysis (I2>50%, p<0.001), and the 

prognosis effect vary across the different cancer types. Four papers reported overall survival by 

univariate analysis, and the pooled Hazard Ratio might be influenced by other covariates that were not 

controlled in the analysis. The pooled Hazard Ratio of overall survival in cancer patients is 0.85 (95%CI: 

0.60, 1.20) between patients with positive ALDH1A2 expression and negative ALDH1A2 expression 

and the association is not significant (p=0.36).  
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Figure 9.2 Association between ALDH1A3 and prognosis in different cancers 

 

This forest plot examines the association between overall survival of different cancer patients and 

ALDH1A3 expression. Ten papers analyzed ALDH1A3 expression association and were included in this 

meta-analysis, with a total number of 8205 patients. The ten papers analyzed six types of cancers 

including bladder cancer, breast cancer, gastric cancer, glioma, non-small cell lung cancer and prostate 

cancer. The heterogeneity of the ten papers was significant (I2>50%, p<0.001) and random-effect model 

was used to calculate the pooled Hazard Ratio. The pooled Hazard Ratio for overall survival of cancer 

patients is 1.63 (95%CI: 1.02, 2.62) between patients with positive ALDH1A3 expression and patients 

with negative ALDH1A3 expression. And the pooled Hazard Ratio is statistically significant (p<0.001). 

Based on the availability of original researches found, subgroups analysis wasn’t conducted to examine 

the prognosis effect for each cancer types. The pooled Hazard Ratio indicated a significant poor 

prognosis effect in cancer patients who expressed ALDH1A3. Therefore, ALDH1A3 might be a potential 

poor prognosis predictor for cancer patients. 

 

Figure 9.3 Association between ALDH1L1 and prognosis in different cancers 

This forest plot is an attempt to see if there’s association between ALDH1L1 expression and overall 

survival in cancer patients including liver cancer, gastric cancer, breast cancer and non-small cell lung 
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cancer. Four papers were included in this analysis with a total number of 6353 patients of four different 

cancer types. The heterogeneity is significant among the four original researches (I2>50%, p<0.001), 

and the different cancer types may lead to various overall survival. A better scrutiny of each Hazard 

Ratio for overall survival, we can see the prediction of good prognosis or poor prognosis for different 

cancer types vary. The pooled Hazard Ratio of overall survival between cancer patients with positive 

ALDH1L1 expression and patients with negative ALDH1L1 expression is 1.00 (95%CI: 0.65, 1.54). 

Even if the pooled HR didn’t show prognosis effect, more investigation is worthwhile to disclose the 

association. 

 

Table 3 Hazard Ratio for association between ALDH1 gene expression status and prognosis of cancers, specified by Random effect 

model and Fixed effect model calculation 

Levels of Synthesized Information 
No. of Studies (No. of 

Patients) 
Random Effects Hazard 
Ratio Estimates (95%CI) 

Fixed Effects Hazard 
Ratio Estimates (95%CI) 

Overall Survival of Breast Cancer 25(11,983) 1.83(1.46, 2.28) 1.09(1.03, 1.16) 

ALDH1 and adjusted OS in breast cancer 11(2,640) 2.52(1.77, 3.60) 1.84(1.61, 2.10) 

ALDH1 and unadjusted OS in breast cancer 6(1,233) 0.98(0.57, 1.67) 1.09(0.82, 1.44) 

ALDH1A1 and adjusted OS in breast cancer 5(4,210) 2.65(0.98, 7.12) 0.89(0.83, 0.97) 

ALDH1A3 and adjusted OS in breast cancer 2(320) 1.75(1.02, 2.97) 1.70(1.09, 2.66) 

ALDH1A3 and unadjusted OS in breast cancer 2(3,580) 1.09(0.97, 1.22) 1.09(0.97, 1.22) 

Disease Free Survival of Breast Cancer 21(4,703) 2.15(1.45, 3.18) 1.06(0.99, 1.13) 

ALDH1 and adjusted DFS in breast cancer 8(1,418) 2.00(1.24, 3.23) 1.01(0.90, 1.12) 

ALDH1 and unadjusted DFS in breast cancer 8(1,517) 2.28(0.58, 8.94) 3.62(2.83, 4.61) 

ALDH1A1 and adjusted DFS in breast cancer 5(1,768) 2.02(0.86, 4.74) 0.93(0.85, 1.01) 

Overvall Survival of Colon Cancer 9(2,135) 2.13(0.97, 4.66) 1.64(1.26, 2.15) 

Overall Survival of esophageal squamous carcinoma 6(652) 1.22(0.82, 1.81) 1.23(0.99, 1.54) 

ALDH1 and adjusted OS in esophageal carcinoma 2(217) 1.49(1.07, 2.08) 1.49(1.07, 2.08) 

ALDH1 and unadjusted OS in esophageal carcinoma 4(435) 1.14(0.61, 2.13) 1.05(0.78, 1.42) 

Disease Free Survival of Esophageal Carcinoma 3(412) 1.84(0.70, 4.84) 0.90(0.66, 1.23) 

Disease Free Survival of HNSCC 5(388) 1.04(0.55, 1.96) 1.12(0.83, 1.52) 

Overall Survival of NSCLC 8(2995) 1.94(1.23, 3.07) 1.11(0.99, 1.23) 

Disease Free Survival of NSCLC 5(937) 1.32(0.65, 2.66) 1.32(0.65, 2.66) 

Overall Survival of Ovarian Cancer 9(1,257) 1.48(1.12, 1.96) 1.10(0.92, 1.32) 

Disease Free Survival of Rectal Cancer 4(491) 2.57(1.15, 5.73) 2.57(1.15, 5.73) 
 



34 

 

Figure 10.1 Funnel plot of ALDH1 genes expression and breast cancer overall survival, as a means of assessing publication bias.  
Figure 10.2 Funnel plot of ALDH1 genes expression and breast cancer disease-free survival 
 

Figure 10.1 and Figure 10.2 are funnel plots to check the existence of publication bias for meta-analysis. 

Y-axis, logHR, represents size of studies and X-axis represents the Hazard Ratio for each individual 

study. The ideal situation of no publication bias will present large studies plotting near pooled Hazard 

Ratio and small studies spreading randomly on both sides, which creates a funnel-shaped distribution. 

Figure 10.1 indicated no obvious evidence of publication bias for association between ALDH1 and 

overall survival in breast cancer. Figure 10.2 showed minor evidence of publication bias for association 

between ALDH1 and disease-free survival in breast cancer as there was one outlier point in the funnel 

plot. The findings suggested ALDH1 genes can be a strong prognosis marker for breast cancer patients. 
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Figure 10.3 Funnel plot of ALDH1 genes expression and overall survival in colon cancer 
Figure 10.4 Funnel plot of ALDH1 genes expression and overall survival in esophageal squamous carcinoma 
Figure 10.5 Funnel plot of ALDH1 genes expression and disease-free survival in esophageal squamous carcinoma 
 

No significant publication bias was found from the three studies, which suggested the pooled Hazard 

Ratio of prognosis of ALDH1 genes can be a strong predictor for colon cancer and esophageal squamous 

carcinoma. 

 

 

 

Figure 10.6 Funnel plot of ALDH1 genes expression and disease-free survival in HNSCC 
 

This funnel plot indicated no obvious publication bias for disease-free survival of head and neck 

squamous carcinoma cancer with ALDH1 genes expression. 

 

 

Figure 10.7 Funnel plot of ALDH1 genes expression and overall survival in non-small cell lung cancer 
Figure 10.8 Funnel plot of ALDH1 genes expression and disease-free survival in non-small cell lung cancer 
 

Figure 10.7 suggested minor evidence for publication bias in checking association of ALDH1 and 

overall survival in non-small cell lung cancer. There was outlier study that made the funnel asymmetric. 
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Figure 10.8 suggested no obvious evidence for publication bias in association of ALDH1 and disease-

free survival in non-small cell lung cancer. The funnel was in a symmetric shape and studies scattered 

around the pooled Hazard Ratio. But within each subgroup, the studies were not distributed 

symmetrically. 

 

 

 

Figure 10.9 Funnel plot of ALDH1 genes expression and overall survival in ovarian cancer 
Figure 10.10 Funnel plot of ALDH1 genes expression and disease-free survival in rectal cancer 
 

Funnel plots 10.9 and 10.10 didn’t show significant publication bias, which were strong evidence of 

ALDH1 being a prognosis predictor for patients with ovarian cancer and rectal cancer. 

 

 

Figure 10.11 Funnel plot of ALDH1A2 and prognosis in cancer patients 
Figure 10.12 Funnel plot of ALDH1A3 and prognosis in cancer patients 
Figure 10.13 Funnel plot of ALDH1L1 and prognosis in cancer patients 
 
 
The three funnel plots provided information as whether more investigation was required to examine the 

prognosis effect of ALDH1A2, ALDH1A3, and ALDH1L1 subfamilies. 
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Discussion 

In recent studies, a particular sub-group of tumor cells are believed to play a critical role in cancer, 

which is called cancer stem cells(CSCs) or tumor initiating cells(TICs). The most important 

characteristics of CSCs are enhanced tumorigenicity and the capacity for self renewal and self 

differentiation. The ALDH activity has been identified and can separate CSCs from a series of cancer 

types [23, 173]. The ALDH isozymes actively participate in various physiological responses including 

drug resistance and RA formation, also ALDH isozymes can protect stem cells from toxic endogenous 

and exogenous aldehydes.  Hence ALDHs can be a potential stem cell marker, or cancer stem cell 

predictor [174]. Among the nineteen ALDH isoenzymes, ALDH1A1 was extensively considered to 

interact with cancer stem cells including breast cancer and non-small cell lung cancer. Studies on murine 

hematopoietic stem cells, murine progenitor pancreatic cells, and breast cancer stem cells demonstrated 

that ALDH1A3 expression may result in aldefluor positivity, which exerted influence in regulation CSCs 

[63]. Previous researches have indicated the potential of ALDHs to predict cancer patients’ outcome 

because of its role in CSCs.  

 

Unlike Relative Risk or Odds Ratio, Hazard Ratio is the time-to-event analysis instead of event analysis. 

In order to study the prognosis effect of ALDH in cancer patients, estimation is conducted to evaluate 

the proportion of cancer patient group who would survive in a given length of time under the same 

ALDH status from a set of observed survival time interval. And Kaplan-Meier curve is constructed in 

the already published papers to display the survival functions. The Cox model is used to simultaneously 

explore the effects of different risk factors related to cancer patients’ survival, or different combinations 

of covariates to cancer patients death [175].  As to the clinical outcomes of overall survival or disease-

free survival, the Cox Regression Model is based on the assumption that the predictor variable are 

constant over time and additive in log scale. The Cox model can allow isolation the ALDH expression 

status from other contributable variables to survival outcome, by adjusting other covariates effects. 

 

Meta-analysis can provide a more accurate estimation of researched effect, because meta gives weight 

to each studies based on the sample size and include individual researches into meta-analysis. The 
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reason why a meta-analysis is conducted on ALDH prognosis effect on cancer patient is that it can 

address certain practical difficulties that may beset anyone trying to make sense of prediction of ALDH 

prognosis influence. The validity of this meta-analysis study depends on the quality of the systematic 

review on the survival analysis considering ALDH expression in cancer patients. This meta-analysis 

study aims to assess all relevant studies on ALDH and cancer patients’ survival analysis, presents a 

decent summary of existing researches, looks for the presence of heterogeneity and unbiased synthesis 

among these published studies, and explore the robustness of the main findings using sensitivity analysis. 

To overcome bias, a rigorous systematic review is conducted to quantitatively evaluate survival 

outcomes and ALDH1 expression status. A well-executed meta-analysis requires a complete unbiased 

collection of all the original studies of acceptable quality that examine prognosis of ALDH1 on cancer 

patients. Sensitivity analysis will help explore the effect of excluding various categories of studies and 

how consistent the results are among studies[176].  

 

This meta-analysis found ALDH1 genes expression is association with poor overall survival of breast 

cancer (HR: 1.83) and disease-free survival of breast cancer (HR: 1.61). The significant association 

provided evidence of ALDH1 families as prognosis predictor for breast cancer patients. The adjusted 

Hazard Ratio provided an even stronger association for ALDH1 genes prognosis. This conclusion is 

consistent with most of published studies, but some studies did conclude different way. The 

inconsistency with conclusion from Liu [135] might be attributed to specific breast cancer, triple-

negative breast cancer, and also because of the experiment design of gene expression from stromal cells 

or cancer cells, or the analysis with different cohort effect sizes.  

 

This meta-analysis also found ALDH1 genes expression is associated with poor overall survival in colon 

cancer (HR: 2.13). This association is not significant, however the adjusted overall survival is 

significantly associated with ALDH1 genes expression status. The conclusion that ALDH1 genes are 

poor prognosis of colon cancer is consistent with previous researches. For patients with esophageal 

squamous carcinoma, this meta-analysis discovered the insignificant association of ALDH1 genes with 

poor overall survival (HR: 1.22) and with disease-free survival (HR: 1.84). The researches included 
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proposed controversial prognosis effect of ALDH1. The controversy of conclusion may be related to 

the different treatment received by esophageal squamous carcinoma [106] or age group [105]. The 

expression of ALDH1 in esophageal squamous carcinoma patients required further investigation in 

order to draw meaningful conclusion and check the prognosis effect. A most unique and important 

finding in this meta-analysis study is that ALDH1 is a significant poor prognosis of disease-free survival 

in rectal cancer patients (HR: 2.57).  The result is consistent with each of the four original researches 

found. Researches can be conducted simultaneously for colon cancer and rectal cancer, which is 

believed to originate from normal stem cells. 

 

Another important finding of this study is the association of ALDH1 genes expression with poor 

prognosis in non-small cell lung cancer patients, both for overall survival (HR: 1.94) and disease-free 

survival (HR: 1.32). And the adjusted HR indicated a stronger association for poor prognosis. Previous 

studies that concluded in different prognosis effect may not use multivariate analysis by Cox Regression 

Model as reported in You [38]. The opposite conclusion of good prognosis of disease-free survival may 

also be due to AQUA score-defined threshold of detecting ALDH1 genes expression [157].  Because of 

the limited researches found on ALDH1A2, ALDH1A3, ALDH1B1, and ALDH1L1, this meta-analysis 

for non-small cell lung cancer prognosis didn’t include results from such ALDH1 genes. According to 

You [38], high expression of ALDH1A2 and ALDH1B1 was significantly associated with poor overall 

survival in NSCLC patients. Thus ALDH1A2 and ALDH1B1 might be good potential drug targets and 

overall survival predictor for NSCLC patients. 

 

This meta-analysis also concluded that there’s association of ALDH1 genes especially ALDH1A1 

expression with poor prognosis of overall survival in ovarian cancer patients (HR: 1.48). The significant 

poor prognosis effect is consistent with most of what original researches found [117, 120]. But some 

research concluded different way as favorable prognosis of ALDH1 for ovarian cancer [124]. In Chang’s 

study [124], high levels of ALDH1 expression was associated with endometrioid adenocarcinoma, early 

disease stage, complete response to chemotherapy and favorable survival. The cut-off point in determine 
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high and low ALDH1 expression was 20%. The prognosis markers for identifying one type cancer cells 

may not always be useful for predicting other types of cancer cells [177-179].  

 

The forest plots and funnel plots were mapped by Review Manager 5.3. To conduct a meta-analysis for 

Hazard Ratio in RevMan, logHR and se(logHR) are needed to be transformed from reported Hazard 

Ratio. Papers that either reported HR with 95%CI or HR with p-value fit the transformation calculation 

and the calculation was based on Hazard Ratio Meta-analysis Spreadsheet. This spreadsheet was 

developed by Hans Messersmith using the methods in Parmar [71] in Statistics in Medicine. Unlike 

other softwares including R, SAS, SPSS, RevMan didn’t require the 95%CI for HR reported in the 

original researches in order to meet the inclusion criteria. Because some papers may not report 95%CI 

and only reported p-value for HR if the prognosis association was not significant, this transformation 

provided method to be incorporated into meta-analysis. The method was also proposed by Parmar [71]. 

STATA and RevMan are useful in processing subgroup meta-analysis, while other softwares were more 

strict in subgroup meta. Especially RevMan is easier for sensitivity analysis to sequentially exclude 

each individual research from meta-analysis and repeat the whole process to see if pooled Hazard Ratio 

will be significantly altered. 

 

The limitations of this meta-analysis study concerns with four parts. In the first place, even if the data 

extraction method from Kaplan-Meier curve can include more validated researches, the HR calculated 

this way is unadjusted HR. Other published papers which already include the HR and 95%CI mainly 

use Cox regression model and calculate adjusted hazard ratio. This study didn’t separate adjusted HR 

and unadjusted HR into different categories. Hence the interpretation of overall HR cannot be arbitrarily 

concluded as controlling other covariates. The influence of covariates in survival in cancer patients 

remain unclear, and this can reduce the validation of overall results.  There might be a situation when 

some covariates contribute more to prognosis than ALDH1 genes expression status and not properly 

controlling the covariates can affect HR in both directions. Another problem with this data extraction 

method is the calculation of 95%CI is dependent on sample size. The studies with small sample size 

tend to have a broader 95%CI range, even if the original paper provided a significant p-value based on 



41 

either log-rank test or Cox regression model. There’s a tradeoff in using this data extraction method to 

include validated outcomes, and it can reduce the selection bias from inclusion process while not 

guarantee the uniform data analysis.  In addition, the cut-off points for ALDH1 genes expression status 

is not uniform, with some studies deciding positive and negative status based on their specific 

immunology results. This meta-analysis didn’t transform such criteria and standardize it. The choice of 

cut-off points will also exert influence the final result, especially when it’s not merely expression versus 

non-expression. A higher cut-off point will weaken the calculation of HR and draw it to the direction 

towards 1.This meta-analysis study didn’t cover all the cancer types found from database. Further 

original researches should be conducted on the prognosis effect and the less-studied cancer types. Next 

when interpreting the hazard ratio for a survival analysis, it’s better to take into consideration of time 

such as median survival time under scrutiny, comparison of two groups at the time point that half of 

patients experienced the event. This meta-analysis didn’t include the information about time in each 

study. Finally, the Hazard Ratio meta-analysis using Review Manager needs the log transformation for 

Hazard Ratio, 95%CI, or p-value. As such calculation is taken into consideration of sample size, some 

studies may include more than one cohort for prognosis analysis. Thus the calculation by Review 

Manager may differentiate the original HR and 95%CI provided by the original papers. 

 

Conclusions 

ALDH1 genes expression is associated with poor overall survival of breast cancer (HR: 1.83), poor 

disease-free survival of breast cancer (HR: 1.61), poor overall survival of colon cancer (HR: 2.13), poor 

overall survival of non-small cell lung cancer (HR: 1.94), poor overall survival of ovarian cancer (HR: 

1.48) and poor disease-free survival of rectal cancer (HR: 2.57). This study also found ALDH1 genes 

expression is not associated with disease-free survival of non-small cell lung cancer, overall survival 

and disease-free survival of esophageal squamous carcinoma, as well as disease-free survival of Head 

and Neck Squamous Carcinoma Cancer. Expression of ALDH1 genes predicts poor prognosis for breast 

cancer, colon cancer, non-small cell lung cancer, ovarian cancer and rectal cancer. 
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Competencies 

� Describe the mechanisms of toxicity of biological, chemical, and physical stressors, including 

absorption, distribution, metabolic transformation, elimination, and genetic susceptibility. 

� This thesis describes aldehyde dehydrogenases family and its use as prognosis factors 

for certain human cancer types. Unlike mechanistic studies on ALDH1 genes, this study 

attempts to discover clinical utility of ALDH1 genes for cancer patients. 

� Review, critique, and evaluate environmental epidemiology research articles. 

� The meta-analysis is a comprehensive review of already published papers on ALDH1 

genes families and human cancers.  

� Synthesize information from a variety of environmental health and related studies 

� The meta-analysis analyzed and organized data from each related papers and made a 

comprehensive summary to assess all possible original researches concerning survival 

analysis of ALDH1 genes among cancer patients. 

� Use epidemiological, exposure assessment, toxicological and statistical techniques in assessing 

the risks associated with environmental hazards in the working, residential, and community 

environment. 

� The statistical analysis helps in discovering the ALDH1A1, ALDH1A2, ALDH1A3, 

ALDH1B1, ALDH1L1 level and activity in association with breast cancer, lung cancer 

and esophageal cancer or other cancer types among humans. It shed light on how 

enzymes may work as prognosis biomarkers for these cancers. 

� Explain the interrelationships among a multitude of factors that can influence a public health 

problem. 

� The study aims to find out the correlation or association between ALDH1 genes 

expression and prognosis for cancer patients. It is more important to improve the life 

quality of cancer patients, including preventing the recurrence of cancer for humans. 

By identifying the prognosis effect, this study can disclose the clinical potential of 

ALDH1 families as marker for prognosis prediction. This can provide recommendation 

for personalized treatment for cancer patients. 
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Innovation of This Meta-Analysis 

� Previous Systematic Review and Meta-Analysis for prognosis effect of ALDH1 genes on cancer 

studies didn’t provide enough information about categorical difference in six ALDH1 genes. 

The majority of papers put the six ALDH1 genes together without specifying the isozymes. This 

meta-analysis specified ALDH1 isozymes into six subtypes as ALDH1, ALDH1A1, ALDH1A2, 

ALDH1A3, ALDH1B1, ALDH1L1, ALDH1L2 (no prognosis research) and then combine 

isozymes together and carry out the analysis as ALDH1 family. It’s a more comprehensive 

systematic review compared to targeting at only one isozyme and its prognosis effect. 

� The HR calculation based on Kaplan-Meier curve data extraction provides a more validated 

result for meta-analysis study. Excluding the survival analysis paper that didn’t calculate HR 

can bring in bias for the entire study results. Including the unadjusted calculated HR can give 

weight to such studies that meet inclusion criteria for this meta-analysis studies. This estimation 

method extends validated study sample for prognosis effect of ALDH1 genes. 

� This study shed enlightening light on exploration and examination of whether ALDH1 can be a 

clinical biomarker in predicting prognosis as well as metastasis. Its clinical significance for 

survival prediction caters to the trend of personalized medicine and arising genetic sequencing 

skill utility. The conclusion of the study enriches the clinical utility of ALDH1 genes, and can 

work as new mechanism for drug treatment and cancer progression pathway. This meta-analysis 

also provides basis for prognosis effect of other ALDH genes like ALDH2, and the cancer types 

cover some of the most common one. By categorizing cancer type, the prognosis prediction has 

even more clinical significance in personalized treatment for cancer patients. 
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