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ABSTRACT 

Optimal solutions with neural networks (NN) based on an approximate dynamic 

programming (ADP) framework for new classes of engineering and non-engineering 

problems and associated difficulties and challenges are investigated in this dissertation. In 

the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time 

problems (also called terminal control problems) and problems with switching nature. An 

ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with 

soft terminal constraint, in which, a single neural network with a single set of weights is 

utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. 

The optimality analysis of the ADP based algorithm for fixed-final-time problems is the 

subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global 

optimal solution providing certain conditions hold. Afterwards, the developments in 

Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal 

control of switching systems. This class of problems is divided into problems with fixed 

mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). 

Each of these two classes is further divided into problems with autonomous subsystems 

(Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different 

ADP-based algorithms are developed and proofs of convergence of the proposed iterative 

algorithms are presented. Moreover, an extension to the developments is provided for 

online learning of the optimal switching solution for problems with modeling uncertainty 

in Paper 8. Each of the theoretical developments is numerically analyzed using different 

real-world or benchmark problems. 
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1. INTRODUCTION 

1.1. OVERVIEW 

Optimal control of dynamical systems is, by nature, desirable as compared to any 

other control method. The reason lies in providing a solution which ‘optimizes’ a 

performance index. Features of such solutions are, for example, minimizing the 

consumed energy while fulfilling the goal (e.g., path planning for an aircraft), minimizing 

deviations from a set point (e.g., in the cruise phase of the flight when the aircraft is on 

auto-pilot), and minimizing terminal errors (e.g., smooth automatic landing of an aircraft 

on the runway). However, it is very challenging and sometimes impossible to find the 

optimal controller in a feedback form for problems with nonlinear dynamics and/or 

complexities including fixed-final-time, constraints on the control/states, and switching 

nature. Considering the excellent potential of approximate dynamic programming (ADP) 

framework in circumventing the problem of curse of dimensionality existing with the 

dynamic programming approach to optimal control problems [1]-[10], the ADP is used in 

this dissertation to solve the following two classes of problems.  

1.1.1. Optimal Control with Fixed-final-time.  Many control, guidance, and 

path planning problems are classified as ‘terminal control’ problems [11]. A terminal 

control problem is a finite-horizon problem with soft or hard constraints on the terminal 

states. In other words, in terminal control problems the goal is supposed to be achieved in 

a finite time. Examples of such problems are having an airplane to land at a given point 

on the runway, a missile to hit the target, or a spacecraft to maneuver and position strictly 

at a given point and time to dock with another spacecraft. 

1.1.2. Optimal Control of Switching Systems.  Switching systems are comprised 

of several subsystems or modes, in which at each time instant, only one of the subsystems 

is engaged, e.g., cars with manual transmission system. Many real-world problems, from 

aerospace field to chemical processes, are categorized as switching systems [12]-[16]. In 

such systems, the optimal control is not only a ‘control input’ to be applied on the system, 

but also a ‘switching schedule’ to switch between the subsystems at the ‘best’ times. The 

main issue is finding optimal switching instants, and once they are found, the problem 

reduces to a conventional optimal control problem.  
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1.2. BACKGROUND 

Within the last two decades many researchers have focused on using ADP for 

solving different classes of problems emerging in different real-world systems [1]-[10]. 

ADP can be divided into two main classes, a) Heuristic Dynamic Programming (HDP) 

and b) Dual Heuristic Programming (DHP) [1]. In HDP, the reinforcement learning is 

used to learn the cost-to-go from the current state while in the DHP, the derivative of the 

cost-to-go function with respect to the states, i.e. the costate vector is learnt by the neural 

networks [3]. The convergence proof of DHP for linear systems is presented in [4] and 

that of HDP for general case is presented in [5]. While [3]-[10] deal with discrete-time 

systems, some researchers have recently focused on continuous time problems, [17]-[19]. 

ADP is usually carried out using a two-network synthesis called adaptive critic 

(AC) [2], [3]. In the heuristic dynamic programming (HDP) class with ACs, one network, 

called the ‘critic’ network, inputs the states to the NN and outputs the optimal cost and 

another network, called the ‘action’ network, outputs the control with states of the system 

as its inputs [5], [6]. In the dual heuristic programming (DHP) formulation, while the 

action network remains the same as the HDP, the critic network outputs the costates with 

the current states as inputs [2], [7], [8]. The single network adaptive critics (SNAC) 

architecture developed in [9] is shown to be able to eliminate the need for the second 

network and perform DHP using only one network. Similarly, the J-SNAC eliminates the 

need for the action network in an HDP scheme [10]. Note that these developments in the 

neural network literature have mainly addressed only conventional optimal control 

problems with infinite-horizon, i.e., regulator type problems.  

1.2.1. Terminal Control Problems.  One approach to solving terminal control 

problems of nonlinear systems is formulating the problem in an optimal control 

framework. For this class of problems, the Hamilton-Jacobi-Bellman (HJB) equation is 

very difficult to solve since the solution is time-dependent. An open loop solution is 

dependent on the selected initial condition (IC) and the time-to-go [20]. Available 

methods for solving terminal control problems can be classified as classical and 

intelligent control methods.  
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1.2.1.1. Classical approach to terminal control problems.  One approach in 

classical methods is calculating the open loop solution through a numerical method, e.g., 

the shooting method and then using techniques like Model Predictive Control for closing 

the control loop as done in [21]. A limitation of this approach is the fact that it holds only 

for one set of specified IC and time-to-go. Another method, called the Approximate 

Sequence of Riccati Equation (ASRE) developed in [22] provides a closed form solution 

to the problem but again only for a pre-specified IC and time-to-go. This method is based 

on the calculation of a sequence of Riccati equations until they converge, and then using 

the converged result for control calculation. Finite-horizon State Dependent Riccati 

Equation (Finite-SDRE) method, developed in [23] and [24], offers a suboptimal closed 

form solution to this class of problems. Finite-SDRE provides solutions for different ICs 

and final times in real-time and shows a lot of potential in the applications, but can 

accommodate only soft terminal constraints.  

 Series-based solutions to the optimal control problem with hard terminal 

constraints were investigated in [25]-[27]. In [25], a closed form solution was found by 

using a Taylor series expansion of the cost-to-go function. Series-based methods are 

suitable for systems whose dynamics are given in a polynomial form and comprise only 

weak nonlinearities. The series can diverge for problems with a large nonlinearity. This 

limitation motivated the authors of [26] to propose a divide-and-conquer scheme. This 

scheme is based on determining some waypoints to split the main problem into several 

simpler problems for which the series based method does not produce significant 

midcourse errors. However, this method requires some extra numerical optimization to 

find suitable waypoints for each IC. Moreover, the number of required waypoints needs 

to be selected through trial and error in order to avoid divergence. The generating 

functions method proposed in [27] is a different series-based solution where the terminal 

constraint is a given point. In [28] a Generalized Hamilton-Jacobi-Bellman equation [29] 

was used with some modifications. Convergence of this method was proved for the 

unconstrained case in [29], but not for the constrained problem.  

1.2.1.2. Intelligent approach to terminal control problems.  The use of  

intelligent control for solving finite-horizon optimal control problems was considered in 

[30]-[36]. Authors of [30] developed a neurocontroller for a problem with state 
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constraints using AC scheme with time dependent weights. This controller is developed 

for an agile missile maneuver. It is however, a scalar problem wherein the final state and 

the control have a direct relationship. Hence, in a discrete formulation, the final state can 

be achieved from any state at the previous step. Continuous-time problems are considered 

in [31] where the time-dependent weights are calculated through a backward integration 

of the HJB equation. The finite-horizon problem with unspecified terminal time and a 

fixed terminal state was considered in [33]-[36]. The algorithms developed in these 

papers lead to an infinite sequence of controls. Therefore, the control needs to be applied 

for an infinite time horizon to optimize the cost-function and bring the states to the origin. 

To overcome this problem, the authors suggested truncating the control sequence in order 

to end up with the so called (-optimal solution, which will hence, have a finite horizon. 

The truncation is done such that the remaining horizon is long enough in order for the 

cost-to-go truncation error to be less than a given ( ) �. Moreover, the neurocontrollers 

developed in [33] and [34] can only control one IC, and once the IC is changed, the 

network needs to be re-trained to give the optimal solution for the new IC. The 

neurocontrollers in [34] and [35] require the system to be such that the state can be 

brought to the origin in one step, from any given state. Systems with invertible input gain 

matrices in a control-affine discrete-time form satisfy this requirement. A newly 

developed controller in [36] has removed the restrictions of fixed initial condition and 

being able to go to the origin in one step.  

1.2.2. Optimal Switching Problems.  Methods developed so far for finding the  

optimal solution to switching systems can be mainly divided into two groups; nonlinear 

programming based methods and discretization based methods. 

1.2.2.1. Nonlinear programming based approach to switching problems.   

The first group is comprised of nonlinear programming based methods [37-42], in which 

through different schemes, the gradient of the cost with respect to the switching 

instants/points are calculated and then by using a nonlinear optimization method, e.g., 

steepest descent, the switching instants/points are adjusted to find the local optimum. It 

should be noted that in many existing papers, the sequence of active subsystems, called 

mode sequence, is selected a priori [37-41], and the problem reduces to finding the 

switching instants between the modes. In [42], the first and last subsystems are pre-
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selected and a search is done initially to find all the possible mode sequences and for 

every such sequence, the optimal switching instants are calculated using nonlinear 

programming.  

1.2.2.2. Discretization based approach to switching problems.  The second  

group includes studies that discretize the problem in order to deal with a finite number of 

options. Having a finite number of candidate switching time sequences, authors of [43] 

utilize a direct search to evaluate the cost function for different randomly selected 

switching time sequences and select the best one in the sense of having less 

corresponding cost. In [44] the discretization of the state and input spaces is used for 

calculation of the value function for optimal switching through dynamic programming.  

1.3. CONTENTS AND CONTRIBUTIONS OF THIS DISSERTATION 

This dissertation is composed of eight research papers with the main theme of 

developing new ADP-based algorithms and methods for solving difficult problems in 

controls. Considering the literature survey presented in Subsection 1.2, the contents of the 

papers and their contribution as well as their comparison with the state-of-the-art are 

discussed in here. 

1.3.1. Paper 1: Fixed-final-time Problems with Soft Terminal Constraints.  A 

single neural network based solution with a single set of weights, called Finite-horizon 

Single Network Adaptive Critics (Finite-SNAC), is developed in Paper 1, to provide a 

comprehensive solution to fixed-final-time optimal control problems with input-affine 

nonlinear systems. The offline trained network can be used to generate online feedback 

control for different ICs. Furthermore, a major advantage of the proposed technique is 

that this network provides optimal feedback solutions to any different final time as long 

as it is less than the final time for which the network is synthesized. In practical 

engineering problems, the designer faces constraints on the control effort. In order to 

facilitate the control constraint, a non-quadratic cost function [45], is used in this study.  

Specifically, in this paper an ADP based controller for control-constrained finite-horizon 

optimal control of discrete-time input-affine nonlinear systems is developed. This is done 

through a SNAC scheme that uses the current states and the time-to-go as inputs.  

Comparing the developed controller in this paper with the available controllers in 

the literature, the closest one is [30]. The difference between this study and the [30] is 
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developing a controller which uses only one network and one set of weights for the 

purpose, as well as providing comprehensive convergence proofs. Despite [31] and [32] 

the Finite-SNAC solves discrete-time problems and uses ADP to do so. Finally, [33]-[36] 

solves unspecified terminal time problems while Finite-SNAC solves the problems with 

given final times. 

1.3.2. Paper 2: Fixed-final-time Problems with Hard Terminal Constraints.   

The first part of the development in Paper 2 consists of formulating an approximate 

dynamic programming (ADP) based neurocontroller for fixed-final-time optimal control 

of systems with a soft terminal constraint. The main difference between Paper 1 and the 

proposed scheme in the first part of Paper 2 is the use of the cost-function based ADP, 

i.e., HDP. The development in Paper 1 is the costate based ADP, i.e., DHP. Another 

difference which leads to major changes in the training algorithm proposed in Paper 2 

with respect to the one given in Paper 1, is using NNs with time varying weights in Paper 

2 to accommodate the time-dependency of the solution. After discussing the solution to 

the problem with soft constraints, some modifications are performed in the network 

structure and the training algorithm to handle hard terminal constraints. These 

modifications are the main contributions of Paper 2. Another contribution of this study is 

proving the convergence of the network weights through a novel idea. It is done for the 

selected linear in the weights NN by showing that the successive approximation based 

weight update is a contraction mapping [46] within the compact domain of interest. 

As compared with [30], the controller developed in Paper 2 can be used in a 

multivariable setting while the method presented in [30] is developed for the scalar 

dynamics of an agile missile. Neurocontrollers developed in [31]-[32] do not admit hard 

terminal constraint, which is the main contribution of this study. Finally, the method here 

does not have the restrictions in [33]-[36] as the need for truncating the control in order to 

end up with a finite-horizon solution and also the requirement of the terminal constraint 

being a ‘point’. The proposed technique can handle terminal constraints that are a point, a 

curve, or a surface which can be a nonlinear function of the state space elements. 

Moreover, the selected approach in this study directly results in a finite sequence of 

controls, hence, no truncation is required. 
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The trained (linear in the weights) NN in this Paper 2 offers a feedback solution 

though trained offline. Furthermore, notable features of the proposed technique include: 

a) Optimal control of any set of initial conditions in a compact set, as long as the resulting 

state trajectory lies within the domain on which the network is trained. b) Optimal control 

for any final time not greater than the final time for which the network is trained 

(Bellman principle of optimality [20]). c) Providing optimal control in a closed form 

versus the terminal surface/curve/point. Therefore, if, for example, the terminal point is 

changed, no retraining is needed for the network to give optimal solution for the new 

terminal point. Interested readers are referred to [47] for an application of the method 

developed in Paper 2 in solving spacecraft rendezvous problems. 

1.3.3. Paper 3: Proof of Global Optimality of ADP for Fixed-final-time 

Problems.  Despite much published literature on adaptive critics, there still exists an 

open question about the nature of optimality of the adaptive critic based results. Are they 

locally or globally optimal? A contribution of Paper 3 is in proving that the AC based 

solutions are globally optimal subject to the assumed basis functions. To help with the 

development of the proof, the ADP based algorithm for solving fixed-final-time problems 

developed in Paper 1 and Paper 2, included in this dissertation, is revisited first. 

Afterwards, a novel analysis is presented on global optimality of the result in Paper 3. It 

is shown that selecting any cost function with quadratic control penalizing term, if the 

sampling time used for discretization of the original continuous-time system is small 

enough, the resulting cost-to-go function will be convex versus the control at the current 

time and hence, the first order necessary optimality condition [48] will lead to the global 

optimal control. The second contribution of this paper is in showing that the ADP can be 

used for functional optimization, specifically, optimization of non-convex functions. 

Finally, through analytical and numerical discussions, it is shown that despite the gradient 

based methods, selecting any initial guess on the minimum and updating the guess using 

the control resulting from the actor, the states will move directly toward the global 

minimum, passing any existing local minimum in the path.  

1.3.4. Papers 4 and 5: Switching Problems with Fixed Mode Sequence.  All  

the cited methods in the literature of optimal switching numerically find the optimal 

switching time for a specific initial condition; each time the initial condition is changed, 
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new computations are needed to find the new optimal switching instants. If the function 

that describes the optimal cost-to-go for every given switching time sequence is known 

explicitly, then the optimal switching problem simplifies to minimization of the function 

with respect to the switching instants. However, even in the case of general linear 

subsystems with a quadratic cost function, this function is not available [38,49]. The main 

contributions of Paper 4 and 5 are developing algorithms for switching problems, 

respectively with autonomous and controlled subsystems, that learns the optimal cost-to-

go as a function of current state and the switching instants. An ADP based scheme, in an 

HDP form is used to train an NN to learn the nonlinear mapping between the optimal 

cost-to-go and the switching instants. Once this function is learned, finding the optimal 

switching times reduces to minimization of an analytical function. Furthermore, a second 

NN is trained in Paper 5 along with to generate optimal control in a feedback form. 

Hence, once the optimal switching instants are calculated, one may use the control NN to 

generate the optimal control to be applied on the system. 

As compared to available methods in the literature, the proposed technique has 

two advantages. They are: 1) the method developed in this paper gives global optimal 

switching instants versus local ones resulting from nonlinear programming based 

methods, 2) the learned function gives the optimal cost-to-go based on the switching 

instants for a vast domain of initial conditions; hence, optimal switching times for 

different initial conditions can easily be calculated using the same trained NNs. 

Moreover, once the optimal switching instants are calculated, the method developed in 

Paper 5 provides feedback optimal control, too. Convergence of the learning process is 

also provided. 

1.3.5. Papers 6 and 7: Switching Problems with Free Mode Sequence.  In  

Papers 6 and 7, two methods based on ADP are developed for solving optimal switching 

problems with free mode sequence, for autonomous and controlled subsystems, 

respectively. The idea is as simple as learning the optimal cost-to-go and the optimal 

control for different active modes. It is shown that having these functions the optimal 

mode can be found in a feedback form, i.e., as a function of the instantaneous state of the 

system and the remaining time. The real-time calculation of the optimal mode 

differentiates Papers 6 and 7 from Papers 4 and 5. Note that, after the training phase, the 
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methods presented in Papers 4 and 5 require an offline function minimization based on 

the selected initial condition, in order to end up with the optimal switching times. 

The method developed in Papers 6 and 7 have several advantages over existing 

developments in the field: a) They provide global optimal switching (subject to the 

assumed neural network structure) unlike the nonlinear programming based methods 

which could provide only local optimal solution. b) The order of active subsystems and 

the number of switching are free. c) The neurocontroller determines optimal solution for 

unspecified initial conditions, without needing to retrain the networks. d) Once trained, 

the neurocontroller gives solution to any other final time as well, as long as the new final 

time is not greater than the final time for which the network is trained. e) The switching is 

scheduled in a feedback form, hence, it has the inherent robustness of feedback solutions 

in moderate disturbance rejection. f) The proposed method provides optimal control as 

well as optimal switching schedule for the control of the systems in Paper 7. 

1.3.6. Paper 8: Switching Problems with Modeling Uncertainty.  To the best of 

author’s knowledge, the available switching developments in the literature require a 

perfect model of the system ahead of the implementation time, for calculation of the 

solution. In practice, however, modeling uncertainties are ubiquitous. This fact gives rise 

to the need for developing a scheme for online calculation of the optimal switching 

schedule based on the actual dynamics of the subsystems. This problem is investigated in 

Paper 8. In order to extend the switching scheme developed in Paper 6 to systems with 

modeling uncertainty, the idea proposed in Paper 6 for finite-horizon optimal switching is 

extended to infinite-horizon problems initially. Afterwards, an online training phase is 

proposed for capturing the effect of unmodeled dynamics on the cost-to-go approximator 

and also for identifying the unmodeled dynamics, motivated by the work in [50] for 

conventional optimal control problems. In other words, an NN is trained offline based on 

imprecise models of the subsystems and then it is utilized in the online operation of the 

system in which, the actual dynamics of the subsystems are captured and the network is 

re-trained based on the system’s output to generate the optimal cost-to-go and hence, the 

optimal switching schedule. Besides solving the problems with modeling uncertainty, an 

important feature of this method is providing solution for different initial conditions. 
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Moreover, the mode sequence and the number of switching are subject to be determined 

optimally.  
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PAPER 
 

1. FINITE-HORIZON CONTROL-CONSTRAINED NONLINEAR OPTIMAL 
CONTROL USING SINGLE NETWORK ADAPTIVE CRITICS 

Ali Heydari and S. N. Balakrishnan 

ABSTRACT 

To synthesize fixed-final-time control-constrained optimal controllers for 

discrete-time nonlinear control-affine systems, a single neural network based controller 

called the Finite-SNAC is developed in this study. Inputs to the neural network are the 

current system states and the time-to-go and the network outputs are the costates which 

are used to compute optimal feedback control. Control constraints are handled through a 

non-quadratic cost function. Convergence proofs of a) the reinforcement learning based 

training method to the optimal solution, b) the training error, and c) the network weights 

are provided. The resulting controller is shown to solve the associated time-varying 

Hamilton-Jacobi-Bellman equation and provide the fixed-final-time optimal solution.  

Performance of the new synthesis technique is demonstrated through different examples 

including an attitude control problem wherein a rigid spacecraft performs a finite time 

attitude maneuver subject to control bounds. The new formulation has a great potential 

for implementation since it consists of only one neural network with single set of weights 

and it provides comprehensive feedback solutions online, though it is trained offline. 

I. INTRODUCTION 

Among the multitude of researches in the literature that use neural networks (NN) 

for control of dynamical systems, one can cite [1]-[6]. A few amongst them develop 

neural network based optimal control based on an approximate dynamic programming 

(ADP) formulation  [4], [7]-[17]. Two classes of ADP based solutions, called the 

Heuristic Dynamic Programming (HDP) and Dual Heuristic Programming (DHP) have 

emerged in the literature [4]. In HDP, the reinforcement learning is used to learn the cost-

to-go from the current state while in the DHP, the derivative of the cost function with 

respect to the states, i.e. the costate vector is learnt by the neural networks [7]. The 

convergence proof of DHP for linear systems is presented in [8] and that of HDP for 

general case is presented in [9]. While [7]-[16] deal with discrete-time systems, some 



 

 

15

researchers have recently focused on continuous time problems, [18]-[20]. 

Mechanism for ADP learning is usually provided through a dual network 

architecture called the Adaptive Critics (AC) [7], [11]. In the HDP class with ACs, one 

network, called the ‘critic’ network, maps the input states to output the cost and another 

network, called the ‘action’ network, outputs the control with states of the system as its 

inputs [9], [10]. In the DHP formulation, while the action network remains the same as 

with the HDP, the critic network outputs the costates with the current states as 

inputs.[11]-[13]. The Single Network Adaptive Critic (SNAC) architecture developed in 

[14] is shown to be able to eliminate the need for the second network and perform DHP 

using only one network. This results in a considerable decrease in the offline training 

effort and the resulting simplicity makes it attractive for online implementation requiring 

less computational resources and storage memory. Similarly, the J-SNAC eliminates the 

need for the action network in an HDP scheme [15]. Note that these developments in the 

neural network literature have mainly addressed only the infinite horizon or regulator 

type problems. 

Finite-horizon optimal control is relatively more difficult due to the time varying 

Hamilton-Jacobi-Bellman (HJB) equation resulting in a time-to-go dependent optimal 

cost function and costates. If one were to use a shooting method, a two-point boundary 

value problem (TPBVP) needs to be solved for each set of initial condition for a given 

final time and it will provide only an open loop solution. The authors of [21] developed a 

method which gives closed form solution to the problem but only for some pre-specified 

initial condition and time-to-go. Ref. [22] develops a dynamics optimization scheme 

which gives an open-loop solution, then, optimal tracking is used for rejecting the online 

perturbation and deviations from the optimal trajectory.  

Using NN for solving finite-horizon optimal control problem is considered in 

[16], [23]-[28]. Authors of [16] used the AC’s dual network scheme with time-dependent 

weights for solving the problem. Continuous-time problems are considered in [23] and 

[24] where the time-dependent weights are calculated through a backward integration. 

The finite-horizon problem with unspecified terminal time and a fixed terminal state is 

considered in [25]-[28]. In these researches the problem is called finite-horizon because 

the states are required to be brought to the origin using a finite number of steps, but, the 



 

 

16

number of steps is not fixed which differentiates these works from the fixed-final-time 

problem investigated in this study. 

In this paper, a single neural network based solution with a single set of weights, 

called Finite-horizon Single Network Adaptive Critics (Finite-SNAC), is developed 

which embeds solutions to the discrete-time HJB equation. Consequently, the offline 

trained network can be used to generate online feedback control. Furthermore, a major 

advantage of the proposed technique is that this network provides optimal feedback 

solutions to any different final time as long as it is less than the final time for which the 

network is synthesized.  

In practical engineering problems, the designer faces constraints on the control 

effort. In order to facilitate the control constraint, a non-quadratic cost function [30], is 

used in this study.   

Comparing the developed controller in this paper with the available controllers in 

the literature, the closest one is [16]. The difference between Finite-SNAC and the 

controller developed in [16] is using only one network and only one set of weights for the 

purpose. Despite [23] and [24] the Finite-SNAC solves discrete-time problems and uses 

ADP to do so. Finally, [25]-[28] solves unspecified terminal time problems while Finite-

SNAC solves the problems with given and fixed final time. 

Specifically, in this paper an ADP based controller for control-constrained finite-

horizon optimal control of discrete-time input-affine nonlinear systems is developed. This 

is done through a SNAC scheme that uses the current states and the time-to-go as inputs. 

The scheme is DHP based. For the proof of convergence, proof of HDP for the finite-

horizon case is presented first. Then, it is shown that DHP has the same convergence 

result as the HDP, and therefore, DHP also converges to the optimal solution. Finally, 

after presenting the convergence proofs of the training error and the network weights for 

the selected weight update law, the performance of the controller is evaluated. The first 

example with a linear system allows easy comparison of the Finite-SNAC with known 

exact optimal results. The second example is a discrete-time nonlinear problem, and as 

the third example a more complex nonlinear spacecraft application, that is a fixed final 

time attitude maneuver, is carried out to show the applicability of Finite-SNAC to 

difficult engineering applications. 
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Rest of the paper is organized as follows: the Finite-SNAC is developed in 

Section II. Relevant convergence theorems are presented in Section III. Numerical results 

and analysis are presented in Section IV. Conclusions are given in Section V.  

II. DEVELOPMENT OF FINITE-SNAC 

A single neural network, called Finite-SNAC, is developed in this study which 

maps the relation between costates vector, used in the optimal control, and the states 

vector along with the time-to-go. The mapping is described in a functional form as  

 *+,- � ..	/+� . 0 1�2�� � 3 1 4 . 0 �, (1) 

where *+,- � 56 and /+ � 56 denote the system costates at time 1 ! � and the states at 

time/stage 1, respectively, and 2 denotes the network weights. �he dimension of the 

state space is given by 7. For developing discrete control sets as a function of time-to-go, 

the specified final time is divided into . stages. Note that *+,- is a function of /+ and the 

time-to-go 	. 0 1�.   
The neural network ..	� � � � � � in this study is selected to be of a form that is 

linear in weights 

 ..	/� . 0 1�2� 8 29:	/�. 0 1�, (2) 

where :;56 � 5 < 5= is composed of > linearly independent basis functions and 2 � 5=�6, where > is the number of neurons. 

Denoting the control vector by ?+ � 5@, where A is the number of controls, the 

nonlinear control-affine system is  assumed to be of the form 

 /+,- � B	/+� ! C	/+�?+ (3) 

where B;56 < 56 and C;56 < 56�@�are the system dynamics. A non-quadratic cost 

function D is used to incorporate the control constraints [30]. It is given by  

 D � -E /F9GH/F ! I -E 	/J9G/J ! K	?J��FL-JMN , (4) 

where�K; 5@ < 5  is defined as 

 K	O� 8 P QL-	R�SN 9 TUR (5) 

and QL-	� � denotes the inverse of function Q;5@ < 5@ which is a bounded continuous 
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one-to-one real-analytic integrable saturating function which passes through the origin, 

for example, a hyperbolic tangent function. Note that K	� � is a non-negative scalar and GH � 56�6� G � 56�6�and T � 5@�@ the penalizing matrices for the final states, states, 

and control vectors, respectively. Matrices GH and G should be positive semi-definite or 

positive definite while T has to be a positive definite matrix. 

The optimal cost-to-go at current state and time, denoted by DV	/+� 1�, is given by 

solving the discrete-time HJB equation [29] 

 DV	/+� 1� � W#XYZ [-E 	/+9G/+ ! K	?\�� ! D	/+,-� 1 ! ��],  � 3 1 3 . 0 �. (6) 

The optimal control, ?+V , is obtained from 

 ?+V � 
^_W#XYZ [-E 	/+9G/+ ! K	?\�� ! D	/+,-� 1 ! ��], � 3 1 3 . 0 �. (7) 

Define  *+ 8 `aZ`bZ  as a column vector to get 

 ?+ � 0Q	TL-C	/+�9*+,-� �,  � 3 1 3 . 0 �. (8) 

Replacing ?+�in (6) by ?+V , the HJB equation reads 

 DV	/+� 1� � -E 	/+9G/+ ! K	?\V�� ! DV	/+,-� 1 ! ��,�� 3 1 3 . 0 �. (9) 

Taking the derivative of both sides of (9) with respect to /+�leads to the costate 

propagation equation which the network training targets, denoted by *c, are based on: 

 *+,-c � G/+,- ! d`	H	bZef�,g	bZef�YZef�`bZef h9 *+,E, � 3 1 4 . 0 �. (10) 

Note that 

 DV	/F� .� � -E /F9GH/F, (11) 

Hence, 

 *Fc � GH/F. (12) 

In the training process, *+,E on the right hand side of (10) is obtained by using the same 

neural network as ..	/+,-� . 0 	1 ! ���2�. 
The network training should be done in such a way that along with learning the 
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target given in (10) for every state /+ and time 1, the final condition (12) is also satisfied 

at every step. In this study, this idea is incorporated by augmenting the training input-

target pairs with the final stage costate. Define the following augmented parameters: 

 *i 8 j*+,-���*Fk, (13) 

 :l 8 j:	/+� . 0 1����:	/FL-� ��k. (14) 

Now, the network output and the target to be learned are 

 *i � 29:l, (15) 

 *ic 8 j*+,-c ���*Fc k. (16) 

The training error is defined as 

 m 8 *i 0 *ic � 29:l 0 *ic. (17) 

In each iteration, along with selecting a random state /+, a random time 1, � 3 1 4 . 0 �, is also selected and *+,-c  is calculated using (10) after propagating /+ to /+,-. Then, to calculate *Fc  through (12), another randomly selected state will be 

considered as /FL- and propagated to /F and fed to (12). Finally *ic will be formed as in 

(16). This process is depicted graphically in Fig. 1. In this diagram, the left side follows 

(10) and the right side follows (12) for network target calculations. 

Having thus calculated the input-target pair �j	/+� . 0 1���	/FL-� ��k�j*+,-c ��*Fc k�, the network can now be trained using some training method. In this study, 

the least squares method is used. In this method, in order to find the unknown weight 2 

one should solve the following set of linear equations 

 nm� :lo � �6�=, (18) 

where np� qo � P pq9U/�r  is the defined inner product on the compact set s on 56 for the 

functions p	/� and q	/�� and �6�= denotes an�7 � > null matrix. Denoting the tth row 

of matrices m and :l by mJ and :lJ, respectively, (18) leads to following equations 

 nmJ� :lo � �-�=��ut� � 3 t 3 7, (19) 

 nmJ� :lvo � ���ut� w� � 3 t 3 7� � 3 w 3 >. (20) 

Substituting m from (17) into (18) results in 
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 nm� :lo � 29n:l� :lo 0 n*ic� :lo � �, (21) 

or 

 2 � n:l� :loL-n:l� *ico. (22) 

Eq. (22) is the desired weight update for the training process.  

 

 
Fig. 1. Finite-SNAC training diagram 

 

Finally, for use in discrete formulations, the integral used in the inner products in 

(22) is discretized by evaluating the inner products at x different points in a mesh 

covering the compact set s [23]. Denoting the distance between the mesh points by y/, 

one has 

 n:l� :lo � z#W{|b{<N }~}~9 �/, (23) 

 n:l� *ico � z#W{|b{<N }~�l�9 �/, (24) 

where 

 }~ � �:l	/-����:l	/E�������:l	/���, (25) 
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 �l�� � �*ic	/-����*ic	/E�������*ic	/���, (26) 

:l	/J� and *ic	/J� denote :l and *ic evaluated on the mesh point /J, respectively. 

Using (23) and (24), the weight update rule (22) is now simplified to the standard 

least square form as 

 2 � 	}~}~9�L-}~�l�9. (27) 

Note that for the inverse of the matrix 	}~}~9� to exist, one needs the basis functions :J to 

be linearly independent and the number of mesh points x to be greater than or equal to 

half of the number of neurons >. 

Though (27) looks like a one shot solution for the ideal NN weights, the training 

is an iterative process which consists of selecting different random states from the 

problem domain and times and updating the network weights by repeated use of  (27). 

The reason for the iterative nature of the training process is the reinforcement learning 

basis of ADP. To understand it better, one should note that *ic used in the weight update 

(27) is not the true optimal costate but its approximation with a current estimation of the 

ideal unknown weight, i.e. �l�	2�. Denoting the weights at the tth iteration of the weight 

update by 2	J� results in the following iterative procedure as 

 2	J,-� � 	}~}~9�L-}~�l��2	J��9. (28) 

The weight training is started with an initial weight 2	N� and iterated through (28) until 

the weights converge. The initial weight can be set to zero or can be selected based on the 

linearized solutions of the given nonlinear system. 

Once the network is trained, it can be used for optimal feed-back control in the 

sense that in the online implementation, the states and the time will be fed into the 

network to generate the optimal costate using (1) and the optimal control will be 

calculated using (8). 

Remark 1: as seen in (7), the optimal control at time step 1 depends on the state at the 

next time step, i.e., ?+ is implicitly a function of /+,-, but it is explicitly a function of *+,- as can be seen from (8). Now, we seek to synthesize a feedback control ?+� in terms 

of the current state�/+ and therefore, we use SNAC to capture the mapping between /+�and  *+,- through a reinforcement learning scheme. 
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Remark 2: The reinforcement learning given by (10) can be categorized as a value-

iteration method of dynamic programming. In value-iteration scheme, one uses (6) for 

learning the cost-to-go [9], and the Finite-SNAC training uses the gradient of this 

equation with respect to the state vector, i.e., Eq. (10). 

III. CONVERGENCE THEOREMS 

Convergence theorems for the proposed optimal controller are composed of three 

parts: first, one needs to show that the reinforcement learning process, which the target 

calculation is based on, will result in the optimal target, then it needs to be shown that the 

weight update rule will force the error between the network output and the target to 

converge to zero and finally the network weights should be shown to converge. It should 

be mentioned that the results in [10] provide the framework that we extend to the finite-

horizon case and the DHP scheme in this paper. 

A. Convergence of the Algorithm to the Optimal Solution 

The proposed algorithm for the Finite-SNAC training is DHP in which starting at 

an initial value for the costate vector one iterates to converge to the optimal costate. The 

iteration index is denoted by a superscript and the time index by a subscript. The learning 

algorithm for finite horizon optimal control starts with an initial value assignment to *+N  

for all 1’s, e.g., *+N � ���u1, and repeating below three calculations for different t+s from 

zero to infinity where � 3 1 3 ., 

 ?+JZ,- � 0Q�TL-C	/+�9*+,-JZef������ 3 1 3 . 0 �, (29) 

 *+JZ,- � G/+� ! ��/+� ?+JZ,-�9*+,-JZef����� 3 1 3 . 0 �, (30) 

 *F� � GH/F� . (31) 

Note that t+denotes the iteration number for stage 1, � 3 1 3 .. It needs the stage as a 

subscript since different stages may take different iterations to converge. For example in 

(30) the 	t+ ! �)th version of *+ is being calculated based on (t+,-)th version of *+,-. Eq. 

(31) is the final condition of the optimal control problem. Note that, 

 ��/+� ?+JZ,-� 8 `dH	bZ�,g	bZ�YZ�Zefh`bZ  (32) 

 *+,-JZef 8 *�JZef	/+,-� � *�JZef�B	/+� ! C	/+�?+JZ,-�. (33) 
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The problem is to prove that this iterative procedure results in the optimal value 

for the costate * and control ?. The convergence proof presented in this paper is based on 

the convergence of HDP, in which the parameter subject to evolution is the cost function D whose behavior is much simpler to discuss as compared to that of the costate vector *. 

In the latter, the cost function D needs to be initialized, e.g., D�N	/+� 1� � ���u1, and 

iteratively updated throught the following steps. 

 D�JZ,-	/+� 1� � -E d/+9G/+ ! K�?+JZ,-�h ! D�JZef	/+,-� 1 ! ��� � 3 1 3 . 0 �, (34) 

 ?+JZ,- � 
^_W#XY dD�JZef	/+� 1�h � 0Q �TL-C	/+�9 �aZef�Zef�/1!�� ����� 3 1 3 . 0 �. (35) 

For the finite horizon case, the final condition is given by 

 D	/F� .� � -E /F9GH/F. (36) 

Note that D+ 8 D	/+� 1� and 

 D+,-JZef 8 D�JZef�B	/+� ! C	/+�?+JZ,-� 1 ! ��. (37) 

Convergence of the above mentioned reinforcement learning schemes are given 

below and their proofs are presented in the Appendix. 

Theorem 1: HDP convergence: The sequence of DJZ iterated through (34) to (36), in case 

of DN	/+� 1� � � converges to the fixed-final-time optimal solution. 

Theorem 2: DHP convergence: Denoting the states and the control vector with ��and O, 

respectively, consider sequences *+JZ and O+JZ defined by equations (38) to (40), where �+,-� � B	�+� ! C	�+�O+JZ,-. Note that t+ is the index of iteration of the respective 

parameter at time step 1, where 1 is the time index, and �	�+� O+� 8 `�Zef�`�Z� �
`dH	�Z�,g	�Z�SZ�Zefh`�Z . 

 O+JZ,- � 0Q�TL-C	�+�9*+,-JZef�, (38) 

 *+JZ,- � G�+ ! ���+� O+JZ,-�9*+,-JZef, (39) 

 *F� � GH�F� . (40) 
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If *+N � ���u1, then the sequence will converge to the optimal solution for the given 

nonlinear affine system, i.e. *+JZ < *+V  and�O+JZ < O+V  as t+ < � for different 1s where *+V  

and O+V  denote the corresponding optimal parameters. 

Remark 3: In the learning laws given by (29) to (31) and also (34) to (36) it should be 

noted that the time index 1 is upper bounded by ., while t+ is the iteration index for the 

parameters at time step 1.  

B. Convergence of the Error of the Training Law and the Weights 

After having proved that the training target converges to the optimal solution, the 

next step is proving the ability of the weight update law to force the error between the 

network output and the target to converge to zero and the convergence of the weights. 

The proofs of the below theorems are given in the Appendix, as well.  

Theorem 3: Training error convergence: The weight update (18) will force the error (17) 

to converge to zero as the number of neurons of the neural networks, >, tends to infinity. 

Theorem 4: Neural network weight convergence: Assuming an ideal set of weights, 

denoted by 2V, where 

 *ic � I 2JV9:lJ�JM- . (41) 

Then, using the weight update (18), one has 	2 02c�Y6�V � < � where 2c�Y6�V  is the 

truncated first > row of the ideal weight 2V. 
IV. NUMERICAL ANALYSIS 

In order to assess the performance of the proposed technique, three examples have 

been chosen: first is a linear system to motivate the developed technique, the second is a 

discrete-time nonlinear system, and the third is a complex nonlinear system to show its 

broad applicability.  

A. Example 1 

A first order linear system with a quadratic cost is selected for which the exact 

discrete-time optimal finite-horizon solution is known as given below: 

  /+,- � /+ ! ?+��������1 � ���� � �. 0 �, (42) 

 D � -E /FE ! I -E ?+EFL-+MN . (43) 

Note that, the convergence results given in this paper are for a general form of penalizing 
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the control in the cost function, hence, the results hold for the quadratic cost function as 

well.  

By solving discrete-time algebraic Riccati equation for the unknown �+, where *+ � �+/+� it is observed that the finite-horizon optimal solution for this system is given 

by 

 �+ � -FL+,-, (44) 

hence, 

 ?+ � 0	T ! �9�+��L-�9�+�/+ � 0 -FL+,E /+, (45) 

or equivalently 

 *+,- � -FL+,E /+. (46) 

For the comparison purpose, Finite-SNAC is used for solving this problem. Two 

separate set of basis functions are selected and the network is trained for both of them, 

separately. The first set of basis functions is selected as 

  :	/� �� � j/� �� /�� /�	� ! ���k9. (47) 

which contains the term /-�	� ! �� that was observed in Eq. (46) to be needed for the 

optimal costate calculation, note that � denotes the time-to-go, i.e., . 0 1. Using this 

basis function set, the training was performed for 30 iterations where at each iteration 10 

random states were selected from the interval j0����k for the least squares operation 

given in (27). The resulting weight history versus the training iteration is given in Fig. 2. 

As seen in this figure, the weights have converged which is equivalent of convergence of 

the costates. The resulting weights are 

 2 � j������ ������ ������ �����k9, (48) 

which leads to the Finite-SNAC of the form 

 *+,- � -�NNNFL+,E /+, (49) 

and it is identical to the exact solution given by (46).  

In many cases the required basis functions are not known and the control designer 
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needs to try different basis functions to end up with the best result. The second set of 

basis functions are selected in such a manner, i.e., not including /�	� ! ��, as given 

below  

 :	/� �� � j/� �� /�� /�E� /��� / m/x	0���k9, (50) 

and the resulting weight evolution history is given in Fig. 3 which shows its convergence. 

Moreover, Fig. 4 depicts the network output versus different initial states at different 

training iterations, along with the optimal costate versus the state. As can be seen, the 

costate generated through the network is converging to the optimal costate as the number 

of iterations increases. Simulating the trained network using initial condition of / � � for . � ��, the cost-to-go difference between the exact optimal solution (46) and the trained 

network using the second set of basis functions turned out to be less than 0.001%. This 

comparison shows that the Finite-SNAC controller has been able to generate optimal 

control even if the basis functions do not include the desired functions given by the 

analytical optimal solution. 

 

 
Fig. 2. History of weights for Example 1 with the first set of the basis functions. 

 

 
Fig. 3. History of weights for Example 1 with the second set of the basis functions. 
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Fig. 4. Costate network output convergence with iterations. 

 

B. Example 2 

As the second simulation, the discrete-time nonlinear system simulated in [25] is 

adapted here. 

 /+,- � B	/+� ! C?+ (51) 

where /+ � �/-Z� /EZ�9,  ?+ � �?-Z� ?EZ�9, and 

 B	/+� � ����/-+����	/EZE ����/EZ� � �����C � �0��� �� 0����. (52) 

Selected cost function for this system is 

 D � -E /F9GH/F ! I -E 	/+9G/+ ! ?+9T?+�FL-+MN , (53) 

where 

 G � T � Ut�C	��� ���� GH � Ut�C	���� ����. (54) 

Denoting the inputs of the network by /J, t � ���� and �, where � is the 

normalized time-to-go (through dividing the time-to-go by the total number of time 

steps), the basis functions are selected as  

 :	/-� /E� �� �j/-� /E� �� /-/E� /-�� /E�� /-E� /EE� /-�� /E�� /-/EE� /-E/E� /- m/x	0�� � /E m/x	0���k�9. (55) 

The contributions of different network inputs in the basis functions are selected through 

some trial and error such that the network error is small. This selection leads to 14 basis 

functions.  
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Selecting . � �, the network weights are initialized to zero and the training is 

performed for 10 iterations, where at each iteration, 200 states are randomly selected in 

the domain of interest of /J � j0�� �k, t � � and �. The convergence of the weights can 

be seen through Fig. 5 which shows the weights’ evolution versus the training iterations. 

The trained network is then used for online control starting with an initial 

condition of /	 N� � j��0�k9. The results are shown in Fig. 6 using black plots. In order 

to evaluate the optimality of the results, the open-loop optimal solution to the problem is 

calculated using gradient based numerical methods and the results are shown in Fig. 6 

using red plots. As seen in this figure, the Finite-SNAC result is very close to the optimal 

solution, while, Finite-SNAC is a closed-form solution and once trained offline, can be 

used for different initial conditions (as long as the state trajectory falls in the domain for 

which the network is trained) and different time-to-gos (as long as the new time-to-go is 

less than the one for which the Finite-SNAC is trained). To show this capability, the same 

trained network is used for controlling the same initial condition, but with shorter horizon 

of . � �. The optimal numerical solution is also re-calculated for the new time-to-go and 

the results are depicted in Fig. 7, where the black plots denote the Finite-SNAC results 

and the red plots denote the open-loop numerical results. As seen, the Finite-SNAC is 

pretty accurate in generating the optimal control for the shorter horizon as well. 

Finally, the same trained network is used for controlling another set of initial 

conditions, namely /N � j�� �k9. Note that each time that the initial condition changes or 

the horizon changes the numerical solution obtained using gradient based methods loses 

its validity and a new solution needs to be obtained. The Finite-SNAC results along with 

the new numerical optimal solution are depicted in Fig. 8. It can be seen that the Finite-

SNAC’s result is very close for the new initial condition too. These simulations show that 

the Finite-SNAC has a great potential for calculating the finite-horizon optimal solution 

in close-form and in real-time for different initial conditions and horizons. 
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Fig. 5. Weight history versus training iteration for Example 2. 

 

 
Fig. 6. State trajectories of Example 2 for initial condition of j�� 0�k9 and horizon of � 
time steps. Black plots denote the Finite-SNAC results and red plots denote the optimal 

open loop results. 
 

 
Fig. 7. State trajectories of Example 2 for initial condition of j�� 0�k9 and horizon of � 
time steps. Black plots denote the Finite-SNAC results and red plots denote the optimal 

open loop results. 
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Fig. 8. State trajectories of Example 2 for initial condition of j���k9 and horizon of � time 
steps. Black plots denote the Finite-SNAC results and red plots denote the optimal open 

loop results. 
 

C. Example 3 

As a real world application of the developed method, the problem of nonlinear 

satellite attitude control has been selected. Satellite dynamics are represented as [32] 

 ¡¢¡c � £L-	.6¤c 0 ¥ � £¥�, (56) 

where £, ¥, and .6¤c are inertia tensor, angular velocity vector of the body frame with 

respect to inertial frame and the vector of the total torque applied on the satellite, 

respectively. The selected satellite is an inertial pointing satellite; hence, one is interested 

in its attitude with respect to the inertial frame. All vectors are represented in the body 

frame and the sign � denotes the cross product of two vectors. The total torque, .6¤c, is 

composed of the control, .�c�@, and the disturbance torques, .¡J�c.  
 .6¤c � .�c�@ ! .¡J�c (57) 

The control torque is the torque created by the satellite actuators. Since control torques 

are bounded in practice, this problem is ‘control-constrained’. 

Following [33] and its order of transformation, the kinematic equation of the 

satellite is   

 ¡¡c ¦§̈©ª � «� ¬#X�	§��
X�	¨� �­¬�	§��
X�	¨�� �­¬�	§� 0¬#X�	§�� ¬#X	§� ��­¬�	¨� �­¬	§� ��­¬�	¨�® ¦
¥¯¥°¥±ª, (58) 

where §� ¨� and © are the three Euler angles describing the attitude of the satellite with 

respect to p, q, and ² axes of the inertial coordinate system, respectively. Subscripts p� q� 
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and ² denote the corresponding elements of the angular velocity vector ¥.  

The three Euler angles and the three elements of the angular velocity form the 

elements of the state space for the satellite attitude control problem and form the 

following state equation as 

 /³ � B	/� ! C	/�?, (59) 

where 

 B	/� 8 ´ µ��-£L-	.¡J�c 0 ¥ � £¥�¶, (60) 

 C 8 ´����£L- ¶, (61) 

 / � j§ ¨ ©�����¥¯ ¥° ¥±k9, (62) 

 ? � j.�c�@¯ .�c�@° .�c�@±k9, (63) 

and µ��- denotes the right hand side of equation (58). The three-by-three null matrix is 

denoted by ����.  

The moment of inertia matrix of the satellite is chosen as  

 £ � ¦��� � � �� ��� �� � � ���ª �1C�>E. (64) 

The different moments around different axes and also the non-zero off-diagonal elements 

result in gravity gradient disturbance torques acting on the satellite. 

The initial states are 60, -20, and -70 deg. for the Euler angles §� ¨� and ©, 

respectively, and -0.001, 0.001, and -0.001 rad/s. for the angular rates around p, q, and ² 

axes, respectively. The goal of the controller is to perform an attitude maneuver to bring 

the states to zero, in a fixed final time of 800 sec by minimizing the cost function in (4). 

The sampling time of 0.25 sec. is selected for discretizing the state equation using the 

Euler method and the saturation limit of ·������.�> is selected for the actuators. The 

orbit for the satellite is assumed circular with a radius of 20,000 km, and an inclination of 

90 degrees. 

The state and control weight matrices are selected as 

 G � Ut�C	�����������������������������, (65) 
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 GH � Ut�C	�����������������¸����¸����¸�, (66) 

 T � ���Ut�C	�����������. (67) 

Note that the last three diagonal elements of matrix G and GH correspond to the angular 

rates with a unit of radians per second and are set to higher values relative to the first 

three elements. This is because the objective in this study is to force the angles along with 

the rates to go to close to zero and higher weights on angular rates helps this process. 

Moreover, higher values for GH compared to G are to stress the importance of minimizing 

the terminal errors. A tangent hyperbolic function describes the saturating function Q	� � 
used in the performance index (4) and is scaled to reflect the actuator bounds. 

The network weights are initialized to zero and the basis functions are selected as 

polynomials /J, /JE, /J� for t �1 to 6 along with /J/v, /JE�, /J�E, /J��, �, �E, ��, and /JmL¹ 

for t� w � � to 6  t º w, resulting in 60 neurons, where, /J is the tth state element, t �1 to 

6, and � is the time-to-go normalized through dividing it by the total number of time 

steps. For the training process, in each iteration, 100 sets of initial states among a 

previously selected interval of states are randomly selected to form a mesh and the weight 

update rule (27) is used for training the neural network. The training is performed for 600 

iterations, until the weights converge. Note that in this example, the state vector’s 

dimension is large, i.e., it has 6 elements and only 100 random state is selected at each 

iteration for the training, but, as long as these 100 states are randomly selected at each 

iteration, where the number of iterations is 600, the network is provided with the chance 

of experiencing different combinations of the states (namely 600�100 different state 

vectors,) to learn the whole domain of interest. 

Initially, the simulation is performed with no disturbance torque, as the developed 

theory of Finite-SNAC is based on, and the results are shown in Fig. 9 and Fig. 10. The 

Euler angles as seen in Fig. 9 have nicely converged close to zero in the given final time 

of 800 sec. Fig. 10 shows the applied control history, and as expected, it has not violated 

the control bounds. 

 As mentioned earlier in Example 2, the converged Finite-SNAC will give 

optimal solution for any initial condition set within the domain on which the training is 

performed and any final time less than or equal to the final time chosen for training. To 
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depict this capability, the new set of initial conditions of 30, -80 and 90 degrees for §� ¨� 
and ©, respectively, is selected and the same trained network is used for performing this 

maneuver. The results are shown in Fig. 11 and Fig. 12, and show that the controller 

brings the states close to zero and does not violate the constraint on its limits. 

To further demonstrate the versatility of the proposed controller, using the same 

trained network, the first attitude maneuver is performed with a shorter time-to-go, i.e. 

500 sec. and the results are superimposed with previous results and shown in Fig. 13 and 

Fig. 14 in red. As can be seen, the controller has applied a different control sequence on 

the satellite to accomplish the final goal. The control torques are higher at first (as 

compared to the 800-second results), in order to accomplish the same mission in a shorter 

final time of 500 sec. This illustrates the power of the Finite-SNAC technique that the 

same controller will be optimal for all of the final times less than or equal to the trained 

horizon by virtue of Bellman’s principle of optimality [29]. 

Finally, in order to analyze the effect of external disturbances on the controller, 

the gravity gradient disturbance is modeled [32] and applied on the satellite and the 

results are shown using the red plots in Fig. 15 and Fig. 16, super imposed with the 

results of the (disturbance-less) first attitude control simulation. Note that even-though 

this method is not developed to measure and cancel the effect of the disturbance, the 

optimal control formulation and the generalization property of the neural networks are 

robust enough to be able to get an acceptable trajectory even in the presence of some 

unknown disturbances. This can be confirmed not only by looking at the Euler angles 

trajectory and their final values, but also by analyzing the applied disturbance torque in 

Fig. 17. Note that some big disturbance torques, as big as the actuators’ saturation limit, 

are applied on the p and q axes of the satellite. Comparing the applied control in the 

presence of the disturbance, with the case of no disturbance, in Fig. 16, shows that the 

controller has quickly switched the control toques on those two axes in order to 

compensate the effect of the excessive applied torque and accomplish the maneuver in 

the same fixed horizon.  
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Fig. 9. Euler angles trajectories for the final time of 800 seconds.  

 

 
Fig. 10. Control histories for the final time of 800 seconds.  

 

 
Fig. 11. Euler angles trajectories for a new set of initial conditions. 

 

 
Fig. 12. Control histories for a new set of initial conditions. 
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Fig. 13. Euler angles trajectories for different final times. Red and black plots denote the 

final times of 500 and 800 sec., respectively. 
 

 
Fig. 14. Control histories for different final times. Red and black plots denote the final 

times of 500 and 800 sec., respectively. 
 

 
Fig. 15. Euler angles trajectories. Red and black plots denote the results with and without 

the presence of the disturbance, respectively. 
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Fig. 16. Control histories. Red and black plots denote the results with and without the 

presence of the disturbance, respectively. 
 

  
Fig. 17. Applied gravity gradient disturbance. 

 

V. CONCLUSIONS 

A finite-horizon optimal neurocontroller, that embeds solution to finite-horizon 

HJB equation, has been developed in this study. The developed neurocontroller has been 

shown to solve finite-horizon input-constrained optimal control problem for discrete-time 

nonlinear control-affine systems. Convergence proofs have been given. The numeric 

simulations for the linear example, the nonlinear example and for the nonlinear satellite 

control problem indicate that the developed method is very versatile and has a good 

potential for use in solving the optimal closed loop control of control-affine nonlinear 

systems. 
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APPENDIX 

The proofs of the theorems given in the paper are presented here. 
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A. Convergence of the Algorithm to the Optimal Solution: Proofs 

In [9] the authors have proved that HDP for infinite-horizon regulation converges 

to the optimal solution. In this paper, that proof is modified to cover the case of 

constrained finite-horizon optimal control. For this purpose following four lemmas are 

required of which three are cited from [9] with some modifications to handle the time 

dependency of the optimal cost function. 

Lemma 1 [9]: Using any arbitrary control sequence of »+� , and�¼�JZ defined as 

 ¼JZ,-	/+� 1� � -E d/+9G/+� ! K	»+� �h ! ¼JZef	B	/+� � ! C	/+� �»+� � 1 ! ��, (68) 

if ¼�N	/+� 1� � D�N	/+� 1� � � then ¼JZ	/+� 1� ½ DJZ	/+� 1���ut where DJZ	/+� 1� is iterated 

through (34) and (35). 

Proof: The proof given in [9] is applicable here also.¾  

Lemma 2: The parameter DJZ	/+� 1� resulting from (34) and (35), is upper bounded by an 

existing bound q	/+� 1�. 
Proof: As explained in Subsection III.A, the learning rule (34) to (36) is implemented by 

randomly selecting a time index 1 within the bounds, at each iteration t+, and updating DJZ	/+� 1� to DJZ,-	/+� 1�. Hence, as long as the 1 selection is random, some 1s might be 

selected more than the others, e.g., for some 1 the respective D might be iterated several 

times while for some other 1, the respective D may not have yet been iterated and hence it 

is still zero because of being initialized at zero. However, note that even at consecutive 

iteration of the same time index 1, parameters D+ and ?+ will be updated, because the 

right hand side of Eq. (35) depends on /+,- which itself is a function of ?+, hence, even 

if D+,- is iterated only for t+,- times and kept constant afterward, by each iteration of D+ 

using the same D+,-, one ends up with new D+ and ?+ until they converge. Let ¿+ be an 

arbitrary control and let ²N	/+� 1� � DN	/+� 1� � �, where ²JZ is updated through random 

selection of time step 1 at each iteration, � 3 1 3 . 0 �, and using 

 ²JZ,-	/+� 1� � -E d/+9G/+ ! K	¿+� �h ! ²JZef	/+,-� 1 ! �� (69) 

 ²	/F� .� � -E /F9GH/F (70) 

 /+,- � B	/+� ! C	/+�¿+. (71) 
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Defining q	/+� 1� as 

 q	/+� 1� � -E /F9GH/F ! I -E 	/+,69 G/+,6 ! K	¿+,6��FL+L-6MN , (72) 

and subtracting (72) from (69) results in 

 ²JZ,-	/+� 1� 0 q	/+� 1� � ²JZef	/+,-� 1 ! �� 0 

 d-E /F9GH/F ! I -E 	/+,69 G/+,6 ! K	¿+,6��FL+L-6M- h, (73) 

which is the equivalent of 

 ²JZ,-	/+� 1� 0 q	/+� 1� � ²JZef	/+,-� 1 ! �� 0 q	/+,-� 1 ! ��, (74) 

and hence 

 ²JZef	/+,-� 1 ! �� 0 q	/+,-� 1 ! �� � ²JZeÀ	/+,E� 1 ! �� 0 q	/+,E� 1 ! ��, (75) 

where t+,E denotes the iteration index of ²	/+,E� 1 ! �� which has been used for 

calculation of ²JZef	/+,-� 1 ! ��. The propagation of term ²JZ,-	/+� 1� 0 q	/+� 1� from 1�toward . can be performed step by step as seen in (74) and (75). In this propagation, 

one of these two cases happens: a) at some time step, e.g., 1Á, the iteration index of ²	/+Á,-� 1Á ! �� used in the right hand side for calculation of ²	/+Á � 1Á� reaches zero, i.e., in 

 ²JZÂ�/+f� 1-� 0 q�/+Á � 1Á� � ²JZÂef�/+Á,-� 1Á ! �� 0 q�/+Á,-� 1Á ! �� (76) 

one has t+Á,- � �, hence ²JZÂef�/+Á,-� 1Á ! �� � �, and 

 ²JZÂ�/+f� 1-� 0 q�/+Á � 1Á� � � 0 q�/+Á,-� 1Á ! �� 4 �. (77) 

b) the previous case doesn’t happen, i.e., the propagation toward . is done completely 

without ending up with ²JZÂef�/+Á,-� 1Á ! �� � � for some 1Á and one has 

 ²JÃ	/F� .� 0 q	/F� .� � -E /F9GH/F 0 -E /F9GH/F � ��� (78) 

From (77) and (78) one has 

 ²JZ	/+� 1� 3 q	/+� 1���u1. (79) 

From Lemma 1 with »+� � ¿+ one has DJZ	/+� 1� 3 ²JZ	/+� 1�, hence, 

 DJZ	/+� 1� 3 q	/+� 1�, (80) 



 

 

39

which proves Lemma 2.¾  

Lemma 3 [9]: If the optimal control problem can be solved, then there exists a least 

upper bound DV	/+� 1�, DV	/+� 1� 3 q	/+� 1�, which satisfies HJB equation (9) and � 3 DJZ	/+� 1� 3 DV	/+� 1� 3 q	/+� 1� where q	/+� 1� is defined in Lemma 2. 

Proof: The proof is given in [9].¾  

Lemma 4 [9]: The sequence of DJZ	/+� 1� defined by HDP for every time step 1, in case 

of DN	/+� 1� � �, is non-decreasing as t+ grows from 0 to infinity. 

Proof: The proof is similar to [9], with some required modifications. Assume »+, be an 

arbitrary control and let ÄN	/+� 1� � DN	/+� 1� � �, where ¼JZ is updated through  

 ¼JZ,-	/+� 1� � -E d/+9G/+ ! K	»+�h ! ¼JZef	/+,-� 1 ! ��. (81) 

From Lemma 1, we have  

 DJZ	/+� 1� 3 ¼JZ	/+� 1�, u1 (82) 

Selecting »+ � ?+JZ,E, and using 	t+,- 0 ��th version of ¼	/+,-� 1 ! ��� in calculation of ¼JZ	/+� 1� leads to 

 ¼JZ	/+� 1� � -E d/+9G/+ ! K�?+JZ,-�h ! ¼JZefL-	/+,-� 1 ! ��. (83) 

From ¼N	/+� 1� � �, one has 

 D-	/+� 1� 0 ¼N	/+� 1� � -E d/+9G/+ ! K	?+-�h ! DJZef	/+� 1� ½ �. (84) 

Hence, 

 D-	/+� 1� ½ ¼N	/+� 1�, u1. (85) 

To use method of induction, assume  

 DJZ	/+� 1� ½ ¼JZL-	/+� 1�, u1, (86) 

and subtract (83) from (34) to get 

 DJZ,-	/+� 1� 0 ¼JZ	/+� 1� � DJZef	/+� 1� 0 ¼JZefL-	/+� 1�, (87) 

using assumption (86), one has 

 DJZ,-	/+� 1� 0 ¼JZ	/+� 1� ½ �, u1, (88) 
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hence,  

 DJZ,-	/+� 1� ½ ¼JZ	/+� 1�, u1, (89) 

and by induction (89) is proved. Finally, inequalities (82) and (89) prove the lemma.¾ 

Proof of Theorem 1: Using the results of Lemma 4 and Lemma 2 one has 

 DJZ	/+� 1� < D�	/+� 1� as t+ < �, u1 (90) 

for some D�	/+� 1�, where 

 D�	/+� 1� 8 -E /F9GH/F ! I � z#WJZeÅ<� -E d/+,69 G/+,6 ! K�?+,6JZeÅ�h�FL+L-6MN . (91) 

From Lemma 3 

 D�	/+� 1� 3 DV	/+� 1�. (92) 

Since D�	/+� 1� satisfies the HJB equation and the finite-horizon final condition one has 

 D�	/+� 1� � DV	/+� 1� (93) 

which completes the proof.¾ 

Proof of Theorem 2: This theorem is the DHP version of Theorem 1 and the result of 

Theorem 1 will be used for proving convergence of this algorithm. The idea is to use the 

method of induction to show that the evolution of the sequence in this algorithm is 

identical to that of the HDP one. The systems considered are the same and assume the 

same initial conditions. The states vector and control are denoted with another set of 

letters to provide the ability to compare them along the iterations in both of the 

algorithms.  

From DN	/+� 1� � ��u1 and *+N � ���u1 it follows that 

 *+N � `aÆ	bZ� �+�`bZ� �u1. (94) 

One iteration of the HDP algorithm results in 

 ?+N � 0Q [TL-C	/+� �9 `aÆ�bZef� �+,-�`bZef� ] (95) 

  D-	/+� � 1� � -E 	/+9�G/+� ! K	?+N�� ! DN	/+,-� � 1 ! �� (96) 
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and one iteration of the DHP algorithm results in 

 O+N � 0Q	TL-C	�+� �9*+,-N � (97) 

 *+- � G�+� ! �	�+� � O+N�9*+,-N . (98) 

If /+ � �+, from (94), (95) and (97) it follows that 

 ?+N � O+N. (99) 

The derivative of (96) with respect to /+�  is given by 

 `af	bZ� �+�`bZ� � G/+� ! �	/+� � ?+N�9 `aÆ	bZef� �+,-�`bZef� . (100) 

Considering (94) and (99), and by comparing (100) with (98), it can be seen that  

 *+- � `af	bZ� �+�`bZ� . (101) 

Now assume  

 /+� � �+� , (102) 

 ?+JZ � O+JZ, (103) 

 *+JZ � `a�Z	bZ� �+�`bZ� , u1, (104) 

and perform the t+th  iteration with both of the algorithms: 

 ?+JZ,- � 0Q [TL-C	/+� �9 `a�Zef�bZef� �+,-�`bZef� ], (105) 

 DJZ,-	/+� � 1� � -E d/+� 9G/+� ! K�?+JZ,-�h ! DJZef	/+,-� � 1 ! ��, (106) 

 O+JZ,- � 0Q�TL-C	�+� �9*+,-JZef�, (107) 

 *+JZ,- � G�+� ! ���+� � O+JZ,-�9*+,-JZef. (108) 

The derivative of (106) with respect to /+�  is 

 `a�Zef	bZ� �+�`bZ� � G/+� ! ��/+� � ?+JZ,-�9 `a�Zef	bZef� �+,-�`bZef� . (109) 

Again by comparing (109) with (108) and considering (102), (103) and (104), it can be 
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shown that  

 *+JZ,- � `a�Zef	bZ� �+�`bZ�  (110) 

Hence, by iteratively using equations (34) to (36) for calculating ?+JZ and  DJZ and 

equations (38) to (40) for calculating O+JZ and *+JZ, it is proved that equations (103) and 

(104) are valid for all t+s. Since ?+JZ and DJZ, based on Theorem 1, converge to the optimal 

values as t+ < � for � 3 1 3 . 0 �, O+JZ and *+JZ will also converge to the optimal 

control and costates, and the proof is complete.¾ 

B. Convergence of the Error of the Training Law and the Weights: Proofs 

The proofs of Theorem 3 and 4 are inspired by [31], but, since the error equation 

and the dimension of the error are different compared to [31], the processes of the proofs 

are different and given below. 

Proof of Theorem 3: Using Lemma 5.2.9 from [31], assuming :l to be orthonormal, 

rather than being linearly independent, does not change the convergence result of the 

weight update. Assume :l is a matrix formed by > orthonormal basis functions�:lv as its 

rows where � 3 w 3 > among the infinite number of orthonormal basis functions Ç:lvÈ-�. 

The orthonormality of Ç:lvÈ-� implied that if a function ©	� � belongs to �x�7Ç:lvÈ-� then 

 © � I n©� :lvo:lv�vM-  (111) 

and for any ( one can select > sufficiently large to have 

 ÉI n©� :lvo:lv�vM=,- É 4 ( (112) 

where�{� { denotes norm operation. From (18) one has 

 nm� :lvo � ���uw� � 4 w 4 > (113) 

and from (17) 

 nm� :lvo � 29n:l� :lvo 0 n*ic� :lvo (114) 

which is equivalent to 

 nm� :lvo � I 2J9n:lJ� :lvo 0 n*ic� :lvo=JM-  (115) 
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where 2J is the tth row of weight matrix 2. 

On the other hand, one can expand the error m using the orthonormal basis 

functions Ç:lvÈ-� 

 m � I nm� :lvo:lv�vM- . (116) 

Inserting (115) into (116) results in 

 m � I �I 2J9n:lJ� :lvo:lv 0 n*ic� :lvo:lv=JM- ��vM- . (117) 

But, from the weight update (113), the right hand side of (115) is also equal to zero. 

Applying this to (117) results in 

 m � I �I 2J9n:lJ� :lvo:lv 0 n*ic� :lvo:lv=JM- ��vM=,- . (118) 

Due to the orthonormality of the basis functions, one has 

 n:lJ� :lvo � ���ut º w. (119) 

Hence, (118) simplifies to 

 m � 0I n*ic� :lvo:lv�vM=,- . (120) 

Using (112) for © � *ic, as > increases, m decreases to zero. 

 z#W=<� {m{ � � (121) 

This completes the proof.¾  

Proof of Theorem 4: The training error is defined as 

 m 8 *i 0 *ic. (122) 

Hence 

 m � �29 02c�Y6�V 9�:l 0 I 2JV9:lJ�JM=,- . (123) 

Note that :l is a matrix formed by the first > orthonormal basis functions :lJ as its rows, 

i.e. � 3 t 3 >. The inner product of both sides of (123) by :l results in 

 nm� :lo � �29 02c�Y6�V 9�n:l� :lo 0 I 2JV9�JM=,- n:lJ� :lo. (124) 

The last term on the right hand side of the above equation vanishes due to the 
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orthonormality property of the basis functions. Considering�n:l� :lo � £, (123) simplifies 

to 

 nm� :lo � 29 02c�Y6�V 9. (125) 

Examining (125) further, the weight update implies the left hand side to be zero, 

hence, using the weight update (18) one has 2 < 2c�Y6�V . ¾ 
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2. FIXED-FINAL-TIME OPTIMAL CONTROL OF NONLINEAR SYSTEMS 
WITH TERMINAL CONSTRAINTS 

Ali Heydari and S.N. Balakrishnan 

ABSTRACT 

A model-based reinforcement learning algorithm is developed in this paper for 

fixed-final-time optimal control of nonlinear systems with soft and hard terminal 

constraints. Convergence of the algorithm, for linear in the weights neural networks, is 

proved through a novel idea by showing that the training algorithm is a contraction 

mapping. Once trained, the developed neurocontroller is capable of solving this class of 

optimal control problems for different initial conditions, different final times, and 

different terminal constraint surfaces providing some mild conditions hold. Three 

examples are provided and the numerical results demonstrate the versatility and the 

potential of the developed technique. 

I. INTRODUCTION 

Many control, guidance, and path planning problems are classified as ‘terminal 

control’ problems [1]. A terminal control problem is a finite-horizon problem with soft or 

hard constraint on the terminal states. One approach to solving terminal control problems 

of nonlinear systems is formulating the problem in an optimal control framework. For 

this class of problems, the Hamilton-Jacobi-Bellman (HJB) equation is very difficult to 

solve since the solution is time-dependent. An open loop solution is dependent on the 

selected initial condition (IC) and the time-to-go [2]. Available methods in the literature 

can be classified as classical and intelligent control methods.  

A. Classical Approaches to Terminal Control Problems 

One approach in classical methods is calculating the open loop solution through a 

numerical method, e.g., the shooting method and then using techniques like Model 

Predictive Control (MPC) for closing the control loop as done in [3]. A limitation of this 

approach is the fact that it holds only for one set of specified IC and time-to-go. Another 

method, called the Approximate Sequence of Riccati Equation (ASRE) developed in [4] 

provides a closed form solution to the problem but again only for a pre-specified IC and 

time-to-go. This method is based on the calculation of a sequence of Riccati equations 

until they converge, and then using the converged result for control calculation. Finite-
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horizon State Dependent Riccati Equation (Finite-SDRE) method, developed in [5], 

offers a suboptimal closed form solution to this class of problems. Finite-SDRE provides 

solutions for different ICs and final times in real-time and shows a lot of potential in the 

applications, but can accommodate only soft terminal constraints.  

 Series-based solutions to the optimal control problem with hard terminal 

constraints were investigated in [6-8]. In [6], a closed form solution was found by using a 

Taylor series expansion of the cost-to-go function. Series-based methods are suitable for 

systems whose dynamics are given in a polynomial form and comprise only weak 

nonlinearities. The series can diverge for problems with a large nonlinearity. This 

limitation motivated the authors of [7] to propose a divide-and-conquer scheme. This 

scheme is based on determining some waypoints to split the main problem into several 

simpler problems for which the series based method does not produce significant 

midcourse errors. However, this method requires some extra numerical optimization to 

find waypoints for each IC. Moreover, the number of required waypoints needs to be 

selected through trial and error in order to avoid divergence. The generating functions 

method proposed in [8] is a different series-based solution where the terminal constraint 

is a given point. In [9] a Generalized Hamilton-Jacobi-Bellman equation [10] was used 

with some modifications. Convergence of this method was proved for the unconstrained 

case in [10], but not for the constrained problem.  

B. Intelligent Approaches to Terminal Control Problems 

The use of intelligent control for solving finite-horizon optimal control problems 

was considered in [11-18]. Authors of [11] developed a neurocontroller for a problem 

with state constraints using ‘adaptive critics’ (AC) scheme [19,20] with time dependent 

weights. This controller is developed for an agile missile maneuver. It is however, a 

scalar problem wherein the final state and the control have a direct relationship. Hence, in 

a discrete formulation, the final state can be achieved from any state at the previous step. 

Continuous-time problems are considered in [12] where the time-dependent weights are 

calculated through a backward integration of the HJB equation. In [13] a single neural 

network (NN) with a single set of weights was proposed which takes the time-to-go as an 

input along with the states and generates the fixed-final-time optimal control for discrete-

time nonlinear systems with soft terminal constraint. An adaptive critic based solution to 
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optimal tracking problems with fixed-final-time was developed in [14]. The 

neurocontroller provides the capability of tracking a single reference trajectory or a 

family of reference trajectories with soft terminal constraints. 

The finite-horizon problem with unspecified terminal time and a fixed terminal 

state was considered in [15-18]. The algorithms developed in these papers lead to an 

infinite sequence of controls. Therefore, the control needs to be applied for an infinite 

time horizon to optimize the cost-function and bring the states to the origin. To overcome 

this problem, the authors suggested truncating the control sequence in order to end up 

with the so called (-optimal solution, which will hence, have a finite horizon. The 

truncation is done such that the remaining horizon is long enough in order for the cost-to-

go truncation error to be less than a given ( ) �. Moreover, the neurocontrollers 

developed in [15,16] can only control one IC, and once the IC is changed, the network 

needs to be re-trained to give the optimal solution for the new IC. The neurocontrollers in 

[16,17] require the system to be such that the state can be brought to the origin in one 

step, from any given state. Systems with invertible input gain matrices in a control-affine 

discrete-time form satisfy this requirement. A newly developed controller in [18] has 

removed the restrictions of fixed initial condition and being able to go to the origin in one 

step.  

C. Contributions of This Study 

The first part of the development in this paper consists of formulating an 

approximate dynamic programming (ADP) based neurocontroller for fixed-final-time 

optimal control of systems with a soft terminal constraint. The closest neurocontrollers 

existing in the literature for such problems are [13,14]. The main difference between the 

cited references and the proposed scheme in this study is the use of the cost-function 

based ADP, known as Heuristic Dynamic Programming [20]. The developments in 

[13,14] are the costate based ADP, known as Dual Heuristic Programming. After 

discussing the solution to the problem with soft constraints, some modifications are 

performed in the network structure and the training algorithm to handle hard terminal 

constraints. These modifications are the main contributions of this paper. Another 

contribution of this study is proving the convergence of the network weights through a 

novel idea. It is done for the selected linear in the weights NN, by showing that the 
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successive approximation based weight update is a contraction mapping [21] within the 

compact domain of interest. 

As compared with [11], the controller developed in here can be used in a 

multivariable setting while the method presented in [11] is developed for the scalar 

dynamics of an agile missile. Neurocontrollers developed in [12-14] do not admit hard 

terminal constraint, which is the main contribution of this study. Finally, the method here 

does not have the restrictions in [18] as the need for truncating the control in order to end 

up with a finite-horizon solution and also the requirement of the terminal constraint being 

a ‘point’. The proposed technique can handle terminal constraints that are a point, a 

curve, or a surface which can be a nonlinear function of the state space elements. 

Moreover, the selected approach in this study directly results in a finite sequence of 

controls, hence, no truncation is required. 

The trained (linear in the weights) NN in this work offers a feedback solution 

though trained offline. Furthermore, notable features of the proposed technique include: 

a) Optimal control of any set of initial conditions in a compact set, as long as the resulting 

state trajectory lies within the domain on which the network is trained. b) Optimal control 

for any final time not greater than the final time for which the network is trained 

(Bellman principle of optimality [2]). c) Providing optimal control in a closed form 

versus the terminal surface/curve/point. Therefore, if, for example, the terminal point is 

changed, no retraining is needed for the network to give optimal solution for the new 

terminal point. 

The rest of this paper is organized as follows: The problem formulation is given in 

section II. Solution to the linear problem is discussed in section III. Solution for the 

nonlinear problem is developed in section IV. Analysis of results from numerical 

simulations is presented in section V, and the conclusions are given in section VI. 

II. PROBLEM FORMULATION 

Consider the nonlinear system presented in the control-affine form 

 /³	 � � B�/	 �� ! C�/	 ��?	 �, (1) 

where smooth functions B;56 < 56 and C;56 < 56�= represent the dynamics of the 

system. The system is assumed not to have a finite escape time. Vectors /	 � � 56 and 
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?	 � � 5= represent the state and control vectors, respectively. Integers > and 7 denote, 

respectively, the dimension of the state and control vectors. Initial conditions are given 

by /	 N� � /N for some /N � 56. Assume cost function 

 D � : d/� H�h ! -E P dG�/	 �� ! ?	 �9T?	 �hcÊcÆ U , (2) 

where convex positive semi-definite functions G;56 < 5 and :;56 < 5 penalize the 

states error during the horizon and at the final time, respectively. The positive definite 

matrix T penalizes the control effort. Since function :	/	� H�� puts a penalty on the 

terminal state error, it is considered as a soft terminal constraint. Let the hard terminal 

constraint be given by�©�/	 H�� � ©H for some smooth function ©;56 < 5@ and ©H � 5@, where A 3 7. The problem is determining some control ?	 �,   � j N�  H� such 

that not only cost function (2) subject to state equation (1) is optimized, but also the hard 

terminal constraint is satisfied. The initial time and the fixed final time are denoted with  N and  H, respectively. 

III. SOLUTION TO LINEAR PROBLEMS 

The controller developed in this study is motivated by the solution to the 

corresponding discrete-time problem with linear dynamics and a linear terminal 

constraint. Hence, it is instructive to study the solution process for the linear problem 

first. Assume the linear discrete-time dynamics  

 /+,- � �/+ ! �?+, 

with a quadratic cost function 

 D � -E /F9Ë/F ! -EI 	/+9Gl/+ ! ?+9Tl?+�FL-+MN , (3) 

and the linear hard terminal constraint Ì/F � ©H for a given matrix Ì � 5@�6. Subscripts 

denote the discrete time indices 1 � ���� � � � ., where . denotes the final time-step. 

Constant matrices Ë and Gl are assumed to be positive semi-definite and matrix Tl is 

assumed to be positive definite.  

To ensure the satisfaction of the hard terminal constraint, one may augment cost 

function (3) by the term O9	Ì/F 0 ©H� where O � 5@ is a constant valued Lagrange 

multiplier [22]. The optimal cost-to-go at each instant may be denoted with D+V	/+� to 
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emphasize its dependency on the current state, /+, and on the time-to-go, . 0 1. The 

solution to the problem is given by the discrete-time HJB equation (Bellman equation) 

[2] 

 DFV 	/F� � -E /F9Ë/F,  (4) 

  D+V	/+� � -E �/+9Gl/+ ! ?+V9Tl?+V� ! D+,-V 	/+,-�, 1 � ���� � �. 0 �, (5) 

 ?+V � 0TlL-�9 `aZefV� 	bZef�`bZef , 1 � ���� � � . 0 �, (6) 

where the optimal control at time 1 is denoted with ?+V ,  and the gradient �D+,-V� 	/+,-���/+,- is formed as a column vector. Adapting the assumed form for the optimal cost-to-

go of the respective continuous-time problem in [6] to the discrete-time problem at hand, 

the form 

 D+V	/+� � -E /+9�+/+ ! O92+9/+ ! -E O9Í+O 0 O9©H (7) 

is selected for D+V	/+� and it is shown that it satisfies HJB equation (5) subject to final 

condition (4), where matrices �+ � 56�6, 2+ � 56�@, and Í+ � 5@�@ are time-step 

dependent unknowns and vector O depends on the selected IC. It should be noted that the 

satisfaction of HJB equation (5) subject to final condition (4) provides the necessary and 

sufficient condition for optimality [2]. Therefore, any function D; 56 < 5 which satisfies 

HJB equation (5) along with final condition (4), will be the optimal cost-to-go function 

for the problem. In other words, even though the selected form given in (7) is just an 

assumption, the satisfaction of the sufficient condition leads to the optimality of the 

result. Moreover, the representation given in (7) is compatible with the assumed 

representation for the costate vector in [22]. 

Evaluating D+V given in Eq. (7) at 1 ! �, leads to  

 D+,-V � -E /+,-9 �+,-/+,- ! O92+,-9 /+,- ! -E O9Í+,-O 0 O9©H. (8) 
Replacing /+,- in (8) with �/+ ! �?+V , and utilizing the result in equation (6), one has 

 ?+V � 0TlL-�9	�+,-	�/+ ! �?+V� !2+,-O�. (9) 

Eq. (9), after some algebraic manipulations, leads to 

 ?+V � 0qL-�9	�+,-�/+ !2+,-O�.  (10) 
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where q 8 Tl ! �9�+,-�. Therefore, 

 /+,- � 	� 0 �qL-�9�+,-��/+ 0 �qL-�92+,-O.  (11) 

Substituting D+V, D+,-V , and ?+V , in Eq. (5) using Eqs. (7), (8) (in which /+,- is substituted 

using (11)), and (10), respectively, leads to  �� /+9�+/+ ! O92+9/+ ! ��O9Í+O 0 O9©H� �� /+9Gl/+ ! �� /+9�9�+,-�qL-TlqL-�9�+,-�/+ 

!��O92+,-9 �qL-TlqL-�92+,-O ! O92+,-9 �qL-TqL-�9�+,-�/+ 

!��/+9	� 0 �qL-�9�+,-��9�+,-	� 0 �qL-�9�+,-��/+! ��O92+,-9 �qL-�9�+,-�qL-�92+,-O 0O92+,-9 �qL-�9�+,-	� 0 �qL-�9�+,-��/+ ! O92+,-9 	� 0 �qL-�9�+,-��/+ 
 0O92+,-9 �qL-�92+,-O ! -E O9Í+,-O 0 O9©H. (12) 

Eq. (12) provides a relation between the time-varying unknown matrices �+, 2+, and Í+. 

Note that this relation has to hold for every / � 56 and every O � 5@, therefore, terms 

can be separated based on their dependency on / and on O. In other words, there are three 

set of terms; 1) terms which depend only on /, 2) terms which depend on both / and O, 

and 3) terms which only depend on O. Separating the three sets of terms leads to three 

equations. In order for the equations to hold for every / and every O, one can remove the / and O variables and force the unknown matrices to satisfy the equations. This process 

leads to the three difference equations given below 

 �+ � �9�+,-� ! Gl 0 �9�+,-�	Tl ! �9�+,-��L-�9�+,-�, 1 � ���� � � � . 0 �, (13) 

 2+ � 	� 0 �	Tl ! �9�+,-��L-�9�+,-��92+,-, 1 � ���� � � . 0 �, (14) 

 Í+ � Í+,- 02+,-9 �	Tl ! �9�+,-��L-�92+,-, 1 � ����� �. 0 �, (15) 

The final conditions for the difference equations can be found using (7) and Ì/F � ©H in 

Eq. (4). This process leads to �F � Ë, 2F � Ì9, and ÍF � �. 
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Denoting the A-dimensional null vector with �@, a necessary condition for 

optimality of D+V with respect to the Lagrange multiplier O, to enforce the hard terminal 

constraint, is  

 �D+V	/+���O � �@, 1 � ���� � � . 0 �. (16) 

Using (7) in (16) provides �D+V	/+���O � 2+9/+ ! Í+O 0 ©H � �� 
therefore,  

 O � Í+L-	©H 02+9/+�, 1 � ���� � � � . 0 �, (17) 

which gives the value of O, providing Í+ is invertible for 1 º .. If Í+ is not invertible the 

problem is called abnormal [1]. Note that ÍF is singular, therefore, O cannot be calculated 

at the final time. But since O is a constant vector, one may calculate it at another time 

step, e.g., at 1 � �. Finally, as expected, the ‘difference’ equations (13) to (15) 

correspond to similar ‘differential’ equations derived in [6]. Considering these results for 

the linear problem, in the next section the solution to the nonlinear problem is sought.  

IV. APPROXIMATE DYNAMIC PROGRAMMING APPROACH TO 
      NONLINEAR PROBLEMS 

A RL scheme is proposed in an ADP framework [23] in this study as a solution 

technique to the terminal control problem. First we motivate the utilization of this 

approach for fixed-final-time optimal control with soft terminal constraint and then 

proceed to using it for the problems with hard terminal constraints.  

A. Adaptive Critics for Optimal Control with Soft Terminal Constraint 

In a finite-horizon dual network implementation of the ADP called adaptive 

critics (AC) for approximating the optimal control and the optimal cost-to-go, two NNs 

named actor and critic need to be trained. The NNs capture the mapping between a given 

state and the time-to-go (final time minus the current time,) as inputs, to the optimal 

control and optimal cost-to-go, respectively, as outputs. The first step is to discretize 

system (1) by selecting a small sampling time y . The discretization using Euler 

integrations leads to 

 /+,- � Bi	/+� ! Ci	/+�?+,�1 � �� �� �� � �., (18)  
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where . � 	 H 0  N��y ��, /+ 8 /	1y  !  N�, Bi	/� 8 / ! y B	/� and Ci	/� 8 y C	/�. 
The discretized cost function may be given by  

 D � :	/F� ! -EI 	Gl	/+� ! ?+9Tl?+�FL-+MN , (19) 

where Gl	/� 8 y G	/�, and Tl 8 y T. The terminal error penalizing function :	� �, i.e., 

the soft terminal constraint, remains intact in the discretization. 

By selecting ‘linear in the weights’ networks, the expressions for the actor 

(control) and the critic (cost), can be written as 

 ?+	/+� � Î+9Ï	/+�, 1 � ���� � �. 0 �, (20) 

 D+	/+� � 2+9Q	/+�, 1 � ���� � � .. (21) 

where D+	/+� denotes the approximate optimal cost-to-go at current state /+ and time-to-

go . 0 1, and ?+	/+� represents the approximate optimal control at current state /+ and 

time-to-go . 0 1. Matrices Î+ � 5��= and 2+ � 5Ð are the unknown weights of the 

actor and the critic networks at time step 1, respectively. The selected basis functions are 

given by Ï;56 < 5� and Q;56 < 5Ð for x and Ñ being positive integers denoting the 

number of neurons in the respective network. Note that the weight matrices are time-

dependent, in order to accommodate the time-dependency of the approximated D+	/+� 
and ?+	/+�. For simplicity in the notation, argument /+ is omitted from D+	/+� and ?+	/+� in some places. 

The discrete-time HJB equation for the nonlinear system and non-quadratic cost 

function terms is given by  

DFV 	/F� � :	/F�,  D+V	/+� � -E 	Gl	/+� ! ?+V	/+�9Tl?+V	/+�� ! D+,-V 	/+,-V �, 
 1 � ���� � � . 0 �, (22) 

 ?+V	/+� � 0TlL-Ci	/+�9 `aZefV�`bZefÒbZefV ,  1 � ���� � �. 0 �. (23) 

where /+,-V 8 Bi	/+� ! Ci	/+�?+V	/+� and gradient �D+,-V� ��/+,- is formed as a column 

vector. The reinforcement learning scheme can be derived from the HJB equation for 

learning these unknowns for the fixed-final-time problem once (23) is replaced with 
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 ?+J,-	/+� � 0TlL-Ci	/+�9 `aZefV`bZefÒbZef� , 1 � ���� � � . 0 �, (24) 

where /+,-J 8 Bi	/+� ! Ci	/+�?+J 	/+� and superscript t denotes the index of iteration. The 

iteration starts with an initial guess on ?+N	/+� and ?+J,-	/+� is calculated based on ?+J 	/+� using (24) for each selected 1 � ���� � �. 0 �. The converged value of ?+J 	/+� is 

denoted with ?+V	/+� and is used in (22) for calculating D+V	/+�. Note that in a dual 

network AC scheme for finite horizon optimal control, ‘learning’ takes place in the 

iteration based controller synthesis, as seen in (24). Once state-control relationship is 

learned, optimal cost-to-go is obtained as a ‘mapping’ process as in (22).  

Considering (21), one has �D+,-� ��/+,- � �ÓQ	/+,-�92+,-� �where the Ó operator 

denotes the gradient of a function with respect to /. Note that �ÓQ	/+,-��9 is denoted 

with ÓQ	/+,-�9, which is an 7 � Ñ matrix. Using (20) and (21) in (22) and (24) leads to 

the weight update equations for the actor and the critic.  

 2F9Q	/F� � :	/F�, (25) 

Î+J,-9Ï	/+� � 0TlL-Ci	/+�9ÓQ [Bi	/+� ! Ci	/+�Î+J9Ï	/+�]9 2+,-� ,  

 1 � ���� � � . 0 �, (26) 

2+9Q	/+� � -EGl	/+� ! -E Ï	/+�9Î+� TlÎ+9Ï	/+� !2+,-�9 Q dBi	/+� ! Ci	/+�Î+9Ï	/+�h, 

  1 � ���� � � . 0 �� (27) 

The training should be done in a backward fashion from 1 � . to 1 � �. At each time 

step 1, starting with an initial guess on Î+N, one iterates using (26) until the iteration 

converges to some Î+. It will then be used in (27) along with 2+,-, which is already 

learned in the previous stage, to calculate 2+ in one shot. This process is detailed in the 

algorithm given below. 

 

Algorithm 1 

Step 1: Train 2F�  such that 2F9Q	/F� Ô :	/F� for different randomly selected /F � s, where compact set s denotes the domain of interest. 

Step 2: Set 1 � . 0 �. 
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Step 3: Set t � �, and select a guess on Î+N. 

Step 4: Train Î+J,- such that  

Î+J,-9Ï	/+� Ô 0TlL-Ci	/+�9ÓQ [Bi	/+� ! Ci	/+�Î+J9Ï	/+�]9 2+,-� � 
            for different randomly selected /+ � s. 

Step 5: Set t � t ! �. Repeat Step 4 until {Î+J,- 0 Î+J{ converges to a small value for 

different /+s. 

Step 6: Set Î+� � Î+J. 
Step 7: Train 2+�  such that 

2+9Q	/+� Ô -EGl	/+� ! -E Ï	/+�9Î+� TlÎ+9Ï	/+� !2+,-�9 Q dBi	/+� ! Ci	/+�Î+9Ï	/+�h, 

for different /+ � s. 

Step 8: Set 1 � 1 0 �. Go back to Step 3 until 1 � �. 

Remark 1: In Algorithm 1, the number of iterations is time-step dependent, i.e., each 

time-step 1 may be iterated for different number of iterations until the corresponding 

weights converge. Once the weights converge, the iteration index t resets to zero and the 

iteration starts for another time-step. 

Remark 2: In Steps 1, 4, and 7 of Algorithm 1, the method of least squares, detailed in 

Appendix A, can be used in order to find the unknown weight versus the given 

parameters. 

Remark 3: The solution developed here is for fixed-final-time problems. Another set of 

terminal control problems are free-final-time problems. However, free-final-time 

problems can be transformed to a fixed-final-time problem by changing the independent 

variable, providing the new independent variable changes monotonically with time and 

has a fixed final value. Once transformed to a fixed-final-time problem, the method 

developed here can be used for solving the problem. Interested readers are referred to 

[24] for an automatic landing problem of an aerial vehicle in which the touch-down time 

is free, but, the downrange (the travelled distance along the runway) is fixed and 

monotonically changes with time. It is shown that the change of independent variable 

from time to the downrange leads to a fixed-final-time problem.  
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B. Adaptive Critics for Optimal Control with Hard Terminal Constraint 

In this section, the network structure and the training algorithm are modified to 

learn the optimal solution subject to the hard terminal constraint, i.e., condition ©	/F� �©H is enforced. This is the main contribution of this work, compared with the available 

methods in the literature, including [12-14]. Motivated by the linear solution, where the 

time-step dependent matrices used in (7) are calculated first and used in the subsequent 

calculation of O, the actor and critic networks are trained to approximate the optimal 

control and cost-to-go, respectively, based on a given vector O. In other words, the 

networks approximate ?+V	/+� O� and D+V	/+� O�. Once these relationships are learned, the 

necessary condition given in (16) is enforced to find the optimal value for O. Afterwards, 

the optimal O will be fed to the networks to generate the optimal solution. For this 

purpose, the following modified network structures are proposed: 

 ?+	/+� O� � Î+9Ï	/+� ! Îl+9¨	/+� O�, 1 � ���� � �. 0 �, (28) 

 D+	/+� O� � 2+9Q	/+� !2~+9¿	/+� O� 0 O9©H, 1 � ���� � �., (29) 

where Î+ � 5��= and 2+ � 5Ð are prior network weights, and the new weights Îl+ �5��= and 2~+ � 5� are the weights of the augmented terms to the actor and the critic 

networks at time step 1, respectively. The new basis functions are given by ¨;56 � 5@ <5� and ¿;56 � 5@ < 5� for Õ and � being positive integers denoting the number of 

neurons in the respective augmented networks.  

The selected form for approximate optimal cost-to-go (29) is motivated by the 

assumed representation for the cost-to-go in the linear problem, i.e., equation (7). The 

first term in the right hand side of (29) is motivated by the existence of 	����/+9�+/+ in 

(7). The second term in the right hand side of (29) is motivated by the terms O92+9/+ !	����O9Í+O in (7). Considering this analogy, the basis functions ¿	� � � � may be selected 

such that� 
 ¿	/� �� � �� u/ � 56  and  ¿	�� O� º �� ÖO � 5@. (30) 

One natural selection for the basis functions is to form them as polynomials made up of 

different combinations of the elements of the network inputs. This design is selected in 

some of the simulation studies in this paper. In such a design, the conditions given by 
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(30) mean that a) all the basis functions need to have an element of O in them, and b) 

there has to be some basis functions which does not contain any elements of /. Given 

characteristics (30), ¨	� � � � should be selected such that  

 ¨	/� �� � �� u/ � 56, (31) 

because it is supposed to be used in learning a term which is proportional to the gradient 

of ¿	� � � � with respect to /. 

Using (28) and (29) in the learning equations given by (22) and (24) leads to the 

new weight update equations for the actor and critic as 

 2F9Q	/F� !2~F9¿	/F� O� 0 O9©H � :	/F�, (32) 

Î+J,-9Ï	/+� ! Îl+J,-9¨	/� O� � 0TlL-Ci	/+�9 dÓQ�/+,-J �92+,-� � ! Ó¿�/+,-J � O�92~+,-� �h, (33) 

 2+9Q	/+� !2~+9¿	/+� O� � -EGl	/+� ! -E ?+9Tl?+ !2+,-�9 Q	/+,-� !2~+,-�9 ¿	/+,-� O�,(34) 

in which parameters /+,-J , /+,- and ?+, based on the weights, are given below 

 /+,-J � Bi	/+� ! Ci	/+� [Î+J9Ï	/+� ! Îl+J9¨	/+� O�], 

 ?+ � Î+9Ï	/+� ! Îl+9¨	/+� O�, 
 /+,- � Bi	/+� ! Ci	/+�dÎ+9Ï	/+� ! Îl+9¨	/+� O�h. 

Note that the difference between /+,- and /+,-J  is that in the calculation of the former the 

converged values of Î+ and Îl+ are used, whereas the latter is based on the current 

version, actually, tth version of Î+ and Îl+. 

In order to derive the independent weight update rules, starting with (32), 

separating terms with and without the dependence on O leads to two equations. They are 

equation (25) and  

 2~F9¿	/F� O� � O9©	/F�. (35) 

This can be confirmed by evaluating (32) at O � �, considering (30), also noting that 

equation (32) needs to be valid for all /� O � 56, hence, it needs to be valid for O � �, as 

well, which leads to (25). Due to constraint ©	/F� � ©H, equation (35) follows from the 
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remaining terms in (32), i.e., the O-dependent terms. Equations (25) and (35) provide us 

with the weights 2F and 2~F.  

Following the same scheme mentioned above for finding a separate weight update 

laws for 2F and 2~F, separate weight updates can be found for Î+, Îl+, 2+, and 2~+, 1 � ���� � � � . 0 �, also. This is done through separating terms with and without 

dependence on O. This separation was done for the linear case too, where separating 

terms in the form of /9	� �/ from those of form O9	� �/ led to (13) and (14). In here, an 

easy way to separate the O-independent terms from both sides of equations (33) and (34) 

is setting O � � because of (30) and (31). Note that, these equations need to hold for 

every /� O � 56, hence, they need to be valid for O � �, / � 56, as well. Doing so 

simplifies (33) and (34) to (26) and (27), respectively. As for the weights of the O-

dependent basis functions, one may train the O-independent weights, i.e., Î+ and 2+, and 

then bring all the O-independent terms to the right hand sides of equations (33) and (34). 

This approach leads to the following equations to be used for learning Îl+ and 2~+ 

Îl+J,-9¨	/+� O� � 0TlL-Ci	/+�9 dÓQ�/+,-J �92+,-� � ! Ó¿�/+,-J � O�92~+,-� �h 0 Î+9Ï	/+�, (36) 

2~+9¿	/+� O� � -EGl	/+� ! -E ?+9Tl?+ !2+,-�9 Q	/+,-� !2~+,-�9 ¿	/+,-� O� 02+9Q	/+�. (37) 

Note that /+,-J  will now be different compared to (33), in the sense that it will be based 
on the converged Î+ instead of Î+J, i.e., 

 /+,-J � Bi	/+� ! Ci	/+� [Î+9Ï	/+� ! Îl+J9¨	/+� O�]. 

In summary, one learns Î+ and 2+ first, and then, uses them in the learning of Îl+ and 2~+. 

Algorithm 2 gives the training/learning process for finding Î+, 2+,Îl+, and 2~+, u1. 

Algorithm 2 

Step 1: Using Algorithm 1, find optimal weights 2+, 1 � ���� � � . and Î+, 1 ����� � �. 0 �. 

Step 2: Train 2~F�  such that 2~F9¿	/F� O� Ô O9©	/F�  for different /F � s and O � s~. 

Set s denotes the compact set representing the domain of interest and s~ � 56 is a compact set assumed the optimal O to belong to. 

Step 3: Set 1 � . 0 �. 
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Step 4: Set t � �, and select a guess on Îl+N. 

Step 5: Train Îl+J,- such that Îl+J,-9¨	/+� O� Ô 0TlL-Ci	/+�9 dÓQ�/+,-J �92+,-� � ! Ó¿�/+,-J � O�92~+,-� �h 0 Î+9Ï	/+�,  
             for different randomly selected /+ � s and O � s~, where ?+J � Î+9Ï	/+� !Îl+J9¨	/+� O� and /+,-J � Bi	/+� ! Ci	/+�?+J . 

Step 6: Set t � t ! �. Repeat Step 5 until {Îl+J,- 0 Îl+J{ converges to a small value for 

different /+s and Os. 

Step 7: Set Îl+� � Îl+J. 
Step 8: Train 2~+�  such that  2~+9¿	/+� O� Ô -EGl	/+� ! -E ?+9Tl?+ !2+,-�9 Q	/+,-� !2~+,-�9 ¿	/+,-� O� 02+9Q	/+�, 

for different /+ � s and O � s~, where ?+� � Î+9Ï	/+� ! Îl+9¨	/+� O� and /+,-� � Bi	/+� ! Ci	/+�?+� . 

Step 9: Set 1 � 1 0 �. Go back to Step 4 until 1 � �. 

Remark 4: As detailed in Algorithm 2, one needs to select a domain to which vector O is 

supposed to belong, i.e., s~.  To have an estimate, one can solve for the linearized solution 

first or select a large domain and proceed. 

Remark 5: In Steps 2, 5, and 8 of Algorithm 2, the method of least squares, detailed in 

Appendix A, can be used in order to find the unknown weight versus the given 

parameters. 

Weight updates (26) and (36) utilized in Algorithm 2 are converging successive 

approximations. In order to prove the convergence, the following theorem whose proof is 

given in Appendix B, is presented.  

Theorem 1: Let the basis functions used in the actor and critic networks be smooth in 

domains s and s~. There exists some sampling time y  to be used in the discretization of 

the smooth continuous dynamics given in (1) which using any sampling time smaller than 

that, the iterations on Î+J and Îl+J in Algorithm 2 converge for any finite initial guess on Î+N � 5��= and Îl+N � 5��=, 1 � ���� � � . 0 �. 

In Theorem 1 the role of the sampling time in discretization of a continuous-time 

system is emphasized. It is worthwhile to discuss this issue in more details. Let’s consider 
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the case of soft terminal constraint, for simplicity. Substituting (20) and (21) in optimal 

control equation (23), leads to  

 Î+9Ï	/+� � 0TlL-Ci	/+�9ÓQ dBi	/+� ! Ci	/+�Î+9Ï	/+�h9 2+,-� . (38) 

Optimal weights Î+ at each time instant 1 can be calculated from solving 

nonlinear equation (38), without using the iteration given in (26). Eq. (38) is actually > 

equations for x �> unknown elements of Î+. Following the remedy of evaluating Eq. 

(38) for x many random /+s, similar to what is explained in the least squares process in 

Appendix A, one can end up with enough number of equations to find the x �> 

unknowns. However, there is no analytical solution to set of nonlinear equations (38) in 

general. Therefore, one needs to resort to numerical methods for solving the set of 

equations. Theorem 1 proves that for any given smooth dynamics and smooth basis 

functions, if the sampling time is small enough, the iterations given in (26) converge to 

the solution to the nonlinear equation (38). This convergence is proved for any initial 

guess on Î+N and any selected weight matrix T. However, if the sampling time is fixed, 

certain conditions need to hold on T and C	/� in order for the iterations to converge. 

These conditions can be easily derived from the proof of Theorem 1. 

In solution to linear problems, discussed in Section III, a similar issue is observed. 

To see this fact, one may consider optimal control equation (23) which leads to Eq. (9). 

This equation is the equation corresponding to (38). Similar to (38), the unknown, ?+V  in 

here, exists in both sides of the equation. However, equation (9) is linear and the 

analytical solution can be calculated, which is given by (10). If solution (10) was not 

available, one could use the following iterations, starting with any initial guess ?+N, to find ?+V . 

 ?+J,- � 0TlL-�9��+,-��/+ ! �?+J � !2+,-O� . (39) 

Following the idea presented in proof of Theorem 1, it is straightforward to show that 

(39) is a contraction mapping, and hence ?+J  converges to the solution of (9), providing 

the sampling time is small enough. Therefore, as long as one can solve the set of 

equations (9) in the linear problem, or the set of equations (38) in the NN-based solution 

to the nonlinear problem, no iterations and hence, no condition on the sampling time is 
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required. In practical implementation however, since the training is being done offline, 

one can always adjust the sampling time such that the convergence is achieved. 

Considering Theorem 1, and the fact that the weight update rule was derived from 

the HJB equation (22) and (23) the converged weights satisfy 

  2F9Q	/F� !2~F9¿	/F� O� 0 O9©H � :	/F� ! (F,  

  2+9Q	/+� !2~+9¿	/+� O� 0 O9©H � -EGl	/+� ! -E ?+9Tl?+ !�D+,-	/+,-� ! (+,  

 Î+9Ï	/+� ! Îl+9¨	/+� O� � 0TlL-Ci	/+�9 `aZef�`bZef ! (i+,  

where (+, 1 � ���� � � � ., and (i+, 1 � ����� �. 0 �, are the critic and actor network 

reconstruction errors, respectively. Using the Galerkin method of approximation [10] 

which simplifies to least squares for this problem [13,12] it has been shown that the 

reconstruction errors can be made arbitrarily small once the number of basis functions 

becomes large [10]. In the ideal case when x� Ñ� Õ� � < � which results in (+ � (i+ ��,�u1, the generated D+ and ?+ through the NNs in (28) and (29) satisfy the HJB equation 

(22) and (23) along with its final condition. Selecting O such that the necessary condition 

(16) is satisfied, the generated control ?+ will, hence, be the optimal control at time 1 and D+ will be the optimal cost-to-go. In implementation, however, the number of basis 

functions is finite and the resulting solution is an approximation of the optimal solution.  

B.1. Calculating optimal Lagrange multiplier 

Once the network weights are trained, one needs to calculate the optimal O and 

feed it to the networks in order for the networks to output optimal results. The optimal O 

is such that the necessary optimality condition given in (16) is satisfied. Taking the 

gradient of D+, given by (29), with respect to O and using it in (16) leads to 

 	�¿	/+� O���O�92~+ 0 ©H � �@. (40) 

The foregoing algebraic equation needs to be solved online based on the given IC to 

calculate the optimal O. Note that O is a constant vector depending on IC /N. Therefore, in 

case of selecting rich basis functions to avoid numerical errors due to the network 

reconstruction errors, one needs to solve (40) only once for the selected IC. Errors may 

occur, however, because a finite number of basis functions may not be able to completely 
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and accurately capture the underlying nonlinear relationships. Therefore, in applications, 

it may be desirable to compute the values of O along the trajectory at some intervals. 

Differing values of O were observed in [6] with a Taylor series solution to the problem. 

The known singularity of (16) exists at the final time for the linear problems [1,6] due to 

the singularity of ÍF in (17). If the values of O grow too large, then updating should stop 

close to the final time. 

C. Adaptive Critics for Terminally Constrained Problems without State 
     Penalizing Terms 

Not having the state penalizing terms (G	� � � � and :	� � � �) simplifies 

Algorithm 2 considerably. The network weights Î+ and 2+ vanish and only Îl+ and 2~+ 

remain. This can be confirmed by looking at the weight update rules (25)-(27) where 

setting :	/F� � Gl	/+� � � gives the solution Î+ � 2+ � �, u1. Hence, in such a case, 

the actor and critic networks simplify to  

 ?+	/+� O� � Îl+9¨	/+� O�,  1 � ����� � . 0 �, (41) 

 D+	/+� O� � 2~+9¿	/+� O� 0 O9©H,  1 � ����� � .. (42) 

The training algorithm will be the same as Algorithm 2, except that one skips Step 1 in 

the algorithm and sets Î+ � 2+ � �,�u1, in the rest of the steps. 

V. NUMERICAL ANALYSIS 

A. Example 1: Scalar Problem with Soft Terminal Constraint 

As the first example, a nonlinear scalar system given below is selected for 

simulating the ‘soft’ terminal constraint controller discussed in section IV.A.  

 /³ � /E ! ?, 

where / � 5 and ? � 5. Notation /E denotes ‘square of /’ and should not be mistaken 

with the iteration index, as used in Eq. (24). The problem is defined as brining the given 

state to close to the origin in 1 �, i.e.,  N � � and  H � � �. Cost function (2) with the 

terms given below is selected 

 : d/� H�h � ��� d/� H�hE, G	/� � �, T � �. 

In this example the following basis functions are used: 
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 Q	/� � Ï	/� � j�� �t7	/� � ×Ø�	/� � �t7	�/� � ×Ø�	�/� � � � �t7	1/� � ×Ø�	1/�k9,   

where 1 is the highest order trigonometric function used in the basis functions. Note that 

the basis function selection in the adaptive critics design is an important step. Typically, 

one selects some set of basis functions, trains the network based on that, and evaluates 

the result to observe if the selected basis function is rich enough. If not, a richer set is 

selected.  

Selecting the sampling time of y  � �������, the continuous dynamics is 

discretized to 200 steps. Parameter 1 in the basis functions, is selected equal to 5. This 

leads to 11 basis functions. The least squares process in Algorithm 1 is done using 50 

random states at each iteration where s � �/ � 5;0� 3 / 3 ��. The learning iterations 

were observed to converge in less than 5 iterations. Once the network is trained, it is used 

for controlling different initial conditions /	 N� � �0����0��������. The resulting state 

histories are given in Fig. 1. For the comparison purpose, the optimal open loop 

numerical solutions for each one of the initial conditions, calculated separately using the 

direct method of optimization, are also plotted in this figure. As seen, the results of the 

developed neurocontroller are quite accurate through laying over the optimal results.  

In order to evaluate the performance of the controller in providing optimal 

solution for shorter final times, the same NN is used for controlling initial condition /	 N� � �, but with different final times  H � ����������������� �. The resulting state 

histories are plotted in Fig. 2. Comparing the AC based solutions with the optimal 

numerical solutions shows the versatility of the controller in approximating the optimal 

solutions to the problems with shorter horizons. Note that, once the optimal weights are 

calculated for time-indices 1 � � to 1 � ., the optimal weights for the shorter horizon of 1 � ���� � � .-, where .- is an integer smaller than ., are the weights with time indices 

of 1 � . 0 .- to 1 � ., based on Bellman principle of optimality [2]. 

Finally, in order to check the effect of using a less rich set of basis functions, two 

other sets of basis functions are selected with 1 � � and 1 � �. After training the NNs 

with the new basis functions, their result in controlling initial condition /	 N� � � are 

depicted in Fig. 3. In this figure, the resulting state history for the case of 1 � � and the 

optimal numerical result are also plotted. As seen, as the order of the basis functions 

increases, the results converge to the optimal solution. This analysis shows that selecting 
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1 � � or 1 � � does not lead to a rich set of basis functions, compared with the case of 1 � �.  

 

 
Fig. 1. State histories for different initial conditions (Example 1). 

 

 
Fig. 2. State histories for different final times (Example 1). 

 

 
Fig. 3. State histories for different basis functions selections (Example 1). 

 
B. Example 2: Second Order Problem with Hard Terminal Constraint 

The second example is a benchmark nonlinear system, namely, Van der Pol’s 

oscillator: 

   
/³- � /E/³E � 	� 0 /-E�/E 0 /- ! ? 

where the subscripts on the state vector denotes the respective element of the matrix. This 

example is a problem with terminal hard constraint. The nonlinear terminal constraint is 

selected as the curve given by ©	/	 H��� 8 /-E� H� ! /E	 H� � �, which leads to O being 
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a scalar. The sampling time is selected as y  � ������ with  N � �, and  H � ���. This 

leads to . � ���, therefore, there will be 100 weight matrices for the actor and 100 

weight matrices for the critic to be trained.  

Cost function (2) with :	/	 H��� � �, G	/� � �, and T � � is selected. Because 

of the selected cost function terms, the neurocontrollers will be of the forms given by (41) 

and (42). Let the vector whose elements are all the non-repeating polynomials made up 

through multiplying the elements of vector p by those of vector q be denoted with p Ùq. In this example the following basis functions are used: 

 ¿	/� O� � ´OE� 	O Ù /�9� �O Ù 	/ Ù /��9� dO Ù �/ Ù 	/ Ù /��h9¶9, 

 ¨	/� O� � �O� 	O Ù /�9� �O Ù 	/ Ù /��9�9. 

This selection leads to �� neurons for the critic and 6 neurons for the actor. Therefore, 

the total number of weight elements will be .	�� ! Ú� � �Ú��. 

The least squares in Algorithm 2 is carried out using 200 random states at each 

iteration where s � �/ � 5�;0� 3 /J 3 �� t � ���� and s~ � �O � 5;0�� 3 O 3 ���. 
The learning process converged in less than 5 iterations as seen in Fig. 4 which denotes 

the evolution of the weights of the actor during the training iterations. Note that only 

some of the actor weights, namely ÎlN, Îļ N and ÎlÛÛ are selected and presented in this 

figure, to avoid having too many plots in the figure. The resulting optimal weights are 

given in Fig. 5. This figure presents the value of each single weight element as a function 

of time. In other words, the evolution of the optimal weight matrices versus   � j N�  H� is 

depicted. Once the network is trained, it is used for controlling a variety of ICs where /- 

varies between 0��� and ��� in steps of ���, and /E varies between 0� and � in steps of �. This selection leads to 28 different ICs. During the simulation, at each time-step, 

necessary condition (16) is enforced through updating scalar O by solving a single linear 

algebraic equation generated from (40). The resulting state trajectories are given in Fig. 6. 

As can be seen, the neurocontroller has done an excellent job in satisfying the final 

constraint through shaping the state trajectories to land on the curve representing the 

terminal nonlinear constraint (denoted by a thick blue plot in this figure.) 
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To evaluate the performance of the trained network for controlling the states in 

bringing them to the terminal curve at different final times, nine separate simulations are 

done for the different horizons of �, ���, ��Ü,…, �����. The resulting state trajectories for 

the given IC of /	 N� � j��0�k9 are depicted in Fig. 7. This figure shows that the 

controller has perfectly controlled different problems with different final times. Finally, 

the same IC with the final time of � � is simulated for different ©Hs of  �, �, �, 0�, and 0� where /-E� H� ! /E	 H� � ©H represents the terminal constraint curve. The resulting 

state trajectories, given in Fig. 8, demonstrate the performance of the same trained 

network in solving the problems with shifted terminal curves or different given terminal 

states. 

 

 
Fig. 4. Evolution of the actor weights versus training iterations (Example 2). 

 

 
Fig. 5. Optimal weight histories (Example 2). 
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Fig. 6. State trajectories for different initial conditions (Example 2). 

 

 
Fig. 7. State trajectories for different horizons (Example 2). 

 

 
Fig. 8. State trajectories for different terminal curves (Example 2). 

 

C. Example 3: Real-world Problem with Hard Terminal Constraint 

As the last example, a practical problem is selected to show the applicability of 

the method to real world problems with hard terminal constraints. The selected problem 

is the detumbling of a rigid spacecraft in a given time, as investigated in [6]. In other 

words, a rigid spacecraft is tumbling with some initial angular velocities about each one 

of its three perpendicular axes. The controller needs to damp the angular velocities and 

the selected terminal state enforces the terminal angular velocities to be zero. The 

equations of motion are given by 
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 /³ � ÝL-	Ý/ � / ! ?�, 
where / � 5�, Ý � 5���, and ? � 5� are the rigid body angular velocities, the moment 

of inertia of the rigid body, and the applied mechanical torque, respectively. Sign ‘�’ 

denotes matrix cross product. The design parameters are selected to be the same with [6] 

in order to be able to compare the results with the series-based solution given to the same 

problem in the mentioned reference. Hence,  N � �,  H � � �, and Ý � Ut�C	ÜÚ����Ü������������ 1C>E.  

Cost function (2) with the terms given below is selected 

 : d/� H�h � �, G	/� � /9/, T � Ut�C	������. 
The terminal constraint is selected as © d/� H��h 8 /� H�� � j�����k9, which leads to O � 5�. In this example the following basis functions are used: 

 Q	/� � ��	/ Ù /�9� �/ Ù 	/ Ù /��9�9, 

 ¿	/� O� � j�	O Ù O�9� 	O Ù /�9� k9, 

 Ï	/� � j/9� 	/ Ù /�9k9. 

 ¨	/� O� � O. 

Selecting the sampling time of y  � ������ the continuous dynamics is 

discretized to 100 steps. The least squares in Algorithm 2 are done using 500 random 

states at each iteration where s � �/ � 5;0� 3 / 3 �� and s~ � �O � 5;0� � ��Þ 3O 3 � � ��Þ�. The learning iterations were observed to converge in around 4 iterations. 

Once the networks are trained, they are used for controlling the IC of /N � j0������Ü��k9 Õ�U��, as simulated in Ref. [6]. The resulting state and control histories are given in Figs. 

9 and 10, respectively. For comparison, the optimal open loop solution, calculated in [6], 

and the series based solution developed in the same reference are plotted in these figures. 

As seen in Fig. 9, the adaptive critics solution developed in this study has done a nice job 

in providing a solution which is very close to the optimal numerical solution, while the 

series based solution is not as accurate as the adaptive critics solution. This fact can be 

seen in Fig. 10, where the deviations of the series based solution form the optimal control 
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can be easily observed, while the adaptive critics solution has accurately generated the 

optimal solution. Comparing the adaptive critics solution with the open loop optimal 

solution it should be noted that the adaptive critics solution has the advantages of 

providing feedback solution to different initial conditions, different terminal points, and 

different final-times, as examined in Examples 1 and 2. While, each time that one of 

these parameters changes, the open loop numerical solution loses its validity and a new 

solution has to be calculated. 

In these simulations, for the best result, vector O was updated at each time-step 

through solving a set of three linear algebraic equations resulting from (40). The resulting 

histories for O are plotted in Fig. 11. As seen in this figure, the elements of vector O have 

been almost constant during the simulation. The changes in the elements are due to the 

numerical error in approximating the optimal cost-to-go and optimal control using a finite 

number of basis functions. 

This example shows that the developed method has a promising performance in 

real-world engineering problems. The real-time computational burden of the method is 

limited to the evaluation of the NN outputs given the inputs, and solving the algebraic 

equation (40), in real-time. Note that, Eq. (40) is not required to be solved at every single 

time-step. It can be solved every, for example, ten time steps in order to update O. Doing 

so further decreases the real-time computational load. As for the storage requirement, it 

should be noted that for online calculation of the control, one needs matrices 2~+, Î+, and Îl+. The number of elements of these matrices is 27 for the selected basis functions. 

Considering . � ���, the total number of ���� real numbers are required to be stored 

for online control. This number for a solution to the linearized problem, which is only 

valid in a close vicinity of the origin by definition, is ����, to store matrices �+, 2+, and Í+ defined in Eq. (7). Comparing ���� with ����, it can be seen that the storage 

requirement of the developed method is not prohibitive, compared to the solution to the 

linearized problem. 

VI. CONCLUSIONS 

A new algorithm was developed in the framework of approximate dynamic 

programming for finding fixed-final-time optimal control of nonlinear systems subject to 
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terminal nonlinear constraints. Convergence of the network weights was proved. From 

the numerical results, it can be concluded that the developed technique is quite versatile.  

 

 
Fig. 9. State histories (Example 3). 

 

 
Fig. 10. Control histories (Example 3). 
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Fig. 11. Lagrange multiplier histories (Example 3). 
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APPENDIX A 

Equations (26), (27), (36), and (37), used in Algorithms 1 and 2, give the weight 

update rules for Î+, 2+, Îl+ and 2~+, respectively. The least squares method can be used 

for rewriting these equations such that the unknown weights are explicitly given in terms 

of known parameters. In this appendix, the process for finding such an equation for Îl+ is 

explained and one can easily find the corresponding equation for the other weight 

matrices. 

To perform least squares for the weight update of Îl+, instead of one random / and 

random O, ß random /s and ß random Os denoted with /	J� and O	J�, respectively, where t � ����� � � ß�, are selected. Denoting the right hand side of equation (36) resulting from 

each one pair of /	J� and O	J� with à�/	J�� O	J��, the objective is finding Îl+ such that it 

solves 

 

áâã
âä Îl+9¨�/	-�� O	-�� � à�/	-�� O	-��Îl+9¨�/	E�� O	E�� � à�/	E�� O	E��åÎl+9¨�/	ß�� O	ß�� � à�/	ß�� O	ß��. (A.1) 

Define 

 æ 8 �¨�/	-�� O	-�����¨�/	E�� O	E����� ���¨�/	ß�� O	ß���, 
 ç 8 �à�/	-�� O	-�����à�/	E�� O	E����� ���à�/	ß�� O	ß���. 
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Using the method of least squares, the solution to the system of linear equations (A.1) is 

given by  

 Îl+ � 	ææ9�L-æç9 (A.2) 

Note that for the inverse of matrix�	ææ9�, which is an Õ � Õ matrix, to exist, certain 

conditions need to hold. These conditions are a) the elements of the basis functions ¨	� � � � need to be linearly independent, and b) ß needs to be greater than or equal to the 

number of the elements of the basis functions, i.e., ß ½ Õ. 

APPENDIX B 

Proof of Theorem 1: The proof of convergence for Îl+J is detailed here and that of Î+J is 

skipped, since it is straight forward by following the line of proof given for Îl+J. The 

iteration performed on Îl+J, given in (36) and repeated here, is a successive approximation 

to find a fixed point of a function 

 Îl+J,-9¨	/+� O� � 0TlL-Ci	/+�9 dÓQ�/+,-J �92+,-� � ! Ó¿�/+,-J � O�92~+,-� �h 0 Î+9Ï	/+�,  

In other words, there exists a function è;�5��= < 5��= such that (36) is of the form  

 Îl+J,- � è	Îl+J�. (B.1) 

Therefore, the problem simplifies to whether (B.1) is a contraction mapping [21]. Since 5��= with the 2-norm denoted by {� { is a Banach space, iterations given by (B.1) 

converges to some Îl+ � è	Îl+� if there is a � 3 × 4 � such that for every é- and éE in 5��=, the following inequality holds [21] 

 {è	é-� 0 è	éE�{ 3 ×{é- 0 éE{. (B.2) 

Function è	� � can be formed by converting (36) to a least squares form discussed 

in Appendix A. Rewriting Eq. (A.2), given in Appendix A with the notations defined 

therein, leads to 

 è�Î+J� 8 
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� 	ææ9�L-æ
êë
ëëë
ëëë
ëì í0TlL-Ci�/+	-��9 �ÓQ [/+,-î~Z��	-�]9 2+,-� � ! Ó¿ [/+,-î~Z��	-�� O	-�]9 2~+,-� �� 0 Î+9Ï�/+	-��ï9

í0TlL-Ci�/+	E��9 �ÓQ [/+,-î~Z��	E�]9 2+,-� � ! Ó¿ [/+,-î~Z��	E�� O	E�]9 2~+,-� �� 0 Î+9Ï�/+	E��ï9
å

í0TlL-Ci�/+	ß��9 �ÓQ [/+,-î~Z��	ß�]9 2+,-� � ! Ó¿ [/+,-î~Z��	ß�� O	ß�]9 2~+,-� �� 0 Î+9Ï�/+	ß��ï9
ðñ
ñññ
ñññ
ñò
, 

   (B.3) 

where /+,-î~Z��	v� 8 Bid/+	v�h ! Cid/+	v�h [Î+9Ïd/+	v�h ! Îl+J9¨ d/+	v�� O	v�h]. One has 

 {è	é-� 0 è	éE�{ 3 óß{	ææ9�L-æ{ 

� {TlL-Cid/+	ô�h9 [ÓQ d/+,-õf�	ô�h9 2+,-� � ! Ó¿ d/+,-õf�	ô�� O	ô�h9 2~+,-� �] 0 

 �TlL-Cid/+	ô�h9 [ÓQ d/+,-õÀ�	ô�h9 2+,-� � ! Ó¿ d/+,-õÀ�	ô�� O	ô�h9 2~+,-� �] {, (B.4) 

where ô � ����� � �ß� is such that  

ô � �ÕC>�/J��-�E���ß� {TlL-Cid/+	J�h9 [ÓQ d/+,-õf�	J�h9 2+,-� � ! Ó¿ d/+,-õf�	J�� O	J�h9 2~+,-� �] 

 0TlL-Cid/+	J�h9 [ÓQ d/+,-õÀ�	J�h9 2+,-� � ! Ó¿ d/+,-õÀ�	J�� O	J�h9 2~+,-� �] {. 

In inequality (B.4), the following norm inequality is used 

 ö�÷ø-øEåøßù�ö 3 óß{øô{, (B.5) 

where øJs are real-valued row-vectors and ô � �ÕC>�/J��-�E���ß�{øJ{. Inequality (B.4) leads to 

 {è	é-� 0 è	éE�{ 3 óß{	ææ9�L-æ{ úTlL-Cid/+	ô�h9ú 

{2+,-9 [ÓQ d/+,-õf�	ô�h 0 ÓQ d/+,-õÀ�	ô�h] !2~+,-9 [Ó¿ d/+,-õf�	ô�� O	ô�h 0 Ó¿ d/+,-õÀ�	ô�� O	ô�h] {.(B.6) 

The smoothness of basis functions Q	� � and ¿	� � � � leads to the smoothness of ÓQ	� � and Ó¿	� � � �. Therefore, functions ÓQ	� � and Ó¿	� � O�, uO � s~, are Lipschitz 
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continuous on compact set s with respect to / (uniformly in O) [25]. In other words, for 

every /- and /E in s and every O � s~, one has {ÓQ	/-� 0 ÓQ	/E�{ 3 1û{/- 0 /E{ and {Ó¿	/-� O� 0 Ó¿	/E� O�{ 3 1ü{/- 0 /E{ for some non-negative constants 1û and 1ü 

independent of O. Using the Lipschitz continuity of ÓQ	� � and Ó¿	� � O�, inequality (B.6) 

provides 

 {è	é-� 0 è	éE�{ 3 óß{	ææ9�L-æ{ úTlL-Cid/+	ô�h9ú 

 � 	1û{2+,-� { ýd/+,-õf�	ô� 0 /+,-õÀ�	ô�hý ! 1ü{2~+,-� { ýd/+,-õf�	ô� 0 /+,-õÀ�	ô�hý�, (B.7) 

and substituting /+,-õf�	ô� and /+,-õÀ�	ô� by their values leads to 

 {è	é-� 0 è	éE�{ 3 óß{	ææ9�L-æ{ úTlL-Cid/+	ô�h9ú 

 � �1û{2+,-� { ! 1ü{2~+,-� {� ýCid/+	ô�hý {¨d/+	ô�� O	ô�h{{	é- 0 éE�{ (B.8) 

Define 

 × 8 óß{	ææ9�L-æ{ úTlL-Cid/+	ô�h9ú 

 � �1û{2+,-� { ! 1ü{2~+,-� {� ýCid/+	ô�hý {¨d/+	ô�� O	ô�h{, (B.9) 

which in terms of the continuous-time problem parameters, one has 

 × � óß{	ææ9�L-æ{ úTL-Cd/+	ô�h9ú 

 � �1û{2+,-� { ! 1ü{2~+,-� {� ýy Cd/+	ô�hýý¨d/+	ô�� O	ô�hý. (B.10)  

The defined × simplifies inequality (B.8) to (B.2). One can always select sampling time y , in the discretization of the continuous dynamics (1), small enough such that condition � 3 × 4 � is satisfied. The reason is the fact that a smaller y  directly results in a smaller {y Cd/1	ô�h{. Note that continuity of C	� � and ¨	� � � � in their domains (which follows from 

their smoothness) results in being bounded in the compact sets s and s~ [26], hence, the /+	ô� dependent terms in (B.10) are upper bounded. Moreover, terms {2+,-� { and {2~+,-� { 

are already calculated in the previous time-step, therefore they are finite. Note that as 
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y  < �, these two weights stay finite, because, they are the weights of NNs which 

approximate the summation given in (19), whose limit as y  < � is the integral given in 

(2). Since the horizon is finite, using finite controls, the cost-to-go will always stay finite, 

except for systems with finite scape time which are ruled out of the investigation. This 

completes the proof of convergence of Îl+J to Îl+�  for � 3 1 4 . 0 � using any sampling 

time smaller than the one for which � 3 × 4 �. ¾ 
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3. GLOBAL OPTIMALITY OF APPROXIMATE DYNAMIC PROGRAMMING 
AND ITS USE IN NON-CONVEX FUNCTION MINIMIZATION 

Ali Heydari and S. N. Balakrishnan 

ABSTRACT 

This study investigates the global optimality of approximate dynamic programming 

(ADP) based solutions using neural networks for optimal control problems with fixed 

final time. Issues including whether or not the cost function terms and the system 

dynamics need to be convex functions versus their respective inputs are discussed and 

sufficient conditions for global optimality of the result are derived. Next, a new idea is 

presented to use ADP with neural networks for optimization of non-convex smooth 

functions. It is shown that any initial guess leads to direct movement toward the 

proximity of the global optimum of the function. This behavior is in contrast with 

gradient based optimization methods in which the movement is guided by the shape of 

the local level curves. Illustrative examples are provided with single and multi-variable 

functions that demonstrate the potential of the proposed method. 

I. INTRODUCTION 

In the last two decades, approximate dynamic programming (ADP) has been 

shown to have great promise in solving optimal control problems with neural networks 

(NN) [1-15]. In the ADP framework, the solutions are obtained using a two-network 

synthesis called adaptive critics (ACs) [2-4]. In the heuristic dynamic programming 

(HDP) approach with ACs, one network, called the ‘critic’ network, maps the input states 

to output the cost-to-go and another network, called the ‘action’ network, outputs the 

control with states of the system as its inputs [4,5]. In the dual heuristic programming 

(DHP) formulation, the action network remains the same as in the HDP, however, the 

critic network outputs the costates with the current states as inputs [2,6,7]. The 

computationally effective single network adaptive critics (SNAC) architecture consists of 

one network only. In [8], the action network was eliminated in a DHP type formulation 

with control being calculated from the costate values.  Similarly, the J-SNAC [9] 

eliminates the need for the action network in an HDP scheme. Note that the 

developments in [1-9] are for infinite-horizon problems.  
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The use of ADP for solving finite-horizon optimal control problems was 

considered in [10-15]. Authors of [10] developed a time-varying neurocontroller for 

solving a scalar problem with state constraints. In [11] a single NN with a single set of 

weights was proposed which takes the time-to-go as an input along with the states and 

generates the fixed-final-time optimal control for discrete-time nonlinear multi-variable 

systems. An HDP based scheme for optimal control problems with soft or hard terminal 

constraints was presented in [12]. Finite-horizon problems with unspecified terminal 

times were considered in [13-15].  

Despite much published literature on adaptive critics, there still exists an open 

question about the nature of optimality of the adaptive critic based results. Are they 

locally or globally optimal? A major contribution of this study is in proving that the AC 

based solutions are globally optimal subject to the assumed basis functions. To help with 

the development of the proof, the ADP based algorithm for solving fixed-final-time 

problems developed in [11,12] is revisited first. After describing the algorithm, a novel 

analysis is presented on global optimality of the result. It is shown that selecting any cost 

function with quadratic control penalizing term, if the sampling time used for 

discretization of the original continuous-time system is small enough, the resulting cost-

to-go function will be convex versus the control at the current time and hence, the first 

order necessary optimality condition [16] will lead to the global optimal control. The 

second major contribution of this paper is in showing that the ADP can be used for 

functional optimization, specifically, optimization of non-convex functions. Finally, 

through numerical simulations, two examples with varying complexities are presented 

and the performance of the proposed method is investigated. It is shown that despite the 

gradient based methods, selecting any initial guess on the minimum and updating the 

guess using the control resulting from the actor, the states will move directly toward the 

global minimum, passing any possible local minimum in the path.  

The rest of this paper is organized as follows: The problem formulation is given in 

section II. The ADP-based solution is discussed in section III. The supporting theorems 

and analyses are presented in section IV. The use of the method in static function 

optimization is discussed in section V, and the conclusions are given in section VI. 
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II. PROBLEM FORMULATION 

Let the control-affine dynamics of the system be given by 

 /³	 � � B�/	 �� ! C�/	 ��?	 �     (1) 

where B;56 < 56 and C;56 < 56�=. Positive integers 7 and >, respectively, denote 

the dimension of the state and the control vectors. The selected cost function, D is fairly 

general but quadratic in control: 

 D � © d/� H�h ! P dG�/	 �� ! ?	 �9T?	 �hcÊcÆ U , (2) 

where positive semi-definite smooth functions G;56 < 5 and ©;56 < 5 penalize the 

states and positive definite matrix T penalizes the control effort. The initial and final time 

are denoted with  N and  H, respectively. Discretizing the time horizon to . time steps 

using sampling time y  leads to the discrete-time dynamics and cost function as 

 /+,- � Bi	/+� ! Ci	/+�?+� 1 � þ, (3) 

 D � ©	/F� ! I 	Gl	/+� ! ?+9Tl?+�FL-+MN , (4) 

where þ 8 ��� �� �� � � . 0 ��, . 8 � H 0  N��y �, /+ 8 /	1y  !  N�, and Bi	/� 8 / !y B	/�, Ci	/� 8 y C	/�, Gl	/� 8 y G	/�, and Tl 8 y T.  The problem is defined as 

finding a control history ?	 � � 5=,   � j N�  H�, such that cost function (4) is minimized 

subject to the dynamics given in (3). 

Assumption 1: The dynamics of the system do not have finite escape times. Also, the 

functions B	/� and C	/� are smooth in /. 

Remark 1: In order to use ADP, the continuous-time problem is discretized. Moreover, 

the assumption that discrete-time system (3) is obtained through discretizing a 

continuous-time problem is utilized in convergence analysis of the algorithm.  

III. APPROXIMATE DYNAMIC PROGRAMMING BASED SOLUTION 

In this section, an ADP scheme called AC is used for solving the optimal control 

problem in terms of the network weights and selected basis functions. The method is 

adopted from [11,12]. In this scheme, two networks called critic and actor are trained to 

approximate the optimal cost-to-go and the optimal control, respectively. It should be 
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noted that the optimal cost-to-go at each instant is a function of the current state, /+, and 

the current time, 1, therefore, it is denoted with D+V	/+�, i.e., 

 D+V	/+� � ©	/F� ! I �Gl	/�� ! ?�9Tl?��FL-�M+ . (5) 

The solution to the problem is given by the Bellman equation [17] as 

 DFV 	/F� � ©	/F�,   (6) 

 D+V	/+� � Gl	/+� ! ?+V	/+�9Tl?+V	/+� ! D+,-V 	/+,-V �,  1 � þ (7) 

 ?+V	/+� � 0 -ETlL-Ci	/+�9�ÓD+,-V� 	/+,-V �,  1 � þ. (8) 

where /+,-V � Bi	/+� ! Ci	/+�?+V	/+� and gradient ÓD+,-V� 	/+,-V � 8 �D+,-V 	/+,-� ���/+,-� 
is evaluate at /+,-V . Note that ÓD+,-V� 	/+,-V ��is a column vector. 

An iterative learning scheme can be derived from Bellman equation for learning 

the solution to the fixed-final-time problem once Eq. (8) is replaced with [12] 

 ?+J,-	/+� � 0 -ETlL-Ci	/+�9ÓD+,-V� 	Bi	/+� ! Ci	/+�?+J 	/+��, 1 � þ. (9) 

Superscript t denotes the index of iteration which starts with an initial guess on ?+N	/+�, 1 � þ. The converged value of ?+J 	/+� in (9) is denoted with ?+V	/+� and used in (7). 

Note that in a dual network AC scheme for finite horizon optimal control, ‘iterations’ 

takes place in the training of the actor, as seen in (9). Once state-control relationship is 

learned, the optimal cost-to-go is obtained in a ‘one-shot’ process as given in (7).  

Denoting the approximated optimal cost-to-go and the approximated optimal 

control with D+	/+� and ?+	/+�, respectively, and selecting linear in the weights NNs, the 

expressions for the actor (control) and the critic (cost), can be written as 

 ?+	/� � Î+9Ï	/�, 1 � þ (10) 

 D+	/� � 2+9:	/�, 1 � þ � �.� (11) 

where Î+ � 5��= and 2+ � 5Ð are the unknown weights of the actor and the critic 

networks at time step 1, respectively, and the selected smooth basis functions are given 

by Ï;56 < 5� and :;56 < 5Ð where x and Ñ denote the number of neurons. The idea 

is using Eqs. (6), (7), and (9) to find the NN weights. Note that, once D+,-V 	� � is known 

one can use (9) to find ?+V	� � and then (7) gives D+V	� �. Therefore, starting with (6) to find 
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DFV 	� �, all the unknowns can be calculated in a backward in time fashion, i.e., from 1 � . 0 � to 1 � �. The learning process for calculating weights Î+ and 2+, u1, is 

detailed through Algorithm 1. Note that Ó:	/� 8 �:	/���/ is a column vector. 

Algorithm 1 

Step 1: Randomly select ß state vectors /Fj�k � s,�u� � � 8 ����� � � � ß�, where ß is a 

selected large positive integer, and s denotes a compact subset of 56 

representing the domain of interest.  

Step 2: Find 2F�  such that 2F9: d/Fj�kh Ô ©	/Fj�k�, u� � �. 

Step 3: For 1 � . 0 � to 1 � � repeat 

{ 

Step 4: Set t � � and select a guess on ?+N�j�k � 5=,�u� � �. 

Step 5: Randomly select ß state vectors /+j�k � s,�u� � �. 

Step 6: Set /+,-J�j�k � Bi d/+j�kh ! Ci d/+j�kh ?+J�j�k, u� � �. 

Step 7: Set ?+J,-�j�k � 0 -ETlL-Ci d/+j�kh9 Ó: d/+,-J�j�kh9 2+,-� ,�u� � �. 

Step 8: Set t � t ! � and repeat Step 7, until ý?+J,-�j�k 0 ?+J�j�ký 4 �, u� � �, 

where � ) � is a preset tolerance. Denote the converged value of ?+J�j�k 
with ?+j�k, u�. 

Step 9: Find Î+�  such that Î+9Ï d/+j�kh Ô ?+j�k, u� � �. 

Step 10: Find 2+�  such that  

 2+9: d/+j�kh Ô Gl d/+j�kh ! ?+j�k9Tl?+j�k ! 2+,-�9 : dBi d/+j�kh ! Ci d/+j�kh ?+j�kh, u� � �. 

} 

In Steps 2, 9, and 10 of Algorithm 1, the method of Least Squares, explained in 

the Appendix, can be used for finding the unknown weights. 

Remark 2: The capability of uniform approximation of neural networks [18,19] indicates 

that once the network is trained for a large enough number of samples distributed evenly 

throughout the domain of interest, the network is able to approximate the output for any 

new sample of the domain with a bounded approximation error. This error bound can be 
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made arbitrarily small once the network is rich enough. For the linear in the weight neural 

networks selected in this study and the polynomial basis function utilized in the 

numerical examples, Weierstrass approximation theorem [20] proves a similar uniform 

approximation capability.  

IV. SUPPORTING THEOREMS AND ANALYSES 

A. Convergence Analysis 

Theorem 1: The iterative relation given by Eq. (9), with any initial guess for ?+N � 5=, u1 � þ, converges, providing the sampling time y  selected for discretization of 

continuous-time dynamics (1) is small enough. 

Proof: Let the right hand side of (9) be denoted with function è;�5= < 5= where 

 è	?� � 0 -ETlL-Ci	/+�9ÓD+,-V 	Bi	/+� ! Ci	/+�?� (12) 

The proof is complete if it is shown that the relation given by the successive 

approximation 

 ?J,- � è�?J� (13) 

is a contraction mapping [21]. Since 5= with 2-norm denoted with {� { is a Banach 

space, the iterations given by (13) converges to some ?+� � è	?+� � if there is a � 3 Q 4 � 

such that for every ? and O in 5=, the following inequality holds 

 {è	?� 0 è	O�{ 3 Q{? 0 O{. (14) 

By Eq. (12) one has 

{è	?� 0 è	O�{ 3 

 ý-E TlL-Ci	/+�9ÓD+,-V �Bi	/+� ! Ci	/+�?� 0 -ETlL-Ci	/+�9ÓD+,-V �Bi	/+� ! Ci	/+�O�ý(15) 

The optimal cost-to-go function, D+,-V 	/+,-�, is smooth versus its input, /+,- 

since functions :	� �, G	� �, B	� �, and C	� � are smooth. By considering Eq. (6), since :	/F� is a smooth function, function DFV 	/F�, and hence ÓDFV 	/F�� are smooth. 

Smoothness of Ci	/FL-� and ÓDFV 	/F� leads to the smoothness of optimal control function ?FL-V 	/FL-�, by (8), which along with the smoothness of Gl	/FL-� lead to a smooth DFL-V 	/FL-�, by (7). Repeating this argument backward from . 0 � to 1 ! �, it follows 
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that D+,-V 	/+,-� is a smooth function. This smoothness leads to the Lipschitz continuity 

of ÓD+,-V 	/+,-� in the domain of interest s [22]. In other words, there exists some 

positive real number Qa such that for every /- and /E in s, one has {ÓD+,-V 	/-� 0ÓD+,-V 	/E�{ 3 Qa{/- 0 /E{. Using this characteristic, inequality (15) can be written as 

 {è	?� 0 è	O�{ 3 Qa{ -E TlL-Ci	/+�9{{Ci	/+�{{	? 0 O�{ (16) 

By defining  

 Q 8 Qa{ -E TlL-Ci	/+�9{{Ci	/+�{  

which is equivalent of  

 Q 8 Qa{ -E TL-C	/+�9{{� C	/+�{ (17) 

one can select the sampling time y  in discretization of the continuous-time dynamics (1) 

small enough such that the condition � 3 Q 4 � is satisfied. Note that the continuity of C	� � in its domain result in being bounded in compact set � [23], hence, the state-

dependent terms in (17) are upper bounded. This completes the proof of existence of a 

fixed point, denoted with ?+� , and the convergence of ?+J  to ?+� , as t < �, u?+N � 5= and u1 � þ using successive approximation given by (9). ¾ 

In Theorem 1 the role of the sampling time in discretization of a continuous-time 

system is emphasized. It is worthwhile to discuss this issue in detail. Substituting (11) in 

optimal control equation (8) leads to 

 ?+j�k � 0 -ETL-C d/+j�kh9 Ó: dB d/+j�kh ! C d/+j�kh ?+j�kh9 2+,-� , u� � �, (18) 

which is the same as the iterative equation given in Step 6 of Algorithm 1 except that ?+J�j�k and ?+J,-�j�k on both sides are replaced with the converged value, i.e., ?+j�k. Optimal 

control ?+j�k, u1 � þ and u� � �, can be calculated by solving the set of > nonlinear 

equations given by (18) for the > unknown elements of ?+j�k, without using the iteration 

given in Step 6 of Algorithm 1. However, there is no analytical solution to the set of 

nonlinear equations (18) in general. Therefore, one needs to resort to numerical methods 

for solving the set of equations. Theorem 1 proves that for any given smooth dynamics 
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and smooth basis functions, if the sampling time is small enough, the iterations given in 

Step 6 of Algorithm 1 converge to the solution to the nonlinear equation (18). However, 

if the sampling time is fixed, certain conditions on the dynamics or the cost function 

terms need to hold in order for the iterations to converge. These conditions can be easily 

derived from the proof of Theorem 1, i.e., from Eq. (17). 

In the solution to linear problems with quadratic cost function terms, a similar 

issue is observed. To observe this, one may consider optimal control equation (8). The 

cost-to-go function, for the linear problem, is assumed to be of form D+ � -E /+9�+/+ for 

some �+ � 56�6. Considering this assumption, optimal control equation (8) reads 

 ?+ � 0 -ETlL-�l9�+,-/+,- � 0 -ETlL-�l9�+,-	�i/+ ! �l?+�, (19) 

where the continuous problem given by /³	 � � �/	 � ! �?	 � and D � /� H�9Ë/� H� !P �/	 �9G/	 � ! ?	 �9T?	 ��cÊcÆ U  is discretized to /+,- � �i/+ ! �l?+ and D �/F9Ë/F ! I 	/+9Gl/+ ! ?+9Tl?+�FL-+MN . Similar to (18), unknown ?+ exists in both sides of 

equation (19). However, equation (19) is linear and the analytical solution can be 

calculated as  

 ?+ � 0	�Tl ! �l9�+,-�l�L-�l9�+,-�i/+.  (20) 

If solution (20) was not available, one could use the following iterations, starting with 

any initial guess ?+N, to find ?+ 

 ?+J,- � 0 -ETlL-�l9�+,-	�i/+ ! �l?+J � . (21) 

Following the idea presented in proof of Theorem 1, it is straightforward to show that 

(21) is a contraction mapping if the sampling time used for discretization of the original 

continuous-time linear problem is small enough. Hence ?+J  converges to the solution of 

(19). Another way of investigating the effect of the sampling time in the convergence of 

Eq. (21) is considering the evolution of ?+J  during the iterations as the evolution of the 

state vector of a discrete-time system versus time. In other words, one can look at Eq. 

(21) as a discrete-time system with the state vector at ‘time’ t being denotes with ?+J  and 

the constant control to the system being /+. Then Eq. (21) can be written as 
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 ?+J,- � �?+J ! �/+ (22) 

where the superscripts denote the ‘time’ index and  

 � 8 0-ETlL-�l9�+,-�l � 0-E y T�L-��9�+,-� (23) 

and � 8 0-ETlL-�l9�+,-�i. 
Selecting any bounded ?+N, the system given in (22) is stable for a bounded /+ and 

converges to a steady state ?+ as t < �, providing the eigenvalues of � are inside the 

unit circle around the origin [24]. Considering (23), it is straight forward to show that for 

any given T, �, �, G, and Ë, (where the last three matrices affect the equation through �+,-), selecting small enough sampling time y , the eigenvalues of � can be made 

arbitrarily close to the origin. Therefore, utilizing small enough sampling time, the 

eigenvalues of � can be brought into the unit circle and hence, the system can be made 

stable. This stability leads to the convergence of iterations given by (21). 

B. Global Optimality Analysis 

The objective is finding the ‘global’ optimal control, not a local optimum. Let the 

cost-to-go given the state /+, time 1, and the control ?+ at the current time and utilizing 

the optimal control for 1 ! � to . 0 � be denoted with D+	/+� ?+�. In other words,  

 D+	/+� ?+� � Gl	/+� ! ?+9Tl?+ ! D+,-V �Bi	/+� ! Ci	/+�?+�. (24) 

This cost-to-go should be differentiated from the ‘optimal’ cost-to-go, which is only a 

function of time and current state, as given in Eq. (5). In other words, D+V	/+� �W#XYZ�5	�D+	/+� ?+��. The global optimal control is given by ?+V � 
^_W#XYZ�5	�D+	/+� ?+�� 

� 
^_W#XYZ�5	 dGl	/+� ! ?+9Tl?+ ! D+,-V �Bi	/+� ! Ci	/+�?+�h 

 � 
^_W#XYZ�5	 d?+9Tl?+ ! D+,-V �Bi	/+� ! Ci	/+�?+�h� (25) 

As shown in the proof of Theorem 1, the optimal cost-to-go function D+,-V 	/+,-� 
is smooth versus /+,-,  therefore, the smoothness of D+	/+� ?+� with respect to ?+ follows 

from (24). If function D+	/+� ?+� is ‘convex’ in ?+, then its global optimum could be 
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found by comparing its value at its sole critical point as well as at the boundaries. 

Smoothness of the function and its unboundedness at the boundaries of 5= leads to the 

only candidate being the point at which the gradient vanishes. Therefore, if the function is 

convex, the global optimum is given by 

 �D+	/+� ?+���?+ � �  
  ?+V � 0 -ETlL-Ci	/+�9�ÓD+,-V� 	/+,-� (26) 

However, if the function is not convex, Eq. (26) which the Adaptive Critics are based on, 

can lead to a ‘local’ minimum. Considering (25), even though the first term subject to 

minimization is convex in ?+, the second term, i.e., D+,-V 	Bi	/+� ! Ci	/+�?+�, may not be 

convex in ?+. In other words, satisfying Eq. (26) is a ‘necessary’ condition for global 

optimality [16]. This fact leads to the problem that there might be more than one ?+ 

which satisfy (26). For example, the iteration given by (9) may converge to some ?+ 

which satisfies (26), but it is not the global optimum.  

Considering the result given in Theorem 1, this concern is addressed. Note that, 

once it is shown that (9) is a contraction mapping in Theorem 1, the ‘uniqueness’ of the 

converged value follows [21]. In other words, if (9) is a contraction mapping, there 

cannot be any other ?+ which satisfy (26), except the one which can be found using the 

iteration given by (9). This result might be unexpected because of claiming the global 

minimum without assuming convexity of D+,-V 	/+,-� � � or even assuming convexity of 

cost function terms G	� � or ©	� �. It should be noted that even if the cost-function terms 

are convex in their arguments, because of the arbitrary dynamics of the system, the cost-

to-go may not be convex in control. Interested reader are referred to Mangasarian 

Sufficient Condition Theorem [25] which requires the cost function terms as well as the 

dynamics functions to be convex in / and ?, and also requires that the resulting optimal 

costates being non-negative for the entire horizon, in order to conclude the ‘global’ 

optimality of the solution to the optimal control problem. As for ADP, the authors of [26] 

claim that the ADP is susceptible is getting stuck in local optimums. 

Note that we are interested in minimization of �	?+� 8 ?+9Tl?+ ! D+,-V 	Bi	/+� !Ci	/+�?+�. Theorem 2 proves that, providing a certain condition holds, function �	?+� is 

convex. Therefore, Eq. (26) gives the global optimal solution. For this theorem, the 

following Lemma is required. Before proceeding to the lemma, it should be noted that 
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function �; 5= < 5 is convex in convex space s~ if �YY	?� 8 �E�	?���?E ½ �, u? � s~. 

If �YY	?� ) �, u? � s~, then the function is called strictly convex. Moreover, if there 

exists some positive real number × such that �YY	?� ½ ×£, u? � s~, then the functions is 

called strongly convex, where the > �> identity matrix is denoted with £, cf. [27], and 

notations �YY	?� �� ½ � and �YY	?� �� ) �, respectively, mean that �YY	?� �� is positive 

semi-definite and positive-definite. 

Lemma 1: Define �	?� �� 8 �B-	?� ! BE	�?�, for twice differentiable functions B-; 5= < 5 and BE;5= < 5, where � is a positive real number. Assume B-	� � is a 

strongly convex function in a convex set s- containing the origin. Then, there exists 

some positive real number �N which for any � � 	�� �N� function �	/� �� is strictly 

convex with respect to / in any bounded and convex set sE � s-.  

Proof: Because of the twice differentiability of B-	� � and BE	� �, function �	?� �� is also 

twice differentiable with respect to ?. If there exists some �N which for every � � 	�� �N� 
one has �YY	?� �� ) � for every ? in a convex domain, then �	� � �� is strictly convex in 

that domain and the proof is complete [27]. One has 

 �YY	?� �� � �B-YY	?� ! �EBEYY	�?�.  (27) 

The strong convexity of B-	� � leads to the existence of some positive real number ×- such 

that 

 B-YY	?� 0 ×-£ ) �, u? � s-.  (28) 

On the other hand, BEYY	� � in any convex and bounded set sE � s- is bounded, because 

of the twice differentiability of BE	� �. Therefore, denoting the smallest eigenvalue with *	� �, there exists some positive real number ×E such that 

 W#XY�rÀ * dBE

	?�h ½ 0×E.  (29) 

Considering (28) and (29), there always exists some �N which for any � � 	�� �N� one has �YY	?� �� ) �, u? � sE. The reason is, because of the symmetricity of matrices B-

 and BE

 one has [28] 

 W#XY�rÀ *	�YY	?� ��� ½ �W#XY�rÀ * dB-

	?�h ! �E W#XY�rÀ *�BE

	�?��.   (30) 
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Inequality (28) leads to 

 W#XY�rÀ * dB-YY	?�h ) ×-.   (31) 

Using (29) and (31) in (30) leads to 

 W#XY�rÀ *	�YY	?� ��� ) �×- 0 �E×E.   (32) 

Therefore, selecting �N � ×-�×E, one has W#XY�rÀ *��YY	?� ��� ) �, if � � 	�� �N�. This 

shows that �YY	?� �� is positive definite, u? � sE, and u� � 	�� �N�� hence, proves the 

lemma. ¾ 

In order to better understand the result given in Lemma 1, the following example 

is helpful. 

Example 1: Let B-	?� � ?E and  

 BE	?� � ������?Þ ! �������?�� �������?E� �������?� ! ��. 

Fig. 1 depicts the shapes of functions B-	� � and BE	� �. As seen in the figure, B-	� � is a 

convex function, but, BE	� � is non-convex. Let �	?� �� 8 �B-	?� ! BE	�?�. Fig. 2 

presents the shape of the resulting �	?� �� for the three values of � � ��, �, and ���. This 

figure shows that as � becomes smaller, function �	?� �� changes toward becoming a 

convex function. For example, �	?� ��� is non-convex while �	?� ���� is a convex 

function. This behavior is compatible with the result given in Lemma 1. 

 

 
Fig. 1: Functions B-	?� and BE	?�. 
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Fig. 2: Function �	?� �� for � � ��, �, and ���. 

 

Theorem 2: There exists some sampling time y N for discretization of the original 

continuous problem, that selecting any sampling time smaller than that leads to the strict 

convexity of the cost-to-go function given in (24) with respect to the control in any 

bounded and convex subset of 5=.  

Proof: Rewriting �	?+� 8 -E ?+9Tl?+ ! D+,-V 	Bi	/+� ! Ci	/+�?+� in terms of the 

parameters given in the continuous-time problem (before discretization) one has 

 �	?+� y � 8 y ?+9T?+ ! D+,-V 	/+ ! y B	/+� ! y C	/+�?+�   (33) 

Defining B-	?+� 8 ?+9T?+ and BE	y ?+� 8 D+,-V 	/+ ! y B	/+� ! y C	/+�?+�, the 

strong convexity and twice differentiability of B-	� � follows from B-YZYZ	?+� � T ) �. 

The smoothness of D+,-V 	� �, derived in the proof of Theorem 1, leads to the twice 

differentiability of BE	� �. Comparing��	?+� y � defined in (33) with �	/� �� defined in 

Lemma 1, y  has the same role that � has in Lemma 1. Therefore, there exists some small 
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sampling time, which for any sampling time smaller than that, the cost-to-go is strictly 

convex with respect to the control in any selected bounded and convex subset of 5=.  ¾ 

While the focus in this study is on optimal control problems with finite-horizon, it 

can be seen that the result given in Theorem 2 holds for the use of ADP for infinite 

horizon problems as well. Therefore, the application of the optimality condition leads to 

global optimal control for such problems, also. 

In order to better understand the effect of sampling time in making the cost-to-go 

a convex function with respect to the control, the following example is helpful. In this 

example, terminal cost ©	� � is selected as a non-convex function, and the relation 

between the global minimum of ©	� � and that of the optimal control problem is 

investigated. 

Example 2: Let the fixed final time cost function with the horizon equal to y  be given by 

 D � ×©�/	y �� ! P ?	 �9?	 �|cN U  (34) 

for some positive real number ×. The discretized cost function will be  

 D � ×©	/-� ! y ?N9?N. (35) 

Assume the dynamics be given by the single integrator /³ � ? discretized to /- � /N !y ?N. For simplicity assume that /+ and ?+ are scalar. Let ×©	/� be the non-convex 

function plotted in Fig. 3.  

Let the selected initial condition be /N shown in the figure. As seen, the global 

minimum of ©	� � is at /V, while the selected /N is on a downslope toward a local 

minimum. Denote the cost-to-go of applying no control and staying at /N with DN. 

Assume that the optimal solution, with corresponding optimal cost-to-go of DV, leads to 

moving toward the left, i.e., toward the global minimum of ©	� �. The cost-to-go 

difference denoted with yD and defined as DV 0 DN, needs to be negative, otherwise DV is 

not optimal. However, looking at Fig. 3, it can be seen that unless /-, i.e., the terminal 

point, is on the left side of /i, yD will not be negative. The reason is, if /- is somewhere 

between /N and /i, then we have spent some control cost and have ended up at a place 

with more terminal cost compared to staying at /N and spending no control cost.  But, in 

order to end up at some point on the left side of /i, we need a control which satisfies 
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�?N� ) ��y , because of the selected dynamics, where � 8 �/N 0 /i�. In this case, the 

control cost will be y ?NE � 	��y �Ey . But, the best thing which can be done in terms of 

having less terminal cost is reaching point /V, with the reward equal to �, given in the 

figure. Therefore, in moving toward left one has 

 yD ) 	��y �Ey  0 � � �E�y  0 �. (36) 

As y  < �, regardless of how deep the global optimum is, i.e., how large 

parameter × in the cost function is, which results in large �, there always exists some y  
which for any sampling time smaller than that, one has yD ) �. Therefore, the global 

optimal solution to the cost function is not toward the left of /N.  

The global optimal solution is moving toward the right side of /N. The reason is, �©	/N���/N � 0U 4 �, for some positive U. By definition, if /- is selected close to /N, 

one has �©	/N���/N Ô 0�l��l. Therefore, �l Ô U�l. Denoting the cost-to-go of moving 

toward the right by D iV, the cost difference yD 8 DiV 0 DN has to be negative in order to 

move toward right, for example to the point denoted with /-. The control for this move is �l�y , and the control cost is  	�l�y �Ey  � �lE�y . Hence, yD � �lE�y  0 �l. Considering �l Ô U�l, one has  

 yD � �lE�y  0 U�l. (37) 

Looking at (37), regardless of how small y  is, there always exists some small �l for 

which one has yD 4 �. Such �l is given by �l 4 y U. Therefore, the global minimum of 

the optimal control problem is toward the right of point /N, despite the fact that the global 

minimum of the terminal cost term is to the left of /N. 
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control problem will be having /F � /V, as . < �. This result confirms that the global 

optimum of the optimal control problem coincides with the global optimum of the 

terminal cost term ©	� � once the number of time steps goes to infinity. 

The important fact which leads to this result, is the control cost being in a 

quadratic form, therefore, we can always select a larger number of time-steps in order to 

split the control and end up with less control cost. Note that a control equal to ?l leading 

to the control cost y ?lE, once split to . equal parts will have the control cost of .y 	?l�.�E �� y ?lE�.. Therefore, for a fixed y , as . < � the control cost vanishes. 

Finally, it should be noted that for the NNs trained based on Algorithm 1 to 

provide the global optimal solution, beside the global optimality of the input-target 

training pairs, another condition is also required. The condition is that the network 

training law needs to avoid getting stuck in local minimums, in learning the mapping 

between the input and the target. One way of fulfilling this requirement is using linear in 

the weight NNs, as in this study, and using the method of Least Squares (explained in the 

Appendix) for finding the weight. Note that lease squares problems are convex [27], 

hence, their solution is the global optimum. 

V. NON-CONVEX FUNCTION OPTIMIZATION 

One of the applications of the global optimality results given in this study is using 

ADP for finding the global optimum of smooth but possibly non-convex functions. In 

other words, the ‘optimal control’ tool can be used for ‘convex or non-convex function 

optimization’. Considering nonlinear programming based optimization methods [17,16], 

for optimizing function ©	/�, one selects an initial guess, denoted with /N, and uses the 

update rule 

 /+,- � /+ ! �?+,  (41) 

where � � 5���� is the update rate. Parameter ?+ is calculated based on the 

gradient/Hessian of the function subject to minimization at point /+ in gradient based 

methods of optimization. Update rule (41) should be repeated until the minimum is 

reached. It is well-known that nonlinear programming based methods are susceptible to 

getting stuck in local minima. Therefore, they are suitable for optimization of smooth 

convex functions, not for general smooth functions.  
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Looking at (41) it resembles the discretized version of single integrator dynamics /³ � ?, which is  

 /+,- � /+ ! y ?+.  (42) 

Selecting cost function 

 D � ×© d/� H�h ! P ?	 �9T?	 �cÊcÆ U , (43) 

which is discretized to 

 D � ×©	/F� ! y  I ?+9?+FL-+MN , (44) 

minimizing the cost function for large × results in approximately optimizing ©	� �. In 

other words, solving the optimal control problem defined by cost function (44) subject to 

dynamics (42) for large × ) � results in the (approximate) global minimum of function ©	� �, given by the state at the final time, i.e., /F. Therefore, the ADP method described 

earlier may be used for minimization of non-convex smooth functions.  

Remark 3: Even-though it is more intuitive to assume the terminal state penalizing term 

in the cost function being positive semi-definite in the ADP problems, they are not 

required to be so for the ADP to provide the optimal solution. Hence, in the development 

in this section, no assumption on positive semi-definiteness of function ©	� � is made.  

The simplicity of the dynamics given in (42) and the lack of presence of state 

penalizing term G	/� in cost function (44) provide an interesting feature for the optimal 

control problem. Defining the costate vector *+ 8 ÓD+V�	/+�, the costate equation, 

resulting from taking the derivative of the cost-to-go recursive equation given by (6) and 

(7) with respect to /, is  

 *F � �©	/F���/F,  (45) 

 *+ � �Gl	/+���/+ ! �+9*+,-,  1 � þ, (46) 

where �+ 8 �/+,-��/+. The optimal control will then be given by 

 ?+V � 0 -ETlL-Ci	/+�9*+,-,  1 � þ. (47) 

Considering dynamics (42) and cost function (44) for the problem at hand, the costate 

equation simplifies to 
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 *+ � * � �©	/F���/F,  u1 � þ � �.�, (48) 

in other words, the costate vector will be a constant vector. Therefore, once the optimal 

costate vector is found, the optimal control also will be constant and given by ?+V � ?V �0*. This results in considerable computational simplicity, because, the approximate 

global minimum /F, can then be simply calculated as  

 /F � /N 0 .y *.  (49) 

Note that, at the global minimum of a smooth function whose minimum is not at 

the boundaries of its domain, the gradient has to be zero. Therefore, if the global 

minimum is given by /F, it is needed to have �©	/F���/F � �. Considering (48), this 

condition leads to * � �, and therefore ?V � � and /F � /N, which is of course not the 

desired solution. Solving the defined optimal control problem will not give the solution of ?V � �, because it obviously does not optimize the selected cost function, unless the 

selected initial condition /N coincides with the global optimum of ©	� �. In general, the 

optimal control solution gives a non-zero control, which means that * � �©	/F���/F º�. Therefore, this method will not give the exact global optimum of ©	� �, however, it will 

provide an approximation of the global optimum. The reason is, looking at (49) 

parameter . is a design parameter. Selecting a fixed and finite initial condition /N, the 

method will provide a finite /F, otherwise the solution is not the optimal solution to the 

control problem. However, . can be selected arbitrarily large. Therefore, the following 

property holds 

 z#WF<� * � �.  (50) 

In other words, as the number of time steps, denoted with . grows for a given sampling 

time y , the optimal costate vector * has to converge to zero, in order to cancel the effect 

of the growth of . and to lead to a finite /F. The global optimality of the ADP result 

along with the property given in (50) show that if the number of time steps goes to 

infinity, /F will converge to a point which has two features: 1) it globally optimizes the 

selected cost function, 2) function ©	� � at this point has the slope of zero, that is �©	/���/ � �. Selecting large × ) �, the only point which has these two features is the global 

optimum of ©	� �. 
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Once the optimal control problem is solved, looking at the value of * provides us 

with an insight into ‘how optimal the result will be’. As discussed above, as * goes to 

zero, the result will be closer to the global minimum of ©	� �. It should be noted that this 

method is not limited to the case of one-dimensional /, and can be used for / � 56, i.e., 

optimizing multi-variable functions. However, it is applicable to the problems which the 

global optimum is finite and an estimate of the domain of interest, containing the global 

optimum exists, in order to be used in Algorithm 1 for training the networks. 

Further analyzing the property of constant costate vector, given in Eq. (48), 

provides some interesting result given in Theorem 3.  

Theorem 3: The optimal cost-to-go function D+V�	/�, u1 � þ, resulting from minimizing 

cost function (44) subject to dynamics (42) is a strongly convex function with respect to / in the domain of interest. More specifically, D+V�	/� is a paraboloid with a unique 

minimum. 

Proof: Considering (49) and the fact that * � ÓD+V�	/�, u1, one has 

 ÓD+V�	/� � 	/ 0 /F��	.y �� u1 � þ, u/ � s.  (51) 

Calculating the gradient of (51) leads to the Hessian of D+V	� �  
 D+Vbb	/� � ��	.y �£ ) �� u1 � þ, u/ � s.  (52) 

The abovementioned relations proves that D+V	� � is strongly convex in s [27]. Eq. (51) 

provides the shape of function D+V�	� �. It says that function D+V�	� � is such that its gradient at 

each point / is proportional to the distance between / and /F. Also, it says that the 

function has a unique point with zero gradient located at /F. Such a function is a 

paraboloid centered at /F. It can also be observed by integrating Eq. (51). From the 

convexity of D+V�	/� it follows that the paraboloid opens upward, i.e., point /F is its 

‘minimum’. ¾ 

Note that the convexity result given in Theorem 3, for the problem defined in this 

section, does not assume any condition on the size of the selected sampling time, despite 

the result given in Theorem 2. However, in order to use the ADP based algorithm 

discussed in this study for solving the problem, the condition of small enough sampling 

time is required to guarantee the convergence of the algorithm (Theorem 1). 
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VI. NUMERICAL ANALYSIS 

In order to numerically analyze the global optimality of ADP scheme and its use 

in static minimization, a simple way is selecting a cost function with a non-convex 

terminal cost term and evaluating the performance of the ADP in providing the global 

optimum. To this end, two separate examples are selected; a single variable example and 

a multi-variable benchmark example, namely Rosenbrock/Banana function. 

A. Optimizing a Single Variable Function 

The function subject to minimization is a single variable non-convex function 

which has a local minimum as well as a global minimum. The function is ©	/� � ������/Þ ! �������/�� �������/E� �������/� ! ��. 

The function is plotted in Fig. 4. The global minimum is at / � ��Ú�, while the local 

minimum is at / � 0����.  The cost function given in Eq. (43) and discretized to (44) is 

selected with × � ���, in order to put a heavy weight on minimization of ©	� � as 

opposed to the control cost. The selected dynamics is of form (42) and the sampling time 

is selected as y  � ������, where  N � � and  H � � �, therefore, . � ��Þ. 

The basis functions are selected as polynomials given below :	/� � j�� /� /E� � � /�k, Ï	/� � j�� /� /E� � � /�k. 
The least squares, as explained in the Appendix, is carried out over 100 points from the 

domain of interest selected as 0� 3 / 3 �. Fig. 5 shows the history of the converged 

weights of the critic network. Once the training is done, the approximated optimal cost-

to-go function DN� 	/� is given by the critic network as 

DN� 	/� � 2N9:	/� � 0����Ú � ��L-N/� 0 ����� � ��L�/� 0 ��Ü�� � ��L�/¸ 0����� � ��L¸/Þ 0 ����� � ��LÞ/� ! ������/E 0 �Ú����/ ! �����. 

Neglecting terms with coefficients of order ��L¸ and less, the approximated DN� 	/� is a 

parabola, which confirms the results given in Theorem 3. This result can also be observed 

through looking at the shape of DN� 	/� as plotted versus / in Fig. 6, without neglecting any 

term. The roots of the derivative of DN� 	/� turned out to be 0.6905, 71.223, 

19.681·78.812�, -71.211·45.904�, where � 8 ó0�. Neglecting the roots which are out 

of the problem domain and the imaginary roots, the remained root is 0.6905. Hence, the 

minimum of DN� 	/� is very close to the global optimum of ©	/�, as expected. 
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Fig. 4: Function subject to minimization, ©	/� versus /. 

 

 
Fig. 5: Weight of the critic network versus time. 

 

 
Fig. 6: Optimal cost-to-go versus /. 

 
Five different initial conditions /N � �0��0�������� are selected and each one is 

separately simulated using the dynamics given in Eq. (42), where the control is provided 

by the actor network. The resulting state and control histories are presented in Figs. 7 and 

8, respectively. As seen in Fig. 7, the ADP scheme has resulted in /F Ô ����� for 

different initial conditions, which is very close to the global optimum of ©	/�, that is ��Ú�. It should be noted that some of the initial conditions are selected to be on the left 
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side of the local minimum of ©	/�. It shows that the method does not go towards the 

local minimum. The controller, for such initial conditions, has passed the local minimum 

and has reached to the proximity of the global minimum. 

Considering the applied control histories given in Fig. 8, the controls have been 

constant in the majority of the time as expected based on Eq. (48). However, some 

anomalies are observed at the end of the horizon, which could be due to the numerical 

errors of using NNs with finite number of basis functions. Instead of propagating the 

initial conditions /Ns to the terminal points /F using the dynamics given in (42), one can 

use the relation given in (49) to fine /F in one shot. Doing so for the selected five initial 

conditions leads to the terminal points /F varying between ��Ú�Ü and ����� which still 

are very close to the global optimum. 

 

 
Fig. 7: State histories for different initial conditions /N � �0��0�������� 

 

 
Fig. 8: Control histories for different initial conditions /N � �0��0�������� 
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horizon remains optimal for the shorter horizons as well. Let the shorter horizon be  H � ��� s. Note that having the optimal control for   � j����, the optimal control for the 

horizon of   � j������ is given by utilizing the network weights corresponding to the last ��� s of the original horizon. In other words, if 2N to 2-NNNN give the optimal critic 

weighs for   � j����, then, 2¸NNN to 2-NNNN give the optimal weighs for   � j������. 
Simulating the same five initial conditions using the shorter horizon of  H � ��� s leads to 

the state and control histories given in Figs. 9 and 10, respectively. The resulting terminal 

points are still �����, close to the global optimum of ©	/�. Comparing the applied 

control histories given in Fig. 10 for the shorter horizon,  H � ��� s, with the applied 

control histories resulted from the longer horizon of  H � � s, given in Fig. 8, it can be 

observed that the actor has smartly applied almost twice larger controls in order to get to 

point /F in half the time that the controls given in Fig. 8 were applied. 

The plot of the optimal cost-to-go function, for the time-to-go of ��� s, which is 

given by 2¸NNN9 :	/�, is supper-imposed on the plot of the same function for the time-to-

go of � s, which is given by 2N9:	/�, in Fig. 11. The minimum of the new parabola has 

slightly moved, from ��Ú�� in  H � � s case to ��Ú�� in  H � ��� s case. This observation 

is compatible with the theoretical result given in section V, i.e., as . becomes larger, the 

results get closer to the global minimum of ©	� �. Considering the mathematical formula 

for the new cost-to-go function, given below, shows that the new parabola has almost 

twice the slope that the previous parabola had, in order to generate twice larger controls 

for the shorter horizon. 

2¸NNN9 :	/� Ô ������/E 0 ����ÜÚ/ ! �������, for  H � ��� s. 

 
Fig. 9: State histories for different initial conditions /N � �0��0��������, with  H � ���. 
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Fig. 10: Control histories for different initial conditions /N � �0��0��������, with  H � ���. 

 

 
Fig. 11: Optimal cost-to-go versus /, for different  Hs. 

 
It is noteworthy that as discussed in Example 1 in section IV, if the horizon is 
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global optimum of ©	� �. This is showed in Fig. 12, where, the very short horizon of  H � ���� s with the sampling time used before, is utilized for propagating the five initial 

conditions. As seen in this figure, some of the initial conditions are led to the proximity 

of the global minimum of ©	� �, while, some other are absorbed by the local minimum of 

the function at / � 0����. Re-training the network for the short horizon of  H � ���� s 

but with smaller sampling time is seen to solve this issue and present the same behavior 

observed in Figs. 7 and 9. 
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Fig. 12: State histories for different initial conditions /N � �0��0��������, with  H �����. 

 
B. Optimizing a Multi-variable Function  

For the second example, a benchmark optimization problem is selected, namely, 

the Rosenbrock (Banana) function [29]. ©	p� q� � 	� 0 p�E ! 	q 0 pE�E 

The Rosenbrock function is a non-convex function with two independent variables (See 

Fig. 13). It has a global minimum at 	p� q� � 	����. Defining the state vector as / 8jp� qk9, the ADP scheme is utilized for solving the optimal control problem with the cost 

function given in (44) and the discretized dynamics (42). The design parameters are 
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where the higher order terms with the coefficient less than ��L¸ are skipped. Function DN� 	p� q�, without neglecting the higher order terms, is plotted in Fig. 14. Finding the roots 
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root of 	p� q� � 	���ÜÜ�����Ü�. It is seen that the sole minimum of the cost-to-go 

function is very close to the global minimum of the Rosenbrock function. 

In order to analyze the performance of the developed method in global 

minimization of the cost function, 25 different initial conditions /N � �0��0�������� ��0��0�������� are selected and separately simulated using the controls provided by the 

actor network. The resulting state trajectories are presented in Fig. 15. In this figure, the 

level curves of the Rosenbrock function are also plotted. It can be seen, that each one of 

the initial conditions has been directly led toward the global minimum, regardless of the 

orientation of the level curves at the points. This behavior shows the advantage of the 

method over, for example, steepest descent method, in which, the states move in the 

direction that is perpendicular to the local level curves [17,16].  

The state trajectories are super-imposed on the level curves of the optimal cost-to-

go function DN� 	/N� in Fig. 16. In this figure, however, one can see that the directions of 

movement of the trajectories are (almost) perpendicular to the local level curves of the 

cost-to-go function. This shows the analogy between the developed method and the 

steepest descent method, with the difference that the ADP algorithm follows the gradient 

of the cost-to-go function, not that of ©	� �. It should be noted that each ?+, for different 1s, will be selected to be perpendicular to the level curves of the respective D+� 	� �, while, 

only those of DN� 	� � are plotted in Fig. 16. However, the level sets of the rest of D+� 	� �s also 

were observed to have the same shape, i.e., circles/ellipses centered at a point close to the 

global minimum point of ©	� �, as expected based on Theorem 3. 

VII. CONCLUSIONS 

The performance of approximate dynamic programming in finding the global 

optimal solution to the fixed-final-time control problem was investigated. A sufficient 

condition for global optimality of the result, regardless of the convexity or non-convexity 

of the functions representing the dynamics of the system or the state penalizing terms in 

the cost function, was derived. Moreover, an idea was presented in converting a static 

function optimization to an optimal control problem and using ADP for approximating 

the global minimum of the selected convex or non-convex function. Numerical results 

showed that the proposed method results in a trajectory which directly goes to the 

proximity of the global minimum, regardless of the shape of the local level curves. This 
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is a promising feature which differentiates the method from many nonlinear 

programming based optimization methods. 

 

 
Fig. 13: Rosenbrock function subject to minimization versus the inputs p and q. 

 

 
Fig. 14: Optimal cost-to-go versus p and q.  
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Fig. 15: Level curves of the Rosenbrock function and state trajectories for different initial 

conditions /N � �0��0�������� � �0��0��������. The red plus signs denote the initial 
point of the respective trajectory. 

 

 
Fig. 16: Level curves of the optimal cost-to-go and state trajectories for different initial 
conditions /N � �0��0�������� � �0��0��������. The red plus signs denote the initial 

point of the respective trajectory. 
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APPENDIX 

In Steps 2, 9, and 10 of Algorithm 1, the least squares method can be used for 

calculating Î+ and 2+. For example, considering Step 9 of the algorithm, the objective is 

finding Î+ such that it solves 

 

áâã
âäÎ+v9Ï d/+j-kh � ?+j-kÎ+v9Ï d/+jEkh � ?+jEkåÎ+v9Ï d/+jßkh � ?+jßk

. (53) 

Define 

 � 8 �Ï d/+j-kh ���Ï d/+jEkh��� ���Ï d/+jßkh�,  

 � 8 �?+j-k���?+jEk ������?+jßk�.  

Using the method of least squares, the solution to system of linear equations (53) is given 

by  

 Î+ � 	��9�L-��9 (54) 

Note that for the inverse of matrix�	��9�, which is a x � x matrix, to exist, one needs the 

basis functions Ï	� � to be linearly independent and ß to be greater than or equal to the 

number of the basis functions. 
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4. OPTIMAL MULTI-THERAPEUTIC HIV TREATMENT USING A GLOBAL 
OPTIMAL SWITCHING SCHEME  

Ali Heydari and S. N. Balakrishnan 

ABSTRACT 

The problem of multi-therapeutic HIV treatment is posed in this study as a 

switching problem to find the optimal switching time between the different therapies. To 

solve the optimal switching problem with nonlinear subsystems an algorithm is 

developed for learning the cost-to-go as a function versus different switching times and 

different initial conditions. Once the function is obtained in a closed form, finding 

optimal switching time for every given initial condition reduces to a function 

optimization. Through numerical simulations of a model for the HIV problem, the 

proposed algorithm is shown to be a useful tool for solving this class of problems. 

I. INTRODUCTION 

Modeling and control of HIV infection has been investigated by different 

researchers and several models have been developed in the literature for describing the 

progress of the HIV disease [1-8]. Optimal control methods have been shown in 

numerical simulations to offer promising treatment for HIV [9-14]. There are different 

therapies for HIV infection, but it is known that switching therapeutic options are useful 

for better control of the HIV progress [14,15] due to certain factors including the existing 

mutations between the viral strain types and their vulnerabilities toward each specific 

therapy. References [10-13] investigated optimal control of HIV with a single therapy, 

with the view of controlling the dosage/efficiency of the medicine in order to optimize 

the performance index. In [14] however, different therapies were considered but with 

fixed medicine dosages. The problem was defined as finding the optimal switching time 

between the therapies. By assuming different therapies, the evolution of the disease under 

each therapy, modeled by a scalar linear model for each viral strain type, was considered 

as a mode. Afterward, the optimal time for switching between the modes, to have the best 

result at the end of a specified time period, was sought. Hence, the problem reduced to 

formulating a scheme to find optimal switching time for a switching system.  

Switching systems, appearing in different fields [14,16-20], are comprised of 

subsystems with different dynamics one of which is active at each time instant. Hence, 
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controlling these processes involves not only applying a proper control to the system, but 

also involves decision making to determine when to switch and what mode to switch to. 

Note that if a fixed mode sequence is assumed, the main problem is to find optimal 

switching instants, and once they are found, the problem reduces to a conventional 

optimal control problem to find the control. 

The developed methods for solving switching problems can be classified into two 

categories; in the first category, through different schemes the gradient of the cost with 

respect to the switching instants are calculated and used in a nonlinear programming 

method to find the local optimal switching times/points [21-28]. In many of these 

developments the sequence of active subsystems, called mode sequence, is selected a 

priori [21-27], and the problem is finding the switching instants between the modes. A 

depth search was done in [28] after freezing the first and last subsystems, to find the 

entire possible mode sequences and for every such sequence, the optimal switching 

instants are calculated using nonlinear programming. Using the iterative solution to the 

nonlinear optimization problem along with ideas from model predictive control, the 

authors of [25] developed the so-called crawling window optimal control scheme for the 

optimal switching problem. 

The second category includes studies that discretize the switching problem to deal 

with a finite number of options. An optimization scheme was developed in [14] to find 

the optimal mode sequence and switching time for positive linear systems with a pre-

fixed initial condition. Some remedies were suggested to decrease the computational load 

of the proposed algorithm which grows exponentially with the growth of the number of 

time steps and the number of modes. Authors of [29] utilized a direct search to evaluate 

the cost function for different randomly selected switching time sequences. In [30] the 

discretization of the state and input spaces was used for calculation of the value function 

for optimal switching through dynamic programming. As for the intelligent methods to 

the problem, genetic algorithm and neural networks were used in [31] and [32], 

respectively, to find the optimal switching for a preselected initial condition. 

All the cited methods require a large amount of computations to numerically find 

the optimal switching time for an a priori selected initial condition; each time the initial 

condition is changed, a new set of computations needs to be performed to find the 
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corresponding optimal switching instants. In [24] the switching parameter was found as 

the local optimum in the sense that it minimizes the worst possible cost for all trajectories 

starting in the selected set of initial states, in order to extend the validity of the results for 

different initial conditions within a pre-selected set. Also, the derivative of the switching 

parameters with respect to the initial conditions was sought through sensitivity analysis.  

If the function giving the optimal performance index for every given switching 

time sequence is known explicitly, then the problem simplifies to optimization of the 

function with respect to the switching instants. However, even for the general linear 

subsystems with a quadratic cost function, this function is not available [22,33].  

The main contribution of this paper is presenting an algorithm by considering the 

optimal HIV treatment problem as a forced switching system with autonomous 

subsystem dynamics and learning the performance index as a function of current state 

and the switching instants, i.e., the desired function. Forced switching systems are those 

in which the switching between the modes is directly controlled and dictated. For existing 

methods on optimal switching of systems with autonomous subsystem dynamics, one 

may refer to [14,23-25]. The approach formulated in this paper is motivated by studies in 

intelligent control as in [34-36]. This method involves training a neural network (NN) to 

learn the nonlinear mapping between the optimal cost-to-go and the switching instants. 

Once this function is learned, finding the optimal switching times simplifies to 

minimization of an analytical function. As compared to available methods in the 

literature for the HIV treatment and generally for switching systems, the proposed 

technique has two advantages. They are: 1) the method developed in this paper gives 

global optimal switching instants versus local ones resulting from nonlinear 

programming based methods, 2) the learned function provides the optimal cost based on 

the switching instants for a vast domain of initial conditions. Therefore, optimal 

switching times for different initial conditions can be easily calculated using the same 

trained NN. This means that switching instants for HIV therapies with different modes is 

provided for a vast number of initial states through our method. 

The rest of this paper is organized as follows: Modeling and formulation of the 

HIV treatment problem are given in section II, the switching problem in the general form 

is detailed in section III and the proposed solution is described in section IV. An example 
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HIV infection control problem is solved in section V and the optimal switching scheme is 

applied for finding the optimal drug prescription. Conclusions are presented in section 

VI. 

II. MODELING AND FORMULATION OF THE HIV TREATMENT PROBLEM 

Any model used for describing the evolution of the HIV infection [4-8] and 

control of the disease should at least incorporate three variables [12]; they are the number 

of uninfected target cells (CD4+ T cells), denoted with Í, the number of target cells 

infected by the virus OJ, denoted with ÍJ, and the population of OJ, denoted with ÎJ. The 

subscript t corresponds to the viral strain type.  In this study, two viral strains, denoted 

with O- and OE, are considered, hence, t � �����. In other words, the case of co-infection 

by different viral strain types is considered. Different therapies will have different 

effectiveness in controlling each strain. Moreover, due to the mutative nature of the 

strains, each strain can generate the other strain by mutation. 

The model given in [8,12] which is the multi-virion type version of the ones in 

[4,6] is adapted here.  

Í³ � � 0 U9Í 0 �-Î-Í 0 �EÎEÍ 

Í³- � 	� 0 »-��-Î-Í ! »E�EÎEÍ 0 �Í- 

 Í³E � 	� 0 »E��EÎEÍ ! »-�-Î-Í 0 �ÍE (1) 

Î³- � x-�Í- 0 ×Î- 

Î³E � xE�ÍE 0 ×ÎE 

where the constants used in the model are defined in Table 1. The listed values in the 

table are in the range given in [7,8]. 

Assuming two different therapies for the HIV infection, following [14], different 

viral production rate are assumed under different therapies. Indexing the therapies by � 

and �, the selected values for the parameters are 

x-� � ��U�øL-,  x-� � ��U�øL-,  xE� � ��U�øL-,  xE� � ��U�øL-. 

hence, therapy � performs better in controlling virion OE while therapy � is better for 

control of O-. Considering the definition of each parameter used in the model (1), it is 
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straight forward to see the effect of each term on the right hand side of the differential 

equations given in the model for different states. For example, the infection of the 

healthy/uninfected target cells by each virus is proportional to the infection rate constant �J, the total number of uninfected cells denoted with Í and the concentration of the 

respective virus, denoted with ÎJ. Hence, the terms 0�-Î-Í and 0�EÎEÍ are listed in the 

right hand side of the differential equation for Í³ , corresponding to the reduction of Í due 

to the infection of healthy cells by O- and OE, respectively.  

As seen in (1), the dynamics are autonomous with two modes corresponding to 

the evolution of the disease under the two therapies. The problem is defined as finding 

the optimal time for switching between the autonomous modes to have the highest 

number of uninfected target cells at the end of a specified time period. In the next section, 

the problem is posed as an optimal switching problem with autonomous subsystems and 

in the subsequent section, the solution method is developed. 

III. GENERAL PROBLEM FORMULATION 

A switched autonomous system can be represented by the set of µ subsystems 

 /³	 � � BJ�/	 �� (2) 

where BJ;56 < 56, t � £ 8 ��� �� � �µ�, and 7 denotes the dimension of the state vector /	 �. Optimal solution is defined as designing a switching sequence that allows the 

operation of the system, from the initial time  N to the final time  H, i.e.,   � j N�  Hk, to 

switch between different subsystems such that the performance index, defined as the cost 

or revenue, given below is optimized.  

 D � © d/� H�h ! P G�/	 ��cÊcÆ U  (3) 

Table 1: The parameters of the HIV model. 

Constant Description Value � Production rate of healthy cells. ���>>L�U�øL- U9 Death rate of healthy cells. �����U�øL- �J Rate of infection of healthy cells by virion OJ, t � �����. � � ��L¸�>>L�U�øL- 

»J Rate of mutation of virion OJ to Ov, t� w � ������ t º w. � � ��LÞ � Death rate of infected cells. �����U�øL- xJv Production rate of virion t under therapy w, w � ��� ��. In the range 1 to 2 U�øL- × Death rate of virus. �����U�øL- 
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Convex functions G;56 < 5 and ©;56 < 5 correspond to the cost during the time 

period and at the end, respectively. A switching sequence in time interval j N�  Hk can be 

defined as [22] 

 � � �	 N� tN�� 	 -� t-�� � � 	 �� t���   

where  N 3  - 3 � 3  � 3  H, � 3 þ 4 � and t+ � £, for 1 � ���� � � þ. In this 

notation, 	 +� t+� means that the system switches from subsystem t+L- to t+ at time  +. 

Following [21-27], the order of the active subsystems is frozen, i.e., mode sequence, in 

this study and therefore, the problem is to find optimal switching times. Since the mode 

sequence is pre-selected, the unknowns in this problem will be the switching time 

sequence given by  

 � � 	 N�  -�  E� � �  ��   

where  N 3  - 3 � 3  � 3  H, and integer þ denotes the number of switching, � 3 þ 4�.  

IV. COST-TO-GO FUNCTION APPROXIMATION  

In this section, two algorithms are proposed for learning the performance index, 

or cost-to-go of the system for a given switching sequence and different initial conditions. 

A NN is trained using the proposed algorithm as a universal function approximator. 

A. Cost-to-go Approximation for a Conventional Problem 

Assumption of a pre-selected switching time sequence reduces the switching 

system to a conventional time-varying system where different modes are active at 

different fixed switching times. The developed algorithm is motivated by the notion of 

adaptive critics (AC) developments in implementation of Heuristic Dynamic 

Programming (HDP) [35], where the critic network learns the cost-to-go and the actor 

learns the optimal control. In this study the actor is skipped, and the critic is utilized to 

learn the cost-to-go at each time step 1, and state vector /+ for the nonlinear time-varying 

system. Discretizing the system in (2) by selecting a sampling time y  results in discrete-

time dynamics of the subsystems 

 /+,- � BiJ	/+�����1 � �� �� �� � � .� t � £   
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where . � 	 H 0  N��y ��, /+ � /	1y  !  N�, and BiJ	/+� 8 / ! y BJ	/� if Euler 

integration is used. The discretized cost (or revenue) function is given by  

 D � ©	/F� ! I Gl	/+�FL-+MN  (4) 

where Gl	/+� 8 y G	/�. Note that the cost-to-go, defined as the cost incurred by the 

propagation of the states from current time to the final time, at each time step 1 depends 

on the current state /+ and the time-to-go . 0 1, i.e.,  

 D+	/+� � ©	/F� ! I Gl	/J�FL-JM+  (5) 

Selecting a linear in the parameter NN as the function approximator, the expressions for 

the critic (cost-to-go approximator), can be written as 

 D+	/+� � 2+9:	/+��   1 � ���� � �.  

Vector 2+ � 5= is the unknown weights of the network at time step 1, and the basis 

functions are given by :;56 < 5= for > being a positive integer denoting the number 

of neurons.  

Considering cost function (5), it can be seen that the cost-to-go satisfies the 

following recurrence relation  

 DF	/F� � ©	/F��  D+� 	/+� � Gl	/+� �! D+,-� 	/+,-��  1 � ���� � �. 0 � (6) 

which will be used for learning the cost-to-go. The training process may be detailed 

through Algorithm 1.  

Algorithm 1 

Step 1: Train the network weight 2F�  such that  

 2F9:	/+� � ©	/+�   (7) 

for different /+ �   where   denotes the domain of interest. 

Step 2: Set 1 � . 0 �. 

Step 3: Randomly select state vector /+ �  . 

Step 4: Set /+,- � Biv	/+� (where w denotes the index of the active subsystem at time 1 

based on the pre-selected switching time sequence.) 

Step 5: Train the network weight 2+�  such that  
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 2+9:	/+� � Gl	/+� !2+,-�9 : dBiv	/+�h  (8) 

Step 6: Repeat steps 3 to 5 until 2+ converges for different random /+ �  . 

Step 7: Set 1 � 1 0 � and go to Step 3, until 1 � �. 

 

As for the NN training method, in steps 1 and 5 of Algorithm 1, one may use the 

least squares for finding the unknown 2+ in one shot, i.e., in the Batch training scheme. 

Appendix A discusses this process. 

 

Remark 1: The only requirement for ending up with the cost-to-go estimator of the 

switching system with frozen switching times is utilizing the respective active subsystem 

at each time index 1 in the process of propagation of /+ to /+,-, in order to be used in the 

weight update equation of 2+. 

B. Cost-to-go Approximation for the Switching Problem 

As seen in the previous subsection, using a fixed switching time sequence, the 

cost-to-go function can be found using Algorithm 1. In this subsection, the network 

structure and the training algorithm is modified to find the optimal switching times. This 

process is described in the next paragraph and the resulting algorithm is presented 

subsequently. 

In order to find the optimal switching times, the critic network is trained to 

approximate the cost-to-go (or revenue) for every given switching time sequences. 

Denoting the cost-to-go for a set of initial conditions /N and a switching time sequence � 

as DN	/N� ��, for different �s and different /Ns function DN	/N� �� is learned. Since the 

mapping functions are selected to be analytical, finding the optimal � for a given /N 

simplifies to finding the minimum of DN	/N� �� with respect to �. For example, if the 

problem involves only one switch, then the only unknown of the optimal switching 

sequence � � 	 N�  -� is  -, and finding it is as simple as calculating the roots of the 

derivative of DN	/N� �� with respect to  - and comparing the value of DN	/N� �� at those 

roots along with the value at the boundary points to find the global optimum. As 

mentioned earlier, even for linear systems with a quadratic cost function, function DN	/N� �� is not known in a closed form, i.e., with respect to /N and � [22,33]. 
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Here, Algorithm 1 is modified to learn DN	/N� ��. For this purpose, the following 

modified network structure is proposed: 

 D+	/+� �� � 2+9:	/+� ��   1 � ���� � �.  

The inputs to the NN are selected as the current state and the given switching time 

sequence on which the cost-to-go is dependent. In order to accommodate the extra input, 

the new basis function is :;56 � 5� < 5=, where, the switching time sequence � is 

considered as a þ-vector j -�  E� � �  �k9. By using this structure for the critic network 

along with the recurrence relation (6), Algorithm 2 gives the training process to find 2+, u1. 

Algorithm 2 

Step 1: Using least squares find 2F�  such that  

 2F9:	/+� �� � ©	/+�   (9) 

for different random /+ �   and different random switching time sequences. 

Step 2: Set 1 � . 0 �. 

Step 3: Randomly select both state vector /+ �   and switching time sequence �. 

Step 4: Set /+,- � Biv	/+� (where w denotes the index of the active subsystem at time 1 

based on the selected switching time sequence � in Step 3.) 

Step 5: Using least squares find 2+�  such that 

 2+9:	/+� �� � Gl	/+� !2+,-9 :�Biv	/+�� ��  (10) 

Step 6: Repeat steps 3 to 5 until 2+ converges for different random /+ �   and 

switching time sequences. 

Step 7: Set 1 � 1 0 � and go to Step 3, until 1 � �. 

 

Remark 2: Comparing Algorithm 2 with Algorithm 1, it can be observed that the only 

modification is selecting different random �s at each iteration and selecting the state 

equation for propagation of /+ to /+,- based on the currently selected �. 

 

Remark 3: As compared to the cited methods in the introduction, the advantages of the 

method presented here are twofold: 1) global optimal switching time sequence is obtained 
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rather than local ones given by [21-28], 2) the network provides the optimal switching 

times for every other initial conditions as well while studies [14, 21-32] calculate optimal 

solutions for only one pre-selected initial condition. 

C. A Transformation for the Switching Problem 

At the switching instants between the subsystems, the weight history 2+ may not 

be smooth. In order to facilitate this issue with the selected controller design, a 

transformation as used in [22] for a different purpose, is carried out. To motivate the 

basic idea, let us assume that the number of subsystems is two with one switching instant 

at  -. Define a new independent variable  ! � j���k as 

     � " N ! 	 - 0  N� !��������������tB�� 3  ! 4 � - ! � H 0  -�	 ! 0 �����tB�� 3  ! 3 �  

one has   �  N if  ! � �,   �  - if  ! � �, and   �  H if  ! � �. Using the new independent 

variable  !, the state equations given in (2) can be expressed as 

 /#	 !� � 	 - 0  N�B-�/	 !��  

 /#	 !� � 	 H 0  -�BE�/	 !��  

where /# denotes the derivative of / with respect to  !. The performance index (3) 

converts to 

 D � ©�/	��� ! 	 - 0  N� P G�/	 !��-N U ! ! 	 H 0  -� P G�/	 !��E- U ! (11) 

As can be seen, the benefit of the transformed time is the fact that the switching 

always happens at a fixed transformed time of  ! � �. Note that the actual switching time 

is still free and given by  -. This feature gives Algorithm 2 the capability of generating a 

desired form in the history of the weights at the time instant of  ! � � to account for the 

subsystem switching at   �  -. It should be noted that the transformation of the 

independent variable does not incur any change in the main problem, i.e., the solutions to 

the transformed problem and the original problem are identical. 

For problems having more switches or more subsystems, e.g., number of 

switching equal to þ, this solution can be extended where  ! � j���þ ! �k and the switches 

happen at  ! � ������ � � þ. For implementation of Algorithm 2, after performing this time 
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transformation, one needs to discretize the transformed performance index given in (11) 

and compare it with the general form of the performance index given in (4), in order to 

find the state penalizing term Gl	/+� for use in Algorithm 2.  

V. NUMERICAL ANALYSIS 

In this section, the proposed method for solving optimal switching problem of 

autonomous systems is applied to the HIV treatment problem defined in Section II, i.e., 

optimal switching between the therapies to have the highest number of uninfected cells at 

the end of an specific time period. The time period considered in this paper is three 

months and it is assumed that in the beginning of the period, the disease 

condition/progression is monitored at a clinical visit and an optimal prescription in the 

sense of optimal drug switching is to be prescribed for the next ninety days. Without loss 

of generality, assume that the drugs are supposed to switch not more than once. Later, the 

extension of the method for the cases of more than one switching will be discussed. 

Moreover, the sequence of the therapies, i.e., the mode sequence, is assumed to be given. 

A. Utilizing the Optimal Switching Method for Solving the Problem 

Considering the model given by (1), the performance index to be maximized is 

defined as  D � ÍF 

i.e., the number of healthy cells at the end of the horizon. The time from   � j�� ��k� with 

the unit of U�ø, is transformed to  ! � j�� �k, as explained in subsection IV.C, the problem 

is discretized with a sampling time of y ! � ����, resulting in 100 time steps. 

Assuming a mode sequence of ��� ��, since there is only one switching, the 

switching sequence simplifies to one unknown, namely, the switching time denoted with  -. Consequently, the NN will have six inputs with five of them being the elements of the 

state vector and the sixth being the switching time  -.  

An important step in the design is the selection of the basis functions. The well-

known Weierstrass approximation theorem [37] proves that any continuous function on a 

closed and bounded interval can be uniformly approximated on that interval by 

polynomials to any degree of accuracy. Assuming the cost-to-go is a continuous function 

of states and switching times, the basis functions are selected as polynomials ÍJÍ-vÍE+Î-@ÎE= -6 where t� w� 1� A� > � ���������, t ! w ! 1 ! A ! > 3 � and 7 � ����� � ���. 
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Note that as mentioned in the theorem, the accuracy can be adjusted by selection of order 

of the polynomials. In here, the mentioned orders are selected which showed good 

accuracy as will be seen in the rest of this section. This selection results in 280 neurons. 

Since the whole training is done offline, the number of neurons is not a barrier in the 

solution process. 

The least squares method as described in Algorithm 2 is used in training. 1000 

random state value and switching times are selected for training each 2+, 1 � ���� � �.. 

The domain of interested   for the network training is selected as Í � j�� ����k� ÍJ �j�� ���k� ÎJ � j�����k, for t � ���. During training, it was observed that normalizing the 

network inputs to belong to the interval j�� �k or even [0, 10] facilitates easier function 

approximation of the network with the selected basis functions. Therefore, the network 

inputs are normalized through dividing the state element Í by ���, the rest of the state 

elements by the constant ��, and the switching time  - by constant 90 (to vary between 0 

and 1). Notice that this is not a required step. The training process took �� seconds using 

MATLAB 2010 on a machine with Intel Core 2 Duo 2.66 GHz and 2 GB of RAM. 

The resulting weight evolution versus the time is depicted in Fig. 1. As expected, 

there is a corner in the history of some of elements of the weight matrix at the switching 

time which is fixed at the transformed time step ��. Moreover, the weight values at the 

final time are all zero except for the one corresponding to the normalized Í, which has 

the final value of ���, since Í was normalized through division by the same number. 

Hence, one will have DF	/F�  -� � 2F9:	/F�  -� � ÍF, as expected. 

The first simulation was performed with the initial conditions  

Í	�� � ������ Í-	�� � �� ÍE	�� � ��� Î-	�� � ��� ÎE	�� � �� 

denoted with IC 1, where the unit of the numbers are >>L�. The performance index for 

different switching times is calculated through exhaustive simulations of the model, i.e., 

simulating the system for the period of 90 days with every possible switching time, and 

the results are depicted in Fig. 2 through the dash-dot plots. Using the trained network, 

for this initial conditions, function DN	/N� �� is approximated by 2N9:	/N� �� given in 

terms of  - as 

 D	�� � 0Ú���� -Þ ! ���� -� 0 ���� -E ! ����� - ! Ü����  (12) 
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which is plotted in Fig. 2. It can be observed in Fig. 2 that the NN approximator has been 

able to approximate the performance index with very good accuracy. From exact results, 

the optimal switching time was found to be the 40th day. The maximum of function given 

by (12) gives the optimal switching time of 39th day which is quite close to the exact 

optimal switching time. Fig. 3 depicts the histories of the healthy cells, infected cells, and 

the viral population versus time for the case of therapy switching at 40th day. As seen, 

therapy � has done a good job in controlling virion OE and its respected infected cells, but 

has not been able to do much for the virion O-, as expected, because of the values 

assigned to xJ� parameters in the model. Interestingly, the controller has waited until a 

suitable time to switch to therapy �. The switching time is suitable when the population 

of the cells infected by OE, i.e., variable ÍE, decreases till some value which switching to 

therapy � (which is not the ideal therapy for the viral strain type OE,) does not void the 

effect of the initial treatment. After the switching, therapy � has controlled virion O- and 

infected cells Í-, such that the infected cells and the virion population are regulated to 

zero and the healthy cells has started to grow after the initial decay due to the disease. 

The biggest advantage of this method, i.e., approximating the function DN	/N�  -� 
versus different initial condition /N and switching time  -, is being able to find the 

optimal switching time for different initial conditions. However, it should be noted that 

the initial condition should be such that the resulting trajectory falls in the domain for 

which the network is trained. To illustrate this capability, another set of initial conditions, 

denoted with IC 2 is selected. Parameter values for IC 2 are: 

Í	�� � Ü���� Í-	�� � ��� ÍE	�� � �� Î-	�� � �� ÎE	�� � � 

Feeding the new initial condition to the same trained network, gives the function 

 D	�� � ���Ú� -Þ 0 ����Ú -� ! ����� -E 0 ����� - ! �����  

which is plotted in Fig. 4. The exact performance index versus switching times are 

calculated through a new set of exhaustive simulations for the new initial condition and 

the result is depicted in the same figure using dash-dot plots, which is observed to be very 

close to the approximated value. One can see that for the patient with IC 2, the best 

prescription is switching to therapy � immediately by skipping therapy �.  

As the last simulation, the initial conditions  
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Í	�� � Ü���� Í-	�� � ��� ÍE	�� � �� Î-	�� � �� ÎE	�� � ��� 

denoted with IC 3, are selected. Feeding IC 3 to the neural network gives 

D	�� � 0����� -Þ ! ����� -� 0 ����� -E ! ����� - ! ÜÚ��Ú 

which is plotted in Fig. 5 along with the exact performance calculated using another 

exhaustive simulation. Again, the results are quite similar and the optimal switching day 

is found to be the 30th day which is exactly the same as the result obtained using 

exhaustive simulations. 

 
Fig. 1. Weight history versus transformed time. 

 

 
Fig. 2. Performance index versus switching time for IC 1. 
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Fig. 3. Evolution of disease parameters for IC 1. 

 

 
Fig. 4. Performance index versus switching time for IC 2. 
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Fig. 5. Performance index versus switching time for IC 3. 

 

In this example, we assumed a fixed mode sequence and selected the maximum 

number of switching to be one but this technique can easily be generalized. As for the 

number of switching in a problem, one can define more switching which results in more 

number of unknowns. Of course, the network basis functions need to be rich enough to 

capture the performance index function which instead of a curve will be a hyper-plane 

depending on the number of unknowns. 

VI. CONCLUSIONS 

A new approach was developed for solving HIV problem. The developed method 

was applied to an illustrative optimal drug switching in the HIV infection control 

problem with excellent results. Compared to existing techniques, the developed method is 

quite versatile in providing optimal switching in real-time for different initial conditions. 

The proposed scheme can also be utilized for determining optimal drug switching times 

for multi-therapeutic treatment of any other disease, as long as models for the evolution 

of the disease under each therapy are available.  

APPENDIX 

In Algorithms 1 and 2, equations (7), (8), (9), and (10) give the weight update 

rules for the weights. The least squares method can be used for rewriting this equation 

such that 2+ is explicitly given based on the known parameters. In this appendix, the 

process for finding such an equation for 2+ is explained. To perform least squares for the 

weight update of 2+, ß random states and ß random switching sequence denoted with /	J� and �	J�, respectively, where t � ����� � � � ß�� are selected. Denoting the right hand 

side of the equations resulting from each one pair of /	J� and �	J� with à�/	J�� �	J��, the 

objective is finding 2+ such that it solves 
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áâã
âä 2+9:�/	-�� �	-�� � à�/	-�� �	-��2+9:�/	E�� �	E�� � à�/	E�� �	E��å2+9:�/	ß�� �	ß�� � à�/	ß�� �	ß�� (13) 

Define 

 } 8 �:�/	-�� �	-�����:�/	E�� �	E����� ���:�/	ß�� �	ß���  

 ç 8 �à�/	-�� �	-�����à�/	E�� �	E����� ���à�/	ß�� �	ß���  

Using the method of least squares, solution to the system of linear equations (13) is given 

by  

 2+ � 	}}9�L-}ç9  

Note that for the inverse of matrix�	}}9�, which is a > �> matrix, to exist, one needs 

the basis functions :	� � � � to be linearly independent and ß to be greater than or equal to 

the number of the basis functions. 
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5. OPTIMAL SWITCHING AND CONTROL OF NONLINEAR SWITCHING 
SYSTEMS USING APPROXIMATE DYNAMIC PROGRAMMING 

Ali Heydari and S.N. Balakrishnan 

ABSTRACT 

The problem of optimal switching and control of switching systems with 

nonlinear subsystems is investigated in this study. An approximate dynamic 

programming based algorithm is proposed for learning the optimal cost-to-go function 

based on the switching instants and the initial conditions. The global optimal switching 

times for every selected initial condition are directly found through minimization of the 

resulting function. Once the optimal switching times are calculated, the same 

neurocontroller is used to provide optimal control in a feedback form. Proof of 

convergence of the learning algorithm is presented. Three illustrative numerical examples 

are given to demonstrate the versatility and accuracy of the proposed technique. 

I. INTRODUCTION 

From aerospace field to chemical processes, many examples exist in engineering 

that can be categorized as switching systems [1-5], in which subsystems with different 

dynamics exist and at each time instant, one of them is active. Hence, controlling these 

processes involves not only applying a stabilizing control to the system, but also making 

decisions on when to switch and what mode to switch to. Optimal switching and control 

of a switching system is a challenging problem and some methods have been developed 

to address the problem [6-18]. The main issue is to find optimal switching instants, and 

once they are found, the problem reduces to a conventional optimal control problem. 

Methods developed so far for finding the optimal switching instants can be mainly 

divided to two groups: the first group comprises of nonlinear programming based 

methods [6-13], in which through different schemes, the gradient of the cost with respect 

to the switching instants/points are calculated and then by using a nonlinear optimization 

method, e.g., steepest descent, the switching instants/points are adjusted to find the local 

optimum. It should be noted that in many existing papers, the sequence of active 

subsystems, called mode sequence, is selected a priori [6-12], and the problem reduces to 

finding the switching instants between the modes. In [13], the first and last subsystems 

are pre-selected and a depth search is done initially to find all the possible mode 
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sequences and for every such sequence, the optimal switching instants are calculated 

using nonlinear programming. Iterative solution to a nonlinear optimization problem is 

suggested in [10] and using the combination of this control approach with ideas from 

model predictive control, the authors developed the so-called crawling window optimal 

control scheme. 

The second group includes studies that discretize the problem in order to deal 

with a finite number of options. Having a finite number of candidate switching time 

sequences, authors of [14] utilize a direct search to evaluate the cost function for different 

randomly selected switching time sequences and select the best one in the sense of having 

less corresponding cost. In [15] the discretization of the state and input spaces is used for 

calculation of the value function for optimal switching through dynamic programming. 

In [16] genetic algorithm is used to find the optimal switching times. A neural 

network (NN) is used for solving the optimal switching problem for a pre-specified initial 

condition in [17]. A hierarchical decomposition is proposed in [18], with the lower-level 

being the time-driven dynamics and the higher-level being the event-driven dynamics 

representing the mode switching.  

All the cited methods numerically find the optimal switching time for a specific 

initial condition; each time the initial condition is changed, new computations are needed 

to find the new optimal switching instants. In order to extend the validity of the results 

for different initial conditions within a pre-selected set, in [9] the switching parameter is 

found as the local optimum in the sense that it minimizes the worst possible cost for all 

trajectories starting in the selected initial states set. Also, the derivative of the switching 

parameters with respect to the initial conditions is sought through sensitivity analysis. 

Note that that switching systems can be classified into externally switched 

systems (ESS) and internally switched systems (ISS) [7]. An ESS is one in which the 

switching between the modes is directly controlled and dictated, like changing the gears 

in a manual transmission car, i.e., in ESS switching is forced. In ISS, however, the 

switching happens once the states reach a certain condition, called a switching condition, 

e.g., automatic change of the gears in an automatic transmission in a car. In the other 

words, ISS is a system with autonomous switching. In the cited papers, [9,10,17,18] deal 

with ISS, [6,8,11,12,13,14,16] consider ESS, and [7,15] consider both. The authors of [7] 
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developed their method for ESS to find the desired switching times, and then, they extend 

their work to ISS through forcing the state to satisfy the switching condition at the 

dictated switching times.  

Recently, the authors of this study proposed a NN based scheme in [20] for 

optimal switching of systems with autonomous dynamics, i.e., where the subsystems do 

not admit control inputs. Switching with controlled subsystem, which is the subject of 

this study, makes the problem much more complicated due to the inter-coupling between 

the effect of switching to different modes and inputting different controls once each mode 

is active.  

Within the last two decades, approximate dynamic programming (ADP) has 

shown a lot of promise in obtaining solutions to conventional optimal control problems 

with NN as the enabling structure [21-34]. ADP is usually carried out using a two-

network synthesis called adaptive critics (ACs) [22-24]. In the heuristic dynamic 

programming (HDP) class with ACs, one network, called the ‘critic’ network, inputs the 

states to the NN and outputs the optimal cost and another network, called the ‘action’ 

network, outputs the control with states of the system as its inputs [24,25]. In the dual 

heuristic programming (DHP) formulation, while the action network remains the same as 

the HDP, the critic network outputs the costates with the current states as inputs 

[22,26,27]. The single network adaptive critics (SNAC) architecture developed in [28] is 

shown to be able to eliminate the need for the second network and perform DHP using 

only one network. Similarly, the J-SNAC eliminates the need for the action network in an 

HDP scheme [29]. Note that the developments in [21-28] are for infinite-horizon 

problems. The use of ADP for solving finite-horizon optimal control of conventional 

problems was considered in [30-34]. Authors of [30] developed a time-varying 

neurocontroller for solving a problem with state constraints. In [31] a single NN with a 

single set of weights was proposed which takes the time-to-go as an input along with the 

states and generates the fixed-final-time optimal control for discrete-time nonlinear 

systems. Finite-horizon problems with unspecified terminal times were considered in [32-

34]. 

As for optimal control of switching problems, if the function that describes the 

optimal cost for every given switching time sequence is known explicitly, then the 
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problem simplifies to minimization of the function with respect to the switching instants. 

However, even in the case of general linear subsystems with a quadratic cost function, 

this function is not available [7,19]. The main contribution of this paper is developing an 

algorithm for ESS-type problems that learns the optimal cost as a function of current state 

and the switching instants. An ADP based scheme, in an HDP form is used to train an 

NN to learn the nonlinear mapping between the optimal cost-to-go and the switching 

instants. Once this function is learned, finding the optimal switching times reduces to 

minimization of an analytical function. Furthermore, a second NN is trained along with to 

generate optimal control in a feedback form. Hence, once the optimal switching instants 

are calculated, one may use the control NN to generate the optimal control to be applied 

on the system. 

As compared to available methods in the literature, the proposed technique has 

two advantages. They are: 1) the method developed in this paper gives global optimal 

switching instants versus local ones resulting from nonlinear programming based 

methods, 2) the learned function gives the optimal cost based on the switching instants 

for a vast domain of initial conditions; hence, optimal switching times for different initial 

conditions can easily be calculated using the same trained NNs. Moreover, once the 

optimal switching instants are calculated, this method provides feedback optimal control, 

too. Convergence of the learning process is also provided. 

The rest of this paper is organized as follows: The problem formulation is given in 

section II, the proposed solution is described in section III, numerical analysis are given 

in section IV, and some conclusions are made in section V. 

II. PROBLEM FORMULATION 

A control-affine switching system can be represented by a set of µ subsystems 

given by 

 /³	 � � �v	c��/	 �� ! Kv	c��/	 ��?	 �, (1)  

where �v; 56 < 56 and Kv;56 < 56�=, uw � � 8 ��� �� � �µ�. Positive integers 7 and > denote the dimension of the state vector /	 �, and the control vector ?	 �, 
respectively. Moreover, switching function w; j N�  Hk < � returns the index of active 

subsystem at time   � j N�  Hk. The technique developed in this study requires that the 
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given systems are in a control-affine form. If they are not control-affine, some 

mathematical construct (for example, defining a new control) is needed to convert the 

given system to a control-affine system [35]. The controller design process of switching 

systems includes not only selecting a history of control input ?	 �, but also a switching 

function w	 � that allows the operation of the system to switch between different 

subsystems. Following [7] the switching function can be given by a switching sequence 

as 

 � � �	 N� wN�� 	 -� w-�� � � 	 � � w��� (2)  

where  N 3  - 3 � 3  � 3  H, � 3 þ 4 � and w� � �, for � � ����� � þ. In this 

notation, 	 �� w�� means that the system switches from subsystem w�L- to w� at time  �, 

and þ denotes the number of switching. Considering switching sequence �, switching 

function w	 � is given by w	 � � w� where � is such that� � 3   4  �,-, � � ����� � � þ�.  
The problem of optimal control of switching systems can be defined as 

determining a switching sequence � (which leads to a switching function w	 �) and a 

control ?	 �,   � j N�  Hk, such that the cost function given below is minimized. 

 D � © d/� H�h ! -E P dG�/	 �� ! ?	 �9T?	 �hcÊcÆ U  (3) 

Convex positive semi-definite functions G;56 < 5 and ©;56 < 5 penalize the states 

and positive definite matrix T penalizes the control effort. Following [6-12] in this paper, 

we freeze the order of the active subsystems, i.e., the mode sequence, and work on 

finding the optimal switching times. Since the mode sequence is pre-selected, the 

unknowns in this problem will be the switching time sequence and the optimal control. A 

switching time sequence is given by  

 � � 	 N�  -�  E� � �  �� (4)  

where  N 3  - 3 � 3  � 3  H and switching happens at  �s, � � ����� � � þ�. Note that 

even for linear subsystems with quadratic cost functions, available methods in the 

literature give only a local optimal solution to this problem and only for a single set of 

initial conditions [6,7]. 
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Assumption 1: There exists a piecewise continuous optimal control solution ?V	 � to the 

problem where the discontinuous points of ?V	 � are limited to the switching times. 

Assumption 2: The dynamics of the subsystems do not have finite escape times. Also, 

the functions representing the dynamics are smooth versus state and control vectors / and ?. 

III. APPROXIMATE DYNAMIC PROGRAMMING APPROACH  

An approximate dynamic programming framework is used in this study as a 

solution technique to the optimal switching problem. First we motivate the utilization of 

this approach for conventional optimal control problems and then proceed to using it for 

switching systems.  

A. Adaptive Critics for Conventional Optimal Control 

In order to motivate the idea of using ADP for solving the switching problem, in 

this subsection it is assumed that the switching time sequence is fixed and the unknown is 

the optimal control ?V	 �. This assumption reduces the switching problem to a 

conventional optimal control with a given cost function, wherein different subsystems are 

active at different ‘given’ time periods [7]. In other words, the switching system 

simplifies to a system with time-varying dynamics. In the HDP scheme [23] with ADP, 

two NNs named actor and critic can be trained for approximating the optimal control and 

the optimal cost-to-go. Extending the idea of HDP to problems with finite-horizon cost 

function, the optimal control and the optimal cost-to-go are functions of the time-to-go 

(final time minus the current time) as well as the states [31]. Therefore, the actor and the 

critic are trained to capture the mapping between a given state and the time-to-go as 

inputs to the optimal control and the optimal cost-to-go as outputs for the actor and the 

critic, respectively.  

Considering a fixed switching time sequence, switching system (1) simplifies to 

time-varying system 

 /³	 � � B	/	 ��  � ! C	/	 ��  �?	 �, (5)  

where B	/�  � 8 �v	c�	/� and C	/�  � 8 Kv	c�	/�. Note functions B	/�  � and C	/�  � are 

smooth with respect to /, but, they can have discontinuity with respect to   at the fixed 



 

 

138

 �s, due to the switching between the modes. Discretizing the system in (5) by selecting a 

sampling time y  results in discrete-time dynamics of the subsystems 

 /+,- � Bi	/+� 1� ! Ci	/+� 1�?+,��1 � �� �� �� � � ., (6) 

where 1 denotes the time index, . � 	 H 0  N��y �, /+ � /	1y  !  N�, and Bi	/� 1� 8/ ! y B	/� 1y  !  N�, Ci	/� 1� 8 y C	/� 1y  !  N� if forward-in-time Euler integration is 

used.  

Let the cost function be discretized as  

 D � ©	/F� ! -EI 	Gl	/+� ! ?+9Tl?+�FL-+MN  (7) 

where Gl	/� 8 y G	/�, and Tl 8 y T. 

Remark 1: Dynamic Programming [36] which is the back-bone of the method developed 

here, gives solution to discrete-time problems. Therefore, the continuous problem is 

discretized. Moreover, the assumption that discrete-time system (6) is obtained through 

discretizing a ‘continuous-time’ problem is utilized in convergence analysis of the 

developed algorithm in this paper. Note that almost all physical systems have subsystems 

with continuous-time dynamics; therefore, this assumption does not impose a limitation 

on the obtained results for such systems.  

Let the optimal control and the optimal cost-to-go be denoted with superscripted 

‘V’ notation. The optimal cost-to-go at each instant may be denoted with D+V	/+� to 

emphasize its dependency on the current state, /+, and on the left time, . 0 1. In other 

words 

 D+V	/+� 8 ©	/F� ! -EI 	Gl	/�V � ! ?�V Tl?�V �FL-�M+ . (8) 

Bellman equation [36] provides optimal solution to the problem of minimizing cost 

function (7) subject to dynamics (6) 

 DFV 	/F� � ©	/F�, (9) 

  D+V	/+� � -E �Gl	/+� ! ?+V9Tl?+V� ! D+,-V 	/+,-V �,  1 � ���� � �. 0 �, (10) 

 ?+V � 0TlL-Ci	/+� 1�9 `aZefV� 	bZef�`bZef ÒbZefV ,  1 � ����� � . 0 �. (11) 
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where /+,-V � Bi	/+� 1� ! Ci	/+� 1�?+V . Gradient �D+,-V� 	/+,-��/+,-� is forms as a column 

vector. 

Denoting the approximated optimal cost-to-go and the approximated optimal 

control with D+	/+� and ?+	/+�, respectively, an iterative learning scheme can be derived 

from the Bellman equation for learning these unknowns for the fixed-final-time problem 

as [31] 

 DF	/F� � ©	/F�,  (12) 

 ?+J,-	/+� � 0TlL-Ci	/+� 1�9 `aZefV� 	bZef�`bZef ÒbZef� , 1 � ���� � �. 0 �, (13) 

  D+� 	/+� � -E �Gl	/+� ! ?+� 	/+�9Tl?+	/+�� ! D+,-� 	/+,-�, 1 � ���� � � . 0 �. (14) 

Superscript t denotes the index of iteration. Moreover, in (13) one has /+,-J 8 Bi	/+� 1� !Ci	/+� 1�?+J 	/+��� and the converged value of ?+J  is denoted with ?+� . Note that in a dual 

network AC scheme for finite horizon optimal control, ‘iteration’ takes place only in 

training the actor, as seen in (13). In other words, one starts with an initial guess on ?+N, 1 � ���� � � . 0 �, and iterates using (13). Once the converged control value is obtained, 

optimal cost-to-go is calculated using (14), without any need for iteration.  

By selecting linear in parameter networks, the expressions for the actor (control) 

and the critic (cost), can be written as 

 ?+	/� � Î+9Ï	/�,  1 � ���� � � . 0 �, (15) 

 D+	/� � 2+9:	/�,  1 � ���� � �., (16) 

where Î+ � 5��= and 2+ � 5Ð are the weights of the actor and the critic networks at 

time step 1, respectively. The linearly independent smooth basis functions are given by Ï;56 < 5� and :;56 < 5Ð for x and Ñ being positive integers denoting the number of 

neurons. The objective is using Eqs. (12)-(14) in order to determine network weights Î+ 

and 2+, u1. Considering Eqs. (12)-(14) unknowns D+	� � and ?+	� � can be calculated in a 

backward-in-time fashion. In other words, using (12) one can calculate DF	� �. Then, 

having DF	� � one can calculate ?FL-	� � using the iterations given in (13). Having 

calculated DF	� � and ?FL-	� �, unknown DFL-	� � can be found using (14). Repeating this 

process from 1 � . 0 � to 1 � �, all the unknowns can be calculated. This idea is used 
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for training network weights Î+ and 2+, u1, as detailed in Algorithm 1. Note that the 

superscript on Î denote the iteration index and Ó:	/� 8 �:	/���/ is formed as a 

column vector in the algorithm. 

Algorithm 1 

Step 1: Find 2F�  such that 2F9:	/F� Ô ©	/F� for different /F � s where s denotes a 

compact subset of 56 representing the domain of interest.  

Step 2: For 1 � . 0 � to 1 � � repeat 

{ 

Step 3: Set t � � and select a guess on Î+N. 

Step 4: Randomly select ß many different state vectors /+	�� � s, � ������ � � � ß�, for ß being a large positive integer.  

Step 5: Set ?+	�� � Î+J9Ïd/+	��h, � � ����� � � � ß� . 
Step 6: Set /+,-	�� � Bid/+	��� 1h ! Cid/+	��� 1h?+	��,�� � ����� � � � ß�. 
Step 7: Find Î+J,- such that  

 Î+J,-9Ïd/+	��h Ô 0TlL-Cid/+	��� 1h9Ó:d/+,-	�� h92+,-� ,�u� � ����� � � � ß�. 
Step 8: Set t � t ! � and repeat Step 7, until {Î+J,- 0 Î+J{ converges to a 

number less than a small preset tolerance. 

Step 9: Set Î+� � Î+J. 
Step 10: Find 2+�  such that  

 2+9: d/+	��h Ô -EGl d/+	��h ! -E Ï d/+	��h9 Î+� TlÎ+9Ï d/+	��h ! 

 2+,-�9 : [Bid/+	��� 1h ! Cid/+	��� 1hÎ+9Ïd/+	��h], u� � ����� � � � ß�. 
} 

In Steps 1, 7, and 10 of Algorithm 1, the method of Least Squares, explained in 

Appendix A, can be used for finding the unknown weights in terms of the given 

parameters. 

Remark 2: If the switching time sequence is fixed and given, optimal control of the time-

varying system is found by using  the respective active subsystem at each time index 1 in 
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the process of propagation of /+ to /+,-, for use in the weight update equations of 2+ 

and Î+. This step is the main difference between this process and the non-switching 

adaptive critic based finite-horizon optimal controllers given in [30,31].  

Remark 3: Note that the number of iterations may vary for different time steps. The 

iteration index, t, is reset to zero for the next time-step. 

Remark 4: One can modify the algorithm in the sense that at each iteration of Step 7, 

different random states /+	�� being selected. For this purpose, one needs to repeat Steps 4 

to 7 instead of only repeating Step 7 at each iteration. Note that as long as the number of 

samples ß is large enough, selecting new samples at each iteration of Step 7 is not 

necessary.  

Remark 5: Capability of uniform approximation of neural networks [37,38] indicates 

that once the network is trained for a large enough number of samples from the domain of 

interest, denoted with ß,  the network is able to approximate the output for any new 

sample from the domain with a bounded approximation error. This error bound can be 

made arbitrarily small if the network is rich enough. For the linear in weight neural 

network selected in this study and the polynomial basis function utilized in the numerical 

examples, Weierstrass approximation theorem [39] proves a similar uniform 

approximation capability.  

Remark 6: Considering the possible discontinuity of Ci	/+� 1� at the switching times (due 

to the switching between Kvs,) and the presence of this term in the optimal control 

equation (11), it is natural to have discontinuity in the optimal control history at the 

switching times, i.e., at  �s. On the other hand, the uniform approximation property of 

NN holds for approximating a ‘continuous’ function. However, since the NNs are 

selected with time-varying weights, and the switching times are fixed and given, the 

desired discontinuity can be formed using the discrete set of weights at different 1s. To 

make it clearer, one should note that the control is a function of two variables, the time 

and the state. As long as function ?+	/� for each given 1 is a continuous function versus /, it can be uniformly approximated using Î+9Ï	/� by the given Î+.  

B. Adaptive Critics for Switching Optimal Control 

In this section, we modify the network structure and the training algorithm to find 

the optimal switching times along with optimal control. In order to synthesize the ACs 
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for switching systems, the critic network is trained to approximate the optimal cost-to-go 

for different switching time sequences. It should be made clear that both the optimal cost-

to-go and control are functions of the selected switching time sequence, �.  

In this section, an approximation of D+V	/+� �� is learned in as a function of /+ and � and is denoted with D+� 	/+� ��. Considering time 1 � � the approximate optimal cost-to-

go DN	/N� �� for a set of initial conditions /N and a switching time sequence � will be 

learnt first. Since the NN mapping functions are analytical, once DN	/N� �� is learned, 

finding the global optimal � for a given /N reduces to finding the minima of DN	/N� �� with 

respect to �. For example, if the problem involves only one switch, then the only 

unknown of the optimal switching sequence � � 	 N�  -� is  -, and finding it is as simple 

as calculating the roots of the derivative of DN	/N� �� with respect to  - and comparing the 

value of DN	/N� �� at those roots along with the value at the boundary points to find the 

global minimum. As mentioned earlier, even for linear systems with a quadratic cost 

function, function DN	/N� �� is not known in a closed form, i.e., with respect to /N and � 

[7,19]. 

If the switching times are not fixed, the NNs fail to uniformly approximate ?+V	/+� ��, and hence D+V	/+� ��, due to possible discontinuity of ?+V	/+� �� versus 1 at the 

free switching times. To remedy this problem a transformation is used. The idea is to 

transform the independent variable   to a new independent variable  ! such that the 

switching times are fixed in terms of  ! [7]. To motivate the basic idea, assume that the 

number of subsystems is two with one switching instant at  -. Define a new independent 

variable  ! � j���k as 

     � " N ! 	 - 0  N� !��������������tB�� 3  ! 4 � - ! � H 0  -�	 ! 0 �����tB�� 3  ! 3 � (17) 

one has   �  N if  ! � �,   �  - if  ! � �, and   �  H if  ! � �. Using the new independent 

variable,  !, the state equations given in (1) can be expressed as 

 /$	 !� � %	 - 0  N� d�-�/	 !�� ! K-�/	 !��?	 !�h ����tB�� 3  ! 4 �	 H 0  -� d�E�/	 !�� ! KE�/	 !��?	 !�h ����tB�� 3  ! 3 � (18) 
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where the prime notation, /#, denotes the derivative of / with respect to  !. Cost function 

(3) then becomes 

 D � ©�/	��� ! -E 	 - 0  N� P dG�/	 !�� ! ?	 !�9T?	 !�h-N U ! ! 

 -E 	 H 0  -� P dG�/	 !�� ! ?	 !�9T?	 !�hE- U ! (19) 

As can be seen, the benefit of the transformed time is the fact that the switching 

always happens at the fixed transformed time of  ! � �. Note that, the actual switching 

time is still free and given by  -. This feature provides the capability to have 

discontinuities in the history of the weights at  ! � � to account for a possible 

discontinuity in control at   �  -, as mentioned in Remark 6. For problems having more 

switches or more subsystems, e.g. number of switching equal to þ, this remedy can be 

extended where  ! � j���þ ! �k and the switches happen at  ! � ����� � þ.  

After performing the transformation of   to  !, one needs to discretize the resulting 

transformed dynamics and the transformed cost function (respectively Eqs. (18) and (19) 

if þ � �,) to end up with the discrete-time problem suitable for the ADP scheme. Let the 

transformed time  ! be discretized to . segments. Note that the initial time and the final 

time for  ! are � and þ ! �, respectively, therefore . � 	þ ! ���y !, where y ! denotes 

the sampling time for discretizing  !. The discretized dynamics read 

 /+,- � Bi	/+� �� 1� ! Ci	/+� �� 1�?+,��1 � �� �� �� � �., (20) 

where Bi	/� �� 1� 8 / ! y !	 �,- 0  ���v	+|c&,cÆ�	/�, Ci	/� �� 1� 8 y !	 �,- 0 ��Kv	+|c&,cÆ�	/� and � is such that�� 3 1y ! 4 � ! �, � � ������ � þ�. Note that 

functions Bi	/� �� 1� and Ci	/� �� 1� depend on the selected � through the presence of  �s in 

their definition. For example Bi	/� �� 1� denotes the internal dynamics at state /, which is 

active at time 1 given the switching time sequence �. The discretized cost function will 

be having time-varying penalizing terms as  

 D � ©	/F� ! -EI 	Gl	/+� �� 1� ! ?+9Tl	�� 1�?+�FL-+MN  (21) 

where Gl	/� �� 1� 8 y !	 �,- 0  ��G	/�, and Tl	�� 1� 8 y !	 �,- 0  ��T and � is such 

that�� 3 1y ! 4 � ! �, � � ����� � � þ�. 
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An interesting point in minimizing cost function (21) subject to dynamics (20) is 

the fact that it is just a conventional optimal control problem with time-varying dynamics 

and cost function terms. The problem however, has free parameters  -,� E� …, � which 

form the switching time sequence �. In other words, the switching time sequence in terms 

of the transformed time is given, but, the switching time sequence in term of the original 

time is still free and appears as scaling parameters  -,� E� …, � in (20) and (21). The 

mapping between the scaling parameters and the optimal control/cost-to-go can be easily 

learned using function approximation capability of NN. In the rest of this subsection, the 

ADP scheme is used for learning the optimal control and the optimal cost-to-go as a 

function of these scaling parameters. For this purpose, the following modified network 

structures are proposed: 

 ?+	/� �� � Î+9Ï	/� ��,   1 � ���� � �. 0 �, (22) 

 D+	/� �� � 2+9:	/� ��,   1 � ���� � � .. (23) 

The inputs to the NNs are the current state and the switching time sequence �, 

since the optimal control and optimal cost-to-go are dependent on these two parameters. 

Let the switching time sequence � be formed as a þ-vector. The new smooth basis 

functions are Ï;56 � 5� < 5� and :;56 � 5� < 5Ð, where, the switching time 

sequence is formed as a þ-vector whose elements are the switching times. 

Using these structures for the actor and critic networks along with dynamics (20) 

and cost function (21) in the iterative learning scheme (12)-(14) which were derived 

earlier based on Bellman equation, the weight update laws can now be determined. In this 

process it should be noted that functions and parameters Bi	/+� 1�, Ci	/+� 1�, Gl	/+�, and Tl 

in (12)-(14) need to be replaced with Bi	/+� �� 1�, Ci	/+� �� 1�, Gl	/+� �� 1�, and Tl	�� 1�, 
respectively. Algorithm 2 gives the details of the resulting training/learning process to 

find Î+ and 2+, u1. In this algorithm, compact domain s~ is defined as s~ 8Ç� � j -�  E� � �  �k9 � 5�;  N 3  - 3 � 3  � 3  HÈ 
Algorithm 2 

Step 1: Find 2F�  such that 2F9:	/F� �� Ô ©	/F� for different random /F �   and 

different random � � s~. 

Step 2: For 1 � . 0 � to 1 � � repeat 
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{ 

Step 3: Set t � � and select a guess on Î+N. 

Step 4: Randomly select ß many different state vectors /+	�� � s, and ß many 

different switching time sequence �	�� � s~, � � ����� � � � ß�, for ß being a 

large positive integer. 

Step 5: Set ?+	�� � Î+J9Ïd/+	��� �	��h, � � ����� � � � ß� . 
Step 6: Set /+,-	�� � Bid/+	��� �	��� 1h ! Cid/+	��� �	��� 1h?+	��. 
Step 7: Find Î+J,- such that 

 Î+J,-9Ïd/+	��� �	��h Ô0Tl��	��� 1�L-Ci d/+	��� �	��� 1h9 Ó:d/+,-	�� � �	��h92+,-� �.  (24) 

Step 8: Set t � t ! � and repeat Step 7, until {Î+J,- 0 Î+J{ converges to a 

number less than a small preset tolerance. 

Step 9: Set Î+� � Î+J . 
Step 10: Find 2+�  such that  

 2+9: d/+	��� �	��h Ô -EGl d/+	��� �	��� 1h ! -E Ï d/+	��� �	��h9 Î+Tl��	��� 1�Î+9Ï d/+	��� �	��h ! 

 2+,-9 : dBid/+	��� �	��� 1h ! Cid/+	��� �	��� 1hÎ+9Ï d/+	��� �	��h � �	��h, u� � ����� � � � ß�. (25) 

} 

Remark 7: By comparing Algorithm 2 with Algorithm 1, it can be seen that the main 

modification is selecting random sets of parameters � and training the networks to give 

optimal solution for every given �. 

The converged value, Î+� , in Step 7 can be used in Step 10 and a least squares 

solution can be found for 2+�  once 2+,-�  and Î+�  are given, see Appendix A. The 

following theorem provides the sufficient condition for the convergence of iterative 

equation (24). 

Theorem 1: The iterations given by Step 7 converge for any selected initial guess on Î+N 

for 1 � ���� � �. 0 �� providing the sampling time selected for discretization of the 

continuous dynamics (1) is small enough. 
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The proof is given in Appendix B. 

In Theorem 1 the role of the sampling time in discretization of a continuous 

system is emphasized. It is worthwhile to discuss this issue in detail. Substituting (22) 

and (23) in optimal control equation (11), leads to  

Î+9Ï d/+	��� �	��h Ô 0Tl��	��� 1�L-Ci d/+	��� �	��� 1h9 

 � Ó: dBid/+	��� �	��� 1h ! Cid/+	��� �	��� 1hÎ+9Ïd/+	��� �	��h� �	��h9 2+,-�  (26) 

which is the same as (24) except that Î+J,- and Î+J on both sides are replaced with Î+. 

Optimal weights Î+, 1 � ����� � � . 0 �� at each time instant 1 can be calculated by 

solving the nonlinear equation given in (26), without using the iteration given in (24). 

However, there is no analytical solution to the set of nonlinear equations (26) in general. 

Therefore, one needs to resort to numerical methods for solving the set of equations. 

Theorem 1 proves that for any given smooth dynamics and smooth basis functions, if the 

sampling time is small enough, the iterations given in (24) converge to the solution to the 

nonlinear equation (26). However, if the sampling time is fixed, certain conditions on the 

dynamics or the cost function weight terms need to hold in order for the iterations to 

converge. These conditions can be easily derived from the proof of Theorem 1. 

Once the network weights converge, they solve Bellman Eqs. (10) and (11) and 

satisfy the final condition (9). Therefore, the resulting cost-to-go and control are optimal. 

In practice, however, due to existence of NN approximation errors, the results will be an 

approximation of the optimal solution.  

When DN	/N� �� is learned using Algorithm 2, calculating the optimal switching 

time for any /N within the domain of interest reduces to a simple function minimization, 

i.e., minimizing DN	/N� �� versus �. Since the basis functions are smooth, they are of 

bounded variation [40] and hence, have a finite number of minima in the compact set s~ 

by definition [40,41]. Therefore, the resulting DN	/N� �� � 2N9:	/N� �� also will have a 

finite number of minima. Due to the smoothness of the function, the minima can be 

calculated using first derivative test, i.e., through finding the stationary points which are 

the real roots of �DN	/N� ����� � �. Once all of the stationary points are calculated, 
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comparing the value of the function at the stationary point and at the boundary points, the 

global minimum can be determined. 

Note that, for the result to be global optimum, two other conditions also need to 

hold, listed below: 

1- Eqs. (12)-(14), and hence, Eqs. (24) and (25) provides globally optimal input-

target pairs for network training. 

2- The NN training provides globally optimal weights for approximating the 

mapping between the given input-target pairs. 

The proof that condition 1 holds follows from the proof of Theorem 1, once the 

conditions given in Theorem 1 hold. In other words, once it is proved that (24) is a 

contraction mapping, the uniqueness of fixed point Î+ to the iterative Eq. (24) follows 

[42]. In other words, once the conditions given in Theorem 1 hold, ADP provides global 

optimal solution. Details of this result are beyond the scope of this study and are given in 

[43]. Condition 2, also, holds as long as the method of least squares is used for 

calculating the NN weights. Because of the convexity of least squares problems, the 

concern of getting stuck in a local minimum does not exist.  

As compared to [6]-[12], the advantages of the method presented here are 

twofold: 1) global optimal switching time sequence is obtained rather than local ones, 2) 

the method provides optimal switching times for any initial conditions as long as the 

resulting state trajectory lies within the domain on which the networks are trained, while 

the other studies are solutions for a selected initial condition. Note that as seen in this 

section, the approximated optimal control is given by Eq. (22). Once the network weights 

are trained and the optimal switching time sequence � is calculated, Eq. (22) can be 

utilized for online calculation of the control in a feedback form. 

IV. NUMERICAL ANALYSIS 

A. Example 1 

The first example is a switching nonlinear system with two subsystems and one 

switch. The subsystem dynamics are 

 Subsystem 1:  ¡¡c �/-/E� � ´ /E/-E 0 /EE¶ ! ���� ? (27) 
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 Subsystem 2:    ¡¡c �/-/E� � � /E0/E� ! � ����� ? (28) 

where the elements of the state vector / are denoted by /- and /E. A quadratic cost 

function in the following form is selected 

 D � /� H�9Ë/	 H� ! -E P �/	 �9G/	 � ! ?	 �9T?	 ��cÊN U  (29) 

where  H � � sec, Ë � Ut�C	�������, G � Ut�C	�����, T � �, and once the independent 

variable   is transformed to  !, a sampling time of y ! � ����� sec is used for 

discretization of the continuous dynamics. 

Since there is only one switching, the switching time sequence simplifies to 

finding the switching time  -. An important step in the design is the selection of the basis 

functions. Considering Remarks 5 and 6 the basis functions for the actor and critic are 

selected as polynomials made of different combinations of the two states and the 

switching time  -. The selected basis functions for :	� � � � are  -�/-E,  -�/EE,  -�/-/E,  -�/-�,  -�/E�,  -�/-/EE,  -�/-E/E,  -�/-Þ,  -�/-Þ,  -�/-/E�,  -�/-�/E,  -�/-E/EE� for � � ������ � �Ü. The 

selections for Ï	� � � � are  -�/-� ,  -�/E� , -�/-E,  -�/EE,  -�/-/E,  -�/-�,  -�/E�,  -�/-/EE,  -�/-E/E for � � ������� �Ü. As with any linear in parameter networks, it is important to select 

suitable basis functions to allow the NNs to capture the mappings accurately. 

The domain of interest for the states is given by s � �j/-��/Ek9; /- �j0����������k� /E � j0����������k�. Five hundred random states from s are used in the 

least squares process (ß=500). The iterative learning of Î+ converged after less than five 

iterations. For initial conditions /N � j0������k9, function DN	/N�  -� which gives the 

optimal cost is approximated by 2N9:	/N�  -� given in terms of  - as 

 DN	/N�  -� � !��ÜÜ� 0 ����� - ! ����� -E 0 Ú�Ü�� -� ! ����� -Þ 0 ���Ü� -̧ ! 

 ��Ü� -� 0 ������ -� ! ����� -�. (30) 

Taking the derivative of DN	/N�  -� with respect to  - and setting it equal to zero gives 

three real roots of  - � ����� ��ÚÜ� and ��Ü�. Examining the roots and the boundary 

points shows that the global minimum of the cost happens at  - � ���� sec with a 

resulting cost-to-go of 0.53.  
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In order to evaluate the preciseness of the estimated function DN	/N�  -�, the 

optimal cost-to-go for different preselected switching times is calculated using Algorithm 

1 for which a separate pairs of networks are trained for 30 different switching times and 

the results are given in Fig. 1 denoted by asterisks and compared with the approximated 

cost-to-go, i.e., function DN	/N�  -�. It is seen that the basis functions accurately describe 

the cost function and therefore, optimal switch times. Once optimal  - is found, the actor 

network can be used for the selected  - to give the closed loop optimal control for 

propagation of the states.  

An important feature of the developed method is learning the cost function DN	/N�  -� for different initial conditions in s as a part of training the cost network. To test 

this capability, the trained network is used for calculation of DN	/N�  -� for the new initial 

condition of /N � j��� 0 �k9. Optimal cost (denoted by asterisks) and the outputs of the 

cost network for different  -s are shown in Fig. 2. The results are quite identical.  

 

 
Fig 1: Actual and estimated cost-to-go versus switching times for initial condition of /N � j0������k9, Example 1. 
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Fig 2: The actual and estimated cost-to-go versus switching times for initial condition of /N � j��� 0 �k9, Example 1. 

 

B. Example 2 

A more complex problem is presented next. Example 2 is a switching system with 

three linear subsystems and two switches. The subsystem dynamics are 

 Subsystem 1:   ¡¡c �/-/E� � � � �0� 0�� �/-/E� ! ���� ? (31) 

 Subsystem 2:  ¡¡c �/-/E� � �� �� 0�� �/-/E� ! � ����� ? (32) 

 Subsystem 3:  ¡¡c �/-/E� � �0�� �� 0��� �/-/E� ! � ������ ? (33) 

where the elements of the state vector / are denoted by /- and /E. Subsystem 1 is neither 

controllable nor stabilizable, subsystem 2 is controllable, and subsystem 3 is not 

controllable but it is stabilizable. The same quadratic cost function as in (29) is selected 

where  H � � sec, Ë � Ut�C	�������, G � Ut�C	�����, T � �, and once the independent 

variable   is transformed to  !, a sampling time of y ! � ����� sec is used for 

discretization of the transformed continuous dynamics. Note that � 3  ! 3 �, because of 

two switches. 

Switching sequence is composed of two switches here, with the mode sequence of 

(Subsystem 1,  Subsystem 2, Subsystem 3), and so the switching time sequence simplifies 

to two unknowns  - and  E. Basis functions for the actor and critic are selected as 

polynomials made up of different combinations of the two states and the switching times 
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 - and  E. Assumed basis functions for :	� � � � are  -�/-E,  -�/EE,  -�/-/E for � � ������ � �Ü 

and also  -� E'/-E,  -� E'/EE,  -� E'/-/E for � � ������� and � � ������� excluding � � � ��. For Ï	� � � � the selections are  -�/-� ,  -�/E�  for � � ������ � �Ü and  -� E'/-� ,  -� E'/E�  for � � ������� and � � ������� excluding � � � � �. One could try other types of basis 

functions too.  

Domain of interest for the states in training is the same in Example 1. One 

thousand random states from s are used in the least squares process, i.e., ß � 1000. As 

can be observed from the weight histories presented in Fig. 3, weights evolve smoothly 

except at  ! � � and  ! � � where the switches happen. Note that in the weight history of 

the actor, there are jumps at the switching times; consequently, control values show 

jumps at the same instances. However, the weight history of the critic shows no jump, as 

expected, since it reflects an integrated value (see (3)). 

The optimal cost DN	/N�  -�  E� after the weight training for initial condition of /N � j����k9 is given by DN	/N�  -�  E� � ���� 0 ���� - ! ���Ú E ! ���� -E 0 ���� EE 0 Ü��� -� 0 Ú�Ü� E� ! �Ü�� -Þ! ���� EÞ 0 ���� -̧ 0 ���� Ȩ ! �Ú�� -� ! �Ú�Ü E� 0 ���� -� 0 ��� E�! ���� -� ! ���� E� 0 ���� - E ! ���� -E E ! ���� - EE 0 ���� -E EE0 Ú�ÚÜ -� E 0 ���� - E� ! ���� -� EE ! ���Ú -E E� ! Ú��� -Þ E 0 ���� - EÞ0 ���� -Þ EE 0 ���� -E EÞ ! ���� -Þ E� 0 ��Ü� -� EÞ 

In order to evaluate the accuracy of the learned optimal cost-to-go DN	/N�  -�  E�, 
optimal costs for different preselected switching times  - varying from 0 to 3 with the 

step size of 0.1 and  E varying from  - to 3 with the same step size, leading to 496 

different switching time sequences, are calculated. The mean of the absolute value of the 

error between the optimal cost and the approximated cost using DN	/N�  -�  E� turned out to 

be 1.1% and the standard deviation of the absolute value of the error was 0.9%. These 

results show that the proposed technique leads to fairly accurate optimal cost over a wide 

region. 

 Fig. 4 depicts DN	/N�  -�  E� for different  - and  E where  E ½  -. As seen, DN	/N�  -�  E� is not convex versus  - and  E. Note that this technique results in a 

polynomial expression of switching time and therefore, the global optimum can be found 

using the first derivative test whereas existing methods assume a convex function and 
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consequently, may end up with a local minimum.  In other words, one can calculate all 

the stationary points of the resulting DN	/N�  -�  E� and find the one which is the global 

minimum. For this problem the globally optimal switching times turned out to be given 

by   - � � sec, and  E � ���� sec.  

Fig. 5 shows the state trajectories and the control history from utilizing the actor 

network and the calculated optimal switching times to control the system. As seen in the 

control history, there are two jumps in the control at the switching instants. Optimal 

switching time  - being equal to 1 means that the controller prefers to work with the 

uncontrollable subsystem 1 for the first second and then switches to the controllable 

subsystem 2. It is interesting to note how optimal switching has exploited the nature of 

the dynamics of different subsystems. Initial positive values for /E in subsystem 2 leads 

to the growth of /-, while in subsystem 1 it not only doesn’t alter /- but positive initial 

values of /- help the controller decrease /E without much control effort, hence, the 

controller has utilized subsystem 1 until it controls /E to find some negative value and 

then switches to subsystem 2 to force /- converge to the origin along with /E. Lack of 

controllability of subsystem 3 and its slow dynamics has caused the controller to prefer to 

work with the other two subsystems instead of subsystem 3 for the most of the simulation 

duration. 

 

 
Fig. 3: Weights histories for the actor and critic versus transformed time, Example 2. 
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Fig 4: Estimated cost-to-go versus switching times  - and  E for the selected initial 

condition, Example 2. 
 

 
Fig 5: State trajectories and control history for  - � � sec and  E � ���� sec, Example 2. 
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C. Example 3 

As the last example, a switching system selected for simulation analysis in 

[6,7,12,14,16] is selected to compare the results of the proposed method with the existing 

ones. The system is a linear problem with one switching and subsystems dynamics of  

 Subsystem 1:   ¡¡c �/-/E� � � ��Ú ���0��Ü ���� �/-/E� ! ���� ? (34) 

 Subsystem 2:  ¡¡c �/-/E� � � � �0� �� �/-/E� ! � �0�� ? (35) 

and the cost function  

 D � -E 	/-	��� 0 ��E ! 	/E	��� 0 ��E ! -E P 		/E	 � 0 ��E ! ?E	 ��EN U  (36) 

A sampling time of y ! � ����� sec is used for discretization of the continuous dynamics 

to apply the method developed in this paper. 

The mode sequence is (Subsystem 1, Subsystem 2), hence, the switching time 

sequence simplifies to one unknown  -. Basis functions for the actor and critic are 

selected as polynomials made up of different combinations of the two states and the 

switching time  - up to the seventh order, and for the training, five hundred random states 

from the domain of interest are used in the least squares process (ß=500). Once trained, 

using the initial condition /	�� � j����k9, the optimal switching time is calculated as  - � ���ÜÚ� sec. and the optimal cost-to-go turned out to be ������.  

Table 1 lists the results of different methods for the same problem and initial 

condition in order to be able to compare them with the method developed here. As seen 

in this table, the results from the proposed technique are quite accurate. Note that the 

method developed here has the advantage of solving the optimal switching problem for 

 

Table 1: Comparison of results for Example 3 using different methods. 

Method Optimal switching time Optimal cost 
Ref. [6] 0.1897 9.7667  
Ref. [7] 0.1897 9.7667 
Ref. [12] 0.1866 9.7854 
Ref. [14] 0.19 9.7686 
Ref. [16] 0.1912 10.0035 

Our method 0.1864 9.7792 
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any unspecified different initial condition in the domain of training, while [6,7,12,14,16] 

gives the optimal switching for a single initial condition only. Finally, Fig. 6 shows the 

resulting state trajectory and the control history, which are quite similar to the ones given 

in the cited papers with this example. 

 

 
Fig 6: State trajectory and control history for Example 3. 

 

V. CONCLUSIONS 

An algorithm was developed for learning the optimal cost-to-go as a function of 

the current state and the switching time, for switching systems. Convergence of the given 

iterative weight update law was proved. Numerical analyses showed that the estimated 

function is accurate for the simulated switching systems with linear and nonlinear 

subsystems. These results indicate that the proposed method has a lot of potential. The 

fact that once the networks are trained, global optimal switching times for different initial 

conditions can easily be obtained makes this method very versatile as compared to the 

other existing methods in the field of control of switching systems.  

APPENDIX A 

In Algorithms 1 and 2, in different steps, different weight update rules for the 

weights of the actor and critic networks, i.e., Î+ and 2+, are given. The least squares 

method can be used for rewriting these equations such that Î+ and 2+ are explicitly given 

based on the known parameters. In this appendix, the process for finding such an 

equation for Î+ from Eq. (24) is explained and one can easily find the corresponding 

equation for 2+. 
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To perform least squares for the weight update of Î+, ß random states and ß 

random switching sequence denoted by /	�� and �	��, respectively, where � 3 � 3 ß� are 

selected. Denoting the right hand side of Eq. (24) resulting from each one pair of /	�� and �	�� with à�/	��� �	���, the objective is finding Î+ such that it solves 

 

áâã
âä Î+9Ï�/	-�� �	-�� � à�/	-�� �	-��Î+9Ï�/	E�� �	E�� � à�/	E�� �	E��åÎ+9Ï�/	ß�� �	ß�� � à�/	ß�� �	ß�� (37) 

Define 

 � 8 �Ï�/	-�� �	-�����Ï�/	E�� �	E����� ���Ï�/	ß�� �	ß���  

 ç 8 �à�/	-�� �	-�����à�/	E�� �	E����� ���à�/	ß�� �	ß���  

Using the method of least squares, solution to the system of linear equations (37) is given 

by  

 Î+ � 	��9�L-�ç9 (38) 

Note that for the inverse of matrix�	��9�, which is a x � x matrix, to exist, one needs the 

basis functions Ï	� � � � to be linearly independent and ß to be greater than or equal to the 

number of the basis functions. 

APPENDIX B 

Proof of Theorem 1: The iteration performed on Î+J, given in (24) and repeated here, is a 

successive approximation to find a fixed point of a function 

Î+J,-9Ïd/+	��� �	��hÔ 0Tl��	��� 1�L-Ci d/+	��� �	��� 1h9 Ó: dBid/+	��� �	��� 1h! Cid/+	��� �	��� 1hÎ+J9Ïd/+	��� �	��h� �	��h9 2+,-�  

i.e., there exists function è	� �;�5��= < 5��= such that (24) is of form  

 Î+J,- � è	Î+J�. (39) 
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The claim of the theorem is proved if it can be shown that (39) is a contraction mapping 

[42]. Since 5��= with 2-norm denoted by {� { is a Banach space, iterations given by 

(39), regardless of initial Î+N, converges to some Î+V � è	Î+V� if there is a � 3 Q 4 � such 

that for every é- and éE in 5��=, the following inequality holds [42] 

 {è	é-� 0 è	éE�{ 3 Q{é- 0 éE{. (40) 

Function è	� � can be formed by converting (24) to a least squares form 

performed in Appendix A. Rewriting Eq. (38), given in Appendix A, leads to 

 è�Î+J� 8 	��9�L-�� 

êë
ëë
ëë
ì [0Tl��	-�� 1�L-Ci�/+	-�� �	-�� 1�9Ó: dBi�/+	-�� �	-�� 1� ! Ci�/+	-�� �	-�� 1�Î+J9Ï�/+	-�� �	-��� �	-�h9 2+,-� �]9
[0Tl��	E�� 1�L-Ci�/+	E�� �	E�� 1�9Ó: dBi�/+	E�� �	E�� 1� ! Ci�/+	E�� �	E�� 1�Î+J9Ï�/+	E�� �	E��� �	E�h9 2+,-� �]9å[0Tl��	ß�� 1�L-Ci�/+	ß�� �	ß�� 1�9Ó: dBi�/+	ß�� �	ß�� 1� ! Ci�/+	ß�� �	ß�� 1�Î+J9Ï�/+	ß�� �	ß��� �	ß�h9 2+,-� �]9ðñ

ññ
ññ
ò
  

   (41) 

One has 

 {è	é-� 0 è	éE�{ 3 óß{	��9�L-�{ � 

{Tl��	ô�� 1�L-Cid/+	ô�� �	ô�� 1h9Ó: dBid/+	ô�� �	ô�� 1h! Cid/+	ô�� �	ô�� 1hé-9Ïd/+	ô�� �	ô�h� �	ô�h9 2+,-� � 0 

Tl��	ô�� 1�L-Cid/+	ô�� �	ô�� 1h9Ó: dBid/+	ô�� �	ô�� 1h !Cid/+	ô�� �	ô�� 1héE9Ïd/+	ô�� �	ô�h� �	ô�h9 2+,-� �{ (42) 

where ô � ����� � �ß� is such that  

ô � �ÕC>�/���-�E���ß� {Tl��	��� 1�L-Cid/+	��� �	��� 1h9Ó: dBid/+	��� �	��� 1h
! Cid/+	��� �	��� 1hé-9Ïd/+	��� �	��h� �	��h9 2+,-� � 0�



 

 

158

                   Tl��	��� 1�L-Cid/+	��� �	��� 1h9Ó: dBid/+	��� �	��� 1h !Cid/+	��� �	��� 1héE9Ïd/+	��� �	��h� �	��h9 2+,-� �{ 

In inequality (42), the following norm inequality is used 

 ö�÷ø-øEåøßù�ö 3 óß{øô{ (43) 

where øJs are real-valued row-vectors and ô � �ÕC>�/���-�E���ß�{ø�{.  

Smoothness of :	� � � � leads to the Lipschitz continuity of Ó:	� � � � on compact set s [44]. Therefore, there exists some positive real number Q(, independent of �, such that 

for every /- and /E in s and � � s~, one has {Ó:	/-� �� 0 Ó:	/E� ��{ 3 Q({/- 0 /E{. 

Using this feature of Ó:	� � � �, inequality (42) can be written as 

 {è	é-� 0 è	éE�{ 3 Q(óß{	��9�L-�{ úTl��	ô�� 1�L-Cid/+	ô�� �	ô�� 1h9ú 

 � {Cid/+	ô�� �	ô�� 1h{{Ïd/+	ô�� �	ô�h{{2+,-� {{	é-9 0 éE9�{ (44) 

By defining  

 Q 8 Q(óß{	��9�L-�{ úTl��	ô�� 1�L-Cid/+	ô�� �	ô�� 1h9ú 

 � {Cid/+	ô�� �	ô�� 1h{{Ïd/+	ô�� �	ô�h{{2+,-� { (45) 

one can select the sampling time y ! in discretization of the continuous dynamics (1) 

small enough such that the condition � 3 Q 4 � is satisfied, since a smaller y !, directly 

results in a smaller {Cl�/1	ô�� �	ô�� 1�{ while the other terms including 

{Tl��	ô�� 1�0�Cld/1	ô�� �	ô�� 1hÍ{ are not affected. Note that smoothness, and hence continuity, 

of Kv	� �s and Ï	� � � � in their domain result in being bounded in the compact sets s and s~ 

[40], therefore, the /+	ô� and �	ô� dependent terms in (45) are upper bounded.  

The expression given for the contraction mapping coefficient Q in (45) involves {2+,-{ also. It should be noted that 2+,- is already learned from the previous step in 
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the algorithm, therefore, it is bounded. In other words, starting from 1 � . 0 �, one uses 

the successive approximation given by (24) and once Î+J converges, it is used in (25) to 

calculate the bounded 2+. This process is repeated till 1 � �.  

Note that if the selected sampling time y ! is not small enough, at some 1, � 3 1 3 . 0 �, the respective Q given in (45) does not satisfy condition � 3 Q 4 �, 

therefore, Î+J does not converge as t < �. In that case, one may select a smaller sampling 

time and restart the algorithm, i.e., from 1 � . 0 � to calculate the weights 

corresponding to the smaller sampling time. Refining the sampling time leads to a change 

in 2+,- as well. However, it can be shown that as the sampling time becomes smaller, 2+,- remains bounded. This boundedness follows from looking at the definition of 2+,-, which is the weights for the network that approximates a discretized cost-to-go. In 

other words, 

 2+,-9 :	/+,-� �� Ô ©	/F� ! -EI Gl	/�� ���� ! ?�9Tl	����?�FL-�M+,- . (46) 

As the sampling times go to zero, the value of the discretized cost-to-go 

converges to the cost-to-go given by 

 D	/	 i��  i� � © d/� H�h ! -E P dG�/	 �� ! ?	 �9T?	 �hcÊci U ,  (47) 

where  i is the time corresponding to the transformed time 	1 ! ��y !. On the other hand, 

since the system does not have a finite-scape time (Assumption 1,) the finite-horizon 

cost-to-go will be finite, using any finite control. Note that the control history included in 

integration (47) correspond to the already converged time-steps, hence, they are bounded. 

Therefore, as y ! �< �, the value of 2+,-9 :	/+,-� �� will be finite. Since the basis 

functions :	/+,-� �� are linearly independent, a finite 2+,-9 :	/+,-� �� leads to a finite 2+,-9 , as seen in the least squares operation described in Appendix A. Therefore, term  {2+,-{ existing in the expression for Q in (45) remains bounded as the sampling time is 

refined. This completes the proof of convergence of Î+J to Î+�  for � 3 1 4 . 0 � using 

any initial guess on Î+N, for any small enough sampling time. ¾ 
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6. OPTIMAL SWITCHING BETWEEN AUTONOMOUS SUBSYSTEMS 

Ali Heydari and S. N. Balakrishnan 

ABSTRACT 

A novel scheme is presented for solving the problem of optimal switching with 

nonlinear autonomous subsystems. This scheme approximately determines the global 

optimal solution for different initial conditions in a feedback form. Restrictions, including 

the need to enforce the mode sequence and/or the number of switching, do not exist for 

the developed method. Performance is evaluated in several examples with different 

complexities and the numerical simulation shows great promises for the controller. 

I. INTRODUCTION 

Optimal scheduling of systems with a switching nature has attracted many 

researchers during the last decade [1-21]. A switching system is comprised of subsystems 

with different dynamics which at each time instant only one of them is active. Hence, 

controlling these systems includes determining both ‘when’ to switch and ‘what mode’ to 

switch to. Systems with such a nature appear in different fields, from trajectory planning 

to disease therapy [1-5]. 

The developments in the field of optimal switching can be divided to two main 

categories: nonlinear programming based developments and discretization based 

developments. The former utilizes the gradient of the cost with respect to the switching 

instants to calculate the local optimal switching times [6-13]. In these developments, the 

sequence of active subsystems, known as mode sequence, is typically selected a priori. 

The problem is determining the switching instants between the modes. Among the 

nonlinear programming based methods, some ideas are presented in [13,14] for admitting 

free mode sequence conditions. In [13] a two stage optimization algorithm was developed 

which in one stage the switching time is being updated and at another stage the mode 

sequence is modified. In [14] the process was improved such that a single stage algorithm 

which solely updates the mode sequence for the selected initial condition is utilized. 

Discretization based developments include studies that discretize the switching 

problem to deal with a finite number of options. An optimization scheme was developed 

in [1] to find both the optimal mode sequence and the switching time for positive linear 
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systems. A direct search has been utilized in [15] to evaluate the cost function for 

different randomly selected switching time sequences. The discretization of both the state 

and input spaces was used to calculate the value function for optimal switching through 

dynamic programming in [16]. Genetic algorithm and neural networks were used in [17] 

and [18], respectively, to determine the optimal switching for a preselected initial 

condition within intelligent methods.  

Each of these methods requires a large amount of computations to numerically 

find the optimal switching time for an a priori selected initial condition. Each time the 

initial condition is changed, a new set of computations must be performed to find the 

corresponding optimal switching instants. In [9] the validity of the results was extended 

for different initial conditions within a pre-selected set. This is done through determining 

the switching parameter as the local optimum in the sense that it minimizes the worst 

possible cost for all trajectories starting in the selected set of initial states. A neural 

network based method for optimal switching was recently proposed in [19] by the authors 

of this study for problems with fixed mode sequence. Once the network is trained based 

on the algorithm given in [19], the optimal switching scheme for every selected initial 

condition can be calculated through a static function minimization before the online 

implementation. Some other researchers have focused on stabilization of switching 

systems, for example [20,21]. Moreover, interested readers are referred to [22] for a 

theoretical analysis on the properties of the value function for discrete-time switching 

systems with linear dynamics and quadratic cost function terms. 

The contribution of this work is developing a simple straightforward scheme to 

solve the optimal switching problem for systems with nonlinear autonomous subsystems. 

The only control to be determined, in switching problems with autonomous subsystems, 

is the active mode at each instant. A number of papers, including [1,4,5,8-10,13,14], 

focus on such problems. The scheme presented in this study is based on the Bellman 

principle of optimality [23], providing optimal solution in real-time. To this goal, the 

function representing the nonlinear mapping between the optimal cost-to-go as the 

output, and the current state and time as the inputs, is required. An algorithm is 

developed, motivated by studies in adaptive critics (AC) [24-26], to learn this function 

with a desired degree of accuracy. This function approximation is done through utilizing 
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a neural network (NN) as a global function approximator and training it using the 

algorithm. The developed method has the following four advantages differentiating it 

from methods available in the literature: 1) This method offers approximate global 

optimal switching instants versus local optimal ones resulting from nonlinear 

programming based methods. 2) This method does not require enforcing a mode 

sequence or a number of switching. 3) The solution is calculated in a feedback form. 

Hence, it will have the relative robustness of feedback controllers toward unmodeled 

disturbances, compared with open loop solutions. 4) This method offers an optimal 

solution for a vast domain of initial conditions. Thus, an optimal switching solution for 

different initial conditions can be readily calculated using the same trained NN.  

This article is organized as follows. Problem formulation is presented in section 

II.  The main idea of the proposed method is given in section III. The process of 

approximating the cost-to-go function is discussed in section IV. Details regarding the 

implementation of the method for online control are presented in section V. Simulation 

studies are given in section VI, followed by concluding remarks. 

II. PROBLEM FORMULATION 

A discrete-time switching system with autonomous subsystems can be 

represented by a set of µ subsystems/modes: 

 /+,- � BJ	/+�� 1 � þ� t � £, (1)  

where BJ;56 < 56 is a continuous function representing the dynamics of mode t, þ 8 ��� �� �� � �. 0 ��, £ 8 ��� �� � �µ�, and 7 denotes the dimension of the state vector /+. Subscript 1 in /+ denotes the discrete time index, and the final time is denoted by .. 

Moreover, subscript t in BJ denotes the index of the active subsystem. At each instant 1, 

only one subsystem can be active. A controller for the system is defined as a switching 

sequence that allows the system to operate, from the initial time 1 � � to the final time .. The optimal solution, however, is defined as a switching schedule using which, the 

performance index given below is optimized.  

 D � ©	/F� ! I G	/+�FL-+MN  (2) 

Convex functions G;56 < 5 and ©;56 < 5 correspond to the cost during the time 

period and at the end, respectively.  
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Denoting the index of the active subsystem at time 1 with t+, the optimal solution 

may be denoted with t+V � £, u1 � þ. Unlike studies that freeze either the mode sequence 

or the number of switching [6-12], in this work, both the mode sequence and the number 

of switching are free. The mode sequence, the number of switching, and the switching 

instant are each subject to be determined such that the cost function is optimized.  

III. MAIN IDEA 

Denoting the cost-to-go at each time step 1 and state vector /+ by D+	/+� leads to 

 D+	/+� � ©	/F� ! I G�/v�FL-vM+ . (3) 

Note that, from the form of the cost function, it directly follows that 

 DF	/F� � ©	/F�,  D+	/+� � G	/+� ! D+,-	/+,-�, u1 � þ. (4) 

Based on the Bellman principle of optimality [23], regardless of what decisions are made 

for the past, the optimal solution is a solution which optimizes the future. Therefore, 

regardless of values selected for tv, w � ����� � � 1 0 ��, the optimal solution for the 

remained time steps, i.e., w � �1� 1 ! ��� �. 0 �� is the solution which optimizes D+	/+�. 
From (4), because term G	/+� does not depend on the selection of tv, w � �1� 1 !��� �. 0 ��, optimizing D+	/+� is equivalent of optimizing D+,-	/+,-�. The main idea of 

the method in this study is to approximate the optimal cost-to-go D+V	/+� in a closed form 

(i.e., versus parameters 1 and /+). Once this function is available, the optimal solution at 

each instant 1 and state vector /+ is given by 

 t+V	/+� � �ÕC>t7J�)�D+,-V �BJ	/+��� (5) 

hence, t+V ; 56 < £. 
For example, if the system has two subsystems, finding optimal solution at each 

instant 1 simplifies to evaluating the scalar-valued function D+,-V �BJ	/+�� for t � � and t � � and selecting the t for which D+,-V �BJ	/+�� is smaller. This calculation needs to be 

done online at each instant 1 for 1 � þ. Therefore, the optimal solution will be calculated 

in real-time and in a feedback form.  

The following section provides an algorithm for learning the desired function D+V	/+�. Before proceeding to the section, the following assumption is needed to guarantee 



 

 

168

the finiteness of the optimal cost-to-go. It should be noted that even though the horizon of 

the problem subject to this study is finite, subsystems with finite escape time may lead to 

an infinite cost-to-go.  

Assumption 1: The method developed in this study assumes that there exists a switching 

schedule for which the cost function remains finite.  

IV. COST-TO-GO FUNCTION APPROXIMATION  

In this section the process of learning the cost-to-go for a system is explained. In 

order to motivate the idea, initially the case of conventional systems, i.e., non-switching 

systems, is discussed and an algorithm is proposed for learning the cost-to-go function in 

a closed-form. Afterward, the algorithm is modified to learn the cost-to-go function for 

the switching system subject to this study. 

A. Cost-to-go Approximation for a Conventional System 

Let the dynamics of the system be  

 /+,- � B	/+�� 1 � þ, (6) 

where B;56 < 56 is the sole mode of the system. Note that, the system does not include 

a control or switching. However, the cost-to-go at each instant 1 and state vector /+, i.e., D+	/+� can be calculated using cost function (2). The objective is approximating function D+	/+� versus 1 and /+.  

An algorithm is suggested for learning the cost-to-go function. The algorithm 

trains a NN as a global function approximator for the purpose. The concept is motivated 

by the notion of AC developments in implementation of Heuristic Dynamic 

Programming (HDP) [24,25] for infinite-horizon optimal control of conventional 

systems. In the HDP scheme, the so called critic network learns the optimal cost-to-go, 

and the so called actor learns the optimal control. In this study, the actor is skipped. The 

critic is utilized to learn the cost-to-go at each time step 1 and state vector /+ for the 

nonlinear system (6). Moreover, the training algorithm is modified in order to admit the 

finite-horizon cost function (2) according to [26]. Selecting a linear in the parameter NN 

as the function approximator, the expressions for the critic (cost-to-go approximator) can 

be written as 

 D+	/+� Ô 2+9:	/+�� 1 � þ � �.�,  (7) 
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where 2+ � 5= is the unknown optimal weights of the network at time step 1. The 

selected smooth basis functions are given by :;56 < 5=, with > being a positive 

integer denoting the number of neurons. The training process for determining weights 2+, u1, is detailed in Algorithm 1. In this algorithm, the recurrence equation given by (4) 

is used to learn the optimal cost-to-go in a backward fashion (i.e., from 1 � . to 1 � �). 

Algorithm 1 

Step 1: Randomly select ß different state vectors /Fj�k � s,�� � ����� � � � ß�, for ß 

being a large positive integer. 

Step 2: Train network weights 2F�  (see the Appendix) such that  

 2F9: d/Fj�kh � ©	/Fj�k�, u� � ����� � � � ß�.  (8) 

Step 3: Set 1 � . 0 �. 

Step 4: Randomly select ß different state vectors /+j�k � s,�� � ����� � � � ß�. 
Step 5: Train network weight 2+�  (see the Appendix) such that  

 2+9: d/+j�kh � G d/+j�kh !2+,-�9 : [B d/+j�kh] � u� � ����� � � � ß�. (9) 

Step 6: Set 1 � 1 0 �. Go back to Step 4 until 1 � �. 

Once the training is done, the cost-to-go function is approximated by 2+9:	/+� in 

a closed form, i.e., versus the given 1 and /+. 

B. Cost-to-go Approximation for a Switching Problem 

Considering the cost-to-go approximation method discussed in the foregoing 

subsection, the same concept may be adapted for approximating the optimal cost-to-go of 

the switching system (1). Note that once the t+V	/+�, u1, is found for a given initial 

condition /N, system (1) simplifies to a conventional problem with a nonlinear time-

varying system due to the frozen switching. Therefore, a NN can be used to learn its 

optimal cost-to-go; the switching nature of the problem does not refrain one from being 

able to use HDP to approximate the optimal cost-to-go. 

Assuming the network structure (7), Algorithm 2 is proposed for learning the 

optimal cost-to-go function in a closed form. 
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Algorithm 2 

Step 1: Randomly select ß different state vectors /Fj�k � s,�� � ����� � � � ß�, for ß 

being a large positive integer. 

Step 2: Train network weights 2F�  (see the Appendix) such that 

 2F9: d/Fj�kh � ©	/Fj�k�, u� � ����� � � � ß�.  (10) 

Step 3: Set 1 � . 0 �. 

Step 4: Randomly select ß different state vectors /+j�k � s� � � ����� � � � ß�. 
Step 5: Calculate 

 t+V d/+j�kh � �ÕC>t7J�) �2+,-9 : [BJ d/+j�kh] � � � ����� � � � ß��  (11) 

Step 6: Train network weight 2+�  (see the Appendix) such that  

 2+9: d/+j�kh � G d/+j�kh !2+,-�9 : �BJZV	bZj�k� d/+j�kh�, u� � ����� � � � ß�. (12) 

Step 7: Set 1 � 1 0 �. Go back to Step 4 until 1 � �. 

Noting the backward nature of Algorithm 2, i.e., learning 2+s form 1 � . to 1 � �, at each instant 1, the optimal 2+,- is already learned. Therefore, the optimal t+V	/+� can be found using (11). As discussed earlier, having tvV, w � �1� 1 ! ��� � . 0 ��, 
the problem simplifies to a conventional problem with time-varying dynamics. Therefore, 

an adapted version of Algorithm 1 can be used for learning 2v, w � �1� 1 0 ��� ��� as 

detailed in Algorithm 2. 

Assuming the basis functions of the NN are selected rich enough to approximate 

the cost-to-go function with the desired accuracy, the method developed here provides 

optimal solution due to its basis on Dynamic Programming [23]. In other words, if D+V	/+� 
is approximated and available, the optimal mode will always be given through (5). 

Therefore, an analysis on the approximation capability of the NN is required. It is well 

known that NNs can provide uniform approximation within the domain of interest 

providing the function subject to approximation in a continuous function. Interested 

readers are referred to [27] and [28] for multi-layer NNs and linear in parameter NNs 

with polynomial basis functions, respectively. Considering Eqs. (8), (9), and (10), the 
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continuity of the functions subject to approximation, given in the right hand sides of these 

equations, follows from the convexity of ©	� � and G	� � as well as the continuity of BJ	� �s 

and the basis functions. For Eq. (12), however, due to the switching between the modes, 

i.e., the discontinuous nature of t+V	� �, the continuity of the right hand side is not obvious. 

Theorem 1 proves the required continuity. 

Theorem 1: If the active mode at each instant 1 and state vector / is given by 

 t+V	/� � �ÕC>t7J�) �2+,-9 :�BJ	/��, (13) 

then, scalar-valued function 2+,-�9 : dBJZV	b�	/�h is a continuous function versus / at 

every / � s.  

Proof: Let /i be any point in s and set 

 * i � t+V	/i�. (14) 

Select an open set + � s such that /i belongs to the boundary of + and limit 

 *! � z#W{bLbi{<Nb�, t+V	/� (15) 

exists. If * i � *!, for every such +, then there exists some open set � � s containing /i such 

that t+V	/� is constant for all / � �, because t+V	/� only assumes integer values. In this 

case the continuity of 2+,-�9 : dBJZV	b�	/�h at /i follows from the fact that 2+,-�9 :�BJ	/�� is 

continuous at /i, for every fixed t � £. Finally, the continuity of the function subject to 

investigation at every /i � s, leads to the continuity of the function in s. 

Now assume * i º *!, for some +. From the continuity of 2+,-�9 :�B-!	/�� at /i, for the 

given *!, one has 

 2+,-�9 :�B-!	/i�� � z#W.b<N2+,-�9 :�B-!	/i ! �/��.  (16) 

If it can be shown that for every selected +, one has 

 2+,-�9 :�B- i	/i�� � 2+,-�9 :�B-!	/i��, (17) 

then the continuity of 2+,-�9 : dBJZV	b�	/�h at /i follows, because from (17) and (16) one 

has 

 2+,-�9 :�B- i	/i�� � z#W.b<N2+,-�9 :�B-!	/i ! �/��, (18) 
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and (18) leads to the continuity by definition [29]. The proof that (17) holds is done by 

contradiction. Assume that for some /i and some + one has 

 2+,-�9 :�B- i	/i�� 4 2+,-�9 :�B-!	/i��,  (19) 

then, due to the continuity of 2+,-�9 :�B- i	/i�� and 2+,-�9 :�B-!	/i�� at /i, there exists an open 

set / containing /i, such that  

 2+,-�9 :�B- i	/�� 4 2+,-�9 :�B-!	/��, u/ � /.  (20) 

On the other hand, Eq. (15) implies that there exists a neighborhood of /i at which *! � t+V	/�, hence, because /i � /, one has  

 2+,-�9 :�B- i	/�� ½ 2+,-�9 :�B-!	/��� Ö/ � /.  (21) 

But, (21) contradicts (20). Hence, (19) is not possible. The impossibility of 

 2+,-�9 :�B- i	/i�� ) 2+,-�9 :�B-!	/i��  (22) 

directly follows from (14). Because if (22) holds then * i º t+V	/i�, which is against (14). 

Therefore, equality (17) holds and hence, 2+,-�9 : dBJZV	b�	/�h is continuous at every /i � s. This completes the proof. ¾ 

The point which leads to the result given in Theorem 1 is the fact that t+V	� � is 

defined by the ‘argmin’ function given in (13). Even though t+V	/� could discontinuously 

change as / does, function 2+,-�9 : dBJZV	b�	/�h will be continuous at the continuous and 

discontinuous points of t+V	/�. In order to better understand this point, one may consider 

the example of having two subsystems with scalar dynamics. Assume the cost-to-go of 

utilizing each subsystem, given by 2+,-�9 :�BJ	/��, t � ���, changes linearly versus / as 

given in Fig. 1. In this case, function 2+,-�9 : dBJZV	b�	/�h will be given by the solid plots 

in the figure. As seen, the jump of t+V	/� from one value to another, does not create any 

discontinuity in 2+,-�9 : dBJZV	b�	/�h. 
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which the network is trained, i.e., /+ � s, u1. The reason is the cost-to-go approximation 

is valid when the state belongs to s, therefore, one can always use (13) for finding the 

optimal mode, as long as /+ � s. Note that, except [19], the cited methods in the 

literature calculate the optimal switching only for a pre-specified initial condition.  

Looking at Eq. (13), (‘the decision maker’ for switching,) one may observe high 

frequency switching between the modes, in some problems. This behavior is observed in 

Example 3 included in this study. The following two alternative remedies are suggested 

to avoid high frequency switching: 

1- The Minimum Dwell Time Remedy: Dictating a minimum dwell time after each 

switching can eliminate high frequency switching. Once the optimal subsystem is 

determined at 1 � � it will be applied. Afterward, throughout the horizon, one can 

dictate a minimum dwell time before switching to another mode. That is, once a 

switching occurs, one may skip the evaluation of Eq. (13) and instead stay with the 

current active subsystem until the minimum dwell time is passed. 

2- The Threshold Remedy: This method allows selecting a positive real number as the 

threshold. When switching to another mode gives a reward (in the sense of less 

cost-to-go) more than the selected threshold, the switching is applied. Otherwise, 

the current active subsystem remains active. To be more specific, assume the active 

subsystem is t at the time instant 1, and by evaluating Eq. (13) one realizes that 

switching to subsystem w leads to the cost-to-go less than the cost-to-go of staying 

with subsystem t. In such a case switching to subsystem w is allowed only if 

 2+,-9 : dBv	/+�h 4 2+,-9 :�BJ	/+�� ! �, 

where the pre-selected threshold is denoted with '.  

Note that the same algorithm (Algorithm 2) may still be used in the offline 

training stage of the NN. The above alternative remedies, however, can be used in the 

online control. The alterations dictated by the remedies result in a ‘sub-optimal’ control 

of the system. The result will remain sub-optimal because the neurocontroller calculates 

the optimal solution in a feedback form and in real-time. More specifically, the 

perturbation due to the applied remedy can be considered as a disturbance for the 

controller. Providing suitable selection of the minimum dwell time or the threshold, the 
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feedback nature of the controller can deal with the resulting disturbance without too 

much performance degradation. This behavior is due to the inherent nature of feedback 

controllers in moderate disturbance rejection. 

VI. NUMERICAL ANALYSIS 

Two different examples are presented in this section to evaluate the proposed 

switching scheme. Before going through them, a preliminary example is discussed to 

evaluate Algorithm 1 for cost-to-go approximation of non-switching systems.  

A. Example 1 

As the first example, the performance of Algorithm 1 in approximating the cost-

to-go of a non-switching system is investigated. The selected systems is the nonlinear 

scalar system 

 /³ � B�/	 �� 8 0/�	 �, 
with the cost function  

 D � P ��/EU Ņ . 

Note that the method developed in this study admits discrete-time dynamics and cost 

function. Hence, one needs to discretize the abovementioned system. For this purpose, 

Euler integration scheme with the sampling time of ���� � is used. Hence, . � ���. 

In order to conduct Algorithm 1, an important step in the design process is the 

proper selection of the basis functions. The well-known Weierstrass approximation 

theorem [28] proves that any continuous function on a closed and bounded interval can 

be uniformly approximated on that interval by polynomials to any degree of accuracy. In 

this example, the role of the richness of the basis functions is investigated. For this 

purpose, different sets of basis functions were selected and each one was used separately 

for learning the cost-to-go using Algorithm 1. The selected basis functions for each NN 

were polynomials /Ev, where w � ��� � � x�. Positive integer x relates to the highest order 

of the included polynomials in the respective NN. It is selected as x � ������ and Ü for 

the selected four NNs. The NNs were trained separately and used for approximating the 

cost-to-go for different initial conditions /N � j0���k. The actual cost-to-go for each 

selected initial condition is calculated by propagating the states and calculating the 

summation representing the cost-to-go. The results are summarized in Fig. 2. As seen in 
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this figure, the basis functions represented by x � � had a poor performance in 

approximating the cost-to-go. As the order of the incorporated polynomials grows, the 

approximation becomes more accurate. For example, the basis functions generated using x � Ü, which include eights polynomial functions or neurons, is shown to be able to 

approximate the cost-to-go with a suitable accuracy. 

Considering these results, it should be noted that the richness of the basis 

functions plays an important role in the function approximation, and hence, in the 

performance of the method developed here for switching. If the basis functions are poor, 

the result will not be reliable. Therefore, the designer needs to utilize different sets of 

basis functions and compare the performance of the respectively trained networks to 

choose the best one. 

 

 
Fig. 2. Cost-to-go for different initial conditions, Example 1. 

 

B. Example 2 

Consider the continuous-time scalar problem with two modes, 

 /³ � B-	/	 �� 8 0/	 �,  /³ � BE	/	 �� 8 0/�	 �, (23) 

where   � j�� �k denotes the time in seconds. The selected cost function is D � ���/E	��. 
For discretization, Euler integration, along with the sampling time of ���� � was selected 

which leads to . � ���. Considering the subsystems’ dynamics, both are stable. 

Comparing the derivative of the state, however, subsystem 1 has a faster convergence 
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rate for / � 	0����. If �/� ) �, subsystem 2 will be the optimal choice. Therefore, the 

optimal solution is known as 

 t+V � 0� tB�/+ � 	0����� tB��/+� ) � . (24) 

The basis functions were selected as polynomials /Ev, where w � ����� � ���. As 

seen in Example 1 the accuracy of the approximation can be adjusted by the selection of 

the order of the polynomials. In this example, the selected basis functions were observed 

to provide the desired accuracy. For the training process, at each time step, 500 random 

states were selected from s � j0���k to train the network in a batch training scheme. The 

training was conducted by solving the least squares detailed in the Appendix. The 

resulting weight histories for the NN are plotted in Fig. 3. The time-dependency of the 

weights represents the time-dependency of the cost-to-go.  

Having trained the network, initial condition /N � � is simulated using the 

developed method. The results are given in Fig. 4. Comparing both the resulting 

switching instant and the mode sequence with the optimal solution (24), reveals that the 

method has provided the optimal solution.  

The controller is able to solve the optimal control problem for a vast variety of 

initial conditions. More specifically, the same trained network can control different initial 

conditions as long as the resulting state trajectory lies in s. From the dynamics of the 

subsystem it can be seen that selecting any /N � s will produce /+ � s, u1. Therefore, 

the trained network can optimally control any initial condition /N � s. The initial 

conditions /N � 0��� and /N � � are selected as the second and third simulations. The 

results are presented in Figs. 5 and 6, respectively. As for /N � 0���, this method has 

provided the optimal solution by picking the right subsystem at the beginning of the 

simulation, switching at the right time, and switching to the right mode (see Fig. 5). 

Figure 6 illustrates the performance of the method through selecting Subsystem 1 and not 

switching at all, which is the optimal solution for initial condition /N � �. 
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Fig. 3. Weight history of the NN, Example 2. 
 

 

Fig. 4. Simulation results of Example 2 for /N � �. 
 

 

Fig. 5. Simulation results of Example 2 for /N � 0���. 
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Fig. 6. Simulation results of Example 2 for /N � �. 
 

C. Example 3 

The second order system with three modes, presented in [13,30], is simulated as 

the third example. The objective of this problem is controlling the fluid level in a two-

tank setup. The fluid flow into the ‘upper tank’ can be adjusted through a valve which has 

three positions: fully open, half open, and fully closed. Each tank leaks fluid with a rate 

proportional to the square root of the height of the fluid in the respective tank. The upper 

tank leaks into the lower tank, and the lower tank leaks to the outside of the setup. 

Representing the fluid height in the upper tank with /- and the lower tank with /E, the 

dynamics of the state vector / � j/-� /Ek9 are given by the following three modes 

 /³ � B-	/� 8 ´ 0ó/-ó/- 0 ó/E¶,  /³ � BE	/� 8 ´0ó/- ! ���ó/- 0 ó/E ¶,  /³ � B�	/� 8 ´0ó/- ! �ó/- 0 ó/E¶.(25) 

The objective is forcing the fluid level in the lower tank (i.e., /E) to track constant 

value 0.5. For this purpose, cost function D � ��P 	/E 0 ����U Ņ  was used in [13] with a 

final time of � �. The control is the position of the valve and can assume one of the three 

discrete values 0, 0.5, and 1. Each of these values leads to one of the modes listed above. 

The basis functions for this example were selected as polynomials /-v/E@ , where non-

negative integers w and A are such that w ! A 3 Ü. This selection led to 45 neurons 

(> � ��). The problem was discretized using sampling time of ������. Domain s ��/ � 5E; � 3 /J 3 �� t � ���� was used for the training.  

Once the network was trained, initial condition £Ì� 8 j��Ü� ���k9, simulated in 

[13], was used to determine the optimal solution. The results are given in Fig. 7. The 
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method did an excellent job controlling the fluid level of the lower tank by tracking the 

desired value. Comparing the result with the result reported in [13] for the proposed 

nonlinear programming based method, the tracking is done much more accurately using 

the method developed in this study. The cost-to-go for the method given in [13] is 0.25, 

while for our method it turned out to be 0.245. The lower cost-to-go represents the better 

approximation of the optimal solution. This perfect tracking was achievable, however, 

through high frequency switching between the three modes, as seen in Fig. 7. The 

minimum dwell time of ����� was selected and applied, according to the remedies 

suggested in Section V for avoiding high frequency switching. Both the resulting state 

trajectory and the switching are presented in Fig. 8. The alternative remedy for high 

frequency switching presented as the threshold remedy was simulated as well. The 

threshold was selected at � � ��LÞ. The results are given in Fig. 9. Considering Figs. 8 

and 9, the state continues to closely track the desired value with far less switching. Using 

either a longer minimum dwell time or a greater threshold, however, resulted in less 

precise tracking. These results were expected. The cost-to-go resulting from applying 

these remedies turned out to be around 0.246 for both remedies. As seen, it is still less 

than the cost-to-go resulting from the method developed in [13]. 

Finally, a new initial condition, namely £Ì� � j���k9, was simulated using the 

same trained network. Considering the dynamics of the three modes, it can be observed 

that as long as the initial condition belongs to s, regardless of what switching is applied, 

the states will always stay in s. Therefore, the trained network should produce an optimal 

solution for any initial condition in s. The simulation results for £Ì� are given in Fig. 10. 

This figure demonstrates the capability of the method in producing an optimal solution 

for different initial conditions, as opposed to the other methods, including [13] whose 

solution depends on a single initial condition. 

VII. CONCLUSIONS 

A new scheme was developed for optimal switching between autonomous modes. 

This method is shown to provide optimal switching schedule without needing to enforce 

either a mode sequence or a number of switching. It is observed that the neurocontroller 

has attractive features that include providing optimal feedback solution for a vast variety 

of initial conditions. These capabilities were illustrated through numerical analyses. The 
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Fig. 7. Simulation results of Example 3 for £Ì�. 
 

 

 

Fig. 8. Simulation results of Example 3 for £Ì� with applied minimum dwell time. 
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Fig. 9. Simulation results of Example 3 for £Ì� with applied threshold. 
 

 

 

Fig. 10. Simulation results of Example 3 for £Ì�. 
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developed method can be utilized in different real world applications for real-time 

scheduling and control of switching systems. 
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APPENDIX 

In steps 2 and 5 of Algorithm 1 (or steps 2 and 6 of Algorithm 2) one may use the 

method of least squares for finding the unknown optimal 2+ in a batch training scheme. 

For this purpose, ß random states, denoted with /j�k, �� � ����� � � � ß�, need to be selected 

to perform the least squares. Denoting the right hand side of equations (8), (9), (10), or 

(12) resulting from each /j�k with à�/j�k�, the objective is finding 2+ such that it solves 

 %2+9:�/j-k� � à�/j-k�å2+9:�/jßk� � à�/jßk� (26) 

Define both } 8 �:�/j-k�� :�/jEk�� � � :�/jßk�� and ç 8 �à�/j-k�� à�/jEk�� � �à�/jßk��. Using the method of least squares, the solution to 

the system of linear equations (26) is  

 2+ � 	}}9�L-}ç9. (27) 

Note that for the inverse of matrix�	}}9�, which is an > �> matrix, to exist, one needs 

the basis functions :	� � to be linearly independent and ß ½ >. The process of 

calculating 2+ can be done in one shot. In this case, in order for the resulting 2+ to be 

valid for the whole domain s, it is required to select a very large ß and randomly select /+j�ks within s such that they represent the whole domain. Note that due to the convexity 

of least squares problems, this method leads to global optimal 2+ and the issue of getting 

stuck in a local minimum does not exist. 
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7. OPTIMAL SWITCHING BETWEEN CONTROLLED SUBSYSTEMS WITH 
FREE MODE SEQUENCE  

Ali Heydari and S.N. Balakrishnan 

ABSTRACT 

The problem of optimal switching and control of systems with nonlinear 

subsystems is investigated in this study where the mode sequence and the switching times 

between the modes are unspecified. An approximate dynamic programming based 

method is developed which provides an online solution for unspecified initial conditions 

and different final times. The convergence of the proposed algorithm is proved. 

Versatility of the proposed method and its excellent performance are illustrated through 

different numerical examples. 

I. INTRODUCTION 

Examples of switching systems can be found in dynamical systems in different 

fields, from aerospace to chemical engineering [1-5]. A switching system is characterized 

by a group of subsystems with different dynamics of which one is active at each time 

instant. Hence, in order to control such systems one needs a switching schedule along 

with a control input to be applied. There are a few papers in this area [6-16], however, 

still there are many open issues even for the case of linear subsystems with a quadratic 

cost functions [7,17]. 

Development in the field can be mainly classified into two categories. In the first 

category, the sequence of active subsystems, called mode sequence, is selected a priori 

[6-12], and the problem, i.e., finding the switching instants between the modes, is solved 

using nonlinear programming methods. In these papers, the gradient of the cost with 

respect to the switching instants/points is calculated. Afterward, the switching 

instants/points are adjusted to find the local optimum. Iterative solution to a nonlinear 

optimization problem is suggested in [10] and using the combination of this control 

approach with ideas from model predictive control, the authors developed the so-called 

crawling window optimal control scheme for the optimal switching problem. The second 

category is based on discretizing the problem in order to deal with a finite number of 

options. Authors of [13] utilized a direct search to evaluate the cost function for different 

randomly selected switching time sequences among the finite number of options to select 
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the best sequence. In [14], state and input spaces are discretized for calculation of the 

value function for optimal switching through dynamic programming. In [15] genetic 

algorithm is used to find the optimal switching times among the choices. A hybrid neural 

network (NN) is used for solving the optimal switching problem for a pre-specified initial 

condition in [16]. 

All the cited methods work only with a specific initial condition; each time the 

initial condition is changed, a new set of computations needs to be performed to find the 

new optimal switching instants. In order to extend the validity of the results for different 

initial conditions within a pre-selected set, in [9] a solution is found as the local optimum 

in the sense that it minimizes the worst possible cost for all trajectories starting in the 

selected initial states set. Also, the derivative of the switching parameters with respect to 

the initial conditions is sought through a sensitivity analysis. 

Recently, the authors of this study proposed a NN based scheme in [18] for 

optimal switching of systems with fixed mode sequence and autonomous dynamics, i.e., 

where the subsystems do not admit control inputs. Two major contributions of the current 

paper lie in the fact that the mode sequence is considered ‘free’ to be selected and that the 

systems considered are non-autonomous. Investigation of controlled subsystem makes the 

problem more complicated due to the inter-coupling that exists between the effect of 

switching between the modes and applying different controls once a mode is active. 

Furthermore, solving a free mode sequence problem is much more complicated than a 

problem with a fixed number of changes. 

In the past two decades, approximate dynamic programming (ADP) has been 

shown to have a lot of promise in solving conventional optimal control problems with 

NN as the function approximator [19-32]. ADP is usually carried out using a two network 

synthesis called adaptive critics (ACs) [20-22]. In the heuristic dynamic programming 

(HDP) class with ACs, one network, called the ‘critic’ network, maps the input states to 

output the cost and another network, called the ‘action’ network, outputs the control with 

states of the system as its inputs [22,23]. In the dual heuristic programming (DHP) 

formulation, while the action network remains the same as the HDP, the critic network 

outputs the costates with the current states as inputs [20,24,25]. The Single Network 

Adaptive Critics (SNAC) architecture developed in [26] is shown to be able to eliminate 
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the need for the second network and perform DHP using only one network. Similarly, the 

J-SNAC eliminates the need for the action network in an HDP scheme [27]. Note that the 

developments in [19-27] are for infinite-horizon problems. The use of ADP for solving 

finite-horizon optimal control of conventional problems was considered in [28-32]. 

Authors of [28] developed a time-varying neurocontroller for solving a problem with 

state constraints. In [29] a single NN with a single set of weights was proposed which 

takes the time-to-go as an input along with the states and generates the fixed-final-time 

optimal control for discrete-time nonlinear systems. Finite-horizon problems with 

unspecified terminal times were considered in [30-32]. 

In this study, a method based on ADP is developed to solve optimal switching 

problems. The idea is as simple as learning the optimal cost-to-go and the optimal control 

for different active modes. It is shown that having these functions the optimal mode can 

be found in a feedback form, i.e., as a function of the instantaneous state of the system 

and the remaining time. An algorithm is developed which fits in the category of HDP for 

learning the desired functions along with a proof of convergence. This method has 

several advantages over existing developments in the field: a) It provides global optimal 

switching (subject to the assumed neural network structure) unlike the nonlinear 

programming based methods which could provide only local optimal solution. b) The 

order of active subsystems and the number of switching are free. c) The neurocontroller 

determines optimal solution for unspecified initial conditions, without needing to retrain 

the networks. d) Once trained, the neurocontroller gives solution to any other final time 

as well, as long as the new final time is not greater than the final time for which the 

network is trained. e) The switching is scheduled in a feedback form, hence, it has 

inherent robustness of feedback solutions in moderate disturbance rejection. f) The 

proposed method provides optimal control as well as optimal switching schedule for the 

control of the system. 

The rest of this paper is organized as follows: The problem formulation is 

presented in section II and the proposed solution is described in section III. 

Approximations of the optimal cost-to-go and the optimal control with neural networks 

are explained in section IV. Numerical analyses are given in section V. Conclusions from 

this study are given in section VI. 
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II. PROBLEM FORMULATION 

A switching system with nonlinear input-affine subsystems can be represented by 

a set of µ subsystems or modes as 

 /³	 � � Biv	c��/	 �� ! Civ	c��/	 ��?	 �� w	 � � �, (1)  

where functions Biv; 56 < 56, and Civ; 56 < 56�=, uw � � 8 ��� �� � �µ�, represent the 

dynamics of the subsystems and are assumed to be smooth. Integers 7 and > denote the 

dimension of state vector / and control vector ?, respectively. The continuous time is 

denoted with   and the initial and final times are denoted with  N and  H, respectively. 

Controlling the switching systems requires a control input, ?; j N�  H� < 5=, and a 

switching function, w; j N�  H� < �. The latter determines the active subsystem at time   
and the former provides the input to the active subsystem. The optimal solution, however, 

is a solution that minimizes cost function  

 D � © d/� H�h ! P dGl�/	 �� ! ?	 �9Tl?	 �hcÊcÆ U .  (2) 

Convex positive semi-definite functions Gl;56 < 5 and ©;56 < 5 penalize the states 

and Tl � 5=�= is a positive definite matrix penalizing the control effort, in the selected 

cost function. The problem is to determine an input history ?	 � and a switching history w	 � such that cost function (2) subject to dynamics (1) is minimized. 

III. PROPOSED SOLUTION 

Approximate dynamic programming [19-22] framework which is the backbone of 

the solution developed in this study is formulated with discrete-time dynamics. 

Therefore, the dynamics and the cost function are discretized using small sampling time y :  
 /+,- � BvZ	/+� ! CvZ	/+�?+� 1 � þ� w+ � �, (3)  

 D � ©	/F� ! I 	G	/+� ! ?+9T?+�FL-+MN , (4) 

where . � � H 0  N��y �, /+ � /	1y  !  N�, ?+ � ?	1y  !  N�, and w+ � w	1y  !  N�. 
Subscript 1 denotes the discrete time index and þ 8 ����� � �. 0 ��. If Euler integration 

is used for discretization, one has Bv	/� 8 / ! y Biv	/�, Cv	/� 8 y Civ	/�, G	/� 8y Gl	/�, and T 8 y Tl. 
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Denoting the cost-to-go from each time step 1 and state vector /+ by D+	/+� one 

has 

 D+	/+� � ©	/F� ! I �G	/�� ! ?�9T?��FL-�M+ . (5) 

From the form of the cost function, it directly follows that 

 DF	/F� � ©	/F�, 
 D+	/+� � G	/+� ! ?+9T?+ ! D+,-	/+,-�, u1 � þ. (6)  

Based on Bellman principle of optimality [33], regardless of what decisions for w�, � � ������ � 1 0 �� are made, the optimal solution for the remaining time steps, i.e., � � �1� 1 ! ��� �. 0 �� is the solution which optimizes D+	/+�. The method developed 

in this study is based on approximating the optimal cost-to-go, denoted with D+V	/+�, and 

the optimal control ‘given’ the active subsystem w, denoted with ?+v�V	/+�, uw � �. Once 

these functions are learned, the optimal mode at current time, 1, and current state, /+, 

denoted with w+V	/+�, is given by 

 w+V	/+� � �ÕC>t7v�� �G	/+� ! ?+v�V9T?+v�V !�D+,-V �Bv	/+� ! Cv	/+�?+v�V�� 

 � �ÕC>t7v�� �?+v�V9T?+v�V !�D+,-V �Bv	/+� ! Cv	/+�?+v�V��� (7) 

The minimization given in (7) is among the finite number of elements of � and 

can be done online easily with relatively small number of computations. For example, if 

the system has two subsystems, finding optimal active subsystem at each instant 1 

simplifies to evaluating scalar values ?+v�V9T?+v�V !� D+,-V �Bv	/+� ! Cv	/+�?+v�V� for w � � 

and w � � and comparing the values to select the optimal w. This process needs to be done 

at each instant 1, u1 � þ. Once w+V	/+� is calculated, the respective control approximator 

can be used to output the control value. The next section gives an algorithm for learning 

desired functions D+V	/+� and ?+v�V	/+�, uw � �. 
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IV. APPROXIMATING OPTIMAL CONTROL AND OPTIMAL COST-TO-GO  

In order to motivate the idea of using ADP for obtaining optimal control and 

optimal cost-to-go for switching problems, the use of ADP for conventional optimal 

control problems with fixed-final-time cost functions is discussed first.  

A. Adaptive Critics for Conventional Optimal Control 

Assume the conventional fixed-final-time optimal control problem 

 /+,- � B	/+� ! C	/+�?+� u1 � þ (8) 

where B;56 < 56 and C;56 < 56�= along with the cost function given in (4). The 

optimal solution to the problem of minimizing cost function (4) subject to dynamics (8) is 

given by Bellman equation [33]  

 DFV 	/F� � ©	/F�, (9) 

  D+V	/+� � G	/+� ! ?+V9T?+V ! D+,-V 	/+,-V �,  u1 � þ, (10) 

 ?+V � 0 -ETL-C	/+�9 `aZefV� 	bZef�`bZef ÒbZefV ,  u1 � þ, (11) 

where /+,-V � B	/+� ! C	/+�?+V  and gradient �D+,-V� 	/+,-��/+,-� is forms as a column 

vector. 

In the HDP scheme [21] with ADP, two NNs named actor and critic are trained 

for approximating the optimal control and the optimal cost-to-go, respectively, for 

infinite-horizon problems. Ref. [29] extends the idea to fixed-final-time problems, 

through approximating the optimal parameters versus the current state as well as the 

time-to-go (remaining time). An iterative learning scheme can be derived from Bellman 

equation for learning the optimal control and the optimal cost-to-go for the fixed-final-

time problem by utilizing Eqs. (9) and (10) and replacing with [29] 

 ?+	J,-�	/+� � 0 -E TL-C	/+�9 `aZefV� 	bZef�`bZef ÒbZef	�� , u1 � þ, (12) 

Superscript ‘	t�’ denotes the index of iteration. Moreover, in (12) one has /+,-	J� 8B	/+� ! C	/+�?+	J�	/+�, /+,-V 8 B	/+� ! C	/+�?+V	/+�, and the converged value of ?+	J� 
is denoted with ?+V . Note that the iterations take place only in determining the optimal 
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control, starting with an initial guess on ?+N. Once the converged control value is 

obtained, the optimal cost-to-go is calculated using (10), without any need for iteration.  

Denoting the approximated optimal cost-to-go and the approximated optimal 

control with D+	/+� and ?+	/+�, respectively, and selecting linear in parameter networks, 

the expressions for the actor (control) and the critic (cost), can be written as 

 ?+	/+� � Î+9Ï	/+�,  1 � þ, (13) 

 D+	/+� � 2+9:	/+�,  1 � þ1�.�, (14) 

Functions Ï;56 < 5� and :;56 < 5Ð represent the linearly independent smooth basis 

functions, for x and Ñ being positive integers denoting the respective number of neurons. 

Matrices Î+ � 5��= and 2+ � 5Ð are the weights of the actor and the critic networks at 

time step 1, respectively. Utilizing different weights for different time steps provides the 

network with the ability to learn the time-dependent behavior of the solution to fixed-

final-time problems. Eqs. (9), (10), and (12) may be used to find network weights Î+ and 2+, u1. Substituting (13) and (14) in equations (9), (12), and (10) leads respectively to 

 2F9:	/F� � ©	/F�,  (15) 

 Î+	J,-�9Ï	/+� � 0 -ETL-C	/+�9Ó: �B	/+� ! C	/+�Î+	J�9Ï	/+��9 2+,-� , u1 � þ,(16) 

  2+9:	/+� � G	/+� ! Ï	/+�9Î+� TÎ+9Ï	/+� !2+,-�9 :dB	/+� ! C	/+�Î+9Ï	/+�h, 

  u1 � þ. (17) 

where superscript ‘	t�’ on Î+	J� denote the iteration index and the converged value is 

denoted with Î+. Moreover, Ó:	/� 8 �:	/���/ is formed as a column vector. 

Unknowns 2+ and Î+ can be calculated in a backward-in-time fashion, considering Eqs. 

(15)-(17). In other words, using (15) one can calculate 2F. Then, having 2F one can 

calculate ÎFL- using the iterative relation given in (16). Having calculated 2F and ÎFL-, 

unknown 2FL- can be found using (17). Repeating this process from 1 � . 0 � to 1 � �, all the unknowns weights can be calculated. This idea is detailed in Algorithm 1.  
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Algorithm 1 

Step 1: Find 2F�  such that 2F9:	/F� Ô ©	/F� for different /F � s where s denotes a 

compact subset of 56 representing the domain of interest.  

Step 2: For 1 � . 0 � to 1 � � repeat 

{ 

Step 3: Set t � � and select a guess on Î+	N�. 
Step 4: Randomly select ß different state vectors /+j�k � s,�� ������ � � � ß�, for ß being a large positive integer.  

Step 5: Set /+,-j�k � B d/+j�kh ! C d/+j�kh ?+j�k, where ?+j�k � Î+	J�9Ï d/+j�kh, u� � ����� � � � ß�. 
Step 6: Find Î+	J,-� such that  

Î+	J,-�9Ï d/+j�kh Ô 0 -ETL-C d/+j�kh9 Ó: d/+,-j�k h9 2+,-� ,�u� � ����� � � � ß�. 
Step 7: Set t � t ! � and repeat Step 6, until {Î+	J,-� 0 Î+	J�{ converges 

with a preset tolerance. 

Step 8: Set Î+� � Î+	J�. 
Step 9: Find 2+�  such that  

 2+9: d/+j�kh Ô G d/+j�kh ! Ï d/+j�kh9 Î+� TÎ+9Ï d/+j�kh ! 

 2+,-�9 : [B d/+j�kh ! C d/+j�kh Î+9Ï d/+j�kh], u� � ����� � � � ß�. 
} 

In Steps 1, 6, and 9 of Algorithm 1, the method of Least Squares, explained in 

Appendix A, can be used for finding the unknown weights in terms of the given 

parameters. 

Remark 1: Uniform approximation capability of neural networks [34,35] in 

approximation of continuous functions indicates that once the network is trained for a 

large enough number of samples, denoted by ß, distributed throughout the domain of 

interest, the network is able to approximate the output for any new sample of the domain 

with a bounded approximation error. This error bound can be made arbitrarily small if 
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NNs’ activation functions are rich and the number of training samples, ß, is large 

enough. For the linear in weight neural network selected in this study and the polynomial 

basis function utilized in the numerical examples, Weierstrass approximation theorem 

[36] proves a similar uniform approximation capability. 

Once the networks are trained offline, the optimal control will be given in a 

feedback form by the actor and can be implemented for online control of the plant. The 

critic network approximates the optimal cost-to-go as a function of the given state and 

time. This feature of the critic will be used in the next subsection, along with the actor, to 

find solution to the optimal switching problem. 

B. Adaptive Critics for Switching Optimal Control 

The idea presented in the previous subsection for optimal control of conventional 

problems is extended to switching problems in this subsection.  An algorithm is proposed 

for learning the optimal cost-to-go and the controls, where 	µ ! �� neural networks are 

utilized. In other words, one critic will be used to approximate D+V	/+�, denoted with D+	/+�, and µ actors will be used to approximate ?+v�V	/+�, denoted with ?+v	/+�,uw � �. 

 ?+v	/+� � Î+v9Ï	/+�� w � �� 1 � þ, (18) 

 D+� 	/+� � 2+9:	/+�� 1 � þ1�.�, (19) 

Note that the superscript w on Î+v � 5��= relates the actor to the respective subsystem. In 

other words, the approximated optimal control ‘given’ the active subsystem w at time 1 is 

?+v	/+� � Î+v9Ï	/+�. 
As for the weight update laws for determining �\ and 2\3 , u  and u4, the iterative 

learning scheme given in (9), (10), and (12) may be adapted as follows: The training 

starts with (9). Equations (12) and (10), however, are adapted as follows. The new fixed 

point iteration given by  

 ?+v�	J,-� � 0 -E TL-Cv	/+�9 `aZef	bZef�`bZef ÒbZef��	�� ��, u1 � þ and uw � �,  (20)  
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can be used to find the optimal control given every active subsystem w, denoted with ?+v�V, uw � �, where /+,-v�	J� 8 Bv	/+� ! Cv	/+�?+v�	J�. Superscript ‘	t�’ denotes the index of 

iteration and the converges value of ?+v�	J� is denoted with ?+v�V, uw � �. Afterward, using 

 w+V	/+� � �ÕC>t7v�� �?+v�V9T?+v�V !�D+,-V �Bv	/+� ! Cv	/+�?+v�V�� � u1 � þ,  

the optimal mode at the current time and state, denoted with w+V	/+�, will be calculated 
and used in  

 D+V	/+� � G	/+� ! ?+vZV	bZ��V9T?+vZV	bZ��V ! D+,-V dBvZV	bZ�	/+� ! CvZV	bZ�	/+�?+vZV	bZ��Vh��� 
 u1 � þ (21) 

to find the optimal cost-to-go, D+V	/+�. This process may continue in a backward form 

from 1 � . 0 � to 1 � �. By using the equations for the network structures (18) and 

(19) in equations (9), (20), and (21), the desired weight update law can be obtained. 

Algorithm 2 describes the detailed learning process. 

Algorithm 2 

Step 1: Find 2F�  such that 2F9:	/F� Ô ©	/F� for different /F � s where s denotes a 

compact subset of 56 representing the domain of interest.  

Step 2: For 1 � . 0 � to 1 � � repeat Steps 3 through 11 below 

{ 

Step 3: Randomly select ß different state vectors /+j�k � s, � ������ � � � ß�, for ß being a large positive integer.  

Step 4: For w � � to w � µ repeat Steps 5 through 9 below. 

{ 

Step 5: Set t � � and select a guess for Î+v�	N�. 
Step 6: Set /+,-v�j�k � Bv d/+j�kh ! Cv d/+j�kh ?+v�j�k, where ?+v�j�k �
Î+v�	J�9Ï d/+j�kh, u� � ����� � � � ß�. 
Step 7: Find Î+v�	J,-� such that 

 Î+v�	J,-�9Ï d/+j�kh Ô 0 -ETL-Cv d/+j�kh9 Ó: d/+,-v�j�kh9 2+,-� ,�u� � ����� � � � ß�.  (22) 
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Step 8: Set t � t ! � and repeat Step 7, until {Î+v�	J,-� 0 Î+v�	J�{ 

converges with a preset tolerance. 

Step 9: Set Î+v � Î+v�	J�. 
} 

Step 10: Set ?+v�j�k � Î+v9Ï d/+j�kh, u� � ����� � � � ß�, uw � �, and calculate  

 w+V	/+j�k� � �ÕC>t7v�� �?+v�j�k9T?+v�j�k ! �2+,-9 : dBv d/+j�kh ! Cv d/+j�kh ?+v�j�kh�.  

Step 11: Find 2+�  such that  

 2+9: d/+j�kh Ô G d/+j�kh ! ?+vZV	bZj�k��j�k9T?+vZV	bZj�k��j�k ! 

 2+,-�9 : [BvZV	bZj�k� d/+j�kh ! CvZV	bZj�k� d/+j�kh ?+vZV	bZj�k��j�k], u� � ����� � � � ß�. (23) 

} 

The iterative weight updates of Algorithm 2, i.e., Eq. (22) can be rewritten in 

terms of the NN weights as 

 Î+v�	J,-�9Ï d/+j�kh Ô 0 -ETL-Cv d/+j�kh9 Ó: �Bv d/+j�kh ! Cv d/+j�kh Î+v�	J�9Ï d/+j�kh�9 2+,-� , 

  u� � ����� � � � ß�. (24) 

Eq. (24) relates Î+v�	J,-� to Î+v�	J�, i.e., it is an iterative equation. Its converged value, Î+v, 
will be used in Eq. (23), and a least squares solution can be found for 2+� , see Appendix 

A. The following theorem provides the sufficient condition for the convergence of 

iterative equation (24). 

Theorem 1: The iterations given by (24) converge with any selected initial guess on Î+v�	N�, uw � �, and u1 � þ, providing the sampling time selected for discretization of 

continuous dynamics (1) is small enough. 

The proof is given in Appendix B. 
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In Theorem 1 the role of the sampling time in discretization of a continuous 

system is emphasized. It is worthwhile to discuss this issue in detail. Substituting (18) 

and (19) in optimal control equation (20), leads to  

 Î+v9Ï d/+j�kh Ô 0 -ETL-Cv d/+j�kh9 Ó: �Bv d/+j�kh ! Cv d/+j�kh Î+v9Ï d/+j�kh�9 2+,-� , 

  u� � ����� � � � ß�. (25) 

which is the same as (24) except that Î+v�	J,-� and Î+v�	J� on both sides are replaced with Î+v. Optimal weights Î+v, u1 � þ and uw � �, can be calculated by solving the nonlinear 

equation given in (25), without using the iteration given in (24). Typically, one needs to 

resort to numerical methods for solving the set of equations (25). Theorem 1 proves that 

for any given smooth dynamics and smooth basis functions, if the sampling time is small 

enough, the iterations given in (24) converge to the solution to the nonlinear equation 

(25). However, if the sampling time is fixed, then certain conditions on the dynamics or 

the cost function terms need to hold in order for the iterations to converge. These 

conditions can be easily derived from the proof of Theorem 1. 

Assuming the basis functions of the NN are selected rich enough to approximate 

the cost-to-go and the optimal control functions with a desired accuracy, the method 

developed here provides optimal solution due to its basis on dynamic programming [33]. 

In other words, if D+V	/+� and ?+v�V	/+�s are accurately approximated, the optimal mode 

will always be given by (7). Therefore, an analysis on the approximation capability of the 

NN is required. As mentioned in Remark 1, NNs can provide a uniform approximation 

with any desired degree of accuracy providing the function subject to approximation in a 

continuous function. Considering Eqs. (15)-(17) and (22), the continuity of the functions 

subject to approximation, given in the right hand sides of these equations, follows from 

the convexity of ©	� � and G	� � as well as the continuity of BJ	� �s, CJ	/+�s and the basis 

functions. For Eq. (23), however, due to the switching between the modes, i.e., the 

discontinuous nature of w+V	� �, the continuity of the right hand side is not obvious. 

Theorem 2 proves the required continuity. 

Theorem 2: Let function �v; 56 < 5, uw � �, be defined as 
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 �v	/� 8 Ï	/�9Î+vTÎ+v9Ï	/� !�2+,-9 : �Bv	/� ! Cv	/�Î+v9Ï	/��. 

If the active mode at each instant 1 and state vector / is given by 

 w+V	/� � �ÕC>t7v���v	/�, (26) 

then, function �vZV	b�	/� is a continuous function versus / at every / � s.  

The proof is given in Appendix B. 

C. Implementation and Control  

Once the NNs’ weights are trained using Algorithm 2, one may use them for 

online optimal control/scheduling of the system. This is done in real-time through feeding 

the current state /+, at each time step 1 � þ to equation (7), repeated below in terms of 

the NNs, to calculated the optimal active mode, w+V	/+�.  
 w+V	/+� � �ÕC>t7v�� íÏ	/+�9Î+vTÎ+v9Ï	/+� !�2+,-9 : �Bv	/+� ! Cv	/+�Î+v9Ï	/+��ï.  

Having calculated w+V	/+�, the optimal control ?+V  is given by ?+V � ?+vZV	bZ��V ÔÎ+vZV	bZ�9Ï	/+�. Hence, the optimal solution can be found online in a feedback form. Note 

that � has a finite number of elements and the minimization given in (7) is as simple as 

comparing the scalar values of the argument subject to minimization for different w � � 

and selecting the optimal one. 

As mentioned in the introduction, one of the features of this method is providing 

approximate global optimal solution. A requirement for this characteristic is the learned 

cost-to-go and controls being approximations of the global optimal cost-to-go and 

controls. Using Algorithm 2, the global optimality of the trained networks follows from 

the proof of Theorem 1. In other words, once it is proved that (24) is a contraction 

mapping, the uniqueness of fixed point Î+v to the iterative Eq. (24) follows [37]. Details 

of this result are beyond the scope of this study and are presented in [38]. As for the 

weights of the critic, 2+, using least squares leads to the global optimal weights, due to 

the convexity of least squares problems [39]. 
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Looking at Eq. (7), which is ‘the decision maker’ for switching, one may observe 

high frequency switching between the modes in some problems. In fact, this behavior is 

observed in Example 2 in this study. The following two remedies are suggested to avoid 

high frequency switching: 

1- The Minimum Dwell Time Remedy: Dictating a minimum dwell time after 

each switching can eliminate high frequency switching. After the first mode 

selection, one can dictate a minimum dwell time before switching to another 

mode at every change. That is, once a switching occurs, one may skip 

evaluating Eq. (7) and instead stay with the current active subsystem until the 

minimum dwell time is passed. 

2- The Threshold Remedy: Selecting a positive real number as the threshold, the 

switching is allowed once the cost difference between activating the new mode 

and staying with the current mode is more than the threshold. To be more 

specific, assume the active subsystem is t right before time instant 1, and by 

evaluating Eq. (7) one realizes that switching to subsystem w leads to the cost-

to-go less than the cost-to-go of staying with subsystem t. In such a case 

switching to subsystem w is allowed only if 

?+v�V9T?+v�V !�D+,-V �Bv	/+� ! Cv	/+�?+v�V� 4 ?+J�V9T?+J�V !� D+,-V �BJ	/+� ! CJ	/+�?+J�V� ! �, 

where the pre-selected threshold is denoted with �.  

The same algorithm (Algorithm 2) may still be used, in the offline training stage 

of the NNs. The abovementioned alternative remedies, however, can be used in the online 

control. The alterations created by the remedies result in a ‘sub-optimal’ control of the 

system. The result will remain sub-optimal because the neurocontroller calculates the 

optimal solution in a feedback form. More specifically, the perturbation due to the 

applied remedy can be considered as a disturbance for the controller. Providing suitable 

selection of the minimum dwell time or the threshold, the feedback nature of the 

controller can deal with the resulting disturbance without too much performance 

degradation. This behavior is due to the inherent nature of feedback controllers in 

moderate disturbance rejection. 
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V. NUMERICAL APPLICATIONS AND ANALYSIS 

A. Example 1 

First example is a scalar switching system with two modes, given below, is 

selected 

/³ � 0 B-	/� ! C-	/�? 8 0/ ! ?BE	/� ! CE	/�? 8 0/� ! ? 

The selected cost function is D � ����/	 H� ! ��E ! P ?	 �EU cÊN  where  H � ���. 

Selecting the domain of interest of s � j0���k the optimal switching function for the 

given system can be analytically calculated as 

 wV	 � � 0����tB���� 3 /	 � 3 ���ØÕ� 0 � 3 /	 � 3 0�����������������������tB���� 3 /	 ���ØÕ� 0 � 3 /	 � 3 ���ØÕ�/	 � 4 0����.  (27) 

For example, if /	 � ) �, utilizing subsystem 2 leads to a faster convergence toward the 

origin with less control effort due to �BE	/�� ) �B-	/��, therefore, the optimal mode in 

this case is subsystem 2. Note that if /	 � � j0�� �k, the optimal mode is the mode which 

has smaller �Bv	/�� in order to require less control effort to derive the state away from it 

point of attraction, i.e., the origin, toward the desired terminal point of 0�. The existence 

of analytical optimal switching function (27) for this system makes it a suitable example 

for investigating the performance of the developed method.  

Polynomial functions /�, for � � ������� � �Ú� and � � ������� � ��� are selected 

for the basis functions :	� � and Ï	� �, respectively. Note that, as explained in Remark 1, 

the resulting NNs will have the desired uniform approximation capability. The horizon is 

discretized to . � ��� time-steps, i.e., y  � �������. The training steps detailed in 

Algorithm 2 are carried out using ß � �� and the iterations were observed to converge in 

less than 5 iterations. The history of the weights of the trained NNs is shown in Fig. 1. It 

depicts the time-dependent behavior of the elements of the weights throughout the 

horizon, i.e., from   � � to   � ���. The NNs are utilized for controlling initial condition /	�� � �, once the networks are trained. The results, including the histories of the state, 

the active mode, and the optimal control, are shown in Fig. 2. The state history shows that 

the controller has successfully driven the initial state to close to the desired terminal state 
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in the given time. The history of active modes shows that switching has happened exactly 

at the optimal times, considering the analytical optimal switching function given in (27). 

An important feature of the developed method is providing optimal solution for 

different final times, without needing to retrain the networks. Let the new final time be  H � ������, i.e., the state should be brought to close to 0� in half of the previously 

selected final time. Note that once the optimal weights are available for 1 � j���� � � .k, 
the optimal weights for the horizon of .- steps, where .- 4 ., are the last .- set of 

weights, i.e., they are given by 2+, and Î+vs where 1 � j. 0 .-�. 0 .- ! ��� � .k, due 

to Bellman principle of optimality [33]. Fig 3 shows the result of controlling initial 

condition /	�� � � with  H � �����. Interestingly the neurocontroller has successfully 

controlled the state to get to close to the desired terminal state in the shorter final time. To 

do this, a different control history and a different switching schedule are selected. The 

new active mode history, however, is still in accordance with the analytical wV	 � given in 

Eq. (27). 

To further investigate the performance of the method, another initial condition, 

i.e., /	�� � ��� is selected and controlled using the same trained networks. The results 

are depicted in Fig. 4. Considering the resulting state history and the switching schedule 

shows that the controller is able to solve the problem of optimal switching for different 

initial conditions as well.  

 

 
Fig 1: History of NN weights, Example 1. 
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Fig 2: Simulation results for /	�� � � and  H � �, Example 1. 
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Fig 3: Simulation results for /	�� � � and  H � ���, Example 1. 
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Fig 4: Simulation results for /	�� � ��� and  H � �, Example 1. 

 

B. Example 2 

The second example is a fourth order linear system which models the planar 

motion of a point mass in the absence of friction. The objective is moving the mass to the 

origin. The force, however, is limited to be applied either in the X or in the Y direction, 

where X and Y denote the perpendicular axis in the plane. Input ?	 � denotes the applied 

force and while its magnitude is subject to be calculated, its direction is limited to be 

parallel to the X or the Y axes. This problem is modeled as a switching problem where 

there are two modes; mode 1 in which the force steers the mass in the X direction and 

mode 2 in which the force steers it in the Y direction. The state vector is formed as / � j/-� /E� /�� /Þk9, where /- and /E, respectively, are the X and Y positions and /� and 
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/Þ are the rates of change of /- and /E, respectively. The model for the system is given 

by 

/³ � 0B	/� ! C-	/�? 8 j/�� /Þ� ���k9 ! j�������k9?B	/� ! CE	/�? 8 j/�� /Þ� ���k9 ! j�������k9? 

Let the cost function be D � ���/� H�9/	 H� ! P ?	 �EU cÊN  where  H � ���. The domain 

of interest is selected as s � �/ � 5Þ; �/�� 4 ���� u��. 
Let the vector whose elements are all the non-repeating polynomials made up 

through multiplying the elements of vector /i by those of vector øl be denoted with /i Ù øl. 

In this example the following basis functions are used: 

 Ï	/� � j�� /� 	/ Ù /�9k9, 

 :	/� � ��� /� 	/ Ù /�9� �/ Ù 	/ Ù /��9�9. 

Using sampling time of y  � �����, the horizon is discretized to 400 steps. The 

training is carried out using Algorithm 2 with ß � ��� and the iterations were observed 

to converge in 4 iterations. Selecting initial condition of /	�� � j�������k9, the trained 

network is used for switching and control of the system and the results are given in Fig. 

5. It can be seen that the controller has been able to move the mass to toward the origin 

through applying a history of force and performing a suitable switching between the 

applied directions. 

The same problem is solved with the shorter final time of  H � ��� and the results 

are given in Fig. 6. As expected, the trained network has been able to solve the problem 

with a new final time, as well. Fig. 7 shows the result of solving the problem with a new 

initial condition of /	�� � j�������k9 and the final time of  H � �. Interestingly, the 

controller has done a nice job in controlling the new initial condition, too. 

Considering the switching schedule given in Fig. 5, it is observed that the 

controller exhibits high frequency switching between the modes in order to steer in the 

mass in the desired direction. If this behavior is unacceptable, one may apply one of the 

suggested remedies in subsection IV.C. As an example, the threshold remedy is simulated 

here to investigate its effect on the performance of the controller. The threshold was set 

as � � ����. Results of the first simulated problem in Example 2 are given in Fig. 8. 
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Comparing the state histories of Fig. 8 with those given in Fig. 5, it can be seen that the 

controller was able to bring the mass to the origin, while the number of switching is much 

less than in Fig. 5. Note that due to the coupling between the selected mode and the 

applied input control history given in Fig. 8, is different than the one given in Fig.5  

 

 

 

 
Fig 5: Simulation results for /	�� � j�������k9 and  H � �, Example 2. 
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Fig 6: State histories for /	�� � j�������k9 and  H � ���, Example 2. 

 

 
Fig 7: State histories for /	�� � j�������k9 and  H � �, Example 2. 

 

VI. CONCLUSIONS 

A method in the framework of approximate dynamic programming was developed 

for determining the optimal control and the optimal switching schedule for switching 

systems with controlled nonlinear subsystems and unspecified mode sequence. The 

performance of the method in solving problems with different initial conditions and 

different final times was investigated both analytically and numerically. These results and 

analyses lead one to conclude that the proposed method is versatile and is suitable for 

solving different real-world systems including aerospace, mechanical, and chemical 

problems. 
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Fig 8: State histories for /	�� � j�������k9,  H � �, and threshold � � ����, Example 2. 

 

APPENDIX A 
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equation for Î+ from Eq. (24) is explained and one can easily find the corresponding 

equation for 2+. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

−1

0

1

2

Time (s)
S

ta
te

s

x1 x2 x3 x4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

Time (s)

A
ct

iv
e 

M
od

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10

Time (s)

C
on

tro
l



 

 

210

To perform least squares for the weight update of Î+v, ß random states denoted 

with /j�k, where � 3 � 3 ß� are selected. Denoting the right hand side of Eq. (24) 

resulting from each /j�k with à�/j�k�, the objective is finding Î+v such that it solves 

 

áâã
âäÎ+v9Ï�/j-k� � à�/j-k�Î+v9Ï�/jEk� � à�/jEk�åÎ+v9Ï�/jßk� � à�/jßk�

 (28) 

Define 

 � 8 �Ï�/j-k����Ï�/jEk���� ���Ï�/jßk��  

 ç 8 �à�/j-k����à�/jEk���� ���à�/jßk��  

Using the method of least squares, solution to the system of linear equations (28) is given 

by  

 Î+v � 	��9�L-�ç9 (29) 

Note that for the inverse of matrix�	��9�, which is a x � x matrix, to exist, one needs the 

basis functions Ï	� � to be linearly independent and ß to be greater than or equal to the 

number of the basis functions. 

APPENDIX B 

This appendix includes the proofs of Theorems 1 and 2. 

Proof of Theorem 1: The iteration performed on Î+v�	J�, given in (24) and repeated here, 

is a successive approximation to find a fixed point of a function 

 Î+v�	J,-�9Ï d/+j�kh Ô 0 -ETL-Cv d/+j�kh9 Ó: �Bv d/+j�kh ! Cv d/+j�kh Î+v�	J�9Ï d/+j�kh�9 2+,-� , 

i.e., there exists function è;�5��= < 5��= such that (24) is of form  

 Î+v�	J,-� � è	Î+v�	J��. (30) 

The claim of the theorem is proved if it can be shown that (30) is a contraction mapping 

[37]. Since 5��= with 2-norm denoted by {� { is a Banach space, iterations given by 
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(30), regardless of initial Î+v�	N�, converges to some Î+v � è	Î+v� if there exists a � 3 Q 4� such that for every é- and éE in 5��=, the following inequality holds [37] 

 {è	é-� 0 è	éE�{ 3 Q{é- 0 éE{. (31) 

Function è	� � can be formed by converting (24) to a least squares form 

performed in Appendix A. Rewriting Eq. (29), given in Appendix A, leads to 

 è	Î+v�	J�� 8

	��9�L-�
êë
ëëë
ëëë
ëì í0 -ETL-Cv d/+j-kh9 Ó: �Bv d/+j-kh ! Cv d/+j-kh Î+v�	J�9Ï d/+j-kh�9 2+,-� ï9

í0 -ETL-Cv d/+jEkh9 Ó: �Bv d/+jEkh ! Cv d/+jEkh Î+v�	J�9Ï d/+jEkh�9 2+,-� ï9
å

í0 -ETL-Cv d/+jßkh9 Ó: �Bv d/+jßkh ! Cv d/+jßkh Î+v�	J�9Ï d/+jßkh�9 2+,-� ï9
ðñ
ñññ
ñññ
ñò
 (32) 

One has 

 {è	é-� 0 è	éE�{ 3óß{	��9�L-�{{ -E TL-Cv d/+jôkh9 Ó: [Bv d/+jôkh ! Cv d/+jôkh é-9Ï d/+jôkh]9 2+,-� 0 

 -E TL-Cv d/+jôkh9 Ó: [Bv d/+jôkh ! Cv d/+jôkh éE9Ï d/+jôkh]9 2+,-� { (33) 

where integer ô, � 3 ô 3 ß, is given by 

ô � �ÕC>�/-5�5ß { ��TL-Cv d/+j�kh9 Ó: [Bv d/+j�kh ! Cv d/+j�kh é-9Ï d/+j�kh]9 2+,-� � 

 -E TL-Cv d/+j�kh9 Ó: [Bv d/+j�kh ! Cv d/+j�kh éE9Ï d/+j�kh]9 2+,-� {. 

In inequality (33), the following norm inequality is used 

 ö�÷ø-øEåøßù�ö 3 óß{øô{ (34) 

where øJs are real-valued row-vectors and ô � �ÕC>�/-5�5ß {ø�{.  
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Smoothness of :	� � leads to the Lipschitz continuity of Ó:	� � on compact set s 

[40]. Therefore, there exists some positive real number Q( such that for every /- and /E 

in s, one has {Ó:	/-� 0 Ó:	/E�{ 3 Q({/- 0 /E{. Using this feature of Ó:	� �, 
inequality (33) can be written as 

 {è	é-� 0 è	éE�{ 3Q(óß{	��9�L-�{{ -E TL-Cv d/+jôkh9 {{Cv d/+jôkh {{Ï d/+jôkh {{2+,-� {{	é-9 0 éE9�{ (35) 

By defining  

 Q 8 Q(óß{	��9�L-�{{ -E TL-Cv d/+jôkh9 {{Cv d/+jôkh {{Ï d/+jôkh {{2+,-� { (36) 

one can select the sampling time y  in discretization of the continuous dynamics (1) 

small enough such that the condition � 3 Q 4 � is satisfied, since a smaller y , directly 

results in a smaller {Cv d/+jôkh { while the other terms including { -E TL-Cv d/+jôkh9 { are 

not affected. Note that smoothness, and hence continuity, of Cv	� �s and Ï	� � in their 

domain results in being bounded in the compact set s [41], therefore, the /+jôk dependent 

terms in (36) are upper bounded.  

The expression given for the contraction mapping coefficient Q in (36) involves {2+,-{ also. It should be noted that 2+,- is already learned from the previous step in 

the algorithm, therefore, it is bounded. In other words, starting from 1 � . 0 �, one uses 

the successive approximation given by (24) and once Î+v�	J� converges, it is used in (23) to 

calculate the bounded 2+. This process is repeated till 1 � �.  

Note that if the selected sampling time y  is not small enough, at some 1, � 3 1 3 . 0 �, the respective Q given in (36) does not satisfy condition � 3 Q 4 �, 

therefore, Î+v�	J� does not converge as t < �. In that case, one may select a smaller 

sampling time and restart the algorithm, i.e., from 1 � . 0 � to calculate the weights 

corresponding to the smaller sampling time. Refining the sampling time leads to a change 

in 2+,- as well. However, it can be shown that as the sampling time becomes smaller, 2+,- remains bounded. This boundedness follows from looking at the definition of 2+,-, which is the weights for the network that approximates a discretized cost-to-go. In 

other words, 
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 2+,-9 :	/� Ô ©	/F� ! I �G	/�� ! ?�9T?��FL-�M+,- . (37) 

As the sampling times go to zero, the value of the discretized cost-to-go 

converges to the cost-to-go given by © d/� H�h ! -E P dG�/	 �� ! ?	 �9T?	 �hcÊ	+,-�|c U . 
On the other hand, since the system does not have a finite-scape time (which follows 

from smoothness on the compact domain of interest,) the finite-horizon cost-to-go will be 

finite, using any finite control. Note that the control history included in the integration 

given in (37) correspond to the already converged time-steps, hence, they are bounded. 

Therefore, as y � < �, the value of 2+,-9 :	/� will be finite. Since the basis functions :	/� are linearly independent, a finite 2+,-9 :	/� leads to a finite 2+,-9 , as seen in the 

least squares operation described in Appendix A. Therefore, term  {2+,-{ existing in the 

expression for Q in (36) remains bounded as the sampling time is refined. This completes 

the proof of convergence of Î+v�	J� to Î+v for � 3 1 4 . 0 � using any initial guess on Î+v�	N�, for any small enough sampling time. ¾ 

 

Proof of Theorem 2: Let /i be any point in 1s and set 

 6 i � w+V	/i�. (38) 

Select an open set + � s such that /i belongs to the boundary of + and limit 

 6! � z#W{bLbi{<Nb�, w+V	/�  (39) 

exists. If 6 i � 6!, for every such +, then there exists some open set � � s containing /i such 

that w+V	/� is constant for all / � �, because w+V	/� only assumes integer values. In this 

case the continuity of �vZV	b�	/� at /i follows from the fact that �v	/� is continuous at /i, 
for every fixed w � �. Finally, the continuity of the function subject to investigation at 

every /i � s, leads to the continuity of the function in s. 

Now assume 6 i º 6!, for some +. From the continuity of �7!	/� at /i, for the given 6!, 
one has 

 �7!	/i� � z#W.b<N �7!	/i ! �/�.  (40) 

If it can be shown that for every selected +, one has 



 

 

214

 �7i	/i� � �7!	/i�, (41) 

then the continuity of �vZV	b�	/� at /i follows, because from (41) and (40) one has 

 �7i	/i� � z#W.b<N �7!	/i ! �/�, (42) 

and (42) leads to the continuity by definition [41]. The proof that (41) holds is done by 

contradiction. Assume that 

 �7i	/i� 4 �7!	/i�,  (43) 

then, due to the continuity of �7i	/� and �7!	/� at /i, there exists an open set / containing /i, such that  

 �7i	/� 4 �7!	/�, u/ � /.  (44) 

On the other hand, Eq. (39) implies that there exists a neighborhood of /i at which 6! � w+V	/�, hence, because /i � /, one has  

 �7i	/� ½ �7!	/�� Ö/ � /.  (45) 

But, (45) contradicts (44). Hence, (43) is not possible. The impossibility of 

 �7i	/i� ) �7!	/i�  (46) 

directly follows from (38). Because if (46) holds then 6 i º w+V	/i�, which is against (38). 

Therefore, equality (41) holds and hence, �vZV	b�	/� is continuous at every /i � s. This 

completes the proof. ¾ 
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8. OPTIMAL SWITCHING OF NONLINEAR SYSTEMS WITH MODELING 
UNCERTAINTY 

Ali Heydari and S. N. Balakrishnan 

ABSTRACT 

The problem of infinite-horizon optimal switching of nonlinear systems with 

modeling uncertainty is investigated where the mode sequence as well as the number of 

switching is free. An approximate dynamic programming based scheme is developed for 

solving the problem. The proposed method utilizes a nominal model of the switching 

system for offline training and once applied on the system, learns the unmodeled 

dynamics in real-time. A numerical example demonstrates the capability of the developed 

solution in a second order switching system with three subsystems. 

I. INTRODUCTION 

Many real-world systems are classified as switching systems in which different 

modes of operation are available and the controller needs to decide between the modes to 

activate one at each instant. As a short survey on the literature, formulating the problem 

as a nonlinear programming problem with preselected initial conditions, mode sequence, 

and number of switching was investigated in [1-7]. The discretization of both the state 

and input space was used for optimal switching through dynamic programming in [8]. 

Genetic algorithm and neural networks were used in [9] and [10], respectively, to 

determine the optimal switching for a preselected initial condition within intelligent 

methods. Two approximate dynamic programming (ADP) based schemes were proposed 

in [11] and [12] by the authors of this study, for finite-horizon optimal switching of 

systems with fixed and free mode sequences, respectively. These developments provide 

solution for a vast domain of initial conditions.  

To the best of authors’ knowledge, the available methods in the literature require 

a perfect model of the system ahead of the implementation time, for calculation of the 

solution. In practice, however, modeling uncertainties are ubiquitous. This fact gives rise 

to the need for developing a scheme for online calculation of the optimal switching 

schedule based on the actual dynamics of the subsystems. This problem is investigated 

here. 
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The motivation for the solution proposed in this study comes from the studies in 

ADP [13,14] in which the optimal cost-to-go is learned as a function of the states for 

conventional optimal control problems. The idea proposed in [12] for finite-horizon 

optimal switching is extended to infinite-horizon problems initially. It is shown that once 

the optimal cost-to-go function is approximated, the optimal switching solution can be 

determined in real-time through a simple equation that requires the model of the 

subsystems as well as the cost-to-go function. Afterwards, an online training phase is 

proposed for capturing the effect of unmodeled dynamics on the cost-to-go approximator 

and also for identifying the unmodeled dynamics, motivated by the work in [15] for 

conventional optimal control problems. In other words, a neural network (NN) is trained 

offline based on imprecise models of the subsystems and then it is utilized in the online 

operation of the system in which, the actual dynamics of the subsystems are captured and 

the network is re-trained based on the system’s output to generate the optimal cost-to-go 

and hence, the optimal switching schedule. Besides solving the problems with modeling 

uncertainty, an important feature of the method is providing solution for different initial 

conditions. Moreover, the mode sequence and the number of switching are subject to be 

determined optimally.  

This article is organized as follows. Problem formulation is presented in section 

II.  The solution for the case of no modeling uncertainty is given in section III. The idea 

for handling modeling uncertainties is discussed in section IV. Simulation study is given 

in section V, followed by concluding remarks in section VI. 

II. PROBLEM FORMULATION 

A discrete-time switching system with autonomous subsystems can be 

represented by a set of µ subsystems/modes: 

 /+,- � BJ	/+�� 1 � þ� t � £, (1)  

where BJ;56 < 56, þ denotes the set of non-negative integers, £ 8 ��� �� � �µ�, and 7 

denotes the dimension of the state vector /+. Subscript 1 in /+ denotes the discrete time 

index. Moreover, subscript t in BJ denotes the index of the active subsystem. At each 

instant 1, only one subsystem can be active. A controller for the system is defined as a 

switching sequence that allows the system to operate. The optimal solution, however, is 
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defined as a switching schedule using which, the infinite-horizon cost function given 

below is optimized.  

 D � I G	/+��+MN  (2) 

Convex positive semi-definite function G;56 < 5 penalizes the deviation of the states 

from the desired values. Denoting the index of active subsystem at time 1 with t+, the 

optimal solution may be denoted with t+V � £, u1 � þ. The mode sequence, the number of 

switching, and the switching instant are each subject to be determined such that the cost 

function is optimized.  

III. SOLUTION PROCESS WITHOUT MODELING UNCERTAINTY 

Denoting the cost-to-go at current state /+ by D	/+� leads to 

 D	/+� � I G�/v��vM+ . (3) 

Note that, from the form of the cost function, it directly follows that 

 D	/+� � G	/+� ! D	/+,-�, u1 � þ. (4) 

Based on the Bellman principle of optimality [16], regardless of what decisions are made 

for the past, the optimal solution is a solution which optimizes the future. Therefore, 

regardless of values selected for tv, w � ����� � � 1 0 ��, the optimal solution for the 

remained time steps, i.e., w � �1� 1 ! ��� � is the solution which optimizes D	/+�. From 

(4), optimizing D	/+� is equivalent of optimizing D	/+,-�, because term G	/+� does not 

depend on the selection of tv, w � �1� 1 ! ��� �. The idea is approximating the optimal 

cost-to-go D�V	/+� versus /+. Once this function is available, the online optimal solution 

can be calculated at each instant 1 and state vector /+ using 

 t�V	/+� � �ÕC>t7J�)�D�V�BJ	/+��� (5) 

For example, if the system has two subsystems, finding optimal solution at each 

instant 1 simplifies to evaluating the scalar-valued function D�V�BJ	/+�� for t � � and t � � and selecting the t for which D�V�BJ	/+�� is smaller. This calculation needs to be 

done online at each instant 1 for 1 � þ. Therefore, the optimal solution will be calculated 

in real-time and in a feedback form. The following subsections provide the process for 
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learning D�V	/+�. For the process, the following assumption is needed to guarantee the 

finiteness of the optimal cost-to-go.  

Assumption 1: The method developed in this study assumes that there exists a switching 

schedule for which the cost function remains finite.  

A. Cost-to-go Function Approximation  

In this subsection the process of learning the cost-to-go for a switching system is 

explained. In order to motivate the idea, initially the case of conventional systems, i.e., 

non-switching systems, is discussed and an algorithm is proposed for learning the cost-to-

go function. Afterward, the algorithm is modified to learn the cost-to-go function for the 

switching system subject to this study. 

A.1. Cost-to-go approximation for a conventional system 

Let the dynamics of the system be  

 /+,- � B	/+�� 1 � þ, (6) 

where B;56 < 56 is the sole mode of the system. Note that, the system does not include 

a control or switching. However, the cost-to-go at current state /+, i.e., D	/+� can be 

calculated using cost function (2). The objective is approximating function D	/+� as a 

function of /+. An algorithm is suggested for learning the cost-to-go function in this 

subsection. The algorithm trains an NN as a global function approximator for the 

purpose. The concept is motivated by the notion of Heuristic Dynamic Programming 

(HDP) [13,14] for infinite-horizon optimal control of conventional systems. In the HDP 

scheme, the so called critic network learns the optimal cost-to-go, and the so called actor 

learns the optimal control. In this study, the actor is skipped. The critic is utilized to learn 

the cost-to-go versus /+ for nonlinear system (6). Selecting a linear in the parameter NN 

as the function approximator, the expressions for the critic (cost-to-go approximator) can 

be written as 

 D	/+� Ô 29:	/+�� 1 � þ,  (7) 

where 2� � 5= is the unknown optimal weight matrix of the network. The selected basis 

functions are given by :;56 < 5=, with > being a positive integer denoting the number 

of neurons. The training process for learning the optimal weight matrix 2 is detailed in 

Algorithm 1.  
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Algorithm 1 

Step 1: Select an initial weight matrix for the NN. 

Step 2: Randomly select state vector / � s, where s represents the domain of 

interest. 

Step 3: Calculate the training target Dc as  

  Dc � G	/� !29:�B	/��. (8) 

Step 4: Train the weights based on the input-target pair (/� Dc). 
Step 5: Repeat Steps 2 to 4 until 2 converges for different random /s. 

A.2. Cost-to-go approximation for a switching problem 

Considering the cost-to-go approximation method discussed in the foregoing 

subsection, the same concept may be adapted for approximating the optimal cost-to-go of 

switching system (1). Note that once the t+V , u1, is found for a given initial condition /N, 

system (1) simplifies to a conventional system with a nonlinear time-varying dynamics 

due to the frozen switching. Therefore, a NN can be used to learn its cost-to-go. 

Assuming the network structure (7), Algorithm 2 is proposed for learning the optimal 

cost-to-go function in a closed form. 

Algorithm 2 

Step 1: Select an initial weight matrix for the NN. 

Step 2: Randomly select state vector / � s. 

Step 3: Calculate 

  t�V	/� � �ÕC>t7J�)�29:�BJ	/���  (9) 

Step 4: Calculate the training target Dc  
  Dc � G	/� !29: dBJ�V	b�	/�h. (10) 

Step 5: Train the weights based on the input-target pair (/� Dc). 
Step 6: Repeat Steps 2 to 5 until 2 converges for different random /s. 

Assuming the basis functions of the NN are selected rich enough to approximate 

the cost-to-go function with the desired accuracy, the method developed here provides 

optimal solution due to its basis on Dynamic Programming [16]. In other words, if D�V	/+� 
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is approximated and available, the optimal mode will always be given through (5). 

Therefore, an analysis on the approximation capability of the NN is required. It is well 

known that NNs can provide uniform approximation within the domain of interest 

providing the function subject to approximation in a continuous function. Interested 

readers are referred to [17] and [18] for multi-layer NNs and linear in parameter NNs 

with polynomial basis functions, respectively. Considering Eq. (10), due to the switching 

between the modes, i.e., the discontinuous nature of t�V	� �, the continuity of the right hand 

side is not obvious. Theorem 1 proves the required continuity. 

Theorem 1: If the active mode for the given state vector / is given by (9), then scalar-

valued function 2� �9: dBJ�V	b�	/�h is a continuous function versus / at every / � s.  

Proof: Let /i be any point in s and set 

 * i � t�V	/i�. (11) 

Select an open set + � s such that /i belongs to the boundary of + and limit 

 *! � z#W{bLbi{<Nb�, t�V	/� (12) 

exists. If * i � *!, for every such +, then there exists some open set � � s containing /i such 

that t�V	/� is constant for all / � �, because t�V	/� only assumes integer values. In this 

case the continuity of 2� �9: dBJ�V	b�	/�h at /i follows from the fact that 2� �9:�BJ	/�� is 

continuous at /i, for every fixed t � £. Finally, the continuity of the function subject to 

investigation at every /i � s, leads to the continuity of the function in s. 

Now assume * i º *!, for some +. From the continuity of 2�9:�B-!	/�� at /i, for the 

given *!, one has 

 2� �9:�B-!	/i�� � z#W.b<N2� �9:�B-!	/i ! �/��.  (13) 

If it can be shown that for every selected +, one has 

 2� �9:�B- i	/i�� � 2� �9:�B-!	/i��, (14) 

then the continuity of 2�9: dBJ�V	b�	/�h at /i follows, because from (14) and (13) one has 

 2� �9:�B- i	/i�� � z#W.b<N2� �9:�B-!	/i ! �/��, (15) 
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and (15) leads to the continuity by definition [21]. The proof that (14) holds is done by 

contradiction. Assume that for some /i and some + one has 

 2� �9:�B- i	/i�� 4 2� �9:�B-!	/i��,  (16) 

then, due to the continuity of 2� �9:�B- i	/i�� and 2� �9:�B-!	/i�� at /i, there exists an open set / containing /i, such that  

 2� �9:�B- i	/�� 4 2� �9:�B-!	/��, u/ � /.  (17) 

On the other hand, Eq. (12) implies that there exists a neighborhood of /i at which *! � t�V	/�, hence, because /i � /, one has  

 2� �9:�B- i	/�� ½ 2� �9:�B-!	/��� Ö/ � /.  (18) 

But, (18) contradicts (17). Hence, (16) is not possible. The impossibility of 

 2� �9:�B- i	/i�� ) 2� �9:�B-!	/i��  (19) 

directly follows from (11). Because if (19) holds then * i º t�V	/i�, which is against (11). 

Therefore, equality (14) holds and hence, 2� �9: dBJ�V	b�	/�h is continuous at every /i � s. 

This completes the proof. ¾ 

The point which leads to the result given in Theorem 1 is the fact that t�V	� � is 

defined by the ‘argmin’ function given in (9). Even though t�V	/� could discontinuously 

change as / does, function 2� �9: dBJ�V	b�	/�h will be continuous at the continuous and 

discontinuous points of t�V	/�. In order to better understand this point, one may consider 

the example of having two subsystems with scalar dynamics. Assume the cost-to-go of 

utilizing each subsystem, given by 2� �9:�BJ	/��, t � ���, changes linearly versus / as 

given in Fig. 1. In this case, function 2�9: dBJ�V	b�	/�h will be given by the solid plots in 

the figure. As seen, the jump of t�V	/� from one value to another, does not create any 

discontinuity in 2�9: dBJ�V	b�	/�h. 
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Moreover, for the online implementation phase, the models are required for calculating t�V	/� as seen in Eq. (9) and discussed in Section III.B. Hence, if the models are not exact, 

the NN will not provide a precise approximation of the cost-to-go and also the scheduler 

given in Eq. (9) will not be able to find the optimal mode. 

Let the actual dynamics of the subsystems be given by 

 /+,- � BJ	/+� ! UJ	/+�� 1 � þ� t � £, (20) 

where UJ;56 < 56 is a smooth function representing the unmodeled uncertainty existing 

in subsystem t. Based on the uniform approximation capability of NNs [17,18], there 

exists weight matrix ÎJ � 56�@, ut � £, and basis functions Ï;56 < 5@ where A is a 

positive integer, such that the uncertainties of the subsystems can be approximated using 

neural network ÎJ9Ï	/�, i.e., 

 UJ	/� Ô ÎJ9Ï	/�, ut � £. (21) 

The networks weights, ÎJs, can be learned online based on the state measurement, i.e., 

such that network ÎJ9Ï	/+� approximates input-output mapping �/+� /+,- 0 BJ	/+��, u1. 

The idea is using the nominal model of the subsystems, given in Eq. (1), for offline 

training of the cost-to-go approximation network. The offline training is based on 

Algorithm 2. Afterwards, the controller is implemented on the system and identifiers ÎJ9Ï	/�s, whose weights are initially set to zero, are trained online to approximate the 

uncertainties in the subsystems. As ÎJs are being learned, the weights of the cost-to-go 

approximator also need to be updated based on the online information of the system 

output. In this manner, the offline trained 2 will be re-optimized to approximate the 

optimal cost-to-go of the actual dynamics. The process in summarized in Algorithm 3 

Algorithm 3 (Exploiting Actions) 

Step 1: Measure current state /+� 
Step 2: Calculate t	/+� � �ÕC>t7J�)�29: dBJ	/+� ! ÎJ9Ï	/+�h�  
Step 3: Apply t	/+� on the system and wait for one time step. 

Step 4: Measure system state /+,-. 

Step 5: Update ÎJ	bZ��  based on input-target pair d/+� /+,- 0 BJ	bZ�	/+�h. 
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Step 6: Calculate training target Dc using Dc � G	/+� !29:	/+,-�. 
Step 7: Update 2 using input-target pair (/+� Dc). 
Step 8: Set 1 � 1 ! � and go back to Step 2 until 2 and ÎJs converge for different ts. 

As seen in Algorithm 3, the online learning is composed of both training ÎJs and 

re-training 2. The actions, i.e., the t	/+� selections, are done in an exploiting fashion 

[19], as seen in Step 2 of Algorithm 3. The reason for calling the actions as exploiting is 

the fact that the available knowledge of cost-to-go and the dynamics of the subsystems 

are exploited in Step 2 of the algorithm to take the actions that minimizes the cost-to-go. 

However, since the utilized ÎJs are not precise yet, even if the weights of the cost-to-go 

approximator, i.e. 2, is optimal, the selected t	/+�s will not be optimal. Note that if a 

particular subsystem is not selected in Step 2 of Algorithm 3 to be active, it will never get 

the chance to be identified, based on Algorithm 3. As an example, assume there is a 

subsystem whose nominal model is such that the /+,- resulting from activating that 

subsystem does not lead to the minimum cost-to-go for any 1, compared to the case of 

using other subsystems. However, the actual mode of this subsystem could be completely 

different. Algorithm 3, however, will never give the chance to such a subsystem to be 

active at any 1, and hence, its actual dynamics will never be identified, regardless of how 

desired or undesired it is. This behavior leads to the need for exploring actions [19] as 

well as exploiting actions in many reinforcement learning schemes. 

Exploring actions are those which are taken to explore the options, not necessarily 

to minimize the cost-to-go. Such actions could be as simple as randomly selecting an t	/+� to give the chance to every subsystem to be active at some times and to be 

identified. Algorithm 4 provides the training scheme based on exploring actions. 

Algorithm 4 (Exploring Actions) 

Step 1: Measure current state /+.  

Step 2: Randomly select subsystem t	/+� to be active at time 1. 

Step 3: Apply t	/+� on the system and wait for one time step. 

Step 4: Measure system state /+,-. 

Step 5: Update ÎJ	bZ��  using input-target pair d/+� /+,- 0 BJ	bZ�	/+�h. 

Step 6: Set 1 � 1 ! � and go back to Step 2 until ÎJs converge for different ts. 



 

 

228

As seen in Algorithm 4, the optimal cost-to-go approximator’s weight is not 

updated after exploring actions. The reason is the fact that the resulting /+,- in here is 

not selected to be minimizing anything, hence, its resulting cost-to-go, that is Dc �G	/+� !29:	/+,-�, is not suitable to be used as a training target for updating 2. For 

implementation, the designer should set a balance between exploiting and exploring 

actions, i.e., between utilizing Algorithms 3 and 4. As the models are being identified, the 

balance could be updated in favor of utilizing more exploiting actions. Ideally, once the 

models are completely identified, the actions could be limited to exploiting actions.  

V. NUMERICAL ANALYSIS 

The second order system with three modes selected in [20,22] is simulated as the 

numerical example. The objective of this problem is controlling the fluid level in a two-

tank setup. The fluid flow into the ‘upper tank’ can be adjusted through a valve which has 

three positions: fully open, half open, and fully closed. Each tank leaks fluid with a rate 

proportional to the square root of the height of the fluid in the respective tank. The upper 

tank leaks into the lower tank, and the lower tank leaks to the outside of the setup. 

Representing the fluid height in the upper tank with /- and the height in the lower tank 

with /E, the nominal dynamics of the state vector / � j/-� /Ek9 are given by the 

following three modes 

 /³ � B-	/� 8 ´ 0ó/-ó/- 0 ó/E¶,   
 /³ � BE	/� 8 ´0ó/- ! ���ó/- 0 ó/E ¶,   
 /³ � B�	/� 8 ´0ó/- ! �ó/- 0 ó/E¶. 

The objective is forcing the fluid level in the lower tank (i.e., /E) to track the 

constant value 0.5. For this purpose, cost function D � ��P 	/E 0 ����U �N  is used. The 

control is the position of the valve and can assume one of the three discrete values 0, 0.5, 

and 1. Each of these values leads to one of the modes listed above. The basis functions 

for this example were selected as polynomials /-v/E@ , where non-negative integers w and A 
are such that w ! A 3 �. This selection led to 36 neurons (> � �Ú). The problem was 



 

 

229

discretized using sampling time of ������. The domain s � �/ � 5E; � 3 /J 3 �� t ����� was used for the training. The method of least squares [11] was conducted over 1000 

random points and the evolution of the weights during the iterative training is plotted in 

Fig. 2. As seen in this figure, the iterations converged in less than 80 iterations. 

Once the network was trained, initial condition %&� 8 j��Ü� ���k9, simulated in 

[20], was used to determine the optimal solution. Assuming the actual dynamics of the 

system being identical to the nominal model, the initial condition is simulated and the 

resulting state trajectories and mode sequence are given in Fig. 3 and 4, respectively. Fig. 

3 shows that the network trained under Algorithm 2 did an excellent job controlling the 

fluid level of the lower tank by tracking the desired value. An interesting feature of the 

method is approximating optimal solutions for different initial conditions, without 

needing to retrain the network, as long as the resulting state trajectories lie within the 

domain of interest, s. To evaluate the controller in this regard, a new initial condition, 

namely %&� � j�����k8, was simulated using the same trained network. Considering the 

dynamics of the three modes, it can be observed that as long as the initial condition 

belongs to s, regardless of what switching is applied, the states will always stay in s. 

Therefore, the trained network should produce an optimal solution for any initial 

condition in s. The simulation results for %&� are given in Fig. 5. This figure 

demonstrates the capability of the method to produce an approximate optimal solution for 

different initial conditions. 

Note that so far the capability of the method using perfect model for the training 

is demonstrated only, i.e., assuming the actual dynamics and the nominal model are 

identical. Now, assume that the actual dynamics of the modes are different as given 

below 

 /³ � B-	/� ! U-	/� 8 ´ 0���ó/-���ó/- 0 ��Üó/E¶,   
 /³ � BE	/� ! UE	/� 8 ´ 0���ó/- ! ������ó/- 0 ��Üó/E¶,   
 /³ � B�	/� ! U�	/� 8 ´ 0���ó/- ! ����ó/- 0 ��Üó/E¶. 
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Utilizing the network trained based on the nominal model for controlling the 

actual model, without utilizing any online retraining as discussed in Algorithm 3 and 4, 

the resulting state trajectories are given in Fig. 6. As expected, the controller has not been 

able to control the actual system. This can be seen through the steady state error in /E 

which was supposed to track ���. The performance degradation shows the need for online 

training based on Algorithm 3 and 4. For online training, the selection between 

Algorithm 3 (exploiting actions) and Algorithm 4 (exploring actions) is carried out 

randomly at each time step for the first 15 seconds and afterwards, only Algorithm 3 

(exploiting actions) is implemented. The basis functions Ï	� � used for online model 

identification is selected as polynomials /-v/E@ , where non-negative integers w and A are 

such that w ! A 3 �. 

Figs. 7 and 8 show the resulting state trajectories and the mode sequence with 

online training. The random selection of the active mode in the exploring actions in the 

first 15 seconds can be seen in Fig. 8. Considering Fig. 7, it is seen that once the actions 

are switched to purely exploiting actions at time � � �� s. the controller has nicely forced /E to converge to the desired value. Figs. 9 and 10 depict the history of some of the 

weight elements of the cost-to-go approximator and the identifiers. The figures show the 

convergence of the weights during the exploring-exploiting phase, i.e., in the first 15 

seconds. Note that the weights kept updating under this phase also, but, the rate of change 

of the weights is much smaller compared to the rates in the first 15 seconds. 
 

 

Fig. 2. Offline training weights. 
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Fig. 3. State histories resulting from simulation with perfect models and %&�. 
 

 

Fig. 4. Mode sequence resulting from simulation with perfect models and %&�. 
 

 
Fig. 5. State histories resulting from simulation with perfect models and %&�. 
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Fig. 6. State histories resulting from simulation with uncertainty and without online 
training. 

 

 

Fig. 7. State histories resulting from simulation with uncertainty and with online training. 
 

 

Fig. 8. Mode sequence resulting from simulation with uncertainty and with online 
training. 
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Fig. 9. Evolution of weights of the optimal cost-to-go approximator during online 
training. 

 

 

Fig. 10. Evolution of some of the weights of identifiers during online training. 
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VI. CONCLUSIONS 

A method was proposed for optimal switching between subsystems with modeling 

uncertainty based on offline training of a cost-to-go approximator and online re-

optimization of the weights. As many identifiers as the number of subsystems are 

required to be trained online, in order to capture the dynamic of the subsystems. The 

balance between exploring actions which only leads to model identification and 

exploiting actions which leads to both model identification and cost-to-go re-optimization 

was discussed. Finally, the performance of the method was investigated through a 

numerical example.  
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SECTION 
 

2. CONCLUSIONS 

Several classes of problems with different challenges were investigated in this 

dissertation. It was seen that solutions to terminal control problems are time dependent, 

hence, in order to approximate the optimal solution in a feedback form, one needs to feed 

both the state vector and the time-to-go into the network, as done in Paper 1. Once the 

network is trained, it provides solution for different initial conditions and different final 

times as long as the new final time is not larger than the final time for which the network 

was trained. The convergence of the DHP-based iterative learning algorithm was proved 

and it was shown that the training error converges using the proposed weight update law. 

The time-dependency of the solution in the rest of the fixed-final-time 

developments in this dissertation was accommodated using neural networks with time-

varying weights. This structure leads to a straightforward algorithm which trains the 

weights in a backward-in-time fashion. It was seen that using this scheme, the critic 

training is as simple as learning a mapping, while, the actor requires an iterative learning 

scheme to be trained. The convergence of the iterative algorithm for training the actor 

was proved using contraction mapping theorem. In Paper 2, an idea was developed for 

incorporating the hard terminal constraint which was motivated by the solution to the 

respective linear problem. The network inputs were changed to the state vector as well as 

a Lagrange multiplier resulting from adjoining the terminal constraint to the cost 

function. It was seen that the Largrange multiplier can be calculated after the training 

phase, to be fed to the network for the optimal control calculation. The neurocontroller 

developed in Paper 2 was seen to be able to provide solution for different initial 

conditions, different final times, and different terminal points/surfaces. 

The performance of approximate dynamic programming in finding the global 

optimal solution to the fixed-final-time control problem was investigated in Paper 3. A 

sufficient condition for global optimality of the result, regardless of the convexity or non-

convexity of the functions representing the dynamics of the system or the state penalizing 

terms in the cost function, was derived. Moreover, an idea was presented in converting a 

static function optimization to an optimal control problem and using ADP for 
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approximating the global minimum of the selected convex or non-convex function. 

Numerical results showed that the proposed method results in a trajectory which directly 

goes to the proximity of the global minimum, regardless of the shape of the local level 

curves. This is a promising feature which differentiates the method from many nonlinear 

programming based optimization methods. 

The idea of training the critic to approximate the cost-to-go as a function of the 

switching time, to be used in an offline optimization phase for the calculation of the 

initial conditions was investigated in Paper 4 and 5, for switching systems with 

autonomous and controlled subsystems, respectively. It was seen that the method leads to 

global optimal switching times for different initial conditions. 

The approximation of the cost-to-go utilized in Paper 4 and 5 was utilized in 

Paper 6 and 7 with a new perspective. In Paper 6 and 7 the optimal cost-to-go at any 

given current state vector was learned, without feeding the switching time to the 

networks, and it was shown that having this function, the optimal mode for switching can 

be calculated in real-time in a feedback form. This leads to a much more robust solution 

to the switching problems and provides the ability to leave the mode sequence and the 

number of switching free, unlike in papers 4 and 5 where they were enforced. 

Finally, an online training algorithm in a reinforcement learning scheme was 

proposed for learning the optimal switching solution for systems with modeling 

uncertainties. The method is based on using the available knowledge on the system for 

offline training and then using online state measurements for re-optimizaing the network 

through the so called exploiting and exploring actions. It was seen that having a mix of 

these two types of actions, the proposed method can adapt itself based on the actual 

dynamics of the system and provide the (approximate) optimal solution. 
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