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ABSTRACT 

 

Sleep is the essential part of life. Thousands of people are suffering from different 

kinds sleep disorders. Clinical diagnosing and treating for such disorders are costly, painful 

and quite sluggish. To reach the demand many commercial products are into the market to 

encourage home based sleep studies using portable devices. These portable devices are 

limited in use, cannot be handled easily and quite costly. Advancements in technology 

miniaturized these portable devices to wearable devices to make them convenient and 

economical. Elastic, soft and thin silicon membrane with physical properties well matched 

with that of the epidermis provides conformal and robust contact with the skin. Integration 

of an elastic and flexible electronics to such a membrane provides an epidermal electronic 

system (EES) that can enhance the robustness in operation for electrophysiological signal 

measurement. Biocompatible and non-invasive over the skin are the advantages of this 

class of technology that lie beyond those available with conventional, point-contact 

electrode interfaces to the skin. Recording of various long-term physiological signals 

relevant in various sleep studies can be performed using this multifunctional device. 

Optimized design of EES for monitoring various physiological signals like surface 

electroencephalography (EEG), electrooculography (EOG) and electromyography (EMG) 

are presented in this project.  
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1. BACKGROUND 

 

1.1. INTRODUCTION TO SLEEP 

Humans contribute one third of their life to sleep. Sleep is the most essential thing 

required for the human body. It involves naturally repetitive state of the brain characterized 

by altered consciousness, relatively inhibited activity in the reflexes and almost all 

voluntary muscles. 

Reduced ability to respond to the stimuli differentiates wakefulness from sleep. 

Discontinuous period of hibernation or in a state of comatose are different from sleep. The 

internal circadian clock regulates the biological clock of the human body in the functioning 

of wakefulness and sleep. Sleep is essential in order to build skeletal, muscular, nervous 

and immune systems.  

Almost all living things in the world have rest in the form sleep in one form or the 

other. Lack of sleep may leads to many chronic diseases related to both physical and mental 

health. The disorders originated due to improper sleep are sleep-disordered breathing, 

restless legs syndrome, insomnia, narcolepsy, sleep apnea, sleep-related neurological 

disorders, sleep-related medical disorders, and circadian rhythm sleep disorders. The 

consequences of sleep loss were obesity, diabetes, heart disease, hypertension, mood 

disorders, improper immune functioning and many more. In order to treat these types of 

diseases, proper understanding is necessary on the basic paradigm of normal sleep. 

Abnormal sleep is differentiated based on the standard sleep structure. 

Sleep in mammal’s acts in recurring periods, which involves body changes between 

two different categories Non-Rapid Eye Movement (NREM) and Rapid Eye Movement 
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(REM) sleep. Depending on the type of brain wave activity, eye movements and muscle 

tone they have been categorized as 4 NREM and 1 REM sleep. The sleep patterns may 

vary extensively among animals and human beings.  

In humans, chronological changes influence the sleep pattern. The age sleep 

architecture changes continuously and considerably with age. The percentage of sleep 

spent in various stages of the sleep changes from infancy to adulthood. Human 

development and successful aging was more conspicuous by sleep characteristics by age 

and their functions. For newborns and infants at birth, the circadian rhythms are not fully 

developed. The sleep starts with REM, progresses with one or two sleep cycles during the 

entire sleep. As the child grows older, amount of sleep decreases. During the adolescent 

age, puberty places an important role in sleep rather than study of sleep based on 

chronological age. The REM sleep and total sleep period decreases with increase in age.  

Sleep patterns vary even with the genders. Differences found to be eminent in 

adults. Usually women maintain more SWS period than men do. Menstrual cycle influence 

the sleep-wake activity in the females. Sleep latency is more and ability to maintain the 

sleep was more difficult in the older people. Decline in sleep efficiency and quality are 

considered to be healthy for the older adults. Older people experience decrease in 

melatonin levels, which affect the gradual deterioration of circadian rhythms. 

During sleep, there are many changes in the body system. Some of the physiological 

changes observed during the sleep in the systems are as follows [1]. According to the 

conservation of energy, sleep helps in storing some energy. Deprivation in the sleep leads 

to increase in energy consumption. Restoration of tissues and growth was the essential 

activity during sleep. Cell mitosis, protein synthesis and sleep growth hormone excretion 
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are high in the initial stages of sleep. During the growth, the NREM sleep was increased in 

a normal sleep cycle. Disturbance in the emotional behavior was due to sleep deprivation. 

NREM sleep is responsible for regulation of emotions, for instance deprivation of SWS 

induces hypochondriacally or depressive states. REM sleep plays a crucial role in neural 

maturation. In accordance with that percentage of REM sleep decreases with the age of the 

human being (children spend 80% of sleep in REM while adult people have 25% of REM 

sleep). Both NREM and REM sleep play an important role in memory and learning. During 

sleep, the information is transferred between cortex and hippocampus that realizes the 

fixation of memory traces. Learning is done due to the reprocessing of information in the 

brain. This chapter provides an overview on architecture of normal sleep cycle. 

There are many significant changes in the body during various stages of sleep some 

of them are as follows. 

 During sleep there are some changes in blood pressure and heart rate and can be 

observed in the autonomic nervous systems. Awakening leads to sharp increase in heart 

rate and blood pressure. 

 When an individual is in deep NREM sleep, there will be a decrease in the sympathetic-

nerve activity. REM sleep has more sympathetic-nerve activity compared to 

wakefulness.  

 During REM sleep ventilation and respiratory flow becomes more erratic and 

increasing as compared to NREM sleep. 

1.1.1. Paradigm of Sleep. Sleep Paradigm refers to simple structural orientation 

of normal sleep. As discussed earlier there are two types of sleep, NREM and REM sleep. 

REM can be distinguished from NREM by observing downsize in the physiological 
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activity in the eye movement and electrical activity of the brain waves. The sleep is 

generally divided into five stages that consist one cycle of sleep. Within these five stages, 

each stage has unique characteristics. The first four stages constitute to NREM sleep 

followed by REM sleep. In general, sleep of a person consists of 4 to 5 sleep cycles. There 

are several parameters involved in the characteristics such as muscle tone, brain wave 

movements and eye movements. As sleep gets immense, a slight decrease of breath rate as 

well as heart pace, EEG activity of the brain waves shits to higher amplitude and the 

readings gets slower and blood pressure drops. 

Many sleep diagnostic tests as sleep latency test, polysomnography, sleep apnea 

test and many more are been adopted by the clinics to monitor the sleep of an individual. 

It generally consists of recording the brain activity, eye movement and muscle movement 

which are done by electroencephalogram (EEG), electrooculogram (EOG) and 

electromyogram (EMG) respectively. The position of the electrodes in order to record the 

EOG, EEG and EMG measurement on a human face as shown in Fig 1.1. The details of 

the EOG, EEG and EMG will be discussed detail in the later sections of this chapter. The 

data obtained was recorded on the basis of an epoch. 

1.1.2. Sleep Cycle. The sleep cycle constitutes to NREM and REM sleep in five 

stages where the 4 stages of NREM sleep ranging from light to deep sleep from stage 1 to 

4. This section provides an overview of these states of sleep. Sleep generally starts with a 

small period of NREM stage 1 proceeds to stage 2, followed by stages 3 followed by stage 

4 and finally enters into REM sleep. After the person enters to REM sleep he progresses to 

NREM of next sleep cycle. Approximately three fourth period of entire sleep will be spent 

in NREM and remaining period in REM sleep. The mean time of first cycle of sleep is 
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around 70 to 100 minutes and the later cycles last for a longer duration of approximately 

90 to 120 minutes [2].  

 

 

 

 

Fig.1.1. Position of electrodes for polysomnography 

 

 

 

The NREM sleep classified into four different stages based on the physiology in 

body moments and distinct brain activity i.e. from lightest to the deep sleep. The parameters 

involved in sleep stages during a sleep cycle according to a normal healthy human being 

are as follows [1] [2].  

Epilepsy differentiates normal sleep based on the EEG signal by the alpha, beta, 

delta and theta waves. The most important parameter to differentiate between wakefulness 

and sleep according to EEG was waking measures EEG at low voltage of 10-30 μV and 

mixed frequency (High tonic EMG and alpha activity in EEG). During the measure of EEG 
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in the pre-sleep period, movement time is a major variable to be considered whether the 

individual is awake.  

The beginning stage of sleep in which it starts with NREM sleep constitutes to 2 to 

5 percent of sleep cycle. Sleep can be disturbed with noise or any external parameters in 

this stage. EEG measurements during this phase have low voltage rhythmic alpha waves 

with sharp vertex and mixed frequency waves [1] [2].  Stage 1 is completed when the alpha 

activity amalgamates with EEG mixed frequency (alpha activity < 50% epoch) [1]. The 

gain in amplitude of chin EMG, the amplitude lowers from wakefulness to sleep and even 

a decrease can be observed from stages 1 to 3. 

Stage 2 sleep of NREM sleep contributes to 45 to 55 percent of entire sleep period. 

The duration tends to increase with successive cycle. In order to be awake at this stage, the 

individual needs more intense stimuli than that of stage 1. Sleep spindles and K-complexes 

with mixed frequency activity and low voltage are observed in the EEG activity of the brain 

in this phase. Absence of slow waves, K complex is the sharp negative wave progressed 

by a little positive wave. Stage 2 can be scored if there any two succeeding occurrences of 

K complexes or sleep spindles less than 3 min. 

Third NREM sleep stage and the next stage are considered as slow-wave sleep 

(SWS).It constitutes to 3 to 8 percent of sleep and last for a few minutes. Slow wave activity 

and increased high voltage are observed in EEG. Scoring stage 3 if 20-50 % epoch waves 

with 2 Hz or slower with amplitudes of 75 μV. Typically, in stage 2 and 3 EMG activity is 

ignored. The downfall of EMG amplitude during the REM sleep reflects the normalized 

skeletal-muscle hypotonia corresponding to that particular sleep stage. 
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Stage four covers about 10 to 15 percent of sleep and referred as SWS. The brain 

activity from the EEG can be characterized by increase in high voltage as well as slow 

wave activity.  When 50 of 2 Hz and slower amplitude waves are observed for more than 

50% of epoch stage 4 is scored.  

In the fifth stage of sleep, the NREM sleep moves to REM sleep which is specified 

by desynchronized brain wave activity and rapid eye movements. This stage was portrayed 

by theta activity, saw tooth waveforms, and slow alpha activity with no arousal. The 

amplitude obtained during the REM sleep is either less than or equal to the minimum 

amplitude obtained during the NREM sleep. A drop in amplitude can be observed during 

the REM sleep if the gain in NREM sleep adjusts to  higher amplitude. In the first cycle 

this stage lasts for 1 to 5 minutes and continues to prolong in the following sleep cycles. 

Dreams in sleep occur during this stage. EMG activity is very low during this stage. REM 

stage is scored when two sleep spindles or K complexes is less than 3 minutes. In a healthy 

adult body REM sleep period tend to increase as the sleep progresses and may contribute 

to major of the last one-third of the sleep period. Sometimes the stage 2 of NREM sleep 

continues in a way that stage 3 and 4 will be observed [2]. During the REM stage a 

relatively reduced chin EMG, low voltage and a mixed frequency EEG are observed 

conventionally. 

 

1.2. SLEEP DISORDERS 

Multifarious sleep disorders like insomnia, obstructive sleep apnea, narcolepsy, 

snoring, sleep walking and many more chronic sleep diseases are prevailing and 
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proliferating in today’s world [8-15]. Abnormal sleep patterns may be found in the 

depressed patients or patients who are suffering from sleep disorders.  

Sleep disorders are classified as behavioral or environmental, psychiatric, 

respiratory-related, neurological, circadian-rhythm, developmental or neuropsychiatric and 

other sleep related sleep disorders. Diagnosing sleep disorders are diagnosed by one or 

more tests like nocturnal polysomnography (NPSG), continuous positive airway pressure 

(CPAP titration), split study, bi-level titration, REM behavior disorder (RBD), NPSG with 

end tidal CO2, multiple sleep latency test (MSLT), maintenance of wakefulness test 

(MWT), etc. Most of them involve measuring the EEG, EOG, ECG, EMG, respiratory 

flow, etc. For the current purpose, this project focuses on abnormalities in EEG, EOG and 

EMG signals in people suffering from sleep disorders like narcolepsy, sleeping sickness, 

restless leg syndrome, periodic limb movement disorder and as a part of diagnosis for 

different sleep tests [16]. 

Qualitatively or quantitatively it is hard to measure the depression. For instance a 

study was conducted by Diaz-Guerrero [17] the EEG recordings of depressed and maniac-

depressive psychotics had low voltage during light sleep, less number of sleep spindles and 

more changes during the deep sleep. Another set of study was conducted by Oswald [18] 

on patients suffering from the same disorder and found that the patients were more awake, 

longer sleep latency & less stage 4 deep sleep.  

There is no stage 3 and reduced amount of REM sleep for patients suffering from 

obstructive sleep apnea (OSA). Long sleep latency and increased wake after sleep onset 

(WASO) are observed in the patients suffering from chronic insomnia. Stage 3 and REM 

sleep is also found to be reduced for chronic insomnia patients. People suffering with sleep 
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apnea, depression and narcolepsy have short REM latency. Increased REM latency is also 

observed for those who are sleeping in the unfamiliar or uncomfortable environment or 

anything that obstacles the quality of sleep [16].  

  

1.3. SLEEP CENTERS 

Around 40 million people in U.S are suffering with various kinds of sleep disorders. 

According to WHO there are around 3000 types of sleep disorders. Diagnosis of most sleep 

disorders based on pattern recognition of clinical characteristics determined from the 

comprehensive sleep history and a physical examination. According to various surveys, the 

demand and budget for the sleep disorder clinics and sleep centers are rising every year 

because of the rapid increasing of the number of patients suffering from sleep disorders to 

the limited number of beds in the sleep centers and physicians available to monitor them. 

This large variation created the situation, that the patient needs a 2 week prior reservation 

in order to have his diagnosis in the sleep centers [1-2].  

Traditionally sleep monitoring was done using ink-writing pens to produce the 

polygraph recording that are traced on a paper. The standard procedure to record the data 

in real time is through epochs i.e. the sleeping time is generally divided into epochs which 

corresponds to the length of each paper. The recording speed for a 30-cm page (30 s) is 

varied for the test [5]. In modern days the test is performed digitally, even then the 30-s 

epoch is the wonted window for scoring the sleep. The epoch is named based on the major 

contribution of that stage present during that epoch if there is on shift during an epoch. 

Movement time (MT) is scored if more than one–half of an epoch is obscured because of 
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the artifacts. Some sleep centers consider MT as wake. A score of 10 or more indicates that 

the patient is considered sleepy.  

The data of the individual suffering from any such sleep disorders are monitored 

for few days. They are diagnosed based on the standard normal sleep pattern of a healthy 

individual. Then the appropriate drugs are given based on their diagnosis and then the 

patient is again monitored after giving the drug whether he is responding properly to the 

drug until his sleep patterns become normal.  

Even the people taking the medication usually have a different pattern of sleep. For 

instance, an increased REM latency is observed for the people taking REM suppressants. 

The effect of drugs on depressed patients also has different polysomnography recordings. 

In particular effect of hepta-barbital (400 mg doses given during alternate nights) on 

depressed patients was monitored by EEG & EOG. Excessive wakefulness was distributed 

throughout the nights and during the deep sleep there was a slight increase in the frequency 

shifts [4]. After the therapy there was a decrease in all the differences of the recordings 

towards the normal sleep. These changes are more significant from the sleep of a healthy 

individual.   

Common terms used during a regular sleep study. The total bed time is named as 

total recording time (TRT). The movement the lights are turned off (start of recording) is 

counted and when the lights are turned ON (termination of recording). Total sleep time 

(TST) is aggregate of amount of time spend in sleep stages 1,2,3,4, REM and MT. Duration 

between initial sleep and final awakening is the sleep period time (SPT). Wake time is 

named as wake after sleep onset (WASO). SPT comprises of TST and WASO before the 

final awakening. Sleep latency is time between start time of sleep monitoring and first 
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epoch of sleep while REM latency is the time between the first epoch of sleep and the first 

REM sleep. The total number of minutes is noted in order to know the proportion of time 

spent in various sleep stages. Sleep stages are either characterized based on percentage of 

TST (Stages 1-4 & REM) or SPT (Stages 1-4 and WASO).  

1.3.1. Electrode Preparation and Methodology. Bio-potential (EEG, EOG 

&EOG are mainly focused in this project) of the patients are collected to the recording 

circuit using the electrodes. These recordings should have maximum waveform amplitude 

and free from the artifacts. As skin has many layers and it disturbs the conductance of these 

signals because of the skin impedance, epidermal layer of the skin is scrapped without 

disturbing the dermis (safe places of the body) in order to place the electrodes. Skin is 

scrubbed only on the areas where electrodes are placed in order to minimize the discomfort 

of the patient and to obtain the maximum waveform from the person. For obtaining 

optimum signal quality, all the input electrodes are selected in a manner that all of them 

have a similar impedance (close to one another) in order to avoid the artifact due to the 

impedance mismatch. The standard for electrode impedance upper limit for EEG& EOG 

is 5kΩ and 10kΩ for EMG. 

To have the minimal impedance the skin is abraded around the area where 

electrodes are placed. Electrodes are considered in a manner that they have the ample 

length for imputing the electrode site to the head box.  

There are two methods to affix the disk electrodes. Firstly electrolyte or electrode 

paste are used to fill the electrode discs. For fixing the electrode disc, flexible gauge squares 

are placed over them by compressed air in the collodion method.  
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The electrode paste is carefully placed over the electrode site in order to secure the 

electrodes over the scalp. Electrode discs over the remaining areas are fixed using a tape 

or a medical adhesive. After the tests the reusable electrode discs and wires are secured 

and will be cleaned and disinfected with proper protocols for the future use.  

1.3.2. Bio-physiological Signal Monitoring over the Skin. Bio signals are 

derived on the basis of observing the electrophysiological, biomechanical or chemical 

process of a living thing from the extent of protein to sequence of the genes, neural or 

cardiac rhythms, to tissue to organs.  

Bioelectric potentials are generated by various body parts such as nervous, 

muscular or glandular tissue also named as Biopotentials. They are generated due to the 

electrochemical activity of excitable cells (certain group of cells in the body) that conduct 

along the sensory and motor nervous system, muscle contraction, brain activity, eye 

movements, etc. This project mainly focuses on Biopotentials of EEG, EOG and EMG. 

1.3.2.1. EEG. The spontaneous activity obtained from the brain or the scalp is the 

electroencephalography (EEG).  The amplitude read by any device depends on the position 

and placement of the electrodes over the particular part of the body. For instance, the 

amplitude of EEG measured from brain and scalp are 100 µV and 1-2 mV respectively 

with a signal bandwidth ranging from 1 to 50 Hz.  

Two other activities namely evoked potential and single–neuron behavior are in 

general read with the EEG data. Evoked potentials are due to the responses of the stimulus 

which are usually below the noise level. Signal to noise ratio can be determined using the 

evoked signal for obtaining a proper EEG signal. 
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  The study of the single neuron which are monitored using the micro electrodes, 

placed at particular cell that can be monitored, which helps in building a cell network that 

can signify the real attributes of the tissue. Central nervous system consists of many neural 

tissues which can drive many mechanisms within individual neurons or interaction between 

neurons during this manner the neurons will generate oscillatory activity named as neural 

oscillation. These oscillations can be either observed in the neurons as oscillations in 

membrane potential or action potentials which generate rhythmic patterns which produces 

oscillatory action of post synaptic neurons. When a group of neurons and their feedback 

connections tend to do a single task they produce oscillations, these macroscopic 

oscillations can be detected in EEG. Synchronization of firing patterns of neurons is 

obtained by the oscillatory activity of class of neurons and their feedback connections. The 

firing frequency obtained during the interaction of neurons is different from the frequency 

of individual neuron. The EEG can be studied by the different type of waves produced in 

the process namely alpha (α), beta (β), theta (θ) and delta (δ) [6].    

Alpha waves are detected in awaken person who close his eyes which are obtained 

from the occipital region with a frequency of 8 to 13 Hz of spectral frequency. Beta waves 

are arised from the parietal and frontal lobes with a frequency range of 13 to 30 Hz. 

Delta Waves are high amplitude brain waves possessing a frequency of 0 to 4 Hz. 

The range of waves are generally observed from EEG of an individual during his deep 

stage 3 of NREM sleep also known as slow-wave-sleep (SWS). Typically such waves 

describe the depth of the sleep. The waves tend to appear in deep sleep within stage 3 at 

less than 50% and appear more in the stage 4.Frequency band of theta waves are 4-8 Hz. 
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Brain activity on an EEG shows relatively low-voltage, mixed-frequency activity 

characterized by the presence of sleep spindles and K-complexes and above characterized 

waves across various stages of an individual’s sleep. Sleep spindles are important for 

memory consolidation. Sleep Spindles are oscillatory waves from the brain activity in the 

stage 2 sleep. They have a characteristics of 12-14 Hz waves that reproduce for every 0.5 

sec. 

K complexes are observed during the stage 2 NREM sleep which usually signifies 

two functions, one of them is the response of the cortical arousal to the stimulus is very 

low and supporting memories during the sleep. In general K complex shows a voltage 

greater than 100 µV and can be observed transiently with a high voltage peak (negative) 

proceeded by slow positive complex followed by the sleep spindles. K complexes are in 

general response to the external stimuli and are about 0.8Hz during the stage 2 sleep. 

The level of consciousness reflects the EEG signal. The alpha waves are dominated 

in the EEG when the eyes were closed, when the person enters sleep the frequency of the 

EEG decreases. During the REM sleep the EEG has a definite pattern while the person 

enters to deep sleep EEG can be seen in delta waves with large and slow deflections. 

  The electrodes are placed based on the scalp based on International 10-20 system 

of electrode placement [6]. In this procedure 21 electrodes were placed on the scalp for 

measuring the EEG signal as shown in Fig 1.2. 

Nasion and inoin are the reference points on the head. The skull perimeters are 

measured in the transverse and median planes based on these points. These perimeters are 

divided into 10% and 20% intervals for determining the electrode positions. In addition to 

them 3 other electrodes are placed as shown in Fig 1.2. b.  



15 

 

In addition to 21 electrodes additional 10% intermediate electrode positions are also 

used. The locations and nomenclatures are designed as per the American 

Electroencephalographic Society.  

For measuring the EEG as per American Electroencephalographic Society 

standards a single central channel referenced to an ear mastoid site (C4-A1), a single frontal 

channel referenced to an ear mastoid site (F4-A1) and a single occipital channel referenced 

an ear mastoid site (O2-A1). 

 

 

 

 

Fig.1.2. International 10-20 system (A) Left (B) Right (C) Location and Nomenclature of 

intermediate 10% electrodes as per standards of American Electroencephalographic 

society 
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1.3.2.2. EOG. An approach to measure the corneo-retinal standing potential (CRP) 

which exists between the front and back of the human eye is electrooculography. 

Electrooculogram is the signal obtained during this process. Eye acts as a dipole in which 

anterior pole acts as positive while the posterior pole acts as negative. Hyper polarization 

and de-polarization are produced by the nerve cells of retina generating the CRP. The CRP 

is oriented along the line of sight and ranges from 0.4 to1 mV. 

Localizing the eye to a remote area and if an electrode was within the proximity of 

the eye, the electrode turns positive when the eyeball rotates towards it and shows les 

positive if it rotates away from electrode. 

In general there are two methods to draw the readings of the eye movements based 

on the position of electrodes around the eye. For horizontal movements (monocular) the 

electrodes are placed at the outer and inner canthi of each eye. For vertical movements they 

are placed above and below the eye. The potential difference between these electrodes 

gives the CRP. This potential is directly proportional to the electrical axis of current eye 

position and of primary eye position. Their might be a linear relationship between them up 

to 300 corresponding to 15 to 20 µV per degree of eye rotation [19].  

EOG is used for monitoring the slow, rolling eye movements that occur during 

various stages of sleep. Two channels are usually used in determining the EOG. One of 

them is placed 1cm above or below the outer canthus of the eye. For the sake of equal 

amplitudes due to the conjugate eye movements the electrodes are displaced equally. 

Typically the reference electrode is the ear mastoid site (A1).  

1.3.2.3. EMG. Electrical response due to the muscle contraction of neuromuscular 

activity is the electromyographic signal. The body movements are controlled by the central 
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nervous system (CNS) by the motor neuron through which the functioning of the body and 

mind occurs. The muscles are activated by the CNS through the motor neuron in which the 

muscle contraction takes place proceeded by depolarization (sudden change within a cell 

when it undergoes dramatic electrical change) of the outer muscle-fiber membrane. Electric 

field is created by the respective motor unit (MU) where the depolarization occurred in 

their respective fibers. This voltage distribution on the skin is generated due to the electric 

field produced by these MU’s. The sum is weighted by the distance of each source from 

the skin. 

This voltage can be acquired using a pair of electrodes are placed per muscle on the 

skin. The difference between these two potentials is recorded for analyzing the signal. 

Surface electromyography (sEMG) is electromyographic signal that is encapsulated by 

means of couple of electrodes placed on the skin (across various parts of body in order to 

obtain the respective EMG signals from the particular part of the body). Response from the 

muscle contraction can be detected by the electric potential produced over the skin. The 

corresponding measure of the potential is the sEMG. Conventionally sEMG have a spectral 

range of 10 to 450 Hz with amplitudes up to 5mV depending on the particular muscle [20]. 

The travelling potential is detected with a temporal delay which depends on fiber 

conduction velocity if the electrodes are placed on the skin parallel to the muscle fiber.  

Muscle tone is determined based on the EMG activity over the chin area. This 

channel acts for proving the supplementary information regarding the movements of the 

patient during the sleep and can be helpful in distinguishing some artifacts. In three 

electrodes, one electrode was placed in the midline 1cm above the inferior edge of the 

mandible, one submental electrode placed 2 cm below the inferior edge and 2 cm to the 
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left of the midline and other submental electrode placed 2 cm below the inferior edge and 

2 cm to the right of the midline. 

All the electrodes are placed on the methodology discussed in 1.1.1. The amplifier 

settings and calibration for the equipment are done based on the American Academy of 

Sleep Medicine (AASM) standards [7]. The scoring of each stage of sleep is discussed 

earlier in the sleep stage based on the EEG 1.1.3.1. 

The methodology used in the sleep centers is little be uncomfortable because they 

need to carry many wires on their body which are fixed using adhesive tapes and gels 

during their sleep. These parameters might interfere with the normal sleep that an 

individual will have every day and might lead to erroneous diagnosis. Moreover the cost 

for the diagnosis in the sleep center for one night is around $2500 which is a bit costlier 

approach and the person need to wait at least 2 weeks to have his turn for the diagnosis 

after the reservation.  

 

1.4. PORTABLE DEVICES FOR HEALTHCARE 

With an increase in number of people suffering from sleep disorders there is a 

demand for the number of sleep centers as the number of beds available in these health 

centers is limited. Moreover treating such type of disorders became an expensive to the 

healthcare budget. An alternative in order to meet the demand for sleep studies based on 

clinical diagnosis is to have a sleep study in their houses using portable devices. Home-

based sleep studies are more economical as they need not effort to sleep in the healthcare 

centers and they can sleep more comfortably in the house and the diagnostics will be more 

proper.  
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There is lot of ongoing research in portable devices for the sake for home based 

monitoring. For instance BresoDxTM a portable acoustic device can be used as home 

diagnosis for people suffering from sleep apnea [21]. Another research for home based 

diagnosing for obstructive sleep apnea syndrome using a watch PAT 100 a portable device 

based on atrial tone (PAT) signal [22]. The development of multichannel home sleep 

testing by a variety of manufacturer’s cost-effective and highly reliable method of 

screening for many sleep disorders. Embletta PDS that measured airflow through a nasal 

cannula connected to a pressure transducer, oxygen saturation plus both respiratory and 

abdominal movements via built in-in effort and body position sensors [23]. Similar type of 

portable devices are available in the market and can be used in the homebased sleep studies 

as many of them are validated and are recommended by the practitioners and doctors [24-

26]. 

These portable devices are similar to the devices available in the clinics and might 

need a medical practitioner to monitor these devices. Even though the portable devices are 

easy to carry, they are not quite comfortable to wear and sleep. The devices available in 

the market usually have the capability to diagnose some particular type of disorders and 

cannot have the functionality to diagnose all kinds of sleep disorders. Lastly, these devices 

costs around $5000 and everyone cannot afford to use them. Hence, there is a need for a 

device that can be easy to wear, use and should be affordable. The device should be novel 

in order to analyze the data and use it afterwards as the data obtained from the diagnostics 

cannot be understandable to everyone. In order to treat the patient, the data received from 

that device needs to be sent to the clinic for the diagnosis.  
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1.5. ART OF WEARABLE DEVICES 

Increase in number of chronic devices is increasing in the world in order monitor 

and treat these diseases the cost of health care is also increasing accordingly. So with the 

advance in the technology many researchers’ and global corporate companies considered 

this as an issue and came up with the idea to miniaturize these portable devices to the 

quotidian essentials, wearable devices, to track their health and monitor their fitness 

regularly. The demand for these wearable devices is continuously in today’s society. 

Innovations in such wearable technologies became as a boon for many geriatric 

people and people suffering from many chronic diseases who require continuous costly 

hospital diagnostics for their treatment. Wearable devices decreased individuals from 

hospital monitoring to homebased monitoring. These tele-home health monitoring devices 

enhanced the productivity, popularity and handling of medicines from home. These 

wearable devices have the qualities of working in long-term, persistent and unhampered 

tracking the physiological data like bio potential, heart rate (HR), photoplethysmogram 

(PPG), respiration, blood oxygen saturation (SaO2) and blood pressure (BP). Moreover 

these devices allow knowing more about real-time monitoring of the individual health 

which is not possible from hospital sittings.    

Typical health monitoring devices in general are wireless serve the purpose of 

procuring the data like bio signals and body motion signals. A remote terminal can be used 

to capture signals which are processed to a nearby intermediate terminal. These 

preprocessed signals are sent to the smart devices as shown in the block diagram (Fig 1.3).   
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 Fig.1.3. Block Diagram of a Typical Wearable Device 

 

 

 

The data obtained can be increased the coverage by linking them to a network. In 

personal health monitoring wireless body area networks have great potential in usage of 

intelligent sensors for various applications like Electro Cardiogram (ECG), Electro 

Encephalogram (EEG), Electro Occulography (EOG), etc. Such sensors acquires signal 

followed by pre-processing of real-time and low level signals and communicates with the 

same personal server wirelessly typically these signals are further processed and stored 

using a mobile gateway. 

 Innovations are being done on this field. Some instance like ‘TICKR Heart Rate 

Monitor by Wahoo Fitness’ the strap which allows the individual to monitor his or her heart 

rate measurements  when he wounds the strap across his chest and the data is sent to the 

smart phones via Bluetooth [27]. SOMNOwatchTM [29] was designed in order to diagnose 

actigraphic data for patients suffering from sleep disordered breathing. Advanced research 

in wearable devices for gaze detection and eye tracking using EOG signals through 

different types like Wearable EOG Goggles [30], full-time Wearable Headphone-Type 

Gaze Detector [31] which can be helpful in human computer interface (HCI). On the basis 
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of surface EMG’s many applications like input to the mobiles based on gestures [32], 

wearable EMG based HCI for wheel chairs users [33] and many more. 

Most of these commercial fitness tracking devices measure the number of calories 

burned, distance they have covered (number of steps) and some of them time spent in the 

each sleep stage. Some popular trackers such as ‘Fitbit Force’ and ‘Jawbone UP’ use to 

insight the users about their sleep stages i.e. like from light sleep to deep sleep. ‘Basis B1’ 

was different one that aims in the measure of REM sleep in addition to those fitness trackers 

that can monitor the sleep stages. Experts are skeptical about the accuracy of such fitness 

trackers that can measure the sleep.  

Most of the trackers use sensors called accelerometers for detecting the motion of 

the body like direction and speed. These trackers theoretically give information to the users 

whether they are awake or sleeping but it involves many practical mistakes. So the results 

obtained from such trackers are not appropriate for diagnosing the sleep disorders and are 

futile for clinical purposes.  

Montgomery-Downs [28] conducted a research in 2011 comparing the results 

obtained from standard polysomnography to the sleep monitoring based on fitness trackers. 

They observed the fitness trackers overestimated an individual asleep around 67 minutes 

(Fitbit), 43 minutes (ACTi graph), etc. Most of the devices showed that the person is asleep 

even when the person is not sleeping. Sleep scientists generally use EEG, EOG and muscle 

tone in order to conclude about the various stages of sleep.  

Healthy people using these devices to track their sleep doesn’t create a problem for 

them but if a person with sleep disorder believing this data may be a potential danger as 

they are using just data based on accelerometers instead of EEG, EOG data. There is a need 
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to have wearable device that can help in monitoring the various stages of sleep using EEG, 

EOG and EMG.  

 

1.6. NOVEL DEVICE FOR EPIDERMAL INTEGRATION 

Epidermal devices are one kind of wearable devices. From the previous sections it 

is observed that there are many health monitoring wearable novel devices but none of them 

satisfy the required demand in order to have a health monitoring device that can be used 

outside the clinic. The conventional methods used in the clinics for sleep disorder 

diagnoses involves flat electrode pads which involves placing them over a small number 

of points using conductive gel in order to minimize the number the contact impedances. 

This approach cannot be followed regularly as the gels may not be compatible for 

everyone’s skin, creates discomfort for the people requires several clinical sittings or may 

loss adhesion for people with unfavorable skin-electrode interface [35]. 

Considering the backdrops of the clinical treatment, the device required should be 

different from the conventional method of testing used in sleep centers i.e. it should be 

minimal invasive, should use minimum number of gels, minimum number of electronic 

devices to be placed on the skin, etc. Many technological works [34] in health and wellness 

monitoring proved that fully integrated electronics that are soft and stretchable can resolve 

the problem. Such devices are adhered with a basis of a membrane to intimate variety of 

electronic and sensor technology directly with the skin using the vander wall forces to 

measure the electrophysiological signals (EP) generated by the body. This membrane 

should behave similar skin mechanical properties so that it is robust, free from mechanical 

constraints to capture the EP signals, has non irritating skin/electrode contact.  
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Skin has several layers within the body for convenience consider it as a bilayer, 

with epidermis of approx. 0.05 to 1.5 mm thick and dermis of approx.0.3 to 3 mm thick as 

shown in Fig 1.4.  Moduli of these layers are about 140 to 600 kPa and 2 to 80 kPa of 

epidermis and dermis respectively [34]. This bi-layer of skin responds about 17% of tensile 

strain for linear elastic and more than 30% non-linear irreversible at higher strains. In 

practice the skin is not smooth which has many wrinkles and has many irregularities like 

creases and pits of 15 to 100 µm & 40 to 1000 µm respectively.   

 

 

 

 

Fig.1.4. Side View of Layers of Human Skin 

 

 

 

To reach the above requirements the membrane should be with low-modulus, 

lightweight, ultrathin, stretchable skin like membranes on which all the electrodes, sensors 
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and communication parts are placed together to measure the corresponding potential across 

that particular position of the skin. As the membrane is with the physical properties of the 

top layer of the skin this class of devices are called epidermal electronic systems (EES). 

EES are used to measure the EP signals like ECG, EEG, EOG, EMG, as well as 

temperature, mechanical strain, sweat levels, hydration of the skin, power source and can 

also act as a human computer interface [34-45]. 

Biological tissues are soft curved and textured which are different from the 

conventional bio medical sensors as they are typically rigid, planar and use metal 

electrodes. Hence, there was variability in the point of electrode and tissue contact. There 

was a significant difference in accuracy and precision. For enhanced conformability these 

biological tissues should have a textured surface and affixed to the skin by a soft contact, 

they are made on the basis of dry electrodes that are made of ultrathin pliable polymer films 

and elastomer substrates offer improved capabilities. Such epidermal devices can be 

intimated to the skin by Vander walls force because of their mechanical properties (thermal 

loads, area mass densities and thickness) similar to dermis. 

The necessity of using additional straps, pins and tapes are eliminated as the device 

can be attached based on the London-dispersion effect between the skin and the elastomer 

substrate. This advantage of contact provided a window for monitoring the overall health 

status based on the measurement through internal body process as they are precise and 

repeatable.  

.  
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2.  DESIGN AND FABRICATION 

 

2.1. DESIGN OF THE SENSOR 

The principle ideology for a sensor in this study is its capacity of detecting and 

transmitting electrical waves within a specific range of frequencies. As it needs to be 

coupled with the skin during the recording of the physiological signals it should be 

compliant, flexible and stretchable. One best approach to meet this requirement is to design 

the sensor in the serpentine structure as it provides those qualities with its design. It is a 

multi-layered sensor with each layer serving a functional purpose. Fig 2.1 shows the 

functional parts of an EES, epidermal sensor for this project. It consists of thin filamentary 

serpentine (FS) connected with a FS layout to measure EP signals and strain sensor to use 

as a part of sleep study. 

 

 

 

 

Fig.2.1. Functional parts of the epidermal sensor 
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Usually these types of circuits have a high deformability and low effective elastic 

moduli. These EES devices orient naturally to the skin’s contoured surfaces and time-

dynamic motion because of its design. A layout of FS arranged in an order to obtain the 

EP signal from the skin Fig 2.2 and Fig 2.3 shows the view of a single EP sensor (200 µm) 

& graphite strips (500 µm) respectively, when observed under an SEM. There are two FS 

layouts made of copper for obtaining the potential and the difference between them gives 

the differential bio-potential at that point on the skin. There are three nodes connecting two 

graphite strips, the intersection node is the common node or the ground for both of the 

strips. Fig 2.4 illustrates the exploded view of various layers of the sensor. 

 

 

 

 

Fig.2.2. EP sensor when observed under an SEM at (200µm) 
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Fig.2.3. Graphite strips on the EES under an SEM (500 µm)  

 

 

 

 

Fig.2.4. Exploded view of the schematic diagram of the sensor 

 

 

 

The entire sensor consists of three layers in which the middle or neutral mechanical 

plane (NMP) consists of all the active sensing components and interconnect wiring while 

upper and base layers are made using polyimide (PI 2445, 1 µm in thickness, HD 

microsystems, USA) to protect the NMP. The NMP consists of copper electrical 
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interconnects and graphite strips, copper FS layout acts as an EP sensor while the graphite 

strip acts as a strain gauge. All the sensors parts in NMP are connected to the contact pads 

via FS. The contact pads act as data transfer pivots for the EP sensor. The two graphite 

layers act as strain gauges that generate signal based on differential mechanical kinematics 

of the skin surface. Bending-induced strains are minimized due to design of the device. A 

schematic sensor’s exploded view is shown in Fig 2.4. The total thickness of the sensor is 

averages at 7 µm across the thickest part which is fifty times thinner than the human 

epidermis.  

 

2.2. SILICONE MEMBRANE FOR THE SENSOR 

With the help of a substrate, the sensor is coupled with the skin surface. There is a 

layer of adhesive over the substrate as the sensor needs a means to stay on the substrate, 

which should be biocompatible on the skin as discussed earlier in previous sections. 

Moreover, it should be as thin as possible to avoid minimal sensations and irritations on 

the skin surface. It should be flexible enough to support the sensor to expand or compress. 

It should stay long on the skin to maintain the device on the skin. It should be placed easily 

and can be removed easily from the skin. 

Elastomers like PDMS (Sylgard 184 Elastomer Kit, Dow Corning Corporation, 

USA), Mold Max (Mold Max 20, SMOOTH-ON, USA) and Dragon skin (Dragon skin 

slow, SMOOTH-ON, USA) are chosen to serve for the silicon base. All these materials 

can be used for the current purpose but due to the transparent color and high stretch ability 

of ‘Dragon skin’, was chosen. This silicone membrane needs an adhesive layer to hold the 
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device or to stay on the human skin. Silicon adhesive (SILBIONE RT Gel 4317, Bluestar 

Silicones, USA) is a biocompatible and non-irritating material for human skin.  

A backing layer is required for the purpose of preparing and removing the silicone 

membrane from the glass slide. There are various suitable backing films but a dominant 

consideration is a backing film which could be peeled from the silicone easily. Initially two 

different backing layers (1-Scotchpak TM White Backings and Release Liners, 3M, USA & 

3M Scotchpak TM Release Liner Fluoropolymer Coated Polyester Film, 3M, USA) are 

proposed due to their biocompatibility, inert behavior in responding with the materials and 

can be removed easily from the materials due to their smooth surface. During the actual 

practice, only the second film has been chosen because of its transparency.  

Initial iterative trials were performed; the film didn’t serve its current purpose of 

peeling the backing film efficiently, i.e. without disturbing any of the three silicon 

membranes. Therefore, a buffer layer with a lubricant was added, which again should be 

non-irritating to the skin and biocompatible. So natural oils (coconut oil, olive oil) were 

used. Two (Mold Max 20 with any of the backing films using any buffer) out of 6 

possibilities (3 types of silicone materials with 2 different lubricant layers) showed better 

response and were not up to the mark in the initial trials look Table 2.1. 

Even the mold release agent (Ease Release 200) did not give a good response as a 

buffer between the backing and silicon because of its non-uniform behavior of spreading 

over the backing layer. A slight rough surface film (Acetate Sheet, Grafix Plastics, and 

USA) gave an unhindered solution even without the use of a lubricant. The force required 

to peel the backing film using the acetate film gave very good results considerably when 

compared with the previous cases shown in Table 2.1. Fig 2.5 illustrates various layers of 
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the silicone membrane. Table.2.2. specifies the force required to peel the acetate film from 

various silicone membranes. 

 

 

 

Table.2.1. Maximum force required to peel the backing layer (3M Scotchpak TM Release 

Liner Fluoropolymer Coated Polyester Film, 3M, USA) with different lubricants as buffer. 

 No Oil Coconut Oil Olive Oil 

PDMS 44.72 N 20 N 16 N 

Mold Max 12 N 3.8 N 2.5 N 

Dragon Skin 15 N 4.2 N 3.2 N 

 

 

 

Table.2.2. Maximum force required to peel the acetate film from various types of silicon 

membranes. 

 Force (N) 

PDMS 0.48 

Mold Max 0.26 

Dragon Skin 0.15 
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Fig.2.5. Exploded view schematic diagram of the silicon membrane for the sensor 

 

 

 

The final snag was the un-curing of the silicon adhesive over the silicon membranes 

due to the smooth surface of the silicon layer that was overcome using plasma etcher to 

make it rough. 

 

2.3. FABRICATION TECHNIQUES 

The steps involved in the fabrication of the epidermal sensor typically deals with 

preparing the sensor and silicone membrane and transfer printing the sensor over the silicon 

membrane. Fig 2.6 illustrates a schematic diagram that involves the list of steps involved 

in fabricating the device. 

The glass slides were cleansed using Acetone and Isopropyl alcohol to get rid of 

the organic and inorganic particles. The process starts by spin-cast of polydimethylsiloxane 

(PDMS,) mixed at a ratio of 10:1 (base: curing agent) by weight onto a clean glass slide at 

500 rpm for 45 sec and cured at 1200C for 20 min (see Fig 2.6. (a)).  
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Fig.2.6. (a) to (n) Schematic illustration of steps for fabricating epidermal sensor. (o) to (r) 

Epidermal sensor mounted on the silicon membrane 

 

 

 

The copper film consists of two layers one with 5 µm and other with 40 µm. To 

have 5 µm copper film, the copper film was taped with 5 µm facing top and spin coat the 

polyimide at 3000 rpm for 45 sec. It will be pre-cured for 5 min at 1800C followed by post-

curing for 90 min at 2500C. After the Polyimide is cured the thicker copper layer of 40 µm 

is removed by placing the polyimide layer facing towards the PDMS layer of the glass slide 

(see Fig 2.6. (b)). 

A layer of photoresist (AZ P 4620, AZ Electronic Materials, USA) has been spin-

casted at 3000 rpm for 45 sec and cured at 1200C for 3min, followed by exposure (using a 

mask that has patterns for the copper layer) and developing the sample (see Fig 2.6. (c), 

(d)). The copper layer when wet etched in shape of the developed layer of photoresist by 
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dipping the sample in the copper etchant until the unexposed part of the copper has been 

etched and the photoresist is removed (see Fig 2.6. (e), (f)). 

The second layer is again spin-cast, exposed (with a mask that covers the entire 

copper film except the graphite strips) and developed using the same parameters used for 

developing the copper layer, the graphite powder is swirled in the slots present in the copper 

pattern which has been developed followed by the removal of photoresist (see Fig 2.6. (g) 

to (j)).  

Third layer, polyimide, is spin-casted (same parameters used for spin casting and 

curing the first layer of polyimide) over the sample. Followed by spin casting of two thin 

layer of photoresist (first layer with 3000 rpm for 45sec and cured at 900C for 3 min, while 

the second layer with 1000 rpm and cured for 1200C for 3 min). The sample was exposed 

(with a mask that covers the entire copper layer except the parts to be touched by the skin 

and the contact pads to connect to the external circuit) and developed (see Fig 2.6. (k) to 

(l)). The entire polyimide layers are dry etched using the plasma etcher (Plasma Etch, USA) 

and the processed sensor is picked up from the PDMS glass slide using a water soluble film 

(Water soluble tape, Aquasol Corporation, USA) (see Fig 2.6. (m), (n)). 

A separate glass slide with backing film is affixed by taping its edges for preparing 

the silicon membrane. The silicone membrane (Dragon skin slow, Part-A and Part-B mixed 

in a ratio of 1:1, Smooth-On, USA) is spin-casted at 3000rpm for 45 sec and cured (see Fig 

2.6. (o)). The silicon layer is dry etched in a plasma etcher to make the top layer of silicon 

membrane rough and the silicon adhesive is spin-casted at 2000 rpm for 45 sec and cured 

at 1200C for 5 min (see Fig 2.6. (p)).  
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The device with water soluble film is placed on the adhesive layer of the silicon 

membrane (see Fig 2.6. (q)), the water soluble film is removed by dripping distilled water 

(see Fig 2.6. (r)) proceeded by cleaning the device with nitrogen gun. Fig 2.7 illustrates the 

schematic representations of all the layers of the device. The device is ready to pair with 

the skin and soon after the removal of the backing layer, testing is initiated. Fig 2.8 shows 

the transfer printing of the device to a water-soluble film while the Fig 2.9 and Fig 2.10 

shows the flexibility and twisting of the device on the silicone membrane respectively.    

 

 

 

 

Fig.2.7. Schematic exploded view of all the layers of the device 
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Fig.2.8. Transfer printing of device from glass slide to water-soluble film  

 

 

 

 

Fig.2.9. Flexibility of the device on the silicone membrane  
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Fig.2.10. Twisting of the device on the silicone membrane   
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3. EXPERIMENTAL SETUP & METHODS 

 

3.1. PARAMETERS REQUIRED FOR SILICONE MEMBRANE TO MOUNT ON 

THE SKIN 

One of the salient features of the device is its ability to pair with the skin for data 

acquisition. Silicone membrane has a property to elongate with the device and should not 

be a constraint when the device needs to elongate or compress when subjected to 

mechanical skin dynamics. As discussed in the previous sections the membrane has three 

layers as shown in Fig 3.1. 

 

 

 

 

Fig.3.1. Layers of Silicone Membrane 

 

 

 

In order to pair the device to the human skin the backing layer needs to be removed 

with delicate care for other membranes, which is vital for effective functionality of the 

membranes. If Gb is considered as the adhesive energy between the acetate film and the 

silicone layer; and Gs is the adhesive energy between the silicone adhesive layer and skin. 
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In order to satisfy the requirements for safe handling of the membrane during the peeling 

of the backing layer is shown in (1). 

𝐺𝑠 > 𝐺𝑏 (1) 

Gw is the working energy required to peel the membrane and the corresponding 

condition is depicted in (2). 

𝐺𝑠 > 𝐺𝑤 > 𝐺𝑏 (2) 

A common approach for measuring the interface mechanical adhesive properties is 

by a peel test. The primary principle involved in calculating the energies are energy balance 

approach using fracture mechanics. Several assumptions are considered in doing the peel 

test like the inextensibility of the acetate tape when it is peeled from the silicon layer 

(Kendall, 1975) and the elastic energy term is neglected during the energy balance 

approach. However this term is considered during the peeling of elastomer from the skin 

as it is considered to be an extensible linear elastic medium [46]. 

3.1.1. Background. Consider a peeling of an elastic thin film from a rigid substrate 

as shown in Fig 3.2. The variables to be considered are thickness of the film d, width of 

the film b, force to peel F, the extension δ, angle with which the film is peeled out from 

the substrate Θ, length of the peeled portion of the tape is c, length of the film to be peeled 

is Δc from point A to B. 
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Fig.3.2. Elastic film peeling from a rigid substrate 

 

 

 

If the energy balance is considered during the process the external work done by 

the system is equal to the internal energy stored. 

𝑊𝑝 = 𝑈𝑒+𝑈𝑠 (3) 

Where Wp is the amount work done to peel the film from A to B, Ue is the elastic 

energy stored in the film due to the extension of the peeled portion c, Us is the surface 

energy to create the two surfaces. Assuming the linear elastic film with constant width and 

thickness, the extension of the tape in the peeled region and elastic energy equations are 

given in (4) and (5) respectively. 

                                                                    𝛿 =
𝐹𝛥𝑐

𝐸𝑏𝑑
              (4) 

   

𝑈𝑒 =
1

2
𝐹 𝛿 =

𝐹2𝛥𝑐

2𝐸𝑏𝑑
 

(5) 
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E is the young’s modulus of the film. According to the fracture mechanics the 

surface energy is analogous to fracture energy to create new surfaces during peeling. Then 

surface energy is shown in (6). 

𝑈𝑠 = −𝑏 𝐺 𝛥𝑐 (6) 

Where G is the thermodynamic adhesive energy required to fracture a unit area [47]. 

When the force is applied on the film the force F moves a distance of Δc (1-cosΘ) + δ from 

the initial positon the change in potential energy due to this force is the external work done 

Wp and is given by (7). 

𝑊𝑝 = 𝐹 (𝛥𝑐(1 − 𝑐𝑜𝑠𝛩) +  𝛿) (7) 

Substituting (5), (6) & (7) in (3) and solving for G in the Kendall equation as shown 

in (8) gives. 

𝐺 =
𝐹2

2𝐸𝑏2𝑑
+

𝐹

𝑏
(1 − cos 𝛩) 

(8) 

If the film is inextensible then the elastic energy term is neglected and popular 

known for Rivlin equation as shown in (9). 

𝐺 =
𝐹

𝑏
(1 − cos 𝛩) 

(9) 

Equation 8 & 9 represents the energy terms to find the adhesive energy between the 

layers. In order to find the energy required to peel one layer from the other, the force 

required to peel is not a steady state force. To find the working force, the model as shown 

in Fig 3.2 was taken into consideration. A thin film will be stripped from a rigid substrate 

this thin film is infinitely stiff in the axial direction. The adhesive fracture energy [48] is 

given by equation (10). 
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𝐺𝑐 = (
𝑑𝑈𝑒𝑥𝑡 − 𝑑𝑈𝑠 − 𝑑𝑈𝑑 − 𝑑𝑈𝑘

𝑏 𝑑𝑐
) 

(10) 

b dc is the incremental area created during the peel test, Gc is the adhesive fracture 

energy, dUext is the incremental external work performed which is F dc (1-cosΘ), dUs is 

the change in stored strain energy, dUd is the increment of dissipated energy other than 

creating new surface, dUk is the incremental change in kinetic energy. The equation used 

in (10) is to determine the amount of working force that can peel the acetate film from the 

silicone membrane. As the membrane is does not store or dissipate energy during the peel 

test dUs & dUd are zero (acetate tape is infinitely flexible & inextensible during the peel 

test). 

The speed with which the membrane peels out is the important parameter that needs 

to be consider if the test speed is V. If the velocity components of the peeled arm are V (1-

cosΘ) & V (sin Θ) then the incremental dissipation energy per unit area is given in equation 

(11). 

𝑑𝑈𝑘

𝑏 𝑑𝑐
= 𝜌 𝑑 𝑣2(1 − 𝑐𝑜𝑠 𝛩) 

(11) 

Where density of the arm is ρ and peeling speed is 𝑣. Equation (12) gives the total 

energy required to peel backing layer from the silicone membrane. 

𝐺𝑐 = (
𝐹

𝑏
− 𝜌 𝑑 𝑣2) (1 − 𝑐𝑜𝑠 𝛩) 

(12) 

3.1.2. Experimental Setup. Peel test between various layers in order to determine 

the respective energies between the layers. The peel test is conducted using a mini tensile 

tester with a force gauge (Mark-10) as shown in Fig 3.3. 
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Fig.3.3. Mark-10 Force Gauge 

 

 

 

Firstly in order to find the Gb, a silicone membrane is fabricated as per the procedure 

mentioned in the previous sections. The membrane is cut into a square (25 mm × 25 mm) 

in dimension in order to conduct the peel test. Now the layers are cut and transferred onto 

a glass slide such that the acetate tape faces the top layer and the adhesive is attached to 

the glass slide and is affixed on a fixture with the help of two vertical clamps to hold the 

glass slide. The other end of the adhesive tape is fixed in grips of the force gauge. A 

schematic representation of layers of the silicone membrane for finding the energy between 

silicon layer and the backing is shown in Fig 3.4. & Fig 3.5. shows the process of peeling 

the backing layer from the silicone membrane on the mini tensile tester. The upper grip is 

now set into motion manually, which starts to peel the backing layer from the silicon 
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membrane. The position of the membrane that has been peeled out and the corresponding 

force obtained are tabulated. The schematic representation of orientation of the layers for 

measuring the force required to peel the acetate film from the silicone layer is shown in Fig 

3.4.  

For measuring the adhesive energy between the silicone adhesive and the skin, a 

new film with same dimensions was coupled with the silicon layer paired with the skin, 

now the backing layer is removed as shown in Fig 3.5 and various associated parameters 

are noted, a schematic representation of the layers of the silicone membrane is shown in 

Fig 3.6. and the test is conducted as shown in the Fig 3.7. In order to measure the energy 

required to peel the backing film from silicone the peel test is done continuously whereas 

for both of the prior tests the force measured is collected for every 1 mm. 

 

 

 

 

Fig.3.4. Schematic representation of layers of silicon membrane during the peel test for 

measuring the peel force between the silicone layer and backing layer. 
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Fig.3.5. Backing layer being peeled from the silicone membrane on the tensile tester 
 

 

 

 

Fig.3.6. Schematic representation of layers of silicon membrane during the peel test for 

measuring the peel force between the adhesive layer and skin. 



46 

 

 

Fig.3.7. Peeling of the adhesive layer from the skin by the tensile tester 

 

 

 

3.2. EXTERNAL SIGNAL CONDITIONING CIRCUIT FOR MEASURING THE 

EPIDERMAL DEVICE 

 As the device is passive in nature, it needs an external source to calibrate the data 

that is sensed by this device. This device contains two pads that measure the differential 

bio-potential. These two pads are in contact with the skin the data like sinusoidal waves 

obtained from this electrodes is subtracted one from the other to get the differential bio-

potential. The device has two graphite strips that measure the strain in two directions. There 

are 10 pads that connect with the external circuit for each electrode or graphite node. As 

the interface between the contact pads and the serpentine wires are in microns with high 

damage probability, so there are two pads to ensure at least one pad works if any one of 
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the connection is broken. The Fig 3.8. Illustrates the appropriate pad to measure their 

respective signals obtained from the device. 

 

 

 

 

Fig.3.8. Nomenclature of various pads of the epidermal sensor 

 

 

 

A commercial wireless Bluetooth circuit (BITalino architecture) is used to measure 

all the signals that are obtained from the device. The circuit has been modified in a way 

that it can measure EEG & EOG in additional to the features depicted in Fig 3.9. Maximum 

versatility can be achieved by modular blocks of the BITalino. The acquisition of 

physiological signals, the analog front-end integrates individual sensor blocks for 

electrocardiography (ECG), Electromyography (EMG), electro dermal activity (EDA) and 

accelerometry. Control blocks with micro-controller unit (MCU), power management 

block and a wireless communication block that uses a class II Bluetooth module (CSR 

chipset) serve the back-end. The specifications of the circuit are mentioned in Table 3.1. 
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Fig.3.9. External Bluetooth Circuit 

 

 

 

Table.3.1. BITalino specifications 

 Specifications 

MCU ATMEGA328P-AVR 8-bit RISC 

Clock 8MHz 

Power Vcc = 3.3V;  Vss = 1.65 V; GND = 0V 

Battery Polymer Lithium ion-3.7 V- 500m Ah 

Data Link Class II Bluetooth v2.0  

(range up to 10 m)- 115200 bps [Baud] 

Sensors ECG;EMG;EDA;ACC;LUX 

Actuators LED 

Weight 30 gm 

Size 105*60 mm 
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Unfortunately, the Bluetooth circuit has been configured only to measure the 

signals obtained from the electrodes. For measuring the strain from the sensor, a 

commercial digital multimeter (DMM) for measuring the resistance of these two strips. 

Conductive polymer strips connects to the sensor and the PCB circuit. Typically, this PCB 

circuit have through holes to represent the individual pads in the PCB circuit and use only 

one of the pads to read the data of each function. Table 3.2. shows the mode of measuring 

the parameters that are obtained from the epidermal device. 

 

 

 

Table.3.2. Nomenclature of the pads and their mode of measurement 

 

 

 

In real time all the commercial DMM’s have the capability to measure a single 

variable or single strip at a time. As it has two terminals that can measure only thing at a 

time. A multiplexer (mux) is used in order to select the channel required, as the device has 

S. No Pad Name 
Pad Number 

(Ascending order from 

top to bottom) 

Mode of Measurement 

1 Pad - A 1-2 Bluetooth 

2 Pad - B 3-4 DMM 

3 Pad - C 5-6 Bluetooth 

4 Pad - D 7-8 DMM 

5 Pad - E 9-10 DMM 
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two inputs (two graphite strips) to measure the data. For the current purpose, a 2 to 1 mux 

serves in which can accept two inputs and send one output based on the selective signal. 

The 2 to1 mux is very tiny and to optimize the design functionality, so an 8 to 1mux for 

was chosen for current application. An ‘Enable’ serves the purpose of controlling the mux. 

It has two strips with three digital inputs and 8 different combinations corresponding to 3 

of 8 channels of the mux. As pad-D is common pad for both the graphite strips it is 

connected to the ground in a manner pad-B gives the data of graphite strip-1 while pad-B 

reads the data obtained from graphite strip-2. So one of the wires from the DMM connects 

the output of the mux while the other is grounded. 

There are many commercial ways in order to choose the signal from the mux like 

microcontroller, digital I/O, etc. for the current purpose, a digital I/O is used to send the 

selecting signal to the mux. Only one signal from digital I/O to mux is required, so it 

requires only 0 & 1 to select two channels. The enable of digital I/O is connected the VCC 

of mux which is 5V, eliminating the need of external power supply to the mux. All these 

devices are controlled using a laptop with the help of LabVIEW to handle the devices and 

record the data in the entire process Fig 3.10. shows the block diagram of the external 

conditioning circuit. 
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Fig.3.10. External conditioning circuit for the epidermal sensor to measure the graphite 

resistance 

 

 

 

The DMM connects the laptop using the GPIB to USB converter. This converter 

allows a two-way communication between DMM and the laptop. A Digital I/O controls 

the mux; while the Digital I/O is configured and controlled by the LabVIEW. 

Data captured from the external conditioning circuits have all the captured signals 

obtained from the body but it cannot be analyzed directly as it contains many artifacts like 

noise [49-54]. Noise components in the surface physiological signals are common and 

inevitable. The data analyzed using such signal may correlate to an erroneous result. The 

effective way of overcoming such hurdles is to filter maximum amount of noise from the 

data obtained. A band pass filter [49] would be very effective for the purpose, as the 

spectrum range for each kind of the physiological signal. The position of the sensor should 

be an important parameter in consideration of the noise levels while placing the electrodes 

over the muscle fibers that are intersecting tendons or on top of the excitation zone of a 

muscle the amplitude obtained would be high. 
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It is quite complicated to set the frequency range of high-pass corner frequency for 

the lower end of the signal because of many signals overlapping at this range. 

Contamination of the physiological signal involves many intrinsic and extrinsic 

parameters. Using a 60-Hz notch filter, the power line noise and cable motion artifact, 

which are extrinsic, are eliminated [37]. The intrinsic parameters are due to electronics of 

amplification systems and skin electrode interface [50]. Several organizations set different 

standards based on their works based on the physiological signals to have the signal free 

from the noise. The range of the filters to be used for different kind of EP signals are 

tabulated in Table 3.3 [49] [54] [37]. 

 

 

 

Table.3.3. Range of spectrum to set the filters for different EP signals [49] [37] [54]. 

S.No Physiological Signal High Filter Low Filter 

1 Electroencephalography (EEG) 35 Hz 0.3 Hz 

2 Electrooculography (EOG) 0.5 Hz 20 Hz 

3 Electromyography (EMG) 10 Hz 450 Hz 

 

 

 

Filtering the raw data obtained from the sensors using the above spectrum range 

allows the user to analyze for future use. 
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3.2.1. Setup for the In-Vivo Characterization of the EP Sensor. After the sensor 

is transfer printed on to the silicon membrane, an ACF cable joins the contact pads to a 

small PCB circuit. This PCB circuit is connected with the commercial Bluetooth sensor as 

shown in Fig.3.11. 

The differential placement of the device results in acquisition of different EP 

signals based on their placement location over the human body. For instance placement of 

device on the scalp manifests in obtaining the EEG signal, jaw manifests in obtaining the 

EMG signal whereas EOG is obtained by placing the sensor on any side of the temples on 

the human head. 

 

 

 

 

Fig.3.11. Setup for capturing the EP Signals 

 

 

 

The Bluetooth sensor is turned ON and paired with the laptop with the help of the 

software (Open Signals). The significant EP signals are captured in the laptop via 
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Bluetooth. The raw data collected from the software is filtered using a bandpass filter 

(Kaiser Win) in MATLAB. 

3.2.2. Experimental Setup In-Vitro Characterization of the Strain Sensors. 

The capability of the strain sensors in detecting the directional strains in the skin are 

evaluated with a mechanical stage. In-vitro characterization is possible through the 

measurements conducted with the epidermal sensor on a flat glass substrate, while 

systematically elongating or compressing the device. The stretcher has two stations in 

which one is fixed and other is moving horizontally when thimble is rotated. The distance 

between the stations can be measured with the sleeve scale as shown in Fig 3.12. 

 

 

 

 

Fig.3.12. Device fixed on a stretcher 

 

 

 

The sensor is transfer printed on thin PDMS membrane (10 mm) and the device is 

connected to a PCB circuit via contact pads and ACF cable. In the PCB circuit, probes of 

the DMM are connected to the respective terminals of the contact pads corresponding to 
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the strain gauges of the device. The DMM is connected to the laptop (LabVIEW 2015) for 

acquiring all the real-time data during the elongation. The device in constrained at the both 

ends, the entire experimental setup is shown in Fig 3.12. 

There are two different strain gauges oriented in two different directions namely in 

direction 1 and 2 as represented in Fig 3.13. As there are two graphite strips the resistivity 

measurement for each graphite strip in each direction are documented individually and 

separately. Fig 3.14. represents the nomenclature involved to determine the strains in their 

respective directions. If strip1 is expanded in longitudinally, it is direction 1 and vice versa. 

 

 

 

 

Fig.3.13. Experimental setup for measuring the change in the resistivity of the graphite 

strips due to mechanical strain 
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Fig.3.14. Nomenclature of the directions based on graphite strips 

 

 

 

The electrodes and the strain sensor are elongated up to 20% of their original length 

the resulting variation in the resistivity of each graphite strip documented at every 2% of 

the elongation. The resistivity of the both graphite strips are measured individually. The 

corresponding Gauge Factor (GF) is determined by 

𝐺𝐹 = 𝛥𝑅
𝑅0

⁄
𝜀

⁄
 

(13) 

Where ΔR is the resistance change, R0 is the initial state and ε is the strain 

deformation.  
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4. RESULTS 

 

4.1. PEEL TEST 

The force required to peel the backing layer detaching it from silicon layer spanning 

the length of the silicon layer is plotted as shown in Fig 4.1. The average force required to 

peel the backing film from silicone has been 0.038 N, as represented parameters which are 

evaluated to be b = 0.025m and Θ =1800 (as the test conducted was 180 degree peel test) 

substituting these values in the Rivlin equation i.e. equation (9) gives 3.06 N/m as the 

energy Gs. 

 

 

 

 

Fig.4.1. Force between Acetate film and Silicone 
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Force required to peel the adhesive layer from the silicon is plotted in Fig 4.2. 

Equation (8) determines the adhesive energy between silicone and the skin and the young’s 

modulus is 350 kPa, thickness of the silicon layer is 10 µm and substituting their respective 

values of those terms gives Gs as 11.95 N/m because the force required to peel was 0.058 

N. 

 

 

 

 

Fig.4.2. Force between Silicone Adhesive and Skin 

 

 

 

From these values, the adhesive energy between the skin and the silicon adhesive 

is greater than adhesive energy between backing layer and silicone satisfying the condition 

(1). 

The working energy Gw is evaluated based on the values obtained from the test with 

continuous peeling process. The time taken to peel the entire film was around 40 seconds 

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Distance (mm)

F
o

rc
e

(N
)



59 

 

with an average of 0.041 N that gives the corresponding energy of 3.26 N/m satisfying the 

condition (2). Plot shown in Fig 4.3. shows the force required to peel the backing layer 

from the silicon layer when peeled continuously. 

 

 

 

 

Fig.4.3. Force vs Time for Acetate Film and Silicone 

 

 

 

4.2. RESPONSE OF THE EP SENSORS FROM THE IN-VIVO TEST 

The device is placed on various locations of the human body for measuring the 

physiological signals. The position of the device over the body determines the kind of 

physiological signal as mentioned in the earlier sections. The backing layer should be 

peeled out after placing the device and the measurement can be commenced.  EEG signals 

are obtained by mounting the sensor over the scalp as shown in Fig 4.4. And the 

corresponding filtered signal is shown Fig 4.5.  
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The placement of the device for the EOG signals is shown in the Fig 4.6. The 

filtered EOG signal can be analyzed as per the eye blink movement there is an increase in 

the signal crests and troughs for every blink. Each such part of the signal represents one 

eye blink as shown in Fig 4.7. 

 

 

 

 

Fig.4.4. Sensor location on the scalp for EEG measurement 

 

 

 

 

Fig.4.5. Plot of EEG signals obtained as per the position shown in Fig 4.4. 

1 2 3 4 5 6
-120

-80

-40

0

40

80

120

Time (sec)

A
m

p
li
tu

d
e

 (
V

)

 

 



61 

 

 

Fig.4.6. Sensor location on the scalp for EOG measurement 

 

 

 

 

Fig.4.7. Plot of EOG signals obtained as per the position shown in Fig. 4.6. 

 

 

 

The capturing of surface EMG signals can be illustrated with a jaw activity.  The 
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abnormality in the signal signifies the movement in the jaw. Graph in Fig 4.9 shows signal 

activity due to single double and triple opening of the jaw. 

 

 

 

 

Fig.4.8. Sensor location on the scalp for EMG measurement 

 

 

 

 

Fig.4.9. Plot of EOG signals obtained as per the position shown in Fig 4.8. 
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4.3. RESPONSE OF THE STRAIN SENSORS FROM THE IN-VITRO TEST 

The Graphite layers record mechanical movements and play vital role as kinematic 

sensors. The percentage change in resistance of the graphite strips when graphite strips are 

expanded mechanically. Figs 4.10 & 4.11 are the plots obtained when the graphite strips 

are elongated in direction1 and direction 2 respectively. 

The gauge factor for the graphite strips in direction1 and direction2 are calculated 

as per the equation (13) and tabulated in Table 4.1. 

 

 

 

 

Fig.4.10. Percentage Change in resistance of the graphite strips when expanded in direction 
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Fig.4.11. Percentage Change in resistance of the graphite strips when expanded in direction 

2 

 

 

. 

Table.4.1. Gauge factor of the graphite strips in direction1 & 2 

 Direction 1 Direction 2 

Graphite Strip 1 3.665 0.3665 

Graphite Strip 2 0.1534 1.6756 
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5. SUMMARY AND CONCLUSIONS 

 

In summary, the work reported here illustrates advantages in EP measurements that 

follow from the concepts of epidermal electronics. The resulting devices offer enhanced 

levels of wearability, expanded options in device sterilization and minimized artifacts from 

body motions compared to previously reported technologies, including direct contact 

epidermal electrodes.  

Modifications in the external Bluetooth circuit can increase the capability to 

measure different kinds of physiological measurements from the device. Strain gauge using 

graphite ink instead of graphite powder might enhance the gauge factor and even sensitive 

to change in temperature. In case of using the epidermal device for a long-term 

physiological measurement, the silicon membrane can be perforated using a 3d perforator 

array in order to avoid the accumulation of sweat. The silicone adhesive may lose its 

property to stick with the increase of bio-fluids between the silicon membrane and the skin. 

Exploring these options, integrating signal processing, and wireless data 

transmission capabilities into the EES represents promising directions for future research. 

Such technology would build on advances in telemedicine and ubiquitous healthcare.  
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