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ABSTRACT 

Quality and efficiency are pivotal indicators of a manufacturing company. Many 

companies are suffering from shortage of experienced workers across the production line 

to perform complex assembly tasks such as assembly of an aircraft engine. This could 

lead to a significant financial loss. In order to further reduce time and error in an 

assembly, a smart system consisting of multi-modal Augmented Reality (AR) 

instructions with the support of a deep learning network for tool detection is introduced. 

The multi-modal smart AR is designed to provide on-site information including various 

visual renderings with a fine-tuned Region-based Convolutional Neural Network, which 

is trained on a synthetic tool dataset. The dataset is generated using CAD models of tools 

augmented onto a 2D scene without the need of manually preparing real tool images. By 

implementing the system to mechanical assembly of a CNC carving machine, the result 

has shown that the system is not only able to correctly classify and localize the physical 

tools but also enables workers to successfully complete the given assembly tasks. With 

the proposed approaches, an efficiently customizable smart AR instructional system 

capable of sensing, characterizing the requirements, and enhancing worker’s performance 

effectively has been built and demonstrated. 
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1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

  In the Industry 4.0 era, consumer needs towards products of high quality, high 

complexity and mass customization have been growing in a fast-moving pace. Many 

companies are seeking solutions that could increase the efficacy. However, the state of 

having shortage of experienced workforce has always been a critical problem while 

employers are facing the rapid transition of industry. According to a Honeywell news [1], 

78% of the modern technology is considered important, 65% of the technological 

advances are restrained by the outdated work styles, and 38% of the current workers are 

actively looking for a different position. That has reflected the urgent needs for the 

system update and flexibility for workforce training. Also, the quality of products plays a 

vital role as the difficulty of assembly increases, e.g., a jet engine is comprised of more 

than 10,000 individual parts. Figure 1.1. shows the photo of an aircraft engine assembly 

that contains a wide variety of machine parts.  

 

 

Figure 1.1. Highly complex assembly of an aircraft engine [2] 
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As reported by GE [3], the company loses millions of dollars each year because 

nuts and hoses that seal fluid lines are not fastened right for the jet engine, which leads to 

an unnecessary cost from repairing, not to mention the safety of passengers. Therefore, to 

improve the productivity, the ability to sense, monitor, characterize, and support the 

workers for highly complex assembly has become even more imperative, especially when 

conducting unpleasant, unsafe, exhausting tasks. To remain competitive, companies and 

researchers have been attempting for solutions toward smart manufacturing by applying 

emerging technologies such as Artificial Intelligence (AI), Internet-of-Things (IoT) and 

industrial digital twin [4]. Many leading manufacturing companies have already noticed 

the potential and started piloting Virtual Reality (VR) and Augmented Reality (AR) 

technologies, which has been successfully utilized in various fields ranging from medical 

area [5], to the assembly line. The significant reduction of errors, time, and training 

requirements have been measured and proven by the Augmented Reality for Enterprise 

Alliance (AREA) of Boeing. “This has tremendous potential to minimize errors, cut 

down on costs and improve product quality” [3]. GE has witnessed the improvement in 

productivity and efficiency by implementing AR. Honeywell also proved the success in 

worker training with the usage of AR [1]. 

Although AR rendering for assembly has been demonstrated for its promising 

potential, industries still do not have real-world solutions aiming at further increasing the 

productivity by minimizing the assembly time and error with the assistance of AR. There 

are five challenges that need to be addressed as follows: 

1. The commercialized AR supported devices are usually too heavy to wear and too 

expensive. This may cause concerns for practical industry use of AR devices, 
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especially at the assembly line. The accessibility and usability of the selected 

resources for system development is important.   

2. Besides the potential of implementing AR in the assembly industry, how an AR 

guiding system need to be further improved to assist workers.  

3. The capability of onsite multi-modal AR instructions needs to be provided to 

enhance the knowledge transfer.  

4. The capability of sensing, tracking and characterizing a working environment 

needs to be advanced to provide natural, interactive feedback while workers are 

performing an assembly.  

5. The high flexibility and efficiency of system update in terms of data acquisition 

are imperative, which are the essentials for Internet of Things (IoT) in smart 

manufacturing.   

 

1.2. RELATED WORK 

  In the scientific perspective, many researchers have emphasized the benefits that 

AR could bring to the industry. Tao et al. [6] discussed the state-of-the-art VR/AR 

technologies for assembly simulations including modeling, sensing, and interaction. 

Caudell et al. [7] proposed an AR application for manual manufacturing processes. 

Azuma et al. [8] presented the potential of AR with head-mounted display (HMD). Over 

the past decade, more and more research regarding engineering assembly has become 

popular as engineers have applied AR to different engineering scenarios [9-13]. For AR 

training, Webel et al. [14] raised the problem of handheld device during assembly. Leu et 

al. [15] pointed out research efforts needed to improve the realism of virtual assembly, 
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such as high-fidelity dynamic graphic displays, low-cost sensor fusion techniques, haptic 

devices, and multi-modal rendering such as audio rendering [16]. Also, the lack of 

natural, interactive mechanisms between the assembly operators, the assembly of 

components, and the instructions being rendered need to be addressed. Werrlich et al. 

[17, 18] presented an overview of evaluations using AR training, identifying the current 

limitations pertaining to high similarities of existing designed experiments that need to be 

improved.  

  With the advancement of technologies in machine learning, machines are now 

able to recognize and classify objects and activities by using different classification 

methods [19, 20]. Davide et al. [21, 22] successfully recognized basic motions using 

signals captured from a smartphone by extracting features using classification. Ward et 

al. [23] proposed a strategy for recognizing assembly motions. Tao et al. [24] developed a 

Convolutional Neural Networks (CNN) model to recognize the worker activity using 

IMU and sEMG signals captured from an armband. Al-Amin et al. [25] used a Kinect 

sensor to perceive the worker’s activity for workforce modeling and management. 

Overall, the number of research papers regarding deep learning [26] methods, such as 

pattern recognition using CNN [27], R-CNN [28, 29] for object detection, have been 

growing rapidly. In addition, the research pertaining to learning features from synthetic 

dataset using data augmentation was presented [30, 31] for 3D object and pedestrian 

detection, which identifies the utility when training data is limited.   
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1.3. OVERVIEW OF THE PROPOSED SYSTEM 

A smart AR instructional system with the support of deep learning is introduced 

in this study, which is intended to further improve the performance of a worker through 

assistive smart instruction. To develop the system, a combination of sensors is applied to 

capture the information of a working area while the augmented view is rendered via an 

onsite display. Once the environmental data has been obtained, the captured information 

are sent to a fine-tuned deep learning model for decision making. After that, the predicted 

results are transmitted to the AR system through an Internet Protocol (IP) as the system 

will superimpose AR information accordingly in a worker’s view for assembly 

instruction rendering. Figure 1.2 summarizes the overall system workflow.     

 

 

Figure 1.2. Overview of the proposed system 
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2. TECHNOLOGY COMPONENTS AND SYSTEM OVERVIEW 

2.1. MULTI-MODAL AUGMENTED REALITY  

To visualize and understand onsite instructions, an AR instructional system which 

offers multi-threading display including texts, graphics, animations by applying data 

fusion needs to be created. With multi-modal AR instructions, workers are able to 

directly sense and comprehend the physical environment while following the AR 

instructions step by step. Figure 2.1. illustrates the proposed multi-modal AR system.    

 

 

Figure 2.1. The proposed multi-modal AR instructional system 

 

To realize the multi-modal AR display, a marker is attached to a workbench so 

the webcam can perceive the information of the patterns from the marker for feature 

recognition and tracking, so as to superimpose the computer-generated (CG) data in a 

worker’s view. To successfully achieve the data overlaying process, an effective camera 

pose estimation approach for coordinate transformation is required. The process of 
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Video 
Animation

Graphics-based Instruction

Text-based 
Instruction



7 

 

 

achieving multi-modal AR involves several technology components as described in the 

following sections. 

2.1.1. Feature Extraction. Features (corners) are first to be extracted for target 

recognition. Corners are regions within the image with large variations in intensity, which 

can be detected using a sliding window to measure intensity change. The equation of the 

sliding window is:  

 

𝐸(𝑢, 𝑣) =  ∑𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑣) − 𝐼(𝑥, 𝑦)]2

𝑥,𝑦

 

 

where 𝑤(𝑥, 𝑦) is the window function on the position of x and y within an image. 

𝐼(𝑥, 𝑦) is the gradient at (𝑥, 𝑦). 𝑢 and 𝑣 are represented as the shifting distances in 𝑥 and 

𝑦 directions, respectively. To find the features (corners) that yield the highest 𝐸(𝑢, 𝑣), the 

second term needs to be maximized, meaning the largest change in intensity 𝐸(𝑢, 𝑣). 

Figure 2.2 presents a selected image for the target marker in this study due to its large 

number of features (corners).  

 

 

Figure 2.2. A selected image for the target marker 

  (1) 
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Figure 2.3 illustrates the corners on the marker which are detected as features for 

target recognition and tracking, which can be utilized for developing a 3D world 

coordinate system based on the target marker for camera pose estimation.  

 

 

Figure 2.3. The detected features (corners) on the marker. Corners represent the 

regions which have the highest change in intensity in all directions, which are 

highlighted with yellow ‘+’. 
 

2.1.2. Camera Pose Estimation for Augmented Reality.  After finishing 

extracting features from a single frame, the estimation for camera pose using 

homography transformation begins in order to realize AR effect. Figure 2.4. illustrates 

the pipeline of realizing AR. To augment a computer-generated data onto a scene, a 

homography transformation is applied to estimate the camera pose for overlaying data 

spatially using a projection matrix. In this method, the calculation is initiated based on the 

pinhole model assumption of the RGB webcam. The projection matrix is an integrated 

matrix that combines an intrinsic matrix of the camera and an extrinsic matrix which is 

comprised of a 3x3 rotation matrix and a 3x1 translation vector. 
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Figure 2.4. The pipeline of realizing AR. An attached marker and the features within the 

pattern are detected and recognized. The local coordinate system based on the markers is 

generated for estimating the relation between the marker and camera. The computer-

generated data can be overlaid once the estimation is complete. 

 

The equation of the camera pose estimation using homography is as follows: 

 

[
𝑢
𝑣
1
] = [

𝑓𝑢 0 𝑢0

0 𝑓𝑣 𝑣0

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧

] [

𝑋𝑤

𝑌𝑤
𝑍𝑤

1

] 

 

where (𝑢, 𝑣) are the coordinates in the 2D image plane of the display. The first term on 

the right side is the intrinsic matrix of the camera where (𝑓𝑢, 𝑓𝑣) is the focal length and 

(𝑢0, 𝑣0) is the center of the image plane. The second term represents the extrinsic matrix, 

where 𝑟11 …𝑟33 are the parameters of a rotation matrix and (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) is a translation 

vector. The third term is the world coordinate system based on the detected features of 

Tracking

Recognition

Computer 
Generated Data

+
Rendering

Data Overlaying

(2) 



10 

 

 

the target marker, which contains (𝑋𝑤, 𝑌𝑤, 𝑍𝑤). The homography transformation the 

between two coordinate systems is illustrated in Figure 2.5. 

 

 

Figure 2.5. The homography transformation between the two coordinate systems 

 

Moreover, since 𝑍𝑤  in the world coordinate system can be set to zero as the 𝑍𝑤 of 

the feature points on the surface of the target marker is zero, providing a convience by 

replacing the third column of the extrinsic matrix to zero. Hence, the estimation equation 

is simplified as follows: 

 

[
𝑢
𝑣
1
] =  [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] [

𝑋𝑤

𝑌𝑤
𝑍𝑤

] 

 

where the first term on the right side is the projection matrix and ℎ11 …ℎ33  are its 

parameters. With the aid of the derived projection matrix, a 3D model can be accurately 

overlaid onto a 2D image plane as a composite view by using coordinate transformation. 

As an example, an AR composite view using homography is shown in Figure 2.6.  

 

(3)   
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Figure 2.6. An example frame of an AR effect. A computer-generated cube is 

superimposed on the target marker using homography. 

 

2.1.3. Multi-modal AR Realization. By utilizing homography, an augmented 

visual display can be realized to provide instructions for the assembly guidance through a 

composite view based on the coordinate system of the marker.  Therefore, an AR visual 

queue can be established and deployed to a sequence of engineering assembly operations. 

With the aid of visual rendering, various types of detailed instructions are shown and 

augmented on the corresponding machine part through an AR display. Figure 2.7. shows 

an example frame of a multi-modal AR display for a mechanical assembly.  To provide 

better understanding for training and performance, various types of visual AR renderings 

are provided in the system, e.g., texts, videos and 3D animations for instructions. Texts and 

videos are rendered through a 2D canvas of the display and AR 3D renderings are realized 

by superimposing 3D models with respect to the world coordinate system based on the 

target marker. 
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Figure 2.7. An example frame of multi-modal AR for a mechanical assembly. Multiple 

types of instructions are rendered through displays including text, graphics, and 3D 

animations. 

 

Different colors and textures are arranged for different components, indicating 

their functional uses. In addition, animations and other spatially interactive behaviors of 

AR objects are realized via C# scripting in a Unity3D scene. With the augmented 

instructions informed in a visual display, subjects are able to sense and understand the 

operations through the provided information. However, without the tooling assistance 

message, the instructions are still limited when specific tools are required to finish the 

tasks correctly. To leverage it as a smart AR instructional system, a proposed tool 

detector with deep learning for decision making will be discussed in the following 

section. 
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2.2. DEEP LEARNING FOR TOOL DETECTION 

During the manual assembly operation, how to efficiently secure every 

component in order to correctly assemble the entire product is crucial. To prevent from 

using wrong tools, a deep learning-based tool detector trained on a synthetic dataset is 

proposed, to help workers follow AR instructions. A webcam is mounted on top of the 

workbench to support workers in decision making. The camera captures video frames of 

the working area for the tool detector to classify and localize the target tools. The 

workflow of the proposed tool detector is presented in Figure 2.8.  

 

 

Figure 2.8. The system workflow of deep learning supported AR for tooling in assembly 

 

2.2.1. Detection Approach. This section describes the tool detector development 

using a Region-based Convolutional Network (R-CNN) [28]. The detection approach 

incorporates a webcam that captures 2D frames of the working area and feeds the data 

into the model, which is trained on a synthetic dataset [30, 31] using Faster R-CNN [32] 

…

Tool
detector

Worker

Tooling

AR tooling feedback

Task?

Tool?
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for target classification and localization. By using CNN [27], detailed features such as  

colors, contours and textures of the synthetic models are learned from the responded 

weights. Given an image or a video, the detection model is able to make inferences with 

the learned weights. Figure 2.9. illustrates the pipeline of R-CNN model trained on a 

synthetic dataset. By data augmentation, a detector for real tools is developed using CAD 

models for the tools, without the use of real tool image data.   

 

 

Figure 2.9. Synthetic dataset for R-CNN pipeline 

 

2.2.2. Synthetic Tool Dataset. Considering the expensive cost of collecting real 

tool images and labeling the instances manually for a training model, a Computer-Aided 

Design (CAD) model based synthetic tool dataset is adopted. The objective is to classify 

and localize real tools in an assembly scenario by using only CAD models, which is 

efficient when training a new classifier and the amount of real data is limited [30]. The 

synthetic data for each class of tools is obtained by generating their CAD models with 

Data 
augmentation

Tool CAD model

Synthetic dataset

Real tool 
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…
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…

…

…
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high similarity in colors, shapes and textures. Then the data is transformed to OBJ file 

format and imported to Unity3D engine. Five categories of CAD tools (Allen key, pliers, 

power drill, screwdriver, and wrench) are augmented to a scene by overlaying CAD 

models onto a 2D image background. After the model is augmented, the entire 

augmented scene is projected to another 2D image plane with a size of 1024×600 pixels 

for data generation. Figure 2.10. shows each class of tools in the dataset. 

 

 

Figure 2.10. Synthetic data: 5 classes of CAD models for the synthetic tool dataset 

 

To determine the scene for data augmentation and number of synthetic training 

images, the approach [31] tested on real PASCAL VOC2007 dataset [33] with the top 

mean Average Precision (mAP) using the configuration of RGB computer generated 

model with RGB image background is adopted. The number of images of each category 

for the peak result [31] is determined around 2000. In order to create an interclass 

variation for the classifier to reach higher performance on recognizing objects with 

PliersAllen Key Power Drill Screwdriver Wrench

Synthetic tools

PliersAllen Key Power Drill Screwdriver Wrench

Physical tools
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different orientations within a scene [30, 31], a spatially varying generator is scripted and 

applied to models, which enables synthetic tools to constantly alter poses within the scene 

while the data is being collected. Figure 2.11. shows a synthetic tool that rotates about 

three different axes. By using the approach, an efficient data generation process is 

achieved. Once the augmentation is complete, a synthetic dataset with a resolution of 

1024×600 of tools is developed for the deep learning model. Figure 2.12. illustrates the 

process of generating synthetic dataset for each class of tools using the data 

augmentation. 

 

 

Figure 2.11. A synthetic tool rotates about three different axes. To create inter-class 

variation for purpose of higher recognition rate, a spatially varying generator is scripted 

for each class of synthetic tools. 
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Figure 2.12. Synthetic data for R-CNN. By using data augmentation, the synthetic dataset 

can be generated with CAD models and an RGB scene (background). 

 

2.2.3. Faster R-CNN. To build a tool detector, Faster R-CNN [32] is applied to 

achieve a higher recognition rate for high resolution images [34]. Given a video frame or 

an image, the detector is able to output classifications and localization results of tools. 

Faster R-CNN is developed based on a CNN and has been validated as a robust network 

for different levels of feature extraction [27]. After extracting features using a CNN, a 

Region Proposal Network (RPN) [32] is assigned for producing high quality proposals 

(bounding boxes) based on the extracted features of the convolutional feature map output 

from the CNN. RPN is a small network that generates proposals with multiple scales and 

aspect ratios and slide them through the convolutional feature map to detect objects. 

Figure 2.13. illustrates the generated region proposals with multiple scales and aspect 

ratios.  

 

Real RGB scene

Tool CAD model renderings

Synthetic data
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Figure 2.13. Region proposal network (RPN). An RPN generates multiple proposals and 

slides through the convolutional feature map output from a CNN. 

 

 Instead of feeding multiple unselected proposals computed from the external 

approach such as the selective search method [34] by merging adjacent pixels, RPN 

detects whether if there is an object in the proposal (bounding-box). It will pass forward 

for object classification and bounding-box regression only if there is an object detected 

within the proposal. Figure 2.14. summarizes the overall workflow of the Faster R-CNN 

architecture.  

 

 

Figure 2.14. Faster R-CNN architecture.  
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An image frame is fed into a deep convolutional neural network for feature 

extraction. Then a Region Proposal Network is implemented to compute high-quality 

region proposals and pass forward to classification and bounding box regression. The 

model is trained by optimizing a set of weights, which minimizes the loss (cost) as the 

objective function while learning. The objective function is given below: 

  

𝐿({𝑝𝑖}, {𝑡𝑖}) =  
1

𝑁𝑐𝑙𝑠
∑𝐿𝑐𝑙𝑠(𝑝𝑖, 𝑝𝑖

∗)

𝑖

+  𝜆
1

𝑁𝑟𝑒𝑔
∑𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖, 𝑡𝑖
∗)

𝑖

 

 

The two terms on the right side represent classification and bounding-box 

regression, respectively. Symbol 𝑖 indicates the index of proposals generated while using 

RPN. 𝑝𝑖
∗ is the binary classification label where it returns 1 when the object in the 

proposal is detected, and 0 otherwise. The bounding-box regression loss is activated only 

when 𝑝𝑖
∗ = 1, which contains 𝑡𝑖 and 𝑡𝑖

∗, attributing to four parameterized coordinates of 

the predicted box and the ground-truth box. After computing the object score using RPN, 

an ROI (Region of Interest) pooling layer is inserted to reduce the computation of the 

network by down-sampling the spatial size of the parameters. The classification of the 

detected object in the bounding-box is achieved by using a softmax function to predict 

classification scores over 5 classes of tools as follows: 

 

𝑃(𝑦𝑖|𝑥𝑖) =  
exp(𝑆𝑖)

∑ exp(𝑆𝑘)
5
𝑘=1

 

 

(4) 

(5) 
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where 𝑃(𝑦𝑖|𝑥𝑖) is the predicted probability of a given image 𝑥𝑖 and 𝑆𝑖, 𝑖 ∈ [1,5]  is a 5-

dimensional score vector representing the five different classes of tools. These five 

probability scores are normalized between zero and one as confidence scores that sum to 

one. For the bounding-box regression of the detected object, the bounding-box regressor 

is adopted from [28]. During training, N pairs of ground-truth boxes G and proposed 

boxes P are defined as training inputs, which are denoted as {(𝑃𝑖 , 𝐺𝑖)}𝑖=1,…,𝑁, where 𝑃𝑖  = 

(𝑃𝑥
𝑖 , 𝑃𝑦

𝑖 , 𝑃𝑤
𝑖 , 𝑃ℎ

𝑖 ) represents the pixel coordinates of the center, width, and height of 𝑃𝑖. The 

ground-truth boxes are also represented as 𝐺𝑖  = (𝐺𝑥
𝑖 , 𝐺𝑦

𝑖 , 𝐺𝑤
𝑖 , 𝐺ℎ

𝑖 ). The training process is to 

learn the transformation and map the proposed box 𝑃 to 𝐺, which is denoted as four 

functions: 𝑑𝑥(𝑃), 𝑑𝑦(𝑃), 𝑑𝑤(𝑃), 𝑑ℎ(𝑃). After the transformation is learned, the 

predicted box �̂� can be generated by using the following transformations: 

 

�̂�𝑥 = 𝑃𝑤𝑑𝑥(𝑃) + 𝑃𝑥 

�̂�𝑦 = 𝑃ℎ𝑑𝑦(𝑃) + 𝑃𝑦 

�̂�𝑤 = 𝑃𝑤 exp (𝑑𝑤(𝑃)) 

�̂�𝑥 = 𝑃ℎ  exp (𝑑ℎ(𝑃)) 

     

In the above equation, each 𝑑∗(𝑃) (where ∗ is one of 𝑥, 𝑦, ℎ, 𝑤) is denoted as 

𝑤∗
𝑇ϕ(𝑃), where ϕ(𝑃) is modeled as a linear function of the features of a proposal and 𝑤∗ 

is a vector of learnable model parameters [28]. After adopting the approach of object 

detection for AR tooling message, the system development and a designed experiment 

are determined for the evaluation, which will be discussed in the following sections.  

(6) 

(7) 

(8) 

(9) 



21 

 

 

2.3. SYSTEM OVERVIEW 

For the smart AR instructional system development, two proposed systems are 

integrated through a connection of a User Datagram Protocol (UDP) socket. To provide 

ab AR tooling message, the detection results of the tool detector are transmitted through a 

scripted internet protocol (IP) listener to the AR domain, activating computer-generated 

visuals augmented on the corresponding tools for workers to locate. Figure 2.15. presents 

the workflow of the integrated system. Two RGB webcams are responsible for providing 

image data for multi-modal AR rendering and tool detection, respectively. The system 

integration is achieved with a UDP/IP socket, which is assigned for data transmission.  

 

 

Figure 2.15. The workflow of the integrated system 

 

Since the integrated system runs with two different webcams, mapping the 

coordinates from the 2D image plane of R-CNN to the 2D image frame of AR is 

AR + Deep Learning
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Given task
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communication 
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required. An affine transformation is utilized for coordinate transformation. The function 

of the transformation is:   

 

[
𝑥′
𝑦′

𝑤′

] =  [
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
0 0 1

] [
𝑥
𝑦
𝑤
] 

 

where (𝑥, 𝑦, 𝑤) represents three center points of three drawn bounding-boxes in the 

image plane of R-CNN, respectively. (𝑥′, 𝑦′, 𝑤′)  indicates three corresponding points in 

a video frame of AR. 𝑎1…𝑎6 are the target parameters of the transformation matrix. 

Once the transformation matrix is computed through two sets of points from two different 

coordinate systems, the coordinate transformation can be achieved through the derived 

matrix. Figure 2.16. shows the workflow of mapping an AR visual with coordinate 

transformation.   

 

 

Figure 2.16. The derived transformation matrix maps the coordinate to a video frame of 

AR. By using affine transformation, the coordinates of the detected tool in R-CNN can be 

converted to the coordinates in AR through a computed transformation matrix. 

Video frame of R-CNN Video frame of AR

Coordinate 
transformation

Detected tool position Mapped AR visual

(10)

0) 
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3. EXPERIMENT  

3.1. EXPERIMENTAL SETUP 

To evaluate the performance of the proposed system, an experimental setup with 

two webcams and one monitor for the on-site display is designed. One top-down webcam 

is mounted on top of the workbench as a surveillance camera to capture the working area 

for tool detection and the other webcam is situated on a neighboring tripod for the AR 

display. To simulate the assembly scenario in the industry, a given toolkit for the 

assembly task is arranged aside. A photo of the full workstation setup for the designed 

experiment is shown in Figure 3.1. 

 

 

Figure 3.1. A workstation setup for the experiment. One webcam is mounted on top of 

the workbench as a surveillance camera and the other camera is situated on a neighboring 

tripod. A monitor for the onsite display is attached to the workbench. All the required 

components and the toolkit are also arranged aside. 

Toolkit for the assembly

Webcam for tool detection

Marker for homography transformation

Spindle carriage

Webcam for AR

AR onsite display

Z-Axis

Box for components
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For the experiment, a spindle installation of a consumer grade CNC carving 

machine (Inventables: X-Carve 750mm) is decided, which requires instructional guidance 

and mechanical knowledge to finish the assembly correctly. The goal of the assembly 

task is to install the spindle onto the z-axis mechanism with provided components and 

tools. The photos of the z-axis mechanism and the installed spindle are shown in Figure 

3.2. and 3.3., respectively.  

 

 

Figure 3.2. The z-axis mechanism of the spindle assembly 

 

 

Figure 3.3. The installed spindle with the z-axis 

Z-axis 
mechanism

CNC carving machine

Z-axis
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The spindle installation contains seven steps. Each step consists of multiple 

operations that require different tools or components for the assembly. The summarized 

information provided on the instructional manual is given in Table 3.1. along with its 

graphical illustrations [36]. With the defined engineering tasks, the experimental setup is 

determined. The experimental procedure will be discussed in the next section.    

 

Table 3.1. The spindle assembly task [36] 

 

 

 

Step 

No. 

Name Graphic 

instruction 

Tool/Component Instruction 

 

 

1 

Insert 

spindle 

carriage 

clamping 

bolts 

 

 

Tool: Allen key 

 

Component: 

Socket head 

screw M4 x 

16mm 

Thread in three of the M4 x 

16mm socket head screws.  

 

 

  2 

Attach 

spindle 

Carriage 

to Z-axis 

(1) 

 

 

None Starting from the bottom of 

the Z axis, slide on the 

spindle carriage.  

 

 

 

3 

Attach 

spindle 

Carriage 

to Z-axis 

(2) 

 

 

Tool: Allen key 

 

Component: 

Button head cap 

screw M5 x 

16mm 

Use two M5x16mm button 

head cap screws to attach the 

carriage to the delrin nut of 

the leadscrew. 

 

 

 

 

4 

Attach 

spindle 

Carriage 

to Z-axis 

(3) 

 

 

Tool: 8mm 

wrench 

 

Component: 

Lock nut 

Use an 8mm wrench to adjust 

the variable wheels so they 

ride snugly on the carriage, 

but not so tight that they 

cannot be moved by hand.   
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Table 3.1. The spindle assembly task [36] (Cont.) 

 

 

   

  5 

Attach 

Z-axis 

home 

switch 

 

 

Tool: Allen key 

& pliers 

 

Component: 

screw, nut 

Thread on an M3 nylock nut 

and tighten it against the plate 

with either a 5.5mm socket as 

pictured here, or with the 

appropriate wrench/pliers. 

 

 

 

  6 

Spindle 

(1) 

 

 

Tool: Screw 

driver  

 

Component: 

Spindle 

Use a screwdriver or other 

prying tool to gently pry the 

spindle mount open and insert 

the router until the yellow 

button shows through on the 

bottom of the spindle mount. 

 

 

   

  7 

 

 

Spindle 

(2) 

 

 

Tool: Allen key 

 

Component: 

Socket head 

screw M4 x 

16mm 

Tighten the three M4x16mm 

screws to hold the router in 

place. 

 

3.2. SYSTEM EVALUATION 

The completion time and number of errors are the most crucial indicators to 

evaluate the performance of an assembly operation [37], thus two kinds of data are 

recorded for evaluation.  

3.2.1. Subject Selection and Testing. To collect data, 20 physically 

and cognitively healthy subjects, including male and female graduate students and 

faculties at the average age of 28 at Missouri S&T are recruited. All the subjects are 

confirmed having no prior knowledge of the experiment. They are divided into two 

groups of 10 subjects to conduct the experiment. One group is asked to perform the 

assembly by using the paper manual available from the manufacturer, and the other group 
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performs the assembly with the smart AR system developed. During the experiment, each 

of the subjects is asked to stand in front of the workbench to perform the assembly task. 

The elapsed time is recorded with a stopwatch and the number and type of errors is 

documented if a mistake occurs. Three types of assembly errors are in Table 3.2, which 

are considered the most generic errors in a mechanical manual assembly process [37].  

 

Table 3.2. Three types of assembly errors 

No. Error type  Description  

1 Tool/Part selection Misuse the tool/part to conduct the assembly 

2 Assembly order Assemble with incorrect sequence 

3 Installation  Assemble with incorrect installation/fixation 

 

As shown in Table 3.2., the tool/part selection error occurs when a subject 

misuses incorrect tool/part to perform the assembly tasks. The assembly order error could 

be caused by mistakenly following the sequence of instructional guidance or assemble 

components in an incorrect order. The installation error takes place when a subject install 

parts with incorrect fixation, which includes mismatching components or securing them 

improperly.    

3.2.2. Evaluation Metric. For the quantitative evaluation of the tool detector 

developed, the Intersection over Union (IoU) metric [33] is adopted. If a ground-truth 

box and a predicted box are overlapped by 0.5 or larger, then the prediction is a True 

Positive (TP). The formula is denoted by: 

 

𝑎𝑜 =
𝑎𝑟𝑒𝑎(𝐵𝑝 ∩ 𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝 ∪ 𝐵𝑔𝑡)
 (11)

0) 



28 

 

 

where 𝑎𝑜 represents the overlap ratio between the ground-truth box 𝐵𝑔𝑡 and predicted 

box 𝐵𝑝. 𝐵𝑝 ∩ 𝐵𝑔𝑡 and 𝐵𝑝 ∪ 𝐵𝑔𝑡 are the intersection and union of them, respectively. 

Figure 3.4. provides an illustration of IoU.  

 

 

Figure 3.4. The Intersection over Union (IoU) 

 

To calculate Average Precision (AP), the Precision metric [33] is defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

where True Positive (TP) represents an instance from the target class that is correctly 

classified as the target class. False Positive (FP) represents an instance from a class other 

than the target class that is misclassified as the target class. 

Intersection

Union

  

   

   

  

(12)

0) 
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4. RESULTS  

  In this section, the experimental results are discussed, including the tool detector 

and smart AR rendering, as well as the evaluation of the integrated system. Figures 4.1. 

and 4.2. show two snapshots of two subjects performing the assembly experiment using 

two different methods (paper manual vs. Smart AR) for system evaluation.  

 

 

Figure 4.1. A subject is performing the experiment using the paper manual 

 

 

Figure 4.2. A subject is performing the experiment using the Smart AR system 
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4.1. TOOL DETECTOR AND SMART AR RENDERING 

The tool detector is achieved by fine-tuning a Faster R-CNN pre-trained model 

using TensorFlow object detection API with approximately 64K iterations and the 

learning rate of 3×10-4. The classification layer of the Faster R-CNN algorithm is 

modified to output softmax probability scores in [0, 1] over 5 classes of tools. Once the 

tools are detected in a video frame, the detector draws bounding-boxes around the located 

tools using bounding box regression. Figure 4.3. shows two example detection results of 

all the classes of tools of the experimental setup.  

 

 
(a) 

 

 
(b) 

Figure 4.3. Tool detection using Faster R-CNN with a surveillance camera 
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The tool detection results show that, the tool detector is able to classify and 

localize the physical of real tool target with various poses, which demonstrates the 

viability of CNN using CAD data augmentation. Figure 4.4. shows the results of 

detecting real tools with different orientations.  

 

 

Figure 4.4. The results of detecting real tools with various orientations 

 

Table 4.1 shows the precision of detecting real tools using the developed tool 

detector for Intersection over Union (IoU) evaluation on a real tool dataset captured from 

the surveillance camera with a resolution of 1024×600.  
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Table 4.1. Average Precision on detecting different real tools 

Tool Average Precision 

Allen Key 64.7% 

Pliers 95.9% 

Power drill 72.4% 

Screwdriver 97.2% 

Wrench 93.5% 

mean 84.7% 

 

The mean of the Average Precision for the five tools is 84.7%, indicating a strong 

performance of utilizing synthetic data for real object detection. As shown in Table 4.1., 

screwdriver outperforms all the other tools, likely due to the unique tool shape and color 

of the grip. Allen key has the lowest score of precision, which is possibly caused by its 

shape and color that may result in a confusion with other non-tool objects in the 

background. Figure 4.5. shows the example frames of False Positive (FP), which lead to 

decrease in precision of predicting Allen key and power drill. Two irrelevant objects in 

the bounding-boxes are misclassified as Allen key and power drill with the detection 

scores of 51% and 53% that are output from the softmax function, indicating a lower 

confidence of predicted classes inside the bounding-boxes. Clearly, the background 

affects the precision of tool recognition as False Positive occurs. Also, a decrease in the 

precision there are more objects within the captured frame.  
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Figure 4.5. Example frames of False Positive (FP). The misclassification occurs when 

video frames include non-tool objects in the background 

 

According to the assembly requirements, subjects need to fasten the components 

with the required tools while following the AR assembly instruction. By combing multi-

modal AR rendering and the tool detector, AR visuals of tooling message are provided. In 

Figure 4.6. and 4.7., two example frames representing two instances of the integrated 

system during the assembly are shown. The red rectangle in the figure highlights the 

position of the tool generated by the of tool detector while the AR assembly instructions 

are also rendered in each frame, displaying a current state of the operation. 

 

 

Figure 4.6. AR integrated with the tool detector for Step 3 of the assembly task 

AR tool 
detector
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Figure 4.7. AR integrated with the tool detector for Step 4 of the assembly task 

 

4.2. SYSTEM EVALUATION RESULT AND DISCUSSION 

To evaluate the validity of the integrated system, assembly completion time and 

number of errors of the two groups are presented in Tables 4.2. and 4.3.  

 

Table 4.2. Results of the group using paper manual 

 

Subject 

 

Gender 

Total 

number of 

errors 

Number 

of error 

type 1 

Number 

of error 

type 2 

Number 

of error 

type 3 

Completion 

time (s) 

1 Male 6 1 1 4 725 

2 Male 2   2 616 

3 Female 3  1 2 729 

4 Male 2   2 596 

5 Male 4 2  2 1057 

6 Male 6 1  5 712 

7 Male 2 1  1 689 

8 Male 3 3   605 

9 Male 3 1  2 708 

10 Female 3 2  1 1113 

Mean — 34 — — — 755 

AR tool 
detector
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Table 4.3. Results of the group using smart AR instructional system 

 

Subject 

 

Gender 

Total 

number of 

errors 

Number 

of error 

type 1 

Number 

of error 

type 2 

Number 

of error 

type 3 

Completion 

time (s) 

11 Male 1   1 424 

12 Male 2   2 359 

13 Male 2   2 531 

14 Male 1   1 531 

15 Male 5 1  4 600 

16 Female 4   4 914 

17 Male 2 1  1 421 

18 Male 1   1 573 

19 Male 3   3 413 

20 Female 2 1  1 278 

Mean     — 23 — — — 504.4 

 

As shown above, the two results of using different instructional guidance are 

recorded and analyzed. Also, Figures 4.8. and 4.9. compare the mean completion time 

and the mean number of errors using ANOVA for the two groups. By following the smart 

AR instruction, the completion time is reduced by 33.2%, and the assembly error of using 

the proposed system is reduced by 32.4% comparing to the conventional method of using 

a paper manual. These reductions are mainly due to the paper manual difficult to 

interpret, resulting in the subject spending more time on retrials and understanding the 

instructions in order to assemble correctly.  
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Figure 4.8. The mean completion time of two groups 

 

 

Figure 4.9. The mean number of errors of two groups 
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Figure 4.10. The comparison of three types of error 

 

Table 4.4. Percentage reduction for each type of errors using the AR instruction 

Error type 1 2 3 

Reduction 72.7% 100% 4.8% 

 

 Figure 4.10. and Table 4.4. present a comparison and the percentage of reduction 

for each type of errors with the assistance of the smart AR instructional system. As 

shown, two types of errors including tool/part selection (Type 1) and assembly sequential 

order (Type 2) errors are reduced by 72.7% and 100% respectively, with the aid of 

dynamic AR queue and tool detection. The installation error is recorded as the most 

error-prone from both groups, which also has the least improvement in error reduction 

with the use of AR assistance. Tables 4.5. and 4.6. present a more detailed summary of 

errors from the two different groups, which contain error type and how the errors are 

made in each step along with the documented description of the spindle assembly task.   

 



38 

 

 

Table 4.5. Error analysis of the experiment with the paper manual 

  Type 

Step
 

1 2 3 Description 

1 3 1 8 Type 1: Should use an Allen key, instead of a screwdriver 

Type 2: Incorrect assembly sequence 

Type 3: Should leave the screws loose  

2   12 Type 3: Mismatch the carriage and the track 

3 2 1  Type 1: Should use an Allen key, instead of a screwdriver 

Type 2: Should tighten the screws first 

4   1 Type 3: Securing incorrect nuts 

5   1 Type 3: Apply too much torque while securing the screw 

6 1   Type 1: Should use a screwdriver, instead of a screwdriver 

7 4   Type 1: Should use an Allen key, instead of a screwdriver 

 

Table 4.6. Error analysis of the experiment with the smart AR system 

  Type 

Step
 

1 2 3 Description 

1   3 Type 3: Should leave the screws loose  

2   12 Type 3: Mismatch the carriage and the track 

3 2  2 Type 1: Should use an Allen key, instead of a screwdriver 

Type 3: Mismatch the carriage and the delrin nut 

5 1   Type 1: Should use pliers, instead of a wrench 

6   3 Type 3: Pry at an incorrect position 

 

According to the analysis, Type 3 errors in Step 2 are the most recorded type of 

error using either the manual or the smart AR system. Examining those errors provides 

the following insight: although AR rendering is able to provide spatial information 

regarding the geometry of the parts to be assembled, improvement in the AR system still 

needed in order to help workers comprehend the relationships among different parts, e.g., 

matching a V-wheel mechanism of the carriage to the track on the z-axis. Figure 4.11. 

shows two snapshots of two subjects performing Step 2 with two different guiding 
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instructions in the assembly process. Moreover, a quality assembly should be finished in 

one-time installation to avoid damage from retrials. Figure 4.12. shows a snapshot of the 

wear on a V-wheel mechanism that is damaged by repeated failure at mounting the 

carriage on the z-axis track from Step 2, which may downgrade the quality of the 

assembly. The proposed AR guiding system can be further improved based on the 

recorded errors. 

 

 

Figure 4.11. Two subjects perform Step 2 with two different instructional guidance 

 

 

Figure 4.12. The wear of a V-wheel mechanism caused by the installation error 

Smart AR Paper manual
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To sum up, the experimental results indicate a considerable improvement in the 

assembly performance by implementing smart AR instructions to mechanical assembly 

tasks in comparison to the conventional method of using paper manuals. The developed 

AR guiding system has demonstrated the promising potential of integrating AR and deep 

learning for manual assembly.  
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5. CONCLUSION 

This thesis presents the development of a smart Augmented Reality (AR) worker 

assembly instructional system aiming at improving the worker’s performance by 

incorporating deep learning into augmented reality for mechanical assembly. The 

developed system consists of multi-modal AR instructions allowing workers to respond 

intuitively and a tool detector using deep learning. The multi-modal AR rendering that 

provides various types of on-site instructions (texts, videos, 3D animations) is realized 

with the aid of homography in Unity3D. The tool detector is developed with a Faster R-

CNN trained on a CAD based synthetic tool dataset, which is able to classify and localize 

real physical tools with a mean Average Precision of 84.7%. Evaluating the integrated 

smart AR system on the assembly of a motor spindle shows the result that it reduces the 

assembly completion time by 33.2% and assembly errors by 32.4%. Thus, the integrated 

AR system has demonstrated its potential in assisting human operators when performing 

complex assembly tasks.  
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APPENDIX 

AUGMENTED REALITY IN UNITY3D AND UDP SOCKET OPERATION  

 

1. UNITY3D 

Unity3D is a gaming engine developed by Unity Technologies that allows users to 

design and build games that comprise multiple scenes with desired models and various 

visual effects including 2D and 3D graphics, textures, lighting and shading. To apply the 

CAD model to the scene, users need to convert the file format so it could be imported to 

Unity3D and then simply load to the scene by using import asset from the drop-down 

menu. The imported 3D model would be categorized as game objects and be sorted on 

the hierarchy panel once it has been assigned to the scene. Figure A.1 shows the designed 

part modeled in the CAD software NX 12 [38] and Figure A.2 shows the drop-down 

menu for importing process.   

 

 

Figure A.1. The deigned CAD model of the spindle carriage 
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Figure A.2. The deigned CAD model of the spindle carriage 

 

Every game object in the scene can be arranged by assigning specific positions, 

angles and scales as it is embedded with a Transform property. Figure A.3 shows the 

imported deigned model in the Unity3D scene and its spatial information regarding to the 

coordinate system of the scene.  

 

 

Figure A.3. The imported 3D CAD model of spindle carriage 
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In addition, the engine platform also supports scripting via programming 

languages such as C# and JavaScript, enabling the physics and dynamic behavior of the 

game object. The overall game scene and its description is illustrated in Figure A.4. After 

the desired scene is developed, the user can launch the play mode to activate all of the 

settings for the game objects. Also, the console of the main project panel could show the 

update for the current status while under the play mode.    

 

 

Figure A.5. The imported CAD model of spindle carriage. 
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2. VUFORIA 

Vuforia is a Software Development Kit (SDK) for Augmented Reality that can be 

directly applied as an asset for Unity3D. It provides the functionalities that offer target 

recognition and tracking through the built-in Computer Vision (CV) algorithm, enabling 

users to situate Computer Generated (CG) 3D visuals with respect to the world 

coordinates as data registration. To define targets, users can assign markers by importing  

the desired images for data augmentation with a variety of configurations for 

marker-based AR. Moreover, the SDK has included several prefabs which provide a wide 

variety of uses as needed, e.g., virtual button prefab for human-computer interface 

without physical hardwire needed. Figure A.5. shows the applicable prefabs of Vuforia in 

Unity3D.   

 

 

Figure A.6. Vuforia prefab in Unity3D 

 

To realize the AR effect, two prefabs are required for data augmentation, which 

are ARCamera and ImageTarget prefabs. The ARCamera prefab would need to be 

activated using provided license key from the developer portal, so the marker data can be 

loaded in through the embedded Vuforia Behavior script. Once the data has been loaded, 
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the user will need to activate the Image Target Behavior of the ImageTarget prefab by 

setting the dataset and image target.  After the setting is finished, the augmented view can 

be visualized through the display while the marker is being captured by the camera. 

Figures A.6. and A.7. illustrate the two prefabs and the AR visual.      

 

 
(a)                                                                    (b) 

Figure A.6. (a) The ARCamera prefab (b) The ImageTarget prefab 

 

3. USER DATAGRAM PROTOCOL (UDP) SOCKET 

To connect AR system with deep learning network for system implementation, a 

User Datagram Protocol (UDP) socket is selected for fast speed data transmission for its 

characteristics of low-latency and low bandwidth. For the system connection, the UDP 
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can be developed by scripting a sender and a receiver for two ends based on the IP 

address and designated port which is shown in Figure A.8.  

 

 

Figure A.7. Unity3D with CAD models augmented for the instruction 

 

 
(a)                                                                          (b) 

Figure A.8. (a) The sender scripted in Python (b) The receiver scripted in C# 
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