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ABSTRACT

This thesis investigates the propagation of estimation errors through generalized

coning, sculling, and scrolling algorithms used in modern day inertial navigation systems,

in order to accurately quantify the uncertainty in the estimation of position, velocity, and

attitude. The corrections for coning, sculling, and scrolling algorithms have an often unac-

counted for effect on documented and empirically derived error statistics for measurements

used to predict the uncertainty in a vehicle’s position, velocity, and attitude estimates.

Through the development of an error analysis for these generalized algorithms, mappings of

the measurement and estimation errors through the correction term are generated. Using the

developed mappings, an efficient and consistent propagation of state uncertainty with the

multiplicative extended Kalman filter is achieved. A simulation environment is developed to

investigate the performance of the algorithms within a descent-to-landing scenario. Monte

Carlo analysis is used to analyze the effects of the developed error propagation and the

accompanying algorithms to compare them with commonly used discrete dead-reckoning

approaches.



iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my graduate advisor, Dr. Kyle DeMars.

Throughout my time as a graduate student in the AREUS lab, you have offered the support

and guidance that I required for success in both research and coursework. Under your

advising, I have been constantly inspired by your devotion to your students and craft.

Without your aid in directing my curiosity and the invaluable skills that I have gained under

your direction, I would not be where I am today.

I would also like to express my gratitude to Dr. Henry Pernicka and Dr. Serhat

Hosder, my committee members. Dr. Pernicka, your courses on orbital mechanics were the

first taste I had of astrodynamics; through your teaching and passion for your subject, you

inspired me to pursue a career in space technologies, like so many other undergraduates in

aerospace engineering. Dr. Hosder, your coursework was some of the most difficult that

I’ve had the pleasure of taking, but the skills that I honed throughout have been invaluable

to me in my own research and I’m certain will be applicable throughout my career.

To my family, thank you for your continued love and support throughout my child-

hood and college career. Without your persistent encouragement, driving me toward

achievement and success, I would never have made it this far.

Last but not least, I would like to thank the members of the AREUS and SSE labs

who have served as companions throughout this journey in my life. Listed in no particular

order, I would like to thank Kari Ward, Matt Gualdoni, Christine Schmidt, Gunner Fritch,

Cameron Helmuth, Bruce Morrison, Donna Jennings, Jill Davis, and Daniel Newberry.

Without the support and friendship of each of you, the third floor of Toomey Hall would

not be the home it is to me today.



v

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. OVERVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. MATHEMATICAL NOTATION AND DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. FRAME DEFINITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3. ATTITUDE REPRESENTATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1. Euler Axis and Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2. Quaternion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. KALMAN FILTERING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1. EXTENDED KALMAN FILTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. MULTIPLICATIVE EXTENDED KALMAN FILTER . . . . . . . . . . . . . . . . . . . . . . . 17

4. TECHNIQUES FOR INERTIAL NAVIGATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



vi

4.1. CONTINUOUS VEHICLE DYNAMICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2. DISCRETIZED VEHICLE DYNAMICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3. STRAPDOWN SENSOR MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4. CORRECTIONS FOR CONING, SCULLING, AND SCROLLING MOTION 27

4.4.1. A Second-Order Coning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.2. A Second-Order Sculling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.3. A Second-Order Scrolling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5. INTEGRATING THE CONING, SCULLING, AND SCROLLING COR-
RECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. PROPAGATION OF ERRORS THROUGH INERTIAL NAVIGATION COR-
RECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1. METHODOLOGY FOR ERROR PROPAGATION DEVELOPMENT . . . . . . 37

5.2. STRAPDOWN MEASUREMENT ERROR PROPAGATION . . . . . . . . . . . . . . . . 39

5.3. CONING ALGORITHM ERROR PROPAGATION . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.1. Error in the Accumulated Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2. Error in the Accumulated Coning Correction . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.3. Combined Propagation of Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4. SCULLING ALGORITHM ERROR PROPAGATION . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1. Error in the Incremental Velocity Accumulation . . . . . . . . . . . . . . . . . . . . . . 46

5.4.2. Error in the Sculling Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.3. Error in the Rotational Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.4. Combined Propagation of Sculling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5. SCROLLING ALGORITHM ERROR PROPAGATION . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1. Error in the Integrated Incremental Velocity Accumulation. . . . . . . . . . . 51

5.5.2. Error in the Rotational Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.3. Error in the Scrolling Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5.3.1. Error in the scrolling correction due to sculling corrections 55



vii

5.5.3.2. Error in the scrolling correction due to higher-order ef-
fect corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.4. Combined Propagation of Scrolling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6. VEHICLE STATE ERROR DYNAMICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6.1. Attitude Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6.2. Velocity Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.3. Position Error Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7. INCORPORATING THE STRAPDOWN SENSOR MODEL . . . . . . . . . . . . . . . . 68

5.7.1. Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7.2. Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.7.3. Position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.8. COVARIANCE PROPAGATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6. RESULTS AND DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1. CONING SIMULATION OVERVIEW.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1. Traditional Dead-Reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1.1. High-frequency propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1.2. Low-frequency propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1.1.3. Mixed-frequency propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.2. Coned Dead-Reckoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.2.1. High-frequency propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.2.2. Low-frequency propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.3. Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.3.1. No coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1.3.2. 40 Hz coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1.3.3. 200 Hz coning motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.4. Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



viii

6.2. DESCENT-TO-LANDING SIMULATION OVERVIEW .. . . . . . . . . . . . . . . . . . . . 100

6.2.1. Nominal Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2. Coning, Sculling, and Scrolling Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.3. Comparison of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



ix

LIST OF ILLUSTRATIONS

Figure Page

4.1. Major, minor, and subminor time intervals considered within the INS . . . . . . . . . . . . 29

6.1. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with no coning motion . . . . . . . . . . . . . . 86

6.2. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with no coning motion . . . . . . . . . . . . . . 86

6.3. Monte Carlo simulation results for mixed-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with no coning motion . . . . . . . . . . . . . . 87

6.4. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample
covariance (1σRSS) from 1000 trials with no coning motion. . . . . . . . . . . . . . . . . . . . . . . 87

6.5. Monte Carlo simulation results for high-frequency, coned dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with no coning motion . . . . . . . . . . . . . . 88

6.6. Normalized standard deviation error between Monte Carlo sample standard de-
viation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning
compared to the high-frequency traditional dead-reckoning Monte Carlo sam-
ple standard deviation (RSS) from 1000 trials with no coning motion . . . . . . . . . . . . 88

6.7. Normalized standard deviation error between average filter standard deviation
(RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning com-
pared to the high-frequency traditional dead-reckoning average filter standard
deviation (RSS) from 1000 trials with no coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.8. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with no
coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.9. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 40 Hz coning motion . . . . . . . . . . 91



x

6.10. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 40 Hz coning motion . . . . . . . . . . 91

6.11. Monte Carlo simulation results for mixed-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 40 Hz coning motion . . . . . . . . . . 92

6.12. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample
covariance (1σRSS) from 1000 trials with 40 Hz coning motion. . . . . . . . . . . . . . . . . . . 92

6.13. Monte Carlo simulation results for high-frequency, coned dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 40 Hz coning motion . . . . . . . . . . 93

6.14. Normalized standard deviation error between Monte Carlo sample standard de-
viation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning
compared to the high-frequency traditional dead-reckoning Monte Carlo sam-
ple standard deviation (RSS) from 1000 trials with 40 Hz coning motion . . . . . . . . 93

6.15. Normalized standard deviation error between average filter standard devia-
tions (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning
compared to the high-frequency traditional dead-reckoning average filter stan-
dard deviation (RSS) from 1000 trials with 40 Hz coning motion. . . . . . . . . . . . . . . . . 94

6.16. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with 40 Hz
coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.17. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . 95

6.18. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . 95

6.19. Monte Carlo simulation results for mixed-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . 96

6.20. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample
covariance (1σRSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . . . . . . . . . 96



xi

6.21. Monte Carlo simulation results for high-frequency, coned dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . 97

6.22. Normalized standard deviation error between Monte Carlo sample standard de-
viation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning
compared to the high-frequency traditional dead-reckoning Monte Carlo sam-
ple standard deviation (RSS) from 1000 trials with 200 Hz coning motion . . . . . . . 97

6.23. Normalized standard deviation error between average filter standard devia-
tions (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning
compared to the high-frequency traditional dead-reckoning average standard
deviation (RSS) from 1000 trials with 200 Hz coning motion . . . . . . . . . . . . . . . . . . . . . 98

6.24. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with 200
Hz coning motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.25. Vehicle altitude during terminal descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.26. Vehicle attitude (Euler angles) during terminal descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.27. Non-gravitational acceleration magnitude during terminal descent . . . . . . . . . . . . . . . 104

6.28. Vehicle angular velocity magnitude during terminal descent . . . . . . . . . . . . . . . . . . . . . . 104

6.29. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean position error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 107

6.30. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean velocity error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 107

6.31. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean attitude error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 108

6.32. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean position error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.33. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean velocity error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



xii

6.34. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean attitude error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.35. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean position error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 110

6.36. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean velocity error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 110

6.37. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean attitude error,
averaged filter covariance (3σ), and Monte Carlo sample covariance (3σ) . . . . . . . 111

6.38. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean position error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.39. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean velocity error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.40. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean attitude error
(RSS), averaged filter covariance (1σRSS), and Monte Carlo sample covariance
(1σRSS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.41. Monte Carlo results comparison between CSS and traditional methods for iner-
tial navigation; mean position error (RSS), averaged filter covariance (1σRSS),
and Monte Carlo sample covariance (1σRSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.42. Monte Carlo results comparison between CSS and traditional methods for iner-
tial navigation; mean velocity error (RSS), averaged filter covariance (1σRSS),
and Monte Carlo sample covariance (1σRSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.43. Monte Carlo results comparison between CSS and traditional methods for iner-
tial navigation; mean attitude error (RSS), averaged filter covariance (1σRSS),
and Monte Carlo sample covariance (1σRSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.44. ANEES comparison for Monte Carlo position errors generated by CSS and
traditional inertial navigation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xiii

6.45. ANEES comparison for Monte Carlo velocity errors generated by CSS and
traditional inertial navigation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.46. ANEES comparison for Monte Carlo attitude errors generated by CSS and
traditional inertial navigation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.47. Normalized RSS standard deviation error between CSS and high-frequency
traditional dead-reckoning averaged filter and Monte Carlo sample covariances
for position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.48. Normalized RSS standard deviation error between CSS and traditional dead-
reckoning averaged filter and Monte Carlo sample covariances for velocity . . . . . . 116

6.49. Normalized RSS standard deviation error between CSS and traditional dead-
reckoning averaged filter and Monte Carlo sample covariances for attitude. . . . . . . 117



xiv

LIST OF TABLES

Table Page

6.1. LN-200S IMU specifications (1σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2. Mean run-time for 1000 Monte Carlo trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3. Initial uncertainty for each state (per component basis, 1σ) . . . . . . . . . . . . . . . . . . . . . . . 101

6.4. Mean run-time for 500 Monte Carlo trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



1. INTRODUCTION

Exploration and utilization of the space environment is continually testing the ca-

pabilities of modern space systems and technnology, often inventing those that do not yet

exist. The increased interest coming from commercial industry has only reinforced the

need for accelerated technological evolution by pushing these boundaries with refreshed

perspectives and ideologies. The development of vehicles and technology that enable the

investigation of another celestial body are a crucial component for an ever increasing plan-

etary footprint of human exploration and knowledge. The capability to maintain accurate

estimates for a vehicle’s states – often described by position, velocity, and attitude – is

required to enable the increasing complexity of spacecraft mission objectives. However,

along with an estimate of the vehicle’s state, a measure for the accuracy, or uncertainty, in

that estimate is also maintained and may significantly impact the decision making process.

When deliberating upon mission-critical decisions, it is desirable to have an estimate that

is trustworthy to maximize the likelihood of mission success; to determine whether or

not the estimate is trustworthy, precise quantification of the uncertainty is necessary. By

incorporating additional information, usually in the form of external measurements, the

levels of uncertainty can be significantly reduced, though the reduction is dependent upon

an accurate accounting of that uncertainty.

During the first crewed lunar descent, Astronaut Neil Armstrong assumed manual

control when it became clear that the automatic descent would land in a boulder field and

could endanger the crew [21]. Peering out the window of the Apollo 11 Lunar Module,

he selected and guided the Eagle to a safe and successful landing. For the next generation

of spacecraft navigating in the lunar vicinity, much of the vehicle navigation process will

be enhanced by the incorporation of state-of-the-art technology, just as it was in 1969.

New systems integrated into the landing portfolio will leverage advancements made in the
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decades since the pivotal moon landing to maximize the probability of mission success1.

Recently, additional emphasis on precision landing has been made and is reinforced by the

advent of the NASA SPLICE (Safe & Precise Landing – Integrated Capabilities Evolution)

project. The SPLICE project aims to advance technologies for precise and safe landing

that are critical to the success of future robotic science and exploration missions [4]. As

defined by the SPLICE project, the goal of a precision landing is to safely land within close

proximity, or within 100 meters, of a desired surface target.

Though much of the technology that these spacecraft depend upon has seen tremen-

dous strides developmentally, some have fallen behind. One such technology is that of the

coning, sculling, and scrolling algorithms often used within inertial navigation to improve

vehicle state estimates. These algorithms, while correcting for nonlinear effects unrecog-

nized by the sensing systems, have a small contribution to the overall state uncertainty and,

before now, have not been a topic of concern within the literature. This thesis seeks to

understand the effects of incorporating the coning, sculling, and scrolling algorithms used

for inertial navigation on the state uncertainty within a scenario that desires and requires a

significant level of precision. By providing an accounting of the uncertainty contribution

of these algorithms, the goals of increased precision and safety are supported.

1.1. BACKGROUND

Inertial navigation describes the integration of inertial acceleration and angular

rate measurements to estimate the non-gravitational changes in position, velocity, and

attitude. Gimbaled inertial navigation systems (INSs) use platforms that mechanically

isolate accelerometers and gyroscopes mounted to the platform from the rotation of the

vehicle and any present vibration; because of this mechanization, gimbaled INSs are often

referred to as “stable-table” INSs. Some examples of gimbaled INSs include the Apollo

1https://www.nasa.gov/directorates/spacetech/flightopportunities/One_Giant_Leap_for_Lunar_Land-
ing_Navigation
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PGNCS [9], which served on both the command module and lunar module, and those

developed for the Minuteman III and Peacekeaper intercontinental ballistic missiles [29].

The onboard navigation computer then maintains the navigation frame which describes

the orientation of the gimbal and the sensors in relation to some reference. However,

gimbaled platforms have since been widely replaced by strapdown systems, where the

sensors are instead attached or “strapped-down” directly to the structure of the vehicle,

which couples the measurements to the dynamics of the vehicle. Though strapdown INSs

are commonly used in modern navigation architectures, one of the earliest adoptions on a

high-profile mission was the backup system for the Apollo Abort Guidance System in 1969

[7]. While gimballed systems are still sometimes used for ballistic missiles, strapdown

sensors have been adopted for most modern aircraft, guided missile, ship, and underwater

vehicle navigation applications [26]. The combination of ring laser gyros and advancements

in computing technology initiated and solidified the conversion from gimballed to strapdown

systems. Finally, their adoption is well aligned with the continued reduction of size, weight

and power (SWaP) requirements for space technology, as their introduction significantly

reduced the weight and complexity of the necessary navigation architecture by removing the

auxiliary components required for the housing and stabilization of the gimbaled platform

[27]. The continued advancement in circuitry and computer technologies has further

reduced the size and weight required for strapdown sensors, solidifying their prominence in

the field of navigation.

Several obstacles were met and overcome with the incorporation of strapdown sen-

sors, including the need to computationally, as opposed to mechanically, maintain the

vehicle’s navigation frame. The measurements obtained from gimbaled INSs are defined

within context of the frame controlled by the platform, decreasing the computational com-

plexity of the vehicle’s position and velocity integration. However, with the adoption of

strapdown sensors, the navigation frame is no longer fixed but linked to the attitude of

the vehicle, resulting in the need for its computational maintenance. In the transition to
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strapdown systems and the computational maintenance of the navigation frame, the ability

to account for errors in the state estimates due to coning, sculling, and scrolling motion also

became apparent.

Coning motion is defined as the condition where the angular velocity vector of the

vehicle is itself rotating, sculling motion describes the combined effects of underlying rota-

tion of the attitude and velocity vectors on the integration of the vehicle’s non-gravitational

change in velocity, and scrolling details the effects of the attitude and velocity rotation on the

position integration. Coning motion is commonly seen in vibrational environments where

out-of-phase sinusoidal motion in two axes causes a constant drift in the third axis’ attitude

estimate [19]. When a vehicle is undergoing pure coning motion, the angular velocity vector

magnitude stays constant, while the direction changes such that the vector appears to move

on the surface of a cone; hence the name coning motion. Sculling and scrolling effects can

be present in a variety of scenarios, such as maneuvers for braking or accelerating. Coning,

sculling, and scrolling algorithms are now used to detect and generate a correction to the

obtained measurements by processing a batch of measurements obtained at a frequency

greater than the on-board navigation filter computer cycle. Algorithms designed to approx-

imate errors introduced by the presence of coning, sculling, and scrolling motion, and their

application to precision navigation systems, are of primary interest within this thesis.

1.2. MOTIVATION

The modern INS is typically comprised of three orthogonal linear accelerometers

and gyroscopes that are used to measure the non-gravitational acceleration and angular

velocity of the vehicle, while a navigation computer is employed to integrate these mea-

surements and predict the vehicle states. Additionally, state-of-the-art INSs operating at

a high frequency generally apply some combination of the coning, sculling, and scrolling

corrections. The extended Kalman filter (EKF) is a tried and true architecture that serves

as the backbone for many modern navigation systems [14]. The EKF requires a model
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for the dynamics and a statistical representation for the uncertainty in the measurements

and dynamics. An equivalent measurement produced by the coning, sculling, and scrolling

algorithms is often used in place of the raw measurements to account for the drift incurred

by the constant angular velocity assumption. Unfortunately, in the application of common

coning, sculling, and scrolling algorithms, there is often an unaccounted-for contribution to

the uncertainty, generated by the use of measurements which contain errors due to a variety

of factors. Therefore, the known measurement error statistics are no longer representative

of the true dynamics. By developing and implementing an error mapping through the al-

gorithms used for coning, sculling, and scrolling corrections, a rigorous treatment of these

errors and their effect on the state uncertainty can be realized.

1.3. OVERVIEW

In order to discuss the contributions to and development of the error propagation

for the coning, sculling and scrolling algorithms, this thesis is composed of two primary

components, the first of which contains preliminary and background information and en-

compasses Sections 2 – 4. Mathematical notation and attitude representations are reviewed

in Section 2. Section 3 introduces the extended and multiplicative extended Kalman fil-

ters and the derivation of each. the continuous and discretized equations of motion for a

spacecraft are presented in Sections 4.1 and 4.2, while a model for the strapdown inertial

measurement unit (IMU) commonly used for inertial navigation is presented within Section

4.3. A summary of the coning, sculling, and scrolling algorithms and their importance is

provided in Section 4.4 and incorporated into the discretized equations of motion in Section

4.5.

The second primary component presents the contributions from this thesis and

analyzes their application within a lunar descent-to-landing scenario. Within Section 5,

the methods for error propagation development, the standard error propagation for the IMU

measurement errors, and the propagation of those errors through the coning, sculling, and
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scrolling algorithms are derived. The propagation of these measurement errors through

the coning, sculling, and scrolling algorithms is then incorporated into the derivation for

the propagation of uncertainty using the traditional form of the discrete dead-reckoning

equations. Section 6 presents the simulation implementation and analyzes the impact of

including the coning, sculling, and scrolling algorithms and the error propagation within

the navigation filter. Finally, Section 7 summarizes the results and contributions of this

thesis, describing the benefits of including the error propagation for the coning, sculling,

and scrolling algorithms within the lunar descent-to-landing scenario.
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2. PRELIMINARIES

Throughout this thesis, assumptions are made pertaining to the reader’s background

in mathematics, engineering, and estimation. To facilitate clarity and continuity throughout

the thesis, a few preliminary topics are discussed in order to provide a baseline upon which to

expand. Section 2.1 outlines the underlying mathematical notation, discussing standards for

quantities such as scalar, vector, and matrix representations. Frame definitions are presented

within Section 2.2, describing the frames relevant for a lunar descent-to-landing trajectory.

Finally, common attitude representations present throughout the work are discussed in

Section 2.3.

2.1. MATHEMATICAL NOTATION AND DEFINITIONS

The mathematical notation within this thesis attempts to align itself with common

techniques seen throughout the estimation and engineering community. In general, the

spaces explored within this thesis rely upon the space of all real numbers represented by

R, with the n-dimensional space expressed as Rn. A scalar variable is represented as a

non-bold character, such as x or X , while a vector quantity of length n is given by a bold

lowercase character, such as x. The vector x is then composed of scalar elements from the

set {x1, x2, . . . xn} and ordered such that

x =



x1

x2
...

xn


.
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A matrix is represented as a bold, capital character, such as X , with elements from

the set {x1,1, x1,2, x2,1, . . . xn,m} and ordered such that

X =



x1,1 x1,2 · · · x1,m

x2,1
. . .

. . .
...

...
. . .

. . .
...

xn,1 · · · · · · xn,m


.

The inverse of a matrix is expressed using the “−1” superscript, while the transpose of a

matrix or vector is given by the “T” superscript. The n × n identity matrix is represented

by In×n. The cross product between two vectors a, b ∈ R3 is denoted by a × b; the same

operation can be represented by a matrix multiplication such that a × b = [a×]b, where

[a×] =


0 −a3 a2

a3 0 −a1

−a2 a1 0


is the skew-symmetric cross product matrix. Similar matrices composed with vectors can

also be defined such as the diagonal matrix [ar], with elements of the vector appearing on

the diagonal of the matrix, and a matrix similar to the cross product matrix [a∗], but lacks

the sign changes seen for the cross product. It is worth acknowledging that the diagonal

matrix is not limited to being 3 × 3, while the others are; for a ∈ R3, the matrices are

expressed as

[ar] =


a1 0 0

0 a2 0

0 0 a3


and [a∗] =


0 a3 a2

a3 0 a1

a2 a1 0


.
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Quaternions, which are often used for representing the rotation between frames, are

denoted by a bold lowercase character with an overbar, i.e. q̄. Additionally, as discussed

further in Section 2.3.2, quaternions are composed of scalar and vector elements; in general,

the ordering of the two is arbitrary. As such, the right-handed vector-first, scalar-second

construction is used. The vector part of the quaternion is denoted by the same bold and

lowercase character, though it lacks the overbar. The scalar part is then taken to be the

same lowercase character, non-bold, and without the overbar. These definitions allow the

expression of the quaternion and its magnitude as

q̄ =


q

q

 and q̄ = ‖ q̄‖ ,

where ‖ · ‖ is used to express the matrix or, in this case, vector `2−norm. Additionally,

the quaternion multiplication operator is denoted as ⊗ and defines the multiplication of the

quaternions p̄ and q̄, expressed as

p̄ ⊗ q̄ =


p

p

 ⊗

q

q

 =

qp + pq − p × q

pq − p · q

 ,
which defines the quaternion multiplication such that they are multiplied in the same order

as the equivalent transformation matrices. Finally, the quaternion inverse is simply given

by the negative of the vector component and expressed with the “ −1 ” superscript, or

q̄−1 =


−q

q

 .
The operator E {·} denotes the expected value of a variable. An estimated quantity,

or estimate, is denoted by a hat (ˆ) accented variable, while the time-derivative of a given

variable is recognized by the dot (Û) accent. Finally, the Kronecker delta is denoted by δi j
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and defined to be 1 when the i = j and 0 otherwise, i.e.

δi j =


1 i = j

0 i , j
.

2.2. FRAME DEFINITIONS

For the discussion within this thesis, three reference frames must be considered for a

basic lunar descent trajectory. These three reference frames are the moon-centered inertially

fixed frame, the spacecraft navigation or body frame, and the IMU case frame. Each is

defined by a set of three mutually orthogonal unit vectors, located at a specific point in

space. The definition of these frames allows for the declaration of translation and rotation

between points and directions in space. First, the moon-centered and inertially-fixed or

non-accelerating frame is located at the center of mass for the moon, depicted by the i

subscript or superscript, and defined by the J2000 reference frame. The J2000 coordinate

frame has a standard epoch of 2000 January 1.5 with a reference time scale of Barycentric

Dynamical Time (TDB), or Julian Date 2451545.0 [1].

The spacecraft body frame is defined to be co-aligned with the IMU case frame,

where each also has a common origin. Additionally, the common origin is colocated with

the center of gravity for the spacecraft. For the general strapdown IMU, a triad of three

orthogonal linear accelerometers and gyroscopes is contained within the case and directed

away from their common center, defined to be the origin of the case frame. Therefore, the

measurements obtained from the IMU’s accelerometers and gyroscopes will be a vector of

three values, directed along the axes and defined within the IMU case frame, denoted by

a subscript or superscript c. It is worth acknowledging that the spacecraft body frame and

IMU case frame are interchangeable within this thesis, though effort will be made to discuss

the frames within general circumstances where this may not be the case.



11

2.3. ATTITUDE REPRESENTATIONS

As previously discussed in Section 1, the computationally maintained estimate of

the vehicle attitude became more important with the advent of strapdown technology.

Unfortunately, the expression of a vehicle’s attitude, defining the orthogonal transformation

from an inertially-fixed reference frame to a body-fixed frame, is not as easy as position

and velocity. Several representations for the rotation are available, where each has its own

quirks, meaning that certain approaches can be better applied to different problems. Two

common expressions include the Euler axis/angle and quaternion representations. In-depth

reviews of attitude representations are available in Reference [28], though the following

sections will briefly discuss some common attitude representations.

2.3.1. Euler Axis and Angle. Each rotation from one frame to another can be

expressed as a transformation of one vector to another such that

xB = T B
A xA

where T B
A defines the transformation from the A frame to the B frame. Euler’s Theorem

states that this same rotation can be represented by a rotation vector φ, described by a

magnitude of rotation φ about a fixed axis e; these are known as the Euler angle and Euler

axis [18]. Using this definition and decomposing the rotation into orthogonal and parallel

projections of one basis onto another, the attitude matrix can be expressed as

T B
A = I3×3 − sin φ [e×] + (1 − cos φ) [e×]2 . (2.1)

Recognize that should the angle of rotation be zero, meaning that the A and B frames

must be the same, Equation (2.1) gives the expected T B
A = I3×3. The attitude matrix must

represent the transformation through an orthonormal bases, i.e. T B
A must satisfy
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T B
AT

A
B = T

B
A (T

B
A )

T = I3×3,

which yields six constraints. Despite the need to satisfy six constraints, the attitude matrix

is useful as it allows the mapping of vectors defined within one frame to another related by

T B
A , a common practice within inertial navigation systems.

2.3.2. Quaternion. The quaternion representation is related to that of the Euler

angle and Euler axis representation by the identity

q̄ =


sin(φ/2)e

cos(φ/2)

 ,
which also allows the definition of the attitude matrix as

T B
A =

(
q2 − ||q | |2

)
I3×3 − 2q [q×] + 2qqT .

The vector and scalar part, q and q respectively, of the quaternion are known as the Euler-

Rodrigues parameters or the Euler symmetric parameters primarily because of the dual

contributions of Euler and Rodgrigues to their development [18]. Quaternions describing a

rotation are subject to a unit-norm constraint and defined such that

| | q̄ | | = 1.

The reduction to four parameters from the nine used for the attitude matrix is computationally

desirable and the reduced number of constraints makes the quaternion a useful description

of attitude commonly seen in spacecraft navigation systems. It is worth noting that the

quaternion representation is not a minimal representation, making it difficult to directly

interpret, though it is globally non-singular unlike those posed by minimal three-parameter

representations, allowing the avoidance of gimbal-lock.
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3. KALMAN FILTERING

The Kalman filter is a widely used instrument for the optimal estimation of uncertain

linear systems [13]. The structure of the Kalman filter can be separated into two parts,

commonly referred to as the predictor and the corrector. Given some state estimate, the

uncertainty in the estimate, and knowledge of the dynamics governing the system, future

estimates, or predictions, for the state and uncertainty may be determined. Measurements

may then be processed to incorporate new information, which allows the state estimate

and the uncertainty to be refined, or corrected, as additional information is acquired. It is

important to note that the correction stage of the Kalman filter, sometimes referred to as the

update, is not developed in this section. The absense of the update development is primarily

due to the lack of external measurements being processed within this work; the inertial

measurements provided by an IMU are instead used to make state predictions. Through

its application, the Kalman filter is used to minimize the mean square estimation error, a

desirable attribute for many engineering applications.

Within this thesis, estimation of position, velocity, and attitude states for a spacecraft

on a lunar approach and descent trajectory is the primary topic of interest. Unfortunately,

the assumption of linearity in the Kalman filter is far from reality for most engineering

applications, including the dynamics that govern the motion of a spacecraft navigating

the lunar approach and descent. To apply the Kalman filter to the proposed scenario, the

framework must be augmented and extended for use within a general nonlinear regime.

This augmentation is done through the linearization of the dynamics about the mean which

results in the ubiquitous extended Kalman filter [14]. Throughout the following sections,

the extended Kalman filter and multiplicative extended Kalman filter are presented and

discussed, alongside their application to the aforementioned spacecraft navigation scenario.
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3.1. EXTENDED KALMAN FILTER

Consider the discrete, nonlinear dynamical system model described by the stochastic

difference equation

xk = f (xk−1) + Mk−1wk−1, (3.1)

where f (·) describes the nonlinear dynamics governing the state evolution of xk−1 at

tk−1 to xk at tk and wk−1 describes the random process noise mapped into the state by the

deterministic mapping Mk−1. The random noise is taken to be zero-mean, i.e. E {wk−1} = 0,

with covariance defined by

E
{
wiw

T
j

}
= Qiδi j, (3.2)

where δi j is the Kronecker delta that enforces the definition for time-wise uncorrelated

process noise. To formulate the extended Kalman filter, consider the expected value of

Equation (3.1),

E {xk} = E { f (xk−1) + Mk−1wk−1} , (3.3)

which can then be distributed to produce

E {xk} = E { f (xk−1)} + E {Mk−1wk−1} , (3.4)

since the expected value operator is a linear operator. Because Mk−1 is deterministic and

the expected value of a randomly distributed variable is the mean, i.e. E {xk} = x̂k ,

Equation (3.4) is restated such that
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x̂k = E { f (xk−1)} + Mk−1E {wk−1}

= E { f (xk−1)} . (3.5)

The dynamics may be approximated by a first order Taylor series expansion about the mean,

given by

f (xk−1) u f (x̂k−1) + F(x̂k−1)(xk−1 − x̂k−1), (3.6)

where the dynamics Jacobian F(x̂k−1) is defined to be

F(x̂k−1) =

[
∂ f (xk−1)

∂xk−1

���
xk−1=x̂k−1

]
. (3.7)

Substituting, Equation (3.6) into Equation (3.5), the evolution of the state estimate is then

expressed as

x̂k = E { f (x̂k−1) + Fk−1(xk−1 − x̂k−1)} , (3.8)

where Fk−1 = F(x̂k−1) for notational simplification. Assuming that Fk−1 and f (x̂k−1) are

deterministic yields

x̂k = f (x̂k−1) + Fk−1E {xk−1 − x̂k−1} . (3.9)

Define the error between the state and mean to be ek−1 = xk−1 − x̂k−1, allowing the

simplification of Equation (3.9) to

x̂k = f (x̂k−1) + Fk−1E {ek−1} . (3.10)
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Finally, taking the noise and error be unbiased, or zero-mean, the expression for the propa-

gation of the mean becomes

x̂k = f (x̂k−1), (3.11)

which is the well-known state propagation for the extended Kalman filter with initial con-

dition x̂0.

To propagate the covariance, consider the error between the true and estimated state

at time tk , i.e.

ek = xk − x̂k . (3.12)

Substituting for each of the right-hand side terms, using Equations (3.1) and (3.11), the

error can be expressed as

ek = f (xk−1) + Mk−1wk−1 − f (x̂k−1). (3.13)

Substituting the first order Taylor series expansion of f (xk−1) in Equation (3.6), the error

dynamics for the extended Kalman filter can be simplified to

ek = f (x̂k−1) + Fk−1(xk−1 − x̂k−1) + Mk−1wk−1 − f (x̂k−1)

= Fk−1ek−1 + Mk−1wk−1. (3.14)

It is worth noting that E {ek} = 0 if E {ek−1} = 0, by the zero-mean noise assumption. The

estimation error covariance is defined as

Pk = E
{
ek e

T
k

}
, (3.15)
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and through the substitution of the error dynamics in Equation (3.14) into Equation (3.15),

the covariance can be expanded to

Pk =E
{ [
Fk−1ek−1 + Mk−1wk−1

] [
Fk−1ek−1 + Mk−1wk−1

] T
}

=E
{
Fk−1ek−1e

T
k−1F

T
k−1

}
+ E

{
Fk−1ek−1w

T
k−1M

T
k−1

}
+ E

{
Mk−1wk−1e

T
k−1F

T
k−1

}
+ E

{
Mk−1wk−1w

T
k−1M

T
k−1

}
, (3.16)

where it is again noted that the expected value operator is a linear operator and distributable.

Assuming that the error in the state and noise are uncorrelated, and recalling that Mk−1 and

Fk−1 are assumed to be deterministic, Equation (3.16) is

Pk =Fk−1E
{
ek−1e

T
k−1

}
FT

k−1 + Mk−1E
{
wk−1w

T
k−1

}
MT

k−1. (3.17)

Notice here that E
{
ek−1e

T
k−1

}
is simply the estimation error covariance at tk−1, Pk−1. The

propagation of the state covariance can then finally be stated as

Pk = Fk−1Pk−1F
T
k−1 + Mk−1Qk−1M

T
k−1, (3.18)

which is the well-known propagation for the state uncertainty for the extended Kalman filter

with initial condition P0.

3.2. MULTIPLICATIVE EXTENDED KALMAN FILTER

When considering the estimation of attitude, an expression for the direction and

magnitude of rotation from one frame to another, quaternions are often used to avoid the

singularities that exist in common three-parameter attitude representations. Their ability to

avoid singularities and linearly represent the attitude dynamics, while also allowing the easy

computation of the attitude matrix, makes the rotation quaternion a useful parameterization
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for attitude [15]. However, the estimation of attitude within the EKF poses an issue because

rotations are not additive, meaning that the EKF cannot be directly applied. A formulation

of the extended Kalman filter developed to specifically handle the quaternion representation

of attitude is called the multiplicative extended Kalman filter (MEKF)[5], which applies a

small angle approximation for the attitude error and reduces its dimension by one. This

alteration still allows the attitude to be represented by a quaternion.

The multiplicative quaternion propagation is defined such that

q̄k = q̄(∆θk) ⊗ q̄k−1 (3.19)

where q̄(∆θk) is the quaternion representation for the rotation ∆θk between tk−1 and tk .

The error quaternion δ q̄k , representing the error between the true attitude q̄k and estimated

attitude ˆ̄qk at tk , is defined such that

δ q̄k = q̄k ⊗ ˆ̄q−1
k . (3.20)

The quaternion error is analogous to the error in rotation matrices – the post-multiplication

with the inverse transformation yields the error between them. If the two quaternions

represent the same rotation, there will be no error, i.e. Equation (3.20) will yield the

identity quaternion ī with vector-part 0 and scalar-part 1. Substituting Equation (3.19) into

Equation (3.20) for the estimated and true attitude quaternions, the error can be expressed

as

δ q̄k = (q̄(∆θk) ⊗ q̄k−1) ⊗
(
q̄(∆θ̂k) ⊗ ˆ̄qk−1

) −1

= q̄(∆θk) ⊗ q̄k−1 ⊗ ˆ̄q−1
k−1 ⊗ q̄(∆θ̂k)

−1

= q̄(∆θk) ⊗ δ q̄k−1 ⊗ q̄(∆θ̂k)
−1

= q̄(∆θk) ⊗ q̄(∆θ̂k)
−1 ⊗ q̄(∆θ̂k) ⊗ δ q̄k−1 ⊗ q̄(∆θ̂k)

−1, (3.21)
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where ∆θ̂k = E {∆θk} is the estimated rotation between tk−1 and tk . After expanding the

quaternion multiplication, it can be shown that [32]

q̄(∆θ̂k) ⊗ δ q̄k−1 ⊗ q̄(∆θ̂k)
−1 =


T (∆θ̂k)δqk−1

δqk−1

 , (3.22)

given the transformation defined in Equation (2.1). This result allows the expression of δ q̄k

to be written as

δ q̄k = q̄(∆θk) ⊗ q̄(∆θ̂k)
−1 ⊗


T (∆θ̂k)δqk−1

δqk−1

 . (3.23)

A small angle assumption well approximates q̄(∆θk) ⊗ q̄(∆θ̂k)
−1, i.e.

q̄(∆θk) ⊗ q̄(∆θ̂k)
−1 ≈


1
2 e∆θ,k

1

 , (3.24)

where e∆θ,k = ∆θk − ∆θ̂k is the error in the rotation between tk−1 and tk . Therefore, δ q̄k is

given by

δ q̄k =


1
2 e∆θ,k

1

 ⊗

T (∆θ̂k)δqk−1

δqk−1

 . (3.25)

Assuming that the error is small, the vector component of the error quaternion fully repre-

sents the attitude error [15] and allows the approximation of Equation (3.25) to first-order,

such that

δqk = T (∆θ̂k)δqk−1 +
1
2
e∆θ,k . (3.26)
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Recognizing that the rotation vector ∆θk is approximately twice the vector-part of the

quaternion for small angles, i.e. eA,k = 2q̄k , the error propagation for the attitude error

covariance can then be expressed as

eA,k = T (∆θ̂k)eA,k−1 + e∆θ,k . (3.27)

The attitude covariance is defined such that

PA,k = E
{
eA,k e

T
A,k

}
, (3.28)

or, substituting Equation (3.27) and expanding,

PA,k =E
{ [
T (∆θ̂k)eA,k−1 + e∆θ,k

] [
T (∆θ̂k)eA,k−1 + e∆θ,k

] T
}

=E
{
T (∆θ̂k)eA,k−1e

T
A,k−1T

T (∆θ̂k)
}
+ E

{
e
∆θ,k e

T
∆θ,k

}
+ E

{
e
∆θ,k e

T
A,k−1T

T (∆θ̂k)
}
+ E

{
T (∆θ̂k)eA,k−1e

T
∆θ,k

}
. (3.29)

Assuming that T (∆θ̂k) is deterministic and that error in the rotation vector is uncorrelated

to the error in the attitude, the expression in Equation (3.29) simplifies to

PA,k = T (∆θ̂k)E
{
eA,k−1e

T
A,k−1

}
TT (∆θ̂k) + E

{
e
∆θ,k e

T
∆θ,k

}
. (3.30)

Equation (3.30) simplifies one step further by recognizing E
{
eA,k−1e

T
A,k−1

}
as the attitude

covariance PA,k−1 and E
{
e
∆θ,k e

T
∆θ,k

}
as the rotation error covariance Q∆θ,k , yielding the

propagation for the attitude covariance for the MEKF,

PA,k = T (∆θ̂k)PA,k−1T
T (∆θ̂k) + Q∆θ,k . (3.31)



21

In summary, the MEKF uses a globally non-singular attitude representation, here

taken to be the right-handed vector-first quaternion, to estimate attitude. A small angle

assumption is applied within the formulation to produce the attitude covariance through

a three-component representation of the attitude error in the body-fixed navigation frame.

When estimating attitude as a subset of the state, the MEKF is applied only to the attitude

component, while the aforementioned EKF formulation is used for the remaining states.

Because of the small angle assumption in the formulation of the MEKF, correlations between

the attitude estimation error and non-attitude states will also be reliant upon the small angle

assumption. Finally, it is worth noting that the resulting covariance will be dimension

(n − 1) × (n − 1), where n is the number of states being estimated because the attitude error

is represented as a rotation vector instead of an attitude quaternion.
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4. TECHNIQUES FOR INERTIAL NAVIGATION

The INS requires a complete description of a vehicle’s dynamics to successfully

predict the evolution of its translational and rotational states. To accurately describe these

dynamics, a model for the effects of known forces on the vehicle must be utilized. While

a sufficiently accurate model can be generated for the effects of gravitational forces on

the body, non-gravitational forces and torques are often more difficult to model. Using

measurements from inertial sensors, usually housed within the INS, effects of external non-

gravitational forces and torques acting on the vehicle need not be modeled. The equations of

motion used to describe the state evolution are provided in their continuous form in Section

4.1.

Unfortunately, inertial measurements are obtained at a certain frequency within the

navigation computer, requiring an adaptation of the continuous dynamics to process these

discrete measurements. To incorporate the non-gravitational acceleration and rotation of

the vehicle, a discretized form of the dynamics is generally used and is shown in Section 4.2.

Measurements from the strapdown inertial sensor systems are affected by many known error

sources that a navigation filter can typically estimate. As such, a model for a strapdown IMU

with a triad of accelerometers and gyroscopes is developed within Section 4.3. Coning,

sculling, and scrolling algorithms are often used to downsample the measurements and

generate a correction for the errors introduced by underlying vibrational or unmodeled

effects of a time-varying acceleration or angular velocity vector; a set of second-order

coning, sculling, and scrolling algorithms is provided in Section 4.4, which describes

methods for using the inertial measurements to provide corrected quantities for the same

interval. Finally, the results from the coning, sculling, and scrolling equations must be

incorporated into the discretized dynamics, and this is illustrated in Section 4.5.
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4.1. CONTINUOUS VEHICLE DYNAMICS

The continuous equations of motion for a vehicle utilizing strapdown inertial sensors

are given by [6]

Ûr i
c(t) = vi

c(t) (4.1a)

Ûvi
c(t) = ai

g

(
r i

c(t) +T
i
c(t)r

c
cg/c(t)

)
+T i

c(t)a
c
ng(t) (4.1b)

Û̄qc
i (t) =

1
2
ω̄c

c/i(t) ⊗ q̄c
i (t) , (4.1c)

where the temporal derivatives for position and velocity are Ûr and Ûv, respectively, and Û̄qc
i

describes the attitude evolution, i.e. the time-rate of change for the rotation from the inertial

frame to the IMU case frame. The vector superscript i denotes a quantity expressed in the

inertial frame, while the superscript c denotes a quantity expressed in the case frame of the

IMU. The direction cosine matrix defining the rotation from IMU case frame to the inertial

frame is given by T i
c, while r i

c is the position of the IMU case frame origin, ai
g (·) is the

gravitational acceleration evaluated at the center of gravity of the vehicle, ac
ng is the non-

gravitational specific force experienced by the vehicle, r c
cg/c defines the position of the case

frame origin with respect to the vehicle’s center of gravity, and ω̄c
c/i is the angular velocity

of the case frame with respect to the inertial frame and expressed as a pure quaternion.

4.2. DISCRETIZED VEHICLE DYNAMICS

The continuous dynamics shown in Equations (4.1) govern the motion of a space-

craft aided by strapdown inertial sensors. Unfortunately, inertial measurements are not

available continuously but discretely at a given sample frequency. However, given that the

measurement time interval is small, the non-gravitational incremental angle and velocity

sensed by the inertial sensors are assumed to be constant from tk−1 to tk . Under this assump-

tion, the incremental angle ∆θc
k and velocity ∆vc

ng,k are then related to the vehicle angular
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velocity and acceleration such that

∆θc
k = ωc

c/i∆tk and ∆vc
ng,k = ac

ng,k∆tk . (4.2)

Discretizing Equations (4.1) via analytical integration and using the definitions in Equa-

tion (4.2), the dynamics are expressed by [32]

r i
c,k = r i

c,k−1 + vi
c,k−1∆tk +T

i
c,k−1∆r

c
ng,k (4.3a)

+
1
2

(
gk−1 −

1
3
Gk−1T

i
c,k−1

[
r c

cg/c,k−1×
]
∆θc

k

)
∆t2

k

vi
c,k = vi

c,k−1 +T
i
c,k−1∆v

c
ng,k +

(
gk−1 −

1
2
Gk−1T

i
c,k−1

[
r c

cg/c,k−1×
]
∆θc

k

)
∆tk (4.3b)

q̄c
i,k = q̄(∆θc

k) ⊗ q̄c
i,k−1 , (4.3c)

where ∆tk = tk − tk−1 is the time between navigation cycles which is, in this case, equivalent

to the frequency of measurements from the inertial sensors. The subscripts k and k−1 denote

a quantity available to the navigation computer at tk and tk−1, respectively. Additionally,

the specific force acting on the vehicle due to gravity is denoted by gk−1 = ai
g

(
r i

cg,k−1

)
and Gk−1 is the Jacobian of gk−1, which must be evaluted at the vehicle’s center of gravity

r i
cg,k−1. Note that the position of the center of gravity is defined to be the vector addition

of the IMU position and position of the center of gravity with respect to the IMU, i.e.

r i
cg,k−1 = r i

c,k−1 + T
i
c,k−1r

c
cg/c,k−1. Finally, the non-gravitational changes in the position and

velocity are described by

∆r c
ng,k =

1
2

(
I3×3 +

1
3

[
∆θc

k×
] )
∆vc

k∆tk (4.4a)

∆vc
ng,k =

(
I3×3 +

1
2

[
∆θc

k×
] )
∆vc

k, (4.4b)

which includes a correction for the vector rotation from tk−1 to tk .
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4.3. STRAPDOWN SENSOR MODEL

Measurements of non-gravitational accleration and total angular velocity with an

IMU are corrupted by several error sources resulting from imperfections in the manufactur-

ing process, circuitry, and errors introduced by installing the unit. The incremental angle

and velocity measurements provided by a strapdown IMU, can be expressed as

∆θc
m,k = (I3×3 + [sg,kr])(I3×3 + [mg,k×] + [ng,k∗])(∆θ

c
k + bg,k + wg,k) (4.5a)

∆vc
m,k = (I3×3 + [sa,kr])(I3×3 + [ma,k×] + [na,k∗])(∆v

c
k + ba,k + wa,k), (4.5b)

where bg,k , sg,k , ng,k , mg,k , and wg,k are the bias, scale factor, nonorthogonality, misalign-

ment, and zero-mean, time-wise uncorrelated process noise error vectors in the gyroscope

measurement at tk , respectively, while ∆θk is the true incremental angle, and ∆θm,k is the

measured incremental angle at tk . Similarly, ba,k , sa,k , na,k , ma,k , and wa,k are the bias,

scale factor, nonorthogonality, misalignment, and zero-mean, time-wise uncorrelated pro-

cess noise error vectors in the accelerometer measurement at tk , respectively, ∆vc
k is the

true incremental angle, and ∆vc
m,k is the measured incremental angle at tk . From hereon,

the case frame superscript will be neglected for the expression of the true and measured

incremental angle and velocity, allowing them to be expressed as

∆θc
k → ∆θk , ∆θ

c
m,k → ∆θm,k , ∆v

c
k → ∆vk , and ∆vc

m,k → ∆vm,k .

Applying the models given in Equations (4.5), the true incremental angle and incre-

mental velocity can be obtained from the measured quantities such that

∆θk = (I3×3 + [mg,k×] + [ng,k∗])
−1(I3×3 + [sg,kr])−1

∆θm,k − bg,k − wg,k (4.6a)

∆vk = (I3×3 + [ma,k×] + [na,k∗])
−1(I3×3 + [sa,kr])−1

∆vm,k − ba,k − wa,k . (4.6b)
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Equations (4.6) can be simplified to

∆θk = (I3×3 + Λg)
−1
∆θm,k − bg,k − wg,k (4.7a)

∆vk = (I3×3 + Λa)
−1
∆vm,k − ba,k − wa,k (4.7b)

where Λg = [sg,kr]+ [mg,k×]+ [ng,k∗] and Λa = [sa,kr]+ [ma,k×]+ [na,k∗] by neglecting

second-order terms. Applying the matrix inversion lemma [8],

(I3×3 + Λ)
−1 = I3×3 − Λ(I3×3 + Λ)

−1,

and iteratively applying the result, the combined mapping for the scale factor, misalignment,

and nonorthogonality can be written to first-order in Λ as

(I3×3 + Λ)
−1 ≈ I3×3 − Λ. (4.8)

Applying Equation (4.8) to Equations (4.7), the true incremental angle and non-gravitational

velocity may then be expressed as

∆θk = (I3×3 − [sg,kr] − [mg,k×] − [ng,k∗])∆θm,k − bg,k − wg,k

∆vk = (I3×3 − [sa,kr] − [ma,k×] − [na,k∗])∆vm,k − ba,k − wa,k .

or, after distributing and rearranging,

∆θk = ∆θm,k − [∆θm,kr]sg,k + [∆θm,k×]mg,k − [∆θm,k∗]ng,k − bg,k − wg,k (4.10a)

∆vk = ∆vm,k − [∆vm,kr]sa,k + [∆vm,k×]ma,k − [∆vm,k∗]na,k − ba,k − wa,k . (4.10b)

Using the models given in Equations (4.10), the propagation of estimation errors can be

quantified for implementation within the navigation system architecture.
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4.4. CORRECTIONS FOR CONING, SCULLING, AND SCROLLING MOTION

The coning, sculling, and scrolling algorithms inspected within this thesis generate

second-order corrections for coning, sculling, and scrolling motion and are based upon

the methods discussed by Savage in References [24, 25, 26]. These algorithms, along with

many other coning, sculling, and scrolling algorithms, were developed after Bortz presented

a differential equation for the integration of the orientation vector, given by [3]

Ûφ = ω +
1
2
φ × ω +

1
φ2

(
1 −

φ sin φ
2(1 − cos φ)

)
φ × φ × ω , (4.11)

where φ is the orientation vector and describes the rotation of one frame to another through

an angle, φ = ‖φ‖, about an axis pointing in the direction of φ, and ω is the angular rotation

of the body that is inertially measurable by strapdown angular-rate sensors. Equation (4.11)

is commonly referred to as the Bortz equation and allows for the exact integration of

the orientation vector using measurements from strapdown sensors. Many of the coning

algorithms originate from the isolation and approximation of the non-commutative rate

vector Ûφnc in the Bortz equation,

Ûφnc =
1
2
φ × ω +

1
φ2

(
1 −

φ sin φ
2(1 − cos φ)

)
φ × φ × ω. (4.12)

A common approximation for Equation (4.12) is given by considering the power

series expansion for the coefficient of the second term in the non-commutative rate vector,

such that

1
φ2

(
1 −

φ sin φ
2(1 − cos φ)

)
=

1
12

(
1 +

1
60
φ2 + · · ·

)
≈

1
12
. (4.13)

With the approximation in Equation (4.13), the Bortz equation is approximated as

Ûφ ≈ ω +
1
2
φ × ω +

1
12

φ × (φ × ω) . (4.14)
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The use of Equation (4.14) as an approximation for Equation (4.11) to compensate for coning

motion in a two-stage algorithm, which generates the correction at a higher frequency than

the state propagation, by Bortz [3] and Jordan [12] laid the foundation for modern coning

algorithms. These two-stage approaches perform high frequency, low complexity correc-

tions to the measurements, the results of which are fed into a lower frequency algorithm

that produces the state estimates. One of the original two-stage algorithms was proposed

by Savage in 1966, which utilizes a first-order equation at a higher frequency to recognize

high-frequency vibrations and a second-order attitude update at a lower frequency, pro-

viding an efficient and accurate attitude estimate based upon the output of the first-order

algorithm [22]. While the two-stage approach was originally introduced because of limited

computer capabilities, modern computing capabilities have prompted the desire to return to

a single cycle algorithm [24]. However, the algorithms described for most of the two-stage

algorithms can also be expanded instead to process a batch of sequential measurements to

produce an equivalent, coned measurement at a lower-frequency.

Modern coning, sculling, and scrolling algorithms utilize a mixture of major, minor,

and subminor time intervals, as illustrated in Figure 4.1. The subminor interval [tm−1, tm]

describes the time over which discrete inertial measurement unit measurements from a triad

of linear accelerometers and gyroscopes are integrated and available, the minor interval

[t`−1, t`] defines where the high-speed correction algorithms are applied, and the major

interval [tk−1, tk] defines the navigation rate, or the rate at which the state propagation

is performed. For the algorithms considered throughout this thesis, the assumption is

made that [tm−1, tm] = [t`−1, t`] ⊆ [tk−1, tk], such that the minor and subminor intervals are

equivalent. Therefore, each minor interval within the major interval uses only a single new

measurement for subsequent corrections.

The algorithms considered within this thesis perform a generalized form of the

corrections, assuming that the quantities vary linearly over the minor interval. Many modern

coning correction algorithms have been optimized for error minimization, dependent upon
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Major (∆T)

tk−1 tk

Minor (∆t)

t`−1 t`

Subminor (∆τ)

tm−1 tm

Figure 4.1. Major, minor, and subminor time intervals considered within the INS

the expected environment or intended number of measurements [10, 11, 20, 23]. It is

also important to realize that sculling and scrolling algorithm design has seen much less

research and development, leading to a significantly smaller body of literature examining

their use. By performing an analysis of the error propagation through unoptimized and

more simple algorithms, the foundation for analyzing and developing an error propagation

architecture for other coning, sculling, and scrolling algorithms used for inertial navigation

is established. A detailed derivation of the algorithms is provided by Savage in [24, 25, 26];

as such, the not explicitly derived within this thesis.

4.4.1. A Second-Order Coning Algorithm. Given that the IMU gyroscope mea-

surements are

∆θc
n =

∫ tn

tn−1

ωc
c/i(τ)dτ ,

where ωc
c/i(τ) is the angular rate of the IMU case frame with respect to the inertial frame,

the coning algorithm generates a second-order approximation for the coning motion. Note

that the superscript c denotes that the angular velocity is expressed in the case frame of the

IMU; this superscript will be implied for the coning elements from hereon, as the frames

will be consistent throughout the remainder of the thesis. The coning algorithm can be

split into two separate accumulations for the interval [t`−1, t`]: the measurement and coning
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correction accumulations. The measurement accumulation is

θ` = θ`−1 + ∆θ` =
∑̀
i=1
∆θi , (4.15)

where θ` is the accumulation of the measurements; the accumulation of the coning correc-

tions are expressed similarly to Equation (4.15), as

β` = β`−1 + ∆β` =
∑̀
i=1
∆βi , (4.16)

where ∆βi is the coning correction generated at ti under the assumption of a linearly varying

angular velocity, i.e.

∆βi =
1
2

[
θi−1 +

1
6
∆θi−1

]
× ∆θi . (4.17)

Given the accumulations in Equations (4.15) and (4.16), the coned rotation vector, ∆φk , is

the sum of two accumulations, such that

∆φk = θk + βk , (4.18)

where θk describes the sensed inertial change in the attitude over the [tk−1, tk] interval and

βk accounts for the non-commutative or unmeasured component due to the coning motion.

At the initialization of the algorithm for any given major interval, the terms from the

previous time-step must be zero (∆θi = 0 and ∆βi = 0 at ti = tk−1) because no information

is available for the correction on the current attitude-update interval. Additionally, this

algorithm can be used to process any number of measurements, but when [t`−1, t`] = [tk−1, tk]

or just a single measurement is processed, the algorithm becomes identical to traditional

methods of dead-reckoning, where only a single IMU measurement is processed for the

attitude update at each step; this statement can be proven by recognizing that with the
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initialization of the accumulation variables to zero, ∆β = 0. Finally, if the angular velocity

vector is constant in direction, there is no coning motion, and the coning correction in each

measurement will be zero.

4.4.2. A Second-Order Sculling Algorithm. The velocity integration algorithms

correct for errors incurred by the rotation of the IMU frame and the rotation of the velocity

vector during the measurement interval [tn−1, tn]. The algorithm uses the incremental

velocity measurement from the IMU, a quantification of the non-gravitational specific

forces acting on the vehicle given by

∆vc
n =

∫ tn

tn−1

ac
ng(τ)dτ.

Note that the superscript c denotes the expression of the incremental velocity in the case

frame of the IMU; this subscript will also be implied for the sculling elements for the

remainder of the thesis. Similar to the accumulation of the measurements in Equation (4.15),

the incremental velocity measurements must also be accumulated, such that

v` = v`−1 + ∆v` =
∑̀
i=1
∆vi . (4.19)

The non-gravitational incremental velocity can then be separated into three components as

∆vng,̀ = v` + ∆vscul,̀ + ∆vrot,̀ , (4.20)

where ∆vscul,̀ is the sculling correction and ∆vrot,̀ is the compensation for the rotation of

the velocity vector. The sculling correction is accumulated, such that

∆vscul,̀ = ∆vscul,̀ −1 + δvscul,̀ =
∑̀
i=1
δvscul,i , (4.21)
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where the incremental sculling correction is given by

δvscul,i =
1
2

[ (
θi−1 +

1
6
∆θi−1

)
× ∆vi +

(
vi−1 +

1
6
∆vi−1

)
× ∆θi

]
. (4.22)

The correction due to the rotation of the velocity vector on the interval is given by

∆vrot,̀ =
1
2
(θ` × v`) , (4.23)

where θ` is the accumulation of the incremental angle measurements as discussed in Sec-

tion 4.4.1. Equation (4.20) then describes the change in velocity contributed to non-

gravitational effects on the body including the rotation of the body and nonlinear contribu-

tions of coning and sculling motion.

At the initialization of the algorithm, for any given major interval, the terms from the

previous time-step must be zero (vi = 0 and ∆vscul,i = 0 at ti = tk−1) because no information

is available for the correction on the current interval. Similarly to the coning algorithm,

this algorithm can be used to process any number of measurements, and when [t`−1, t`] =

[tk−1, tk], or just a single measurement is processed, the algorithm becomes identical to

dead-reckoning at the rate of the IMU; this statement can be proven by recognizing that

with the initialization of the accumulation variables to zero, ∆vscul = 0.

4.4.3. A Second-Order Scrolling Algorithm. No additional measurement source

is used for the position integration algorithm; the integrated specific force is again integrated

to provide the position increment, while the scrolling algorithm corrects for the effects of

varying angular rate and specific forces upon the integration. The effects of scrolling can

be accounted for in the non-gravitational specific force integration, given by

∆rng,k = sv,̀ + ∆rrot,k + ∆rscrl,̀ . (4.24)
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The accumulation of the integrated incremental velocity is defined to be

sv,̀ = sv,̀ −1 + ∆sv,̀ =
∑̀
i=1
∆sv,i , (4.25)

where

∆sv,i = vi−1∆t` +
1
12

(5∆vi + ∆vi−1)∆t` (4.26)

describes the trapezoidal integration of the incremental velocity with ∆t` = t` − t`−1. The

rotational component of the scrolling correction is given by

∆rrot,k =
1
6

(
sθ,k × vk + θk × sv,k

)
, (4.27)

with the integrated incremental angle accumulating as

sθ,̀ = sθ,̀ −1 + ∆sθ,̀ =
∑̀
i=1
∆sθ,i ,

where

∆sθ,i = θi−1∆t` +
1
12

(5∆θi + ∆θi−1)∆t` .

The scrolling correction can be broken can be broken into a component accounting for the

effects due to sculling and a component accounting for other higher-order effects. The

accumulation of these effects is therefore given by

∆rscrl,i = ∆rscrl,i−1 + δrscrl/scul,i + δrscrl/other,i, (4.28)
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where the scrolling correction contributed by sculling is

δrscrl/scul,i = ∆vscul,i−1∆t` +
1
2

[
θi−1 −

1
12

(∆θi − ∆θi−1)

]
×

(
∆sv,i − vi−1∆t`

)
(4.29)

+
1
2

[
vi−1 −

1
12

(∆vi − ∆vi−1)

]
×

(
∆sθ,i − θi−1∆t`

)
(4.30)

and the correction for the other higher-order effects is

δrscrl/other,i =
1
6

[
sv,i−1 +

∆t`
24

(∆vi − ∆vi−1)

]
× ∆θi −

1
6

[
sθ,i−1 +

∆t`
24

(∆θi − ∆θi−1)

]
× ∆vi

+
∆t`
6

[
θi−1 −

1
6
(∆θi − ∆θi−1)

]
×

[
vi−1 −

1
6
(∆vi − ∆vi−1)

]
−
∆t`

2160
(∆θi − ∆θi−1) × (∆vi − ∆vi−1) . (4.31)

Similar to the coning and sculling algorithms, each term from the previous cycle

must be initialized to zero (sθ,i = 0, sv,i = 0, θi = 0, ∆θi = 0, vi = 0 and ∆vi = 0 at

ti = tk−1) because no information is available for the correction on the current interval.

Additionally, this algorithm can be used to process any number of measurements. When

just a single measurement is processed, i.e. [t`−1, t`] = [tk−1, tk], the algorithm becomes

identical to traditional dead-reckoning at the rate of the IMU; this statement can be proven

by recognizing that with the initialization of the accumulation variables to zero, ∆rscrl = 0.

4.5. INTEGRATING THE CONING, SCULLING, AND SCROLLING CORREC-
TIONS

Through the application of coning, sculling, and scrolling algorithms within an

inertial navigation system, non-gravitational increments for the vehicle’s position, velocity,

and total rotation for the vehicle are generated using ` measurements obtained between

tk−1 and tk . The corrections generated for the assumed linearly time-varying rotation and

velocity are incorporated to correct for the assumptions made within the development of the

discretized dynamics in Equations (4.3), i.e. that the vehicle’s angular velocity and velocity
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vectors are approximately constant with a small time step. Incorporating the corrected

quantities, propagation of the vehicle’s position, velocity, and attitude can be restated as

r i
c,k =r

i
c,k−1 + vi

c,k−1∆tk +T
i
c,k−1∆rng,k

+
1
2

(
gk−1 −

1
3
Gk−1T

i
c,k−1

[
r c

cg/c,k−1×
]
∆φk

)
∆t2

k

vi
c,k =v

i
c,k−1 +

(
gk−1 −

1
2
Gk−1T

i
c,k−1

[
r c

cg/c,k−1×
]
∆φk

)
∆tk +T

i
c,k−1∆vng,k

q̄c
i,k =q̄(∆φk) ⊗ q̄c

i,k−1 ,

where the non-gravitational changes in position ∆rng,k and velocity ∆vng,k are described by

Equations (4.24) and Equations (4.20), respectively, while the coned rotational increment

φk is described by Equation (4.18). Additionally, to simplify the notation, vectors described

the case frame and expressed within the inertial frame will no longer contain an i superscript

or i subscript; while the transformation matrix T i
c,k−1 is then expressed as TT

k−1, such that

Tk−1 describes the transformation from the inertial to the case frame. The discretized

dynamics for a vehicle aided by a strapdown sensor and employing coning, sculling, and

scrolling corrections, are given by

rk =rk−1 + vk−1∆tk +T
T
k−1∆rng,k +

1
2

(
gk−1 −

1
3
Gk−1T

T
k−1

[
rcg/c,k−1×

]
∆φk

)
∆t2

k (4.33a)

vk =vk−1 +T
T
k−1∆vng,k +

(
gk−1 −

1
2
Gk−1T

T
k−1

[
rcg/c,k−1×

]
∆φk

)
∆tk (4.33b)

q̄k =q̄(∆φk) ⊗ q̄k−1 . (4.33c)
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5. PROPAGATION OF ERRORS THROUGH INERTIAL NAVIGATION
CORRECTIONS

Predictions of position, velocity, and attitude often rely upon incremental angle and

velocity measurements to describe the effects of non-gravitational forces and rotations on

the vehicle’s state evolution, as observed in Section 4.2. However, if these measurements are

corrupted by error sources, the state estimate will incur an associated error. Unfortunately,

inertial measurements are often susceptible to a multitude of error sources resulting from a

variety of manufacturing defects and complications due to hardware or software interactions.

In general, a distribution and time-evolution for each possible error source is empirically

derived and provided by sensor manufacturers. Given the manufacturer specifications

and a model that describes the effect of common strapdown sensor error sources on the

measurement, an expression for the uncertainty propagated into the measurement, from

each error source, and thus into the state estimate, can be determined. Additionally, if these

error sources or parameters are known to exist and an estimate for their manifestation is

available, the associated error contributions can be rectified. However, even if an estimate

is available, a level of uncertainty is likely to exist. Using the expression describing the

propagation of errors into the state estimate from the measurements, contributions to the

state uncertainty by the uncertainty in the estimated parameters can also be described.

Through the application of the coning, sculling, and scrolling algorithms presented

in Section 4.4, incremental angle and velocity measurements obtained at a high frequency

are used to generate corrections for higher-order effects not directly realized in the mea-

surements. These corrections, in conjunction with the accumulated incremental angle and

velocity, are used for state propagation, as seen in Equations (4.33). If the incremental

angle and velocity measurements are corrupted by measurement errors, those errors will

propagate into the state estimate and contribute to the state estimation error. Therefore, to
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rigorously describe the propagation of errors into the state estimate from the measurement

error itself, a description for the transformation of these measurement errors through the

coning, sculling, and sculling corrections must be determined. The state uncertainty con-

tributed by the coning, sculling, and scrolling corrections can be determined given the error

propagation for each of the algorithms.

Throughout Section 5, an accounting of the errors in strapdown sensor measurements

and their propagation through the coning, sculling, and scrolling algorithms are derived in

detail. In Section 5.1, the general methodology for the development of the algorithms

is expanded upon. A model used for IMU gyros and accelerometers is presented in

Section 5.2, while Sections 5.3 – 5.5 derive and present the mappings of errors through the

coning, sculling, and scrolling algorithms presented in Section 4.4. Section 5.6 develops

the error dynamics for position, velocity, and attitude when applying coning, sculling, and

scrolling algorithms, while Section 5.7 expresses these errors in terms of typically estimated

strapdown sensor error sources. Finally, Section 5.8 explains the propagation of covariance

in terms of the derived error dynamics.

5.1. METHODOLOGY FOR ERROR PROPAGATION DEVELOPMENT

To determine how the error propagates through the coning, sculling, and scrolling

algorithms contained within Section 4.4, the propagation of measurement errors through

each correction term is examined. To determine this propagation, consider the error defi-

nition as in Equation (3.12); therefore the error in each term is expressed as the difference

between the true and estimated quantities. Additionally, as seen in Equation (4.18), Equa-

tion (4.20), and Equation (4.24), the output of each algorithm can be expressed as a function

of the measurement accumulation and the correction terms, while the error dynamics for

covariance propagation must be expressed as a function of the estimate and the error in each

quantity. To aid in this development, the result of each algorithm is broken into smaller

components and recombined to develop the full error dynamics for a given correction.
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For example, to determine the error in the coned measurement, it can simply be

recast as functions of the accumulated incremental angle and coning correction errors such

that

e∆φ,k = eθ,k + eβ,k . (5.1)

Noting that the coning correction is a function of the measurements, it is then easy to notice

that eθ,k and eβ,k can be independently expressed as a function of the measurement errors

e∆θ,i ∀i = 1,2, . . . ` as

eθ,k = f (e∆θ,i) and eβ,k = g(e∆θ,i), (5.2)

where f and g are taken to be independent functions that describe the propagation of

measurement errors into the accumulated incremental angle and coning correction vec-

tors, respectively. Therefore, after developing these expressions, the error in the coned

measurement can be written as a function of the measurement errors.

However, given that inertial sensor errors are often estimated, the measurements are

generally corrected for these errors prior to the measurements’ use in coning correction.

Therefore, the measurement errors can be expressed as a function of the estimation error in

each of these error sources for an inertial sensor. An error mapping can then be developed

through recursive application of these techniques, generating the mapping for each error

term through the corrections. After developing a mapping of the estimation errors through

the algorithms, a slight simplification can be made to each by assuming that some of the

error sources are approximately constant over a single major interval. The error dynamics

for the state estimate can then be written as a function of the error in each measurement, as

generated by the coning, sculling, and scrolling algorithms.
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Finally, it is worth noting that some assumptions are made that simplify the devel-

opment of the error propagation throughout the development of the error propagation. First

and foremost, it is assumed that many of the errors are constant over a major interval; while

this may not be true, it allows for the simplification of the methods examined. Usually the

major interval is small with respect to the rate at which the error grows, allowing the assump-

tion of negligible variability over the major time interval. The second assumption states

that the time between measurements is fixed; this assumption can be difficult to achieve in

system implementation, especially when considering low-cost hardware with less reliable

measurement capabilities. Each of these assumptions can be relaxed, though this relaxation

is not explored within the following sections and may be a topic of investigation for future

work.

5.2. STRAPDOWN MEASUREMENT ERROR PROPAGATION

Given an estimate ŷ of an error source y, the expected value of the incremental angle,

E {∆θk} or∆θ̂k , and the incremental velocity, E {∆vk} or∆v̂k , is, assuming Equations (4.10)

hold, simply

∆θ̂k = ∆θm,k − [∆θm,kr] ŝg,k + [∆θm,k×]m̂g,k − [∆θm,k∗]n̂g,k − b̂g,k (5.3a)

∆v̂k = ∆vm,k − [∆vm,kr] ŝa,k + [∆vm,k×]m̂a,k − [∆vm,k∗]n̂a,k − b̂a,k, (5.3b)

where b̂g,k , ŝg,k , n̂g,k , and m̂g,k are the estimated bias, scale factor, nonorthogonality, and

misalignment in the gyroscope measurements, respectively, and b̂a,k , ŝa,k , n̂a,k , and m̂a,k

are the estimated or expected bias, scale factor, nonorthogonality, and misalignment in

the accelerometer measurements, respectively. Note that the noise is defined to be zero-

mean and the expected value is, therefore, zero. By subtracting Equations (5.3) from
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Equations (4.10) and simplifying, the error in the measurements can be expressed as

e∆θ,k = ∆θk − ∆θ̂k

= −[∆θm,kr]esg,k + [∆θm,k×]emg,k − [∆θm,k∗]eng,k − ebg,k − wg,k (5.4a)

e∆v,k = ∆vk − ∆v̂k

= −[∆vm,kr]esa,k + [∆vm,k×]ema,k − [∆vm,k∗]ena,k − eba,k − wa,k, (5.4b)

where the errors in the bias, scale-factor, misalignment, and nonorthogonality estimates for

the gyroscopes are defined to be

ebg,k
∆
= bg,k − b̂g,k , esg,k

∆
= sg,k − ŝg,k , emg,k

∆
= mg,k − m̂g,k , and eng,k

∆
= ng,k − n̂g,k,

respectively, and, similarly, the error in the bias, scale-factor, misalignment, and nonorthog-

onality estimates for the accelerometers are

eba,k
∆
= ba,k − b̂a,k , esa,k

∆
= sa,k − ŝa,k , ema,k

∆
= ma,k − m̂a,k , and ena,k

∆
= na,k − n̂a,k,

respectively.

5.3. CONING ALGORITHM ERROR PROPAGATION

By performing the coning correction, the raw measurements are corrected to better

represent the true dynamics of the body’s rotation. However, when considering the propa-

gation of errors through the coning correction, it is clear that if the manufacturer-provided

performance specifications are for the raw measurements, then the statistics will be incon-

sistent with the output of the coning algorithm since the statistics lack any contributions

resulting from the coning correction. To have an accurate uncertainty representation, the

navigation filter’s covariance prediction requires an accounting of these errors and their
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propagation through the coning correction. Some manufacturers of inertial sensors report a

measurement that has already been corrected for the effects of coning, prior to communicat-

ing the measurement; it is again unclear what performance measures and statistics are truly

applicable to the result when this is done. In both cases, by examining the coning correction

term and the error mapping through it, the alterations to common navigation architectures

are found to be minimal.

To determine how the error propagates through the coning algorithm, the errors

in each measurement and the correlations introduced by the coning correction must be

examined further. As given in Equation (5.1), the error in the coned measurement, the

result of the coning algorithm, is the sum of the error in the accumulated measurement

and coning correction terms; the error in each of these terms is considered separately in

the following sections. After developing a mapping of the measurement error through the

coning algorithm, a slight simplification is made by assuming that several error sources are

approximately constant over a single major interval.

5.3.1. Error in the Accumulated Measurements. The first term in Equation (5.1)

contains the errors introduced by the accumulation of the measurements. To stay con-

sistent with the error definition in Equation (3.12), define the error in the measurement

accumulation and the measurement to be

eθ,̀
∆
= θ` − θ̂` and e∆θ,i

∆
= ∆θi − ∆θ̂i, (5.5)

respectively, where θ` is the true rotation vector over the major interval, θ̂` is the estimated

rotation vector, ∆θ̂i is the estimated incremental angle vector at ti over the minor interval,

and ∆θi is the true incremental angle vector. Similar to how the measurement accumulation

is expressed as a sum of the measurements in Equation (4.15), the errors can also be

expressed as a sum of the errors in each measurement. By deconstructing eθ,̀ and applying
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the definitions in Equations (4.15) and (5.5), the error is given by

eθ,̀ = θ` − θ̂` = (θ`−1 + ∆θ`) − (θ̂`−1 + ∆θ̂`).

Therefore the accumulation is simply a sum of the errors in the last measurement and the

previous accumulation, such that

eθ,̀ = (θ`−1 − θ̂`−1) + (∆θ` − ∆θ̂`) = eθ,̀ −1 + e∆θ,̀ ,

from which it follows that the error in the measurement accumulation is simply the sum-

mation of errors in the individual measurements, i.e.

eθ,̀ =
∑̀
i=1

e∆θ,i . (5.6)

5.3.2. Error in the Accumulated Coning Correction. The development for the

second term in Equation (5.1) is more involved, as it accumulates the error generated through

the coning correction term. The error in the coning correction term and its accumulation

are defined as

e∆β,i
∆
= ∆βi − ∆β̂i and eβ,̀

∆
= β` − β̂`, (5.7)

where β` is the true coning correction over the major interval, β̂` is the estimated coning

correction, ∆β̂i is the estimated coning correction at ti over the minor interval, and ∆βi is

the true coning correction. The error in the accumulated coning correction terms can then

be expressed as a sum of the errors in each coning correction term e∆β,i, i.e.

eβ,̀ =
∑̀
i=1

e∆β,i . (5.8)
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Examining the coning correction term defined in Equation (4.17), it is clear that the

coning correction is dependent upon the measurements. Therefore, the error in the coning

correction is dependent upon the measurement errors. Equation (4.17) can be substituted

for each term in Equation (5.7) to define the coning correction e∆β,i in terms of the true and

estimated incremental angle, given by

e∆β,i =

(
1
2

[
θi−1 +

1
6
∆θi−1

]
× ∆θi

)
−

(
1
2

[
θ̂i−1 +

1
6
∆θ̂i−1

]
× ∆θ̂i

)
. (5.9)

From Equation (5.9), the cross-products can be distributed, providing

e∆β,i =
1
2

[ (
θi−1 × ∆θi +

1
6
∆θi−1 × ∆θi

)
−

(
θ̂i−1 × ∆θ̂i +

1
6
∆θ̂i−1 × ∆θ̂i

) ]
.

Using the definitions in Equation (5.5), θi and ∆θi can be rewritten in terms of the estimates

and the estimation errors, resulting in

e∆β,i =
1
2

[ (
θ̂i−1 + eθ,i−1

)
×

(
∆θ̂i + e∆θ,i

)
+

1
6

(
∆θ̂i−1 + e∆θ,i−1

)
×

(
∆θ̂i + e∆θ,i

) ]
−

1
2

(
θ̂i−1 × ∆θ̂i +

1
6
∆θ̂i−1 × ∆θ̂i

)
.

Distributing the cross-products once again, e∆β,i can be expressed as

e∆β,i =
1
2

(
θ̂i−1 × ∆θ̂i + θ̂i−1 × e∆θ,i + eθ,i−1 × ∆θ̂i

)
−

1
2
θ̂i−1 × ∆θ̂i

+
1
12

(
∆θ̂i−1 × ∆θ̂i + ∆θ̂i−1 × e∆θ,i + e∆θ,i−1 × ∆θ̂i

)
−

1
12
∆θ̂i−1 × ∆θ̂i,

and recognizing that several terms cancel, it follows that

e∆β,i =
1
2

(
θ̂i−1 × e∆θ,i + eθ,i−1 × ∆θ̂i

)
+

1
12

(
∆θ̂i−1 × e∆θ,i + e∆θ,i−1 × ∆θ̂i

)
. (5.10)
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Using the cross-product relationship a × b = −b × a, Equation (5.10) becomes

e∆β,i =
1
2

(
θ̂i−1 × e∆θ,i − ∆θ̂i × eθ,i−1

)
+

1
12

(
∆θ̂i−1 × e∆θ,i − ∆θ̂i × e∆θ,i−1

)
.

Replacing each cross product term with the skew-symmetric cross-product matrix and

combining terms, the error in the coning correction as a function of the accumulated and

individual measurement errors is determined to be

e∆β,i =

(
1
2
[θ̂i−1×] +

1
12

[∆θ̂i−1×]

)
e∆θ,i − [∆θ̂i×]

(
1
2
eθ,i−1 +

1
12

e∆θ,i−1

)
. (5.11)

By combining Equations (5.8) and (5.11), the accumulated error due to the coning correction

term is then expressed as

eβ,̀ =
∑̀
i=1

[ (
1
2
[θ̂i−1×] +

1
12

[∆θ̂i−1×]

)
e∆θ,i − [∆θ̂i×]

(
1
2
eθ,i−1 +

1
12

e∆θ,i−1

) ]
. (5.12)

5.3.3. Combined Propagation of Errors. A representation for the estimation er-

ror propagation through the coning algorithm can be developed from the results in Equa-

tions (5.6) and (5.12). Initially, consider these errors to be separated into two components:

the measurement error accumulation and coning correction error accumulation, where the

measurement error accumulation is defined in Equation (5.6). Inspecting the coning cor-

rection accumulation error in Equation (5.12) and expanding for a variable number of

measurements, the errors can be shown to accumulate such that

eβ,̀ =
∑̀
i=1
Ξcon,ie∆θ,i, (5.13)
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where Ξcon,i
∆
= [ξcon,i×] and

ξcon,i
∆
=

1
2


i−1∑
j=1
∆θ̂ j −

∑̀
j=i+1
∆θ̂ j

 −
1
12

(
∆θ̂i+1 − ∆θ̂i−1

)
. (5.14)

With Equation (5.14), it can be shown that the error in the i
th coning correction term will not

be correlated to the errors in the i
th measurement, but only to those prior to and following its

processing. Additionally, if i+1 ≥ ` or i−1 ≤ 0, then ∆θ̂i+1 = 0 or ∆θ̂i−1 = 0, respectively.

To generate ξcon,i as stated in Equation (5.14), the entire array of ` measurements must be

known; fortunately, this can be restated so that the error terms can be accumulated in a

navigation preprocessor algorithm, much like the coning algorithm itself.

By combining the measurement error accumulation in Equation (5.6) and coning

correction error accumulation in Equation (5.13), the error in the coned equivalent mea-

surement is given by

e∆φ =
∑̀
i=1

(
e∆θ,i + Ξcon,ie∆θ,i

)
=

∑̀
i=1

(
I3×3 + Ξcon,i

)
e∆θ,i . (5.15)

Equation (5.15) describes the propagation of measurement and estimation errors through

the coning algorithm into the coned measurement accumulation. Employing a model for

IMU measurements, an accounting of the uncertainty in the system due to the estimation

and measurement errors can be developed for a particular navigation system that relies upon

a coning algorithm.

5.4. SCULLING ALGORITHM ERROR PROPAGATION

Through the application of a sculling algorithm, a correction for the measured

non-gravitational motion and its integration into the vehicle’s velocity is made using the

incremental angle and velocity measurements over the major interval. Whereas the coning

correction’s application alters the measurement statistics for the incremental angle, the
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sculling correction affects the those for the incremental velocity. Noting the equation

governing the sculling-corrected non-gravitational term in Equation (4.20), the error can be

written as a sum of errors in each of the components, i.e.

e∆vng,̀ = ev,̀ + e∆vscul ,̀ + e∆vrot ,̀ , (5.16)

where ev,̀ is the error in the incremental angle accumulation, e∆vscul ,̀ is the error in the

sculling correction, and e∆vrot ,̀ is the error in correction for the vehicle’s rotation during the

measurement accumulation. Sections 5.4.1 – 5.4.3 derive the mappings of the measurement

error through each of these terms, respectively.

5.4.1. Error in the Incremental Velocity Accumulation. The error in the incre-

mental velocity vector and its accumulation can be expressed such that

ev,̀
∆
= v` − v̂` and e∆v,i

∆
= ∆vi − ∆v̂i, (5.17)

where v` and v̂` are the true and estimated accumulated velocity vector over the major

interval, respectively, ∆vi and ∆v̂i are the true and estimated incremental velocity vector

at ti, over the minor interval [ti−1, ti], respectively. By the definition of the velocity

accumulation in Equation (4.19) and the definition of the error in Equation (5.17), the error

in the accumulation can be expressed as

ev,̀ = (v`−1 + ∆v`) − (v̂`−1 + ∆v̂`)

= (v`−1 − v̂`−1) + (∆v` − ∆v̂`)

= ev`−1 + e∆v,̀ .
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Recursively applying the definitions in Equation (5.17), the error in the accumulation is

simply a sum of the measurement errors, or

ev,̀ =
∑̀
i=1

e∆v,i . (5.18)

5.4.2. Error in the Sculling Correction. To determine the error in the sculling

correction, first recognize that the sculling correction is a sum of the incremental sculling

corrections, as shown in Equation (4.21), where the increments are defined by Equa-

tion (4.22). Therefore, in order to determine the error in the sculling correction, the error in

the increments must first be determined. Define the error in the sculling increment eδvscul,i

such that

eδvscul,i = δvscul,i − δv̂scul,i, (5.19)

and substitute for the definition of eδvscul,i composed with the true and estimated measure-

ments and their accumulation, yielding

eδvscul,i =
1
2

[ (
θi−1 +

1
6
∆θi−1

)
× ∆vi +

(
vi−1 +

1
6
∆vi−1

)
× ∆θi

]
−

1
2

[ (
θ̂i−1 +

1
6
∆θ̂i−1

)
× ∆v̂i +

(
v̂i−1 +

1
6
∆v̂i−1

)
× ∆θ̂i

]
. (5.20)

Solving each error definition for the true quantity and substituting, Equation (5.20) becomes

eδvscul,i =
1
2

(
θ̂i−1 + eθ,i−1 +

1
6

(
∆θ̂i−1 + e∆θ,i−1

) )
× (∆v̂i + e∆v,i)

+
1
2

(
v̂i−1 + ev,i−1 +

1
6

(
∆v̂i−1 + e∆v,i−1

) )
×

(
∆θ̂i + e∆θ,i

)
−

1
2

(
θ̂i−1 +

1
6
∆θ̂i−1

)
× ∆v̂i −

1
2

(
v̂i−1 +

1
6
∆v̂i−1

)
× ∆θ̂i . (5.21)
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Simplifying and neglecting higher-order terms, the error in the sculling increments can be

approximated to first-order as

eδvscul,i ≈

(
θ̂i−1 +

1
6
∆θ̂i−1

)
× e∆v,i − ∆θ̂i ×

(
ev,i−1 +

1
6
e∆v,i−1

)
(5.22)

+

(
v̂i−1 +

1
6
∆v̂i−1

)
× e∆θ,i − ∆v̂i ×

(
eθ,i−1 +

1
6
e∆θ,i−1

)
By the definition of the accumulated incremental sculling corrections given in

Equation (4.21),

e∆vscul ,̀ = (∆vscul,̀ −1 + δvscul,i) − (∆v̂scul,̀ −1 + δv̂scul,i)

= (∆vscul,̀ −1 − ∆v̂scul,̀ −1) + (δvscul,i − δv̂scul,i)

= e∆vscul ,̀ −1 + eδvscul ,̀ .

This result may be recursively applied, allowing the definition of the error in the accumu-

lation to simply be the sum of the errors in each incremental sculling correction, or

e∆vscul ,̀ =
∑̀
i=1

eδvscul,i . (5.23)

Now that an expression for the error in the accumulated sculling error is known, the

explicit mapping of the error in each measurement into the accumulated error is desired.

Examining Equation (5.11), notice that Equation (5.22) has two components that parallel

the form of the propagation of the incremental angle measurements through the coning

correction. The first is the previously defined Ξcon,i crossed with the incremental velocity

errors, while a second term is a parallel mapping that can be defined such that Ξscul,i
∆
=

[ξscul,i×], where

ξscul,i
∆
=

1
2


i−1∑
j=1
∆v̂ j −

∑̀
j=i+1
∆v̂ j

 −
1
12

(∆v̂i+1 − ∆v̂i−1) (5.24)
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and further allows the definition of the mapping of the measurement errors through the

incremental sculling correction to be

e∆vscul ,̀ =
∑̀
i=1
Ξcon,ie∆v,i + Ξscul,ie∆θ,i . (5.25)

5.4.3. Error in the Rotational Correction. The direction of the incremented ve-

locity vector must be compensated for the vehicle’s rotation during the major interval; this

is done via the rotational correction term. To determine the mapping of the measurement

errors through the rotational correction term, define the error in the rotational correction as

e∆vrot ,̀ = ∆vrot,̀ − ∆v̂rot,̀ . (5.26)

Expanding Equation (5.26) with the definition of∆vrot,̀ in Equation (4.23), and simplifying,

the error in the rotational correction is then

e∆vrot ,̀ =
1
2
(θ` × v`) −

1
2

(
θ̂` × v̂`

)
=

1
2

[ (
θ̂` + eθ,̀

)
×

(
v̂` + ev,̀

) ]
−

1
2

(
θ̂` × v̂`

)
=

1
2

[
θ̂` × ev,̀ − v̂` × eθ,̀

]
, (5.27)

neglecting higher-order error terms. Given that the error in the accumulations are simply

a sum of the errors in each of the measurements, the error propagation for the rotational

correction is

e∆vrot ,̀ =
1
2

(∑̀
i=1

[
θ̂`×

]
e∆v,i − [v̂`×] e∆θ,i

)
. (5.28)
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5.4.4. Combined Propagation of Sculling Errors. To produce the error propaga-

tion for the sculled, non-gravitational change in velocity, Equation (5.16) can be combined

with the definitions for each component defined in Equation (5.18), Equation (5.25), and

Equation (5.28). Therefore, the error in the sculling term as a function of the estimated

incremental angles and velocities mapped into the errors in each of those terms is

e∆vng,̀ =
∑̀
i=1

e∆v,i +
∑̀
i=1

(
Ξcon,ie∆v,i + Ξscul,ie∆θ,i

)
+

1
2

∑̀
i=1

( [
θ̂`×

]
e∆v,i − [v̂`×] e∆θ,i

)
,

which simplifies to

e∆vng,̀ =
∑̀
i=1

(
I3×3 + Ξcon,i +

1
2

[
θ̂`×

] )
e∆v,i +

(
Ξscul,i −

1
2
[v̂`×]

)
e∆θ,i . (5.29)

The errors in each of these measurement sources, however, is a function of well-known and

commonly estimated error sources. In Section 5.6, the error propagation for the sculling

correction is integrated into the velocity error dynamics, while Section 5.7 also incorporates

the error propagation for a strapdown sensor into the sculling-corrected non-gravitational

change in velocity.

5.5. SCROLLING ALGORITHM ERROR PROPAGATION

Through the application of a scrolling algorithm, a correction for the measured

non-gravitational motion and its integration into the vehicle’s position is made using the

incremental angle and velocity measurements over the major interval. Whereas the coning

correction’s application alters the measurement statistics for incremental angle measure-

ments, the sculling and scrolling corrections effect those for incremental velocity. Noting

the equation governing the scrolling-corrected non-gravitational term in Equation (4.24),
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the error can be written as a sum of errors in each of the components, i.e.

e∆rng,k = esv ,̀ + e∆rrot ,̀ + e∆rscrl ,̀ , (5.30)

where esv ,̀ is the error in the incremental angle accumulation, e∆rscrl ,̀ is the error in the

scrolling correction, and e∆rrot ,̀ is the error in correction for the vehicle’s rotation during

the measurement accumulation. Sections 5.5.1 – 5.5.3 derive the mapping of measurement

errors through each term, separately.

5.5.1. Error in the Integrated Incremental Velocity Accumulation. The first

term in Equation (5.30) describes the error introduced through the integration of the incre-

mental velocity vectors to determine the change in the vehicle’s position, with increment

and accumulation defined in Equations (4.26) and (4.25), respectively. The error must

then be expressed in terms of the error in the accumulation and increment; the error in the

accumulation is simply a sum of the error in each increment, i.e.

esv ,̀ =
∑̀
i=1

e∆sv,i . (5.31)

The error in the increment is then defined to be the difference between the estimated and

true increments, which is given by

e∆sv,i = ∆sv,i − ∆ ŝv,i . (5.32)

Substituting for the definition of the increment and truth, the error in the increment can be

simplified and expressed as

e∆sv,i = ev,i−1∆t` +
1
12

(
5e∆v,i + e∆v,i−1

)
∆t`, (5.33)
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allowing Equation (5.31) to be expressed as a sum of the errors in each increment. Note

that the e∆v,i−1 term has been deconstructed and expressed as a sum of the increments by

applying Equation (5.18). Expanding for a variable number of steps, the propagation of

incremental velocity errors into the accumulated integrated velocity is given by

esv ,̀ = −
∆t`
12

e∆v,̀ + ∆t`
∑̀
i=1

(
1
2
+ ` − i

)
e∆v,i, (5.34)

or

esv ,̀ = ∆t`
∑̀
i=1

ci,̀ e∆v,i (5.35)

with the coefficient ci,j defined to be

ci,j =


1
2 + j − i i < j

5
12 i = j

, (5.36)

where i is the coefficient associated with the ith measurement error e∆θ,i, and j is the number

of measurements contained within the esv ,̀ term. In most cases j = `, though this is not

always true.

5.5.2. Error in the Rotational Correction. To more accurately predict how the

non-gravitational incremental velocity and angle cause the state to propagate, the rotation of

the vectors during the measurement period is accounted for and defined in Equation (4.27).

However, to more accurately predict the uncertainty in the new estimate, the contribution

of errors in those measurements to this correction must be determined. Define the error in

the rotational component to be

e∆rrot,k = ∆rrot,k − ∆r̂rot,k . (5.37)
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Substituting for the components from Equation (4.27) the error in the position rotational

correction can be expressed as a function of the errors in the incremental angle and velocity

measurements to first order as

e∆rrot,k =
1
6

(
sθ,̀ × v` + θ` × sv,̀ − ŝθ,̀ × v̂` − θ̂` × ŝv,̀

)
=

1
6

[ (
ŝθ,̀ + esθ ,̀

)
×

(
v̂` + ev,̀

)
+

(
θ̂` + eθ,̀

)
×

(
ŝv,̀ + esv ,̀

)
− ŝθ,̀ × v̂` − θ̂` × ŝv,̀

]
=

1
6

(
ŝθ,̀ × ev,̀ + θ̂` × esv ,̀ − v̂` × esθ ,̀ − ŝv,̀ × eθ,̀

)
. (5.38)

The error in the integrated incremental angle esθ ,̀ can be expressed similarly to how the

incremental velocity was defined in Equation (5.35), as

esθ ,̀ = ∆t`
∑̀
i=1

ci,̀ e∆θ,i, (5.39)

with ci,̀ defined in Equation (5.36). Finally, the error in the rotational scrolling term can

be expressed as a function of the measurement errors by substituting the definitions for the

incremental angle and velocity integration in Equations (5.39) and (5.35) and the definitions

for the error accumulations in Equations (5.6) and (5.18), which yields

e∆rrot,k =
1
6

[
ŝθ,k ×

∑̀
i=1

e∆v,i + θ̂k ×

(
∆t`

∑̀
i=1

ci,̀ e∆v,i

)
− v̂k ×

(
∆t`

∑̀
i=1

ci,̀ e∆θ,i

)
− ŝv,k ×

∑̀
i=1

e∆θ,i

]
=

1
6

∑̀
i=1

( [
ŝθ,k + ci,̀ ∆t` θ̂k

]
× e∆v,i −

[
ŝv,k + ci,̀ ∆t` v̂k

]
× e∆θ,i

)
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Therefore, the propagation of measurement errors through the rotational term can be ex-

pressed as

e∆rrot,k =
1
6

∑̀
i=1
Λ∆θ,ie∆v,i − Λ∆v,ie∆θ,i, (5.40)

where Λ∆θ,i =
[
λ∆θ,i×

]
, Λ∆v,i =

[
λ∆v,i×

]
, and

λ∆θ,i = ŝθ,k + ci,̀ ∆t` θ̂k (5.41a)

λ∆v,i = ŝv,k + ci,̀ ∆t` v̂k . (5.41b)

With Λ∆θ,i and Λ∆v,i defined, the propagation of each measurement error into the position

rotational correction are known.

5.5.3. Error in the Scrolling Correction. The scrolling correction term, as de-

scribed by Equation (4.28), is composed of an accumulation of two incremental corrections,

a correction for the presence of sculling motion and its integration into the position, and

a correction for the presence of other, higher-order effects. The error in the scrolling

correction term is defined as

e∆rscrl ,̀ = e∆rscrl ,̀ −1 + eδrscrl/scul ,̀ + eδrscrl/other ,̀ . (5.42)

Recursively applying the definition in Equation (5.42), e∆rscrl ,̀ can be expressed as a sum

of errors in the incremental scrolling corrections for sculling and higher-order effects made

over the major interval such that

e∆rscrl ,̀ =
∑̀
i=1

eδrscrl/scul,i +
∑̀
i=1

eδrscrl/other ,i, (5.43)
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with the error in each term defined to be

eδrscrl/scul,i = δrscrl/scul,i − δ r̂scrl/scul,i (5.44a)

eδrscrl/other ,i = δrscrl/other,i − δ r̂scrl/other,i . (5.44b)

Within the following sections, 5.5.3.1 and 5.5.3.2, the propagation of errors through

each of these components and their accumulation are derived.

5.5.3.1. Error in the scrolling correction due to sculling corrections. Applying

the definition in Equation (5.44a) to Equation (4.30), the error in the scrolling correction

due to the correction for sculling motion is expressed as

eδrscrl/scul,i = ∆vscul,i−1∆t` − ∆v̂scul,i−1∆t`

+
1
2

[
θi−1 −

1
12

(∆θi − ∆θi−1)

]
×

(
∆svi − vi−1∆t`

)
−

1
2

[
θ̂i−1 −

1
12

(
∆θ̂i − ∆θ̂i−1

) ]
×

(
∆ ŝvi − v̂i−1∆t`

)
+

1
2

[
vi−1 −

1
12

(∆vi − ∆vi−1)

]
×

(
∆sθi − θi−1∆t`

)
−

1
2

[
v̂i−1 −

1
12

(∆v̂i − ∆v̂i−1)

]
×

(
∆ ŝθi − θ̂i−1∆t`

)
, (5.45)

which can be simplified to

eδrscrl/scul,i = ∆t`e∆vscul,i−1 +
∆t`
24

(
θ̂i−1 −

1
2
∆θ̂i

)
× e∆v,i−1 −

∆t`
24

(
5∆θ̂i + ∆θ̂i−1

)
× ev,i−1

+
∆t`
24

(
5θ̂i−1 +

1
2
∆θ̂i−1

)
× e∆v,i +

∆t`
24

(
v̂i−1 −

1
2
∆v̂i

)
× e∆θ,i−1

−
∆t`
24

(5∆v̂i + ∆v̂i−1) × eθ,i−1 +
∆t`
24

(
5v̂i−1 +

1
2
∆v̂i−1

)
× e∆θ,i (5.46)
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by substituting the definition δrscrl/scul,i = δ r̂scrl/scul,i + eδrscrl/scul,i. In Section 5.4.2, the

error propagation for the sculling term is defined and can be substituted into Equation (5.46),

giving

eδrscrl/scul,i = ∆t`
©«

i−1∑
j=1
Ξcon,j e∆v,j + Ξscul,j e∆θ,j

ª®¬ + ∆t`
24

(
θ̂i−1 −

1
2
∆θ̂i

)
× e∆v,i−1

−
∆t`
24

(
5∆θ̂i + ∆θ̂i−1

)
× ev,i−1 +

∆t`
24

(
5θ̂i−1 +

1
2
∆θ̂i−1

)
× e∆v,i

+
∆t`
24

(
v̂i−1 −

1
2
∆v̂i

)
× e∆θ,i−1 −

∆t`
24

(5∆v̂i + ∆v̂i−1) × eθ,i−1

+
∆t`
24

(
5v̂i−1 +

1
2
∆v̂i−1

)
× e∆θ,i , (5.47)

which is reorganized to

eδrscrl/scul,i = ∆t`
i−1∑
j=1

(
Ξcon,j −

1
24

[ (
5∆θ̂i + ∆θ̂i−1

)
×

] )
e∆v,j

+
∆t`
24

(
θ̂i−1 −

1
2
∆θ̂i

)
× e∆v,i−1 +

∆t`
24

(
5θ̂i−1 +

1
2
∆θ̂i−1

)
× e∆v,i

+ ∆t`
i−1∑
j=1

(
Ξscul,j −

1
24

[(5∆v̂i + ∆v̂i−1) ×]

)
e∆θ,j

+
∆t`
24

(
v̂i−1 −

1
2
∆v̂i

)
× e∆θ,i−1 +

∆t`
24

(
5v̂i−1 +

1
2
∆v̂i−1

)
× e∆θ,i (5.48)

by expanding the definition of eθ,i−1.

The propagation of the measurement errors through the scrolling algorithm’s cor-

rection for sculling motion is a sum of errors in each increment generated across the major

interval. Expanding manually, it can be shown that the error in the scrolling correction for

the sculling motion is then expressed as
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e∆rscrl/scul ,̀ =∆t`
( ∑̀

i=1

[
(` − i)Ξcon,i +

1
24
Γ∆θ,i

]
e∆v,i

+
∑̀
i=1

[
(` − i)Ξscul,i +

1
24
Γ∆v,i

]
e∆θ,i

)
(5.49)

with the mappings defined such that Γ∆θ,i =
[
γ∆θ,i×

]
and Γ∆v,i =

[
γ∆v,i×

]
, where

γ∆θ,i =


6
(∑i−1

j=1 ∆θ̂ j −
∑`

j=i+1 ∆θ̂ j

)
+ 1

2

(
∆θ̂i−1 − ∆θ̂i+1

)
+ ∆θ̂` i < `

5
∑i−1

j=1 ∆θ̂ j +
1
2∆θ̂i−1 i = `

and

γ∆v,i =


6
(∑i−1

j=1 ∆v̂ j −
∑`

j=i+1 ∆v̂ j

)
+ 1

2 (∆v̂i−1 − ∆v̂i+1) + ∆v̂` i < `

5
∑i−1

j=1 ∆v̂ j +
1
2∆v̂i−1 i = `.

The definitions for γ∆θ,i and γ∆v,i can be further expressed as

γ∆θ,i =


12θ̂i − 6∆θ̂i − 6θ̂` + 1

2

(
∆θ̂i−1 − ∆θ̂i+1

)
+ ∆θ̂` i < `

5θ̂i−1 +
1
2∆θ̂i−1 i = `

(5.50)

and

γ∆v,i =


12v̂i − 6∆v̂i − 6v̂` + 1

2 (∆v̂i−1 − ∆v̂i+1) + ∆v̂` i < `

5v̂i−1 +
1
2∆v̂i−1 i = `,

(5.51)

by substituting the accumulated variables for the summations.

5.5.3.2. Error in the scrolling correction due to higher-order effect corrections.

As previously shown in Equation (5.44b), the error introduced in the scrolling correction,

due to the correction for higher-order effects, is a sum of the error in each increment over the

major interval. Therefore, in any given increment, the error can be expressed as a function
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of the measurements and their errors throughout the current major interval. Substituting

for the definition of the scrolling correction made for higher-order effects provided in

Equation (4.31), and simplifying, the error in an individual increment can be expressed as

eδrscrl/other ,i =
∆t`
6

i−1∑
j=1

( [
θ̂i−1 −

1
6

(
∆θ̂i − ∆θ̂i−1

)
− c j, i−1∆θ̂i

]
× e∆v,j

)
−
∆t`
6

i−1∑
j=1

( [
v̂i−1 −

1
6
(∆v̂i − ∆v̂i−1) − c j, i−1∆v̂i

]
× e∆θ,j

)
+
∆t`
6

[
1
6
θ̂i−1 −

1
40

(
∆θ̂i − ∆θ̂i−1

)
+ ∆θ̂i

]
× e∆v,i−1

−
∆t`
6

[
1
6
v̂i−1 −

1
40

(∆v̂i − ∆v̂i−1) + ∆v̂i

]
× e∆θ,i−1

+
∆t`
6


7

120

(
∆θ̂i − ∆θ̂i−1

)
−

1
24
∆θ̂i−1 +

i−1∑
j=1

(
i − j −

1
3

)
∆θ̂ j

 × e∆v,i

−
∆t`
6


7

120
(∆v̂i − ∆v̂i−1) −

1
24
∆v̂i−1 +

i−1∑
j=1

(
i − j −

1
3

)
∆v̂ j

 × e∆θ,i, (5.52)

where c j,i−1 is defined in Equation (5.36).

Manually expanding each term, the measurement accumulation that generates the

mapping of the measurement errors into the scrolling correction term that accounts for

higher-order effects is then expressed as

e∆rscrl/other ,̀ =
∑̀
i=1

eδrscrl/other ,i

=
∆t`
6

(∑̀
i=1

M∆v,ie∆θ,i − M∆θ,ie∆v,i

)
, (5.53)
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with M∆θ,i =
[
µ∆θ,i×

]
and M∆v,i =

[
µ∆v,i×

]
where µ∆θ,i and µ∆v,i are

µ∆θ,i =



7
120

(
∆θ̂i − ∆θ̂i−1

)
+ 1

40

(
∆θ̂i + ∆θ̂i+1

)
+ 1

6

(
θ̂i + ∆θ̂i − ∆θ̂`

)
i < `

+ 1
12∆θ̂i+1 −

1
24∆θ̂i−1 + (` − i) θ̂i + ∆θ̂i +

∑i−1
j=1

(
i − j − 1

3

)
∆θ̂ j

+
∑`

j=i+1 (` − j)∆θ̂ j +
(
i − j + 1

2

)
∆θ̂ j

7
120

(
∆θ̂i − ∆θ̂i−1

)
− 1

24∆θ̂i−1 +
∑i−1

j=1

(
i − j − 1

3

)
∆θ̂ j i = `

and

µ∆v,i =



7
120 (∆v̂i − ∆v̂i−1) +

1
40 (∆v̂i + ∆v̂i+1) +

1
6 (v̂i + ∆v̂i − ∆v̂`) i < `

+ 1
12∆v̂i+1 −

1
24∆v̂i−1 + (` − i) v̂i + ∆v̂i +

∑i−1
j=1

(
i − j − 1

3

)
∆v̂ j

+
∑`

j=i+1 (` − j)∆v̂ j +
(
i − j + 1

2

)
∆v̂ j

7
120 (∆v̂i − ∆v̂i−1) −

1
24∆v̂i−1 +

∑i−1
j=1

(
i − j − 1

3

)
∆v̂ j i = `

,

which can be further simplified to

µ∆θ,i =



(
` − i + 1

6

)
θ̂i −

1
10∆θ̂i−1 +

5
4∆θ̂i +

13
120∆θ̂i+1 −

1
6∆θ̂` i < `

+
∑i−1

j=1

(
i − j − 1

3

)
∆θ̂ j +

∑`
j=i+1

(
` + i − 2 j + 1

2

)
∆θ̂ j

7
120∆θ̂i −

1
10∆θ̂i−1 +

∑i−1
j=1

(
i − j − 1

3

)
∆θ̂ j i = `

. (5.54)
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and

µ∆v,i =



(
` − i + 1

6

)
v̂i −

1
10∆v̂i−1 +

5
4∆v̂i +

13
120∆v̂i+1 −

1
6∆v̂` i < `

+
∑i−1

j=1

(
i − j − 1

3

)
∆v̂ j +

∑`
j=i+1

(
` + i − 2 j + 1

2

)
∆v̂ j

7
120∆v̂i −

1
10∆v̂i−1 +

∑i−1
j=1

(
i − j − 1

3

)
∆v̂ j i = `

(5.55)

5.5.4. Combined Propagation of Scrolling Errors. From the definitions and

derivations for the propagation of measurement errors through the corrections for the incre-

mental velocity integration, presented in Section 5.5.1, the correction for frame rotation, as

seen in Section 5.5.2, and the correction for the scrolling errors, developed throughout 5.5.3,

the error in the scrolling-corrected non-gravitational change in position can be constructed.

Substituting the components from Equation (5.35), Equation (5.40), Equation (5.49), and

Equation (5.53), the propagation of errors is expressed as

e∆rng,k =
∑̀
i=1

[
∆t`

(
(` − i)Ξscul,i +

1
24
Γ∆v,i +

1
6
M∆v,i

)
−

1
6
Λ∆v,i

]
e∆θ,i

+
∑̀
i=1

[
∆t`

(
ci,̀ I3×3 + (` − i)Ξcon,i +

1
24
Γ∆θ,i −

1
6
M∆θ,i

)
+

1
6
Λ∆θ,i

]
e∆v,i . (5.56)

To simplify the notation, define

X∆v,i =∆t`

(
(` − i)Ξscul,i +

1
24
Γ∆v,i +

1
6
M∆v,i

)
−

1
6
Λ∆v,i

X∆θ,i =∆t`

(
ci,̀ I3×3 + (` − i)Ξcon,i +

1
24
Γ∆θ,i −

1
6
M∆θ,i

)
+

1
6
Λ∆θ,i

allowing Equation (5.56) to be expressed as

e∆rng,k =
∑̀
i=1

(
X∆v,ie∆θ,i + X∆θ,ie∆v,i

)
. (5.57)
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5.6. VEHICLE STATE ERROR DYNAMICS

For inertial navigation system implementation within an MEKF, the error dynamics

for each of the states must be determined as a function of the estimation errors in order to

propagate the uncertainty. Within this section, the error dynamics for Equation (4.33) are

derived in terms of the corrections made for coning, sculling, and scrolling considerations.

Section 5.6.1 details the propagation of the errors in the coned incremental angle vector

into the attitude states, while Section 5.6.2 performs a derivation of the error dynamics

for the velocity uncertainty as affected by the coning and sculling results. Finally, Section

5.6.3 builds upon Section 5.6.2 to derive the error dynamics for the position in terms of the

coning and scrolling results.

5.6.1. Attitude Error Dynamics. Through the definition of the attitude estimation

error shown in Equation (3.27) and allowing the rotation vector to be the result of the coning

algorithm, i.e. letting ∆θ̂k → ∆φ̂k , the attitude error propagation can be expressed in terms

of the error in the previous attitude error and the error in the coned rotation as

eA,k = T (∆φ̂k)eA,k−1 + e∆φ,k . (5.58)

Substituting the error dynamics for the coned rotation vector, shown in Equation (5.15),

the error dynamics in the attitude estimate are expressed as a function of the measurement

errors from the ` measurements sampled over the [tk−1, tk] interval as

eA,k = T (∆φ̂k)eA,k−1 +
∑̀
i=1

(
I3×3 + Ξcon,i

)
e∆θ,i . (5.59)

It is noted that should the error propagation be considered simply a sum of the measurement

errors that the contribution due to the coning correction will be neglected. By mapping the

uncertainty through the coning algorithm, the additional mapping for each error term into

the uncertainty of the attitude estimate has been shown in Equation (5.59).
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5.6.2. Velocity Error Dynamics. To determine the propagation of the measure-

ment errors through the velocity states, the error in the velocity is simply defined as

ev,k = vk − v̂k . (5.60)

With the velocity propagation for a vehicle aided by strapdown inertial sensors shown in

Equation (4.33b), assuming that ∆tk = ∆t̂k , the error in the velocity propagation is

ev,k =vk−1 +T
T
k−1∆vng,k +

(
gk−1 −

1
2
Gk−1T

T
k−1

[
rcg/c,k−1×

]
∆φk

)
∆tk

− v̂k−1 − T̂T
k−1∆v̂ng,k −

(
ĝk−1 −

1
2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k

)
∆tk ,

which can be rearranged to

ev,k =vk−1 − v̂k−1 +T
T
k−1∆vng,k − T̂T

k−1∆v̂ng,k + (gk−1 − ĝk−1)∆tk

−
1
2

(
Gk−1T

T
k−1

[
rcg/c,k−1×

]
∆φk −

1
2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k

)
∆tk . (5.61)

To further simplify, the terms within Equation (5.61) are considered separately. By the

definition of the quaternion error in Equation (3.20), it follows that

δTk−1 = Tk−1T̂
T
k−1.

To first order, the error in the rotation can be expressed as [5]

δTk−1 =I3×3 −
[
eA,k−1×

]
,

such that the true transformation matrix has the first-order expansion

Tk−1 = T̂k−1 −
[
eA,k−1×

]
T̂k−1,
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which is found through the right-side multiplication by T̂k−1. Transposing, and noting that[
eA,k−1×

]
is skew-symmetric provides

TT
k−1 = T̂

T
k−1 + T̂

T
k−1

[
eA,k−1×

]
. (5.62)

Incorporating the result from Equation (5.62), then

TT
k−1∆vng,k =

(
T̂T

k−1 + T̂
T
k−1

[
eA,k−1×

] ) (
∆v̂ng,k + e∆vng,k

)
=T̂T

k−1∆v̂ng,k + T̂
T
k−1e∆vng,k + T̂

T
k−1

[
eA,k−1×

]
∆v̂ng,k

=T̂T
k−1∆v̂ng,k + T̂

T
k−1e∆vng,k − T̂T

k−1
[
∆v̂ng,k×

]
eA,k−1 (5.63)

to first-order in the error terms. Next, noting that gk−1 is evaluated at the vehicle center of

gravity, it can be expressed as

gk−1 = ĝk−1 + Ĝk−1ercg,k−1 (5.64)

where ercg,k−1 = rcg,k−1 − r̂cg,k−1. Given Equation (5.62), it then follows that

ercg,k−1 =rk−1 +T
T
k−1rcg/c,k−1 − r̂k−1 − T̂T

k−1 r̂cg/c,k−1

=er,k−1 + T̂
T
k−1ercg/c,k + T̂

T
k−1

[
eA,k−1×

]
r̂cg/c,k−1

=er,k−1 + T̂
T
k−1ercg/c,k − T̂T

k−1
[
r̂cg/c,k−1×

]
eA,k−1 (5.65)

to first-order, showing that Equation (5.64) can be expanded to first order as

gk−1 = ĝk−1 + Ĝk−1er,k−1 + Ĝk−1T̂
T
k−1ercg/c,k−1 − Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
eA,k−1. (5.66)
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By substituting the definition from Equation (5.62), r̂cg/c,k−1 = r̂cg/c,k−1 + ercg/c,k−1 and

∆φk = ∆φ̂k+e∆φ,k intoTT
k−1

[
rcg/c,k−1×

]
∆φk , the first-order expansion of the term becomes

TT
k−1

[
rcg/c,k−1×

]
∆φk =

(
T̂T

k−1 + T̂
T
k−1

[
eA,k−1×

] ) [ (
r̂cg/c,k−1 + ercg/c,k−1

)
×

] (
∆φ̂k + e∆φ,k

)
=T̂T

k−1
[
r̂cg/c,k−1×

]
∆φ̂k + T̂

T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k

+ T̂T
k−1

[
ercg/c,k−1×

]
∆φ̂k + T̂

T
k−1

[
eA,k−1×

] [
r̂cg/c,k−1×

]
∆φ̂k

=T̂T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k + T̂

T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k

− T̂T
k−1

[
∆φ̂k×

]
ercg/c,k−1 − T̂T

k−1
[
r̂cg/c,k−1×

] [
∆φ̂k×

]
eA,k−1.

(5.67)

It can then be shown that

Gk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k = Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k + Ûk−1ercg,k−1

where Ûk−1 ∈ R3×3, with an element in the ith row and j th column given by [32]

Ûk−1(i, j) =


3∑
m=1

∂2g(i)
∂r( j)∂r(m)

u(m)

�����
r=r̂cg,k−1

 . (5.68)

It should be noted that r( j) and r(i) denote the ith and j th elements of the rcg,k−1 vector, while

g(i) similarly denotes the ith component of gk−1. Therefore, Gk−1T
T
k−1

[
rcg/c,k−1×

]
∆φk can

be expressed to first-order as

Gk−1T
T
k−1

[
rcg/c,k−1×

]
∆φk =Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k + Ûk−1ercg,k−1

+ Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k − Ĝk−1T̂

T
k−1

[
∆φ̂k×

]
ercg/c,k−1

− Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
eA,k−1. (5.69)
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Additionally, substituting the definition of ercg,k−1 from Equation (5.65),

Ûk−1ercg,k−1 =Ûk−1er,k−1 − Ûk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
eA,k−1 + Ûk−1T̂

T
k−1ercg/c,k−1. (5.70)

The error propagation for the velocity states can then be expressed as

ev,k =ev,k−1 − T̂T
k−1

[
∆v̂ng,k×

]
eA,k−1 + T̂

T
k−1e∆vng,k

+ Ĝk−1

(
er,k−1 + T̂

T
k−1ercg/c,k−1 − T̂T

k−1
[
r̂cg/c,k−1×

]
eA,k−1

)
∆tk −

∆tk

2

(
Ûk−1er,k−1

− Ûk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
eA,k−1 + Ûk−1T̂

T
k−1ercg/c,k−1 + Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k

− Ĝk−1T̂
T
k−1

[
∆φ̂k×

]
ercg/c,k−1 − Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
eA,k−1

)
. (5.71)

Finally, given the error dynamics for the coned rotation and sculled velocity vectors, the

results in Equations (5.15) and (5.29) can be substituting, giving the error propagation in

terms of the measurement errors as

ev,k =∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
er,k−1 + ev,k−1

+

{
∆tk

2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆v̂ng,k×

]
− ∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+ ∆tk

{ (
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1 +
1
2
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

+
∑̀
i=1

(
T̂T

k−1 + T̂
T
k−1Ξcon,i +

1
2
T̂T

k−1
[
θ̂`×

] )
e∆v,i

+
∑̀
i=1

{
T̂T

k−1Ξscul,i −
1
2
T̂T

k−1 [v̂`×] −
∆tk

2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] (
I3×3 + Ξcon,i

) }
e∆θ,i .

(5.72)
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Therefore, Equation (5.72) expresses the propagation of estimation errors in the vehicle’s

center of gravity location and its position, attitude, and the individual incremental angle

and velocity measurements into the estimation error for velocity. It should be noted that

measurements ∆θi, ∆vi ∀i ∈ {1,2, . . . , `} are obtained and processed during the interval

[tk−1, tk].

5.6.3. Position Error Dynamics. Similar to the expression of velocity error, the

position error is simply defined as

er,k = rk − r̂k . (5.73)

Combining the propagation of the position estimate for a vehicle aided by strapdown inertial

sensors is shown in Equation (4.33a), and noting that ∆tk is taken to be deterministic, the

error dynamics for the position estimate can be stated as

er,k =rk−1 − r̂k−1 + ∆tk (vk−1 − v̂k−1) +T
T
k−1∆rng,k − T̂T

k−1∆r̂ng,k +
∆t2

k

2
(gk−1 − ĝk−1)

−
1
6

(
Gk−1T

T
k−1

[
rcg/c,k−1×

]
∆φk − Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
∆φ̂k

)
∆t2

k . (5.74)

Using the results of Section 5.6.2, many terms within Equation (5.74) can be simplified.

Given the results in Equation (5.62), and the definition that ∆rng,k = ∆r̂ng,k + e∆rng,k , it can

be shown that

TT
k−1∆rng,k − T̂T

k−1∆r̂ng,k =T̂
T
k−1e∆rng,k − T̂T

k−1
[
∆r̂ng,k×

]
eA,k−1. (5.75)

Additionally, from Equation (5.66),

gk−1 − ĝk−1 =Ĝk−1er,k−1 + Ĝk−1T̂
T
k−1ercg/c,k−1 − Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
eA,k−1.
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The error dynamics, dictating the propagation of the error in the position estimate are then

stated as

er,k =er,k−1 + ∆tk ev,k−1 + T̂
T
k−1e∆rng,k − T̂T

k−1
[
∆r̂ng,k×

]
eA,k−1

+
∆t2

k

2

(
Ĝk−1er,k−1 + Ĝk−1T̂

T
k−1ercg/c,k−1 − Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
eA,k−1

)
−
∆t2

k

6

{
Ûk−1er,k−1 − Ûk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
eA,k−1 + Ûk−1T̂

T
k−1ercg/c,k−1

+ Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k − Ĝk−1T̂

T
k−1

[
∆φ̂k×

]
ercg/c,k−1

− Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
eA,k−1

}
. (5.76)

and can be reorganized to

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3
Ûk−1

) }
er,k−1 + ∆tk ev,k−1

+

{
∆t2

k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆r̂ng,k×

]
−
∆t2

k

2

(
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+
∆t2

k

2

{ (
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1 +
1
3
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

+ T̂T
k−1e∆rng,k −

∆t2
k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k . (5.77)

The previously determined propagation of errors through the coning algorithm in Equa-

tion (5.15) allows the expression

Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
e∆φ,k =

∑̀
i=1

Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

] (
I3×3 + Ξcon,i

)
e∆θ,i, (5.78)
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which describes the propagation of errors in the incremental angle measurements through the

coning-compensated rotation. Similarly, substituting Equation (5.56), the term containing

the error in the scrolling-corrected change in position can be expressed as

T̂T
k−1e∆rng,k =

∑̀
i=1

T̂T
k−1X∆v,ie∆θ,i +

∑̀
i=1

T̂T
k−1X∆θ,ie∆v,i . (5.79)

Therefore, Equation (5.77) can be restated by substituting Equations (5.78) and (5.79),

including the contribution of errors from the measurements and performed coning and

scrolling corrections, as

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3
Ûk−1

) }
er,k−1 + ∆tk ev,k−1

+

{
∆t2

k

6
T̂T

k−1
[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆r̂ng,k×

]
−
∆t2

k

2

(
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+
∆t2

k

2

{ (
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1 +
1
3
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

+
∑̀
i=1

{
T̂T

k−1X∆v,i −
∆t2

k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] (
I3×3 + Ξcon,i

) }
e∆θ,i

+
∑̀
i=1

T̂T
k−1X∆θ,ie∆v,i (5.80)

5.7. INCORPORATING THE STRAPDOWN SENSOR MODEL

As shown in Section 4.3, a number of parameters corrupt the strapdown inertial sen-

sor measurements including bias, scale-factor, axes nonorthogonality, frame misalignment,

and white noise. In Section 5.2 the contribution of common strapdown sensor error sources

to the error in each individual measurement error was shown. Often, information about

these errors is available, either provided by the manufacturer or determined experimentally
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by the user. Given an initial distribution of each error source and a description for the tem-

poral evolution of those error sources, the dynamics and contribution of each error source

into the state estimation error can be determined. As such, these sources of corruption

are often estimated directly through the augmentation of the vehicle’s state vector with the

estimated parameters, or, alternatively, their effects on the state uncertainty can be directly

acknowledged through consider filtering [33].

To determine the contribution to the state estimation error by the error in the

estimated strapdown sensor corruption sources, the position, velocity, and attitude errors

must be expressed as functions of the estimation error for each of these parameters. Section

5.7.1 derives the propagation of gyro measurement errors into the attitude estimate, while

Sections 5.7.2 and 5.7.3 derive the propagation of gyro and accelerometer errors into the

velocity and position estimates, respectively.

5.7.1. Attitude. Considering the gyro measurements to be corrupted by bias, scale

factor, misalignment, nonorthogonality, and noise error sources, the propagation of these

errors into the attitude estimate is given by the combination of Equations (5.4a) and (5.59),

giving the component containing the measurement errors as

∑̀
i=1

(
I3×3 + Ξcon,i

)
e∆θ,i = −

∑̀
i=1

(
I3×3 + Ξcon,i

)
[∆θm,ir]esg,i

+
∑̀
i=1

(
I3×3 + Ξcon,i

)
[∆θm,i×]emg,i

−
∑̀
i=1

(
I3×3 + Ξcon,i

)
[∆θm,i∗]eng,i

−
∑̀
i=1

(
I3×3 + Ξcon,i

)
ebg,i −

∑̀
i=1

(
I3×3 + Ξcon,i

)
wg,i . (5.81)

Using the model in Equation (5.81), there are no assumptions about the error sources

themselves that are not implicit to the IMU model itself. To simplify for algorithmic

implementation, recognize that the change in the error sources over any given interval is
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expected to be small, such that bg,i, sg,i, ng,i, and mg,i can be approximated as constant over

the coning interval, or

Ûbg,i ≈ 0, Ûsg,i ≈ 0, Ûng,i ≈ 0, and Ûmg,i ≈ 0,

Equation (5.81) can be expressed as

∑̀
i=1

(
I3×3 + Ξcon,i

)
e∆θ,i = − Lsg esg,k + Lmg emg,k − Lng eng,k − Lbg ebg,k − wA,g (5.82)

where

Lsg
∆
= [θm,̀ r] +

∑̀
i=1
Ξcon,i[∆θm,ir] (5.83a)

Lmg

∆
= [θm,̀ ×] +

∑̀
i=1
Ξcon,i[∆θm,i×] (5.83b)

Lng
∆
= [θm,̀ ∗] +

∑̀
i=1
Ξcon,i[∆θm,i∗] (5.83c)

Lbg
∆
= `I3×3 +

∑̀
i=1
Ξcon,i (5.83d)

wA,g
∆
=

∑̀
i=1

(
I3×3 + Ξcon,i

)
wg,i . (5.83e)

are defined to simplify the notation and isolate the propagation of the gyro bias, scale

factor, misalignment, nonorthogonality, and noise into the attitude estimate. Additionally,

note that θm,̀ is simply the sum of the measurements, i.e. θm,̀ =
∑`

i=1 ∆θm,i. Therefore, the

attitude error, including the contribution from each of the gyro error sources, is

eA,k = T (∆φ̂k)eA,k−1 − Lsg esg,k + Lmg emg,k − Lng eng,k − Lbg ebg,k − wA,g . (5.84)
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It is important to note that the noise is not assumed to be constant over the coning interval

and requires special attention for implementation.

5.7.2. Velocity. Given that both the gyros and accelerometers can be corrupted

by bias, scale factor, misalignment, nonorthogonality, and noise error sources, the error

in the velocity estimate will be dependent upon the error in these parameters. Therefore,

combining Equation (5.4a) with Equation (5.72), the component mapping errors in the

accelerometer measurements to the velocity becomes

∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
e∆v,i = −

∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
[∆vm,ir]esa,i

+
∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
[∆vm,i×]ema,i

−
∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
[∆vm,i∗]ena,i

−
∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
eba,i

−
∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
wa,i, (5.85)

where

Nθ = I3×3 +
1
2

[
θ̂`×

]
(5.86)

is defined to simplify notation. Again applying the assumption that the bias, scale factor,

misalignment, and nonorthogonality errors are constant over the major interval, and defining

Vsa
∆
= T̂T

k−1

{
Nθ[vm,̀ r] +

∑̀
i=1
Ξcon,i[∆vm,ir]

}
(5.87a)

Vma

∆
= T̂T

k−1

{
Nθ[vm,̀ ×] +

∑̀
i=1
Ξcon,i[∆vm,i×]

}
(5.87b)
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Vna
∆
= T̂T

k−1

{
Nθ[vm,̀ ∗] +

∑̀
i=1
Ξcon,i[∆vm,i∗]

}
(5.87c)

Vba
∆
= T̂T

k−1

(
`Nθ +

∑̀
i=1
Ξcon,i

)
(5.87d)

wV,a
∆
=

∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
wa,i, (5.87e)

the term describing the propagation of errors from the accelerometer measurements into

the velocity estimate is then given by

∑̀
i=1

T̂T
k−1

(
Nθ + Ξcon,i

)
e∆v,i = − Vsa esa,k + Vma ema,k − Vna ena,k − Vba eba,k − wV,a. (5.88)

Similarly, by combining Equation (5.4a) with Equation (5.72), defining the mapping of each

error in the gyro measurement into the velocity error as

Vsg
∆
=

∑̀
i=1

T̂T
k−1Ξscul,i[∆θm,ir]

−
1
2

(
T̂T

k−1 [v̂`×] [θm,̀ r] + ∆tk Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
Lsg

)
(5.89a)

Vmg

∆
=

∑̀
i=1

T̂T
k−1Ξscul,i[∆θm,i×]

−
1
2

(
T̂T

k−1 [v̂`×] [θm,̀ ×] + ∆tk Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
Lmg

)
(5.89b)

Vng
∆
=

∑̀
i=1

T̂T
k−1Ξscul,i[∆θm,i∗]

−
1
2

(
T̂T

k−1 [v̂`×] [θm,̀ ∗] + ∆tk Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
Lng

)
(5.89c)

Vbg
∆
=

∑̀
i=1

T̂T
k−1Ξscul,i −

1
2

(
T̂T

k−1 [v̂`×] + ∆tk Ĝk−1T̂
T
k−1

[
r̂cg/c,k−1×

]
Lsb

)
(5.89d)

wV,g
∆
=

∑̀
i=1

T̂T
k−1

(
Ξscul,i −

1
2
[v̂`×]

)
wg,i −

∆tk

2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
wA,g, (5.89e)
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and incorporating the definitions from Equation (5.87), it can be shown that the velocity

error propagation is

ev,k =∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
er,k−1 + ev,k−1

+

{
∆tk

2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆v̂ng,k×

]
− ∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+ ∆tk

{ (
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1 +
1
2
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

− Vsa esa,k + Vma ema,k − Vna ena,k − Vba eba,k − wV,a

− Vsg esg,k + Vmg emg,k − Vng eng,k − Vbg ebg,k − wV,g . (5.90)

The error propagation in Equation (5.90) describes the dynamics for the error in the velocity

estimate given that the navigation system is dependent upon strapdown inertial sensors and

uses a coning and sculling algorithm. To simplify the error propagation, it has been

assumed in the derivation of Equation (5.90) that the bias, scale factor, misalignment and

nonorthogonality errors in both the accelerometers and gyroscopes are constant over the

major time step.

5.7.3. Position. With the definition of the velocity error dynamics written in terms

of the strapdown sensor errors in Equation (5.90), their propagation into the position error

follows similarly. The mappings defining the propagation of gyro measurement errors into

the position estimate, through the application of coning and scrolling algorithms, can then

be defined as

Rsg
∆
=

∑̀
i=1

T̂T
k−1X∆θ,i

[
∆vm,ir

]
−
∆t2

k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
Lsg (5.91a)

Rmg

∆
=

∑̀
i=1

T̂T
k−1X∆θ,i

[
∆vm,i×

]
−
∆t2

k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
Lmg (5.91b)
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Rng
∆
=

∑̀
i=1

T̂T
k−1X∆θ,i[∆vm,i∗] −

∆t2
k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
Lng (5.91c)

Rbg
∆
=

∑̀
i=1

T̂T
k−1X∆θ,i −

∆t2
k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
Lbg (5.91d)

wR,g
∆
=

∑̀
i=1

T̂T
k−1X∆θ,iwa,i −

∆t2
k

6
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

]
wA,g . (5.91e)

Additionally, the mapping for the errors in the accelerometer measurements can be defined

as

Rsa
∆
=

∑̀
i=1

T̂T
k−1X∆v,i

[
∆θm,ir

]
(5.92a)

Rma

∆
=

∑̀
i=1

T̂T
k−1X∆v,i

[
∆θm,i×

]
(5.92b)

Rna
∆
=

∑̀
i=1

T̂T
k−1X∆v,i[∆θm,i∗] (5.92c)

Rba
∆
=

∑̀
i=1

T̂T
k−1X∆v,i (5.92d)

wR,a
∆
=

∑̀
i=1

T̂T
k−1X∆v,iwa,i . (5.92e)

Finally, with the mappings defined in Equations (5.91) and Equations (5.92), the error

dynamics for the position become

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3
Ûk−1

) }
er,k−1 + ∆tk ev,k−1

+

{
∆t2

k

6
T̂T

k−1
[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆r̂ng,k×

]
−
∆t2

k

2

(
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+
∆t2

k

2

{ (
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1 +
1
3
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1
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− Rsa esa,k + Rma ema,k − Rna ena,k − Rba eba,k − wR,a

− Rsg esg,k + Rmg emg,k − Rng eng,k − Rbg ebg,k − wR,g (5.93)

Equation (5.93) describes the error dynamics for the position estimate, influenced by ac-

celerometer and gyro bias, scale factor, misalignment, and nonorthogonality which are

assumed to be constant from tk−1 to tk . The noise, however, is not assumed constant over

the interval and thus provides a separate contribution from each measurement, requiring

the definition of wR,g and wR,a. Additionally, the propagation of errors through coning and

scrolling corrections are accounted for in the development of the mapping terms for each

error source.

5.8. COVARIANCE PROPAGATION

Let the state vector be given by the concatenated position, velocity, and attitude

vectors, augmented by the estimated inertial sensor parameters, or

x̂k =
[
r̂T

k v̂T
k

ˆ̄qT
k ω̂T

aug,k âT
aug,k

] T
,

where the estimated error parameters for the gyro and accelerometer are then defined to be

ω̂aug,k =
[
b̂T
g,k ŝT

g,k m̂T
g,k n̂T

g,k

] T
and âaug,k =

[
b̂T

a,k ŝT
a,k m̂T

a,k n̂T
a,k

] T
,

respectively. A concatenation of the noise vectors can also be expressed as

wk =
[
wT

a,k wT
g,k

] T
. (5.94)
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As discussed in Section 3, the state uncertainty can be propagated by the navigation system

within the EKF architecture via Equation (3.18). Additionally, as mentionend within the

EKF development, the linearization of the dynamics about the mean of the distribution

is necessary in order to propagate the covariance. Elements of the dynamics Jacobian,

required for the covariance propagation, follow directly from the system error dynamics

developed in Equation (5.93), Equation (5.90), and Equation (5.84), which are collected

here as

er,k =

{
I3×3 +

∆t2
k

2

(
Ĝk−1 −

1
3
Ûk−1

) }
er,k−1 + ∆tk ev,k−1

+

{
∆t2

k

6
T̂T

k−1
[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆r̂ng,k×

]
−
∆t2

k

2

(
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+
∆t2

k

2

{ (
Ĝk−1 −

1
3
Ûk−1

)
T̂T

k−1 +
1
3
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

− Rsa esa,k + Rma ema,k − Rna ena,k − Rba eba,k − wR,a

− Rsg esg,k + Rmg emg,k − Rng eng,k − Rbg ebg,k − wR,g (5.95a)

ev,k =∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
er,k−1 + ev,k−1

+

{
∆tk

2
Ĝk−1T̂

T
k−1

[
r̂cg/c,k−1×

] [
∆φ̂k×

]
− T̂T

k−1
[
∆v̂ng,k×

]
− ∆tk

(
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1
[
r̂cg/c,k−1×

] }
eA,k−1

+ ∆tk

{ (
Ĝk−1 −

1
2
Ûk−1

)
T̂T

k−1 +
1
2
Ĝk−1T̂

T
k−1

[
∆φ̂k×

] }
ercg/c,k−1

− Vsa esa,k + Vma ema,k − Vna ena,k − Vba eba,k − wV,a

− Vsg esg,k + Vmg emg,k − Vng eng,k − Vbg ebg,k − wV,g (5.95b)

eA,k = T (∆φ̂k)eA,k−1 − Lsg esg,k + Lmg emg,k − Lng eng,k − Lbg ebg,k − wA,g . (5.95c)
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Additionally, the strapdown IMU error parameters augmenting the state vector are here

taken to be constant through time, giving

sa,k = sa,k−1 ma,k = ma,k−1 na,k = na,k−1 ba,k = ba,k−1

sg,k = sg,k−1 mg,k = mg,k−1 ng,k = ng,k−1 bg,k = bg,k−1 ,

with initial values sa,0, sg,0, ma,0, mg,0, na,0, ng,0, ba,0, and bg,0. Additionally, the estimate

is often initialized to the mean for each parameter and is here stated to be zero. With the

dynamics described, and without processing external measurements, the estimation error

of the IMU error parameters is expected to be constant through time. Therefore, the error

dynamics for each of the strapdown IMU error parameters are expressed as

esa,k = esa,k−1 ena,k = ena,k−1 ema,k = ema,k−1 eba,k = eba,k−1 (5.96a)

esg,k = esg,k−1 eng,k = eng,k−1 emg,k = emg,k−1 ebg,k = ebg,k−1. (5.96b)

Given the error dynamics in Equations (5.95) and Equations (5.96), the state estimation

error dynamics can then defined by

ek = Fk−1ek−1 + Mk−1wk−1, (5.97)

where Fk−1 describes the propagation of uncertainty from the previous time step through

the dynamics and Mk−1 maps the process noise, here represented by the strapdown sensor

noise, into the state estimation error. The elements of Fk−1 and Mk−1 are given by inspection

of Equations (5.95) and Equations (5.96).
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6. RESULTS AND DISCUSSION

To assess the performance benefits of including the error propagation developed

within this thesis, two separate simulations are considered. The first simulation, discussed in

Section 6.1, examines a scenario in which attitude is being estimated through discrete attitude

dead-reckoning, both with and without application of the coning algorithm. Primarily, the

first simulation seeks to analyze the effect of coning motion on attitude estimation and the

propagation of uncertainty, comparing the newly developed methods to several alternatives.

The second simulation inspects a lunar descent-to-landing scenario in which posi-

tion, velocity, and attitude of a spacecraft are estimated through inertial navigation. Two

separate navigation system configurations are compared: one employs the coning, sculling,

and scrolling algorithms developed in Section 4, and the second applies using traditional

dead-reckoning methods at the frequency of the inertial measurements. The trajectory ex-

amined for this scenario is limited to 40 Hz data and thus analysis with a large discrepency

between the data and navigation frequency cannot be examined. The results within Sec-

tion 6.2 give a baseline for comparison of the methods used for inertial navigation system

employing both the traditional methods and those using coning, sculling, and scrolling

corrections.

6.1. CONING SIMULATION OVERVIEW

Methods for both traditional dead-reckoning (TDR) and coned dead-reckoning

(CDR) operating at a variety of frequencies are compared for the estimation of attitude

within an EKF architecture. For the low-frequency cases, the attitude estimates are pro-

vided at 10 Hz, while high-frequency cases operate at 400 Hz, the same rate at which

measurements are simulated. Each algorithm is then applied within several 1000 trial

Monte Carlo simulations, with varying configurations, that are used to determine the con-
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Table 6.1. LN-200S IMU specifications (1σ)

Gyroscope Accelerometer
Noise 0.07 ◦/

√
hr 35µg/

√
hr

Bias 1 ◦/hr 300 µg
Scale factor 300 ppm 100 ppm
Misalignment 0.1 mrad 0.1 mrad
Nonorthogonality 0.1 mrad 0.1 mrad

sistency of the filter’s covariance propagation through an examination and comparison of

the resulting error statistics. Each trial has an initial error in the attitude estimate that is sam-

pled from a Gaussian distribution of 25 arcseconds, 1σ. For each trial, IMU measurements

emulate a Northrop Grumman LN-200S1 IMU’s fiber-optic gyroscopes.

Each measurement contains corruption from scale factor, misalignment, nonorthog-

onality, bias, and noise error sources. Each source of error is taken to be distributed

according to the LN-200S specifications seen in Table 6.1; each specification is assumed to

describe the standard deviation of a zero-mean Gaussian distribution from which each error

is sampled. Additionally, the measurement noise is sampled for each measurement, while

each other source of corruption is taken to be constant through time. Note that the noise and

bias error sources are not given in angular units, but instead describe the angle random-walk

and bias repeatability as a function of measurement time or sampling frequency; by fixing

the sampling frequency to 400 Hz, the distribution is defined for each measurement.

To compare the performance of CDR and TDR algorithms for state and covariance

propagation, cases consisting of constant angular velocity and underlying coning motion

are examined. The coning motion source is an angular velocity that generates pure coning

motion, which is given by

ωc(t) =


f sin a cos( f t)

− f sin a sin( f t)

f (1 − cos a)


, (6.1)

1http://www.northropgrumman.com/Capabilities/LN200FOG/Documents/ln200s.pdf



80

where f is the frequency of the coning motion and a is the amplitude of the coning motion.

For the simulated measurements, the primary motion is generated given by an arbitrary

constant angular velocity vector, here taken to be ω0 = [1,2,−3]T deg
s . For cases including

underlying coning motion, a rotating component is simply added to the motion such that

ω(t) = ω0 + ωc(t). Equation (6.1) is used to generate the vector used to simulate coning

motion with 50 arcseconds amplitude at coning frequencies of 40 Hz and 200 Hz.

6.1.1. Traditional Dead-Reckoning. The method here considered to be traditional

dead-reckoning processes gyro measurements at the IMU sampling frequency and propa-

gates the attitude estimate with Equation (4.3c). To compare TDR to the error propagation

of the generalized coning algorithm, an examination of traditional attitude dead-reckoning

and a variation thereof, is considered at both high and low-frequencies.

6.1.1.1. High-frequency propagation. Most modern IMUs are capable of pro-

viding high-frequency data, typically much more quickly than is feasible or necessary for

on-board vehicle navigation systems. With this consideration, 400 Hz data being processed

at the same rate is taken to be an infeasible and impractical frequency, as the computational

load generated by the propagation of covariance within a navigation filter operating at this

frequency would be significant for a space-qualified on-board system. In addition to the

processing limitation, having a state estimate available at 400 Hz is often unnecessary.

That said, it is desirable to process high-frequency data, which can help to identify un-

derlying vibrational motion. The state estimate for high-frequency TDR is obtained using

Equation (4.3c), while the covariance is propagated by Equation (3.18).

6.1.1.2. Low-frequency propagation. Several alternatives to propagating the state

and covariance at the gyro measurement frequency exist. One such method assumes that the

angular velocity is constant over the major interval and the high-frequency measurements

are down-sampled by summing those sampled during the major interval and propagating

the state and covariance with the down-sampled data. Therefore, having obtained gyro

measurements generated at a high-frequency, i.e. 400 Hz, low-frequency TDR will simul-
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taneously process all measurements at the navigation frequency, here chosen to be 10 Hz.

Therefore, the state propagation is simply given by

ˆ̄qk = q̄(θ̂k) ⊗ ˆ̄qk−1 = q̄(
∑`

i=1 ∆θ̂i) ⊗ ˆ̄qk−1,

which is simply Equation (4.3c) for processing a sum of the gyro measurements. Addition-

ally, assuming that the bias, scale factor, misalignment, and nonorthogonality are constant

over the time interval (tk−1, tk], the error in this summed measurement is given by

e∆φ,k = −[θm,kr]es,k + [θm,k×]em,k − [θm,k∗]en,k − `eb,k −
∑̀
i=1

wi, (6.2)

where θm,k =
∑`

i=1 ∆θm,i and ` is the number of measurements summed. The form of the

Jacobian can be inferred from the substitution of Equation (6.2) and θ̂k into Equation (3.27)

for e∆θ,k and ∆θk , respectively. It is worth noting that in this case, the process noise

covariance obtained from the IMU specifications is multiplied by a factor of ` to account

for the ` noise terms in Equation (6.2).

6.1.1.3. Mixed-frequency propagation. As previously mentioned, the covariance

propagation is the most computationally taxing component of the inertial navigation system,

while the state propagation is not typically an exceedingly complex or taxing undertaking.

This is especially true within a system only estimating attitude. Thus, an additional formu-

lation is considered to deal with the inaccuracies in assumptions made for the low-frequency

propagation, which assumes that the angular velocity across the major interval is constant.

Here, benefits of propagating the state at the measurement frequency are maintained by per-

forming the state propagation as described by Equation (4.3c), while the computational load

of covariance propagation is reduced by propagating with the sum of gyro measurements,

as described within Section 6.1.1.2.



82

6.1.2. Coned Dead-Reckoning. The method of dead-reckoning using a coning

algorithm, or coned dead-reckoning, is here defined to be inertial navigation with the coned

rotation vector. Through the use of the coning algorithm, measurements are processed

sequentially until a state estimate is desired; the propagated attitude and covariance are

often provided at a lower frequency than that at which the measurements are obtained. To

compare the error propagation of the coning algorithm to TDR, high- and low-frequency

implementations of the CDR algorithm are considered.

6.1.2.1. High-frequency propagation. Processing gyro measurements at 400 Hz

through the use of the coning algorithm leads to a single measurement being processed,

simplifying the state propagation to the considered high frequency TDR case. This can be

seen by examining the effect of processing a single measurement with Equation (4.17), i.e.,

the coning correction when a single measurement is processed will be zero. By investigating

this case, the expected equivalence between the high-rate TDR and CDR can be explicitly

shown. Again, the attitude estimate is propagated via Equation (4.3c), while the covariance

propagation is given by Equation (3.31), when only processing a single gyro measurement.

6.1.2.2. Low-frequency propagation. The intended application of the coning al-

gorithm is observed in the case of low-frequency coned dead-reckoning, where the high-

frequency data simulated at 400 Hz is used to generate an attitude estimate at a lower

frequency, 10 Hz, preserving the information gained from the high-rate data. The extra

computational burden of performing the attitude and covariance propagation is removed,

while the error in the estimate produced by accumulating the measurements for propagation,

as is done for the low-frequency TDR approach, is decreased. The attitude is propagated

via Equation (4.33) and covariance via Equation (3.18), where the dynamics Jacobian

construction is implied by Equation (5.59).

6.1.3. Simulation Results. To compare the performance of each method examined,

several measures of comparison are used. First, to determine whether or not each estimator

is consistent, an examination of the results from Monte Carlo simulation are examined
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– a comparison between the mean filter standard deviation and the Monte Carlo sample

standard deviation are compared graphically for each method. A ratio of uncertainties

for each method are then examined for comparison, where the averaged filter and sample

standard deviations for each method are normalized by that of the high-frequency traditional

dead-reckoning results. It must also be noted that each method examined processes the exact

same measurements – i.e. the differences are purely due to the assumptions made in the

estimator’s development and cannot be attributed to discrepancies in the measurements or

trajectory.

The level of credibility and consistency for the filter propagation stage is examined

through the averaged normalized estimation error squared (ANEES)[2, 17]. The ANEES,

ε̄ , is calculated by

ε̄ =
1

nM

M∑
i=1
εi,

where εi = (xi − x̂i)
TP−1

i (xi − x̂i) = eT
i P

−1
i ei is the better-known squared Mahalanobis dis-

tance for trial i, n is the number of states, and M is the number of trials. The ANEES measure

is χ2-distributed if the estimation errors are Gaussian distributed and allows the rejection of

the filter as credible at a particular level, α, given that Pr
(
ε̄ ∈ [a, b]|nM ε̄ ∼ χ2

nM

)
= 1 − α

for a < 1 < b and 0 < α � 1, where χ2
nM is a χ2-distribution of nM degrees of freedom

[17]. The interval [a, b] contains 95% of the probability mass for the χ2 distribution having

a mean of one and nM degrees of freedom when α = 0.05. The lower bound a separates

the lower α/2 of the probability mass, while the upper bound eliminates the upper α/2.

If ε̄ = 1, the ANEES is perfectly consistent with the error distribution. It is necessary to

note that ANEES is not a credibility measurement but is useful in recognizing if the filter’s

approximation of the uncertainty is representative of the errors, or that the filter is consistent

[16]. Finally, this measure allows the recognition of estimation performance; the estimator

overestimates the estimation error when the ANEES is less than one, and underestimates the
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error when the ANEES is greater than one. While examining the consistency of the diagonal

elements of the filter and Monte Carlo sample covariance matrices is useful, ANEES allows

the direct comparison of the entire covariance structure with the estimation errors.

To simplify the presentation, the root of sums squared (RSS) of the mean estimation

error, sample covariance, and average filter covariance are examined instead of the three-axis

representation; these may be calculated as

eRSS,k = ‖ ēA,k ‖ and σRSS,k =
√

trace (Pk),

where ēA,k is the mean estimation error and Pk is noted to be either the sample covariance or

the averaged filter covariance at time tk . Finally, the uncertainty predicted for the different

estimator configurations are directly compared by considering a normalized error between

the RSS standard deviations, i.e.

eσ,i =
σRSS,i − σRSS,re f

σRSS,re f
, (6.3)

where σRSS,i is the σRSS of a particular configuration and σRSS,re f is the σRSS of a reference

configuration. For all cases shown, the high-frequency traditional dead-reckoning method

is taken to be the reference. The measure in Equation (6.3) is examined for both the Monte

Carlo sample covariance and average filter covariance of each configuration. It should be

noted that this ratio applied to the Monte Carlo sample covariances describes the error in

the observed error distribution, while it describes the error in the predicted estimation error

distribution by the average filter. Finally, it is useful to note that if eσ,i > 0, the standard

deviation of the uncertainty in the examined configuration is larger than the reference case,

and if eσ,i < 0 it is smaller.

6.1.3.1. No coning motion. In Figures 6.1–6.5, results from 1000 trial Monte Carlo

simulations of each method are presented. Notice that when no coning motion is present,

the mean estimation error is approximately zero-mean for each method, and the averaged
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filter and sample covariance also describe the same uncertainty, as shown by the overlapping

1σRSS intervals. Note that only the positive 1σRSS interval are shown for each configuration

to allow a greater examination of the mean estimation error. In this case, each method

appears to be consistent with the Monte Carlo statistics.

Comparisons of each method, made by directly examining the uncertainty intervals,

are provided in Figures 6.6–6.8. In Figures 6.6 and 6.7, the error between each config-

uration’s covariance and the covariance for the high-frequency traditional dead-reckoning

configuration are shown, where each error is also normalized by the RSS standard deviation

for high-frequency traditional dead-reckoning. When examining Figure 6.6, it’s clear that

all methods perform similarly without coning motion, though some non-zero behavior is

observed for summed dead-reckoning. While it can be stated that the state prediction from

summed dead-reckoning is no longer exactly consistent with the predictions made by high-

frequency traditional dead-reckoning, it should be noted that the error is very small and

likely insignificant. From Figure 6.7, it becomes clear that coned dead-reckoning predicts a

larger uncertainty than the other approaches, while the mixed-frequency and high-frequency

traditional dead-reckoning approaches are consistent with one another and still predict a

larger uncertainty than that predicted by traditional dead-reckoning. Examining the ANEES

for each method in Figure 6.8 shows that each estimator’s predicted uncertainty is consis-

tent with its associated estimation errors and shows no significant deviation between the

estimators applied in an environment lacking coning motion. It should again be noted that

the scale on the errors is extremely small.

6.1.3.2. 40 Hz coning motion. Figures 6.9–6.13 illustrate the effects that moderate

coning motion has on the attitude estimation systems under consideration. Note that,

for most configurations considered here, the results are not significantly affected by the

presence of coning motion; Figure 6.10 shows a significant growth in the mean error for the

summed dead-reckoning method, while the 1σRSS for both the averaged filter and Monte

Carlo samples are not visibly perturbed.
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Figure 6.1. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with no coning motion
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Figure 6.2. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with no coning motion
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Figure 6.3. Monte Carlo simulation results for mixed-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with no coning motion
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Figure 6.4. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covariance
(1σRSS) from 1000 trials with no coning motion
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Figure 6.5. Monte Carlo simulation results for high-frequency, coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covariance
(1σRSS) from 1000 trials with no coning motion
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Figure 6.6. Normalized standard deviation error between Monte Carlo sample standard
deviation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared
to the high-frequency traditional dead-reckoning Monte Carlo sample standard deviation
(RSS) from 1000 trials with no coning motion



89

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2
·10−6

Time [s]

N
or

m
al

iz
ed

St
d.

D
ev

.E
rr

or
(e

σ
) Summed

Mixed-Frequency
Coned

Figure 6.7. Normalized standard deviation error between average filter standard deviation
(RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared to the
high-frequency traditional dead-reckoning average filter standard deviation (RSS) from
1000 trials with no coning motion
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Figure 6.8. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with no coning motion
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Examining Figures 6.14–6.15, it is clear that the spread of the errors about the mean

estimation error is similar to those seen in the case of no coning motion for each method

implemented. Additionally, it is clear that the uncertainties predicted by the summed and

mixed-frequency dead-reckoning approaches are again consistent with one another, while

the coned dead-reckoning remains near zero, i.e. comparable to the traditional method of

dead-reckoning. When inspecting Figure 6.16, a deviation between summed dead-reckoning

and the other approaches is observed. Though no configuration can be deemed inconsistent,

the non-zero mean estimation errors present in the summed dead-reckoning configuration

make it a poor choice for attitude estimation in a coning environment.

6.1.3.3. 200 Hz coning motion. Results for 1000 trial Monte Carlo simulations of

each configuration, estimating the vehicle’s attitude in an environment containing significant

coning motion, are provided in Figures 6.17–6.21. Continuing the trend observed by the

previous cases, summed dead-reckoning sees significant growth in the mean estimation

error, while much smaller growth is noticeable in the high- and mixed-frequency methods

of traditional dead-reckoning. Coned dead-reckoning sees little error growth that can be

directly attributed to the presence of coning motion. Additionally, the averaged filter and

Monte Carlo sample covariances appear to be consistent.

Examining Figures 6.22 and 6.23, it is noted that the summed dead-reckoning error

distribution continues to grow larger than that of TDR, while CDR sees some error reduction

in this environment. Additionally, from Figure 6.23, the filter-predicted uncertainty is larger

again for the mixed-frequency TDR and summed TDR, while it is reduced (in general)

when compared to TDR. Finally, Figure 6.24 illustrates that each method is consistent

with its predictions, aside from the summed dead-reckoning case. It is observed that the

summed dead-reckoning method quickly penetrates the 95% consistency interval defined

by the ANEES, showing that the assumption of constant angular velocity between attitude

estimates has been violated in this case.
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Figure 6.9. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 40 Hz coning motion
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Figure 6.10. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 40 Hz coning motion



92

0 10 20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

Time [s]

A
tti

tu
de

Er
ro

r[
ar

cs
ec

]
Monte Carlo (1σRSS)
Average Filter (1σRSS)
Mean Error (eRSS)

Figure 6.11. Monte Carlo simulation results for mixed-frequency traditional dead-
reckoning; mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 40 Hz coning motion
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Figure 6.12. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covariance
(1σRSS) from 1000 trials with 40 Hz coning motion
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Figure 6.13. Monte Carlo simulation results for high-frequency, coned dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 40 Hz coning motion
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Figure 6.14. Normalized standard deviation error between Monte Carlo sample standard
deviation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared
to the high-frequency traditional dead-reckoning Monte Carlo sample standard deviation
(RSS) from 1000 trials with 40 Hz coning motion
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Figure 6.15. Normalized standard deviation error between average filter standard deviations
(RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared to the high-
frequency traditional dead-reckoning average filter standard deviation (RSS) from 1000
trials with 40 Hz coning motion
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Figure 6.16. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with 40 Hz coning
motion
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Figure 6.17. Monte Carlo simulation results for high-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 200 Hz coning motion
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Figure 6.18. Monte Carlo simulation results for low-frequency traditional dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 200 Hz coning motion
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Figure 6.19. Monte Carlo simulation results for mixed-frequency traditional dead-
reckoning; mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo
sample covariance (1σRSS) from 1000 trials with 200 Hz coning motion
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Figure 6.20. Monte Carlo simulation results for low-frequency coned dead-reckoning; mean
attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covariance
(1σRSS) from 1000 trials with 200 Hz coning motion
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Figure 6.21. Monte Carlo simulation results for high-frequency, coned dead-reckoning;
mean attitude error (RSS), averaged filter covariance (1σRSS), Monte Carlo sample covari-
ance (1σRSS) from 1000 trials with 200 Hz coning motion
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Figure 6.22. Normalized standard deviation error between Monte Carlo sample standard
deviation (RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared
to the high-frequency traditional dead-reckoning Monte Carlo sample standard deviation
(RSS) from 1000 trials with 200 Hz coning motion
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Figure 6.23. Normalized standard deviation error between average filter standard deviations
(RSS) for summed TDR, CDR, and mixed-frequency dead-reckoning compared to the high-
frequency traditional dead-reckoning average standard deviation (RSS) from 1000 trials with
200 Hz coning motion
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Figure 6.24. ANEES comparison for summed, mixed-frequency, coned, and traditional
methods for attitude dead-reckoning from 1000 Monte Carlo trials with 200 Hz coning
motion



99

6.1.4. Summary of Results. In most cases, the simulation results show that each

configuration is statistically consistent with small influence due to the presence of coning

motion. However, a non-zero bias is realized in the mean estimation error for low-frequency

TDR when coning motion is present and begins to manifest in the other methods when not

applying the coning correction. This result is to be expected, as the constant angular velocity

assumption is violated in the accumulation and processing of the measurements for each,

though this assumption is doubly violated by the summed TDR case.

By examining the ratio of the sample and averaged filter covariances, and the ANEES

for each case, it is clear that each estimator exhibits roughly the same performance and can

be considered consistent with the estimation error when no coning motion is included.

However, when coning motion is introduced, the summed TDR configuration is no longer

consistent with the other cases. As the coning frequency is further increased, it is clear

that each other algorithm manages to maintain the same consistency experienced before,

while the summed TDR case quickly penetrates the 95% confidence interval. Therefore, the

filter operating upon summed gyroscope measurements can be considered inconsistent and

deemed non-credible at a level of 95% when 200 Hz coning motion is present. Finally, CDR

manages to maintain a level of consistency for each environment and exhibits improvements

in performance as the underlying coning motion increases.

Table 6.2 provides a comparison of mean trial run-time for each configuration, ob-

tained from the 1000 trial set. It is obvious that CDR is more computationally burdensome

in general, as is apparent by it requiring approximately 25% more time than TDR when pro-

viding estimates at the same frequency. This is not a surprising result as the mechanization

of the CDR is more complex. However, when producing estimates at a lower frequency, the

mixed-frequency configuration requires less computational resources than CDR, though it

fails to reduce the error growth caused by the presence of coning motion. By applying

CDR to propagate the state and covariance, the significant computational time is cut, while
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Table 6.2. Mean run-time for 1000 Monte Carlo trials

Configuration Run-Time (s)
Traditional (400 Hz) 7.58
Summed (40 Hz) 0.19
Mixed-Frequency (40 Hz) 2.03
Coned (40 Hz) 2.87
Coned (400 Hz) 9.57

reducing the mean attitude error. Propagating the mean and covariance with a summed

batch of measurements significantly reduces the computational load, though the underlying

assumptions quickly become unrealistic.

6.2. DESCENT-TO-LANDING SIMULATION OVERVIEW

A series of Monte Carlo simulations are examined to compare traditional dead-

reckoning techniques to one employing coning, sculling, and scrolling (CSS) algorithms

using the error propagation techniques developed within Section 5. The selected trajectory

is chosen not to maximize the effects or usefulness of coning, sculling, and scrolling

algorithms, but to represent a scenario in which precision is of the utmost importance.

The same trajectory has been examined in References [30] and [31], where the effects

of external measurements on the navigation performance are considered. In contrast, the

analysis here focuses on the situation where the vehicle is only navigating via a variety of

inertial navigation techniques. Understanding how the estimation error propagates through

the navigation system in a high-stakes scenario, such as a lunar landing, can be crucial

to improving systems currently under development. Comparing a variety of different

propagation techniques with this scenario provides a quantifiable differentiation between

navigation systems equipped with the coning, sculling, and scrolling algorithms’ error
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Table 6.3. Initial uncertainty for each state (per component basis, 1σ)

Uncertainty (1σ)
Position 1000 m
Velocity 0.1 m⁄s
Attitude 100 arcseconds

propagation and those without. This comparison highlights the improvements expected in a

navigation system’s performance when employing the error propagation alongside the often

implemented coning, sculling, and scrolling algorithms.

To assess performance and compare configurations, Monte Carlo analysis is used.

However, this method of analysis typically samples the true state from some distribution

about the mean. Breaking convention, the true position, velocity, acceleration, and angular

velocity are fixed for this trajectory, as is the case in Reference [31], requiring that the initial

estimates be sampled from a distribution about the true states. The initial states are assumed

to be initially uncorrelated and sampled from Gaussian distributions, with 1σ uncertainties

shown in Table 6.3.

The true vehicle trajectory is illustrated in Figures 6.25–6.28. The altitude profile

of the vehicle across the mission is shown in Figure 6.25, where the trajectory is initialized

50 km above the lunar surface. The vehicle slowly descends over the first 24 minutes

to an altitude of 16.5 km and enters a powered descent phase after 25.5 minutes mission

elapsed time (MET). During powered descent, the vehicle rapidly descends to the surface

in just under 7 minutes. Figure 6.26 shows the vehicle attitude, expressed as Euler angles;

the attitude profile is only provided for a portion of the mission to show the changes

experienced throughout the powered descent phase of the simulation. It’s clear from

Figures 6.26 and 6.28 that a large attitude maneuver takes place at approximately 24

minutes MET, while another small maneuver occurs at roughly 25.5 minutes MET; as the
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simulation ends and the vehicle lands, several attitude correction maneuvers are also seen.

With the beginning of the powered descent phase, the vehicle begins a burn that lasts until

the vehicle has landed, as seen in Figure 6.27.

The IMU gyroscope and accelerometer measurements are modeled to be consistent

with the error statistics for a Northrop Grumman LN-200S, with specifications given in

Table 6.1, and are modeled as described in Section 4.3. Measurement error sources of

white noise, bias, scale factor, misalignment and nonorthogonality are included for both the

gyro and accelerometer measurements. Each error is sampled from a zero-mean Gaussian

distribution defined by the statistics in Table 6.1; the bias, scale factor, misalignment, and

nonorthogonality sources are modeled to be constant throughout a given trial.

6.2.1. Nominal Simulation. The nominal state propagation considers the case in

which the state is propagated at the rate of the IMU measurements, 40 Hz. Processing

a single measurement is generally the desired approach for the navigation system, though

it is often desirable to process high-frequency IMU data to detect underlying vibrations.

Unfortunately, significant computational resources may be spent to maintain an estimate

and its uncertainty at the frequencies that modern inertial sensors are capable of, even when

considering state-of-the-art computing systems. The dynamics given in Equations (4.33)

govern the propagation of the vehicle’s position, velocity, and attitude in this case, which

gives a baseline performance for the navigation system’s state and covariance propagation

as it exemplifies the most common method of inertial navigation.

6.2.2. Coning, Sculling, and Scrolling Simulation. An architecture employing

the coning, sculling, and scrolling algorithms presented in Section 4, and using an error

propagation derived within Section 5, can also be used to propagate the mean and covariance

of the vehicle. For the simulation, these algorithms operate at a frequency of 10 Hz, while

the measurements are simulated at 40 Hz. Therefore, a batch of measurements obtained

between tk−1 and tk are used to propagate the state and uncertainty of the vehicle by utilizing

the coning, sculling, and scrolling algorithms.



103

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

MET [min]

A
lti

tu
de

[k
m

]

Figure 6.25. Vehicle altitude during terminal descent
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Figure 6.26. Vehicle attitude (Euler angles) during terminal descent
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Figure 6.27. Non-gravitational acceleration magnitude during terminal descent

23 24 25 26 27 28 29 30 31 32
0

5

10

15

20

MET [min]

A
ng

ul
ar

Ve
lo

ci
ty

M
ag

ni
tu

de
[d

eg
/s]

Figure 6.28. Vehicle angular velocity magnitude during terminal descent
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6.2.3. Comparison of Results. The Monte Carlo sample and averaged filter co-

variance are examined for each configuration to determine statistical consistency, while

comparisons between the two methods are made by directly comparing the filter predicted

and observed uncertainties. In Figures 6.29–6.34, results for the position, velocity, and atti-

tude estimation errors obtained from the nominal simulation are shown. Figures 6.29–6.31

show the mean estimation error, alongside the averaged filter and Monte Carlo sample co-

variance 3–σ intervals for position, velocity, and attitude, whereas Figures 6.32–6.34 show

the RSS values. Additionally, Figures 6.35–6.40 show similar results for the application

of CSS algorithms. From these figures, it is clear that both configurations appear to be

consistent with the Monte Carlo statistics, despite the presence of a bias in the mean error.

Within Figures 6.41–6.49, a direct comparison of each method is made. Examining

Figures 6.32–6.34 closely, it can be observed that the mean estimation error is slightly

reduced by application of the CSS algorithms, while no noticeable differences exist for

the predicted uncertainty. Figures 6.44–6.46 show the ANEES for position, velocity, and

attitude, allowing the declaration that each estimator has the same level of credibility

for the estimation of those states. While no significant difference manifests, notice the

slight deviation in the ANEES for the position – the CSS formulation is slightly more

conservative than that of the traditional methods. Figures 6.47–6.49 compare the ratio of

standard deviations (RSSs) for the CSS configuration’s Monte Carlo sample and averaged

filter to those of the traditional methods. Even though the differences are small, a few

concessions can be made. First, notice that the ratio of the Monte Carlo sample standard

deviations is less than zero for the velocity and position distributions – this allows the

recognition that the CSS algorithms are reducing the mean error present in the system. The

same trend is followed by the averaged filter ratio until approximately 24 minutes MET,

when the attitude maneuver that occurs. After the attitude maneuver, a burn is performed

to decelerate the vehicle – the continued divergence between the ratios is observed in this

case. It’s therefore clear that the introduction of these algorithms allows for a slightly more
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Table 6.4. Mean run-time for 500 Monte Carlo trials

Configuration Run-Time
Traditional (40 Hz) 66.8
CSS (10 Hz) 61.8

conservative representation of the uncertainty during maneuvers. A caveat to the analysis

is that the sample size of 500 Monte Carlo trials is likely somewhat undersampled and the

significance of the presumptions made by examining the ratios are difficult to justify as the

differences are relatively small.

A comparison of the run-time requirements are provided in Table 6.4. The required

runtime to process the same measurements and provide the state and covariance at a

downsampled frequency yielded computational savings. Unfortunately, the time savings do

not seem to be as large as was shown in Section 6.1. It should, however, be noted that the

difference in operational frequencies is relatively small in this case and, if higher frequency

measurements were available, the reduction would likely be much more significant. Finally,

it should be noted that an attempt at streamlining the implementation may also yield

additional run-time reduction.
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Figure 6.29. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean position error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.30. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean velocity error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.31. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean attitude error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.32. Monte Carlo simulation results from 500 trials using traditional methods
of inertial navigation in the descent-to-landing simulation; mean position error (RSS),
averaged filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)
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Figure 6.33. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean velocity error (RSS), averaged
filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

500

1,000

1,500

MET [min]

A
tti

tu
de

Er
ro

r[
ar

cs
ec

]

Monte Carlo (1σRSS)
Averaged Filter (1σRSS)
Mean Error (eRSS)

Figure 6.34. Monte Carlo simulation results from 500 trials using traditional methods of
inertial navigation in the descent-to-landing simulation; mean attitude error (RSS), averaged
filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)
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Figure 6.35. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean position error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.36. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean velocity error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.37. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean attitude error, averaged filter
covariance (3σ), and Monte Carlo sample covariance (3σ)
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Figure 6.38. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean position error (RSS), averaged
filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)
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Figure 6.39. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean velocity error (RSS), averaged
filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

500

1,000

1,500

MET [min]

A
tti

tu
de

Er
ro

r[
ar

cs
ec

]

Monte Carlo (1σRSS)
Averaged Filter (1σRSS)
Mean Error (eRSS)

Figure 6.40. Monte Carlo simulation results from 500 trials using CSS corrections for
inertial navigation in the descent-to-landing simulation; mean attitude error (RSS), averaged
filter covariance (1σRSS), and Monte Carlo sample covariance (1σRSS)
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Figure 6.41. Monte Carlo results comparison between CSS and traditional methods for
inertial navigation; mean position error (RSS), averaged filter covariance (1σRSS), and
Monte Carlo sample covariance (1σRSS)
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Figure 6.42. Monte Carlo results comparison between CSS and traditional methods for
inertial navigation; mean velocity error (RSS), averaged filter covariance (1σRSS), and
Monte Carlo sample covariance (1σRSS)
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Figure 6.43. Monte Carlo results comparison between CSS and traditional methods for
inertial navigation; mean attitude error (RSS), averaged filter covariance (1σRSS), and
Monte Carlo sample covariance (1σRSS)
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Figure 6.44. ANEES comparison for Monte Carlo position errors generated by CSS and
traditional inertial navigation strategies
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Figure 6.45. ANEES comparison for Monte Carlo velocity errors generated by CSS and
traditional inertial navigation strategies
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Figure 6.46. ANEES comparison for Monte Carlo attitude errors generated by CSS and
traditional inertial navigation strategies
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Figure 6.47. Normalized RSS standard deviation error between CSS and high-frequency
traditional dead-reckoning averaged filter and Monte Carlo sample covariances for position
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Figure 6.48. Normalized RSS standard deviation error between CSS and traditional dead-
reckoning averaged filter and Monte Carlo sample covariances for velocity
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Figure 6.49. Normalized RSS standard deviation error between CSS and traditional dead-
reckoning averaged filter and Monte Carlo sample covariances for attitude
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7. CONCLUSION

To enable the development of autonomous systems seeking evermore ambitious

capabilities, improved precision navigation systems are needed. Typical navigation system

design often relies upon inertial navigation techniques to partially describe their state and

uncertainty propagation. When navigating within an ideal environment, it is preferred

to propagate the state and covariance at the operational frequency of the inertial sensors.

However, when in an environment where the vehicle’s angular velocity and non-gravitational

acceleration exhibit significant nonlinear behavior, an accumulation of error will often occur

in the state estimates. By processing extremely high-frequency data from inertial sensors,

this error growth can be mitigated. However, as the frequency of measurements increases,

the computational complexity of the covariance propagation becomes an issue. To combat

the trade-off between computational efficiency and accurate state estimation, high-frequency

measurements can be down-sampled in a variety of methods prior to processing, including

the application of coning, sculling, and scrolling corrections. Within this thesis, the error

dynamics for coning, sculling, and scrolling algorithms commonly integrated within inertial

navigation systems have been developed for integration into an extended Kalman filter

based navigation system. The developed error dynamics provide a mapping of gyro and

accelerometer measurement and parametric estimation errors through coning, sculling, and

scrolling algorithms into the estimation of position, velocity, and attitude aided by strapdown

inertial sensors.

To examine the effects of the presented error propagation, two separate simulations

are developed and analyzed. In the first, the presence of coning motion on attitude estima-

tion and the filter predicted uncertainty are observed where underlying coning motion is

introduced. It is found that the application of the coning algorithm provides no significant

benefit when the angular velocity vector is constant in time, though it outperforms the rest
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when coning motion is introduced. Additionally, the uncertainty predicted by each method

is comparable, while the coning algorithms predict a minimally reduced uncertainty as

underlying coning increases. An alternative method that predicts the attitude based upon

a summation of measurements obtained between state estimates is found to have reduced

reliability as coning motion increases and is deemed non-credible to a level of 95% when

undergoing 200 Hz coning motion, based upon the ANEES consistency test. However, when

applying the coning algorithm to the same batch of data and utilizing the new error mapping

for covariance propagation, the consistency of coned dead-reckoning is comparable to other

methods, where the estimator is accepted as consistent for each case examined.

For the second simulation, the application of coning, sculling, and scrolling correc-

tions within a lunar descent-to-landing scenario is examined. By implementing the coning,

sculling, and scrolling error dynamics within this scenario, a small but noticeable reduction

in the mean estimation error for position and velocity is observed. Additionally, the devel-

oped error dynamics allow the predicted uncertainty to match this trend. However, once a

significant attitude maneuver is introduced, the predicted uncertainty maintains a consistent

but slightly conservative covariance prediction.

Within both simulations, it is found that the introduction of coning, sculling, and

scrolling algorithms can be used to reduce the computational complexity typically incurred

by using high frequency measurements to provide a down-sampled state estimate. While

other methods are capable of reducing the computational complexity, the application of

coning, sculling, and scrolling algorithms, paired with the developed error propagation,

comparatively provides a moderate reduction in computational complexity. However, due

to the increased efficiency, the reduction in the mean error, and the consistency between the

predicted and observed levels of uncertainty, future systems should look to leverage coning,

sculling, and scrolling corrections for inertial navigation.
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To better understand the limitations and identify any shortcomings of the developed

error dynamics, a higher-fidelity trajectory is desired. The best inspection of these develop-

ments would occur given a modular trajectory that can have coning, sculling, and scrolling

motion superimposed on the vehicle dynamics, and can also produce variable frequency

inertial measurements. While the current trajectory does not allow for an in-depth analy-

sis of the fully integrated coning, sculling, and scrolling system, it does provide a useful

examination of its implementation within a realistic scenario.

Significant future development is possible for the future of coning, sculling, and

scrolling algorithms for inertial navigation systems when considering their application

within real systems. First, the extension of the methods applied within this thesis to optimal

coning, sculling, and scrolling algorithms may prove fruitful as the algorithms examined

here are are not derived for optimality. Second, an examination of further configurations is

a logical next step. Within this thesis, a comparison of several potential configurations for

inertial navigation systems are made in which the impact of including the error propagation

for the coning, sculling, and scrolling corrections appears to be relatively low. Leveraging

what has been observed, it may be useful to inspect configurations in which the mean

is propagated using coning, sculling, and scrolling corrections, while the covariance is

propagated using simpler methods such as summing the measurements.

Finally, it would be a useful exercise to examine whether or not it is beneficial to

perform the inertial navigation corrections in the presence of external measurements. It

is likely that the benefits of including the corrections for coning, sculling, and scrolling

motion would be insignificant in comparison to the information gained by incorporating

external measurements. That being said, the algorithms are likely well suited to a scenario

in which external measurements are not available for a long period of time. It may then be

worthwhile to instead determine how often external measurements need to be processed in

order to maintain minimal estimation error in the presence of underlying coning, sculling,

and scrolling motion, allowing for a more simple navigation system design.
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