
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Fall 2008 

Uncertainty analysis and sensitivity analysis for multidisciplinary Uncertainty analysis and sensitivity analysis for multidisciplinary 

systems design systems design 

Jia Guo 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Mechanical Engineering Commons 

Department: Mechanical and Aerospace Engineering Department: Mechanical and Aerospace Engineering 

Recommended Citation Recommended Citation 
Guo, Jia, "Uncertainty analysis and sensitivity analysis for multidisciplinary systems design" (2008). 
Doctoral Dissertations. 2089. 
https://scholarsmine.mst.edu/doctoral_dissertations/2089 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2089?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2089&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu




 

 
 

UNCERTAINTY ANALYSIS AND SENSITIVITY ANALYSIS 
 

FOR MULTIDISCIPLINARY SYSTEMS DESIGN 
 
 

 
 

by 
 
 
 

JIA GUO 
 

 
A DISSERTATION 

 
Presented to the Faculty of the Graduate School of the  

 
MISSOURI UNIVERSITY OF SCIENCE & TECHNOLOGY 

 
In Partial Fulfillment of the Requirements for the Degree 

 
 

DOCTOR OF PHILOSOPHY 

in 

MECHANICAL ENGINEERING 

 
2008 

 
Approved by 

 
Dr. Xiaoping Du, Advisor 

Dr. Frank Liou 
Dr. K. Chandrashekhara 

Dr. Serhat Hosder 
Dr. Xuerong Wen 

 
 
 

 



 

 



 iii

PUBLICATION DISSERTATION OPTION 

This dissertation consists of the following three articles that have been submitted 

for publication as follows: 

Pages 7-54 have been published in AIAA JOURNAL, Vol.45, No.9, 2007. 

Pages 55-93 have been submitted for publication to INTERNATIONAL 

JOURNAL OF NUMERICAL METHODS IN ENGINEERING. The revision is under 

review. 

Pages 94-131 have been published in the proceedings of the 49th 

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials 

Conference, Schaumburg, IL, Apr.7-10, 2008, and submitted for publication to AIAA 

JOURNAL. 

 

 

 

 

 

 

 

 

 



 iv

ABSTRACT 

The objective of this research is to quantify the impact of both aleatory and 

epistemic uncertainties on performances of multidisciplinary systems. Aleatory 

uncertainty comes from the inherent uncertain nature and epistemic uncertainty comes 

from the lack of knowledge. Although intensive research has been conducted on aleatory 

uncertainty, few studies on epistemic uncertainty have been reported. In this work, the 

two types of uncertainty are analyzed. Aleatory uncertainty is modeled by probability 

distributions while epistemic uncertainty is modeled by intervals. Probabilistic analysis 

(PA) and interval analysis (IA) are integrated to capture the effect of the two types of 

uncertainty. The First Order Reliability Method is employed for PA while nonlinear 

optimization is used for IA. The unified uncertainty analysis, which consists of PA and 

IA, is employed to develop new sensitivity analysis methods for the mixture of the two 

types of uncertainty. The methods are able to quantify the contribution of each input 

variable with either epistemic uncertainty or aleatory uncertainty. The analysis results can 

then help better decision making on how to effectively mitigate the effect of uncertainty. 

The other major contribution of this research is the extension of the unified uncertainty 

analysis to the reliability analysis for multidisciplinary systems.  

The major findings of this research are as follows. (1) Sensitivity analysis method 

is an effective tool for reducing the impact of epistemic uncertainty. (2) The proposed 

new reliability sensitivity indexes can easily measure the changes in output uncertainty 

with respect to those in input uncertainty. (3) The effect of aleatory uncertainty can be 

primarily measured by the distribution of a performance; and the effect of epistemic 

uncertainty can be measured by the bounds of the distribution. (4) The unified uncertainty 

analysis methods for single-disciplinary systems can be extended to the reliability 

analysis for multidisciplinary systems. (5) All the proposed methods can be ultimately 

integrated with multidisciplinary design optimization. 
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1. INTRODUCTION 

The rising demand for high reliability, robustness and safety of complex 

engineering systems, such as automobiles and aircrafts, requires engineers to understand 

and manage various uncertainties during their design process. Such uncertainties include 

manufacturing variation, imperfect approximation, imprecise estimates of loading, and 

limited samples. The ignorance of these uncertainties could lead to significant design bias, 

costly maintenance, even a catastrophic consequence, especially, for multidisciplinary 

systems. Therefore, it has become imperative to identify the sources of uncertainty and 

quantify the impact of multiple types of uncertainties in multidisciplinary systems design. 

Uncertainty can be classified into two different types: aleatory uncertainty and 

epistemic uncertainty. Aleatory uncertainty is defined as the randomness or inherent 

variability of the nature, and it is objective and irreducible. Aleatory uncertainty is 

usually modeled by probability theory. Examples of this category include the dimensions 

of manufacturing parts and material properties. On the other hand, epistemic uncertainty 

is due to the lack of knowledge or the incompleteness of information. It is subjective and 

reducible. The assumptions made in building models are one example of epistemic 

uncertainty. Probability theory and non-probability theories such as evidence theory, 

possibility theory and fuzzy set can be used to model epistemic uncertainty. 

In the past decades, much effort has been spent on exploring the effect of aleatory 

uncertainty on both single-disciplinary systems and multidisciplinary systems, while very 

few investigations have been reported in studying epistemic uncertainty and the mixture 

of aleatory and epistemic uncertainties. Aleatory and epistemic uncertainties exist 

simultaneously in real-world systems. Conventional uncertainty analysis methods are not 
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capable of handling such a situation. Hence, this research attempts to address this issue 

and answer the following question:  

Given the inputs to a multidisciplinary system with both aleatory and epistemic 

uncertainties, what will be the uncertain characteristics of outputs? 

The challenge to solve this question lies in several aspects: 

1) A large number of uncertain variables are involved, including input variables 

with aleatory uncertainty, input variables with epistemic uncertainty, and coupling 

variables bridging different subsystems. In addition, each subsystem has its own local 

input variables and also shares system input variables with other subsystems. Solving 

such a high dimensional problem will need a huge computational cost. 

2) All the subsystems are often highly coupled together. The output of one 

subsystem may be the input to other subsystems, and vice versa. This coupling makes the 

functional relationships between outputs and inputs complicated and highly nonlinear. 

Besides, uncertainty will be propagated from one subsystem to other subsystems through 

the interfaces over coupled subsystems. It becomes very difficult to capture the overall 

effect of accumulated uncertainties from all the subsystems.  

3) A full range of uncertainty should be taken into account. New approaches are 

required to capture the effect of mixed aleatory and epistemic uncertainties on the 

performance of a multidisciplinary system. How to efficiently propagate the mixture of 

both uncertainties through all the subsystems is a major concern. 

This research adopts the following approaches to address these challenges: 1) To 

model a full range of uncertainty, probability theory is used to model aleatory uncertainty, 

and evidence theory and intervals are chosen to represent epistemic uncertainty. 2) To 

 



 3

estimate the effect of the mixture of both uncertainties, probabilistic analysis and interval 

analysis are integrated with a unified uncertainty analysis framework. The First Order 

Reliability Method (FORM) is employed for probabilistic analysis because FORM has a 

good balance between accuracy and efficiency. Nonlinear optimization is used for 

interval analysis to ensure a higher accuracy. 3) To mitigate the effect of epistemic 

uncertainty, sensitivity analysis method is developed to find the most important input 

variables with epistemic uncertainty. Collecting more information on these variables 

instead of all the variables will reduce the effect of epistemic uncertainty in the most 

efficient way. 4) To efficiently propagate both uncertainties through various subsystems, 

sequential optimization and single loop strategies are used for integrating probabilistic 

analysis and interval analysis with multidisciplinary analysis. Expensive Monte Carlo 

Simulation can therefore be avoided. 

The three articles included in this dissertation provide the details and major 

findings of this research on the above-mentioned issues. The framework of this 

dissertation is illustrated in Figure 1. The research consists of three research tasks. The 

first one is sensitivity analysis with the mixture of aleatory and epistemic uncertainty, the 

second one is reliability sensitivity analysis with random and interval variables, and the 

third one is reliability analysis for multidisciplinary systems with random and interval 

variables. The objective of the first research task is to determine the effect of a full range 

of uncertainty on a single-disciplinary system. This research task is based on the unified 

uncertainty analysis framework developed by Du [1]. The unified uncertainty analysis 

framework is shown as initial study in Fig.1. This initial study can calculate the belief 

and plausibility measures of output. With the help of the initial work, the dissertation 
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develops an effective sensitivity analysis method (the first paper) for epistemic 

uncertainty when both aleatory and epistemic uncertainties are involved. This method is 

able to estimate contributions of independent input variables with epistemic uncertainty 

to the model output and rank the importance of each variable. Guided by the results from 

sensitivity analysis, we can collect more information on the most significant variables 

and reduce the effect of epistemic uncertainty in the most efficient way. 

 

Single-disciplinary System Multidisciplinary System 

Figure 1. Framework of this dissertation  

 As shown above, collecting more information on variables with epistemic 

uncertainty will reduce the impact of input uncertainty. To do it effectively, we need to 

answer the following question: 

WHICH are the most 
significant variables 

with epistemic 
uncertainty? 

Initial Study[1] 
Unified Uncertainty 
Analysis Framework 

Paper I 
Sensitivity Analysis 
with the Mixture of 

Aleatory and Epistemic 
Uncertainty 

Paper II 
Reliability Sensitivity 
Analysis with Random 
and Interval Variables

HOW will the output 
uncertainty change 
upon the change in 
input uncertainty? 

WHAT will happen 
to the output with 

inputs of a full range 
of uncertainty? 

HOW to extend it to 
multidisciplinary 

systems? 

Paper III 
Reliability Analysis for 

Multidisciplinary 
Systems with Random 
and Interval Variables 
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How will the characteristics of output uncertainty change when we change the 

characteristics of input uncertainty?   

Answering the above question is the objective of the second research task (the 

second article). In this task, we study reliability sensitivity analysis with random and 

interval variables. Here random variables are used for those with aleatory uncertainty, 

and their probability distributions are known. Interval variables are used for those with 

epistemic uncertainty when only the lower and upper bounds of those variables are 

known. Six new sensitivity indices are proposed to evaluate the sensitivities of the width 

and average of the probability of failure bounds with respect to the width and mean of 

each input interval variable, as well as the distribution parameters of each input random 

variable. These indices tell us what exact change will happen to the reliability bounds 

when we change the characteristics of uncertain variables.  

Both of the above research tasks provide the effective tools to quantify the effect 

of a full range of uncertainty on outputs for single-disciplinary systems. With them as a 

basis, in research task 3 (the third article), we answer the question:  

How to extend methods for single-disciplinary systems to multidisciplinary 

systems?  

A unified reliability analysis is developed for multidisciplinary systems with 

random and interval variables (paper III). Three algorithms are proposed to get the better 

computational efficiency for different situations. Using these algorithms, we will be able 

to calculate the bounds of reliability or the probability of failure of each output from a 

multidisciplinary system.  
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To sum up, this research provides a group of effective and efficient analysis tools 

to deal with a full range of uncertainty in multidisciplinary systems design. With the 

sensitivity analysis methods, designers will be able to evaluate the effect of each input 

variable with epistemic uncertainty on the system outputs and determine the most 

significant input variables. Collecting more information on these most significant 

variables will efficiently reduce the effect of epistemic uncertainty. The smaller effect 

will help designers make more reliable decisions. The new reliability sensitivity analysis 

is a byproduct of reliability analysis where the calculation of sensitivity indexes does not 

require additional function evaluations. And the proposed sensitivity indexes will provide 

engineers with more exact understanding of how the uncertainty in the performance will 

change upon the changes in the input uncertainty. The unified reliability analysis for 

multidisciplinary systems accommodates a full range of uncertainty and facilitates the 

application of reliability analysis to a wider range of engineering fields with mixed 

aleatory and epistemic uncertainty. Designers of multidisciplinary systems are able to 

propagate a full range of uncertainty through all the coupled subsystems and quantify the 

effect of overall uncertainty on each output—the bounds of reliability.  
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PAPER I 

Sensitivity Analysis with the Mixture of Epistemic and 
Aleatory Uncertainties 

Jia Guo1 and Xiaoping Du2

Missouri University of Science and Technology, Rolla, MO, 65401 

Study on epistemic uncertainty due to the lack of knowledge has 
received increasing attention in risk assessment, reliability analysis, 
decision-making, and design optimization. Different theories have 
been applied to model and quantify epistemic uncertainty. Research 
on sensitivity analysis for epistemic uncertainty has also been 
initialized. Sensitivity analysis can identify the contributions of 
individual input variables with epistemic uncertainty to the model 
output. It then helps guide the collection of more information to 
reduce the effect of epistemic uncertainty. In this paper, an effective 
sensitivity analysis method for epistemic uncertainty is proposed when 
both epistemic and aleatory uncertainties exist in model inputs. This 
method employs the unified uncertainty analysis framework to 
calculate the plausibility measure and belief measure. The gap 
between belief and plausibility measures is used as an indicator of the 
effect of epistemic uncertainty on the model output. The Kolmogorov-
Smirnov (KS) distance between the two measures is used to quantify 
the main effect and total effect of each independent variable with 
epistemic uncertainty. By the KS distance, the importance of each 
variable is ranked. The feasibility and effectiveness of the proposed 
method is demonstrated with two engineering examples. 

Nomenclature 
Bel = belief 
C = subset of intervals 
dks = KS distance 
F = cumulative distribution function (CDF) 

                                                 
1 Graduate Assistant, Department of Mechanical and Aerospace Engineering, 1870 Miner Circle, 
jgfw4@mst.edu. 
2  Assistant Professor, corresponding author, Department of Mechanical and Aerospace 

Engineering, 1870 Miner Circle, dux@mst.edu. 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.

Guo, Jia and Du, Xiaoping. “Sensitivity Analysis with Mixture of Epistemic and Aleatory Uncertainties”, AIAA Journal, vol. 45, no. 9, pp. 2337-2349, 2007.
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f = probability density function (PDF) 
G = output of a performance function 
g = performance function 
ME = main effect 
MEpf = main effect on the probability of failure 
mY = basic probability assignment (BPA) 
P = probability 
Pl = plausibility 
pf = probability of failure 
R = reliability 
TE = total effect 
TEpf = total effect on the probability of failure 
U = vector of standard normal variables 
U = standard normal variable 
u = realization of U 
u* = Most Probable Point in u-space (MPP) 
X = vector of random variables 
X = random variable 
x = realization of X 
x* = Most Probable Point in x-space (MPP) 
Y = vector of variables with epistemic uncertainty 
Y = variable with epistemic uncertainty 
y = realization of Y 
β = reliability index 
Φ = cumulative distribution function of a standard normal distribution 
Φ-1 = inverse function of Φ 
φ = probability density function of a standard normal distribution 
 
 

I. Introduction 

U NCERTAINTY is ubiquitous in any engineering system, at any stage of product 

development, and throughout a product life cycle. Examples of uncertainty are 

manufacturing imprecision, usage variations, imperfect knowledge, and variability 

associated with loading, material properties, and geometric dimensions. Such 

uncertainties have a significant impact on product performance. A small variation in 

environment or design variables may lead to a significant quality loss. The ignorance of 

uncertainty may cause erroneous decision-making, low robustness and reliability, costly 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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warranty, low customer satisfaction, and even catastrophe.1-5 With the intensive 

requirement of high product quality and reliability, understanding, identifying and 

managing various uncertainties have become imperative. 

Uncertainty can be viewed as the difference between the present state of knowledge 

and the complete knowledge (Fig. 1). It is classified into aleatory and epistemic types.6

 

 

Fig. 1 Uncertainty types. 

 

Aleatory uncertainty, also referred to as irreducible, objective or stochastic 

uncertainty, describes the inherent variability associated with a physical system or 

environment.7-9 Aleatory uncertainty is modeled by random variables or stochastic 

processes by probability theory if information is sufficient to estimate probability 

distributions. For example, for a cantilever beam in Fig. 2, aleatory uncertainty exists in 

the dimensions b, h, and l (due to manufacturing imprecision), external force Q (due to 

variations in operation), and material properties (due to the stochastic physical nature). 

All the above quantities can be modeled as random variables if adequate statistical data 

are available. Aleatory uncertainty has been intensively researched and dealt with in a 

wide range of engineering fields. 

 

Epistemic 
uncertainty 

Aleatory 
uncertainty 

Uncertainty 

Knowledge

Complete ignorance Complete knowledge Present knowledge 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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l 

Q

 

Fig. 2 A cantilever beam. 

 

Epistemic uncertainty, on the other hand, is due to the lack of knowledge about a 

physical system or environment.10, 11 In the above beam example, if we use different 

theories to calculate the stress and deflection, we may end up with different results. The 

reason is that each theory relies on various assumptions, which may not be completely 

valid. Epistemic uncertainty therefore exists in the model structure. Also, if the data of 

the external force Q is scarce, the distribution of Q may not be precisely known. This 

indicates that epistemic uncertainty may also exist in a parameter. Epistemic uncertainty 

is reducible because the collection of more information or an increase of knowledge 

would help decrease the level of uncertainty. In this work, we only focus on epistemic 

parameter uncertainty. 

Different theories have been used to handle epistemic uncertainty. The theories 

include probability theory and non-probability theories such as evidence theory,12 

possibility theory,13,14 and fuzzy set theory.15 Evidence theory is widely used to deal with 

epistemic uncertainty. Intervals with evidence theory interpretation are especially of 

interest in engineering applications.9 Although there has been a longtime debate on 

whether probability theory is universal for handling all types of uncertainty, intervals do 

h 

b 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.
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exist in many engineering applications, and its use is well justified in a vast amount of 

literature.8 For example, for the above beam problem, the mean of the distribution of the 

external force Q may be given by a confidence interval with limited samples. Engineers 

often specify their design variables in the form of nominal value ± tolerance. More 

interval examples are given by Du 16 and Du, et al.. 17

Evidence theory is the generalization of probability theory and possibility theory. 18, 19 

It can handle limited or even conflicting information. Most importantly, it is able to 

combine aleatory and epistemic uncertainties in a straightforward way.19,20 Exploratory 

research on epistemic uncertainty by evidence theory has recently been conducted, 

including studies in risk assessment, decision-making, and design optimization.8, 14, 17~25

Most of the research focuses on uncertainty quantification and uncertainty analysis. A 

few investigations18, 26, 27 have been conducted to explore sensitivity analysis with 

epistemic uncertainty. The purpose of such sensitivity analysis is to quantify the 

contribution of the input epistemic uncertainty to the model output. Bae, et al.18, 26 

develop a sensitivity analysis method for belief and plausibility measures. The method 

provides useful information to guide the future acquisition for more accurate reliability 

analysis and to reveal the most significant contributing factors in a sequential design 

phase. Helton, et al.27 propose a three-step sampling-based sensitivity analysis for 

epistemic uncertainty. In their work, an initial exploratory analysis is employed to 

evaluate the model behavior, and then stepwise analyses are followed to show the 

incremental effects of uncertain variables on belief and plausibility measures.  

The above sensitivity analysis methods deal with only epistemic uncertainty. In 

practical engineering applications, both aleatory and epistemic uncertainties often occur 
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simultaneously. Under this situation, a single probability measure (for instance, reliability) 

will not be available. Instead, its plausibility and belief measures must be used. Both of 

the measures will be discussed in the next section. The difference between the belief 

measure and plausibility measure indicates the effect of epistemic uncertainty. If the 

difference is too large, it will be difficult to make decisions. In this case, more 

information is needed in order to reduce the effect of epistemic uncertainty. Collecting 

more information on all the variables with epistemic uncertainty is costly. Collecting 

additional information on only the most important variables will be more efficient. 

Identifying variables with epistemic uncertainty that have the highest contribution to the 

uncertainty effect is the focus of sensitivity analysis in this paper. Since the proposed 

sensitivity analysis needs to quantify the uncertain characteristics of a model output given 

aleatory and epistemic uncertainties in model inputs, the unified uncertainty analysis 

framework16 is used. 

The paper is organized as follows. Brief introductions to sensitivity analysis, evidence 

theory, and unified uncertainty analysis, are provided in Section 2. The proposed 

sensitivity analysis method is discussed in Section 3. In Section 4, two examples are used 

for demonstration. Conclusions and future work are given in Section 5.  

II. Sensitivity Analysis with Epistemic Uncertainty 

A. Sensitivity Analysis 

Sensitivity analysis identifies the input uncertain variables that have the highest 

contribution to the uncertainty in output variables. So far most of research focuses on 

sensitivity analysis for aleatory uncertainty, which is mainly modeled by probability 
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theory. Such sensitivity analysis with a probabilistic representation is usually named 

probabilistic sensitivity analysis. Various probabilistic sensitivity analysis methods have 

been reported in a wide range of literature, including differential analysis,28, 29 variance-

based methods,30 sampling-based methods,30 and relative entropy based method.31 

Among them, the variance-based method is popular, which derives from the 

decomposition of the total variance of a model output into variances due to different input 

variables and their combinations. The Fourier Amplitude Sensitivity Test (FAST),32, 33 

correlation ratios,34 importance measures,35 and Sobol’s indices36 belong to this type of 

method.  

Generally, these methods work well with the probabilistic representation. However, 

how to apply these methods to obtain the sensitivity information from epistemic 

uncertainty has not been well studied.  

As mentioned in the introduction section, Bae, et al.,18, 26 and Helton, et al.27 have 

conducted exploratory research on sensitivity analysis with epistemic uncertainty. In this 

work, we are interested in the independent epistemic variables, and our goal is to develop 

a new sensitivity analysis method for identifying the most important variables with 

epistemic uncertainty when both aleatory and epistemic uncertainties are present. We 

employ the unified uncertainty analysis16 to quantify both types of uncertainty. We then 

perform sensitivity analysis to identify the main effect and total effect of each variable 

with epistemic uncertainty by the once-at-a-time (OAT) strategy37, 38 and the two-

dimensional Kolmogorov-Smirnov (KS) distance.39 Next, we provide a brief review of 

evidence theory and the unified uncertainty analysis. 

 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 14

B. Evidence Theory  

Intervals are widely used to characterize epistemic uncertainty. They can be naturally 

handled by evidence theory.8 A good example of intervals is the periodic monitoring.16 

Suppose the status of a system is monitored at discrete time instants 0 1 2, , ,t t t ⋅⋅ ⋅ . If a 

failure is detected at , then the failure could occur at any time in the interval between 

 and . In this case, we may not be able to determine the exact distribution of the 

failure time. But we can collect information to estimate the probability of the failure 

occurrence over each time interval. The probability assigned to an interval is defined as 

Basic Probability Assignment (BPA) in evidence theory. For example, for 20 systems, if 

2 and 5 failures occurred over  and , respectively, the BPAs of intervals 

 and  would be 2/20 = 0.1 and 5/20 = 0.4, respectively.  

1it +

it 1it +

4 5[ , ]t t 9 10[ , ]t t

4 5[ , ]t t 9 10[ , ]t t

In this paper, we use Y to denote a variable with epistemic uncertainty. For brevity, we 

will call Y an epistemic variable in the remainder of the paper. We also use this same 

symbol Y to represent its frame of discernment, which is the sample space containing all 

the possible values of Y. We use  to denote the power set, the set that contains all 

the possible distinct subsets of Y. We also use A to denote an element of the power set. 

( )YP

In evidence theory, a BPA is a mapping function, , satisfying the 

following three axioms: 

( ) [0,1]Y →P

1) for any( ) 0Ym A ≥  ( )A Y∈P .                                                                                  (1) 

2) .                                                                                                             (2) ( ) 0Ym ∅ =  

3) .                                                                                                      (3) 
( )

( ) 1Y
A Y

m A
∈

=∑  
P
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For two epistemic variables Y1 and Y2 , if the change in Y1 does not affect Y2, and vice 

versa, Y1 are Y2 are said to be independent. Similar to the joint probability in probability 

theory, for two independent epistemic variables, Y1 and Y2, their joint BPA is also used. 

The joint BPA is defined by 

1 2
( ) ( ) when

( )
0 otherwise

Y Y
Y

m A m B C A B
m C

⋅ = ×⎧
= ⎨
⎩

  

                      
                                 (4) 

where . 1 2 1 2( ), ( ), , and ( )A Y B Y Y Y C Y∈ ∈ = × ∈  Y    P P P 1Y Y2= ×Y   denotes the joint 

space of Y1 are Y2. 

Because of the interval nature, a single probability measure is not available. Instead, 

two measures, belief and plausibility measures, are used in evidence theory. In this paper, 

we consider that the BPAs of epistemic variables are from non-conflicting items of 

evidence and that only one BPA exists for one interval of an epistemic variable. Under 

these conditions, belief and plausibility measures can be considered as the lower and 

upper bounds of a probability measure40. Let a performance G be expressed abstractly by 

a performance function , where ( )G g= Y 1 2, , , )
YnY Y Y= ⋅⋅⋅Y  (  is the vector of epistemic 

variables. Let an event E be defined by the performance less than a specific limit state c, 

namely, { | ( ) }E g= Y Y c< .  Also let  be the joint BPA over a frame 

.  The belief measure Bel and the plausibility measure Pl of the event 

 induced by are calculated by 

Ym

1 2 YnY Y Y= × ×⋅⋅⋅×Y  

E∈Y Ym

( ) ( )
A E

Bel E m A
∈

= ∑ Y ,                                           (5) 

and 

( ) ( )
A E

Pl E m A
∩ ≠∅

= ∑ Y .                                         (6) 

respectively. 
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( )Bel E  is interpreted as the degree of belief the event E would occur. As shown in Eq. 

(5), it is calculated by adding the BPAs of the subsets entirely within the region ( )g c<Y . 

As indicated in Eq. (6), the degree of plausibility ( )Pl E  is calculated by adding the BPAs 

of the subsets that are completely in the region (g c) <Y  and the BPAs of the subsets that 

intersect with the region. The true probability P }cr{ ( )g <Y

nified uncertainty analysis,16 which integrates 

pro

C. Unified Uncertainty Analysis  

inty analysis is given in Fig. 3.16 The inputs to the 

fra

 is bounded by Bel (E) and Pl 

(E) under the abovementioned condition. 

Next, we give a short review of the u

bability and evidence theories to deal with the mixture of aleatory and epistemic 

uncertainties. The proposed sensitivity analysis relies on the unified uncertainty analysis. 

A framework of unified uncerta

mework are variables X with aleatory uncertainty defined by probability density 

functions (PDF) and epistemic variables Y represented by BPAs. Both types of 

uncertainty in the model inputs X and Y are propagated through the model g(X, Y) to the 

model output G. The outcomes of the uncertainty analysis are cumulative belief and 

plausibility functions (CBF and CPF).  

 

Fig. 3 The unified uncertainty analysis framework. 

G: Belief and plausibility 
functions 

X: joint PDF 
( , )G g= X Y

Y: joint BPA 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 17

Let the subsets of Y be denoted by ( 1,2, , )i i n=YC  with the corresponding joint 

BPA . After appropriate information aggregation,Y ( im YC ) n

)n

 9, 12   can be 

disjoint. The entire input space therefore is partitioned into n mutually exclusive subsets 

. In probability theory, the cumulative distribution function 

(CDF) of G is defined by 

 ( 1, 2, , )Yi i =C

( ),  ( 1, 2, ,i i i= =XY YC X C

{ }( ) Pr( ) Pr ( , )F c E G g c= = = <X Y ,                                     (7) 

where  is the CDF of G at c.  F

Let the product space of 1 2 XnX X X= × × ×X  be discretized into k subsets 

(hypercubes)  with ( 1, 2, , )j j =XC k 1 2 XnX X X∆ = ∆ ×∆ × ×∆X , where 

 ( 1, 2, ,i )XX i∆ = n  is the step size.  Since the joint BPA of jXC  is the probability of X in 

jXC , the joint BPA of X is given by 

( ) ( )jm f j= ∈ ∆X X X XC x X C X ,                                         (8) 

where ( )f ⋅X  is the joint PDF of X. 

The joint BPA of X and Y is then derived as 

1

1

( , ) ( ) (

( ) ( )

k

i j i j
j

k

i j
j

m m m

m f

=

=

=

= ∈

∑

∑

XY Y X Y Y X X

Y Y X X

C C C C

C x X C X

)

∆
.                             (9) 

The belief measure of the failure event is then calculated by 

       1        1 1
( , ) ( , )
  

      1 1
( , )

( ) ( , ) ( ) ( )

( ) ( )

i j i j

i j

n n k

i j i j
i i j

E E

n k

i j
i j

E

Bel c m m m

m f

= = =
∈ ∈

= =
∈

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

⎡ ⎤
= ∈ ∆⎢ ⎥

⎣ ⎦

∑ ∑ ∑

∑ ∑

Y X Y X

Y X

XY Y X Y Y X X

C C C C

Y Y X X

C C

C C C C

C x X C X

            (10) 
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When k approaches infinity, the equation for the cumulative belief function (CBF), the 

degree of belief that the event G c<  would occur, becomes16

{min
max

1

( ) ( ) ( ) Pr
n

G i
i

Bel c F c m G c
=

= = < ∈∑ Y Y YC Y }i iC .                         (11) 

By analogy, the plausibility measure function (CPF), the degree of plausibility that the 

event G  would occur, can be computed by c<

{max
min

1

( ) ( ) ( ) Pr
n

G i
i

Pl c F c m G c
=

= = < ∈∑ Y Y YC Y }i iC ,                        (12) 

respectively. and are respectively the global minimum and maximum values of 

G in the subset  given the values of X . 

minG maxG

iYC

Equations 11 and 12 are derived from evidence theory by dividing the random 

variables into infinite intervals. The same equation can also be derived from probability 

theory by using the total probability. See Ref. 16 for details. Equations 11 and 12 indicate 

that the evaluation of belief and plausibility measures with the mixture of probability 

distributions and BPAs is essentially the evaluation of the minimum and maximum 

probabilities of the performance function over the subsets of Y. Therefore, traditional 

probabilistic analysis methods can be used for the unified uncertainty analysis. Hereby, 

we use the First Order Reliability Method (FORM) based uncertainty analysis method 

developed in Ref. 16. 

D. FORM-Based Unified Uncertainty Analysis  

The First Order Reliability Method (FORM) is used to calculate a CDF or the 

probability of failure when only random variables X exist. If the joint probability density 

function (PDF) of X is fX , the probability of failure fp  is calculated by   
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  .                      (13) 
( )

( ) Pr{ ( ) } ( )f
g c

p F c G g c f d
<

= = = < = ∫ X
X

X x x

FORM involves three steps to approximate the above integral: 1) transforming 

original random variables X to standard normal random variables U, 2) searching the 

Most Probable Point (MPP), and 3) calculating fp .  

Step 1: Transformation, which is given by 

{ }1 ( )
ii Xu F x−Φ= i ,  i= 1, 2, …,nX                                   (14)   

where  is the CDF of 
iXF iX , and 1−Φ  is the inverse CDF of a standard normal 

distribution.  

Step 2: MPP search, where the MPP  is identified by *u

min ( )g c=
U

U U ,                                          (15) 

where   ⋅  stands for the norm (length) of a vector. *β = u  is termed as a reliability 

index. 

Step 3: Estimation of fp , which is given by 

( )fp β= Φ − ,                                               (16) 

where Φ  is the CDF of a standard normal distribution.  

The key to FORM is the MPP search. The following recursive algorithm is used to 

search the MPP, 

1
( ) ( 1)

1

1
( )

1

( )

( )
( )

k
k k

k

k
k k

k

g

g
g

β β

β

−
−

−

−

−

⎧
= +⎪ ∇⎪

⎨
∇⎪ = −⎪ ∇⎩

( )

( )

( )
( )

( )

u
u

uu
u

 ,                                  (17) 
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where is the gradient of g at 1( kg −∇ ( )u ) 1k−( )u and ( 1( kg −∇ )u ) is its magnitude, and k is the 

iteration counter. 

The above process is called probabilistic analysis (PA) because only random variables 

are involved. As shown in Eqs. (11) and (12), we need to find the maximum and 

minimum values of G when interval variables Y exist. The process of finding the 

maximum and minimum G is called interval analysis (IA). Solving Eqs. (11) and (12) 

directly requires a double-loop procedure where PA and IA are nested.16  Given a set of 

interval variables Y, the MPP is searched by the algorithm in Eq. (17). Then interval 

analysis is performed to find the maximum and minimum performance function values 

with the random variables fixed at the MPP. This process repeats till convergence is 

reached. This double-loop procedure is computationally inefficient. To improve 

computational efficiency, we need to embed IA into the MPP search algorithm. In this 

work, we focus on black-box performance functions where closed-form functions are not 

applicable. Since the traditional interval arithmetic is not applicable to a blackbox 

function, we employ nonlinear optimization to perform IA.  

The flowchart for the minimum probability { }maxPr iG c< ∈ YY C i  in the CBF 

equation is given in Fig. 4. The solution is the MPP  where G is the maximum. The 

probability 

*u

{ }maxPr iG c< ∈ YY C i  in Eq. (11) is then computed by 

{ } *
maxPr ( ) ( )i iG c β< ∈ =Φ − =Φ −YY C u .                         (18) 
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PA: MPP search Initial u 
and y IA  1

( ) ( 1)
1

1
( )

1

( , )
( )

( , )
( )

k k
k k

k k

k k
k k

k k

g
g

g
g

β β

β

−
−

−

−

−

⎧
= +⎪ ∇⎪

⎨
∇⎪ = −⎪ ∇⎩

( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

u y
u , y

u yu
u , y

 

u(k) Yy(k) 

max ( , )

. .
iY

g

s t C

⎧⎪
⎨

∈⎪⎩

y
u y

  y  
 

Converge?
k =1 

 

Fig. 4 Flowchart of MPP search in Bel calculation. 

 

For the plausibility calculation, the model of the MPP search is the same as in Fig. 4, 

and IA becomes a minimization problem. 

III. Proposed Sensitivity Analysis Method 

With only aleatory uncertainty, a single probability measure of a performance G can 

be obtained. With both aleatory and epistemic uncertainties, the probability bounds, 

belief measure and plausibility measure can be obtained as shown in Fig. 5. The 

difference between belief and plausibility measures represents the effect of epistemic 

uncertainty. The wider the difference, the greater is the effect. If the difference is too 

wide, it will be difficult to make decisions.  

For example, as shown in Fig. 5, the belief and plausibility are 0.016 and 0.64 at the 

limit state , respectively. If  is a failure event, then the minimum and 

maximum probabilities of failure 

 = 2G < 2G

fp  are 0.016 and 0.64, respectively. The large gap 

between the two bounds makes the decision process too difficult. If one used the belief 

( ), the design might be highly risky because the true 0.016fp = fp may be much higher 

N 

k =k+1 
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than the minimum value. If one used the plausibility ( 0.64fp = ), however, the design 

might be too conservative. In this case, more information about the epistemic variables is 

needed in order to reduce their effect. How to effectively collect more information is 

critical. In this work, we develop a sensitivity analysis method to identify the most 

important epistemic variables that have the highest impact on design performance. With 

this method, limited resources can be used to collect more information on the identified 

important epistemic variables. 

 

Fig. 5 Effect of epistemic uncertainty and aleatory uncertainty. 

 

We adopt the OAT (one-at-a-time) strategy38 to quantify the effect of each individual 

epistemic variable. The effect is measured by the difference between belief and 

plausibility measures. The difference is computed by Kolmogorov-Smirnov (KS) 

distance. 39    

The OAT strategy belongs to the simplest class of screening methods. The impact of 

uncertainty in each variable is evaluated one by one.38 The sensitivity analysis is 

conducted by keeping one epistemic variable uncertain while the other epistemic 
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variables are fixed at their averages at one time. Then the impact of the varied variable on 

the performance can be isolated and evaluated. The average of an epistemic variable 

jY ( 1,2, , Y )j n= is calculated by  

1
( )

2
ij ij

i

u ln

j Y
i

Y Y
Y m C

=

+
=∑ ,  i =  1, 2, …, n                         (19) 

where  is the BPA of the i-th subset , and are the upper and lower 

bounds of 

(
iYm C )

iYC
ij

uY
ij

lY

jY  on , respectively. 
iYC

The Kolmogorov-Smirnov (KS) distance is a measure used in statistical test 39 and is 

defined as the maximum difference between the sample CDF and the hypothesized CDF. 

This distance measures how close the sample CDF to the hypothesized CDF. We adopt 

herein the same idea to measure the difference between CPF and CBF.  

The proposed sensitivity analysis includes the following two steps: 

Step 1 - Uncertainty analysis: the unified uncertainty analysis is performed to calculate 

CBF and CPF when both aleatory variables X and epistemic variables Y exist.  

Step 2 - OAT analysis: the main effect and total effect of each epistemic variable are 

calculated. The main effect explores the impact on the performance from each single 

epistemic variable while the total effect measures the impact on the performance from the 

interactions of one epistemic variable with other epistemic variables.  

To identify the main effect of the epistemic variable ( 1,2, , )iY i nY= , we fix the rest 

of the epistemic variables ( 1, 2, , ,j YY j n j i)= ≠  at their averages jY  (see Eq. (19)). 

Only  is allowed to vary. To measure the total effect of the epistemic variable , we 

fix  at its average

iY iY

iY iY , and keep the rest of epistemic variables .  ( 1, 2, , ,j YY j n j i= ≠ )
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After setting these different scenarios, we conduct the unified uncertainty analysis again 

to calculate CBF and CPF for each scenario. We then calculate the difference between 

CBF and CPF and rank the importance of epistemic variables by the difference. 

In this work, we use sensitivity analysis for two applications, reliability analysis and 

uncertainty analysis for the entire range of a performance. 

Application 1 – Reliability Analysis. Let a failure mode be defined by the event where 

the performance G is less than a threshold c, namely, . The probability of failure < G c

fp  can be calculated by Eq. (13) when only random variables X exist. When both 

aleatory and epistemic uncertainties are present, according to Eqs. (11) and (12), the 

minimum and maximum probabilities of failure are actually the CBF and CPF at c, 

namely,  

min min( ) ( )fp Bel c F c= = ,                                       (20) 

and 

max max( ) ( )fp Pl c F c= = .                                        (21) 

The difference between max
fp and min

fp   represents the effect of epistemic uncertainty on 

the probability of failure fp . The difference is given by  

max min ( ) ( )
fp f fd p p Pl c Bel c= − = − .                                   (22) 

The main effect of  on the probability of failure is given by  ( 1,2, , )iY i n= Y

f

i
pf p

iME d= ,                                                   (23) 
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where 
f

i
pd is the difference between max

fp and min
fp  when Yi is kept as an epistemic 

variable and other variables ( 1, , ,j YY j n j i)= ⋅⋅⋅ ≠ are fixed at their average jY . i
pfME  is 

computed by 

( | , 1, , , ) ( | , 1, , , )
f

i i
pf p j j Y j j YME d Pl c Y Y j n j i Bel c Y Y j n j i= = = = ⋅⋅⋅ ≠ − = = ⋅⋅⋅ ≠     (24) 

The smaller 
f

i
pd is, the weaker is the impact of  on iY fp , and therefore  is less 

important. 

iY

The total effect of Yi on 
fpd is given by 

~
f

i
pf pTE d= i .                                                  (25) 

where ~
f

i
pd is the difference between max

fp and min
fp  when Yi is fixed at its average iY  and 

the other variables  are kept as epistemic variables.  is 

computed by 

( 1, 2, , ,j YY j n j i= ⋅⋅⋅ ≠ ) i
pfTE

~ ( | ) ( | )
f

i i
pf p i i i iTE d Pl c Y Y Bel c Y Y= = = − = .                           (26) 

The smaller ~
f

i
pd  means the larger influence of .  iY

Application 2 – Uncertainty analysis over the entire range of the performance G. If 

we are interested in the effect of an epistemic variable on the entire range of the model 

output, we can calculate the KS distance between the CBF and CPF as follows,  

[ ]max ( ) ( )KS c
d Pl c Bel c= − .                                  (27) 

The equation implies that the KS distance is the maximum discrepancy between two 

curves of CBF and CPF as shown in the Fig. 6.  
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Fig. 6 KS distance.  

 

The main effect of epistemic variable  on CDF is calculated as iY

max ( | , 1, 2, , , ) ( | , 1, 2, , ,
f

i i
p

j j Y j j Yc

ME d

Pl c Y Y j n j i Bel c Y Y j n j i

=

⎡ ⎤= = = ⋅⋅⋅ ≠ − = = ⋅⋅⋅⎣ ⎦)≠
,   (28) 

where i
KSd is the KS distance between CPF and CBF when Yi is kept as an epistemic 

variable and other variables ( 1, 2, , ,j YY j n j i)= ⋅⋅⋅ ≠  are fixed at their average jY . The 

smaller i
KSd  is, the closer are CBF and CPF; namely, the impact of  is weaker and  is 

less influential. Therefore, the smaller 

iY iY

iME  is, the less significant is  to the uncertainty 

of the performance.  

iY

The total effect of epistemic variable  on CDF can be calculated as iY

~ max ( | ) ( | )i i
KS i i i ic

TE d Pl c Y Y Bel c Y Y⎡ ⎤= = = − =⎣ ⎦ ,                         (29) 
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where ~i
KSd  is the KS distance when Yi is fixed at its average iY  and other variables 

 are kept as epistemic variables. In this case, a smaller discrepancy 

between CPF and CBF implies higher influence of  on G.  

( 1, 2, , ,j YY j n j i= ⋅⋅⋅ ≠ )

iY

The flowchart of the proposed sensitivity analysis method is illustrated in Fig. 7. 

From the above discussion, it is seen that one sensitivity analysis needs to call the 

unified analysis 2  times – one analysis is for the case with original uncertain 

variables,  analyses are for the main effects of the  epistemic variables, and the 

other  analyses are for the total effects of the  epistemic variables. The computation 

is intensive, and therefore efficiency is critical. To improve efficiency, we use the 

efficient MPP algorithm as shown in Eq. (17). In many engineering applications, a 

performance function is monotonic in terms of interval variables. In this case, it is not 

necessary to conduct nonlinear optimization for interval analysis. However, it is difficult 

to know whether the performance function is monotonic because of the black-box model. 

We therefore perform optimization for interval analysis in the first iteration. Thereafter, 

we check the Karush-Kuhn-Tucker (KKT) conditions

1Yn +

Yn Yn

Yn Yn

41 after the MPP is updated. If the 

KKT conditions are satisfied, there is no need to perform optimization again. We then 

proceed to the next iteration. 
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Fig. 7 Flowchart of the proposed sensitivity analysis. 
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IV. Examples 

A. Example 1- Crank-Slider Mechanism 

A crank-slider mechanism is used in a construction machine as shown in Fig. 8.16 The 

length of the crank AB a, the length of the coupler BC b, the external force Q, the 

Young’s modulus of the material of the coupler E, and the yield strength of the coupler S 

are random variables. Their distributions are given in Table 1.  

 

d2 B 

 
Fig. 8 A crank-slider mechanism. 

 

Table 1. Random variables X 
Variables Symbols in Fig.8 Mean Standard deviation Distribution 

X1 a 100 mm 0.01 mm Normal 
X2 b 300 mm 0.01 mm Normal 
X3 Q 250 kN 25 kN Normal 
X4 E 200 GPa 30 GPa Normal 
X5 S 390 MPa 39 MPa Normal 

 

Because of the harsh environment of the construction site, a precise distribution of the 

coefficient of friction µ between the ground NN and the slider C is not available, but its 

intervals and BPA are available based on the solicitation from experts. Because of the 

a b

M

M

Q 

d1 

e

A 

N N 
C 

M-M section 
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different installation positions of the slider are required in various construction sites, the 

intervals and BPA of the offset e are assigned based on limited historical data. Their 

BPAs are provided in Table 2, and the joint BPA is also visualized in Fig. 9. 

 

Table 2. Uncertain variables with epistemic uncertainty 
Variables Symbols in Fig. 8 Intervals BPA 

Y1 e  (mm) 
[100, 120] 
[120, 140] 
[140, 150] 

0.2 
0.4 
0.4 

Y2 µ 
[0.15, 0.18] 
[0.18, 0.23] 
[0.23, 0.25] 

0.3 
0.3 
0.4 

 

 

Fig. 9 Joint BPA of with 3 Intervals. Y
 

The two performance functions are the safety margins for strength and buckling 

requirements of the coupler, which are defined by the difference between the material 
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strength and the maximum stress, and the difference between the critical load and the 

axial load, respectively. The equations are obtained at one of the positions when the crank 

AB and the coupler BC overlap. The functions are given by 

( ) ( )
( )( )( )

1 1 2 2 2
2 1

4P b a
G g S

b a e e d dπ µ

−
= = −

− − − −
X,Y

2
, 

and 

( ) ( ) ( )
( )

3 4 4
2 1

2 2 2 2 264
E d d P b a

G g
b b a e e

π

µ

− −
= = −

− − −
X,Y . 

The failure events are defined by { }1 1 0E G= <X,Y  and { }2 2 0E G= <X, Y . Our goal 

is to find out the most significant epistemic variable (offset or coefficient of frictione µ ) 

which has the most dominant effect on the performance functions  and .  1G 2G

We first perform the unified uncertainty analysis for the two failure modes. The result 

is given in Table 3. The difference 
fpd  between the maximum and minimum 

probabilities of failure (or Pl and Bel) of  is large, and the difference 1G
fpd  of  is 

almost zero. Therefore, the effect of epistemic uncertainty on failure mode 1 ( ) cannot 

be neglected, and the effect of epistemic uncertainty on failure mode 2 ( ) is negligible. 

Sensitivity analysis on failure mode 1 is then necessary. Hence we only conduct 

sensitivity analysis on .  

2G

1G

2G

1G

In order to confirm the accuracy of the united uncertainty analysis, we solve the 

problem by Monte Carlo simulation (MCS). The result is also provided in Table 3, where 

N is number of function evaluations. N is used to measure computational efficiency. It is 
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seen that the unified uncertainty analysis employed in this paper is very accurate and 

efficient. 

Table 3 
fpd  for  and  1G 2G

 United Uncertainty Analysis Monte Carlo Simulation 
 min

fp (Bel) max
fp (Pl) 

fpd  N min
fp (Bel) max

fp (Pl) 
fpd  N 

1G  0.00735 0.0727 0.0654 468 0.0124 0.09424 0.0818 4×106

2G  ≈ 0.0 ≈ 0.0 ≈ 0.0 488 ≈ 0.0 ≈ 0.0 ≈ 0.0 4×106

 

We also perform the unified uncertainty analysis for the entire range of the two 

performance functions. The results of CBF and CPF for both  and  are shown in 

Table 4 and Figs. 10 and 11. It is also seen that the effect of epistemic uncertainty on  

is much larger than that on  because the KS distance for   is much larger than that 

for . The numbers of function evaluations also indicate that the unified uncertainty 

analysis is much efficient than MCS. 

1G 2G

1G

2G 1G

2G
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Fig. 10 Initial unified uncertainty analysis forG . 1
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Fig. 11 Initial unified uncertainty analysis for . 2G

 

Table 4 Results of unified uncertainty analysis for G1

1G  United Uncertainty Analysis Monte Carlo Simulation 
  CPF – CBF  N CPF – CBF  N 

-100 0.0008 468 0.0013 36×106

-50 0.0103 468 0.0156 36×106

0 0.0654 468 0.0818 36×106

50 0.2042 468 0.2050 36×106

100 0.3248 468 0.2804 36×106

150 0.2594 468 0.2322 36×106

200 0.0946 468 0.1017 36×106

250 0.0137 468 0.0181 36×106

300 0.0007 468 0.0011 36×106

 Total function calls 4212 Total function calls 36×106

 KS distance 0.3248 KS distance 0.2804 
 

Next we perform sensitivity analysis on  to find out the most influential epistemic 

variable. In this example, there are only two epistemic variables Y

1G

1 and Y2; no total effect 

is therefore needed. Thus we only analyze the main effect of each variable.  
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Main Effect of Y1: Keep Y1 as an epistemic variable and fix Y2 at its average. The 

average of Y2 is calculated by 

  2
0.15 0.18 0.18 0.23 0.23 0.250.3 0.3 0.4 0.207

2 2 2
Y + + +

= × + × + × = . 

The CBF and CPF of  are reevaluated by the unified uncertainty and are given in 

Fig. 12. The difference (main effect) between the maximum and minimum probabilities 

of failure 

1G

1 1
f fp pME d= , and the KS distance for the entire distribution 1 1

KSME d= are 

given in Table 5. 
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Fig. 12 CBF and CPF from the main effect analysis for Y1. 

 

Table 5 Main effect of each epistemic variable 
Main effect min

fp (Bel) max
fp (Pl) 

fpME  ME  
Y1 0.008219 0.049754 0.041535 0.2979 
Y2 0.004638 0.008164 0.003527 0.0761 
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Main Effect of Y2: Keep Y2 as an epistemic variable and fix Y1 at its average. The 

average of Y1 is calculated by 

  1
100 120 120 140 140 1500.2 0.4 0.4 132

2 2 2
Y + + +
= × + × + × = .  

The CBF and CPF of  are illustrated in Fig. 13, and 1G 2 2
f fp pME d= and 2 2

KSME d= are 

also given in Table 5. The difference between the CBF and CPF is much narrower when 

Y1 is fixed. The result indicates that the main effect of Y1 is much greater than that of Y2. 

Therefore Y1 is the most influential contributor to the effect of epistemic uncertainty on 

the probability of failure fp  of , and it is also true for the entire range of . 1G 1G
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Fig. 13 CBF and CPF from the main effect analysis for Y2. 

 

If more information is needed to reduce the effect of epistemic uncertainty, we should 

collect more information on Y1 instead of Y2. After adequate information was collected on 

Y1, Y1 would become a random variable with only aleatory uncertainty. Suppose the 

available distribution of Y1 is N(125, 8.33) mm. Through the unified uncertainty analysis 
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again, the gap between CBF and CPF of  becomes much narrower as shown in Fig.14 

and Table 6. 

1G
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CPF
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G1(MPa)  
Fig. 14 CPF and CBF of  after more information on Y1G 1 is collected. 

 

Table 6 
f

i
pME and   iME

Scenarios min
fp (Bel) max

fp (Pl) 
f

i
pME  iME  

Y1: 3 intervals, Y2:  3 intervals 0.007353 0.072707 0.065354 0.3288
Y1: aleatory, Y2:  3 intervals 0.003379 0.005881 0.002502 0.0622
Y1: 3 intervals, Y2: aleatory 0.007507 0.045416 0.037909 0.2625

 

If we did not conduct sensitivity analysis, we might arbitrarily choose to collect more 

information on Y2. Suppose the distribution of Y2 is N(0.2, 0.017) after more information 

is collected. As shown in Fig. 15 and Table 6, the reduced effect of epistemic uncertainty 

(the gap between the CPF and CBF) is much less significant compared to the situation 

where the epistemic uncertainty of Y1 is eliminated (see Fig. 14). 
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CPF
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Fig. 15 CPF and CBF of  after collecting more information on Y1G 2 is collected. 

 

For an easy comparison, all the information is provided in Table 6. The first row is the 

uncertainty analysis result with the original uncertain variables X and Y. The second row 

is the result when Y1 becomes aleatory while the third row is the result when Y2 becomes 

aleatory. The table verifies that Y1 is more important than Y2 in terms of the effect on . 1G

B. Example 2 - Crowned Cam Roller-Follower’s Contact 

A crowned cam roller-follower used in a transmission system is shown in Fig.16.42 It 

has a gentle radius transverse to its rolling direction for eliminating the need for critical 

alignment of its axis with that of the cam. The roller radius is R1 with a 1R′  crown radius 

at 90° to the roller radius. The cam’s radius of curvature at the point of maximum load is 

R2 and is flat axially so its crown radius 2R′ is infinite. The rotational axes of the cam and 

roller are parallel. The force is Q, normal to the contact plane. The materials of roller and 

follower are steel. Their Young’s modulus E is 30×106 psi, and the Poisson’s ratio v is 

0.28. Due to the elastic deformation, the contact patch is an ellipse, and the pressure 
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distribution is a semi-ellipsoid, as illustrated in Fig. 17. R1, 1R′ , and R2 are random 

variables with the distributions listed in Table 7. 

Q 
1R′  

R1 

 

Fig. 16 A crowned cam roller-follower under load Q. 

 

Fig. 17 Contact patch (p denotes the pressure distributed on the contact patch). 
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Table 7 Random variables X 
Variable Symbols in problem Mean Standard deviation Distribution 

X1 R1 1 in 0.01 in Normal 
X2 1R′  20 in 0.2 in Normal 
X3 R2 3.46 in 0.0346 in Normal 
X4 S 37.5 ksi 0.375 ksi Normal 

 
Because of limited information, an accurate measure or a distribution of Q is not 

available. Its intervals and BPA are available based on the solicitation from experts, 

which is provided in Table 8.  

 

Table 8 Uncertain variables with epistemic uncertainty 
Variable Symbols in problem Intervals BPA 

Y1 ka [3.50, 3.60] 1 
Y2 kb [0.434, 0.440] 1 
Y3 Q (lb) [246, 254] 1 

 

The half-width of the major axis a and the half-width of the minor axis b are 

determined by  

    1 23
3 ( )

4a
Q m ma k

A
+

= ,                                                         

    1 23
3 ( )

4b
Q m mb k

A
+

= ,                                                          

where 

      
2

1 2 2

1 vm m
E
−

= = , 

       
1 1 2 2

1 1 1 1 1(
2

A )
R R R R

= + + +
′ ′

.                                                   

The factors ka and kb are obtained from a table in Ref. 42 based on the value of φ , 

which is calculated by  
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1cos A
B

φ − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

,                                                    

1
2 2 2

1 1 2 2 1 1 2 2

1 1 1 1 1 1 1 1 12
2

B
R R R R R R R R

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛
⎢ ⎥= − + − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜

⎞
⎟′ ′ ′⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝⎣ ⎦′ ⎠

, 

φ is a random variable due to the randomness in R1, 1R′ , and R2, and ka and kb are 

tabulated in term of φ . The values of ka and kb are not precisely known and are estimated 

within two intervals as shown in Table 8. 

The performance function is the safety margin for shear yield strength of the roller and 

follower, defined by the difference between the shear yield strength and maximum shear 

stress, which is one-half of the tensile yield strength based on maximum shear-stress 

theory. The function is given by  

( , ) maxG g Sτ= = −X Y ,                                                      

where is the shear yield strength, andS maxτ  is defined by 

     mmax( , , , )max a u ma iτ τ τ τ τ= , 

where aτ is the maximum shear stress at the contact surface, uτ is the largest shear stress 

under the contact surface, and maτ  and miτ  are the shear stresses at the ends of major and 

minor axis, respectively, on the contact surface. These stresses are calculated by 

1 3

2a
σ στ −

= ,                                                          

where 1σ , 2σ , and 3σ are principal stresses at the contact surface, calculated by 

     1 2 (1 2 ) max
bv v p

a b
σ ⎡ ⎤= − + −⎢ +⎣ ⎥⎦

,                                         
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2 2 (1 2 ) max
av v p

a b
σ ⎡ ⎤= − + −⎢ ⎥+⎣ ⎦

,                                         

3 maxpσ = − , where 3
2max

Qp
abπ

= , 

and  

0.34u maxpτ = ,                                              

13
42

4 4

1(1 2 ) tanh 1ma max
kv k
k k

τ −⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
p , where 3

bk
a

= , 

13 3 4
2
4 4 3

(1 2 ) 1 tanhmi max
k k kv p
k k k

τ −⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, where 2 2
4

1k a
a

b= − .                                       

The failure event is defined by E { , | 0}G= <X Y . The CBF and CPF are calculated 

by the unified uncertainty analysis and are shown in the Fig. 18. Also, a comparison with 

MCS is provided in Table 9. The result indicates that the impact of epistemic uncertainty 

is large and can not be ignored. In the table, N is the number of function evaluations. 

Table 9 Results of unified uncertainty analysis 
United Uncertainty Analysis Monte Carlo Simulation G (ksi) 

 CPF – CBF  N CPF – CBF  N 
-1 0 102 0 88×106

-0.50 0.0018 88 0.0018 88×106

0 0.0412 88 0.0407 88×106

0.5 0.2890 83 0.2869 88×106

1 0.7331 83 0.7309 88×106

1.5 0.9627 84 0.9621 88×106

2.0 0.9675 84 0.9679 88×106

2.5 0.7575 83 0.7593 88×106

3.0 0.3205 83 0.3229 88×106

3.5 0.0517 88 0.0524 88×106

4.0 0.0027 88 0.0027 88×106

 Total function calls  954 Total function calls 88×106
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 (ksi)

Fig. 18 Initial unified uncertainty analysis of G. 

 

Sensitivity analysis is then conducted to identify the most influential variables. Total 

effect and main effect of each variable can be obtained respectively.  

We conduct the main effect analysis as follows. 

Main effect of Y1: Keep Y1 as an epistemic variable, and fix Y2 and Y3 at their averages. 

     Main effect of Y2: Keep Y2 as an epistemic variable, and fix Y1 and Y3 at their averages. 

Main effect of Y3: Keep Y3 as an epistemic variable, and fix Y1 and Y2 at their averages. 

The respective results for above three analyses are in Figs. 19, 20 and 21 and Table 10. 

As for the difference between the maximum and minimum probabilities of failure, since 

1
f fp pME d=  is the largest, Y1 therefore has the highest impact on fp . As for the KS 

distance between the CBF and CPF, since 1 1
KSME d=  is the largest, Y1 is also the most 

influential epistemic variable to the effect of epistemic uncertainty on G.  
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    (ksi) 

Fig. 19 CBF and CPF from the main effect analysis for Y1.   

 

  (ksi) 

Fig. 20 CBF and CPF from the main effect analysis for Y2. 
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 (ksi)

Fig. 21 CBF and CPF from the main effect analysis for Y3. 

 

Table 10 Main effect of each epistemic variable 
Main effect of  min

fp (Bel) max
fp (Pl) 

fpME  iME  
Y1 2.91E-08 0.002245 0.002245 0.80278 
Y2 1.01E-06 0.00024 0.000239 0.47207 
Y3 2.08E-06 0.000144 0.000142 0.37393 

 

We next perform the total effect analysis as follows.  

Total effect of Y1: Keep Y2 and Y3 as epistemic variables, and fix Y1 at its average 

Total effect of Y2: Keep Y1 and Y3 as epistemic variables, and fix Y2 at its average 

Total effect of Y3: Keep Y1 and Y2 as epistemic variables, and fix Y3 at its average 

The results are given in Figs. 22, 23 and 24 and Table 11. It can be seen that 

1 ~1
f fpTE d= p

1 and 1 ~
KSTE d=  are smallest, and therefore Y1 is most influential, which is 

consistent with the conclusion from the main effect analysis. 
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 (ksi) 

Fig. 22 CBF and CPF from the total effect analysis for Y1. 

 

 (ksi) 

 
Fig. 23 CBF and CPF from the total effect analysis for Y2.                         
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 (ksi) 

Fig. 24 CBF and CPF from the total effect analysis for Y3.                                             

Table 11 Total effect of each epistemic variable 
Total effect of  min

fp (Bel) max
fp (Pl) 

fpTE  iTE  
Y1 8.08E-08 0.00134 0.00134 0.73815 
Y2 1.66E-09 0.009275 0.009275 0.92589 
Y3 6.65E-10 0.013141 0.013141 0.94513 

 
To confirm the above sensitivity analyses results, we assume that more information 

could be collected on Y1, Y2 and Y3. The distributions of Y1, Y2 and Y3 after gathering more 

information are N(3.55, 0.036), N(0.437, 0.0044) and N(250, 2.5), respectively. The 

unified uncertainty analysis is performed when one epistemic variable becomes aleatory. 

The CBF and CPF of G are shown in Fig. 25, and
fpME and ME  in each case are 

provided in Table 12. It is seen that from Fig. 25 the gap between CBF and CPF becomes 

narrowest after the epistemic uncertainty in Y1 is eliminated. The result confirms that 

collecting more information on the most influential variable Y1 has the highest 

contribution for reducing the effect of epistemic uncertainty. The second highest 
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contribution is from gathering more information on Y2. Collecting more information on 

Y3 has the least contribution.  

It is seen that after the epistemic uncertainty of the most important variable Y1 has 

been eliminated, the gap between CBF and CPF is still large. The elimination of the 

epistemic uncertainty of one more variable may be needed. Since Y2 is more important 

than Y3, more information on Y2 should be collected if further action needs to be taken.  

 

Original CBF and CPF 

CBF and CPF after Y1 
becomes aleatory 

CBF and CPF after 
 Y2 becomes aleatory 

CBF and CPF after  
Y3 becomes aleatory 

G (ksi) 

Fig. 25 Comparison of uncertainty effect. 

 

Table 12 Unified uncertainty analysis for confirmation 
Scenarios min

fp (Bel) max
fp (Pl) 

f

i
pME  iME  

Y1, Y2 and Y3 are aleatory 2.74E-11 0.041172 0.041172 0.7836 
Y1 is aleatory 5.12E-05 0.012733 0.012682 0.5106 
Y2 is aleatory 5.89E-06 0.039711 0.039705 0.81014 
Y3 is aleatory 3.56E-09 0.0167 0.0167 0.93361 
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V. Conclusions 

An effective sensitivity analysis method is developed to identify the most important 

input variables with epistemic uncertainty when aleatory uncertainty also exists. The 

importance of an epistemic variable is measured by its effect on the model output, 

including its main effect and total effect. These effects are indicated by the difference 

between belief and plausibility measures of an output variable. After the sensitivity 

analysis, all the epistemic variables are ranked by their importance. Then by collecting 

more information on the dominant epistemic variables, the effect of epistemic uncertainty 

can be reduced in the most efficient way as shown in the paper. 

In the proposed sensitivity analysis procedure, an once-at-a-time strategy is used to set 

up different scenarios for the input epistemic variables in order to study their main effects 

and total effects. Then plausibility and belief measures of an output variable are 

calculated under each scenario by the unified uncertainty analysis framework. The 

Kolmogorov-Smirnov distance is used to quantify the discrepancy between the 

plausibility measure and belief measure, namely, the effect of epistemic uncertainty on 

the output. By comparing the main effects and total effects of the epistemic variables, 

their importance is ranked.  

The proposed sensitivity analysis method is based on the First Order Reliability 

Method. The advantages of the proposed methods are as follows. (1) Engineers are 

familiar with First Order Reliability Method. (2) It is easy to quantify the contributions of 

the individual epistemic variables to the reliability or to the probability of failure. (3) 

Since optimization is used for interval analysis, the result in general is more accurate than 

that from interval arithmetic. (4) The process is efficient because the double-loop Monte 
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Carlo simulation is not involved. (5) The proposed method is applicable to black-box 

models. 

When using the proposed method, one should also consider the other features of the 

method. (1) The method assumes the global optimal solution for the interval analysis. 

The method may not provide an accurate solution if a global optima is not reached. (2) 

The efficiency of the method depends on the number of subsets of the epistemic variables 

because First Order Reliability Method is performed for each subset. The efficiency also 

depends on the number of aleatory variables because the efficiency of First Order 

Reliability Method is directly proportional to the number of aleatory (random) variables.  

Compared to the traditional probabilistic sensitivity analysis, sensitivity analysis with 

the mixture of epistemic and aleatory uncertainties is much more computationally 

expensive. Our future work will be the improvement of computational efficiency. We 

will also study the sensitivity of aleatory uncertainty and its interaction with epistemic 

uncertainty. 
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Reliability sensitivity analysis with random and interval variables 
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SUMMARY 

In reliability analysis and reliability-based design, sensitivity analysis identifies the 
relationship between the change in reliability and the change in the characteristics of 
uncertain variables. Sensitivity analysis is also used to identify the most significant 
uncertain variables that have the highest contributions to reliability. Most of the current 
sensitivity analysis methods are applicable for only random variables. In many 
engineering applications, however, some of uncertain variables are intervals. In this 
work, a sensitivity analysis method is proposed for the mixture of random and interval 
variables. Six sensitivity indices are defined for the sensitivity of the average reliability 
and reliability bounds with respect to the averages and widths of intervals, as well as with 
respect to the distribution parameters of random variables. The equations of these 
sensitivity indices are derived based on the First Order Reliability Method (FORM). The 
proposed reliability sensitivity analysis is a byproduct of FORM without any extra 
function calls after reliability is found. Once FORM is performed, the sensitivity 
information is obtained automatically. Two examples are used for demonstration. 
 

KEY WORDS: sensitivity analysis; random variable; interval variable; sensitivity index 

 
 

1. INTRODUCTION 

In reliability analysis [1~3] and reliability-based design [4~7], sensitivity analysis 

provides information about the relationship between reliability and the distribution 
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parameters of a random variable. Sensitivity analysis can therefore identify the most 

significant uncertain variables that have the highest contribution to reliability. When only 

random variables are involved, sensitivity analysis is usually performed for the 

probabilistic characteristics of a limit-state function, such as its moment, probability 

density function, and reliability. Such sensitivity analysis is usually named probabilistic 

sensitivity analysis (PSA). Various PSA approaches have been reported in a wide range 

of literature, including differential analysis [8, 9], variance-based methods [10], and 

sampling-based methods [10]. These types of probabilistic sensitivity analysis are briefly 

reviewed below. 

(1) Differential analysis (probability sensitivity coefficient) 

The probability-based sensitivity measure is defined as the rate of change in a 

probability (P) (reliability or the probability of failure) due to the change in a distribution 

parameter ( ) of a random input, namely iq / iP q∂ ∂ . / iP q∂ ∂  can be calculated by the 

finite difference method given by [2]:  

( ) (
i

i i
q

i

P q q P qS
q

)i+ ∆ −
=

∆
                                           (1) 

where  is a distribution parameter, such as the mean or the variance of a random 

variable; is a small step size of .  

iq

iq∆ iq

Various probability sensitivity measures have been proposed in literature [11~14]. Wu 

[11] and Wu and Mohanty [12] propose a normalized cumulative density function (CDF)-

based sensitivity coefficient for the probability of failure with respect to the distribution 

parameters of random variables. The sensitivity is defined by: 
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⎡ ⎤∂ fE
⎡ ⎤∂∂

= = ⋅⋅⋅ =⎢ ⎥ ⎢ ⎥∂ ∂ ⎢ ⎥ ∂⎣ ⎦⎣ ⎦
∫ ∫            (2) 

where fX  is the joint probability density function of all random variables, fp is the 

probability of failure, X is a vector of random variables, and Ω  denotes the failure 

region. The calculation of this sensitivity measure involves evaluating a multidimensional 

integral. A sampling method is usually used to estimate this integral, which makes this 

method computationally expensive. Mavris et al. [13] extend Wu’s method to evaluate 

the sensitivity of any probabilistic characteristics, such as the variance and mean of a 

limit-state function.  

Another sensitivity measure related to reliability is the Most Probable Point (MPP) 

based sensitivity coefficients [14], defined as the gradient of a limit-state function at the 

MPP in the standard normal space, normalized by the reliability index. Let G be a 

response calculated by a limit-state function ( )G g= X , where X is the vector of random 

variables. After X is transformed into standard normal random variables U, the MPP, 

, the shortest distance point from the limit state , where c is a 

limit state, to the origin O is identified. (The equation for the MPP search will be given in 

Eq. (4).) The sensitivity of reliability with respect to the ith random variables is then 

calculated by 

(* * * *
1 2, , , nxu u u= ⋅⋅⋅u ) c( )Ug =

 
( )2*

2
i

i

u
S

β
=                                                       (3) 

where β is the magnitude of  or the reliability index. For the MPP-based reliability 

analysis, the probability sensitivity coefficient does not require any additional 

*u
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computational efforts after the MPP is found. The sensitivity coefficient  is just a 

byproduct of reliability analysis.  

iS

(2) Variance-based methods 

Variance-based sensitivity analysis methods rely on the decomposition of the variance 

of a response into items contributed by various sources of input variations. These sources 

can be classified into two types: main effects and total effects. A main effect refers to the 

effect of only one random variable, while a total effect is used to include both the 

individual effect of a random variable and the interaction of the random variable with 

other random variables. Although the methods provide a global sensitivity measure, their 

major limitation is that a variance is assumed to be sufficient to describe the uncertainties 

encountered. This type of methods may lose accuracy when the variance is not a good 

measure of the distribution dispersion, such as in the case where a response distribution 

has high skewness and kurtosis [15]. 

(3) Sampling methods 

Sampling approaches, such as Monte Carlo sampling for sensitivity analysis, usually 

involve three steps: (1) generating samples for uncertain input variables; (2) numerically 

evaluating a limit-state function and then obtaining samples of response variables; (3) 

statistically analyzing responses and quantifying their uncertainties, and then exploring 

the effects of the uncertainty of input variables on responses. Sampling methods are easy 

to use but computationally expensive when reliability is high. Because the probability of 

failure is low in this case, a large number of samples are required to capture a failure 

event.  
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The current PSA methods handle only random variables that are assumed to follow 

certain probability distributions. However, in many engineering applications, the 

information or knowledge might be too insufficient to build probability distributions. As 

discussed in [16, 17], uncertainty is sometimes represented by intervals due to the lack of 

knowledge. One example is that the true contact resistance in the vehicle crashworthiness 

design is hard to know; an interval is then used based on the engineers’ best judgment 

[18]. Another example is in a new design. It is difficult to determine the precise 

distribution of design variables, such as dimensions. Engineers often define their design 

variables in the form of nominal values plus and minus certain tolerances, like 

10±0.01mm. More examples of intervals can be found in [4, 16]. Sometimes even though 

a variable is random and follows a non-uniform distribution, only one interval estimate is 

available due to limited information or sparse samples. In this case, assigning an assumed 

distribution to the variable may lead to erroneous results [19]. When intervals are 

involved, the current PSA methods are no longer applicable. 

Several methods of dealing with only interval variables have been reported for 

reliability analysis and reliability-based design [17, 20~34]. A few sensitivity analysis 

methods [35~38] for epistemic uncertainty (uncertainty due to the lack of knowledge) are 

potentially capable of dealing with interval variables. These methods use intervals to 

represent epistemic uncertainty. For example, a sensitivity analysis approach on the basis 

of belief and plausibility measures is proposed by Bae, et al [35, 36]. The results of this 

approach can help guide the data collection to improve the accuracy of reliability analysis 

and distinguish the dominant contributors of uncertainty. A sampling-based sensitivity 

analysis method is developed by Helton, et al [37]. It consists of three steps: an initial 
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analysis to explore the model behavior, a stepwise analysis to indicate the effects of 

uncertain variables on belief and plausibility functions, and a summary analysis to show a 

series of variance-based sensitivity analysis results. Considering the complexity of the 

mixture of aleatory and epistemic uncertainties, Guo and Du [38] propose an approach to 

conduct sensitivity analysis with this mixture. In their method, the most important 

epistemic variables are captured under the framework of the unified uncertainty analysis.  

All of the above methods are capable of identifying the most significant interval 

variables, but they have some limitations. For example, it is difficult to use them to obtain 

information about how individual intervals impact reliability, especially how reliability 

bounds will change after narrowing interval bounds. In this work, we propose a 

sensitivity analysis method to handle the situation where both interval variables and 

random variables are involved. The intervals are treated as is without any distribution 

assumptions. With this method, we attempt to answer the following questions: 

1) How will the width of the reliability bounds change if the width of an interval is 

reduced or if the average of the interval is changed? 

2) How will the average reliability change if the width of an interval is reduced or if 

the average of the interval is changed? 

3) How will the width of the reliability bounds change if a distribution parameter of 

a random variable is changed? 

4) How will the average reliability change if a distribution parameter of a random 

variable is changed? 

The answers to the above questions will provide useful information about improving 

reliability and reducing the impact of intervals and random variables on reliability. 
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Hence, six sensitivity indices are proposed for answering these questions. Equations for 

the sensitivity indices are then derived and corresponding computational procedures are 

developed. The calculation of sensitivity indices requires searching the minimum and 

maximum reliability, or the probabilities of failure, over the intervals. To alleviate the 

computational burden, we use an efficient FORM-based unified reliability analysis 

framework [39]. 

This paper is organized as follows: Sec. 2 provides a brief review of the unified 

reliability analysis. In Sec. 3, the six sensitivity indices are defined, and the equations for 

calculating these sensitivity indices are derived. In Sec. 4, two engineering examples are 

used to illustrate the proposed method. Conclusions and future work are summarized in 

Sec. 5. 

 

2. UNIFIED RELIABILITY ANALYSIS  

Reliability analysis is one of the main steps of reliability sensitivity analysis. The 

proposed sensitivity analysis is based on the First Order Reliability Method (FORM) [40, 

41] which is applicable for random variables, and the unified reliability analysis (URA) 

[39], which is applicable for the mixture of random and interval variables. Both methods 

are briefly reviewed in this section. 

2.1. Reliability analysis 

In the reliability analysis where only random variables X are involved, reliability is 

defined by  

Pr{ ( ) } 1 Pr{ ( ) } 1 fR G g c G g c p= = ≥ = − = < = −X X                      (4) 
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where  denotes a probability, G is a response, c is a specific limit state, 

 is a vector of random variables, g is a performance function, 

also called a limit-state function [42], and 

Pr{}⋅

( 1 2X ,X , ,X , ,Xi n= ⋅⋅ ⋅ ⋅ ⋅ ⋅X )x

fp  is the probability of failure.  

If the joint probability density function (PDF) of X is Xf , the probability of failure fp  

is calculated by 

( )

Pr{ ( ) } ( )f
g c

p G g c f
<

= = < = ∫ X
X

X dx x                                  (5) 

The limit-state function is usually a nonlinear function of X; therefore, the 

integration boundary is nonlinear. Since the number of random variables is usually high, 

multidimensional integration is involved. There is rarely a closed-form solution to Eq. 

(5). The First Order Reliability Method (FORM) is widely used to easily evaluate the 

integral in Eq. (5).  

( )g X

FORM involves three steps to approximate the probability integral: 1) transforming 

original random variables X into standard normal random variables U, 2) searching for 

the Most Probable Point (MPP), and 3) calculating fp .  

Step 1: Transformation, which is given by 

{ }1 ( )
ii Xu F x−Φ= i                                                 (6) 

where 
iXF is the CDF of iX , and 1−Φ is the inverse CDF of a standard normal 

distribution.  

Step 2: MPP search, where the MPP  is identified by *u

min

s.t. ( )
U

U

  Ug c=
                                                (7) 
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in which ⋅  stands for the magnitude of a vector. Geometrically, the MPP is the shortest 

distance point from the limit state ( )Ug c=  to the origin in U-space. The minimum 

distance *β = u  is called the reliability index. 

Step 3: Estimation of fp , which is given by 

(fp )β= Φ −                                                    (8) 

whereΦ is the CDF of a standard normal distribution.  

The most computationally intensive work of FORM is the MPP search. The following 

recursive algorithm [43] is used for the MPP search, 

1
( ) ( 1)

1

1
( )

( 1

)
( )

( )
( )

( )

( )

( )
( )

)

(u
u

uu
u

k
k k

k

k
k k

k

g
g

g
g

β β

β

−
−

−

−

−

⎧
= +⎪ ∇⎪

⎨
∇⎪ = −⎪ ∇⎩

                                       (9) 

where is the gradient of g at , ( )kg∇ ( )u ( )u k (( ))u kg∇ is its magnitude, and k is the 

iteration counter. 

2.2. Unified reliability analysis (URA)  

When both random and interval variables are present, random variables X are 

characterized by probability distributions while interval variables Y reside on [ ly , uy ]. 

The unified uncertainty analysis framework and computational method proposed in [39] 

is applicable to handle this situation. As shown in [39], the cumulative distribution 

function (CDF) of the response G = g(X, Y) has its upper and lower bounds, and so does 

reliability . The unified reliability analysis (URA) [39] is used to find the 

reliability bounds.  

Pr{ }G c≥
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The URA framework is illustrated in Figure 1. The inputs to the framework are 

random variables X defined by a joint PDF and interval variables Y. The outputs are CDF 

bounds and reliability bounds.  

X: joint 

 

Figure 1. The unified reliability analysis framework. 

 

The set of intervals Y is denoted by ∆Y , and the event of failure is defined 

by . According to [39], the upper and lower bounds of the probability of 

failure, 

( )g <X,Y c

U
fp and L

fp , are calculated by  

{ }maxPr ( , )L
fp G c= < ∈∆YX Y Y                                (10) 

and 

{ }minPr ( , )U
fp G c= < ∈∆YX Y Y                                (11) 

respectively. and are the global minimum and maximum values, respectively, 

of G ove

minG maxG

r .  ∆Y

The evaluation of the upper and lower bounds of the probability of failure is 

essentially the evaluation of the minimum and maximum CDF of the limit-state function. 

Therefore, traditional probabilistic analysis methods can be used for the unified reliability 

analysis (URA). The First Order Reliability Method (FORM) is employed for the URA. 

G: CDF bounds 
pf bounds or 
reliability 

 
( , )X YG g=
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1
Uy1

Ly
 

Y: intervals 

2Y  2
L

2
Uy  y  
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Figure 2 depicts the numerical procedure of the URA method. The procedure involves 

two types of analysis. The first one is probabilistic analysis (PA), which is responsible 

for the MPP search and the calculation of the probability of failure. The second one is 

interval analysis (IA), which is responsible for the search of the maximum and minimum 

values of G. The direct combination of PA and IA will involve a double loop procedure, 

where PA is an outer loop and IA is an inner loop. For example, to find the lower bound 

of fp , at every iteration of the MPP search in the outer loop, interval analysis inner loops 

will be called to find the maximum G in terms of Y. This method is inefficient due to the 

double-loop procedure. The efficient computational method is then developed in [44]. 

The method involves an efficient sequential single-loop procedure, where PA is 

decoupled from IA. The flowchart of this efficient procedure is shown in Figure 2 for the 

L
fp  calculation. The solution is the MPP where G is maximized. The MPP for L

fp  is then 

named in this paper. And the MPP for the maximum probability of failure*,u L U
fp is 

called . *,u U

PA: MPP search Initial u 
and y IA  1
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1
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Figure 2. Flowchart of sequential single-loop procedure for L
fp calculation.  
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The probability { }maxr ( , )G cP < ∈∆YX Y Y  in Eq. (10) is then computed by 

{ } *
maxPr ( , ) ( ) ( )YX Y Y uG c β< ∈∆ =Φ − =Φ − .                     (12) 

For the U
fp  calculation, the model of the MPP search is the same as in Figure 2 except 

that IA becomes a minimization problem. 

 
3. RELIABILITY SENSITIVITY ANALYSIS 

When only random variables are involved, reliability sensitivity analysis is used to find 

the rate of change in the probability of failure (or reliability) due to the changes in 

distribution parameters (usually means and standard deviations). When both random 

variables and interval variables are involved, reliability analysis will generate two bounds 

of reliability or of the probability of failure

 
 

fp . The gap between the maximum 

probability of failure U
fp  and the minimum probability of failure L

fp  represents the effect 

of interval variables on the probability of failure. In addition to the traditional sensitivity 

analysis in terms of random variables, sensitivity analysis in terms of interval variables is 

also needed. In this work, six types of sensitivity are proposed with respect to both 

random variables and interval variables. The proposed sensitivity indexes are 

summarized in Table I. 
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Table I. Six sensitivity indices 

Sensitivity type Description Input 

Typ ie I p /δ δ  ∂ ∂
Sensitivity of the width of the fp  bounds, pδ , with
respect to the width of interval variable , i

 

iY δ  
Interval 

Type II /f ip δ∂ ∂  
Sensitivity of the average fp , fp

b Y
, with respect to 

the width of interval varia le i , iδ  
Interval 

Type III /p yiδ∂ ∂  
Sensitivity of the width of the fp  bounds, pδ , with
respect to the average of interval variable , 

 

iY iy  
Interval 

Type IV /f ip y∂ ∂  
Sensitivity of the average fp , fp

bl
, with respect to 

the average of interval varia e , iY iy  
Interval 

Ty iqpe V p /δ∂ ∂  
Sensitivity of the width of the fp  bounds, pδ , with
respect to a distribution parameter, , of random 
variable i

 

iq
X  

Random 

Type VI /f ip q∂ ∂  
Sensitivity of the average fp , fp , with respect to a
distribution parameter, , of random variable 

 

iq iX  
Random 

 

3.1. Type I sensitivity /p iδ δ∂ ∂  

/p iδ δ∂ ∂  is the sensitivity of the width of the fp  bounds, pδ , with respect to the interval 

width of the ith interval variable iY , iδ . pδ  is defined by 

U
p f

L
fp pδ = −                                                    (13) 

The width of  is calculated by  

i

iY

U L
i iy yδ = −                                                     (14) 

where L
iy  and U

iy are the lower and upper bounds of , respectively.  

To obtain a unique sensitivity index, we define the change of

iy

iδ , ( )iδ∆  in such a way 

that expands in both directions equally; namely, iY L
iy  is decreased by ( )

2
iδ∆ and U

iy  is 
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increased by ( )
2

iδ∆ . There are infinite ways that Y  can change by i ( )iδ∆ , for example, 

, ]L U
i i[y y can change to 

3 ( ) ( ),
4 4

L Ui i
i iy yδ δ∆∆⎡ ⎤− +⎢ ⎥⎣ ⎦

or 
( ) 3 ( ),
4 4

L Ui i
i iy yδ δ∆ ∆⎡ ⎤− +⎢ ⎥⎣ ⎦

n makes the change unique. 

. Our 

definitio

This type of sensitivity can identify interval variables that have the largest impact on 

the width of the fp  bounds. If the gap of the fp  bounds is too wide, decisions will be 

difficult to make. To narrow the width of fp  bounds efficiently, more information about 

the important interval variables should be collected, and then their widths can be reduced. 

Sensitivity analysis will provide a useful guidance to the collection of more information. 

To derive the equations for /p iδ δ∂ ∂ , we consider all the situations where the 

maximum  minimum or fp  occurs on the lower bound, upper bound, or at an interior 

point of Y . Next we demonstrate how to derive /i p iδ δ∂ ∂  when the maximum fp  occurs 

on the upper bound of Y  and the minimum i fp  occurs on the lower bound of Y . The 

derivations of other cases are given in Appendix B, and the common equations used in 

derivations are given in

i

 Appendix A. 

), )i i iY Y − +

The problem can be stated as: 

Given: G = g(X, Y , , ,Y Y Y~ 1 2 1 1( , , ny=Y  ,
2i

yL U
i iyy +

= , L
fp  occurs at L

iy , 

and U
fp U

iy occurs at . 

Find: /p iδ δ∂ ∂ . 
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( ) ~ ~

~ ~

1 1, ,
2 2

1 11 1, ,
2 22 2
1 1
2 2

1
2

U L
U L f i i i f i i i
f fp

i i i

U L
f i i i f i i ii i i i

i i
i i i i

f

p y p yp p

p y p yy y

y y

p

δ δ
δ
δ δ δ

δ δδ δ

δ δδ δ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ + − −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ −∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦= =
∂ ∂ ∂

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛∂ + ∂ −∂ + ∂ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠ ⎣ ⎦ ⎝= −
∂ ∂⎛ ⎞ ⎛ ⎞∂ + ∂ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∂
⎛ ⎞= ⎜ ⎟
⎝ ⎠

Y Y

Y Y ⎞
⎟
⎠

~ ~
1 1, ,
2 21
1 12
2 2

1
2

U L
i i i f i i i

i i i i

U L
f f
U L
i i

y p y

y y

p p
y y

δ δ

δ δ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ ∂ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎛ ⎞⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦− −⎜ ⎟⎛ ⎞ ⎛ ⎞⎝ ⎠∂ + ∂ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞∂ ∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

Y Y

 (15) 

U
f
U

p
y

 an
i

∂

∂
d 

L
f
L
i

∂

∂

p
y

 then need to be calculated. In this case, the MPP’s of L
fp  or U

fp  are on 

one bound of iY . Let h be the bound and fp  be U
fp or L

fp . Then,  

[ ( )] ( )fp β β∂

h h h
φ β∂ Φ − ∂

= = − −
∂ ∂ ∂

                                     (16) 

where ( )φ ⋅ is the PDF of a standard normal distribution. Next, we will show how to 

calculate 
h
β∂
∂

.  

Let the MPP be ( )* * * *
1 2, , , nxu u u= ⋅⋅⋅u  and the corresponding interval . In the U-

space after X are transformed into U, the imit-state function becomes ( , )U Yg  and at 

the MPP the *( , )g u

s Y be y

l ,

 limit-state function is y , where y  is th Y at the MPP. Let 

*

e vector of 

 be the gradient of  in term of U at the MPP; namely, ( )g u∇ ( , )U Yg s 

* * *
*

, ,
1 2

( ) , , , ,
n

g g gg
U U U

⎛ ⎞∂ ∂ ∂
= ⎜ ⎟⎜ ∂ ∂ ∂⎝

u y u y u y
u∇

, ⎟
⎠

. For brevity, without losing generality, we 
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will 

 equation holds [40, 41],  

drop Y or y in the limit-state function expression in the following derivations. At the 

MPP, the following

*
*

*

( )
( )i

gu
g

β= −
u
u

∇
∇

                                             (17) 

*

*

( )g u∇
∇

 is the unit vector of the gradient, and the gradient is calculated at the MPP, 
( )g u

therefore a constant. Then,  

*

*( )

iu
i i

g
u U
h h g

β
∂

∂ ∂∂
= −

∂ ∂ u∇
                                             (18) 

Recall that  is on one bound h of the interval variable  at the MPP, where 

s the limit state and hereby becomes a constant. Then  

iy iY

*( , )ug h=  reacheG

1

0
h

xn
i

i i

UG g g
h U h=

∂∂ ∂ ∂
= +

∂ ∂ ∂∑ =
∂

                                      (19) 

Therefore, Eq. (19) becomes  

**

2

1
* *

1 1

*( ) 0ggβ∂ ∂

( ) ( )

x

x x i

n

n n uu
i ii i

i ii i

gg
UU Ug g g g

U h h U h h hg g

h h

β β =

= =

⎛ ⎞∂∂⎛ ⎞
⎜ ⎟⎜ ⎟ ∂∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ⎝⎜ ⎟+ = − + = −

∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

i g
h
∂⎠ +
∂

= −
∂ ∂

∑
∑ ∑ u u∇ ∇   (20) 

We then obtain 

+ =u∇

*( )

g
h

h g
β

∂
∂ ∂=
∂ u∇

                                           

Substituting 

       (21) 

/ hβ∂ ∂  in Eq. (16) with Eq. (21) yields 
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* *
( ) ( )

( ) ( )

g

h h hg g
φ β φ β ( )fp ghβ φ β

∂
∂ ∂ − − ∂∂

nsitivity 

= − − = − − =
∂ ∂ ∂u u∇ ∇

                   (22) 

Using the results from Eqs.(22) and (15), we get the equation of Type I se

when max
fp  occurs on erthe upp  bound of  and  iY min

fp  occurs on the lower bound of 

iY as follows:   

*, *,

1 1 ( ) ( )
U L

Lg gφ β∂ − ∂
+       (23) 

2 2 ( ) ( )i i

U L U
p f f

U L U Ly y
i i i i i

p p
y y Y Yg g

δ φ β
δ

⎛ ⎞⎛ ⎞∂ ∂ ∂ −⎜ ⎟= + = −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠u u∇ ∇

where Uβ is the reliability index at the maximum fp , Lβ is the reliability index at the 

minimum fp , u is the MPP for the maximum fp , and *,U *,Lu is the MPP for the 

minimum fp . The equations of Type I sensitivity for other situations are given in 

Appendix B. 

3.2. Type II sensitivity /f ip δ∂ ∂  

/f ip δ∂ ∂  is the sensitivity of the average fp , fp , w t toith respec iδ . fp is defined by 

2

U L
f f

f

p p
p

+
=                                                 (24) 

The relationship among U
fp , L

fp , pδ and fp

 the m

 is illustrated in Figure 3. This type of 

sensitivity quantifies the rate of change of ean value of fp  due to the change of the 

interval width of . The equations of this type of se

 

Figure 3.

iY nsitivity are given in Appendix C. 

U
fp , L

fp , iδ , and fp . 

L
fp  fp  U

fp  

pδ  
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3.3. Type III sensitivity /p iyδ∂ ∂  

/p iyδ∂ ∂  is the sensitivity of the width of the probability of failure pδ  with respect to the 

average of the ith interval variable, iy . iy  is defined by 

2

U L
i i

i
y yy +

=                                                      (25) 

The relationship among L
iy , i

Uy , iδ and iy  is illustrated in Figure 4. This type of 

sensitivity is useful when we can control the averages of the interval variables during 

e can efficiently decrease the reliability gap by shifting 

averages

 

Figure 4. 

reliability based-optimization. W

 of interval variables to which the probability of failure is highly sensitive. The 

equations of this type sensitivity are given in Appendix D. 

iy  L
iy  U

iy  

L
iy , U

iy , iδ , and iy . 

3.4. Type IV sensitivity /f ip y∂ ∂  

/f ip y∂ ∂  is the sensitivity of the average probability of failure fp  with respect to iy . It 

lls us how much the average probability of failure will change given the change in the 

 

te

midpoint of an interval variable. The equations of this type of sensitivity are given in 

Appendix E. 

 

iδ  

 



 73

3.5. Type V sensitivity /p iqδ∂ ∂  

/p iqδ∂ ∂  is the sensitivity of the width of the probability of failure pδ with respect to a 

distribution parameter, iq , of random variable iX . For example, for a normal 

distribution, q  would be the meani iµ or standard deviation iσ while for uniform 

 bounds. As shown previously, the distribution, iq  could be one of the interval fp  gap pδ  

is mainly caused by interval variables [38]. On the other hand, the value of fp  primarily 

depends on random variables. The equations of this type of sensitivity are given in 

Appendix F. 

3.6 Type VI sensitivity /f ip q∂ ∂  . 

/f ip q∂ ∂  is the sensitivity of the average probability of failure fp  with respect to a 

distribution parameter, , of random variable iq iX . The equations of this type of 

sensitivity are given I sensitivities for a 

normal distribution are also given in nd G, respective

3.7. Equations of all the sensitivity indices 

The equations for all the above sensitivity indices are summarized in Tables II, III and 

IV.  

 

 

 

 

 in Appendix G. The equations of Type V and V

Appendices F a ly. 
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Table II. Type I and II sensitivities for intervals 

Case 
Type I /p iδ δ∂ ∂  

(Appendix B) 
Type II /f ip δ∂ ∂  

(Appendix C) 

1 
 occurs at ;

 occurs at  

U U
f i

L L
f i

p y

p y
 

*,

*,

1 ( )
2 ( )

( )
( )

U
i

L
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢− +

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 
*,

*,

1 ( )
4 ( )

( )
( )

U
i

L
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢− −

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 

2 
 occurs at ;

 occurs at 

U L
f i

L U
f i

p y

p y
 

*,

*,

1 ( )
2 ( )

( )
( )

L
i

U
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢ +

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 
*,

*,

1 ( )
4 ( )

( )
( )

L
i

U
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢ −

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 

3 

 occurs at ;

 occurs at 

an interior point

U U
f i

L
f

p y

p  *,

1 ( )
2 ( )

U
i

U

U y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

*,

1 ( )
4 ( )

U
i

U

U y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

4 

 occurs at ;

 occurs at 

an interior point

U L
f i

L
f

p y

p  *,

1 ( )
2 ( )

L
i

U

U y
i

g
Yg

φ β⎡ ⎤∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

*,

1 ( )
4 ( )

L
i

U

U y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦u∇
 

5 

 occurs at ;

 occurs at 

an interior point

L U
f i

U
f

p y

p  *,

1 ( )
2 ( )

U
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦u∇
 

*,

1 ( )
4 ( )

U
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

6 

 occurs at ;

 occurs at

an interior point

L L
f i

U
f

p y

p  *,

1 ( )
2 ( )

L
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

*,

1 ( )
4 ( )

L
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦u∇
 

7 0 0 

  and  both

occurs at 
interior points

U L
f fp p
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Table III. Type III and IV sensitivities for intervals 

Case 
Type III /p iyδ∂ ∂  

(Appendix D) 
Type IV /f ip y∂ ∂  

(Appendix E) 

1 
 occurs at ;

 occurs at  

U U
f i

L L
f i

p y

p y
 

*,

*,

( )
( )

( )
( )

U
i

L
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

− − ∂
+

∂

− ∂
∂

u

u

∇

∇

 
*,

*,

1 ( )
2 ( )

( )
( )

U
i

L
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢− +

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 

2 
 occurs at ;

 occurs at 

U L
f i

L U
f i

p y

p y
 

*,

*,

( )
( )

( )
( )

L
i

U
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

− − ∂
+

∂

− ∂
∂

u

u

∇

∇

 
*,

*,

1 ( )
2 ( )

( )
( )

L
i

U
i

U

U y
i

L

L y
i

g
Yg

g
Yg

φ β

φ β

⎡ − ∂
⎢− +

∂⎢⎣
⎤− ∂
⎥

∂ ⎥⎦

u

u

∇

∇

 

3 

 occurs at ;

 occurs at

an interior point

U U
f i

L
f

p y

p  *,

( )
( )

U
i

U

U y
i

g
Yg

φ β− − ∂
∂u∇

 
*,

1 ( )
2 ( )

U
i

U

U y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

4 

 point

U L occurs at ;

 occurs at 

an interior

f i

L
f

p y

p  *,

( )
( )

L
i

U

U y
i

g
Yg

φ β− − ∂
∂u∇

 
*,

1 ( )
2 ( )

L
i

U

U y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

5 

 occurs at ;

 occurs at 

an interior point

L U
f i

U
f

p y

p  *,

( )
( )

U
i

L

L y
i

g
Yg

φ β− ∂
∂u∇

 
*,

1 ( )
2 ( )

U
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

6 

 occurs at ;

 occurs at 

an interior point

L L
f i

U
f

p y

p  *,

( )
( )

L
i

L

L y
i

g
Yg

φ β− ∂
∂u∇

 
*,

1 ( )
2 ( )

L
i

L

L y
i

g
Yg

φ β⎡ ⎤− ∂
⎢ ⎥−

∂⎢ ⎥⎣ ⎦u∇
 

7  0 
  and  both

occurs at
interior points

U L
f fp p

 0
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Table IV. Type V and VI sensitivities for random variables

Case 
Type V /p qδ∂ ∂  

(Appendix F) 
Type VI /fp∂ ∂q  

(Appendix G) 

General 

*,

*,

( )

( )

U
U i

U
i

L
L i

L
i

u w
q

u w
q

φ β
β

φ β
β

∂
− −

∂

∂
+ −

∂

 

*,

*,

1 ( )
2

( )

L
U i

U
i

L
L i

L
i

u w
q

u w
q

φ β
β

φ β
β

⎡ ∂
− −⎢ ∂⎣

⎤∂
+ − ⎥∂ ⎦

 

 

In the above table, w is given in Equation (A11) in Appendix A. 

The procedure to calculate the sensitivity indices is illustrated in Figure 5. First, 

unified reliability analysis is conducted to obtain MPP’s and interval variables at 

 U
fp and  L

fp . Then depending on the location of the interval variables, either interior or 

on a bound, at the MPP, the corresponding equations from Table II, III, and IV are used 

to calculate the sensitivity indices. 

X, Y 

 

Figure 5. The procedure to calculate sensitivity indices. 

 

 

 

G = g(X, Y) Unified Reliability Analysis 
*, *,, , , , at andu u y   U L U L U L

f fp pβ β

Sensitivity Analysis 

Equations in Table II, III and IV 
No need to call G = g(X, Y) 

 

Sensitivity indices 
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4. NUMERICAL EXAMPLES 

Two examples are used to demonstrate our proposed sensitivity measures with random 

and interval variables. The first example deals with normally distributed variables while 

the second example handles random variables with non-normal distributions. 

4.1. Example 1- adhesive bonding example  

A double-lap joint design of a rubber-modified epoxy based adhesive [45] is illustrated in 

Figure 6. The design consists of aluminum outer adherends and an inner steel adherend. 

The assembly is cured at 250 °F and is stress-free at temperature . The completed bond 

is subjected to an axial load P at a service temperature T . The coefficients of thermal 

expansion for the outer and inner adh end o

1T

2

er α and iα  are 66 10−×  an

c

tributions are given in Table 

V.

 
Figure 6. A double-lap joint design of adhesive 

d 

613 10−× oin/(in F)⋅ , respe tively. The modulus oE and the thickness ot , of the outer 

herend, and the modulus iE  and the thickness it , of the inner adherend, are random 

variables. The shear modulus G, width b, length L, of the adhesive, and the lap-shear 

strength of adhesive S

ad

a are also random variables. Their dis

  

 

ot  

x 

/ 2L  / 2L  
/ 2P  

it  

ot  

/ 2P  
h h 

P 
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Table V. R

Variable Mean Stan on Distribution 

andom variables X 

dard deviati
X1 E( o) 10 6 i ×10 ps 0 6  .1×10 psi Normal 
X (2 Ei) 3  

0.2 i 0. si 

0.011 in 

X9 (Sa) 4100 psi 41 psi Normal 

0×10 psi6 0 6 i .3×10 ps Normal 
X3 (to) 0.15 in 

0.10 in 
0.0015 in 
0.001 in 

Normal 
X4 (ti) Normal 
X5 (G) ×10 ps6 002×10 p

0.01 in 
6 Normal 

X6 (b) 1 in Normal 
X7 (L) 
X

1.1 in 
2000 psi 

Normal 
Normal 8 (P) 20 psi 

 

Because it is difficult to spread the adhesive uniformly over the surface, the thickness 

of the adhesive is estimated to be in an interval shown in Table VI. The temperature 

change, 2 1T T T∆ = − , is difficult to fit into so  probability distributime on since the 

tem terval is therefore assigned for as listed in Table 

VI. 

 

Table V les 

Variable Lower bound Upper bound 

perature field is unknown. An in T∆  

I. Interval variab

Y1 (h) 0.0195 in 0.0205 in 
Y2  -131.0 °F -129.0 °F ( T∆ )

 

The limit-state funct is the safety margin for strength requirement of the joint, 

which is defined by the difference between

ion 

 the lap-shear strength of adhesive and the 

maximum shear stress maxτ . The equation is obtained at x = 0.5 where the maximum 

ress occurs. nction is given by shear st The fu

( ) maxaG g S τ= = −X,Y  

where max (0.5)τ τ= , and 
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2( ) cosh( )
                   

4 sinh( / 2) 4 cosh( / 2) 2

          sinh( )
(1/ 2 / ) cosh( / 2)

o o i i

i o

b L b L E t E t

x
E t E t L

( )

o o i i

o o i i

E t E tPx x

T

ωτ ωPω
ω ω

α α ω

⎡ ⎛ ⎞−
= + ⎢ ⎜ ⎟

⎤− ∆ ω
ω

+⎝ ⎠⎣

+ ⎥+ ⎦

 

and 1 2

o o i i

G
h E t E t

ω
⎛ ⎞

= +

The failure event is defined by

⎜ ⎟
⎝ ⎠

. 

( ){ }0F g= <X,Y X,Y .  

l variable, or a distribution 

pa

by a sm ability i

parameter is then performed. The rate of change in the reliability analysis results with 

respect to the parameter was computed. The rate should be very close to the sensitivity 

 a

The analysis results are listed in Tables VII, VIII, IX and X. To verify the proposed 

method, additional reliability analyses are also conducted. The results are shown as 

“Numerical verification” in Table VIII (for interval variables) and Table X (for random 

variables). Each parameter (the average or width of an interva

rameter of a random variable), with respect to which a sensitivity index would be 

calculated, is increased all step size. An additional reli analys s for that 

index calculated from the proposed method. Both Tables VIII and X show good 

consistency and verify the ccuracy of the proposed method.  

The sign of a sensitivity index gives a possible direction for improvement. For 

example, in Table VIII 1/pδ δ∂ ∂  and /p 2δ δ∂ ∂  are both positive while 1/p yδ∂ ∂  and 

2y/pδ∂ ∂  are both negative. Therefore, if we wish to reduce the bounds of fp , we could 

narrow the intervals of ickness of adhesive ( th 1δ ) and the temperature change ( 2δ ) or 

increase their averages of them ( 1y  and 2y ). A similar conclusion can be drawn for 

/p iyδ∂ ∂  and /f ip y∂ ∂ .  
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To better interpret the sensitivity analysis re lts, the percentage change in Table IX is 

also includ d. 1%
iy
+∆  indicates the change in p

su

e δ  or fp  corresponding to the 1% increase 

in iδ  or iy , respectively. For instance, if 1δ  increased by 1%, or 1δ  increased by 

( ) ( ) 5
1 1 1% 0.0205 0.0195 1% 1.0 10 inchU Ly y −− × = − × = × , the width of the probability of 

failure bounds pδ  would increase by ( ) ( )-2 5 -7−5.009 10 1.0 10  = 5.009× × × × , where the 

m ltiplier is e in 

10

u  the chang 1δ  while the m and is the Type I sensitivity index. 

Similarly, the average probability o  failure 

ultiplic

f fp  would change by 

)5 72.494 10− −= − × . Since the sign is negative, ( ) (22.494 10 1.0 10−− × × × fp  would 

actually decrease. This exam pacts 

reliability or the probability of failure. A sensitivity index also tells us the relative 

im rtance of uncertain variables. For example, Y1 has higher of Type I ~ IV 

sensitivity indices than those of Y2; Y1 is therefore more significant than Y2 in terms of its 

im ct on

ple indicates how the change in input uncertainty im

 1%+∆po

 pδ and fp . pa

 

able VII bability of

Probability of Failure 

T . Bounds of the pro  failure 
L
fp  U

fp  fp  pδ  

fp  1 57.797×10-5 .067×10-2 .338×10-3 1.059×10-2
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Ta Sensitiv y w  int s 

r posed m l verification 

ble VIII. it ith respect to erval variable

P o ethod NumericaType of sensitivity 
Y1 Y2

Type I 
Y2 Y1

/p iδ δ∂ ∂  5.009×10-2 9.309×10-6 5.071×10-2 9.379×10-6

Type II /f ip δ∂ ∂  -2.494×10 -4.655×10 -2.525×10 -4.669×10-2 -6 -2 -6

Type III -9.978×10 -1.862×10 -1.001×10 -1.868×10/p iyδ∂ ∂  -2 -5 -1 -5

Type IV /f ip y∂ ∂  5.009×10-2 9.309×10-6 5.071×10-2 9.379×10-6

 

Table IX. The change of pδ  and fp  with 1% increases in iδ  and iy  

1+Type of sensitivity %
1∆  1%+

2∆  
Type I /p iδ δ∂ ∂  .009×105 -7 1.862×10-7

Type II /f ip δ∂ ∂  -2.494×10-7 -9.310×10-8

Type III /p iyδ∂ ∂  -1.996×10-3 2.241×10-5

Type IV /f ip y∂ ∂  1.002×10 -1.210×10-3 -5

 

Table X show ities sensitiv s in terms of the mean and standard deviation of random 

variables. The positive signs of /p qδ∂ ∂  and /fp q∂ ∂  imply that the distribution 

parameters need to be lowered to reduce pδ  and fp . And the negative ones suggest that 

distribution parameters need to be increased to reduce pδ  and fp . From this table, it can 

be concluded that X7 mpact on  has the highest i pδ  and fp highest 

se ti ty ind iven the ns of T I sensi

X redu ing arianc uld be than her 

random variables in order to lower 

 because it has the 

nsi vi ex values. G  positive sig ype V and V tivity indices of 

7 , c the mean and v e of  X7  wo more efficient  adjusting ot

pδ and fp . 
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Table X. Sensitiv ct to r es 

ed me l val

ity with respe andom variabl

Propos thod Numerica idation  
Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  

X1 1( )µ  1.091×10-10 5.475×10-11 1.097×10-10 5.509×10-11

X1 1( )σ  4.566×10-11   2.295×10-11 4.631×10-11   2.328×10-11

X2 2( )µ  - - - -2.097×10-11  1.054×10-11 2.083×10-11  1.046×10-11

X2 2( )σ  5.066×10-12   2.550×10-12   4.997×10-12   2.515×10-12   
X3 3( )µ  7.270×10-3   3.650×10-3     7.315×10-3   3.673×10-3     
X3 3( )σ  3.044×10-3     1.530×10-3   3.087×10-3     1.552×10-3   
X4 4( )µ  -6.292×10-3     -3.161×10-3   -6.250×10-3     -3.139×10-3   
X4 4( )σ  1.520×10-3     7.650×10-4   1.499×10-3     7.546×10-4   
X5 5( )µ  9.818×10    4.931×10-9    9.780×10-9   4.911×10-9    -9

X5 5( )σ  7.402×10-9    3.723×10-9   7.330×10-9    3.687×10-9   
X6 6( )µ  -1.913×10-3    -9.608×10-4     -1.912×10-3    -9.601×10-4     
X6 6( )σ  1.405×10     7.068×10     1.404×10     7.060×10     -3 -4 -3 -4

X7 7( )µ  -8.018×10-3    -4.026×10-3    - .011×108
X

-3    -4.022×10-3    
7 7( )σ  2.715×10     1.365×10         1.373×10-2 -2 2.731×10-2 -2    

X ( )8 8µ  9.421×10-7    4.731×10-7      9.428×10       -7    4.735×10-7

X 8( )8 σ  6.815×10-7      3.428×10-7    6.817×10-7      3.429×10-7    
X9 9( )µ  -1.079×10-6    -5.417×10-7    -1.078×10-6    -5.411×10-7    
X9 9( )σ  1.832×10-6    9.213×10- 1.831×10-6    9.210×10-7    7    

 

4.2. Example 2- cantilever tube 

In Example 1, all random variables are no ally distributed. In this example, some 

random variables follow non-normal distributions. The cantilever tube shown in Figure 7 

is subject to external forces , and  and torsio

defined as the difference between the yield strength and the maximum stress

rm

1F , 2F , n T  [44]. The limit-state function is P

S  maxσ , 

namely,  

( ) maxG g S σ= = −X,  Y
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where maxσ  is the maximum von Mises stress on the top surface of the tube at the origin 

and is given by 

2 2
max 3x zxσ σ τ= + . 

 
Figure 7. Cantilever tube. 

 

The normal stress xσ  is calculated by 

1 1 2 2sin + sin
x

P F F Mc
A I
θ θσ +

= +  

wh

normal stress due to the bending moment M, which is given by 

ere the first term is the normal stress due to the axial forces, and the second term is the 

1 1 1 2 2 2cos + cosM F L F Lθ θ=  

and  

( )222

4
A d d tπ ⎡ ⎤−= −⎣ ⎦  

/ 2c d= , 

( )44 2
64

I d d tπ ⎡ ⎤= − −⎣ ⎦  

The torsional stress zxτ  at the same point is calculated by 

L1 

L2 
P 

F1 F2 
θ2 θ1 

T 

d 

t x 

y 

z 
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2zx
Td

J
τ =  

where . 

The random and interval variables are give  Tables XI and respectively. 

. m variab

Variable Parameter 1 Parameter 2 Distribution 

2J I=

n in XII, 

 

Table XI  Rando les 

X1 (t) 5 mm (mean) 0.1 mm (std *) Normal 
X (d)  (mean) 0.5 mm (std) Normal 
X

2 42 mm
** ***

X5 (F1) 3.0 kN (mean) 0.3 kN (std) Normal 
Normal 

X7 (P) 12.0 kN (mean) 1.2 kN (std) Gumbel 
X8 (T) 90.0 N⋅m (mean) 9.0 N⋅m (std) Normal 
X9 (Sy) 220.0 MPa (mean) 22.0 MPa (std) Normal 

3 (L1) 119.75 mm (lb ) 120.25 mm (ub ) Uniform 
X4 (L2) 59.75 mm (lb) 60.25 mm (ub) Uniform 

X6 (F2) 3.0 kN (mean) 0.3 kN (std) 

      *: std – standard deviation   

      **: lb – the lower bound of a unifor

      ***: ub – the upper bound of a uniform distribution 

 

Variable Lower bound Upper bound 

m distribution 

Table XII. Interval variables 

Y ° 1 (θ1) 0° 10
Y2 ( 2) 5  15° θ °

 

The results of reliability analysis and sensiti  are listed in ble XIII, XIV nd XV. 

It i that sen ivi

vity  Ta , a

s noted sit ty indices of /p iδ δ∂ ∂ , and /p iyδ∂ ∂  are all  

sensitivity indices of 

positive while

/f ip δ∂ ∂  and /f ip y∂ ∂  are all negativ

the change in 

e. In this case, the direction of 

pδ will be opposite to the direction of change in fp  whenever we adjust 

iδ and iy . For instance, decreasing 1δ will result in a lower pδ  and a higher fp . 
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Table XI I.I  Bounds  of

Probability of

 of probability  failure 

 Failure L
fp  U

fp  fp  pδ  

fp  1.437×10-4   1.631×10-4   1.530×10-4   1.940×10-5

 

Table XIV. Sensitivity of interval variables 

Proposed Method Numerical Validation 
Type of sensitivity Y1 Y2 Y1 Y2

Type I /p iδ δ∂ ∂  1.038×10-4    5.861×10-5   1.034×10-4     5.837×10-5   
Type II /f ip δ∂ ∂   -5.192×10    -2.930×10     -5.170×10     -2.919×10    -5 -5 -5 -5

Type III /p iyδ∂ ∂ 2.077×10 2.068×10-4     1.167×10-4   
Type IV 

-4    1.172×10-4   
/f ip y∂ ∂  -1.038×10-4   -5.861×10-5   -1.034×10-4    -5.837×10-5   

 

Table XV. The change of pδ  and fp  with 1% increases in iδ  and iy  

1

1%
y
+∆  

2

1%
y
+∆  Type of sensitivity 

Type I /p iδ δ∂ ∂  1.038×10-5   5.861×10-6    
Type II /f ip δ∂ ∂   -5.192×10-6   -2.930×10-6   
Type III /p iyδ∂ ∂  1.039×10-5   5.860×10-6    
Type IV /f ip y∂ ∂  -5.190×10-6   -2.931×10-6    

 

In this example, uniform distributions and a Gumbel distribution are involved. In 

Table XVI, the sensitivities in terms of the parameters of these two distributions are also 

calculated. It is indicated that Type V and VI sensitivities of uniformly distributed 

variables, X3 and X4, are all positive. Hence, if we raise or lower the bounds of X 3 and X4, 

the change of pδ and fp will follow the same direction.  
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Table XVI. Sensitivity of random variables 

Proposed Method Numerical Validation  

Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  Type V /p qδ∂ ∂  Type VI /fp q∂ ∂  
X1 1( )µ  -5.822×10-2    -4.886×10-1    -5.820×10-2 -4.886×10-1    
X1 1( )σ  1.614×10-2    1.457×10-1    1.615×10-2    1.458×10-1    
X2 2( )µ  -2.413×10-2    -1.888×10-1    -2.413×10-2 -1.888×10-1    
X2 2( )σ  1.393×10-2    1.088×10-1    1.394×10-2    1.089×10-1    
X  

X  

X

3 3( )a 1.093×10-3    8.412×10-3    1.093×10-3    8.413×10-3    
X3 3( )b  1.130×10-3    8.697×10-3    1.137×10-3    8.742×10-3    

4 4( )a 1.123×10-3    7.893×10-3    1.124×10-3    7.894×10-3    
X4 4( )b  1.162×10-3    8.143×10-3    1.167×10-3    8.163×10-3    

5 5( )µ  7.630×10-8    6.197×10-7    7.631×10-8    6.197×10-7    
X5 5( )σ  8.347×10-8    7.033×10-7    8.355×10-8    7.040×10-7    
X6 6( )µ  3.908×10-8    3.117×10-7    3.908×10-8    3.117×10-7    
X6 6( )σ  2.192×10-8    1.779×10-7    2.193×10-8    1.780×10-7    
X7 7( )µ  5.002×10-9    4.256×10-8    5.002×10-9    4.256×10-8    
X7 7( )σ  5.139×10-10    5.670×10-9    5.143×10-10    5.674×10-9    
X8 8( )µ  5.678×10-8    5.050×10-7    5.688×10-8    5.049×10-7    
X8 8( )σ  1.363×10-9    1.402×10-8    1.363×10-9    1.402×10-8    
X9 9( )µ  -2.887×10-12    -2.457×10-11    -2.886×10-12   -2.457×10-11   
X9 9( )σ  8.708×10-12    8.108×10-11    8.740×10-12    8.146×10-11    

 

5. CONCLUSIONS 

When information or knowledge is not adequate to build probability distributions, 

interval variables may be used. In this case, probabilistic sensitivity analysis approaches 

are no longer applicable. An effective sensitivity analysis method is proposed to handle 

the mixture of random variables and interval variables.  

With the presence of both random and interval variables, reliability and the probability 

of failure resides between their lower and upper bounds. In this work, based on the 
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unified uncertainty analysis framework [39], we have explored various sensitivity indices 

with respect to both random and interval variables. Four new types of sensitivity for 

interval variables include the sensitivities of the width and average of the probability of 

failure bounds with respect to the interval width and with respect to the mean of each 

interval variable. Two new types of sensitivity for random variables include the 

sensitivities of the width and average of the probability of failure with respect to the 

distribution parameters of each random variable. Equations for the six sensitivity indices 

are derived. Through the unified reliability analysis and the First Order Reliability 

Method (FORM), the sensitivity indices are calculated after reliability analysis is 

completed without calling the limit-state function again. The sensitivity indices are 

therefore a byproduct of reliability analysis.  

The advantages of the proposed methods are as follows: (1) The method is easy to use 

because it employs the First Order Reliability Method (FORM), which is widely used in 

industry. (2) Sensitivity information is just a byproduct of reliability analysis. (3) Both 

random and interval variables can be handled by reliability analysis at the same time. 

And (4) the computation is efficient without a double-loop procedure or Monte Carlo 

simulation involved. 

The method has some limitations. Since it is based on only the First Order Reliability 

Method (FORM), the method cannot be directly extended to the Second Order Reliability 

Method (SORM).  The method assumes the global optimal solution if optimization is 

used for interval analysis. The method may not provide an accurate solution if a global 

optima is not reached. It is well known that FORM may not be accurate when multiple 
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MPPs exist. The proposed method exhibits the same behavior for the multiple MPP’s 

situation. 

Future work would be the further improvement of efficiency and the inclusion of more 

sensitivity indices. For higher efficiency, the efficient interval arithmetic could be used 

for interval analysis. Other sensitivity methods, such as those suggested in [45], could 

also be incorporated. 
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PAPER III 

Reliability Analysis for Multidisciplinary Systems with 
Random and Interval variables 

Jia Guo1 and Xiaoping Du2

Missouri University of Science and Technology, Rolla, Missouri, 65401 

Tremendous efforts have been devoted to developing efficient 
approaches to reliability analysis for multidisciplinary systems. Most 
of the approaches, however, are only capable of dealing with random 
variables modeled by probability distributions. Both random and 
interval variables may exist in multidisciplinary systems. Their 
propagation through coupled subsystems makes reliability analysis 
computationally expensive. A unified reliability analysis framework 
with both random and interval variables is proposed for 
multidisciplinary systems in this work. The framework is an extension 
of the existing unified uncertainty analysis framework for single-
disciplinary problems. The new framework involves probabilistic 
analysis (PA) and interval analysis (IA). Both PA and IA are 
decoupled from each other and are performed sequentially. Three 
supporting algorithms are developed. The effectiveness of these 
algorithms is demonstrated by a mathematical example and an 
engineering application.  

Nomenclature 

c =  limit state 
FX = cumulative distribution function of X 
fX = joint probability function of X 
G = response 
Gmax = maximum value of G 
Gmin =  minimum value of G 
g = limit state function 
h = equality constraint 
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Pr = probability 
pf = probability of failure 

L
fp  =  lower bound of probability of failure 
U
fp  =  upper bound of pr

 
obability of failure 

R = reliability 
mal random variables transformed from XU =  vector of standard nor

*u  = Most Probable Point 
les to ith discipline  Wi = vector of interval input variab

wL =  vector of lower bounds of W 
U  w =  vector of upper bounds of W 

X =  vector of random variables 
Xi =  vector of random input variables to the ith discipline  

 iscipline to the jth discipline  Yij = vector of coupling variables from the ith d
e ith discipline  Zi = vector of outputs from th

β =  reliability index 
 function of a standard normal variable Φ =  cumulative distribution

-1Φ  =  inverse function of Φ 
 
 

I. Introduction 

OMPARED with single-disciplinary reliability analysis, multidisciplinary reliability 

analysis is much more complicated. A multidisciplinary system consists of a number of 

disciplines (subsystems), which are often highly coupled with each other. The output of 

one subsystem may be the input to other subsystems, and vice versa. Uncertainty in one 

discipline will be propagated to other disciplines through the interdisciplinary interfaces. 

The other complexity is that a large number of uncertain variables may be involved in a 

multidisciplinary system. 

C 

Due to these complexities, computationally efficient strategies and algorithms of 

reliability analysis become essential. Several multidisciplinary reliability analysis 

methods have been reported [1~11]. Sues et al. [1] use response surface models to replace 

the computationally expensive simulation models in reliability analysis for 

multidisciplinary optimization (MDO). A multi-stage, parallel implementation strategy is 
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developed to integrate reliability analysis and an MDO framework [2]. The reliability 

analysis methods proposed in [3, 4] use the concurrent subspace optimization framework. 

A similar approach, the collaborative reliability analysis [5], performs reliability analysis 

and multidisciplinary analysis (MDA) concurrently. Ahn et al. [6] employ a sequential 

approach to reliability analysis with MDA. They also develop a strategy to associate 

single-level reliability-based design with the bi-level integrated system synthesis; and in 

their method sequential single loops of reliability analysis and optimization are conducted 

based on the approximation of limit state functions [7]. To avoid the tremendous 

computational burden caused by the direct integration of reliability-based design (RBD) 

with MDO, a method of Sequential Optimization and Reliability Assessment (SORA) for 

MDO is developed in [8]. The strategy of SORA is to decouple reliability analysis from 

MDO. 

Analytical Target Cascading (ATC) is reformulated for design optimization under 

uncertainty for hierarchically decomposed multilevel systems [9]. In this work, the 

advanced mean value (AMV)-based technique and a bottom-to-top coordination are used. 

ATC is also used in [10]. The method decomposes reliability-based MDO into several 

individual RBD problems at a sub-system level, and then SORA is used to solve the 

individual RBD problems. The study in [11] focuses on the tradeoff between the failure 

probabilities of subsystems and the tradeoff between system performance and subsystem 

failure probabilities. The study involves First Order Reliability Method (FORM) and 

multiobjective optimization with an all-in-one approach to the coupled analysis. A 

methodology for non-deterministic design optimization of hierarchically coupled 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 97

structural systems is proposed in [12], where parameter uncertainties are considered with 

modified deterministic multilevel decomposition formulations. 

The aforementioned methods use probability distributions for uncertain variables, and 

those variables are hence treated as random variables. In many engineering applications, 

however, information or knowledge might not be sufficient to build probability 

distributions. Intervals are usually suitable to describe those uncertain variables, about 

which we may have too limited information to form distributions. Examples of using 

intervals in multidisciplinary systems are given in [13, 14], where epistemic uncertainty 

(due to lack of knowledge) is modeled by intervals and the evidence theory.   

As indicated in [15], random variables and interval variables may present in a system 

simultaneously. A framework of Unified Reliability Analysis is developed to quantify the 

effect of random variables and intervals variables [15]. In this work, we extend the 

strategy in [15] to reliability analysis for multidisciplinary systems, where both random 

and interval variables are involved. In Section II, the Unified Reliability Analysis (URA) 

framework for a single disciplinary system and the First Order Reliability Method 

(FORM) are briefly reviewed. A multidisciplinary system model with random and 

interval input variables is also provided. In Section III, three algorithms, which support 

the extension of URA to multidisciplinary systems, are presented. These algorithms are 

demonstrated by a mathematical example and an aircraft wing design application in 

Section IV. Conclusions are given in Section V. 
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II. Methodology and Modeling 

A. Reliability Analysis 

In a single-disciplinary system, where only random variables X are involved, 

reliability is defined by  

 ( ) 0}gPr{R G= = ≥X  (1) 

where  denotes a probability, G is a response, andPr{}⋅  ( )1 2, , , , ,i nX X X X= ⋅⋅⋅ ⋅ ⋅ ⋅X  is a 

vector of random variables (n  is the number of random variables), 

X

X g  is a limit-state 

function [16]. In this paper, we assume that ( =1,2,..., )i XX i n  are independent. 

If the joint probability density function (PDF) of X is Xf , the probability of failure fp  

is calculated by 

 
( ) 0

Pr{ ( ) 0} ( )f
g

p G g f d
<

= = < = ∫ X
X

X x x  (2) 

It is obvious that . 

The limit state function is usually a nonlinear function of X; the integration 

Reliability Method (FORM) is widely used 

to ).  

 ra into standard normal random variables U. The 

th random variable 

1fp R= −

 ( )Xg  

boundary, ( )g c=X , therefore, is nonlinear. The probability integration in Eq. (2) is also 

multidimensional. There is rarely a close-form solution to Eq. (2) . Even a numerical 

integration method is computationally expensive or even impossible when the dimension 

is high. To this end, the efficient First Order 

obtain an approximate solution to Eq. (2

FORM uses the following three steps. 

Step 1: Transform ndom variables X 

 iX  is transformed by i
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 1 ( )− ⎡ ⎤Φ ⎣ ⎦= 
ii X iu F x   (3) 

where 
iXF is the cumulative distribution function (CDF) of iX , and is the inverse 

CD

Step 2: Search the Most Probable Point (MPP). The

1−Φ

F of a standard normal distribution.  

 MPP *u  is found by 

min

( ) 0s.t. g
⎨
⎧⎪

=⎪⎩
u

  u
                                                             (4) 

u

in which ⋅  stands for the norm (length) of a vector. Geometrically, the MPP is the 

shortest distance point from the limit state ( ) 0g =U  to the origin in U-space. The 

minimum distance *β = u  is called a reliability index. 

Step 3: Compute the probability of failure. fp  is obtained by 

( )β= Φ −fp                                                        (5) 

where Φ is the CDF of a standard normal distribution.  

T RM is the MPP search. The following he most computation-intensive work of FO

ve algor u d for the M

 

recursi ithm [17] is commonly se PP search, 

1
( ) ( 1)

1

1
( )

( 1

)
( )

( )
( )

β β

β

−
−

−

−

−

⎧
= +⎪ ∇⎪

⎨
∇⎪ = −⎪ ∇⎩

( )

( )

( )
( )

)

(u
u

uu
u

k
k k

k

k
k k

k

g
g

g
g

 (6) 

(( )∇ )u kgwhere ( )∇ ( )u kg  is the gradient of g at ( )u k ,  is its magnitude, and k is the 

iteration counter. 
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B. Unified Reliability Analysis Framework 

The purpose of this work is to establish a Unified Reliability Analysis (URA) 

framework that can handle both random a  interval variables in multidisciplinary 

systems. For this purpose, we employ the URA framework that has been developed for 

single-disciplinary systems [15]. The framework is illustrated in Fig.1. The input to the 

framewo

 nd

rk is random variables X characterized by probability distributions and interval 

variables W represented by their bounds [ wL , wU ]. It is obvious that the uncertain output 

distri  its 

maxi

 

Fig. 1 Unified reliability analysis framework. 

 
ction

(response) ( , )= X WG g  is also characterized by two bounds of its probability 

butions [15]. Thus the reliability of the system will also be bounded within

mum and minimum values.  

 

Reliability analysis calls the limit-state fun  ( , )= X WG g  a number of times. So 

does multidisciplinary analysis (MDA), which is responsible for solving the linking 

variables between subsystems. Various ways of integrating reliability analysis and MDA 

form various computational algorithms. In Section III, we present three computational 

algorithms that support the URA framework. 

G: CDF bounds, 
pf  bounds or 
reliability bounds 

( , )= X WG g
X: joint PDF  

W: intervals 1

 

11 w UwLw

2w2
Lw w

 

U
2
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C. FORM-Based URA 

Let denote the set of intervals W and 0∆w  ( )g <X,W  denote a failure event. The 

lower and upper bounds of the probability of failure, L
fp  and U

fp , can then be calculated 

by   

 { }maxPr max ( , ) 0L
fp G g= = < ∆wX W W  (7) 

and 

 

∈

{ }minPrU
fp G min ( , ) 0g= = < ∆w

respectively [15]. maxG  and minG are respectively the global maximum and minimum 

values o

∈X W W  (8) 

f G over 

According to Eqs. (7) and (8), the procedure to calcu

∆w .  

late L
fp  and U

fp  consists of two 

loops: one is interval analysis (IA) to search and her is probabilistic 

)  the probabilities

min

analysis (PA  to calculate

G  maxG , and the ot

{ }minPr 0G < ∈∆wW  and 

{ }maxPr 0G < ∈∆wW . If FORM is used for PA, the Most Probable Point (MPP) must be 

identified by solving the following model  

 
min

)s.t. g
⎨

0

⎧⎪

=⎪⎩ (u, w   
u

u 
 (9) 

wh

⎧⎪

ere w is treated as a constant vector. For IA, an optimization problem can be 

formulated for maxG : 

 
s.t. 
⎨

max ( , )g

∈∆⎪⎩
w

w   w
  (10) 

where u is treated as a constant vector. 

u w
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For minG , Eq. (10) becomes a minimization problem.  

To solve u in the PA problem in Eq. (9), w should be given; and to solve w in the IA 

problem in Eq. (10), u should be given. This indicates that both PA and IA are fully 

coupled. To reduce the computational cost, a FORM-based URA (FORM-URA) 

framework is proposed [15]. Under this framework, PA and IA are decoupled and are 

performed sequentially. This FORM-URA framework for the calculation of L
fp  is 

illustrated in Fig.2. IA is performed after PA. After PA, the KKT conditions of IA are 

checked at the solution of PA. If the KKT conditions are satisfied, IA will be skipped. 

Skipping the IA loop will save the computational time dramatically. 

The efficiency and robustness of an MPP search algorithm are very important for the 

FORM-URA method. The most commonly used MPP search algorithm HLRF [18, 19] 

may not converge for a nonlinear function. The improved version of HLRF algorithm 

[20], denoted by iHLRF, can be used. iHLRF is computationally efficient and guarantees 

to converge to a local MPP. We also use optimization for IA. Both FORM and 

optimization are capable of handling black-box performance functions, and therefore so 

is FORM-URA. 
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Initial ,  w u

k = 1

Probabilistic Analysis (PA) 
Iteration k of the MPP search  

 

Fig. 2 Flowchart of the FORM-URA method. 

 

D. Multidisciplinary Analysis (MDA) with Random and Interval Variables 

To integrate URA with MDA, we need to look at the relationship among random 

variables, interval variables, and coupling variables in a multidisciplinary system. A 

three-discipline system in Fig.3 illustrates such relationship. The notations are given 

below. 

Xs : sharing random input variables; 

Update u given w 

  Stop

k = k +1 

Convergence? 

KKT satisfied? 

Interval Analysis (IA) 
Maximize G given u 

N. 

( ) ( 1)  k k−=w w

Y. 

( )ku

( )kw

N. 
Y. 
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Xi : local random input variables of discipline i;  

Ws : sharing interval input variables; 

 

all the input variables. Since  depends on coupling variables, MDA must solve 

coupling variables first.  A complete set of coupling variables from the ith discipline 

is formulated as 

 j n j i= = ⋅⋅⋅ ≠ =Y Y Y X X W W Y   (11) 

g variables, which are the 

inputs to discipline i and the outputs from other disciplines. )i

Wi : local interval input variables of discipline i;  

Zi : outputs of discipline i; 

Yij : coupling (linking) variables from discipline i to discipline j.  

Zi and are functions of random, interval and other coupling variables from each 

discipline. Multidisciplinary analysis (MDA) is responsible for solving output Z  given 

Yij  

i

Zi

Yij  

( , 1, 2, , ; ) ( , , , , )i ij i s i s i ii i i

where n is the number of disciplines, and iY i  represents dependent variables as on the 

left-hand side of Eq. (11) and also the functional relationships between dependent 

variables and independent variables. iYi  is the vector of couplin

( , 1, 2, , ,i j i j n j= = ⋅⋅⋅ ≠Y Yi .  
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Fig. 3 Multidisciplinary systems with random and interval variables. 

 

The system of simultaneous equations in Eq. (11) determines the system consistency 

over the interfaces among coupled disciplines. Expanding Eq. (11) over all disciplines, 

we obtain  

  (12) 

12 12 1 1 1

13 13 1 1 1

21 21 2 2 2

23 23 2 2 2

31 31 3 3 3

32 32 3 3 3

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

( , , , , )

s s

s s

s s

s s

s s

s s ⋅

⎧ =
⎪

=⎪
⎪ =⎪
⎨

=⎪
⎪ =⎪
⎪ =⎩

Y Y X X W W Y

Y Y X X W W Y

Y Y X X W W Y

Y Y X X W W Y

Y Y X X W W Y

Y Y X X W W Y

i

i

i

i

i

 

Solving the above system of equations is the task of multidisciplinary analysis 

(MDA).  

Suppose i  is part of the outputs i  from discipline i and the corresponding function 

 ig .  The function is given b

G  Z

is y 

)  (13) ( , , , ,i i s i s i iG g= X X W W Yi

Discipline 1 
, s1X X

1,

 

 1Z  

sW W  

Discipline 2 

Discipline 3 

21Y  12Y  

13Y  

2, sW W

2 ,

32Y  
23Y  

 

31Y  
2Z   

3Z  

3, sX X  

 

sX X

3,

 

sW W  
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 If the failure event is defined as 0iG < , then the task of reliability analysis is to find 

the probability { }Pr iG 0<  . As describe in Sec.II.C, we need to quantify the lower and 

upper bounds: { }maxPr and 0iG <  { }minPr 0iG < . It is apparent that the computational cost 

of reliability analysis (PA, IA, and MDO) for solving this problem will be very high. 

Hence, efficient computational tools are essential and desired. Next, we propose three 

algorithms based on different strategies. 

 

III. Algorithms 

The key to this work is to extend the existing unified reliability analysis framework 

(URA) [15] to MDA. For this purpose, we propose three algorithms to integrate URA 

with MDA. In all the three algorithms, PA and IA are decoupled and are performed 

sequentially. PA is performed first while the interval variables are fixed, and then IA is 

performed while the random variables are fixed. The process of one PA and one IA is 

referred to as a cycle. After the first cycle, PA and IA are performed again in the second 

cycle. This process continues cycle by cycle till convergence.  

The three algorithms differ from each other in the ways of how they call MDA. The 

first algorithm is the Sequential Double Loops (SDL) algorithm where PA and IA call 

MDA independently, and each of them therefore forms a double loop. The second one is 

the Sequential Single Loops (SSL) algorithm, which transforms the system consistency 

requirement in MDA into equality constraints in PA and IA and therefore eliminates the 

MDA loop. Each of PA and IA then forms a single loop. The last one is the Sequential 

Single-Single Loops (SSSL) algorithm. In this algorithm, IA is the same as in SSL and 

involves a single loop. In the PA loop, the MPP search and MDA are performed 
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sequentially. The three algorithms are outlined in Fig.4. The details are given in the 

following subsections. 

 

SDL – Sequential Double Loops algorithm 

PA IA 
(Outer loop) (Outer loop) 

MDA MDA 
(Inner loop) (Inner loop) 

Double Loop Double Loop 

SSL – Sequential Single Loops algorithm 

 

 
Fig. 4  Outline of proposed algorithms. 

 

A. Sequential Double Loops (SDL) Algorithm  

In the SDL algorithm, the double-loop strategy is adopted to integrate the URA 

framework with MDA. SDL consists of the PA loop and IA loop, and each of them 

PA 
System consistency 

constraints 

Single Loop Single Loop 

IA 
System consistency 

constraints 

SSSL – Sequential Single-Single Loops algorithm 

PA IA 
MPP search MDA System consistency 

Sequential 
Single Loop Single Loop 
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involves a double-loop procedure with the MDA inner loop. At every iteration, both PA 

and IA call MDA independently, and these two double loops are performed sequentially. 

In both the PA and IA double loops, MDA is an inner loop for maintaining the system 

consistency. In this work, FORM is used for PA. The flowchart of this algorithm for 

searching the lower bound of probability of failure is given in Fig.5. 

 

Initial w, u, y

k = 1

   
  

Fig. 5 SDL algorithm for the lower bound of fp  

 

Probability Analysis (PA) 
MPP search  

Update u given w 

  Stop

k = k +1 

Convergence? 

KKT satisfied? 

Interval Analysis (IA) 
Maximize gi(u,w,y) given u 

N. 

( ) ( 1)k k−=w w  

Y. 

y   
MDA 

,u w  

y  

Y. 

N. 

,u w  

( )ku

 
MDA 

( )kw
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Specifically, in PA the MPP search is the outer loop, which is modeled as an 

optimization problem and takes only random variables as design variables. The interval 

and coupling variables are treated as constant. Their values are from previous cycle. 

Suppose the current cycle of the overall reliability analysis is cycle k. The optimization 

problem is expressed by 

 ( 1)

min  

    , , ) 0
         is solved by MDA

k
i i

i

s.t. g −

⎧
⎪⎪ =⎨
⎪
⎪⎩

u
u

(u w y
y

i

i

 (14) 

 In the above model, i  is a limit-state function in the ith subsystem. Design variables 

u consist of not only the random input variables to the ith discipline, but also all the 

random input variables to other disciplines, , , )

g

namely, 1( ,s n= ⋅⋅ ⋅ u .  All the interval 

ariables ( )( 1) 1 1 1 1, , , ,k k k k k− − − − −=w w w w w  are fixed, and they are from the IA in the last 

u u u

v s n

cycle. The MDA inner loop is used to solve coupling variables 

1 2

iy i . In this work, we use 

FORM for PA, and the algorithm in Eq. (6) is used. With the interval and coupling 

variables, the algorithm becomes 

 

1 ( 1)
( ) ( 1)

1 ( 1)

1
( )

( , , )

( ,

j k
i i

j k
i i

j
j j i

g

g

β β

β

− −

− −

−

= +⎪ ∇⎪
∇⎪ = −

( )

( )

( )
( )

u w
( 1)

( 1 ( 1)

( , , )

, )
( , , )

j j

k
i

j k
i i

g

g

−

−

− −

⎧

⎨

⎪ ∇⎩
)

u w y
y

uu

i

i

w y
u w y

i

i

 (15) 

where j

and are from the previous cycle of the overall reliability analysis. The coupling variables 

 are obtained from the following inner MDA loop.  

q s q s q q
− −= = ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ≠ =y y u u w w yi i   (16) 

 is the iteration counter of the PA loop, interval variables are kept constant 

ii

q qm q n m n m q Yi

( 1)k−w  

y

( ) ( ) ( 1) ( 1)( , 1,2, , ; 1,2, , ; ) ( , , , , )j j k k
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Then in IA, the minimization or maximizatio

 given random and co  The MDA 

n problem is an outer loop, which deals 

with only interval variables upling variables from PA.

inner loop is also used to solve coupling variables y ii . For the lower bound of fp ,  a 

ormulation 

 

k
i

i

g⎧
⎪⎪

⎪

w
u w

i

 IA is

maximization problem with the following f

, )iy i
( )max  ( ,

   
         is solved by MDA
s.t. ∈∆⎨
⎪
⎩

w w
y

 (17) 

where design variables are ( )1 2, , , ,n s=w w w w w . Random input variables ( )ku  are 

obtained from the MPP search and are kept constant herein. Coupling variables y ii  are 

solved by the following inner MDA loop. 

 ( ) ( )( , 1,2, , ; 1,2, ) ( , , , , )k k
q qm q s q s q qq n m n m q= = ⋅⋅ ⋅ = ⋅ ⋅ ≠ =y y Y u u w w yi i i   18) 

This algorithm integrates both PA and IA with MDA in a straightforward manner. It is 

therefore more robust than the other two algorithms that are presented next. Since the 

algorithm involves the direct combination of PA and MDA and the direct combination of 

IA and MDA, it requires calling MDA many times and may be computa nally 

expensive. or instance, a

, ;⋅ (

tio

F t the jth iteration of the MPP search in Eq. (14), MDA is 

performed whenever MPP is updated. When ( )ju  is obtained, MDA is called to get  in 

order to calculate ) . (

yi

1 ( 1)( , ,j k
i ig − −( )u w y i

( 1)k−w  

i

is from IA of the previous cycle and is kept 

c

equation of the derivatives of with respect to a particular random variable  (q-th 

element of ) is given by  

constant in the MPP search.) Besides, as shown in Eq. (15), MDA is also needed when 

the finite difference method is used to alculate the partial derivatives of g . The i

ig  qu

u
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' ( 1) ' ( 1), , ) , , )k k

i i i i i

q

g g g
u

− −∂ −
=

∂ ∆
(u w y (u w yi i  (19) 

where ( )'
1 2, , , , ,q nuu u u u= ⋅ ⋅ ⋅ + ∆ ⋅ ⋅ ⋅u , nu  is length of u , and ∆  is a step size. 'y ii  is the 

new values of coupling variables associated with t new dom variables . MDA 

oops (SSL) Algorithm 

sive, the SDL algorithm may not be efficient. 

To

termed as the Sequential Single Loops (SSL) algorithm. As shown in 

ig.5, the algorithm reformulates the optimiza

int

 

he ran 'u

must be called again to obtain 'y ii .  

The SDL algorithm suits the systems where the disciplinary analyses and MDA are 

computationally cheaper. In this work, PA is conducted by FORM. The general PA, 

however, is open to more methods, such as the Second Order Reliability Method 

(SORM) and the saddlepoint approximation method [21]. A nonlinear optimization can 

also be used for PA. For IA, a nonlinear optimization method or the interval arithmetic 

can be used. In this paper, we use the Sequential Quadratic Programming, which is one of 

the most popular nonlinear optimization methods.  

B.  Sequential Single L

As described above, when MDA is expen

 alleviate the computational demand from MDA, we use a single-loop strategy. The 

algorithm is then 

F tion problems of both PA and IA by 

including the interdisciplinary equilibrium (consistency) as part of constraints. The 

constraints of the equilibrium are formulated by maintaining the simultaneous equations 

in Eq. (11) of coupling variables as the following equality constra s. 

( , , ) ( , , ) = , 1,2, ,i i i i n= − =h u w y Y Y u w y 0  i i i  (20) 

where y contains all the coupling variables. 
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The model for the PA p in the kth cycle of the overall reliability analysis is then 

reformulated as   

loo

,

 ( 1)

min  

. .    , , ) 0

       ( , , ) 0  

k
i is t g −

⎧
⎪

( 1)k−

⎪
=⎨

=⎪⎩

u y
u

(u w y

h u w y
i  (21) 

where ig  is a limit-state function of subsystem i, interval variables ( 1)k−w  are given from 

the IA loop in the last cyc

⎪

le, and random variables u y are 

regarded as design variables and are solved by optimization. The solution . 

 optimization for the minimum probability of failure in the IA loop (see Eq.(7)) is 

modeled  by 

 and coupling variables 

 is ( )ku

The

  

( )

,

( )

max  ( , , ) 

. .   

      ( ) 0

k
i i

k

g

s t

⎧
⎪⎪ ∈∆⎨
⎪ =⎪⎩

w y

w

u w y

w

h u , w, y

i

 (22) 

where random vari a  constant. Interval 

variables w and coupling variables y are taken as design variables. 

ables ( )ku  is obtained from the PA loop and re

As shown in Fig. 6, there is no need to conduct separate MDA, but coupling variables 

become additional design variables that are solved in PA and IA. For example, in IA the 

interval and coupling variables become design variables and are solved given the random 

variables from the PA loop. The procedure is depicted in Fig.6. These two single loops 

are performed sequentially. 
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IA  PA: MPP search 
( )

,

 

Fig. 6 SSL algorithm for the lower bound of fp . 

 

Compared to the first algorithm, the SSL algorithm does not call MDA directly. The 

task of MDA is implicitly embedded in the PA and IA loops. The algorithm is suitable 

for the situation when it is easy to perform disciplinary analyses concurrently. It is 

efficient for the systems that contain fewer coupling variables. However, when the 

number of coupling variables is large, this algorithm will contain a large number of 

design variables since the coupling variables are treated as design variables. This might 

diminish the efficiency of the SSL algorithm. The other disadvantage of the algorithm is 

th ion of equality constraints for the system consistency. Equality constra ake 

optimizatio . Since additional raints are added to the MPP search 

in PA, the existing MPP search algorithms are no longer applicable.  

C. Sequential Single-Single Loops (SSSL) Algorithm 

In the first algorithm, the SDL algorithm, an efficient MPP search method can be used 

for PA, while in the second algorithm, the SSL algorithm, only nonlinear optimization 

can be used for PA. Nonlinear optimization is usually not as efficient as specialized MPP 

search algorithms , we combine both of 

e inclus ints m

n hard to converge const

. To take advantage of the MPP search algorithms

( )
. .    
       ( , ,k

s t ∈∆
max  ( , , ) 

) 0

k
i ig

=

w y
u w y i

 
,

ww
h u w y

( 1)

( 1)
. . ( , , ) 0

( , , ) 0
k

i
k

s t g −

−
=

min

i =

u y
u

i

 
u w y

h u w y
  

      

Converge?

N.

Y.( )k ( )k

Initial  
w, u u w

1k k= +  
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the above two algorithms. The combinati n comes from the PA loop of the SDL 

alg

 

o

orithm and the IA loop of the SSL algorithm. An MPP search algorithm can then be 

used for PA. To save computational resources further, for PA, we change the double-loop 

procedure to a sequential single loop procedure where the MPP search and MDA are 

performed sequentially. The same double loop procedure for IA is used as in the SSL 

algorithm. The algorithm is illustrated in Fig. 7.  

 

Fig. 7  SSSL algorithm for the lower bound of fp . 

 

In PA, only random variables are solved in the MPP search, and then the MDA 

co

m consi  

olved simultaneously given the random 

variables from the PA loop. IA includes system consistency constraints and involves a 

loop is 

nducted to update the coupling variables. The MPP search and MDA are performed in 

a sequential manner till convergence is reached. In IA, the syste stency is part of 

constraints. Interval and coupling variables are s

Converge?

( )k  w

IA  
( )

,

( )

max ( , , )

. .

k
i

k

g

s t

⎧
⎪

∈∆⎨
⎪ ( , , ) 0i

⎪

=⎪⎩

w y

w

u w y  

   w

        h u w y i

k = k +1 
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y   ∂

∂
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I
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single-loop procedure. The overall reliability analysis is performed sequentially with the 

sequential single-loop PA and the single-loop IA.  

The MPP search algorithm in the SDL algorithm in Eq. (15) is modified as 

 

1 ( 1) 1
( ) ( 1)

1 ( 1) 1

1 ( 1) 1
( )

( , , )
( , , )

( , , )

j j i i
j k q

j k q
j j i i

g

g

β β

β

−
− − −

− − −

= +⎪ ∇
⎨

∇⎪ = −
⎩

( ) ( )

( ) ( )
( )

u w y
u w y

u w yu

i

i

 (23) 

( 1 ( 1) 1( , , )

j k q

i i

j k q
i i

g

g

− − −

− − −

⎧

⎪

⎪ ∇

( ) ( )

) ( )u w y

i

i

The above equation is for the jth iteration of t

PA loop and the kth cycle of the overall reliability analysis. The interval variables 

he MPP search in the qth iteration of the 

( 1)k−w  

are from the previous cycle (cycle k-1) of the overall reliability analysis and are kept 

constant. The coupling variables ( 1)q
i
−y i  are from the last iteration (iteration q-1) of the PA 

loo

obtained from the following model. 

p   (24) 

If analytical derivatives are not available for the gradient )g − − −∇ ( ) ( )u w y  in 

p and are also kept constant. The solution is the MPP ( )qu .  

After the MPP loop is completed, MDA is performed. The coupling variables ( )q   are iy i

( ) ( ) 1 1( , 1,2, , ; 1,2, , ; ) ( , , , , )q q k k
p pm p s p s pp n m n m p − −= = ⋅⋅ ⋅ = ⋅ ⋅ ⋅ ≠ =y y Y u u w w yi i i

 1 ( 1) 1( , ,j k q
i ii

Eq. (23), the finite difference method in Eq. (19) can be used to estimate gradients 

/i pg u∂ ∂ , where pu  is the pth element of u. The equation is written below. 

 
( 1) ' ( 1) ' ( 1) ( 1)( , , ) ( , , )j k j k

i i i i i

p

g g g− − − −∂ −
=

u w y u w yi i  (25) 

where 'y ii  is the new values of coupling variables associated with the new

u∂ ∆

 random 

variable , , , , ,u u u u= ⋅ ⋅ ⋅ + ∆ ⋅ ⋅ ⋅u . ( )'
1 2 p nu
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It is noted that the coupling variables iyi  are not constant. They are functions of u. '
iy i  

should therefore be re-calculated. However, 'y  cannot be obtained from the MPP search 

since it is decoupled from MDA. A first order Taylor’s series expansion is used to 

'

ii

estimate , and the equation is given by iy i

' i
i i

pu
∂

= + ∆
∂
yy y i

i i   (26) 

where i

pu∂
∂y i  is obtained from the MDA loop in the previous iteration (iteration j-1) of PA 

p nstant in the MPP search.  

algorithm is suitable f lems where PA is relatively expensive and IA is 

ab

 

IV. Examples 

For demonstration, two examples are provided. The first one is a mathematical 

problem with two subsystems. Although the probabilistic constraints are simple and the 

number of variables is small, it is effective to show the formulations and procedures of 

the three algorithms. The second example is a wing design problem involving more 

complicated probabilistic constraints and more coupling variables and random variables. 

It indicates the potential use of the algorithms to real engineering applications. 

A.  Example 1 – A Mathematical Problem [8] 

In this example the system consists of two subsystems. For demonstration, two local 

interval variables and one shar ed to the original problem 

and is ke t co

This or prob

relatively cheap. One may also choose this method when the number of random variables 

is large and the number of interval vari les is small.  

ing interval variable are introduc
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in 

.

2 2 )s sX W Y+ + +  

    W Y+ +  

             12 2     

          

where 

[8] where only random variables are involved. The new problem is demonstrated in 

Fig. 8 and is formulated as follows  

Subsystem 1: 

             1 1 (G X W= − 1 21

         12Y W X= + 1 21s s

Subsystem 2: 

2 2(5 5 3 4 )s sG W X W Y X= + + − −

 21 2 12s sY W X W Y= + + −    

sW  is a shared interval variable  and are local interval variables. ; 1W 2W  sX  is a 

sharing random variable; and 1X  and 2X  are local random variables. , 

.5)

its first and second variables are mean and standard deviation, respectively. All the 

interval variables have the same bounds, and 

~ (0,0.3)sX N

1 ~ (5,0X N ,  and ~ (1,0.1)X N , where ( , )N  stands for a normal distribution, and 2 i i

1 2, , [2.245,2.255]∈sW W W . The 

probabilities of failure are defined by { }Pr 0  ( 1,2)f i

 

p G i= < = . 

 

Fig. 8 Mathematical example. 

Subsystem 1 Subsystem 2 
12 12 1 21( ) s sY W X W Y= = + + +Y  

21 21 2 12( )= = + + −Y s sY W X W Y  

1 1 1 21s s 2 2 12 2s s( 2 2 )= − + + +G X W X W Y (5 5 3 4 )= + + − −G W X W Y X

1 1( )
( )s sW=W)
W=W1 1( )

(s s

2 2

( )
( )

X=X s sX
X

=
=

X
X 2 2

( )
( )

s sW
W

=
=

W
WX=X
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To demonstrate the procedure of each algorithm, we provide the equations of the three 

algorithms for the lower bound of fp  for G1 at the kth cycle as follows. Recall that a 

cycle is a sequential process of PA and IA; in other word, it is one iteration of the overall 

rel

rithm 

ed by 

iability analysis. 

1. SDL algo

1) PA loop 

The MPP search is model

 ( )1 2, ,

1) ( ) (
su u u

s.t. G µ σ − −
⎨
⎪ = + + +

u=

         

2 2 2
1 2

( ( 1)
1 1 1 1 1 21

min

) 2 2 0

s

k k
s s s s

u u u

u w u w yµ σ

+ +⎪

⎡ ⎤− + + =⎣ ⎦⎩

 
      

where the design variables are 

⎧

( )1 2, ,su u u=u , ( 1)k
sw −  and ( 1)

1
kw −  are the interval variables 

from the (k-1)th cycle, and is the coupling variable solved from MDA, which is 

solved by 

 
2 12

( )

( )

k k
s s s s

k k
s s s

y w u w y

u w y

µ σ

µ σ

− −

− −

⎧ = + + + +⎪
⎨

+ + + −
 

where interval variable is also from the (k-1)th cycle. 

he above MPP search and MDA are nested and form a single-loop PA. The solution 

of the PA loop is the MPP 

21y

( 1) ( 1)
12 1 21

( 1) ( 1)
21 sy w=⎪⎩

( 1)
2

kw −  

T

( )*,( ) *,( ) *,( ) *,( )
1 2, ,k k k

su u u=u k . It is noted that in the above 

equations all the random variables are transformed into standard normal variables. 

given by  

            
x ( ) ( ) 2 2

 , , [2.245,2.255]
s

k k k k
s s s sw w w

s

G u w u w y

s.t. w w w

µ σ µ σ− −

=
⎡ ⎤= + − + + + +⎪ ⎣ ⎦

⎨
∈⎪⎩

w
 

     
        

 

2) IA loop 

The optimization model is 

( )1 2

*,( ) ( 1) *,( ) ( 1)
1 1 1 1 1 21, ,

1 2

ma⎧
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( )1 2, ,sw w w=where the design variables are w , and 21y  is the coupling variable obtained 

by the following MDA.  

*,( )
12 1 21

*,( )
21 2 12

( )

( )

k
s s s s

k
s s s s

y w u w y

y w u w y

µ σ

µ σ

⎧ = + + + +⎪
= + + + −⎪⎩

The above MDA and the optim

  

ization problem are nested; and they form a single-loop 

⎨

IA. The solution of the IA loop is the interval variables ( )( ) ( ) ( ) ( )
1 2, ,k k k k

sw w w=w . 

2. SSL algorithm 

1) PA loop 

The MPP search and MDA are formulated together as a single-loop procedure. The 

formulation is given below. 

                  

2 2 2

,

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)
2 21 2 12

( ) ( ) 2 2 0

( ) 0

( ) 0

k k

k k
s s s s

k k
s s s s

s.t. G u w u w y

h y w u w y

h y w u w y

µ σ µ σ

µ σ

µ σ

− −

− −

− −

⎧
⎪
⎪ ⎡ ⎤= + − + + + + =
⎨

⎡ ⎤⎪ = − + + + + =⎣ ⎦
⎡ ⎤= − + + + − =⎪ ⎣ ⎦⎩

u y

  
      

       

       

 

where the design variables are 

1 2

1 1 1 1 1 21

1 12 1 21

min s

s s s s

u u u+ +

⎪ ⎣ ⎦

⎪

 

( )  and ( )12 21,y y=y1 2 3, ,u u u=u .  

1,

1 12 21

( 1
2 2

1 2

max ( )

 

, [2.24 2.255]

k
s

s s

k
s

s

G u w y

s.t. h y w u

w w w

µ σ σ

σ

σ

− −

−

⎧ ⎤+ + +
⎪

⎡ ⎤= − =⎣ ⎦⎨
− + =

∈

w y
 

   

      

        

⎪⎪

⎪
⎪
⎪⎩

 

where the desig es

2) IA loop 

*,( )
1)k ⎡− ( 1) *,( )( k

suµ + ( 1)2 2kw +1 1 1 1 2

( 1) (k k
s sµ
− −+ + ( 1)

1) w y+ +
( 1)k
sw −⎡ ⎤⎣ ⎦

)
1y−2 21h y=  

0 

( s uµ + )s w+ 0 

, 5,

s s⎣ ⎦=

      

n variabl  are ( )2  an1,sw w , w= dw  ( )21y .  12 ,y

 

 

=y
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3. SSSL algorithm 

1) PA loop 

                         

The MPP search and MDA are conducted sequentially. In the jth iteration of PA, the 

MPP search is formulated as 

2 2 2
1 2

( 1) ( 1) ( 1)
1 1 1 1 1 21

min

( ) ( ) 2 2

s

k k j
s s s s

u u u

s.t. G u w u w yµ σ µ σ− − −

+ +

⎡ ⎤= + − + + + + =⎣ ⎦

 

  0
u  

where the design variables are ( )1,u u=u 2 3,u .  The interval variables  and( 1)k
sw −  ( 1)

1
kw −  

are from the (k-1)th cycle of the overall reliability analysis. (Recall the current cycle is 

the kth cycle.) The coupling variable ( 1)
21

jy −  is obtained from the previous MDA in the  

(j-1)th iteration. After the MPP search, MDA is performed to solve the coupling variable 

( )

  

21
jy  and is formulated by 

  
0

0

( 1) ( 1)
12 1 21

( 1) ( 1)
21 2 12

( )

( )

k k
s s s s

k k
s s s s

y w u w y

y w u w y

µ σ

µ σ

− −

− −

⎧ ⎡ ⎤− + + + + =⎪ ⎣ ⎦
⎨

⎡ ⎤− + + + − =⎪ ⎣ ⎦⎩
  

2) IA loop 

The IA loop is the same as in the SSL algorithm. 

The comparison of the reliability analysis results for probabilistic constraint G1 and G2 

from the three algo  are summarized in Table 1. The comparison is done with the 

same convergence criteria applied to each algorithm. Monte Carlo Simulation (MCS), as 

a sampling-based verification method, is also conducted. Latin Hypercube sampling is 

used to get the samples of the interval variables. The result from MCS is also listed in 

Table 1. The ost of ds is measured by the number of 

function evaluations (analyses at the subsystem level). 

rithms

computational c  all the metho
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fpTable 1 Bounds of   

Constraint Bound SDL SSL SSSL MCS 
max
fp  1.463×10-3 1.463×10-3 1.463×10-3 1.412×10-3

Funcalla 1330 1210 370 370 406 358 109

min
fp  1.235×10-3 1.235×10-3 1.235×10-3 1.202×10-3G1

330 1210 370 370  109

     
Funcall 1 406 358

 
max
fp  9.709×10-4 9.709×10-4 9.709×10-4 9.200×10-4

Funcall 2210 2430 310 310 438 502 108

min
fp  6.288×10-4 6.288×10-4 6.288×10-4 6.401×10-4G2

108Funcall 2370 2606 310 310 438 502 
a. Funcall: the numbers of function evaluations, which are the numbers of analyses in 

subsystems 1 and 2, respectively. 
 

It is noted that the results obtained from SDL, SSL and SSSL are identical. The results 

are also very close to the MCS solutions. All the algorithms therefore converge to an 

accurate solution. For this simple problem, SSL algorithm outperforms the rest in terms 

 since it calls subsystem

B.  Example 2 - Aircraft Wing Design 

A wing design problem for a light aircraft [22] involves aerodynamic design and 

cted in Fig. 9 [22], and the coupled 

subsystem r

of efficiency  analyses with the least number of times.  

structural design. Aerodynamic design is responsible for selecting the external shape of 

the wing while structural design determines the structural size. The two disciplines are 

coupled with each other. A structural model is depi

s are illust ated in Fig.10.  
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Spar cap 

Section 1

Section 2

Section 3

Section 4

Section 5 

Section 6 

 

Fig. 9 The win re model

 

g structu . 

 

Fig. 10 Coupled aerodynamic and structural subsystems 

 

The reliability associated with each of the following constraints in Subsystem 2 is to 

be evaluated. The probabilities of failure are given by 

Subsystem 1 
Aerodynamics 

Subsystem 2 
Structure 

1 ( , )
( )
θ α=W

=Ws AR ( , )=Xs V H

1 0( )=X W

1Z

2 1 2( , 10 )
( )

, ,
=
=W w w

Ws AR

(

w

12 0 1 2 3, , , )=Y

21

a a a a

( )δ=Y

2 1 3

(
( , )

s

S
=
=

2 2 2 (2) )

2, , ,J F S S
, )V HX

X

2, , (10)( (1),G G G=Z

Section 7 

Front shear web 

Skin  

Aerodynamic load  

Rear shear web 
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{ } { }
{ } }{

2 1

2 2

2 3

Pr ( ) 0 Pr 0 ( 1, 2,  ,  7)

Pr (8) 0 Pr 0

Pr (9) 0 Pr 0

σ

τ

τ

≤ = − ≤ =

≤ = − ≤

≤ = − ≤

…i

skin

wf

G i S i

G S

G S
  

{ } }{
{ } }{2 3Pr (10) 0 Pr 0τ≤ = − ≤wrG S

where  ( 1,2,  ,  7)σ = …i i  are the bending stres  the spar cap for each section, ses in τ skin  is 

the maximum shear stress in the skin, τ wf  is the shear stress in the web, τ wr  is the shear 

stress in the rear web, and  and are the bending strength of the material of the 

spar caps, the shear strength of the skin, and the shear strength of the spar web, 

respectively. rameters are 

given in Table 2 along with other random variables. 

2 u f r  v le
Variables Mean Standard deviation Distribution 

1S , 2S 3S  

 1S , 2S  and 3S  are normally distributed, and their distribution pa

Table  Distrib tions o andom ariab s 

Flight altit 00  N al ude H 3 0 m 300 m orm
Flight speed V 200 km/h 20 km Normal 
Wing area S 10 m
Take-o  w 0 00 g N al 
Shear modulus J ×1010 N 2.7×1
Gust load 4  N al 
Bending strength S1 450 N/mm 45 N/mm Normal 
Shear strength of the sk 200 N/ 2 20 2

Shear stren e 2  

 /h 
2 0.5 m2 Normal 

eight Wff 7  kg 70 k orm
/ mm2 09 N/ mm2 2.7 Normal 

factor F .0 
2

0.4 orm
2

in S2 mm
mm2

N/mm
 N/mm2

Normal 
Normal

 
f gth o th web S 250 N/ 53

 

The aspect ratio ( w le rea -w  ered a terval 

variables. Their nominal values a  widths ed in T

 

 

 

 

 

 

AR), t (θ), a s (w1 10) are consid s inist ang

nd  are provid able 3. 
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Table 3 Interval and deterministic variables 
Design variables Nom s Disciplines inal value Width 
Aspec ra 823 40 ics t tio 5.7  0.  Aerodynam
Twist angle 0.80406 (deg) Aer  
Angle of   (d (de ics 
Area of spar cap in section 1, 50.0 (mm2) 1.0 (mm2) Struct e 
Area of spar ca  in se 54  1 S
Area of spar cap in section 3, 1  (m m Stru
Area of spar c p in se 21  2 S
Area of spar cap in section 5, 3  (m m Stru
Area of spar c p in sectio  472.83 (mm2) 5.0 2) Stru
Area of spar cap in section 7, 6  (m m Stru
Thickness of the skin, 1.0  0.01 (mm) Structure 
Thickness of the front web, (mm (m Structure 
Thickness of th  rear web 1.0  0.01 (mm) Structure 

0.2 (deg) odynamics
5.0877 eg) 0.05 g) Aerodynamattack, α

ur1w  
.81 (mm2) .0 (mm2) tructure p ction 2, 2w  

m2) 3w  22.07 2.0 (m 2) cture 
5.23 (mm2) .0 (mm2) tructure a ction 4, 4w  

m2) 5w  33.13 3.0 (m 2) cture 
(mm cture a n 6, w6

m2) 7w  28.42 6.0 (m 2) cture 
(mm)8w  

1.0 ) 0.01 m) 9  w
(mm)e , 10w  

 

A compa  th s f lgo it-state functions 

G1 ~ G10 are su marized i ble 4. MCS is  conducted t firm the ac y of 

the results. Due  the high putational co  evaluating 

this example, MPP-based importance sam [23, 24] is S. This method 

generates samples around the MPPs rather than over the whole random space, and 

therefore the number of simulatio an that of the general MCS. The 

res

 

 

rison of e analysis result rom the three a rithms for lim

m n Ta  also o con curac

to  com st of the constraint functions in 

pling  used in MC

ns is much less th

ults show that the three algorithms produce the same solutions, which are all close to 

the result from MCS. In this case, SSL algorithm requires the least disciplinary analyses. 
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Table 4 Two bounds of fp  obtained by different algorithms 
Constraints SDL SSL SSSL Monte Carlo 

max ≈ 0 ≈ 0  ≈ 0 ≈ 0 fp  
Funcall 15759 16221 1966 1966 4838 5963 104

min
fp  ≈ 0 ≈ 0  ≈ 0  ≈ 0 

      

-3 5.363×10-3

Funcall 12228 12586 1088 1088 3915 4509 104

1.800×10-3 1.800×10-3 1.800×10-3 1.812×10-3

Funcall 10948 11269 1172 1172 3898 4528 104

      

5.622×10-3 5.622×10-3 5.622×10-3 5.549×10-3

Funcall 13447 13841 1088 1088 3915 4509 104

p  0-3 1.808×10-3

all 1095 1172 452
  

5.6 ×10 -3

all 088 4518 4

1.8 1.801×10-3 1.786×10-3

Funcall 844 1172 104

     
5.658×10-3 5.6 5.658×10-3 5.498×10-3

Funcall 1351 4518 4

1.8 00×10 -3

 

all 72 4
    

.6 5.680×10 3×10-3

Funcall 1088 4
1.797×10-3 1.797×10 ×10-3

Funcall 1172 1172 3898 4537 104

  
5.4 1×10

all 74 4
1.7

Funcall 8 898 4 4

≈ 0 
Funcall 91 1591 4833 5

2 (1)G  

Funcall 16048 16519 976 976 4816 5932 104

max
fp  5.614×10-3 5.614×10-3 5.614×10

max
fp  

2 (2)G  

max
fp  

min2 (3)G  
1.802×10-3 1.802×10-3 1.802×1f

Func 7 11278 1172 3898 8 104

 

max
fp

Func

 

5.635×10
 

35×10
 

-3 -3 5.635
 1088 3915 

-3 5.646×10
1011373 11706 1

1.801×10

 

2 (4)G  
-3

12478 12
01×10-3min

fp  
 1172 3898 4528 

 
58×10-3

5 13911 1088 
1.800×10

1088 3915 
00×10

10

max
fp  

min
fp  -3 -3 1.8

 1172 3898 
 

-3 1.741×10
528 10

 

2 (5)G  Func 11356 11689 11
 

5.680×10

4

-3 5
11373 11706 

1.797×10

80×10-3 -3 5.40
527 10 1088 3915 4

max
fp  

2 (6)G  
-3 -3 1.742min

fp  
12478 12844 

 

Func
2 (7)G  

 
5.451×10

 
51×10

 
-3 -3 5.45

 1074 3915 
94×10

-3 5.703×10-3

10761 11076 10
1.794×10

536 104

max
fp  

-3 -3 1.794×10-3 1.777×10-3

537 10

≈ 0  
787 10

12070 12424 115

≈ 0  
14229 14646 15

 1158 3

≈ 0  

min
fp  

max
fp  

4

min
fp  ≈ 0  ≈ 0  ≈ 0 

Funcall 13804 14209 920 920 4816 5734 10
≈ 0 

4

2 (8)G  

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 126

Constraints SDL SSL SSSL Monte Carlo 
max
fp  ≈ 0 ≈ 0  ≈ 0  ≈ 0 

Funcall 16303 16781 1256 1256 5445 6597 104

min
fp  ≈ 0  ≈ 0 ≈ 0  ≈ 0  

(9)G  

Funcall 14739 15171 1273 1273 4833 5949 10

2

4

max
fp  ≈ 0 ≈ 0  ≈ 0  ≈ 0  

min
fp  ≈ 0 ≈ 0 ≈ 0  ≈ 0  2 (10)G  

Funcall 

Funcall 12597 12966 906 906 4527 5346 104

12580 12949 1778 1778 3898 4645 104

 

 requires integrating PA and IA with multidisciplinary analysis (MDA). 

Since the overall reliability analysis invol  computation is 

intensive. The direct integration of PA, IA, and MDA would require a triple loop 

procedure and would make the computational 

number of nested loops, PA and IA are performed sequentially. Three algorithms are 

used for PA and IA, and when the three algorithms can be used. 

 

 

V. Conclusion 

A unified reliability analysis framework for multidisciplinary systems with both 

random and interval variables is developed. Given random and interval variables as 

inputs, the output of this framework is the bounds of reliability or the probability of 

failure. The framework consists of probabilistic analysis (PA) and interval analysis (IA). 

The framework

ves PA, IA and MDA, the

efficiency extremely low. To reduce the 

designed based on how PA and IA loops call the MDA loop. In Table 5, the three 

algorithms are summarized in terms of their features, the possible algorithms that can be 
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Table 5 Summary of the three algorithms 
Algorithm Features PA and IA methods When to use it 

S
Se

double-loop 
procedure.   

IA: nonlinear 
optimization, interval 

DL: 
quential 

Double Loops 

The MDA inner loop 
is nested with the PA 
and IA outer loops; 
PA and IA involve a 

PA: any reliability 
analysis methods, 
including any MPP 
search algorithms. 

MDA is not 
computational 
expensive.  

arithmetic, or other 
IA methods. 
 

SSL: 
Sequential 
Single Loops 

MDA is embedded as 
equality constraints 
within the PA and IA 
loop; All the couplin
variables are treated 

PA: FORM with 
nonlinear 
optimization for the 

The number of 
coupling variables 
is small; 

g 
as 

MPP search 
IA: nonlinear 

concurrent 
subsystem 

additional design 
variables in the PA or 
IA single loop.  
 

optimization analyses can be 
performed.  

SSSL: 
Sequential 
Singl
Loop

PA involves a 
sequence of MPP 

PA: any reliability 
analysis methods, 

PA is relatively 
expensive and IA 

e-Single 
s 

search and MDA and 
therefore forms a 

including any MPP 
search algorithms. 

is relative cheap; 
concurrent 

variables is small. 

sequential single-loops 
procedure. IA requires 

a single-loop 
procedure as in SSL. 

IA: nonlinear 
optimization 

subsystem 
analyses can be 
performed; the 
number of interval 

 
As demonstrated in the two examples, the three algorithms are capable of producing 

identical solutions. But their efficiency differs from problem to problem. The efficiency 

depends on many factors, such as the number of disciplines, the number of random 

va

Other algorithm variants can also be developed using the similar strategies of the 

proposed three algorithms. For example, the IA loop of the SSSL algorithm is a single-

riables, the number of interval variables, the number of sharing variables, and the 

efficiency of analyses at the disciplinary level. When to use a specific algorithm is 

provided in Table 5.  

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 128

loo

is paper are only for reliability analysis. 

Ou

Acknowledgments 

 Missouri University of Science 

an

ics 

an

1 Sues, R. H., Oakley, D. R., and Rhodes, G. S., “Multidisciplinary Stochastic 

Optimization,” The 10th Conference on Engineering Mechanics, May 21-24, Boulder, 

CO, 1995. 

2 Koch, P. K., Wujek, B., and Golovidov O., “A multi-Stage, Parallel Implementation 

of Probabilistic Design Optimization in an MDO framework,” The 8th 

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 

September 6-8, Long Beach, CA, 2000. 

p procedure. It can be changed to a sequential single-loops procedure, where the 

search of the extreme values of the limit-state function and MDA are conducted 

sequentially. All the algorithms discussed in th

r future work will be their application in reliability based multidisciplinary design 

optimization.  

We are grateful for the partial support from the U.S. National Science Foundation 

grant CMMI-040081, Intelligent Systems Center at the

d Technology, and University of Missouri Research Board Grant 7116. The presented 

views are those of authors and do not represent the position of the funding agencies. We 

would also like to thank Professor Xiongqing Yu from Nanjing University of Aeronaut

d Astronautics for providing the example and computer code for the aircraft wing 

design.  

References 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 129

3 Padmanabhan, D. and Batill, S., “Decomposition Strategies for Reliability Based 

Optimization in Multidisciplinary System Design,” The 9th AIAA/USAF/NASA/ISSMO 

Symposium on Multidisciplinary Analysis & Optimization, September 4-6, Atlanta, GA, 

20

0th AIAA 

Sc

y Analysis under the Framework of 

Mu

.H., “Sequential Approach to Reliability Analysis of 

Mu

tural and Multidisciplinary 

Op

5, No.2, 2008, pp.117-130. 

ME Journal of 

Mechanical Design, Vol.128, No.2, 2006, pp. 503-508. 

02. 

4 Padmanabhan, D. and Batill, S., “Reliability Based Optimization using 

Approximations with Applications to Multidisciplinary System Design,” The 4

iences Meeting & Exhibit, January 14-17, Reno, NV, 2002.   

5 Du, X. and Chen, W., “Collaborative Reliabilit

ltidisciplinary Systems Design,” Optimization and Engineering, Vol.6, No.1, March, 

2005, pp. 63-84. 

6 Ahn, J., and Kwon, J

ltidisciplinary Analysis Systems,” Structural and Multidisciplinary Optimization, 

Vol.28, No.6, 2004, pp.397-406. 

7 Ahn, J., and Kwon, J.H., “An Efficient Strategy for Reliability based 

Multidisciplinary Design Optimization Using BLISS,” Struc

timization, Vol.31, No.5, 2006, pp.363-372. 

8 Du, X., Guo, J., and Beeram, H., “Sequential Optimization and Reliability 

Assessment for Multidisciplinary Systems Design,” Structural and Multidisciplinary 

Optimization, Vol.3

9 Kokkolaras, M., Mourelatos, Z.P., and Papalambros, P.Y., “Design Optimization of 

Hierarchically Decomposed Multilevel Systems Under Uncertainty,” AS

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 130

10 Liao, K. W., Kim, H. M., and Ha, C., “Multilevel Optimization Considering 

Variability in Design Variables of Multidisciplinary System,” 11th AIAA/ISSMO 

Multidisciplinary Analysis and Optimization Conference, Portsmouth, Virginia, 2006. 

lysis 

an

n,” Proceedings of 49th AIAA/ASME/ASCE/AHS Structures, 

Structural Dynamics, and Materials Conference, Schaumburg, IL, 2008. 

13 Agarwal, H., Renaud, J.E., and Preston, E.L., “Trust Region Managed Reliability 

Based Design Optimization Using Evidence Theory”, 44th AIAA/ASME/ASCE/AHS 

Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, 2003. 

14 Agarwal, H., Renaud, J. E., Preston, E. L., Padmanabhan, D., “Uncertainty 

Quantification Using Evidence Theory in Multidisciplinary Design Optimization,” 

Reliability Engineering and System Safety, Volume 85, Issues 1-3, 2004, pp.281-294. 

15 Du, X., “Uncertainty Analysis with Probability and Evidence Theories,” 

Proceedings of ASME 2006 International Design Technical Conferences & Computers 

and Information in Engineering Conference, Philadelphia, Pennsylvania, 2006. 

16 Mahadevan, S., Physics-Based Reliability Models, in Reliability-Based Mechanical 

Design (Cruse, T.A., ed.) Dekker, New York, 1997. 

17 Der Kiureghian, A., “First- and Second- Order Reliability Methods”, in Engineering 

Design Reliability Handbook (NIkolaidis, E., Ghiocel, D., and Singhl, S. ed.). CRC Press 

LLC: Boca Raton, FL, 2005. 

11 Mullur, A. A., Hajela, P., and Bahei-El-Din, Y., “Uncertainty Management in 

Design Optimization of Coupled Systems”, 11th AIAA/ISSMO Multidisciplinary Ana

d Optimization Conference, Portsmouth, Virginia, 2006. 

12 Sakalkar, V., and Hajela, P., “Multilevel Decomposition Based Non-Deterministic 

Design Optimizatio

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 131

18 Hasofer, A.M. and Lind, N.C Invariant Second-Moment Code 

Format,” Journal of the Engineering Mechanics Division, ASCE, 100(EM1), pp. 111-121.  

19 Ra

g Density 

Functio

wards a Better Understanding of Modeling Feasibility 

Robust

., 1974, “Exact and 

ckwits, R. and Fiessler, B., 1978, “Structural Reliability under Combined Random 

Load Sequences,” Computers and Structures, 9(5): 484-494. 

20 Zhang Y. and der Kiureghian A, 1995, “Two Improved Algorithms for Reliability 

Analysis,”  Reliability and Optimization of Structural Systems, Proceedings of the Sixth 

IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems, 

Assisi, Italy, 1994. 

21 Du, X. and Sudjianto, A., “The First Order Saddlepoint Approximation for 

Reliability Analysis,” AIAA Journal, Vol.42, No.6, 2004, pp.1199-1207. 

22 Yu, X. and Du, X., “Reliability-Based Multidisciplinary Optimization for Aircraft 

Wing Design,” Structure and Infrastructure Engineering: Maintenance, Management, 

Life-Cycle Design and Performance, Vol. 2, No. 3/4, 2006, pp. 277-289. 

23 Ang G., L., Ang A. H-S., and Tang W.H., “Optimal Importance-Samplin

n,” Journal of Engineering Mechanics, Vol.118, No.6, 1992, pp.1146-1163. 

24 Du, X. and Chen, W., “To

ness in Engineering Design,” ASME Journal of Mechanical Design, Vol.122, No.4, 

2001, pp. 385–394. 

 

 
Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.



 132

2.CONCLUSIONS 

This research attempts to explore the impact of aleatory and epistemic 

uncertainties on the performances of complex engineering systems. Both types of 

uncertainty occur simultaneously in many applications. However, most of current 

uncertainty analysis and sensitivity analysis methods are not applicable to analyze the 

effect o

he First Order Reliability Method (FORM) is adopted for 

probab sed for interval analysis.  

inty to the 

model 

g main effect and 

total e

characteristics of outputs are related to both types of uncertainty in the inputs. Six new 

f epistemic uncertainty or the joint effect of both types of uncertainty. This work 

investigates how to quantify the effect of both types of uncertainty. Probability theory is 

used to model aleatory uncertainty and evidence theory and intervals are employed to 

model epistemic uncertainty. Probabilistic analysis for aleatory uncertainty and interval 

analysis for epistemic uncertainty are integrated in a unified uncertainty analysis 

framework to propagate the mixed uncertainties and calculate the belief and plausibility 

measures of outputs. T

ilistic analysis and nonlinear optimization is u

A family of new uncertainty analysis and sensitivity analysis approaches are 

established in this dissertation:  

An effective sensitivity analysis framework is established in the first paper to 

estimate the contributions of individual input variables with epistemic uncerta

outputs and identify the most significant epistemic variables. The contribution of 

an epistemic variable is measured by its effect on the output, includin

ffect. And these effects are indicated by the discrepancy between belief and 

plausibility measures of the output (the lower and upper probability bounds).  

Paper II aims to obtain more exact understanding of how the uncertain 
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types of sensitivity indexes are proposed and the equations associated with each 

sensitivity index for different scenarios are derived. Four of them are used to quantify the 

sensitiv

linary 

system

he computational burden of direct integration, three algorithms are 

designe

er bounds of CDF or PDF. 

alysis framework for epistemic uncertainty with 

the mix

ities of the width and average of the probability of failure bounds with respect to 

the characteristics of interval variables and the other two types are defined for random 

variables to evaluate the sensitivities of the width and average of the probability of failure 

bounds with respect to the parameters of probability distributions.  

The third paper extends all the above methods from single-disciplinary systems to 

multidisciplinary systems. A unified reliability analysis framework for multidiscip

s with both random and interval variables is developed. The framework integrates 

probabilistic analysis and interval analysis with multidisciplinary analysis (MDA). In 

order to lower t

d by applying different strategies to call MDA in probabilistic analysis and 

interval analysis loops. 

The major findings of this research include: 

(1) Both uncertainties have a great impact on the system performance. The effect 

of aleatory uncertainty can be measured by the Cumulative Distribution Function (CDF) 

or Probability Distribution Function (PDF), while the effect of epistemic uncertainty can 

be measured by the gap between the lower and upp

(2) Both types of uncertainty can be quantified by the unified uncertainty analysis 

framework for both single-disciplinary and multidisciplinary systems. 

(3) The proposed sensitivity an

ture of aleatory and epistemic uncertainties is an effective method for reducing 

the impact of epistemic uncertainty. This method identifies the most important input 
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variables with epistemic uncertainty. Collecting more data on those variables will 

mitigate the effect of epistemic uncertainty in the most efficient way.  

(4) In different cases, the width and mean value of the probability bounds of an 

output 

tidisciplinary Analysis (MDA) and then be extended to multidisciplinary 

system

ore 

reliable

 to 

evaluat

future work: 

) The computational cost of the sensitivity analysis methods will grow with the 

increasing number of aleatory variables and the subsets of epistemic variables. And 

have different relationships with the width and average of input interval variables 

and the distribution parameters of input random variables. And the six new sensitivity 

indexes are capable of quantifying these relationships. 

(5) The calculation of these sensitivity indexes is just a byproduct of reliability 

analysis and does not require any additional evaluation of a performance function. 

(6) Unified uncertainty analysis and sensitivity analysis methods can be integrated 

with Mul

s design.  

(7) All the methods can be used in design. The sensitivity analysis framework can 

be used to lower the overall uncertainty in the outputs and help designers to make m

 judgments and decisions. The new sensitivity indexes will tell engineers what 

will happen to the output uncertainty if they change the input uncertainty. The unified 

reliability analysis for multidisciplinary systems provides an effective tool for industry

e the reliability information of system performance in the development of 

complex products with a full range of uncertainty. 

The effectiveness of the proposed methods has been demonstrated by 

mathematical examples and engineering applications. But some features of these methods 

could be improved in the 

(1
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interval analysis uses nonlinear optimization, which is more accurate but less efficient 

than interval arithmetic. Efficient computational algorithms are desired to solve these 

issues. 

) The computational efficiency of the algorithms in the unified reliability 

analysis for multidisciplinary systems varies from problem to problem. It also depends on 

the num s, uncertainty variables and disciplines, as well as the 

efficiency of disciplinary analysis. The further investigation might discover more factors 

that have influence on the efficiency. Based on such discovery, more strategies could be 

developed to improve the performance of the algorithms and design more algorithm 

variants. 

(3) Probabilistic analysis in this research is conducted by FORM. More accurate 

methods like the Second Order Reliability Method (SORM) and Saddlepoint 

Approximation method [2] mig ose of higher accuracy.  

(4) The ultimate goal of this research is to provide analysis tools for reliability-

based multidisciplinary systems design. The major future research work is the integration 

of the proposed unified reliability analysis with multidisciplinary design optimization. 

(5) This research only considers b th aleatory and epistemic uncertainties in 

model input parameters. Model structure uncertainty is not included in this work. Model 

structure uncertainty is a special type of epistemic uncertainty. To take a full advantage 

of reliability-based multidisciplinary design optimization, model structure uncertainty 

should be incorporated.  

 

 

(2

ber of coupling variable

ht be considered for the purp

o
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 fp  with respect to one bound of an interval variable iY  1. Derivative of

fp
h∂

∂
 is given in Eq. (22) and is rewritten below. 

*

( )
( )u

φ β∂ − − ∂
=

∂ ∂
fp g

h hg∇
        (A1) 

where fp  could be L
fp or U

fp , and β  could be β L  and βU . 

2. Deri ivvat e of fp  with respect to the width of an interval, iδ  

fp  occurs at ,  U
iyIf 

( ) ~ ~
~

1 1 1, , ( ), 2 2 2
1(
2

U f i i i f i i i i if i if

i i i
i i

p y p y yp yp

y

δ δ

) i

δ

δ δ δ

∂ + ∂ + ∂ +⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠ ⎝ ⎠= = =
∂ ∂ ∂ ∂ +

Y YY

ied to 

⎛ ⎞ ⎛ ⎞

δδ ∂
 (A2) 

Eq. (A2) can then be simplif

 
~

1 ,
1 12

12 (i
i

2)
2

f i i i
f f

U
i

i

p yp p
y

δ

δ

⎛ ⎞∂ +⎜ ⎟

yδ
∂ ∂⎝ ⎠= =
∂ ∂

Y
                              (A3) 

Similarly, if

∂ +

 fp  occurs at L
iy , the equation becomes 

~
1 ,

1 12
12 2( )
2

f i i i
f f

L
i i

i i

p yp p
yy

δ

δ δ

⎛ ⎞∂ −⎜ ⎟∂ ∂⎝ ⎠= − = −
∂ ∂∂ −

Y
                            (A4) 

If fp  occurs at an interior point iy , which is not a function of iδ , it can  then be sh

own that 

( ) ( ) ( )~ ~ ~, , ,
0 0f f i i f i i f i ii

i i i i i

p p y p y p yy
y yδ δ δ

∂ ∂ ∂ ∂∂
= = =

∂ ∂ ∂ ∂ ∂

Y Y Y
⋅ =              (A5) 
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fp  with respect to the average of an interval, iy  3. Derivative of 

fp  occurs at , one can obtain U
iyIf 

( ) ~ ~
~

1 1 1, ,, 2 2 2
1
2

U f i i i f i i i i i
f i if

i i i i
i i

p y p y yp yp
y y y yy

δ δ δ

δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ + ∂ + ∂ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= = =
∂ ∂ ∂ ∂⎛ ⎞∂ +⎜ ⎟

⎝ ⎠

Y YY
   (A6) 

and therefore  

  
~

1 ,
2
1
2

f i i i
f f

U
i i

i i

p yp p
y y

δ

δ

⎛ ⎞∂ +⎜ ⎟

y

∂ ∂⎝ ⎠= =
∂ ∂⎛ ⎞∂ +⎜ ⎟

⎝ ⎠

Y
                                  (A7) 

Similarly, if fp  occurs at L
iy ,  

~
1 ,
2
1

f f
L

2

f i i i

i i
i

p y

i

p p

y

δ

δ

⎛ ⎞∂ −⎜ ⎟∂ ∂

y y
⎝ ⎠= =

∂ ∂⎛ ⎞
        

∂ −⎜ ⎟
⎝ ⎠

Y
                           (A8) 

If fp  occurs at an interior point iy , 

( ) ( ) ( )~ ~ ~, , ,
0 0f f i i f i i f i ii

i i i i i

p p y p y p yy
y y y y y

∂ ∂ ∂ ∂∂
= = = ⋅ =

∂ ∂ ∂ ∂ ∂

Y Y Y
             (A9) 

4. Derivative of fp  bound with respect to a distribution parameter iq  

*

*

( ) ( )f i

i i i

p u
q q u

β βφ β
∂

iq
∂∂Φ − ∂

= = − −
∂ ∂ ∂ ∂

                            (A10) 

If the CDF of Xi is ( )
iX iF x , then 

( )* 1 *
1 2( , , , , , )

ii X i iu F x w q q q− ⎡ ⎤= Φ = ⋅⋅⋅ ⋅⋅⋅⎣ ⎦ nq                         (A11) 

where n is the number of distribution parameters. 
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*
iβ = u , one obtains Then from

*

( )fp∂ i

i i

u w
q q

φ β
β

∂
= − −

∂ ∂
                                      (A12) 
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Case 1: L
fp  occurs at L

iy  and U
fp  occurs at (see Paper II Section 3). 

Case 2

U
iy

: L
fp  occurs at  and U

iy U
fp  occurs at L

iy . 

~ ~
1 1, ,
2 2

U L
f i i i f i i i

p

i i

p y y p y yδ δ
δ
δ δ

)⎡ ⎤⎛ ⎞ ⎛∂ − − +⎜ ⎟ ⎜
⎞
⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦=

∂ ∂
                      (B1) 

Using Eqs. (A3) and (A4) gives  

1
2

U L
p f

L U
i i

p p
y y

δ
δ

⎛ ⎞∂ ∂ ∂
= − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

f

i

                                          (B2) 

Then from Eq. (A1),  

 

*, *,

1 1 ( ) ( )
2 2 ( ) ( )

L U
i i

U L U L
p f f

L U U Ly y
i i i i i

p p g g
y y Y Yg g

δ φ β φ β
δ

⎡ ⎤⎛ ⎞∂ ∂ ∂ − − ∂ − − ∂
⎢ ⎥= − + = − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦u u∇ ∇

      (B3) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at . U
iy

( )~ ~
1 , ,
2

U L
f i i i f i i

p

i i

p y p yδ
δ
δ δ

⎡ ⎤⎛ ⎞∂ + −⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦=
∂ ∂

Y Y
                          (B4) 

Using Eqs. (A3) and (A5), one obtains 

1
2

U
p f

U
i i

p
y

δ
δ

∂ ∂
=

∂ ∂
.                                                  (B5) 

Applying the results from Eq. (A1) yields 

*,

1 1 ( )
2 2 ( )

U
i

U U
p f

U U y
i i i

p g
y Yg

δ φ β
δ

⎡ ⎤∂ ∂ − − ∂
⎢ ⎥= =

∂ ∂ ∂⎢ ⎥⎣ ⎦u∇
                              (B6) 

Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 
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( )~ ~
1 , ,
2

U L
f i i i f i i

p

i i

p y p yδ
δ
δ δ

⎡ ⎤⎛ ⎞∂ − −⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦=
∂ ∂

Y Y
                         (B7) 

Using Eqs. (A4) and (A5) yields 

1
2

U
p f

L
i i

p
y

δ
δ

∂ ∂
= −
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                                               (B8) 

Applying Eq. (A1) yields  
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1 ( )
2 ( )

L
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U
p

U y
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g
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δ φ β
δ

⎡ ⎤∂ − − ∂
⎢ ⎥= −

∂ ∂⎢ ⎥⎣ ⎦u∇
                                  (B9) 

Case 5 L
fp  occurs at  and U

iy U
fp  occurs at an interior point iy: . 

~ ~
1( , ) ,
2

U L
f i i f i i i

p

i i

p y p y δ
δ
δ δ

⎡ ⎤⎛ ⎞∂ − +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦=
∂ ∂

Y Y
                       (B10) 

Using Eqs. (A3) and (A5), one obtains 

1
2

L
p fpδ∂ ∂

U
iyδ i

= −
∂ ∂

                                            (B11) 

Using Eq. (A1) yields 
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1 ( )
2 ( )

U
i

L
p

L y
i i

g
Yg

δ φ β
δ

⎡ ⎤∂ − − ∂
⎢ ⎥= −
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                                (B12) 

Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 

~ ~
1( , ) ,
2

U L
f i i f i i i

p

i i

p y p y δ
δ
δ δ

⎡ ⎤⎛ ⎞∂ − −⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦=
∂ ∂

Y Y
                      (B13) 

Using Eqs. (A4) and (A5) gives 
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*,
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                          (B14) 

Using Eq. (A1) yields 

*,

1 ( )
2 ( )

L
i

L
p

δ L y
i i

g
Yg

δ φ β⎡ ⎤∂ − − ∂
⎢ ⎥

∂
=

∂ ⎢ ⎥⎣ ⎦u∇
                                  (B15) 

Case 7 1iy  and 2iy: L
fp  and U

fp  occur at two interior points , respectively. 

( )1 ~ 2 ~( , ) ,U L
f i i f i ip

i i

p y p yδ
δ δ

⎡ ⎤∂ −∂ ⎣ ⎦=
∂ ∂

Y Y
    

Using Eq. (A5) yields 

                       (B16) 

0p

i

δ
δ

∂
=

∂
.                              

 

                  (B17) 

 



 

 

144

 

 

 

 

 

 

 

 

 

 

APPENDIX C.  

 

PE II SENSITIVITY
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Case 1: L
fp  occurs at L

iy  and U
fp  occurs at . U

iy

~ ~
1 1 1⎧

, ,
2 2 2

U L
f i i i f i i i

f

i i

p y p y
p

δ δ

δ δ

⎫⎡ ⎤⎛ ⎞ ⎞⎛∂ + + −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭=
∂ ∂

Y Y
                   (C1) 

Using Eqs. (A3) and (A4) yields 

1
4

U L
f f

U L
i i

fp p p
y yδ

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟⎜∂ ∂ ∂⎝ i

⎟
⎠

                                              (C2) 

From Eq. (A1) 

*, *,

1 ( ) ( )
4 ( ) ( )

U L
i i

U L
f

U Ly y
i i

p g g
Y Yg g

φ β φ β
δ

⎛ ⎞∂ − − ∂ − − ∂⎜ ⎟= −
⎜ ⎟∂ ∂⎝ ⎠u u∇ ∇ i∂

                        (C3) 

Case 2: L
fp  occurs at  and U

iy U
fp  occurs at L

iy . 

~ ~
1 1 1, ,
2 2 2

U L
f i i i f i i i

f

i i

p y p y
p

δ δ

δ δ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛∂ − + +⎨ ⎬⎜ ⎟ ⎜
⎞
⎟⎢ ⎥∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭=

∂ ∂

Y Y
                   (C4) 

Using Eqs. (A3) and (A4) yields 

1
4

U L
f f

L U
i i

p p
y yδ

⎛ ⎞∂ ∂ ∂
= − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

f

i

p
                                        (C5) 

From Eq. (A1) 

*, *,

1 ( ) ( )
4 ( ) ( )

L U
i i

U L
f

U Ly y
i i

p g g
Y Yg g

φ β φ β
δ i

⎡ ⎤∂ − − ∂ − − ∂
⎢ ⎥= − +

∂ ∂ ∂⎢ ⎥⎣ ⎦u u∇ ∇
                      (C6) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at . U
iy

~ ~
1 1 , ( ,
2 2

U L
f i i i f i i

f

i i

p y p y
p

δ

δ δ

)
⎧ ⎫⎡ ⎤⎛ ⎞∂ + +⎨ ⎬⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦⎩ ⎭=

∂ ∂

Y Y
                        (C7) 
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Using Eqs. (A3) and (A5) yields 

 1
4

U
f f

U
i i

p p
yδ

∂ ∂
=

∂ ∂
                                                (C8) 

rom Eq. (A1) F

*,

1 ( )
4 ( )

U
i

U
f

U y
i i

p g
Yg

φ β
δ

⎡ ⎤∂ − − ∂
⎢ ⎥=

∂ ∂⎢ ⎥⎣ ⎦u∇
                                   (C9) 

Case 4: L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy . 

( )~ ~
1 1 , ,
2 2

U L
f i i i f i i

f

i i

p y p y
p

δ

δ δ

⎧ ⎫⎡ ⎤⎛ ⎞∂ − +⎨ ⎬⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦⎩ ⎭=
∂ ∂

Y Y
                 (C10) 

Using Eqs.(A4) and (A5) yields 

1
4

U
f f

L
i i

p p
yδ

∂ ∂
= −

∂ ∂
                                           (C11) 

Applying Eq. (A1), one obtains 

*,

1 ( )
4 ( )

L
i

U
f

U y
i i

p g
Yg

φ β
δ

⎡ ⎤∂ − − ∂
⎢ ⎥= −

∂ ∂⎢ ⎥⎣ ⎦u∇
                               (C12) 

Case 5: L
fp  occurs at  and U

iy U
fp  occurs at an interior point iy  

 
~ ~

1 1( , ) ( , )
2 2

( )

U L
f i i f i i i

f

i i

p y p yp δ

δ δ

⎧ ⎫⎡ ⎤∂ + +⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭=
∂ ∂

Y Y
                    (C13) 

Using Eqs. (A3) and (A5) gives 

1
4

L
f f

U
i i

p p
yδ

∂ ∂
=

∂ ∂
                                             (C14) 

Applying Eq. (A1) yields 
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*,

1 ( )
4 ( )

U
i

L
fp

L y
i i

g
Yg

φ β
δ

⎡ ⎤∂∂ − −
⎢ ⎥=

∂ ∂⎢ ⎥⎣ ⎦u∇
                                  (C15) 

Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 

 
~ ~

1 1( , ) ( , )
2 2

U L
f i i f i i i

f

i i

p y p yp δ

δ δ

⎧ ⎫⎡ ⎤∂ + −⎨ ⎬⎢ ⎥∂ ⎣ ⎦⎩ ⎭=
∂ ∂

Y Y
                     (C16) 

Using Eqs. (A4) and (A5) yields 

1
4

L
f f

L
i i

p p
yδ

∂ ∂
= −

∂ ∂
                                              (C17) 

From Eq. (A1) 

*,

1 ( )
4 ( )

L
i

L
f

L y
iδ i

p g
Yg

φ β⎡ ⎤∂ − − ∂
⎢ ⎥

∂
= −

∂ ⎢ ⎥⎣ ⎦u∇
                                   (C18) 

Case 7 1iy  and 2iy: L
fp  and U

fp  occur at two interior points , respectively. 

( )1 ~ 2 ~
1 ( , ) ,
2

U L
f i i f i i

p

i i

p y p yδ
δ δ

⎧ ⎫⎡ ⎤∂ +⎨ ⎬⎣ ⎦∂ ⎩ ⎭=
∂ ∂

Y Y
                         (C19) 

Using Eq. (A5) yields 

0p

i

δ
δ

∂
=

∂
                                                (C20) 
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Case 1: L
f  occurs at L

iy  and U
fp  occurs at U

iy . p

( ) ~ ~
1 1, ,
2 2

U L
U L f i i i f i i i

f

i i i

p y p yp p
y

δ δ⎡ ⎤⎞−
fp

y y
δ

⎛ ⎞ ⎛∂ + −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ − ⎝ ⎠ ⎝ ⎠∂ ⎣ ⎦=
∂

Y Y
        (D1) 

Using Eqs. (A7) and (A8) yields 

=
∂ ∂

U L U L
p f f f

U L
i i i i

p p p p
y y y y y
δ f

i

∂ ∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂
                                  (D2) 

From Eq. (A1) 

*, *,

( ) ( )
( ) ( )

U L
i i

U L
p

U Ly y
i i

g g
y Yg g iY
δ φ β φ β∂ − − ∂ − − ∂

= −
∂ ∂u u∇ ∇ ∂

                       (D3) 

Case 2: L
fp  occurs at  and U

iy U
fp  occurs at L

iy . 

( ) ~ ~
1 1, ,
2 2

U L
U L f i i i f i i i
f fp

i i i

p y p yp p
y y y

δ δ
δ

⎡ ⎤⎛ ⎞ ⎛∂ − − +⎜ ⎟ ⎜
⎞
⎟⎢ ⎥∂ −∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦= =

∂ ∂ ∂

Y Y
           (D4) 

Using Eqs. (A7) and (A8) gives 
U L U

p f f f
L
f

L U
i i i i

p p p p
y y y y y
δ

i

∂ ∂ ∂ ∂ ∂
= − = −

∂ ∂ ∂ ∂ ∂
                                   (D5) 

Applying the results of Eq. (A1) yields 

*, *,

( ) ( )
( ) ( )

L U
i i

U L
p

U Ly y
i i

g g
y Yg g iY
δ φ β φ β∂ − − ∂ − − ∂

= −
∂ ∂u u∇ ∇ ∂

                        (D6) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at . U
iy

( )~ ~
1 , ,( ) 2

U L
U L f i i i f i i

p f f

i i i

p y p yp p
y y y

δ
δ

⎡ ⎤⎛ ⎞∂ + −⎜ ⎟⎢ ⎥∂ ∂ − ⎝ ⎠⎣ ⎦= =
∂ ∂ ∂

Y Y
                (D7) 

Using Eqs. (A7) and (A9), one obtains 
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U U
p f

U
i i

p p
y y y
δ f

i

∂ ∂ ∂
== =

∂ ∂ ∂
                                           (D8) 

By Eq. (A1) 

*,

( )
( )

U
i

U
p

U y
i i

g
y Yg
δ φ β∂ − − ∂

=
∂ ∂u∇

                                      (D9) 

Case 4: L
fp  occurs at an interior point iy  U

fp  occurs at L
iyand . 

( ) ( )~ ~
1 , ,
2

U L
U L f i i i f i i
f fp

i i i

p y p yp p
y y y

δ
δ

⎡ ⎤⎛ ⎞∂ − −⎜ ⎟⎢ ⎥∂ −∂ ⎝ ⎠⎣ ⎦= =
∂ ∂ ∂

Y Y
             (D10) 

Using Eqs. (A8) and (A9) gives 

U U
p f f

L
i i

p p
y y y
δ

i

∂ ∂ ∂
= =

∂ ∂ ∂
                                         (D11) 

By Eq. (A1)  

*,

( )
( )

L
i

i iy Yg

U
p

U y

gδ φ β∂ − − ∂
=            

∂ ∂u
                        (D12) 

Case 5

∇

: L
fp  occurs at  and U

iy U
fp  occurs at an interior point iy . 

( ) ( )~ ~
1, ,
2

U L
U L f i i f i i i
f fp

i i i

p y p yp p
y y y

δ
δ

⎡ ⎤⎛ ⎞∂ − +⎜ ⎟⎢ ⎥∂ −∂ ⎝ ⎠⎣ ⎦= =
∂ ∂ ∂

Y Y
            (D13) 

Using Eqs. (A7) and (A9) gives 

L L
p f

U
i i

p p
y y
δ f

iy
∂ ∂ ∂

= − = −
∂ ∂ ∂

                                        (D14) 

Using Eq. (A1) yields 

*,

( )
( )

U
i

L
p

L y
i i

g
y Yg
δ φ β∂ − − ∂

== −
∂ ∂u∇

                                  (D15) 
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Case 6: L
fp  occurs at L

i  andy  U
fp  occurs at an interior point iy . 

( ) ( )~ ~
1, ,
2

U L
U L f i i f i i i
f fp

i i i

p y p yp p
y y y

δ
δ

⎡ ⎤⎛ ⎞∂ − −⎜ ⎟⎢ ⎥∂ −∂ ⎝ ⎠⎣ ⎦= =
∂ ∂ ∂

Y Y
            (D16) 

Using Eqs. (A8) and (A9) gives 

L L
p f f

L
i i

p p
y y
δ

iy
∂ ∂ ∂

= − = −
∂ ∂ ∂

            

Using Eq. (A1) yields 

                          (D17) 

*,

( )
( )

L
i

L
p

L y
i i

g
y Yg
δ φ β∂ − − ∂

= −
∂ ∂u∇

                                  (D18) 

Case 7: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 

( )1 ~ 2 ~( , ) ,U L
f i i f i ip

i iy

p y p y

y
δ ⎡ ⎤∂ −∂ ⎣ ⎦

∂

Y Y
=

∂
                          (D19) 

Using Eq. (A9) yields 

0p

iy
δ∂

=
∂

                                               (D20) 
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PE IV SENSITIVITY
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Case 1: L
fp  occurs at L

iy  and U
fp  occurs at . U

iy

~ ~
1 1 1, ,

2 2 2 2f i i i f i
fp

U L
f f U L

i i

i i i

p p
p y p y

y y y

δ δ
⎛ ⎞+ ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ + + −⎜ ⎟ ⎨ ⎬⎟⎜ ⎟ ⎜⎢ ⎥⎠⎜ ⎟∂ ⎝ ⎠ ⎝⎣ ⎦⎭

∂ ∂ ∂

Y Y
        (E1) 

Using Eqs. (A7) and (A9) gives 

⎝ ⎠ ⎩= =

1 1
2 2

U L U L
f f f f f

U L
i i i i

p p p p p
y y y y y

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

i∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
                            (E2) 

Using Eq. (A1) yields 

∂

*, *,

1 ( ) ( )
2 ( ) ( )

U L
i i

U L
f

U Ly y
i i

p g g
y Yg g

φ β φ β

iY

⎡ ⎤∂ − − ∂ − − ∂
⎢ ⎥= +

∂ ∂ ∂⎢ ⎥⎣ ⎦u u∇ ∇
.                       (E3) 

Case 2: L
fp  occurs at  and U

iy U
fp  occurs at L

iy . 

~ ~
1 1 1, ,

2 2 2 2

U L
f f U L

f i i i f i i i
f

i i i

p p
p y p y

p
y y y

δ δ
⎛ ⎞+ ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛∂ ∂ − + +⎜ ⎟ ⎞

⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎩= =
∂ ∂ ∂

Y Y
⎭          (E4) 

Using Eqs. (A7) and (A8) yields 

1 1
2 2

U L U L
f f f f

L U
i i i i

p p p p p
y y y y y

⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂
= + = +⎜ ⎟ ⎜⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝

f

i

⎞
⎟⎟
⎠

                               (E5) 

Using Eq. (A1) yields 

*, *,

1 ( ) ( )
2 ( ) ( )

L U
i i

U L
f

U Ly y
i i

p g g
y Yg g

φ β φ β

iY

⎡ ⎤∂ − − ∂ − − ∂
⎢ ⎥= +

∂ ∂ ∂⎢ ⎥⎣ ⎦u u∇ ∇
                           (E6) 

Case 3: L
fp  occurs at an interior point iy  and U

fp  occurs at . U
iy

( )~ ~
1 1 , ,

2 2 2

U L
f f U L

f i i i f i i
f

i i i

p p
p y p y

p
y y y

δ
⎛ ⎞+ ⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ + +⎜ ⎟ ⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎩= =

∂ ∂ ∂

Y Y
⎭                 (E7) 

 



 154

Using Eqs. (A7) and (A9) gives 

1 1
2 2

U U
f f f

U
i i

p p
y y i

p
y

∂ ∂ ∂
= =

∂ ∂ ∂
                                           (E8) 

sing Eq. (A1) yields U

*,

1 ( )
2 ( )

U
i

U
f

U y
i i

p g
y Yg

φ β∂ − − ∂
=

∂ ∂u∇
                                      (E9) 

Case 4 L
fp  occurs at an interior point iy  and U

fp  occurs at L
iy: . 

( )~ ~
1 1 , ,

2 2 2

U L
f f U L

f i i i f i i
f

i i i

p p
p y p y

p
y y y

δ
⎛ ⎞+ ⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ − +⎜ ⎟ ⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎩= =

∂ ∂ ∂

Y Y
⎭            (E10) 

sing Eqs. (A8) and (A9) yields U

1 1U

2 2

U
f f f

L
i i i

p
y y y
p p∂ ∂ ∂

= =
∂ ∂ ∂

                                        (E11) 

Using Eq. (A1) yields 

*,

1 ( )
2 ( )

L
i

U
f

U y
i i

p g
y Yg

φ β∂ − − ∂
=

∂ ∂u
                                   (E12) 

Case 5

∇

: L
fp  occurs at  and U

iy U
fp  occurs at an interior point iy . 

( )~ ~
1 1, ,

2 2 2

U L
f f U L

i i f i i i
f

i i i

p p
p y p y

p
y y y

δ
⎛ ⎞+

f

⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ + +⎜ ⎟ ⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎩ ⎭= =
∂ ∂ ∂

Y Y
          (E13) 

Using Eqs. (A7) and (A9) gives 

1 1
22

L L
f f f

U
i i i

p p p
y y y

∂ ∂ ∂
= =

∂ ∂ ∂
                                       (E14) 

Using Eq. (A1) yields 
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*,

1 ( )
2 ( )

U
i

L
f

L y
i i

p g
y Yg

φ β∂ − − ∂
=

∂ ∂u∇
                                  (E15) 

Case 6: L
fp  occurs at L

iy  and U
fp  occurs at an interior point iy . 

( )~ ~
1 1, ,

2 2 f i
f

p y
p 2

U L
f f U L

i f i i i

p p
p y

y y y

δ
⎛ ⎞+ ⎧ ⎫⎡ ⎤⎛ ⎞∂ + −⎜

i i i

∂⎟ ⎨ ⎬⎜ ⎟⎢ ⎥⎜ ⎝ ⎠⎟∂ ⎣ ⎦⎝ ⎭= =
∂ ∂ ∂

Y Y
        (E16) 

Using Eq. (A8) and (A9), one obtains 

⎠ ⎩

1 1
2 2

L L
f f f

L
i i

p p p
y y iy

∂ ∂ ∂
= =

∂ ∂ ∂
                                      (E17) 

Applying Eq. (A1) yields 

*,

1 ( )
2 ( )

L
i

f
L y

g
y Yg

L

i i

p φ β∂ − − ∂              (E18) 

 

Case 7

=
∂ ∂u∇

                    

: L
fp  and U

fp  occur at two interior points 1iy  and 2iy , respectively. 

( )1 ~ 2 ~
1 ( , ) ,
2

U L
f i i f i i

f

i i

p y p yp
y y

⎧ ⎫⎡ ⎤∂ +⎨ ⎬⎣ ⎦∂ ⎩ ⎭=
∂ ∂

Y Y
                       (E19) 

Using Eq. (A9) gives 

0f

i

p
y

∂
=

∂
                                              (E20) 
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/p iqδ∂ ∂   EQUATIONS FOR TYPE V SENSITIVITY

 

 

 

 

 

 

 

 

 

 

 

 

 



 157

( )U L U
p f f f

L
f

i i

p p p p
q q

δ

i iq q
∂ ∂ − ∂ ∂

= = −
∂ ∂ ∂ ∂

                                  (F1) 

Using Eq. (A12) gives 

*, *,

( ) ( )
U L

p U Li i
U L

i i iq q q
u uw wδ

φ β φ β
β β

∂ ∂ ∂
= − − + −

∂ ∂ ∂
                           (F2) 

where *,U
iu is the MPP at U

fp  and *,L
iu L

fp . is the MPP at

Spe lycifical , for a normal distributed random variable i~ ( , )i iX N µ σ , 

( )
* *

1 * 1( , )
i

i i i i
i i X i

i i

x xw F x µ µµ σ
σ σ

− − ⎡ ⎤⎛ ⎞− −⎡ ⎤= Φ = Φ Φ =⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎣ ⎦
,                  (F3) 

so it can be obtained that 

* *

2

1 , i i i

i i i i i

x uw w µ
µ σ σ σ σ

−∂ ∂
= − = − = −

∂ ∂
.                                 (F4

Therefore, from Eq. (F2), we can obtain the following sensitivities. 

1) 

) 

i iq µ=  

 
*, *, *, *,

( ) ( ) ( ) ( )
U L U L

p U L U Li i i i
U L U L

i i i i i

u u u uw wδ
φ β β φ βφ β φ

µ β µ β µ β σ β σ
∂ ∂ ∂

= − − + − −
∂ ∂ ∂

     (F5) − = −

2) i iq σ=  

*, *,

*, *, *, *, *, 2 *, 2

( ) ( )

( ) ( )

U L
p U Li i

U L
i i i

U U L L U L

U

u uw w

u u u u u u( ) ( ) ( ) ( )U L L Li i i i i i
L L L

i i i i

δ
φ β φ β

σ β σ β σ

φ β φ β φ β φ β
β σ

∂ ∂ ∂
= − − + −

       (F6) 

β σ β σ β σ

∂ ∂ ∂

= − − − = − − −
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2( ) 1
2

U L
f f

U L
f f f

p p

i i i i

p p p
q q q q

⎛ ⎞
∂ ⎜ ⎟⎜ ⎟ ⎛ ⎞∂ ∂ ∂⎝ ⎠= = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂

                           (G1) 

+

⎝ ⎠

Using Eq. (A12), it can be easily shown that 

*, *,1 ( ) ( )
L L

f U Li i

i i i

p u uw wφ β φ β
∂

2 U Lq q qβ β
⎡ ⎤∂ ∂

= − − + −⎢ ⎥∂ ∂ ∂⎣ ⎦
                     (G2) 

Applying the results from Eq. (F4) for a normal distributed random 

variable ~ ( , )i i iX N µ σ , the following sensitivities are obtained. 

1) i iq µ=  

*, *,

*, *,

1 ( ) ( )
2

( )
2

φ β φ β

1 ( )

µ β µ β µ

φ β φ β
β σ

∂

β σ

⎡ ⎤∂ ∂
= − − + −⎢ ⎥∂ ∂ ∂⎣ ⎦
⎡ ⎤

= − − ⎥
⎦

U L

U
i

u u
+⎢

⎣

U L
f U Li i

i i i

U L
U Ui i

U
i

p u uw w

                     (G3) 

2) qi iσ=  

*, *,

*, *,
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2

1 ( ) (

U L
U Li i
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i i i

U U
U i iu u

φ β φ β

*, *,

*, 2 *, 2

1

)
2

( ) ( )1 ( ) ( )
2

f

L L
L i i

U L
i i

U L
U Li i

U L
i i

p u uw w

u u

u u

σ β σ β σ

φ β φ β
β σ β σ

φ β φ β
β σ β σ

∂ ⎡ ⎤∂ ∂
= − − + −⎢ ⎥∂ ∂ ∂⎣ ⎦
⎡

= − + −⎢
⎤
⎥

⎣ ⎦
⎡ ⎤

= − + −⎢ ⎥
⎣ ⎦
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