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ABSTRACT 

 

Formations of spacecraft, positioned near the libration points of the Sun-

Earth/Moon system, have recently received an increase in interest in response to a variety 

of mission needs. Specifically, missions such as the Micro Arcsecond X-Ray Imaging 

Mission (MAXIM), Terrestrial Pathfinder (TPF), Stellar Imager (SI) and the European 

Space Agency’s DARWIN all baseline formations of spacecraft to satisfy mission 

requirements. Replacing the traditional single spacecraft mission with multiple small 

spacecraft flying in formation is advantageous for these missions, especially when 

establishing a virtual aperture. These types of formations allow for higher resolution 

observations than with a single, conventional aperture. The de-emphasis on a single 

monolithic spacecraft approach to spacecraft mission design also reduces the chance of 

catastrophic failure of the mission if a single spacecraft can no longer perform its duty.
  

The present study focuses on the relative dynamics of spacecraft within a 

formation orbiting near a libration point, such as L2 as examined in this study. A method 

for finding, understanding, and then exploiting the natural dynamics near a libration point 

for formation flight is sought. Various formation types (relative halo orbit, fixed-position, 

and paraboloid) are examined to determine the feasibility of natural formations for 

various applications. 

 A method for determining possible ∆V magnitudes and time between ∆V 

maneuvers is also sought to gain an understanding of possible controlled formations that 

simultaneously exploit the natural dynamics while also controlling the spacecraft in the 

formation. One approach was identified that uses impulsive maneuvering at specified 

times to control the spacecraft in the formation desired. 
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1. INTRODUCTION 

 

1.1. OVERVIEW 

Replacing the traditional single spacecraft mission with multiple small spacecraft 

flying in formation can be advantageous for many missions. This de-emphasis on a single 

monolithic spacecraft approach to spacecraft mission design reduces the chance of 

catastrophic failure of the mission if a single spacecraft can no longer perform its duty. 

This approach also “promotes agility, adaptability, evolvability, scalability, and 

affordability through the exploitation of multiple space platforms.”
1  

A primary motivation in the development of formation flying techniques is the 

maintenance of a virtual aperture used for observing distant objects in space. “A virtual 

aperture is an effective aperture generated by a cluster of physically independent 

elements.”
1
 These types of formations allow for higher resolution observations than with 

a single, conventional aperture. 

 

1.2. DISTRIBUTED SPACE SYSTEMS 

Distributed Space Systems (DSS) is a concept involving multi-spacecraft 

formations. As more advanced spacecraft operational capabilities are required to 

accomplish innovative scientific missions, a shift to the incorporation of Distributed 

Space Systems needs to be developed. DSS also represents an important shift in overall 

mission design. One area of focus is the relative dynamics of spacecraft within a 

formation orbiting about a libration point. 

Formation flying has been defined as the tracking or maintenance of a desired 

relative separation, orientation, or position between or among spacecraft.
6
 DSS is a more 

specific type of formation where the relative separations, orientations or positions are of 

particular interest and importance to the mission for scientific purposes. For most 

missions, a single, monolithic spacecraft contains all of the important spacecraft 

hardware and operations are duplicated onboard to prevent catastrophic mission failure. 

Alternatively, some new missions emphasize the requirement of multiple spacecraft 

maintaining a specific and known set of relative parameters. 



 

 

2 

One of these mission concepts is interferometry
3
. Interferometry uses a virtual 

aperture created from multiple spacecraft flying in a formation to observe the same object 

(of scientific interest) in space. Maintaining a specific formation of spacecraft for a 

virtual aperture used for observing objects in space is a primary motivation in the 

development of formation flying techniques. A virtual aperture is an effective aperture 

generated by a cluster of physically independent elements working together, which is 

where DSS comes into consideration. 

 

1.3. PREVIOUS WORK 

In reviewing the state-of-the-art in spacecraft formation flight at libration points, 

previous contributions are first summarized below from the general categories of “Basic 

Libration Point Dynamics” and “Trajectory Control at Libration Points.”  The review is 

then narrowed to consideration of past efforts with spacecraft formation flight (including 

primarily Earth orbiters). The literature survey concludes with a discussion of those 

works involving libration point formation flight specifically. 

1.3.1. Basic Libration Point Dynamics. The classic text by Szebeheley
4
 

established the foundation for the restricted three-body problem and facilitated much of 

the progress with libration point orbit research in the 1960s and 1970s. Following the 

publication of his text, considerable work was accomplished in finding both analytical 

and numerical solutions for orbits about libration points. Farquhar
5
 derived analytical 

solutions for quasi-periodic orbits for the translunar libration point using the Lindstedt-

Poincaré method. Included within his solutions are the effects of nonlinearities, lunar 

orbital eccentricity, and the solar gravitation field. He identified methods of determining 

the minimum amplitude required of the in-plane motion to guarantee a corresponding 

out-of-plane amplitude that will produce a path where the frequencies of each motion are 

equal, thus producing a halo orbit (as opposed to a Lissajous orbit).  

Richardson
6-8

 sought a fourth-order analytical solution for periodic motion about 

the collinear points of the Circular Restricted Three-Body Problem (CR3BP). He was 

able to obtain all four orders of the nonlinear solution using recursive relationships. The 

solution was constructed by using a method of successive approximations coupled with a 

technique similar to the Lindstedt-Poincaré method.  This was useful for the ISEE-3 
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mission
9
, the first such mission to use a halo orbit, where the analytical solution was used 

as the initial approximation followed by the use of numerical methods. 

Continued development of the families of orbits around the collinear points was 

performed by Howell
10

. She expanded the effort to better understand these orbits by 

numerically determining halo families of orbits. She found that the halo families of 

periodic orbits extend from the libration points to the nearest primary and that they 

appeared to exist for all values of the mass ratio of the two primaries. It was also shown 

that the L2 and L3 families of orbits have very similar characteristics to each other.  

In the previous studies by Richardson
6
, Lissajous trajectories associated with the 

collinear libration points in the restricted three-body problem were successfully computed 

analytically to at least fourth-order.  Those approximations were utilized by Howell and 

Pernicka
11

 to determine such trajectories numerically for an arbitrary, predetermined 

number of revolutions in the rotating frame. Such trajectories were constructed in various 

primary systems, for a wide range of orbit sizes and a large number of revolutions. 

1.3.2. Trajectory Control at Libration Points. Cielaszyk and Wie
12

 treated the 

inherent nonlinearities present as trajectory-dependent, persistent disturbance inputs to be 

incorporated in a linear state-feedback controller for the computation of trajectories near 

libration points.  This method was then used as a fuel-efficient nominal path.  They then 

went on to show that the method could also be used iteratively to generate large, 

complex, quasi-periodic Lissajous trajectories. 

Gurful and Meltzer
13

 developed new methods for generating periodic orbits at 

collinear libration points and for stabilizing the motion.  They introduced a continuous 

acceleration control term into the state-space dynamics to find linear periodic reference 

trajectories. In this system, linearization about the libration points in pulsating 

coordinates yields an unstable linear parameter-varying system.  The nonlinear terms of 

the equations of motion were treated as periodic disturbances and a disturbance 

accommodating control was used to track the reference trajectory in the presence of 

nonlinear periodic disturbances. 

Rahmani
14

 et al. approached the problem by using optimal control theory, 

implementing a variation of the extremals technique to solve the two point boundary 
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value problem.  Their approach utilized fully nonlinear equations of motion in order to 

more closely approximate real world scenarios. 

A number of efforts address the problem of stationkeeping libration point 

trajectories. A comprehensive survey paper by Dunham and Roberts
15

 provides a good 

summary of techniques. 

1.3.3. Spacecraft Formation Flight. Much of the past research accomplished in 

the area of spacecraft formation flight has been applied to geocentric mission design.  

The current body of literature contains many citations regarding Earth-orbiting formation 

flight
16-19

. Some of these concepts extend to libration point formations, but due to the 

unique dynamics of the three-body problem, much of the geocentric state-of-the-art is not 

directly applicable at libration points. Nonetheless, it remains of value to study these 

concepts for what they can offer to the proposed research in hopes of gaining an 

understanding on the natural dynamics. 

1.3.4. Libration Point Formation Flight. Recent years have seen an increase in 

Sun-Earth L2 libration point mission studies due to the considerable interest in formation 

flight in this region.  Orbits about the L2 point are valued for their observational potential 

of distant objects from this region.  With a spacecraft moving about the L2 point the Sun, 

Earth, and Moon all appear in the same general direction, facilitating enhanced strategies 

for reducing the interference radiating from these bodies during data collection.  This 

location also places the formation out of Earth’s geomagnetic tail.  

Formation flying has been defined as “the tracking or maintenance of a desired 

relative separation, orientation, or position between or among spacecraft.”
20

 Replacing 

traditional single large spacecraft with formations of multiple small spacecraft can be 

advantageous in many mission architectures. This decentralized approach in spacecraft 

mission design reduces the chance of catastrophic failure in one spacecraft significantly 

impairing the function of the formation as a whole.  This approach also “promotes agility, 

adaptability, evolvability, scalability, and affordability through the exploitation of 

multiple space platforms.”
21

 A primary motivation in the development of formation 

flying techniques is the maintenance of a virtual aperture used for observing distant 

objects in space. “A virtual aperture is an effective aperture generated by a cluster of 
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physically independent elements.”
21

 These types of formations allow for higher 

resolution observations than with a single conventional aperture. 

There are several technological challenges involved in implementing these types 

of formation missions.  One is providing accurate and affordable relative tracking of 

individual spacecraft in the formation.  Another is that in the mission design of virtual 

aperture formations, observational modes of operations have been defined that require the 

relative positions of each spacecraft in the formation to be controlled as tightly as one 

centimeter within their nominal separations
22, 23

. Such a requirement creates the challenge 

of identifying hardware that can produce thrust controllable to very low magnitudes with 

sufficient accuracy to maintain the formation within this error tolerance. 

Research in this area has focused on the development of control strategies 

involving both continuous and discrete thrusting techniques
24-28

. Previous examinations 

of discrete techniques
29, 30

 examined the problem by dividing the trajectory into segments 

of a given time with impulsive maneuvers performed to maintain that path within a 

certain allowable error bound. Marchand and Howell
29, 30

 found that ∆V magnitudes in 

this region for small formation displacements and allowed error bounds can be 

prohibitively small for the given state-of-the-art in propulsion technologies.  

The focus of the study
31

 by Carlson, Pernicka, and Balakrishnan was on the use of 

impulsive maneuvers to maintain formation flight at a libration point, and in particular, 

formation sizes and control tolerances were sought for which impulsive maneuvering 

becomes a practical option.  However, in recent years, increasing interest in DSS and the 

required low thrust levels have promoted advances in the development of propulsive 

devices that can produce very low thrust. One example of this promising technology is 

the development of colloid micro-Newton cold gas thrusters with thrust levels in the 5-30 

µN range
32

. For smaller spacecraft (~100 kg) planned for DSS missions such as the 

Stellar Imager, this results in an approximate attainable ∆V range of 1x10
-6

 to 1x10
-5

 m/s 

with an approximate resolution of 1x10
-4

 m/s.  While all the necessary lifetime and 

performance testing have not been completed it appears that ∆V values in this range will 

be feasible in the near future. Additionally, a very recent announcement
33

 has been made 

by the European Space Agency (ESA) concerning a new Field Emission Electric 

Propulsion (FEEP) engine that can generate thrust in the range of 0.1 - 150 
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micronewtons, with a resolution capability better than 0.1 micronewtons and a time 

response of one-fifth of a second (190 milliseconds) or better. Given a spacecraft mass of 

around one hundred kilograms, that translates to a ∆V on the order of 1x10
-9

 – 1x10
-8

 

m/s. with an error tolerance near 1x10
-9

 m/s. 

In the area of continuous thrust, a new control technique was investigated
34, 35

 for 

the circular restricted three-body problem with the Sun and Earth as the two primaries. 

The leader spacecraft is maintained in the nominal orbit around the L2 libration point.  A 

virtual structure concept is used as a framework for multiple spacecraft formation in 

which the center of the virtual rigid body is assumed to follow a nominal orbit around the 

L2 libration point.  Control is applied to each individual spacecraft to maintain a constant 

relative distance from the center of the virtual structure. A nonlinear model was 

developed that describes the relative formation dynamics. This nonlinear control problem 

was addressed by using a new nonlinear control approach, called the ϑ-D technique.  

This method is based upon the optimal control concept and provides a closed-form 

suboptimal feedback solution. In this approach, a solution to the Hamiltonian-Jacobi-

Bellman (HJB) equation is approximated by including a finite number of perturbations in 

the series solution. 

Infeld
36

 et al. use a concurrent approach to formation control in which the 

formation design and control aspects are combined.  While their results appear promising, 

it is unclear whether onboard computers would possess the necessary computational 

resources to implement their algorithms to effectively control the formation at the 

centimeter level. 

Collange and Leitner
37

 focused on the natural motion of two spacecraft at the L2 

libration point with the assumption of a circular restricted three-body problem where 

disturbances and nongravitational effects were ignored. They examined the natural 

motion's influence on fuel consumption over long periods as opposed to controlled 

motion, which has previously received considerable attention. Their focus was on 

determining formations that are primarily governed by natural gravitational effects such 

that maintenance of the formation over the long-term will not require significant fuel 

consumption. 
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With the considerable focus on the collinear libration points dynamics, navigation 

and control, little attention has been given to the triangular libration points.  Recently, 

Catlin and McLaughlin
38, 39

 explore the dynamics of relative motion near the Earth-Moon 

L4 point within the circular restricted three body problem, where they concluded that 

formations are possible at the Earth-Moon triangular points on uncontrolled trajectories. 

  

1.4. CURRENT STUDY 

The present study focuses on the relative dynamics of spacecraft within a 

formation orbiting near a libration point. For the scope of the present research, L2 was the 

libration point of choice. A method is sought for finding, understanding, and then 

exploiting the natural dynamics near a libration point for formation flight. Motivation for 

this research stems from a NASA Goddard Spaceflight Center research announcement
44

 

where research was sought in the area of feasibility for aspherical formations near the 

Sun-Earth/Moon L2 libration point. The primary specification used from this 

announcement was the one centimeter error bound on the formation relative positions. 

Additional specifications were outlined in the research announcement such as length of 

formation pointing, formation rotation and a maneuver mode but are not in the present 

scope of this research. Various formation types (relative halo orbit, fixed-position, and 

paraboloid) are examined to determine the feasibility of natural formations for various 

applications with emphasis on interferometry 

 Additionally, a method for determining ∆V magnitudes and the time between ∆V 

maneuvers is also explored in order to gain an understanding of possible controlled 

formations that simultaneously exploit the natural dynamics while also controlling the 

spacecraft in the formation. This method uses impulsive maneuvering at specified times 

to control the spacecraft in the formation desired. 

 

1.5. ORGANIZATION   

 Following this introductory section, the remainder of the document is organized 

as follows: 

 



 

 

8 

• Section 2 – This section provides a background of the three-body problem and the 

dynamic model used. 

 

• Section 3 – This section gives a detailed description of the assumptions and 

methods built into the study along with a detailed analysis of the results obtained 

for the various formation sizes and geometries explored. 

 

• Section 4 – This section gives conclusions based on the results and discusses 

future research. 
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2. BACKGROUND 

 

2.1. RESTRICTED THREE-BODY PROBLEM 

An important first step for the present investigation was the selection of the model 

used to represent the dynamics of the spacecraft motion. For this study, the assumptions 

of the Circular Restricted Three-Body Problem (CR3BP) were chosen. 

2.1.1. Libration Points in the Three-Body Problem. In the 3BP, a single 

spacecraft's motion is assumed to only be influenced by two primary bodies. For this 

study, the larger primary was the Sun (m1) and the smaller primary was the Earth/Moon 

(m2) system. The Earth/Moon system is treated as a single body whose mass is equal to 

the sum of the Earth and Moon and is located at the barycenter of the Earth/Moon 

system. Figure 2.1 illustrates the various Lagrange points (also known as libration points) 

for the Sun-Earth/Moon system (note this figure is not to scale). 

 

 

Figure 2.1. Libration Point Illustration 

 

Libration points are equilibrium points in space. They occur where the velocity 

and acceleration components of a third body, relative to the rotating frame, are zero. 

There are three collinear libration points (L1, L2, and L3) and two triangular libration 

points (L4 and L5). The collinear libration points lie along a line drawn through the Sun 

and Earth/Moon mass center. The triangular libration points form equilateral triangles 

with the Sun and Earth/Moon in the plane of motion of the primaries. One difference 

between the collinear and triangular points is that the collinear points are unstable, while 

the triangular points are stable for certain mass ratios of the primaries m1 and m2.  
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Each individual libration point has potential for various types of missions.  The L1 

and L3 points are well-suited for solar observation missions. The natural stability of the 

L4 and L5 triangular points is an aspect which may some day be exploited in a scientific 

mission. 

 2.1.2. Circular Restricted Three-Body Problem Assumptions. The Circular 

Restricted Three-Body Problem (CR3BP) assumes that the two primaries rotate about 

their barycenter in a circle. Several assumptions were built into the CR3BP model for 

ease in generating equations of motion for the third mass (m3). In the derivation of the 

equations of motion (EOMs), nondimensionalization is performed.  An additional benefit 

of nondimensionalizing is a simplified set of EOMs 

The first two steps set the sum of the two primary masses, m1 and m2, and the 

distance between the two primaries, R, equal to one nondimensional unit as shown in 

equations (1) and (2). 

 

1
*

21 =
+

M

mm
           (1) 

1
*

=
L

R
     (2) 

 

The distance between the two primaries, R, is also equal to the semimajor axis of 

the primary system as shown in equation (3). 

 

66.870,597,149== aR  km = 1 AU    (3) 

 

Using equations (2) and (3) a conversion can be developed to apply to the initial 

conditions to convert distance measurements from kilometers to nondimensional units 

and to convert velocities from kilometers per second to nondimensional units. 

 

km 0.66149,597,87* =L         (4) 
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kg  01.989006x1 30* =M         (5) 

 

The third step in the process is to define a unit of time, T*, so that G* (the 

nondimensional universal gravitational constant) is equal to one.  Using T* as the time 

unit in G results in a value of G* equal to one nondimensional unit.  Furthermore, as 

shown in equation (7) factoring equation (6) produces an expression for T* equal to the 

inverse of the mean motion of the Sun-Earth/Moon system which is a known quantity. 

The mean motion is defined as the angular frequency of the system. 
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where -795x101.99064056 = n  rad/s and  
2

3
20

skg

km
1067.6

⋅
= −

xG  

 

This results in a value of T* as 

 

58965,023,508.1  *T == n  seconds 58.1424605=  days   (8) 

 

The nondimensional mean motion of the primary system is shown to also be equal 

to one through 
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1
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In the CR3BP problem the angular rate and angular acceleration of the rotating 

frame are then 
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1* == nθ&          (10) 

 

0=θ&&       (11) 

 

2.1.3. Dynamical Model. Figure 2.1 shows the geometry of the Restricted Three-

Body Problem.  In many studies, the rotating reference frame is defined with origin at the 

libration point of interest or at the barycenter of the two-body system. In either case, the 

x̂  unit vector is typically directed from the larger primary toward the smaller primary.  

The ŷ  unit vector is defined normal to the x̂  vector, within the plane of the primaries’ 

orbit, and along the prograde rotational direction. The ẑ  unit vector then completes the 

right-handed frame and is thus normal to the plane of the primaries’ orbit. Based on this 

coordinate system, the kinetic energy, T, and potential energy, V, can be defined for an 

arbitrary spacecraft orbiting a libration point as 
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The variables 
1

r  and 
2

r  are defined in equation (14).  
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Now, define the Langragian for the system as 

 

VTL −=         (15) 
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Based on equation (15), the EOMs for the (conservative) system can then be derived 

using Lagrange’s equation 
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If the spacecraft is located by a position vector r with base point at the barycenter 

using coordinates x, y, and z with respect to the rotating frame, then the nondimensional 

equations of motion (assuming the primaries orbit elliptically) are given as 
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where θ&  is the angular rate of the rotating frame (constant in the CR3BP), µ is the ratio 

of the smaller primary mass to the sum of the masses of both primaries, R is the distance 

(equal to one nondimensional unit in the CR3BP) between the primaries, and r1 and r2 are 

the distances from the larger and smaller primary to the spacecraft, respectively.  The 

term θ&&  is the magnitude of the angular acceleration of the rotating frame and in the case 

of the CR3BP is zero.  Figure 2.2 illustrates the coordinate frames and relative distances 

for the three bodies. 
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Figure 2.2.  Basic Geometry of the Restricted Three-Body Problem 

 

The EOMs can be simplified for the CR3BP due to the mean motion becoming a 

constant value (unity) and take the form  
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With the equations of motion defined above, the next step was to find solutions. 

The three second order differential equations were expressed as six first order differential 

equations in the form 

 

xf &=1  
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yf &=2  

 zf &=3                                             (20) 
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where u is defined as the pseudo potential 
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Next, the matrix of partial derivatives was defined as 
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With the matrix of partial derivatives defined, an approximate (linear) relationship 

between changes in the initial states (position and velocity) of the spacecraft to the final 

states at a specified end time is now available. This relationship between states at 

different times gives rise to a differential corrections method that allows for the 

possibility of modifying initial states to achieve specific end states. The differential 
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corrections method described next, is then used to generate initial conditions that 

generate nominal libration point orbits based on desired end state parameters. 

2.1.4. Simulation. MATLAB was used to simulate the trajectories in this study. 

The MATLAB function “ode113” was used to numerically integrate the equations of 

motion for every spacecraft. The ode113 function is a variable order Adams-Bashforth-

Moulton PECE multistep solver - it needs the solutions at several (usually two) preceding 

time points to compute the current solution. The minimum error tolerances used with the 

numerical integration were an absolute error tolerance of 1x10
-13

 and a relative error 

tolerance of 1x10
-13

 which corresponds to precision on the distance of approximately 

14.95 micrometers and a velocity precision of approximately 2.98 nanometers per 

second. 

 

2.2. THE DIFFERENTIAL CORRECTIONS METHOD 

 One important tool used in this research was the differential corrections method.  

The differential corrections method makes use of the state transition matrix, φ, which 

linearly relates changes in initial states to changes in final states at a specified end time 

through the relationship 
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 The state transition matrix is computed by numerically integrating the linear state 

transition matrix differential equation  
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where  

 

Itt f =),( 0ϕ      (25) 

 

with I being the identity matrix. 

 After propagating the spacecraft orbit from a given initial state to a final state, 

equation (23) can be used to generate corrections to the initial spacecraft states to cause a 

desired resulting change in the final states. Equation (24) is used to propagate the state-

transition-matrix ( , )
f o

t tφ simultaneously with the equations of motion (1) with (0,0)φ  set 

equal to the identity matrix. This process can also proceed in the opposite direction, 

allowing the calculation of resulting changes in the initial states for desired changes in the 

final states.  Since this is a linear approximation applied to the nonlinear motion, the 

differential corrections must be applied iteratively to converge to a solution. Various 

differential corrections techniques were implemented in this research and are explained in 

more detail in subsequent sections. 
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3.  NATURAL ORBITS AND FORMATIONS 

 

3.1. PERIODIC ORBITS 

It would be useful to find naturally periodic orbits near Earth for desirable 

communication, gravitational and thermal considerations. In this light, orbits near the 

Sun-Earth/Moon L2 are sought. An infinite number of periodic solutions exist in the 

Circular Restricted Three-Body Problem (CR3BP). Quasi-periodic orbits known as 

Lissajous
4
 trajectories exist near libration points. Halo

6, 7
 orbits are a special class of 

Lissajous orbits and form a particular set of periodic solutions to the CR3BP that are also 

symmetric about the x-z-plane. The CR3BP EOMs cannot be solved explicitly in general 

closed-form so halo orbits are of particular interest in their ability to aid in the 

understanding of the solutions of the EOMs. 

3.1.1. Lissajous Orbits. Lissajous orbits are quasi-periodic solutions to the 

equations of motion of the CR3BP.  Previous research has developed methods for 

computing these orbits using both analytical approximations and numerical methods.  

References 5 and 6 demonstrate an analytical approach for computing Lissajous orbits. 

Howell and Pernicka
11

 developed a numerical method to determine nominal Lissajous 

orbits. The focus for the research presented in this paper was on halo orbits, a subset of 

Lissajous orbits. 

3.1.2. Halo Orbits. Halo orbits are a special class of Lissajous orbits that are 

naturally periodic around the collinear libration points (L2 used in this study).  References 

7 and 8 provide analytical approximation approaches and reference 10 provides a 

numerical approach for computing halo orbits. The motion of a spacecraft in a halo orbit 

about a libration point is inherently unstable and eventually it will drift away from its 

nominal orbit about the libration point. 

 Due to the unstable nature of halo and Lissajous orbits, the trajectories require 

station-keeping. Control maneuvers must be used to maintain a spacecraft on a specific 

orbit for long periods of time. Due to these station-keeping control maneuvers, natural 

orbits that minimize fuel consumption and/or maximize time spent without performing a 

control maneuver are of particular interest. 
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In computing the leader spacecraft’s nominal halo orbit, a differential corrections 

technique was implemented. The spacecraft starts with the y-position equal to zero and 

then x-velocity and z-velocity equal to zero so that the spacecraft will begin moving 

perpendicular to the x-z plane. The spacecraft initial z-position and y-velocity were 

differentially corrected to satisfy specified conditions at time equal to exactly half the 

halo orbit period. Due to the symmetry in the CR3BP EOMs, it could then be assumed 

the spacecraft would follow the mirror image of that trajectory on its second half. The 

requirements for the final states were an x-velocity and z-velocity equal to zero when the 

spacecraft next crossed the y-axis. In other words, the spacecraft needed to cross 

perfectly perpendicular to the x-z plane. Because it is impossible to cross the x-z plane 

perfectly perpendicular due to numerical limitations and because of the instability 

inherent to orbits near libration points, the spacecraft will need to be controlled 

(stationkept) throughout the orbit. 

 In order to generate the leader spacecraft’s reference halo orbit in the CR3BP, an 

analytical approximation was implemented to generate a “good” initial guess for use with 

the fully nonlinear EOMs in computing numerical solutions. For the current study, the 

following initial conditions relative to L2 were used to generate a numerically integrated 

halo orbit about the libration point. 
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Initially, the position and velocity were specified and the differential corrections 

method was used to modify the initial conditions (z-position and y-velocity) to generate a 

halo orbit. The final result (based on the “good” initial guess) was the initial conditions 

listed above. Figure 3.1 illustrates the three-dimensional orbit in three two-dimensional 

projections. The star at the center denotes the L2 libration point location. Appendix A 
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contains additional figures that aid in visualizing the halo orbit and give detailed 

information on the spacecraft’s states as functions of time. This nominal halo orbit is 

treated as the leader spacecraft’s reference orbit. All follower spacecraft orbits are then 

defined with respect to the leader’s reference orbit. It is noted that the leader spacecraft’s 

trajectory is now considered a known quantity at all times. Additionally, any position 

relative to the leader spacecraft is also considered known. This is useful when follower 

spacecraft are placed into orbits with respect to the leader spacecraft and a nominal 

trajectory for the follower spacecraft must be available. 

 

 

            Figure 3.1. Two-Dimensional Projections of Leader Spacecraft Halo Orbit 

 

3.2. FORMATION FLIGHT 

 With the leader spacecraft initial states and nominal trajectory defined, the next 

step was to introduce a single follower spacecraft. The follower spacecraft also orbits the 
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libration point and has a specified initial position relative to the leader spacecraft. Various 

types of formations could be used to address specific mission needs, typically determined 

by scientific requirements (as opposed to commercial and military, which to date have 

not yet identified libration formation flight as an area of interest). An example of current 

missions that are utilizing or will utilize formations of spacecraft are the Micro Arc-

second X-ray Imaging Mission (MAXIM)
 41

, Terrestrial Planet Finder (TPF), Stellar 

Imager (SI) and the European Space Agency’s DARWIN
42

. These missions call for 

different formation requirements and formation types and were used as baselines for the 

current study. In order to gain a greater understanding of the natural dynamics near the 

Sun-Earth/Moon L2 libration point in light of the above missions, three different 

formation types were examined: relative halo orbits, fixed position and paraboloid 

surface. Each formation type has unique properties and scientific uses. For purposes of 

this study, the individual spacecraft’s attitude dynamics and control were not addressed. 

 3.2.1. Relative Halo Orbits. The first formation considered was a follower 

spacecraft that orbited the leader spacecraft in its own relative halo orbit. Segerman
40

 has 

shown that the linearized equations of motion of one spacecraft relative to another take 

the same form as that of a single spacecraft moving about a collinear libration point. In 

other words, the follower spacecraft moves in a halo orbit about the leader spacecraft 

while the leader spacecraft orbits the libration point in its nominal halo orbit.  

Due to the relatively long period of a halo orbit (on the order of 180 days for the 

leader and follower spacecraft), the leader and follower spacecraft both appear to be 

following very similar halo orbits about the libration point in the rotating frame but the 

follower spacecraft will actually be orbiting the leader spacecraft in its own relative halo 

orbit. Initially, the follower spacecraft is placed in various relative positions with respect 

to the leader with an initial relative velocity of zero in order to find a relative position that 

will naturally generate a halo orbit relative to the leader spacecraft. This is accomplished 

by propagating the follower spacecraft initial conditions and examining its trajectory to 

determine its suitability as a follower spacecraft traveling on a halo orbit relative to the 

leader spacecraft. 

The first step in determining an initial position of the follower spacecraft that 

lends itself to a natural relative halo orbit was to place spacecraft in various positions 
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relative to the leader and examine their behavior over at least half the period of the leader 

spacecraft’s halo orbit. Next, the follower spacecraft’s trajectories were examined over 

their entire trajectories to determine which initial positions maintained a close proximity 

to the leader spacecraft. 

Through trial-and-error, it was determined that a minimum of fourteen different 

locations relative to the leader spacecraft were required to adequately ascertain 

neighborhoods of relative positions that yielded acceptable natural dynamics (by  

maintaining close proximity to the leader). These fourteen starting positions were all at a 

fixed distance magnitude relative to the leader spacecraft but placed at varying locations 

surrounding the leader spacecraft. For the initial case, the distance magnitude was 

arbitrarily set at ten kilometers.  

The fourteen points were generated by specifying the eight points of intersection 

between a sphere surrounding the leader spacecraft and a cube with the leader spacecraft 

at the center and the six points that are defined by normals to each face of the cube that 

intersect the sphere. The cube was arranged, for convenience, in such a way that one of 

the three initial positions coordinates was equal to zero. In other words, eight of the cases 

examined were when the initial x-position and the initial y-position were each set equal to 

zero. This was convenient for the case of relative halo orbits such that some of the initial 

positions had a relative y-component equal to zero for purposes of finding relative halo 

orbits. These eight points defined the cube’s corners. The other six cases were then based 

on the normals of the six sides of the cube. Table 3.1 contains the initial coordinates for 

the fourteen cases. 

It should be noted that this process was performed to gain a quick, qualitative 

understanding of the nature of the dynamics between the leader spacecraft and the 

possible positions of the follower spacecraft and was not an exhaustive quantitative 

analysis of all relative starting positions for the follower spacecraft possible. A more 

detailed examination of relative starting positions for a follower spacecraft would need to 

be made based on particular mission requirements.  
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Table 3.1. Initial Coordinates of Follower Spacecraft 

 X (km) Y (km) Z (km) 

1 7.07107 0 7.07107 

2 7.07107 0 -7.07107 

3 -7.07107 0 7.07107 

4 -7.07107 0 -7.07107 

5 0 7.07107 7.07107 

6 0 7.07107 -7.07107 

7 0 -7.07107 7.07107 

8 0 -7.07107 -7.07107 

9 7.07107 7.07107 0 

10 7.07107 -7.07107 0 

11 -7.07107 7.07107 0 

12 -7.07107 -7.07107 0 

13 0 0 10 

14 0 0 -10 

 

Of the fourteen cases, the case with an initial positive x-position, zero y-position 

and a negative z-position (highlighted) gave the “best” natural halo orbit. Appendix B 

contains various figures that illustrate the process of choosing the best neighborhood for 

starting positions of follower spacecraft to yield halo orbits. In order to help visualize this 

process, only the eight points that made up the corners of the cube were plotted on the 

figures. Each of the fourteen cases was examined to find the one that most closely 

followed a similar orbit to the leader spacecraft. 

  Similar to the process of finding initial conditions for the leader spacecraft, the 

follower spacecraft is given an initial position as defined above and the same differential 

corrections technique used in Section 3.1.2 to generate the leader spacecraft’s halo orbit 

is used to correct the follower’s initial conditions to generate a halo orbit relative to the 

leader. It should be noted that the differential corrections technique used alters the initial 

z-position and the initial y-velocity. Due to this change in the initial z-position (because 

of the differential corrections technique implemented), the spacecraft is not at the same 

initial position. The follower spacecraft moved 1.25 kilometers along the z-axis, changing 

to distance magnitude by 0.84 kilometers, deemed acceptable in this study. The initial 

conditions for the follower spacecraft are defined below. 



 

 

24 

 

s

km  

0

0105919.0

0

km  

82811.5

0

07107.7

















=
































−

=
















o

o

o

o

o

o

z

y

x

z

y

x

&

&

&
 

 

  Once the spacecraft has had its initial conditions corrected such that a halo orbit is 

generated, a new differential corrections technique (described below) was implemented. 

It was necessary to generate a new differential corrections technique because the follower 

spacecraft needed to remain at a fixed position relative to the leader spacecraft, as only its 

initial velocity should be changed in order to preserve the formation geometry. Thus, the 

new technique allows the follower spacecraft to be differentially corrected to find a 

proper halo orbit without affecting its initial position. The new technique takes advantage 

of the information gained through the original differential corrections process (the 

position where the spacecraft crosses the y-axis) to generate a slightly different halo orbit 

with a specified initial position.  

The new differential corrections technique differs from the previous one used by 

altering the three initial velocities and targeting an exact position. The primary 

motivation behind developing a new differential corrections technique was a desire to not 

change the initial position of the follower spacecraft once it had been chosen so a 

follower spacecraft could be placed at any specified initial position. Instead, the initial 

position remained fixed and only the initial velocities were differentially corrected in 

order to target a specific end state position. The desired end state position was not known 

until the original differential corrections technique was used. For this case, the end state 

condition specified was the final state position of the spacecraft at half the halo orbit 

period after using the original differential corrections method. In other words, the 

spacecraft trajectory was originally corrected by altering the z-position and y-velocity 

and targeting an x-velocity and z-velocity of zero when the spacecraft passes through the 

x-z plane. It should be noted that in changing the initial velocities of the follower 
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spacecraft, the follower will no longer be on a truly periodic halo orbit. By definition, 

when the spacecraft crosses the x-z plane, it should have an x-velocity and z-velocity 

equal to zero. By making their initial x-velocity and z-velocity nonzero, the follower is no 

longer on a halo orbit. Differential corrections (with corresponding deterministic ∆Vs) 

will need to be applied at every half period. 

Based on this original differential corrections method, a specific reference halo 

orbit was found. The end state position values (taken at the half period) were taken from 

this reference solution and used as the target states for a new follower spacecraft that 

starts at an initial position required by the mission, not necessarily the same initial 

position as the reference follower. With the initial position defined, the new differential 

corrections technique was free to find different initial velocities that would yield the same 

end state position from the reference solution. For this case, the differential corrections 

technique converged on the solution in three iterations with a tolerance on the 

nondimensional end state positions of 1x10
-13

 (on the order of two centimeters). The 

“new” initial states for the follower spacecraft were determined to be 
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The follower spacecraft now starts out at a specified initial position and targets a 

generated end state position by changing its initial velocities. The resultant relative halo 

orbit can be seen in Figure 3.2. The three illustrations portray the motion of the follower 

in two dimensions with the star denoting the leader position. It should be noted that 

instabilities that make the leader spacecraft halo orbit sensitive also affect the follower 

spacecraft. As can be seen in Figure 3.2, the follower starts to drift away from the 

nominal orbit before it completes a full revolution. The approximate period for the 

follower spacecraft’s relative halo orbit is 179 days (time of the half period was 89.46 
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days). Since it does not complete a full revolution, its orbital period is not exact. The 

maximum distance the follower spacecraft was from the leader spacecraft was on the 

order of forty kilometers (note the follower spacecraft started at ten kilometers away from 

the leader spacecraft). 

 

 

Figure 3.2. Relative Halo Orbit of Follower Spacecraft 

 

3.2.2. Relative Halo Orbit Formations. With a follower halo orbit defined, the 

next step was to incorporate additional follower spacecraft. As a first attempt at 

establishing a formation, the additional follower spacecraft were simply added at t = 0 in 

the simulation along the trajectory (given the same states) of the original reference 

follower at roughly equal spacing along the orbit. However, in the fully three-

dimensional sense, the additional follower spacecraft now start in a different point in 

space compared to where they “should” be. In other words, while the additional follower 
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spacecraft may be in correct relative positions along the reference halo orbit, they 

actually start out in different points in the inertial frame compared to where that relative 

position was along the reference trajectory. For example, the location along the 

follower’s reference trajectory that corresponds to thirty days into the orbit is in a 

different inertial location due to the fact that the leader spacecraft has also moved during 

the thirty days. This difference causes the divergence of the additional follower 

spacecraft trajectories as seen in Figure 3.3. Each star represents an initial position for the 

four different cases considered (0, 30, 50 and 100 days). 

 

 

Figure 3.3. Relative Orbits of Additional Follower Spacecraft 

 

 With the initial starting positions for the four additional follower spacecraft 

defined, the next step was to differentially correct the additional follower spacecraft’ 

initial conditions. The original goal was for the additional follower spacecraft to follow 

the same trajectory as the reference follower. The first thought was to change the 
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additional follower spacecraft’s initial velocities until the trajectories followed the same 

relative halo orbit path. In fact, the natural dynamics created a situation where it was 

impossible to generate initial velocities while maintaining the same initial positions that 

would yield the same trajectory as the follower reference orbit. This situation arose 

because as the leader spacecraft traveled along its halo orbit, the positions relative to it 

were also changing in the inertial frame. Thus, the follower spacecraft’s relative halo 

orbits were directly influenced by time due to their dependence on the position of the 

leader spacecraft (which is moving along its own halo orbit). This effect was large 

enough to influence the follower spacecrafts’ relative orbits significantly and cause them 

to drift from the reference trajectory.  

 As stated above, the first attempt was to differentially correct the additional 

followers’ initial velocities and target the three dimensional position in space. An 

additional constraint of forcing the time of flight from the initial position to the final 

position to be the same as the reference orbit was implemented. Unfortunately, due to the 

nature of the dynamics around a libration point, the additional followers did not follow 

the reference trajectory. A specific example of this can be seen in Figure 3.4 with initial 

position at the reference orbit’s thirty day location. As demonstrated by Figure 3.4, it was 

possible to get similar orbits that followed trajectories that were close to the reference 

orbit but it was not possible to generate specific initial conditions that would lead to the 

same trajectory for any starting position. With this understanding, additional differential 

corrections techniques were sought. 
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Figure 3.4. Differentially Corrected Relative Halo Orbit 

 

 Because the method of targeting a specific location did not produce desired 

results, an alternative differential corrections method was developed. This third method 

targeted a specific y-position, x-velocity and z-velocity. The goal was to have the 

spacecraft pass through the same x-position (z-position was free to change) as the 

reference follower while also crossing that x-position with no relative x-velocity and z-

velocity. Figure 3.5 illustrates this attempt. As can be seen below, this third (and final) 

differential corrections method did not successfully find any initial conditions that would 

yield a relative halo orbit that matched the reference orbit. 
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Figure 3.5. Alternate Differentially Corrected Halo Orbit 

 

 With these two methods failing to find a natural match to the reference follower 

spacecraft’s trajectory, it was decided that any specific follower spacecraft would need to 

be individually controlled to maintain a reference halo orbit about a leader spacecraft if 

the starting position was varied along the reference follower’s trajectory. Thus, it is 

unlikely that differential corrections will identify a natural (uncontrolled) solution in 

which the additional follower spacecraft would precisely follow the same trajectory as the 

reference follower solution. Instead, active control would need to be applied to the 

follower spacecraft to “force” their orbits to match the reference trajectory.  

Due to the wide range of possibilities for placing a follower spacecraft on any sort 

of relative halo orbit with respect to a leader spacecraft on its own halo orbit, a 

parametric study to determine the possibility of any natural relative halo orbits was not 

performed. The methods used in this study could be implemented based on a set of 

mission requirements and initial conditions to determine the feasibility of a natural 
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relative halo orbit formation. The inputs required to determine the feasibility would be 

the initial positions of the follower spacecraft coupled with any mission requirements that 

govern the period of the halo orbits or their relative motion with respect to the leader 

spacecraft that would be pertinent to the mission. 

 3.2.3. Fixed Position Relative to Leader Spacecraft Orbit. The next formation 

type examined was locating the follower spacecraft in a fixed position relative to the 

leader spacecraft. This type of formation maintains a specific orientation relative to the 

leader spacecraft in the rotating frame (with respect to the two primaries) and is useful for 

satisfying scientific pointing requirements in the rotating frame (Sun, Earth, or Moon). 

The leader spacecraft’s nominal orbit was considered known for purposes of this 

research. Since the follower’s position is defined relative to the leader and the leader’s 

trajectory is considered known, the follower’s nominal or reference trajectory is also 

considered known at all times.  

The given inputs for a fixed-position follower are a specified position relative to 

the leader spacecraft coupled with an error tolerance (as defined by scientific 

requirements) to the distance magnitude. In other words, the formation needs to maintain 

all of the relative position components with respect to each other in order to maintain the 

specific formation. The error tolerance on the distance magnitude generates an error 

“sphere” surrounding the follower spacecraft. In terms of the trajectory, this establishes 

an error corridor in which the follower spacecraft must remain at all times. As long as the 

follower spacecraft remains within the error corridor, it is deemed that the formation is 

being maintained. 

Four cases were examined where the distance magnitude was the parameter 

arbitrarily varied at ten meters, one hundred meters, one kilometer and ten kilometers. 

For all cases, the error tolerance on the distance magnitude was kept at one centimeter 

and the initial relative velocities were set at zero. The value of one centimeter was used 

due to requirements for interferometry based on a NASA Goddard Spaceflight Center 

research announcement
44

. The initial states of the follower for the ten meter example are: 
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These initial conditions were selected by using a similar method as the relative halo orbit 

formation (Section 3.2.1) of determining convenient neighborhoods (fourteen points) for 

a particular type of formation. These fourteen points differ with the assumption of one 

position being zero was not used. Table 3.2 contains the fourteen initial cases examined 

for the ten kilometer formation size. For the case of a specified relative position that must 

be maintained, a positive x-position, positive y-position and negative z-position yielded 

the best (maintained its relative position for the longest period of time) natural starting 

position for a follower spacecraft (highlighted). Table 3.3 contains data illustrating the 

relative distance magnitudes (km) of each spacecraft after 90 and 150 days and shows 

why the second formation geometry was chosen. 

 

Table 3.2. Initial Coordinates of Follower Spacecraft  

 X (km) Y (km) Z (km) 

1 5.7735 5.7735 5.7735 

2 5.7735 5.7735 -5.7735 

3 5.7735 -5.7735 5.7735 

 4 5.7735 -5.7735 -5.7735 

5 -5.7735 5.7735 5.7735 

6 -5.7735 5.7735 -5.7735 

7 -5.7735 -5.7735 5.7735 

8 -5.7735 -5.7735 -5.7735 

9 10.000 0 0 

10 -10.000 0 0 

11 0 10.000 0 

12 0 -10.000 0 

13 0 0 10.000 

14 0 0 -10.000 
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Table 3.3. Relative Distance Magnitude (km) of Follower Drift 

 90 days 150 days 

1 128.365 1535.521 

2 9.3812 21.201 

3 207.537 2592.871 

 4 153.512 1851.772 

5 232.711 2912.179 

6 207.554 2595.302 

7 153.529 1853.020 

8 128.377 1536.421 

9 312.433 3847.707 

10 312.481 3853.468 

11 68.996 916.224 

12 68.995 916.512 

13 23.635 274.081 

14 23.635 274.066 

 

The initial attempts at maintaining the fixed relative position formation were 

accomplished using the same differential corrections technique described above where 

the initial velocities are changed in order to target a specific end state (a specific position 

for this case). For all cases, the initial uncorrected relative velocities were all zero. In 

other words, the follower spacecraft were placed in their relative positions with zero 

relative velocities. All the formations followed the same pattern of each starting location 

having components such that the x, y-values were each positive and the z-value negative, 

due to the information from Table 3.3. 

The goal was to maximize the time spent in the error corridor while monitoring 

the ∆V requirements. The follower’s trajectory is also continuously checked to ensure 

that at no point leading up to the defined end time does the follower spacecraft violate the 

error corridor. 

 The calculation of the end time state was a two-step process. Originally, the 

spacecraft trajectory was propagated until it violated the error corridor. It was determined 

that in any real situation, allowing the follower spacecraft to drift to the maximum 

allowable error could be risky. Thus, the defined end state was changed. Instead, for the 

cases where the time in the error corridor was maximized, rather than take the end time as 

the point where the spacecraft violates the error corridor, the end time was defined by the 
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moment when the spacecraft passes nearest the reference orbit after having been 

propagated for some minimum time (arbitrarily defined as ten minutes). In other words, 

rather than allow the follower spacecraft to travel all the way to the time at which it 

violates the error corridor, it was stopped at the moment it passed closest to the reference 

trajectory. 

The new definition for the end time led to an end state that was very near the 

follower reference orbit and on the same trajectory that maximized the time spent in the 

error corridor without propagating the spacecraft to the limit of the error bound. Multiple 

segments were then propagated to define an overall trajectory with ∆Vs at the beginning 

of every new segment to maximize the time spent in the error corridor for that specific 

segment. 

Figures 3.6-3.9 represent the final (of five) segment propagations for four 

different formation sizes. Each formation had the same relative starting location for the 

follower spacecraft with only the distance magnitude changed. The red lines represent the 

maximum error bound (one centimeter) on either side of the nominal trajectory. The 

green line represents the reference orbit trajectory. The blue line defines the actual 

trajectory of the follower spacecraft over the particular segment. It should be noted that it 

is a combination of all three position components that define an overall distance 

magnitude. Additionally, the follower spacecraft was to remain within one centimeter of 

a fixed position, not just maintain a fixed distance from the leader spacecraft. 
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Figure 3.6. 10 m Formation Size – 1 cm Error Bound 

 

 

Figure 3.7. 100 m Formation Size – 1 cm Error Bound 



 

 

36 

 

Figure 3.8. 1 km Formation Size – 1 cm Error Bound 

 

 

Figure 3.9. 10 km Formation Size – 1 cm Error Bound 
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Table 3.4 shows the time spent (hours) within the error corridor for each segment 

of a given formation size. Each formation was propagated for a total of five segments, 

regardless of the segment length. Five segments were computed because they supplied 

sufficient information to establish a qualitative trend for each formation. Any number of 

segments could be linked to construct a trajectory of any desired duration for any 

formation size. The maximum error distance allowed for all formation distances was one 

centimeter but other error sizes could be used based on the mission requirements. 

As can be seen in Table 3.4, time spent in the error corridor is approximately 

inversely proportional to the formation size. As the formation size increases, sensitivities 

in the motion become greater causing the follower spacecraft to more quickly drift away 

from its reference orbit. Time spent in the error corridor is of interest for possible 

scientific requirements of  long viewing times. The other points of interest are the ∆V 

requirements to maintain the formation. The ∆V requirements will directly influence the 

viability and longevity of a particular mission. 

 

Table 3.4. Time in Error Corridor (Hours) for Four Formation Sizes 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 52.5167 57.7167 52.8833 53.0000 53.0500 

100 m 16.5333 11.6667 16.9333 17.0333 16.6500 

1 km 5.25000 5.75000 5.26667 5.25000 5.25000 

10 km 1.68333 1.83333 1.48333 1.50000 1.48333 

 

 Table 3.5 shows the ∆V required at the end of each segment to correct the 

follower spacecraft to maintain its trajectory within the error corridor (without venturing 

too close to the error bound) for the following segment. It was assumed that the initial ∆V 

was zero, so that the follower spacecraft starts out with the exact initial states required to 

maximize the time spent in the error corridor. All of the ∆Vs are between 3.9x10
-7

 and 

1.5x10
-5

 m/s, well within the ESA’s microthruster capability. 
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Table 3.5. ∆V Magnitudes (m/s) for Four Formation Sizes 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 4.495 x 10
-7

 4.053 x 10
-7

 4.001 x 10
-7

 3.985 x 10
-7

 

100 m 1.418 x 10
-6

 1.339 x 10
-6

 1.320 x 10
-6

 1.270 x 10
-6

 

1 km 4.506 x 10
-6

 4.070 x 10
-6

 4.010 x 10
-6

 4.004 x 10
-6

 

10 km 1.452 x 10
-5

 1.121 x 10
-5

 1.096 x 10
-5

 1.090 x 10
-5

 

 

  As the formation size increases, the follower spacecraft will drift more quickly 

away from the reference orbit. Coupled with this, the ∆V required to correct the follower 

spacecraft so that it stays within the error corridor also increases. The follower spacecraft 

must make larger and more frequent ∆Vs to remain in its nominal position to maintain 

the formation.  

As stated in reference 33, ESA describes hardware with the ability to create thrust 

in the range of 0.1-150 micronewtons with a precision of ±0.1 micronewtons. The time 

response of the propulsive system is on the order of 190 milliseconds. Given a spacecraft 

mass of around one hundred kilograms, that translates to a ∆V on the order of 1x10
-9

 m/s, 

well within the minimum required by the one centimeter error tolerance for the above 

formations. 

Additional follower spacecraft in their own fixed relative positions could be 

added to the formation. Care would need to be taken to ensure that the formation as a 

whole exploits the natural dynamics of the system. Careful examination of the 

“neighborhoods” that lend themselves toward natural formations would need to take 

place to ensure the entire formation (or most of it) takes advantage of the natural 

dynamics. 

3.2.4. Paraboloid Formation. The next formation type examined was with a 

follower spacecraft constrained to the surface of a paraboloid. The NASA Goddard 

Spaceflight Center issued a research announcement calling for studies to be conducted in 

the area of aspherical formations near libration points
44

. The ultimate goal of the research 

was to fly a formation of spacecraft (on the order of twenty spacecraft) on a paraboloid 

surface to form a distributed Fizeau interferometer for a mission such as the Stellar 

Imager (mentioned earlier) with a mission life near twelve years. The primary 
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specification used from this announcement was the one centimeter error bound on the 

formation relative positions. Additional specifications were outlined in the research 

announcement such as length of formation pointing (“stare” in an inertially fixed 

direction for up to a month), formation rotation (must rotate about the line of sight to the 

target at least once per week) and a maneuver mode (line of sight of the aperture must 

slew on the order of twenty degrees per day to acquire a new science target) but are not in 

the present scope of this research. 

For this study, the leader spacecraft was assumed to be located at the vertex of the 

paraboloid with the follower spacecraft fixed at some “altitude” above the follower 

spacecraft along the surface of the paraboloid. Figure 3.10 illustrates the paraboloid and 

the follower’s error “torus.” 

 

 

Figure 3.10. Example Paraboloid
43

 with Error Torus 

 

The paraboloid itself could vary considerably in its size and overall shape and 

would typically be defined by the science requirements of a particular mission. For the 
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purposes of this research, the paraboloid was assumed to take the shape where the 

altitude was equal to the radius for the initial case. Other follower spacecraft could then 

be added to the paraboloid surface at any location. It should be noted that the follower 

spacecraft were free to move around anywhere within the error torus. An additional 

constraint would need to be applied to guarantee that any follower spacecraft positioned 

at the same (or close) relative altitude would not collide, especially during a reorientation 

of the formation. The process of reorienting the entire formation was not investigated in 

this study. 

Two different scenarios were examined for the paraboloid formation. The first 

example was treated much like the fixed-position formation discussed in the previous 

section except that a different constraint is applied to the follower spacecraft. The 

formation as a whole maintained the same orientation relative to the rotating frame, 

useful for observation of the two primaries or other objects in the rotating frame. The 

second example required the formation to maintain a fixed orientation in the inertial 

frame, useful for observation of inertially fixed objects. The second example is discussed 

later in this section. 

3.2.5. Paraboloid Formation in Rotating Frame For the first example, defining 

the error torus was the first step in the process. Based on the pointing of the formation, 

the leader spacecraft was placed at the vertex of the paraboloid and the next step was to 

define the shape and size of the paraboloid. Based on the chosen size of the paraboloid, 

an altitude and radius were defined for the follower. The next step was to add a follower 

spacecraft to the paraboloid at some defined altitude. With the follower spacecraft’s 

initial position defined by the paraboloid’s pointing and the spacecraft's altitude, the 

allowable error torus was defined for that particular altitude. The follower spacecraft was 

then constrained to stay within the error torus. This was accomplished by maintaining an 

error tolerance (one centimeter) on the altitude and an error tolerance (one centimeter) on 

the distance magnitude. If either constraint was violated at any time, the follower 

spacecraft was considered outside the error torus. 

By mimicking the fixed-position formation, the calculation of the end time state 

for the paraboloid formation used the same two-step process. The follower spacecraft was 
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given the same initial conditions as the fixed position case. The following show the initial 

conditions for the ten meter formation size: 
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 The follower spacecraft was propagated until it violated the error torus. Rather 

than take the end time as the point where the spacecraft violates the error torus, the end 

time was defined by the moment when the spacecraft passes nearest the reference orbit 

after having been propagated for some minimum time (arbitrarily defined as ten minutes), 

as was done in the fixed-position formation case. This process helps ensure that the 

follower spacecraft does not approach the error torus bounds with significant velocities 

that could continue to take it out of the error torus. 

The above definition of the end-time led to an end-state that was very near the 

follower reference orbit (located anywhere around the paraboloid on the torus but at the 

fixed altitude) and on the same trajectory that maximized the time spent in the error torus 

without propagating the spacecraft all the way to the limit of the error torus. Multiple 

segments were then propagated to define an overall trajectory with ∆Vs at the beginning 

of every new segment to maximize the time spent in the error corridor for that specific 

segment. A total of five segments were propagated. 

Tables 3.6-3.8 represents an example of the time spent in the error torus for 

various formation sizes and orientations with a fixed error tolerance (one centimeter) over 

five different segments. Three different orientations for the paraboloid were explored. For 

simplicity, the three cases had the formation pointing along one of the rotating axes (x, y, 

z-axis). As the formation size increases while maintaining a constant error tolerance, the 

time spent in the error torus decreases, as expected considering the relative similarity of 

the paraboloid formation to the fixed-position formation. Additionally, the orientation of 
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the formation also has implications on the natural dynamics. The y-axis and z-axis 

orientations were comparable, but the x-axis orientation tended to only remain in the 

error torus half as long as the other two orientations. Additional orientations would need 

to be explored based on mission pointing requirements to determine natural formations 

that also satisfy time spent in the error torus requirements. 

 

Table 3.6. Time Spent (Hours) in Error Torus for Various Formation Sizes and Formation 

Pointing Along the Rotating X-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 54.7500 59.6667 49.6667 50.6667 51.1667 

100 m 17.3333 18.9167 15.5833 15.5833 15.6667 

1 km 5.5000 5.91667 4.91667 5.0000 4.91667 

 

Table 3.7. Time Spent (Hours) in Error Torus for Various Formation Sizes and Formation 

Pointing Along the Rotating Y-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 99.2500 98.6667 95.6667 100.333 95.4167 

100 m 32.0833 34.6667 31.6667 32.0000 34.4167 

1 km 10.2500 11.1667 10.16667 10.0000 10.0000 

 

Table 3.8. Time Spent (Hours) in Error Torus for Various Formation Sizes and Formation 

Pointing Along the Rotating Z-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 93.6667 92.5000 89.0833 87.6667 86.4167 

100 m 32.2500 35.1667 31.9167 31.8333 31.6667 

1 km 10.2500 11.1667 10.1667 10.1667 10.1667 

 

Tables 3.9-3.11 illustrate the ∆V magnitudes for five segments (the initial point 

on the first segment is assumed to require no ∆V). Considering the wide range of 

possibilities for formation sizes and orientation, a more exhaustive study would need to 

be performed for specific mission applications. The y-axis and z-axis cases were 
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comparable once again while the x-axis orientation required roughly half the ∆V 

requirements. Comparing the two sets of tables it can be seen that the x-axis orientation is 

not considerably more efficient than the other two cases, as it requires smaller but more 

frequent ∆Vs to maintain the formation. Table 3.11 below contains the average ∆Vs per 

day for each formation size and orientation. For the cases shown here, the x-axis 

orientation requires nearly half the ∆V magnitudes but only lasts approximately half as 

long in the error torus. 

 

Table 3.9. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Rotating X-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 4.672 x 10
-7

 3.665 x 10
-7

 3.656 x 10
-7

 3.659 x 10
-7

 

100 m 1.488 x 10
-6

 1.168 x 10
-6

 1.139 x 10
-6

 1.131 x 10
-6

 

1 km 4.697 x 10
-6

 3.639 x 10
-6

 3.697x 10
-6

 3.572 x 10
-6

 

 

Table 3.10. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Rotating Y-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 8.590 x 10
-7

 6.795 x 10
-7

 7.923 x 10
-7

 7.433x 10
-7

 

100 m 2.721 x 10
-6

 2.694 x 10
-6

 2.734 x 10
-6

 2.722 x 10
-6

 

1 km 8.738 x 10
-6

 7.891 x 10
-6

 7.670x 10
-6

 7.603 x 10
-6

 

 

Table 3.11. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Rotating Z-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 7.079 x 10
-7

 6.241 x 10
-7

 6.322 x 10
-7

 6.210 x 10
-7

 

100 m 2.747 x 10
-6

 2.461 x 10
-6

 2.421 x 10
-6

 2.399 x 10
-6

 

1 km 8.744 x 10
-6

 7.832 x 10
-6

 7.770x 10
-6

 7.727 x 10
-6

 

 

 Table 3.12 contains the ∆V magnitudes for each formation size and orientation. 

The ∆V magnitudes were generated by taking the average time spent in the error corridor 

over the five segments and determining the number of segments in a given day. The next 
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step was to determine the average ∆V magnitude for each segment. This average ∆V 

magnitude was then multiplied by the number of segments in a day to determine the total 

amount of ∆V expended for each formation size and orientation. A general trend emerges 

that as the size of the orientation increases by an order of magnitude, the ∆V requirement 

to maintain that formation also increases by an order of magnitude. Also, each of the 

orientations is roughly equivalent in their ∆V requirement over a day but the number of 

∆Vs performed in a given day is not constant. The orientation pointing in the x-direction 

requires nearly double the number of maneuvers than the y-orientation and z-orientations 

as can be seen by comparing the time spent in the error corridor contained in Tables 3.8-

3.10. 

 

Table 3.12. ∆V Magnitude (m/s) per Day for Each Formation and Orientation 

Formation Size X-Pointing Y-Pointing Z-Pointing 

10 m 1.766 x 10
-7 

1.885 x 10
-7 

1.726 x 10
-7 

100 m 1.779 x 10
-6 

1.979 x 10
-6 

1.848 x 10
-6 

1 km 1.783 x 10
-5 

1.855 x 10
-5 

1.853 x 10
-5 

 

Figures 3.11-3.19 show the final (of five) segment propagation for the three 

different formation sizes (10 m, 100 m, 1 km) and the three different orientations (x, y, z-

axis). Each formation had the same relative starting location for the follower spacecraft 

with the distance magnitude changed (ten meters and one kilometer). The red lines 

represent the maximum error bound (one centimeter) on either side of the nominal 

trajectory. The green line represents the reference orbit trajectory. The blue line defines 

the actual trajectory of the follower over the particular segment.  

The follower spacecraft was allowed to move within the error torus. It should be 

noted that it is a combination of all three position components that define an overall 

relative distance magnitude. The actual constraints applied to the follower spacecraft 

were that the overall relative distance magnitude not vary by more than one centimeter 

and that, based on the orientation, the altitude of the follower spacecraft not vary by more 

than one centimeter. In other words, the spacecraft was free to change its relative position 

along either of the two axes that were not defined by the altitude while maintaining a 
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fixed overall relative distance magnitude. As stated in Section 3.2.3, the ∆V magnitudes 

are well within ESA’s microthruster’s capabilities.  

Additional follower spacecraft could be added to the paraboloid formation at 

different altitudes. Multiple spacecraft could be added at the same altitude but particular 

care would need to be taken to ensure that the spacecraft would never collide. An 

additional constraint would need to be applied to the follower spacecraft to ensure they 

remain on a particular portion of the paraboloid at a given altitude. 

 

 

Figure 3.11. 10 m Formation with Formation Pointing along the Rotating X-Axis 
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Figure 3.12. 10 m Formation with Formation Pointing along the Rotating Y-Axis 

 

 

Figure 3.13. 10 m Formation with Formation Pointing along the Rotating Z-Axis 
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Figure 3.14. 100 m Formation with Formation Pointing along the Rotating X-Axis 

 

 

Figure 3.15. 100 m Formation with Formation Pointing along the Rotating Y-Axis 
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Figure 3.16. 100 m Formation with Formation Pointing along the Rotating Z-Axis 

 

 

Figure 3.17. 1 km Formation with Formation Pointing along the Rotating X-Axis 
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Figure 3.18. 1 km Formation with Formation Pointing along the Rotating Y-Axis 

 

 

Figure 3.19. 1 km Formation with Formation Pointing along the Rotating Z-Axis 
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3.2.6. Paraboloid Formation in Inertial Frame The first paraboloid formation 

example maintained a formation relative to the rotating frame of the two primaries. The 

second paraboloid formation described in this section maintains the same formation 

orientation with respect to the inertial frame. Because the dynamics of three body system 

are expressed using a rotating frame, generating an inertially oriented formation becomes 

more challenging. The rotating frame angular rate is slightly more than one degree per 

day (360 degrees in 365.24 days). Because of this relatively small angular rate, large 

differences between the maintenance of the two formation types were not expected. 

Otherwise, this second formation type used the same initial conditions and processes as 

the first example. 

Three different orientations were examined for the inertially fixed paraboloid 

formation. Similar to the first paraboloid formation example, the straightforward cases of 

pointing the formation along the inertially fixed axes were explored. The inertially fixed 

axis was defined as being equal to the rotating frame axis system at the initial starting 

time. In other words, at time equal to zero, the x-axes of the inertial frame and rotating 

frame are (arbitrarily) lined up with each other. For any time greater than zero, the 

rotating frame will begin to rotate while the inertially fixed axis system remains 

stationary. By definition of both frames, the z-axes are coincident at all times. Thus, the 

paraboloid formation z-axis pointing cases are the same for both rotating and inertial 

types. The direction cosine matrix (seen below) involved a rotation about the z-axis to 

align the x-axes. Since the z-axis did not change and any change in the angle due to the 

Earth’s orbit about the Sun was safely ignored (due to the vast distances involved, this 

was a good assumption), only one rotation was required to maintain the orientation of the 

formation with respect to the inertial frame. 

 

















−

100

0)cos()sin(

0)sin()cos(

θθ

θθ

 

 

The angle, θ, was defined based on multiplying the time by the angular rate (360 degrees 

every 365.24 days). This angle was recalculated at every time step. The constraints that 
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the follower spacecraft maintain the same relative position was also updated at every time 

step. Thus, the follower spacecraft’s nominal trajectory and error torus were defined. 

Similar to the first paraboloid formation example, Tables 3.13-3.15 represents an 

example of the time spent in the error torus for various formation sizes and orientations 

with a fixed error tolerance (one centimeter) over five different segments. 

 

Table 3.13. Time Spent (Hours) in Error Torus for Various Formation Sizes and 

Formation Pointing Along the Inertial X-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 54.0833 51.1667 50.6667 49.6667 50.1667 

100 m 17.4167 18.5000 17.6667 16.1667 16.5833 

1 km 6.2500 5.91667 4.66667 6.00000 4.58333 

 

Table 3.14. Time Spent (Hours) in Error Torus for Various Formation Sizes and 

Formation Pointing Along the Inertial Y-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 97.4166 94.6667 97.6667 98.5000 95.4167 

100 m 31.9167 33.6667 32.0000 31.4167 34.9167 

1 km 10.0000 10.6667 10.2500 11.1667 9.91667 

 

Table 3.15. Time Spent (Hours) in Error Torus for Various Formation Sizes and 

Formation Pointing Along the Inertial Z-Axis 

Formation Size Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 

10 m 93.6667 92.5000 89.0833 87.6667 86.4167 

100 m 32.2500 35.1667 31.9167 31.8333 31.6667 

1 km 10.2500 11.1667 10.1667 10.1667 10.1667 

 

Tables 3.16-3.18 illustrate the ∆V magnitudes for five segments (the starting 

location on the first segment is assumed to require no ∆V). The y-axis and z-axis cases 

were comparable once again while the x-axis orientation required roughly half the ∆V 

requirements. Comparing the two sets of tables it can be seen that the x-axis orientation is 

not considerably more efficient than the other two cases, as it requires smaller but more 

frequent ∆Vs to maintain the formation. Table 3.19 below contains the average ∆Vs per 
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day for each formation size and orientation. For the cases shown here, the x-axis 

orientation requires nearly half the ∆V magnitudes but only lasts approximately half as 

long in the error torus. 

 

Table 3.16. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Inertial X-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 3.919 x 10
-7

 3.742 x 10
-7

 3.792 x 10
-7

 3.569 x 10
-7

 

100 m 1.159 x 10
-6

 1.213 x 10
-6

 1.384 x 10
-6

 1.128 x 10
-6

 

1 km 3.998 x 10
-6

 3.410 x 10
-6

 3.387x 10
-6

 3.461 x 10
-6

 

 

Table 3.17. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Inertial Y-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 7.505 x 10
-7

 7.249 x 10
-7

 7.270 x 10
-7

 7.341x 10
-7

 

100 m 2.709 x 10
-6

 2.731 x 10
-6

 2.798 x 10
-6

 2.754 x 10
-6

 

1 km 8.103 x 10
-6

 7.982 x 10
-6

 7.716x 10
-6

 7.785 x 10
-6

 

 

Table 3.18. ∆V Magnitude (m/s) for Formation Size and Formation Pointing on the 

Inertial Z-Axis 

Formation Size ∆V1 (m/s) ∆V2  (m/s) ∆V3  (m/s) ∆V4  (m/s) 

10 m 7.079 x 10
-7

 6.241 x 10
-7

 6.322 x 10
-7

 6.210 x 10
-7

 

100 m 2.747 x 10
-6

 2.461 x 10
-6

 2.421 x 10
-6

 2.399 x 10
-6

 

1 km 8.744 x 10
-6

 7.832 x 10
-6

 7.770x 10
-6

 7.727 x 10
-6

 

 

 Table 3.19 contains the ∆V magnitudes for each formation size and orientation. 

Similar to the previous case, a general trend emerges that as the size of the orientation 

increases by an order of magnitude, the ∆V requirement to maintain that formation also 

increases by an order of magnitude. Also, each of the orientations is roughly equivalent in 

their ∆V requirement over a day but the number of ∆Vs performed in a given day is not 

constant. The orientation pointing in the x-direction requires nearly double the number of 
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maneuvers than the y-orientation and the z-orientation as can be seen by comparing the 

time spent in the error corridor contained in Tables 3.13-3.15. 

 

Table 3.19. ∆V Magnitude (m/s) per Day for Each Formation and Orientation 

Formation Size X-Pointing Y-Pointing Z-Pointing 

10 m 1.812 x 10
-7 

1.860 x 10
-7 

1.726 x 10
-7 

100 m 1.890 x 10
-6 

1.877 x 10
-6 

1.848 x 10
-6 

1 km 1.624 x 10
-5 

1.724 x 10
-5 

1.853 x 10
-5 

 

Figures 3.20-3.28 show the final (of five) segment propagation for the three 

different formation sizes (10 m, 100 m, 1 km) and the three different orientations (x, y, z-

axis). Just like the previous example, each formation had the same relative starting 

location for the follower spacecraft with the distance magnitude changed (ten meters and 

one kilometer). The red lines represent the maximum error bound (one centimeter) on 

either side of the nominal trajectory. The green line represents the reference orbit 

trajectory. The blue line defines the actual trajectory the follower spacecraft follows over 

the particular segment. Once again, the ∆V magnitudes are well within ESA’s 

microthruster’s capabilities.  
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Figure 3.20. 10 m Formation with Formation Pointing along the Inertial X-Axis 

 

 

Figure 3.21. 10 m Formation with Formation Pointing along the Inertial Y-Axis 
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Figure 3.22. 10 m Formation with Formation Pointing along the Inertial Z-Axis 

 

 

Figure 3.23. 100 m Formation with Formation Pointing along the Inertial X-Axis 
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Figure 3.24. 100 m Formation with Formation Pointing along the Inertial Y-Axis 

 

 

Figure 3.25. 100 m Formation with Formation Pointing along the Inertial Z-Axis 
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Figure 3.26. 1 km Formation with Formation Pointing along the Inertial X-Axis 

 

 

Figure 3.27. 1 km Formation with Formation Pointing along the Inertial Y-Axis 
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Figure 3.28. 1 km Formation with Formation Pointing along the Inertial Z-Axis 
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4. CONCLUSIONS 

4.1 GENERAL CONCLUSIONS 

 The original goal of the research was accomplished. A method for finding and 

exploiting the natural dynamics near a libration point for formation flight was 

determined. Various formations types were examined to determine the feasibility of 

natural dynamics on the formations.  

 Three different formation types were examined. For all cases, it was assumed the 

leader spacecraft was on a known halo orbit about the L2 libration point for the Sun-

Earth/Moon three-body system. The first formation examined had a follower spacecraft 

placed in a halo orbit relative to the leader spacecraft. While natural follower halo orbits 

could be found, multiple followers could not be placed on the same relative halo orbit 

trajectory at varying initial positions. Relative halo orbits do not lend themselves to 

formations with large numbers of spacecraft if the natural dynamics are to be exploited. 

Instead, continuous control would be required to maintain any given formation with 

follower spacecraft in relative halo orbits. 

 The second formation type examined was the case with a follower spacecraft in a 

fixed position relative to the leader spacecraft. It was required that the follower spacecraft 

remain in the exact same position relative to the follower spacecraft with respect to the 

rotating frame at all times. Due to the fact that the leader spacecraft’s position was 

considered a known quantity at all times, it was assumed that the nominal orbit of the 

follower spacecraft in its fixed position was also a known. An error tolerance of one 

centimeter from the nominal orbit was used for all cases consistent with  the NASA 

Goddard Spaceflight Center research announcement
44

. Other error tolerances could be 

implemented for any formation size or geometry. 

A simple discrete ∆V control method was used to compare the various ∆V 

magnitudes and overall fuel consumption for a given formation geometry while 

examining the time spent in the error “sphere.” The smallest ∆V occurred for the ten-

meter formation (with one centimeter error tolerance) and it was on the order of 1x10
-7

 

m/s, well within the feasibility of the ESA microthruster. 
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The third and final formation type examined was the follower spacecraft 

constrained to a paraboloid with the leader spacecraft at the focus. The follower 

spacecraft was constrained to stay within an error “torus.” The same discrete ∆V control 

method was implemented for this case. Similar to the fixed-position formation, the 

smallest ∆V was on the order of 1x10
-7 

m/s, also well within range of the ESA 

microthruster.  

 

4.2 FUTURE DEVELOPMENTS 

 Considering the wide scope of the present research, a additional research can be 

undertaken in multiple areas. 

 Considerable research has focused on the Sun-Earth/Moon L2 libration point, but 

placing the leader spacecraft at a different libration point for a different three-body 

system and examining the effects of the natural dynamics on various formations at these 

different libration points and systems would be valuable. Additionally, a parametric study 

on various leader spacecraft orbits and their influence on natural formation dynamics 

could be performed. The leader spacecraft could be put on larger or smaller halo orbits or 

on Lissajous orbits near a libration point. 

 The size and geometry of formations as well as the number of spacecraft in the 

formation could be explored in more detail. The present research could be used as a 

starting point for a mission with a specific formation size, geometry and number of 

spacecraft. 

 Further research could be done in examining in more detail the “neighborhoods” 

that govern the “good” natural dynamics and the ability to exploit these neighborhoods 

for large formations, rather than just focusing on a leader spacecraft and one follower. 

Instead of examining the natural dynamics of a single follower spacecraft with respect to 

a leader, one could examine the influence of the natural dynamics on an entire formation 

and determine favorable geometries and initial conditions that lend themselves to 

maintaining a formation over a long period of time (minimizing fuel costs). In addition, a 

formal analytical solution to determine the “neighborhoods” could also be of use in future 

research. 
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 A final point of possible future work would be to explore the process of 

reorienting of the various formations while attempting to utilize the natural dynamics as 

much as possible. The NASA Goddard Spaceflight Center research announcement stated 

a goal of a formation slewing as much as twenty degrees per day to acquire a new science 

target. Methods could be developed to exploit the natural dynamics near a libration point 

to accomplish this task. 
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APPENDIX A: 

LEADER SPACECRAFT 
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Figure A.1. Leader Spacecraft Velocity Profiles (km/s) vs Time (days) 

 

 

Figure A.2. Leader Spacecraft Position (km) vs Time (days) 
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Figure A.3. Two-Dimensional Halo Orbit Projections for the Leader Spacecraft 

 

Figure A.4. Three-Dimensional View of Leader Spacecraft Halo Orbit 
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APPENDIX B: 

FOLLOWER SPACRAFT INITIAL POSITIONS 
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Figure B.1. Three-Dimensional Halo Orbits of Various Follower Initial Positions 

 

 

 

Figure B.2. Three-Dimensional Relative Orbits of Various Follower Initial Positions 



 

 

67 

 

Figure B.3. Two-Dimensional Projection of Various Follower Initial Positions 

 

 

Figure B.4. Two-Dimensional Relative Orbits of Various Follower Initial Positions 
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