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ABSTRACT 

Sequential Optimization and Reliability Assessment (SORA) has been used for 

more than one decade for reliability-based design (RBD), but comprehensive theoretical 

studies on its performance have not been conducted. Further investigations on its 

performance are still needed.  The objective of this thesis is to evaluate the performance 

of SORA for various testing problems. The performance of SORA evaluated in this thesis 

includes (1) accuracy, (2) efficiency, and (3) convergence behavior or robustness with 

numerical testing problems. SORA is evaluated with comparison with other major RBD 

methodologies. The testing problems are in different scales (numbers of design variables, 

random variables, and reliability constraints), with different distribution types (normal or 

non-normal distributions), and different nonlinearity of limit-state functions. This 

evaluation study focuses more on efficiency, which is measured by the number of limit-

state function calls. The robustness of SORA is also improved by correcting a sign 

problem for strength-type random variables that are log-normally distributed. Through 

the thorough evaluation of SORA, this research helps a better understanding of SORA 

and other RBD methodologies, offers a better guidance for selecting RBD 

methodologies, and suggests possible ways for improving RBD.
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1. INTRODUCTION 

The objective of this research is to evaluate the effectiveness of the Sequential 

Optimization and Reliability Assessment (SORA) method. SORA is a methodology of 

reliability-based design (RBD). Although it has been used more than one decade for 

RBD, comprehensive theoretical studies on its performance have not been conducted. 

Further investigations on its performance are still needed.  To achieve the objective, this 

work uses numerical testing problems to evaluate SORA in the aspects of accuracy, 

efficiency, and convergence behavior. 

This section provides the background, research need, and organization of this 

thesis.  

1.1. BACKGROUND 

Engineers always strive to optimize the performance of the product they design. 

For example, they try to maximize the strength, efficiency, and life, and minimize the 

cost and energy consumption. To achieve this goal, engineers frequently employ 

optimization in the design process.  

Engineers, however, are always surrounded by uncertainty because it is 

ubiquitous in every part of an engineering system, and in every step of the design 

process. Uncertainty could result from modeling errors, physical variations, and 

environmental changes. Uncertainty has been considered as a significant phenomenon in 

almost all the real-world systems [1, 2]. Due to the uncertainty, the performance of final 

products could be away from the designed or expected performance. This may 
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significantly affect the reliability, robustness, quality, and safety of a product. The effects 

of uncertainty, fortunately, could be quantified by reliability analysis and could be 

mitigated by RBD. Reliability methodologies have therefore attracted increasing attention 

and have been increasingly used in product design.  

Reliability is the ability that a product performs its intended function without 

failures. Reliability is usually quantified by the probability of such ability; in other words, 

reliability is the probability that a product performs its intended function without failures.    

As engineering systems become more and more complex, their failures also become 

increasingly significant, making modeling uncertainty and reliability more critical [3]. 

Reliability has become a core consideration during the design process for many 

engineering systems. 

There are two major areas of reliability applications. The first is reliability 

analysis and the second is RDB. The task of the first area is to estimate, evaluate, or 

calculate the reliability for a given component, system, or process. This can be used to 

access if the reliability satisfies the reliability requirement. If not, design changes are 

made, and reliability analysis is performed again. During this process, RDB plays an 

important role. 

RBD is a methodology that ensures the probability of failure be at the acceptable 

small level with respect to random parameters. It usually minimizes the cost of a product 

and at the same time maintains the reliability requirement. This is done through 

optimization. By changing design variables, the cost is reduced in the condition that the 
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reliability target is met. RBD has been widely used in many engineering and scientific 

fields. 

RBD considers reliability as the probability of constraint satisfaction. A number 

of reliability analyses are needed during the optimization process. Once a new design 

point is generated, the reliability of a constraint at the new design point is evaluated. The 

reliability analysis relies on limit-state functions, which are functions of design variables 

and random variables and produce responses of constraints. The reliability analysis also 

calls a number of limit-state functions in evaluating the reliability. As a result, reliability 

analysis involves an iterative process. Consequently, RBD requires two loops. One loop 

is the optimization itself, and the other loop is the reliability analysis. 

If a RBD problem is solved directly, the reliability analysis loop is embedded in 

the optimization loop. Then the reliability analysis is the inner loop and the optimization 

is the outer loop. This method is therefore called the Double-Loop RBD [4]. The 

computational cost of Double-Loop RBD is usually intensive. For example, if the 

optimization outer loop requires 50 iterations and the reliability analysis inner loop 

requires another 50 iterations for each of 10 limit-state functions, the total number of 

function calls will be 50 × 50 × 10 = 25,000. If a limit-state function is a black-box 

simulation model, such as a finite-element-analysis (FEA) model, the computational time 

would be prohibitively high [5].  

To improve the efficiency of RBD, the Single-Loop RBD method has been 

devolved. This method avoids the nested structure by converting the reliability analysis 

into an equivalent deterministic optimization problem. Specifically, the method includes 
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constraints that are the Karush-Kuhn-Tucker optimality conditions [6] of the reliability 

analysis. In many cases, the Single-Loop RBD method is more efficient than the Double-

Loop RBD method, but the number of design variables are much higher than that of the 

Double-Loop RBD method [6]. With the increased numbers of design variables and 

constraint functions, solving the optimization model of the Single-Loop RBD method is 

more difficult. 

SORA is a RBD method that takes advantages of both the Single-Loop RBD and 

Double-Loop RBD methods.  It eliminates the double loop procedure and performs the 

optimization loop and reliability analysis loop separately and sequentially. If no 

convergence is reached after a cycle of optimization and reliability analysis, the 

optimization model is reformulated and then the next cycle is run. This process repeats 

until convergence. With the sequential cycles of decoupled optimization and reliability 

analysis, SORA is much more efficient than the Double-Loop RBD method [5]. In many 

cases, SORA is more robust than the Single-Loop RBD method. 

1.2. RESEARCH NEEDS  

Many RBD methodologies have been developed and are available for engineers to 

use. SORA is one of the methodologies. But there is no such a single RBD methodology 

that would perform well for all problems. Moreover, applications are different with 

different numbers of random variables, different nonlinearity levels in limit-state 

functions, different distribution types of random variables, and different degrees of 

dependencies between random variables. It is therefore necessary to understand the 

performance of each RBD methodology and its application scope.  
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SORA is a commonly used RBD methodology and has been applied to 

engineering applications, such as those in mechanical product development and structural 

optimization [7-9]. It has also been adopted by the commercial software Hyper Study (a 

design tool for optimization and reliability), which is widely used in automotive, 

aerospace, and structural applications. Although SORA is in general more efficient than 

many double-loop RBD methodologies, its performance, however, is still not well 

understood. There is therefore a research need to thoroughly evaluate the performance of 

SORA. The evaluation can then better assist engineers to select the best RBD 

methodology for their specific applications. It can also help improve the performance of 

SORA.  

1.3.  OBJECTIVE OF THIS RESEARCH 

This research aims to provide a solution to the research need discussed in Section 

1.2. The objective of this research is to evaluate the performance of SORA with a number 

of testing problems. The problems are selected from journal articles and they are different 

in terms of scale (numbers of design variables, random variables, and reliability 

constraints), distribution types (normal and non-normal distributions), and nonlinearity of 

limit-state functions.  

The performance of SORA this research evaluates includes (1) accuracy, (2) 

efficiency, and (3) convergence behavior or robustness. Since the efficiency is the major 

concern for a RBD methodology, this evaluation study focuses more on efficiency, and 

the number of limit-state function calls is used as a measure of efficiency.  
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1.4.  ORGANIZATION OF THIS THESIS 

The organization of this thesis is as follows: 

In Section 2, reliability analysis is reviewed, including First Order Reliability 

Method (FORM), the direct MPP search, the inverse MPP search, and Monte Carlo 

simulation (MCS). Then RBD methodologies are also reviewed. They include the 

Double-Loop RBD method, Single-Loop RBD method, and SORA.   

Section 3 reports the major results of this research. It begins with the evaluation 

methodologies followed by a number of testing problems. The results of the evaluation, 

including the accuracy, efficiency, and robustness of SORA, are also provided. 

Conclusions are made based on the evaluation results and are given in this section.  

Section 4 summaries the results with conclusions and possible future work. 
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2. REVIEW OF RELIABILITY-BASED DESIGN 

The major reliability-based design (RBD) methodologies are reviewed in this 

section. The methodologies include the Double-Loop methods, Single-Loop methods, 

and Sequential Single-Loop methods. SORA belongs to Sequential Single-Loop methods 

and will be reviewed in detail. 

2.1. OVERVIEW OF RBD 

RBD methods are based on optimization. A general optimization model is given 

by 

Minimize: f(𝐝𝐝)  
Design variable DV = {𝐝𝐝} (2.1) 

Subject to: 𝑔𝑔𝑖𝑖(𝐝𝐝) ≥ 0, i = 1,2, … ,𝑚𝑚 
 

 

In the above model [2, 10], 𝐝𝐝 is a vector of design variables. For example, for a 

gear design, design variables could be the diameter, the width, the material, and the 

number of teeth of the gear. 𝑓𝑓 is the objective function, such as the cost, life, quality, and 

efficiency. 𝑔𝑔𝑖𝑖(𝐝𝐝), (𝑖𝑖 = 1,2, … ,𝑚𝑚), are constraint functions. For example, if 𝑔𝑔𝑖𝑖(𝐝𝐝) ≤ 0, 

the factor of safety of a component is greater than the specified number. 

The traditional optimization, however, does not account for any uncertainty. In 

reality, uncertainty is ubiquitous in almost all engineering applications. Uncertainty may 

come from random material properties, manufacturing impression, or stochastic operation 

conditions [11].   

Without considering uncertainty, the optimization design obtained from the 

tradition optimization design may be risky. In other words, the likelihood of satisfying 
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design requirements in constraint functions will be relatively low. In many cases, the 

likelihood or probability of a constraint satisfaction is about only 50%. To deal with 

uncertainty, engineers use RBD, which guarantees that all design requirements are 

satisfied at required reliability levels [12].  

RBD usually minimizes a cost-type function and at the same time satisfies 

reliability requirements, expressed as design constraints. A typical RBD model is given 

below. 

Minimize: 𝑓𝑓(𝐝𝐝,𝐗𝐗,𝐏𝐏)  
Design Variable 𝐷𝐷𝐷𝐷 = {𝐝𝐝, 𝝁𝝁𝑿𝑿} (2.2) 

Subject to: Pr {𝑔𝑔𝑖𝑖(𝐝𝐝,𝐗𝐗,𝐏𝐏) ≥ 0} ≥ 𝑅𝑅𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
 

 

where 𝑓𝑓 is a cost-type objective function. For example, it could be the actual cost of a 

product, the weight of an aircraft wing, the material usage of a component, or the volume 

of a pressure tank. 

𝐗𝐗 is a vector of random design variables vector. Their means 𝝁𝝁𝑿𝑿 are part of the 

design variables. 𝐏𝐏 is a vector of random parameters . Pr {𝑔𝑔i(𝐝𝐝,𝐗𝐗,𝐏𝐏) ≥ 0} (𝑖𝑖 =

1,2, … ,𝑚𝑚) are reliabilities, and  𝑅𝑅𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑚𝑚) are required reliabilities. For example, 

if a constraint is the design margin, which is the strength subtracted by stress, the 

associated required reliability may be set to 99.999%. This means that the probability of 

the factor of safety greater than 1 is 99.999%. 

The benefits of RBD are multifold. (1) It ensures that the reliability requirement 

could be met, thereby producing highly reliable products. (2) It reduces the chance of 

failures and risk, resulting in cutting operation cost and product lifecycle cost. (3) It helps 
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make important decisions, such as determination of warranty policy and maintenance. 

Compared to deterministic optimization, however, there are many challenges in solving a 

RBD model. The major challenge is to reach a good balance between accuracy and 

efficiency. Solving the RBD model is expensive because reliability analysis is called 

many times, and reliability analysis also needs to call limit-state function several times. 

But limit-state functions are sometimes computationally expensive. To this end, many 

RBD methodologies have been developed. Typical RBD methodologies are reviewed in 

the rest of this section, including Double-Loop RBD in Subsection 2.3, Single-Loop RBD 

in Subsection 2.4, and SORA in Subsection 2.6. Before the review of the RBD 

methodologies, reliability analysis is reviewed in Subsection 2.2 because it is needed by 

all RBD methodologies. 

2.2. RELIABILITY ANALYSIS  

The task of reliability analysis is to calculate the reliability. Let all the random 

input variables be 𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … 𝑋𝑋𝑛𝑛) and their joint probability density function (PDF) 

be  𝑓𝑓𝐱𝐱(𝐱𝐱)  [2]. The probability of failure is calculated by 

 

𝑝𝑝𝑓𝑓 = Pr{𝑔𝑔(𝐗𝐗) ≤ 0} (2.3) 
  

𝑝𝑝𝑓𝑓 can be theoretically computed by the following integration 

𝑝𝑝𝑓𝑓 = � 𝑓𝑓𝐱𝐱(𝐱𝐱)𝐝𝐝𝐱𝐱
𝑔𝑔(𝐱𝐱)≤𝟎𝟎

 

 
 

(2.4) 

Then the reliability is given by 

𝑅𝑅 = 1 − 𝑝𝑝𝑓𝑓 (2.5) 
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It is difficult to evaluate the above multidimensional probability integral 

numerically [13]. Approximation methods are therefore always used in RBD. The most 

popular reliability analysis method is the First Order Reliability Method (FORM), which 

is reviewed below. 

2.2.1. First Order Reliability Approach Method (FORM). Most RDB methods 

use FORM to calculate reliability, and so does SORA. FORM is briefly reviewed in this 

subsection. All the random variables herein are assumed independent [14, 15]. 

FORM at first transforms general random variables 𝐗𝐗 to standard normal random 

variables 𝐔𝐔. This is usually a nonlinear transformation. For example, for a normal 

distribution, 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), the transformation is given by  

𝑈𝑈 = 𝑋𝑋−𝜇𝜇
𝜎𝜎

    or   𝑋𝑋 = 𝜇𝜇 + 𝜎𝜎𝑈𝑈 
 

(2.6) 

  
After the transformation, the limit-state function becomes 

g(𝐔𝐔) = 0 
 

(2.7) 

  
With the first order Taylor expansion, the limit-state function becomes 

g(𝐔𝐔) ≈ g(𝐮𝐮∗) + ∇g(𝐮𝐮∗)(𝐔𝐔− 𝐮𝐮∗)𝑇𝑇 
 

(2.8) 

  
where 𝐮𝐮∗ is the expansion point and is called the most probable point (MPP). It is a 

vector given by 

𝐮𝐮∗ = (𝑢𝑢1∗,𝑢𝑢2∗ ,∙∙∙,𝑢𝑢𝑛𝑛∗ ) (2.9) 
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After 𝐮𝐮∗ is found, the probability of failure is: 

𝑝𝑝𝑓𝑓 = Φ(−𝛽𝛽) 
 

(2.10) 

  
where 𝛽𝛽 is reliability index, and Φ(∙) is the standard normal cumulative distribution 

function. 𝛽𝛽 is given by 

𝛽𝛽 = ��𝑢𝑢𝑖𝑖∗
𝑛𝑛

𝑖𝑖=1

 

(2.11) 

  
2.2.2. Direct Reliability Analysis and MPP Search. To find the 𝒑𝒑𝒇𝒇 directly, the 

MPP is needed, and this requires the MPP search. 

 
 

 
Figure 2.1 Limit-state Function and MPP 
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Figure 2.1 shows that the MPP is the shortest distance point form the origin to the 

limited state 𝑔𝑔(𝐔𝐔) = 0. As indicated in Eq. (2.11), the reliability index 𝛽𝛽 is such a 

distance [16]. The MPP search needs the gradient, which is given by 

∇𝑔𝑔(𝐮𝐮∗) = �
𝜕𝜕𝑔𝑔(𝐔𝐔)
𝜕𝜕𝑈𝑈1

,
𝜕𝜕𝑔𝑔(𝐔𝐔)
𝜕𝜕𝑈𝑈2

,∙∙∙,
𝜕𝜕𝑔𝑔(𝐔𝐔)
𝜕𝜕𝑈𝑈𝑛𝑛

� 

 

(2.12) 

  
The MPP search algorithm is given below 

𝐮𝐮∗ = −𝛽𝛽∗ ∇𝑔𝑔(𝐮𝐮∗) |∇𝑔𝑔(𝐮𝐮∗)|⁄  
 

(2.13) 
 

Defined 𝜶𝜶 to be 

𝜶𝜶(𝐮𝐮∗) = ∇𝑔𝑔(𝐮𝐮∗) |∇𝑔𝑔(𝐮𝐮∗)|⁄  
 

(2.14) 

  
Thus 

𝐮𝐮∗ = −𝛽𝛽𝜶𝜶(𝐮𝐮∗) 
 

(2.15) 
 

Based on Eq. (2.13), the MPP search algorithm is derived as follows. 

�
𝛽𝛽𝑘𝑘+1 = 𝛽𝛽𝑘𝑘 + ∇𝑔𝑔�𝐮𝐮𝐤𝐤�/�∇𝑔𝑔�𝐮𝐮𝐤𝐤��

𝐮𝐮𝐤𝐤+𝟏𝟏 = −𝛽𝛽k+1𝜶𝜶(𝐮𝐮)
 

 

(2.16) 

  
After this process converges, Eq. (2.10) is used to calculate 𝑝𝑝𝑓𝑓. 

The stopping criterion of the MPP search is that the difference of 𝐮𝐮 between two 

consecutive cycles is small enough. Figure.2.2 give the flowchart of the MPP search.  
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Figure 2.2.  Flowchart of the MPP Search 

 

2.2.3. Inverse Reliability Analysis and MPP Search. The MPP search discussed 

in Subsection 2.2.2 is for the direct reliability analysis. In RBD, inverse reliability 

analysis is also used. 

The inverse MPP method finds the function value corresponding to the required 

reliability, and this value is called R-percentile. As shown in Fig 2.3 (a), the required 

probability of constraint function greater than zero is R, written as Pr(𝑔𝑔 ≥ 0) ≥ 𝑅𝑅. If we 

use the percentile of the constraint function as a constraint condition, the constraint 

condition will be as Pr(𝑔𝑔 ≥ 𝑔𝑔𝑅𝑅) = 𝑅𝑅, as showed in Fig 2.3 (b). Therefore, the  new 
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constraint function that satisfies the require reliability becomes 𝑔𝑔𝑅𝑅 ≥ 0 [5]. 𝑔𝑔𝑅𝑅 is given 

by 

𝑔𝑔𝑅𝑅 = 𝑔𝑔(𝐮𝐮∗) (2.17) 
  

 

 
Figure 2.3. (a) PDF of Constraint Function; (b) R-Percentile 

 

where 𝐮𝐮∗ is the inverse MPP. The inverse MPP search algorithm is given below. 

�
𝜶𝜶�𝐮𝐮k� = ∇𝑔𝑔�𝐮𝐮k� �∇𝑔𝑔�𝐮𝐮k���

 𝐮𝐮k+1 = −𝛽𝛽∗𝜶𝜶�𝐮𝐮k� 
 

 

(2.18) 

  
where 
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𝛽𝛽 = Φ−1(𝑅𝑅) 
 

(2.19) 
 

The stopping criterion of the inverse MPP search is that the difference of 𝐮𝐮 

between two consecutive cycles is small enough.  

Fig.2.4 gives the flowchart of the inverse MPP search. 

 

Figure 2.4 Flowchart of the inverse MPP search 

 

2.2.4. Monte Carlo Sampling Method. Monte Carlo Simulation (MCS) is 

widely used in reliability analysis. This method generates sampling points which are 

associated with the distributions of random variables. It can deal with all distribution 

types, a large number of random variables, and highly nonlinear models [17, 18]. 

MCS evaluates the limit-state function at the samples of input variables. It then 

counts the number of sample points in the failure region. The probability of failure is then 

estimated by 
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𝑝𝑝𝑓𝑓 =
𝑁𝑁𝑓𝑓
𝑁𝑁

 (2.20) 

                                                                                                                                        

where 𝑁𝑁𝑓𝑓 is number of sampling points in the failure region, and 𝑁𝑁 is the total number of 

sample points. MCS is accurate if the sample size 𝑁𝑁 is large enough. This method can be 

used for accuracy comparison due to its high accuracy [19].  

Because the simulation process draws random sample points according to the 

distribution of random variables, most of the sample points will reside near the mean 

value of the joint distribution. This means that there may be few sample points in the 

failure region if the reliability is high. Therefore, MCS needs a large sample size to 

ensure that there are enough sample points in the failure region. Since the sample size is 

large for high reliability problems, MCS is computationally expensive. 

2.3. DOUBLE-LOOP RBD 

Double-loop RBD solves the RBD model in Equation (1.2) directly. As a result, 

there are two nested loops. The first loop is the overall optimization, and it is responsible 

for seeking for the optimal design variables. The second loop is the reliability analysis, 

whose task is to calculate the reliability of each constraint functions and then pass the 

results to the optimization loop.   

The flowchart is shown in Fig 2.6. The figure indicates that the inner reliability 

analysis loop is nested in the outer optimization loop.  

The outer loop is the deterministic optimization loop which generates design 

variables 𝐝𝐝 and 𝛍𝛍𝐗𝐗. It then calls the inner reliability analysis loop to calculate reliabilities 

of all constraint functions Pr{𝑔𝑔𝑖𝑖(𝐝𝐝, 𝐗𝐗𝐌𝐌𝐏𝐏𝐏𝐏, 𝐏𝐏𝐌𝐌𝐏𝐏𝐏𝐏) ≤ 0} ≥ 𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑚𝑚, for the given 
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set of 𝐝𝐝 and 𝛍𝛍𝐗𝐗. If all the constraint functions are satisfied with the required reliabilities, 

and the change in the objective function is small enough, an optimal solution is found.  

 

Figure 2.5.  Double-loop Flowchart 

 

The double-loop procedure requires a large number of function calls. This leads to 

intensive computations, which are not practical for industrial applications. To improve 

the computational efficiency, many methods have been proposed, including the Single-

Loop method discussed below. 
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2.4. SINGLE-LOOP RBD 

The flowchart of the Single-Loop RBD method is shown in Fig 2.7, which 

indicates that there is only one optimization loop. This single-loop structure avoids the 

high computational cost caused by the nested double-loop structure. The RBD model is 

given below 

Minimize: 𝑓𝑓�𝐝𝐝,𝛍𝛍𝐗𝐗,𝛍𝛍𝐏𝐏  �  
DV=�𝐝𝐝,𝛍𝛍𝐗𝐗,,𝐮𝐮𝑖𝑖∗�, 𝑖𝑖 = 1,2, … ,𝑚𝑚 

Subject to: MPP search conditions, 

where 𝐮𝐮𝑖𝑖∗is the MPP of constraint function. 

 
(2.21) 

 

Figure 2.6.  Single-loop flowchart 
 

Since there is no reliability loop, The RBD problem is converted into an 

equivalent deterministic optimization problem by enforcing the Karush-Kuhn-Tucker 

optimality conditions of the MPP search [6]. Under these conditions, all 𝐮𝐮𝐢𝐢∗ vectors are set 
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as design variables. Then there is no need to perform reliability analysis anymore. A 

nonlinear optimization algorithm can be sued to solve the Single-Loop RBD problem. 

This method may reduce the cost of computations without the nested structure. 

But for the same RBD problem, the Single-Loop method has more design variables than 

the Double-Loop method by consider 𝐮𝐮𝐢𝐢∗ as design variables. If there is a large number of 

constraint functions and a large number of random variables, the design space will be 

extremely large. This may affect the efficiency of the optimization. In addition, this 

method may not be robust for some RBD problems, because of the equality constraints of 

the MPP search. 

2.5. SORA  

The flowchart of SORA is given in Fig 2.8. The reliability analysis loop is 

completely decoupled from the optimization loop. The RBD model is the same as Eq. 

(2.2). 

SORA performs RBD by sequential cycles of deterministic optimization and 

reliability analysis. Each cycle starts form deterministic optimization. Then the optimal 

point is passed to reliability analysis, which then performs the inverse MPP search. The 

MPPs are used to reformulate the constraint functions for the next cycle. The 

reformulated constraint functions help improve reliability.  
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Figure 2.7. SORA flowchart 

In the first cycle, the means of the random design variables are used for 

deterministic optimization before reliability analysis. Then the inverse MPP method is 

used in the reliability analysis based on the deterministic optimization optimal point. In 

the next cycle, the MPPs (𝐱𝐱𝑖𝑖∗,𝐩𝐩𝑖𝑖∗) are used to formulate a new deterministic optimization 

problem [5, 20], where constraint functions will be move quickly to the feasible region 

based on the MPP information.  

For the 𝑘𝑘𝑡𝑡ℎ cycle, constraint 𝑖𝑖 is formulated as 

𝑔𝑔𝑖𝑖(𝐝𝐝,𝐮𝐮𝑖𝑖∗) ≥ 0 (2.22) 
  

where 𝐮𝐮𝑖𝑖∗ is the MPP of 𝐗𝐗 and 𝐏𝐏 in the 𝐔𝐔 − Space. 𝐮𝐮𝑖𝑖∗ has to be transformed into 𝐱𝐱𝑖𝑖∗ and 

𝐩𝐩𝑖𝑖∗. Assume the transformation for 𝐱𝐱𝑖𝑖∗ is T(𝐮𝐮𝑖𝑖∗), then the constraint is given by  
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𝑔𝑔𝑖𝑖(𝐝𝐝, T(𝐮𝐮𝑖𝑖∗,𝛍𝛍𝐗𝐗),𝐩𝐩𝑖𝑖∗ ) ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 
 

(2.23) 

  
The optimization model in cycle (𝑘𝑘 + 1)𝑡𝑡ℎ is then reformulated as 

Minimize: 𝑓𝑓(𝐝𝐝,𝛍𝛍𝐗𝐗,𝛍𝛍𝐏𝐏)  
DV={𝐝𝐝,𝛍𝛍𝐗𝐗} 

Subject to: 𝑔𝑔𝑖𝑖(𝐝𝐝, T(𝐮𝐮𝑖𝑖∗,𝛍𝛍𝐗𝐗),𝐩𝐩𝑖𝑖∗  ) ≥ 0, 𝑖𝑖 = 1,2, … ,𝑚𝑚 

 
(2.24) 

The stopping criteria of SORA are as follows: 1). The difference of the objective 

function is small enough. 2). All the constraints are satisfied. 

The following measures are used in order to increase the efficiency. 1). If the 

inverse MPPs of probabilistic constraints in two consecutive cycles are extremely close, 

use the inverse MPP obtained from the last cycle as the initial guess of the inverse MPP 

in the following cycle. It can decrease the computational effort for the MPP search. 2). 

The starting point of the optimization of one cycle is considered as the optimum point of 

the previous cycle. 3). After one cycle of optimization ends, if the results do not change 

or slightly change, the MPP in the current cycle will be the same or at least very similar 

to that in the last cycle. Therefore, there is no need to search for the MPP for the 

probabilistic constraint in the current reliability assessment.  

In sum, SORA does not calculate reliability directly. The reliability is evaluated 

only at a particular level (R-percentile), and searching for the inverse MPP is more 

efficient. An efficient and robust inverse MPP search algorithm is also used. The most 

important contribution for high efficiency is the sequential cycles of optimization and 

reliability analysis [5]. 
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3. EVALUATION OF SORA 

The objective of this research is to evaluate the effectiveness of the Sequential 

Optimization and Reliability (SORA) method. This section discusses the methodologies 

that are used to evaluate SORA and also reports the evaluation results from testing 

problems. Conclusions are also given based on the evaluation results. 

3.1. METHODOLOGIES FOR THE EVALUATION OF SORA 

The major approach is to use selected testing problems to evaluate the 

performance of SORA. The evaluation criteria are listed below. 

3.1.1. Efficiency. The number of total limit-state function calls is used as a metric 

for the efficiency. The number includes those for both deterministic optimization and 

reliability analysis. In real engineering applications, a limit-state function may be a 

Computer Aided Engineering (CAE) model, such as a finite element analysis (FEA) 

model, which is computationally expensive. It may take minutes, hours, or even days to 

run the model. An efficient RBD method minimizes the number of limit-state function 

calls. Using the number of function calls is better than that of the computational time 

because the latter is largely depends on the computer that is used for the RBD problem. 

Efficiency is the most important criterion considered in the evaluation.  

3.1.2. Robustness. Robustness herein is defined as the ability that SORA could 

successfully identify an optimal solution for a RBD problem. Such ability is evaluated by 

observing if SORA could converge to an optimal solution. If not, the cause of divergence 

is recorded and investigated. 

3.1.3. Accuracy. The accuracy is for the reliability analysis. After an optimal 

point is found, all reliability constraints are satisfied. Since the reliability is calculated by 

FORM, an error is unavoidable even though FORM has good accuracy. Mote Carlo 

simulation (MCS) with a large sample size is used as a benchmark for the accuracy 

assessment. The accurate reliabilities associated with all active reliability constraints                                        
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are computed by MCS and are then compared with the required reliabilities. The 

differences are considered as errors. The accuracy comparison is only for active 

constraints. The deterministic optimization method used in this study is active-set. The 

MPP search method used in this study is the direct MPP search and inversed MPP search 

methods [16, 21]. 

3.2. TESTING PROBLEMS AND RESULTS  

Testing problems are carefully selected. Several representative testing problems 

and the associated evaluation results are reported in this subsection. Three methods are 

compared, including the Double-Loop Method with direct reliability analysis (DL-

Direct), Double-Loop Method with inverse reliability analysis (DL-Inverse), and SORA. 

3.2.1. Testing Problem 1. A cantilever beam is subjected to two independent 

random forces 𝑷𝑷𝒙𝒙 and 𝑷𝑷𝒚𝒚 as showed in Fig 3.1 [22, 23]. 

 

Figure 3.1. Cantilever Beam  

There are two failure modes. The first failure mode is the excessive stress, and the 

limit-state function is given by 

𝑔𝑔1(𝐗𝐗,𝐏𝐏) = 𝑆𝑆 −
6𝐿𝐿
𝑏𝑏ℎ

(
𝑃𝑃𝒙𝒙
𝑏𝑏

+
𝑃𝑃𝑦𝑦
ℎ

) 
 

(3.1) 

  
where 𝑆𝑆 is the random yield strength, 𝐿𝐿 = 100 in is the length of the beam. 
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The second failure mode is the excessive deflection, and the limit-state function is 

given by 

𝑔𝑔2(𝐗𝐗,𝐏𝐏) = 𝐷𝐷 −
4𝐿𝐿3

𝐸𝐸
��

𝑃𝑃𝒙𝒙
𝑏𝑏3ℎ

�
𝟐𝟐

+ �
𝑃𝑃𝑦𝑦
ℎ3𝑏𝑏

�
𝟐𝟐

 

 
 

(3.2) 

where 𝐸𝐸 is Young’s modulus, 𝐷𝐷 = 2.5 𝑖𝑖𝑖𝑖 is the allowed displacement value, 𝐿𝐿 = 100 𝑖𝑖𝑖𝑖 

is the length. The complete RBD model is given by: 

Minimize:𝑓𝑓(𝛍𝛍𝐗𝐗) = 𝜇𝜇𝑏𝑏𝜇𝜇ℎ𝐿𝐿 
 

 

Subject to:  

Pr{𝑔𝑔1(𝐗𝐗,𝐏𝐏)} = Pr �
6𝐿𝐿
𝑏𝑏ℎ

�
𝑃𝑃𝒙𝒙
𝑏𝑏

+
𝑃𝑃𝑦𝑦
ℎ
� − 𝑆𝑆 ≤ 0� ≤ 𝑝𝑝𝑓𝑓1 

 

Pr{𝑔𝑔2(𝐗𝐗,𝐏𝐏)} = Pr�
4𝐿𝐿3

𝐸𝐸
��

𝑃𝑃𝒙𝒙
𝑏𝑏3ℎ

�
𝟐𝟐

+ �
𝑃𝑃𝑦𝑦
ℎ3𝑏𝑏

�
𝟐𝟐

− 𝐷𝐷 ≤ 0� ≤ 𝑝𝑝𝑓𝑓2 

 

 

(3.3) 

The design variables are 𝑏𝑏 and ℎ . They are given in Table 3.1. There are five 

cases for this problem. The normal distributions and log-normal distributions are 

involved. All the random variables for all the cases are given in following Tables. Both of 

the required reliabilities of the two constraints are: 0.9987 for Case 1, and 0.9999683 for 

Case 2 through 4. 

Table 3.1 Bounds of Design Variables for Cases 1 through 5 

Design variables Lower bound Upper bound 
𝑏𝑏 0.1 in 10 in 
ℎ 0.1 in 10 in 
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Table 3.2 Distributions of Random Variables for Cases 1 and 2 

Design variables Mean Standard Deviation Distribution Type 
𝑏𝑏 𝜇𝜇𝑏𝑏 in 0.01 in Normal 
ℎ 𝜇𝜇ℎ in 0.01 in Normal 
𝑃𝑃𝑥𝑥 500 lb 100 lb Normal 
𝑃𝑃𝑦𝑦 1000 lb 100 lb Normal 
𝐸𝐸 29 × 106 psi 1.45 × 106 psi Normal 
𝑆𝑆 4000 psi 2000 psi Normal 

 

Table 3.3 Distributions of Random Variables for Case 3 

Design variables Mean Standard Deviation Distribution Type 
𝑏𝑏 𝜇𝜇𝑏𝑏 in 0.01 in Normal 
ℎ 𝜇𝜇ℎ in 0.01 in Normal 
𝑃𝑃𝑥𝑥 500 lb 100 lb Log-normal 
𝑃𝑃𝑦𝑦 1000 lb 100 lb Log-normal 
𝐸𝐸 29 × 106 psi 1.45 × 106 psi Normal 
𝑆𝑆 4000 psi 2000 psi Normal 

 

Table 3.4 Distributions of Random Variables for Case 4 

Design variables Mean Standard Deviation Distribution Type 
𝑏𝑏 𝜇𝜇𝑏𝑏 in 0.01 in Normal 
ℎ 𝜇𝜇ℎ in 0.01 in Normal 
𝑃𝑃𝑥𝑥 800 lb 100 lb Log-normal 
𝑃𝑃𝑦𝑦 1000 lb 100 lb Log-normal 
𝐸𝐸 29 × 106 psi 1.45 × 106 psi Normal 
𝑆𝑆 15000 psi 2000 psi Normal 

 

Table 3.5 Distributions of Random Variables for Case 5 

Design variables Mean Standard Deviation Distribution Type 
𝑏𝑏 𝜇𝜇𝑏𝑏 in 0.01 in Normal 
ℎ 𝜇𝜇ℎ in 0.01 in Normal 
𝑃𝑃𝑥𝑥 500 lb 100 lb Log-normal 
𝑃𝑃𝑦𝑦 1000 lb 100 lb Log-normal 
𝐸𝐸 29 × 106 psi 1.45 × 106 psi Normal 
𝑆𝑆 40000 psi 2000 psi Normal 
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The results of Case 1 are discussed in detail as follows: the optimal results from 

the three methods are given in Table 3.6, which shows that the three methods produce 

almost identical solutions. The slight differences are only due to numerical errors. As 

discussed previously, the efficiency is measured by the number of function calls, 

including both objective and constraint functions. The number of function calls are also 

listed in Table 3.6. SORA calls all functions 199 times, including 156 for deterministic 

optimization and 43 for reliability analysis. The double-loop RBD method with direct 

reliability (DL-Direct) and double-loop RBD method with inverse reliability analysis call 

functions 6447 and 301 times, respectively. SORA is therefore the most efficient method 

and DL-Inverse is more efficient than DL-Direct.  

Table 3.6 Results for Case 1 

Method DL-Direct DL-Inverse SORA 
𝑏𝑏 2.4487 2.4508     2.4374 
ℎ 3.8878     3.8841     3.9057 

Objective 9.5201 9.5192 9.5200 
Function Call 6447 301 199 (156+43) 

Error (constraint 1) 0.13 % 0.1302 % 0.1291 % 
 

Table 3.7 SORA Convergence History for Case 1 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (2.047, 3.746) (-14379.40, -1.30) 7.668 
2 (2.491, 3.811) (152.913, -0.277) 9.495 
3 (2.437, 3.905) (-1.51×10-8, 0.235) 9.520 

 

The convergence history of SORA is shown in Table 3.7. The convergence 

history of objective function is shown in Fig 3.2, and the convergence history of the two 

constraints are also shown in Fig 3.3 and Fig 3.4. After three cycles, SORA converged. 

The first cycle involves deterministic optimization with mean values of all the random 
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variables, and it was therefore the conventional optimization. The limit-state function 

values (𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 in the table) from reliability analysis are all negative, meaning that the 

reliability requirements are not satisfied. As shown in the third cycle, 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 of the first 

constraint is almost zero, and 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 of the second constraint is positive. This means that, 

the first constrain is active and that the actual reliability is exactly at the required level. 

The reliability of the second constraint exceeds the required value because the 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 

value is positive.  

 

 

Figure 3.2 Convergence history of objective function  
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Figure 3.3 Convergence history of 𝑔𝑔1𝑀𝑀𝑀𝑀𝑀𝑀 

 

 

Figure 3.4 Convergence history of 𝑔𝑔2𝑀𝑀𝑀𝑀𝑀𝑀 
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MCS was also performed to check the accuracy. The sample size was taken as 

107. With this large sample size, the MCS solution is considered accurate. Then the three 

optimal points from the three methods were plugged into MCS to calculate the reliability. 

Note that, only the reliability of the active constraint was calculated, and the relative error 

of the calculated reliability with respect to the required reliability is reported, as shown in 

Table 3.6. The accuracy of the three methods are good, and their accuracy is almost 

identical because all of them use FORM to calculate reliability.  

The difference between Cases 1 and 2 is that the latter requires higher reliabilities 

for the two constraints. The results of the three methods are given in Table 3.6 and the 

convergence history of SORA is given in Table 3.7. The results show that the three 

method successfully found optimal solutions. SORA is still the most efficient method 

because it needs the least number of function calls. The accuracy of the three methods is 

also good. 

Table 3.8 Results for Case 2 

Method DL-Directive DL-Inverse SORA 
𝑏𝑏 2.5786 2.5723     2.5608 
ℎ 3.9400     3.9496     3.9671 

Objective 10.1598    10.1596    10.1589 
Function Call 1629 305 212 (165+47) 
Error(MCS) 0.32 % 0.32 % 0.32 % 

 

Table 3.9 SORA Convergence History for Case 2 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (2.047, 3.746) (-19172.54, -1.79) 7.6681 
2 (2.654, 3.805) (-334.040, 0.369) 10.1003 
3 (2.560, 3.967) (-8×10-7, 0.3136) 10.1589 
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Observations from Cases 1 and 2 are summarized below. 

1. SORA converged with three cycles. For Case 2, the required reliability is 

much higher, and SORA could still perform well. 

2. The number of function calls indicates the efficiency. The inverse 

reliability method is more efficient than the direct reliability method. 

SORA is significantly better than the other two methods in terms of 

efficiency.  

3. The accuracy of the three methods were verified by MCS method.  They 

have similar accuracy. 

All the input information of Case 3 is the same as that of Case 2, except different 

distributions of 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦. In Case 3, of 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦 follow log-normal distributions. The 

new distributions are given in Table 3.3. The results (Tables 3.8 and 3.9) indicate that 

SORA is still the best method with respect to efficiency even non-normal distributions 

are involved. It is noted that SORA converged with four cycles. 

Table 3.10 Results for Case 3 

Method DL-Directive DL-Inverse SORA 
𝑏𝑏 2.8873     2.9212     2.8870 
ℎ 3.6497     3.6072     3.6507 

Objective 10.5378    10.5374    10.5396 
Function Call 2322          317 321 (237+84) 
Error(MCS) 0.32 % 0.32 % 0.32 % 

 

Table 3.11 SORA Convergence History for Case 3 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (2.047, 3.746) (-24295.9, -2.460) 7.6681 
2 (3.089, 3.374) (-734.30, 0.45.3) 10.4255 
3 (2.828, 3.724) (-33.52, -0.4094) 10.5345 
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Table 3.11 SORA Convergence History for Case 3 (cont.) 

4 (2.887, 3.6507) (0, 0.4469) 10.5396 
 

In Case 4, the distributions of 𝑃𝑃𝑥𝑥 and 𝑆𝑆 are changed. This makes it difficult to 

meet the reliability requirement. For this case, no feasible solution exists. The new 

distributions are given in Table 3.4. DL-direct and DL-inverse methods stopped 

prematurely and no feasible solutions were reported. SORA kept running cycle by cycle, 

and this is an indication of divergence. Even though this is not a robustness problem for 

SORA, it is desirable to terminate the SORA cycles due to no feasible solution. Thus 

SORA software could be improve for this situation. 

Table 3.12 Results for Case 4 

Method DL-Directive DL-Inverse SORA 
𝑏𝑏 4.0049 4.2918     4.2919 
ℎ 5.8614     6.2918     6.2919 

Objective 23.4741    27.0032    27.0047 
Function Call 6747          341 736 (630+106) 
Error(MCS) 48.97 % 2.03 % 2.03 % 

 

 

Table 3.13 SORA Convergence History for Case 4 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (3.7133, 4.6416) (-9330.7, 1.635) 17.2355 
2 (4.2558, 6.2558) (-1238.97, 2.104) 26.6237 
3 (4.2919, 6.2919) (-1055.98, 2.116) 27.0047 
4 (4.2919, 6.2919) (-1055.98, 2.116) 27.0047 
⋮ ⋮ ⋮ ⋮ 

10 (4.2919, 6.2919) (-1055.98, 2.116) 27.0047 
 

The distributions of some random variables changed again in Case 5. The new 

distributions are given in Table 3.5. All the three methods failed to converge to the 
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optimal solutions. For SORA, this is a robustness issue. As will be discussed in Sec.4, 

this problem could be fixed by accommodating log-normal distributed strengths 

correctly. 

Table 3.14 Results for Case 5 

Method DL-Directive DL-Inverse SORA 
𝑏𝑏 2.5816     2.0470     0.1000 
ℎ 3.9202     3.7491     0.1000 

Objective 10.1205     7.6744     0.0100 
Function Call 1878          153 314(264+50) 
Error(MCS) 0.32% -50.24% 100 % 

 

Table 3.15 SORA Converge History for Case 5 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (2.047, 3.746) (-49.9064, -

0.0031) 
7.6681 

2 (0.1, 0.1) (-899960049,  
-1544039) 

0.01 

⋮ ⋮ ⋮ ⋮ 
10 (0.1, 0.1) (-899960049,  

-1544039) 
0.01 

 

The observations and findings from this examples are summarized below. 

1. All three methods work well for random variables that are normally 

distributed. 

2. SORA is more efficient than the other two methods. 

3. The accuracy of the three methods are almost the same because they all 

use FORM. 
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4. When there is no feasible solution because the reliability requirement is 

too high, SORA does not converge. Divergence should be reported to the 

user. 

5. SORA fails to converge when strength-type random variables are log-

normal distributed. 

3.2.2. Testing Problem 2. A welded beam is shown in Fig 3.1. There are four 

independent random variables and five probabilistic constraints. The objective function is 

the welding cost.  And the failure modes are the excessive shear stress, bending stress, 

buckling, and excessive displacement [24-26]. 

 

 

Figure 3.5. A Welded Beam Design Example 

The complete RBD model is given by: 

Minimize:𝑓𝑓(𝐝𝐝,𝛍𝛍𝐗𝐗) = 𝑐𝑐1𝜇𝜇x12 𝜇𝜇x2 + 𝑐𝑐2𝜇𝜇x3𝜇𝜇x4(𝑝𝑝2 + 𝑑𝑑2)  
Subject to:  

Pr{𝑔𝑔1(𝐝𝐝,𝐗𝐗)} = Pr{𝜏𝜏(𝐗𝐗,𝐏𝐏)/𝑝𝑝6 − 1} ≤ 𝑝𝑝𝑓𝑓1  
Pr{𝑔𝑔2(𝐝𝐝,𝐗𝐗)} = Pr{𝜎𝜎(𝐗𝐗,𝐏𝐏)/𝑝𝑝7 − 1} ≤ 𝑝𝑝𝑓𝑓2  

Pr{𝑔𝑔3(𝐝𝐝,𝐗𝐗)} = Pr{𝑋𝑋1/𝑋𝑋4 − 1} ≤ 𝑝𝑝𝑓𝑓3  
Pr{𝑔𝑔4(𝐝𝐝,𝐗𝐗)} = Pr{𝛿𝛿(𝐗𝐗,𝐏𝐏)/𝑝𝑝5 − 1} ≤ 𝑝𝑝𝑓𝑓4  
Pr{𝑔𝑔5(𝐝𝐝,𝐗𝐗)} = Pr{1 − 𝑃𝑃𝑐𝑐(𝐗𝐗,𝐏𝐏)/𝑝𝑝1} ≤ 𝑝𝑝𝑓𝑓5  
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𝐻𝐻(𝐗𝐗) = �𝑋𝑋22 + (𝑋𝑋1 + 𝑋𝑋3)2 2�  
(3.4) 

𝐽𝐽(𝑿𝑿) = √2𝑋𝑋1𝑋𝑋2{𝑋𝑋22 12 + (𝑋𝑋1 + 𝑋𝑋3)2 4⁄⁄ }  
𝜏𝜏(𝐗𝐗,𝐏𝐏) = �{𝑡𝑡(𝐗𝐗,𝐏𝐏)2 + 2𝑋𝑋2𝑡𝑡(𝐗𝐗,𝐏𝐏)2𝑡𝑡𝑡𝑡(𝐗𝐗,𝐏𝐏) 2𝐻𝐻(𝐗𝐗) + 𝑡𝑡𝑡𝑡(𝐗𝐗,𝐏𝐏)2⁄ }  

𝑡𝑡(𝐗𝐗,𝐏𝐏) = 𝑝𝑝1/√2𝑋𝑋1𝑋𝑋2  
𝑡𝑡𝑡𝑡(𝐗𝐗,𝐏𝐏) = 𝑀𝑀(𝐗𝐗,𝐏𝐏)𝐻𝐻(𝑿𝑿) 𝐽𝐽(𝑿𝑿)⁄   
𝑀𝑀(𝐗𝐗,𝐏𝐏) = 𝑝𝑝1(𝑝𝑝2 + 𝑋𝑋2/2)  
𝜎𝜎(𝐗𝐗,𝐏𝐏) = 6𝑝𝑝1𝑝𝑝2/𝑋𝑋32𝑋𝑋4  
𝛿𝛿(𝐗𝐗,𝐏𝐏) = 4𝑝𝑝1𝑝𝑝23/𝑝𝑝1𝑋𝑋32𝑋𝑋4  

𝑃𝑃𝑐𝑐(𝐗𝐗,𝐏𝐏) = �4.013𝑋𝑋3𝑋𝑋42�𝑝𝑝3𝑝𝑝4��1 − 𝑋𝑋3�𝑝𝑝3/𝑝𝑝4/4𝑝𝑝2�/6𝑝𝑝22 
 

 

The random design variables are 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3, and 𝑋𝑋4. They are given in Table 3.14 

and Table 3.15. The system parameters are 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3,𝑝𝑝4, 𝑝𝑝5,𝑝𝑝6,𝑝𝑝7, 𝑐𝑐1, and  𝑐𝑐2. They are 

given in Table 3.16. All of the required reliabilities of the constraints are 0.9987. 

Table 3.16 Bounds of Design Variables for Example 2 

Design Variables Lower bound Upper bound 
𝜇𝜇𝑋𝑋1 3.175 in 50.8 in 
𝜇𝜇𝑋𝑋2 0 in 280 in 
𝜇𝜇𝑋𝑋3  0 in 254 in 
𝜇𝜇𝑋𝑋4 0 in 50.8 in 

 

Table 3.17 Distributions of Random Variables for Example 2 

Random Design Variables Mean Standard Deviation Distribution Type 
𝑋𝑋1 𝜇𝜇𝑋𝑋1 in 0.1693 in Normal 
𝑋𝑋2 𝜇𝜇𝑋𝑋2 in 0.1693 in Normal 
𝑋𝑋3 𝜇𝜇𝑋𝑋3 in 0.0107 in Normal 
𝑋𝑋4 𝜇𝜇𝑋𝑋4 in 0.0107 in Normal 

 

Table 3.18 Design Parameters for Example 2 

Other Parameters Value 
𝑝𝑝1 2.6688 × 104 N 
𝑝𝑝2 3.556 × 102 mm 
𝑝𝑝3 2.0685 × 105 MPa 
𝑝𝑝4 8.274 × 104 MPa 
𝑝𝑝5 6.35 mm 
𝑝𝑝6 9.377 × 101 MPa 
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Table 3.18 Design Parameters for Example 2 (cont.) 

𝑝𝑝7 2.0685 × 102 MPa 
𝑐𝑐1 6.74135 × 10−5 mm3 
𝑐𝑐2 2.93585 × 10−6 mm3 

 

The optimal results from the three methods are given in Table 3.17, which shows 

that the DL-Direct method failed to converge to a true optimal solutions because 

constraint 2 was not satisfied. The DL-Inverse and SORA methods produced almost 

identical solutions. The number of function calls are also listed in Table 3.17. SORA 

called all functions 754 times, including 696 for deterministic optimization and 58 for 

reliability analysis. The DL-Direct and DL-Inverse RBD method called functions 4263 

and 2052 times, respectively. SORA is therefore the most efficient method and DL-

Inverse.  

Table 3.19 Results for Testing Example 2 

Method DL-Direct DL-Inverse SORA 
𝑋𝑋1 8.5029 8.2269 8.2269 
𝑋𝑋2 280.0 280.0 280.0 
𝑋𝑋3 164.0070 177.0380 177.0380 
𝑋𝑋4 9.0966 8.8206 8.8206 

Objective 4.1486 4.1915 4.1915 
Function Call 4263 2052 754 (696+58) 

Error (constraint 1) 0.9 % 0.05 % 0.05 % 
Error (constraint 2) 100.00 % 0.03 % 0.03 % 
Error (constraint 4) 2.33 % 2.33 % 2.33 % 
Error (constraint 5) 2.33 % 2.33 % 2.33 % 

 

The convergence history of SORA is shown in Table 3.20. SORA converged after 

three cycles. The first cycle involves deterministic optimization with mean values of all 

the random variables, and it is therefore the conventional optimization. The reliability 
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requirements are not satisfied if the limit-state function values (𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 in the table) from 

reliability analysis are negative. Instead, the reliability of third limit-state function are 

satisfied due to its positive value. As shown in the third cycle, 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 of the all the 

constraints is almost zero. This means that, all constrains are active and that the actual 

reliability is exactly at the required level. The reliability of the fourth and fifth constraint 

exceeds the required value because the 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 value is positive.  

Table 3.20 SORA Convergence History for Testing Example 2 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (8.300726,  

252.4269, 
178.1419,  
8.674441) 

(-0.10879   
-0.0043564     

-0.02537      
0.92515       
1.3866) 

3.9309 

2 (8.226855,  
280, 

177.038,  
8.820585) 

(-5.3877×10-10, 
-1.8421×10-10, 
1.1446e×10-13, 

0.92501       
1.4981) 

4.1915 

3 (8.226855,  
280,        

177.038,  
8.820585) 

(-5.3877e×10-10, 
-1.8421×10-10, 
1.1446×10-13, 

0.92501       
1.4981) 

4.1915 

 

The observations and findings from this examples are summarized below. 

1. SORA worked well for this example, which has more reliability constraint 

functions.  

2. DL-Inverse and SORA produced the same accuracy because both of them 

use FORM. 

3. SORA is more efficient than the other two methods. 
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4. DL-Direct method did not find a feasible solution.  

3.2.3. Testing Problem 3. A two dimensional mathematical RBDO problem is 

defined by 

Minimize:𝑓𝑓(𝛍𝛍𝐗𝐗) = −
(𝜇𝜇𝑋𝑋1 + 𝜇𝜇𝑋𝑋2 − 10)2

30
−

(𝜇𝜇𝑋𝑋1 − 𝜇𝜇𝑋𝑋2 + 10)2

120
 

 

Subject to:  

Pr{𝑔𝑔1(𝐗𝐗)} = Pr �
𝑋𝑋12𝑋𝑋2

20
− 1 ≤ 0� ≤ 𝑝𝑝𝑓𝑓1 

 

      Pr{𝑔𝑔2(𝐗𝐗)} = Pr{1 − (0.9063𝑋𝑋1 + 0.4226𝑋𝑋2 − 6)2
− (0.9063𝑋𝑋1 + 0.4226𝑋𝑋2 − 6)3
+ 0.6(0.9063𝑋𝑋1 + 0.4226𝑋𝑋2 − 6)4                          
+ (−0.4226𝑋𝑋1 + 0.9063𝑋𝑋2) ≤ 0} ≤ 𝑝𝑝𝑓𝑓2 

(3.5) 

Pr{𝑔𝑔3(𝐗𝐗)} = Pr �
80

𝑋𝑋12 + 8𝑋𝑋2 + 5
− 1 ≤ 0� ≤ 𝑝𝑝𝑓𝑓3 

 

 

The design variables are 𝑋𝑋1 and 𝑋𝑋2 . They are given in Table 3.21.  The required 

reliabilities of the three constraints are all 0.9772, or 𝑝𝑝𝑓𝑓𝑖𝑖 = 0.0228, 𝑖𝑖 = 1,2,3 [27].  

Table 3.21 Bounds of Design Variables  

Design variables Lower bound Upper bound 
𝑋𝑋1  0 10  
𝑋𝑋2  0 10  

 

Table 3.22 Distributions of Random Variables  

Design variables Mean Standard Deviation Distribution Type 
𝑋𝑋1 𝜇𝜇𝑋𝑋1 0.5 Normal 
𝑋𝑋2 𝜇𝜇𝑋𝑋1 0.5 Normal 

 

The optimal results from the three methods are given in Table 3.23, which shows 

that the three methods produce the same solutions. Thus they have the same accuracy. 
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From this example, SORA is obvious efficient than DL-Direct and DL-Inverse because 

SORA only called all functions 243 times. DL-Direct called all functions 2166 times and 

DL-Inverse called all function 785 times. All the three methods are accuracy with the 

same small errors. 

Table 3.23 Results for Example 3 

Method DL-Direct DL-Inverse SORA 
𝑋𝑋1 4.6717 4.6717     4.6717 
𝑋𝑋2 1.5684     1.5684     1.5684 

Objective -1.902 -1.902 -1.902 
Function Call 2166 785 243 (180+63) 

Error (constraint 1) 0.93 % 0.93 % 0.93 % 
 

The convergence history of SORA is shown in Table 3.24. SORA converged only 

after 2 cycles. When SORA converged, the first and second constraints are active because 

their  𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 value are almost zero. The third constraint exceeds the required reliability 

because the 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 value is positive.  

Table 3.24 SORA Convergence History for Example 3 

Cycle Design Variables  𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 Objective function 
1 (5.1969, 0.7405) (-0.8114, -1.0688, 0.7378) -2.2917 
2 (4.6717, 1.5684) (6.9863× 10−6, 4.2335× 10−6, 

0.7032) 
-1.902 

 

3.2.4. Testing Problem 4. This testing problem has ten random design variables 

and eight probabilistic constraints [26, 28]. The complete RBD model is given by   

Minimize:𝑓𝑓(𝛍𝛍𝐗𝐗) = 𝜇𝜇𝑋𝑋12 + 𝜇𝜇𝑋𝑋22 + 𝜇𝜇𝑋𝑋1𝜇𝜇𝑋𝑋2 − 14𝜇𝜇𝑋𝑋1 − 16𝜇𝜇𝑋𝑋2 + (𝜇𝜇𝑋𝑋3 − 10)2 
                      +4(𝜇𝜇𝑋𝑋4 − 5)2 + (𝜇𝜇𝑋𝑋5 − 3)2 + 2(𝜇𝜇𝑋𝑋6 − 1)2 + 5𝜇𝜇𝑋𝑋72  
                       +7(𝜇𝜇𝑋𝑋8 − 11)2 + 2(𝜇𝜇𝑋𝑋9 − 10) + (𝜇𝜇𝑋𝑋10 − 7)2 + 45 

 

Subject to:  
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Pr{𝑔𝑔1(𝐗𝐗)} = Pr �1 −
4𝑋𝑋1 + 5𝑋𝑋2 − 3𝑋𝑋7 + 9𝑋𝑋8

105
≤ 0� ≤ 𝑝𝑝𝑓𝑓1  

Pr{𝑔𝑔2(𝐗𝐗)} = Pr{−10𝑋𝑋1 + 8𝑋𝑋2 + 17𝑋𝑋7 − 2𝑋𝑋8 ≤ 0} ≤ 𝑝𝑝𝑓𝑓2  

Pr{𝑔𝑔3(𝐗𝐗)} = Pr �1 −
−8𝑋𝑋1 + 2𝑋𝑋2 − 5𝑋𝑋9 − 2𝑋𝑋10

12
≤ 0� ≤ 𝑝𝑝𝑓𝑓3  

Pr{𝑔𝑔4(𝐗𝐗)} = Pr �1 −
3(𝑋𝑋1 − 2)2 + 4(𝑋𝑋2 − 3)2 − 2𝑋𝑋32 − 7𝑋𝑋4

120
≤ 0� ≤ 𝑝𝑝𝑓𝑓4 

(3.6) 

Pr{𝑔𝑔5(𝐗𝐗)} = Pr �1 −
5𝑋𝑋12 + 8𝑋𝑋2 + (𝑋𝑋3 − 6)2 − 2𝑋𝑋4

40
≤ 0� ≤ 𝑝𝑝𝑓𝑓5 

 

Pr{𝑔𝑔6(𝐗𝐗)} = Pr �1 −
0.5(𝑋𝑋1 − 8)2 + 2(𝑋𝑋2 − 4)2 + 3𝑋𝑋52 − 𝑋𝑋6

120
≤ 0� ≤ 𝑝𝑝𝑓𝑓6 

 

Pr{𝑔𝑔7(𝐗𝐗)} = Pr{−𝑋𝑋1 − 2(𝑋𝑋2 − 2)2 + 2𝑋𝑋1𝑋𝑋2 − 14𝑋𝑋5 − 6𝑋𝑋6 ≤ 0} ≤ 𝑝𝑝𝑓𝑓7  

Pr{𝑔𝑔8(𝐝𝐝,𝐗𝐗)} = Pr{3𝑋𝑋1 − 6𝑋𝑋2 − 12(𝑋𝑋9 − 8)2 + 7𝑋𝑋10 ≤ 0} ≤ 𝑝𝑝𝑓𝑓8 

 

 

The random design variables are 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5,𝑋𝑋6,𝑋𝑋7,𝑋𝑋8,𝑋𝑋9, and 𝑋𝑋10. They 

all positive numbers and follow normal distributions 𝑋𝑋𝑖𝑖~𝑁𝑁(𝜇𝜇𝑋𝑋𝑖𝑖, 0.022). All of the 

required reliabilities of the constraints are 0.9987, or 𝑝𝑝𝑓𝑓𝑖𝑖 = 0.0013, 𝑖𝑖 = 1,2, … ,8. 

The results of Example 4 are discussed in detail as follows: the optimal results 

from the three methods are given in Table 3.25, which shows that the three methods 

produce almost identical solutions. As discussed previously, the computational cost is 

extremely high by using traditional RBD methods to solve multidimensional and high 

nonlinear problems, such as this example. The advantages of SORA are more obvious. 

The Dl-Direct calls all functions 157,840 time, and DL-Inverse calls all functions 

11,550. DL-Inverse therefore is more efficient than DL-Direct. But SORA only calls 

all function 3,066 times, including 2,601for deterministic optimization and 465 for 
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reliability analysis. Obviously, SORA is the most efficient method among the three 

methods. 

Table 3.25 Results for Example 4 

Method DL-Direct DL-Inverse SORA 
𝜇𝜇𝑋𝑋1 1.7491 1.7483 1.7482 
𝜇𝜇𝑋𝑋2 2.6414 2.6406 2.6405 
𝜇𝜇𝑋𝑋3 8.7345 8.7344 8.7344 
𝜇𝜇𝑋𝑋4 5.0630 5.0630 5.0629 
𝜇𝜇𝑋𝑋5 1.0186 1.0186 1.0186 
𝜇𝜇𝑋𝑋6 1.4240 1.4246 1.4246 
𝜇𝜇𝑋𝑋7 1 1 1 
𝜇𝜇𝑋𝑋8 9.6790 9.6797 9.6797 
𝜇𝜇𝑋𝑋9 6.2461 6.2465 6.2465 
𝜇𝜇𝑋𝑋10 7.1642 7.161 7.1610 

Objective 8.5439 8.5458 8.5458 
Function Call 157840 11550 3066 (2601+465) 

Error (constraint 1) 0.0041 % 0.002 % 0.002 % 
Error (constraint 8) 0.0006 % 0.0005 % 0.0005 % 

 

The convergence history of SORA is shown in Table 3.26. After three cycles, 

SORA converged. The negative 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 values are indicate the reliability requirements of 

corresponding limit-state function are not satisfied. When 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 of a constraint function is 

close to zero, the corresponding constraint is active. The positive 𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀 values indicate 

that the reliability requirements of corresponding limit-state functions are exceed the 

required value. 
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Table 3.26 SORA Convergence History for Example 4 

Cycle Design Variables 
 

Objective 
function 

1 (1.613, 2.3776,     
8.7616, 5.0756,      
1.0156, 1.4078, 
1.0022,    9.963,           
6.1591, 7.1562) 

(-0.0065,  -1.2815, 
     9.5827,   -0.0181, 

                      0.2336,     0.7665, 
      -0.9467,   -2.7553) 

7.1858 

2 (1.7483, 2.6406, 
   8.7344,     5.063, 
 1.0186,  1.4246, 
            1,   9.6797, 

   6.2464,   7.1616) 

(1.7426× 10−12,  -3.3704× 10−11, 
               10.4049,  -9.2919× 10−12,    

0.1255, 0.7870, 
  5.0597× 10−7,  -1.9455× 10−6) 

8.5458 

3 (1.7482, 2.6406, 
   8.7344,     5.062, 
 1.0186,  1.4246, 
            1,   9.6797, 
6.2465,   7.161) 

(8.2345× 10−13,  -8.3013× 10−11, 
               10.4044,  -5.8518× 10−9,   

0.1255,   0.787, 
  4.9527× 10−7,  -2.2241× 10−6) 

8.5458 

 

3.3. IMPPROVE CONVERGENCE ROBUSTNESS  

This subsection discusses how to improve the convergence robustness of SORA. 

As has been shown in Case 5 of Example 1, SORA could not converge when the 

strength-type random variables follow log-normal distributions. It is found that the 

divergence is caused by the sign of the limit-state function at the origin in the U-space 

during the inverse MPP search.  

Recall that the probability of failure is defined by 𝑝𝑝𝑓𝑓 = Pr(𝑔𝑔 ≤ 0). This means 

that the failure region is away from the original and the distance between the two is the 

reliability index 𝛽𝛽 = |𝐮𝐮∗|, where 𝐮𝐮∗ is the MPP. This also implies that the origin O is in 

the safe region; in other words, 𝑔𝑔(𝟎𝟎) > 0. If this condition is not satisfied, the 

performance of the inverse MPP search is unpredictable and the process may diverge. 
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Let 𝑋𝑋 be a strength-type of random variable with its mean 𝜇𝜇𝑋𝑋 and standard 

deviation 𝜎𝜎𝑋𝑋. The natural logarithm of 𝑋𝑋 is normally distributed; namely, for 𝑌𝑌 = Ln(𝑋𝑋),  

𝑌𝑌~𝑁𝑁(𝜇𝜇𝑌𝑌,𝜎𝜎𝑌𝑌2). At the original of the U-Space, 𝑈𝑈 = 0. The transformation between 𝑈𝑈 and  

𝑋𝑋 is given by 

𝐹𝐹𝑋𝑋(𝑋𝑋) = Φ(𝑈𝑈) (3.7) 
When 𝑈𝑈 = 0, 

𝐹𝐹𝑋𝑋(𝑋𝑋) = Φ(0) = 0.5 
 

(3.8) 

The transformed 𝑋𝑋 is then 

𝑋𝑋 = 𝑋𝑋𝑚𝑚 
 

(3.9) 

where 𝑋𝑋𝑚𝑚 is the median of 𝑋𝑋. 

It is known that 

𝑋𝑋𝑚𝑚 = 𝑒𝑒𝜇𝜇𝑌𝑌  
 

(3.10) 
 

 

𝜇𝜇𝑋𝑋 = 𝑒𝑒𝜇𝜇𝑌𝑌+𝜎𝜎𝑌𝑌
2
 (3.11) 

 

This gives 

𝑋𝑋𝑚𝑚 ≤ 𝜇𝜇𝑋𝑋 

 

(3.12) 

As a result, the transformed 𝑋𝑋 is less than the mean of the strength. If 𝜎𝜎𝑌𝑌 is large, 

according to Eqs. (3.10) and (3.11), 𝑋𝑋 will be much smaller than the average strength, 

and this will lead to a failure. Then the limit-state function at the origin in the U-Space 

will be negative, or 𝑔𝑔 ≤ 0. This violates the condition 𝑔𝑔 > 0. 
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This problem can be fixed by setting 𝑈𝑈 to correspond to the mean 𝜇𝜇𝑋𝑋. The new 

transformation is given by 

𝛷𝛷(𝑈𝑈) = 𝐹𝐹𝑋𝑋(𝜇𝜇𝑋𝑋) (3.13) 

Then 

𝑈𝑈 =  𝛷𝛷−1(𝐹𝐹𝑋𝑋(𝜇𝜇𝑋𝑋)) 

 

(3.14) 

Since 𝜇𝜇𝑋𝑋 ≥ 𝑋𝑋𝑚𝑚, 𝐹𝐹𝑋𝑋(𝜇𝜇𝑋𝑋) > 0.5. This leads to 𝑈𝑈 > 0. At 𝑈𝑈 defined in Eq. (3.14), 𝑔𝑔 

is positive. Then the convergence problem of SORA is fixed. 

With the change in the inverse MPP search, SORA could converge when the 

strength-type random variables are log-normally distributed. This is demonstrated by the 

result in Tables 3.27 and 3.28 with the change for Case 5 of Example 1.  

Table 3.2 shows that SORA converged to a feasible optimal point as the other two 

methods did. SORA is also the most efficient method for this case. 

Table 3.27 New Results for Case 5 

Method DL-Directive DL-Inverse SORA 
𝑏𝑏 2.5816 2.5759     2.5629 
ℎ 3.9202     3.9289     3.9485 

Objective 10.1205    10.1204 10.1195 
Function Call 1878          305 212 (165+47) 
Error(MCS) 00.32 % 00.32 % 00.32 % 

 

Table 3.28 New SORA Convergence History for Case 5 

Cycle Design Variables 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 Objective function 
1 (2.047, 3.746) (-19081.18, -1.7778) 7.6681 
2 (2.6519, 3.8023) (-215.118, 0.37172) 10.0834 
3 (2.5629, 3.9485) (-1.73×10-8, 0.311) 10.1195 
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 Table 3.27 indicates that SORA converged in three cycles. The 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 values also 

indicate that the optimal solution is feasible and that the reliability requirements are 

satisfied.  
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4. CONCLUSIONS 

The objective of this research is to evaluate the Sequential Optimization and 

Reliability Analysis (SORA). SORA is a methodology for reliability-based design 

(RBD). RBD usually minimizes a cost-type objective function and also maintains the 

reliability at the required level. It can therefore reduce the product cost with increased 

reliability. Due to this advantage, RBD has increasingly used in engineering applications. 

Compared to deterministic optimization, however, RBD is much more computationally 

expensive. Thus it is critical for engineers to select an appropriate RBD approach for 

their specific problems. This needs better understanding of all common RBD 

methodologies, including SORA. The objective of this research is motivated by such a 

need. Through the thorough evaluation of SORA, this research offers better 

understanding of SORA, a better guidance for selecting RBD methodologies, and 

possible ways for improving RBD. 

4.1. SUMMARY OF THE EVALUATION STUDY 

RBD is evaluated in this study with respect to efficiency, accuracy, and 

robustness. The efficiency is measured by the number of limit-state function evaluations, 

including the function evaluations used by both optimization and reliability loops. The 

accuracy is evaluated using the Monte Carlo simulation (MCS) solutions as a benchmark. 

The MCS solutions are regarded as the accurate solutions given a large sample size. The 

reliabilities of the active constraints at the optimal points produced by SORA are 

calculated by MCS, and such reliabilities are compared to the required reliabilities. The 
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differences between the two types of reliabilities are considered as the errors. The 

robustness is measured by the ability of convergence.  

4.2. FINDINGS AND CONCLUSIONS 

SORA is more efficiency than Double-Loop RBD with direct reliability analysis 

and Double-Loop RBD with inverse reliability analysis. The efficiency is measured by 

the number of function calls, including both objective and constraint functions. This is 

demonstrated by the results of four testing problems. For example, for testing example 1, 

SORA called all functions 199 times, including 156 for deterministic optimization and 43 

for reliability analysis. The double-loop RBD method with direct reliability (DL-Direct) 

and double-loop RBD method with inverse reliability analysis called functions 6447 and 

301 times, respectively. For testing problem 4, SORA called all functions 3066 times, 

including 2601 for deterministic optimization and 465 for reliability analysis. The DL-

Direct RBD method and DL-Inverse RBD method called functions 157,840 and 11,550 

times, respectively.  

SORA has the same accuracy as the Double-Loop RBD with direct reliability 

analysis and Double-Loop RBD with inverse reliability analysis. The season is that all the 

three methods use the same reliability analysis method, which is the First Order 

Reliability Method (FORM). AS a result, the accuracy of SORA for reliability depends 

on the accuracy of FORM. In general, the accuracy is satisfactory. When a limit-state 

function in the U-space is highly nonlinear, the accuracy will decrease. 

The robustness is measured by the ability of convergence. The results show that 

SORA is robust. SORA does not calculate reliability directly. Instead, SORA employs 
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the inverse MPP search algorithm, which is more robust. However, SORA may not 

converge when strength-type random variables are log-normal distributed. This 

robustness issue is fixed by accommodating log-normal distributed strengths correctly. 

After the modification, SORA converges when log-normally distributed strength-type 

variables are involved. It can be concluded that the robustness of SORA depends on the 

robustness of the deterministic optimization and the MPP search. If both could converge 

to an optimal solution and an MPP, respectively, then SORA would converge to a 

feasible optimal solution. 

4.3. FUTURE WORK 

As evaluated by this study, SORA is efficient for reliability-based design. It can 

still be further evaluated and further improved in the future work. Possible future research 

directions are listed below. 

4.3.1. Perform Further Evaluations. Large-scale problems could be used for the 

evaluation. For examples, the number of random variables and number of reliability 

constraints could be higher than what has been used in this study. Real CAE simulation 

models can also be used for the evaluation. For instant, a limit-state function may involve 

the stress in a mechanical component and finite element analysis is used to calculate the 

stress. This study used normal and log-normal distributions. More distributions could also 

be included for the evaluation.  

4.3.2. Use More Efficient and Robust MPP Search Algorithms. The efficiency 

and robustness of SORA can be further improved. As discussed previously, SORA 

consists of both optimization and reliability analysis (the MPP search). As a result, 
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improving the efficiency and robustness of the MPP search will improve the efficiency 

and robustness of SORA. One way is to use more efficient and robust MPP algorithms 

that are developed recently and are available to use. The other way is to develop more 

efficient and robust MPP algorithms. In some cases, improving the robustness may 

increase the number of function calls, thereby decreasing the efficiency. It is therefore 

important to find a good balance between robustness and efficiency. 

4.3.3. Use More Efficient and Robust Optimization Algorithms. The other way 

to improve the efficiency and robustness is to use more efficient and robust optimization 

algorithms. There are numerous optimization algorithms available. In this evaluation 

study, the active-set optimization algorithm within the Matlab function fmincon was 

used. It was better than other algorithms available in fmincon for the testing problems. 

This indicates that the importance of optimization algorithms. 

4.3.4. Use the Second Order Reliability Method (SORM). Since SORA uses 

FORM for the reliability analysis, its accuracy for reliability is the same of FORM. 

FORM linearizes a limit-state function at the MPP. Due to the linearization, an error is 

unavoidable for a nonlinear limit-state function. Although the accuracy of SORA in 

general is acceptable, for important applications, higher accuracy is required. It is well 

known that SORM is in general more accurate than FORM. For this reason, SORM might 

be used. But the challenge is that the reliability estimated by SORM is not directly linked 

to the MPP as FORM does. The future research direction will be to find an equivalent 

MPP that corresponds to the reliability obtained by SORM. Then the equivalent MPP can 

be used to reformulate a reliability constraint function.
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APPENDIX 

Matlab Code for Strenth-Type variables with log-normal distribution  
function 
[reliability,gmpp,funEvaluation,sign,g0,xmpp,umpp,exitflag]=... 
    
relia_eval_opt(x,ncr,nd,nx,np,nr,d,model,numran,disttype,distpara,... 
    randx,betaopt,umppold,eps) 
% -------------------------------------------------------------------- 
% Find percentile value during optimization 
% exitfalg = -1, the limit-state function has negtive sign at the 
origin at U space 
% exitfalg = 1, the limit-state function has positive (or zero) sign at 
the origin at U space 
%    
reliability=[]; 
funEvaluation=[]; 
xmpp=zeros(ncr,nr); 
if nx~=0 
   distpara(1:nx,1)=x(nd+1:nd+nx)'; 
end 
  
% Calculate limit-state function at origin 
u0=zeros(1,nr); 
% For lognormal, added on 03/11/2016 
% ------------------------------------------------ 
for i = 1:nr 
    if disttype(i) == 5 
        b=(log((distpara(i,2)/distpara(i,1))^2+1))^0.5; 
        a=log(distpara(i,1))-0.5*b^2; 
        cdf_logn=logncdf(distpara(i,1),a,b); 
        u0(i) = norminv(cdf_logn); 
    end 
end 
% ----------------------------------------------- 
index=0; 
g0=gatu(model,nx,nr,u0,disttype,distpara,d,numran,randx,index); 
for i=1:ncr 
   if g0(i)>=0 
      sign(i)=1; 
   else 
      sign(i)=-1; 
   end 
end 
  
step(1:length(u0))=0.001; 
if abs(max(umppold))==0  
   
dgdu0=dire(model,nx,nr,ncr,u0,g0,disttype,distpara,numran,randx,d,index
,step); 
   for i=1:ncr 
      dgdu0(i,:)=sign(i)*dgdu0(i,:); 
   end 
else 
   dgdu0=zeros(ncr,nr); 
end 
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for i=1:ncr 
   clear dgdui umppoldi u minusgrad umppi xmppi; 
   for j=1:numran(i) 
      dgdui(j)=dgdu0(i,randx(i,j)); 
      umppoldi(j)=umppold(i,j); 
   end 
    
   if sign(i)==-1 
      exitflag(i)=-1; 
      gmpp(i)=g0(i); 
      xmppi=zeros(1,numran(i)); 
      umppi=zeros(1,numran(i)); 
   end 
   if sign(i)==1 
      if norm(umppoldi)~=0 | norm(dgdui)==0 
         u=umppoldi; 
      else 
         minusgrad=-dgdui/norm(dgdui); 
         u=betaopt(i)*minusgrad; 
      end 
      index=i; 
      
[umppi,xmppi,gmpp(i)]=mppbeta(model,u,nx,nr,ncr,disttype,distpara,d,num
ran,betaopt(i),sign(i),randx,index,eps); 
      exitflag(i)=1;    
   end 
   xmpp(i,1:numran(i))=xmppi(1:numran(i)); 
   umpp(i,1:numran(i))=umppi(1:numran(i)); 
end 
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Matlab Code of Main Testing Example 1 
 

function [z0,nc,ncr,ncd,nd,nx,np,nr,model,zl,zu,numran,disttype,... 
    distpara,randx,d,betaopt,eps] ... 
    = exp2_in(z) 
ncr = 2;              % Number of reliability constraints 
nc = 2;               % Number of constraints 
ncd = 0;              % Number of deterministic constraints 
nd = 2;               % Number of deterministic design variables 
nx = 0;               % Number of random design variables 
np = 4;               % Number of random parameters 
nr = 4;               % Number of random variables 
  
model = 'exp2'; 
distpara= [ 500,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           4e4,2e3,0,0]; 
zl= [0.1,0.1]; 
zu= [4,6]; 
w = 2; 
t = 4; 
d = [w,t]; 
z0 = [w,t];          % Initial design variables 
  
randx =zeros(2,4); 
randx(1,1:3) = [1,2,4]; 
randx(2,1:3) = [1,2,3]; 
numran = [3,3,0]; 
eps=2.5; 
  
case_exp =1; 
switch case_exp 
    case 1                           % Success 
        disttype(1:4) = 1;       % All nornal 
        betaopt(1:nc) = 3;      % beta for required reliability 
        distpara= [ 500,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           4e4,2e3,0,0]; 
     case 2                           % Success 
        disttype(1:4) = 1;       % All nornal 
        betaopt(1:nc) = 4;      % beta for required reliability 
        distpara= [ 500,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           4e4,2e3,0,0];         
     case 3                           % Success 
        disttype(1:2) = 5;        % Lognormal 
        disttype(3:4) = 1; 
        betaopt(1:nc) = 4;   % beta for required reliability 
        distpara= [ 500,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           4e4,2e3,0,0];         
     case 4                           % Failure, no feasible solution 
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        disttype(1:2) = 1;        % Lognormal 
        disttype(3:4) = 1; 
        betaopt(1:nc) = 4;   % beta for required reliability 
        distpara= [ 800,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           1.5e4,2e3,0,0];         
        
     case 5                           % Failure, SORA problem 
        disttype(1:2) = 1;        % Lognormal 
        disttype(3:4) = 5; 
        betaopt(1:nc) = 4;   % beta for required reliability 
        distpara= [ 500,100,0,0; % Distribution parameters 
           1000,100,0,0; 
           29e6,1.45e6,0,0; 
           4e4,2e3,0,0];         
 end 
  
 
function g = exp2(d,x,p) 
% Onjective and constraint functions  
% g < 0 -> failure 
global funcall 
funcall = funcall+1; 
  
[m,~] = size(d); 
[n,~] = size(p); 
% 2 deterministic design variables 
w = d(1:m,1);  
t = d(1:m,2);  
% 4 random parameters 
X = p(1:n,1); 
Y = p(1:n,2); 
E = p(1:n,3); 
R = p(1:n,4); 
  
d0 = 2.5; 
L = 100; 
% 3 reliability constraints 
g(1,:) = R - (600*Y./w./t.^2 + 600*X./w.^2./t);  
g(2,:) = d0 - 4*L^3./E./w./t.*((Y./t.^2).^2+(X./w.^2).^2).^0.5;  
g(3,:) = w.*t; 
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Matlab Code of Main Testing Example 2 
 

function [z0,nc,ncr,ncd,nd,nx,np,nr,model,zl,zu,numran,disttype,... 
    distpara,randx,d,betaopt,eps] = rexp_1_in(z) 
  
ncr= 5;     %number of reliability constraints 
ncd= 0;     %number of deterministic constraints 
nc = 5;     %number of constraints 
nd = 0;     %number of deterministic design variables 
nx = 4;     %number of random design variables 
np = 0;     %number of random parameters 
nr=nx+np;   %number of random variables 
  
model='rexp_1';  
  
randx=zeros(5,4); 
numran(1)=4; 
randx(1,1:4)=[1,2,3,4]; 
numran(2)=2; 
randx(2,1:2)=[3,4]; 
numran(3)=2; 
randx(3,1:2)=[1,4]; 
numran(4)=2; 
randx(4,1:2)=[3,4]; 
numran(5)=2; 
randx(5,1:2)=[3,4]; 
numran(6)=4; 
randx(6,1:4)=[1,2,3,4]; 
  
zl=[3.175,0,0,0]; 
zu=[50.8,280,280,50.8]; 
  
z0=[5,200,210,6]; 
  
disttype(1:4)=1; 
distpara=[0,0.1693,0,0; 
    0,0.1693,0,0; 
    0,0.0107,0,0; 
    0,0.0107,0,0]; 
betaopt(1:nc) = 3.5; 
d=0; 
eps=2.5; 
  
function g = rexp_1(d,x,p) 
global funcall 
funcall = funcall+1; 
[m,~]=size(x); 
[n,~]=size(p); 
  
z1=2.6688e4; 
z2=3.556e2; 
z3=2.0685e5; 
z4=8.274e4; 
z5=6.35; 
z6=9.377e1; 
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z7=2.0685e2; 
c1=6.74135e-5; 
c2=2.93585e-6; 
% 4 random design variables 
x1=x(1:m,1); 
x2=x(1:m,2); 
x3=x(1:m,3); 
x4=x(1:m,4); 
  
t_x=z1./(sqrt(2)*x1.*x2); 
m_x=z1*z2+z1*x2/2; 
r_x=sqrt(x2.^2+(x1+x3).^2)/2; 
j_x=sqrt(2)*x1.*x2.*(x2.^2/12+((x1+x3).^2)/4); 
sigma_x=6*z1*z2./(x3.^2.*x4); 
theta_x=4*z1*z2^3./(z3*x3.^3.*x4); 
p_x=4.013*x3.*x4.^3*sqrt(z3*z4)/(6*z2^2).*(1-x3/4/z2*sqrt(z3/z4)); 
  
tt_x=m_x.*r_x./j_x; 
tao_x=sqrt(t_x.^2+2*t_x.^2.*tt_x.*x2/2./r_x+tt_x.^2); 
% 5 reliability constraints 
g1=1-tao_x./z6; 
g2=1-sigma_x./z7; 
g3=1-x1./x4; 
g4=1-theta_x./z5; 
g5=p_x./z1-1; 
% objective function 
f=c1*mean(x1).^2.*mean(x2)+c2*mean(x3).*mean(x4).*(z2+mean(x2)); 
  
g(1,:)=g1; 
g(2,:)=g2; 
g(3,:)=g3; 
g(4,:)=g4; 
g(5,:)=g5; 
g(6,:)=f; 
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Matlab Code of Main Testing Example 3 
 

function [z0,nc,ncr,ncd,nd,nx,np,nr,model,zl,zu,numran,disttype,... 
    distpara,randx,d,betaopt,eps]=rexp_5_in(z) 
         
% enriched performance measure approach for reliabiity-based design 
optimization 
ncr=3;              %number of reliability constraints 
ncd=0;              %number of deterministic constraints 
nc=ncr+ncd;         %number of constraints 
nd=0;               %number of deterministic design variables 
nx=2;               %number of random design variables 
np=0;               %number of random parameters 
nr=2;               %number of random variables 
  
model='rexp_5'; 
  
randx=zeros(3,2); 
numran(1)=2; 
randx(1,1:2)=[1,2]; 
numran(2)=2; 
randx(2,1:2)=[1,2]; 
numran(3)=2; 
randx(3,1:2)=[1,2]; 
numran(4)=2; 
randx(4,1:2)=[1,2]; 
  
disttype(1:2)=1; 
  
zl=[0,0]; 
zu=[10,10]; 
distpara=[0,0.3,0,0; 
          0,0.3,0,0]; 
d=0; 
eps=0.5; 
z0=[5,5]; 
betaopt(1:nc)=2; 
 
function g=rexp_5(d,x,p) 
global funcall 
funcall = funcall+1; 
[m,~] = size(x); 
x1=x(1:m,1); 
x2=x(1:m,2); 
% 3 reliability constraint 
Y=0.9063*x1+0.4226*x2; 
Z=-0.4226*x1+0.9063*x2; 
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g1=x1.^2.*x2/20-1; 
g2=1-(Y-6).^2-(Y-6).^3+0.6*(Y-6).^4+Z; 
g3=80/(x1.^2+8*x2+5)-1; 
% objective function 
f=-(x1+x2-10).^2/30-(x1-x2+10).^2/120; 
g(1,:)=g1; 
g(2,:)=g2; 
g(3,:)=g3; 
g(4,:)=f; 
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Matlab Code of Main Testing Example 4 
 

function [z0,nc,ncr,ncd,nd,nx,np,nr,model,zl,zu,numran,disttype,... 
    distpara,randx,d,betaopt,eps]=rexp_12_in(z) 
         
% enriched performance measure approach for reliabiity-based design 
optimization 
ncr=8;              %number of reliability constraints 
ncd=0;              %number of deterministic constraints 
nc=8;               %number of constraints 
nd=0;               %number of deterministic design variables 
nx=10;              %number of random design variables 
np=0;               %number of random parameters 
nr=10;              %number of random variables 
  
model='rexp_12'; 
  
randx=zeros(8,10); 
numran(1)=4; 
randx(1,1:4)=[1,2,7,8]; 
numran(2)=4; 
randx(2,1:4)=[1,2,7,8]; 
numran(3)=4; 
randx(3,1:4)=[1,2,9,10]; 
numran(4)=4; 
randx(4,1:4)=[1,2,3,4]; 
numran(5)=4; 
randx(5,1:4)=[1,2,3,4]; 
numran(6)=4; 
randx(6,1:4)=[1,2,5,6]; 
numran(7)=4; 
randx(7,1:4)=[1,2,5,6]; 
numran(8)=4; 
randx(8,1:4)=[1,2,9,10]; 
numran(9)=10; 
randx(9,1:10)=[1,2,3,4,5,6,7,8,9,10];  
disttype(1:10)=1; 
  
zl=[1,1,1,1,1,1,1,1,1,1]; 
zu=[10,10,10,10,10,10,10,10,10,10]; 
z0=[5,5,5,5,5,5,5,5,5,5]; 
distpara=[0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0; 
          0,0.02,0,0;]; 
d=0; 
eps=0.1; 
  
betaopt(1:nc)=3; 
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function g=rexp_12(d,x,p) 
global funcall 
funcall = funcall+1; 
  
[m,~] = size(x); 
  
x1=x(1:m,1); 
x2=x(1:m,2); 
x3=x(1:m,3); 
x4=x(1:m,4); 
x5=x(1:m,5); 
x6=x(1:m,6); 
x7=x(1:m,7); 
x8=x(1:m,8); 
x9=x(1:m,9); 
x10=x(1:m,10); 
% 8 reliability constraints 
g1=1-(4*x1+5*x2-3*x7+9*x8)/105; 
g2=-10*x1+8*x2+17*x7-2*x8; 
g3=1-(-80*x1+2*x2+5*x9-2*x10)/12; 
g4=1-(3*(x1-2).^2+4*(x2-3).^2+2*x3.^2-7*x4)/120; 
g5=1-(5*x1.^2+8*x2+(x3-6).^2-2*x4)/40; 
g6=1-(0.5*(x1-8).^2+2*(x2-4).^2+3*x5.^2-x6)/120; 
g7=-(x1+2*(x2-2).^2-2*x1.*x2+14*x5-6*x6); 
g8=-(-3*x1+6*x2+12*(x9-8).^2-7*x10); 
% objective function 
f=x1.^2+x2.^2+x1.*x2-14*x1-16*x2+(x3-10).^2+... 
4*(x4-5).^2+(x5-3).^2+2*(x6-1).^2+5*x7.^2+... 
7*(x8-11).^2+2*(x9-10)+(x10-7).^2+45; 
g(1,:)=g1; 
g(2,:)=g2; 
g(3,:)=g3; 
g(4,:)=g4; 
g(5,:)=g5; 
g(6,:)=g6; 
g(7,:)=g7; 
g(8,:)=g8; 
g(9,:)=f; 
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