
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Fall 2018 

Developing computational models for pulsed-inductive plasma Developing computational models for pulsed-inductive plasma 

formation formation 

Zachary Aaron Gill 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Aerospace Engineering Commons, and the Plasma and Beam Physics Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Gill, Zachary Aaron, "Developing computational models for pulsed-inductive plasma formation" (2018). 
Masters Theses. 7820. 
https://scholarsmine.mst.edu/masters_theses/7820 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7820?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7820&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


DEVELOPING COMPUTATIONAL MODELS FOR PULSED-INDUCTIVE PLASMA

FORMATION

by

ZACHARY AARON GILL

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

AEROSPACE ENGINEERING

2018

Approved by

Dr. Joshua Rovey, Co-Advisor
Dr. Daoru Han, Co-Advisor

Dr. Serhat Hosder



Copyright 2018

ZACHARY AARON GILL

All Rights Reserved



iii

ABSTRACT

Pulsed-inductive discharges are a common method of producing a plasma. They

provide a mechanism for quickly and efficiently generating a large volume of plasma for

rapid use and are seen in applications including propulsion, fusion power, and high-power

lasers. However, some common designs see a delayed response time due to the plasma

forming when the magnitude of the magnetic field in the device is at a minimum. New

designs are difficult to evaluate due to the amount of time needed to construct a new

geometry and the high monetary cost of changing the power generation circuit. To more

quickly evaluate new designs and better understand the shortcomings of existing designs,

two computational models have been developed for use in Mathematica. The first model

uses a modified single-electron model to determine how the energy distribution in a system

changes with regards to time and location. The second model uses Townsend breakdown

to obtain the time rate of change of electron number density. This rate is then integrated to

obtain an electron number density distribution that varies with regards to time and location.

By analyzing the energy distribution and the density distribution, the approximate times

and locations of initial plasma breakdown and bulk plasma formation can be predicted.

The results from these codes are then compared to existing data to show their validity and

shortcomings.
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1. INTRODUCTION

1.1. BACKGROUND

There are a variety of mechanisms by which a plasma might form. In the case of

an inductively-coupled plasma, the primary mechanism is ionization resulting from high-

energy collisions between neutral gas particles and free electrons. These free electrons

are naturally present in any gas due to background radiation but have neither the energy

nor the numbers to produce a plasma. With too little energy, they still have collisions but

are repelled and only minimally perturb the neutral gas particles. An electric field can be

applied to the gas that accelerates the electrons to energies sufficient for ionizing collisions.

These collision knock electrons off of the valence shells of gas atoms, producing both

negatively-charged free electrons and positively-charged ions. The new free electrons then

go on to conduct even more ionizing collisions. The result is a chain reaction that fills the

gas with a cloud of electrons and ions collectively described as a plasma.

1.1.1. Townsend Breakdown. For nearly as long as plasmas have been studied,

attempts have been made to quantify their behavior. The most successful model has been

the Townsend Breakdown model which describes the electric current between two parallel

plates when breakdown occurs. A sketch of the geometry is shown in Figure 1.1.

Initially, this model was a simple exponential model describing the ratio of the measured

current I to the photoelectric current Io due to the electric field strength ®E , background gas

pressure P, and plate separation d [1]. The model is given in Eqn. (1.1). The electric field

and the gas pressure are included by means of the "First Townsend Ionization Coefficient"

α.

I
Io
= eαd (1.1)
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Figure 1.1. Townsend parallel plate geometry.

This coefficient was originally determined empirically for individual experimental setups

but an equation relating it the the electric field, gas species, and pressure was developed and

presented by Cobine [2]. His equation relied on empirical constants derived for individual

gas species over a range of electric field and pressure values. More recently, equations have

been developed that relate those constants to fundamental atomic and molecular values [3].

Initial comparisons between Townsend’s model an experimental results found that

it made accurate predictions for the current only within a limited range of the pertinent

conditions. Outside that range, the measured current would be higher than predicted. The

cause for the higher current was determined to be additional electrons produced by high

energy ions colliding with the cathode [4]. To account for these "secondary electrons" being
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emitted by the cathode, a modification was made to Townsend’s original model by adding

the "Second Townsend Ionization Coefficient," or β. The modified breakdown equation is

shown in Eqn. (1.2).

I
Io
=
(α − β)eαd

α − βeαd (1.2)

Following this modification, the model remained unchanged for decades. More recently,

a proposal has been made that suggests the Second Townsend Ionization Coefficient be

modified to account for the initial distance traveled by secondary electrons before they can

contribute to ionization [5]. Even with the addition of the second term, the Townsend

Breakdown model still possesses two limits. First, the model only applies to a parallel-plate

geometry with a time-invariant electric field and no magnetic field. Second, it only applies

to low-current breakdown, the so-called Townsend Regime.

Soon after the Townsend Breakdown Model was established, efforts were made

to understand how it could be modified to account for the presence of a magnetic field.

Some of these early works were detailed by Blevin where the magnetic field is specifically

a direct current (DC) field perpendicular to the electric field [6]. Two key modifications

were discussed: the first being an effective pressure term that relates the system with a

magnetic field to an equivalent system with a different pressure and no magnetic field and

the second being a reevaluation of the energy gained by a free electron between individual

collisions with neutral gas particles. In both cases, Blevin identified that while the models

did bear qualitative agreement with experimental work, they did not agree quantitatively.

He ultimately concluded that the use of equivalent pressure gave the more accurate results

but that secondary ionization, which had previously been assumed unaffected, was indeed

affected by the presence of a magnetic field. The model for equivalent pressure described

by Blevin was followed up by Sen who determined the effective range of electric field

strengths and pressures over which the equivalent pressure term was valid [7]. However, as

with the previous results by Blevin, Sen acknowledged that accounting for changes to the
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secondary ionization coefficient due to strong magnetic fields would provide more accurate

results. This work was later followed up on by Haydon who demonstrated that the electron

energy distribution experienced fundamental changes when put under a magnetic field [8].

Specifically, Haydon demonstrated that the energy distribution was no longer Maxwellian

when a magnetic field was present. Thus, an equivalent distribution without a magnetic

field could not be determined. He proposed modifying the previously developed equivalent

pressure term with an empirical multiplier to account for the change in energy distribution.

For nearly 50 years after Blevin’s work, no efforts were made to follow up on his suggestion

to change the second coefficient. Finally, a study published by Radmilovic-Radjenovic in

2006 proposed some possible changes [9]. In particular, the study focused both on how the

magnetic field can affect ionic energy and on how gyromotion can force emitted electrons

back into the cathode.

1.1.2. AC Breakdown. Given the limited purview of Townsend’s model, attempts

have been made to develop models for other kinds of plasma discharges. A broad class

of plasmas that has seen much modeling work is the plasmas produced by an alternating

current (AC) electric field. Unlike a DC electric field, an AC electric field varies with time

such that a magnetic field will form as described by the Maxwell-Ampère Equation. A

common example of a plasma formed under an AC electric field is the radio-frequency (RF)

plasma. RF plasmas, steady-state plasmas produced by fields typically with a frequency

of 13.56 MHz, have seen widespread use in industrial, commercial, and academic fields.

The most common variant of the RF plasma is the capacitively-coupled plasma (CCP),

a plasma formed between two electrodes similar to the parallel plate geometry used in

Townsend Breakdown. A less common but still important variant of the RF plasma is the

inductively-coupled plasma (ICP). Where CCPs are formed between electrodes, ICPs are

formed in the presence of an inductive coil. A comprehensivemodel for both ICPs andCCPs

was produced by Chabert and Braithwaite [10]. The models presented in their book were

designed primarily for Argon and focus on steady-state plasma conditions. However, some
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commentary was provided for conditions necessary to achieving initial plasma formation.

A standard means of accounting for the presence of a magnetic field is to ignore gyromotion

induced in the ions and instead focus on drift motion such as that used by Chen to describe

a Helicon plasma [11]. A similar method is to average the particle motion and interactions

over time such as that used by Tarvainen to describe an Electron Cyclotron Resonance

(ECR) plasma [12]. These methods are only valid for their respective cases because the

gas breakdown occurs on a longer time-scale than the oscillation of the magnetic field.

In the model presented by Tarvainen, the ECR plasma forms on the scale of hundreds of

microseconds for a magnetic field frequency on the scale of a GHz [12]. In the example

illustrated by Chen, the focus is on long-term equilibrium for a helicon plasma at which point

the rate of formation will equal the loss rate [11]. In fact, equilibrium is a fairly common

approach to modeling plasma formation. This approach equates formation to stability by

stating that a plasma will only form if its creation rate equals its loss rate. A standard

visualization of this approach is the Paschen curve where the curve represents the values of

gas pressure and electric field at which breakdown becomes possible. There are two issues

with this type of approach. First, it only looks at whether a plasma will eventually form.

It ignores the particulars of when and where in a geometry such formation happens. In

Chen’s model for a Helicon plasma, he noted his surprise at the plasma remaining confined

to a small region near the axis rather than being uniformly distributed [11]. The second

issue with using equilibrium conditions is that they are only applicable for fields that remain

stable over a long period of time. Thus, the time scale on which the fields evolve can be

assumed to be much larger than the time scale on which the plasma forms. An example of

this for an AC field is a model developed by Burm to determine breakdown conditions for

ICPs [13]. This model applied Townsend Breakdown to a plasma confined in a solenoid.

The driving force of the magnetic field was accounted for by using Faraday’s Law to relate

the magnetic field to the electric field and thereby replace the electric field in the Townsend

Breakdown model with the magnetic field. Because the fields experienced little to no
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decay, the model was able to use magnitudes of the electric and magnetic fields rather than

time-varying quantities. Specifically, the electric field was related to the magnetic field as

E = ωBR where ω was the angular frequency of the magnetic field and R was the radius of

the chamber. The value of the first ionization coefficient used by the model was the original

term developed by Cobine that ignored any influence from the magnetic field outside of

inducing the electric field. The ignorance of modifications to the first coefficient by the

magnetic field may be valid as the fields in this case were coupled.

1.2. INDUCTIVELY-COUPLED PLASMA

ICPs are a class ofmagnetically-coupled plasmas that includeECRplasmas, Surface-

Wave Plasmas (SWP), and Helicon plasmas. Their collective value over Capacitively-

Coupled Plasmas (CCP) is twofold. First, they have a reduced or even no reliance on

electrodes, thus significantly increasing the lifespan of the device producing the plasma.

Second, they can produce plasmas of much higher density [11] [14] [15]. Due to these

advantages, ICPs have been used in a wide range of applications. They have been used in

material fabrication to provide high-fidelity etching [16] [17] and to modify materials to be

hydrophilic [18]. They have also been used to study fusion plasmas. Magnetic-confinement

fusion is predicated on using magnetic fields to either radially or axially confine a plasma.

The resultant configurations typically mimic those of ICPs and are generally called Field-

Reversed Configuration (FRC) plasmas. Thus, ICPs are used to develop better confinement

and ignition methods [19] [20] [21] [22] [23]. A third application for ICPs is space-based

propulsion. Space-based systems cannot be easily repaired or replaced which makes the

long lifespans inherent in ICP devices advantageous. Various space-based propulsion sys-

tems that have made use of ICPs as their propellant include the electrodeless Lorentz Force

(ELF) thruster [24], the Pulsed-Inductive Thruster (PIT) [25], the Inductive Pulsed Plasma

Thruster (IPPT) [26], and the Nuclear-Electric PIT (NuPIT) [27].
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A variant of the ICP that has proven notorious to model is the pulsed-inductive

plasma (PIP). Unlike standard ICPs that oscillate in continuous wave (cw) form, PIPs are

formed by fields that are pulsed; that is, they are generated for a short period of time before

decaying away. The benefit of PIPs over other ICPs is their ability to rapidly and repeatedly

produce plasma for recurring use. Previous work had shown that plasma formation is

driven primarily by power with a qualitative attachment to the azimuthal electric field [28].

However, more recent work has shown that plasma formation is not tied to peaking of the

electric field, when power transfer would be at a maximum, but rather to a zero crossing

of the magnetic field [29] [30]. In practice, this coupling has the effect of delaying plasma

formation and reducing the initial magnetic field present in the plasma when it forms. As

there is little to no magnetic field in the plasma, some time is needed after formation for a

magnetic field to spread throughout the medium. Only after the plasma exhibits a magnetic

field can it be acted on by electromotive forces and thus generate thrust. The absence of a

credible model to explain this phenomenon is one this work seeks to rectify.

1.3. OBJECTIVES OF THIS THESIS

The primary goal of this work is to develop computational models for describing

formation of ICPs. To accomplish this goal, a method for deriving the electric and magnetic

fields in any ICP device will be developed. The second goal of this work is to obtain

agreement between these models and experimental results for various ICP devices.

1.4. ORGANIZATION OF THIS THESIS

First, Section 2 will derive a model for the electric and magnetic fields whereby

they can be calculated for any ICP device given the geometry and the electric current

waveform. Next, models will be developed that describe plasma formation as a result of

(a) energy gain of a single particle in Section 3 and (b) Townsend breakdown in Section
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4. Finally, the models will be applied to three different ICP devices: the Missouri Plasma

Experiment (MPX) in Section 5, the Field-Reversed Configuration Heating Experiment

(FRCHX) in Section 6, and the Conical Theta Pinch - Faraday Acceleration with Radio-

frequency Assisted Discharge (CTP-FARAD) in Section 7.
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2. MODEL DEVELOPMENT

2.1. GOVERNING EQUATIONS

Any characterization of the action of charged particles must begin with a charac-

terization of the electric and magnetic fields in the region of interest. Using the Lorenz

gauge, the fields can be stated using the scalar and vector potentials as shown in Eqns. (2.1)

and (2.2). The key condition of the Lorenz gauge is that ∇ · ®A = 0. ∇ is nabla, or the del

operator. The partial derivative with respect to time is given as ∂t . ®A is the vector potential.

Φ is the scalar potential. ®E is the electric field in a vacuum. ®B is the magnetic field in a

vacuum.

®E = −∇ · Φ − ∂t ®A (2.1)

®B = ∇ × ®A (2.2)

2.2. ELECTROMAGNETIC FIELDS

Gauss’s Law can be used to derive Poisson’s equation from Eqn. (2.1). Gauss’s

Law is given in Eqn. (2.3). ρ is the spatial charge density and εo is the vacuum permittivity.

Taking the divergence of both sides of Eqn. (2.1) gives Eqn. (2.4). Setting Eqn. (2.3)

equal to Eqn. (2.4) and recalling that ∇ · ®A = 0 for the Lorenz gauge results in Eqn. (2.5),

or Poisson’s equation. In the case that there is no charge density in the region of interest,

Poisson’s equation simplifies to Laplace’s equation, Eqn. (2.6).
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∇ · ®E =
ρ

εo
(2.3)

∇ · ®E = −∇2
Φ − ∂t[∇ · ®A] (2.4)

∇2
Φ = −

ρ

εo
(2.5)

∇2
Φ = 0 (2.6)

2.2.1. Scalar Potential for a Cylinder. If the region is set to be a cylinder of radius

R and the scalar potential is set to be a constant, Φo, along the outer surface of the cylinder,

that is, at radius R, then the scalar potential throughout the region simplifies to a constant

such that the electric field due to it is zero. This derivation is shown below. ®r is the general

position vector whereas r without the vector arrow is the radial position, or distance from

the central axis. The partial derivative with respect to the radial position is given as ∂r .

Φ(®r) = Φ(r)

Φ(R) = Φo

∇2
Φ = [∂2

r +
1
r
∂r]Φ

= 0

∂rΦ = −r∂2
r Φ∫ R

0
∂rΦdr = −

∫ R

0
r∂2

r Φdr

= −R∂rΦ|r=R +

∫ R

0
∂rΦdr

∂rΦ|r=R = 0

(2.7)
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∂2
r Φ =

d(∂rΦ)

dr

∂rΦ = −r∂2
r Φ

= −r
d(∂rΦ)

dr
d(∂rΦ)

∂rΦ
= −

dr
r

ln(∂rΦ) = ln r + C

∂rΦ = eCr

∂rΦ|r=R = eC R = 0

eC = 0

∂rΦ = 0

Φ(r) = Φo

(2.8)

To summarize, the scalar potential is only a function of r such that it exhibits radial symmetry

for every possible value of R. Due to this radial symmetry and the lack of any charge in

the region, the gradient of the scalar potential becomes zero at the edge of the cylinder.

Furthermore, the gradient of the scalar potential is shown to be zero throughout the entire

region. Thus, the scalar potential is a constant throughout the region. As a result, ∇Φ = 0

and Eqn. (2.1) simplifies to Eqn. (2.9).

®E = −∂t ®A (2.9)

2.2.2. Vector Potential for a Cylinder. The vector potential, ®A, present in Eqns.

(2.2) and (2.9) can be calculated from the current density of the geometry using Eqn.

(2.10). ®J is the current density and µo is the vacuum permeability. The time is denoted as

t. Typically, this equation uses retarded time rather than real time but the difference will be
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treated as negligible for the purposes of this work as the related geometries are too small

and the time scale of the applied current is too large for a delay due to the speed of light to

be meaningful. The primed terms, such as ®r′, are distinct from the unprimed terms, such as

®r , in that they are what the integral, via d3r′, integrates over.

®A(®r) =
µo

4π

∫
®J(®r′, t)
|®r − ®r′|

d3r′ (2.10)

The form for the vector potential given in Eqn. (2.10) can be substituted into the previously

determined equations for the electric and magnetic fields, Eqns. (2.2) and (2.9), to get the

integral forms shown in Eqns. (2.11) and (2.12). In Eqn. (2.11), ∇ is unprimed and thus

only operates on the denominator as it contains an unprimed ®r .

®B =
µo

4π

∫
∇ ×

®J(®r′, t)
|®r − ®r′|

d3r′ (2.11)

®E = −
µo

4π

∫
∂t ®J(®r′, t)
|®r − ®r′|

d3r′ (2.12)

2.2.3. Current Density for a Cylinder. In the event that the geometry is encased in

a cylindrical solenoid, the applied current density becomes purely azimuthal. Furthermore,

as the shape of the solenoid does not change with time, the current density can be separated

into a product of two functions, I(t) and f ( ®r′). I(t) is the waveform of the electric current.

f ( ®r′) is the spatial density function of the current. The equation for the current density is

shown in Eqn. (2.13).

®J(®r′, t) = I(t) f (®r′)φ̂′ (2.13)
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Eqn. (2.13) can be substituted in place of ®J in the integral forms for the electric and

magnetic fields, Eqns. (2.12) and (2.11), to separate ®r′ from t and obtain a vector direction

for ∇ to operate on. The end result is shown in Eqns. (2.15) and (2.14).

®B =
µo

4π
I(t)

∫
∇ ×

f (®r′)φ̂′

|®r − ®r′|
d3r′ (2.14)

®E = −
µo

4π
∂t I(t)

∫
f (®r′)φ̂′

|®r − ®r′|
d3r′ (2.15)

Figure 2.1. Electric and magnetic fields in cylindrical theta pinch. [30]

As the current is assumed to be delivered by means of a cylindrical solenoid, such

as a theta pinch, the spatial density function, f ( ®r′), can be written as Eqn. (2.16) where R

is the radius of the solenoid and L is the length. A model depicting how the fields will be

arranged in such a system is shown in Figure 2.1.
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f (®r′) =
δ(r′ − R)

L
(2.16)

δ(r′ − R) indicates that the current is located only at radial position r′ = R and the

denominator L indicates that the current is distributed evenly along the length of the

cylinder. To minimize edge effects, the fields will be calculated at the center of the cylinder.

The boundary values will be set to 0 ≤ φ′ ≤ 2π to integrate over the entire circumference

of the cylinder, − L
2 ≤ z′ ≤ L

2 to integrate over the entire length of the cylinder and to set

the origin at the center of the cylinder, and 0 ≤ r′ ≤ ∞ to include any possible value of R.

The integrals previously given in Eqns. (2.15) and (2.14) can thus be expanded into Eqns.

(2.18) and (2.17) for a cylindrical solenoid.

®B = −
µo

4π
1
L

I(t)
∫ 2π

0

∫ L
2

− L
2

∫ ∞

0
∇ ×

δ(r′ − R)
|®r − ®r′|

φ̂′r′dr′dz′dφ′ (2.17)

®E = −
µo

4π
1
L
∂t I(t)

∫ 2π

0

∫ L
2

− L
2

∫ ∞

0

δ(r′ − R)
|®r − ®r′|

φ̂′r′dr′dz′dφ′ (2.18)

2.3. INTEGRATION OF THE ELECTROMAGNETIC FIELDS

Before values for ®B and ®E can be obtained, a few assumptions must first be made.

First, as a cylinder exhibits radial symmetry, the radial position vector ®r can be arbitrarily

set parallel to the Cartesian unit vector x̂. This arrangement means that the radial unit vector

r̂ will be equal to the Cartesian unit vector x̂ and that the polar unit vector φ̂ will be parallel

to the Cartesian unit vector ŷ. The result of this arrangement is that the denominator in

Eqns. (2.17) and (2.18) can be expanded and that the primed unit vectors can be written in

terms of the unprimed unit vectors as shown in Eqns. (2.19).
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®r = r x̂, r̂ = x̂, φ̂ = ŷ

®r′ = r′ cos φ′ x̂ + r′ sin φ′ ŷ

r̂′ = cos φ′ x̂ + sin φ′ ŷ

φ̂′ = − sin φ′ x̂ + cos φ′ ŷ

|®r − ®r′| =
√

r2 + r′2 − 2rr′ cos φ′ + (z − z′)2

(2.19)

Recall that ∇ from Eqn. (2.17) is not primed meaning that it acts only on unprimed

terms, not primed terms. As the unit vector in Eqn. (2.17), φ̂′, is primed, a conversion

is needed to relate it to unprimed unit vectors so that ∇ can be properly applied. φ̂′ is

converted to the Cartesian coordinate system as shown in Eqn. (2.20). For reasons that will

be made apparent, |®r − ®r′| is included and is converted using the relation shown in Eqns.

(2.19). Now that φ̂′ is properly converted, the curl in Eqn. (2.17) can be evaluated to get

the result shown in Eqn. (2.21). For reasons that will be made apparent, |®r − ®r′| is included

and is converted using the relation shown in Eqns. (2.19).

φ̂′

|®r − ®r′|
=

− cos φ′ x̂ + sin φ′ ŷ√
(x − r′ cos φ′)2 + (y − r′ sin φ′)2 + (z − z′)2

(2.20)

Now that φ̂′ is properly converted, the curl in Eqn. (2.17) can be evaluated to get the result

shown in Eqn. (2.21).

∇ ×
φ̂′

|®r − ®r′|
= −
(z − z′)r̂′ + (x cos φ′ + y sin φ′ − r′)ẑ

|®r − ®r′|3
(2.21)

The second assumption is that the radial component ®B is negligible. In practice, it is

effectively nonzero only near the ends of the cylinder. This means that the radial component

of Eqn. (2.21), the term dependent on z − z′, will be ignored.
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Recall that the electric current density was separated into functions dependent on

time and on position. The same can be applied to the fields. The electric current, I(t),

present in Eqns. (2.18) and (2.17), can be separated from the rest of the integral equations.

The result is Eqns. (2.22) and (2.23) where F1 and F3 are the position-dependent terms,

given in Eqns. (2.24) and (2.25).

®E ≈ ∂t I(t)F1φ̂ (2.22)

®B ≈ I(t)F3 ẑ (2.23)

F1 = −
µo

4π
R
L

∫ 2π

0

∫ L
2

− L
2

cos φ′√
r2 + R2 − 2rR cos φ′ + (z − z′)2

dz′dφ′ (2.24)

F3 = −
µo

4π
R
L

∫ 2π

0

∫ L
2

− L
2

r cos φ′ − R

(r2 + R2 − 2rR cos φ′ + (z − z′)2)
3
2

dz′dφ′ (2.25)

As a refresher, R and L are the dimensions of the solenoid, µo is a constant, the primed terms

r′ and z′ are evaluated by the integrals, and the unprimed terms r and z are the position at

which the fields are calculated. A value of z = 0 corresponds to an equal distance from both

ends of the solenoid and a value of r = 0 corresponds to the central axis of the solenoid.

2.4. DISCRETIZATION OF THE ELECTROMAGNETIC FIELDS

The only independent variables needed to calculate the fields are r and z. To expedite

the models that will be developed in later chapters, a discrete array of field values can be

calculated for a set range of r and z. Recalling Eqns. (2.22) and (2.23), two arrays will be

set up that contain calculated values of F1 and F3 for specified values of r and z. Along

with a defined current waveform, the fields can be approximated for any values of position



17

Figure 2.2. Mesh of points at which electric and magnetic fields are calculated.

r and z and time t. An example of how one of these arrays would look laid on top of the

model space is shown in Figure 2.2. Note that the xy plot is composed of rings where the

only defined boundary is radial. This layout is due to the radial symmetry of the fields

within a cylinder. The magnetic field is axial and thus has no x or y components. The

electric field is azimuthal and therefore does have x and y components. These components

are obtained using the relations shown in Eqns. (2.26). The rz plot is how the xy plot looks

from the side. Where the xy plot was divided into rings, the rz plot is divided into cells.

The dimensions of the rings and cells will be decided based on accuracy requirements of the

individual models. Note that both the rz plot and the xy plot have dots scattered throughout

the region. These dots indicate positions where F1 and F3 are calculated. Thus, while the

fields will be discrete with respect to r and z, they will be continuous with respect to φ. The

single-particle model will only use the points located at the centers of the rings and cells.

The Townsend-breakdown model will use the points both within the rings and cells and at

their boundaries.

φ = arctan[x, y]

Ex = −E sin φ

Ey = E cos φ

(2.26)
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3. SINGLE-PARTICLE MODEL

Recall that ICPs typically form due to interactions between free electrons and

the neutral gas. The critical term in understanding such formation is the kinetic energy

distribution of the free electrons. Previous work conducted by Meeks has shown that

plasma formation can be predicted by evaluating the time-evolution of the kinetic energy of

a single free electron and equating plasma formation to when the electron’s kinetic energy

becomes higher than the ionization energy of the gas, or becomes high enough to enable

ionizing collisions [30]. His work centered on solving the momentum equation of the

electron, given in Eqn. (3.1), and calculating the kinetic energy from the electron’s velocity.

However, his results relied on spatially-averaged electromagnetic fields and ignored the

boundary conditions of the system in question. Furthermore, his work ignored collisions

between the electron and the gas. The model presented here accounts for spatial variation of

the fields, describes interactions between the electron and the boundary of the system, and

presents two separate methods for describing collisions between the electron and neutral

gas particles.

∂t®v = −
e
m
( ®E + ®v × ®B) + ®fcol (3.1)

3.1. MODELS FOR DESCRIBING COLLISIONS

A simplistic description of the interactions between electrons and neutral gas par-

ticles accounts for only two types of collisions: elastic reflective collisions and inelastic

ionizing collisions. The latter type has been previously mentioned as being critical to

plasma formation. The former type is essential to understanding how a low energy electron

moves in a gas. A derivation of how elastic collisions affect low energy electrons has been

detailed by Chen [31] and his results are repeated here. The mean free path, λm f p, is the
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average an electron travels before experiencing an elastic collision. It is given in Eqn. (3.2).

The first term, nn, is the number density of the neutral gas particles. It is related to the gas

pressure, P, and temperature,T , by the Ideal Gas Law, given in Eqn. (3.3). k is Boltzmann’s

Constant. The second term in Eqn. (3.2), σ, is the elastic collision cross-section of the

gas. It is dependent on the energy of the free electron but is effectively constant for the low

energies that this model will be simulating.

λm f p =
1

nnσ
(3.2)

nn =
P
kT

(3.3)

The first approach to modeling the elastic collisions experienced by free electrons

is the approach used by Chen [31]. This method is to treat the collisions as a constant

dampening force that act to drain energy from the electron. For a single particle, the

frequency of elastic collisions, γ, is given in Eqn. (3.4) where v is the electron’s velocity.

This frequency is then related to the collision term in Eqn. (3.1) as shown in Eqn. (3.5).

The negative sign just means that the term dampens the velocity. With the appropriate

substitutions, the collision term becomes as shown in Eqn. (3.6). Assuming that there is no

pressure gradient, P is a constant. Before the plasma forms, there is no significant source

of heating for the gas so T will also remain constant. As previously stated, σ is effectively

constant. Thus, the only variable term is the velocity, v.

γ =
v

λm f p
(3.4)

®fcol = −γ®v (3.5)
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®fcol = −
Pσv
kT
®v (3.6)

The second model for describing the effect of the elastic collisions is more involved

than the first. Rather than numerically integrating a differential equation, the term ®fcol is

ignored in Eqn. (3.1) and replaced with a piece of code that models each elastic collision

individually. The process used in this code is shown in Figure 3.1.

Start

®ro set

Step i

Is
|®ri − ®ro | ≥

λm f p ?

Evaluate for
collision

no

yes

Figure 3.1. Process for calculating Method 2 collisions.
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First, a tracker measures the distance the electron has traveled since the last elastic

collision. Once the distance becomes greater than or equal to a mean free path length, λm f p

in Eqn. (3.2), a new elastic collision is initiated. The modeled collision is assumed to be

head-on such that the electron’s velocity is reversed and the speed is reduced by a small

amount consistent with the energy that would be lost to the neutral particle. The derivation

of this energy loss, performed by Goldston [32], is shown in Eqns. (3.7). The subscript n

indicates that the term is for the neutral atom. The subscript e indicates that the term is for

the electron. The subscript i indicates that the term is before the collision. The subscript f

indicates that the term is after the collision. The resulting energy loss per collision will be

very small as it is proportional to the ratio of the two masses.

mv ≈ MV − mv

V ≈
2mv

M

∆Kn =
1
2

MV2

≈
2m2v2

M

≈
4m
M
(
1
2

mv2)

Ke, f = Ke,i − ∆Kn

≈ Ke,i(1 −
4m
M
)

®v f ≈ −®vi

√
1 −

4m
M

(3.7)

3.2. WALL BOUNDARY CONDITIONS

The final component to the single-particle model is modeling the interactions be-

tween the free electron and the wall, or boundary, of the region. There are two choices

for modeling the wall. They are to (a) model the wall as the surface of a conductor, such

as copper, or (b) to model the wall as the surface of a dielectric. If no mention is made
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of what material the wall is composed of, the model will default to treating it as a copper

conductor. The reasoning for this choice is two-fold. First, electron-surface behavior varies

significantly depending on the type of dielectric material in question whereas the behavior

of copper is rather straightforward. Second, many pulsed-inductive thrusters such as the PIT

[25], the IPPT [26], and certain designs for the CTP-FARAD [33] do not have a dielectric

medium between the conductor and the plasma. Copper is typically the conductor used in

these devices. If a dielectric medium or a different type of conductor is explicitly identified,

then the model can be modified to account for such. As the model will assume that only

pre-ionization electrons are present, the surface interactions will be limited to only those of

low energy (< 15 eV) electrons.

Gimpel has shown that for low primary energies (< 1 eV) no secondary electrons

are produced if the surface is a conductive metal such as copper [34]. This threshold was

further extended by Dekker to < 10 eV [35]. As no secondary electrons are produced,

all electrons "emitted" by the metal under the threshold are elastically reflected primary

electrons. Furthermore, Gimpel determined the reflection coefficient of copper to be

re = 0.24. This reflection coefficient is the ratio of the intensity of electrons reflected by

the surface to the intensity of incident electrons. Thus, it gives the fraction of energy not

lost to the surface. This reflection coefficient is used in Eqns. (3.8). In multiple studies

focusing on electron-metal interactions, it was noticed that contaminated metal surfaces

produce a high amount of secondary electrons even at low primary energies [36] [34] [37].

In the case of laboratory plasmas, care is taken to remove contaminations from the system

so related secondary emission will be ignored. However, the phenomenon may need further

consideration when modeling PIPs used in non-laboratory settings.

In the event that the wall is modeled as a dielectric, properties associated with doing

so will be mentioned here. Dekker showed that insulative materials, such as dielectrics, do

not uniformly reflect low energy primaries [37]. Instead, the total emission varies strongly

with properties of the material in question. He also stated that the surface conditions have
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a strong impact on the emission from an insulator [35]. Thus, the working conditions of

the PIP and properties associated with the specific material in question would be needed for

the model to provide accurate results. A common dielectric that is used as a wall is quartz,

or SiO2. Reflection, or backscattering, behavior was obtained for clean quartz through use

of the free software CASINO. For initial energies between 8 eV and 14 eV, the reflected

energy was found to be approximately 6.7 eV. The reflection angles were found to be equal

to the incident angles for values between 0◦ and 80◦. Simulations of energies lower than 8

eV were unsuccessful as the program would crash before the simulation could finish. As

the reflected energy did not vary with the incident energy, quartz will be assumed to output

a reflected energy of (a) 6.7 eV if the incident energy is higher or (b) the incident energy if

it is lower than 6.7 eV.

As previously stated, the wall by default will be modeled as copper. No secondary

electrons will be assumed to form from interactions between the free electron and the wall.

When the position of the free electron places it at or beyond the wall, the model code will

initiate a wall interaction. The equations describing the interaction are shown in Eqns.

(3.8). The subscript i indicates the value before the reflection. The subscript f indicates

the value after the reflection. The first two equations depict the conversion of the particle

velocities into perpendicular and tangential components. The last two equations depict the

original tangential component and the reversed perpendicular component multiplied by the

square root of the reflection coefficient being converted back to Cartesian space. As the

reflection coefficient re was calculated for electron energies, it is therefore proportional to

the square of the velocity and thus the velocity is affected by its square root.

®v⊥ = vx,i cos φ + vy,i sin φ

®v‖ = −vx,i sin φ + vy,i cos φ

®vx, f = −v‖ sin φ − v⊥
√

re cos φ

®vy, f = v‖ cos φ − v⊥
√

re sin φ

(3.8)
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In the event that the wall is quartz, the interaction is as shown in (3.9). Note that the

reflection coefficient, re, is not present. Instead, a comparison is made between the total

velocity, v, and the speed associated with an energy of 6.7 eV, vQ. If the total velocity is

larger than vQ, then the initial velocities are reduced by a factor of
vQ
v .

v =
√
v2

x,i + v
2
y,i

vQ =

√
13.4e

me

If v > vQ, vx,i =
vQ

v
vx,i and vy,i =

vQ

v
vy,i

®v⊥ = vx,i cos φ + vy,i sin φ

®v‖ = −vx,i sin φ + vy,i cos φ

®vx, f = −v‖ sin φ − v⊥ cos φ

®vy, f = v‖ cos φ − v⊥ sin φ

(3.9)

Finally, to account for the distance the electron would have traveled away from the wall

after the collision, it is moved to a certain distance, d, inward from the wall. A figure

depicting the reflection is shown in Figure 3.2. Equations describing how the displacement

due to the reflection is calculated are given in Eqns. (3.10). The angles φ and φo are the

position angles of the final position (x f , y f ) and the initial position (xi, yi), respectively.

The reflection system is normalized to the initial position vector by setting the base angle

to φ − φo. The relations also hold true if the electron is traveling in the opposite direction

from what is shown in Figure 3.2.

3.3. PARTICLE PUSHER

Initially, this model performed a simple first-order integration of Eqn. (3.1) to

obtain future values of the electron position and velocity. However, that method proved to

be fundamentally unstable. The key limiting factor is the magnetic field. Under a magnetic
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Figure 3.2. Elastic particle reflection on the inner edge of a circular boundary.

field, any charged particle will experience gyromotion. The associated gyroperiod provides

an initial limitation on the size of a timestep via ∆tmin �
m
eB . With a small enough timestep,

the charged particle will not significantly diverge from expected motion about magnetic

field lines. However, increasing the run time or increasing the strength of the magnetic

field will severely limit the ability of the model to remain non-divergent. One solution is

to use a smaller timestep but this method has the result of increasing the computation cost

of the code. A second method is to use an implicit particle pusher such as those used by

particle-in-cell (PIC) codes.
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ri =

√
x2

i + y2
i

r f =
√

x2
f + y2

f

do =

√
(x f − xi)

2 + (y f − yi)
2

α = arctan[x f − xi, y f − yi]

β = arcsin[
rir f

doR
sin(φ − φo)]

θ =
π

2
− β

ψ = α − β

d =
√
(x − R cosψ)2 + (y − R sinψ)2 sin θ

xnew = x f − 2d cosψ

ynew = y f − 2d sinψ

(3.10)

A recent PIC model developed for ICPs by Mattei made use of an implicit routine

to counteract divergences due to magnetic fields [38]. Rather than using particle velocities

at whole timesteps to move the particle, the model uses an average velocity. As the velocity

is integrated linearly between timesteps, this average velocity is assumed to be the particle

velocity at the half-timestep between whole timesteps. As the PIC model was developed

to model an ICP, it includes parameters that assume a plasma to already be present. Two

important inclusions due to this assumption are the addition of a plasma current density

and the addition of interactions between ions, electrons, and neutrals. As the single-particle

model developed in this paper assumes a plasma to not be present, these inclusions can be

ignored.

Before describing the particle pusher as it will be used for the single-particle model,

a few notes must first be made. A subscript of n indicates the value for present time.

Subscripts of n + 1
2 and n + 1 indicate values at a half-timestep and a whole timestep in
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the future, respectively. The subscript n + θ indicates a weighted average as shown in Eqn.

(3.11). Mattei stated that θ must satisfy 0.5 ≤ θ ≤ 1.0 to prevent divergence. He chose to

use θ = 0.6 in his modeling so this model will also use that value.

Xn+θ = θXn+1 + (1 − θ)Xn (3.11)

The system of equations for the particle pusher is shown in Eqns. (3.12). The values

of ®En+θ and ®Bn+θ are calculated at ®xn+ 1
2
.

α = −
e∆t
2m

®xn+ 1
2
= ®xn +

∆t
2
®vn

®v∗ = ®vn + α ®En+θ

®vn+ 1
2
=
®v∗ + α[®v∗ × ®Bn+θ + α(®v

∗ · ®Bn+θ) ®Bn+θ]

1 + (αBn+θ)
2

®xn+1 = ®xn + ∆t®vn+ 1
2

®vn+1 = 2®vn+ 1
2
− ®vn

(3.12)

After the the system of equations is evaluated, the processes for wall reflections and

Method 2 collisions are conducted as previously stated. However, Method 1 collisionality

requires a small modification to Eqns. (3.12). To account for collision dampening, the term

®vn+ 1
2
is multiplied by the collision term in Eqn. (3.5) to get Eqn. (3.13).

®vn+ 1
2
= (1 − nnσvn+ 1

2
)®vn+ 1

2
(3.13)
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Figure 3.3. Example trajectory of particle overlaid on the field grid.

3.4. MODEL

The model starts the electron at a location on the x-axis, specifically (R2 , 0), with

no initial velocity. Eqns. (3.12) are used to move the electron. As the model accounts for

the gyroperiod of an electron, the limiting term on the timestep is the collision rate. The

collision period is τ = 1
nnσv

. Mattei stated that for his particle pusher, the timestep must

conform to ∆t < τ
100 and the minimum cell size must be such that particles cross no more

than one cell boundary during a single timestep [38]. An example of a cell arrangement

that conforms to Mattei’s requirement is shown in Figure 3.3. Most ionization energies are

on the scale of tens of eV. Thus, for a kinetic energy of 100 eV, a pressure of 50 mTorr,

and a temperature of 300 K, the collision period comes out to be 1.05 ns. For ∆t < τ
100 ,

the timestep will be chosen as ∆t = 10−11s. The associated minimum cell dimension for a

kinetic energy of 100 eV is 0.06 mm. This model will use a minimum cell dimension of

0.1 mm or R/100, whichever is larger.
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4. TOWNSEND BREAKDOWN MODEL

Asdiscussed in Section 1.1.1, the TownsendBreakdownmodel is themost successful

and most developed method for describing plasma formation. While it was intended only

to describe a plasma in a DC electric field, attempts have been made to adapt it to other

arrangements. The most relevant of these adaptations for the purposes of this work is the

work done by Burm [13]. Burm equated the breakdown path of an ICP to the path in

a parallel plate geometry folded in on itself. An example of this arrangement is shown

in Figure 4.1. Part (a) of the figure shows a standard DC Townsend discharge where the

breakdown path is bookended between two electrodes. Part (b) of the figure shows how, as

a result of the path being curved, there is no defined start or end point for the discharge.

Instead, the discharge feeds back in on itself. This layout led Burm to make two key changes

to the Townsend Breakdown model so as to apply it to ICPs. First, as there is no electrode

that feeds the discharge, secondary electrons will not provide a significant effect. Thus, β in

Eqn. (1.2) is dropped. Second, as the discharge feeds back in on itself, there is no set length

for the discharge path as opposed to Eqn. (1.2) having a set length d. Burm nominally sets

the path length to be the circumference of the solenoid at half its radius but their derivations

suggest it could be extended to any length.

Figure 4.1. Breakdown path for (a) a DC Townsend discharge and (b) an ICP.
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As previously discussed, the goal of Burm’s model was to develop Paschen curves

relating the possibility of breakdown to the magnetic field and the gas pressure. This effort

was made possible because the magnetic field in an ICP is coupled to the electric field by

way of Faraday’s Law. In doing so, however, Burm chose to ignore any time-varying aspects

of the plasma by using the magnitudes of the magnetic and electric fields. This work will

modify Burm’s approach by using the position- and time-dependence of the fields and then

solve for the plasma number density as a function of time.

4.1. TOWNSEND BREAKDOWN IN AN INDUCTIVELY-COUPLED PLASMA

The Townsend Breakdownmodel describes the electric current between two parallel

plate electrodes as Eqn. (1.2). The two critical terms are the first Townsend ionization

coefficient, α, and the second Townsend ionization coefficient, β. The first coefficient

describes free electron formation due to ionizing collisions and the second coefficient

describes free electron formation due to emission from the cathode. The initial equation

as shown in Eqn. (1.2) is typically modified by replacing β with the term γ =
β
α . This

modified equation is shown in Eqn. (4.1).

I
Io
=

eαd

1 − γ(eαd − 1)
(4.1)

However, as previously stated, β can be dropped as there are no electrodes affecting the

ICP. From Burm’s work, a differential term describing electron formation in such a system

is given as Eqn. (4.2) [13].

dS = αnoeα∆xdx (4.2)
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If the electron is assumed to travel along a circular arc of length l parallel to the electric

field, as shown in Figure 4.1, such that the field remains constant then Eqn. (4.2) can be

integrated to give Eqn. (4.3). The electron’s velocity is given as v and the arc length is

given as l = v∆t.

∆S = no(eαv∆t − 1) (4.3)

Thefirst coefficient, α, was defined byCobine asEqn. (4.4) [2]. Note the dependence

on the electric field, E , and the gas pressure, P. The values of Ca and Cb were defined in

Table 7.1 of the text for a few different gases.

α = CaPe−
CbP

E (4.4)

More recent work has shown that the first coefficient changes when a magnetic field

is applied to the region in question. Sen wrote that the presence of a crossed magnetic field

can best be represented as a change to the pressure term in Eqn. (4.4) [7]. Specifically, he

replaced the true pressure term with an effective pressure as given in Eqn. (4.5). H is the

magnetic field in a medium and can be effectively equated to B in a low-pressure gas. Cc is

a constant as given in Eqn. (4.6). Λ is the mean free path of the electron at 1 mmHg. u is

the electron velocity.

pe = p

√
1 + Cc(

H
p
)2 (4.5)

Cc = (
eΛ
meu
)2 (4.6)
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Radmilovic-Radjenovic provided an updated version of Eqn. 4.4 [9]. This version is given

in Eqn. 4.7. The term κ is stated to be an empirical term equal to 1 for molecular gases and

2 for atomic gases. Values of Aκ and Bκ were provided for argon and nitrogen. However,

as these values are not much different from the values given by Cobine [2], this model will

use his original values, especially as they are provided for a wider range of gases. In the

event that this model is applied to a wider range of gases, analytical equations for Aκ and

Bκ developed by Burm [39] will be used.

(
α

pe
)E = Aκe−Bκ (

pe
E )

1
κ (4.7)

A series of plots showing how the addition of a magnetic field affects the First

Ionization Coefficient is depicted in Figure 4.2. The magnetic fields in question are shown

in Figure 4.3. As the plots show, the presence of amagnetic field constrains the 1st coefficient

to be effectively nonzero only when the magnetic field is near zero. Thus, providing a bias

field changes when the First coefficient peaks. In practice, the velocity will be coupled

to the electric and magnetic fields. However, arbitrary values are used for this figure to

show how it affects the final results. As shown, it only provides an asymptotic nature in

that it increases the height of the peak up to the original non-B value and then proceeds

to widen the peak once it has reached that limit. In practical terms, these modifications to

the system will be manifested as a plasma only forming when the magnetic field is near

zero. Furthermore, plasma formation is made more difficult when a bias magnetic field is

applied.

4.2. CONTINUITY EQUATION

Unlike the Single-Particle Model where it assumed additional free electrons are

only produced when the particle’s energy crosses the ionization threshold, the Townsend-

Breakdown model assumes that free electrons are being produced continuously. Past work
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Figure 4.2. Townsend 1st ionization coefficient in a magnetic field.

Figure 4.3. Magnetic Fields for Figure 4.2.

with Townsend breakdown has equated plasma formation to when the creation rate equals

or is greater than the loss rate of charged particles. Thus, the governing equation for such a

system is the continuity equation for free electrons as given in Eqn. (4.8).

∂tn + ∇ · (Dn) = S(t) − L(t) (4.8)

The first term, ∂tn is the time rate of change of the number density, n. The second term,

∇·(Dn), describes the netmotion of particles out of the system. D is the diffusion coefficient.

The third term, S(t), is the creation rate and the final term, L(t), is the loss rate. The loss
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rate specifically describes the loss of electrons due to recombination with ions. Therefore,

because the number density of electrons and ions is negligible before a plasma forms, the

loss rate will be treated as effectively zero for the application of this model.

For a small enough time step, the velocity of a particle can be assumed as effectively

constant such that ∆x ≈ v∆t. Thus, Eqn. (4.2) can be rewritten as Eqn. (4.9). Note that no

is changed to n to reflect the change from a constant to variable.

S(t)dt = αnveαv∆t dt (4.9)

The velocity, v, is the velocity parallel to the electric field. In the case of an azimuthal

electric field, the component of the velocity that would then affect ionization is the azimuthal

component.

The final term that needs description in Eqn. (4.8) is ∇·(Dn), the term that describes

net motion out of the system. Rather than attempt to calculate D directly, it is more prudent

to quantify the individual mechanisms that contribute to it. There are two such mechanisms

that affect the net motion out of a system: diffusion and electromagnetic drift.

In the absence of a pressure gradient, the fastest a particle can be expected to move

on behalf of pressure diffusion is the speed of sound. For argon at a standard operating

temperature of 300 K, the speed of sound is 274 m/s. Over a period of, say, 2 µs, that

translates to a maximum possible displacement due to pressure diffusion of 0.55 mm. This

distance is not liable to change significantly for other gases given as the speed of sound is

proportional to the square root of gas properties. Ultimately, unless the device in question

has a characteristic length of a few mm or there exists a pressure gradient capable of driving

particle speed past the speed of sound, diffusion due to pressure can be safely ignored.
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As pressure diffusion is too weak to significantly affect a plasma on the time scales

that will be used for this model, electromagnetic drift will be used as the primary loss

mechanism. Recall the momentum equation presented in Eqn. (3.1). If collisions are

ignored and the electric and magnetic fields are assumed to be strictly azimuthal and axial,

respectively, the equations given in Eqns. (4.10) arise.

∂tvr = −
e
m
vφB

∂tvφ = −
e
m
(E − vr B)

∂tvz = 0

(4.10)

Recall that the ionizing velocity was previously assumed to be approximately constant. If

that assumption is maintained such that ∂tvφ ≈ 0, Eqns. (4.11) and (4.12) are the result.

∂tvφ ≈ 0

E ≈ vr B

vr ≈
E
B

(4.11)

∂t(
E
B
) ≈ −

e
m
vφB

vφ ≈ −
m
e

E′B − EB′

B3

(4.12)

Note that the radial velocity comes out to the standard form of the E × B velocity. The

two approximations, Eqns. (4.11) and (4.12), are particularly useful as analytic values for

the electric and magnetic fields are not attainable. However, recalling Eqns. (2.22) and

(2.23), analytic equations are available for the time-dependent components of the fields so

the time-derivatives will be easy to perform.

To calculate the number density, the region in question will first be broken up into

individual volume elements. As the system exhibits radial symmetry, the volume elements

will be rings with rectangular cross-sections. An example of one of these cross-sections is
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shown in Figure 4.4. Each ring cross-section will contain three locations at which the fields

are calculated: the inner edge, the outer edge, and the halfway point. At the two edges,

the fields will be used to calculate the radial velocity, vr , via Eqn. (4.11). At the halfway

point, the fields will be used to calculate the magnitude of the azimuthal velocity, vφ via

Eqn. (4.12). Thus, the net drift will be calculated as Eqn. (4.13). The terms N1 and N3

are the number of particles crossing the boundaries. They can be determined by setting

Ni,3 = Ni+1,1 and using the macroscopic boundary conditions N1,1 = 0 and Nimax,3 = 0

to indicate no drift across the center axis of the cylinder or across the outer wall. These

macroscopic boundary conditions are shown in Figure 4.5. Note that as the length of the

cylinder is not included in any of the calculations, the terms N1 and N3 are implicitly scaled

with length and thus are not true particle numbers.

Figure 4.4. Individual cell for Townsend Breakdown model.

∇ · (Dn) =
N3vr,3 − N1vr,1

2πr∆r
(4.13)

Having developed terms for net particle potion and the creation rate, the continuity

equation inEqn. (4.8) can be restated asEqn. (4.14)where the differentials are approximated

as differences. This equation is solved for every volume element in the system.
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Figure 4.5. Boundary values for Townsend Breakdown model. Nmax,3 = 0 means that no
particles drift across the wall. In other words, the wall is reflective, not absorbing. N1,1 = 0
means that the innermost cell loses no particles to drift across the axis. Due to the shape of
the innermost cell, any particle that drifts across the axis will not exit the cell.

∆n = αnvφ,2eαvφ,2∆t
∆t +

N1vr,1 − N3vr,3

2πr∆r
∆t (4.14)

The value of n used in Eqn. (4.14) is the number density calculated for the previous time

step, n j−1. Having evaluated for ∆n, the new value of the number density is calculated using

the following equation.

n j = n j−1 + ∆n

As gyromotion of individual electrons is not modeled in this approach, this model is free

to use a larger, and thus less resource intensive, value for ∆t than was available for the

Single-Particle Model.
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5. MPX ANALYSIS

The MPX, or Missouri Plasmoid Experiment, is a testbed designed by Pahl at the

Missouri University of Science and Technology to study pulsed-inductive FRC plasmas

[40]. Two versions were made, the MkI shown in Figure 5.1 and the MkII shown in Figure

5.2. TheMkI is a copper sheet rolled to an inner radius of 8.9 cm and an axial length of 76.2

cm. The MkII is a series of 11 aluminum blocks with a circular channel carved through

them bearing an inner radius of also 8.9 cm. In both designs, the plasma is formed inside

a quartz tube with an inner radius of 7.725 cm. Due to the rolling process used to shape

it, the MkI does not possess a perfectly circular cross-section. This abnormality has led to

small perturbations in the electromagnetic fields and thus an unstable plasma. The MkI has

an inductance of 37.2 nH and the MkII has an inductance of 36.2 nH. As the external circuit

is the same for both designs, the current waveform is very nearly the same. The results that

will be discussed in this section are for the MkI as it, not the MkII, was used by Meeks

for breakdown studies [41]. One result from the MkII that will be considered is pressure

distribution. Pahl found that a plasma would consistently form for pressures between 20

mTorr and 100 mTorr [42]. Between 0 mTorr and 20 mTorr, he found that a plasma could

still form but was inconsistent in doing so. It was only after treating the gas with a glow

discharge first that he could reliably obtain breakdown in that pressure range [43].

In this chapter, particulars of the geometry of the MkI will be discussed first. After

that, a comparison will be made between the fields calculated using the equations specified

in Section 2 and the theoretical values for a cylinder. Finally, the results for the individual

models will be presented and then discussed.
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Figure 5.1. Image of the MPX MkI with notations.[40]

Figure 5.2. Image of the MPX MkII with notations.[40]

5.1. GEOMETRY

The MPX MkI is a rolled copper sheet with an inner radius of 8.9 cm and a length

of 76.2 cm [40]. The electric current in the copper sheet and the measured plasma potential

are both shown in Figure 5.3. The blue curve is the electric current and the green curve is

the measured plasma potential. The equation for the current is given in Eqn. (5.1) where

t is in units of s and I is in units of A. According to Meeks, the time at which the plasma
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potential begins to oscillate, approximately 1.14 µs, is the time at which a plasma has

officially formed inside the system. An image of the plasma produced by the MPX MkII,

Figure 5.4, shows that the density is highest near the walls of the chamber. The two designs

were previously shown to be near identical in operation so it will be inferred that the peak

plasma density in the MkI must also be highest near the chamber walls. The chamber is a

quartz tube with an inner radius of 7.725 cm and a length of 9.15 cm. The gas from which

the plasma forms is Argon. A listing of the properties that will be used for the modeling is

shown in Table 5.1.

Figure 5.3. Applied current and measured plasma voltage of the MPX MkI.[41]

I(t) = 28880e−175107t sin(2π440000t) (5.1)

Table 5.1. Properties for modeling MPX MkI.

Chamber Properties Gas Properties
Coil Radius (cm) 8.9 Gas Argon
Coil Length (cm) 76.2 Eion (eV) 15.76
Chamber Material 214 Quartz σ (m2) 1 × 10−19

Chamber Radius (cm) 7.725 Ca ( 1
m·Pa ) 10.2

Chamber Length (cm) 91.5 Cb ( V
m·Pa ) 176.25

T (K) 300
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Figure 5.4. Plasma formation in the MPX MkII. [40]

5.2. FIELD COMPARISON

Before running the individual models, the calculated values of the electric and

magnetic fields will first be compared to the theoretical values for a cylindrical solenoid.

The theoretical values are chosen instead of experimental values because Pahl chose to

use the theoretical values as his baseline [42]. The theoretical values are obtained from

equations for an infinite solenoid and are shown in Eqns. (5.2) and (5.3). For a single-turn

solenoid, N = 1. Note that the magnetic field does not vary with position.

B =
µoNI

L
(5.2)

E = −
r
2
∂t B (5.3)
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Comparisons of the theory and the numerically integrated magnetic field are shown

in Figures 5.5 and 5.6 along with the difference. Comparisons of the theory and the

calculated electric fields are shown in Figure 5.7. Note that every comparison for both

the magnetic and electric fields shows the calculated value to be slightly smaller than the

theory. The reason for this discrepancy is likely due to the finite size of the MPX. While

Eqn. (5.2) does account for the finite length of a solenoid, it assumes that the magnetic field

is perfectly uniform inside the solenoid, regardless of distance from the axis. In reality, a

minimal radial gradient is to be expected. It is fair to say then that the calculated values of

the fields do not significantly diverge from the theory.

Figure 5.5. Comparison of magnetic field due to ideal solenoid theory and field due to 3D
numeric integrals at 1 µs after start. The radii are normalized with respect to the coil radius.
The fields are normalized with respect to the theory.

Figure 5.6. Comparison of magnetic field due to ideal solenoid theory and field due to 3D
numeric integrals at half-radius. The difference between the two fields is shown and has
been multiplied by 100 for clarity.
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Figure 5.7. Comparison of electric field due to ideal solenoid theory and field due to 3D
numeric integrals (a) near the axis, (b) at the half-radius, and (c) near the wall.

5.3. RESULTS

Results for the Single-Particle Model are given in Section 5.3.1 with test parameters

given in Table 5.2. Results for the Townsend-Breakdown Model are given in Section 5.3.2.

Table 5.2. Single-Particle Model parameters for MPX MkI.

Simulation Properties
Time Step (µs) 1 × 10−5

Number of Time Steps 2 × 105

Time Range (µs) 2
Cell Size (Radial) (cm) 0.07725
Number of Cells (Radial) 100
Start Position (x) (cm) 4.5
Initial Speed (m/s) 0
Test Pressures (mTorr) 5, 10, 20, 30, 40, 50

5.3.1. Single-Particle Model. The initial values of the single-particlemodel (SPM)

are zero velocity and a starting position at the half-radius, 4.5 cm from the center. The

model was run for several pressures ranging from 5 mTorr to 50 mTorr. This range encloses

the range of pressures in which the plasma is stated to form. As the active gas is Argon, the
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ionization energy threshold was set to 15.76 eV. The time step was set to 0.5 fs and the range

was set to 2 µs. Recall that two different approaches to modeling collisions were proposed

in Section 3.1. Results for both methods will be presented. Dampening collisionality will

be identified as Method 1 and particle collisionality will be identified as Method 2.

Figure 5.8. Single electron kinetic energy for Method 1. The horizontal line marks
ionization energy for Argon.

Figure 5.9. Single electron radial position for Method 1.

Results for pressures of 5, 10, 20, 30, 40, and 50 mTorr are shown in Figures 5.8

and 5.9 for Method 1 and Figures 5.10 and 5.11 for Method 2. The red horizontal line

in the kinetic energy plots depicts the ionization energy threshold that must be met. The

results for Method 1 show a strong energy spike at the start followed by a quick drop to
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near zero within the first 0.1 µs. The results then show another strong energy spike at about

1.15 µs. A cutoff due to the threshold can be discerned between 20 and 30 mTorr where

higher pressures fail to meet the threshold. This second spike occurs at the time when

ionization is expected. In both cases, the radial plots show that the electron is at its max

radial position when it reaches ionization energies. This result agrees with the experimental

result where plasma is most intense near the walls of the system. Where the results for

Method 1 present a simple pattern relating pressure to energy, the results for Method 2 are

borderline incomprehensible. Some patterns can be gleaned from the data in Figure 5.10.

One is that higher pressures take longer to gain energy at the start. Another is that all the

pressures appear to spike at the same time at about 1.1 µs. This collective spike coincides

with a maximum in the radius shown in Figure 5.11. However, no clear pattern is shown

relating pressure to energy or radius at that time. This lack of a pattern is most evident in

Figure 5.11 where the order of of maxima does not correspond to the pressures. Where

the results for Method 1 have a clear correlation between high energies and high radial

positions, the results for Method 2 do not. From a modeling standpoint, it is likely that

the high energies at low radii are due to the electron is gyrating about the central axis of

the cylinder where, due to the low pressure, it never travels a full mean free path from its

previous collision spot and thus never triggers a new collision. From a physical standpoint,

the lack of collisions would indicate that, even though the energy is high, no ionization

occurs. To account for that physical phenomena, the code could output only the kinetic

energies at times corresponding to collisions. Such a method could filter out the anomalous

energies and present better agreement with the results of Method 1. However, it would not

magically fix the lack of a pattern relating pressure to energy or radial positon.

5.3.2. Townsend-Breakdown Model. The time step was set to 0.2 ns and the range

to 2 µs. As with the single-particle model, the Townsend-Breakdown model (TBM) was

run for pressures ranging from 5 to 50 mTorr. However, no change in the results were found

past 15 mTorr. Thus, results are only shown for 5, 10, and 15 mTorr. The initial number
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Figure 5.10. Single electron kinetic energy for Method 2. The horizontal line marks
ionization energy for Argon.

Figure 5.11. Single electron radial position for Method 2.

density was set to 10−1 cm−3. The results are shown in Figures 5.12 and 5.13. The first set

of plots shows the time-evolution of the number densities at several radial positions. The

second set of plots shows the time-evolution of the creation rate at the same radial positions.

For reference, the neutral number density at 5 mTorr and 300 K is 1.61 × 1014 cm−3. Not

only are the predicted number densities physically possible but the trends show agreement

with the experimental results. The plots in Figure 5.13 show the rate of creation rather

than a cumulative sum of particles created. Notice that a significant creation event occurs



47

at about 1.15 µs, the expected time of plasma formation, and is strongest at the outermost

radial positions. The high densities at low radii are likely due to the electromagnetic drift

as Figure 5.13 shows the creation rate at those positions staying low.

(a) (b)

(c)

Figure 5.12. Electron number densities at (a) 5 mTorr, (b) 10 mTorr, and (c) 15 mTorr.

(a) (b)

(c)

Figure 5.13. Electron creation rates at (a) 5 mTorr, (b) 10 mTorr, and (c) 15 mTorr.
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5.4. ANALYSIS OF RESULTS

Neither model perfectly mimics the experimental results shown in Figures 5.3 and

5.4. Method 1 of the SPM and the TBM both show agreement with when and where plasma

formation is expected to occur. However, Method 1 of the SPM also shows strong energy

spikes at the beginning of the run time. In addition, both models show disagreement with

the expected pressure range over which a plasma has been shown to form. The SPM predicts

that the ionization threshold will not be met above 20 mTorr and the TBM shows effectively

no plasma number density above 15 mTorr. Another obstacle to the legitimacy of these

models is the confinement of charged particles to the inner radii. In both models, high

energies and creation rates are achieved at high radii but these processes are not sustained

as the electrons proceed to retreat to lower radii. There are two complementary options that

can be considered to resolve this obstacle.

The first option is a physical result of the charged particle motion. In both the SPM

and the TBM, the particles are cumulatively traveling in loops around the central axis of the

cylinder. This motion generates what is effectively a current opposing the applied current.

In practice, this opposing current would subsequently generate an opposing electric field

to the original applied field. The resultant weakening of the electric field would diminish

the electromagnetic drift that pulls charged particles back to the center of the cylinder and

would also reduce the strength of the creation events in the TBM. Another way of looking

at it is that the growing number of charged particles dampen further creation of charged

particles. The absence of such dampening in the model as it currently stands could explain

why unrealistically high values of the number density are currently being achieved. A plot

showing the influence that electron number density has on the electric field is shown in

Figure 5.14. As the figure shows, the electric field does not begin to noticeably perturb until

the number density is higher than 1016 m−3 or 1010 cm−3.
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Figure 5.14. Electric field variance due to electron number density. [10]

The second option is to account for a capacitive electric field. Chabert and Braith-

waite state that capacitive coupling in an inductively-coupled plasma is strongest at low

electron densities and has been found to be essential to ignition of an ICP [10]. As the

applied current changes with time, a potential difference across the device is introduced in

accordance with Eqn. (5.4). Due to the geometry of the theta-pinch, a strong capacitive

field will form at the lip where the device is folded to allow current to enter and exit. The

capacitive field for the MPX is shown in Figure 5.15. As the figure shows, the capacitive

field is not azimuthally symmetric nor is it negligible. In fact, the capacitive field is much

stronger than the inductive field, shown in Figure 5.7, that is present along the wall of the

cylinder.

V = L∂t I(t) (5.4)
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Figure 5.15. Capacitive electric field due to single-turn theta-pinch configuration at 1 µs
after system start. The current enters and exits the theta-pinch at (9 cm, 0 cm).
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6. FRCHX ANALYSIS

The Field Reversed Configuration Heating Experiment (FRCHX) is described by

Grabowski [29] with breakdown studies conducted by Meeks [30]. A diagram of the device

is shown in Figure 6.1. The FRCHX was designed to generate FRC plasmas for use in a

variety of experiments. Unlike the MPX discussed in the previous section, the FRCHX

begins the ionization process with a nonzero bias magnetic field. This bias field has the

effect of shifting the phase of the magnetic field so that its zero values occur at the same time

as the zero values of the electric field. As with the MPX, plasma formation was found to be

delayed until the first zero values of the field. A plot of the magnetic field with annotations

marking this delay is shown in Figure 6.2. In his breakdown study, Meeks suggested that

the delay in breakdown could be attributed to the magnetic field confining electrons to small

gyro-orbits [30].

Figure 6.1. Diagram of the FRCHX. [29]
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Figure 6.2. Magnetic Field Profile of FRCHX. [29]

6.1. GEOMETRY

From the diagram shown in Figure 6.1, it can be seen that the inductive coil for the

preionization stage is conical instead of cylindrical. However, this attribute will be ignored

for two reasons. First, the region in which the plasma itself forms is a cylinder with a radius

of 6.5 cm. Second, only data for the axial component of the magnetic field is shown. As

discussed in Section 5.1, it is standard for FRC plasmas to exhibit a max density near the

walls. Thus, the expectation for the location of ionization in the models will be at or near

the radius of 6.5 cm. In addition, as the radial component of the magnetic field is ignored,

any motion along the axis will also be ignored as a radial magnetic field is the only means

of electromagnetically driving electron motion along that direction in this system. Finally,

the active gas in the FRCHX is Deuterium. Thus, the ionization energy threshold will be

set to 15.47 eV. A listing of the properties that will be used for the modeling is shown in

Table 6.1.
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Table 6.1. Properties for modeling FRCHX.

Chamber Properties Gas Properties
Coil Radius (cm) N/A Gas Deuterium
Coil Length (cm) 38 Eion (eV) 15.47
Chamber Material Quartz σ (m2) 7.85 × 10−21

Chamber Radius (cm) 5 Ca ( 1
m·Pa ) 3.75

Chamber Length (cm) 45 Cb ( V
m·Pa ) 97.5

T (K) 300

6.2. FIELDS

As data for themagnetic field is already present as shown in Figure 6.2, the equations

given in Section 2 will not be used. Instead, the magnetic and electric fields will be modeled

according to equations used by Meeks [30]. The axial magnetic field is approximated as

Eqn. (6.1) and the azimuthal electric field is approximated as Eqn. (6.2). The frequency f

is 250 kHz. The term (T) indicates that the magnetic field is in units of Teslas. Using these

equations, ionization will be expected to occur at 1 µs after start.

B(t) = −0.5 sin(2π f t) + 0.5(T) (6.1)

E(r, t) = −
r
2
∂t B(t) (6.2)

6.3. RESULTS

Results for the Single-Particle Model are given in Section 6.3.1 with test parameters

given in Table 6.2. Results for the Townsend-Breakdown Model are given in Section 6.3.2.

6.3.1. Single-Particle Model. The initial values of the single-particlemodel (SPM)

are zero velocity and a starting position at the half-radius, 3.25 cm from the center. The

model was run for several pressures ranging from 5 mTorr to 50 mTorr. This range encloses

the range of pressures in which the plasma is stated to form. As previously mentioned,
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Table 6.2. Single-Particle Model parameters for FRCHX.

Simulation Properties
Time Step (µs) 1 × 10−7

Number of Time Steps 2 × 107

Time Range (µs) 2
Cell Size (Radial) (cm) 0.065
Number of Cells (Radial) 100
Start Position (x) (cm) 3.25
Initial Speed (m/s) 0
Test Pressures (mTorr) 5, 10, 20, 30, 40, 50

the ionization energy threshold is set to 15.47 eV. Results for both methods discussed in

Section 3.1 will be presented. As with the MPX, dampening collisionality will be identified

as Method 1 and particle collisionality will be identified as Method 2.

Figure 6.3. Single electron kinetic energy due to Method 1 of the SPM. The red horizontal
line indicates the ionization threshold of 15.47 eV.

Results for pressures of 5, 10, 20, 30, 40, and 50 mTorr are shown in Figures 6.3 and

6.4 for Method 1 and Figures 6.6 and 6.7 for Method 2. In addition, a zoomed-in version

of Figure 6.3 is shown in Figure 6.5. As with the MPX results, the red line in the kinetic

energy plots corresponds to the ionization energy and the blue curve is the kinetic energy of

the electron. Both sets of results show the energy spiking at about 0.55 µs. When compared

to the radial plots, this spike can be seen to correspond to the electron getting pushed into
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Figure 6.4. Single electron radial position due to Method 1 of the SPM.

Figure 6.5. Single electron kinetic energy due to Method 1 of the SPM zoomed into a range
of 0.85 to 1.15 µs. The red horizontal line indicates the ionization threshold of 15.47 eV.

the wall due to the fields. As the wall is modeled as quartz, the energy never surpasses

7 eV. Both plots show the energy gradually decaying back to zero but the decay is more

pronounced in Figure 6.3 likely due to the dampening effects of Method 1 collisionality.

In addition, both cases show an energy spike at about 1.04 µs. From comparison with

the radial plots, this energy spike is shown to correspond to the electron moving inward

away from the wall. This energy spike corresponds to when the experimental results show

ionization to occur. Figure 6.5 shows that the cutoff for the ionization threshold is just shy
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of 40 mTorr. No variation between pressures is shown in Figure 6.6 for Method 2 likely

because the small collision cross-section of Deuterium means the electron is never able to

travel a full mean free path-length for any of the pressures tested.

Figure 6.6. Single electron kinetic energy due to Method 2 of the SPM. The red horizontal
line indicates the ionization threshold of 15.47 eV.

Figure 6.7. Single electron radial position due to Method 2 of the SPM.

6.3.2. Townsend-Breakdown Model. The time step was set to 0.2 ns and the

range to 2 µs. As with the single-particle model, the Townsend-Breakdown model was

run for pressures ranging from 5 to 50 mTorr. The results are shown in Figures 6.8 and

6.9. The plots in Figure 6.8 show the time-evolution of the number densities at several

radial positions. The plots in Figure 6.9 show the time-evolution of the creation rate at the



57

same radial positions. For reference, the neutral number density at 5 mTorr and 300 K is

1.61×1014 cm−3. In every case, the number density is so small as to be negligible. However,

the radial positions are an interesting divergence from the MPX results. As expected, a

strong creation event occurs at 1 µs but the highest densities are shown to occur at the

innermost positions despite the highest creation rates occurring at the outermost positions.

(a) (b)

(c)

Figure 6.8. Electron number densities at (a) 5 mTorr, (b) 10 mTorr, and (c) 15 mTorr.

6.4. ANALYSIS OF RESULTS

Both methods for the Single-Particle Model show a notable spike in the energy at

0.55 µs. Comparing this time with the radial plots shows that in both methods, the electron

is getting trapped at the wall. However, because the wall is modeled as being lossy, this

spike is capped at just under 7 eV. Without the energy cap, it is fair to suggest the sudden

energy rise would extend much further. This attribute where the wall serves as a repository

for mid-level electrons may suggest that a particular type of boundary is essential to ICP

formation in a theta-pinch.
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(a) (b)

(c)

Figure 6.9. Electron creation rates at (a) 5 mTorr, (b) 10 mTorr, and (c) 15 mTorr.

It should be noted that the single-particle model employed by Meeks covered only a

small period of the period [30]. Where the model presented here ran from 0 to 2 µs, Meeks

ran his code from 0.85 to 1.1 µs with the electron having zero kinetic energy at 0.85 µs.

His results, as do the results shown in Figure 6.5, depict ionization happening soon after

1.0 µs. Some justification is warranted for starting at the later time as the electron is shown

to have less than 5 eV of energy at 0.85 µs.

The TBM predicts ionization as occurring at the expected time. However, unlike

the results for the MPX, the number densities are too small for ionization to be reasonably

possible. Recall the trend shown in Figure 4.2. When the magnetic field is offset such that

it only tangentially reaches zero, the First Townsend Ionization Coefficient is effectively

reduced to zero all the time. Thus, the number densities shown in Figure 6.8 are to be

expected from a modeling standpoint as the magnetic field is set up in the same manner for

the FRCHX. In further contrast to the MPX, while the creation rate appears to be highest at

the outermost radii, the highest number density overall is at the lowest radius. This result is
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likely due to the offset of the magnetic field changing which direction the fields cause the

electrons to drift. This same inward drift is also present in the results for the SPM but only

in the quarter-cycle after the creation event. This offset also causes both the magnetic field

and the electric field to reach zero at the same time thus leaving the radial drift velocity with

a zero divided by zero error that causes it to behave discontinuously. This discontinuous

behavior could explain why the curve for the density of the lowest radius is disjointed at 1

µs.

An interesting comparison to be made between the results for the MPX and the

FRCHX is the magnitude of the electron energy. The MPX puts the threshold between 20

and 30 mTorr where the FRCHX puts the threshold just under 40 mTorr. However, the

energy at the lowest pressure tested, 5 mTorr, peaks at about 55 eV for the MPX while the

corresponding peak for the FRCHX is about 26 eV, approximately half. At first, this reduced

energy is odd. The max radial values are similar in both cases, 4.5 cm for the MPX and

5 cm for the FRCHX. The time-varying component of the magnetic field has a peak more

than ten times stronger in the FRCHX than in the MPX, 0.5 T versus 0.04 T. Due to the

relationship between the fields, this relationship carries over to the electric field. Finally,

the frequency of the current waveform in the MPX is just under twice the frequency for the

FRCHX, 440 kHz versus 250 kHz. All told, the maximum electric field experienced by the

electron in the FRCHX should be about 7.9 times larger than the field in the MPX. Yet, the

electron in the MPX is modeled as experiencing higher energies. This comparison makes

some sense when Figure 4.2 is considered. The figure showed that ionization was harder to

achieve when the magnetic field was offset by some value. That result agrees with the result

shown here where, even though the FRCHX should be adding more energy to its system,

the simulation of the MPX experiences higher maxima.
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7. CTP-FARAD ANALYSIS

The FARAD, or Faraday Acceleration with Radio-frequency Assisted Discharge,

was a planar device similar in design to the Pulsed-Inductive Thruster (PIT). It was designed

by Choueiri to reduce the power needed to provide thrust by combining the planar coil

from the PIT with a pre-ionization section [44]. A modification to Choueiri’s design was

proposed by Hallock in which a theta-pinch in the shape of a frustum is appended to the

outlet from the FARAD [33]. The intent of the conical design is to align the magnetic field

lines and the surface of the inductor with the natural flow of the propellant. Unlike the

previously discussed MPX and FRCHX, the CTP-FARAD (Conical Theta Pinch - FARAD)

functioned purely as an acceleration coil. Two different pre-ionization methods were used:

a helicon coil as used in the original FARAD design [33] and an electrode spark [45]. An

example of the former is shown in Figure 7.1. A modification to the CTP-FARAD was

proposed by Feldman that would have converted the acceleration coil to a pre-ionization

coil [46]. However, the only work that he produced on that front was a circuit analysis of

the required changes. No experimental work was undertaken on developing the proposed

design. Nevertheless, the results described for the initial acceleration coil are interesting and

provide a means of testing the models developed in this paper on non-standard geometries.

7.1. GEOMETRY

As previously stated, the CTP-FARAD is a frustum. This means that one end has

a radius r1 and the other end has a radius r2 with a linear slope inbetween. The relation

between the local radius and the axial position can therefore be given as Eqn. (7.1). Unlike

the MPX or the FRCHX, the current is provided by conductive traces that create a mesh

around the frustrum. This mesh can be seen in Figure 7.1. Even though the electric current

in each individual trace has both an azimuthal and an axial compoent, the mesh is designed
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Figure 7.1. Model of the CTP-FARAD mounted on the original FARAD inside a
klystron.[33]

overall to cancel out the axial component so that the net current is purely azimuthal. Due to

the shape of the frustrum, the current function given in Eqn. (2.16) needs to be changed to

account for the radial variance of the conductive traces. The modified equation that will be

used for calculating the electric and magnetic fields is as shown in Eqn. (7.2). The change

to the radius term from a constant value to a variable value will have the result of changing

the integrals with respect to z′ in Eqns. (2.17) and (2.18).

R(z) =
r2 − r1

L
z + r1 (7.1)

f (®r′) =
δ(r′ − R(z′))

L
(7.2)

Eqn. (2.22) remains unchanged and is repeated here as Eqn. (7.3). Eqn. (2.23) is changed

to Eqn. (7.4) to reflect the addition of a non-negligible radial field.

®E ≈ ∂t I(t)F1φ̂ (7.3)
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®B ≈ I(t)(F2r̂ + F3 ẑ) (7.4)

The new values of F1, F2, and F3 are given in Eqns. (7.5), (7.6), and (7.7), respectively.

F1 = −
µo

4π
1
L

∫ 2π

0

∫ L

0

R(z′) cos φ′√
r2 + R(z′)2 − 2rR(z′) cos φ′ + (z − z′)2

dz′dφ′ (7.5)

F2 = −
µo

4π
1
L

∫ 2π

0

∫ L

0

R(z′)(z − z′)

(r2 + R(z′)2 − 2rR(z′) cos φ′ + (z − z′)2)
3
2

dz′dφ′ (7.6)

F3 = −
µo

4π
1
L

∫ 2π

0

∫ L

0

R(z′)(r cos φ′ − R(z′))

(r2 + R(z′)2 − 2rR(z′) cos φ′ + (z − z′)2)
3
2

dz′dφ′ (7.7)

The arrangement of the geometry itself varies from iteration to iteration. Initially,

the device was mounted on the original FARAD [33]. Thus, the device was placed inside a

Varian VA-1955A klystron magnet as shown in Figure 7.1. The klystron served to generate

a bias magnetic field that has been reproduced as Figure 7.2. In the CTP-FARAD’s final

iteration, the klystron was removed and the device was left attached to only a pre-ionization

section [45]. In addition, the pre-ionization section was changed from a helicon plasma to

a glow discharge in the final iteration [45]. The results analyzed by this work will be for the

initial iteration with the klystron magnet and the helicon plasma.

A key result that this work seeks to repeat is the variation of the plasma centroid

location with respect to the background gas pressure. Hallock noticed that, as the pressure

was increased, the centroid of the plasma would be detected further upstream or toward the

small end of the frustrum [33]. A listing of the properties that will be used for the modeling

is shown in Table 7.1.
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Figure 7.2. Applied bias magnetic field due to the klystron. The outline in red is the
acceleration coil.

Table 7.1. Properties for modeling CTP-FARAD.

Chamber Properties Gas Properties
Coil Min Radius (cm) 4 Gas Argon
Coil Length (cm) 10 Eion (eV) 15.76
Coil Half-Angle (deg) 20 σ (m2) 1 × 10−19

Chamber Material BN Ca ( 1
m·Pa ) 10.2

Chamber Length (cm) 13.5 Cb ( V
m·Pa ) 176.25

T (K) 300

7.2. RESULTS

Results for the Single-Particle Model are given in Section 7.2.1 with test parameters

given in Table 7.2. Results for the Townsend-Breakdown Model are given in Section 7.2.2.

7.2.1. Single-Particle Model. The challenge with applying the Single-Particle

Model to this geometry is the presence of a radial component for the magnetic field.

The radial magnetic field component combines with the azimuthal electric field to instill an

axial velocity in the electron as shown in Figure 7.3. While the centroid location cannot be

easily gleaned from the actions of a single particle, the reduced axial extent of the electron’s

trajectory at higher pressures presents some qualitative agreement with the expected trend.
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Table 7.2. Single-Particle Model parameters for CTP-FARAD.

Simulation Properties
Time Step (µs) 1 × 10−5

Number of Time Steps 1 × 106

Time Range (µs) 10
Cell Size Min (Radial) (cm) 0.04
Cell Size Max (Radial) (cm) 0.0764
Cell Size (Axial) (cm) 0.1
Number of Cells (Radial) 100
Number of Cells (Axial) 100
Start Position (x) (cm) 2
Start Position (z) (cm) 0.05
Initial Speed (m/s) 0
Test Pressures (mTorr) 5, 10, 20, 30, 40, 50

Figure 7.3. Electron trajectory in rz space through the CTP-FARAD. The red diagonal line
marks the outer edge of the cone.

However, Figure 7.4 shows that the electron gains very little energy during the range of

operation. This severe lack of energy gain may be due to the device being an acceleration

coil rather than an ionization coil.

7.2.2. Townsend-Breakdown Model. An image comparing the modeled centroid

data to the data obtained by Hallock is shown in Figure 7.5. The model does not in any

fashion match the experimental results. Where the experimental results show a strong
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Figure 7.4. Electron kinetic energy in the CTP-FARAD.

degree of variance, the model results remain effectively constant regardless of the pressure.

Furthermore, the modeled centroid location is significantly lower than the range found for

the experimental results. Reasons for this discrepancy will be discussed in the next section.

Figure 7.5. Comparison of modeled centroid location and experimental results[33].
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7.3. ANALYSIS OF RESULTS

This geometry reveals a key shortcoming in both of my models. Both models

assume that no plasma is present in the system throughout the breakdown process and

thereby ignore any modifications made to the fields as a result. Thus, while they can

describe an ionization coil with a fair degree of accuracy, they cannot in their present

state be used to describe sheath formation in an acceleration coil. The reason being that

acceleration coils by necessity require the gas to be ionized beforehand as evident by every

iteration of the CTP-FARAD making use of a pre-ionizer.

One interesting result that bears discussion is the connection between pressure and

centroid position. The shift in centroid presented in the Townsend-Breakdown model result

is much smaller in magnitude than the shift presented in Hallock’s experimental results.

The most likely reason is that the model simply does not handle pressure correctly. The

results for both the MPX and FRCHX failed to properly match the pressure relationship

so the same is likely true here. Another possible reason for this discrepancy is that, as

previously stated, the model does not account for any interactions between the plasma and

the fields.
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8. SUMMARY AND CONCLUSIONS

8.1. SUMMARY OF WORK

In this work, models were developed to describe formation of inductively-coupled

plasmas. First, equations were developed that calculated the electric and magnetic fields

as functions of the inductive current. Second, a model was developed that solved the

momentum equation for a free electron and then linked plasma formation to the electron’s

kinetic energy surpassing the ionization energy of the gas. Third, a model was developed

that solved the continuity equation for plasma particles generated as a result of Townsend

breakdown. Gas breakdown in this model was equated to the maximum of the creation rate

rather than a particular threshold value. Finally, these two models were used to simulate

plasma formation in three devices: the Missouri Plasmoid Experiment, the Field Reversed

Configuration Heating Experiment, and the Conical Theta Pinch - Faraday Acceleration

wit Radio-frequency Assisted Discharge. The models matched the results for the first two

devices with the exception of the pressure distribution. No agreement was had between the

models and the third device.

8.2. CONCLUSION

The derivation of the inductive fields into a form that depends only on the current

distribution means that these models can be adapted to any geometry. The work presented

in this paper does not show the full extent of that strength as the MPX used solenoidal fields

as its baseline and the FRCHX did not give the electric current. Only the CTP-FARAD

allowed the strength of the field derivation to show due to its conical geometry. Other

geometries that could benefit from the field derivation are the toroidal geometries used

by fusion plasmas and the planar geometries used by thrusters. Both models successfully
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match the experimental results where plasma formation is coupled to the magnetic field

rather than the electric field. The absence of any coupling to the electric field is most

evident with the FRCHX results. The highest energies and creation rates are obtained not

at the time corresponding to a maximum in the electric field but at a time corresponding to

a zero in the magnetic field.

Despite the success of matching the qualitative results, neither model was suc-

cessful in matching the pressure distributions of the experimental plasmas. The Single-

Particle Model took two approaches to incorporating pressure. The first approach was to

include pressure in a dampening term. The results of this approach demonstrate a clearly-

understandable pattern but do not agree with the nature of an ICP to form a Paschen curve.

Instead, the dampening term means peak energies will occur only at the lowest pressures.

The second approach was to use pressure to model the distance between hard-body colli-

sions. While the premise is more physically accurate, the results for how it is implemented

in this work are essentially gibberish. The Townsend-Breakdown Model used only one

approach to pressure. This approach was to combine the pressure with the magnetic field

to produce an effective pressure term. It should be noted that the only other attempt to

describe an ICP as Townsend-style breakdown did not couple the magnetic field to the

pressure value. The weakness of this approach is that the effective pressure term assumes

the energy distribution of the system to beMaxwellian and that it can be equated to a similar

distribution at a different pressure and no magnetic field.

8.3. FUTURE WORK

There exist two possible routes for future work. First, as previously mentioned, the

energy distribution cannot be assumed to be Maxwellian as long as the magnetic field is

active and present. However, the distribution can be fairly assumed to beMaxwellian before

the system is activated. Thus, work following this route could focus on determining how

the energy distribution evolves with time. Ionization could then be read directly from the
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distribution function or the change in the distribution could be used to develop a scalable

model similar in functionality to the Townsend-breakdown model. The second route is to

explore the effect of the capacitive electric field on plasma formation. Both models in their

current form assume that ionization is affected only by the inductive electric field. Work

following this route could either experimentally isolate the capacitive field and demonstrate

the effects held by nullifying it or computationally apply the capacitive field to the plasma

models and determine how its addition affects the results.
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