Louisiana State University

LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2011

Introduction and Establishment of Cyrtobagous
salviniae Calder and Sands (Coleoptera:
Curculionidae) for the Control of Salvinia minima
Baker (Salviniaceae), and Interspecies Interactions
Possibly Limiting Successtul Control in Louisiana

Katherine A. Parys
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool dissertations
b Part of the Entomology Commons

Recommended Citation

Parys, Katherine A., "Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the
Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana"
(2011). LSU Doctoral Dissertations. 1565.

https://digitalcommons.lsu.edu/gradschool_dissertations/1565

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in

LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.


https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/83?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1565?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1565&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA:
CURCULIONIDAE) FOR THE CONTROL OF SALVINIA MINIMA BAKER (SALVINIACEAE), AND INTERSPECIES
INTERACTIONS POSSIBLY LIMITING SUCCESSFUL CONTROL IN LOUISIANA.

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy
in
The Department of Entomology

By
Katherine A. Parys
B.A., University of Rhode Island, 2002
M.S., Clarion University of Pennsylvania, 2004
December 2011



ACKNOWLEDGEMENTS

In pursing this Ph.D. | owe many thanks to many people who have supported me throughout
this endeavor. First and foremost I'd like to thank Dr. Seth Johnson for taking me as his graduate
student- inspiring me through questions and supporting me throughout the past few years. Special
thanks also to my committee members: Dr. Chris Carlton, Dr. Natalie Hummel, Dr. Michael Stout, and
Dr. David Constant for listening to my ideas and pushing me forward. Special thanks to my parents,

Kenneth and Elizabeth Parys and the rest of my family for their continuing support and encouragement.

None of this work would have been possible without the help from my lab mates over the past
few years: Dr. Don Henne, Lee Eisenberg, Anna Meszaros, Sunil Tewari, and Nick Rasmussen. We faced
many things together over the years including snakes, alligators, and early mornings in the swamps. | am
grateful for the dedication of some amazing student workers and friends (without whom this project
would not have been possible) who helped with field and lab work over the years including Jordan
Fryoux, JC Claverie, Tiffany Pasco, Leigh-Anne Lawton, Julien Buzelin, Nick Colligan, Katherine A.
Renken, Travis Wright, Kelli Richard, Lukas Thompson, Megan Aucoin, and Ming Wang. Several great
property owners allowed me access to field sites: Paul and Melanie Kadair, Jim Ragland and Frank

Bonifay, Carol “Tottie” Foltz, The Rodrigues, Eric Griener, and James Boyce.

| also owe huge amounts of gratitude to Victoria Bayless and the Louisiana State Arthropod
Museum for continual access to the collection for reference and support over the years. My fellow
graduate students and postdocs who work(ed) in the museum and have helped with countless
identifications: Stephanie Gil, Mike Ferro, Matthew Gimmel, Crystal Maier, Jong-Seok Park, Igor
Sokolov, and Alexey Tishechkin. Erich Schoeller and Rachel Strecker also helped with identifications in
the groups they work on. Several taxonomic specialists have also helped me put names on a wide
variety of groups: Charles O’Brien, Robert Anderson, Michael Sharkey, John Epler, Cecillia Waichert,

Mikael Sérensson, and Joe MacGown.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ettt st ettt se st sttt ste st et asesse e as s ssesesses s ssesessessesase st sesasatesessessrsasesessasensesensnssnsnnns i

ABSTRACT .....ee ittt ete ettt e st et et steses et esestesestesesesesses et est st sestesasesesses esaas st sessesase aessas s as aessessesas sessasssestenensesereasen %

CHAPTER

1. INTRODUCTION AND REVIEW OF THE LITERATURE......ccesieetrteeestrrtiresee st stsreste s ss e sresesse s s st s s s sesnnnns 1
THE GENUS SAIVINIG.....ocviie ettt sttt sttt e et ss et et eae s steses e esbesses s eneaseste s e e senssesanseneeesan 2
The Salvinia Weevil: Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae)...........4
The Red Imported Fire Ant: Solenopsis invicta Buren (Hymenoptera: Formicidae).........ccccccveuvenene. 6
RETEIENCES...cue ettt ettt et st et st es et e ste s et ase st ses et ase st ses et ase seses e e are eessensne et senserereenen 7

2. INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS FOR THE

CONTROL OF COMMON SALVINIA (SALVINIA MINIMA BAKER), IN LOUISIANA........c.cooeeeeeereee e 12
Ta] oo [T o1 Te] o FOU OO TSSO 13
Materials aNd METNOUS...........ceeeie et te e st st e ettt ss s easareetesaeses s s seranrans 15
RESUILS @NA DiSCUSSION...c.cciiiecierieiieeietietiet et et etestesteses e es et aetassessseabestestesssssssessesassesssrsansatesteseessssensesens 19
RETEIENCES. . vttt st e et et b s aeete st sbe e e s e s bestes st erseas et ebe et saeneanenbesbereranes 25

3. IMPACTS OF THE RED IMPORTED FIRE ANT, SOLENOPSIS INVICTA BUREN, ON THE SUCCESS OF

CYRTOBAGOUS SALVINIAE CALDER AND SANDS AS A BIOLOGICAL CONTROL AGENT IN THE FIELD......... 29
[[aN Ao To [¥ Lot 4o o PO PTRRR 30
MaAterials AN IMETNOMUS.......cuiiiee ettt et e e e bt e e sbe et bes b saesebbesssesaesebbennesens 31
RESUILS @NT DiSCUSSION...c.vviiiicteiettetee ettt cte st teae e sbe st be e saesesbesaeesbesbaessee saessbenseesbesssenase saesesbensnesreens 33
RETEIEINCES. ...ttt et sttt st e b e ebe st aeb b sbe st eesae e ebesabaebase sbesassenaes sbsssbennnesbesrbeennnnns 38

4. DEVELOPMENT OF FLOATING PITFALL TRAP FOR COLLECTING ARTHROPODS ASSOCIATED WITH

AQUATIC VEGETATION ... ettt ittt cietite e ee st et e sbs ee e ses sabbasbeseeses sessssabesteseesss sessssaseseesesssssesassasnseessen 42
N rOAUCTION .ttt ettt st et e b et e et e sbeeaseebbeebesasaesbes sbesrsaesbeensesassessensbesnseessennsenns 43
MaAterials AN IMETNOAS.......cuiieie ettt et e eb e e ste b bes b eaesebbensaesbesebbennneenes 44
RESUILS .. ettt ettt et et et et et ae et sbesebae s e ebesebbesasesbesebaenase shesesbennsesbesebbennee shesebbennseereeerbennneene 47
DT E ol B 13 Lo T TS 47
RSy =T =1 o (oSO 49

5. INSECTS ASSOCIATED WITH A MAT OF SALVINIA MINIMA BAKER IN SOUTHERN LOUISIANA.............. 51
INEFOTUCTION ..ottt ettt et ettt et e er e sbe et steebesas e s seseesbesbessenssensessestesaesasansasesssesaessenes 52
Materials @Nd METNOGS. ......covieceeere ettt ettt et ettt er et aebbe s e b et e saesbestsasssnsesssessesseraens 53
RESUIES @NA DISCUSSION ...cevevierierrettiieiesteeteetecteeteeeereeeeereesaesaesbesseeseesesaesbestesssasssrsesssessessensenssansensessesseons 54
RETEIEINCES. ...ttt ettt sttt st st eb s ebe st aeaabe sbe st eesae s ebe st sesate sbesaseenate sbssebsbennresasesbennes 69

AND IMPACTS ON THE COMMUNITY STRUCTURE OF INSECTS.....c.occtiiietentente e cte e eeesreereesaes st neeaesve v s 73
TaYu oY LU Tt o] o VO TSP URY 74
Materials aNd METROUS........coie et sttt e e e e e e s testesbeaaesnsesaesanssesannn 75
RESUILS @N0 DiSCUSSION....ccuiiiiectectecte ettt ettt e e et st stestesteeaessesse st et et sea e s s e stestestesnssrsersarsenssessansennes 76
RETEIEINCES. .. ottt et s te s e ete s te s e e e et eet e s e s e s e et e st eteeteaaseasersseteesbesbenaeaseenbe st ntesteeans 97






ABSTRACT

Common salvinia, Salvinia minima Baker, is a floating aquatic invasive macrophyte that
obstructs waterways and causes problems in wetlands across Louisiana and Texas. The salvinia weevil,
Cyrtobagous salviniae Calder and Sands, has been released in over 14 countries around the world for the
biological control of Salvinia spp. We successfully monitored the introduction and establishment of C.
salviniae on S. minima in southern Louisiana between 2006 and 2010. Cyrtobagous salviniae significantly
lowered the biomass of S. minima and increased the number of terminal buds damaged but had no
significant impact on pH, dissolved oxygen, conductivity, surface temperature, percent of surface
coverage, or percent of the mat that was green. Restricting access to the S. minima mat from the red
imported fire ant, Solenopsis invicta Buren, significantly increased the number of C. salviniae, suggesting
that S. invicta should be controlled where possible to maximize the success of the biological control
program. While collecting arthropods associated with S. minima, we identified 5,773 individuals that
represent 176 species within 62 families and seven orders including four currently undescribed species,
and seven species of semi-aquatic Curculionidae (five of which have been used in biological control
programs). We collected higher numbers of taxa than previous studies, but most of the species are
previously known as hydro- or hygrophilous, indicating the differences may have been due to collection
methods. Collecting locations were clustered into five groups based on secondary aquatic vegetation
and evaluated by cluster for community composition and similarity. We found no support for the spatial
heterogeneity hypothesis, as our most diverse community is one of the least spatially complex,
suggesting other factors are affecting community composition. Findings included successful
establishment of C. salviniae, recommendation to control S. invicta around C. salviniae release sites,
improved methods for collecting insects associated with floating aquatic vegetation, and contributions

to the knowledge of the biodiversity of Louisiana’s backwater swamps. In addition to providing new



information on interactions between C. salviniae and S. minima, these studies will be useful in designing,

evaluating, and monitoring releases of other biological control agents on floating aquatic macrophytes.

vi



CHAPTER 1
INTRODUCTION AND REVIEW OF THE LITERATURE



THE GENUS SALVINIA

The floating fern genus Salvinia (Salviniaceae) was named for the botanist A.M. Salvini and
erected for the type species Salvinia natans in 1754 (Seguir 1754). More than 31 species have been
described within the genus, but of those only 10 are currently accepted and valid (de la Sota 1977,
Schneller 1990). Of the 10 currently recognized species, 7 are endemic to tropical America (de la Sota

1976).

Members of the genus Salvinia are characterized as rootless with whorled leaves around a
central rhizome, having two green dorsal entire simple leaves and a third ventral highly dissected leaf
(Croxdale 1978, 1979, 1981). The adaxial sides of the dorsal leaves are covered by epicuticular wax and
dense hydrophobic trichomes that exhibit four different species group specific architectures (Barthlott
et al. 1994, 2009). Plants can survive fully submerged underwater for up to 60 days in some species
(Barthlott et al. 2009). Most members of the genus are polyploid with a chromosomal base number n=9
(Schneller 1981). S. molesta is a pentaploid hybrid and sterile due to irregular spore formation, but

reproduces vegetatively like other members of the genus (Loyal and Grewal 1966).

The first reports of Salvinia in the United States come from Fredrick Pursh's Flora americae
septentrionalis; or A Systematic Arrangement and Description of The Plants of North America (1814)
listing S. natans (L.) Alloni as “Floating, like Lemna, on the surface of stagnant waters: in several of the
small lakes in the western parts of New York and Canada”. A second record of S. natans from Missouri
at Dixon’s Lake in 1886 was confirmed by Dr. Asa Gray at a location where “land is low, somewhat
swampy and subjected to over flow by the water of the Mississippi River” (Gray 1890, Weatherby 1921).
A third population of S. natans was found at Sweeney’s Twin Lakes, four miles west of the city of
Minneapolis, Minnesota (MacMillan 1891). Additional records for S. natans in Staten Island (New York)

were reported in 1893 and 1898 (Craig 1893, Hollick 1898). Rosendhal and Butters (1916) disputed the



MacMiillian (1891) Minnesota record and noted that while the plant colony flourished in the
greenhouse, S. natans was never recovered again from Sweeney’s Twin Lakes and could have been the
result of contamination from other projects in the greenhouse. The Minnesota herbarium material was
reexamined by Butters (1921) and the identification changed on the specimens from the name S. natans
to the S. auriculata var. Olfersiana. The Saint Johns River and associated tributaries in Florida were

listed as having a population of S. auriculata from an undetermined introduction (Small 1931).

Herzog (1935) restructured the genus Salvinia to contain 8 species, keeping several of the
original names listed in Baker (1887) and resurrecting S. rotundifolia Willdenow. He separated the
species commonly found in the United States by the structure of the trichomes with a complex of
species including S. auriculata having trichomes that are split and rejoined at the tips. After Herzog’s
review of the genus, Weatherby (1937) reevaluated the North American collections from the Gray
Herbarium and the United States National Herbarium upon which previous records of S. natans were
based. He concluded that only the record from Missouri (which was never found to have established a
permanent population) was truly S. natans, with all of the other specimens and records (including S.

olfersiana pictured in Flora of Bermuda) were truly S. rotundifolia based on trichome architecture

(Britton 1918, Weatherby 1937). In 1967, Morton examined the holotype for S. rotundifolia and
discovered it had trichomes with joined hairs and synonymized the name, recommending that the name

S. minima be resurrected for specimens with branched trichomes (Morton 1967).

The Florida population of S. minima referenced in Small (1931) is the only introduction known to
survive and successfully establish (Weatherby 1921, 1937). By the end of 1967 S. minima was reported
from 14 drainage basins across the states of Florida and Georgia (Jacono et al. 2001). Nauman (1978)
reported four counties in Florida with records. Its range had expanded to west of the Mississippi River in

Louisiana by 1981 (Landry 1981). Salvinia minima was discovered outside Mobile, Alabama in 1982



(Haynes and Jacono 2000) and by 1993 it was reported in drainages across Florida, Alabama, Georgia,
and Louisiana (Nauman 1993). Continued spread and infestation of waterways were reported in Texas in
1995 (Hatch 1995), Arkansas in 1998 (Peck 1999, 2001), followed by Mississippi and South Carolina in

1999 (Jacono et al. 2001).

Salvinia molesta was first reported in North America in 1995, occurring in a small pond in South
Carolina and controlled through eradication (Johnson 1995). It was reported again outside of Houston
Texas in 1997 and positively identified as Kariba weed in 1998 (Jacono 1999a). Additional established
sites in Texas and Louisiana were discovered at the Toledo Bend Reservoir, Swinney Lake, Sabine River,
and Trinity River (Jacono 1999b). It has now spread to waterways in Florida, Alabama, Mississippi,

Georgia, and a reach of the lower Colorado River between Arizona and California (Jacono et al. 2001).

THE SALVINIA WEEVIL: CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA:
CURCULIONIDAE)

Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) is a semi-aquatic weevil
native to southern Brazil, Bolivia, Paraguay, Uruguay, and Argentina (Wibmer and O’Brien 1986). It has
been introduced into 16 countries worldwide to control infestations of S. molesta (Julien and Griffiths
1998, Julien et al. 2002). While previously used to control S. molesta, C. salviniae can also complete its
life cycle on S. minima (Tipping and Center 2005a). A population of the weevil was identified in Florida in
1962 occurring on S. minima and originally identified as a related species, Cyrtobagous singularis Hulst
(Kissinger 1966). Calder and Sands (1985) later identified the Florida weevil population as C. salviniae
during attempts to find a biological control agent and noted a size difference between North and South
American populations, with the South American populations being considerably larger. Cyrtobagous
salviniae from South America were identified as a control agent for S. molesta and were released in

Australia with great success (Room et al. 1981).



Goolsby et al. (2000) provided evidence that the Florida population was genetically different
from larger individuals released in Australia, and suggested the two populations were cryptic species but
did not include an outgroup. More recent studies by Madeira et al. (2006) suggested that the size
difference between populations is more likely a case of two different ecotypes of the same species than
of two differing cryptic species after analyzing differing sizes of C. salviniae as well as C. singularis. In
addition, both C. singularis and C. salviniae were collected from a variety of species of Salvinia within the
native overlapping ranges of the species, supporting Sands et al. (1986) theory of niche differentiation
(Madeira et al. 2006). Tipping and Center (2005b) found that when given a choice, adults of different
ecotypes both preferred larger sized plants, but did not discriminate between species of Salvinia. Recent
research showed that the smaller Florida ecotype damages both S. minima and S. molesta more than
the larger Brazilian ecotype, suggesting the need for a reanalysis of management strategies for S.
molesta infestations in the United States (Tipping et al. 2010).

The Florida populations of C. salviniae are credited with keeping S. minima under control across
southern drainages. The explosive growth of Salvinia spp. in Texas and Louisiana is attributed to the
absence of C. salviniae (Jacono et al. 2001). Individuals from the Florida population of C. salviniae were
introduced into both Texas and Louisiana starting in 2000 to help control infestations of S. molesta
(Goolsby et al. 2000). After several years of monitoring sites in both locations, the introduction failed
and C. salviniae had not established in the area (Tipping and Center 2003) but were finally successful
(Tipping et al. 2008). Tewari and Johnson (2011) noted that damage from Florida ecotype C. salviniae
worked in conjunction with a native herbivore in Southern Louisiana, Samea multiplicalis
(Gunee)(Lepidoptera: Pyralidae) and lowered the biomass of S. minima more than either herbivore
alone. A single pathogen, Helicosporidium sp., has been isolated and identified from C. salviniae

individuals in Florida and occurs there at very low densities (White et al. 2007).



THE RED IMPORTED FIRE ANT: SOLENOPSIS INVICTA BUREN (HYMENOPTERA: FORMICIDAE)

Ants are an important component of many terrestrial ecosystems, though their role in aquatic
systems has not yet been quantified. In terrestrial systems ants often play a major role in nutrient
exchange, seed dispersal, and energy movement (Handel et al. 1981). In many areas they are a

significant portion of the animal biomass (Holldobler and Wilson 1990).

The Red Imported Fire Ant (RIFA), Solenopsis invicta Buren, was introduced into Mobile,
Alabama in the 1930s from South America (Buren 1972, Buren et al. 1974) and have continued to spread
across the southeastern United States (Gotelli and Arnett 2000, Tschinkel 2006). Large areas of
disturbance have contributed to the continued range expansion of RIFA populations which thrive in
these areas (Tschinkel 1988, King and Tschinkel 2008). In the United States approximately 132 million ha
are infested in 13 states (AL, AR, CA, FL, GA, LA, MS, NC, NM, OK, SC, TN, TX) and Puerto Rico are

included in the USDA APHIS Quarantine area (Allen et al. 2004).

In their native range, S. invicta populations are kept in check by competition, predators, and
natural enemies (Buren et al. 1974, Jouvenaz 1983, Porter et al. 1997). Outside their native range they
are often the dominant ant species due to aggressive foraging, lack of natural enemies, and high
reproductive rates. They easily colonize disturbed habitats (Taber 2000) and form colonies or “mounds”
which are highly territorial. Colony size is directly related to the space the colony controls (Tschinkel et
al. 1995). The diet of S. invicta is broad and often indiscriminate (Tschinkel 2006), and can have negative
effects on beneficial insects and other arthropods (Eubanks 2001). Porter and Savignano (1990) reported
that invading S. invicta polygyne ants decreased species richness and all but eliminated some native ant
species. In addition these colonies reduce diversity across the community landscape long past their

initial invasion (Morrison 2002).



Solenopsis invicta has been observed foraging on the mat S. minima in Southern Louisiana
regardless of multiple applications of Amdro ™ (AMBrands 2004) on surrounding terrestrial areas. The
foraging behavior of S. invicta is not well documented on S. minima, as in terrestrial systems they forage
in multiple dimensions including extensive underground tunneling. Porter and Tschinkel (1987) found
that S. invicta foraging behavior is directly related to weather and seasonality. Temperature also has
been documented to play a role in foraging in many other species of ants (Bernstein 1979).
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CHAPTER 2
INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS FOR THE
CONTROL OF COMMON SALVINIA (SALVINIA MINIMA BAKER), IN LOUISIANA.
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INTRODUCTION

Salvinia minima Baker is a free floating aquatic fern in the family Salviniaceae, one of over ten
species which occur worldwide in the genus Salvinia (Mitchell 1972). Salvinia minima is one of two non-
native species currently found in North America (Jacono et al. 2001). It has been commonly
misidentified in older literature as a variety of other Salvinia species including: S. rotundifolia, S. natans,
or S. auriculata Aublet (Jacono et al. 2001). It spread progressively from an introduction in the Saint

Johns River in Florida throughout the state of Florida, and across the southeastern U.S. (Small 1931).

S. minima can be identified from its larger relative not only by size, but by the presence of
divided hairs on the abaxial leaf surface that are free and not joined at the tips (Julien et al. 2002).
Salvinia molesta Mitchell, the only other member of the genus currently established in North America,
has “egg beater” shaped hairs which are joined at the tips (Mitchell 1972). Plants in the genus Salvinia
are believed to be sterile, do not produce viable spores, and are thought to be of hybrid origin (Mitchell
1972, Schneller 1980). Plants in the genus Salvinia reproduce vegetatively from plant fragments (Loyal
and Grewal 1966). Madeira et al. (2003) determined through genetic analysis that all of the populations
of S. minima in the southern United States were closely related with the exception of a more recent
secondary introduction in Mississippi. Salvinia minima has been recorded from 14 states (USDA and
NRCS 2011) and is considered a problematic weed in both Texas and Louisiana (Jacono et al. 2001).
Salvinia minima has a history of being freely sold and traded as part of the nursery trade (Forno et al.

1983) and is still widely available on the internet in spite of its invasive nature (Kay and Hoyle 2001).

S. minima forms dense mats of plant material that decrease aesthetic value and impede access
to and use of many aquatic areas (Montz 1989). Both commercial and recreational uses of lakes and
ponds are impaired by its presence and habitat for game birds is altered because S. minima

outcompetes native plants for resources and shades out submersed vegetation (Hatch 1995). These

13



freshwater areas contributed a total positive economic effect of $1,293,172,571 to the state of Louisiana
in 2006 through freshwater activities like fishing, migratory bird hunting, and alligator harvests
(Southwick Associates 2008). Uncontrolled growth of S. minima not only causes mats that obstruct
waterways but can decrease light availability, reduce available dissolved oxygen, and alter pH levels
(Richards 2003, Flores and Carlson 2006). These thick mats of vegetation can also contribute to human
health issues as they provide breeding areas for Mansonia sp. disease transmitting mosquitoes (Chow et
al. 1955, Ramachandran 1960). Species of Mansonia that occur in the US have been implicated in the
spread of St. Louis encephalitis and Venezuelan equine encephalitis (Lounibos et al. 1990).

Salvinia spp. prefers lentic freshwater locations, especially marshes and low-lying forested
woodlands. Louisiana is home to over 664,898 ha of freshwater marshes and 2,783,023 ha of forested
wetlands all of which could potentially be susceptible to infestation by Salvinia sp. (Coreil 1993). Like
other aquatic weeds, S.minima reproduces asexually from small plant fragments, and boats can easily
infect clean waterways if not cleaned prior to being moved from infested waterways (Johnstone et al.
1985, Miller and Wilson 1989). Weather can also contribute to the spread of Salvinia as mats can
fragment and move with flooding and water movement (Harley and Mitchell 1981, Room 1983, Room
1990).

Chemical control is impractical and cannot be recommended against Salvinia spp. Currently
available chemical control options include Rodeo® (glyphosate) and Reward® (diquat) which are both
non-selective, broad spectrum herbicides for aquatic vegetation (Dow Agriscience 2004, Syngenta Crop
Protection 2005). In addition to being non-selective, the price for herbicides for chemical control of S.
minima can range from $198 to $297 /ha (Tewari and Johnson 2011). Chemical applications can also be
limited by local laws regarding groundwater and drinking water contamination. Mechanical control is
not a feasible control solution as chopping the plants results in larger growth from vegetative fragments,

and complete removal by hand is impossible in most areas. Biological control has been successful on a
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related species, Salvinia molesta Mitchell, and was significantly less expensive than other methods of
control (Chikwenhere and Keswani 1997).

Cyrtobagous salviniae, a semi-aquatic weevil native to Brazil, Paraguay, and Bolivia (Wibmer and
O’Brien 1986) has been introduced into 16 countries worldwide for control of S. molesta (Julien and
Griffiths 1998, Julien et al. 2002). While widely used to control S. molesta, C. salviniae can also complete
its life cycle on S. minima (Tipping and Center 2005). A population of weevils was identified in Florida
occurring on S. minima, and was identified as Cyrtobagous singularis Hulst, a related species (Kissinger
1966). Calder and Sands (1985) identified the Florida weevil population as a new species, Cyrtobagous
salviniae, and noted a size difference between North and South American populations, with the South
American populations being considerably larger. Recent studies by Madeira (2006) implied that the size

difference between populations is more likely a case of two different ecotypes.

Florida populations of C. salviniae are credited with keeping S. minima under control while the
explosive growth of Salvinia spp. in Texas and Louisiana is attributed to the absence of the weevil
(Jacono et al. 2001). Individuals from a Florida population of C. salviniae were first introduced into both
Texas and Louisiana in 2000 to help control infestations of S. molesta (Goolsby et al. 2000). The goal of
this project was to successfully introduce and establish a population of C. salviniae that could overwinter

in Louisiana and control local infestations of S. minima.

MATERIALS AND METHODS

ORIGINS OF C. SALVINIAE POPULATIONS

Initial populations of the Florida ecotype of C. salviniae were collected in 2002 by Dr. Phil
Tipping (USDA-ARS) from the Ft. Lauderdale area in southern Florida. The colony at Louisiana State
University was established from 300 weevils sent in two shipments, and reared in a greenhouse on the
main campus in Baton Rouge. Dr. Tipping mailed additional weevils during 2004, 2005, and 2006 to
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increase the LSU colony. During September 2005, a trip was made from Louisiana to northern Florida to
collect C. salviniae. Approximately 200 weevils were collected by hand and an additional 600 were
recovered by berlese funnels off S. minima from Lake Talquin in Quincy, FL and used to establish a
second greenhouse colony from northern Florida at LSU. Field collections were made in northern
Florida from Lake Talquin (2005 and 2006) and Lake Miccosukee (2007 and 2008) to collect C. salviniae
to replenish the greenhouse colonies for releases. Approximately 1400 weevils were collected from Lake
Talquin in 2006 while over 2000 weevils were collected by a combination of hand picking and berlese

funnels from Lake Miccosukee.

RELEASE LOCATIONS

Cyrtobagous salviniae was first released in Louisiana on S. minima in June 2002 at Jean Lafitte
National Historical Park and Preserve in Barataria, LA by the USDA-ARS Invasive Plant Research
Laboratory in cooperation with the U.S. National Park Service. Additional releases were made at the
same locations until 2005, and while populations established during the year, no overwintering was
observed. During August 2003, Louisiana State University released south Florida weevils at four sites
across southern Louisiana: Henderson Swamp, St. James, Joyce Wildlife Management Area, and
Maurepas Wildlife Management Area (Table 2.1, Figure 2.1). During spring 2004, three of the four sites
showed no signs of establishment of C. salviniae and Henderson Swamp was not sampled due to
inaccessibility. Between May 29" and July 29" 2004, a total of 1,319 weevils were released at five sites
across southern Louisiana. The use of Henderson Swamp was discontinued, and two new locations were
established: McElroy Swamp, which is near Maurepas WMA, and Cypress Lake at Moss Bluff in St.
Charles. Again in the spring of 2005, none of the sites established the prior year showed signs of
establishment. Cyrtobagous salviniae was released at eight locations during the late spring of 2005 near

Gramercy, Louisiana in August 2005 as part of a study on Samea multiplicalis.
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Table 2.1. Release sites for C. salviniae in Southern Louisiana. Numbers listed are per quadrat, number
of release locations at a site is listed in parentheses next to the site name.

2003 2004 2005 2006 2007 2008 2009 | 2010

Release Location

N
\{‘y W Study Sites &
g -

Henderson Swamp (1) 100-200 - -- - - - - -
St. James (1) 100-200 100 -- 125+150 -- -- - -
Joyce WMA (1) 100-200 275 -- 125+150 -- -- -- -
Maurepas WMA (1) 100-200 309 -- 125+150 -- -- -- --
McElroy Swamp (1) - 315 -- - - - - -
Cypress Lake (1) -- 307 - 50 - - - -
Gramercy (multiple sites) -- -- 90 150 500 300 - --
Tunica (x8) - - - - - - 150 150
Vacherie (x8) - - - - - 150 - -
Alligator Bayou (1) - - - 125+150 - - - -
Hammond (1) - - - - - - - 150
. §
7
{ 3 fn S *

Figure 2.1. Map showing study site locations across southern Louisiana.
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Weevils were released in May of 2006 at a total of 11 locations across 6 sites in southern
Louisiana: four locations specifically for this study, eight locations in Gramercy as part of a different
study (Tewari and Johnson 2011), with an additional release at Cypress Lake. An additional release was
made in mid-September at the four release sites for this study. Of those four sites, two were lost for
research when Alligator Bayou became infested with water hyacinth (Eichornia crassipes (Mart.) Solm.)
and the site at Joyce was destroyed by vandalism. The number of release sites for 2007 was reduced to
two locations in Gramercy in order to concentrate release numbers of C. salviniae and restrict access to
research sites. A third release site was added at Gramercy in 2008 and those three sites were kept
through the end of the experiment. Additional releases were made as part of other studies in Vacherie,

Tunica, and Hammond between 2008 and 2010.

SAMPLING

We constructed 1 m? experimental frames from 5.08 cm dia SCH 40 PVC that were sealed to
float and serve as experimental plots (quadrats). Two quadrats were placed at each field location, at
least 500 m apart in similar habitat areas, and anchored with a nylon rope tied to two bricks. Of the
paired quadrats, one was designated a release site and received C. salviniae while the other was
maintained as a control site. Any vegetation other than S. minima was removed by hand weeding where

and when possible.

Sampling for damage from C. salviniae and populations was performed monthly by placing three
0.1 m? quadrats made from 2.5 cm SCH 40 PVC into the larger 1 m? quadrat. Plant material from the
smaller quadrats was removed from the quadrats and placed into 1 gal plastic bags. Since wet weights
and dry weights of S. minima are correlated (Tewari and Johnson 2011), each bag was lightly squeezed
to remove water and weighed. In addition, we randomly chose 100 rhizomes of S. minima from within

the larger quadrat and counted adult C. salviniae and damage to terminal buds. All sampled material
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was returned to the quadrat. The area within each 1 m? quadrat was visually assessed for the
percentage of the water inside the quadrat that was covered in S. minima and an estimation of the
percent of the mat that was green in color. Since water quality is impacted by the presence of aquatic
vegetation, we also took additional measurements for surface water temperature, dissolved oxygen, pH,
and conductivity. Quadrats were sprayed with a microbial insecticide (Thuricide containing Bacillus
thuringiensis kurstaki, equivalent to 4000 Spodoptera units or six million viable spores per milligram)
weekly to eliminate confounding effects of feeding damage by Samea multiplicalis (Guneé)(Lepidoptera:
Crambidae), a native herbivore. This solution was chosen to elminate S. multiplicalis because it has no

effect on Coleoptera (Maclntosh et al. 1990).

STATISTICAL ANALYSIS

We used a mixed linear model to evaluate and compare the biomass from the release and
control plots, focusing on the plots that were part of this research (2006-2010). The data was analyzed
as a one-factor completely randomized design. The loss of study sites due to environmental changes and
human interference reduced our statistical power within the study, so sites were pooled by year for
analysis. Differences in the number of terminal buds damaged between treatment and control, surface

water temperature, dissolved oxygen, pH, and conductivity were analyzed by t-test.

RESULTS AND DISCUSSION

While releases of C. salviniae were made in southern Louisiana on S. minima as early as 2002,
data and analysis presented here is from 2006 through 2010. Prior to this study, none of the releases of
C. salviniae had established in Louisiana and survived through the winter to the following year.
Additionally, neither of the two surviving field sites from 2006 had any establishment. Field sites
established in Gramercy during 2007 were inoculated with C. salviniae individuals from northern Florida
instead of southern Florida.
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Figure 2.2. Overwintered C. salviniae adult, June 2008 in Gramercy, LA.

The first evidence of C. salviniae successfully overwintering and establishing on S. minima in
Louisiana was a single individual found on April 14, 2008 in Gramercy. Additional individuals were
observed at both sites in Gramercy on June 17, 2008 (Figure 2.2) along with visible damage to the S.
minima mat (Figure 2.3). Material was brought back to the lab from the field on that date and processed
through the Berlese funnel for a more thorough population evaluation. Site 1 had 12 C. salviniae / kg of
S. minima while site 2 had 136 C. salviniae / kg of plant material. While they had been reported as
unestablished, adult C. salviniae were observed at mutiple sites in Jean Lafitte National Park during the
summer of 2008. We assume these C. salviniae were a residual population from the USDA’s releases
between 2002 and 2005. In the fall of 2008, Hurricane Gustav and Hurricane lke backed up several feet
of storm surge onto the property at Gramercy, limiting access through the fall. The field release sites

survived both hurricanes.
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Again in 2009, C. salviniae successfully overwintered at all three sites in Gramercy that were
established for the 08-09 year as well as Jean Lafitte National Park. All sites where we had made releases
the previous year were sampled for weevil populations. Cyrtobagous salviniae had successfully
established in low numbers in Gramercy (18 C. salvinae/kg), the site in Vacherie from another study (15
C. salviniae/kg), and were located again during sampling at Jean Lafitte National Park (4 C. salviniae/kg).
Sampling at Gramercy was continued through 2009 until freezing temperatures sank the majority of the
mat of S. minima. Throughout November and December 2009 low air temperatures with frosts occured,
culminating in a low of -5 °C January 11, 2010. Our water surface temperature data recorder for
Gramercy was lost during the winter for 2009/2010. The closest USGS data available lists water surface

temperatures of 2.8°C January 13, 14, 15, 18, 2010 (54km from reasearch site)(USGS 2010). The mat did

not rebound from the freezing temperatures and cover the water’s surface again until June 2010.

Figure 2.3. June 2008- Montage photograph showing open water within the mat of S. minima in
Gramercy, LA.
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Figure 2.4. Average biomass per 0.1 m” area removed from both treatment and control quadrats July
2006-December 2010.

The mean fresh weight biomass of S. minima varied over the years, ranging from a minimum
average weight of 80.22 g /0.1 m* (release plots, May 2010) to a maximum average of 679 g /0.1 m?
(control plots, July 2009). The mixed linear model indicated that introducing C. salviniae into our field
sites significantly impacted the fresh weight biomass of S. minima (F=461.75, df=1,138, p<0.0001)
(Figure 2.4). A significant between month effect was documented (F=28.44, df=34,138, p<0.0001). Our
treatment * month term was also highly significant, indicating changes in treatment over the course of

time (F=13.67, df=34,138, p<0.0001).

The mean number of terminal buds damaged ranged from a high of 66/100 (release plots, September
2007) to a low of 1.5/100 (control plots, January to March 2008). The difference in the number of
terminal buds sampled between quadrats with C. salviniae and those without was also significant
(t=5.572, df=70, p<0.0001) (Figure 2.5). None of the other variables measured were significantly
different between treatment and control: percentage of the mat covering the quadrat (t=-0.92, df=70,
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p=0.358), percentage of the mat that was green (t=-1.164, df=70, p=0.112), pH (t=1.161, df=70, p=0.25),
dissolved oxygen (t=0.564, df=70, p=0.588), conductivity (t=1.172, df=70, p=0.254), or temperature at

the water’s surface (t=-0.487, df=70, p=0.28).
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Figure 2.5. Average number of terminal buds of S. minima damaged per 100 randomly checked from
both treatment and control sites from July 2006- December 2010.

The original population of C. salviniae brought to Louisiana from Ft. Lauderdale in southern
Florida may not have been temperately adapted to the cooler climate in Louisiana. The population of C.
salviniae collected from Lakes Talquin and Miccosukee in northern Florida was introduced in 2006 under
the assumption that it would be better adapted to the local climate. Cyrtobagous salviniae from
northern Florida successfully established on S. minima here in Louisiana from 2007-2010. We later found
C. salviniae in low numbers at Jean Lafitte during 2008, suggesting that original releases by the USDA
had become established but had not been successful in biological control of S. minima. While we did not

collect any C. salviniae adults during 2010, the mat of S. minima in Gramercy was sparse and never
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recolonized to the pre-frost extent, having lost most of the former mat’s area to water hyacinth invasion
(Eichornia crassipes (Mart.) Solm.). It is a strong possibility that a population was successful in
establishing, as Salvinia maintains a warmer temperature than the surrounding air (Room and Kerr
1983). Cyrtobagous salviniae has also successfully established on S. molesta here in Louisiana and in an
areas of temperate Australia that experience similar winter temperatures and conditions to those

recorded here in Louisiana (Tipping and Center 2003, Sullivan and Postle 2010, Sullivan et al. 2011).

While C. salviniae was sucessfully introduced and established in southern Louisiana, and it
significantly lowered the biomass of S. minima, it failed to completely control the infestation at any of
our field sites. We suspect that other factors may be influencing the effectiveness of C. salviniae as a
herbivore, possibly including nutrient limiting or interspecies interactions with other arthropods. The
literature reports predation on C. salviniae by both Hydrochus sp. (Coleoptera: Hydrophilidae) as well by
an unidentified spider during mass rearing in Parc National du Diawling, Mauritania (Sands et al. 1986,
Triplet et al. 2000), as well as competition with an additional herbivore of S. minima, S. multiplicalis
(Tewari and Johnson 2011). Additional possibilites include impacts from predation by the red imported
fire ant (Solenopsis invicta Buren) which has been known to prey on other biological control agents for

aquatic plants (Dray et al. 2001, Cuda et al. 2004).

This study illustrates that while C. salviniae did not completely control S. minima at our field
sites, it had a significant impact on both the biomass and terminal buds damaged in southern Louisiana.
We saw no significant differences between release quadrats with C. salviniae and those without when
we measured pH, dissolved oxygen, percentage of the mat covered, percentage of the plant material
green, and conductivity. Working in tandem, C. salviniae and the native herbivore S. multiplicalis can
provide an ecologically sound and economically practical alternative to chemical or mechanical control

of S. minima in southern Louisiana.
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CHAPTER 3
IMPACTS OF THE RED IMPORTED FIRE ANT, SOLENOPSIS INVICTA BUREN, ON THE SUCCESS OF
CYRTOBAGOUS SALVINIAE CALDER AND SANDS AS A BIOLOGICAL CONTROL AGENT IN THE FIELD
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INTRODUCTION

The Red Imported Fire Ant (RIFA), Solenopsis invicta Buren, is an invasive exotic pest introduced
into the port of Mobile, Alabama in the 1930s (Buren 1972). RIFA are native to South America where
populations are limited by competition and parasitoid pressure (Buren et al. 1974, Jouvenaz 1983). The
RIFA have a broad omnivorous diet, eating both plants and animals with other invertebrates making up
a large part of their diet (Vinson 1997). While their voracious appetite and broad indiscriminate diet has
earned RIFA a reputation as beneficial for eating other pests in some agricultural systems, their diet is

hard to predict and can include other beneficial insects (Sterling 1978, Eubanks 2001).

RIFA exploit any resource available including aquatic areas. They are known to use water to
disperse (Morrill 1974) and display unique rafting behavior when flooded (Mlot et al. 2011). Freed and
Neitman (1988) first noted RIFA using aquatic vegetation to forage over water. They were recorded
crossing long leaf pondweed (Potamotegon nodosus), and foraging up to 15 m from the shore in a Texas
pond (Patrock 2007). Tewari (2007) found RIFA foraging extensively on Salvinia minima Baker mats in
both forested wetlands and canals in southern Louisiana up to 80 m from the levee. They have been
known to venture into wet habitats to prey on intertidal polychaetes (Palomo et al. 2003), young sea
turtles (Allen et al. 2001), neonate alligators (Allen et al. 1997), and a variety of other wildlife (Allen et al.

2004).

Cuda et al. (2004) documented the impact of RIFA on Stenopelmus rufinasus Gyllenhal, a native
control agent of the floating fern Azolla. Plant biomass decreased when the ants were excluded from the
pond. Fire ants were also observed preying on Spodoptera pectinicornis Hampson, an introduced
biological control agent released for control of waterlettuce, Pistia stratiotes L. (Dray et al. 2001). The
goal of this study was to determine whether RIFA are negatively affecting the success of the biological

control of S. minima in southern Louisiana.
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MATERIALS AND METHODS:

The experimental site was an artificial pond heavily infested with S. minima on privately owned
property located near the town of Tunica, Louisiana (30.951656, -91.480719). The levee adjacent to the
pond had known populations of RIFA and the property owner agreed not to treat or control for them
during the course of our study. Eight exclusion quadrats were constructed and transported to Tunica for
placement in the water. Each consisted of two nested square quadrats made from 5.08 cm diameter
SCH40 PVC pipe. The inner quadrat measured 1 m* while the outer was 1.5 m?, leaving a 0.25 m moat
between the inner and outer quadrats. The two quadrats were rigidly connected to each other in four
locations 0.125 m underwater by 12.7 mm SCH40 PVC to prevent the moat from being compromised.
Assembled quadrats were placed in the water, anchored to the levee on the bank of the pond, and

cleared of all plant material.

In both 2009 and 2010 each of the inner quadrats on all 8 quadrats was filled with 3 kg of S.
minima plant material and seeded with 150 Cyrtobagous salviniae Calder and Sands individuals (In 2010
S. minima was transported from another location to prevent established populations of C. salviniae from
confounding results). Every other quadrat’s moat (4 of 8) was filled with an additional 3 kg of plant
material to allow RIFA access to the inner quadrat (Figures 3.1, 3.2). Moated release quadrats were
cleared of any introduced plant material and plants growing in the quadrat other than S. minima were

removed every other week. Inner quadrats also received a floating pitfall trap to monitor for RIFA.

During 2009, C. salviniae were introduced in early July and allowed to establish for two months
until sampling commenced in September. Quadrats were sampled once a month for two months before
heavy rain caused the pond to overtop the levee, ruining the mat and exclusions. The 2009/2010 winter

was unusually cold, with the pond’s water surface reaching a low of 1.18 °C. In 2010 the experiment was

not reestablished until the month of July when the mat of S. minima had reformed across the water's
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Figure 3.1 Diagram showing a plan for exclusion quadrats, with one displaying a 0.25 m open moat.

Figure 3.2. Exclusion quadrats in the field at the site in Tunica, Louisiana.
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surface. Cyrtobagous salviniae were again allowed to establish for two months before beginning
sampling in September. Sampling the mat of S. minima was done by randomly placing three 0.1 m? mini-
guadrats constructed from 2.5 cm dia SCH40 PVC pipe. We removed the plant material from within each
of the mini-quadrats and hand squeezed the samples to remove excess water and weighed to determine
biomass. Tewari and Johnson (2011) established that wet weights of S. minima samples were
significantly correlated with dry weights, suggesting that wet weights were an efficient and reliable way
of comparing treatments. Of the three samples taken for biomass, two were returned to the inner
guadrat and one sample was returned to the lab and submerged for 24 hrs. to count C. salviniae
present. Both the plant material and weevils were returned to the original quadrat following counting
individuals of C. salviniae. In addition to the samples of plant material, each floating pitfall trap was

serviced at the same time and catches returned to the lab.

The presence of Samea multiplicalis (Guneé), a native herbivore documented to impact the
biomass of S. minima in Louisiana was also noted at the field site (Tewari and Johnson 2011). We
sprayed quadrats with a microbial insecticide when larvae and adults were noticed at the field site
(Thuricide concentrate, active ingredient: Bacillus thuringiensis kurstaki, approximately 4000 Spodoptera
units/six million viable spores per milligram). Data was analyzed as a one-factor completely randomized

design, and all data analysis was calculated using SAS 9.2 software using PROC MIXED.

RESULTS AND DISCUSSION

The number of RIFA recovered from the floating pitfall traps in 2009 and 2010 (Figures 3.3 and
3.4) were not normally distributed, and data were log transformed before analysis. The number of
individuals caught were significantly different between treatments for both years as a group, indicating
that the moat was successful in keeping most individuals from accessing the inner area (F=6.69; df=1, 6;

P=0.0414). The treatment * date statement was also significant, suggesting that the treatment effect on
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the number of ants differed between trapping periods (F=3.56; df= 7, 28; P=0.0073). The significant
treatment * date effect is likely a response to changes in foraging behavior as a response to abiotic
factors such as rainfall or temperature change. Other studies have found that optimum foraging occurs
between 22 and 36°C (Porter and Tschinkel 1987). While moats were an effective method to
significantly decrease the number of RIFA within the quadrat, several individuals managed to cross the
moat. Possibly, vegetation from the bank provided temporary access, we were diligent to clear any
possible bridge substrates from the area. RIFA are well documented to survive water and flooding so it is
not surprising that some individuals might make it across 0.25 m of open water (Morrill 1974, Miot et al.

2011). No other species of ants were collected from the traps in either year.

Sampled populations of C. salviniae during the study were non-normal and heavily skewed. We
broke the data into two sets by year, and the data for 2009 was still non-normal and log transformed
during analysis while the 2010 data were normal. During 2009, numbers of C. salviniae per sample were
not significantly different between treatments (F=0.16; df= 1, 6; P= 0.7) (Figure 3.5). Looking closer at
the data for 2010, one data point (one quadrat from October 2010) stood out from the others as over 6
standard deviations from the mean, possibly indicating a severe outlier. Data for 2010 was analyzed
using Dixon’s Q, which suggested rejecting the outlier from analysis with a 95% confidence level
(Q=0.86) (Dean and Dixon 1951, Rorabacher 1991). After removing the outlier from the 2010 data, the
number of individuals of C. salviniae per sample of S. minima was significantly different between
treatments (F=11.46; df= 1, 6; P=0.0148) (Figure 3.6), indicating that the presence of RIFA is related to
the population level of C. salviniae. When pooled for the whole study, data from 2009 and 2010
(without the outlier) were non-normal and log transformed during analysis. No significant treatment

effect (F=0.75; df=1, 6; P=0.4190) was detected.
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Figure 3.3. Number of individual RIFA recovered from a floating pitfall trap placed within the inner-
guadrat for two sampling dates from September-October of 2009.
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Figure 3.4. Number of individual RIFA recovered from a floating pitfall trap placed within the inner-
quadrat over six sampling dates (two per month) from September-November of 2010.
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Figure 3.5. Number of individuals of Cyrtobagous salviniae removed from 0.1 m? area of Salvinia minima
from two sampling dates, September-October of 2009.

Weights of the of the S. minima samples (Figure 3.7) were only analyzed for 2010 and were
normally distributed. No significant difference between treatments (F=3.34; df=1, 6; P=0.1175) was
documented. Data do show a trend that quadrats moated for exclusion had slightly lower biomass than
those where they RIFA had access. Differences in weight variation may have been suppressed by the

presence of S. multiplicalis that we observed even after spraying quadrats with Thuricide.

Many ant species interfere with biological control programs, both by defending food sources
and through intra-guild predation (Cudjoe et al. 1993, Stechmann et al. 1996, Gonzalez-Hernandez et al.
1999, Eubanks et al. 2002, Kaplan and Eubanks 2002, Wyckhuys et al. 2007). Discussion of predation on
weevils from other arthropods is scattered in the literature across a wide variety of ecological systems
(Barney et al. 1979, Alfaro and Borden 1980, Barney and Armbrust 1980, Richman et al. 1983, Barker et
al. 1989). The best documented impact of arthropod predation on a weevil is RIFA as a control agent for

the boll weevil (Sterling 1978, Jones and Sterling 1979, Fillman and Sterling 1983). RIFA has also been
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documented impacting the Azolla weevil, S. rufinasus (Cuda et al. 2004) which is of a similar adult size (2

mm) to C. salviniae (Hill 1998, Tipping et al. 2010).

While not addressed in this study, RIFA that were actively foraging on the mat of S. minima were
most likely also preying on both larvae and eggs of S. multiplicalis as well. RIFA preys on lepidopteran
eggs and larvae in a variety of terrestrial systems (Reagan et al. 1972, McDaniel and Sterling 1979, Eger
et al. 1983, Elvin et al. 1983, Eubanks 2001, Seagraves and McPherson 2006). Also, RIFA interfered with
the introduction and establishment of S. pecticornis for the control of waterlettuce (Dray et al. 2001).
While we sprayed Thuricide to control S. multiplicalis within our study area, the majority of the mat was
untreated and supported large populations of larvae as a food source. While S. multiplicalis had a
negligible effect on S. minima in Florida (Tipping and Center 2005), Tewari and Johnson (2011)
documented that S. multiplicalis had a significant negative effect on the biomass of S. minima in

Louisiana.

This study suggests RIFA is actively impacting the success of the biological control of S. minima
by decreasing the population of C. salviniae. In combination with probable predation on the only other
herbivore, S. multiplicalis, RIFA should be controlled where possible to increase the success of biological
control. While not efficient or plausible for backswamp wetland releases or large water bodies,
controlling RIFA around smaller infestations of S. minima when infested with C. salviniae should increase

chances of successful biological control.
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CHAPTER 4
DEVELOPMENT OF FLOATING PITFALL TRAP FOR COLLECTING ARTHROPODS ASSOCIATED WITH
AQUATIC VEGETATION
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INTRODUCTION

Collecting insects in wetlands with dense vegetation is difficult at best due to standing water,
dense vegetation, and high structural complexity. Unfortunately no sampling method is currently
available for a comprehensive analysis of wetland invertebrates (Henke 2005). AlImost as many sampling
methods are available for sampling aquatic habitats as there are types of water bodies (Cummings
1962). Merritt et al. (2008) provided the most recent comprehensive guide to aquatic sampling methods
and listed over 30 different methods to collect arthropods in aquatic and emergent vegetation. The
number and type of taxa collected in an aquatic sampling program depends on the type of collection

strategy used and the local vegetation (Turner and Trexler 1997).

Floating pitfall traps have been commonly used to sample both amphibians (Jones 1986) and
spiders (Graham et al. 2003) but rarely for insects. Pitfall trapping has a well-established history in
entomology and is commonly used in terrestrial systems for biodiversity studies (Triplehorn and Johnson
2005, Aguilar Julio 2010). Pitfall traps operate continuously, are inexpensive and easy to use, and result
in large species-rich samples (Clark and Blom 1992). Forests and agricultural areas are the most
frequently sampled habitats with pitfall traps, and they are rarely used in areas that could potentially be

flooded (Mertens et al. 2007).

There have been a variety of floating trap designs published in the literature. Grigarick (1959)
provided the first floating trap designed to sample Hydrellia in rice fields using a round 20.3 cm diameter
by 3.18 cm deep aluminum pan inserted into a piece of wood. The trap was filled with water and a
wetting agent and checked every 1-3 days. It was non-selective and caught a wide variety of insects as
well as the occasional animal and due to the shallow design, was swamped easily by water movement.
Additional designs consisted of a 0.35 L small pot (unspecified type) weighted with wax and lead, and

inserted into a 20 by 12 cm piece of cork (Ruzicka 1982) and a 3.5 x 8 cm vial inserted into a 12 cm
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square board (Renner 1986). Graham et al. (2003) constructed a floating pitfall trap with a double cup,
the smaller cup for collecting fluid nested in a larger outer cup (10 cm dia) weighted with mud and rocks,

these were then inserted into a 15 cm piece of square styrofoam.

We constructed a variety of published traps before designing our own. Traps based on Grigarick
(1959) were quickly sunk by turtles at our field site, and those constructed from Renner (1986) would
not stay level with the water’s surface. The design from Ruzicka (1982) fared slightly better, but the cork
used for the float degraded quickly in the water, and Louisiana’s high summer temperatures melted the
wax in the cup fouling samples. The last design, Graham et al. (2003), had problems with the Styrofoam
float falling apart as well as many of the traps getting water between the two trap cups resulting in the

inner collecting cup’s rim being several cm above the level of the water.

We aimed to design an inexpensive, robust trapping system to effectively sample insects
associated with emergent and floating aquatic pleuston vegetation that could be deployed in the field
for long periods of time without maintenance. We successfully collected several insects previously
released for biological control of aquatic invasive vegetation as well as a wide variety of hydrophilous
and hygrophilious insects.

MATERIAL AND METHODS

TRAP DESIGN

Pitfall traps in terrestrial systems consist of two major parts: a base that includes the trapping
container and a cover. Our trap design includes an anchoring stake with tether as an additional
component to compensate for both horizontal and vertical water movement (Figure 4.1). The floating
base consists of a Ball® standard mouth 236.58 ml glass canning jar with 85.05 g of lead fishing weights
placed in the bottom. The weights were encased in FloraCraft® liquid acrylic resin poured over them into
the bottom
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Figure 4.1. Line drawing depicting our design for floating pitfall traps (does not show lead weights).

of the jar to prevent lead contamination in the environment. These jars were hot glued intoa 15 cm x 15
cm piece of 2.5 cm- thick black polyethylene packaging foam with a 6.75 cm diameter hole cut in the
center. Trial traps were built with a several thicknesses of foam, and a 2.5 cm thick piece was ideal to
have the trap stay at the surface without the edge being above the surface vegetation, though this could

vary in other habitats. The rod ends of four K’'nex® “Standard Black Rod/Connectors” (Part #90914) were
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hot glued into the foam, rod down, 3.75 cm from the hole of the jar. These serve to connect the cover to
the base. The cover was made from a Fisher® clear polystyrene petri dish (15 mm x 150 mm) with four
K'nex® “Standard Yellow Rods 3 ’/1¢” (Part #90953) spaced evenly on the inside of the edge of the petri
dish and hot glued in place. The fully assembled trap was anchored by placing a ring at the end of a 30
cm piece of 49-strand nylon-covered steel jewelry wire over a Gardener's Blue Ribbon® 2 m Plastic-
Coated Steel Landscape Stake. This attachment prevented horizontal movement from the designated

site while allowing vertical movement with changes in water level.

Figure 4.2. Trap in situ, approximately .5 m deep water with surface covered by aquatic vegetation.

PRESERVATIVE

Jars were filled half full with approximately 75 ml of Prestone® Extended Life Antifreeze/Coolant
(ethylene glycol) for each trap date. This quantity of fluid lowered the edges of the polyethylene foam

level with the top of the pleuston vegetation (Figure 4.2). While propylene glycol has gained popularity
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in terrestrial pitfall trapping methods due to low mammalian toxicity, it has a much higher biological
oxygen demand in freshwater systems than Ethylene Glycol and could increase oxygen depletion if
spilled (EPA 2009). A few drops of Palmolive® Safe + Clear dish detergent were added to each trap to

increase wetting and minimize arthropod escape from traps (Topping and Luff 1995).

RESULTS

PRODUCTION/INTEGRITY

These traps cost approximately $9 each to build (including the landscaping anchor stakes) and
were constructed in stages over several weeks in the lab. Assembling an individual trap from beginning
to end took less than an hour. After being placed in the field, the traps were serviced every two weeks.
During the time that the traps were in the field, those that failed were found to have a variety of
problems including: animals eating the foam, falling branches, and turtles using them as a platform.
Traps that became submerged stayed buoyant at the water’s surface and still contained insects in the
sample, even after the jar became flooded. Less than 50 individual trap catches out of 1300 were lost
due to being overturned or submerged. After a year of environmental exposure in the water, the foam

on some traps began to lose buoyancy and was replaced in preparation for another field season.

PERFORMANCE

A total of 5,773 adult insect specimens representing 176 species within 62 families and 7 orders
were collected during 2009. The Coleoptera were the most species rich (137 sp.) and the most abundant

(3409 individuals). Full biodiversity analysis and a complete taxa list are presented in Chapter 5.

DISCUSSION

Evaluating collection methods and designing a robust collecting program in wetlands with heavy

vegetation requires knowledge of the target taxa, sampling characteristics of the method(s) selected,
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and the amount of time required to process the catch (Turner and Trexler 1997). Both dipnets and core
samplers have been commonly used to take whole plant samples of Salvinia spp. in other studies looking
at arthropod communities (Bennett 1966, Forno and Bourne 1984, Herrera et al. 2000, Albertoni and
Palma-Silva 2006, Poi de Neiff and Neiff 2006). Unfortunately, heavily vegetated dipnet and corer
samples can take from 2-5 hours a piece to process (Meyer et al. 2011). It took our field team of four
people an average time of 3-4 hours to service 100 traps in the field, and an additional average
processing time of approximately 15 minutes in the lab. This results in around 20 min of total processing

time invested per trap, which is less time than processing whole plant samples.

This trap design provides an easy and efficient way for making sequential collections of hygro-
and hydrophilous insects associated with emergent vegetation for a wide variety of taxonomic and
ecological studies. Our collection of 176 species of adult insects is much richer than other similar studies
published on arthropods associated with Salvinia spp. (Pelli and Barbosa 1998). Use of these traps does
not require removal of vegetation samples or disturbance to the local community and allows for

repeated sampling in the same physical location.

Using floating pitfall traps also allows collection of specimens that are uncommon and could be
missed by other types of aquatic sampling since there is a much longer collecting period. Utilizing
different collection methods in wetlands result in very different taxa (Meyer et al. 2011). Highly mobile
taxa such as Carabidae and Hymenoptera that are using the vegetation incidentally or foraging would
easily be missed using net based sampling methods. As in terrestrial ecosystems, biases in the design of
the floating pitfall traps surely exist (Work et al. 2002) and should be evaluated in future investigations.
Pitfall traps in terrestrial systems depend on movement of individuals and collect based on activity and
density (Topping and Sunderland 1992), so potential biases in a floating pitfall trap include a positive

bias to mobile species that frequent the surface and are associated with emergent vegetation while
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under sampling taxa that are restricted to the water column. While we were specifically interested in
collecting insects associated with pleuston vegetation, these traps could easily be implemented as a part

of a larger sampling regime to complement other collection methods.
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CHAPTER 5
INSECTS ASSOCIATED WITH MAT OF SALVINIA MINIMA BAKER IN SOUTHERN LOUISIANA
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INTRODUCTION

Aguatic macrophytes contribute to the structure and function of wetlands in a variety of ways
including positively affecting diversity among associated groups and providing shelter from predation
(Brown et al. 1988, Olson et al. 1994, Batzer 1998). Many species of invertebrates show distinct
preferences for aquatic plants based on their structure (Dvorak and Best 1982, Cyr and Downing 1988,
Dvorak 1996). However, invasive plants threaten wetland community structure and integrity by forming
monotypic stands, changing available habitat, altering diversity, and modifying food webs (Zedler and
Kercher 2004). As more non-native species like Salvinia spp. invade water ways, the ecosystem functions

that macrophytes provide could change (Luken and Thieret 1997).

Older studies examining insects associated with Salvinia spp. focused on identifying potential
biological control agents for S. molesta by examining the S. auriculata complex (S. auriculata Aubl., S.
molesta Mitchell, S. herzogii de la Sota, and S. biloba Raddi.) (Bennett 1966, Forno and Bourne 1984).
Several of the more recent studies have examined macroinvertebrates associated with Salvinia from a
conservation standpoint within its native range (Herrera et al. 2000, Albertoni and Palma-Silva 2006, Poi
de Neiff and Neiff 2006). Studies sampling insects and arthropods associated with Salvinia spp. have
returned results ranging from 10 spp. (S. biloba, Forno and Bourne 1984) to 113 spp. (S. molesta, Pelli

and Barbosa 1998).

No previous investigations into associated invertebrates of either S. minima or S. molesta in the
United States have been undertaken. Pelli and Barbosa (1998) suggested that a rich fauna associated
with Salvinia in Brazil is possibly a side effect of a rich endemic aquatic fauna that uses Salvinia
incidentally. Unfortunately, while a common habitat in the southern United States, few studies have
been done on invertebrates from swamps and flooded woodlands in relation to other wetland types

(Batzer and Wissinger 1996). Fewer studies are available from Louisiana to provide baseline surveys for

52



non-impacted communities (Ziser 1978, Sklar 1983, 1985). Our goal was to quantify and describe the
biodiversity and community of adult insects associated with S. minima in southern Louisiana and

compare with the results of previously published studies.

MATERIALS AND METHODS

This survey was conducted during the spring of 2009 on a privately owned tract of land just
north of Gramercy, Louisiana (30°09.804’N, 90°48.643’W) and bordered by Interstate 10 and US-61. This
site is classified as a Cypress-Tupelo-Blackgum freshwater swamp, and the landscape is dominated by
Baldcypress (Taxodium distichum L.). Common salvinia (Salvinia minima Baker) has colonized the open
water and formed solid dense mats of plant material. Other invasive aquatic plants encountered in
smaller patches at the study site include water hyacinth (Eichornia crassipes (Martius) Solms), and

pennywort (Hydrocotyle spp.).

One hundred of the aquatic pitfall traps described in chapter 4 were deployed at the study site
to collect insects. Each trap location was marked by neon plastic flagging placed atop the 2 m landscape
stakes used to anchor the traps. Traps were placed, loaded, and launched on May 18, 2009 and samples
were retrieved every two weeks until November 2, 2009 for a total of 13 sampling periods. Samples
were labeled with the trap coordinate location and trap pick up date, and preserved in the lab in
ethylene glycol until processed. Specimens were sorted in the lab and all adult insects except Diptera
and Lepidoptera were pinned or pointed and properly labeled with full locality information. Neither
Diptera or Lepidoptera were well preserved when samples were processed, and specimens were placed
in residuals. Plant material, amphibian, and crustacean bycatch were discarded. Residual adult taxa and
all immature insects were preserved in 95% ethanol. All preserved specimens were identified to species
where possible using relevant literature and help from taxonomic specialists (Arnett and Thomas 2000,

Arnett et al. 2002, Epler 2006, Merritt et al. 2008, Epler 2010). Voucher specimens are deposited in
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Louisiana State Arthropod Museum, Louisiana State University (Baton Rouge, Louisiana), The
Hymenoptera Institute Collection of the Department of Entomology at the University of Kentucky
(Louisville, Kentucky), the Florida State Collection of Arthropods (Gainesville, Florida), and the United

States National Museum (Washington, D.C.).

RESULTS AND DISCUSSION

The insect community associated with a mat of Salvinia minima was represented by 176 species
within 62 families and 7 orders. A total of 5,773 individuals were collected (Table 5.1). Coleoptera was
the most species rich order (137 species: 77.8%), followed by Hymenoptera (26 species: 14.8%),
Hemiptera (16 species: 9.1%), Orthoptera (4 species:2.3%), Odonata (2 species: 1.1%), and
Psocoptera/Blattaria (1 species: 0.5%). Carabidae was the most species rich family (30) followed closely
by the Staphylinidae (29) and the Curculionidae (12). In addition to being the most species rich order
Coleoptera was also the most abundant order (3409: 59.1%), followed again by Hymenoptera (1611:
27.9%), Hemiptera (578: 10.0%), Orthoptera (154: 2.7%), Odonata (7: 0.1%), and Psocoptera/Blattaria (1
individual each). The most abundant family was Carabidae (1161), followed by Ichneumonidae (947),
Scirtidae (794), and Hydrophilidae (744). The most abundant species included an unidentified
Ichneumonid wasp located in the subfamily Cryptinae: tribe Hemigastrini (741), Scirtes tibialis Guerin-
Meneville (657) (Scirtidae), Enochrus sp. (508) (Hydrophilidae), and Stenocrepis duodecimstriata

(Chevrolat) (465) (Carabidae).

Rare species (<5 individuals) made up over half of our identified species (108/176). The majority
of those were singletons (77/176). While singletons made up 43.8% of the richness observed, they only
accounted for 1.5% of our total abundance. Many hypothesis have been presented in the literature to
account for rare species including insufficient sampling efforts, genuinely low populations, and tourist

species (Novotny and Basset 2000, Coddington et al. 2009).
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As part of this research we collected three currently undescribed species of Coleoptera and one
undescribed Braconid wasp. The unidentified genus (near Nephanes sp.) in the family Ptiliidae has been
observed from dung and fermenting organic material across the eastern coast of the United States and
does not currently match any established name (M. Sérensson, pers. com.). The undescribed
staphylinidae is placed within Hoplandria (Genosema). Another species H. pulchra Kraatz has been
collected from feces and organic material. The specimen from our sample is the only one known (J.-S.
Park pers. com.) .The undescribed species of Cyphon (Scirtidae) is conspecific with Epler’s “C. sp.2.” Its
range encompasses much of the Atlantic and Gulf coasts (Tetrault 1967, Epler 2010). The braconid wasp
is being described by M. Sharkey and colleagues (M. Sharkey, pers. com.). Other interesting species of
note include: two probable new state records of Curculionidae (Bagous hydrillae O'Brien and Onychylis
texanus Burke), a new state record for Limnichites punctatus (LeConte)(Limnichidae), as well as several

species not previously included in the collection of the Louisiana State Arthropod Museum.

Since S. minima is currently the subject of a biological control project in southern Louisiana, the
Curculionidae collected by this study are of particular interest. These species were a primary focus of
this research, though we were also interested in the total community composition of the habitat. Seven
species of semi-aquatic Curculionidae (five of which have been used as biological control agents for
aquatic plants) were represented in the samples: Cyrtobagous salviniae Calder and Sands, Bagous
hydrillae O’Brien, Neochetina bruchi Hustache, Neochetina eichorniae Warner, Stenopelmus rufinasus
Gyllenhall, Onychylis texanus Burke, and Tanysphyrus lemnae (Fab.) (Calder and Sands 1985, Haag and
Habeck 1988, McConnachie et al. 2004, Wheeler and Center 2007). We also collected Dyscinetus
morator (Fab.)(Scarabaeidae) which has been documented feeding on water hyacinth (Buckingham and

Bennett 1989).
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While evaluating a-diversity, we observed a single peak in both abundance and species richness
from the collections taken during the month of July 2009 (Figures 5.1, 5.2). Margalef’s richness is
normalized for sample size, and exhibits the same pattern as raw richness values (Figure 5.3)(Margalef
1958). Many indices for diversity and evenness are available. All of which mathematically weigh
variables differently (Hill 1973, Heip and Engels 1974, Peet 1975, Mouillot and Leprétre 1999). We ran
two each of both diversity (Simpson’s Index of Diversity and Shannon’s Diversity Index) and evenness
indices (Pielou’s Index of Evenness and Mclntosh’s Evenness Index) to elucidate any differences
between collection dates. Simpson’s Index of Diversity ranges in value from 0 as a homogenous
community to 1 for the most diverse and is based on probability (Simpson 1949). Values for our
collection dates range from 0.79 to 0.95 indicating a very heterogeneous and diverse community due to
the high number of species recorded (Figure 5.4). Shannon’s Diversity Index calculates values that range
from O for the most homogenous communities to approximately 4.6 for the most diverse and is more
sensitive to the presence of rare species (Shannon 1948). Our values range from 2.1-3.5 (Figure 5.5) and
exhibit the same single peak observed in Figures 5.1-5.3, which is not surprising given that the Shannon
Index takes into account abundances and evenness. Pielou and Mcintosh’s evenness indices both show
similar tends and values for the same collection dates, and are two different mathematical ways to

analyze abundances (Figures 5.6 and 5.7) (Pielou 1966, Mclntosh 1967).

It is difficult to evaluate B-diversity and compare our results with other studies associating
invertebrates with Salvinia spp. due to differences in native fauna between study locations, taxonomic
resolution, and sampling strategies. Several of the studies only identified invertebrates to family level
(Pelli and Barbosa 1998, Albertoni and Palma-Silva 2006, Mfundisi et al. 2008). Junk (1977) identified
specimens to order, and Gopalan and Nair (1975) only identified invertebrates to class. Of the papers
that provide taxonomic resolution, Bennett (1966) and Forno and Bourne (1984) both focus solely on

herbivorous insects, eliminating some of the larger taxonomic groups we collected during sampling.
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Several of the other Salvinia invertebrate association studies also report Coleoptera as their
most species rich and/or abundant group (Pelli and Barbosa 1998, Herrera et al. 2000, Poi de Neiff and
Neiff 2006). Coleoptera represent one of the largest “aquatic” groups in the world (Jach and Balke
2008). Both Mfundisi et al. (2008) and Albertoni and Palma-Silva (2006) reported larval chironomidae as
the most abundant macroinvertebrates. They were absent from our samples due to their fully aquatic
nature. Differences in taxa collected are likely from differences in sampling method (Meyer et al. 2011).
Our sampling effort for associated insects was much more intensive (1300 samples) than other

published studies and focused solely on adult insects.

Sklar’s (1983) dissertation provides one of two lists available for macroinvertebrates associated
with floating vegetation in Louisiana (Lemna spp., pre Salvinia infestation) (48 taxa of insects). Ziser
(1978) evaluated wetlands adjacent to our field site and collected 55 taxa of insects (mostly larvae and

nymphs). Supporting Pelli and Barbosa’s (1998) hypothesis that invertebrates already present in an
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ecosystem use invasive vegetation incidentally, Sklar (1983) provided the only taxon list that records the
presence of Carabidae, our most species rich and abundant family. Sklar (1985) published graphs
showing bimodal patterns for Margalef’s Richness, Shannon’s Diversity Index, and Pielou’s Evenness for
swamp invertebrates associated with floating vegetation (Figure 5.8). Our graphs for these same indices
over a similar time frame (Figures 5.3, 5.5, and 5.6 respectively) show very different patterns and do not
exhibit bimodal trends. Ziser (1978) also showed a bimodal graph for abundance of
macroinvertebrates/100g plant material, but the Shannon’s Diversity index is similar to our results.
Overall, our study shows much higher levels of richness and less monthly variation in both diversity and

evenness than Sklar’s (1983, 1985) or Ziser’s (1978) work.

While Pelli and Barbosa’s (1998) hypothesis that invertebrates which already exist in a habitat
will use invasive vegetation incidentally would account for some increase in richness and abundance, we
would expect values to be similar to other studies in similar habitats. During 2009 we observed over
triple the number of taxa documented in Sklar (1983) or Ziser (1978), including many predaceous
terrestrial Coleoptera and parasitic Hymenoptera. These groups could be a result of using a floating
pitfall trap which is a passive trap that relies on arthropod activity instead of disturbing the mat by
removing whole plant samples, or the mat of S. minima may be supporting a larger community of

arthropods foraging out onto a formerly unavailable habitat.

To examine these ideas more closely, we consulted relevant literature for taxa collected during
our study to assess lifestyles and habitat associations (Arnett and Thomas 2000, Arnett et al. 2002, Epler
2006, Jach and Balke 2008, Epler 2010)(Table 5.1). For the Coleoptera, Jach (1998) defined six ecological
groups based on familial associations with water: (1)“True Water Beetles,” (2)“False Water Beetles,”
(3)“Phytophilous Water Beetles,” (4)“Parasitic Water Beetles,” (5)“Facultative Water Beetles’” and

(6)“Shore Beetles.” These classifications are roughly associated with the amount of time spent in
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Figure 5.8. Adapted from Sklar (1985). Average monthly variation in diversity (A), richness (B), and

evenness (C) in the floating vegetation. Compare (A) to Figure 5.5, (B) to Figure 5.3, and (C) to Figure 5.6.
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contact with the water ( Table 5.1, “A1-6"). Out of the 137 species of Coleoptera we collected, 87 were
listed as hygrophilic or riparian in one of the references (Jach 1998, Arnett and Thomas 2000, Arnett et
al. 2002). Intriguingly many of them were also noted as being crepuscular or nocturnal, which could also
explain their absence from lists created from other collection methods. Most of the Hemiptera
collected were aquatic in nature or known to feed on aquatic plants (Epler 2006). Many parasitic
Hymenoptera are semi-aquatic in nature, but we refrained from labeling our taxa list in either direction
without firm identifications. The exception is Anoplius depressipes which is known to hunt semi-aquatic

Dolomedes spp. spiders (Roble 1985).

We conclude that most of the taxa collected in our study are previously known to be either
hydro- or hygrophilious through referencing relevant literature, suggesting they were already present in
the general area previous to invasion by S. minima and are most likely using the mat incidentally to
exploit new habitat. Utilizing different collection methods results in different taxa collected (Meyer et al.
2011) and the use of a long term non-destructive collection method allowed us to collected crepuscular

and nocturnal insects that are not active during the day when other sampling methods would be used.

Table 5.1. Insects collected from a mat of Salvinia minima between May 15 and November 2, 2009. (*)=
previously undescribed species. Lifestyle/food associations are as follows: D= detritus, F= fungus, C=
carnivorous/predaceous, H= herbivorous, and P= Parasitic.

Order/Family Genus/Species Number Food ‘ Habitat

BLATTODEA

Blattidae sp. 1 D T

COLEOPTERA

Anobiidae Byrrhodes sp. 2 F T

Anthicidae Sapintus pubescens Leferte 27 F/C A6

Carabidae Acupalpus (Philodes) rectangulus Chadoir 1 C A6
Agonum (s. str.) moerens Dejean 105 C A5
Ardistomis obliquatus Putzeys 1 C A6
Ardistomis schaumii LeConte 9 C A6
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Table 5.1 continued

Badister reflexus LeConte 1 C A6
Bembidion (Furcacampa) affine Say 3 C A5
Bembidion (Notaphus) sp. 1 C A5
Bradycellus (Stenocellus) sp. 1 C A6
Calleida viridipennis (Say) 1 C T
Chlaenius (Agostenus) impunctifrons Say 3 C A5
Chlaenius (Agostenus) niger Randall 96 C A5
Chlaenius (Agostenus) oxygonus Chaudoir 1 C A5
Chlaenius (Agostenus) perplexus Say 1 C A5
Chlaenius (s. str.) erythropus Say 1 C A5
Chlaenius (s. str.) laticollis Say 28 C A5
Clivina (Leucocara) americana Dejean 1 C A5
Clivina (Semiclivina) dentipes Dejean C A5
Diplocheila major LeConte 6 C A6
Elaphropus sp. 13 C A5
Loxandrus sp.1 1 C A6
Loxandrus sp.2 1 C A6
Loxandrus sp.3 1 C A6
Oodes amaroides Dejean 93 C A6
Oodes americanus Dejean 267 C A6
Paratachys sp. 16 C A6
Pterostichus (Melanius) ebeninus (Dejean) 58 C A6
Scarites quadriceps Chadoir 1 C A6
Scarites subterraneus Fabricius 1 C A6
Stenocrepis duodecimstriata (Chevrolat) 465 C A6
Stenolophus ochropezus (Say) 3 C A6
Cerambycidae Elaphidion mucronatum (Say) 1 H T
Parandra polita Say 1 H T
Styloleptus biustus (LeConte) 1 H T
Chrysomelidae Chaetocnema sp. 1 H T
Colaspis sp. 2 H A3
Epitrix sp. 1 H
Myochrous sp. 1 H
Nesaecrepida infuscata (Schaeffer) 1 H
Pseudolampis guttata (LeConte) 7 H A3
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Table 5.1 continued

Coccinellidae Diomus terminatus (Say) 2 C T
Corylophidae Clypastraea sp. 2 F T
Orthoperus sp. 2 F T
Curculionidae Bagous hydrillae O’Brien 3 H A3
Chramesus sp. 1 H T
Cyrtobagous salviniae Calder and Sands 3 H A3
Neochetina bruchi Hustache 12 H A3
Neochetina eichorniae Warner 6 H A3
Onychylis texanus Burke H A3
Platypus flavicornis (Fabricius) 1 H
Scolytinae sp. 16 H
Stenopelmus rufinasus Gyllenhall 76 H A3
Tanysphyrus lemnae Fabricius 45 H A3
Xyleborus sp. 16 H
Xylosandrus sp. 2 H
Dytiscidae Prodaticus bimarginatus (Say) 2 C Al
Thermonectus sp. 12 C Al
Endomychidae Rhymbomicrus sp. 1 F T
Erotylidae Triplax flavicollis Lacordaire 1 F T
Eucinetidae Eucinetus morio LeConte 4 F T
Eucnemidae Dirrhagofarsus lewisii (Fleutiaux) 1 F T
Haliplidae Peltodytes sp. 1 C Al
Heteroceridae Lanternarius mollinus (Kiesenwetter) 1 D A6
Peditatus texanus Pacheco 1 D A6
Histeridae Euspilotus assimilis (Paykull) 1 D A6
Hydraenidae Hydraena sp. 4 -- A2
Hydrophilidae Cercyon sp. 15 D A6
Enochrus consortus Green 13 D Al
Enochrus interruptus Gunderson 7 D Al
Enochrus ochraceus (Melshimer) 524 D Al
Hydrobiomorpha casta (Say) 32 D Al
Hydrochus callosus LeConte 1 D Al
Paracymus sp. 11 D Al
Phaenonotum exstriatum (Say) 136 D Al
Tropisternus blatchleyi Orchymont 5 D Al
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Table 5.1 continued

Laemophloeidae  Placonotus sp. 1 F T
Latridiidae Corticarina sp. 1 F T
Cortinicara sp. 1 F T
Enicmus sp. 1 F T
Melanophthalma sp. 6 F T
Limnichidae Eulimnichus sp. 20 H A6
Limnichites punctatus (LeConte) 1 H A6
Limnichoderus sp. 11 H A6
Melandryidae Dircaea liturata (LeConte) 1 F T
Microscapha clavicornis (LeConte) 3 H T
Mordellidae Mordellistena sp. 3 H T
Nitidulidae Carpophilus dimidiatus (Fabricius) 1 H T
Stelidota sp. 1 H T
Noteridae Hydrocanthus sp. 10 C Al
Suphisellus bicolor (Say) 3 C Al
Phalacridae Stilbus sp. 1 F T
Ptiliidae Smicrus americanus Casey 2 -- A6
Unidentified genus (near Nephanes) sp.* 1 - A6
Ptilodactylidae Ptilodactyla sp. 1 D A2
Scarabaeidae Dyscinetus morator Fabricius 61 H A5
Euphoria sepulcralis (Fabricius) 1 H T
Scirtidae Cyphon sp.* 137 D A2
Scirtes tibialis Guerin-Meneville 657 D A2
Sphindidae Sphindus sp. 1 F T
Staphylinidae Acylophorus sp. 12 C A6
Adinopsis sp. 6 C A6
Aleocharinae sp. 5 C --
Anaquedius sp. 3 C A6
Anotylus sp. 7 C A6
Atanygnathus sp. 1 C A6
Athetini sp. 1 C --
Baeocera sp. 3 C
Bibloplectus sp. 1 C
Carpelimus sp. 155 C A6
Coproporus sp. 2 C T
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Table 5.1 continued

Staphylinidae Euaesthetus sp. 10 C A6
Euconnus (Psomophora) sp. 10 D
Euconnus (s. str.) sp. 1 D
Homaeotarsus sp. 1 C A6
Hoplandria (Genosema) pulchra Kraatz 10 C
Hoplandria (Genosema) sp.* 1 C
Myllaena sp. 25 C A6
Neobisnius sp. 3 C A6
Philonthus sp. 3 C A6
Pinophilus sp. 1 C T
Scopaeus sp. 6 C A6
Scydmaeninae sp. 4 C T
Staphylininae sp. 1 C --
Stenus sp. 14 C A6
Tachinus sp. 1 C T
Tachyporus sp. 1 C A6
Thinobius sp. 1 C A6
Thoracophorus sp. 1 C T
Tenebrionidae Lobopoda sp. 1 F/H T
Platydema sp. 1 F/H T
Tetratomidae Eustrophopsis bicolor (Fabricius) 1 F T
Thanerocleridae  Ababa tantilla LeConte 1 F T
Throscidae Trixagus horni Blanchard 1 F T
HEMIPTERA
Anthocoridae sp. 1 C T
Belostomatidae Belostoma lutarium (Stal) 23 C A
Belostoma testaceum (Leidy) 5 C A
Lethocerus uhleri (Montandon) 1 C A
Cicadellidae Draeculacephela sp. 60 H T
Delphacidae sp. 2 H T
Gelastocoridae Gelastocoris oculatus (Fabricius) 1 C A
Gerridae Limnoporus canaliculatus (Say) 1 C A
Hebridae Hebrus consolidus Uhler 128 H A
Hydrometridae Hydrometra australis Say 246 C A
Hydrometra hungerfordi Torre-Bueno 4 C A
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Table 5.1 continued

Mesoveliidae Mesovelia mulsanti White 26 C A
Naucoridae Pelocoris femoratus (Palisot) 52 C A
Nepidae Curicta scorpio Stal 6 C A
Saldidae Micracanthia husseyi Drake and Chapman 21 C A
Veliidae Microvelia sp. 1 C A
HYMENOPTERA
Braconidae sp.1 1 P --
sp.2* 101 P --
Formicidae Camponotus impressus (Roger) 1 C T
Camponotus pennsylvanicus (DeGeer) 17 C T
Crematogaster sp. 103 C T
Crematogaster ashmeadi Mayr 12 C T
Formicidae Crematogaster cerasi Fitch 22 C T
Crematogaster vermiculata Emery 126 C T
Cyphomyrmex rimosus (Spinola) 1 C T
Hypoponera opacior (Forel) 23 C T
Pheidole sp. 13 C T
Pheidole dentata (Mayr) 32 C T
Pheidole metallescens Emery 3 C T
Pheidole moerens Wheeler 49 C T
Pseudomyrmex ejectus Smith 3 C T
Solenopsis sp. 39 C T
Solenopsis carolinensis Forel 1 C T
Solenopsis invicta Buren 80 C T
Solenopsis picta Emery 11 C T
Strumigenys louisianae Roger 3 C T
Strumigenys sylvestrii Roger 1 C T
Ichneumonidae Cryptinae: Hemigastrini sp. 741 P --
sp.2 187 P --
sp.3 19 P --
Platygastridae Baeus sp. 1 P --
Pompilidae Anoplius depressipes Banks 20 C
Sphecidae sp. 1 C T
ODONATA
Libulellidae sp. 1 C A
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Table 5.1 continued

Coenagrionidae sp. 7 C A
ORTHOPTERA
Gryllidae Acheta sp. H T
Gryllodes sp. 10 H T
Tetrigidae Tettigidea armata Morse 106 H T
Tettigidea lateralis (Say) 36 H T
PSOCOPTERA
sp. 1 F T
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CHAPTER 6
SMALL SCALE SPATIAL HETEROGENEITY OF VEGETATION WITHIN A MAT OF SALVINIA MINIMA BAKER
AND IMPACTS ON THE COMMUNITY STRUCTURE OF INSECTS
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INTRODUCTION

“Habitat heterogeneity hypothesis” is a fundamental concept in ecology that assumes that
structurally complex areas provide more niches or ways to exploit the habitat, thereby increasing
species diversity (Simpson 1949, MacArthur and Wilson 1967, Tews et al. 2004, Cramer and Willig 2005).
In most areas plants determine the structural complexity of the available microhabitats and impact
distributions and interactions among species (McCoy and Bell 1991). The habitat heterogeneity provided
by variation among aquatic macrophytes can influence both biomass and diversity of the
macroinvertebrates associated with them (Watkins et al. 1983, Thomaz and da Cunha 2010). The
preference of some taxa for specific macrophytes also influences community level patterns of

occurrence and abundance (Thomaz et al. 2008).

In Louisiana’s aquatic systems the pleuston often consists of a unique habitat called a “flotant”
made of a combination of both floating aquatic vegetation and terrestrial rooted plants (Russell 1942).
Historically, the floating wetlands in the gulf south have been composed of marsh but with the
introduction of aquatic invasive weeds these mats now form in forested wetlands from Salvinia spp. and
a variety of other vegetation (Sasser et al. 1995, Jacono et al. 2001, Day et al. 2006). These forested
wetland swamps are integral parts of local ecosystems with high levels of primary productivity and
provide habitat, sources of food, and spawning/nursery areas (Conner and Day 1976, Conner et al.

1981).

Few prior studies have examined the invertebrate communities associated with the deep
swamp areas. Ziser (1978) and Sklar (1985) both previously sampled macroinvertebrates associated with
floating mats of Lemna sp. but did not work at sites heavily infested with Salvinia sp. While it was

reported in parts of Florida as early as 1928, Salvinia minima Baker was not reported in Louisiana until

74



1981 (Small 1931, Landry 1981). Our goal was to evaluate differences in insect communities between

different types of secondary vegetation occurring with S. minima.

MATERIALS AND METHODS

This research was conducted on private property located near the junction of I-10 and US-61 in
Gramercy, Louisiana (30.184519,-90.819144). The site is a perennially flooded Cypress-Tupelo
backwater swamp with a solid mat of plant material covering the water’s surface. The swamp vegetation
in the area is dominated by baldcypress (Taxodium distichum L.), water tupelo (Nyssa aquatica L.), red
maple (Acer rubrum L.) and Willow (Salix spp.). The pleuston flotant is primarily S. minima with
interspersed other aquatic macrophytes including water hyacinth (Eichornia crassipes (Mart.) Solm.),
alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.), and pennywort (Hydrocotyle spp.). Chinese
tallow (Triadica sebifera (L.) Small) seedlings were also observed, rooting in the flotant toward the end

of the year.

We sampled the area biweekly from May 18 to November 16 2009 using a 50 m x 50 m grid of
100 floating pitfall traps. All traps were serviced biweekly from the deployment date of May 18 for a
total of 13 collection dates during 2009. Specimens of adult insects were identified using relevant
literature and help from taxonomists. In addition to the insects collected at each trap location, on each
collection date we measured plant height within 1 m*(cm), water depth (cm), and the presence of any

plants other than S. minima within the 1 m*area.

Each of the floating pitfall traps was surrounded by a homogenous mat of S. minima in May of
2009 at the beginning of the field season, though as the field season progressed additional vegetation
was observed within the 1 m? evaluation area at some of the trap sites. Each of the trap locations was

coded for the presence/absence of each of the several observed species over the course of the year.
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The resulting data set was analyzed using Proc Cluster by Ward’s Methods in SAS 9.2 and the most

appropriate tree selected.

Variation in insect community composition between resulting clusters was calculated using

Jaccard’s Similarity Index. This index is calculated using the following formula:

_c
(a+b+c)

where c is the number of species common between clusters, and a and b are non-overlapping
species that only occur in a single cluster (Jaccard 1908). We also calculated several community indices:
Simpson’s Index of Diversity, Shannon’s Diversity Index, Pielou’s Evenness Index, Mclntosh’s Evenness
Index and Margalef’s Adjusted Richness (Shannon 1948, Simpson 1949, Margalef 1958, Pielou 1966,
Mclntosh 1967). We calculated these indices for each trap location as a pooled sample for the year.
Evaluation of possible relationships between measurements taken on site, calculated community indices
and clusters were done using SAS 9.2 to perform a Multivariate Analysis of Variance and to establish
Spearman’s Rank Order Correlation Coefficients. Rarefied predicted species accumulation curves using
Mao Tao were calculated following Colwell et al. (2004) using EstimateS (Colwell 2009). Mao Tau

outputs were graphed and regression lines calculated using SigmaPlot 11.

RESULTS AND DISCUSSION

CLUSTER ANALYSIS

Each of the 100 floating pitfall traps used were surrounded by S. minima at the beginning of the
20009 field season, but as the year progressed additional vegetation was observed within the 1 m?

evaluation area at some of the traps. Each of the traps was coded for the presence/absence of the
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following species over the course of the year: E. crassipes, Hydrocotyle spp., T. distichum (both trees and
knees), A. philoxeroides, T. sebifera (seedlings), sedges, and other trees (A. rubrum, N. aquatica, and
Salix spp.). Data points were analyzed using Proc Cluster in SAS 9.2.Ward’s Method of clustering
provided the clearest tree with five distinct groups based on plant community (semi-partial
R?=0.75)(Figure 6.1). All variables except A. philoxeroides were significant in the model (P<0.001). All
clusters contained S. minima as the predominant vegetation throughout the year. Cluster 1 (n=39) is the
largest group of trap locations and is characterized by the presence of pennywort (Hydrocotyle spp) in
addition to S. minima. Cluster 2 (n=18) is more structurally diverse of the clusters, including pennywort
(Hydrocotyle spp.) and water hyacinth (E. crassipes) with a few of the trap locations having alligator
weed (A. philoxeroides) and sedges (Carex sp.). Cluster 3 (n=13) includes the trees (A. rubrum, N.
aquatica, and T. distitchum), chinese tallow seedlings (T. sebifera), and pennywort (Hydrocotyle spp.).
Cluster 4 (n=22) is characterized by T. distichum alone with S. minima. Cluster 5 (n=8) is locations that

had S. minima alone over the course of the year (Figure 6.2, 6.3).

The vegetation clusters that resulted from the Ward’s analysis was approximately what we
expected to see, with each of the commonly observed macrophytes other than S. minima forming
groups of trap locations. The 5 clustered vegetation groups roughly form a gradient from least
structurally diverse (just S. minima) to complex (featuring large trees) and form irregular patches within
the landscape (Figure 6.3). The patches fall such that no cluster is more than 10 m from a trap with a

different vegetation cluster assignment.

VARIATION IN COMMUNITY STRUCTURE AMONG CLUSTERS

The community composition of adult insects within the five clusters of vegetation type is
represented by 176 insect species (Table 6.1). Of the species collected, 46% were found in only one

vegetation cluster while 23% (40/176) were found across all five clusters. Of the taxa found within all
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Figure 6.1. Plant community groups by Ward’s Cluster Analysis. Colored boxes show the extent of each
of the clusters.
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Figure 6.2. (Clockwise from top left) Representative photographs of vegetation clusters 1-4 (Cluster 5
not shown, included no vegetation other than S. minima)
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Figure 6.3. Trap grid with coordinate numbers. Colored blocks represent vegetation clusters.
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Figure 6.4. Frequency distribution of the number of taxa according to the number of clusters in which
they occur.
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Table 6.1 Comparative numbers of species of insects collected from each vegetation cluster (1-5).
(+ = present. - = absent)

Order/Family Genus/Species

BLATTODEA

Blattidae sp. + - - - -

COLEOPTERA

Anobiidae Byrrhodes sp. + - + - -

Anthicidae Sapintus pubescens Leferte + + + + +

Carabidae Acupalpus (Philodes) rectangulus Chadoir + - - + -
Agonum (s. str.) moerens Dejean + + + + +
Ardistomis obliquatus Putzeys - - - + -
Ardistomis schaumii LeConte + + + + -
Badister reflexus LeConte - - - + R
Bembidion (Furcacampa) affine Say + - - + -
Bembidion (Notaphus) sp. + - - - -
Bradycellus (Stenocellus) sp. + - - - -
Calleida viridipennis (Say) + - - - -
Chlaenius (Agostenus) impunctifrons Say - - + + -
Chlaenius (Agostenus) niger Randall + + + + +
Chlaenius (Agostenus) oxygonus Chaudoir + - - - -
Chlaenius (Agostenus) perplexus Say - - - + -
Chlaenius (s. str.) erythropus Say + - - - -
Chlaenius (s. str.) laticollis Say + - + + +
Clivina (Leucocara) americana Dejean - - - + -
Clivina (Semiclivina) dentipes Dejean - + - - -
Diplocheila major LeConte + + - + +
Elaphropus sp. + + + + +
Loxandrus sp.1 - - + - -
Loxandrus sp.2 + - - - +
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Table 6.1 continued

Carabidae

Loxandrus sp.3

Oodes amaroides Dejean

Oodes americanus Dejean

Paratachys sp.

Pterostichus (Melanius) ebeninus (Dejean)

Scarites quadriceps Chadoir

Scarites subterraneus Fabricius

Stenocrepis duodecimstriata (Chevrolat)

Stenolophus ochropezus (Say)

Cerambycidae

Elaphidion mucronatum (Say)

Parandra polita Say

Styloleptus biustus (LeConte)

Chrysomelidae

Chaetocnema sp.

Colaspis sp.

Epitrix sp.

Myochrous sp.

Nesaecrepida infuscata (Schaeffer)

Pseudolampis guttata (LeConte)

Coccinellidae

Diomus terminatus (Say)

Corylophidae

Clypastraea sp.

Orthoperus sp.

Curculionidae

Bagous hydrillae O’Brien

Chramesus sp.

Cyrtobagous salviniae Calder and Sands

Neochetina bruchi Hustache

Neochetina eichorniae Warner

+ + +
+ + +
+ + +
+ + +
+ - -
+ + +
+ - +
+ - -
- + -
+ - -
+ - -
- + -
+ - -
+ + +
- + -
- + -
- - +
- + -
- + -

Onychylis texanus Burke

Platypus flavicornis (Fabricius)
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Table 6.1 continued

Curculionidae Scolytinae sp. + + + + +
Stenopelmus rufinasus Gyllenhall + + + + +
Tanysphyrus lemnae Fabricius + + + + +
Xyleborus sp. + - + + R
Xylosandrus sp. + - - - +
Dytiscidae Prodaticus bimarginatus (Say) - + - + +
Thermonectus sp. + + - - +
Endomychidae Rhymbomicrus sp. + - - + -
Erotylidae Triplax flavicollis Lacordaire - - - + -
Eucinetidae Eucinetus morio LeConte - + + + +
Eucnemidae Dirrhagofarsus lewisii (Fleutiaux) + - - - -
Haliplidae Peltodytes sp. - - - - +
Heteroceridae Lanternarius mollinus (Kiesenwetter) + - - - -
Peditatus texanus Pacheco - - - - +
Histeridae Euspilotus assimilis (Paykull) - - - + +
Hydraenidae Hydraena sp. - + + + -
Hydrophilidae Cercyon sp. + + + + +
Enochrus consortus Green + + + - -
Enochrus interruptus Gunderson + + + + -
Enochrus ochraceus (Melshimer) + + + + -
Hydrobiomorpha casta (Say) + + + + +
Hydrochus callosus LeConte - - + - -
Paracymus sp. + + - + -
Phaenonotum exstriatum (Say) + + + + +
Tropisternus blatchleyi Orchymont + + - - +
Laemophloeidae  Placonotus sp. - - - + -
Latridiidae Corticarina sp. - - + - R
Cortinicara sp. - - - + -
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Table 6.1 continued

Latridiidae Enicmus sp. - - -
Melanophthalma sp. + + +
Limnichidae Eulimnichus sp. + - +
Limnichites punctatus (LeConte) - + -
Limnichoderus sp. + + R
Melandryidae Dircaea liturata (LeConte) - - -
Microscapha clavicornis (LeConte) + + -
Mordellidae Mordellistena sp. - - -
Nitidulidae Carpophilus dimidiatus (Fabricius) - - -
Stelidota sp. - + -
Noteridae Hydrocanthus sp. + - +
Suphisellus bicolor (Say) - + -
Phalacridae Stilbus sp. - - -
Ptiliidae Smicrus americanus Casey - + -
Unidentified genus (near Nephanes) sp.* - + -
Ptilodactylidae Ptilodactyla sp. - + -
Scarabaeidae Dyscinetus morator Fabricius + + +
Euphoria sepulcralis (Fabricius) - - -
Scirtidae Cyphon sp.* + + +
Scirtes tibialis Guerin-Meneville + + +
Sphindidae Sphindus sp. - + R
Staphylinidae Acylophorus sp. + + +
Adinopsis sp. - + _
Aleocharinae sp. - + +
Anaquedius sp. + - -
Anotylus sp. + + R
Atanygnathus sp. - - R
Athetini sp. - + -
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Table 6.1 continued

Staphylinidae Baeocera sp. - + R
Bibloplectus sp. - - -
Carpelimus sp. + + +
Coproporus sp. - + -
Euaesthetus sp. + + +
Euconnus (Psomophora) sp. - + +
Euconnus (s. str.) sp. - - -
Homaeotarsus sp. - + -
Hoplandria (Genosema) pulchra Kraatz + + +
Hoplandria (Genosema) sp.* - - R
Myllaena sp. + + -
Neobisnius sp. + + -
Philonthus sp. - + -
Pinophilus sp. + - -
Scopaeus sp. + + +
Scydmaeninae sp. + - -
Staphylininae sp. - - R
Stenus sp. + + +
Tachinus sp. - - -
Tachyporus sp. - - R
Thinobius sp. + - -
Thoracophorus sp. - + -
Tenebrionidae Lobopoda sp. - + -
Platydema sp. - - -
Tetratomidae Eustrophopsis bicolor (Fabricius) - - -
Thanerocleridae  Ababa tantilla LeConte - - -
Throscidae Trixagus horni Blanchard - + -
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Table 6.1 continued

HEMIPTERA
Anthocoridae sp. - - -
Belostomatidae Belostoma lutarium (Stal) + + +
Belostoma testaceum (Leidy) - - -
Lethocerus uhleri (Montandon) - - -
Cicadellidae Draeculacephela sp. + + -
Delphacidae sp. - - +
Gelastocoridae Gelastocoris oculatus (Fabricius) - + -
Gerridae Limnoporus canaliculatus (Say) - - -
Hebridae Hebrus consolidus Uhler + + +
Hydrometridae Hydrometra australis Say + + +
Hydrometra hungerfordi Torre-Bueno - + -
Mesoveliidae Mesovelia mulsanti White + - -
Naucoridae Pelocoris femoratus (Palisot) + + +
Nepidae Curicta scorpio Stal - + -
Saldidae Micracanthia husseyi Drake and Chapman + + +
Veliidae Microvelia sp. - - -
HYMENOPTERA
Braconidae sp.1 - - -
sp.2* + + +
Formicidae Camponotus impressus (Roger) - + -
Camponotus pennsylvanicus (DeGeer) + - -
Crematogaster sp. + + +
Crematogaster ashmeadi Mayr + + -
Crematogaster cerasi Fitch + + -
Crematogaster vermiculata Emery + + +
Cyphomyrmex rimosus (Spinola) - + -
Hypoponera opacior (Forel) + + +
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Table 6.1 continued

Formicidae Pheidole sp. + - + + +
Pheidole dentata (Mayr) + + + + +
Pheidole metallescens Emery - - + + -
Pheidole moerens Wheeler - + + + +
Pseudomyrmex ejectus Smith - - + - -
Solenopsis sp. + + + + +
Solenopsis carolinensis Forel - - + - -
Solenopsis invicta Buren + + + + +
Solenopsis picta Emery + + + + +
Strumigenys louisianae Roger + - + - -
Strumigenys sylvestrii Roger - - - - +
Ichneumonidae Cryptinae: Hemigastrini sp. + + + + +
sp.2 + + + + +
sp.3 + - - - -
Platygastridae Baeus sp. - + - - R
Pompilidae Anoplius depressipes Banks + + + - +
Sphecidae sp. - - - + -
ODONATA
Libulellidae sp. - + - - -
Coenagrionidae sp. + - + + -
ORTHOPTERA
Gryllidae Acheta sp. - - - + -
Gryllodes sp. + + + + -
Tetrigidae Tettigidea armata Morse + + + + +
Tettigidea lateralis (Say) + + + + +
PSOCOPTERA

Total Number of morphospecies
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Table 6.2. Community similarity index (Jaccard’s Index of Similarity and number of shared species)
between 5 different vegetation clusters.

Similarity Index

0.50 0.46 0.47 0.40

69 0.55  0.47 0.52
66 62 0.49 0.50
74 61 64 0.43
53 52 51 52

No. of Shared Species

five clusters, 24 of 40 belong to the order Coleoptera. The frequency of distribution of species and the
number of clusters that occur in is skewed and does not follow a normal distribution (Figure 6.4). The
community similarity among clusters is calculated using Jaccard’s Similarity Index (J) (Jaccard 1908) and

ranges from 0.40 to 0.55 (Table 6.2).

While the overlap in community composition is low between vegetation clusters with between
52 and 74 shared species (J= 0.40-0.55, Table 6.2), it is similar to what others have found when looking
at community structure associated with different types of macrophytes (Poi de Neiff and Neiff 2006).
Additional studies have found much higher levels of overlap between community structures but
included a wider variety of organisms (Dioni 1967). The 40 taxa collected that were found in all five
vegetation clusters represent a wide variety of orders and several different life history strategies

including herbivores, predators, and parasitoids (Merritt et al. 2008).

We used the EstimateS program to calculate rarefied sampling curve with replacement to
compare diversity of clusters because the clusters were of uneven size. While sampling with

replacement results in lower overall estimates of population, the method of calculation allows
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comparison of unequal datasets (Colwell 2009). Mao Tao species accumulation curves were calculated
for each of the 5 vegetation clusters and indicate differing predicated species richnesses (R*>0.98).
Cluster 1 was the most species rich cluster both in raw data and rarefied analysis, followed by cluster 4.
Clusters 2 and 3 both collected 87 species in the raw data, but using the rarefied analysis, cluster 3

would collect more species than cluster 2. Cluster 5 was the least rich in both analyses (Figure 6.5).

CORRELATION ANALYSIS

We performed a multivariate analysis of variance to examine the possible interaction effects of
vegetation cluster on the richness and abundance of the insects collected, community indices
(Simpson’s, Shannon’s, Margalef’s, Pielou’s and Mclntosh’s Indices), and variables measured on site
(plant height and water depth). None of the diversity indices or richness/abundance showed a
significant interaction with vegetation cluster (Figures 6.6-6.12). Resulting P values for the variables are
presented in Table 6.3. Both water depth and plant height had highly significant differences between

vegetation clusters (Figures 6.13, 6.14).

Multivariate analysis revealed no significant differences in diversity, evenness, abundance, or
richness between clusters regardless of differences in structural complexity of vegetation present
(Figures 6.6-6.12). There were highly significant differences in water depth and plant height between
clusters. Vegetation clusters 3 and 4 contained tree species and had significantly shallower water and

taller vegetation (df=4,95, P<0.0001)(Figures 6.13, 6.14) than the other clusters.

To test non-linear relationships between variables, we completed pairwise comparisons of the
same variables listed above using a calculated Spearman’s Rank Order Coefficient. These also indicate
additional significant interactions that were not visible in the MANOVA results above (see Correlation
Coefficients and P values in Table 6.4). Vegetation clusters were negatively associated with plant height
and water depth as seen in the MANOVA, but additionally showed partial weak positive correlations
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Figure 6.6. Comparison of randomized species (Mao Tau) accumulation curves for each vegetation
cluster calculated with replacement.
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Figure 6.9. Average MclIntosh’s Index by vegetation cluster.
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Figure 6.10. Average Pielou’s Index by vegetation cluster.
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Figure 6.11. Average number of individual insects collected from each trap by vegetation cluster.
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Table 6.3. MANOVA results analyzing differences among vegetation clusters.

Variable Degrees of Freedom FValue  PValue
| Simpson’s Index of Diversity 4,95 122 03090 |
Shannon’s Index of Diversity 4,95 1.72 0.1519

Richness 4,95 1.29 0.2778
Abundance 4,95 0.9 0.4685
Margalef’s 4,95 0.70 0.5966

Mcintosh 4,95 1.22 0.3067

Pielou’s 4,95 1.74 0.1469

Plant Height (cm) 4, 95 11.78 <0.0001
Water Depth (cm) 4, 95 18.36 <0.0001

with Simpson’s Diversity, Shannon’s Diversity, Mclntosh’s Evenness, and Pielou’s Evenness. Water depth
was weakly partially positively correlated with abundance, but weakly partially negatively correlated
with Simpson’s Diversity, Shannon’s Diversity, Mclntosh’s Evenness, and Margalef’s Richness. Plant
height was negatively correlated with water depth as in the MANOVA above. These additional weak
interactions indicate through non-parametric correlation coefficients that other factors may be

influencing associations between structural complexity and the diversity and evenness indices.

None of our analyses linked the more spatially complex vegetation clusters to higher levels of
richness, abundance, or diversity. While positively linking diversity to structural complexity is commonly
accepted (Tews et al. 2004), we found little support for the hypothesis in this system. Other studies have
observed a lack of relationship between community variables and structural complexity (McAbendroth
et al. 2005). Possibly, our gridded area of 1 m” plots every 5 m was the wrong scale to detect changes in
community structure between habitat types. The scale of experiments examining spatial heterogeneity

appear to be directly linked to other findings, and several studies have examined the differences in
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Table 6.4. Spearman’s Rank Order Coefficients and associated P values for community indices,
vegetation cluster, and measured variables. Abbreviations are as follows: Simp= Simpson’s Diversity,
Shan= Shannon’s Diversity, Rich= Richness, Abun= Abundance, Marg= Margalef’s Richness, Mcln=
Mclntosh’s Evenness, Piel= Pielou’s Evenness, H,0D= Water Depth, Plant= plant height, Clus= Cluster.
Variables and coefficients significant at the a=0.05 level are in bold.

Simp. Shan. Rich. Abun. Marg. Mcln. Piel. H,0D Plant

Simp. R 0.897 0.116 -0.471 0.509 0.989 0.936 -0.360 0.159 0.226
<0.0001 0.2526  <0.0001 <0.0001 <0.0001 <0.0001 0.0002 0.1145 0.0236

Shan. 1.00 0.391 -0.171 0.782 0.848 0.913 -0.324 0.153 0.207
<0.0001 0.0880 <0.0001 <0.0001 <0.0001 0.0010 0.1295 0.0308

Rich. 1.00 0.422 0.698 0.041 0.058 -0.152 0.142 0.147
<0.0001 <0.0001 0.6885 0.5672 0.1303 0.1579 0.1143

Abun 1.00 0.105 -0.585 -0.350 0.215 0.024 0.015
0.3006 <0.0001 0.0004 0.0325 0.8135 0.8855

Marg 1.00 0.455 0.591 -0.238 0.106 0.119
<0.0001 <0.0001 0.0173 0.2949 0.2391

Mclin. 1.00 0.915 -0.368 0.139 0.214
<0.0001 0.0002 0.1678 0.0327

Piel. 1.00 -0.353 0.114 0.209
0.0003 0.2608  0.0372

H,0D 1.00 -0.351 -0.493
0.0003 <0.0001

Plant 1.00 0.413
<0.0001
Clus. 1.00

micro- meso- and macro- studies and found differing interactions at each level (Tews et al. 2004). In
addition, when our sampling grid for the study was established, the flotant was homogenous and

composed entirely of S. minima. As the season progressed, the flotant’s habitat structure grew more
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fragmented and heterogeneous, possibly confounding results since vegetation was not consistent for

the entire year.

While we were investigating non-native vegetation, many of the other studies looking at
structural habitat complexity among aquatic macrophytes have taken place within the native range of
the plants studied (Dioni 1967, Poi de Neiff and Neiff 2006). Several studies in Africa that examined
invasions of E. crassipes versus native plant communities found a variety of effects on invertebrate
communities, including positive effects (Brendonck et al. 2003), neutral effects (Midgley et al. 2006), and

negative effects (Masifwa et al. 2001).

While we did not investigate water chemistry among vegetation clusters, variation in pH and
dissolved oxygen can shape community structure (Heino 2000). Heavy stands of invasive aquatic
vegetation like Salvinia spp. or E. crassipes can decrease dissolved oxygen levels (Begg 1970, Rai and
Datta Munshi 1979, Flores and Carlson 2006), possibly changing the structure of the community
surrounding the vegetation (Cheruvelil et al. 2002). While the spatial heterogeneity within the mat of S.
minima did not visibly affect the diversity or abundance of the adult insects associated with the mat,
rarefaction predicted differences in richness between clusters of vegetation. The cluster with the highest
species richness was not among the more structurally diverse within the mat, suggesting that other

(possibly abiotic) influences are driving variation in community structure.
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SUMMARY

In this dissertation, field experiments were conducted to introduce and establish populations of
the salvinia weevil, Cyrtobagous salviniae Calder and Sands, for the control of common salvinia, Salvinia
minima Baker and to examine factors that may affect the success of the biological control program.
These studies were necessary to establish a biological control program against S. minima in southern
Louisiana and to address interactions that may affect the survival of C. salviniae. Chapter 2 details the
history of introductions of C. salviniae on S. minima in southern Louisiana, and original locations of the
populations of C. salviniae used to form colonies here at Louisiana State University. As part of this study,
we released adult C. salviniae at 9 different locations across southern Louisiana between 2006 and 2010.
We tracked the populations in Gramercy, LA and monitored their impacts on the biomass of S. minima,
number of terminal buds damaged, percentage of the mat within the quadrat green, percentage of
water within the quadrat covered, dissolved oxygen, pH, conductivity, and temperature of the water’s
surface. Cyrtobagous salviniae were found successfully established and having overwintered during
2008 at several field sites. The field populations that established significantly negatively impacted
biomass and positively affected the number of terminals buds damaged. None of the other parameters

measured differed between control sites and those where C. salviniae was released.

The study in Chapter 3 addresses the suspicion that the red imported fire ant, Solenopsis invicta
Buren, may be interfering with the establishment of populations of C. salviniae in some locations. We
constructed moated quadrats designed to exclude S. invicta from S. minima that had been infested with
C. salviniae and monitored them for two years. The quadrats with moats had significantly fewer S.
invicta and were successful in excluding most individuals from accessing the C. salviniae released. The
moated quadrats also had significantly higher populations of C. salviniae at the end of the study, and a

trend towards lower biomass. In conjunction with the suspicion that S. invicta is also preying on Samea
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multiplicalis (Guneé), an additional native herbivore, we recommend controlling for populations of S.
invicta where possible to increase the success of a biological control program with C. salviniae on S.

minima.

Chapter 4 provides a brief overview of methods commonly used to sample insects associated
with pleuston vegetation like S. minima. We wanted to be able to collect insects associated with the
surface of the floating mat that may interact with C. salviniae and decided to attempt to find a design
that worked in our habitat. We constructed several designs of floating surface traps found in the
literature, and when none of them held up through testing we designed and constructed our own

design.

In Chapter 5 we were interested in the biodiversity of the insects that we collected with the trap
design from Chapter 4. We collected a total of 5,773 individuals between May 18 and November 16,
2009 that represent 176 species within 62 families and 7 orders. The order Coleoptera was both the
most species rich and the most abundant and included three currently undescribed species. We also
identified a previously unknown Braconid (Hymenoptera) wasp which is in the process of being
described in conjunction with researchers at the University of Kentucky. Seven species of semi-aquatic
Curculionidae (five of which have been used as biological control agents for aquatic plants) were also
collected. We observed a single peak in both species richness and abundance during the month of July,
and high diversity and evenness across the year. When we tried to evaluate B- diversity between our
study and other studies of insects associated with floating mats of Salvinia sp., we had a much higher
number of taxa collected. Since many of the taxa we collected have lifestyles that are nocturnal or
crepuscular, we concluded that the large difference was due to differences in collection methodologies
and strategies. To examine whether the taxa we collected were incidentally using S. minima as an

extension of a terrestrial area, we looked at published habitat associations for the genera and species

103



that information. Most of the species we collected are indeed previously known as hydro- or

hygrophilous suggesting that they are not present accidentally.

Chapter 6 examined whether the small scale spatial heterogeneity of plants within the flotant of
S. minima affects the community structure of insects that are associated with it. Ward’s cluster analysis
broke the 100 traps into five groups based on secondary vegetation other than S. minima present with a
gradient of structural complexity. Community similarity between clusters ranged from 0.40 to 0.55, and
40 species were found in all five vegetation clusters. We used estimates of Mao Tau to construct species
accumulation curves with non- linear regression, to compare projected richness between clusters.
Multivariate analysis revealed no significant differences in diversity, evenness, abundance, or richness
between clusters regardless in the differences in structural complexity of vegetation present.
Spearman’s Rank Order Correlation was used to look for non-linear relationships between clusters and
various calculated community indices. The spatial heterogeneity within the mat of S. minima did not
affect the diversity or abundance of the insects associated with the mat but rarefaction predicted
differences in species richness between clusters of vegetation. None of our analyses linked the more
spatially complex vegetation clusters to higher levels of richness, abundance, or diversity. The most
species rich cluster was one of the least spatially diverse, suggesting some other factor is driving

differences among clusters.

In conclusion we successfully established C. salviniae on S. minima in southern Louisiana and
monitored its impacts on both the mat and water quality measurements. We identified S. invicta as a
negative factor in the biological control of S. minima, and recommended that S. invicta be controlled
where possible to increase the chances of C. salviniae’s success. We designed an improved floating
pitfall trap for collecting insects associated with floating vegetation and used it to collect a wide variety

of adult insects. Community data was used to test the spatial heterogeneity hypothesis within our
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experimental system and reject it as the driving force behind differences in community structure
between different groups of secondary vegetation. The findings here will be applicable to the biological

control programs of a variety of other floating aquatic weeds in addition to S. minima.
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