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Epigraph

“Research is to see what everybody else has seen, and to think what nobody
else has thought.”- Albert von Szent-Györgyi
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Abstract

The southern pine beetle guild (Coleoptera: Curculionidae: Scolytinae) is arguably the

most destructive group of forest pests in the Southeastern United States. Laboratory assays

suggest that larvae of wood borer associates from the genus Monochamus (Coleoptera: Ce-

rambycidae) may be facultative intraguild predators of southern pine beetle guild. In this

study the dynamics of the subcortical interactions between M. titillator (F.) and members

of the southern pine beetle guild were examined using PCR-based molecular gut content

analyses. Species-specific PCR primer sets were developed to work under multiplex PCR

conditions to detect DNA of members of southern pine beetle guild in the gut contents of

M. titillator larvae. The molecular half-life of the bark beetle Ips grandicollis (Eichhoff) was

calculated as 6.89 hours post-consumption in the gut contents of M. titillator larvae under

laboratory conditions. Comparison of the proportion of M. titillator larvae testing positive

for each bark beetle species at 6.9 hours post-consumption showed that the proportion fed

Dendroctonus terebrans (Olivier) differed significantly. A field study was performed to de-

termine the detection frequencies of southern pine beetle guild DNA in the gut contents of

M. titillator larvae under semi-natural conditions. A total of 271 M. titillator larvae were

collected from experimental boles in the field. Twenty-six (9.6%) of the field-collected M.

titillator larvae tested positive for DNA of members of the southern pine beetle guild. Of

these larvae, 25 (96.2%), 1 (3.8%), 0 (0%), and 0 (0%) tested positive for I. grandicollis,

I. calligraphus (Germar), D. terebrans, and D. frontalis (Zimmerman) DNA respectively.

The species compositions of the southern pine beetle guild within the gut contents of the

field-caught M. titillator larvae reflected those within the host, suggesting random predation.

Results from this study support the hypothesis that Monochamus species may be facultative

vii



intraguild predators of bark beetle larvae in the field. Additionally, this study demonstrates

the capabilities of PCR in elucidating the predator-prey interactions of cryptic forest insects

and provides a powerful tool to better understand mechanisms driving southern pine beetle

guild population fluctuations.
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1. Introduction and Literature Review

1.1 Biology and Attack Dynamics of the Southern Pine

Beetle Guild

In the Southeastern United States five sympatric pine bark beetle species (Coleoptera:

Curculionidae: Scolytinae) form what is known as the southern pine bark beetle guild.

This guild includes the eastern six-spined engraver, Ips calligraphus (Germar); the eastern

five-spined engraver, I. grandicollis (Eichhoff); the small southern pine engraver, I. avulsus

(Eichhoff); the southern pine beetle, Dendroctonus frontalis (Zimmerman); and the black

turpentine beetle, D. terebrans (Oliver) (Figure 1.1).

Both Ips and Dendroctonus beetles are attracted to recently felled, moribund, or weather

damaged trees (Wood, S.L. 1982; Coulson and Witter, 1984). Not all trees selected by these

beetles show signs of decline. Within the Scolytinae, species can be categorized as “primary

pests” (e.g. Dendroctonus spp.), i.e. those that readily kill seemingly healthy trees and

“secondary pests” (e.g. most Ips spp.), which normally only attack trees already in serious

decline (Rudinsky, 1962). It has been estimated that I. calligraphus and D. frontalis have

the potential to fly up to four miles while seeking new host material (Kinn, 1986) making

the attack range of bark beetles significant. However, bark beetles tend to select the nearest

suitable host tree rather than disperse over large distances (Gara and Coster, 1968; Coulson

et al., 1978; Schowalter et al., 1981) possibly due to lowered risk of mortality (e.g. predation,

fatigue, and environmental stressors). Members of the southern pine beetle guild are known

to attack at least 16 Pinus spp. in the Southern United States (Conner and Wilkinson, 1983),

1
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Figure 1.1 The southern pine beetle guild: Dendroctonus frontalis (Top Left), Dendroctonus
terebrans (Top Right), Ips grandicollis (Right Center), Ips calligraphus (Left Center), and
Ips avulsus (Bottom). Photographs by: Michael L. Ferro.
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but their preferred hosts are loblolly pine (P. taeda) (L.) and shortleaf pine (P. echinata)

(Miller) (Berisford and Franklin, 1971; Thatcher et al., 1980; Wagner et al., 1984).

The first individuals to arrive at a potential host tree [sometimes referred to as pioneer

beetles (Borden, 1974)] locate suitable host material via either random landing tactics (Vité

and Gara, 1962; Moeck et al., 1981) or primary attraction using host produced volatiles

(Byers, 1995; Brattli et al., 1998). These pioneer beetles usually consist of a combination

of reemerged parent adults and progeny adults originating from a single or multiple infested

trees (Cooper and Stephen, 1978; Pope et al., 1980). Once a suitable host is located pioneer

beetles begin excavating galleries through the outer bark and into the phloem tissue. This

activity can be visualized externally by the presence of frass at the base of infested trees

and by the presence of pitch tubes on the bole surface caused by sap exudation as a result

of the trees natural defenses (Thatcher and Conner, 1985). The pioneer sex differs between

the two genera. Males usually initiate attack in the three southern Ips species (Vité et

al., 1972), while females initiate attack in the two southern Dendroctonus species (Coster

and Vité, 1972; Godbee and Franklin, 1976). While boring into the outer bark and phloem

the pioneer sex begins releasing aggregation pheromone components (see Section 1.3), which

assist in attracting conspecifics. This behavior is thought to increase the number of attacking

beetles and synchronize attack, ultimately facilitating establishment by overcoming the host’s

natural defenses (mass attack) (Wood, 1972; Coster et al., 1977; Payne, 1980). During

endemic bark beetle population levels however, healthy host trees are likely to resist bark

beetle colonization (Raffa and Berryman, 1983).

Mating occurs in the nuptial chambers constructed by the pioneer sex (Wagner et al.,

1982). I. calligraphus and I. grandicollis practice harem polygyny (Kirkendall, 1983) and

maintain an average harem size of three females (Cook et al., 1983; Haack et al., 1987;
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Latty et al., 2009). Alternatively, I. avulsus exhibits a monogamous mating system (Cook

et al., 1983), as do both D. frontalis and D. terebrans (Thatcher, 1960). Once mated,

female Ips species initiate gallery formation following the grain of the wood (Haack et al.,

1984; Raffa et al., 1993) and eggs are deposited at regular intervals along the margins of these

galleries. D. frontalis females utilize a similar egg deposition strategy, but carve characteristic

“serpentine” parental galleries that do not follow the grain of the wood. Unlike the other

members of the southern pine beetle guild, D. terebrans exhibits a gregarious egg deposition

strategy, where females may lay an average of 100 eggs in a single location (Mayfield and

Foltz, 2005). This strategy is believed to have significant fitness advantages over traditional

bark beetle larval feeding strategies, such as increased survivorship, shorter developmental

periods, or higher quality resource utilization at the base of trees where larvae of this species

usually feed (Grégoire, 1985; Six and Klepzig, 2004).

The developmental rates for the different species of the southern pine beetle guild are

highly variable and temperature dependent. Summer conditions corresponding to approxi-

mately 25-35◦C generally yield the optimal developmental rates for members of the southern

pine beetle guild (Yearian and Wilkinson, 1967; Wagner et al., 1984, 1987, 1988). I. cal-

ligraphus and I. grandicollis exhibit similar developmental periods ranging from 25-27 days

(Thatcher, 1960; Dixon, 1984) in the southern part of their range and as many as nine over-

lapping generations have been observed for I. calligraphus in Florida (Haack, 1985). The

developmental period of I. avulsus is somewhat shorter at approximately 18-25 days with up

to 10 overlapping generations in the southeastern part of its range (Baker, 1972). Each Ips

species has three larval instars (Wilkinson, 1963) while the Dendroctonus species have four

(Goldman and Franklin, 1977). The development of D. frontalis is the most temperature

sensitive of the southern pine beetle guild (Wagner et al., 1984) and ranges from 26-110 days



5

with 6-8 overlapping generations in the southeastern part of its range (Thatcher and Pickard,

1967; Coulson, 1979; Ungerer et al., 1999). D. terebrans has the longest developmental time,

ranging from 90-120 days with 2-4 overlapping generations per year (Smith and Lee, 1972).

1.2 Ecological and Economic Importance of the South-

ern Pine Beetle Guild

The southern pine beetle guild has been considered the most destructive group of forest

pests in the Southeastern United States. Timber losses attributed to the southern pine

beetle have been in excess of $237 million/year in parts of North America (Price et al.,

1997). Between the years of 1999-2003 the southern pine beetle was attributed to in excess

of $1.5 billion in timber losses over an area of 1.21 million acres in the Eastern U.S. (AL, KY,

NC, SC, and TN) (Merten and Nowak, 2004). It has been widely reported that D. frontalis

is a primary pest species and will readily attack healthy trees (Coulson, 1979; Wood, D.L.

1982) contributing to its status as a serious ecological and economic pest. The attack of

vigorous trees usually does not occur at endemic population levels; rather it appears that

epidemic levels are necessary for D. frontalis to kill healthy trees (Fargo et al., 1978; Paine

et al. 1997). The ability of D. frontalis to overcome the host defenses of healthy trees is

attributed not only to its complex chemical communication system, but also to its close

relationship with phytopathogenic fungi (Raffa et al., 1993; Paine et al., 1997).

The three Ips species and D. terebrans are facultatively aggressive. Turpentine beetles

(D. terebrans), rarely kill their hosts (Klepzig et al., 1991; Paine et al., 1997), but on

occasion kill trees that have been mechanically injured or environmentally stressed (Kowal

and Coyne, 1951; Merkel, 1981). Due to its relative scarcity in forests, D. terebrans is often

overlooked by researchers and little is known of its roles in forest ecosystems. Since D.
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terebrans normally infests stumps and the root systems of trees and rarely kills its hosts,

it is of little economic concern except in high value trees. When tree mortality does occur,

it is normally attributed to bluestain fungi vectored in the mycangia of D. terebrans. Like

D. terebrans the three southern Ips species rarely attack healthy trees. However, when

exceptional environmental conditions and/or plentiful host material allow Ips populations

to reach epidemic levels they are capable of infesting and killing vigorous trees (Wood and

Stark, 1968). The duration and scale of these outbreaks are usually much lower than those of

D. frontalis (Paine et al., 1997). However, because of their much higher prevalence in space

and time, the Ips species may play larger roles than D. frontalis in shaping forest ecosystems

(Paine et al., 1981). The economic and ecological impacts of the southern pine beetle guild

extend beyond the loss of raw materials. Loss of trees can affect wildlife diversity, disrupt

the watershed in surrounding areas, provide new avenues for invasive species, and reduce the

aesthetic value of affected stands (Leuschner, 1980).

1.3 Chemical Ecology of the Southern Pine Beetle

Guild

Each member of the southern pine beetle guild produces pheromones during what is

known as the concentration phase of attack (Wood, D.L. 1982). As mentioned previously,

in combination with host volatiles these pheromone components attract conspecifics, which

aid in overcoming host defenses and may assist in locating a fleeting resource (Vité and

Francke, 1976). Some members of the southern pine beetle guild also release anti-aggregation

pheromone components which have been shown to repel or “switch attack” of incoming con-

specifics to prevent overcrowding when released in high concentrations (Rudinsky, 1973;

Payne et al., 1978). Bark beetle semiochemicals can also function as kairomones or al-
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lomones depending on the perceiving species. For example, the D. frontalis produced semio-

chemical frontalin has a kairomonal function for the parasitoid Medetera bistriata (Parent)

(Diptera: Dolichopodidae) (Williamson, 1971), while R-(-)-ipsdienol produced by I. pini

(Say) functions as an allomone for I. paraconfusus (Lanier) (Light and Birch, 1979). These

semiochemicals also assist in mediating southern pine beetle guild interactions by dictating

the temporal and spatial patterns of colonizing species (Birch and Svihra, 1979; Dixon and

Payne, 1979; Birch et al., 1980; Svihra et al., 1980; Paine et al., 1981; Wagner et al., 1985).

In addition to these functions, Wood (1970) suggests that these semiochemicals may play an

important role in sexual isolation as reproductive isolating mechanisms. A brief review of the

chemical ecology of the southern pine beetle guild is provided in the following subsections.

1.3.1 Dendroctonus Species

The chemical ecology of D. frontalis is arguably the best understood within the southern

pine beetle guild and has been reviewed in detail by Smith et al., (1993). Once D. frontalis

females land on a suitable host they begin releasing the aggregation pheromone frontalin.

Frontalin is concentrated in the hindguts of D. frontalis females and released via defecation

(Vité and Pitman, 1968). Vité and Pitman (1968) suggest that host defenses stimulate the

release of frontalin and that cessation of resin flow and initiation of feeding ends production.

Frontalin has been shown to attract large numbers of conspecifics of both sexes (Renwick

and Vité, 1969). Payne et al., (1982) observed that D. frontalis was more attracted to (-)-

frontalin than (+)-frontalin. In addition to frontalin females also produce the aggregation

pheromone component trans-verbenol. trans-Verbenol is thought to function by orienting

flying individuals to the host and to synergize the response to frontalin, particularly when

host volatiles are absent (Renwick and Vité, 1969; Payne et al., 1978). trans-Verbenol is
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autooxidized from α-pinene via feeding (Brattli et al., 1998) and the production halts once

feeding has occurred for 12-16 hours (Vité and Pitman, 1968). Male D. frontalis may also

play an additional role in conspecific aggregation via production of the pheromone component

(+)-endo-brevicomin (Vité et al., 1985; Sullivan et al., 2007).

As the density of attacking beetles increases, male D. frontalis begin producing verbenone

(females also produce verbenone, but in much lower quantities) and endo-brevicomin. endo-

Brevicomin production is thought to be stimulated by the pairing of male and female D.

frontalis and the (-)-isomer of endo-brevicomin has been shown to repel both sexes (Vité et

al., 1985; Smith et al., 1990). These semiochemicals function as anti-aggregation pheromones

which deter the arrival of both sexes when released in high concentrations (Payne et al.,

1978; Borden et al., 1986). The concentration thresholds of verbenone and endo-brevicomin

necessary to repel incoming beetles is unknown, however it is thought that their concentra-

tions must exceed the level of attractive compounds by a particular amount [e.g. 15% higher

concentrations of verbenone compared to trans-verbenol (Ryker and Yandell, 1983)] for anti-

aggregation to occur. Alternatively, some bark beetle anti-aggregation pheromones such as

endo-brevicomin may function by enhancing the attractiveness of more distant pheromone

sources (Sullivan and Mori, 2009). No attraction by D. frontalis to semiochemicals produced

by other members of the southern pine beetle guild has been demonstrated (Billings, 1985;

Smith et al., 1990; however, Smith et al. (1990) speculate that D. terebrans aggregation

pheromones may be attractive to D. frontalis.

The chemical ecology of D. terebrans appears similar to that of D. frontalis, however host

volatiles appear to be necessary to mediate attraction to pheromones. For example, female

D. terebrans produce the aggregation pheromones frontalin and trans-verbenol (Payne et

al., 1987; Phillips et al., 1989). Frontalin has been shown to be weakly attractive to male
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D. terebrans alone, but highly attractive when synergized by host volatiles (Payne et al.,

1987; Phillips et al., 1989; Delorme and Payne, 1990). Similarly, trans-verbenol is only

weakly attractive to D. terebrans alone, but highly attractive in combination with host-

volatiles (Siegfried, 1984). Once male beetles arrive at the host tree they begin producing

trace amounts of the pheromones exo- (Phillips et al., 1989) and endo-brevicomin (Payne et

al., 1987). Although endo-brevicomin has been shown to be produced in low quantities by

male D. terebrans, comparatively high quantities produced by D. frontalis, may be utilized

by D. terebrans as a kairomone (Delorme and Payne, 1990). Once gallery formation is

initiated both male and female D. terebrans produce verbenone. The behavioral function

of verbenone in D. terebrans has yet to be demonstrated. The function of trans-verbenol,

which is produced by both sexes is also unclear, however Dolorme and Payne (1990) suggest

that both may have synergistic roles with host volatiles. While D. terebrans has been

shown to respond to a variety of semiochemicals produced by D. frontalis, the Ips produced

semiochemicals have been shown to only elicit weak responses by D. terebrans (Dolorme and

Payne, 1990).

1.3.2 Ips Species

Male Ips spp. of the southern pine beetle guild arrive at a suitable host and begin

production of aggregation pheromones: S-cis-verbenol, R-(-)-ipsdienol, and trans-verbenol

(I. calligraphus) (Renwick and Vité, 1972; Vité et al., 1972); R-(-)-ipsdienol and lanierone

(I. avulsus) (Vité et al., 1978; Teale et al., 1991; Miller et al., 2005); or S-(-)-ipsenol (I.

grandicollis) (Vité and Renwick, 1971).

The antipodes of these aggregation pheromones have been shown to serve as anti-aggregation

pheromones for the various Ips species. Vité et al. (1976a) observed that the presence of
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the anti-aggregation pheromone component R-cis-verbenol did not affect the response of I.

calligraphus when mixed with equal portions of S-cis-verbenol. However, when presented

as 10 parts R-cis-verbenol to 1 part S-cis-verbenol a significant reduction in the response

of I. calligraphus was observed (Vité et al., 1976a). The concentration of R-cis-verbenol

necessary to elicit a negative response by I. calligraphus tested in this study may not be

biologically plausible under natural conditions. The anti-aggregation pheromone component

of I. calligraphus and I. avulsus, S-(+)-ipsdienol, has been shown to interrupt the response

of I. avulsus to R-(-)-ipsdienol (Vité et al., 1978). This pattern was not observed by Strom

et al., (2003) who found that racemic ipsdienol was more attractive to I. avulsus than the

R-(-)-isomer alone. The antipode of S-(+)-ipsenol, R-(-)-ipsenol has been shown to reduce

the response of I. grandicollis as well (Vité and Renwick, 1971; Vité et al., 1976b; Smith et

al., 1990). Studies examining the enantiomeric ratios of the southern Ips species have ob-

served a considerable effect of geographic location. For example, Kohnle et al. (1994) found

that the enatiomeric ratio of ipsdienol produced by I. avulsus in East Texas was 90% S(+)

and 10% R(-). Alternatively, a population of I. avulsus in Alabama was found to produce

approximately 25% R-(-)-ipsdienol (Seybold et al., 1995).

Response of the southern Ips species to the semiochemicals produced by other members

of the southern pine beetle guild appear to vary greatly among species. The presence of

ipsenol has been shown to have a synergistic effect on the response of I. avulsus to ipsdienol

(Hedden et al., 1976; Miller et al., 2005). Alternatively, the attractiveness of ipsenol to I.

calligraphus is not well understood. Miller et al. (2005) found that racemic ipsenol had a

synergistic effect on the response of I. calligraphus to racemic ipsdienol in Florida, but not

in Georgia or Louisiana. Adding to the confusion are conflicting results from earlier studies

showing attractiveness of material infested by I. grandicollis to I. calligraphus (Birch et al.,
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1980) or no attraction (Svihra, 1982). Because both I. avulsus and I. calligraphus utilize R-

(-)-ipsdienol as part of their aggregation pheromone, it is not surprising that I. avulsus and I.

calligraphus are attracted to host material containing individuals of the other species (Birch

et al., 1980; Svihra et al., 1980). No inhibition in response by I. avulsus to other sympatric

Ips semiochemicals has been observed (Birgersson et al., 1995; Miller et al., 2005). Miller et

al. (2005) found that the response of I. grandicollis to racemic ipsenol was not interrupted

by the presence of racemic ipsdienol. No response to Dendroctonus produced semiochemicals

was observed for I. calligraphus (Dixon and Payne, 1980; Smith et al., 1990) or I. avulsus

(Birch et al., 1980; Svihra, 1982) in the field. Electroantennograms performed by Smith et

al. (1988) showed that I. calligraphus, I. avulsus, and I. grandicollis responded to endo-

brevicomin, frontalin, and verbenone. Unlike I. avulsus and I. calligraphus, I. grandicollis

has been shown to respond to frontalin and trans-verbenol in the field (Dixon and Payne,

1980; Smith et al., 1990) and single cell recordings performed by Ascoli-Christensen et al.

(1993) found that I. grandicollis responded to frontalin, endo-brevicomin, trans-verbenol,

and verbenone (all produced by D. frontalis).

1.4 Traditional Associates of the Southern Pine Beetle

Guild

Many natural enemies, parasitoids, and resource competitors (e.g. wood borers) utilize

pheromone components of members of the southern pine beetle guild (see above) or host

produced volatiles to locate suitable host material or potential prey (Overgaard, 1968; Vité

and Williamson, 1970; Moser et al., 1971; Camors and Payne 1973; Dixon and Payne 1979;

Billings and Cameron, 1984). These associates often overlap spatially and temporally with

bark beetles in host material. The impact of natural enemies on population levels of the
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southern pine beetle guild can be significant (Miller, 1986; Turchin et al., 1991; Turchin et

al., 1999). Their effect is likely mediated by the presence of pheromones throughout much

of the infestation stage, which natural enemies can utilize to locate their prey (Shepherd,

2004).

Many of the most influential traditional natural enemies of the southern pine beetle guild

are coleopterous predators. These include but are not restricted to: Temnochila virescens

(F.) (Coleoptera: Trogossitidae) (Mignot and Anderson, 1970; Billings and Cameron, 1984;

Lawson and Morgan, 1993), Thanasimus dubius (F.) (Coleoptera: Cleridae) (Thatcher and

Pickard, 1966; Frazier et al., 1981; Reeve, 1997), and histerids from the genera Platysoma

(Leach) and Plegaderus (Erichson) (Goyer et al., 1980; Shepherd and Goyer, 2003). Adult

T. dubius and T. virescens feed on adult scolytines on the surface of the bark and the larvae

prey on the larvae in their galleries. Histerids from the genera Platysoma and Plegaderus

traditionally feed on the eggs of the southern pine beetle guild.

Hymenopteran and dipteran parasitoids of scolytines are also numerous (Bushing, 1965).

There are 6-10 known species of hymenopteran parasitoid associates of the southern pine

beetle guild (Berisford, 1980; Stephen, 1995; Sullivan et al., 1997; Vanlaerhoven and Stephen,

2002) and >6 known dipteran parasitoids (Goyer et al., 1980). These parasitoids utilize host

volatiles along with host pheromones to locate immature life stages of the southern pine

beetle guild.

Resource competitors of the southern pine beetle guild include species of wood borers

from the families Buprestidae and Cerambycidae. In Louisiana there are more than 25

species of buprestids and cerambycids that are associated with members of the southern

pine beetle guild (E.N. Schoeller and J.D. Allison unpub. data). These beetles can consume
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vast quantities of phloem material and potentially reduce the nutritional quality of host

material for members of the southern pine beetle guild.

1.5 Biology of the Southeastern Monochamus Species

Two species of wood borers of the genus Monochamus (Megerle in Dejean) (Coleoptera:

Cerambycidae) are of particular interest due to their close association with members of the

southern pine beetle guild. These are the southern pine sawyer M. titillator (F.) and the

Carolina sawyer M. carolinensis (Olivier). Peak flight periods of M. titillator and M. caro-

linensis in Louisiana last for approximately five months from late April until the middle of

October (E.N. Schoeller and J.D. Allison unpub. data). Many Monochamus spp. (includ-

ing the two southern Monochamus spp.) locate suitable hosts using a combination of host

volatiles (Fatzinger, 1985; Phillips et al., 1988; Chénier and Philogène, 1989) and Ips and

Dendroctonus pheromone components (Billings and Cameron, 1984; Billings, 1985; Fatzinger

et al., 1987; Miller and Borden, 1990; Allison et al., 2001, 2003; Pajares, 2004; Miller et al.,

2005; but see Fan et al., 2010). M. titillator has been shown to attack members of the pine

family (Pinaceae) (Lindley) within its range including those of the genera Pinus (L.), Abies

(Miller), and Picea (Link), while M. carolinensis appears to have a narrower host preference

and only attacks trees from the genus Pinus (Webb, 1909; Lingafelter, 2007).

Monochamus species are attracted to fire-damaged, lightning-struck, wind-thrown, and

insect-infested trees (Baker, 1972). Recently felled trees are usually not attractive until 5-7

days post-felling. Once suitable host trees are located females land on the bole where mating

occurs. After mating, females begin carving ca. 3x8 mm elliptical oviposition niches with

their mandibles through the outer bark (Pershing and Linit, 1986), where an average of

3-6 (M. titillator) or 1-3 (M. carolinensis) eggs are deposited (Alya and Hain, 1985; Dodds
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A.                                                                            B.                                                      

Figure 1.2 Adult Monochamus titillator. Image A: Male (32.2 mm body length). Image B:
Female (27.2 mm body length). Photographs by: Jong-Seok Park
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and Stephen, 2000) in a circular fashion (Webb, 1909; Dodds et al., 2002). The structure

of these pits have been shown to vary depending on bark thickness with deep “cone-like”

pits carved into thick bark and thin “slits” carved into thin bark (Walsh, 1983). The larvae

hatch within 5-7 days and then feed on the phloem tissue for approximately three weeks.

The number of instars of M. titillator is unknown; however Pershing and Linit (1988) found

that M. carolinensis had 3-6 instars, with the 5th and 6th instars occurring rarely. Prior to

pupation late instar larvae carve entrance holes into the sapwood and construct U-shaped

pupal chambers that curve back to the surface (Webb, 1909; Pershing and Linit, 1986).

The larvae continue feeding for a brief period after which they enter the chamber and pack

the end with coarse debris. Typical generation times take 7-10 weeks for M. carolinensis

and M. titillator (Linit, 1985; Pershing and Linit, 1986). Up to 85% of M. titillator and

M. carolinensis have been shown to overwinter and emerge the subsequent spring if laid in

the fall (Alya and Hain, 1985). Monochamus titillator has been observed to complete 1-2

generations per year in the south (Webb, 1909) and Pershing and Linit, (1986) observed two

generations for M. carolinensis in Missouri.

After emergence adult M. titillator and M. carolinensis begin an obligate period of mat-

uration feeding that lasts 7-12 days (Walsh and Linit, 1985). Adults of M. titillator and M.

carolinensis are long-lived, with typical adult life spans exceeding 70 days under laboratory

conditions (Walsh and Linit, 1985; Zhang and Linit, 1998; Akbulut and Linit, 1999; E.N.

Schoeller, per. obs.). Potential mortality factors of immature life stages include: host de-

fenses, insect natural enemies, parasitoids, woodpeckers, cannibalism, poor host conditions,

and resource depletion (Dodds and Stephen, 2000; Dodds et al., 2001; Akbulut et al., 2004).

Predation by birds and small mammals, unfavorable weather conditions, and injuries from
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mating competition (Hughes and Hughes, 1987; Ray et al., 2009) are likely mortality factors

of adult Monochamus.

Monochamus species play important ecological roles in forest ecosystems as degraders of

coarse woody debris. The activity of adult Monochamus feeding and larval boring however,

can be of serious ecological and economic concern. Larval boring activity can potentially

cause significant damage to trees due to the reduction of wood structural integrity. Ad-

ditionally, the boring activity of Monochamus larvae can create points of entry for wood-

rotting fungi (Rayner and Boddy, 1988) and pathogens (Linit, 1988). As a consequence,

Monochamus have the potential to reduce timber yield and wood value (Wilson, 1962; Gar-

diner, 1975). For example, in British Columbia, Canada large woodborers (e.g. M. scutel-

latus) have the potential to cause up to $43.6 million in annual timber losses (Anonymous,

1997) and in China the pine wilt nematode Bursaphelenchus xylophilus (Steiner and Buhrer)

Nickle vectored by M. alternatus was estimated to have killed more than 35 million trees

between its discovery in 1982 and 2003 (Yang et al., 2003). Fears of B. xylophilus infesta-

tion have also caused economic damage in the form of embargos that restrict the import of

coniferous wood originating from countries already infested with B. xylophilus (Bergdahl,

1988).

1.6 Subcortical Interactions Between Monochamus

Species and the Southern Pine Beetle Guild

Reproduction is the most important aspect of an insect’s life history and fecundity is

affected by a number of factors such as adult size, egg production, adult longevity, immature

survival, and larval and adult nutrition (Leather, 1995). Many studies have examined the fit-

ness and fecundity of Monochamus species (Zhang and Linit, 1998; Akbulut and Linit, 1999;
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Dodds and Stephen, 2000; Akbulut et al., 2004; Togashi et al., 2009). Few studies, however,

have examined the consequences of the spatial and temporal overlap between cerambycids

and bark beetles within the subcortical environment on cerambycid fitness (Schroeder and

Weslein, 1994; Schroeder, 1997). No studies have examined the effects of the subcortical

interactions between M. titillator and the southern pine beetle guild on Monochamus fitness

and fecundity. There have, however, been studies on the effects of these subcortical inter-

actions on members of the southern pine beetle guild (Coulson et al., 1976, 1980; Hennier,

1983; Miller, 1986; Flamm et al., 1989; Dodds et al., 2001).

In trees coinhabited by M. titillator, a marked reduction in the number of D. frontalis

progeny was observed in areas foraged by M. titillator larvae (Coulson et al., 1976). Further

work by Coulson et al., (1980) found that D. frontalis brood mortality was approximately

70% in areas foraged by M. titillator larvae and 14% across the entire tree. In addition

they observed that the greatest D. frontalis brood mortality in the foraged areas occurred

at the extremes of the infested bole heights. Hennier (1983) also examined the effects on

M. titillator foraging on densities of D. frontalis, as well as I. avulsus, and I. calligraphus.

She found that the highest mean percent mortalities in the areas foraged by M. titillator

were 28.8%, 45.7%, and 60.6% for D. frontalis, I. avulsus, and I. calligraphus respectively.

She found that D. frontalis mortality was highest within the areas foraged by M. titillator

larvae at the lower portion of the infested bole height (2.0 m), which is in agreement with the

findings of Coulson et al., (1980). She speculates that since D. frontalis arrives at the midbole

first and later colonizes the periphery of its niche, that these individuals are at greater risk

due to their prolonged presence in the tree, exposing them to the peak M. titillator foraging

period. She also hypothesizes that the relatively higher mortality observed for I. avulsus and
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I. calligraphus are due to their relative location in the tree (mid-upper bole), which coincides

with higher M. titillator larval density.

Miller (1986) observed the effects of M. titillator foraging on I. calligraphus brood mor-

tality using exclusion cages. He found that 51% of the average monthly mortality caused

by insect associates of I. calligraphus was contributed by M. titillator. From May-July he

found that the relative I. calligraphus mortality caused by other insect associates was higher

than the relative mortality contributed by M. titillator. In the months of August-October

he observed that the relative pattern of mortality shifted, with higher relative I. calligraphus

mortality attributed to M. titillator. He hypothesized that this pattern was due to cooler

months slowing M. titillator ’s arrival to the tree and thus bark beetles can complete much

of their development prior to peak M. titillator larval activity. M. titillator larvae have

been shown to consume on average 40% of the phloem surface within the tree and up to

100% of the phloem surface at some bole heights (Coulson et al., 1980; Flamm et al., 1989).

The Ips spp. and D. terebrans complete their development within the phloem. D. frontalis

development is completed in the outer bark, where the larvae migrate during the 4th instar

(Goldman and Franklin, 1977). Miller (1986) hypothesized that the effects of foraging by M.

titillator should be greater for I. calligrahus compared to D. frontalis due to this behavior.

The rapid development of Ips spp. and the spatial shift in developing D. frontalis brood

have been hypothesized to be behavioral adaptations by members of the southern pine beetle

guild to reduce the impact of M. titillator larval foraging (Flamm et al., 1989), since the

majority of M. titillator larval foraging occurs 25-30 days after initial bark beetle infestation

(Hennier, 1983, Flamm et al., 1989).

Traditionally, the interactions between larval Monochamus and members of the southern

pine beetle guild have been categorized as commensal (Flamm et al., 1989) or competitive
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(Coulson, 1980). High mortality rates observed in the studies described above have been

attributed to the asymmetrical competitive advantage of the much larger and more mobile

Monochamus larvae (Flamm et al., 1989). Additional evidence provided by more recent

studies however, suggests that M. titillator and M. carolinensis may be facultative intraguild

predators of bark beetles.

Dodds et al., (2001) studied the behavior of M. carolinensis larvae towards I. calligraphus

larvae under laboratory conditions. Prior to this study all bark beetle mortality observed

had been attributed to M. titillator larval foraging (i.e. competition). Dodds et al., (2001)

found that the majority of I. calligraphus larvae placed within phloem disks containing for-

aging M. carolinensis larvae were attacked and consumed by M. carolinensis larvae. Of the

I. calligraphus larvae encountered by M. carolinensis larvae, they observed that 74.1% were

attacked and 48.1% of those attacked were at least partially ingested. Based on these obser-

vations they proposed the hypothesis that M. carolinensis larvae are facultative intraguild

predators.

1.7 Research Goals

The primary goal of this thesis was to better understand the dynamics of the subcortical

interactions between members of the southern pine beetle guild and Monochamus wood bor-

ers. Specifically, it empirically tested the hypothesis that M. titillator larvae are intraguild

predators of the southern pine beetle guild. To accomplish this DNA-based molecular tools

were developed to screen the gut contents of M. titillator larvae for DNA of each member

of the southern pine beetle guild under laboratory conditions. Once developed these tools

were used to screen the gut contents of field-collected M. titillator larvae. Results from these

studies support the growing body of evidence that suggests M. titillator as well as M. caro-
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linensis are facultative intraguild predators of the southern pine beetle guild. Additionally,

results from this study provide a better understanding of the potential roles Monochamus

larvae play in southern pine beetle guild population dynamics.



2. Molecular Tool Development and
Determination of the Molecular Half-life of
Bark Beetle DNA in the Gut Contents of

Monochamus titillator Larvae

2.1 Introduction

2.1.1 The Study of Predator-Prey Interactions in Cryptic Systems

The study of trophic interactions provides an invaluable source of information on many

ecosystem processes including predator-prey interactions, species composition, ecosystem

stability, and ecosystem resilience (Juen and Traugott, 2006). Predator-prey dynamics re-

main some of the most difficult ecosystem processes to study; however, several techniques

exist for studying them under natural conditions (reviewed by Sunderland, 1988). In many

vertebrate systems the target predator and prey taxa are easily observed facilitating the

collection of critical data such as predation rates, predator and prey densities, popula-

tion structures, and behaviors. Alternatively, most invertebrate taxa are typically small

and/or live in cryptic environments (e.g. leaf litter, soil, within plants, aquatic environ-

ments) making gathering of the aforementioned data exceedingly difficult. Attempts to alter

conditions to facilitate direct observation may disturb the natural system making interpreta-

tion of predator-prey interaction results difficult (Symondson, 2002). Since both immature

Monochamus and members of the southern pine beetle guild live in a cryptic environment

(the subcortical layer of trees) investigations of the potential predator-prey dynamics be-

tween these taxa present a significant challenge.

21
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There have been many indirect methods developed to facilitate the study of the predator-

prey dynamics of cryptic invertebrates. The most practical indirect methods involve gut

content analyses of predators. These analyses are invaluable when attempting to deter-

mine trophic structures and/or determine the frequencies of predatory and scavenging events

(Foltan et al., 2005). In addition, these techniques may be useful in determining if intraguild

predation dampens the magnitude of prey population fluctuations (Harwood et al., 2007).

The techniques utilized for performing gut analyses over the years have advanced rapidly

since their first implementation. The most basic techniques utilized fecal and microscope

dissections to examine the gut contents of predators for identifiable remains of prey (Sun-

derland, 1975; Sunderland et al., 1987; Breene et al., 1990). These techniques however have

some disadvantages. For example, many invertebrate predators are fluid feeders (e.g. Diptera

and Hemiptera) and leave no identifiable prey remains making morphological identification

of prey nearly impossible (Sunderland, 1988). Secondly, the time requirement associated

with meticulously mounting fecal and gut contents onto microscope slides and identifying

the contents to a specific taxon is not often viable.

2.1.2 Molecular Techniques

The advancement of molecular technology has provided new methods for analyzing preda-

tor gut contents for prey remains. Molecular techniques offer new levels of specificity and

accuracy compared to dissection and observation techniques when analyzing predator-prey

interactions. These approaches include enzyme-linked serological assays (ELISA) utilizing

monoclonal (Greenstone and Morgan, 1989; Hagler and Naranjo 1994; Symondson and Lid-

dell, 1996; Agust́ı et al., 1999a; Symondson et al., 1999; Schenk and Bacher, 2004; Calder

et al., 2005) and polyclonal (Dennison and Hodkinson, 1983; Chiverton 1987; Sunderland
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et al., 1987) antibodies, enzyme electrophoresis (Lister et al., 1987; Solomon et al., 1996;

Camara et al., 2003; Traugott, 2003), and DNA-based techniques.

Recently, the primary DNA-based technique utilized by researchers performing molecu-

lar gut analyses has been polymerase chain reaction (PCR). The use of many PCR-based

methods is represented in the molecular gut analysis literature. These methods include: the

use of single or multiple PCR reactions containing one primer set to test for a single or

groups of prey species (singleplex-PCR) (Zaidi et al., 1999; Chen et al., 2000; Hoogendoorn

and Heimpel, 2001; Agust́ı et al., 2003a, 2003b; Foltan et al., 2005; Admassu et al., 2006);

the use of single or multiple PCR reactions containing multiple primer sets allowing rapid

screening for multiple prey species simultaneously (multiplex-PCR) (Harper et al., 2005;

Juen and Traugott, 2006; Traugott et al., 2006; King et al., 2010); the use of TaqMan real-

time PCR (RT-PCR) assays, which utilize fluorogenic probes to quantify prey DNA during

the amplification process (Zhang et al., 2007a); and the use of sequence characterized am-

plified region markers (SCARs) derived from bands obtained from the random amplification

of polymorphic DNA (RAPD-PCR) (Agust́ı et al., 1999b, 2000; de León et al., 2006; Zhang

et al., 2007b).

2.1.3 Benefits of Polymerase Chain Reaction

PCR offers many advantages over the other molecular techniques described above, with

particular reference to ELISA (Symondson, 2002; King et al., 2008). Prior to the rapid shift

towards the utilization of PCR-based techniques, ELISA was the state of the art technique

utilized by researchers performing molecular gut analyses. The development and the ad-

vantages/disadvantages of ELISA have been reviewed by Greenstone (1996). The primary

benefits of PCR over ELISA are the significantly reduced cost and time necessary to develop
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PCR-based probes (see Chen et al., 2000). This is often achieved by the fact that many of

the components necessary to perform PCR analyses are readily available in kits and that

once PCR primers have been designed they can be easily uploaded to the internet and are

available to other researchers studying similar taxa (Admassu et al., 2006). Additionally,

many target genes along with information on their conserved and specific regions have been

characterized for a wide array of invertebrate taxa facilitating the development of primers

(Greenstone and Shufran, 2003).

In addition to the lower financial and labor costs of PCR over ELISA, PCR primers

can be designed to amplify a single species or groups of species (Admassu et al., 2006),

making PCR invaluable for studying trophic links of predators that consume multiple food

sources. However, great care must be taken when designing species-specific or group-specific

primers by ensuring target specificity via cross-testing on an array of non-target species

to prevent false positives (Symondson, 2002; Admassu et al., 2006). One disadvantage of

PCR-based gut content analyses compared to ELISA is that PCR is not able to distinguish

prey to developmental stage (Greenstone and Morgan, 1989; Hagler et al. 1994; Greenstone

1995). Both ELISA and PCR-based techniques suffer from the fact that they are unable to

distinguish between prey that has been scavenged or actively predated (Calder et al., 2005;

Foltan et al., 2005; Juen and Traugott, 2005) or detect the occurance of secondary predation

(Harwood et al. 2001; Sheppard et al. 2005; Hosseini et al., 2008). However Foltan et al.

(2005) suggest if a researcher’s goal is simply to identify the prey taxa being consumed, that

not being able to differentiate between prey that have been scavenged or actively predated

is not a serious issue. Because of the factors mentioned above, PCR has rapidly replaced

ELISA as the dominant molecular approach utilized in performing molecular gut analyses.
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2.1.4 Research Goals

In order to overcome the difficulties associated with studying the subcortical interactions

between immature M. titillator and the five members of the southern pine beetle guild (i.e.

their cryptic subcortical lifestyles) PCR was used to analyze the gut contents of M. titillator

larvae. The goals of this study were to:

1) Develop the species-specific primers necessary to screen the gut contents of M. titillator

larvae for DNA of each member of the southern pine beetle guild.

2) Design efficient and robust multiplex-PCR reactions to incorporate the designed species-

specific primers.

3) Determine the molecular half-life of bark beetle DNA in the digestive systems of lab-

oratory fed M. titillator larvae, which would provide a frame of reference when interpreting

predation data obtained from field-caught M. titillator larvae (see Chapter 3) and provide

an additional source of ecologically useful data.

2.2 Materials and Methods

2.2.1 Insects and Rearing

In order to guarantee an accessible and continuous supply of bark beetles, field-collected

beetles were used to establish colonies for each Ips species. Adult Ips engraver beetles were

collected using 12-unit Lindgren funnel traps [(Pherotech Inc. (now Contech Enterprises

Inc.) Delta, B.C., Canada)] at the Bob R. Jones-Idlewild Research Station (Clinton, LA)

and Burden Research Plantation (Baton Rouge, LA) from 5/11/09-8/25/09 and 3/17/10-

4/15/10, respectively. Six traps were hung at each site and baited with combinations of

either racemic ipsenol and ipsdienol (both 50:50 blends of the plus and minus enantiomers)

to attract I. avulsus and I. grandicollis or racemic ipsdienol and cis-verbenol (13:87 blend
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of the plus and minus enantiomers) to attract I. calligraphus. Traps were emptied weekly

from dry cups and live individuals were placed into 4 oz plastic cups lined with damp filter

paper. Adult Ips were identified and separated by species using differences in the elytral

declivital morphologies (Wood, S.L. 1982) and were stored at 10◦C until needed (no more

than 3 days).

Every few weeks a single ca. 20 year old P. taeda 25-33 cm dbh was felled at the Bob

R. Jones-Idlewild Research Station. Bolts (15-18 cm in diameter, 35 cm in length) were

brought back to the laboratory for bark beetle rearing material. The ends of the bolts were

dipped in hot paraffin wax to prevent desiccation and infested within 2 weeks of harvest. Bark

beetle infested bolts were housed individually in 5 gallon opaque, plastic buckets (Lowe’s Co.

Mooresville, NC) with a single glass mason jar attached to facilitate collection of emerging

adults (Figure 2.1). The glass mason jars were lined with damp paper towel to give the

beetles a surface they could walk on to prevent self-injury and reduce stress. The inside

of the rearing containers were lined with aluminum screening to allow beetles to climb to

collection jars. Two ca. 2 cm holes were cut near the tops of each bucket to allow natural

airflow to occur and reduce excessive moisture buildup in the containers (metal screening

was placed on both sides to prevent escape). Bark beetles are positively phototrophic so

rearing containers were placed with the collecting jar facing the laboratory windows. Each

log was infested with ca. 3 unsexed individuals per 1 dm2 of bark surface area and maintained

at approximately 26-30◦C, 70-80% RH, and ambient (approximately 13:11 L:D) conditions.

Once adult emergence began, jars were emptied daily for 2 weeks and then the bolt was

dissected by carefully peeling away the bark to remove any remaining adults.

As adult Ips spp. population numbers in the laboratory increased (>500 individuals of

each species) logs were dissected and a minimum of 250 3rd instar larvae of each species
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removed 15 days after initial infestation. Collected larvae were placed into 10 ml plastic

vials. In order to remove external sources of contamination from the bodies of larvae, the

10 ml vials were half filled with distilled water and vortexed at 1800 rpm for 20 seconds.

The water was removed using a strainer and the larvae placed onto kimwhipes and allowed

to dry for 5 minutes before being placed collectively into 1.5 ml microcentrifuge tubes and

stored at -80◦C until needed for experimental trials.

Adult and larval D. terebrans were hand collected on 9/15/09 from ∼2 week old stumps

at the Bob R. Jones-Idlewild Research Station (Clinton, LA) and on 9/22/09 at the Kisatchie

National Forest - Catahoula Ranger District (Pineville, LA) where recent logging activity

had taken place. Additional larvae were obtained on 11/2/09 from an ongoing mass attack

on live P. taeda and P. palustris (Miller) from Butler, AL. Larvae taken from the field were

placed into 4 oz plastic cups and placed over ice to be transported back to the laboratory

where they were stored at -80◦C. Adult D. terebrans were reared in containers identical to

those described above, with the addition of sand burying the lower 10 cm portion of the bolts

(Godbee and Franklin, 1978). Bolts used to rear D. terebrans were 35 cm long with 25-30

cm diameters. Individuals were sexed using stridulatory behavior and three pairs of beetles

were allowed to infest each bolt. Once a suitable laboratory population had been established

late instars were removed every 90 days and cleaned and stored as described above until

more than 250 larvae were obtained.

Adult D. frontalis were collected from infested material taken from the Homochitto Na-

tional Forest in Mississippi and used to establish a laboratory population. The ends of 6

freshly cut P. taeda bolts (35 cm long with 10-15 cm diameters) were dipped in hot paraffin

wax to prevent desiccation. Six holes were drilled lengthwise every 90◦ across the bolt’s

surface using a 3.1 mm diameter drill bit down to the bark/phloem interface. This was
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A.                                                                          B. 

Figure 2.1 Insect laboratory rearing containers. Image A: Five-gallon bucket used to rear
bark beetles. Image B: 46x46x61 cm screened cage used to rear Monochamus species.
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necessary because most of the adults were unwilling to initiate galleries without the presence

of holes. The bolts were then stood on end in 46x46x61 cm screened rearing cages and forty

unsexed individuals added to each cage. Bolts were maintained at 25◦C ± 2◦C, 55% ± 2%

RH, and ambient light conditions. Twenty-five days after infestation four of the bolts were

dissected and 4th instars removed from the outer bark until at least 100 larvae were obtained.

Larvae were cleaned and stored as described above until needed.

Adult M. titillator used to establish laboratory populations were collected from the same

traps used to collect the Ips spp. described above. Additional beetles were hand collected

from host material decked in the field twice a week until no more beetles were observed

(approximately 3 weeks). The host material was then taken back to the lab and placed into

75.7 liter metal emergence chambers in order to collect the emerging Monochamus at a later

date (Figure 2.2).

Adult Monochamus collected from the field were identified to species using a combina-

tion of apical elytral spine characters (Lingafelter, 2007) and size differences (Pershing and

Linit, 1985). Beetles were sexed using differences in antennal length and by the presence

of female pubescence at the apex of the abdomen (Linsley and Chemsak, 1984). The ely-

tral morphology of M. titillator and M. carolinensis is sometimes variable between the two

species, with the apical spine morphology of M. titillator often appearing similar to that of

M. carolinensis, but not vice versa. This made it difficult to confidently use this character to

separate individuals to species. Although genital morphology differs between the two species

(Pershing and Linit, 1985), this character could only be used to check proper identification

of males after they had died.

To account for these morphological inconsistencies individual mating behavior was used

to confirm identifications of individuals with uncertain elytral characters. In brief, male and
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Figure 2.2 Metal emergence chamber used to collect adult Monochamus spp. from field-
infested host material [(Modified from Riley (1983)].
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female beetles of known identity were placed into 150 mm plastic petri dish mating arenas.

Individuals of questionable identity were then placed into these arenas with an individual

of known identity and the opposite sex and mating behavior observed for 5 minutes. If no

mating occurred within the 5 minute timeframe they were placed with a member of the

opposite sex of the second species and mating behavior observed an additional 5 minutes.

A copulatory event was considered mounting of the female by the male and insertion of its

adeagus into the female. If the individual refused to mate with either of the two species it

was excluded from the breeding population. Only a small population of M. carolinensis was

maintained in the laboratory for species identification purposes. To confirm that interspecific

copulation does not occur, 5 individuals from each sex were placed with the opposite sex of

both species sequentially and observed for 5 minutes for interspecific copulation. Interspecific

copulation was never observed.

Host material used for rearing the laboratory population of M. titillator was taken from

the mid and upper bole of P. taeda felled for bark beetle rearing purposes. The lower 2

meters of the bole was not used since this section contains thick bark that may inhibit

oviposition by Monochamus spp. (Linit et al., 1983; Walsh and Linit, 1985). Bolts used

varied in size with 43-47 cm lengths and 17-20 cm diameters. The ends of each bolt were

dipped in hot paraffin wax to prevent desiccation and stored a minimum of three days, to

make them more attractive before being placed with the adult M. titillator. Bolts were

placed upright into 46x46x61 cm mesh wire rearing cages (Figure 2.1). Each cage contained

fresh sprigs of P. taeda placed into a 0.47 l jar of water packed with paper toweling to prevent

beetles from drowning. Water was replaced every other day and foliage as needed. Each

cage contained a minimum of 10 individuals but no more than 40 at a time to prevent stress

due to overcrowding.
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Beetles were allowed to oviposit until ca. 20 oviposition sites (Linit, 1985) were observed

(72-96 hours). Bolts were then taken out of the screened cages and labeled by stapling paper

tags to one end, which contained the species ID and bolt number. The labeled bolts were

placed on the lab floor until no more chewing sounds and frass buildup was observed (35-50

days). Once larval activity appeared to have ceased the bolts were placed into 46x46x61

cm emergence cages and emerging adults collected daily. Sixty days after the first beetle

emerged bolts were discarded.

2.2.2 Sample Preparation

DNA was extracted from whole adults of each bark beetle species or just the digestive

systems of the M. titillator larvae using the DNeasy Blood and Tissue Kit (Qiagen Inc.

Valencia, CA) according to the manufacturer’s protocol for animal tissues. Only the digestive

tracts of M. titillator were used in order to decrease the amount of extraneous, nontarget

predator DNA present in the sample. In order to remove the digestive systems of the M.

titillator larvae they were placed onto sterile dissection trays, stretched and pinned with

their ventral surface facing up, and then anteriorally-posteriorally dissected using a pair

of microdissection scissors. A portion of the digestive system was removed by severing

the esophagus directly behind the head capsule and by severing the hindgut 1-2 millimeters

anterior to the anal opening. DNA sample purities were assessed at the 260/280 nm ratio and

their concentrations calculated using absorbance by a Nanodrop ND-1000 spectrophotometer

(Nanodrop Technologies). DNA solutions were stored at -20◦C until needed.

During a feeding trial pilot study, PCR inhibitors present in the M. titillator DNA sam-

ples were found to cause false negative results for bark beetle consumption. The inhibitors

present were likely caused by compounds present in the phloem tissue consumed by M. tit-
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illator larvae. Determining the identity of these inhibitors in fecal material is a lengthy and

complex process (Monteiro, 1997). The most common inhibitors of PCR reactions in fecal

and plant materials are humic acids and complex polysaccharides, but other less abundant

inhibitors can also be present (reviewed by Wilson, 1997). Under normal circumstances

the effects of these inhibitors on the performance of the Taq polymerase can be reduced

to acceptable levels by reducing the concentration of the inhibitors in the DNA sample via

dilution. Although dilution is an easy and cost-effective solution for preventing PCR inhi-

bition, sample dilution in molecular gut analysis can cause increased false negative results.

Prey DNA is often present in such small quantities within the predators that diluting DNA

samples may result in prey DNA reaching undetectable concentration levels (King et al.,

2008).

In order to remove excess humic acids and polysaccharides that may have been present

in the predator DNA samples, a post-extraction purification step was performed using a

combined polyvinylpolypyrrolidone (PVPP) (Acros Organics) and Sepharose R©4B (Sigma-

Aldrich) spin column technique developed by Arbeli and Fuentes (2007). Pierce 0.8 ml spin

columns (Thermo Scientific Waltham, MA) were loaded with 25 mg of PVPP followed by

the addition of 400 µl of the Sepharose 4B solution. Excess liquids were first removed from

the columns by inserting them into 1.5 ml microcentrifuge tubes (Eppendorf AG, Hamburg,

Germany) for centrifugation at 1100 g for 2 minutes. Columns were then washed with 450 µl

of TE solution (10 mM Tris-HCl, 1 mM sodium EDTA, pH 8.0) three times by centrifugation

at 1100 g for 2 minutes. DNA samples were purified by placing 200 µl of the DNA solution

into the prepared PVPP/Sepharose 4B columns placed into a new 1.5 ml collection tube and

migrated by centrifugation at 1500 g for 4 minutes. The purified DNA samples were stored

at -20◦C until needed.
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2.2.3 Sequencing and Primer Design

Partial bark beetle cytochrome oxidase subunit I (COI) gene sequences were obtained

from GenBank (Accession numbers: EF115512, AF113331, AF113330, AF113335, AF113336,

AF113352, AF113351, AF113350, AF113349, AY570903, AF067986, AF375315, and AF068003).

Haplotype sequences were included when available to aid in the design of species specific

primers. Sequence alignments were performed using CLUSTALW in the MEGA 4.0 pro-

gram (Tamura et al., 2007). The aligned sequences were manually checked for regions of

high variability among the bark beetle species sequences and multiple sites were chosen for

potential primer development.

Potential bark beetle primers were checked for secondary structure formation, and their

annealing temperatures determined using the web programs FastPCR (Kalendar, 2009) and

NetPrimer (PREMIER Biosoft International, Palo Alto, CA). Primers were designed to

amplify only a single member of the southern pine beetle guild using variation in the COI

gene sequences and to prevent non-specific amplification of M. titillator DNA. Each potential

species-specific bark beetle primer set was designed to create a PCR product of variable base

pair length to allow easy discrimination between species on agarose gels.

It was necessary to develop species-specific primers to correctly identify field-collected M.

titillator larvae (see Chapter 3), since there are no known differences in larval morphology

between M. titillator and M. carolinensis. Universal primers were first developed to amplify

a portion of the COI gene for M. titillator and M. carolinensis, because COI gene sequences

were already available for several other Monochamus species. Additionally, the use of the

COI gene provided a greater chance of creating species specific primers by allowing direct

comparison of the gene sequences used for both predator and prey. Monochamus primers

were designed using partial COI gene sequences from M. alternatus (Hope), M. sutor (L.),
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M. galloprovincialis (Olivier), M. guerryi (Pic), M. sartor (F.), M. saltuarius (Gebler),

and M. urussovi (Fischer) (Genbank Acession numbers: AB083740, DQ861321, EU556542,

AB439140, AY260838, AY260842, and AY260844 respectively). The partial Monochamus

COI sequences were aligned as described above and a universal Monochamus primer pair

MCF1 (5’-GCT CAT AGT GGT TCA TCA GTT G-3’) and MCR1 (5’-TGT TCG GCA

GGA GGT AAA TG-3’) was designed to amplify conserved regions within the Monochamus

COI gene.

Partial COI gene sequences were obtained for M. titillator and M. carolinensis using three

individuals from each species. These individuals were taken from the laboratory population

and killed by freezing them at -20◦C for 10 minutes. The prothoracic legs from each individual

were removed using sterile dissection scissors and placed into 1.5 ml microcentrifuge tubes.

The legs were homogenized using liquid nitrogen and a sterile pestle. DNA was extracted and

quantified as described above (see Section 2.2.2) before being stored at -20◦C for sequencing

purposes.

An initial PCR reaction was performed to amplify the M. titillator and M. carolinensis

COI gene sequences using an Amplitronyx 6 gradient thermocycler (Nyx Technik Inc. San

Diego, CA). The reaction was run using the following cycling conditions: an initial denatu-

ration period at 94◦C for 2 minutes followed by 35 cycles of a denaturation period at 94◦C

for 1 minute, an annealing period at 58◦C for 2 minutes, and an extension period at 72◦C

for 1 minute. There was a final extension period of 72◦C for 7 minutes. The PCR products

were subjected to gel electrophoresis for 120 minutes using a 1% agarose gel and visualized

using UV light to check for successful amplification. The PCR products were purified using

the QIAquick PCR Purification Kit (Qiagen Inc. Valencia, CA) according to the manufac-

turer’s protocol. Sequencing of the purified PCR products was performed at the Louisiana
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State University gene lab using a BigDye Terminator version 3.1 sequencing kit (Applied

Biosystems) in an ABI PRISM 3130 Genetic Analyzer. Samples were sequenced across both

strands using the designed universal Monochamus primer pair. Sequence data was analyzed

using Sequence Scanner software v1.0 (Applied Biosystems).

The Monochamus COI sequences obtained were aligned as described above and manually

checked to determine differences in the COI gene sequences between M. titillator and M.

carolinensis. Once promising regions were identified, the bark beetle COI gene sequences

aligned with the Monochamus COI sequence in order to assist in eliminating regions with

little variability between the bark beetle species and M. titillator COI gene sequences. The

M. titillator primer pair was designed to work in a separate reaction to reduce primer-primer

conflicts with the bark beetle primer sets.

2.2.4 PCR Analysis

All PCR optimization reactions were performed using a PTC-200 DNA Engine gradient

thermocycler (MJ Research, South San Francisco, California) and optimized reactions were

run using an Amplitronyx 6 gradient thermocycler. Different combinations of primer pairs

from the list of potential primers (see Section 2.2.2) were first tested and amplification success

or failure as well as amplification robustness determined under singleplex PCR conditions

for each species of interest. The highest quality primer pair for each bark beetle species was

then combined into multiplex reactions to reduce the total number of reactions necessary to

screen M. titillator larvae for the presence of bark beetle DNA.

Initial PCR reaction conditions were optimized with the aid of a PCR Optimizer Kit

(Invitrogen, Inc., Carlsbad, California). During PCR optimization all DNA template so-

lutions were diluted to 25 ng/µl using nuclease-free H2O. Each was tested in the buffers
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provided by the PCR optimization Kit (A-J) at 52◦C according to the manufacturer’s proto-

col. Optimal PCR annealing conditions were determined by running each PCR reaction on

a temperature gradient (50-60◦C). The final conditions of the PCR reactions were adjusted

using 5 Prime (5 Prime GmbH, Hamburg, Germany) hot start technology according to the

manufacturer’s protocol. After optimization the final PCR reaction solutions (50 µl total

volume) contained 5 µl of dNTPs (0.4 mM final concentration), 1 µl of each primer (0.04

µM final concentration), 0.2 µl of HotMaster Taq DNA polymerase (1.0 unit), 5 µl of 10X

HotMaster Taq Buffer (containing 25 mM Mg2+), 2 µl of each DNA template, and brought

up to volume using nuclease-free H2O. PCR products were run on ethidium bromide-stained

2.5% w/v agarose gels (bark beetle multiplex reactions) or EtBr-stained 1.5% w/v agarose

gels (Monochamus singleplex) at 120 V for 45 minutes. Gels were visualized by UV transil-

lumination.

2.2.5 Primer Specificity

The specificity of each bark beetle primer pair was tested on each target bark beetle

species as well as the other non-target bark beetle species and M. titillator. The specificity

of the M. titillator primer pair was tested against each bark beetle species as well as M.

carolinensis. Each bark beetle primer pair was tested on at least five individuals of each

non-target species using the optimized multiplex reactions. The M. titillator primer pair

was tested in its optimized singleplex reaction on at least five individuals for each bark

beetle species and fifteen individuals of M. carolinensis. Each set of reactions contained a

positive control consisting of target species DNA and a negative control of nuclease-free H2O

to check for reagent contamination.
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2.2.6 Primer Sensitivity

Trials were performed in order to quantify the sensitivity of the primer pair of each

species of bark beetle in the presence of M. titillator DNA under singleplex and multiplex

PCR conditions. This was done by serially diluting the bark beetle DNA in a standard

solution of M. titillator DNA. In an attempt to approximate a biologically relevant mixing

ratio of predator to prey DNA an initial mixing ratio of 5:1 (125 ng:25 ng) M. titillator DNA

to bark beetle DNA was used. This ratio reflected the magnitudinal difference between the

mean DNA concentration from the five bark beetle species with weights equivalent to a 3rd

instar I. grandicollis and the digestive tract of a late instar M. titillator. Since multiple bark

beetle species may be consumed by a single M. titillator larvae, bark beetle DNA solutions

were mixed at 1:1:1 (25:25:25 ng/µl) concentration ratio (multiplex A) or 1:1 (25:25 ng/µl)

(multiplex B) concentration ratio before being mixed with the M. titillator DNA standard

solution during the multiplex sensitivity analyses. The sensitivity of each bark beetle primer

pair was tested at DNA concentrations ranging fom 500-0.0005 pg/µl in both the singleplex

and multiplex PCR sensitivity analyses. The final concentration of M. titillator DNA in all

the PCR sensitivity reactions was standardized to 2.5 ng/µl.

The mean weight of 3rd instar I. grandicollis used to compare the DNA concentrations of

each bark beetle species as mentioned above was determined using I. grandicollis larvae from

the population maintained in the LSU forest entomology laboratory. One bolt containing I.

grandicollis was dissected 15 days post-infestation by carefully peeling the bark away and

removing larvae that were forming pupal chambers using sterile techniques. Larvae (N=20)

were weighed to the nearest 0.0001 g. The DNA concentrations for I. grandicollis and the

remaining four bark beetle species (N=10 per species) with weights equivalent to the mean

weight found for 3rd instar I. grandicollis were then determined as described above (see
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Section 2.2.2). The DNA solutions were measured in groups of ten according to species and

vortexed immediately prior to measurement. The ND-1000 spectrophotometer was blanked

between each group of DNA solutions. The mean of the pooled DNA concentrations from

all five bark beetle species was used to calculate the biologically relevant DNA mixing ratio

mentioned above.

The mean DNA concentration of the digestive system of a late instar M. titillator was

obtained by removing 10 late instar M. titillator from laboratory infested material 21 days

post-infestation. The digestive system from each larva was removed and the DNA extracted

and quantified as described above. In order to obtain the biologically relevant DNA mixing

ratio the mean of the pooled bark beetle DNA concentrations was compared to the mean

DNA concentration of the M. titillator digestive systems.

2.2.7 Bark Beetle and M. titillator Haplotype Screening

A haplotype experiment was performed in order to determine the effect of sequence

variation that might exist among and within bark beetle and M. titillator populations. A

total of fifteen adults were used for each bark beetle species. Individuals originated from

two different populations except for D. frontalis, which originated from one population due

to its local rarity. I. calligraphus, I. avulsus, and I. grandicollis samples were obtained

from populations located at the LSU Burden Research Plantation (Baton Rouge, LA) and

Bob R. Jones Research Plantation (Clinton, LA). D. terebrans samples were obtained from

populations at the Bob R. Jones Research Plantation and Butler, AL. D. frontalis samples

were obtained from a population located at the Oconee National Forest (GA). PCR reactions

were performed as described above (see Section 2.2.4) and visualized on agarose gel. M.

titillator were collected from the LSU Burden Research Plantation, Bob R. Jones Research
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Plantation, and Kisatchie National Forest-Catahoula Ranger District (Pollock, LA) and

tested as described above.

2.2.8 Molecular Half-Lives of Bark Beetle DNA in M. titillator
Digestive Systems

Pairs, (2-3) of adult M. titillator were placed into eight 46x46x61 cm screened oviposition

cages. Each cage was supplied with one P. taeda bolt every 5 days to produce four cohorts

of infested bolts. Twenty-five days after bolts were exposed to M. titillator oviposition,

larvae were collected from bolts by carefully peeling the bark away. Larvae were haphazardly

assigned to labeled 4 oz plastic cups with damp filter paper and placed into an environmental

chamber maintained at 30◦C, 75% RH, and 12:12 L:D conditions. Larvae were starved for

48 hours prior to the feeding trials. This was done to ensure that their digestive systems

didn’t contain any plant material, which may have contained PCR inhibitors, as well as

increase their motivation to consume the bark beetle remains offered to them (see below).

The feeding arena and feeding technique are depicted in Figure (2.3).

After 48 hours of starvation each M. titillator larva was removed from the environmental

chamber. Larvae where then placed into a new sterile identically labeled 4 oz plastic cup with

their ventral side facing up to begin feeding assays. After being placed into the new plastic

cup, larvae were allowed to rest for 10 minutes at room temperature in order to reduce their

stress levels from handling, which negatively impacted their willingness to consume prey.

Meals were offered to the M. titillator larvae in sterile forceps by placing the bark beetle

remains immediately in front of their mandibles. On occasion it was necessary to agitate the

M. titillator larvae by probing them gently with a dissection pick to get them to open their

mandibles and begin consumption. If the larva refused to consume the bark beetle remains

within 5 minutes they were discarded and replaced.
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A.                                                                     B. 

Figure 2.3 Laboratory feeding assays. Image A: A 4 oz plastic cup lined with paper towel
used as a feeding arena with M. titillator larva inside. Image B: A larva of M. titillator
feeding on a larva of I. grandicollis.

Prior to initiation of the feeding assays, meal sizes for all bark beetle species were stan-

dardized to the mean weight of a 3rd instar I. grandicollis (± 1 SD). This was done using

one of three methods depending on the size of the 3rd instar of each bark beetle species.

Meals consisting of I. calligraphus or D. terebrans were prepared by removing tissue from

each larva using a scalpel and sterile techniques. Meals consisting of D. frontalis and I.

grandicollis were prepared using individual larvae with weights equivalent to that of the 3rd

instar I. grandicollis. Meals consisting of I. avulsus larvae were not prepared due to issues

discussed below (see Section 2.3.1). After the meal sizes were standardized they were stored

at -80◦C until feeding assays began. Meals were removed from the freezer and thawed at

30◦C for 10 minutes in an environmental chamber prior to all feeding assays.

To construct a detection half-life model for bark beetle DNA in the digestive systems

of M. titillator larvae, M. titillator larvae (N=120; 15 per treatment) were fed 3rd instar I.
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grandicollis. After being assigned haphazardly to the 4 oz cups, the M. titillator larvae were

randomly grouped by seven or eight individuals (approximately 1/2 of the total treatment

sample size), since it was necessary to use two of the four M. titillator larval cohorts to reach

the necessary 120 larvae sample size. Each group of seven or eight M. titillator larvae was

randomly assigned to one of the eight treatment groups of variable time post-feeding larval

mortality. Once the M. titillator larvae had finished consuming their entire meal (visualized

by no chewing motions for 1 minute) they were returned to the environmental chamber

and maintained at 30◦C, 75% RH, and 12:12 L:D conditions. A pilot study using a limited

sample size suggested that the half-life of I. grandicollis in the gut contents was between

6-7 hours post-consumption, so M. titillator larvae were fed and killed at 0,3,4,5,6,7,8, or

10 hours post-consumption. Larvae were killed by placing them into 10 ml plastic vials

containing 70% ethanol pre-chilled to -20◦C to prevent regurgitation of their meals (Weber

and Lundgren, 2009). Larvae were processed for DNA extraction within 24 hours post-

mortem. Larvae were prepared for DNA extraction via dissection (see Section 2.2.2) and

their digestive tracts extracted for subsequent PCR analysis.

The molecular half-life of I. grandicollis DNA in the guts of M. titillator larvae was

determined using the proportion of M. titillator larvae testing positive for I. grandicollis

DNA at each post-ingestion mortality interval. The median detection time (Y=50%) was

calculated using Probit analysis (Chen et al., 2000) performed in Minitab v.15 (Minitab,

2008).

To test whether or not there were differences in the detection half-lives between the

bark beetle species, 25 M. titillator larvae (N=100 total) were fed either I. grandicollis, D.

frontalis, D. terebrans, or I. calligraphus larvae and then killed at the time corresponding

to the detection half-life of I. grandicollis determined above. Due to the lack of positively
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identified I. avulsus larvae (PCR failure), this species was not included in the analysis (see

Section 2.3.1). To test the null hypothesis that the proportion of M. titillator larvae testing

positive did not differ between treatments χ2-analysis was performed followed by a Monte

Carlo simulation (5000 iterations) to confirm significance. If the null hypothesis was re-

jected the Marascuilo procedure was implemented to determine which treatments differed

significantly. These tests were performed in XLSTAT (Addinsoft, 2011).

2.3 Results

2.3.1 Primer Design and PCR Optimization

The designed bark beetle and M. titllator primer sets along with their characteristics

are displayed in Table 2.1. The designed bark beetle species-specific primers yielded PCR

products ranging in size from 122 (D. frontalis) to 427 base pairs in length (D. terebrans).

PCR products sizes did not exceed 500 bp in length following the recommendations of Chen

et al. (2000) (see Section 2.3.4). All species-specific primer pairs yielded PCR products of the

expected sizes. Unfortunately, during the molecular half-life experiments it was discovered

that the species-specific I. avulsus primer set only amplified DNA from adult I. avulsus. As

a result, this species was not included in the half-life comparison experiments. The reason

behind this phenomenon will be subject to further investigations.

The M. titillator and M. carolinensis COI gene sequencing results are depicted in Figure

2.4. Out of the 969 base pairs amplified from the COI gene sequences there was only 32

(3.3%) base pair differences between the two species. The low base pair variation between

the two Monochamus species made it difficult to develop a species-specific primer pair for

M. titillator. The most variable of all the potential primer pairs chosen for testing only

incorporated a portion of the gene template with a five base pair difference. Not surprisingly
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Table 2.1. Designed species-specific PCR primers

Name Primer Sequence (5’→3’) Annealing Temp. (◦C) Target Species Product Size (Bp)

IGF1 CCACTATTTACAGGACTTACAC 50.5 I. grandicollis 145
IGR1 CATCAGGGTAATCTGAATAACG 50.8 - -
ICF1 GCTTACTTGGTTTCGTAGTAT 51.2 I. calligraphus 331
ICR1 GCAATAATAGCAAAGACTGC 49.6 - -
DTF1 GAGCCTATTTCACATCTGC 50.8 D. terebrans 427
DTR1 GGATAATCAGAGTAACGACG 49.9 - -
IAF1 GCTCACTTCCATTATGTCCTT 52.4 I. avulsus 168
IAR1 GAAAATGTTGAGGGAAGAAG 49.1 - -
DFF1 GCTTACTTCACATCAGCCAC 53.8 D. frontalis 122
DFR1 CCAATAGCTCATAAAGAGGAGG 52.5 - -
MTF1 ATCCAGCAGGAGGAGGAGAT 57.3 M. titillator 277
MTR1 CTTTAATTCCTGTTGGAACGG 51.7 - -

this was the only primer pair that yielded a product for M. titillator, but not M. carolinensis.

The M. titillator species-specific primer set selected yielded a PCR product 277 base pairs

in length.

A total of two multiplex reactions were designed to screen M. titillator larvae for DNA

of the five members of the southern pine beetle guild. This was the minimum number

of reactions feasible without causing excessive primer-primer conflicts, which reduced the

overall performance of the reactions. The first multiplex reaction (denoted multiplex “A”

hereafter) contained the primer pairs ICF1/ICR1, IGF1/IGR1, and DTF1/DTR1 and was

designed to screen for I. calligraphus, I. grandicollis, and D. terebrans DNA respectively. The

second reaction (denoted multiplex “B” hereafter) contained the primer pairs DFF1/DFR1

and IAF1/IAR1 and was designed to screen for D. frontalis and I. avulsus DNA respectively.

The M. titillator specific primer set MTF1/MTR1 was placed into a single reaction, since

its addition to either multiplex reaction reduced the overall quality of these reactions to an

unacceptable level. The variation in PCR product sizes within each multiplex PCR reaction
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Figure 2.4 Partial cytochrome oxidase subunit I gene sequences for Monochamus titillator
(Top) and M. carolinensis (Bottom). The target sequences of the M. titillator species-specific
primer pair is highlighted in yellow. Question marks signify unknown nucleotides
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allowed for easy determination of the presence or absence of DNA from each bark beetle

species in the gut contents of M. titillator larvae.

The optimal PCR buffer utilized during the early stages of PCR development was found

to be buffer “C” (12.5 mM MgCl2, pH=8.5). This buffer was later replaced by the 5-prime

HotMaster 10X Taq Buffer, which releases Mg2+ ions as required by the reaction. This

was shown to increase PCR robustness over buffer “C”. The optimal annealing temperature

for multiplex reactions A and B was calculated as 58◦C. Temperatures >60◦C caused these

reactions to yield no products. The optimal annealing temperature for the M. titillator

singleplex reaction was calculated as 60◦C. However, temperatures ≤60◦C caused non-specific

amplification of M. carolinensis DNA, so an annealing temperature of 62◦C was selected to

avoid this issue.

Using the optimal temperatures the final optimized PCR cycling parameters were as

follows: an initial denaturation period of 94◦C for 2 minutes followed by 35 cycles of a

denaturation period at 94◦C for 1 minute, an extension period at 58◦C (multiplex reactions

A and B) or 62◦C (Monochamus singleplex reaction) for 2 minutes, an elongation period at

72◦C for 1 minute, and a final extension period at 72◦C for 7 minutes.

2.3.2 Primer Specificity and Haplotype Tests

The designed species-specific primer sets in their optimized PCR reactions exhibited no

amplification of non-target DNA in any of the primer specificity tests performed (Figure

2.5). As mentioned previously (see Section 2.3.1) the primer set MTF1/MTR1 did amplify

M. carolinensis DNA but this was prevented by increasing the annealing temperature of the

reaction. During the haplotype experiments 100% amplification success was observed for all

bark beetle species and M. titillator confirming the functionality of the designed species-
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specific primer pairs for amplification of the partial COI gene sequence from southern pine

beetle guild populations in Louisiana and some neighboring regions.

2.3.3 Primer Sensitivity Tests

The mean weight of a 3rd instar I. grandicollis used for determining the ratio of preda-

tor:prey DNA in the sensitivity analyses was calculated 4.00x10−3 g (SD= 3.25x10−4). The

DNA concentrations from all five bark beetles species with weights equivalent to 4.00x10−3 g

as well as the DNA concentrations from late instar M. titillator digestive tracts are presented

in Table 2.3.3. The mean of the pooled DNA concentrations of all five bark beetles species

was calculated as 82.04 ng/µl (SD=34.06). The mean DNA concentration calculated from

the digestive system from a late instar M. titillator was 406.29 ng/µl (SD=215.25). The

mean DNA concentration of the digestive system from a late instar M. titillator is approxi-

mately 4.95 times higher than the mean DNA concentrations from the pooled bark beetles

with weights equivalent to that of a 3rd instar I. grandicollis. This number was rounded to

5 for convenience.

The bark beetle primer pairs ICF1/ICR1, IGF1/IGR1, IAF1/IAR1, DTF1/DTR1, and

DFF1/DFR1 were tested for their capability of amplifying target DNA under singleplex and

multiplex PCR conditions in predator:prey DNA mixing ratios ranging 5:1 to 5,000,000:1.

Gel images depicting the results from the multiplex bark beetle primer sensitivity analy-

ses are presented in Figure 2.6. A summary of the results from the singleplex and mul-

tiplex sensitivity analyses are presented in Table 2.3.3. Under singleplex PCR conditions

the lower detection limits were 0.05 pg/µl of DNA for primer sets ICF1/ICR1, IGF1/IGR1,

DTF1/DTR1, and DFF1/DFR1 and 50 pg/µl of DNA for primer set IAF1/IAR1. Un-

der multiplex PCR conditions the lower detection limits were 0.05 pg/µl for primer pair
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Figure 2.5 Primer specificity analyses. Image A: M. titillator singleplex. Image B: Multiplex
“A”. Image C: Multiplex “B”. Gel Lanes: (1) DNA ladder, (2) Positive control (All target
templates), (3) D. terebrans DNA, (4) I. calligraphus DNA, (5) I. grandicollis DNA, (6) I.
avulsus DNA, (7) D. frontalis DNA, (8) M. carolinensis DNA (Image A) or M. titillator
DNA (Images B and C), (9) Negative control (Nuclease-free H2O).
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Table 2.2 DNA concentration (ng/µl) analyses of members of the southern pine beetle guild
with equivalent weights (4.00x10−3 g) and the digestive tract of late-instar M. titillator used
to calculate a biologically relevent predator:prey DNA mixing ratio during primer sensitivity
analyses.

                                                                      Species 

Sample I. grandicollis I. calligraphus I. avulsus D. terebrans D. frontalis M. titillator 

1 74.3 113.9 109.7 38.5 60.2 314.2 

2 81.2 79.9 116.2 117.3 66.8 909.4 

3 113.3 37.2 111.7 55.1 88.3 445.6 

4 101.1 116.3 132.9 80.2 69.1 403.4 

5 69.8 105.4 127.4 86.7 61.8 426.3 

6 50.6 84.5 120.4 66.4 57.6 269.5 

7 57.2 78.1 119.9 45.3 91.6 546.2 

8 67.5 43.0 114.0 39.3 51.8 267.5 

9 24.8 159.2 123.8 22.6 63.1 97.5 

10 88.2 108.8 144.9 9.2 55.9 383.3 

       

     Mean 72.8 92.6 122.1 56.1 66.6 406.3 

           SE 8.05 11.47 3.40 10.22 4.21 68.07 
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Table 2.3 Comparison of primer sensitivities under singleplex and multiplex PCR conditions.

 

           Reaction              Sensitivity Levels  Magnitudinal Difference  

Multiplex A  All species: 5.0 pg/µl-0.5 pg/µl                  

Multiplex B I. avulsus:  500.0 pg/µl-50 pg/µl  

 

D. frontalis: 0.05 pg/µl-0.005 pg/µl  

 

I. grandicollis  Singleplex   0.05 pg/µl-0.005 pg/µl                    100X  

I. calligraphus Singleplex   0.05 pg/µl-0.005 pg/µl                   100X  

I. avulsus Singleplex   50.0 pg/µl-5.0 pg/µl                      10X  

D. terebrans Singleplex   0.05 pg/µl-0.005 pg/µl                   100X  

D. frontalis Singleplex   0.05 pg/µl-0.005 pg/µl                       0X  

DFF1/DFR1, 5 pg/µl for primer pairs ICF1/ICR1, IGF1/IGR1, DTF1/DTR1, and 500

pg/µl for primer pair IAF1/IAR1. An increase in primer sensitivities under singleplex PCR

conditions was observed, ranging from as low as 0X (D. frontalis) and 10X (I. avulsus) to

as high as 100X (I. grandicollis, I. calligraphus, and D. terebrans) over primer sensitivites

observed under multiplex PCR conditions.

2.3.4 Molecular Half-lives of Bark Beetle DNA

The molecular half-life of I. grandicollis DNA in the guts of M. titillator larvae calculated

using Probit analysis was found to be 6.89 h post-consumption (95% fiducial limits 6.21 and

7.70) (Figure 2.7). The Probit model fit the data well based on Pearson’s goodness-of-fit
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Figure 2.6 Gel images from the multiplex sensitivity analyses. Image A. Bands: (Top D.
terebrans Middle I. calligraphus Bottom I. grandicollis) Multiplex “A”. Image B. Bands:
(Top I. avulsus Bottom D. frontalis) Multiplex “B”. Gel Lanes: (1) DNA Ladder. Bark
Beetle DNA concentrations of (2) 500, (3) 50, (4) 5, (5) 0.5, (6) 0.05, (7) 0.005, and (8)
0.0005 pg/µl. Bark beetle DNA templates were mixed in a constant concentration of 2.5
ng/µl of M. titillator DNA stock solution.
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Figure 2.7 The molecular half-life of I. grandicollis DNA in the gut contents of M. titillator
larvae (N=120) calculated using Probit analysis (95% fiducial limits shown).
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test (Chi-square value=1.455, P=0.962). Amplification of I. grandicollis DNA in the gut

contents of M. titillator was detectible up to 10 hours post-consumption. The proportion of

M. titillator larvae testing positive for I. grandicollis DNA ranged as high as 100% (0 and 3

hours post-consumption) to as low as 13.3% (10 hours post-consumption). Larvae generally

responded well to hand feeding with 55.2% of larvae (N=221) completely consuming the

offered meals. This number may have been higher, but larvae preparing to molt or those

that had recently molted would not feed.

The proportion of the 25 M. titillator larvae testing positive for four of the bark beetle

species killed at 6.9 hours post-consumption was 0.64, 0.68, 0.16, and 0.64 for I. grandicollis,

I. calligraphus, D. terebrans and D. frontalis, respectively. The Chi-square analysis for multi-

ple proportions found a significant difference between prey species (Chi-square value=18.426,

DF=3, P<0.001, α=0.05). The Monte Carlo simulation confirmed significance (P<0.001).

Since the null hypothesis of proportional equality was rejected the Marascuilo procedure was

implemented (Table 2.4). The pairwise comparison of these proportions showed that the

proportion of M. titillator larvae testing positive for I. grandicollis, I. calligraphus and D.

frontalis at 6.9 hours did not differ significantly. However, the proportion of M. titillator

larvae testing positive for D. terebrans did differ significantly from the proportion of M.

titillator testing positive for the other three bark beetle species.

2.4 Discussion

2.4.1 Primer Design and PCR Optimization

Species-specific primer sets were successfully developed for adults of all five members of

the southern pine beetle guild as well as a primer set capable of separating M. titillator

larvae from M. carolinensis larvae. However, for an unknown reason the I. avulsus species-
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Table 2.4. The Marascuilo procedure

Contrast Difference Critical Value Significant?

|p(I. grandicollis) - p(I. calligraphus)| 0.04 0.374 No
|p(I. grandicollis) - p(D. terebrans)| 0.48 0.338 Yes
|p(I. grandicollis) - p(D. frontalis)| 0.00 0.380 No
|p(I. calligraphus) - p(D. terebrans)| 0.52 0.332 Yes
|p(I. calligraphus) - p(D. frontalis)| 0.04 0.374 No
|p(D. terebrans) - p(D. frontalis)| 0.48 0.338 Yes

specific primer set was capable of amplifying DNA of adults and not larvae. The COI gene

is present in both adults and the immatures. At this time it is not known why the primers

work on adults and not larvae. Most likely there is something inherent with the larvae that

prevented the primers from binding to the DNA. Given the similarities in the biologies of

all five members of the southern pine beetle guild, it is surprising larvae from the other bark

beetle species did not have this same issue. Unfortunately, the inability to amplify the DNA

of I. avulsus larvae prevented it from being included in the molecular half-life comparison.

Due to the fact that the five prey species used in this study were represented by two

closely related genera, the partial COI gene sequences of the southern pine beetle guild

provided few regions of high variation to design species-specific primers. Combining these

primer sets into working multiplex reactions presented further difficulties. The time and

cost benefits of multiplex PCR over traditional singleplex PCR outweighed the additional

effort required to develop species-specific primers for the southern pine beetle guild. This

study represents an extreme scenario in the utilization of molecular gut analyses to study

closely related prey taxa and further demonstrates the capabilities of PCR. Until recently

few studies have utilized multiplex PCR in molecular gut content analysis studies.

The primer sensitivities in this study are high with the exception of the I. avulsus species-
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specific primer set, when compared to other molecular gut content analysis studies (Zhu and

Williams, 2002; Agust́ı et al., 2003b; Traugott et al., 2006). For example, Zhu and Williams

(2002) observed a lower sensitivity limit of approximately 2.4 pg for primers designed to am-

plify DNA of the wasp Anaphes iole (Girault) (Hymenoptera: Mymaridae). Previous studies

have also observed an increase in primer sensitivies under singleplex PCR conditions com-

pared to multiplex PCR conditions. Traugott et al. (2006) found that the lower sensitivity

limit of a primer pair designed to amplify the DNA of the parasitoid Diadegma semiclausum

Hellen (Hymenoptera: Ichneumonidae) under singleplex PCR conditions was 0.59 pg. This

was four-fold higher than the primer sensitivity observed under multiplex PCR conditions

(2.34 pg of DNA). The low sensitivity limit observed for I. avulsus is not of concern as the

observed sensitivity limits for the species-specific primer set of this species corresponds to

approximately 244-2441 larval equivalencies (i.e. the DNA content corresponding to an ex-

tracted larva) based on the mean DNA concentration of an I. avulsus larvae with a weight

equivalent to 4.00x10−3 g (mean weight of 3rd instar I. grandicollis).

2.4.2 Molecular Half-lives of Bark Beetle DNA

Greenstone and Hunt (1993) suggest that in order for molecular-based predation studies

to provide ecologically useful data, assays must be able to provide per-capita estimates of

the number of prey consumed by predators per unit of time. This is a challenging metric

to obtain. It is difficult to relate detection of bark beetle DNA in the gut contents of M.

titillator larvae to predation rates as this detection could represent a large meal (i.e. a meal

larger than that utilized in molecular half-life assays in my study) eaten longer than 6.9 hours

ago or a small meal eaten recently (Harwood and Obrycki, 2005). PCR analysis however,
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does not allow for the quantification of prey consumed or their masses (King et al., 2008)

making discrimination among these alternatives impossible.

The molecular half-life provides a means of quantifying predation rates by describing the

time where half of the predation events should be detectable for any given predator and

prey. This model will serve as an important metric for interpreting positive and negative

detection events of DNA in the gut contents of field-collected M. titillator larvae. The short

molecular half-lives detected for DNA of members of the southern pine beetle guild in the

gut contents of M. titillator larvae are comparable to those of other studies dealing with

active predators. Examples of observed detection limits and half-lives for active predators

have ranged as low as less than 1 hour post-consumption for dragonflies (Morales et al.,

2003), <5 hours for carabids (Zaidi et al., 1999), and < 7 hours for coccinellids (Chen et al.,

2000; Hoogendorn and Heimpel, 2001; Weber and Lundgren, 2009) to greater than 30 hours

observed for anthocorids (Agust́ı et al., 2003b), > 25 hours for carabids (Harper et al., 2005;

Juen and Traugott, 2005), and > 24 hours for phlaeothripids (Jaramillo et al., 2010).

A significant difference in the proportion of M. titillator testing positive for D. terebrans

was observed at 6.9 hours post-consumption. Although the four bark beetle species had

similar sensitivities under multiplex PCR conditions, their respective PCR product sizes

varied. The relatively large PCR product formed by the D. terebrans species-specific primer

set is likely the cause of the lower half-life observed for this species due to larger PCR

products generally exhibiting lower prey detection frequencies (see Section 2.3.3). Differences

between the expected proportion (50%) of M. titillator testing positive for I. grandicollis

DNA calculated from first half-life experiment and the observed proportion testing positive

for I. grandicollis DNA during the half-life comparison experiment (64%) are likely due

to lower sample sizes utilized in the half-life comparison studies. Another possible reason
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for the difference in proportions that was observed was the temporal lag between the two

studies. There was however, only a one week lag between when the molecular half-life of I.

grandicollis DNA study and the half-life comparison study was performed, making this an

unlikely scenario.

2.4.3 Factors Affecting Prey Detection Rates in the Guts of Preda-
tors

Factors that affect the detection length and probability of prey remains in the guts

of predators can be broadly classified in to three main causal groups: biological factors,

environmental (physical) factors, and methodological factors (Hosseini et al., 2008). Some

of the most critical aspects of these factors are discussed below.

Numerous environmental factors have been demonstrated to influence prey detection

lengths and probabilities. For example, studies examining the effects of temperature on

prey detection rates and durations have found that in general, higher temperatures lead

to a decrease in prey detection lengths and probabilities (Hagler and Cohen, 1990; Hagler

and Naranjo, 1994; Hoogendorn and Heimpel, 2001; Hosseini et al., 2008). This is likely

due to an increase in the predator’s digestion rates resulting in a decrease in the molecular

half-life of prey DNA. Taxon-specific digestion rates also appear to influence prey detec-

tion periods, with metabolically “active” predators (e.g. predacious beetles) (Harper et al.,

2005; Sheppard et al., 2005) exhibiting generally shorter prey detection periods compared to

metabolically “slow” predators such as spiders that have considerably lower resting digestion

rates than most invertebrates (Greenstone and Bennett, 1980; Greenstone, 1983; Ragsdale

et al., 1981; Harwood et al., 2001). This pattern however can be highly variable based on

a combination of the experimental variables described above and below (e.g. prey taxa,

probe sensitivity, temperature, and target gene). The effects of meal size on prey detection
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rates and duration is not completely clear with some studies observing an effect of meal size

(Hagler and Naranjo, 1997), while others observed no effect (Zaidi et al., 1999; Hoogendorn

and Heimpel, 2001; Juen and Traugott, 2005; Staudacher et al., 2011). Other predator char-

acteristics such as sex, size, gender, and developmental stage appear to have little impact

on the probability or duration of prey detection within their gut contents (Harwood et al.,

2001; Hoogendorn and Heimpel, 2001; Sheppard et al., 2005; Hosseini et al., 2008; but see

Symondson et al., 1999).

Methodological factors such as the choice of target gene appear to play a major role in

the observed detection length and probability of prey remains. Both nuclear (Zaidi et al.,

1999; Hoogendoorn and Heimpel, 2001) and mitochondrial (Chen et al., 2000; Agust́ı et al.,

2003b) multi-copy genes have been shown to work extremely well in molecular gut analyses.

Mitochondrial genes are particularly useful due to their presence in hundreds or thousands of

copies per cell (Hoy, 1994). Mitochondrial genes are also useful when attempting to develop

species- and group-specific primers due to their relatively high mutation rates compared to

nuclear genes (Simon et al., 1994). Another methodological factor influencing the detection

rates of prey is the length of the amplified PCR products. Previous studies have shown that

prey detection half-lives or rates are inversely related to product length (Agust́ı et al., 1999b,

2000, 2003b; Zaidi et al., 1999; Chen et al., 2000; Hoogendoorn and Heimpel, 2001; Foltan et

al., 2005; Juen and Traugott, 2005). Primers designed to amplify PCR product sizes <500

base pairs are generally suitable for gut content analyses, since DNA in the guts of predators

is usually degraded making smaller target sequences more likely to persist. Finally, antigen

and primer quality may play a role in the observed prey detection rates and duration (Juen

and Traugott, 2005; Admassu et al., 2006; de León et al., 2006).
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2.5 Summary

Species-specific PCR primer sets were successfully developed for adults and larvae of all

five members of the southern pine beetle guild, with exception to I. avulsus larvae. Species-

specific PCR primers were also designed that were capable of seperating M. titillator larvae

from M. carolinensis larvae. The five bark beetle primer sets were successfully combined into

two multiplex PCR reactions. The size differences in the PCR products amplified from these

primer sets allowed easy determination of the presence or absence of DNA from each bark

beetle species. The designed primers were highly sensitive to target DNA under multiplex

PCR conditions.

The molecular half-life of I. grandicollis DNA in the gut contents of M. titillator larvae

was calculated as 6.89 hours post-consumption. A comparison of the proportion of M.

titillator larvae fed larvae of four of the five bark beetles species killed at 6.9 hours post-

consumption showed that the proportion fed D. terebrans differed significantly. This was

most likely due the large PCR product formed for this species. Results from the molecular

half-life studies will provide a frame of reference when attempting to interpret results on

the observed predation frequencies of field-collected M. titillator larvae for members of the

southern pine beetle guild presented in the following chapter.



3. Predatory Dynamics Between
Monochamus titillator Larvae and the

Southern Pine Beetle Guild in the Field

3.1 Introduction

Southern pine beetle guild populations undergo dramatic fluctuations between endemic

and epidemic levels. In the case of D. frontalis these fluctuations appear to have a periodicity

(Turchin, 1990). The underlying mechanisms involved in these fluctuations have recieved

considerable attention. Factors driving the reduction in southern pine beetle guild popula-

tions are poorly understood compared to those leading to an increase in population levels.

Regulation via bottom-up effects driven by host resistance appears to be the dominant force

preventing bark beetle populations from reaching epidemic levels. Host resistance can be

affected by stand, site, and climactic conditions (Lorio and Hodges, 1968; Lombadero et

al., 2000), mechanical stress (Ruel et al., 1998), and bark beetle-induced stress (Lorio et

al. 1995). When favorable conditions allow, host resistance can be overcome by bark beetle

mass attacks. This eventually leads to the production of more individuals who can in turn,

facilitate the breach of the host’s defenses and ultimately lead to an explosion in population

levels.

There has been an increase in awareness of the roles insect associates play in southern pine

beetle guild population dynamics. The negative impacts of natural enemies on populations

of members of the southern pine beetle guild have been widely demonstrated (Linit and

Stephen, 1983; Miller, 1984). Interpretation of results from some studies observing a negative

impact of insect associates on southern pine beetle guild populations however, must be

60
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viewed critically due to the fact that they simultaneously excluded competitors and natural

enemies (Miller, 1986; Riley and Goyer, 1986). It is believed that predation by natural

enemies may affect bark beetle populations in a delayed density-dependent manner (Turchin

et al., 1999). Alternatively, competition with phloem-inhabiting insects may generate direct

negative feedback (Reeve and Turchin, 2002). Further studies quantifying the impact of

competitors and natural enemies on southern pine beetle guild population dynamics are

needed.

The field of molecular-based predation studies has rapidly expanded in the last decade,

providing many examples of its successful application to a wide array of invertebrate taxa.

A large proportion of early molecular-based predation studies were calibratory laboratory

studies, which examined factors affecting prey DNA detection rates in the guts of predators.

These factors include: temperature (Hagler and Naranjo, 1997; Hosseini et al., 2008), meal

size (Hagler and Naranjo, 1997; Agust́ı et al., 1999b; Juen and Traugott, 2005; Weber and

Lundgren, 2009), predator species (Hagler and Naranjo, 1997; Hosseini et al., 2008), predator

gender and size (Hosseini et al., 2008), time since feeding (Hagler and Naranjo, 1997; Hosseini

et al., 2008; Weber and Lundgren, 2009), sample processing and visualization techniques

(Juen and Traugott, 2006; Sint et al., 2011), predator digestion morphology (Hosseini et al.,

2008), sample preservation (Weber and Lundgren, 2009), and effect of chaser meal (Weber

and Lundgren, 2009). These studies identified factors that may influence the performance

of the molecular tools developed. The ultimate goal of these tools is their application to the

study of trophic interactions in the field.

The first study to use DNA-based molecular gut analyses of field-collected samples to

study predator-prey interactions of cryptic species under natural conditions examined pre-

dation rates of Collembola species by spiders in arable fields (Agust́ı et al., 2003a). Since
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then, DNA-based molecular gut analyses have been used to study many systems including

aquatic (Saitoh et al., 2003; Deagle et al., 2005; Suzuki et al., 2006), soil (Read et al.,

2006; Staudacher et al., 2011), grassland (Foltan et al., 2005; Juen and Traugott, 2007), and

agroecosystems (Wallace, 2004; Traugott et al., 2006; Harwood et al., 2007, 2009; King et

al., 2010; Eitzinger and Traugott, 2011). Until now, no other studies are known to have

utlilized DNA-based molecular gut content analyses to elucidate food-webs in forest ecosys-

tems, with exception to a study by Muilenburg et al. (2008) who observed predation of eggs

of the cerambycid Enaphalodes rufulus (Haldeman) by multiple ant species. Field studies are

important when attempting to characterize predator-prey dynamics, because it is difficult to

reproduce environmental conditions and predator/prey compositions in the laboratory that

approximate those in the field (Symondson, 2002). This is particularly true of the subcor-

tical environment of pines. Study of predator-prey interactions in this environment would

require reproduction of the intricate communication system driving adult bark beetle and

M. titillator arrival to the host, and their within-host larval densities and distributions. Be-

cause of this, DNA-based molecular gut content analyses of the gut contents of field-collected

M. titillator are important for elucidating the subcortical interactions between M. titillator

larvae and the southern pine beetle guild.

The primary goal of this study was to use the tools devloped in Chapter 2 to survey

the gut contents of field-collected M. titillator larvae to test the capability of the molecular

tools developed in the laboratory. This was done by obtaining semi-quantitative measure-

ments of predation events by M. titillator larvae on members of the southern pine beetle

guild under semi-natural conditions. This study tested the hypothesis that the frequency of

predation events by M. titillator larvae on members of the southern pine beetle guild is high

enough to allow their detection using the molecular tools developed. In addition, this study
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attempted to further characterize the subcortical interactions between larval M. titillator

and the southern pine beetle guild by comparing the species composition of members of the

southern pine beetle guild within the host to that observed within the gut contents of the

M. titillator larvae to see if they exhibit prey choice.

3.2 Materials and Methods

3.2.1 Field Predation Pilot Study

A pilot study was performed to determine the relationship between bole surface location

(top, bottom, sides) and height, on the distribution of woodborer oviposition niches and

bark beetle and woodborer larvae. This was done in order to optimize sampling efforts (i.e.,

samples were taken from areas characterized by high densities of both M. titillator and bark

beetle larvae).

On 5/17/10 a single healthy ∼20 year old P. taeda (dbh=1.2 m, height=21 m) was

felled. The lowest 1.75 meters of the bole was cut and discarded since the thick bark in

this region has been shown to inhibit Monochamus oviposition (Linit et al. 1983; Walsh

and Linit 1985). The remaining portion of the bole was cut into 1 m long sections until

9 sections were obtained. The remaining upper portion of bole and crown of the tree was

discarded. The 1 m sections were elevated 30.5 cm off the ground by placing log sawhorses

underneath each section. The bole sections were elevated to help protect the bole sections

against fire ant infestation, flooding, and to provide attacking insects easy access to the entire

bole surface (Riley, 1983). Additionally, reduced Monochamus oviposition density has been

shown on portions of bolts touching other bolts when decked or in contact with the ground

(Raske, 1975). Thus, elevating the logs off the ground potentially allowed for a more natural

oviposition distribution on the experimental bolts. The bole sections were aligned end to
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end as tightly as possible to help prevent desiccation according to their original position on

the tree. The bole was placed parallel to the edge of a P. taeda stand in an open field.

Ten days post felling, the number of oviposition niches were counted across the surface of

each bole section. This was done by dividing the surface area into quarters (see Peddle, 2000;

Allison and Borden, 2001). Each quarter section was designated as either the top, bottom,

left side (facing pine stand), or right side (facing open field). The quarter divisions were

visualized by hammering a nail every 90◦ at both ends of each bolt section (starting at 45◦)

and running cotton string from one end to the other. The number of oviposition niches were

then counted and recounted for each quarter section of each bolt section until a consensus

count was reached. The number of oviposition niches for each bole quarter area were pooled

across the height of the bole and the percentage of oviposition niches occupying each quarter

area determined. Additionally, the total number of oviposition niches was pooled across the

four quarters within sections and the percentage of oviposition niches occupying each bole

section compared.

In addition to determining the optimal bole heights and surface areas on the boles to

sample, the optimal time post-felling to sample was determined by monitoring bark beetle

and wood borer development in the bole sections. Every five days for 30 days post-felling

small samples of bark (< 1 dm2) were carefully removed from the top, sides, and bottom

quarters of the bole sections using a hatchet. Bark beetle and wood borer larval and gallery

development were observed and recorded. Specifically, the time post-felling when within host

bark beetle populations were high and Monochamus foraging had begun to overlap signifi-

cantly with bark beetle galleries was determined. In order to prevent excessive destruction

of the bolts due to the bark sampling, even and odd numbered bolts were checked on alter-



65

nating sampling dates. Thirty days post-felling all bolt sections were stripped of their bark

and removed from the area.

3.2.2 Field Predation Survey

On 6/25/10 four healthy ∼20 year old P. taeda (mean dbh=0.321 m, SD=0.026) were

felled and the initial 1.75 meters of the bole discarded. The remaining portion of the felled

bole was cut up into 1 m long sections until 9 sections were obtained. The first four sections

from each tree were discarded and the remaining five sections (N=20) moved to the experi-

mental area described above (see Section 2.2.8). Each bole section was numbered according

to its original position on the tree and marked to facilitate alignment of the upper surfaces

of consecutive bolts. The five sections from each tree were grouped and tightly aligned end

to end to prevent excessive desiccation according to height. The bole sections were elevated

30.5 cm off the ground by placing log sawhorses underneath each section. The bole section

groups from each tree were at least 20 m away from the other tree bole sections situated

parallel approximately 1.5 m out along the edge of the tree line.

One of the original goals of this study was to determine the effect of bark beetle density on

their observed detection frequencies within the gut contents of M. titillator larvae. However,

due to the small sample size available this was not possible. Since the M. titillator recovered

from this attempt were included in the predation detection frequency analysis, the sampling

methodolgy is described below.

Twenty-five days post felling, two 1 dm2 bark disks were extracted per side and bottom

area of each bole section using a 114 mm diameter hole saw. To collect the samples each

bole section was carefully lifted off of its supports and placed onto the ground with the side

originally facing the open field facing upwards. A single bark disk sample was taken 0.33
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m from each end of the bole section 90◦ from the mark used to designate the upper surface

of the bole section (Figure 3.1). The bole section was then rolled 90◦ counterclockwise to

expose the bottom surface and 180◦ (an additional 90◦) to sample the other side. This

sampling method was repeated for each bole section until the sides and bottom areas of each

bole section had been sampled (N=120). Cerambycidae larvae were collected from the areas

exposed by the hole saws and placed individually into labeled collection vials containing 95%

ethanol and placed over ice to halt digestive enzymes until they could be transported back

to the laboratory for identification and subsequent DNA extraction.

It is possible that other larvae from the subfamily (Lamiinae) were collected during

the bark disk sampling portion of the experiment due to the lack of Monochamus-specific

morphological characters at the time of dissection. This was not of concern however, due

to the very low numbers of the other adult Lamiinae [except for Acanthocinus obsoletus

(Olivier), N=227] observed in multiple-funnel traps at the same location and time of year

the bolts were sampled (E.N. Schoeller and J.D. Allison unpub. data). To ensure that the

primers developed to amplify M. titillator DNA did not amplify A. obsoletus DNA, we tested

the primers on five individuals of A. obsoletus. Since no unspecific amplification occurred

it was concluded that any non-Monochamus in the samples, that may give false positives,

would be statistically insignificant. Due to the low number of Cerambycidae larvae recovered

from this sampling method it was possible to screen all larvae using the species-specific M.

titillator primer set.

Three days after the bark disk samples were collected (6/28/10); supplementary M. titil-

lator larvae were obtained by sampling a 0.5 m long portion from each of the 20 bole sections.

This was done by cutting 0.25 m long sections from both ends of each bole section. These

0.25 m sections were labeled according to their tree ID and section numbers, and transported
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Figure 3.1 Diagram of the 1 meter bole sections. Measurements indicate: Distance from
ends of each section that the 1 dm2 bark disk samples were removed (0.33 m), length of
each section where supplementary Cerambycidae larvae were removed (0.25 m x2), and the
portion of each section taken back to laboratory to collect emerging saphrophagous insects
to determine southern pine beetle guild species composition (0.2 m).
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back to the laboratory to be hand dissected by carefully peeling off the bark and removing

Cerambycidae larvae. The Cerambycidae larvae were identified as either Monochamus or

non-Monochamus using characters provided by Craighead (1923) and Böving and Craighead

(1931). These larvae were added to the larvae obtained from the density sampling efforts to

be used for the predation detection frequency analyses.

Some M. titillator larvae were too small (<10 mm) and brittle due to ethanol dehydration

to dissect using normal dissection methods. In these cases the DNA was extracted from the

entire larva, with the exception of the head capsule. Head capsules were excluded from DNA

extractions, since their inclusion may have lead to false positives for bark beetle consumption

by M. titillator larvae that may have bitten but not consumed bark beetle larvae. The use of

whole larvae as a source of template DNA was of concern due to the possibility of prey DNA

being present on the cuticle of the M. titillator larvae. It was hypothesized that any potential

bark beetle DNA attached to the cuticle of the M. titillator larvae would be suspended in the

95% ethanol storage solution and that further rinsing with 70% ethanol would be sufficient

to remove any remaining attached DNA.

To test the potential effectiveness of this cleaning method an experiment was designed

which exposed larvae to two prey DNA contamination methods. Prior to the experiment 25

M. titillator larvae were removed from the laboratory population 15 days post infestation

and killed by freezing them at -20◦C for 10 minutes. Larvae were thawed for 10 minutes at

room temperature prior to use. The larvae were randomly assigned to one of 5 treatment

groups (N=5 larvae per treatment). The first two treatments consisted of M. titillator larvae

dipped into a solution of I. grandicollis DNA and either cleaned as described above or not

cleaned prior to DNA extraction. The third and fourth treatments consisted of M. titillator

larvae rubbed against active I. grandicollis larval galleries and either cleaned as described
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above or not cleaned prior to DNA extractions. The final treatment consisted of a control

group of M. titillator larvae not exposed to I. grandicollis DNA.

In the solution dipping treatments the M. titillator larvae were grasped with a pair of

sterile forceps and dipped into 1.5 ml microcentrifuge tube containing 1 ml of 25 ng/µl I.

grandicollis DNA solution. The larvae were submerged up to a few millimeters below the

head capsules and held in the solution for 15 seconds. In the rubbing treatments the M.

titillator larvae were grasped with a pair of sterile forceps and rubbed against a piece of

P. taeda phloem with galleries of actively feeding I. grandicollis larvae for 15 seconds. The

larvae from both types of DNA application procedures, which were assigned to the rinse

treatments, were rinsed in 70% ethanol for 10 seconds prior to DNA extraction. Larvae from

all five treatments were dissected and their DNA extracted for subsequent PCR analysis.

Only 3/5 M. titillator larvae from the dipped and unwashed treatment tested positive for

M. titillator DNA, and no larvae tested positive from the rubbed and unwashed treatments.

Because no I. grandicollis DNA was detected on washed larvae, it was concluded that this

washing method was sufficient to remove any DNA contamination that may be present on

the cuticle surface. This assumption appeared valid after observing the detection rates of

bark beetle DNA in the field (see Section 3.3.3).

After disk and supplementary field M. titllator larvae were washed with 70% ethanol

they were dissected and their gut contents extracted for subsequent PCR analysis (except

for M. titillator larvae under 10 mm in length, which were processed whole). The field

caught larvae were first screened to species in order to determine which individuals were

M. titillator using the singleplex PCR reaction containing the M. titillator species-specific

primer pair MTF1/MTR1. Samples that were confirmed as M. titillator were then sampled

for bark beetle DNA using the optimized multiplex reactions PCR reactions containing the
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species-specific bark beetle primer sets and the presence or absence of prey DNA in their

gut contents recorded.

3.2.3 Bark Beetle Species Compositions

An experiment was performed to see if differences in species compositions existed for the

southern pine beetle guild in host material and in the gut contents of the field collected M.

titillator larvae. This was tested by comparing the species composition of members of the

southern pine beetle group represented in the experimental bolts to the species composition

detected in the gut contents of the field-collected M. titillator larvae. In brief, a 20 cm portion

of each bole section was removed from between the 1 dm2 areas sampled (Figure 3.1) and

taken back to the laboratory and placed into 5 gallon bucket rearing containers. Emerging

adult bark beetles were counted and identified to species. The ratios of the southern pine

beetle guild species observed in the 20 cm bole sections were assumed to reflect the southern

pine beetle species composition in the semi-adjacent 0.25 m areas removed from the ends of

each bole section. The number of emerged southern pine beetle guild members was pooled

across all 20 bole sections. These species ratios were then compared to the observed ratios of

bark beetle species in the guts of the field-collected M. titillator larvae. Ips avulsus was not

included in the final comparison due to the inability of the primer set to detect larvae of this

species (see Section 2.3.1). Differences in the southern pine beetle guild species composition

within the host and within the gut contents of the field-collected M. titillator larvae were

compared using a contingency table and singificance calculated using Fisher’s exact test in

Minitab v.15.
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Table 3.1 Distribution of wood borer oviposition niches across various heights and surface
areas of the bole used in the field sampling pilot study.

Section                         Area  Total Percent 

 Top Bottom Left  Right    

1 0 13 11 10  34 2.6 

2 1 21 19 11  52 4.0 

3 0 43 35 12  90 6.9 

4 0 41 38 31  110 8.5 

5 0 42 32 47  121 9.3 

6 0 74 82 53  209 16.1 

7 2 90 50 54  196 15.1 

8 4 80 89 52  225 17.3 

9 5 77 112 67  261 20.1 

     

Total 12 481 468 337 

Percent 0.9 37.1 36.1 25.9 

 

3.3 Results

3.3.1 Field Sampling Pilot Study

A total of 1298 wood borer oviposition niches were counted across the 9 bolt sections

of the pilot study tree. Bolt sections 5-9 contained approximately 78% of the total number

of oviposition niches and the sides and bottom quarters contained >99% of the oviposition

niches on the bole (Table 3.3.1). Thus, subsequent sampling efforts were restricted to these

corresponding bole heights and surfaces.

Observations made during the development and species composition portion of the field
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pilot study agree with those of Dodds and Stephen (2000) for the within tree development of

M. titillator in the field. Based on these observations trees were sampled 25 days post-felling.

This sample time was convenient as the majority of field-collected M. titillator larvae were

of similar age to those used in the laboratory assays. Beyond 25 days post-felling bark beetle

gallieries were almost completely destroyed by wood borer larval foraging. The upper surface

of the pilot study tree was the only area that had visible bark beetle activity past this time,

where woodborer densities were lowest.

3.3.2 Larval Cerambycidae Identification

A total of 764 cerambycid larvae were collected from 0.5 m bole section portions taken

from the 4 experimental trees (Table 3.2). Of these, 362 (47.38%) were identified as Monochamus

using morphology. Using the M. titillator -specific PCR reaction, 219 (60.49%) of the 362

larvae identified as Monochamus were further identified as M. titillator. An additional 52

M. titillator larvae taken from the areas exposed by the hole saw were included, yielding

a total of 271 M. titillator to be used for molecular gut content analyses. The proportion

of Monochamus larvae identified as M. titillator (62.88%) was significantly less (Z=-4.81,

P<0.001) than the proportion of adult Monochamus identified as M. titillator (78.71%)

(N=310) trapped over the same period and location as the field predation survey (E.N.

Schoeller and J.D. Allison unpub. data). The highest proportion of cerambycid larvae that

were identified as M. titillator larvae were collected within bole sections 2 and 3 having mean

diameters of 0.27 m (SD=0.016) and 0.24 m (SD=0.022) respectively. These sections corre-

spond to bole heights ranging from 2.75-4.75 meters. The proportion of pooled cerambycid

larvae that were identified as M. titillator ranged from as little as 17.61% in section 5 (bole

heights 5.75-6.75 m) to as high as 37.01% in section 2 (bole heights 2.75-3.75 m)(Figure 3.2).
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Figure 3.2 The proportion of pooled Cerambycidae larvae identified as M. titillator larvae
compared against the mean diameters of the pooled bole sections.

3.3.3 Detection of Southern Pine Beetle Guild DNA in the Gut
Contents of M. titillator Larvae in the Field

Using the developed bark beetle multiplex PCR reactions a total of 26 (9.6%) M. titillator

larvae tested positive for DNA of members of the southern pine beetle guild in their gut

contents. Of these larvae 25 (96.2%) tested positive for I. grandicollis DNA, 1 (3.8%) for I.

calligraphus DNA, and 0 (0%) for D. terebrans and D. frontalis DNA.

3.3.4 Southern Pine Beetle Guild Species Compositions

A total of 200 adults of the southern pine beetle guild emerged from the 0.2 m bolt

sections in the laboratory. Of these individuals, 15 (7.5%) were I. avulsus, 177 (88.5%) I.

grandicollis, and 8 (4%) were I. calligraphus (Table 3.3.4). No adult D. terebrans or D.

frontalis adults emerged from these bolts. After elimination of I. avulsus from the data, the

proportion of I. grandicollis and I. calligraphus in the host material increased to 95.7% and
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Table 3.2. Summary of the field-collected Cerambycidae larvae removed from the 0.5 m
portion of each bole section.

Tree-Section Total Larvae Number of Larvae Percent Larvae
(Cerambycidae) (M. titillator) (M. titillator)

Tree(1)-Section(1) 41 17 41.5
T1-S2 44 22 50.0
T1-S3 44 12 27.3
T1-S4 25 11 44.0
T1-S5 48 13 27.1
T2-S1 35 9 25.7
T2-S2 49 13 26.5
T2-S3 24 19 79.2
T2-S4 55 15 27.3
T2-S5 44 8 18.2
T3-S1 60 13 21.7
T3-S2 28 13 46.4
T3-S3 45 10 22.2
T3-S4 38 3 7.9
T3-S5 45 5 11.1
T4-S1 16 5 31.3
T4-S2 33 9 27.3
T4-S3 43 13 30.2
T4-S4 25 7 28.0
T4-S5 22 2 9.1
Total 764 219 -
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4.3% respectively. Using these proportions, no differences between the species compositions

of the southern pine beetle guild within the experimental host material and those in the gut

contents of the field-collected M. titillator larvae were observed (P=0.99).

3.4 Discussion

3.4.1 Field Sampling Pilot Study

Previous studies have found that Monochamus species tend to oviposit preferentially on

the shaded sides and bottom of raised horizontal boles (Peddle, 2000; Allison and Borden,

2001) probably due to reduced desiccation and temperature fluctuations that affect larval

survival (Rose, 1957). The results of the field collection pilot study support these results. It

was not possible to identify the sources of the oviposition niches, however the general pattern

observed in the pilot study was most likely driven by Monochamus species since they were

the dominant cerambycid taxa observed during the time of sampling.

In standing trees, the oviposition pit densities of M. titillator exhibit a bimodal distri-

bution (peaking at 25% and 75% of the sequentially infested bole height) (Hennier, 1983)

surrounding the region where D. frontalis typically infest first (Fargo et al., 1978, Coulson et

al., 1979). In other Monochamus species, high oviposition pit densities have been observed in

the middle and upper portions of the bole (Yoshikawa, 1987; Nakamura et al., 1995). Within

these areas, the oviposition niches appear evenly distributed (Hennier, 1983; Shibata, 1984),

potentially due to avoidance behavior of consepecifics (Shibata, 1984; Peddle et al., 2002).

It is possible that the oviposition behavior of M. titillator is chemically-mediated by bark

beetles. For example, the cerambycid A. aedilis (Linné) has been observed to oviposit

preferentially on logs and in or near entrance holes infested with the bark beetle Tomicus

piniperda (L.) (Schroeder, 1997). Schroeder (1997) hypothesizes that oviposition in or near
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Table 3.3 Number of members of the southern pine beetle guild emerging from the 0.2 m
bole sections taken back to the laboratory. This data was used to calculate the within-host
southern pine beetle guild species composition.

 
                                               Species 

Section I. avulsus I. grandicollis I. calligraphus D. terebrans D. frontalis 

T1-S1 0 0 0 0 0 

T1-S2 0 1 0 0 0 

T1-S3 0 4 0 0 0 

T1-S4 4 40 0 0 0 

T1-S5 4 36 0 0 0 

T2-S1 0 2 0 0 0 

T2-S2 2 13 5 0 0 

T2-S3 0 0 0 0 0 

T2-S4 0 15 0 0 0 

T2-S5 0 1 0 0 0 

T3-S1 1 2 0 0 0 

T3-S2 1 16 0 0 0 

T3-S3 0 21 0 0 0 

T3-S4 0 5 2 0 0 

T3-S5 0 1 0 0 0 

T4-S1 1 1 1 0 0 

T4-S2 0 10 0 0 0 

T4-S3 0 2 0 0 0 

T4-S4 1 7 0 0 0 

T4-S5 1 0 0 0 0 

Total 15 177 8 0 0 

Total (%) 7.5 88.5 4.0 0.0 0.0 
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T. piniperda entrance holes could be due to the physical presence of a hole or due to increased

concentrations of host volatiles released from these areas. The oviposition behavior of M.

titillator however, is more likely mediated by conspecific- (Anbutsu and Togashi, 2001; Li

and Zhang, 2006), and/or host-produced chemicals in order to select areas of high resource

quality and/or avoid areas with increased risk of intra- and inter-specific competition. In

the case of M. titillator, Hennier (1983) hypothesizes that the observed distribution of M.

titillator oviposition niches on the bole is likely an adaptation in order to avoid early arriving

D. frontalis which may reduce the nutritional quality of phloem material available to the M.

titillator larvae.

The proportions of M. titillator larvae observed across the various bole heights in this field

study suggest that, future sampling efforts could be even further restricted to the portion

of the bole with diameters ranging 0.24-0.27 meters. Phloem thickness in the portion of

the bole with diameters <0.24 meters may be too thin to support the large M. titillator

larvae and smaller species such as A. obsoletus may outcompete M. titillator in these areas.

Additionally, the thin bark associated with these areas may increase risk of predation or

parasitism (Hennier, 1983). Alternatively, areas of the bole with diameters >0.27 meters tend

to have thicker bark, which may deter M. titillator oviposition due to increased energy costs

associated with carving the deep oviposition pits necessary to reach the phloem interface.

3.4.2 Detection of Southern Pine Beetle Guild DNA in the Gut
Contents of M. titillator Larvae in the Field

The short molecular half-lives (see Section 2.3.4) found for bark beetle DNA in the

gut contents of M. titillator larvae provided only a short timeframe for observing potential

predatory interactions in the field. Additionally, the molecular half-lives of bark beetle DNA

in the gut contents of M. titillator were calculated from starved individuals. Starvation
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often leads to reduced metabolic rates [and potentially digestion rates (Greenstone and

Hunt, 1993)] in some invertebrates (Anderson, 1970; Greenstone and Bennet, 1980; Lövei et

al., 1985). This fact could have potentially caused some disparity between the observed half-

lives under laboratory conditions and the actual half-lives in the field, since field-sampled

M. titillator larvae were most likely not suffering from starvation. Another factor that may

have contributed the low number of M. titillator larvae testing positive for prey remains

was the temperature utilized for the laboratory molecular half-life tests. Larvae utilized for

calculating the molecular half-life of I. grandicollis DNA and for comparing the proportions

of M. titillator larvae testing positive for each of the four bark beetle species at 6.9 hours post-

consumption were maintained at 30◦C under laboratory conditions. Ambient temperatures

observed in the field during the dates of collection were 33◦C and 34◦C on the first and

second collection dates respectively. The temperature of the phloem tissue was not measured

in this study, however the temperature of the phloem is normally higher than the ambient

temperature due to radiant thermal energy being absorbed by the tree (Powell, 1967; Logan

and Powell, 2001). As mentioned previously, higher temperatures have been shown to reduce

the half-lives of prey DNA in the gut contents of predators (see Section 2.4.3). Hosseini et al.

(2008) found that a 5◦C increase in temperature (25-30◦C) caused a 30-48% reduction in prey

detection frequences in the gut contents of the coccinellid Hippodamia variegata (Goeze) at

five different time intervals post-consumption. Hagler and Naranjo (1997) observed similar

results, with observed half-lives declining (38.3, 26.2, 26.5, 4.5, and 1.8 hours) for prey DNA

in the gut contents of the anthocorid Orius insidiosus (Say) (held at 15, 20, 25, 30, and 35◦C

respectively). Additionally, an increase in temperature has been shown to increase predation

rates in some invertebrate taxa (Néve, 1994; Ayre, 2001). Thus, a priori, it is difficult to

predict what, if any, effect the temperature differences may have had.
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This study demonstrates that DNA-based molecular gut content analyses are capable of

detecting DNA of members of the southern pine beetle guild in the gut contents of field-

collected M. titillator larvae. The fact that no M. titillator larvae tested positive for I.

avulsus DNA may mean that although possible, consumption of adult bark beetles within

the phloem is an infrequent event. The interactions between adult bark beetles that come

into contact with foraging M. titillator larvae is something that needs to be examined in

order to understand how M. titillator larvae may impact this bark beetle lifestage. Given

the extreme local rarity of D. frontalis, it is not surprising that it was not detected within the

gut contents of the field-collected M. titillator larvae. Additionally, sections of the bole used

in this study were from outside the normal within-host distribution of D. terebrans (i.e the

root system and base of infested trees) making detection of this species also unlikely. Because

of its normal distribution within the host, D. terebrans is likely to interact infrequently with

foraging M. titillator larvae. Additionally, since no adult D. terebrans or D. frontalis emerged

from host material brought back to the laboratory, the presence of these species in the bole

heights sampled was unlikely.

3.4.3 Southern Pine Beetle Guild Species Composition Compari-
son

The within-tree species composition of southern pine beetle guild members emerging from

the 20 cm bole sections are somewhat similar to those observed by Berisford (1974), who

observed an Ips species composition of approximately 90% I. grandicollis, 6% I.calligraphus,

and 4% I. avulsus in P. taeda from Georgia. Differences in Ips spp. composition observed

between these studies could be attributed to: 1) differences in the study area microhabitats,

2) tree size, 3) climactic differences, and 4) differences in Ips phenologies due to geographic

area. In bole sections with the greatest relative proportion of M. titillator larvae (2.75-4.75
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m) the greatest number (relative to the other bole section heights) of emerging I. calligraphus

adults was observed. It is interesting to note that the only M. titillator larva testing positive

for I. calligraphus DNA was collected from one of three bole sections with emerging adult I.

calligraphus observed in the laboratory. Unfortunately, this study was not able to directly

test for an effect of bark beetle density on the observed frequency of bark beetle DNA in

the gut contents of M. titillator lavae. This was due to the limited number of M. titillator

larvae collected and low number testing positive for prey remains (i.e. only 1 of the 52 M.

titillator larvae) removed from the areas exposed by the hole saw.

Results from the southern pine beetle guild species composition tests were not surprising.

It is unlikely that M. titillator larvae exhibit prey choice as they are primarily phytophagous

on phloem tissue and most likely consume bark beetle larvae indiscriminately as they for-

age. M. titillator larvae are highly agressive and will attack anything in close proximity

including conspecifics [(which they often attempt to cannibalize (Dodds et al., 2001)] and

other subcortical insects. Some studies that have utilized molecular gut content analyses to

compare differences in prey compositions is the field to those observed in the gut contents

of their predators of interest have observed prey choice (Agust́ı et al., 2003a), while others

have not (King et al., 2010). Prey choice is a metric that incorperates many factors such as

predator:prey encounter rates, and the quality of predator attack and prey defense strategies

(Harwood et al., 2004). Prey choice is an important metric to elucidate in the study of

trophic interactions as it allows the quantification of the relative importance of a particular

prey species in regulating the dynamics of predator populations and vice versa. The po-

tential for prey choice in this system is likely limited due to temporal and spatial isolating

mechanisms that dictate the arrival of southern pine beetle guild members and M. titillator

to the host and their within-host distributions (Dixon and Payne, 1979; Birch et al., 1980;
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Paine et al., 1981). Within a particular area, M. titillator larval-bark beetle interactions

are likely restricted to a single dominant member of the southern pine beetle guild or to a

mixture of two species providing M. titillator larvae a limited opportunity to descriminate

between potential prey.

3.4.4 Southern Pine Beetle Guild Population Dynamics

The ability to detect DNA in the gut contents of field-collected M. titillator larvae is

significant as it provides further insight into the potential mechanisms driving the reduction

in bark beetle numbers in areas foraged by M. titillator larvae observed in previous studies

(Coulson et al., 1976, 1980; Hennier, 1983; Flamm et al., 1989). These results also demon-

strate that facultative intraguild predation previously observed by Monochamus larvae in

the laboratory (Dodds et al., 2001) also occurs under natural conditions.

Observations on the seasonal abundance of members of the southern pine beetle guild

in Louisiana found that greater numbers of D. frontalis emerged in the early spring and

late fall than in the summer, which may have been a result of the greater numbers of

observed interspecific interactions during the summer with wood borers and other bark beetle

species (Moore and Thatcher, 1973). Other studies have observed an increase in Ips and

Monochamus numbers coinciding with the onset of D. frontalis population collapse (Clarke

and Billings, 2003). These studies support the hypothesis that competitive interactions with

larvae of Monochamus species may be a significant driving force in southern pine beetle

guild population collapse. Additionally, results from this study and those of Dodds et al.

(2001) suggest that these interactions could be classified as predatory rather than strictly

competition for phloem resources.
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3.5 Summary

This study demonstrated the molecular tools developed and used successfully in Chapter

2 are capable of amplifying DNA of members of the southern pine beetle guild in the gut

contents of field-collected M. titillator larvae. A total of 271 M. titillator larvae were screened

for DNA of members of the southern pine beetle guild. Twenty-six larvae tested positive

for bark beetle DNA in their gut contents. The observed proportion of bark beetle species

within the gut contents of the field-collected M. titillator larvae were 96.2% I. grandicollis

and 3.8% I. calligraphus, and 0% D. terebrans and D. frontalis. This reflected the observed

southern pine beetle species composition within the experimental host material, suggesting

M. titillator were not exhibiting prey choice. Results from this study provide emperical

evidence that larvae of M. titillator are consuming members of the southern pine beetle

guild in the field, and demonstrate the capability of PCR in studying food-webs of cryptic

species in forest ecosystems.



4. Summary and Conclusions

4.1 Summary of Results

Results from this study provide additional evidence to support the hypothesis that M.

titillator, and likely M. carolinensis as well, are facultative intraguild predators. They also

provide a better understanding of the dynamics of the subcortical interactions between im-

matures of the southern pine beetle guild and M. titillator. Species-specific PCR primers

were successfully developed to amplify DNA from adults of all five members of the south-

ern pine beetle guild. Unfortunately, these primers did not amplify larval I. avulsus DNA,

but did amplify larval DNA from the other four species. Species-specific primers were also

sucessfully developed to facilitate seperation of field-collected M. titillator and M. caroli-

nensis larvae. These bark beetle-specific primer sets were successfully combined into two

multiplex PCR reactions, which significantly reduced the cost and time necessary to screen

the gut contents of field-collected M. titillator larvae for DNA of the southern pine beetle

guild.

The sensitivities of the developed bark beetle species-specific primers were tested under

both singleplex and multiplex PCR conditions. An increase in primer sensitivities was ob-

served under singleplex PCR conditions compared to multiplex (except for the primer set

designed to amplify D. frontalis, which was not observed to differ). This was not of con-

cern however, since the primer sentivities under multiplex PCR conditions corresponded to

>200 larval equivalencies for all bark beetle species, which were sufficient for the purpose

of this study. Using the developed bark beetle multiplex PCR reactions the half-life for I.

grandicollis DNA in the gut contents of M. titillator larvae was calculated under laboratory

83
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conditions, to be 6.89 hours post-consumption. Although short, this half-life was reasonable

due to the active lifestyle of Monochamus larvae. The proportion of M. titillator larvae with

detectable bark beetle DNA at 6.9 hours post-consumption were 0.64, 0.68, 0.16, and 0.64

for larvae fed I. grandicollis, I. calligraphus, D. terebrans and D. frontalis respectively. The

proportion of M. titillator larvae testing positive for D. terebrans DNA differed significantly

from the proportion of larvae fed the other three bark beetle species. The results of this

half-life study provide a basis for interpreting results on the detection frequencies of DNA

of the southern pine beetle guild in the gut contents of field-collected M. titillator larvae.

A total of 915 cerambycid larvae were collected from the four experimental boles in the

field. Of these larvae, 271 were identified as M. titillator using the M. titillator -specific

primer set. Twenty-six of the 271 M. titillator larvae screened positive for DNA of members

of the southern pine beetle guild. The low number of larvae testing positive for bark beetle

DNA was likely dictated by short molecular half-lives observed for bark beetle DNA in the

gut contents of M. titillator. Of the 26 M. titillator larvae that tested positive 96.2%, 3.8%,

0%, and 0%, tested positive for I. grandicollis, I. calligraphus, D.terebrans, and D. frontalis

DNA respectively. It was not suprising that consumption of neither D. terebrans (due to

utilization of the bole outside its normal distribution within the host) or D. frontalis (due

to its local rarity) was observed.

The within host species composition of the southern pine beetle guild in the experimental

boles sections was 95.7% I. grandicollis, 4.3% I. calligraphus and 0% D. terebrans and D.

frontalis when I. avulsus was excluded from the data. The species composition of members

of the southern pine beetle guild in the gut contents of field-collected M. titillator larvae

reflects the within-host species composition of members of the southern pine beetle guild.



85

This suggests that M. titillator are feeding indiscriminately on bark beetle species as they

forage.

4.2 Significance and Future Research

This study is a first step towards developing a better understanding of the mechanisms

driving southern pine beetle guild population dynamics. Previous studies have observed

reduced southern pine beetle guild brood production due to predation by natural enemies,

competition with other insect associates, and unfavorable climatic factors. The information

provided by this study may enable researchers to further refine current population growth

models for the southern pine beetle guild to include mortality factors driven by the interac-

tions with Monochamus wood borers. Further, this research may promote increased interest

into other Monochamus-bark beetle systems in the U.S. and around the world. In North

America nearly every major bark beetle pest is associated with a Monochamus species. The

occurance of facultative predatory interactions in these systems would be of great interest

due to the implications this could have on the population dynamics of these pest species.

The potential use of M. titillator as a biocontrol agent is intriguing. It may be possible to

develop novel IPM tactics such as silvicultural techniques, that promote healthy Monochamus

populations. This could reduce the observed time-lag between bark beetle and Monochamus

colonization. A reduction in the colonization period of Monochamus species may dampen

the severity and frequency of bark beetle outbreaks. This could come about in two ways; 1)

prolonged disturbance of the natural within-host distributions of the southern pine beetle

guild, thus leading to an increase in bark beetle brood mortality caused by unforvorable

interactions with other associates or 2) a reduction in bark beetle brood survivorship due to

prolonged exposure to predatory interactions with M. titillator larvae. Hennier (1983) and
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Flamm et al. (1989) suggest that for a significant reduction in bark beetle brood production

to occur due to M. titillator larval foraging, that 1) M. titillator adults must either oviposit

prior to bark beetle arrival; 2) M. titillator infestation duration must be shortened; or 3)

M. titillator larvae must develop at a faster rate than members of the southern pine beetle

guild.

Most biological control programs utilize specialist predators or aggressive generalist preda-

tors to control pest populations of interest. These polyphagous predators are usually pri-

marily zoophagous and secondarily phytophagous, which is not the case for Monochamus

species. Facultative feeding on plant material in the case of primarily zoophagous predators

arise primarily when prey densities are low. Later as prey densities increase these predators

can switch their diets and regulate prey populations early in the season (Chiverton, 1987;

Butler and O’Niel, 2007; Harwood et al., 2007, 2009). The use of generalist predators in bio-

logical control programs is best suited as preventative measures (Albajes and Alomar, 1999),

such as maintaining endemic bark beetle population levels. This concept probably fits the

potential biological control profile for Monochamus species. The risks involved by utilizing

polyphagous predators in biological control programs can be high so we must understand

the risks involved in diet shifts and their circumstances (Alomar, 2002). Additionally, before

any biological control strategies can be taken into consideration the obstacles proposed by

Hennier (1983) and Flamm et al. (1989) must be overcome. Anecdotal evidence exists for

Monochamus species colonizing trees prior to bark beetles during the height of infestations.

This suggests that it may be possible to augment the initial infestation rate of Monochamus

species to help regulate bark beetle populations.

Potential hypotheses for the facultative predatory behaviors of Monochamus larvae are

discussed by Dodds et al., (2001). These include icreased survivorship due to: 1) increased
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access to nitrogen, which is a limited resource in phloem tissue (Ayres et al., 2000) compared

to insects (Fagan et al., 2002); 2) reduced resource competition via direct elimination of

competitors (e.g. bark beetle larvae); 3) shortened developmental times as a result of superior

nutrition; and 4) utilization of supplemental nutrition when the phloem is of poor quality.

The ecological risks associated with using M. titillator as a control agent seem minimal as

this ecological system has likely been in place for tens of thousands of years. Some potential

risks include increased timber value reduction due to increased Monochamus activity and the

reduction in the impacts from other bark beetle natural enemies (see Miller, 1986). Future

studies examining interactions between Monochamus density and the ability of other natu-

ral enemies to regulate bark beetle populations are needed to determine optimal densities

of Monochamus larvae to achieve maximum combined bark beetle mortality. Additionally,

Monochamus larvae are cannibalistic (Dodds et al., 2001) and studies examining the effects

of larval density on cannibalism rates, which may reduce bark beetle mortality rates, are

needed. Currently, studies are underway to examine the phenological synchrony between

Monochamus spp. and members of the southern pine beetle guild. This may lead to identifi-

cation of times associated with low bark beetle-Monochamus population interactions, which

may be suitable for biological control.
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Renwick, J.A.A. and J.P. Vité. 1972. Pheromones and host volatiles that govern aggregation
of the six-spined engraver beetle, Ips calligraphus. J. Insect Physiol. 18:1215-1219.

Riley, M.A. 1983. Insect enemies of Ips calligraphus (Germar) on felled loblolly (Pinus taeda
L.) and slash (P. elliottii Engelmann) pines in Louisiana. Master’s Thesis. Louisiana State
University, Baton Rouge. 94 pp.

Riley, M.A., and R.A. Goyer. 1986. Impact of benecial insects on Ips spp. (Coleoptera:
Scolytidae) bark beetles in felled loblolly and slash pines in Louisiana. Environ. Entomol.
15:1220-1224.

Rose, A.H. 1957. Some notes on the biology of Monochamus scutellatus (Say) (Coleoptera:
Cerambycidae). Can. Entomol. 89:547-553.

Rudinsky, J.A. 1962. Ecology of the Scolytidae. Ann. Rev. Entomol. 7:327-348.

Rudinsky, J.A. 1973. Multiple functions of the southern pine beetle pheromone verbenone.
Environ. Entomol. 2:511-514.

Ruel, J.J., M.P. Ayres, and P.L. Lorio Jr. 1998. Loblolly pine responds to mechanical wound-
ing with increased resin flow. Can. J. For. Res. 28:596602.

Ryker, L.C., and K.L. Yandell. 1983. Effect of verbenone on aggregation of Dendroctonus
ponderosae (Coleoptera: Scolytidae) to synthetic attractant. Z. Angew. Entomol. 96:452-
459.

Saitoh, K., M. Takagaki, and Y. Yamashita. 2003. Detection of Japanese flounder-specific
DNA from gut contents of potential predators in the field. Fish. Sci. 69:473-477.

Schenk, D., and S. Bacher. 2004. Detection of shield beetle remains in predators using a
monoclonal antibody. J. Appl. Entomol. 128:273-278.

Schroeder, L.M. 1997. Oviposition behavior and reproductive success of the cerambycid
Acanthocinus aedilis in the presence and absence of the bark beetle Tomicus piniperda.
Entomol. Exp. Appl. 82:9-17.



102

Schroeder, L.M., and J. Weslein. 1994. Interactions between the phloem-feeding species
Tomicus piniperda (Col.: Scolytidae) and Acanthocinus aedilis (Col.: Cerambycidae) and
the predator Thanasimus formicarius (Col.: Cleridae) with special reference to brood
production. Entomophaga. 39:149-157.

Seybold, S.J., T. Ohtsuka, D.L. Wood, and I. Kubo. 1995. Enantiomeric composition of
ipsdienol: a chemotaxonomic character for North American populations of Ips spp. in the
pini subgeneric group (Coleoptera: Scolytidae). J. Chem. Ecol. 21:995-1016.

Shepherd, W.P., and R.A. Goyer. 2003. Seasonal abundance, arrival, and emergence patterns
of predaceous hister beetles (Coleoptera: Histeridae) associated with Ips engraver beetles
(Coleoptera: Scolytidae) in Louisiana. Entomol. Sci. 38:612-620.

Shepherd, W.P. 2004. Biology and host finding of predaceous hister beetles (Coleoptera:
Histeridae) associated with Ips spp. (Coleoptera: Scolytidae) in loblolly pine (Pinus taeda
L.). Ph.D. Dissertation. Louisiana State University, Baton Rouge. 108 pp.

Sheppard, S.K., J. Bell, K.D. Sunderland, J. Fenlon, D. Skervin, and W.O.C. Symondson.
2005. Detection of secondary predation by PCR analyses of the gut contents of invertebrate
generalist predators. Mol. Ecol. 14:4461-4468.

Showalter, T.D., D.N. Pope, R.N. Coulson, and W.S. Fargo. 1981. Patterns of southern pine
beetle (Dendroctonus frontalis Zimm.) infestation enlargement. For. Sci. 27:837-849.

Shibata, E. 1984. Spatial distribution pattern of the Japanese pine sawyer, Monochamus
alternatus Hope (Coleoptera: Cerambycidae), on dead pine trees. Appl. Entomol. Zool.
19:361-366.

Siegfried, B.D. 1984. Attraction of the black turpentine beetle, Dendroctonus terebrans, to
host and insect-produced volatiles. Master’s Thesis, Univ. of Florida, Gainesville. 57 pp.

Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution,
weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of
conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87:651-701.

Sint, D., L. Raso, R. Kaufmann, and M. Traugott. 2011. Optimizing methods for PCR-based
analysis of predation. Mol. Ecol. Resour. 11.

Six, D.L., and K.D. Klepzig. 2004. Dendroctonus bark beetles as model systems for studies
on symbiosis. Symbiosis. 37:207-232.

Smith, M.T., G.R. Busch, T.L. Payne, and J.C. Dickens. 1988. Antennal olfactory respon-
siveness of three sympatric Ips species [Ips avulsus (Eichhoff), Ips calligraphus (Germar),
Ips grandicollis (Eichhoff)], to intra- and interspecific behavioral chemicals. J. Chem. Ecol.
14:1289-1304.

Smith M.T., T.L. Payne, and M.C. Birth. 1990. Olfactory-based behavioral interactions
among five species in the southern pine bark beetle group. J. Chem. Ecol. 16:3317-3332.



103

Smith, M.T., S.M. Salom, and T.L. Payne. 1993. The southern bark beetle guild: an histor-
ical review of the research on the semiochemical-based communication system of the five
principle species. VA. Agric. Exp. Stn., Bull. 93-4. Blacksburg, VA. 106 pp.

Smith, R.H., and R.E. Lee III. (1972). Black turpentine beetle. USDA Forest Service. Forest
Pest Leaflet 12. 8 pp.

Solomon, M.G., J.D. Fitzgerald, and R.A. Murray. 1996. Electrophoretic approaches to
predator-prey interactions. In: W.O.C. Symondson and J.E. Liddell, (eds.), The ecology
of agricultural pests-biochemical approaches. Chapman and Hall, London. pp. 457-468.

Staudacher, K., C. Wallinger, N. Schallhart, and M. Traugott. 2011. Detecting ingested plant
DNA in soil-living insect larvae. Soil Biol. Biochem. 43:346-350.

Stephen, F.M. 1995. Potential for suppressing southern pine beetle populations by enhancing
effectiveness of their hymenopteran parasitoids. In: F.P. Hain, S.M. Salom, W.F. Ravlin,
T.L. Payne and K.F. Raffa, (eds.), Proceedings: behavior, population dynamics and con-
trol of forest insects. Ohio State University, Ohio Agricultural Research and Development
Center: Wooster, Ohio. pp. 226-240.

Strom, B.L., S.R. Clarke, and L.M. Roton. 2003. Attraction of Ips avulsus (Eichhoff) to
varying enantiomeric composition of ipsdienol in commercially available lures. J. Entomol.
Sci. 38:137-139.

Sullivan, B.T., C.W. Berisford, and M.J. Dalusky. 1997. Field response of southern pine
beetle parasitoids to some natural attractants. J. Chem. Ecol. 23:837-856.

Sullivan, B.T., W.P. Shepherd, D.S. Pureswaran, and K. Mori. 2007. Evidence that (+)-
endo-brevicomin is a male produced aggregation pheromone component of the southern
pine beetle, Dendroctonus frontalis. J. Chem. Ecol. 33:1510-1527.

Sullivan, B.T., and K. Mori. 2009. Spatial displacement of release point can enhance activity
of an attractant pheromone synergist of a bark beetle. J. Chem. Ecol. 35:1222-1233.

Sunderland, K.D. 1975. The diet of some predatory arthropods in cereal crops. J. Appl. Ecol.
12:507-515.

Sunderland, K.D. 1988. Quantitative methods of detecting invertebrate predation occurring
in the field. Ann. Appl. Biol. 112:201-224.

Sunderland, K.D., N.E. Crook, D.L. Stacey, and B.J. Fuller. 1987. A study of feeding by
polyphagous predators on cereal aphids using ELISA and gut dissection. J. Appl. Ecol.
24:907-933.

Suzuki, N., K. Murakami, H. Takeyama, and S. Chow. 2006. Molecular attempt to identify
prey organisms of lobster phyllosoma larvae. Fish. Sci. 72:342-349.

Svihra, P. 1982. Influence of opposite sex on attraction produced by pioneer sex of four bark
beetle species cohabiting pine in the Southern United States. J. Chem. Ecol. 8:373-378.



104

Svihra, P., T.D. Paine, and M.C. Birch. 1980. Interspecific olfactory communications in
southern pine beetles. Naturwissenschaften. 67:518-519.

Symondson, W.O.C. 2002. Molecular identification of prey in predator diets. Mol. Ecol.
11:627-641.

Symondson, W.O.C., and J.E. Liddell. 1996. A species-specific monoclonal antibody sys-
tem for detecting the remains of field slugs, Deroceras reticulatum (Müller) (Mollusca:
Pulmonata), in carabid beetles (Coleoptera: Carabidae). Biocontrol Sci. Techn. 6:91-99.

Symondson, W.O.C., M.L. Erickson, and J.E. Liddell. 1999. Development of a monoclonal
antibody for the detection and quantification of predation on slugs within the Arion hort-
ensis agg. (Mollusca: Pulmonata). Biol. Control. 16:274-282.

Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary
Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.

Teale, S.A., and G.N. Lanier. 1991. Seasonal variability in response of Ips pini (Coleoptera:
Scolytidae) to ipsdienol in New York. J. Chem. Ecol. 17:1145-1158.

Thatcher, R.C. 1960. Bark beetles affecting southern pines: a review of current knowledge.
USDA Forest Service Southern Forest Exp. Station, Occ. Pap. 180. 25 pp.

Thatcher, R.C. and L.S. Pickard. 1966. The clerid beetle, Thanasimus dubius, as a predator
of the southern pine beetle. J. Econ. Entomol. 59:955-957.

Thatcher, R.C. and L.S. Pickard. 1967. Seasonal development of the southern pine beetle in
East Texas. J. Econ. Entomol. 60:656-658.

Thatcher, R.C., J.L. Searcy, J.E. Coster, and G.D. Hertel. 1980. The southern pine beetle,
USDA, expanded southern pine beetle research and application program. Forest Service,
Science, and Education Administration, Pineville, LA, Tech. Bull. 1631. 265 pp.

Thatcher, R.C., and M.D. Conner. 1985. Identification and biology of southern pine bark
beetles. USDA Forest Service, Washington D.C. Handbook No. 634. 14 pp.

Togashi, K., J.E. Appleby, H. Oloumi-Sadeghi, and R.B. Malek. 2009. Age-specific survival
rate and fecundity of adult Monochamus carolinensis (Coleoptera: Cerambycidae) under
field conditions. Appl. Entomol. Zool. 44:249-256.

Traugott, M. 2003. The prey spectrum of larval and adult Cantharis species in arable land:
an electrophoretic approach. Pedobiologia. 47:161-169.

Traugott, M., P. Zangerl, A. Juen, N. Schallhart, and L. Pfiffner. 2006. Detecting key para-
sitoids of lepidopteran pests by multiplex PCR. Biol. Control. 39:39-46.

Turchin, P., P.L. Lorio Jr, A.D. Taylor, and R.F. Billings. 1991. Why do populations of
southern pine beetles (Coleoptera: Scolytidae) fluctuate? Environ. Entomol. 20:401-409.

Turchin, P., A.D. Taylor, and J.D. Reeve. 1999. Dynamical role of predators in population
cycles of a forest insect: an experimental test. Science. 285:1068-1071.



105

Ungerer, M.J., M.P. Ayres, and M.J. Lombardero. 1999. Climate and the northern distribu-
tion limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). J. Biogeogr.
26:1133-1145.

Vanlaerhoven, S.L., and F.M. Stephen. 2002. Height distribution of parasitoids of the south-
ern pine beetle complex. Environ. Entomol. 31:982-987.
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Vité, J.P., R.F. Billings, C.W. Ware, and K. Mori. 1985. Southern pine beetle: Enhance-
ment or inhibition of aggregation response mediated by enantiomers of endo-brevicomin.
Naturwissenschaften. 72:99-100.

Wagner, T.L., W.S. Fargo, L.L Keeley, R.N. Coulson, and J.D. Cover. 1982. Effects of
sequential attack on gallery construction, oviposition and re-emergence by Dendroctonus
frontalis (Coleoptera: Scolytidae). Can. Entomol. 114:491-502.

Wagner, T.L., J.A. Gagne, P.J.H. Sharpe, and R.N. Coulson. 1984. A biophysical model of
southern pine beetle Dendroctonus frontalis (Coleoptera: Scolytidae) development. Ecol.
Model. 21:125-147.

Wagner, T.L., R.O. Flamm, and R.N. Coulson. 1985. Strategies for cohabitation among the
southern pine beetle species: comparisons of life-process biologies. In: S.J. Branham, and
R.C. Thatcher, (eds.), Integrated pest management research symposium: the proceedings.
USDA-FS, S. For. Exp. Stn. New Orleans, Louisiana. Gen. Tech. Rep. SO-56. pp. 87-101.



106

Wagner, T.L., R.O. Flamm, H. Wu, W.S. Fargo, and R.N. Coulson. 1987. Temperature-
dependent model of life cycle development of Ips calligraphus (Coleoptera: Scolytidae).
Environ. Entomol. 16:497-502.

Wagner. T.L., P.B. Hennier, R.O. Flamm, and R.N. Coulson. 1988. Development and mor-
tality of Ips avulsus (Coleoptera: Scolytidae) at constant temperatures. Environ. Entomol.
17:181-191.

Wallace, S.K. 2004. Molecular gut analysis of carabids (Coleoptera: Carabidae) using aphid
primers. Master’s thesis, Montana State University, Bozeman. 69 pp.

Walsh, K.D. 1983. Oviposition and host preference of Monochamus carolinensis (Coleoptera:
Cerambycidae). Master’s Thesis. University of Missouri, Columbia. 74 pp.

Walsh, K.D. and M.J. Linit. 1985. Oviposition biology of the pine sawyer, Monochamus
carolinensis (Coleoptera: Cerambycidae). Ann. Entomol. Soc. Am. 78:81-85.

Webb, J.L. 1909. Some insects injurious to forests. The southern pine sawyer. USDA, Bull.
58, part IV. Gov’t. Publ. Office, Washington, D.C. 56 pp.

Weber, D.C., and J.G. Lundgren. 2009. Quantification of predation using qPCR: effect of
prey quantity, elapsed time, chaser diet, and sample preservation. J. Insect Sci. 9:41 12
pp.

Wilkinson, R.C. 1963. Larval instars and head capsule morphology in three southeastern Ips
bark beetles. Fla. Entomol. 46:19-22.

Williamson D.L. 1971: Olfactory discernment of prey by Medetera bistriata (Diptera,
Dolichopodidae). Ann. Entomol. Soc. Am. 64:586-589.

Wilson, I.G. 1997. Inhibition and facilitation of nucleic acid amplification. Appl. Environ.
Microbiol. 63:3741-3751.

Wilson, L.F. 1962. Insect damage to field-piled pulpwood in northern Minnesota. J. Econ.
Entomol. 55:510-516.

Wood, D.L. 1970. Pheromones of bark beetles. In: D.L. Wood, R.M. Silverstein, and M.
Nakajima, (eds.), Control of insect behavior by natural products. Acedemic Press, New
York. pp. 301-316.

Wood, D.L. 1972. Selection and colonization of ponderosa pine by bark beetles. Symp. Royal
Entomol. Soc. London. 6:10-17.

Wood, D.L. 1982. The role of pheromones, kairomones, and allomones in the host selection
and colonization behavior of bark beetles. Annu. Rev. Entomol. 27:411-446.

Wood, D.L., and R.W. Stark. 1968. The life history of Ips calligraphus with notes on its
biology in California. Can. Entomol. 100:145-151.

Wood, S.L. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera:
Scolytidae), a taxonomic monograph. Great Basin Nat. Mem. 6. 1359 pp.



107

Yang, B.J., H.Y. Pan, J. Tang, Y.Y. Wang, L.F. Wang, and Q. Wang. 2003. Bursaphelenchus
xylophilus. Chinese Forestry Press, Beijing. pp. 6-143.

Yearian, W.C. and R.C. Wilkinson. 1967. Development of three Ips bark beetles on a phloem-
based rearing medium. Fla. Entomol. 50:43-45.

Yoshikawa, K. 1987. A study of the subcortical insect community in pine trees. II. Vertical
distribution. Appl. Entomol. Zool. 22:195-206.

Zaidi, R.H., Z. Jaal, N.J. Hawkes, J. Hemingway, and W.O.C. Symondson. 1999. Can the
detection of prey DNA amongst the gut contents of invertebrate predators provide a new
technique for quantifying predation in the field? Mol. Ecol. 8:2081-2087.
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