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ABSTRACT  

The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an invasive 

pest of sugarcane, Saccharum spp.; rice, Oryza sativa; and other graminaceous crops along the 

U.S. Gulf Coast. Identification of E. loftini sex pheromones led to the development of 

pheromone baited traps. Studies were conducted to determine strategies for the use of E. loftini 

pheromone traps in invasive species monitoring and pest management.  

A two-year field study demonstrated that E. loftini pheromone traps attract males from 

distances of up to 100m. A behavioral assay observed that detection of the pheromone by E. 

loftini males occurs at ≈48m from the source.  

A network of pheromone traps monitored E. loftini range expansion from 2009–2015. 

Eoreuma loftini is now present in nine Louisiana Parishes: Calcasieu, Cameron, Beauregard, 

Allen, Jefferson Davis, Acadia, Vermilion, Evangeline, and St. Landry. Crop surveys observed 

E. loftini infesting Louisiana rice and sugarcane. The E. loftini population is advancing eastward 

at 11 km/yr. The population is characterized by high density clusters and may be limited at 

higher latitudes.  

E. loftini is causing substantial yield reductions in unprotected commercial rice fields in 

southwestern Louisiana. Rice which received the Dermacor X-100
®
 (chlorantraniliprole) seed 

treatment sustained reduced injury. Pheromone trap captures are correlated to larval infestations 

in adjacent unprotected rice fields.  

Infestations of E. loftini in Louisiana sugarcane have not reached damaging levels. Sugarcane 

infested with E. loftini is being transported to sugar mills east of the pest’s known range, 

however, it has not established in these regions.  
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Studies indicated automated E. loftini pheromone trapping systems have potential to further 

reduce scouting efforts. This represents the first use of automated pheromone-based monitoring 

systems for Lepidopterous insect pests in field crops. Field studies indicate new diamide 

chemistries may improve chemical control of E. loftini in sugarcane.  

This research expands the use of E. loftini pheromone traps in invasive species monitoring 

and pest management. Continued monitoring of E. loftini range expansion and the use of 

pheromone trap-based scouting techniques should be further pursued to mitigate the impact of 

this pest along the U.S. Gulf Coast. 
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CHAPTER 1: GENERAL INTRODUCTION  

Management of invasive species is a growing concern in the U.S. with approximately 50,000 

invasive species which are responsible for $137 billion in damages and control costs annually 

(Pimentel et al. 2005). Of those species, approximately 1,000 are crop pests which account for 

$14.4 billion annually in damages (Pimentel et al. 2005). One invasive insect that has become 

established as a major pest of sugarcane, Saccharum spp. L.; and rice, Oryza sativa L., in Texas 

is the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae).  

This species was first reported as a pest of sugarcane in the U.S. in the Rio Grande Valley of 

Texas in 1980 (Johnson and van Leerdam 1981), where it now accounts for >95% of the 

sugarcane stem borer population (Legaspi et al. 1997a). It has since spread northeast through the 

Texas rice belt along the U.S. Gulf Coast (Reay-Jones et al. 2007c). Despite a quarantine 

designed to prevent movement of Texas sugarcane into Louisiana, E. loftini was discovered in 

Louisiana in December 2008 (Hummel et al. 2010). Based on its current rate of expansion, E. 

loftini is predicted to infest the entire state by 2035, and it is projected to cause as much as $260 

million in annual revenue loss to Louisiana agriculture (Reay-Jones et al. 2008).  

Early research on E. loftini biology and management focused primarily on mitigating the 

pest’s impact to sugarcane in the Rio Grande Valley of Texas. While effective control strategies 

were to remain elusive for many years (Legaspi et al. 1997a), advancements were made 

nonetheless. One such advancement was the isolation and characterization of the female sex 

pheromone blend of E. loftini from ovipositor extracts (Brown et al. 1988). The pheromone 

blend was subsequently developed for use in population monitoring by determination of optimal 

blend concentrations and trap types (Shaver et al. 1990, 1991).  
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Traps baited with insect sex pheromones are frequently used in detection and population 

monitoring of pests. Pheromone traps are useful in monitoring population fluctuations and may 

provide improved early warning signs of pest outbreaks (Robacker and Landholt 2002). 

Additionally, pheromone baited traps are often able to detect the presence of an insect even at 

low population densities making them ideal for use in invasive species monitoring (Witzgall et 

al. 2010). Accordingly, pheromone trap monitoring is a major component of monitoring 

programs for many high profile invasive insect pests. Pheromone baited traps are also used in 

pest management programs (Witzgall et al. 2010). Effective means to monitor pest populations 

to more effectively time control measures is a cornerstone of integrated pest management (IPM) 

programs (Rabb and Guthrie 1970). Pest scouting often requires labor intensive and time-

consuming sampling and quantification methods throughout the growing season to obtain 

accurate estimations of infestation levels (Pedigo and Buntin 1993). Pheromone traps can be 

used in IPM programs to improve scouting efficiency and focus sampling efforts when insect 

population densities are known to be high.  

Bucket traps baited with the synthetic female sex pheromones provided a means to monitor 

E. loftini range expansion across Texas (Reay-Jones et al. 2007c) and detected the first E. loftini 

occurrence in Louisiana (Hummel et al. 2010). Pheromone traps have also been used to assist in 

scouting and timing of insecticide applications for control of E. loftini in sugarcane in Texas 

(Wilson et al. 2012b). However, pheromone trap monitoring for E. loftini appears vastly 

underutilized in comparison to the immense trapping programs used to combat other invasive 

insects such as the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) 

(Smith 1998), and the Gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae) (Sharov et al. 

2002).  
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While more than 20 years have passed since the development of E. loftini pheromone traps, 

effective trapping protocols for use in invasive species monitoring and pest management have 

not yet been developed. Further, much about the functionality of these traps remains largely 

unknown. Development of refined pheromone trapping strategies will help to expand the use of 

pheromone traps in an effort to mitigate the impacts of E. loftini to agricultural production along 

the U.S. Gulf Coast.  

This research aimed to determine the active space, or attractive distance, of E. loftini 

pheromone traps using a comprehensive approach involving field experiments and behavioral 

assays (Chapter 3). An extensive pheromone trap network program is monitored to provide early 

detection of the invasive pest in new areas and document occurrence of E. loftini in Louisiana 

field crops (Chapter 4). Pheromone traps and surveys of larval infestations assess the current pest 

status of E. loftini in Louisiana’s rice (Chapter 4) and sugarcane (Chapter 5) industries. 

Pheromone trap-assisted scouting strategies for use in IPM programs are evaluated in rice and 

sugarcane (Chapters 4, 5, and 6). These studies include examination of potential to use emerging 

pest detection technology developed by Spensa Technologies for use in E. loftini management 

(Chapter 5). Spensa Technologies’ electronic “Z-trap” systems use advanced computer 

algorithms to identify the target pests and record trap capture data which is automatically 

uploaded to an online database. Insecticidal management of E. loftini in rice (Chapter 4) and 

sugarcane (Chapter 6) are also investigated. Chemical control research documents the effect of 

widely used chlorantraniliprole seed treatments on E. loftini in commercial rice and assesses 

efficacy of recently labeled diamide insecticides for control of E. loftini in Texas sugarcane. 

Lastly, the potential to greatly improve the use of pheromone trapping in invasive species 

monitoring of E. loftini is demonstrated through the application of Geographical Information 
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Systems (GIS) to three years of pheromone trap data from 13 Louisiana Parishes. Collectively, 

this project greatly improves our understanding of E. loftini pheromone traps and highlights the 

potential to expand their use in invasive species monitoring and IPM.   
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CHAPTER 2: LITERATURE REVIEW  

2.1. Distribution and Pest Status of E. loftini  

The Mexican rice borer, Eoreuma loftini (Dyar), was first found infesting commercial 

sugarcane on the west coast of Mexico (Morill 1925, Van Zwaluwenburg 1926) and the range 

later expanded to include eastern and southeastern Mexico (Klots 1970, Rodriguez-del-Bosque 

and Smith 1991). The invasive pest was initially discovered in the U.S. in Arizona (Dyar 1917, 

Van Zwalunwenburg, 1926) and in the Imperial Valley in California (Osborn and Phillips 1946) 

in the early 1900s. Expansion into sugarcane production areas of north eastern Mexico had 

occurred by the mid-1970s and numerous interceptions of E. loftini infested sugarcane were 

made at the Texas-Mexico border in the 1950s and 60s (Johnson 1984). E. loftini was first 

reported as a pest of sugarcane in the Rio Grande Valley of Texas in 1980 (Johnson and van 

Leerdam 1981), and caused yield losses of 50–65% in some sugarcane fields within the first two 

years of its detection (Johnson 1984). The species soon became the dominant pest of sugarcane 

in the Rio Grande Valley (Legaspi et al. 1997a), and by the end of the 1980s its range had 

expanded northward well into the rice production area of Texas (Browning et al. 1989). 

Pheromone trap monitoring was used to track the movement of E. loftini through the Texas rice 

belt. The species’ range included Calhoun, Jackson, and Matagorda counties by 1999; Wharton, 

Colorado, Fort Bend, Waller, and Brazoria counties by 2000; Austin and Harris counties by 

2001; Galveston County by 2002; Liberty and Chambers counties by 2004; and Jefferson County 

by 2005 (Reay-Jones et al. 2007c). The range of E. loftini expanded northeastward at a rate of 

approximately 23 km/yr from 1980 to 2005 (Reay-Jones et al. 2007c). In December of 2008 E. 

loftini was detected in Louisiana in two pheromone traps near Vinton (Calcasieu Parish) 

(Hummel et al. 2010). While human aided movement is not thought to have played a major role 
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in E. loftini expansion across Texas and into Louisiana, it is suspected that human activities 

facilitated the recent transportation of E. loftini into Florida where it has become established in 

non-crop habitats of the south-central region of the state (Hayden 2012). 

Eoreuma loftini has a wide range of host plants including crop and non-crop grasses. Crop 

hosts include: sugarcane, Saccharum spp. L.; rice, Oryza sativa L.; grain sorghum, Sorghum 

bicolor (L.); corn, Zea mays L.; barley, Hordeum vulgare L.; and wheat, Triticum aestivum L. 

Non-crop hosts include: johnsongrass, Sorghum halpense (L.); vaseygrass, Paspalum urvillei 

Steud.; ryegrass, Lolium spp.; brome, Bromus spp.; yellow bristlegrass, Setaria lutescens 

(Weigel) Hubbard; bulrush, Scirpus validus Vahl; lemon grass, Cymbopogon citrates (DC) 

Stapf; millet, Pennisetum glaucum L.; pampasgrass, Cortaderia selloana (Schultes) Ascherson & 

Graebner; and sudan grass, Sorghum vulgarae var. sudanense [synonym of S. sudanense (Piper) 

Stapf] (Dyar 1917, Morill 1925, Osborn and Phillips 1946, Van Zwaluwenburg 1926, Johnson 

1984, Beuzelin et al. 2011b, 2013; and Showler et al. 2012). While non-crop grasses are suitable 

hosts and likely influence E. loftini population dynamics (Showler et al. 2011, Beuzelin et al. 

2011b, 2013), major crop hosts including sugarcane, rice, and corn have been the focus of most 

research efforts (Showler and Reagan 2012). 

Once established in the Rio Grande Valley, E. loftini quickly surpassed the sugarcane borer, 

Diatraea saccharalis (F.), in economic importance, and now accounts for 95% of the sugarcane 

stem borer population in the region causing an estimated annual loss of $20 million to the Texas 

sugarcane industry (Legaspi et al. 1997a). The insect has more recently become an economic 

pest of rice in southeast Texas (Reay-Jones et al. 2007a, 2008), and poses an imminent threat to 

the Louisiana sugarcane and rice industries. The species is predicted to infest the entire state of 

Louisiana by 2035 and its establishment is expected to cause annual revenue losses as high as 
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$220 and $45 million for sugarcane and rice, respectively (Reay-Jones et al. 2008). The 

economic impact of E. loftini establishment on corn has not been examined, although research by 

Showler et al. (2012, 2013) suggests that susceptible cultivars of corn may be more preferred 

hosts than sugarcane. Although E. loftini exhibits only a weak diapause (van Leerdam 1986), it is 

more cold tolerant and has a higher overwintering survival rate than D. saccharalis (Rodriguez-

del-Bosque et al. 1995) and can likely survive colder winters allowing the pest to infest corn 

central and northern Louisiana.  

2.2. Eoreuma loftini Biology and Life cycle 

Extensive studies of E. loftini biology and temperature-dependent development were 

conducted by van Leerdam (1986). Eoreuma loftini lays globular cream-colored eggs in clusters 

≤100 typically laid on dry leaves of the lower portion of plants, between 0 and 80 cm above the 

soil surface (van Leerdam et al. 1984, van Leerdam 1986). In sugarcane, rice, and non-crop 

grasses, eggs are laid in cryptic sites including folds of dry leaves and leaf sheaths stems (Reay-

Jones et al. 2007b, Showler and Castro 2010b, Beuzelin et al. 2013), limiting exposure to 

predators and parasitoids. The duration of the egg stage is inversely related to temperature lasting 

14 days at 20°C and 5 days at 32°C (van Leerdam 1986). Upon hatching, larvae migrate to green 

parts of the plant and start to feed on leaf blades and sheaths. On sugarcane, larval exposure on 

plant surfaces is less than one week and some larvae have been documented entering into mid-rib 

tissue becoming protected within one day after eclosion (Wilson et al. 2012b). After stalk entry, 

larvae remain protected within frass-packed tunnels throughout their development until adult 

emergence. When reared in the laboratory, larvae undergo four to six molts, with five typical in 

males and six in females (van Leerdam 1986). The number of stadia and duration of larval 

development (21–78 days) are inversely related to temperature. The cream-colored larvae have 
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an orange-brown head capsule and dark-colored parallel broken stripes along their dorsal side 

and measure 19–25 mm before pupation (Osborn and Phillips 1946, Browning et al. 1989). 

Larval feeding in sugarcane stalks differs from that of D. saccharalis because E. loftini larvae 

tunnel horizontally as well as vertically (van Leerdam 1986). Additionally, E. loftini tunnels are 

tightly packed with frass making larvae and pupae less accessible to natural enemies in 

comparison to D. saccharalis, which pupates in a hollow cavity (Browning et al. 1989, Legaspi 

et al. 1997a, Showler and Reagan 2012).  

The duration of the pupal stage is between 7–21 days depending on the temperature (van 

Leerdam 1986). The adult is a solid light-tan moth with a tiny (< 1 mm) dark spot in the center of 

each forewing. Adult E. loftini can be distinguished from similar looking Lepidopterans by the 

triangular gena and conical frons. However, definitive species level identification requires 

examination of the male genitalia (Reiss 1981, Agnew et al. 1988). The adult stage lasts about 7 

days. Most adults of both sexes mate on the night after eclosion and likelihood of mating 

decreases with time after eclosion (Shaver et al. 1994). While both males and females are 

capable of mating with more than one partner, this behavior is only common to males as most 

females mate only once (Shaver et al. 1994). For both sexes, peak activity occurs between 7–9 

hours after sundown, although females begin emitting pheromone at 5 hours after sundown 

(Shaver et al. 1994).     

Fecundity ranges from 200–400 eggs/female and varies dependent on temperature (van 

Leerdam et al. 1986). Oviposition rates range from 29 eggs per day at 20°C to 64 eggs at 32°C, 

and the oviposition peak occurs during the first day of oviposition, usually 2 days after adult 

eclosion (van Leerdam et al. 1986). A linear relationship between fecundity and pupal weight 

exists (Spurgeon et al. 1995).  
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Browning et al. (1989) reported a general 45–50-day length for the duration of a generation 

under summer conditions in the Rio Grande Valley. Four to six overlapping generations occur 

annually in the region (Legaspi et al. 1997b), and all stages of E. loftini can be found in the field 

at any time of the year (Johnson 1985, Meagher et al. 1994, 1996b, Beuzelin et al. 2011b). 

Larvae may enter a facultative diapause during fall and winter months; however, adult moths are 

active throughout the year (Reay-Jones et al. 2007c, Hummel et al. 2010, Beuzelin et al. 2011b).  

2.3. Eoreuma loftini IPM in Sugarcane  

Eoreuma loftini damage in sugarcane results from internal tunneling which can impair 

growth, cause stalks to break and lodge, and reduce juice quality (van Leerdam 1986, Browning 

et al. 1989, Legaspi et al. 1999a). The level of sugarcane stem borer injury is most commonly 

assessed by determining the percentage bored internodes which provides a season long record of 

injury and is inversely related to sugar yield. Increased percentage bored internodes has been 

shown to be associated with reductions in yield parameters including juice purity, tonnage of 

sugarcane, sugar per ton of cane, and sugar per hectare (Long and Hensley 1972, Legaspi et al. 

1999a, Reay-Jones et al. 2005b, White et al. 2008). Control of E. loftini in sugarcane can be 

achieved by a combination of chemical control, cultivar resistance, and production practices 

which reduce plant stress (Legaspi et al. 1997a, Reay-Jones et al. 2005b, Wilson et al. 2012b, 

2015).  

Chemical control of E. loftini in sugarcane has often not proven to be economical, and the 

approach has largely been abandoned by Rio Grande Valley sugarcane producers (Johnson 1985, 

Meagher et al. 1994, Legaspi et al. 1997a, Reay-Jones et al. 2005b). Overlapping generations and 

the cryptic nature of E. loftini larvae make timing of insecticide applications difficult (Meagher 

et al. 1994, Reay-Jones et al. 2005b, Wilson et al. 2012b). However, pheromone trap assisted 
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scouting can reduce scouting effort and improve application timing (Wilson et al. 2012b). New 

more selective insecticide chemistry and better timing of insecticide applications may improve 

the economics of E. loftini chemical control (Wilson et al. 2012b). Flubendiamide and 

chlorantraniliprole are two diamide insecticides recently labeled for sugarcane which provided 

good control of D. saccharalis (Wilson et al. 2012a, Beuzelin et al. 2014). However, insecticides 

alone are not expected be effective in managing E. loftini when it becomes established in 

Louisiana sugarcane (Reay-Jones et al. 2005b).  

The use of stem borer resistant cultivars in combination with insecticides and irrigation has 

been shown to reduce E. loftini injury and improve sugar yield (Reay-Jones et al. 2005b). 

Additionally, resistant cultivars may prolong duration of larval feeding on plant surfaces and 

increase exposure to insecticide applications and natural enemies (Wilson et al. 2012b). Host 

plant resistance has long been cited as an effective management tactic for control of E. loftini 

(Pfannenstiel and Meagher 1991, Meagher et al. 1996a, Reay-Jones et al. 2003, 2005b; Wilson et 

al. 2012b, 2015). Host plant resistance as a component of an IPM program has potential to 

reduce pest injury and input cost associated with control (Smith 1989). However, the use of 

resistant cultivars in stem borer management is often neglected as growers opt for higher 

yielding cultivars, and in turn, resistant but low yielding cultivars are not available (Milligan et 

al. 1994, Legendre and Gravois 2006, Wilson et al. 2015). Expansive acreage of susceptible 

cultivars with elevated moth production increases endemic E. loftini populations and imposes 

additional pressure on the remaining acreage. Currently, the majority of sugarcane acreage in 

Louisiana and the Rio Grande Valley is planted with E. loftini susceptible cultivars (Reay-Jones 

et al. 2003, Wilson et al. 2015). The ability of cultivar resistance to reduce area wide pest 

populations led to the development of a moth production index based on adult emergence 
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(Bessin and Reagan 1990, Bessin et al. 1991, Reay-Jones et al. 2003). A relative resistance ratio 

was subsequently developed to incorporate both percentage bored internodes and survival to 

adulthood into a single index (Wilson et al. 2015). While host plant resistance is promising for E. 

loftini control, the mechanisms of resistance are not fully understood.  

Reduced oviposition preference may play a role in resistance (Reay-Jones et al. 2007b, 

Showler and Castro 2010a,b, Showler and Regan 2012, Showler and Moran 2014). Oviposition 

preference may be linked the detection of primary or secondary compounds to assist females in 

accepting or rejecting a host plant (Ramaswamy 1988). Selected nutrients, particularly essential 

amino acids, have a well-documented influence on E. loftini oviposition preference (Reay-Jones 

et al. 2007b, Showler and Moran 2014). Cultivar resistance may also result from impediment of 

establishment of early instars (Coburn and Hensley 1972, Wilson et al. 2012b). Factors which 

hinder larval establishment of D. saccharalis are physical characteristics such as rind hardness 

and leaf sheath appression, and may also affect E. loftini larvae (Coburn and Hensley 1972, 

Martin et al. 1975). In addition to physical factors, concentrations of certain primary and 

secondary metabolites affect larval development. Differences in E. loftini larval weight and time 

to pupation may be linked to varying levels of allelochemicals among sugarcane cultivars 

(Meagher et al. 1996a).  

Currently, there are no commercially available sugarcane clones with genetically modified 

traits. However, genetically engineered clones expressing insecticidal snowdrop lectin proteins 

(Galanthus nivalis agglutinin) have been evaluated. A decrease in E. loftini larval survival, 

percentage of adult emergence, and fecundity was reported when fed with transgenic sugarcane 

(Sétamou et al. 2002a,b). In addition to cultivar resistance, cultural practices which reduce the 

attractiveness or suitability of hosts may mitigate E. loftini infestations.  
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The most common cultural practice used to manage E. loftini in sugarcane is irrigation. In the 

Rio Grande Valley, irrigation is a key practice in managing E. loftini infestations in sugarcane 

and reduced injury by as much as 2.5-fold in a 2-yr field experiment (Reay-Jones et al. 2005b). 

Infestations of E. loftini are enhanced by drought stress which leads to an increase in free amino 

acid concentrations (Reay-Jones et al. 2005b, Showler and Castro 2010a,b). Additionally, the 

greater number of dry senescing leaves likely make drought stressed sugarcane more attractive 

for E. loftini oviposition (Reay-Jones et al. 2007b, Showler and Castro 2010a). Because the use 

of chemical control against E. loftini in the Rio Grande Valley has not been economical (Legaspi 

et al. 1997a), most growers in the region use irrigation as the primary means of control.  

Cultural control of stem borers in sugarcane has been more thoroughly examined with D. 

saccharalis than with E. loftini. Tactics including plowing stubble in fallow fields as early as 

possible and planting stem borer-free sugarcane seed pieces are currently recommended for D. 

saccharalis (LSU AgCenter 2010b). Planting and harvesting dates affect sugarcane phenology 

which can influence stem borer population dynamics. Although early planting usually provides 

higher yields, fields planted in August show increased D. saccharalis infestations (Charpentier 

and Mathes 1969, Beuzelin et al. 2011a). The effects of weed management in sugarcane field 

margins have on E. loftini infestations have not been examined; however, non-crop weed hosts 

have been shown to harbor substantial E. loftini populations (Beuzelin et al. 2011b). Because 

corn and sorghum potentially enhance stem borer populations when grown in sugarcane areas 

(Reagan and Flynn 1986, Showler et al. 2012), farmers are recommended to grow these two 

crops as far as possible from sugarcane fields (LSU AgCenter 2010b). This influence may be 

even more severe when considering E. loftini infestations, as corn has been shown to be 

preferred over sugarcane (Showler et al. 2012, Showler et al. 2013).   
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2.4. Eoreuma loftini Management in Rice 

Similar to other crop hosts, E. loftini damage in rice results from internal larval tunneling in 

stems which cause deadhearts, broken culms, or incomplete panicles. Although injured culms 

usually remain green before heading, injury to the vascular tissue can kill the panicle and the 

developing grain, resulting in “whiteheads”. Whiteheads, or blanked panicles, are often used to 

assess stem borer damage in rice (Pathak 1968, Way 2003, Reay-Jones et al. 2007a). When 

injury occurs during ripening, the maturation of panicles suffers from a lack of uniformity in 

grain development and increased grain mortality. Mature panicles may also be lost because larval 

injury to the topmost node can cause the culm to break (Bowling 1975, Browning et al. 1989, 

Way 2003, Lv et al. 2008, 2010).  

The reduced biomass of rice relative to sugarcane likely increases exposure of E. loftini 

larvae and improves the efficacy of control tactics. Currently, only two pyrethroid insecticides 

are labeled for stem borer control in rice in the U.S. Applications of pyrethroids are effective in 

reducing the number of whiteheads and improving rice yield (Reay-Jones et al. 2007a). 

Biorational insecticides including novaluron, diflubenzuron, and tebufenozide were not as 

effective as pyrethroids in controlling E. loftini (Reay-Jones et al. 2007a), possibly due to 

reduced contact toxicity relative to pyrethroids. The efficacy of insecticides for control of stem 

borers in rice is strongly influenced by application timing (Bandong and Litsinger 2005, Reay-

Jones et al. 2007a), and insecticidal protection of rice may only be needed during the 

reproductive stages (Rubia et al. 1996). Applications made during the boot stage have been 

shown to be more effective than those made earlier in the growing season (Reay-Jones et al. 

2007a). An economic threshold of 5% of stems infested has been used for control of the rice 

stem borer, Chilo suppressalis Walker, in Japan (Koyama 1975). Currently, no economic 
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thresholds are recommended for control of stem borers in rice in the U.S. and insecticide 

applications are often made along with fungicide applications regardless of infestation levels. 

Roughly 40% of growers in Texas apply at least one treatment with pyrethroids for E. loftini 

control (M.O. Way, personal communication). Insecticidal seed treatments are frequently applied 

to rice for control of the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: 

Curculionidae), and may provide some level of stem borer control (LSU AgCenter 2010a). 

Chlorantraniliprole seed treatments (Dermacor X-100) have activity against lepidopterans and 

may contribute to E. loftini control (Way et al. 2013, Sidhu et al. 2014). Widespread use of seed 

treatments has potential to reduce area wide pest populations. In addition to insecticidal control, 

cultivar resistance may also be incorporated into E. loftini management programs in rice.   

Numerous studies have been conducted on stem borer resistance in rice in Asia, where the 

production of rice relies less on insecticides than in the U.S. (Chaudhary et al. 1984). Cultivar 

characteristics which have been reported to affect levels of resistance to stem borers include 

morphological characters such as plant height, culm diameter, and length and width of the flag 

leaf which have all been positively correlated with the percentage of infested tillers 

(Patanakamjorn and Pathak 1967). Increased levels of resistance have been associated with tight 

internode-wrapping leaf sheaths (Patanakamjorn and Pathak 1967) and thick layers of lignified 

tissues (Chaudhary et al. 1984). However, research on rice cultivar resistance to E. loftini is 

scarcer. Way et al. (2006) conducted a 4-yr study in Texas on rice yield loss as affected by 

genotype, and D. saccharalis and E. loftini injury level (measured as the number of whiteheads 

per m
2
). The most susceptible cultivar, Priscilla, demonstrated the highest injury levels in the 

main crop and the greatest yield losses. Despite varying levels of relative susceptibility among 

the years, Cocodrie was considered moderately susceptible in comparison to hybrid lines (e.g., 
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XL8), which showed injury levels and yield losses lower than other cultivars. XL8, however, is 

more attractive for E. loftini oviposition than Cocodrie (Reay-Jones et al. 2007b). Way et al. 

(2006) suggested that cultivars such as XL8 could act as sinks for E. loftini infestations and 

decrease area wide stem borer populations. In addition to reduced injury, compensatory response 

to injury may also influence susceptibility to stem borers (Lv et al. 2010).   

Stem borer infestations in rice are typically greatest in late planted main crop or early planted 

ratoon crops, and management of rice stubble may reduce stem borer populations (Beuzelin et al. 

2012). Because substantial E. loftini infestations survive the harvest, rice stubble provides an 

important host during the fall and winter months (Beuzelin et al. 2012). Reducing the harvest 

cutting height from 40 to 20 cm has been shown to reduce E. loftini infestations in the ratoon 

crops. Additionally, mowing rice or removing stubble may enhance overwintering mortality and 

reduce area wide E. loftini populations (Beuzelin et al. 2012). However, lowering cutting height 

and mowing rice stubble requires increased input costs and affects ratoon crop maturity so 

growers must consider relative need and economic viability before changing agronomic 

practices. 

Extensive studies by Beuzelin et al. (2011b, 2013) demonstrated numerous non-crop grasses 

play a major role in E. loftini dynamics. Weed management has been shown to affect stem borer 

populations in rice (Tindall 2004). While weed management efforts in rice fields are generally 

effective (Kendig et al. 2003), non-crop hosts in field margins support E. loftini infestations 

throughout the year (Beuzelin et al. 2011b). Non-crop hosts are of particular importance in the 

winter and early spring when rice crops are too young to support E. loftini infestations (Beuzelin 

et al. 2011b). Mowing, spraying herbicides, or manipulation of species composition in weedy 
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field margins may reduce E. loftini infestations (Beuzelin et al. 2011b); however, the effect of 

non-crop habitats on natural enemy populations must also be considered.  

2.5. Lepidopteran Sex Pheromones  

Attractant pheromones help one sex find or recruit the other. Attraction can be defined as a 

net displacement of one individual towards a chemical source (Bell and Cardé 1984). The use of 

chemical attractants in sexual recruitment is common to many groups of insects including 

Lepidoptera, Diptera, Coleoptera, Hymenoptera, Hemiptera, and Orthoptera (Bell and Cardé 

1984). Lepidopteran sex pheromones represent one of the most impressive examples of long 

distance chemical communication in the animal kingdom (Greenfield 1981). Mate finding and 

mate selection are critical events in the survival and reproduction of insect species. In 

Lepidoptera these events are often facilitated by the use of pheromones. The use of olfaction to 

mediate sex attraction in Lepidoptera was first demonstrated by Mayer (1900), but the first 

pheromones were not chemically isolated until Butenandt et al. (1961) identified the female sex 

pheromone of the silk worm moth, Bombyx mori L. (Lepidoptera: Bombycidae). Since then, 

chemical ecology of lepidopteran sex pheromones has become widely studied with over 1600 

moth species investigated (Arn et al. 1992, El-Sayed 2008).  

The vast majority of lepidopteran species have females which emit pheromones from their 

abdomens to attract males of the same species. This “female signaler, male searcher” may have 

evolved because females are often required to expend additional energy locating suitable host 

plants and oviposition sites (Greenfield 1981). Lepidopteran sex pheromones are generally 10–

18 carbon chain acetates, alcohols, or aldehydes (Cardé and Baker 1984). These pheromones 

differ between species by variations in the length of the carbon chain, functional groups, and 

positions/orientations of double bonds and asymmetric carbons (Tamaki 1977). This general 
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chemical structure allows compounds to possess both the necessary volatility as well as potential 

for uniqueness (Bossert and Wilson 1963). Different species use distinct pheromones to provide 

isolation from and prevent hybridization with other closely related species (Roelofs and Cardé 

1974). However, in areas where a number of competitive species occur additional attractant 

specificity is required to reduce overlap. One way this is achieved is through the use of a blend 

of different proportions of chemicals in unique ratios. These blends are highly specific and small 

changes in the ratio of major to minor components can have significant effects on attractive 

properties (Roelofs and Cardé 1974, Cardé and Charlton 1984). For instance, an alteration of as 

little as 5% in the optimum ratio of the female sex pheromone blend of the red-banded leaf roller, 

Argyrotaenia velutinana (Walker) (Lepidoptera: Tortricidae), substantially reduces male capture 

(Klun et al. 1973). Similarly, Baker and Cardé (1979) showed minor variations in the female sex 

pheromone blend of the Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: 

Tortricidae), significantly reduced male attraction. However, highly specific pheromone blends 

may not be all that is required to reduce competition between species (Cardé and Baker 1984). 

Variations in diel and seasonal mating patterns can further reduce overlap, although most species 

use just one mechanism (Cardé and Baker 1984).  

The attractive ability of female sex pheromones depends on a number of factors including 

physical properties of compounds as well as the males’ ability to detect pheromones in the 

environment. The behavior of pheromones in their environment, the response elicited in males, 

and the active space have become widely studied. However, interspecies variation and the 

influence of numerous environmental are still not fully understood.  
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2.6. Pheromone Dispersion and Active Space   

Chemical signals are communicated from an emitting organism to a receiving organism by 

either direct contact or by dispersion through a medium such as air (Elkinton and Cardé 1984). 

Dispersion of chemicals in moving air is of particular interest, because lepidopteran sex 

pheromones are most often dispersed in wind. The active space is defined as the distance from a 

pheromone source inside which the odor concentration is above the level sufficient to produce a 

response in the receiving organism (Elkinton and Cardé 1984). The active space is dynamic and 

the factors which influence it are not easily understood. Active spaces are determined by the 

emission rate of the compound produced by the signaling organism and the behavioral threshold 

of the receiving organism. The ratio of pheromone emission rate to the behavioral threshold 

(Q/K) is a fundamental characteristic necessary for understanding chemical communication 

systems (Bossert and Wilson 1963). Unfortunately, these characteristics are difficult to measure 

in lepidopteran sex pheromones (Elkinton and Cardé 1984). The emission rates of most 

Lepidoptera are near 1 ng/hr and are difficult to measure even with gas chromatographs (Birch 

1974). Additionally, behavioral thresholds are not easily determined. Some pheromones can 

elicit different behaviors at different concentrations (Baker and Cardé 1979) or if the receiving 

organisms detect brief versus sustained exposure (Cardé and Hagaman 1979). Environmental 

factors also heavily influence pheromone dispersion and active spaces. Numerous models have 

been developed to predict the active space of pheromones. The most commonly cited model 

which describes dispersion from a single, continuously emitting pheromone source was 

developed by Sutton (1953) and later adapted by Bossert and Wilson (1963) to estimate the 

maximum distance of communication. This equation was expanded to adjust for unstable 

conditions and led to the development of Gaussian plume equations (Gifford 1968, Fares et al. 
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1980) which have dynamic dispersion coefficients. While these models were accurate to a degree 

under controlled wind conditions, none were able to predict active spaces which were consistent 

with observed field results (Elkinton et al. 1984). The Sutton equation and its derivatives have 

been widely studied and expanded in various models to account for the influence of other 

environmental factors. One such model was developed which adjusts for surface adsorption or 

‘deposition’ (Nakamura 1976, Nakamura and Kawasaki 1977). Conversely, research by Mankin 

et al. (1980) suggests pheromone laden air will not sink to the ground because concentrations are 

too low to increase air density. Another model examined the effect of sudden changes in wind 

velocity or ‘gustiness’ (Hirooka and Suwani 1976), and suggested wind conditions have a greater 

effect on the width of the odor plume than the maximum distance of communication. Wind 

velocity has been shown to be particularly influential in insect communication and behavior. The 

active space may decrease with increasing wind velocity because the increased volume of air 

initially diluting the plume (Aylor et al. 1976, Miksad and Kittredge 1979) as well as increasing 

turbulence at higher wind speeds (Elkinton and Cardé 1984). However, the plume is being 

transported downwind more rapidly at high wind velocity. The active spaces of pheromones may 

be greatest at intermediate wind speeds. Nakamura (1976) documented Oriental leafworm moth, 

Spodoptera litura (F.) (Lepidoptera: Noctuidae), response was greatest at intermediate wind 

velocities and declined at both the highest and lowest velocities. This is also supported by 

increased calling by cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), females 

at intermediate wind velocities (Kaae and Shorey 1972) and decreased flight at high wind speeds 

(Sower et al. 1973). However, the release rate from constantly emitting synthetic lures may be 

greater at increasing wind velocities (Elkinton et al. 1984). Air temperature also likely influences 

active space. Baker and Roelofs (1981) document increased distance at which Oriental fruit 
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moth, Grapholitha molesta (Busck) (Lepidoptera: Tortricidae), males responded to synthetic 

female sex pheromone lures at increasing temperatures. However, this could be a result of 

increasing release rates of synthetic pheromones with increasing temperatures (Tobin et al. 

2011). Due to reduced variation in release rates relative to traps baited with live females, 

synthetic pheromone blends are most often used in assessments of active space.  

The active space of lepidopteran pheromone traps has been evaluated for several species. 

However, many of these studies are difficult to interpret due to inconsistent methodology or 

failure to assess adequately large distances. The active space of S. litura pheromone traps was 

estimated to be ≈80 m in a series mark-release-recapture experiments conducted by Nakamura 

and Kawasaki (1977). Linn et al. (1987) determined the active space of G. molesta ranged from 

30–60 m depending on pheromone blend concentration and temperature. This estimate was 

derived through direct observation of male response to pheromone detection when approaching 

the pheromone source from downwind. This method was also employed by Elkinton et al. (1984) 

to determine that male Gypsy moths, Lymantria dispar (L.) (Lepidoptera: Erebidae), can detect 

sex pheromones from distances of more than 80 m. However, estimates of active space under 

controlled conditions may not be accurate when applied in the field where numerous 

environmental factors can affect pheromone dispersion and detection (Elkinton and Cardé 1984). 

One way active distance of pheromone traps can be assessed in the field is through examination 

of the effects of intertrap distance. Elkinton and Cardé (1988) used hexagonal arrays with 

varying intertrap distance as well as a 6 x 6 trap grid to evaluate L. dispar pheromone trap 

interactions. They determined that trap capture was maximized at an intertrap distance of 80 m. 

However, larger intertrap distances were not evaluated in that study and the maximum active 

space may not have been identified. Similarly, examination of the interference between traps was 
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used to provide an estimate of the active space of the summerfruit tortrix moth, Adoxophyes 

orana (Fischer von Röslerstamm) (Lepidoptera: Tortricidae), pheromone traps of 15–40 m, but 

larger distances were not evaluated (Van der Kraan and Van Deventer 1982). Wall and Perry 

(1980), determined the active space of the pea moth, Cydia nigricana (F.) (Lepidoptera: 

Tortricidae), pheromone baited traps may be in excess of 400 m; however, they were unable to 

determine a maximum distance of attraction. Forty percent of lesser peachtree borer moths, 

Synanthedon pictipes (Grote and Robinson) (Lepidoptera: Sesiidae), were captured in traps 

baited with virgin females 800 m upwind of their release point (Karandinos 1974). However, the 

distance at which the pheromone was detected was not determined by this study.  

Because of the numerous abiotic factors affecting active space and the apparent variation 

between different groups of Lepidoptera (Elkinton and Cardé 1984), universal conclusions 

regarding active space of insect pheromones are rare. Continued examination of pheromone 

interactions among new model systems will broaden our knowledge of insect attraction.   

2.7. Invasive Species Monitoring 

The most commonly used and successful application of insect sex pheromones is in detection 

and population monitoring. Pheromone traps are useful in monitoring population fluctuations and 

may provide improved early warning signs of pest outbreaks (Robacker and Landholt 2002). 

Pheromone baited traps are particularly effective at detecting low level populations and are 

useful in early detection of invasive species entering new regions (Witzgall et al. 2010). 

Pheromone traps are widely used in monitoring and eradication of invasive insect pests. Some 

high-profile invasive insects for which pheromone trap monitoring programs are currently in 

place include the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae) (Smith 

1998); the coddling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae); the pink bollworm, 
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Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) (Baker et al. 1990), and 

Lymantria dispar (L.) (Lepidoptera: Erebidae) (Sharov et al. 2002). Of these, the USDA APHIS 

sponsored programs, the Boll Weevil Eradication Program and the Slow the Spread program for 

L. dispar control, are two wide spread and successful examples of pheromone based monitoring 

of invasive insects. In order for A. grandis eradication to be successful, Knipling (1968) 

identified the need for a way to detect low level populations. Unlike pheromone trap monitoring 

of lepidopteran insects which primarily use female sex pheromones, the “grandlure” was 

developed from the aggregation pheromone produced by A. grandis males which attracts both 

males and females (Hardee et al. 1969). Since 1978, grandlure baited traps have been used 

successfully to detect low level populations and measure success of A. grandis eradication efforts 

throughout the southeast U.S. (USDA APHIS 2013). With the help of pheromone baited traps, 

the Boll Weevil Eradication Program has successfully eradicated the invasive pest from 98% of 

the U.S. cotton acreage (USDA APHIS 2013). Due to its success in the U.S., A. grandis 

pheromone trapping is now used on >250,000 ha in South America (Smith 1998). The Slow the 

Spread program is the largest invasive species monitoring program in existence which utilizes 

>80,000 pheromone traps throughout nine states (Sharov et al. 2002). The program uses a grid of 

pheromone baited traps spaced at 2-km intervals along the advancing edge of the range of L. 

dispar to detect isolated populations. These isolated populations primarily result from accidental 

transportation of egg masses because of the inability of females to fly and limited movement of 

larvae (Liebhold et al. 1992). Once detected, isolated populations are eliminated with insecticide 

applications. This program is estimated to reduce the annual expansion rate of L. dispar by ≈50% 

(Sharov et al. 2002).  
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In addition to uses in eradication and mitigation programs, pheromone trapping is used to 

generate data to assess population dynamics such as rates of range expansion and landscape 

effects of invasive species. The availability of Geographical Information Systems (GIS) 

technology has allowed for landscape level applications of pheromone trapping data to document 

geographic variation, predict pest outbreaks, and delimit invasive species (Witzgall et al. 2010). 

The ability to predict spatial and temporal variability of invasive insect populations can aide in 

development of effective strategies and policy. Tobin et al. (2007) utilized data from more than 

100,000 uniformly spaced pheromone traps monitored from 2002-2006 to estimate the rate of 

spread of L. dispar populations in five different regions of the U.S. Their results were 

encouraging for other invasive species monitoring programs in that the predicted rates of spread 

based measurements of boundary displacements from fixed points did not differ greatly from 

estimates derived from more crude presence/absence county level data (Tobin et al. 2007). 

Lymantria dispar range expansion varies from 5.8–18.0 km/yr across different regions of the 

U.S. (Tobin et al. 2007).  Augustin et al. (2004) determined pheromone traps were as effective as 

more labor intensive damage assessments for monitoring of the invasive horse-chestnut leaf, 

Cameraria ohridella (Lepidoptera: Gracillariidae), in France. In these studies, a combination of 

leaf damage scores and pheromone trap captures was used to determine the range of C. ohridella 

was expanding at ≈10 km/generation (40 km/yr).  

2.8. Eoreuma loftini Pheromone Trapping  

The presence of a female sex pheromone was first detected by Brown et al. (1988), and later 

isolated from female ovipositor extracts (Shaver et al. 1988). The pheromone blend was 

determined to be (Z)-13-octadecenyl acetate (Z-13-ODAc), (Z)-11-hexadecenyl acetate (Z-11-

HDAc), and (Z)-13-octadecenal (Z-13-ODAl) in a ratio of 8:1:1.3, respectively (Shaver et al. 
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1988). Both field and laboratory assessments indicated all three components must be present to 

elicit full male response. A 2-component blend of Z-13-ODAc and Z-13-ODAl did have some 

activity, but no response to individual components alone was detected (Shaver et al. 1988). In 

initial evaluations of the blend in a ratio of 8:1:1.3 of Z-13-ODAc, Z-11-HDAc, and Z-13-ODAl, 

respectively, dosages of 200–600 μg caught comparable numbers of male E. loftini to traps 

baited with virgin females (Shaver et al. 1988). Increasing the concentration of the major 

component (Z-13-ODAc) relative to the minor ones did not improve trap performance (Shaver et 

al. 1990). The blend can be impregnated on rubber septa or other medium by diluting the blend 

in hexane to a concentration of 20 mg/ml, pouring it into the septa and allowing hexane to 

evaporate (Shaver et al. 1990). Rubber septa impregnated with 5.0 mg of pheromone blend 

caught significantly more moths than PVC rods, plastic vials, or multi-layered polymeric 

dispensers with the same concentrations of pheromone (Shaver et al. 1990). The attractive 

activity of rubber septa baited with the pheromone blend showed no reduction in attractive 

ability after three weeks of field use (Shaver et al. 1990). Rubber septa impregnated with 5.0 mg 

of the E. loftini female sex pheromone blend are now commercially available for purchase 

(Luresept; Hercon Environmental, Emigsville, PA). Once the most attractive pheromone blend 

had been determined, researchers focused on development of trapping strategies for use in the 

field.  

Field evaluations showed Universal Moth Traps (Great Lakes IPM, Vestaburg, MI) with 

green tops, yellow funnels, and white buckets (GYW Unitraps) caught significantly more moths 

than all other trap types tested (Shaver et al. 1991). Additionally, traps at heights of roughly 1 m 

above the ground placed within sugarcane fields outperformed other scenarios tested. Based on 

the research of Shaver et al. (1988, 1990, 1991) GYW Unitraps baited with rubber septa 
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impregnated pheromone blend hung at a height of roughly 1.0 m have been adopted as the 

standard for E. loftini pheromone traps. The recommended trapping protocol requires replacing 

pheromone lures every two weeks and insecticidal vapor strips (Vaportape II; Hercon 

Environmental, Emigsville, PA) every four weeks.  

Since their development, E. loftini pheromone traps have been used to monitored the pest’s 

expansion across Texas and into Louisiana (Reay-Jones et al. 2007c, Hummel et al. 2010) as 

well as used to assist in pest scouting in sugarcane (Wilson et al. 2012b). However, much about 

trap efficacy remains unknown. All research on E. loftini pheromone traps was conducted in 

sugarcane agroecosystems in the Rio Grande Valley, and may not be applicable to other 

environments. Additionally, trap performance may also depend on environmental conditions 

such as wind speed (Sutton 1953, Bossert and Wilson 1963, Aylor et al. 1976, Elkinton and 

Cardé 1984), temperature (Bossert and Wilson 1963, Elkinton and Cardé 1984), and structural 

interference (Nakamura 1976, Nakamura and Kawasaki 1977, Elkinton and Cardé 1984). 

Pheromone dispersion and active space has been studied in a number of insects, but no research 

in these areas with E. loftini has been conducted.  
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CHAPTER 3: THE ACTIVE SPACE OF MEXICAN RICE BORER (LEPIDOPTERA: 

CRAMBIDAE) PHEROMONE TRAPS 

 

3.1. Introduction 

The Mexican rice borer, Eoreuma loftini (Dyar), is an invasive insect which originated in 

Mexico and has become established along the U.S. Gulf Coast. This invasive species is now 

present in Texas, Louisiana, and Florida where it is a pest of sugarcane, Saccharum spp., rice, 

Oryza sativa L., and other graminaceous crops (Legaspi et al. 1997a, Hayden 2012, Chapter 4). 

The range expansion of E. loftini has been monitored with traps baited with a female sex 

pheromone blend (Reay-Jones et al. 2007c, Hayden 2012, Chapters 4,7). Pheromone traps are 

also used to assist in scouting for E. loftini in sugarcane and rice (Wilson et al. 2012b, Chapters 

4–6). Initial studies by Shaver et al. (1990, 1991) determined the synthetic pheromone blend is as 

effective at attracting E. loftini males as traps baited with virgin females. These studies 

determined optimal concentrations of pheromone blends and trap designs to increase moth 

capture. Field studies which determined trap designs and trap deployment methods were 

conducted at intertrap distances of 50 m (Shaver et al. 1990, 1991). However, if mutual 

interactions between traps at this distance occur, experimental results from these studies may be 

invalid (Cardé and Baker 1984). Determination of the active space, or radius of attraction, of E. 

loftini pheromone traps will provide a critical piece of information to improve pheromone 

trapping strategies for this pest.  

The active space is defined as the distance from a pheromone source inside which the odor 

concentration is above the level sufficient to produce a response in the receiving organism 

(Elkinton and Cardé 1984). The active space of female sex pheromones varies widely between 

Lepidopteran species, and the factors which influence it are not easily understood. Numerous 

methods have been employed to estimate the active space of Lepidopteran pheromone traps 
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including mark-release-recapture experiments, wind tunnel assays, and field experiments which 

assess the effects of intertrap distance. Many of these experiments were conducted under 

controlled conditions or over small temporal periods and are unlikely to represent the wide range 

of environmental variables which are encountered in the field.  

The active space of pheromone traps for Cydia nigricana (F.) (Lepidoptera: Tortricidae) was 

estimated to be greater than 100 m through a series of mark-release-recapture studies (Wall and 

Perry 1978). The active space of traps baited with virgin females and synthetic pheromone 

blends for Spodoptera litura (F.) (Lepidoptera: Noctuidae) was estimated to be approximately 80 

m. The active space of pheromone detection for males of the lesser peach tree borer, 

Synanthedon pictipes (Grote and Robinson) (Lepidoptera: Sesiidae) is among the greatest 

distances documented for Lepidoptera. In mark-release-recapture studies, 40% male S. pictipes 

were recovered at a pheromone source 800 m up wind of the release point (Karandinos 1974). 

Although female sex pheromones have been identified for numerous Crambid species, the active 

space has not yet been evaluated for any member of this pestiferous Lepidopteran family.  

Field studies which assess the effects on intertrap distance on trap interactions have been 

used to estimate the active space for Lymantria dispar L. (Lepidoptera: Erebidae) (Elkinton and 

Cardé 1988) as well as Adoxophyes orana (Lepidoptera: Tortricidae) (Van der Krann and Van 

Deventer 1982). A behavioral assay was used to assess the distance from a pheromone source at 

which male Grapholita molesta (Busck) (Lepidoptera: Tortricidae) detect on respond to female 

sex pheromones (Linn et al. 1987). A comprehensive approach involving a two-year field study 

and a behavioral assay based on these methods was used to estimate the active space of E. loftini 

traps. This information can be used to improve pheromone trapping strategies for use in pest 
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management and invasive species monitoring. This work provides the first estimation of the 

active space for a Crambid pest species.      

 3.2. Materials and Methods 

3.2.1. Trap Interference Experiment  

A two-year field study utilized hexagonal arrays of E. loftini pheromone traps (Figure 3.1) to 

determine the effect of intertrap distance on trap performance. Intertrap distance was equal 

between each perimeter trap and its two closest neighboring perimeter traps. The central trap is 

equidistant from all perimeter traps. When the intertrap distance is less than the active space of 

each trap, the trap capture in all traps will be reduced due to trap interference. This interference 

will also result in a reduced proportion of the total array trap capture which is caught by the 

central trap (Elkinton and Cardé, 1988).  

The female sex pheromone blend consists of (Z)-13-octadecenyl acetate (Z-13-ODAc), (Z)-

11-hexadecenyl acetate (Z-11-HDAc), and (Z)-13-octadecenal (Z-13-ODAl) in a ratio of 8:1:1.3, 

respectively (Shaver et al. 1988). Universal Moth Traps (Great Lakes IPM, Vestaburg, MI) with 

green tops, yellow funnels, and white buckets (GYW Unitraps) baited with a rubber septa 

impregnated with 5.0 mg of the E. loftini female sex pheromone blend (Luresept; Hercon 

Environmental, Emigsville, PA) placed at heights of approximately 1 m above the ground were 

used for all assays in accordance with recommendations from Shaver et al. (1991). Each trap 

contained an insecticidal strip (Vaportape II; Hercon Environmental, Emigsville, PA). 

Pheromone lures were replaced every two weeks, and insecticidal strips were replaced every four 

weeks according to label instructions. These traps are widely used in pest scouting and invasive 

species monitoring for E. loftini (Reay-Jones et al. 2007c, Wilson et al. 2012b, Chapters 4–7).  
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Figure 3.1. Pheromone trap layout in hexagonal arrays deployed in stubble rice habitat in Texas 

(2011) and Louisiana (2013)  

 

Arrays were deployed in homogenous rice stubble habitat at commercial farms in Chambers 

and Jefferson Counties, Texas (2011) and in Calcasieu Parish, Louisiana (2013). In each year, 5 

arrays were deployed in each of two farms. Traps were checked and arrays re-randomized within 

each farm for each of five weeks for a total of 10 replications (farm × sampling period) each 

year. In 2011, intertrap distances of 5, 25, 50, 100, and 250 m were selected. The minimum 

distance between traps from different arrays was 280 m with a mean distance of 337 m. Trap 

arrays were initially deployed on 19 Oct 2011 and were checked and re-randomized to new 

locations within each farm on 25 Oct, 3 Nov, 10 Nov, 17 Nov, and 29 Nov 2011. Sampling 

periods in 2011 ranged from 6–12 days with an average of 7.3 days. In 2013, intertrap distances 

of 50, 100, 150, 225, and 300 m were evaluated. The minimum distance between arrays was 357 
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m with a mean distance of 2,028 m. Traps at the Lake Charles, LA farm were initially deployed 

20 Sept 2013 and were checked and re-randomized on 25 Sept, 9 Oct, 17 Oct, 23 Oct, and 29 Oct 

2013. Traps at the Vinton, LA farm were initially deployed 25 Sept 2013 and were checked and 

re-randomized on 3 Oct, 9 Oct, 17 Oct, 23 Oct, and 29 Oct 2013. Sampling periods in 2013 

ranged from 5–14 days, with an average of 7.3 days. Data was not collected from the array at the 

Vinton farm with an intertrap distance of 50 m during the final sampling period in 2013 because 

flooded conditions hindered access to traps.  

 For all arrays in both years, each trap was given a designated “position” (either center or 

perimeter). Each perimeter trap was assigned two cardinal directions (Direction1 and Direction2) 

relative to the central trap to account for the effect of wind direction. Perimeter traps were either 

North(N) x North(N), South(S) x South(S), N x East(E), N x West(W), S x E, or S x W. Central 

traps were assigned a C x C designation. No prevailing wind directions are known to exist at any 

of the experimental farms, and wind speed and direction changed naturally throughout sampling 

periods (Texas Commission of Environmental Quality 2002, Windfinder 2016).  

All trap capture data were converted to daily trap captures prior to statistical analysis. For 

each sampling period, the trap captures for each array were totaled and the proportion of the total 

array capture for each trap was calculated. Data from each year were analyzed separately due to 

differences in the intertrap distances evaluated and locations. Daily trap capture data were 

analyzed with ANOVAs with Gaussian distributions and intertrap distance as a fixed effect and 

farm, sampling period, farm × sampling period, and intertrap distance × farm × sampling period 

as random effects (Proc GLIMMIX; SAS Institute 2008). Daily trap capture data were also 

subjected to a two-way ANOVA with Direction1, Direction2, and the interaction as fixed effects 

to test for an influence of wind direction. The proportion of the total array capture data were 
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analyzed with two-way ANOVAs with Gaussian distributions and position, intertrap distance, 

and the interaction as fixed effects. Additionally, a linear regression (Proc REG; SAS Institute 

2008) was conducted to examine the effect of intertrap distance on the proportion of the total 

array capture caught by center traps. This regression included data from the center trap of all 

arrays across years, farms, and sampling periods. The proportion of total array capture caught in 

the center trap provides a metric to compare the degree of trap interference across intertrap 

distances independent of environmental factors.  

3.2.2. Behavioral Assay  

An assay was conducted which observed the behavior of E. loftini males while approaching 

from downwind of the pheromone source according to the methods of Linn et al. (1987). The 

assay was conducted in an unoccupied livestock arena on the Campus of Louisiana  

State University, Baton Rouge, LA. An “airstream” was established using a series of floor fans. 

One fan was placed approximately 1 m behind the pheromone source (Universal bucket trap 

containing one pheromone lure). Pairs of fans angled inward were placed at 10, 20, 30, 40 and 60 

m downwind of the pheromone source. The flow of air through the airstream was monitored 

using a stream of bubbles produced from a small bubble machine (Gazillion Bubble Hurricane; 

Funrise Toy Corporation, Van Nuys, CA) containing a standard glycerin-based bubble mixture. 

Fans were positioned to create a constant air stream approximately 2 m wide. A handheld digital 

anemometer (Model GM816; Benetech, Aurora, IL) was used to measure air velocity and 

temperature. The ambient temperature in the arena was 22.8 °C. Air velocity within the airstream 

was measured at 0, 5, 25, 35, 45, 55, and 65 m from the pheromone source and averaged 0.92 ± 

0.05 [SE] m/s. Air velocity outside of the airstream was not able to be detected with the 

anemometer, indicating potential sources of interference were negligible.  
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Figure 3.2. Screen mesh cages holding E. loftini males during the behavioral assay. Cages were 

suspended from small twine and held at the same height as the pheromone source  

 

Eoreuma loftini males were obtained from a laboratory colony reared on artificial diet 

(Martinez et al. 1988) at 25°C, 65% RH, and a photoperiod of 14:10 (L:D). Two weeks prior to 

adult emergence, E. loftini larvae were placed under offset photoperiod so assays conducted 

between 10:00 AM and 2:00 PM would correspond to hours of scotophase when peak mating 

activity occurs under natural conditions (Brown et al. 1988, Shaver et al. 1994). Adult E. loftini 

males were placed in cages immediately after emergence from pupal casings approximately 24–

48 hours prior to conducting the assays.     

Males were placed in cylindrical cages with aluminum window screening (18 x 16 mesh) on 

all sides (Figure 3.2). An observer held the caged male at height even with the pheromone source 

(≈1 m above the ground) and walked upwind towards the pheromone source from an initial 

distance of 100 m. When males exhibited excited behavior (walking, wing fanning, taking flight, 

etc.), a marker flag was placed on the ground (Figure 3.4). Flags and cages were marked with 

numbers to designate males. This was repeated for 30 E. loftini males. After each initial 

exposure, males were placed in a dark box outside of the arena for a minimum of two hours and 
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the assay was repeated. The distance of initial response to detection for each male was recorded 

for the first and second exposure. An ANOVA compared the distance of initial response between 

first and second exposure to the pheromone blend. Individual males (n = 30) served as 

replications.  

3.3. Results 

3.3.1. Trap Interference Experiment  

A total of 4,691 adult E. loftini males were captured in all traps over the 5 wk experiment in 

2011. Differences were detected between intertrap distances in daily trap captures and the 

proportion of the total array capture caught in center traps (Table 3.1). Daily trap capture ranged 

from 0.51 to 4.22 E. loftini/trap/day and increased with increasing intertrap distance. Differences 

in the proportion of the total array capture were detected between positions (F = 21.55, df = 1, 

293; P < 0.001) and the position × distance interaction, but not between distances. The 

proportion of the total array capture in the central trap was different (P < 0.05) from the 

proportion caught in perimeter traps in arrays with intertrap distances of 5, 25, and 50 m. An 

effect of direction relative to the central trap was not detected (P > 0.05) for Direction1, 

Direction2, or the Direction1 × Direction2 interaction.  

Table 3.1. The effect of intertrap distance on daily E. loftini trap capture and the proportion of 

array total captured by center traps, Jefferson and Chambers Counties, Texas, 2011 

Intertrap 

distance 

(m) 

E. loftini/trap/day 

(LS means ± 1.08 [SE])
1 

Proportion of total array capture 

Central Trap  

(LS means ± 0.029 [SE])
 

Perimeter Traps  

(LS means ± 0.012 [SE]) 

5 0.51a 0.056* 0.157 

25 0.90a 0.044* 0.159 

50 1.34a 0.069* 0.156 

100 2.90b 0.102 0.150 

250 4.22c 0.163 0.142 

F = 16.79 2.93 

df =  4, 36.0 4, 293.0 

P =  <0.001 0.027 
1
Means which share a letter are not significantly different (Tukey’s HSD, α = 0.05)  

*Indicates central trap is significantly less than perimeter traps (Tukey’s HSD, α = 0.05) 
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During the 2013 experiment a total of 9,544 E. loftini males were captured in all traps 

throughout the experiment. Differences were detected between intertrap distances in daily trap 

captures (Table 3.2). An effect of the position × distance interaction on the proportion of total 

array capture was detected (Table 3.2), but no effect of distance or position was observed (P > 

0.05). The proportion of the total array capture by the center trap was less than the mean 

proportion caught by perimeter traps at an intertrap of 50 m, but not at other distances. Results 

from the 50 and 100 m intertrap distances were consistent with results at the same distances 

evaluated in 2011. An effect of direction relative to the central trap was not detected between 

Direction1 (F = 2.40, df = 1, 286; P = 0.12), Direction2 (F = 0.96, df = 3, 286; P = 0.41) or the 

Direction1 × Direction2 interaction (F = 3.47, df = 1, 286; P = 0.06).  

A significant relationship occurred (F = 64.21, df = 1, 98; P < 0.001, R
2
 = 0.39, Root MSE = 

0.057) between the proportion of the total array capture caught by the central trap and the 

intertrap distance (Figure 3.3).  

 

Table 3.2. The effect of intertrap distance on daily E. loftini trap capture and the proportion of 

array total captured by center traps, Calcasieu Parish, Louisiana, 2013  

Intertrap 

distance 

(m) 

E. loftini/trap/day 

(LS means ± 0.76 [SE])
1 

Proportion of total array capture 

Central Trap 

(LS means ± 0.029 [SE])
 

Perimeter Traps  

(LS means ± 0.012 [SE]) 

50 1.45a   0.083* 0.156 

100 2.66b 0.107 0.150 

150 4.36c 0.146 0.137 

225 5.04c 0.156 0.140 

300 6.54d 0.189 0.137 

F = 16.94 3.78 

df =  4, 35.0 4, 287.0 

P =  <0.001 0.005 
1
Means which share a letter are not significantly different (Tukey’s HSD, α = 0.05)  

*Indicates central trap is significantly less than perimeter traps (Tukey’s HSD, α = 0.05) 
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Figure 3.3. The relationship between intertrap distance and the proportion of the total array 

capture which was caught by center traps. The linear regression has a slope = 0.0005 and an 

intercept = 0.052 

 

3.3.2. Behavioral Assay  

All E. loftini males responded to detection of the pheromone within the airstream. Prior to 

detection of the pheromone blend all males remained motionless in the cages. When the males 

detected the pheromone they became excited, walking rapidly in small circles and exhibiting 

wing fanning. This behavior persisted for approximately 10–15 seconds in all males before they 

returned to a non-excited state. Once wing fanning and walking behaviors were observed, the 

observer opened the cage to allow the males to take flight. None of the males took flight or 

exhibited any responses to the pheromone other than the wing fanning and walking behavior 
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observed at the initial detection. Reponses to the second exposure to the pheromone blend did 

not differ from that of the first exposure. The distance from the pheromone source at which 

males response was observed ranged from 24.5–60.6 m (Figure 3.4) and had a mean of 47.6 m. 

Differences were not detected (F = 1.85, df = 1, 53.0; P = 0.179) between the distance from the 

pheromone source at first (46.5 m) and second (48.8 m) exposure to the pheromone blend. 

3.4. Discussion 

The hexagonal array experimental design originally adapted from Elkinton and Cardé (1988) 

provided a thorough assessment of the effects of intertrap distance on E. loftini trap performance 

under field conditions. By utilizing week-long sampling periods, multiple locations, and multiple 

years, this experimental design measured the active space under variable wind speeds, wind 

directions, temperatures, and other environmental conditions. Trap captures at commercial farms 

in Texas (2011) and in Louisiana (2013) were sufficiently high to detect a strong effect of trap 

interference. The daily trap captures observed in arrays which minimized trap interference were 

greater than those reported in other sugarcane and rice habitats (Wilson et al. 2012b, Chapters 4–

6) indicating the stubble rice habitat where hexagonal arrays were deployed harbor high 

populations of E. loftini during the fall. The two-year study provides strong evidence that 

significant interference occurs between traps in rice habitat when the intertrap distance is less 

than 100 m. Results from previous studies which determined optimal trapping strategies in 

sugarcane (Shaver et al. 1991) were conducted with an intertrap distance of 50 m were likely 

affected by interference between traps. However, the active space of E. loftini pheromone traps 

in sugarcane habitat may differ where tall crop canopies likely influence pheromone dispersion. 

Deposition or surface adsorption has potential to influence pheromone dispersion (Nakamura 

1976, Nakamura and Kawasaki 1977). The effects of pheromone deposition in our field assays 
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were likely minimized because the 1 m trap height was well about the stubble rice present in the 

fields.  

Our results were consistent with previous studies which utilized hexagonal arrays to assess 

trap interference which reported decreased trap captures in central traps (Van der Krann and Van 

Deventer 1982, Elkinton and Cardé 1988). The proportion of the total trap capture caught in the 

central trap continually increased with increasing intertrap distance in our study. If trap 

interference was negligible at the greatest intertrap distance, the proportion caught in the central 

traps would be equal to the mean from perimeter traps. The numerically greater proportion 

caught by central traps in arrays with an intertrap distance of > 200 m observed in our study may 

have resulted from an edge effect which reduced trap captures in perimeter traps near field 

margins. The consistency in results from distances evaluated in both 2011 and 2013 indicates the 

experimental design effectively assessed interference between traps while minimizing the impact 

of other factors.  

Figure 3.4. Response distance of E. loftini males to detection of the pheromone blend. Orange 

flags indicate the sites of individual male responses. Distances indicated by white lines are 

approximations 
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Results from the behavioral assay under controlled conditions confirmed that the active space 

of pheromone traps is approximately 50 m. The unfailing ability of males to detect and respond 

to the pheromone blend in our assay demonstrates that this methodology can be used to assess 

active space of Lepidopteran sex pheromones under controlled conditions. Wing-fanning and 

walking responses observed in our study were consistent with those reported in a similar assay 

assessing males of G. molesta (Linn et al. 1987). By designing a controlled airstream, our assay 

allowed for male response to be evaluated under stable conditions. Linn et al. (1987) noted 

logistical difficulties including excessive wind speeds while conducting similar assays under 

field conditions. By varying conditions within the air stream, the effect wind speed, wind 

direction, temperature, or other factors on active space could be evaluated with this approach.  

The male response observed in our study was largely consistent with that reported from 

studies of E. loftini mating behavior (Brown et al. 1988); however, no males took flight in our 

study. Brown et al. (1988) reported that upon detection of the pheromone, E. loftini males 

immediately began to flutter wings and either walked or flew to the source. The cages prevented 

the males from attempting to walk towards the source and may have discouraged taking flight. 

Notably, Brown et al. (1988) reported that crawling toward the source was more prevalent than 

flying during the first 4 hours of scotophase while flying was more frequent during the latter 

hours of scotophase. The males used in our assays were held under a controlled photoperiod so 

that assays were conducted at times which would correspond to approximately 4–8 hours into 

scotophase. Further, males were kept in a dark enclosure at all times when not subjected to the 

assay, but a low level of artificial light which was required for observation may have influenced 

male behavior. The failure to detect a difference of male response between first and second 

exposures to the pheromone blend was also consistent with Brown et al. (1988) who did not 
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observe differences between first, second, third, or fourth exposures occurring on each 

subsequent night. Our results suggest the removing E. loftini males from the presence of the 

pheromone source for a period of two hours was sufficient for the males to return to a resting, 

non-excited state. Results from this observational assay encourage further evaluation of E. loftini 

active space under variable environmental conditions.   

Based on results from our two-year field study in addition to the behavioral assay, we assert 

that the active space of E. loftini pheromone traps is between 50–100 m. Traps used for E. loftini 

invasive species monitoring, pest scouting, or in subsequent experiments should not be deployed 

with an intertrap distance < 100 m. Assuming that the active space functions as a radius of 

attraction around each trap, a single pheromone trap can monitor an estimated 1–3 ha. This 

information will improve deployment strategies for E. loftini pheromone traps used in invasive 

species monitoring (Reay-Jones et al. 2007c, Chapters 4,7) and in pest scouting in sugarcane and 

rice (Wilson et al. 2012b, Chapters 4–6).  

This research builds on a growing body of literature investigating the active space of 

Lepidopteran pheromones. Although pheromone trapping strategies are being developed for 

several Crambid species (Witzgall et al. 2010), this work provides the first examination of active 

space of sex pheromones in this pestiferous family of Lepidoptera. Additionally, the 

comprehensive approach involving both field experiments and behavioral assays may be adapted 

to evaluate the active space of other Lepidopterans.  
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CHAPTER 4: EXPANSION OF THE MEXICAN RICE BORER (LEPIDOPTERA: 

CRAMBIDAE) INTO RICE AND SUGARCANE IN LOUISIANA 
 

4.1. Introduction 

The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an invasive 

insect originating from Mexico which has become established as a major pest of graminaceous 

crops in Texas. Eoreuma loftini attacks sugarcane, Saccharum spp., rice, Oryza sativa L., corn, 

Zea mays L., sorghum, Sorghum bicolor L., and many non-crop grass species (Showler et al. 

2011, 2012; Beuzelin et al. 2011b, 2013). Eoreuma loftini was first reported as a pest in the U.S. 

in 1980 on sugarcane in the Lower Rio Grande Valley of Texas (Johnson and van Leerdam 

1981), where it now comprises >95% of the sugarcane stem borer population (Legaspi et al. 

1997a). Eoreuma loftini has since spread northeast through the rice production area along the 

Texas Gulf Coast (Reay-Jones et al. 2007c) and was discovered in Louisiana in December 2008 

(Hummel et al. 2010). A quarantine was implemented during the 2005 crop production season to 

prevent movement of infested Texas sugarcane into Louisiana (Reagan et al. 2005), which is 

estimated to have saved the Louisiana sugarcane industry $1.1–3.2 billion (Reay-Jones et al. 

2008). Establishment of E. loftini throughout Louisiana is expected to cause annual revenue 

losses as great as $220 and $40 million to the sugarcane and rice industries, respectively (Reay-

Jones et al. 2008). Because E. loftini uses a broad range of host plants, eradication of this pest is 

not feasible (Johnson and van Leerdam 1981, Showler et al. 2011, 2012; Beuzelin et al. 2011b, 

2013). Development of population management strategies is the only viable approach to 

mitigating the pest’s impact (Showler and Reagan 2012).    

The E. loftini female sex pheromone was isolated (Brown et al. 1988) and developed for use 

in pheromone traps (Shaver et al. 1988, 1990, 1991), which are deployed to monitor E. loftini  

This chapter previously appeared as: Wilson, B.E., T.N. Hardy, J.M. Beuzelin, M.T. VanWeelden, T.E. Reagan, R. Miller, J. 

Meaux, M.J. Stout, and C.E. Carlton. 2015. Expansion of the Mexican rice borer into rice and sugarcane in Louisiana. Environ. 

Entomol. 44 (3): 757–766. Reprinted with permission from the Entomological Society of America–See Appendix A.  

 



41 
 

range expansion (Reagan et al. 2005, Reay-Jones et al. 2007c, Hummel et al. 2010) and for pest 

scouting in individual sugarcane fields (Wilson et al. 2012b). The recent discovery of E. loftini in 

Florida (Hayden 2012) highlights the potential for rapid range expansion. Objectives of this work 

were to (1) monitor E. loftini distribution and expansion in southwestern Louisiana, (2) 

determine the severity of E. loftini infestations in rice and sugarcane, and (3) evaluate the 

potential for use of pheromone traps to improve scouting for E. loftini in rice. 

4.2. Materials and Methods  

4.2.1. Pheromone Trap Monitoring 

Adult E. loftini populations were monitored using pheromone traps in southwestern 

Louisiana from 2009 through 2013. Standard green, yellow, and white bucket traps (Unitrap; 

Great Lakes IPM, Vestaburg, MI) were baited with synthetic E. loftini sex pheromone lures 

(Luresept; Hercon Environmental, Emigsville, PA). Each trap contained an insecticidal strip 

(Vaportape II; Hercon Environmental, Emigsville, PA). Traps were attached to metal poles 1 m 

above the soil surface to maximize trap performance (Shaver et al. 1991). Pheromone lures and 

insecticidal strips were replaced every 4 wk according to label instructions.  

The number and locations of traps in each parish varied by year. Trap locations were 

recorded using a handheld GPS unit. The distance of each trap to its nearest neighboring trap was 

determined using GPS coordinates, and mean distance between traps was calculated for each 

year. Mean distances between traps during each year were 2.7, 3.1, 5.6, 6.1, and 9.0 km in 2009, 

2010, 2011, 2012 and 2013, respectively. Prior to 2013, trap locations were 5–15 km east of the 

eastern edge of the known E. loftini range as determined by monitoring in the prior years. 

Trapping was expanded in 2013 to include areas where the pest was already known to occur. 

Hence, monitoring in 2013 involved Calcasieu, Cameron, Jefferson Davis, Beauregard, Allen, 
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and Acadia parishes, >15,000 km
2
. Traps in southwestern Louisiana (Calcasieu, Cameron, 

Jefferson Davis, Beauregard, Allen, Acadia, and Vermilion parishes) were placed adjacent to rice 

fields, sugarcane fields, or pastures with wild hosts, and traps in St. Mary, St. Martin and Iberia 

parishes were located near sugar mills. Specimens which represented the possible initial 

detection of E. loftini in a parish were transported to the Louisiana State Arthropod Museum 

(Louisiana State University, Baton Rouge, LA) for identification (Reiss 1981, Agnew et al. 

1988).   

4.2.2. Eoreuma loftini Infesting Sugarcane and Rice 

Monitoring of E. loftini larval infestations in sugarcane was conducted from May–October, 

2013 in two fields in Calcasieu Parish (≈120 ha total; var. HoCP 04-226) and three fields in 

Jefferson Davis Parish (≈220 ha total; var. L 99-226 and HoCP 96-540). A pheromone trap was 

placed adjacent to each field within 1 m of field edges to monitor adult populations. Larval 

infestations were assessed by monthly examination (5 sampling events per field) of 100 

randomly selected stalks for the presence of E. loftini larvae. Stalks were considered infested if at 

least one E. loftini larva was observed feeding within the stalk or on plant surfaces.   

Surveys involved monitoring of adult population densities and larval infestations in rice 

fields treated with chlorantraniliprole (Dermacor X-100, E.I. du Pont de Nemours and Company, 

Wilmington, DE) applied to seed at 80 g a.i./ha and fields without insecticidal seed treatments. 

No other insecticides were used on experimental fields during the growing season. Eleven fields 

were surveyed in 2012 (four treated and seven nontreated) and 12 (six treated and six nontreated) 

in 2013. A replication consisted of a pair of one treated and one nontreated field, each 30–165 

ha, within 3.6 km of each other. Rice cultivars reflected those most commonly grown in 

Louisiana and included CL111, CL151, XL745, XL729, Cheniere, Cocodrie, and Mermentau. 
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Due to lack of replication of cultivars in the experimental design, rice cultivar was not included 

as an effect in the statistical analysis. All fields surveyed were located in areas of Calcasieu 

Parish where development of substantial E. loftini populations was anticipated based on 

pheromone trap captures during the previous spring. A single pheromone trap was placed 

directly adjacent to each field and monitored throughout the growing season. These traps were 

monitored for the duration of the rice-growing season (May through August) and augmented the 

traps used in the pheromone trap monitoring described in the previous section. Fields were 

sampled for larval infestations six times in 2012 (30 May, 14 June, 7 July, 28 July, 12 August, 26 

August) and eight times in 2013 (21 June, 27 June, 3 July, 10 July, 18 July, 29 July, 6 August, 

and 15 August). On each sampling date, 25 rice tillers were randomly selected within a 50-m 

radius of the pheromone trap, observed for stem borer injury, and dissected. No other species of 

stem borer was recovered during the surveys in either year, and all injury by stem borer larval 

feeding was assumed to have been caused by E. loftini. Once rice fields neared maturity (hard-

dough stage, 29 July–26 August), they were sampled by counting the total number of rice tillers 

and the number of tillers with “whiteheads” [incompletely emerged panicles or panicles which 

do not produce grain resulting from insect injury to vascular tissue during plant growth] (Pathak 

1968) within a randomly positioned 1-m
2 

quadrat. Whiteheads present in each sample were 

dissected to verify injury was caused by stem borer feeding and all recovered larvae were 

verified as E. loftini. Whitehead data were not collected in one treated and two nontreated fields 

in 2012 because the fields were harvested before sampling.   

Trap capture converted to daily estimates and percentage of injured tillers for each growing 

season were analyzed using a three-way ANOVA (PROC MIXED, SAS Institute 2008) with 

year, treatment, sampling date, year × treatment, sampling date × year, sampling date × 
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treatment, and sampling date × year × treatment as fixed effects. ANOVA models comparing 

trap captures and percentage injured tillers included replication(year) and treatment × 

replication(year) as random effects to account for the effects of the design of the study and 

repeated measures (variance component covariance structure). The number of whiteheads per m
2
 

and the percentage of tillers with whiteheads were compared using a two-way ANOVA (PROC 

MIXED, SAS Institute 2008) with year, treatment, and year × treatment as fixed effects and 

replication(year) as a random effect. Tukey’s honestly significant difference test (α=0.05) was 

used for mean separations and Kenward-Roger method was used for calculation of error degrees 

of freedom (PROC MIXED, SAS Institute 2008). A multiple linear regression was conducted 

with capture per trap per day as the dependent variable and percentage injured tillers as the 

independent variable (PROC REG, SAS Institute 2008). A qualitative dummy variable, z1, was 

used to differentiate between years (if year =2012 then z1=0, if year = 2013 then z1=1) because 

trap captures were significantly higher (P<0.05) in 2013 than in 2012.  

4.3. Results  

4.3.1. Pheromone Trap Monitoring 

Eoreuma loftini pheromone trap monitoring efforts from 2009–2013 captured a total of 19,496 

moths at >100 trap locations throughout seven parishes in southwest Louisiana (Table 4.1). 

Although moths were not detected in 2009, two specimens were trapped in November–

December 2010 in non-crop habitat south of Vinton (N 30° 5' 44.9010", W 93° 31' 5.9010”) 22 

km to the south and 7 km to the east of the 2008 detection (N 30° 17' 54.3480", W 93° 35' 

21.3300"; Hummel et al. 2010). In 2011, E. loftini males were captured at 42 new locations in 

three additional parishes (Cameron, Jefferson Davis, and Beauregard; Figure 4.1). The 

easternmost E. loftini detection in 2011 was near a sugarcane field ≈26 km south of Welsh Table 
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4.1. Eoreuma loftini pheromone trap monitoring in Louisiana, 2009–2013  

Parish Year 
No. trap 

sites 

Date 

deployed 

Date 

retrieved 

No. times 

traps were 

sampled 

No. E. 

loftini 

positive 

sites 

Total 

no. E. 

loftini 

captured 

Calcasieu 

2009 40 3/30/2009 1/19/2010 13 0 0 

2010 27 4/13/2010 1/12/2011 12 1 7 

2011 34 3/15/2011 12/12/2011 10 31 225 

2012 0 NA NA NA NA NA 

2013 18 2/28/2013 1/4/2014 14 18 8920 

Cameron 

2009 5 3/30/2009 1/19/2010 13 0 0 

2010 4 4/13/2010 1/12/2011 12 0 0 

2011 14 3/15/2011 12/12/2011 10 6 43 

2012 2 2/13/2012 1/2/2013 13 1 1 

2013 8 3/7/2013 11/18/2013 12 8 3575 

Jefferson 

Davis  

2009 12 3/30/2009 1/19/2010 13 0 0 

2010 11 4/6/2010 1/12/2011 12 0 0 

2011 6 3/15/2011 12/12/2011 10 4 11 

2012 16 2/13/2012 1/2/2013 13 0 0 

2013 22 3/7/2013 1/4/2014 14 20 4489 

Beauregard  

2009 3 3/30/2009 1/19/2010 13 0 0 

2010 0 NA NA NA NA NA 

2011 2 3/15/2011 12/12/2011 10 1 3 

2012 0 2/13/2012 1/2/2013 13 0 0 

2013 9 2/28/2013 1/4/2014 10 9 2024 

Allen 
2012 7 2/13/2012 1/2/2013 13 0 0 

2013 5 3/14/2013 1/4/2014 10 5 187 

Acadia 2013 5 5/22/2013 1/8/2014 9 3 7 

Vermilion 

2011 1 3/15/2011 12/12/2011 10 0 0 

2012 0 NA NA NA NA NA 

2013 3 10/23/2013 1/8/14 3 2 4 

Iberia 

2009 8 7/10/2009 1/19/2010 14 0 0 

2010 8 6/21/2010 1/3/2011 14 0 0 

2011 8 7/18/2011 1/10/2012 10 0 0 

2012 7 8/27/2012 1/16/2013 10 0 0 

2013 7 9/19/2013 2/16/2013 4 0 0 

St. Mary 

2009 3 7/10/2009 1/19/2010 14 0 0 

2010 3 6/21/2010 1/3/2011 14 0 0 

2011 3 7/18/2011 1/10/2012 10 0 0 

2012 3 8/27/2012 1/16/2013 10 0 0 

2013 3 9/19/2013 2/16/2013 4 0 0 

St. Martin 
2012 1 8/27/2012 1/16/2013 10 0 0 

2013 1 9/19/2013 2/16/2013 4 0 0 

NA = Not Applicable  
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(Cameron Parish; N 30° 11' 10.7154", W 92° 51' 19.6914") and ≈64 km east of the 2010 

detection site. Deployment of traps in 2012 revealed little eastward expansion with a single 

specimen captured in northwestern Cameron Parish (N 29° 59' 57.7314", W 92° 47' 29.436") ≈4 

km east of the 2011 easternmost edge. Expanded pheromone trap monitoring in 2013 resulted in 

the capture of >19,000 E. loftini adults. Adults were detected at 65 trapping sites, 30 of which 

were located in areas where E. loftini had not previously been found (e.g. Allen, Acadia, and 

Vermilion parishes, Figure 4.1). The range of E. loftini in 2013 extended eastward to traps 

positioned south of Estherwood (Acadia Parish; N 30° 7' 28.3794", W 92° 27' 20.4408"), ≈32 km 

further east than in 2012. Detection of E. loftini in Beauregard and Allen parishes as well as 

southern Cameron Parish revealed substantial north-south range expansion since 2009.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Eoreuma loftini range expansion in Louisiana, 2008–2013  
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The southernmost detection site (N 29° 46' 29.553", W 93° 27' 48.0522") was <1 km from 

the coast of the Gulf of Mexico, while the northernmost detection site (N 30° 51' 40.2438", W 

93° 19' 27.6924") was 120 km north of the coast in northern Beauregard Parish. Between 2009 

and 2013 the eastern edge of the range of E. loftini moved a total of 111 km east from the 2008 

detection site (22.2 km per yr). The range of E. loftini encompassed all of Calcasieu, Beauregard, 

Cameron, and Jefferson Davis parishes and regions of Allen, Vermilion, and Acadia parishes. No 

E. loftini adults have been captured near sugarcane mills in Iberia, St. Mary, or St. Martin Parish 

as of December 2013.  

4.3.2. Eoreuma loftini Infesting Sugarcane and Rice 

The first larva found to be infesting sugarcane was collected in a field of first season 

sugarcane (var. L 99-226) near Iowa (Calcasieu Parish; N 30° 14' 49.1784", W 93° 3' 13.7946") 

on 29 March 2013. Season long scouting for E. loftini larvae in sugarcane revealed infestations 

in ≈120 ha of sugarcane in Calcasieu Parish and 220 ha in Jefferson Davis Parish. The mean 

percentage of stalks with E. loftini larvae feeding on plant surfaces or inside stalks peaked in 

August with 11% and 8% of stalks infested in Calcasieu and Jefferson Davis parishes, 

respectively (Table 4.2).  

Table 4.2. Larval E. loftini infestations and pheromone trap captures in Louisiana sugarcane, 

2013 

Parish 
 Month  

 May June July Aug. Sept. Oct. 

Calcasieu 
No. E. loftini (total, 2 traps) 12 31 56 156 65 16 

Mean % infested stalks 0 0 0 11 8 8 

Jefferson 

Davis 

No. E. loftini (total, 3 traps) 4 40 28 39 68 51 

Mean % infested stalks 0 0 2 8 4 5 

 

Adult trap captures near rice fields varied throughout the growing season in both years 

(Figure 4.2), although differences between sampling dates were not detected (Table 4.3). Daily 
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trap captures were more than 3.5 fold greater in 2013 than in 2012 (Table 4.3, Figure 4.2). 

However, differences were not detected among the traps near chlorantraniliprole-treated and 

nontreated fields, nor were interactions detected (Table 4.3). Differences in percentage of tillers 

with larval injury were detected among treatments, sampling dates, and for the sampling date × 

treatment interaction, but not for other interactions (Table 4.3). The percentage of injured tillers 

increased throughout most of the growing season, peaking in late July and early August in both 

years (Figure 4.3). Late season injury in nontreated rice fields in 2013 rose to 21.2% ± 2.7[SEM] 

of tillers with E. loftini injury, while levels in 2012 peaked at 9.7% ± 2.1[SEM]. The percentage 

of tillers with E. loftini injury in chlorantraniliprole treated fields remained below 5% throughout 

the growing season in both years. A linear relationship occurred (F = 8.79, df = 2,66, P < 0.001, 

R
2
 = 0.2103, Root MSE = 6.601) between the number of E. loftini per trap per day and the 

percentage of tillers with stem borer injury in nontreated rice fields. The dummy variable, z1, 

improved the regression model (t = 3.08, P = 0.003) by increasing the coefficient of the 

explanatory variable by 4.9288 for 2013 data (slope = 0.2817; intercepts = 2012: 2.160 and 

2013: 7.085, Figure 4.4).  

Table 4.3. Statistical comparisons of E. loftini daily trap captures and percentage of injured tillers 

from chlorantraniliprole treated and nontreated rice fields in Calcasieu Parish, Louisiana, 2012–

2013  

Fixed Effect 
Daily trap capture  Percentage injured tillers 

F df P > F  F df P > F 

Sampling date 1.22 7, 94.9 0.298  4.99 7, 84.9 <0.001 

Treatment   0.02 1, 16.5 0.880  20.93 1, 16.4 <0.001 

Year 17.41 7, 12.0 0.001  0.01 1, 12.6 0.906 

Year × treatment  2.68 1, 10.8 0.130  0.0 1, 12.7 0.950 

Treatment × sampling date 1.03 7, 94.7 0.415  3.45 7, 84.9 0.003 

Year × sampling date 1.23 5, 93.1 0.300  0.58 4, 83.6 0.681 

Year × treatment × sampling date  1.35 5, 93.2 0.181  0.81 4, 83.6 0.524 
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Differences were detected in the number of whiteheads per m
2
 and the percentage of 

whiteheads between years, treatments, and a year × treatment interaction occurred (Table 4.4). 

The mean number of whiteheads per m
2 

ranged from 1.00 (chlorantraniliprole treated) to 12.67 

(nontreated).  

Table 4.4. Eoreuma loftini infestations (LS means ± SEM) as affected by insecticidal seed 

treatments in rice in Calcasieu Parish, Louisiana, 2012–2013 

Fixed Effect Whiteheads/m
2 Percentage 

Whiteheads 

Year   

2012 2.90 ± 0.98a 0.90 ± 0.25a 

2013 5.67 ± 0.81b 2.13 ± 0.20b 

F =  4.72 14.66 

P =  0.046 0.002 

Treatment   

Chlorantraniliprole  1.00 ± 0.98a 0.34 ± 0.25a 

Nontreated 7.57 ± 0.81b 2.69 ± 0.20b 

F =  26.59 53.75 

P =  <0.001 <0.001 

Year × Treatment    

2012 
Chlorantraniliprole  1.00 ± 1.55a 0.27 ± 0.39a 

Nontreated 4.80 ± 1.20a 1.53 ± 0.30b 

2013 
Chlorantraniliprole  3.56 ± 1.20a 1.05 ± 0.30b 

Nontreated 12.67 ± 1.10b 3.85 ± 0.27c 

F =  4.72 11.77 

P =  0.046 0.004 

Means in the same column for each fixed effect which share a lowercase letter are not 

significantly different (P > 0.05; Tukey’s HSD test). For all tests, df = 1, 15  
 

4.4. Discussion  

This study documents the occurrence of E. loftini in seven Louisiana parishes, and provides 

the first record of infestations in Louisiana field crops. The estimated rate of E. loftini range 

expansion during the 5-yr monitoring period (22 km per yr) is consistent with previous estimates 

(23 km per year from 1980–2005; Reay-Jones et al. 2007c); however, eastward movement was 

sporadic and varied greatly between years. Changing weather conditions and host availability 

probably influenced E. loftini range expansion, and widespread removal of rice straw after the 
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2011 growing season (Schultz 2011, Beuzelin et al. 2012) and above average rainfall (U.S. Dept. 

of Commerce National Oceanic and Atmospheric Administration 2014) might have reduced E. 

loftini populations and slowed range expansion in 2012. Variation in population distribution 

between years has been reported for other lepidopteran species and periods of reduced 

population growth of invasive species (Byers et al. 2002, Augustine et al. 2004) caused by biotic 

and abiotic factors likely have roles in range expansion.  

A quarantine was initiated in 2005 by the Louisiana Department of Agriculture and Forestry 

and the Texas Department of Agriculture to prevent the transport of sugarcane from Texas into 

Louisiana for processing with the aim of reducing human-aided movement of E. loftini into 

Louisiana (Reagan et al. 2005). However, at present no regulations are in place preventing 

movement of E. loftini infested sugarcane from western Louisiana parishes to sugarcane mills 

further east. Based on its current distribution as estimated by pheromone trapping, it is likely that 

E. loftini infestations are present throughout the ≈600 ha of sugarcane in Calcasieu and Jefferson 

Davis parishes. Although the pest’s range expansion through Texas and into Louisiana is not 

known to have been a result of human-aided movement, movement of infested sugarcane could 

introduce E. loftini into the 45,000 ha of sugarcane in Iberia, St. Mary, and St. Martin parishes. 

With expanded pheromone trap monitoring in 2013 substantial increases in the northern 

range limit of E. loftini were observed. Males were captured in the northernmost trap (≈120 km 

north of the Gulf Coast), indicating that the species may occur further north. Overwintering 

survival of E. loftini is greater than that of the sugarcane borer, Diatraea  saccharalis (F.), 

(Rodriguez-del-Bosque et al. 1995), which occurs as far north as southern Arkansas (Lorenz and 

Hardke 2014). Hence, expanding pheromone trap monitoring might reveal a larger range for E. 

loftini than is currently known (Showler et al. 2012, Showler and Reagan 2012).  
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Figure 4.2. Eoreuma loftini daily pheromone trap captures (LS means ± SEM) in 

chlorantraniliprole treated and nontreated rice in (A) 2012 and (B) 2013. Differences were 

detected (P < 0.05) between years, but not among treatments, sampling dates, or the interactions  
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Figure 4.3. Percentages of tillers with E. loftini injury (LS means ± SEM) in chlorantraniliprole 

treated and nontreated rice in (A) 2012 and (B) 2013. Differences were detected (P < 0.05) 

among sampling dates, treatments, and the sampling date × treatment interaction, but not among 

years or other interactions  
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The increase of infestations from 2012 to 2013 in Calcasieu Parish suggests that the invasive 

pest has become established there. Abundances of whiteheads indicate substantial yield losses 

attributable to E. loftini in fields that were not protected with insecticides during 2013. Yield 

losses of 1.0–4.2% have been reported for every percentage increase in whiteheads caused by a 

complex of stem borers in Asia (Pathak 1968, Muralidharan and Pasalu 2006). Reay-Jones et al. 

(2007a) estimated a 2.28% decrease in yield results from every whitehead per m
2
 caused by 

mixed infestations of D. saccharalis and E. loftini. Hence, we estimate yield losses of 4% to 28% 

in unprotected rice fields in 2013. The injury levels in Louisiana were comparable to those 

reported in Texas (1–20 whiteheads/ per m
2
) where E. loftini has been present in rice for more 

than 10 yr (Way et al. 2006, Reay-Jones et al. 2007a).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Relationship between daily adult trap captures and larval injury in nontreated rice 

fields. Multiple linear regression (F = 8.79; df = 2, 66; P < 0.001; R
2
 = 0.2103)   
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Chlorantraniliprole seed treatments provided season-long protection from E. loftini injury. 

The similar numbers of adult E. loftini near chlorantraniliprole treated rice fields and nontreated 

fields suggests that non-crop hosts harbor substantial populations. On an area wide scale 

pheromone traps are useful (Reay-Jones et al. 2007c, Wilson et al. 2012b), and the correlation 

between trap captures and larval infestations in nontreated rice suggests the traps have potential 

to alert growers of increasing populations and the need to monitor larval infestations. Currently, 

insecticidal seed treatments including chlorantraniliprole and neonicotinoids are applied to most 

rice planted in Louisiana for control of the rice water weevil, Lissorhoptrus oryzophilus Kuschel 

(Stout and Gore 2014). Neonicotinoid seed treatments are relatively ineffective against stem 

borers (Way et al. 2011). Chlorantraniliprole seed treatments, in contrast, are effective against D. 

saccharalis (Sidhu et al. 2014) and can be used to control a complex of stem borers. 

Additionally, widespread adoption of chlorantraniliprole seed treatments in rice may contribute 

to reduced area wide pest populations. Rice cultivars have varying levels of susceptibility to stem 

borers (Way et al. 2006), and the effect of cultivar used in this study is unknown. 

Surveys of sugarcane in Calcasieu and Jefferson Davis parishes in 2012 and 2013 led to 

detection of the first E. loftini larval infestation in Louisiana sugarcane. While infestations did 

not reach economically damaging levels in 2013, the pest is capable of inflicting revenue losses 

of up to $220 million annually to the sugarcane industry (Reay-Jones et al. 2008). Infestations in 

sugarcane in the Lower Rio Grande Valley consistently cause >20% bored internodes when left 

unmanaged (Legaspi et al. 1997a, Reay-Jones et al. 2005b, Wilson et al. 2012b), and severe 

infestations have caused fields to be unharvestable (Reagan et al. 2005, Showler and Reagan 

2012). Although judiciously timed insecticide applications might reduce sugarcane yield losses 

from E. loftini (Wilson et al. 2012b), adequate control in sugarcane is difficult to achieve because 
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of insufficient exposure of larvae to insecticides (Johnson 1985, Meagher et al. 1994, Legaspi et 

al. 1997a, Showler and Reagan 2012, Wilson et al. 2012b).     

Reductions in populations of the stem borers D. saccharalis, Diatraea lineolata (Walker), 

and Diatraea magnifactella Dyar have been observed following the establishment of E. loftini in 

northeastern Mexico and southern Texas (Legaspi 1997b, Rodriguez-del-Bosque et al. 2011, 

Rodriguez-del-Bosque and Reyes-Méndez 2013). Although changes in stem borer species 

composition may have been associated with competitive displacement by E. loftini, reductions in 

D. saccharalis populations in Mexico and Texas have been attributed to the establishment of the 

parasitoid Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) (Fuchs 1979). In Louisiana, 

D. saccharalis shares many host plants with E. loftini (Beuzelin et al. 2011b), but releases of C. 

flavipes have not been successful (White et al. 2004) and host crops and weeds (Showler et al. 

2011, Showler and Moran 2014) are abundant. In addition, the two stem borer species exhibit 

differences in larval tunneling behavior (Legaspi et al. 1997b, Beuzelin et al. 2012, Showler and 

Reagan 2012), oviposition substrate preference (Showler and Castro 2010a,b), and seasonal 

activity (Rodriguez-del-Bosque et al. 1995, Beuzelin et al. 2011b, Showler and Reagan 2012). 

Coexistence of both species in Louisiana is therefore anticipated.   

Because eradication of this invasive pest is not thought to be feasible (Johnson and van 

Leerdam 1981, Showler et al. 2011, 2012; Beuzelin et al. 2011b, 2013), reducing human-aided 

movement and implementing effective area wide management tactics will be critical to 

mitigating the impact of E. loftini in Louisiana rice and sugarcane. As E. loftini expands its 

geographical range, susceptible cultivars of corn and sorghum grown in the central and northern 

regions of Louisiana will also be affected (Showler et al. 2012, 2013). The availability of corn 

and sorghum is also anticipated to influence area wide populations (Showler and Reagan 2012). 
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Widespread monitoring through pheromone trapping and larval surveys will help to understand 

E. loftini population dynamics and range expansion. Combining climate data and host plant 

distributions might facilitate a role for geographical information systems for projecting further 

range expansion, identifying high economic risk areas, and enhancing integrated pest 

management strategies.  
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CHAPTER 5: MONITORING MEXICAN RICE BORER (LEPIDOPTERA: 

CRAMBIDAE) POPULATIONS IN SUGARCANE AND RICE WITH CONVENTIONAL 

AND ELECTRONIC PHEROMONE TRAPS 

 

5.1. Introduction 

The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is a major pest of 

sugarcane, Saccharum spp., rice, Oryza sativa L., and other graminaceous crops in Texas and 

Louisiana (Reay-Jones et al. 2008, Showler et al. 2012, Chapter 4). Timing of insecticidal 

control of E. loftini is made difficult by overlapping generations and limited exposure of larvae 

(Meagher et al. 1994, Wilson et al. 2012b). The development of pheromone traps to monitor 

adult E. loftini populations (Shaver et al. 1990, 1991) has potential to improve chemical control 

strategies for this pest in sugarcane. Pheromone baited traps are utilized in pest management 

(Witzgall et al. 2010) because effective means to monitor pest populations to more efficiently 

time control measures is a cornerstone of integrated pest management (IPM) programs (Rabb 

and Guthrie 1970). Pheromone traps can be used to assist in scouting for E. loftini in sugarcane 

in the Rio Grande Valley of Texas as well as rice in southwest Louisiana (Wilson et al. 2012b, 

Chapter 4,6). Annual economic losses to sugarcane in Louisiana up to $220 million may be 

sustained once E. loftini is established throughout the state (Reay-Jones et al. 2008). However, 

all research on E. loftini management has been conducted in south Texas where environmental 

conditions are much different from those in Louisiana. Investigation of the current status of E. 

loftini in Louisiana sugarcane and potential pheromone trap-assisted monitoring strategies is 

needed.  

Electronic traps baited with pheromone blends have been developed for automated 

monitoring of insect populations. These traps are capable of accurately measuring insect 

populations in the field while reducing labor costs associated with manually monitoring traps. 
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Monitoring with electronic traps provides growers with real-time data on Lepidopteran pest 

populations in apple orchards (Holguin et al. 2010), but this technology has not been investigated 

in row crops. The evaluation of electronic traps for monitoring of E. loftini in sugarcane and rice 

habitats presented here provides the first documented use of automated pheromone-based pest 

scouting for use in row crops IPM.  

5.2. Materials and Methods 

5.2.1. Monitoring E. loftini in Commercial Sugarcane 

Populations of E. loftini were monitored in commercial sugarcane fields in southwestern 

Louisiana throughout the 2014 and 2015 growing seasons. Three fields were located in Calcasieu 

Parish and five fields were located in Jefferson Davis Parish. Fields ranged in size from 20–60 ha 

and were of one of three cultivars (HoCP 96-540, L 99-226, L 99-233) of either plant cane, first 

ratoon, or second ratoon. Commercial growers confirmed that all fields monitored in the survey 

did not receive any insecticide applications during the 2014 or 2015 growing seasons. Standard 

green, yellow, and white bucket traps (Unitrap; Great Lakes IPM, Vestaburg, MI) were baited 

with synthetic E. loftini sex pheromone lures (Luresept; Hercon Environmental, Emigsville, PA). 

Each trap contained an insecticidal strip (Vaportape II; Hercon Environmental, Emigsville, PA). 

Traps were attached to metal poles 1 m above the soil surface and placed approximately 1 m 

from field margins to maximize trap performance (Shaver et al. 1991). Pheromone lures and 

insecticidal strips were replaced every 4 wk according to label instructions. In 2014, traps were 

checked 12 times during the growing season (29 Mar, 1 May, 20 May, 29 May, 25 June, 1 July, 

15 July, 7 Aug, 28 Aug, 9 Sept, 2 Oct, and 30 Oct). Traps were checked 9 times during the 2015 

growing season (4 April, 14 May, 4 June, 30 June, 16 July, 29 July, 18 Aug, 24 Sept, and 9 Oct). 

Monitoring of larval infestations was conducted in each field on the same dates by examining 50 



59 
 

randomly selected stalks from each field for signs of stem borer injury. A stalk was considered 

injured if the presence of leaf sheath feeding, a stalk entry hole, or an E. loftini larva was 

detected. The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), was also 

present, but injury from this pest can be distinguished from that of E. loftini by differences in 

feeding and tunneling behavior (Legaspi et al. 1997b, Showler and Reagan 2012, Wilson et al. 

2012b).  

At the end of the growing season (4 Nov 2014 and 29 Oct 2015) two 25-stalk samples were 

collected from opposite sides of each field and the number of internodes, bored internodes, stem 

borer larvae, and adult emergence holes were recorded. Bored internodes were classified as 

either E. loftini or D. saccharalis based on characteristic feeding signs. Horizontal and diagonal 

tunneling and packed frass were the primary characteristics used to indicate E. loftini injury 

(Showler and Reagan 2012).  

All trap capture data were converted to daily trap captures prior to data analysis. Daily trap 

captures and percentage injured stalks were analyzed with Generalized Linear Mixed Models 

(PROC GLIMMIX, SAS Institute 2008) with year, parish, sampling period, and their interactions 

as fixed effects and field(Parish) and field(Parish) × year as random effects. A simple linear 

regression was conducted to determine the relationship between daily trap capture and 

percentage of injured stalks (PROC REG, SAS Institute 2008). The data collected at time of 

harvest including percentage of E. loftini bored internodes, percentage of D. saccharalis bored 

internodes, and the number of live E. loftini larvae per sample were analyzed with PROC 

GLIMMIX (SAS Institute 2008) with parish, year, and the parish × year interaction as fixed 

effects and field(Parish) and field(Parish) × year as random effects. A binomial distribution was 

used for analysis of bored internode data; a Poisson distribution was used for larvae counts. The 
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number of live E. loftini larvae per ha was estimated by multiplying the number of larvae per 

stalk by 30,000 stalks/ha, a stand estimate based on sugarcane cultivar trials (Tew et al. 2005). A 

second two-way ANOVA examined the effects of sugarcane cultivar, crop year, and their 

interaction on the same three parameters. Tukey’s honestly significant difference test (α=0.05) 

was used for all mean separations and the Kenward-Roger method was used for all calculations 

of error degrees of freedom.  

5.2.2. Spensa Z-traps 

Electronic automated pheromone traps henceforth, Spensa Z-traps, were evaluated for 

potential to monitor E. loftini populations in sugarcane and rice agroecosystems at the Texas 

A&M AgriLife research station in Jefferson County, Texas in 2013 and 2015. The Spensa Z-

traps (Figure 5.1; Spensa Technologies, West Lafayette, Indiana, PCT International Patent 

56555) were baited with the same pheromone lures as the conventional traps. Moths which enter 

the trap and contact an electric grid are electrocuted and fall into the trap bucket below. The 

electric grid contains a bio-impedance sensor programed with algorithms developed for the 

coddling moth, Cydia pomonella (Lepidoptera: Tortricidae). When an insect contacts the grid, a 

discharge occurs and the microcontroller stores the time of the event. Data are then 

communicated wirelessly to a base station and subsequently uploaded to the online data 

management system, MyTraps.com. The prototypes used in 2013 had the electric rods encircling 

the pheromone lure within an orange delta-shaped cover. These communicated to transmitters 

which then sent the signal to a base station receiver which was linked to a laptop computer with a 

wired internet connection. The system used in 2015 had the electronic rods positioned in two 

parallel rows on either side of the pheromone lure. The 2015 system was connected to a Verizon 
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wireless internet signal. Data was collected by the base station and uploaded to the MyTraps 

once every 24 hours online database.  

In 2013, two Spensa Z-traps and one manual trap were placed near each of two fields of 

sugarcane/bioenergy crops. Antennae were mounted on PVC poles approximately 3 m above the 

ground to improve communication with transmitters. The west site contained sugarcane,  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Spensa Z-traps used in automated pheromone-based monitoring of E. loftini. (A) 

Spensa Z-trap near a sugarcane field, Jefferson County, TX, 2015. (B) Schematic design of the 

electric grid based trap  

 

energycane, sweet sorghum (Sorghum bicolor L. inbred), and high-biomass sorghum (S. bicolor 

x drummondii [Sudangrass]). The east site contained sugarcane, energycane and Miscanthus 

hybrids. Both sites were surrounded by experimental rice fields which dominate the acreage at 

the Texas A&M AgriLife research station at Beaumont. Traps were initially deployed September 

11, 2013 and were checked on eight dates (18 Sept, 23 Sept, 2 Oct, 9 Oct, 15 Oct, 22 Oct, 5 Nov, 

and 15 Nov 2013). The number of E. loftini captured in each trap was recorded and pheromone 

B A 
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lures were replaced every 4 weeks. Insecticidal vapor strips were present in manual traps, but not 

in Spensa Z-traps. One of the Spensa Z-traps at the east site was not functional and was not 

included in the analysis. Daily trap capture was compared between Spensa Z-traps and manual 

traps with PROC GLIMMIX (SAS Institute 2008) with a Gaussian distribution which included 

trap type as a fixed effect and site and trap(site) as random effects. A simple linear regression 

(PROC REG, SAS Institute 2008) was conducted to determine the relationship between 

electronically reported trap captures and manually recorded captures in Spensa Z-traps.  

In 2015, assays were conducted in rice and sugarcane habitats at the same Texas A&M 

AgriLife research station. Four sites were in rice habitat and four were in sugarcane habitat. Each 

site contained one manual pheromone trap and one Spensa Z-trap. Both trap types contained 

insecticidal vapor tapes. Traps were initially deployed on 3 Aug 2015 and were check on 9 Aug, 

17 Aug, 25 Aug, 1 Sept, 9 Sept, 14 Sept, 30 Sept, 13 Oct, and 22 Oct 2015. Daily trap capture 

data were analyzed with PROC GLIMMIX (SAS Institute 2008) with a Gaussian distribution 

and trap type, sampling period, habitat, and their interactions as fixed effects. Site(habitat) and 

site(habitat) × trap type were included as random effects. A simple linear regression (PROC 

REG, SAS Institute 2008) determined the relationship between electronically reported trap 

captures and manually trap captures in Spensa Z-traps.  

5.3. Results 

5.3.1. Monitoring E. loftini in Commercial Sugarcane 

Differences were detected in the daily E. loftini trap capture between years and sampling 

periods; all other effects were not significant (Table 5.1). Trap captures near sugarcane fields in 

2014 peaked in late October at 0.99 E. loftini/trap/day (Figure 5.2, a.). Adult E. loftini population 

increases were also observed in April and June in 2014. Daily trap capture recorded between 21  
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Table 5.1. Statistical comparison of E. loftini daily trap captures and percentage of injured stalks 

from sugarcane fields in Calcasieu and Jefferson Davis Parish, Louisiana, 2014–2015  

Fixed effect Daily trap capture Percentage injured stalks 

Year   

F = 8.58 57.79 

df =  1, 7.4 1, 7.1 

P = 0.021 <0.001 

Parish    

F = 3.67 3.42 

df =  1, 6.3 1, 6.7 

P = 0.102 0.109 

Sampling period   

F = 2.85 16.91 

df =  11, 108.5 11, 108.3 

P = 0.003 <0.001 

Year × Parish   

F = 0.14 7.40 

df =  1, 7.43 1, 7.1 

P = 0.721 0.030 

Year × Sampling period    

F = 1.00 16.07 

df =  8, 108.3 8, 108.3 

P = 0.442 <0.001 
Parish × Sampling period   

F = 1.29 1.03 

df =  11, 108.5 11, 108.3 

P = 0.242 0.424 

Year ×  Parish × Sampling period   

F = 0.65 2.38 

df =  8, 108.3 8, 108.3 

P = 0.735 0.021 

 

Jul and 13 Aug 2015 reached >1.2 E. loftini/trap/day, the highest level recorded in our survey. 

Increases in daily trap capture in 2015 occurred at different periods in the growing season than in 

2014. Differences in the percentage of injured stalks were detected between years, sampling 

periods, year × parish, year × sampling period, and the year × parish × sampling period 

interaction (Table 5.1). The percentage of E. loftini injured stalks was >5-fold greater in 2015 

than in 2014 (Table 5.1, Figure 5.2, b.). Stalk injury from E. loftini was not observed prior to 

mid-July in 2014, and remained below 4% of stalks throughout the growing season. Injury from 
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E. loftini in 2015 occurred as early as mid-May and continued to rise throughout the season. A 

linear relationship occurred (F = 37.00, df = 1, 160, P < 0.001, R
2
 = 0.183, Root MSE = 0.46) 

between the percentage of injured stalks and daily trap capture (Figure 5.3). This relationship had 

a slope of 0.074 and an intercept of 0.479, therefore a 1% increase in percentage injured stalks 

would correspond to an increase in daily trap capture of 0.074.  

The percentage of E. loftini bored internodes was >9-fold greater in 2015 compared to 2014 

(Table 5.2). Differences in percentage of E. loftini bored internodes were not detected between 

parishes or the parish × year interaction. Similarly, the number of live E. loftini larvae recovered 

was 15-fold greater in 2015 than in 2014. A total of 2 and 30 E. loftini larvae were recovered 

from samples at time of harvest in 2014 and 2015, respectively. The percentage of D. saccharalis 

bored internodes did not differ between years, parishes, or their interaction. Diatraea saccharalis 

was responsible for the majority of stem borer injury in 2014, but caused less than half the injury 

as E. loftini in 2015. No D. saccharalis larvae were recorded at time of harvest in 2014, and only 

three larvae were recorded in 2015. Differences were not detected between sugarcane cultivars, 

crop years, or the interaction in either of the parameters examined, and data are not presented.  

5.3.1. Spensa Z-traps  

Daily trap capture in 2013 was not different between manual traps (1.45 E. loftini/trap/day) 

and Spensa Z-traps (1.12), and differences in sampling dates or the sampling date × trap type 

interaction were not detected. Batteries in one of the wireless transmitter nodes were exhausted 

between 2 Oct and 15 Oct 2013, resulting in no data being reported to the MyTraps system for 

two of the eight sampling periods. A linear relationship was not detected (F = 0.28, df = 1, 16; P 

= 0.606, R
2
 = 0.017) between the manually recorded trap captures in Spensa Z-traps and those 

reported to the MyTraps system in 2013.  
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Table 5.2. Stem borer injury and infestation (LS means ± SEM) at time of harvest in commercial 

sugarcane fields  

Fixed effect 

 Percentage E. 

loftini bored 

internodes 

Percentage D. 

saccharalis bored 

internodes 

Live E. loftini 

larvae/ha 

Year     

 2014 0.20 ± 0.08a 1.65 ± 0.70 353 ± 255a 

 2015 1.89 ± 0.45b 0.82 ± 0.35 5194 ± 1251b 

 F = 52.90 1.31 13.51 

 P = <0.001 0.274 0.001 

Parish     

 Calcasieu 1.02 ± 0.40 0.81 ± 0.39 1936 ± 1099 

 Jefferson Davis 0.38 ± 0.14 1.68 ± 0.62 948 ± 524 

 F = 3.30 1.43 0.81 

 P = 0.110 0.254 0.375 

Year × 

Parish 

    

2014 Calcasieu 0.42 ± 0.20 0.87 ± 0.60 456 ± 278 

 Jefferson Davis 0.10 ± 0.06 3.10 ± 1.57 273 ± 189 

2015 Calcasieu 2.47 ± 0.92 0.75 ± 0.52 8216 ± 2769 

 Jefferson Davis 1.44 ± 0.44 0.90 ± 0.48 3283 ± 1131 

 F = 2.15 0.79 0.08 

 P = 0.153 0.392 0.784 

Means followed by different letters are significantly different (P < 0.05; Tukey’s HSD test). For 

all tests, df = 1, 28 

All of the Spensa Z-trap prototypes evaluated in 2015 functioned correctly throughout the 

duration of the assay. Differences were detected between trap types (F = 23.57, df = 1, 84.5; P < 

0.001) with Spensa Z-traps capturing >3-fold more E. loftini adults than conventional manual 

traps (Figure 5.4). Daily trap capture was also affected by sampling period (F = 4.04, df = 10, 

78.6; P < 0.001) and the crop × trap type interaction (F = 7.04, df = 10, 84.6; P = 0.010). Spensa 

Z-traps in the rice habitat caught the greatest numbers of E. loftini adults reaching a mean daily 

capture rate of 5.6 between 13 Oct and 22 Oct 2015. A linear relationship occurred (F = 113.2, df 

= 1, 84; P < 0.001, R
2 

= 0.57, Root MSE = 7.26) between the manually recorded trap captures 

and those reported electronically to the My traps website (Figure 5.5).  
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Figure 5.2. Eoreuma loftini populations and injury in commercial sugarcane fields in Calcasieu 

and Jefferson Davis Parishes, Louisiana, 2014–2015, (A) Mean daily pheromone trap captures 

and (B) larval injury  
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Figure 5.3. Relationship between daily E. loftini trap capture and the percentage of injured stalks 

in commercial sugarcane fields in Calcasieu and Jefferson Davis Parishes, Louisiana, 2014–

2015. The linear regression has a slope = 0.074 and an intercept = 0.479 

 

5.4. Discussion 

After the initial detection of E. loftini in Louisiana sugarcane in 2012 (Chapter 4), 

infestations in commercial fields have remained relatively low. The highest level of E. loftini 

injury reported here (2.5% bored internodes in Calcasieu Parish in 2015) is below the level of 

injury which would justify insecticidal protection (Wilson et al. 2012b). The numbers of E. 

loftini captured in pheromone traps in Calcasieu and Jefferson Davis Parishes are comparable to 

trap captures in the Rio Grande Valley of Texas where E. loftini routinely causes significant 

economic losses in sugarcane (Legaspi et al. 1997a, 1999a; Wilson et al. 2012b). Infestations 

previously reported from commercial rice fields also indicate populations of E. loftini are high in 

southwestern Louisiana (Chapter 4,7). One possible explanation for the lack of E. loftini pest 

pressure in Louisiana sugarcane could be increased rainfall in Louisiana which receives  



68 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Daily trap captures in conventional bucket traps and Spensa Z-traps from 3 Aug to 22 

Oct 2015 as affected by crop habitat in Jefferson County, Texas  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Relationship between manually recorded E. loftini trap capture in Spensa Z-traps and 

trap capture recorded electronically by the MyTraps system. The linear regression has a slope = 

0.468 and an intercept = 5.10 
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approximately double the annual precipitation as the Rio Grande Valley (U.S. Weather Service 

2016). Drought stressed sugarcane has been shown to be preferred by E. loftini for oviposition 

(Reay-Jones et al. 2007b, Showler and Castro 2010a,b), and irrigation of sugarcane fields 

reduces infestations (Reay-Jones et al. 2005b). However, recent studies conducted in sugarcane, 

energycane, and sorghum in Jefferson County, TX which has similar climactic conditions as 

southwestern Louisiana reported much greater levels of E. loftini pest pressure than was 

observed in this survey (VanWeelden et al. 2015, Wilson et al. 2015). Although, experimental 

fields in these studies were directly adjacent to rice fields which likely influenced E. loftini 

populations. This indicates factors other than climactic differences are influencing E. loftini pest 

pressure in Louisiana.  

The prevalence of E. loftini susceptible cultivars in the Rio Grande Valley may also 

contribute to the higher infestations observed there (Wilson et al. 2015). However, HoCP 96-540 

which accounted for 60% of the fields included in our survey was shown to be susceptible to E. 

loftini in cultivar resistance studies (Wilson et al. 2015). Competition with other stem boring 

species has also been proposed to influence E. loftini populations (Rodrigues-Del-Bosque et al. 

2011, Rodriguez-Del-Bosque and Reyes-Méndez 2013). However, the low levels of D. 

saccharalis observed in our surveys were unlikely to have an adverse effect on E. loftini 

populations. Despite the low levels of E. loftini injury observed in commercial sugarcane in 

Louisiana in 2014 and 2015, potential for highly damaging infestations to develop remains high.  

Based on estimates from our surveys, hundreds to thousands of immature E. loftini are 

present in each hectare of sugarcane in southwestern Louisiana at time of harvest each year. As 

increasing amounts of infested sugarcane are transported to sugar mills in the center of the 

sugarcane production region, the rate of E. loftini range expansion is anticipated to increase. 
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Once the entirety of sugarcane acreage in Louisiana is infested with E. loftini, tens of millions of 

dollars in annual revenue losses could occur even if pest pressure does not reach the levels 

observed in the Rio Grande Valley (Reay-Jones et al. 2008). Reay-Jones et al. (2008) estimated 

$220 million in annual revenue loss could result from infestation of E. loftini throughout 

Louisiana’s sugarcane based on an injury level which was recorded in Texas of 57% bored 

internodes. This level of injury is nearly 30-fold higher than the level observed in 2014–2015. 

Therefore, it is likely that annual losses would only approach $220 million under extreme 

circumstances.   

The use of pheromone trap-assisted scouting has shown potential to improve insecticide 

application timing in the Rio Grande Valley where trap captures were correlated with 

infestations of treatable larvae (Wilson et al. 2012b, Chapter 6). While treatable infestations were 

not present during our surveys, the relationship between larval feeding signs and pheromone trap 

capture we observed suggests these traps will be useful scouting tools in Louisiana as well. Crop 

consultants in Louisiana actively monitor sugarcane fields for stem borer infestations throughout 

the growing season. Improved scouting efficiency through the use of pheromone traps could 

reduce the labor costs associated with pest scouting. This scouting method should continue to be 

investigated under varying degrees of E. loftini pest pressure in Louisiana once the species has 

become established throughout the sugarcane production area.  

The use of Spensa Z-traps has potential to further reduce the labor required for scouting for 

E. loftini. Although the prototypes evaluated in 2013 had some functionality problems, the 

improved design in 2015 was demonstrated to be much more effective. The parallel rows of 

electric rods and placement of an insecticidal strip in the bucket drastically improved trap 

performance. The 3-fold increase in daily trap capture by Spensa Z-traps over conventional 
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pheromone traps may not be the result of solely the presence of electric rods. The orange delta-

shaped top and opaque bucket of the Spensa Z-traps may also be more attractive to E. loftini 

males than the conventional green/yellow/white universal moth trap currently used. These results 

suggest that previously reported trap preferences (Shaver et al. 1991) may no longer be 

consistent with E. loftini behavior. More comprehensive studies are needed to reevaluate E. 

loftini trap preferences.  

The Spensa MyTraps system which was used in 2015 accurately reported trap captures in 

real-time over the course of 10 weeks. This work represents the first evaluation of automated 

pheromone trap monitoring for pests of row crops. Based on these results, Spensa Z-traps should 

be evaluated for potential to improve monitoring of Lepidopteran pest species in a variety of 

systems. The technology which was developed for monitoring of C. pomonella in apple orchards 

could be adapted to improve monitoring of other high profile pests including the Gypsy moth, 

Lymantria dispar (L.) (Lepidoptera: Erebidae) and the pink bollworm Pectinophora gossypiella 

(Saunders) (Lepidoptera: Gelechiidae), which currently have active pheromone trapping 

programs in place (Witzgall et al. 2010). The addition of the Verizon
®
 wireless communication 

capabilities will allow this system to be deployed under most field conditions.  

While further research is needed into pheromone trap-assisted scouting with both manual traps as 

well as Spensa Z-traps before this system is widely adopted for E. loftini in sugarcane and rice, 

our concept shows the potential to improve current pest monitoring tactics. Reliable and efficient 

pest sampling is critical to the success of IPM programs. The use of manual and electronic 

pheromone based monitoring should be evaluated for use in a variety of crop-pest systems.  
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CHAPTER 6: THE ROLE OF PHEROMONE TRAPS IN INSECTICIDAL CONTROL 

OF THE MEXICAN RICE BORER (LEPIDOPTERA: CRAMBIDAE) IN SUGARCANE 

6.1. Introduction  

The Mexican rice borer, Eoreuma loftini (Dyar), is an invasive pest of graminaceous crops 

which was first detected in the Rio Grande Valley of Texas in 1980 (Johnson and van Leerdam 

1981). The pest quickly became the primary pest of sugarcane in the area, and within one year of 

its detection yield losses attributable to E. loftini damage of 50–65% were recorded (Johnson 

1984). In the years following E. loftini establishment, development of effective control strategies 

was critical to the Rio Grande Valley sugarcane industry. Numerous insecticide application and 

timing strategies were investigated with little success (Johnson 1985, Meagher et al. 1994). 

Reductions in E. loftini injury were achieved, but these were not sufficient to reduce yield losses 

to acceptable levels. Yield losses were suffered in fields which received as many as 19 

insecticide applications during the growing season (Meagher et al. 1994). Insecticide timing 

strategies included larval infestation thresholds as well as timing applications based on crop 

phenology (Pfannenstiel et al. 1990, Ring et al. 1991, Meagher et al. 1996b); however, economic 

returns on insecticide applications were rarely achieved. Nearly 20 years after E. loftini became 

established in the Rio Grande Valley, insecticidal control had not improved and most growers 

had abandoned the practice altogether (Legaspi et al. 1997a).  

Overlapping generations and reduced exposure of eggs and larvae are thought to be the 

primary reason for insecticidal control failures (Meagher et al. 1994). The cryptic nature of 

larvae and rapid entry of neonates into sugarcane tissues where they are protected combined with 

the high biomass of sugarcane limit the ability of foliar applied insecticides to contact larvae 

(Wilson et al. 2012b). Development of new reduced risk insecticides which were shown to be 

effective against the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), 
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offered potential to improve E. loftini pest management (Legaspi et al. 1999b, Reagan and Posey 

2001). Applications of the insect growth regulator, tebufenozide, were shown to reduce E. loftini 

injury, but sugar yields were not improved (Reay-Jones et al. 2005b). Similarly, the chitin 

synthesis inhibitor, novaluron, was shown to be effective against the D. saccharalis in sugarcane 

(Beuzelin et al. 2010). This chemical reduced E. loftini injury with only a single application 

when timed according to a pheromone trap-assisted threshold (Wilson et al. 2012b).  

Wilson et al. (2012b) monitored E. loftini populations in the Rio Grande Valley with 

pheromone traps and developed a threshold of 20–25 E. loftini/trap/week (2.85–3.5 E. 

loftini/trap/day) which was used to indicate the need for larval scouting. Correlation of trap 

captures to larval infestations from five commercial sugarcane fields revealed this trap capture 

threshold corresponded to a larval infestation level of approximately 5% of stalks with treatable 

larvae on plant surfaces (Wilson et al. 2012b). There was considerable variation in trap captures 

and larval infestations between fields, and this threshold was based only on a single year of data 

(Wilson et al. 2012b). Additionally, fields in that study were monitored weekly throughout the 

growing season for larval infestations. Hence, Wilson et al. (2012b) suggested further evaluation 

of pheromone trap-assisted scouting methods should be conducted in order to validate the 

application of this strategy to individual sugarcane fields.  

This study evaluates the potential to use pheromone traps to indicate the need for larval 

scouting and improve timing of insecticide applications against E. loftini in sugarcane. 

Additionally, efficacy of recently labeled diamide insecticides (flubendiamide and 

chlorantraniliprole) for E. loftini control is assessed.  
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6.2. Materials and Methods  

Pheromone trap-assisted scouting and insecticidal control of E. loftini were evaluated in large 

plot field trials in 2012, 2014, and 2015 in the Rio Grande Valley. Adult populations were 

monitored with traps baited with the synthetic E. loftini female sex pheromone blend. In all 

experiments, Universal Moth Traps (Great Lakes IPM, Vestaburg, MI) with green tops, yellow 

funnels, and white buckets (GYW Unitraps) baited with a rubber septa impregnated with 5.0 mg 

of the E. loftini female sex pheromone blend (Luresept; Hercon Environmental, Emigsville, PA) 

placed at heights of approximately 1 m above the ground were used for all assays in accordance 

with recommendations from Shaver et al. (1991). Traps were placed at distances of >100 m 

between traps to reduce interference among traps (Chapter 3).  

Pheromone traps were monitored weekly during the growing season of each year and lures 

and insecticidal strips were replaced every four weeks according to label instructions. 

Experimental fields and trap monitoring periods varied between years (Table 6.1). All 

experimental fields in each year were located in Hidalgo and Cameron Counties, Texas. 

Pheromone trap data were converted to mean daily trap captures prior to analysis. In 2012 and 

2014, trap capture data were analyzed with a generalized linear model (PROC GLIMMIX; SAS 

Institute 2008) with sampling period as a fixed effect and field and trap(field) as random effects. 

The same analysis was conducted with data from 2015 with trap as the only random effect 

because all traps were located at a single experimental field. Each of five fields served as a block 

(replication) in the 2012 and 2014 experiments, while a single experimental field was divided 

into four sections which served as blocks (replications) in the 2015 experiment.  
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Table 6.1. Experimental fields and pheromone trapping methods, commercial sugarcane fields in 

Hidalgo Co., TX 2012, 2014, and 2015 

Year 
Experimental 

fields 
Cultivar Plot size Traps 

Traps 

Monitored 

Percentage of 

stalks with 

live larvae 

2012 5 (23–43 ha) 
Ratoon  

CP 72-1210 
3.3–4.1 ha 2/field 

21 June 2012–

21 Sept 2012 
>5% 

2014 5 (23–43 ha) 
Ratoon  

CP 72-1210 
3.3–4.1 ha 2/field 

5 June 2014–4 

Sept 2014 
1.8% 

2015 1 (72 ha) 
Ratoon  

CP 72-1210 
2.9 ha 8 

14 July 2015– 

30 Sept 2015 
14.2% 

Larval scouting was initiated after mean daily pheromone trap captures exceeded 3.0 E. 

loftini/trap/day the first week of August in 2012. Larval scouting was conducted 21 Aug 2012 by 

examining 100 stalks on opposite sides of each experimental field. Larval scouting in 2015 was 

conducted on 11 Aug by examination of 100 stalks in each replication (n = 4). Insecticide 

applications were made and injury and yield data collected in the 2012 and 2015 tests. 

Applications in both years were made with fixed wing aircraft with a licensed commercial aerial 

applicator (Table 6.2).  

Table 6.2. Aerial insecticide application, Hidalgo Co., TX 2012 and 2015  

Aerial Application Methods 2012 2015 

Application Date 22 Aug 2012 11 Aug 2015 

Flight speed 145 mph 145 mph 

Swath width 60 ft 60 ft 

Nozzles CP-03 CP-03 

Nozzle deflection 45° 45° 

Application volume (L/ha) 90.85 45.4 

Injury data were collected by destructive sampling and recording the number and position of 

bored internodes, the number of total internodes, and the number of emergence holes for each 

stalk. Injury data in the 2012 study were collected on 29 Oct 2012 by taking samples of 15 

randomly selected stalks from opposite sides of each experimental plot (n = 50 samples). Injury 

data in 2015 were collected on 10–11 Nov 2015 from two 20-stalk samples per plot (n = 40 
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samples). Data were analyzed using generalized linear mixed models (PROC GLIMMIX; SAS 

Institute 2008) with binomial distributions for percentage bored internodes and Poisson 

distributions for emergence holes. Analyses included replication and treatment × replication as 

random effects. Because extensive injury was present in lower internodes prior to the insecticide 

application in 2015, an additional analysis compared injury among treatments in internodes 

above the seventh internode from the base of the stalk.  

Experimental fields from 2012 were harvested on 19 Dec 2012 (n =2), 8 Feb 2013 (n = 1), 

and 17–20 March 2013 (n = 2). Yield data were for each plot collected by the Rio Grande Valley 

Sugar Growers laboratory using the core sampling method (Birkett 1975, 1979) including 

percentage brix and percentage sucrose determined through direct polarization. The ratio of 

sucrose to all other dissolved solids, or juice purity, is expressed as a percentage. Commercially 

recoverable sugar was recorded for each core sample and extrapolated to one ton of cane. Tons 

of sugar per acre was calculated by Eq. 6.1.    

  Mean CRS × TCA 

TSA =  –––––––––––––––      (6.1) 

   2000 

where:  

 

TSA = Tons of sugar per acre 

CRS = Commercially recoverable sugar in pounds sugar per ton of cane  

and  

TCA = Tons of cane per acre 

Yield data were analyzed using generalized linear mixed models (Proc GLIMMIX, SAS 

Institute 2008) with Gaussian distributions which included replication and treatment × 

replication as random effects. Means were converted to metric units after analysis.   
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6.3. Results  

A significant effect of sampling date on the mean daily trap capture was detected in 2012 (F 

= 3.94; df = 10, 86.2; P < 0.001), 2014 (F = 2.30; df = 13, 117; P = 0.010), and 2015 (F = 8.23; 

df = 10, 77; P < 0.001) (Figure 6.1). Daily E. loftini capture peaked in 2012 at 3.1 in early 

August. Daily E. loftini trap captures in 2014 were highest (0.62) during early June, and declined 

throughout the growing season. Low levels of E. loftini infestations in 2014 negated the need for 

an insecticide application. Daily E. loftini trap captures in 2015 peaked at 0.97 in early August. 

Larval scouting on 11 Aug 2015 revealed heavy E. loftini infestations, and extensive damage had 

already occurred with larval entry holes present in most stalks. Active infestations exceeded the 

threshold of 5% stalks with larvae on plant surfaces (Table 6.1), and the application was made.  

Differences were detected in the percentage of bored internodes in 2012 with 

chlorantraniliprole and flubendiamide achieving the highest level of control (Table 6.3). 

Differences were also detected in the number of adult emergence holes, with flubendiamide less 

than the nontreated control. Differences in cane yield and sugar yield were detected between 

treatments; however, none of the treatments was greater than the nontreated control (Table 6.3). 

Tebufenozide-treated plots yielded less than flubendiamide-treated and nontreated plots.  

Table 6.3. Eoreuma loftini injury and sugarcane yield as affected by a single insecticide 

application, Rio Grande Valley, Texas, 2012 

Insecticide treatment 
Rate (g 

AI/ha) 

% Bored 

internodes 

Emergence/ 

stalk 

Metric tons 

of cane/ha 

Metric tons 

of sugar/ha 

Nontreated NA 12.64a 0.46a 87.9ab 10.1a 

Tebufenozide  136.1 7.82ab 0.32ab 73.1b 8.2b 

Novaluron 84.7 5.62ab 0.21ab 85.1ab 9.9ab 

Chlorantraniliprole  73.1 3.55b 0.13b 90.2a 9.9ab 

Flubendiamide 136.1 3.36b 0.22ab 94.2a 10.4a 

 df =  4, 18.75 4, 20.62 4, 16.00 4, 16.00 

 F =  6.21 2.98 4.48 4.23 

 P= 0.0023 0.0432 0.0128 0.0159 

Means within a column which share a letter are not significantly different (Tukey’s HSD; α = 

0.05)  
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Figure 6.1. Eoreuma loftini pheromone trap captures in experimental fields in the Rio Grande 

Valley, Texas. (A) 2012, (B) 2014, and (C) 2015  
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Differences in the percentage of bored internodes or the number of emergence holes per stalk 

were not detected between treatments in 2015 (Table 6.4). All treatments sustained E. loftini 

injury of >10% bored internodes. Differences were detected in percentage of bored internodes 

when only internodes above the seventh internode were considered with chlorantraniliprole-

treated plots having reduced injury relative to the nontreated plots. Tebufenozide- and 

novaluron-treated plots were not significantly different from nontreated control plots in any of 

the parameters measure in either 2012 or 2015.  

Table 6.4. Eoreuma loftini injury as affected by a single insecticide application, Rio Grande 

Valley, Texas, 2015  

Insecticide treatment 
Rate (g 

AI/ha) 

% Bored 

internodes  

(whole stalk) 

% Bored 

internodes 

 (top only) 

Emergence/ 

stalk 

Nontreated NA 15.6 12.9a 0.27 

Tebufenozide  136.1 16.7 11.1a 0.29 

Novaluron 84.7 13.7 9.2a 0.22 

Chlorantraniliprole 73.1 10.1 3.7b 0.21 

Flubendiamide 136.1 10.8 5.6a 0.20 

 df =  4, 12.0 4, 12.0 4, 12 

 F =  1.23 3.95 0.59 

 P = 0.351 0.029 0.674 

Means within the same column which share a letter are not significantly different (Tukey’s HSD; 

α = 0.05)  

  

6.4. Discussion   

This research adds to a growing body of evidence documenting the difficulty in achieving 

effective chemical control of E. loftini in sugarcane in the Rio Grande Valley of Texas (Meagher 

et al. 1994, Legaspi et al. 1997a, Reay-Jones et al. 2005b). Reduced risk chemistries applied with 

novel timing strategies showed improved efficiency over previous studies which required 

multiple applications to achieve control (Meagher et al. 1994, Legaspi et al. 1999b, Reay-Jones 

et al. 2005b). However, our research demonstrates that although successful and economical 
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control of E. loftini has been documented (Wilson et al. 2012b), the pest remains a challenge for 

Rio Grande Valley sugarcane growers to effectively manage.  

Pheromone traps provide a means to effectively and efficiently monitor E. loftini populations 

in agricultural systems including rice (Chapter 4) and sugarcane (Wilson et al. 2012b, Chapter 

5). However, the pheromone trapping data reported herein indicate that monitoring adult 

populations alone is not sufficient to make informed pest management decisions, and larval 

scouting should remain the primary means to quantify E. loftini infestations. Mean daily E. 

loftini pheromone trap captures in 2012 reached levels above the threshold suggested by Wilson 

et al. (2012b), and subsequently larval densities were present in treatable levels. These data were 

means of trap captures and larval infestations levels from five experimental fields, and the 

applicability of the monitoring strategy to individual fields is still questionable. Potential for 

failures of this monitoring strategy at the individual field level was demonstrated by data from 

the 2015 experiment. Mean daily pheromone trap captures from eight traps in the experimental 

field never exceeded 1 despite a high level of E. loftini infestation present in the field. The 

insecticide application in this experiment was made after significant E. loftini injury had been 

sustained, and insecticides failed to prevent insect injury. The failure of pheromone traps to 

detect rising populations in 2015 may have resulted from late deployment of traps. Traps were 

deployed in mid-July in 2015 rather than in early June as in the 2012 study and in the experiment 

reported by Wilson et al. (2012b). Pheromone trap captures in 2014 were successful indicators of 

low E. loftini populations. In this scenario, labor intensive larval scouting could have been 

minimized because trap captures documented unusually low E. loftini populations were 

occurring. Pheromone trap-assisted monitoring of E. loftini for use in pest management provides 

an expedient scouting tool which likely has a role in IPM programs. However, it may be more 
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suitable in area wide or farm-level monitoring programs, and should not be the primary means to 

monitor pest pressure in individual fields.  

Insecticidal control of E. loftini in our tests was variable between years and chemical 

treatments. Sugar yield was not improved in 2012 despite a reduction in E. loftini injury, 

indicating the pest may have not been the primary yield limiting factor during that crop 

production cycle. This discrepancy may have been influenced by the amount of time (>3 months 

in two fields) between collection of injury data and harvest of experimental fields. The inability 

to detect improved yield resulting from reduced E. loftini injury is not uncommon (Meagher et 

al. 1994, Legaspi et al. 1997a, Reay-Jones et al. 2005b), despite a well-documented relationship 

between stem borer injury and yield loss in sugarcane (Hensley 1971, Legaspi et al. 1999a, 

White et al. 2008, VanWeelden et al. 2015). While detection of a reduction in injury among top 

internodes in the 2015 study provides information on the relative efficacy of insecticides, it is 

unlikely these treatments had an appreciable impact on sugar yields. Lower, more mature 

internodes are the greatest contributors to sugar yields and protection of newly formed internodes 

late in the season would be expected to provide little benefit (Ring et al. 1991, White and 

Hensley 1987, White et al. 2008).  

Although a single application of novaluron has reduced E. loftini injury in previous trials 

(Wilson et al. 2012b), it did not provide a good level of control in either the 2012 or 2015 

experiment. Similarly, tebufenozide, a widely used chemistry for control of D. saccharalis in 

Louisiana sugarcane (Gravois 2014), was largely ineffective. Insecticide resistance to 

tebufenozide has been reported in D. saccharalis populations (Reay-Jones et al. 2005a, Akbar et 

al. 2008), however, this is not a likely explanation for control failures against E. loftini because 

the compound has scarcely been used on sugarcane in the Rio Grande Valley. Interestingly, 
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tebufenozide treated plots yielded markedly less sugar than nontreated controls despite having a 

numerically lower level of borer injury. This suggests the tebufenozide treatment may have 

negatively impact some aspect of sugarcane physiology. No effect of tebufenozide on plant 

growth in sugarcane has been documented, but the insecticide has been shown to influence gene 

expression in tobacco (Padidam 2003).  

Chlorantraniliprole and flubendiamide provided the highest level of control in both 

experiments, and may offer a new class of reduced risk insecticides for stem borer management 

in sugarcane. Both diamide chemistries are effective against D. saccharalis in sugarcane and 

provide superior control to tebufenozide (Wilson et al. 2012a, Beuzelin et al. 2014). 

Chlorantraniliprole usage in Louisiana sugarcane is increasing (J. M. Beuzelin, personal comm.), 

but flubendiamide may no longer be available for commercial use. The U.S. Environmental 

Protection Agency is currently in legal proceedings which may result in the loss of registration of 

flubendiamide due to potential effects on nontarget invertebrates (Keller 2016).  

Effective insecticidal management strategies are needed to mitigate the impact of E. loftini in 

sugarcane in Texas as well as in Louisiana where the pest is increasingly investing sugarcane 

(Chapter 5). Pheromone trap-assisted scouting and efficacious insecticides including 

chlorantraniliprole have potential to improve chemical control of E. loftini in sugarcane, but 

more research is needed to document consistent results. Despite >30 of years applied research in 

to E. loftini chemical control, reliable insecticidal management tactics are still not available to 

Rio Grande Valley sugarcane growers. Fortunately, alternative control strategies have potential 

to mitigate the pest’s impact. Biological control of E. loftini has been largely unsuccessful to date 

(Meagher et al. 1998), but the red imported fire ant, Solenopsis invicta Buren, can reduce E. 

loftini survival in sugarcane (VanWeelden 2015). Sugarcane cultivars with resistance to E. loftini 
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have been identified (Wilson et al. 2015) and have potential to improve chemical control by 

prolonging larval exposure on plant surfaces (Wilson et al. 2012b). Irrigation of sugarcane 

reduces attraction for E. loftini oviposition (Reay-Jones et al. 2007b, Showler and Castro 

2010a,b) and is a viable management strategy for inclusion in integrated control programs (Reay-

Jones et al. 2005b).    
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CHAPTER 7: MEXICAN RICE BORER (LEPIDOPTERA: CRAMBIDAE) 

POPULATION DISTRIBUTION AND RANGE EXPANSION IN LOUISIANA  

 

7.1. Introduction 

 

Increasing globalization and frequency of natural disturbances have created ample 

opportunity for biological invaders to inhabit and exploit new habitats (Elton 1958). Invasive 

species are a leading cause of biodiversity loss and have cause enormous economic damage 

across the world (Pimentel et al. 2005). The high dispersal capacity and short generation time of 

insects has allowed them to become some of the most successful invaders (Lawton and Brown 

1986). Globally, insects are among the most widespread and damaging groups of invaders 

(Pimentel et al. 2005).  

Effective field-level control strategies will remain the first line of defense against the impacts 

of invasive insect pests of agriculture. However, improved understanding of population 

dynamics of nonindigenous species at a landscape level will allow for development of models to 

forecast range expansion and mitigate areawide impacts of invasive insects (Liebhold and Tobin 

2008). Determination of the rates of spread and predicting species distributions are important to 

risk assessments and policy decisions regarding management of invasive species (Pyšek and 

Richardson 2010). The rate spread of nonindigenous insects varies greatly depending on the type 

dispersal and degree of human-aided movement among other variables (Liebhold and Tobin 

2008).  

The Mexican rice borer (Lepidoptera: Crambidae), Eoreuma loftini (Dyar), is an invasive 

insect which poses a significant threat to graminaceous crops along the U.S. Gulf Coast (Reay-

Jones et al. 2008, Showler et al. 2012, Chapters 4, 5). The pest was first detected in Texas in 

1980 in the Rio Grande Valley (Johnson and van Leerdam 1981) where it quickly became the 

dominant pest of sugarcane (Legaspi et al. 1997a). It has since spread through the Texas rice 
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production area along the Gulf Coast towards Louisiana. Reay-Jones et al. (2007c) used 

pheromone traps to track E. loftini expansion in Texas from 2000–2005 and determined the 

leading edge of the infestation spread at a rate of 16.5 km/yr during that time. As predicted by 

Reay-Jones et al. (2007c), E. loftini was first detected in Louisiana in 2008 (Hummel et al. 

2010). From 2009–2013, E. loftini continued its expansion into Louisiana, and was detected in a 

total of seven Parishes (Chapter 4). The rate of spread during this period was estimated to be 22 

km/yr based on the location of eastern-most trap captures. Relying solely on the leading edge of 

the invasion may not represent the nature of the invading population, however, because 

characteristics of range expansion vary between different species and environments (Liebhold 

and Tobin 2008). Additionally, these studies provided only county/parish-level estimates of E. 

loftini populations and much about the pest’s distribution remains unknown. Recent introduction 

of E. loftini into Florida (Hayden 2012) highlights the need for more extensive monitoring of the 

pest’s population distribution.  

This research relies on an extensive pheromone trap network in 13 parishes in southwest 

Louisiana to document E. loftini expansion and distribution from 2013–2015. Geographical 

Information Systems (GIS) analysis is applied to pheromone trap captures to determine the rate 

of spread based on the weighted mean population center and identify the spatial cluster patterns 

of E. loftini population distribution.  

7.2. Materials and Methods 

7.2.1. Pheromone Trap Monitoring 

All pheromone trap monitoring was conducted using practices consistent with optimal trap 

placement and maintenance (Brown et al. 1989, Shaver et al. 1990, 1991; Chapter 3). Standard 

green, yellow, and white bucket traps (Unitrap; Great Lakes IPM, Vestaburg, MI) were baited 
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with synthetic E. loftini sex pheromone lures (Luresept; Hercon Environmental, Emigsville, PA). 

Each trap contained an insecticidal strip (Vaportape II; Hercon Environmental, Emigsville, PA). 

Traps were attached to metal poles 1 m above the soil surface and placed approximately 1 m 

from field margins to maximize trap performance (Shaver et al. 1991). Pheromone lures and 

insecticidal strips were replaced every 4 weeks according to label instructions. 

A total of 77 pheromone traps in 13 southwest Louisiana parishes were monitored from 

March 2013 to Jan 2016 (Figure 7.1). Trap locations remained constant throughout the survey, 

while surrounding habitat varied with changes in land use between years (Table 7.1). The 

number of times each trap was checked varied between traps and years. Traps were checked 

approximately biweekly from April–October, and approximately monthly from November–

March of each year. Traps were checked less frequently during winter months because lower 

numbers of E. loftini adults and non-target insects reduced the amount of material collected in 

bucket traps and allowed for accurate quantification of E. loftini males. Trap captures of >100 E. 

loftini males were placed in zip-top bags and quantified in the lab to ensure accurate counts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Eoreuma loftini pheromone trap locations in southwestern Louisiana. Seventy-seven 

traps were monitored from 2013–2015   
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All trap capture data were converted to daily trap captures and monthly totals were calculated 

using Eq. 7.1, 7.2, and 7.3.  

  Ci   

DTCijk =     ––––––         (7.1) 

          Dj – Dk 

 

MTCim = (Mmjk x DTCijk) + (Mkl x DTCikl)     (7.2) 

 

  MTCim  

MDCim =       –––––––        (7.3) 

    Dm 

where: 

DTCijk = daily trap capture in trapi during sampling periodjk  

Ci = the total numer of E. loftini recorded in trapi 

Dj = date of previous sampling 

Dk = date of sampling 

MTCmi = total capture in trapi for monthm  

Mmjk = the number of days during sampling periodjk falling in monthm 

MDCjm = mean daily trap capture in trapi for monthm  

Dm = number of days in monthm 

Yearly mean daily trap captures for each trap were calculated by summing the MTCmi for 

each month and dividing by 365 days. Yearly mean daily trap captures were analyzed separately 

for each year using a two-way ANOVA (PROC MIXED, SAS Institute 2008) with parish, 

habitat type, and parish × habitat type as fixed effects and trap(Parish) as a random effect. Only 

data from trap (n = 59) located in parishes in which E. loftini was detected were included in this 

analysis. Habitats directly adjacent to traps were classified as rice, sugarcane, wild hosts, or 

pasture. Seasonal population dynamics were assessed from trap captures from Calcasieu, 

Cameron, and Jefferson Davis Parishes where E. loftini populations are well established. Mean 
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daily trap captures for each month from these parishes were analyzed with an ANOVA with 

year, month, and year × month as fixed effects, and trap as a random effect.  

7.2.2 Spatial Analysis 

The spatial analysis was conducted using ArcGIS software, and ArcMap was used to 

generate all figures (ESRI 2011). Shapefiles containing parish boundaries were obtained from 

the Louisiana Department of Transportation and Development (LDOTD 2007). Yearly mean 

daily trap capture data for all traps were imported as a shapefile into ArcGIS and subjected to 

point-based spatial interpolation using inverse distance weighting (IDW) to create continuous 

surface of estimated trap capture values across the 13-parish study area. This interpolation 

method is appropriate for the trap capture data which has a low density of known data points 

(Childs 2004). The IDW interpolation method estimates unknown values as the weighted 

average of its surrounding points with known values, in which the weight is the inverse of the 

distance raised to a power. The IDW is expressed using Eq. 7.4 (Wang 2015). 

         s     s 

zu = (∑ zidiu
-k

)/(∑ diu
-k

)        (7.4) 

        
i=1    i=1 

 

where:  

zu = is the unknown value to be estimated at pointu 

zi = the attribute value at a known pointi 

dui = the distance between pointi and pointu 

s = the number of known points used in the estimation  

k = is the power  

The higher the power, k, the stronger the effect of distance decay is (i.e. nearby points are 

weighted higher than remote ones). Interpolation with IDW using power (k=2) and s = 8 with a 



89 
 

maximum search radius of 50 km was applied to daily mean trap captures for each year, and each 

quarter of each year (3 month period). This ensured data from traps in a variety of habitats were 

included in estimations of unknown points across the study area.  

The IDW interpolation results in a raster (image) output from which estimated trap capture 

data was extracted using the Sample Extraction Tool (ESRI 2011). This resulted in mean daily 

trap capture estimates for a total of 10,803 uniform polygons (squares) each with an area of 2.47 

km
2
 encompassing the entire study area. Layer files were created which had estimated mean 

daily trap captures for each of the three years as well as each yearly quarter. These data layers 

were then used to calculate weighted mean centers and subjected to cluster analysis.   

The weighted mean center for each three month period was calculated by applying the 

Weighted Mean Center Tool (ESRI 2011) to each daily trap capture layer. The weighted mean 

center is the geographic center of a set of points adjusted for the influence of a value associated 

with each point. The weighted mean center is calculated with Eq. 7.5 (Burt and Barber 1996).  

Weighted Mean Center (X, Y) 

        n     n 

      ∑ wiXi                     ∑ wiYi 

     
i=1                    i=1

 

Xw       =     n             Yw     =     n    (7.5) 
      

∑ wi     ∑ wi 

      
i=1

                   
i=1

 

  
 

  

Tests for spatial associations and global clustering among daily trap captures for each year 

were conducted using Moran’s I statistic and the general G statistic using the Spatial 

Autocorrelation tool and the High/Low Clustering Tool, respectively (ESRI 2011). Moran’s I 

statistic (Moran 1950) was used to test for the presence of spatial autocorrelation across the data 

set. Moran’s I is the correlation coefficient between a variable and its spatial lag which detects 
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whether nearby areas have similar or dissimilar attributes overall (Wang 2015). The general G 

statistic (Getis and Ord 1992) indicates clustering of high and low values based on statistical 

significance (Wang 2015). Because tests for spatial association indicated data were spatially 

autocorrelated (P < 0.05), Hot-Spot Analysis (ESRI 2011) was conducted for daily trap captures 

for each year. This calculates the Gi statistic (Gertis and Ord 1992) which tests for statistically 

significant clusters of high values (hot-spots) or low values (cold-spots).  

7.3. Results 

Over the entire study area a total of 45,845 E. loftini males were trapped between Mar 2013 

and Jan 2015. Detections of E. loftini were made for the first time in Evangeline Parish in 2014. 

Additionally, two E. loftini males were captured in St. Landry Parish in November of 2015. Trap 

capture totals were 17,284, 11,103, and 17,458 in 2013, 2014, and 2015, respectively. No E. 

loftini adults were captured in Lafayette, Iberia, St. Mary, or St. Martin Parishes during any year 

of the survey. Differences in mean daily trap captures (Table 7.1) in 2013 were detected among 

parishes (F = 9.49, df = 7, 40; P < 0.001), habitat types (F = 7.00, df = 3, 40; P < 0.001), and 

their interaction (F = 3.79, df = 8, 40; P = 0.002). Mean daily trap captures in 2014 differed 

between parishes (F = 3.86, df = 7, 40; P = 0.003), but not between habitat types or their 

interaction. Similarly, mean daily trap captures in 2015 differed only between parishes (F = 2.27, 

df = 7, 40; P = 0.048). Populations peaked in March–April of each of the three years, while the 

lowest populations were detected in January and February (Figure 7.2). Lesser population 

increases were also observed in July and November. While populations in 2013 and 2014 were 

on the decline in August–September, a steep rise was observed during the same period in 2015.   
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Differences in mean daily trap captures from Calcasieu, Cameron, and Jefferson Davis 

Parishes were detected between years (F = 3.83, df = 2, 891; P = 0.022), months (F = 7.25, df = 

11, 891; P < 0.001), and the year by month interaction (F = 2.62, df = 20, 891; P < 0.001).  

Mean daily trap captures were >3.5 in some areas in each of the three years (Figure 7.3). A 

high degree of spatial autocorrelation in mean daily trap captures was detected in each of the 

three years based on both the Moran’s I and general G statistics (Table 7.2). These trends were 

confirmed with the hot-spot (local Gi) analysis (Figure 7.4). Clusters of high trap captures (hot-

spots) were present in most of Calcasieu and Cameron Parishes in 2013 and 2014. The primary 

hot-spot in 2015 occurred in Jefferson Davis Parish and eastern portions of Calcasieu and 

Cameron Parishes. Smaller hot-spots were also detected in western Calcasieu and central Acadia 

Parish in 2015. Clusters of low trap captures (cold-spots) were detected in large areas of  

 

Figure 7.2. Eoreuma loftini seasonal population dynamics. Daily trap captures (LS 

means) for each month in Calcasieu, Cameron, and Jefferson Davis Parishes, 2013–2015 
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Table 7.1. Mean daily E. loftini trap captures as affected by parish and habitat type in southwestern Louisiana, 2013–2015 

Parish 
Total 

traps 
Habitat type 

2013 2014 2015 

No. of traps sites 
E. loftini 

/trap/day 

No. of traps 

sites 

E. loftini 

/trap/day 

No. of traps 

sites 

E. loftini 

/trap/day 

Acadia 10 
Rice 6 0 10 0.02 6 0.45 

Wild hosts 4 0 0 NA 4 0.09 

Allen 5 
Rice 5 0.14 4 0.11 5 0.24 

Wild hosts 0 NA 1 0.11 0 NA 

Beauregard 5 
Wild hosts 3 0.06 3 0.01 3 0.03 

Pasture 2 0.05 2 0.04 2 0.05 

Calcasieu 9 

Rice 4 3.35 2 1.12 2 1.94 

Wild hosts 1 3.52 3 0.98 3 0.72 

Sugarcane 2 1.17 2 0.88 2 0.79 

Pasture 2 0.47 2 0.33 2 0.57 

Cameron 5 

Rice 1 7.0 1 2.22 0 NA 

Wild hosts 3 1.1 3 0.65 3 0.39 

Pasture 1 0.27 1 0.23 2 0.99 

Evangeline 4 
Rice 1 0 2 0.01 1 0.00 

Wild hosts 3 0 2 0.00 3 0.02 

Iberia 8 
Sugarcane 4 0.00 4 0.00 4 0.00 

Sugar mill 4 0.00 4 0.00 4 0.00 

Jeff. Davis 14 

Rice 12 1.08 10 1.34 10 2.64 

Sugarcane 1 1.55 0 NA 0 NA 

Pasture 1 0.83 1 0.49 1 0.57 

Wild hosts 0 NA 3 1.14 3 1.39 

Lafayette 2 Rice 2 0.00 2 0.00 2 0.00 

St. Landry 2 Rice 2 0.00 2 0.00 2 0.00 

St. Martin 1 Sugar Mill 1 0.00 1 0.00 1 0.00 

St. Mary 5 
Sugarcane 3 0.00 3 0.00 3 0.00 

Sugar Mill 2 0.00 2 0.00 2 0.00 

Vermilion 7 

Rice 2 0.01 2 0.10 2 0.72 

Sugarcane 4 0 4 0.01 4 0.01 

Wild hosts 1 0 1 0.00 1 0.06 
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Figure 7.3. Eoreuma loftini population distribution in southwestern Louisiana based on 

mean daily pheromone trap captures, 2013–2015 based on spatial interpolation using 

inverse distance weighting  
  

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Statistically significant (Gi statistic) high/low clusters of mean daily E. loftini trap 

captures, 2013–2015 



94 
 

the more northern Beauregard, Allen, and Evangeline Parishes, as well as in eastern Parishes of 

St. Landry, Iberia, St. Mary, and St. Martin where E. loftini is not thought to be present. 

Table 7.2. Statistical tests for spatial associations of mean daily E. loftini trap captures, 2013–

2015 

  2013 2014 2015 

Spatial 

Autocorrelation 

Moran’s I = 1.00 1.00 0.98 

Z-score = 147.98 147.88 242.71 

P value = <0.0001 <0.0001 <0.0001 

High/Low 

Clustering  

General G = 0.0001 0.0013 0.0010 

Z-score = 146.57 146.96 146.94 

P value = <0.0001 <0.0001 <0.0001 

The weighted mean population center moved eastward in each quarter with the exception of 

the third quarter (July–Sept) of 2014 and the second quarter (April–June) of 2015 which were 

located slightly west of the weighted mean center in the previous quarter (Figure 7.5). The 

weighted mean center in the last quarter of 2015 was 34 km east of the second quarter in 2013 

indicating the population is moving eastward at a rate of approximately 11 km/yr. The eastern 

most trap capture detected during this survey was located south of Rayne, LA (30.122850°, -

92.266650°). Eastward expansion based on the eastern most trap capture rate indicated 

populations advanced 16.5 km between Jan–Dec 2014 and 6.7 km between Jan–Dec 2015. This 

averages to 11.6 km/yr during this period.  

 

 

 

 

 

 

 

Figure 7.4. Weighted mean population centers for E. loftini in Louisiana, 2013–2015 
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7.4. Discussion  

This work builds on more than a decade of pheromone trap based monitoring of E. loftini in 

Texas and Louisiana (Reay-Jones et al. 2007c, Hummel et al. 2010, Chapter 4). The high trap 

density in our survey provides the most extensive assessment of E. loftini distribution and range 

expansion to date. The rate of eastward expansion estimated from initial detection in Texas 

counties from 1980–2005 was 23 km/yr (Reay-Jones et al. 2007c). Reay-Jones et al. (2007c) 

estimated that the weighted mean population center moved eastward at 5.5 km/year while the 

estimated leading edge advanced 16.6 km/yr from 2000–2005. When the rate of eastward 

expansion was based solely on the location of easternmost trap captures, expansion occurred at a 

rate of 22 km/yr from 2008–2013 (Chapter 4). In both the Texas (Reay-Jones et al. 2007c) and 

Louisiana (Chapter 4) monitoring surveys, substantial variation in eastward expansion occurred 

between years. When based on eastern-most trap captures, expansion ranged from 4 km in 2012 

to 64 km in 2011. Weighted mean centers reduced this variation between years and more 

consistently measured expansion rates. In this study, the rate of expansion estimated from the 

weighted mean center and that based on eastern most trap captures were similar, 11.3 and 11.6 

km/yr, respectively. Reay-Jones et al. (2007c), however, observed significant differences in 

expansion rates between the two methods. This may be the result of differences in the study 

areas between the two surveys. The distance between our westernmost trap and the leading edge 

of the population in this survey was 126 km, less than half of the distance covered by Reay-Jones 

et al. (284 km). This may have resulted in an underestimation of the rate of expansion when 

measured based on weight population centers in the Reay-Jones (2007c) survey.  

Many previous examinations of the rates of range expansion in insect invasions have focused 

on radial expansion from a known point of invasion (Liebhold and Tobin 2008). Because 
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monitoring of E. loftini range expansion has largely been focused on predicting movement 

towards the economically important Louisiana sugarcane industry, little is known about the 

current western and northern boundaries of the population in Texas. The result is estimations of 

directional range expansion rather than radial range expansions observed in other insect 

invasions. Similarly, the northern boundary of the range of E. loftini in Louisiana has not been 

determined as the northern-most traps in this survey detected the pest’s presence.  

Our data adds to a mounting body of evidence suggesting that E. loftini range expansion is 

occurring at a relatively stable rate and appears to follow reaction-diffusion model which 

combines population growth with random dispersal (Liebhold and Tobin 2008). The reduced 

populations present near the leading edge of the invasion observed in this survey are further 

evidence supporting the spread of E. loftini is occurring through simple diffusion. It is more 

common for invasive insects’ range expansion to follow a pattern of stratified dispersal 

characterized by sporadic long distance movement followed by coalescence of isolated 

populations (Liebhold and Tobin 2008). This is often the result of rapid expansion from human 

aided transport of infested material such as the case for Lymantria dispar L. (Lepidoptera: 

Erebidae) (Liebhold et al. 1992), and the emerald ash borer, Agrilus planipennis (Coleoptera: 

Buprestidae) (Muirhead et al. 2006). No direct evidence of human aided expansion of E. loftini 

has been found in Texas or Louisiana. This is particularly astonishing considering the substantial 

amount of infested material currently being transported to sugar mills east of the known E. loftini 

distribution (Chapter 5). Detection of E. loftini in Florida in 2012 (Hayden 2012) further adds to 

the uncertainty of potential for rapid advancement into new areas. Although it is doubtful the 

direct cause of the Florida introduction will ever be elucidated, human-aided transport is a likely 

scenario. The Florida population appears to be the result of an isolated introduction occurring 
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near the Goeth State Forest in Levy County, and the pest is now known to occur in three 

additional counties (University of Florida 2015).   

In addition to assessment of range expansion, our pheromone trapping survey allowed for 

determination of E. loftini population distribution throughout southwestern Louisiana. High E. 

loftini populations observed near the southern border of Jefferson Davis Parish in all three years 

of our survey indicate the pest has become firmly established and will pose a consistent threat to 

graminaceous crop production in that region. Although a northern boundary of E. loftini 

distribution was not determined, consistently low trap captures in more northern parishes suggest 

E. loftini populations will rarely be an economic pest above 31° N in latitude. However, cold 

tolerance data indicate E. loftini is able to survive winter temperatures at these latitudes 

(Rodriguez del Bosque et al. 1995). Therefore, it is likely that E. loftini will become established 

in many areas of central and northern Louisiana, but potential to become a damaging pest in 

those regions may be limited relative to more southern areas.   

The ability to identify hot-spots of high potential for damaging E. loftini infestations to 

develop will be critical to mitigating the impact of this invasive pest. This monitoring program 

will provide information which can be used to direct resources to areas where E. loftini is most 

likely to be an economic pest. This includes increasing education and outreach to farmers and 

other stakeholders in these regions providing them with the materials they need to make 

informed pest management decisions. The ease of pheromone trapping relative to more labor 

intensive insect sampling methods could allow the monitoring program to be maintained by 

county level extension agents. This would allow extension agents to provide their clientele with 

accurate and up to date information about the threat of E. loftini in their area. This program could 

be combined with online data base technology similar to Spensa Technologies’ MyTraps website 
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(Chapter 5) to allow extension agents to monitor a small number of traps in their area, and 

combine data to maintain a statewide record of E. loftini populations.  

Despite substantial variations in populations between geographic areas, differences in trap 

captures between habitat types were not as apparent in this survey. Although, E. loftini is known 

to infest numerous non-crop grasses (Beuzelin et al. 2011b), crop hosts including rice, sugarcane, 

and corn are thought to be preferred hosts (Showler et al. 2011, 2012; Beuzelin et al. 2013). 

Failure to detect differences in trap captures between habitat types in two of the three years in 

our survey suggests that factors other than availability of host plants may also be important 

influences of E. loftini distribution. Habitat heterogeneity, habitat fragmentation, disturbance 

frequency, and other environmental variables are known to be important factors affecting 

landscape level variation in insect population distributions (Turner 1989). Seasonal peaks 

observed in November of each year during our study were consistent with those observed in rice 

habitats in Texas (Beuzelin et al. 2011b). However, spring peaks during each year of our survey 

occurred earlier (March–April) than those observed by Beuzelin et al. (2011b) in Texas. This 

may have resulted from inclusion of traps in strictly non-crop habitats in addition to rice habitats. 

Adult emergence from these weedy hosts following overwintering may have contributed to the 

earlier population increases. Overall, trap captures in our study were substantially lower than 

those reported by Beuzelin et al. (2011b) which documented > 12.0 E. loftini/trap/day during 

population peaks in Texas.  

Pheromone trap monitoring of E. loftini should be continued throughout Louisiana as the pest 

continues its range expansion into the state. The ability of E. loftini to utilize numerous crop and 

non-crop grasses (Beuzelin et al. 2011b, 2013; Showler and Reagan 2012) and the establishment 

in Florida indicate the pests is likely to invade most areas along the U.S. Gulf Coast. 
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Development and maintenance of the pheromone trap monitoring program in Louisiana could 

provide a framework for use of similar programs in other states. Development of effective 

monitoring and management strategies for E. loftini is critical to mitigation of the impact of this 

invasive pest to agricultural production in the southeastern U.S.  
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CHAPTER 8: SUMMARY  

The Mexican rice borer, Eoreuma loftini, is a key pest of graminaceous crops including 

sugarcane, rice, and corn along the Gulf Coast. The invasive pest has recently become 

established in Louisiana where it threatens to cause substantial revenue losses to rice and 

sugarcane, two of the state’s most important commodities. Additionally, E. loftini has been 

introduced into Florida where it poses a risk to ≈500,000 acres of sugarcane and ≈20,000 acres of 

rice. Management of E. loftini in Texas, where the insect has been the key pest of sugarcane for 

more than 30 years, remains challenging and effective control tactics are badly needed. Traps 

baited with synthetic female sex pheromone are effective at monitoring E. loftini populations, but 

are currently underutilized in efforts to mitigate the impact of this pest. Thus, studies were 

conducted with aim of improving the understanding of E. loftini pheromone trap efficacy and 

expanding the role of these traps in invasive species monitoring and pest management.  

The active space, or radius of attraction, for E. loftini pheromone traps was determined to be 

between 50 and 100 m through a two-year field study and a behavior assay. Based on results 

from these experiments, a single E. loftini pheromone trap can monitor and area of 1–3 ha. 

Experimental methods used in these studies can be adapted to other insect/cropping systems to 

study pheromone trap activity directly in the field environments where they will be deployed.  

Monitoring an extensive network of pheromone traps throughout southwestern Louisiana 

documented E. loftini range expansion into nine new parishes. The pest is now known to be 

established in Calcasieu, Cameron, Beauregard, Allen, Jefferson Davis, Acadia, Evangeline, 

Vermilion, and St. Landry Parishes. In areas where it has been established for >2 years, E. loftini 

appears to be ubiquitous and can be detected in virtually all habitat types. Clusters of high 

density populations (hot-spots) were identified in southeastern Calcasieu and southern Jefferson 
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Davis Parish in each of three years from 2013–2015. Consistently low pheromone trap captures 

in the northern parishes of Beauregard, Allen, and Evangeline indicate E. loftini populations may 

be limited by colder winter temperatures at higher latitudes. Although it is likely that the pest 

will become established in regions of central and north Louisiana, it is not predicted to be an 

economic pest in these areas. The E. loftini population is advancing eastward into Louisiana at a 

rate of approximately 11 km/year. Although transportation of E. loftini infested sugarcane to 

sugar mills east of the pest’s current known range poses an immediate risk of introducing the 

species into the heart of the sugarcane production region, no specimens have been recorded from 

Iberia, St. Martin, or St. Mary Parishes to date.  

Infestations of E. loftini in commercial rice reached damaging levels in fields which did not 

receive insecticidal seed treatments in Calcasieu Parish. It is likely that in regions where high 

populations of E. loftini are present, insecticidal protection of rice will be required to reduce 

revenue losses from this pest. Chlorantraniliprole (Dermacor X-100) seed treatments are 

effective at reducing E. loftini injury and can mitigate yield losses. Widespread application of 

these seed treatments which may be present in reduced concentrations late in the season or in 

ratoon rice has potential to select for insecticide resistance among stem borers and other rice 

pests. Alternative control methods for E. loftini management in rice should continue to be 

explored.  

Contrary to expectations, E. loftini infestations in Louisiana sugarcane did not approach the 

levels frequently incurred in sugarcane production regions of Texas. There remains potential for 

highly damaging infestations to occur, particularly if drought conditions prevail which can 

exacerbate E. loftini populations. The sugarcane borer, Diatraea saccharalis, remains the key 

pest of Louisiana sugarcane at this time. Mixed infestations of D. saccharalis and E. loftini are 
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expected to become increasingly common as the latter continues its eastward range expansion 

further into the Louisiana sugarcane production region. Relative densities of each stem borer 

species will likely fluctuate in response to varying environmental conditions. Although E. loftini 

management is made difficult by reduced exposure of larvae relative to D. saccharalis, it is 

hopeful that sugarcane growers in Louisiana will be able to mitigate losses from E. loftini to 

levels lower than what has been historically suffered in Texas sugarcane. 

Pheromone trap-assisted scouting has potential to be a valuable tool in integrated pest 

management (IPM) programs for E. loftini in rice and sugarcane. Trap captures are correlated to 

larval densities in both crops, and may be used to indicate potentially damaging populations are 

present in an area. Monitoring adult populations is drastically less labor intensive than sampling 

for larvae in the field, and pheromone-based techniques can substantially improve scouting 

efficiency. More comprehensive studies are needed before this strategy can be reliably used as a 

primary pest monitoring method in IPM programs. There remains a risk that damaging larval 

infestations can occur without detection of increasing adult densities, and pest management 

decisions should not be made solely on pheromone trap captures.  

The development of automated pheromone trapping systems of electronic Z-traps which 

upload capture data to online data bases has potential to further reduce scouting effort. These 

systems allow for pest populations to be accurately monitored online or with a mobile phone 

application, removing the need to sample in the field. Automated pheromone-based monitoring 

systems are used to monitor for Lepidopteran pests in apple orchards and other fruit crops. 

Evaluations of Z-traps for E. loftini monitoring demonstrated the system can monitor pest 

populations in sugarcane and rice equal to or better than the currently used conventional traps. 

Pest management of E. loftini in sugarcane and rice may not provide the optimal systems for 
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widespread adoption of automated pheromone based monitoring, but this study demonstrated the 

potential for use of Z-traps to monitor Lepidopteran pests in field crops IPM.  

The polyphagous nature of E. loftini and its widespread utilization of both crop and weedy 

host plants eliminate the potential for eradication of the pest in its introduced range. All evidence 

to date indicates the invasive pest will continue its incursion along the U.S. Gulf Coast. The 

newly introduced population in Florida suggests this insect has potential to be spread through 

human activities and will continue to threaten agriculture production in new areas. The 

pheromone trapping strategies demonstrated by this research project will provide a foundation of 

knowledge to improve monitoring and management of this invasive pest as it becomes 

established in new environments.  
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APPENDIX B: SELECTED SAS PROGRAMS FOR CHAPTER 3 

 

Hexagonal arrays 2011 
dm'output;clear;log;clear';                                                                      

Title1'Hex Arrays 2011';     

data data1;     

input per$ Days$ Farm$ Site$ Dist$ Trt$ Pos$ Dir1$ Dir2$ Total Catch CPD 

Prop; 

cards; 

 
; 

ODS HTML FILE='C:\Documents and Settings\treagan\Desktop\Blake Wilson\Active 

Space MS\Hex Arrays 2011 Final.html' style = minimal 

; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2 ;  

Model CPD = Dist / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Dist*Per*Farm; 

lsmeans Dist / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2;  

Model Prop = Dist|Pos / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Dist*Per*Farm; 

lsmeans Dist|Pos / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2;  

Model CPD = Dir1|Dir2 / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Trt*Per*Farm; 

lsmeans Dir1|Dir2 / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

 

Hexagonal arrays, 2013 dm'output;clear;log;clear';                                                                      
Title1'Hex Arrays 2013';     

data data1;     
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input per$ Days$ Farm$ Site$ Dist$ Trt$ Pos$ Dir1$ Dir2$ Catch CPD Total 

Prop; 

cards; 

 

; 

ODS HTML FILE='C:\Documents and Settings\treagan\Desktop\Blake Wilson\Active 

Space MS\Hex Arrays 2013 Final.html' style = minimal 

; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2 ;  

Model CPD = Dist / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Dist*Per*Farm; 

lsmeans Dist / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2;  

Model Prop = Dist|Pos / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Dist*Per*Farm; 

lsmeans Dist|Pos / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

proc glimmix data=data1 ; 

Class Per Days Farm Site Dist Trt Pos Dir1 Dir2;  

Model CPD = Dir1|Dir2 / htype=3 dist=Gaussian ; 

Random Farm Per Per*Farm Trt*Per*Farm; 

lsmeans Dir1|Dir2 / ilink diff cl; 

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;                                                                                                                                                                                                                                                             

%include 'C:\Documents and Settings\treagan\Desktop\Blake 

Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.10,sort=yes);                                                           

run; 

 

Proportion in center trap regression  
dm'output;clear;log;clear';  

title1'Hex Arrays all PropC'; 

data data; 

input Year$ Farm$ Per$ Dist$ Distance PropC;  

cards; 

Proc Reg data=data;  

title2'PropC Reg'; 

Model PropC = Distance; 

Run;  
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APPENDIX C: SELECTED SAS PROGRAMS FOR CHAPTER 4 

 

Rice surveys, ANOVA 

 
dm'output;clear;log;clear';                                                                      

Title1'Rice surveys All Proc Mixed';     

data data1;   

input YEAR$ Trt$ Rep$ Per$ Days$ Month$ Stage$ Catch CPD Shoots FS PctI ; 

cards; 

; 

ODS HTML FILE='C:\users\treagan\Desktop\Blake Wilson\Rice surveys Jun 

26.html' style = minimal 

; 

Proc Mixed data = data1; 

Class YEAR Trt Rep Per Days Month Stage; 

Model CPD = Per Trt Year Trt*Year Per*Trt Per*Year Per*Trt*Year/ htype=3 

ddfm=kr;  

Random Rep(Year) Trt*Rep(Year)  ; 

LSMeans Per Trt Year Trt*Year Per*Trt Per*Year Per*Trt*Year/ diff 

adjust=tukey; 

ods output diffs=ppp lsmeans=mmm; 

ods listing exclude diffs lsmeans;  

run;  

%include 'C:\Users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                      

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

Proc Mixed data = data1; 

Class YEAR Trt Rep Per Days Month Stage; 

Model PctI = Per Trt Year Trt*Year Per*Trt Per*Year Per*Trt*Year/ htype=3 

ddfm=kr ;  

Random Rep(Year) Trt*Rep(Year) ; 

LSMeans Per Trt Year Trt*Year Per*Trt Per*Year Per*Trt*Year/ diff 

adjust=tukey; 

ods output diffs=ppp lsmeans=mmm; 

ods listing exclude diffs lsmeans;  

run;  

%include 'C:\Users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                      

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

 

Rice Regression 
dm'output;clear;log;clear';                                                                      

Title1'PTAS Rice All Regression';     

data data1;   

input YEAR$ Trt$ Rep$ Per$ Days$ Month$ Stage$ Catch cpd Shoots FS PctI ; 

if year = '2013' then z1=1 ; else z1=0; 

cards; 

; 

ODS HTML FILE='C:\users\treagan\Desktop\Blake Wilson\PTAS Reg dummy variable 

outlier.html' style = minimal 

; 

proc reg data=data1 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

model cpd = PctI z1 / xpx i influence ;  

proc graph   

run; 
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APPENDIX D: SELECTED SAS PROGRAMS FOR CHAPTER 5 

 

Within season sampling: ANOVA and Regression  
dm'output;clear;log;clear';                                                                      

Title1'PTAS LA Sugarcane';     

data data1;   

input Year$ Field$ Trap$ Lat$ Long$ Par$ grower$ Var$ Crop$ Date$ Catch Days 

CPD PctI PctT  ; 

cards; 

 

; 

ODS HTML FILE='C:\users\treagan\Desktop\Blake Wilson\PTAS LA Sugarcane all no 

verm.html' style = minimal 

; 

proc glimmix data=data1 ;                                                                                                                                                                                                                             

class Year Field Trap Lat Long Par grower Var Crop Date;                                                                                                                                                                                                                                             

model CPD = Year Par Year*Par / htype=3 ddfm=kr dist=Gaussian ;                                                                                                                                                                                                    

random Field Field*year;                                                                                                                                                                                                                                      

lsmeans Year Par Year*Par  / ilink diff cl adjust=tukey;                                                                                                                                                                                                                             

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run; 

%include 'C:\users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

proc glimmix data=data1 ;                                                                                                                                                                                                                             

class Year Field Trap Lat Long Par grower Var Crop Date;                                                                                                                                                                                                                                             

model PctI = Year Par Year*Par / htype=3 ddfm=kr dist=Gaussian ;                                                                                                                                                                                                    

random Field Field*year;                                                                                                                                                                                                                                      

lsmeans Year Par Year*Par  / ilink diff cl adjust=tukey;                                                                                                                                                                                                                             

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run; 

%include 'C:\users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

proc glimmix data=data1 ;                                                                                                                                                                                                                             

class Year Field Trap Lat Long Par grower Var Crop Date;                                                                                                                                                                                                                                             

model PctT = Year Par Year*Par / htype=3 ddfm=kr dist=Poisson ;                                                                                                                                                                                                    

random Field Field*year;                                                                                                                                                                                                                                      

lsmeans Year Par Year*Par  / ilink diff cl adjust=tukey;                                                                                                                                                                                                                             

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run; 

%include 'C:\users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

proc reg data=data1 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

model cpd = PctI ;  

proc graph   

run; 

proc reg data=data1 ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

model cpd = PctT ;  

proc graph   

run; 
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Z-traps 2015 

 
dm'output;clear;log;clear';  

title1'z-traps 2015'; 

data data; 

input Date1$ Date2$ Days$ Wk$ Trap$ Crop$ Area$ Type$ Catch CPD MyTraps;  

cards; 

 

; 

ODS HTML FILE='C:\Users\treagan\Desktop\Blake Wilson\Z-traps 2015 All.html' 

style = minimal 

; 

proc glimmix data=data; 

title2'Z vs M'; 

class Date1 Date2 days trap Crop Wk Area Type ; 

model CPD = crop|Type|Wk /htype=3 ddfm=kr dist=Gaussian  ; 

random Area Area*Type ; 

lsmeans Type|Wk / diff adjust=tukey; 

ods output diffs=ppp lsmeans=mmm; 

ods listing exclude diffs lsmeans; 

run; 

%include 'C:\Users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                      

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

Proc Reg data=data;  

Model MyTraps = Catch; 

Run;   
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APPENDIX E: SELECTED SAS PROGRAMS FOR CHAPTER 6 

  

Pheromone Trap Capture, 2015  
dm'output;clear;log;clear';                                                                      

Title1'LRGV 2015 Trap Data';     

data data1;   

input Days$ Per$ Trap$ Catch CPD ; 

cards; 

; 

ODS HTML FILE='C:\Documents and Settings\treagan\Desktop\Blake Wilson\LRGV 

2015 by Trap Data by field.html' style = minimal 

; 

Proc glimmix data=data1 ;                                                                                                                                                                                                                             

class Days Per Trap;                                                                                                                                                                                                                                             

model CPD = Per / htype=3 ddfm=kr dist=Gaussian ;                                                                                                                                                                                                    

random Trap;                                                                                                                                                                                                                                      

lsmeans Per / ilink diff cl adjust=tukey;                                                                                                                                                                                                                             

ods output diffs=ppp lsmeans=mmm;                                                                                                                                                                                                                                

ods listing exclude diffs lsmeans;                                                                                                                                                                                                                               

run;  

%include 'C:\Users\treagan\Desktop\Blake Wilson\Stats\pdmix800.sas';                                

%pdmix800(ppp,mmm,alpha=.05,sort=yes);                                                           

run; 

 

Injury data ANOVA, 2015  
dm'output;clear;log;clear'; 

title'LRGV MRB Injury 2015'; 

 

data data; 

input Rep$ Trt$ Sample$ TotalInt TotalBored BottomInt BottomBored TopInt 

TopBored; 

pBored= TotalBored/TotalInt*100; 

pBotBored= BottomBored/BottomInt*100; 

pTopBored= TopBored/TopInt*100; 

cards; 

; 

 

ODS HTML FILE='F:\Stats\Insecticides 2015\Output_MRB_LRGV_2015.html' style = 

minimal; 

 

Proc sort; 

by Trt Sample; 

run; 

proc means; 

var pBored pBotBored pTopBored; 

by Trt ; 

run; 

 

proc glimmix data=data; 

title2'GAUSSIAN Total Bored Internodes'; 

class  Rep Trt   ; 

model pBored = Trt / htype=3; 

random Rep Rep*Trt; 

lsmeans Trt / diff adjust=tukey lines; 

run; 
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proc glimmix data=data; 

title2'GAUSSIAN Top Bored Internodes'; 

class  Rep Trt   ; 

model pTopBored = Trt / htype=3; 

random Rep Rep*Trt; 

lsmeans Trt / diff adjust=tukey lines; 

run; 

 

proc glimmix data=data; 

title2'BINOMIAL Total Bored Internodes'; 

class  Rep Trt Sample  ; 

model TotalBored/TotalInt = Trt / htype=3 dist=binomial; 

random Rep Rep*Trt Sample(Rep*Trt); 

lsmeans Trt / ilink diff adjust=tukey lines; 

run; 

 

proc glimmix data=data; 

title2'BINOMIAL Top Bored Internodes'; 

class  Rep Trt Sample  ; 

model TopBored/TopInt = Trt / htype=3 dist=binomial ; 

random Rep Rep*Trt Sample(Rep*Trt); 

lsmeans Trt / ilink diff adjust=tukey lines; 

run; 

 

quit; 
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