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Abstract 

Mosquitoes transmit pathogens capable of causing significant diseases, the worst of which 

can permanently disfigure or kill. Mosquito control efforts can be strengthened by better 

understanding all aspects of mosquito biology, but there is deficient information regarding sperm 

production in male mosquitoes. Understanding the sperm production and capacity of vector species 

may reveal new control strategies.  

The goal of this research was to determine if larval exposure to sub-lethal concentrations, 

defined as killing less than half of the sample population, of pesticides negatively impacts the adult 

male reproductive health of the southern house mosquito, Culex quinquefasciatus Say. This study 

quantified sperm counts for wild and lab reared (Sebring) Cx. quinquefasciatus. The Sebring 

colony produced more sperm than the wild collected mosquitoes. After baseline sperm counts were 

determined, each population was exposed to sub-lethal quantities of the larvicides spinosad, 

Lysinibacillus sphaericus, and methoprene, and the herbicides glyphosate and atrazine. Larvae 

were exposed during their third instar and remained in an environment with pesticide until 

eclosion. Adult males were dissected at one, four, seven, and fourteen days post eclosion.  

The reproductive tracts were removed and the sperm diluted, and the sperm were counted 

in subsamples. Sperm counts for the Sebring colony were significantly reduced after the spinosad 

and L. sphaericus treatments, and significantly increased after the methoprene treatment. Sperm 

counts for the wild collected mosquitoes experienced no decrease from any treatment, but they did 

experience significant increase after the methoprene treatment. Wing lengths (as a proxy for body 

size) were measured for all experiments, but the treatments had no observed effects on body size. 

These results show that exposure to some chemicals during larval development can alter 

spermatogenesis in Culex quinquefasciatus males.
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Chapter 1: Literature Review 
 

1.1 Mosquitoes and Pathogens 

 

 Mosquitoes are hematophagous insects of public health concern due to their competence 

as vectors of disease-causing pathogens. When an infectious mosquito bites a susceptible host, the 

infectious agent may travel from the mosquito into the new host. Hundreds of infectious pathogens 

have been found in mosquitoes, but just under 100 are known to cause disease in humans 

(Karabatsos 1985). Vector borne disease incidence in the United States has been increasing over 

the past decade, and while much of that increase is due to tick borne diseases, nine new mosquito 

borne diseases were detected for the first time between 2004 and 2016 (Rosenberg et al. 2018). 

The deadliest mosquito borne disease today is malaria and it is responsible for the deaths of 

hundreds of thousands of people every year (WHO 2016). An estimated 3.4 billion people living 

in malaria endemic countries are considered at risk of contracting the disease (Hay et al. 2004). 

While global malaria risk has decreased as intervention strategies have been implemented, current 

climate change modeling shows the potential for a substantial expansion throughout the world 

(Caminade et al. 2014).  

The most prolific mosquito borne disease affecting human health today is dengue fever. 

One group predicts that 390 million cases of dengue infection occur each year with nearly one 

million of those cases becoming symptomatic (Bhatt et al. 2013). Both malaria and dengue are 

endemic throughout tropical areas, but there are other potentially life-threatening mosquito borne 

diseases in other regions, including those in temperate climates. West Nile virus has caused over 

2,000 deaths in the United States since its introduction in 1999 (CDC 2016). Despite having an 

effective vaccine for the Japanese encephalitis virus, an estimated 68,000 cases of Japanese 

encephalitis occur annually in Asia (Campbell et al. 2011). Important vectors from the genera 
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Aedes, Anopheles, and Culex, responsible for the spread of dengue, malaria, and West Nile 

respectively, are distributed globally with many species expanding in range (Tatem et al. 2006). 

The presence of mosquitoes in shared human habitats and their capacity for pathogen transmission 

justifies their importance at the forefront of public health entomological research. 

1.2 Culex quinquefasciatus 

The southern house mosquito, Culex quinquefasciatus Say, is an urban and sylvatic species 

found in tropical to sub-tropical areas throughout the world and is a competent vector of disease 

causing pathogens. Females of this species seek out organically rich, ephemeral, or permanent 

pools of water for oviposition. This habit helps guarantee close proximity to humans as we provide 

them with these exact habitats via septic ditches, sewers, and other manmade containers that collect 

water (Chaves et al. 2009). Female Cx. quinquefasciatus typically seek out birds for blood meals, 

the reservoir hosts of the West Nile and St. Louis viruses, but commonly blood feed on other 

vertebrates (Molaei et al. 2007). This species is widespread throughout the southern United States 

in both rural and urban environments (Vinogradova 2000).Within its range in the United States, it 

is a competent vector of St. Louis virus, West Nile virus, and the canine heartworm, Dirofilaria 

immitis (Lai et al. 2000, Godsey Jr et al. 2005, Reisen et al. 2005). In other parts of the world it 

transmits Plasmodium relictum, the causative agent for avian malaria, and Wuchereria bancrofti, 

the nematode responsible for lymphatic filariasis (Bartholomay et al. 2010). Localized suppression 

of this mosquito can effectively suppress disease incidence as was found in India with lymphatic 

filariasis (Ramaiah et al. 1992), and in California with West Nile virus (Carney et al. 2008). The 

control costs of this mosquito combined with the medical costs caring for those afflicted with West 

Nile fever were almost $3 million dollars for just one outbreak in Sacramento County, CA (Barber 

et al. 2010). The annual costs associated with lymphatic filariasis amount to hundreds of billions 
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of dollars throughout the world (Keating et al. 2014). The combined threat of its global distribution 

and competence as a vector of disease-causing pathogens has warranted Cx. quinquefasciatus a 

species of interest in both control and research.   

1.3 Reproductive Biology of Male Mosquitoes 

The reproductive development of male mosquitoes has been well documented, but the 

specific roles of hormones in this development have not. The primordial tissues which differentiate 

and become testes begin lengthening during the first instar, then lengthen dramatically during the 

fourth instar and pupal stage (Horsfall and Ronquillo 1970). The appearance of gonads begins in 

the late larval stages with spermatocytes visible in the fourth instar and pupal stage (Dumser 1980). 

While mature sperm are not stored in the seminal vesicles during the pupal stage, they are present 

in the testes of pharate adults (Jones 1967). The adult male reproductive system is comprised of 

paired testes, seminal vesicles, and accessory glands. These are connected one to another by the 

vasa efferentia and the vasa deferens. The system terminates posteriorly with the adeagus. External 

claspers are used to grasp the female to aid in stabilizing copulation which most frequently occurs 

in flight (Jones 1968). Both ecdysteroids and juvenile hormone have been shown to inhibit and 

advance testicular growth in various insects (Dumser 1980, Raikhel et al. 2005), but without 

explicit experiments on mosquitoes it cannot be said how these substances may or may not effect 

male mosquito reproductive development. 

Mosquito sperm production increases with age and can be manipulated by environmental 

conditions or chemical treatments. The first study to quantify sperm in Aedes aegypti found that 

body size significantly impacted sperm count with large males having more sperm than small 

males, an observation that held true from the ages of one day (mean sperm ± SEM, small: 2,843 ± 

159.3, large: 3,714 ± 197.8, P = 0.002) to ten days (small: 7,306 ± 563.8, large: 9,704 ± 416.8, P 
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= 0.004) post eclosion (Ponlawat and Harrington 2007). A follow up study found that larger and 

older Ae. aegypti males transferred more sperm to females than their smaller and younger 

counterparts (Ponlawat and Harrington 2009). Aedes aegypti were sampled from four different 

environments in Australia to measure the effects of climate on fecundity parameters. It was found 

that neither sperm production nor insemination rate differed significantly with origin alone, but 

males reared at high temperatures (producing smaller mosquitoes) had significantly higher sperm 

counts than those at low temperatures (producing larger mosquitoes) (35 °C, 18 °C, P = 0.02) 

(Bader and Williams 2012). The apparent contradiction between these two sets of experiments, 

one stating that larger males had higher sperm counts and the other stating that high temperature 

reared small bodied males had higher sperm counts, illustrates that both temperature and density 

can affect sperm count in Ae. aegypti.  

A similar experiment to the first study quantifying Ae. aegypti sperm found that Aedes 

albopictus males produce sperm in a similar fashion. Large Ae. albopictus males produce more 

sperm than small males and sperm count increases over time (Hatala et al. 2018). However, unlike 

small Ae. aegypti, small Ae. albopictus males stopped producing sperm after 10 days post eclosion 

(dpe). The first study to quantify Anopheles sperm also looked at the effects of radiation on sperm 

count. Anopheles arabiensis irradiated as pupae with 70 and 120 Gy had significantly lower sperm 

counts than controls at six dpe; no effect on sperm count was observed for adults receiving the 

same irradiating treatment (Helinski and Knols 2009). Anopheles arabiensis sperm was also 

quantified after being irradiated with 70 Gy, treated with the organochloride dieldrin, or both. 

Irradiated males had significantly lower sperm counts at two dpe and did not produce more sperm 

by day six. Dieldrin treated males had significantly lower sperm counts at day two, but recovered 

to control level sperm counts by day six. The combined treatment also had lower day two sperm 
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counts, but was again normal by day six (Damiens et al. 2013). These five studies are the only 

published accounts of sperm quantification and account for only three mosquito species from two 

genera. The results of these papers are generally in agreement, that mosquito sperm increases with 

age and that density, temperature, and chemical exposure can alter normal sperm production. 

Many mosquito species swarm in large groups for mate selection and these swarms are 

typically male dominated, with females entering alone and leaving mid copulation (South and 

Catteruccia 2016). Research shows that both pheromone signaling (Cabrera and Jaffe 2007) and 

wing beat frequency (Ritchie and Immonen 2010) contribute to the formation of and mate selection 

within these swarms. The detection of a conspecific female wing beat frequency causes significant 

reductions in flight speed for male Cx. quinquefasciatus, suggesting a controlled and precise mate 

selection process (Gibson 1985). While it was explained previously that larger males are capable 

of transmitting more sperm to females, larger males are not always the most sexually competitive. 

An experiment with Anopheles gambiae demonstrated that males of mid-range size, lipid, 

glycogen, and sugar reserves were significantly more successful at mating than either large or 

small males with corresponding energy reserves (Ng'habi et al. 2008). It is not well understood 

how males select swarm locations, but Anopheles males appear to prefer swarming above 

substrates with light-dark contrast (Diabate and Tripet 2015) and some Aedes males swarm near 

the females’ preferred blood hosts (Hartberg 1971). Culex quinquefasciatus swarms are composed 

of both male and female mosquitoes and, while their in-swarm behaviors have been well 

documented, swarm site selection stimuli (if any) is still unknown (Gibson 1985). 

 Mosquito mating fidelity is variable among species, but it is common to see reports of 

polygynous males and monandrous females. Male mosquitoes are polygynous, or are at least 

physiologically capable of being so (the rate of multiple successful mating events in the wild is 
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unknown), and are capable of producing sperm throughout their field-relevant lifetime (Yuval 

2006, Ponlawat and Harrington 2007). Monandry is practical for a female mosquito as one mating 

event provides her with enough sperm for her lifetime and allows energy to be spent on host 

seeking and oviposition rather than mating (Craig 1967). Monandry in females is also regulated 

by male accessory gland (MAG) substances with matrone as one of the leading MAG substances 

responsible for mating refractoriness (Sirot et al. 2008). Monandry in many Anopheles mosquitoes 

is also regulated by mating plugs which provide a physical barrier to subsequent inseminations 

(Giglioli and Mason 1966). While healthy virgin males are well stocked with MAG substances, 

their supply decreases with each consecutive mating event and while MAG substances can be 

replenished over time (Foster and Lea 1975), a MAG substance-depleted male may be unable to 

induce mating refractoriness in a female (Dickinson and Klowden 1997). It is important to note 

that the refractory effect of MAG substances are not immediate in some species. Most Ae. aegypti 

females become refractory within a few hours of mating, but 3% of females may still be 

polyandrous after 20 hrs post-mating. (Degner and Harrington 2016). This laboratory-based study 

is corroborated by wild-collected female Ae. albopictus which oviposited eggs with mixed 

paternity (Boyer et al. 2012). Early studies of Culex mosquitoes showed that females do experience 

mating-induced monandry (Kitzmiller and Laven 1958) and that several hours are required for the 

effect to become complete (Bullini et al. 1976). As far as it has been observed, male mosquitoes 

are polygynous and female mosquitoes are primarily monandrous with time-dependent exceptions. 

1.4 Juvenile Hormone 

 Juvenile hormone (JH) is an insect sesquiterpenoid synthesized primarily in the corpora 

allata (CA) with a complex receptor and mode of action process (Goodman and Cusson 2012). JH 

is a key regulator of the molting process, and a more detailed review of this process will be covered 
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later. Feeding stimulates JH synthesis in the CA, a process that follows the mevalonate pathway, 

but instead of producing cholesterol as it does in vertebrates, it diverts and follows what is known 

as the JH branch (Bellés et al. 2005). The mevalonate pathway, in insects, begins with Acetyl-CoA 

and undergoes 13 enzymatic transformations before the final product, JH (Nouzova et al. 2011). 

JH is not stored in the CA, but is released directly into the hemolymph and, as a lipophilic 

substance, it requires carrier proteins for target site dispersal (Trowell 1992). The search for JH 

target sites has spanned several decades and has only recently produced compelling evidence. The 

Methoprene-tolerant (Met) gene proteins bind JH and JH analogs, are only present in certain 

tissues, and are only present within the nuclei of the cells of these tissues (Pursley et al. 2000). Met 

has been confirmed as a key receptor of JH in adult female Ae. aegypti, affecting gene expression 

for reproductive regulation (Zou et al. 2013). However, JH and JH analogs do not bind exclusively 

with Met. The nuclear receptor Ultraspiracle also binds JH in a dose dependent manner, leading to 

conformational changes in the receptor, which then leads to a transcriptional response (Jones et al. 

2001).  

Despite the confirmation that these two receptors bind JH and produce transcriptional 

changes, there is evidence that other receptors may play a part and their roles have not been 

explored conclusively. It is likely that these and other receptors work together as a JH receptor 

complex (Jindra et al. 2013). Beyond nuclear receptors, it is proposed that JH acts at the cell 

membrane level (Wheeler and Nijhout 2003). In Drosophila, JH acts on the cell membrane level 

of the male accessory glands via the Protein Kinase-C signaling pathway, initiating the synthesis 

of post-copulatory proteins (Yamamoto et al. 1988). JH is received through this same membrane 

pathway in the ovarian follicle cells of Rhodnius prolixus (Hemiptera: Reduviidae), resulting in 

constriction of these cells allowing for yolk movement and oocyte development (Sevala and Davey 
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1993). In Ae. aegypti the pathway initiated by membrane receptors of JH has been shown to modify 

Met activity, suggesting that membrane and nuclear receptors work in concert to bring about 

transcriptional changes (Liu et al. 2015). The search for JH receptors continues and many questions 

about the mode of action of JH, whether at the nuclear or membrane receptor level, remain to be 

answered (Jindra et al. 2015). 

 Sexual maturation of both female and male mosquitoes relies in part on JH. While 

ecdysteroids regulate most of the reproductive processes in female mosquitoes, JH plays an 

essential role in priming the fat body so that ecdysteroids can initiate yolk protein synthesis 

(Raikhel et al. 2005). JH also regulates ovarian nutrient allocation during previtellogenesis 

(Noriega 2004) and facilitates follicular resorption during times of nutritional stress (Clifton and 

Noriega 2011). Mosquito ovaries are also capable of producing their own JH from farnesoic acid 

(Borovsky et al. 1994a). Less is known about the role of JH in male reproductive development, 

but key discoveries have been made. MAGs produce many proteins and other substances involved 

with reproduction and are capable of producing and secreting JH (Borovsky et al. 1994b). The 

transfer of MAG substances, including JH, have been shown to influence pre-oviposition 

behaviors of female mosquitoes such as oviposition site selection (Yeh and Klowden 1990), host 

seeking behavior (Fernandez and Klowden 1995), and mating refractoriness (Klowden 2006). 

Newly-mated female mosquitoes have increased JH titers, more ovarian lipids, a reduction in 

follicular resorption, and increased fecundity (Clifton et al. 2014). Adult male mosquitoes treated 

with a JH mimic were able to mate with more females than untreated males, and males with 

depleted MAGs were able to overcome mating refractoriness more quickly than controls 

(Ramalingam and Craig 1977). While there are many experiments showing the effects of JH and 

MAG substance transfer during mating, it has been difficult to isolate the JH affects from the other 
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MAG substances. At this time there is no exclusive evidence that the maturation of sperm or other 

reproductive traits in male mosquitoes are controlled by JH (Nouzova et al. 2018). Female 

mosquitoes are prime targets for mosquito control efforts because they transmit deadly pathogens 

and lay eggs. Understanding their reproductive biology has been a research priority. However, as 

our understanding of vector endocrinology increases, the need for more research on the roles of 

JH, and its synthetic analogs, in both male and female mosquitoes increases (Ferguson et al. 2005). 

1.5 Effects of Larval Habitat Conditions on Adult Development 

 The rate of development from egg to adult as well as the size and fecundity of the adult 

mosquito is dependent upon the environmental conditions of the larva’s aquatic habitat. After a 

mosquito egg hatches, the larva molts through four instar stages, pupates, and emerges as an adult. 

Temperature has a direct correlation with adult body size and rate of development. As the 

temperature of the larval habitat increases, the rate of development also increases, but body size 

decreases (Mohammed and Chadee 2011). Inversely, as the temperature of the larval habitat 

decreases, the rate of development decreases, but body size increases (Rueda et al. 1990). Adult 

body size is also dependent upon larval density. High density larval conditions induce food scarcity 

and produce smaller bodied adults, and low density larval conditions enable food abundance and 

produce larger bodied adults (Lyimo et al. 1992). Insufficient larval diet and high density 

conditions can also reduce fecundity (Telang and Wells 2004). All of these variables (temperature, 

density, and diet) interact simultaneously in the field and the interplay of these effects are only 

partially understood through laboratory experiments (Couret et al. 2014). Larval conditions must 

be considered and controlled for when evaluating the development rate, body size, or fecundity of 

adult mosquitoes. 
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1.6 Herbicide Contamination of Larval Habitats 

 The aquatic habitats of larval mosquitoes can be unintentionally contaminated by 

chemicals, such as herbicides. The two most commonly used conventional herbicides in the United 

States, applied to residential, commercial, and agricultural properties, are glyphosate and atrazine 

with 180 and 73 million pounds of active ingredient, respectively, applied in 2007 (Grube et al. 

2011). Glyphosate is a post-emergent herbicide which inhibits amino acid synthesis in the 

shikimate pathway, causing an excess of shikimic acid which leads to plant death by the diverting 

of important resources away from necessary biological functions (Amrhein et al. 1980). Atrazine 

is a pre and post emergent herbicide which starves plants by inhibiting electron transport during 

photosynthesis (Dayan et al. 2000). As both of these chemicals have been found in larval mosquito 

habitats, studies have been undertaken to evaluate their effects on mosquitoes. Aedes aegypti larvae 

treated with atrazine at 5 ppm had significantly higher emergence rates and a reduction in male 

ratio bias when compared to glyphosate treated (5 ppm) and control larvae (Bara et al. 2014). 

Aedes aegypti larvae pre-exposed to atrazine at either 1, 10, 100, or 1000 µg/l for 48 hrs had 

reduced sensitivity to the pesticide Bacillus thuringiensis israelensis, demonstrated by a 75% 

decrease in mortality (Boyer et al. 2006). A similar experiment showed that Ae. aegypti larvae 

exposed to atrazine at 1 or 10 µg/l for 48 hrs became significantly less susceptible to the larvicide 

temephos, apparently due to an observed increase in P450 monooxygenase activity (Jacquet et al. 

2015). 

Atrazine has been shown to increase densities of microbial organisms in freshwater 

ecosystems (Muturi et al. 2013).  This provides a more abundant food source for larval mosquitoes 

and creates an environment suitable for producing larger and healthier adult mosquitoes (Boyer et 

al. 2006). However, none of these laboratory based studies take into account the importance of soil 
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and water composition or other contaminants as synergists in arthropod exposure to atrazine. 

Water quality, soil type, and co-contaminants can positively or negatively mitigate the effects of 

atrazine on arthropods (Liang and Lichtenstein 1974). While none of the above studies found any 

significant effects on mosquitoes after glyphosate treatments, other arthropod-glyphosate 

interactions have been observed. Significant negative sub-lethal effects such as reduced prey 

consumption, fecundity, and web building were observed in the spider Alpaida veniliae (Araneae: 

Araneidae) after glyphosate treatments (Benamú et al. 2010). The soybean pest predator 

Chrysoperla externa (Neuroptera: Chrysopidae) suffered similar population reducing sub-lethal 

effects, e.g., reduced fecundity and fertility in females (Schneider et al. 2009). Glyphosate and 

atrazine are abundantly used herbicides which can contaminate larval mosquito habitats, and while 

some interactions between these chemicals and mosquitoes are understood, many are not. 

1.7 Mosquito Larvicides 

 While some chemicals are incidentally introduced into larval mosquito habitats, others are 

added intentionally, such as larval control pesticides (larvicides). Larvicidal compounds may be 

traditional contact toxins (Ali et al. 1999), ingested bacterial byproducts (Federici et al. 2003), 

insect growth regulators (Khan et al. 2016), suffocating water surface oils (Harbison et al. 2015), 

or a combination of some of the above. This review will focus on three larvicides: spinosad 

(contact or ingested toxin), Lysinibacillus sphaericus (ingested bacterial byproduct), and 

methoprene (insect growth regulator). 

1.7.1 Spinosad 

 Spinosad is a pesticide with mosquitocidal properties derived from fermented metabolites 

of the bacteria Saccharopolyspora spinosa. The two active metabolites utilized in pesticide 

formulations are spinosyn A and spinosyn D, which can be ingested or absorbed through the cuticle 
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to reach their target sites (Jiang and Mulla 2009). The primary target site of spinosad is the nicotinic 

acetylcholine receptor where it binds in a novel location, appearing to have no interaction with 

target sites of other pesticides. Post-binding symptomology observed in the central nervous system 

caused by neuron hyper-excitation includes convulsions, paralysis, and death (Salgado 1998). It 

also appears to act secondarily as a GABA neurotransmitter agonist (Orr et al. 2009). Spinosad is 

generally considered a new pesticide, especially in mosquito control. It only became recognized 

as a valid product for use against mosquito larvae in 2007 (Hertlein et al. 2010). While the efficacy 

of spinosad varies by species, it has been found effective against the larvae of the Aedes, 

Anopheles, and Culex genera (Bond et al. 2004, Jiang and Mulla 2009). 

 The sub-lethal effects of spinosad on mosquitoes have not been thoroughly researched, but 

studies using other model insects can potentially provide some insight. One study that did measure 

the sub-lethal effects of spinosad on mosquitoes found that surviving Ae. aegypti exposed to LC50 

concentrations had sex-biased results. Surviving females had significantly larger bodies than 

control females while males had significantly smaller bodies than control males. Results from the 

same study showed treated females laid more eggs than controls, but had lower egg hatch 

percentages (Antonio et al. 2009). Larvae of the eastern bumble bee, Bombus impatiens 

(Hymenoptera: Apidae), exposed to varying sub-lethal concentrations of spinosad experienced 

significantly lower worker weights and slower foraging rates (Morandin et al. 2005). The 

neotropical brown stink bug Euschistus heros (Hemiptera: Pentatomidae) showed initial positive 

effects after sub-lethal spinosad exposure with reduced pre-mating latency, but this effect was 

negated after having a significantly lower net reproductive rate (Santos et al. 2018). In contrast, 

increased fecundity was observed in the beneficial insect Orius insidiosus (Hemiptera: 

Anthocoridae) after sub-lethal spinosad exposure (Elzen 2001). While the results were not 
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quantified, morphological defects were found in the sperm of the adult red palm weevil 

Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae), the variety of defects rising with each 

increase in concentration from 10, 50, 100,  and 200 ppm of spinosad (Abdelsalam et al. 2016). 

These studies show repeated observations of negative effects, with one exception, after sub-lethal 

spinosad exposure. The implications of these results cannot be assumed to be the same for 

mosquitoes as these studies evaluated different LC values on a variety of insects with drastically 

different sensitivities, but they do provide general insight into sub-lethal spinosad exposure. Now 

that this product is labeled for larval mosquito control it is necessary to further evaluate the 

potential for sub-lethal effects on mosquitoes of public health concern.  

1.7.2 Lysinibacillus sphaericus 

 Lysinibacillus sphaericus, formerly known as and still frequently referred to as Bacillus 

sphaericus, is a spore forming soil bacterium with insecticidal properties (Ahmed et al. 2007). The 

spores are comprised of two important proteins, BinA and BinB, which are both necessary for 

toxicity in mosquito larvae (Broadwell et al. 1990). These spores must be ingested by the mosquito 

larva, after which they are solubilized in the alkaline midgut, producing larvicidal toxins (Yousten 

1984, Charles 1987). While the exact mechanism of toxicity is unknown, the toxins are received 

into the cytosol of the midgut epithelial cells through receptor mediated endocytosis (Lekakarn et 

al. 2015). It is proposed that the toxins then cause apoptosis through either autophagy or 

cytotoxicity, both having the potential to lead to sepsis and death (Tangsongcharoen et al. 2017). 

Not only is L. sphaericus particularly effective against Culex mosquitoes in laboratory 

experiments, it persists effectively in polluted, organically rich water sources (the natural and ideal 

larval environment for Culex mosquitoes) (Davidson et al. 1984, Tangsongcharoen et al. 2015). 
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Lysinibacillus sphaericus does not effectively control Aedes mosquitoes unless it is synergized 

with toxins from Bacillus thuringiensis (Wirth et al. 2000). 

 Few studies have investigated the effects of sub-lethal exposure of L. sphaericus on any 

insects, let alone mosquitoes. Surviving Cx. quinquefasciatus larvae exposed to an LC50 of L. 

sphaericus showed delayed pupation and decreased adult longevity (Lacey et al. 1987). A colony 

of L. sphaericus resistant Cx. quinquefasciatus developed faster than controls in the absence of L. 

sphaericus, but demonstrated significant population reducing fitness tradeoffs through reduced 

fecundity and fertility (Rodcharoen and Mulla 1997). An important freshwater invertebrate 

predator, Laccotrephes griseus (Hemiptera: Nepidae), experienced reduced feeding, fecundity, 

and delayed maturation after exposure to 25 to 200 ppm of L. sphaericus, the severity of these 

effects increasing with each increased dose (Mathavan et al. 1987). However, a three year study 

in Wisconsin found that L. sphaericus treatments had no observable negative effects on 

populations of 159 different invertebrate taxa, finding only a reduction in mosquito populations 

(Merritt et al. 2005). Lysinibacillus sphaericus has powerful mosquitocidal properties with few 

demonstrated risks to non-target organisms, but the sub-lethal effects on the target organism, the 

mosquito, have not been thoroughly investigated.  

1.7.3 Methoprene 

Methoprene is a pesticide that disrupts the molting process of insects by mimicking 

juvenile hormone (JH). JH is one of two major hormones that regulate the insect molting process, 

the other being 20-hydroxyecdysone. JH is biosynthesized in the corpora allata, an insect endocrine 

gland, and is released directly into the hemolymph (Goodman and Cusson 2012). The presence of 

JH in the insect hemolymph encourages larval tissue growth and prevents precocious adulthood; 

the absence of JH in the presence of 20-hydroxyecdysone initiates a pupal commitment and 
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prevents a larval to larval molt (Jindra et al. 2013). When late instar insect larvae are exposed to 

the JH analog methoprene, interference occurs in the typical modulation of 20-hydroxyecdysone 

by JH and the activation of genes related to pupal progression is inhibited (Wu et al. 2006). 

Specifically, methoprene appears to interrupt the regeneration of midgut tissues from the larval to 

pupal stage which results in midgut disfigurations and incomplete molting, causing death, in 

otherwise morphologically typical pupae (Wu et al. 2006). Methoprene is not effective for killing 

pupal or adult mosquitoes (Staal 1975). 

 Methoprene has been used to control mosquito populations for decades and many 

experiments have looked at the sub-lethal effects of methoprene exposure on mosquito larvae and 

other organisms. A study conducted in Australia found that sub-lethal methoprene exposure 

differentially affected sexes and species. Sub-lethal methoprene dosed Aedes vigilax larvae 

produced adults that survived half as long as the control group, Culex annulirostris females were 

unaffected while males survived significantly longer than controls, and neither males nor females 

of Culex sitiens were affected in any observed capacity (Ritchie et al. 1997). Exposure to an LC50 

or LC5 of methoprene negatively affected total egg production, hatch rates, and adult longevity in 

Cx. quinquefasciatus (Robert and Olson 1989). Another experiment evaluating sub-lethal 

methoprene exposure (0.1 and 0.2 ppb) on Ae. aegypti larvae found reduced adult female longevity 

and glycogen reserves, but no observed effects on adult males (Sawby et al. 1992). A similar 

experiment with Ae. aegypti measured the effects of sub-lethal methoprene exposure (20 ppb) on 

fecundity, fertility, and longevity and only found a significant reduction in longevity for both males 

and females (da Silva et al. 2009). Anopheles dirus larvae subjected to sub-lethal methoprene 

exposure (0.1 ppb) showed an increase in male sex ratio (Sithiprasasna et al. 1996).  
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Most methoprene exposure studies have evaluated standard fitness parameters such as 

fecundity, fertility, and longevity, but there are other important parameters worth investigating. 

The following observation was made in a study examining the lethal effects of methoprene on Ae. 

aegypti. Some surviving males failed to successfully complete the genital rotation that occurs in 

male mosquitoes within 48 hrs post emergence (Spielman and Williams 1966). This observation 

was followed up with an experiment in which Ae. aegypti pupae received topical applications of 

methoprene. This resulted in a significantly slower rotation of the treatment mosquito genitalia 

than the controls, but it failed to actually inhibit this rotation and males were still able to mate after 

the delay (O'Donnell and Klowden 1997). Similar results were observed in Drosophila 

melanogaster (Diptera: Drosophilidae) with some males rendered sterile due to failed genital 

rotation (Bouchard and Wilson 1987).  

The majority of observed effects on mosquitoes after sub-lethal methoprene exposure thus 

far have been negative, many of them reducing fertility and fecundity, but positive effects have 

been seen in other insects. If wild pest insects received these benefits the outcomes could be 

damaging, but in the laboratory they can be redesigned to help control these pests. The sterile 

insect technique (SIT) utilizes the release of laboratory sterilized males in reducing pest insect 

populations, with the goal of sterile males sexually outcompeting their wild and fertile counterparts 

(Klassen and Curtis 2005). Anastrepha fraterculus (Diptera: Tephritidae), a pest of economically 

important horticultural products and a target of the SIT, responds positively to sub-lethal 

methoprene treatment. Newly emerged adult males receiving a topical application of methoprene 

were significantly more attractive to, and mated more frequently with, both young and old females 

for 20 days (Bachmann et al. 2017). At least two genera of this family have economically important 

pest species that appear to benefit from an early adulthood application of methoprene. Males of 
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both Anastrepha and Bactrocera treated with methoprene experienced accelerated sexual 

maturation and enhanced sexual competition (Teal et al. 2013). These results may augment the 

success of SIT releases of these pest flies by incorporating early adult methoprene treatments.  

Accelerated sexual maturation was also found when adult male cat fleas (Siphonatpera: 

Pulicidae) were exposed to JH, methoprene and other JH mimics. Male fleas typically need a blood 

meal before the plug in their epididymis relaxes, which allows sperm to leave the testes (Rothschild 

et al. 1970). 100% of unfed males exposed to JH or the three mimics showed sperm movement 

into epididymis after seven days while 0% of control males had any sperm progression without a 

blood meal (Dean and Meola 1997).  

Stored grains are sometimes treated with methoprene to reduce grain pests (Athanassiou et 

al. 2011). While methoprene treatments do effectively reduce larval populations of grain pests, 

mature adults actually benefit from these treatments. Adult species of grain pest beetles of the 

genera Oryzaephilus, Cryptolestes, and Tribolium produce larger volumes of aggregation 

pheromones after methoprene exposure, leading to higher reproductive rates, negating the initial 

success of larval control (Pierce et al. 1986). However, this same study suggested that pheromone 

baited traps could be supplemented with methoprene to boost their efficiency. It is clear that while 

some insects suffer negative impacts from varying sub-lethal doses of methoprene, some insects 

benefit from the exposure and these benefits can be manipulated to help control those pests. 

1.8 Research Objectives 

Mosquitoes facilitate the spread of debilitating and deadly diseases throughout the world. 

The fitness of adult mosquitoes, including sexual fitness, is dependent upon conditions in the 

larval habitat, areas intentionally and unintentionally contaminated with pesticides and 

herbicides. Some effects of these contaminants on mosquito reproductive health are known, but 
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many are not. There is also scant information about the sperm capacity, in other words the 

expected amount of sperm at any given age, of Culex mosquitoes. By investigating the effects of 

these common water contaminants on the sperm production of Cx. quinquefasciatus, we may be 

able to better understand the male reproductive process and thereby discover more opportunities 

to control this worldwide vector. The specific aims of this study are: to quantify baseline sperm 

production for wild and laboratory reared Cx. quinquefasciatus at 1, 4, 7, and 14 dpe; to evaluate 

the effects of juvenile exposure to sub-lethal concentrations of spinosad, L. sphaericus, 

methoprene, atrazine, and glyphosate on adult sperm production of wild and laboratory reared 

Cx. quinquefasciatus; and to determine whether or not any observed changes from these 

exposures were due to changes in body size as measured by wing lengths. 
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Chapter 2: Culex quinquefasciatus Sperm Counts 

2.1 Introduction 

Mosquitoes transmit zoonotic pathogens by biting infectious animals and subsequently 

biting susceptible humans. These mosquito borne infections can be asymptomatic, debilitating, or 

deadly. Malaria, an endemic disease in tropical areas around the world, kills hundreds of thousands 

of people every year (WHO 2016). The capacity of mosquitoes to vector dangerous, disease 

causing pathogens provides motivation to control mosquito populations in disease endemic areas. 

Traditional pesticide use can effectively control some mosquito populations, but studying the 

biology of mosquitoes provides new and potentially more effective types of control strategies 

(Lees et al. 2014). 

 Culex quinquefasciatus can vector dangerous pathogens with expensive consequences. The 

danger this mosquito presents to public health can be measured in both morbidity and dollars. It is 

an efficient vector of West Nile virus, St. Louis encephalitis virus, and Wuchereria bancrofti 

(Reisen et al. 2005, Bartholomay et al. 2010). Over 40,000 cases of West Nile fever have been 

identified in the United States since its introduction in 1999 (CDC 2016). A 2005 outbreak of West 

Nile fever in California cost the county of Sacramento $2.98 million in direct and indirect costs 

(Barber et al. 2010). Considering that the United States has periodic West Nile fever outbreaks 

throughout the range of Cx. quinquefasciatus, the costs of this mosquito are not insignificant. 

While much is known about the female reproductive and gonotrophic cycles of this mosquito, 

especially as they relate to pathogen transmission, less is known about male reproductive biology. 

 The quantification and correlation of sperm production with age has only been conducted 

for three mosquito species: Aedes aegypti, Aedes albopictus, and Anopheles arabiensis. (Ponlawat 

and Harrington 2007, Helinski and Knols 2009, Hatala et al. 2018). These studies have shown that 
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male mosquitoes are capable of producing sperm throughout their field-relevant lifetimes and that 

larval environmental conditions, which influence adult body size, can impact sperm production 

and mating efficiency (Ponlawat and Harrington 2009, Bader and Williams 2012).  These advances 

in our understanding of the reproductive biology of the male mosquito may provide important 

baseline information for successful mosquito control programs (Ferguson et al. 2005). Particularly 

any strategy which includes the release of modified male mosquitoes. There is no current literature 

on sperm production or capacity for any Culex mosquito. 

 The present study was designed to quantify sperm production of male Culex 

quinquefasciatus. Experiments on laboratory reared insects are used to predict life history traits 

and fitness of wild insects, but genetic diversity and uncontrollable field conditions affecting wild 

insects limit possible inferences (Huho et al. 2007). Therefore, these experiments used laboratory 

reared and wild collected mosquitoes. The first hypothesis of this study was that Cx. 

quinquefasciatus sperm production would increase with age, to a point, for both laboratory and 

wild mosquitoes. The second hypothesis was that laboratory reared mosquitoes would have lower 

sperm counts than wild mosquitoes, as was observed in Ae. aegypti (Ponlawat and Harrington 

2007). These hypotheses were tested by dissecting out the reproductive tracts of laboratory and 

wild mosquitoes, enumerating sperm subsamples at four different age points, and collecting wing 

length data (as a proxy for body size) to rule out size based differences. 

2.2 Materials and Methods 

2.2.1 Mosquitoes 

The medical entomology laboratory in the Life Sciences building at Louisiana State 

University houses an insectary which has a strain of pesticide susceptible Culex quinquefasciatus 

(known as Sebring). The Sebring strain was collected in Sebring, Florida in 1988 and is maintained 
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by the USDA Agricultural Research Station (Stancil 2000). This colony was provided to the LSU 

medical entomology laboratory by East Baton Rouge Mosquito Abatement and Rodent Control in 

January 2015, and has been maintained continuously since that time. 

The maintenance of the Sebring colony was as follows. Adult and larval rearing rooms 

were maintained at 27°C with approximately 80% relative humidity and a 14:10 light:dark cycle. 

Adult mosquito cages (31 cm3) were provided a blood meal of defibrinated chicken blood 

(Rockland™ Immunochemicals, Limerick, PA) once per week via an artificial membrane system 

(Hemotek® Ltd, England). Two days after the blood meal, dark cups filled with deionized water 

were placed inside the adult cages for oviposition. Two to three egg rafts were placed in clear 

plastic containers holding 1.5 liters of aged, deionized water with 100mg of 1:1 liver powder and 

brewer’s yeast (both from MP Biomedicals LLC, Solon, OH). After hatching, the larvae were fed 

the same diet, five times per week. Pupae were removed and placed in plastic cups to facilitate 

eclosion within the adult cages. A 10% sucrose solution was provided in the adult cages ad libitum 

via saturated dental wicks sitting in 150 ml Erlenmeyer flasks. The sucrose solution was replaced 

twice a week and the dental wick once a week. 

Wild mosquito egg rafts were collected in modified gravid traps. Large plastic buckets 

(L:1.27 m, W:1.01 m, H:0.45 m) were filled with four liters of water and 50ml of fish fertilizer 

(Alaska® 5-1-1 Fish Fertilizer) which had infused for two to three days prior to placement. Two 

traps were placed at time, approximately 30 m apart in an area with known Cx. quinquefasciatus 

activity. The traps were immediately south of a tree-covered residential area and north of the 

Residential Life Warehouse on the Louisiana State University, Baton Rouge campus (figure 2.1). 

This location was ideal for collecting Cx. quinquefasciatus with its ample tree cover for birds, 

outdoor dogs, humans, and permanent ditches. The traps were checked for egg rafts one day after 
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placement. Rafts were carefully extracted with fine mesh fabric, placed into cups of water, and 

brought back to the insectary. The eggs and larvae were maintained in the same conditions as the 

Sebring colony. Adults were provided the same sucrose solution ad libitum, but were not blood 

fed. A wild colony was not established in the laboratory and all experiments using wild mosquitoes 

used newly collected egg rafts. 

 
Fig 2.1 Field site for wild Culex quinquefasciatus egg raft collection (30.418104, -91.192537). 

2.2.2 Experimental Design 

Six plastic trays containing 1.5 L of aged diH2O and 100 mg of larval diet were set up 

representing six simultaneous replicates, three for the Sebring colony eggs and three for the wild 

collected eggs. The three Sebring trays each received two egg rafts. All egg rafts came from the 

same blood feeding event to ensure uniformity in age, heterogeneity in maternal heritage, and that 

each replicate was a distinct cohort. The three wild trays each received two egg rafts. All egg rafts 
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were collected at the same time and from the same trap site, again providing age uniformity and 

maternal heterogeneity. Eggs hatched within 24-48 hrs and were provided 100 mg of larval diet, 

five days on and two days off. 

The following measures were taken to control for larval density. Within 24 hrs after 

hatching, a new identical tray was assembled for each cohort. Two hundred larvae were collected 

from their original tray and placed in a new density controlled tray. Remaining larvae from the 

original trays were discarded. This was repeated for all six cohorts. To date there is not a reliable 

method for identifying Culex eggs to species while maintaining their viability. Once larvae were 

third instars, 20 larvae per wild tray were taken at random for identification. Morphological 

characteristics of the wild larvae were evaluated using a dichotomous key (Burkett-Cadena 2013). 

If any tray was found to contain larvae of any other species, the entire tray was discarded and the 

experiment was rescheduled until new egg rafts could be collected. 

Upon pupation, 80 pupae were removed from each tray using a wide-lipped disposable 

pipette and placed in small water filled cups. Each cohort’s cup of pupae was placed in 

corresponding and labeled adult cages. A 10% sucrose solution was provided in the adult cages ad 

libitum via saturated dental wicks sitting in 150 ml Erlenmeyer flasks. At the first signs of eclosion 

the adult cages were checked at hourly intervals.  All eclosed females were aspirated out of the 

cages and discarded to preserve the virginity of the males. This method is reliable because male 

mosquitoes are incapable of copulation within the first 24 hrs after eclosion. After a sufficient 

number of successfully eclosed males were present in each cage (approximately 50), the pupal 

cups were removed and any remaining pupae were discarded. 

Five adult males were removed from each cage at the following time points: 1, 4, 7, and 

14 days post-eclosion (dpe). This provided a sample size of 15 mosquitoes per time point, per 
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population (table 2.1). Mosquitoes were placed in labeled plastic vials and then stored at -20°C 

until they were dissected. 

Table 2.1 Total # of mosquitoes dissected per age and population 

Population 1 Day 4 Days 7 Days 14 Days Total 

Sebring 15 15 15 15 60 

Wild 15 15 15 15 60 

 

2.2.3 Dissection, Quantification, and Wing Lengths 

Each dissection was conducted under a binocular dissecting scope, inside a plastic petri 

dish, and used the following tools and supplies: fine forceps, an insect pinning needle, a micro 

needle, deionized water, Wright-Giemsa dye, and microcentrifuge tubes. Successful dissections 

followed these steps, a modified version of the methods developed by Ponlawat (Ponlawat and 

Harrington 2007). Mosquitoes were pinned laterally through the thorax and immobilized on the 

petri dish. Legs were removed and discarded. Wings were removed at their base and the left wing 

was stored in a 1.5 mL microcentrifuge tube with 70% ethanol. A 10 µL drop of deionized water 

was placed near the distal end of the abdomen. With the mosquito still immobilized via pin through 

the thorax, the claspers were grabbed using fine forceps. The claspers were pulled gently away 

from the body until the intersegmental membranes between the last two to three abdominal tergites 

became visible, translucent, and torn. After the intersegmental membranes were torn, the exposed 

internal organs were brought into contact with the 10 µL drop of water (figure 2.2).  

The claspers were then pulled until the testes exited the proximal body cavity. The body 

was then discarded. Using the insect pin and the micro needle, extraneous internal and external 

tissues were removed from around the reproductive organs. As this process was likely to remove 

some water, the isolated reproductive tract, including the testes, accessory glands, and seminal 

vesicles, was placed in a new 10 µL drop of water (figure 2.3). 
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Fig 2.2. Numbered steps of the dissection process for isolating the reproductive tract of male 

Culex quinquefasciatus. 
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Fig 2.3. The male reproductive tract of Culex quinquefasciatus showing paired 1. Testes 2. 

Seminal vesicles 3. Male accessory glands. 

 

Using the pin and the micro needle, these tissues were shredded until no visible pieces 

remained. This resulted in a slightly clouded final solution. This solution was pipetted into a 1.5 

mL microcentrifuge tube, the pin and needle rinsed inside the same tube with 50 µL of diH20, and 

combined with 5 µL of solution one and 15 µL of solution two of the three step Wright-Giemsa 

stain, and 120 µL of diH20 resulting in a final volume of 200 µL of dyed sperm solution per 

mosquito. Each microcentrifuge tube was vortexed individually for 10-20 seconds, and then stirred 

using a P20 pipette. Once thoroughly mixed, 10 individual 5 µL drops were placed on a clean 

microscope slide and allowed to dry, displaying 50 µL, representing one fourth of the total volume 

of sperm solution for each dissected mosquito. Each drop on each slide was viewed at 40x and the 

total sperm per drop was counted and recorded (figure 2.4). The left wing was collected and 

preserved from each successfully dissected mosquito. These wings were measured using a Nikon 

binocular camera attachment. Lengths were taken from the alular notch to the second radial branch, 

excluding scales (Bourguet et al. 2004). 
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Fig 2.4. A labeled slide containing 10 drops of 5 µL stained sperm solution, representing 25% of 

the total sperm solution of one mosquito. 
 

2.2.5 Statistical Analysis 

 Data were analyzed using GraphPad Prism 5© (La Jolla, CA). To accommodate for non-

normal distributions and small sample sizes (N = 15 per population per time point), sperm data 

were subjected to the nonparametric Mann-Whitney U test. Independent variables included 

population and age, the dependent variable was sperm count. Wing length data were normally 

distributed and had a large sample size (N = 60 per population) and were analyzed with the 

Student’s t-test. The independent variable was population and the dependent variable was wing 

length. To determine whether average body size per population influenced sperm count, sperm and 

wing measurements were combined into one variable, number of sperm/mm of wing length. These 

data were also subjected to the nonparametric Mann-Whitney U test. 

2.3 Results 

Mann-Whitney U Tests compared the sperm counts of the Sebring population at 1, 4, 7, 

and 14 dpe to the corresponding wild sperm counts at those ages. Significant differences were 

found at ages 1 and 14 dpe (U = 22, P = 0.0002 and U = 0, P = <0.0001, α = 0.05) when comparing 

same-aged Sebring and wild mosquitoes (figure 2.5). 
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Fig 2.5.  Average number of sperm per 50 µl of sperm solution for Sebring and wild collected 

Culex quinquefasciatus by age in days (N = 120). Paired bars marked by asterisks are statistically 

significant from each other with α = 0.05. 

 

 The Student’s t-test was used to analyze wing length data from both populations. Adult 

mosquitoes do not grow over time, so dpe was not factored into the analysis. Therefore, all wing 

lengths per population were analyzed together regardless of age at the time of dissection. Sebring 

mosquitoes had significantly larger wings (P = <0.0001, N = 60, t = 9.989, df = 118, α = 0.05) than 

wild mosquitoes. Means and range of wing length distribution are shown (figure 2.6). 

 
Fig 2.6.  Average wing length for Sebring and wild collected Culex quinquefasciatus (N = 120). 

Plots with different letters are statistically significant with α = 0.05. 
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 Adult body size has been positively correlated with sperm production in some mosquitoes 

(Ponlawat and Harrington 2007). To determine whether the difference in average body size 

between the Sebring and wild mosquitoes was affecting sperm count, sperm and wing length 

measurements were reduced to one variable, number of sperm/mm of wing length. 

After adjusting these variables to account for body size bias, no change in statistical 

significance was observed. Sperm counts at 1 and 14 dpe were still significant (U = 25, P = 0.0003 

and U = 0, P = <0.0001, N = 15, α = 0.05), sperm counts at 4 and 7 were not (figure 2.7). 

 
Fig 2.7.  Average number of sperm per/mm wing length for Sebring and wild collected Culex 

quinquefasciatus by age in days (N = 120). Paired bars marked by asterisks are statistically 

significant from each other with α = 0.05. 

 

2.4 Discussion 

 

The first hypothesis of this study was that Culex quinquefasciatus sperm production would 

increase with age for both laboratory and wild mosquitoes and analysis of these data supports this 

hypothesis. Both the Sebring and wild populations showed continued increases in sperm count 

from 1 to 14 dpe. While these data did not show any senescence related decreases in sperm, it is 
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expected that data collected beyond this time range would show a plateau effect and an eventual 

decrease in sperm production with age (Ponlawat and Harrington 2007). These data also show that 

older virgin males have greater reproductive capacity than younger virgin males. Radio-

sterilization of adult male mosquitoes produced the most competitive males when compared to 

males sterilized as pupae (Andreasen and Curtis 2005), and 5-day-old sterile males significantly 

outcompeted 1-day-old sterile males (Oliva et al. 2012). The current study supports these findings. 

For example, the mean sperm count for Sebring day 4 males was 5,373 vs the Sebring day 14 

males at 8,772 (and these numbers only represent 25% of the total sperm per mosquito). The 

difference of 10 days shows a 61.25% increase in sperm of these Cx. quinquefasciatus. MAG size 

also increases with age, a known limiting factor of insemination ability for male mosquitoes 

(Foster and Lea 1975). With increased sperm counts and larger MAG substance capacity it is not 

unreasonable to hypothesize that older, virgin males would be able to inseminate more females 

than their younger counterparts. 

 The second hypothesis of this study was that laboratory reared mosquitoes would have 

lower sperm counts than wild mosquitoes, but the analysis of these data does not support this 

hypothesis. The Sebring colony had significantly higher sperm counts at 1 and 14 dpe, and 

numerically higher sperm counts at 4 and 7 dpe (no statistical significance). To date, only one 

study has compared sperm counts of laboratory and wild mosquitoes. The results of that study 

showed higher sperm counts in wild Ae. aegypti than in two different laboratory colonies of the 

same species (Ponlawat and Harrington 2007). Three potential explanations for this apparent 

contradiction (beyond the simple fact that these are different species with different life histories 

and reproductive strategies) are presented.  



41 

 

First, the wild Ae. aegypti in the Ponlawat and Harrington study were collected as pupae 

and separated by sex after eclosion. This means that almost the entire developmental period of 

these mosquitoes was governed by uncontrolled variables, of particular note, the larval diet. Larval 

diet not only impacts adult longevity and growth, but reproductive maturation and fecundity as 

well (Farkas and Brust 1985, Joy et al. 2010). This suggests that the Ae. aegypti collected in 

Ponlawat and Harrington’s study may have come from a larval environment with a more nutrient 

rich diet than what was supplied to the larvae in their laboratory colony. In the present study, wild 

eggs were collected and hatched in laboratory conditions. Wild and Sebring larvae were reared on 

identical diets and in identical environments, eliminating diet and environmental fluctuations as 

possible factors in sperm production in this study.  

Second, Boggs explains that resource allocation is not a static function in organisms, but 

is dynamically dependent upon external stimuli, especially nutrient availability. Adult mosquito 

nutrient acquisition and allocation can be modeled after a triangle. At the top, nutrient acquisition 

occurs, and depending upon the needs of the mosquito in its current environment and physiological 

state, nutrients are allocated. Nutrients down one leg of the triangle go to reproduction energy, 

down the other to survival energy, or from one leg to the other at the bottom if needs have changed 

after allocation has already occurred. This type of allocation necessitates tradeoffs, e.g. flight 

energy may decrease during oogenesis (Boggs 2009). A well-established example of this process 

is in the adult female mosquito. In adverse conditions, sugar questing will be prioritized and 

nutrients will be used to ensure survival; in ideal conditions, blood meal questing will be prioritized 

to support reproduction (Foster 1995). If a female mosquito begins oogenesis, but is then found in 

adverse conditions, she may resorb nutrients from the ovarian follicles to increase her chances of 

survival (Clifton and Noriega 2011). Similar conclusions may be drawn for adult male mosquito 
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nutrient allocation. Males require sugar meals to sustain flight energy, up to 50% of which is used 

during pre-mating swarming behavior (Yuval et al. 1994). Sugar meals also fuel sperm production 

and insemination which occur at significant energetic costs (Bargielowski et al. 2011). 

Insemination costs have been shown to be taxing enough to reduce longevity by up to 15 days 

(South et al. 2009). When comparing the relative stress of laboratory mosquitoes (abundant food, 

limited flight space, and a complete lack of predators) to that of wild mosquitoes (flight energy 

spent on finding food, mating partners, and avoiding predators) in the context of the triangle model 

of nutrient allocation, higher sperm counts in laboratory reared males would be expected. Evidence 

supporting this idea was found when multi-generational laboratory reared males had significantly 

lower nutrient reserves than wild mosquitoes collected and reared in laboratory conditions, 

reflecting the prioritization of nutrient allocation for survival (Huho et al. 2007). 

Third, the artificial selection pressure on laboratory colony insects induces genetic and 

behavioral changes (Mason et al. 1987). The olive fruit fly Dacus oleae (Diptera: Tephritidae) 

experienced genetic changes at three observed loci after only four generations of laboratory colony 

conditions (Loukas et al. 1985). Observed behavioral changes in multi-generational laboratory 

colonies include reduced dispersal when released, reduced mating compatibility with wild 

conspecifics, and reduced mate finding (Boller 1972). Laboratory reared Anopheles 

quadrimaculatus intended for SIT release were unable to locate females in the wild, a failure 

attributed to behavioral changes from colony selection pressure (Dame et al. 1964). Another study 

showed that An. quadrimaculatus reared in the laboratory had significantly lower flight capacity 

which, again, led to failed SIT releases (Rai 1969). The most significant effect of laboratory 

induced changes supporting the observations of this study were found in a laboratory colony of 

An. arabiensis. Colonization pressure on these mosquitoes hastened sexual maturation in males, 
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demonstrated by 96% of males having completed their genital rotation by 17 hrs post-eclosion 

(compared to 0% of wild males) and successful copulation by some colony males as early as 11 

hrs post-eclosion (Oliva et al. 2011). The timing of genital rotation was not observed in the present 

study, but the significantly higher sperm production in the Sebring colony at 1 dpe suggests 

accelerated sexual maturation, possibly induced by artificial selection pressure in the laboratory. 

The Sebring mosquitoes had significantly larger wing lengths than the wild mosquitoes. 

When larval conditions are consistent, as they were in this study, larger males are expected to have 

higher sperm counts (Ponlawat and Harrington 2007, Bader and Williams 2012). To determine 

whether or not the observed difference in body size was a determining factor in sperm production, 

the two dependent variables (number of sperm and wing length) were combined into one variable, 

number of sperm/mm of wing length. After analyzing this new variable by 1, 4, 7, and 14 dpe, it 

was determined that the numerically slight, but statistically significant difference in wing length 

did not affect the sperm count of these mosquitoes. It is, therefore, more reasonable to suggest that 

one or more of the proposed explanations above are responsible for the difference between the 

Sebring and wild sperm counts. 

This is the first recorded study quantifying the spermatozoa of Cx. quinquefasciatus 

through actual enumeration rather than prediction based on spermatocyst number (Jones 1967). As 

a globally distributed species capable of vectoring dangerous pathogens, fundamental advances in 

our understanding of the reproductive biology of both sexes is important. This study suggests that 

male Cx. quinquefasciatus sperm production increases over time. This study also suggests that 

Sebring colony mosquitoes produce more sperm than locally collected wild conspecifics. While 

the exact cause of this difference is unknown, potential explanations include different priorities for 

nutrient allocation, or artificial selection pressure induced by colonization. These results serve as 
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good reminder that care should be taken when laboratory colony collected data is used to infer 

qualities or potential of wild populations of mosquitoes. Future research looking at sperm 

production of different populations of wild and laboratory mosquitoes would help clarify these 

points. 
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Chapter 3: Effects of Pesticide Exposure on Sperm Production 

3.1 Introduction 

Controlling mosquito populations is an important part of reducing the incidence of 

mosquito borne diseases (Carney et al. 2008). Traditional pesticide use can effectively control 

some mosquito populations, but studying the biology of mosquitoes provides new and potentially 

more effective types of control strategies. Because the reproductive system is a potential target for 

control strategies, the female reproductive and gonotrophic cycles of known vector species from 

the genera Aedes, Anopheles, and Culex have been well studied (Stouthamer et al. 1999, Briegel 

and Timmermann 2001, Zhu and Noriega 2016). Far less is known about the male reproductive 

system of these mosquitoes, particularly regarding sperm production. 

The effects of irradiation and chemical exposure on mosquito sperm production have only 

been evaluated for one species of mosquito, Anopheles arabiensis. The two studies evaluating 

these effects did so with a focus on the effects of radio-sterilization of mosquitoes for SIT releases. 

The first study irradiated either pupae or 6-day-old adults with 70 or 120 Gy and found that pupal, 

but not adult, irradiation at both doses significantly decreased sperm production (Bader and 

Williams 2012). The second study exposed pupae to 70 Gy, the organochloride dieldrin, or both. 

All three treatments showed an initial sperm reduction at 2 days post eclosion (dpe), but the only 

treatment that did not recover, recovery defined by increased sperm production, by 6 dpe was the 

70 Gy treated group (Damiens et al. 2013). These experiments demonstrated the effects of 

sterilization on the sperm production of Anopheles mosquitoes during the pupal and adult stages.  

The majority of spermatogenesis occurs during the larval stage, providing the largest 

window of opportunity for chemical disruption of sperm production (Horsfall and Ronquillo 1970, 

Dumser 1980). The studies by Bader and Damiens show that irradiation and chemical stressors 
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can indeed effect sperm production in mosquitoes, but these studies only exposed pupae to these 

compounds. It is not known if sub-lethal chemical concentrations, such as residual larvicides or 

herbicides, in the habitats of larval mosquitoes have any effect on adult sperm production. 

Understanding how chemical exposure effects sperm production in wild mosquitoes could help us 

better understand the reproductive biology of wild mosquitoes. 

The present study was designed to examine the effects of larval exposure to sub-lethal 

concentrations of pesticides and herbicides on the sperm production of adult Cx. quinquefasciatus. 

Experiments on laboratory reared insects are used to predict life history traits and fitness of wild 

insects, but genetic diversity and uncontrollable field conditions effecting wild insects limit 

possible extrapolations (Huho et al. 2007). Therefore, these experiments used laboratory reared 

and wild collected mosquitoes. The first hypothesis of this study was that sperm production of 

wild collected and laboratory reared mosquitoes would be negatively affected by larval exposure 

to sub-lethal concentrations of spinosad, Lysinibacillus sphaericus, methoprene, atrazine, and 

glyphosate. The second hypothesis of this study was that these chemical exposures would not 

affect body size, measured by wing length, so that any observed reduction in sperm would be 

caused by mechanisms other than retarded somatic growth. These hypotheses were tested by 

exposing third instar larvae to one of the five pesticides, dissecting out the adult reproductive tracts, 

conducting sperm counts at four age points, and collecting wing length data. 

3.2 Materials and Methods 

3.2.1 Mosquitoes 

The medical entomology laboratory in the Life Sciences building at Louisiana State 

University houses an insectary which has a strain of pesticide susceptible Culex quinquefasciatus 

(known as Sebring). The Sebring strain was collected in Sebring, Florida in 1988 and is maintained 
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by the USDA Agricultural Research Station (Stancil 2000). This colony was provided to the LSU 

medical entomology laboratory by East Baton Rouge Mosquito Abatement and Rodent Control in 

January 2015, and has been maintained continuously since that time. 

The maintenance of the Sebring colony was as follows. Adult and larval rearing rooms 

were maintained at 27°C with approximately 80% relative humidity and a 14:10 light:dark cycle. 

Adult mosquito cages (31 cm3) were provided a blood meal of defibrinated chicken blood 

(Rockland™ Immunochemicals, Limerick, PA) once per week via an artificial membrane system 

(Hemotek® Ltd, England). Two days after the blood meal, dark cups filled with deionized water 

were placed inside the adult cages for oviposition. Two to three egg rafts were placed in clear 

plastic containers holding 1.5 L of aged, deionized water with 100 mg of 1:1 liver powder and 

brewer’s yeast (both from MP Biomedicals LLC, Solon, OH). After hatching, the larvae were fed 

the same diet, five times per week. Pupae were removed and placed in plastic cups to facilitate 

eclosion within the adult cages. A 10% sucrose solution was provided in the adult cages ad libitum 

via saturated dental wicks sitting in 150 ml Erlenmeyer flasks. The sucrose solution was replaced 

twice a week and the dental wick once a week. 

Wild mosquito egg rafts were collected in modified gravid traps. Large plastic buckets 

(L:1.27 m, W:1.01 m, H:0.45 m) were filled with four liters of water and 50ml of fish fertilizer 

(Alaska® 5-1-1 Fish Fertilizer) which had infused for two to three days prior to placement. Two 

traps were placed at a time, approximately 30 m. apart in an area with known Cx. quinquefasciatus 

activity. The traps were immediately south of a tree covered residential area and north of the 

Residential Life Warehouse on the Louisiana State University, Baton Rouge campus. This location 

was ideal for collecting Cx. quinquefasciatus with its ample tree cover for birds, outdoor dogs, 

humans, and permanent ditches. The traps were checked for egg rafts one day after placement. 
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Rafts were carefully extracted with fine mesh fabric, placed into cups of water, and brought back 

to the insectary. The eggs and larvae were maintained in the same conditions as the Sebring colony. 

Adults were provided the same sugar water solution ad libitum, but were not blood fed. A wild 

colony was not established in the laboratory and all experiments using wild mosquitoes used newly 

collected egg rafts. 

3.2.2 Experimental Design 

Twelve plastic trays, each containing 1.5 L of aged diH2O and 100mg of larval diet (1:1 

liver powder and brewer’s yeast), were set up. Six trays were used for Sebring colony experiments 

and six were used for wild collected mosquitoes. Three trays per population were treated with a 

pesticide and the remaining three were controls. The six Sebring trays each received two egg rafts. 

All egg rafts came from the same blood feeding event to ensure uniformity in age, heterogeneity 

in maternal heritage, and that each replicate was a distinct cohort. The six wild trays each received 

two egg rafts. Egg rafts were collected at the same time and from the same trap site, again providing 

age uniformity and maternal heterogeneity. Wild eggs were not established as a colony, but were 

collected from the wild at the beginning of each experiment. Eggs hatched within 24-48 hrs and 

were provided 100mg of larval diet, five days on and two days off. This design was repeated five 

times, once for each of the following pesticide or herbicide treatments: spinosad, L. sphaericus, 

methoprene, atrazine, and glyphosate. 

The following measures were taken to control for larval density. Within 24 hrs after 

hatching, a new identical tray was assembled for each cohort. Approximately 200 larvae were 

collected from their original tray and placed in a new density controlled tray. Remaining larvae 

from the original trays were discarded. This was repeated for all six treatments and all six controls, 

per each chemical treatment. To date there is not a reliable method for identifying wild Culex eggs 
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to species while maintaining their viability. Once larvae were third instars, 20 larvae per wild tray 

were taken at random for identification. Morphological characteristics of the wild larvae were 

evaluated using a dichotomous key (Burkett-Cadena 2013). If any tray was found to contain larvae 

of any other species the entire tray was discarded and the experiment was rescheduled until new 

egg rafts could be collected. 

Once larvae from both populations were third instars, sub-lethal concentrations of pesticide 

were added to each treatment tray (table 3.1). The spinosad, L. sphaericus, and methoprene 

treatments received laboratory determined LC10 doses and the atrazine and glyphosate treatments 

received field relevant doses as determined by field collected water contamination data (Gilliom 

and Hamilton 2006, Bara et al. 2014). Technical grade atrazine was dissolved in ethanol, technical 

grade glyphosate was dissolved in chloroform, technical grade spinosad was dissolved in acetone, 

and the water soluble formulated products L. sphaericus and methoprene were not dissolved.  

Table 3.1: Sub-lethal concentrations of active ingredient used in sperm quantification assays. 

Product PPM of Active Ingredient 

Spinosad 0.007 

B. sphaericus 0.000028 

Methoprene 0.0003 

Atrazine 5 

Glyphosate 5 

 

Eighty pupae were removed from each tray using a wide-lipped disposable pipette and 

placed in small water filled cups. Each cohort’s cup of pupae was placed in corresponding and 

labeled adult cages. A 10% sucrose solution was provided in the adult cages ad libitum via 

saturated dental wicks sitting in 150 ml Erlenmeyer flasks. At the first signs of eclosion the adult 

cages were checked at hourly intervals.  All eclosed females were aspirated out of the cages and 

discarded to preserve the virginity of the males. This method is reliable because male mosquitoes 

are incapable of copulation within the first 24 hrs after eclosion. After a sufficient number of 
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successfully eclosed males were present in each cage (approximately 50), the pupal cups were 

removed and any remaining pupae were discarded. 

Five adult males were removed from each treatment cage and two adult males from each 

control cage at the following time points: 1, 4, 7, and 14 dpe. This provided a sample size of 15 

treatment and 6 control mosquitoes per time point, per population, per chemical treatment (tables 

3.2 and 3.3). Removed males were kept in labeled plastic vials and stored at -20°C until dissection 

Table 3.2. Total number of Sebring mosquitoes dissected after pesticide treatments. 

 Sebring 1 Day 4 Days 7 Days 14 Days Total 

Treatment Spinosad 15 15 15 15 60 

L. sphaericus 15 15 15 15 60 

Methoprene 15 15 15 15 60 

Atrazine 15 15 15 15 60 

Glyphosate 15 15 15 15 60 

Control Spinosad 6 6 6 6 24 

L. sphaericus 6 6 6 6 24 

Methoprene 6 6 6 6 24 

Atrazine 6 6 6 6 24 

Glyphosate 6 6 6 6 24 

Total 105 105 105 105 420 

 

Table 3.3. Total number of wild mosquitoes dissected after pesticide treatments. 

 Wild 1 Day 4 Days 7 Days 14 Days Total 

Treatment Spinosad 15 15 15 15 60 

L. sphaericus 15 15 15 15 60 

Methoprene 15 15 15 15 60 

Atrazine 15 15 15 15 60 

Glyphosate 15 15 15 15 60 

Control Spinosad 6 6 6 6 24 

L. sphaericus 6 6 6 6 24 

Methoprene 6 6 6 6 24 

Atrazine 6 6 6 6 24 

Glyphosate 6 6 6 6 24 

Total 105 105 105 105 420 
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3.2.3 Pesticide Concentration Determination 

 The field relevant, sub-lethal concentration of herbicides, 5ppm of atrazine and glyphosate, 

were determined by evaluating available literature on surface water contamination of these 

products (Gilliom and Hamilton 2006, Bara et al. 2014). The LC10 of spinosad and Lysinibacillus 

sphaericus were determined by interpreting data previously collected from the same Sebring 

colony, by Nick DeLisi, the author having helped set up and collect data from these experiments 

(DeLisi 2017). 

A diagnostic dose response curve for methoprene was developed by exposing third instar 

larvae of the Sebring colony to five different concentrations formulated Methoprene, ~20 larvae 

per glass cup with three replicates at each concentration. This experiment was conducted five times 

on five different dates. Methoprene induced mortality is measured in holometabolous insects by 

observing the number of unsuccessfully vs successfully eclosed adults post treatment. The 

following formula has been developed to calculate percent inhibited eclosion (%IE), a percent that 

can be used to represent mortality. %IE = 100-100(T/C), where T = % of successfully eclosed 

treatment subjects and C = % of successfully eclosed control subjects (WHO 2005). The %IE 

values were subjected to probit analysis to determine LC50 and LC10 values (0.0035 and 0.0003, 

respectively) using StatGraphics18© (Warrenton, VA).  

3.2.4 Dissection, Quantification, and Wing Lengths 

Each dissection was conducted under a binocular dissecting scope, inside a plastic petri 

dish, and used the following tools and supplies: fine forceps, an insect pinning needle, a micro 

needle, deionized water, Wright-Giemsa dye, and microcentrifuge tubes. Dissections followed 

these steps, a modified version of the methods developed by Ponlawat (Ponlawat and Harrington 

2007). Mosquitoes were pinned laterally through the thorax on the petri dish. Legs were removed 
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and discarded. Wings were removed at their base and the left wing was stored in a 1.5 mL 

microcentrifuge tube with 70% ethanol. A 10 µL drop of dIH20 was placed at the distal end of the 

abdomen. With the mosquito still immobilized via pin through the thorax, the claspers were 

grabbed using fine forceps. The claspers were pulled gently away from the body until the 

intersegmental membranes between the last two to three abdominal tergites became visible, 

translucent, and torn. The exposed internal organs were then brought into contact with the 10 µL 

drop of water. The claspers were then pulled until the testes exited the proximal body cavity. The 

body was then discarded. Using the insect pin and the micro needle, extraneous internal and 

external tissues were removed from around the reproductive organs. As this process was likely to 

remove some water, the isolated reproductive tract, including the testes, accessory glands, and 

seminal vesicles, was placed in a new 10 µL drop of water. Using the pin and the micro needle, all 

of the present tissues were shredded until no identifiable tissues remained, resulting in a slightly 

clouded final solution. This solution was pipetted into a 1.5 mL microcentrifuge tube, the pin and 

needle rinsed inside the same tube with 50µL of diH20, and combined with 5 µL of solution one 

and 15 µL of solution two of the three step Wright-Giemsa stain, and 120 µL of diH20 resulting 

in a final volume of 200 µL of dyed sperm solution per mosquito. Each microcentrifuge tube was 

vortexed individually for 10-20 seconds and then stirred using a P20 pipette. Once thoroughly 

mixed, 10 individual 5 µL drops were placed on a clean microscope slide and allowed to dry, 

displaying 50 µL, representing one fourth of the total volume of sperm solution for each dissected 

mosquito. Each drop on each slide was viewed at 40x and the total sperm per drop was counted 

and recorded. The left wing was collected and preserved from each successfully dissected 

mosquito. These wings were measured using a Nikon binocular camera attachment. Lengths were 

taken from the alular notch to the second radial branch, excluding scales (Bourguet et al. 2004). 
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3.2.5 Statistical Analysis 
 

 Both sperm count and wing length data were analyzed using GraphPad Prism 5© (La Jolla, 

CA). To accommodate for non-normal distributions and small sample sizes (N = 15 per population, 

per time point, per treatment; control N = 6 per population, per time point, per treatment), sperm 

data were subjected to the nonparametric Mann-Whitney U test. Separate statistical comparisons 

made between the treatment and corresponding control group for each chemical (i.e., statistical 

comparisons were not made among chemical treatments or mosquito populations. Wing length 

data (N = 60 per population, per treatment; control N = 24 per population, per treatment) and were 

analyzed with the nonparametric Kruskal-Wallis one-way ANOVA with the post hoc Dunn’s test. 

3.3 Results 

Spinosad treatments of the Sebring colony larvae showed a significant decrease in sperm 

at 1 dpe (U = 0, P = 0.0005, α = 0.05) and 4 dpe (U = 9, P = 0.0057, α = 0.05), high variation at 4 

and 7 dpe, and no difference in sperm count or variation at 14 dpe (figure 3.1). 

Lysinibacillus sphaericus treatments of the Sebring colony larvae showed a significant 

decrease in sperm at 1 dpe (U = 0, P = 0.0005, α = 0.05) and no difference in sperm count or 

variation at 4, 7, or 14 dpe (figure 3.2). 

Methoprene treatments of the Sebring colony larvae showed a significant increase in 

sperm at 1 dpe (U = 0, P = 0.0005, α = 0.05), 4 dpe (U = 0, P = 0.0005, α = 0.05), and 7 dpe (U = 

0, P = 0.0005, α = 0.05) with no difference in sperm count at 14 dpe (figure 3.3). 

Atrazine treatments of the Sebring colony larvae showed no significant difference in sperm 

count at any age point (figure 3.4). 

Glyphosate treatments of the Sebring colony larvae showed a significant decrease in sperm 

at 4 dpe (U = 0, P = 0.0005, α = 0.05), but no difference at 1, 7, or 14 dpe (figure 3.5). 
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Fig 3.1. Average number of sperm per 50µl of sperm solution for Sebring Culex 

quinquefasciatus treated with spinosad by age in days (N = 60) and control (N = 24). Treatment 

and control bars of the same age marked with an asterisk are statistically significant from each 

other with α = 0.05. 
 

               
Fig 3.2. Average number of sperm per 50µl of sperm solution for Sebring Culex 

quinquefasciatus treated with Lysinibacillus sphaericus by age in days (N = 60) and control (N = 

24). Treatment and control bars of the same age marked with an asterisk are statistically 

significant from each other with α = 0.05. 
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Fig 3.3. Average number of sperm per 50µl of sperm solution for Sebring Culex 

quinquefasciatus treated with methoprene by age in days (N = 60) and control (N = 24). 

Treatment and control bars of the same age marked with an asterisk are statistically significant 

from each other with α = 0.05. 

 

      
Fig 3.4. Average number of sperm per 50µl of sperm solution for Sebring Culex 

quinquefasciatus treated with atrazine by age in days (N = 60) and control (N = 24). Treatment 

and control bars of the same age marked with an asterisk are statistically significant from each 

other with α = 0.05. 
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Fig 3.5. Average number of sperm per 50µl of sperm solution for Sebring Culex 

quinquefasciatus treated with glyphosate by age in days (N = 60) and control (N = 24). 

Treatment and control bars of the same age marked with an asterisk are statistically significant 

from each other with α = 0.05. 
 

The nonparametric Kruskal-Wallis one-way ANOVA was used to determine differences 

in wing length among Sebring treatments and controls. There was no overall statistical 

significance, nor any specific differences after using the post hoc Dunn’s test to compare each 

individual treatment to its control (figure 3.6). 

                        
Fig 3.6. Average wing length for Sebring Culex quinquefasciatus (N = 420). Plots with different 

letters are statistically significant with α = 0.05. 
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Spinosad treatments of the wild larvae showed no significant difference in sperm count at 

any age point (figure 3.7). 

Lysinibacillus sphaericus treatments of the wild larvae showed no significant difference in 

sperm count at any age point (figure 3.8). 

Methoprene treatments of the wild larvae showed a significant increase in sperm at 1 dpe 

(U = 0, P = 0.0005, α = 0.05), 4 dpe (U = 0, P = 0.0005, α = 0.05), and 7 dpe (U = 0, P = 0.0005, 

α = 0.05) with no difference in sperm count at 14 dpe (figure 3.9). 

Atrazine treatments of the wild larvae showed no significant difference in sperm count at 

any age point (figure 3.10). 

Glyphosate treatments of the wild larvae showed no significant difference in sperm count 

at any age point (figure 3.11). 

     
Fig 3.7. Average number of sperm per 50µl of sperm solution for wild Culex quinquefasciatus 

treated with spinosad by age in days (N = 60) and control (N = 24). Treatment and control bars 

of the same age marked with an asterisk are statistically significant from each other with α = 

0.05. 
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Fig 3.8. Average number of sperm per 50µl of sperm solution for wild Culex quinquefasciatus 

treated with Lysinibacillus sphaericus by age in days (N = 60) and control (N = 24). Treatment 

and control bars of the same age marked with an asterisk are statistically significant from each 

other with α = 0.05. 
 

           
Fig 3.9. Average number of sperm per 50 µl of sperm solution for wild Culex quinquefasciatus 

treated with methoprene by age in days (N = 60) and control (N = 24). Treatment and control 

bars of the same age marked with an asterisk are statistically significant from each other with α = 

0.05. 
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Fig 3.10. Average number of sperm per 50 µl of sperm solution for wild Culex quinquefasciatus 

treated with atrazine by age in days (N = 60) and control (N = 24). Treatment and control bars of 

the same age marked with an asterisk are statistically significant from each other with α = 0.05. 
 

  
Fig 3.11. Average number of sperm per 50 µl of sperm solution for wild Culex quinquefasciatus 

treated with glyphosate by age in days (N = 60) and control (N = 24). Treatment and control bars 

of the same age marked with an asterisk are statistically significant from each other with α = 

0.05. 
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The nonparametric Kruskal-Wallis one-way ANOVA was used to determine differences 

in wing length among wild treatments and controls. There was no overall statistical significance, 

nor any specific differences after using the post hoc Dunn’s test to compare each individual 

treatment to its control (figure 3.12). 

 
Fig 3.12. Average wing length for wild Culex quinquefasciatus (N = 420). Plots with different 

letters are statistically significant with α = 0.05. 

 

3.4 Discussion 
 

 The first hypothesis of this study was that sperm production of wild collected and 

laboratory reared mosquitoes would be negatively affected by larval exposure to sub-lethal 

concentrations of spinosad, Lysinibacillus sphaericus, methoprene, atrazine, and glyphosate. As 

the results of each treatment varied from one to the next, it is difficult to say decisively that the 

null hypothesis (that exposure would not negatively impact sperm count) should be rejected. 
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Results also varied among the two populations. Because of this high variability, the results of each 

treatment will be discussed individually. 

 The results from experiments conducted on laboratory colony mosquitoes help us 

understand basic reactions to pesticides; results from experiments conducted on wild mosquitoes 

help us understand practical field reactions to pesticides. The Sebring colony of Culex 

quinquefasciatus was first established in 1988, 30 years ago (Stancil 2000). With three decades of 

laboratory care protecting it from pesticide exposure, it is considered a naïve, pesticide susceptible 

strain of mosquito. Therefore, the effects of pesticide exposure on Sebring mosquitoes may be 

considered genuine, fundamental physiological responses for Cx. quinquefasciatus. Any observed 

effects, or lack thereof, may be useful in understanding underlying physiological reactions to 

pesticide exposure, but are not necessarily applicable to wild populations. The wild collected Cx. 

quinquefasciatus were collected as eggs throughout the summer and fall of 2017. The population 

from which these mosquitoes were sampled has been exposed to pesticide applications from the 

East Baton Rouge Mosquito Abatement and Rodent Control district, homeowner pesticide 

applications, and other unknown chemical stressors. It is possible that decades of potential 

pesticide exposure have selected for resistance traits in these local mosquitoes. The effects of any 

experiments on these wild mosquitoes provide us with a more realistic understanding of current 

field conditions.  

 Spinosad caused significant hypospermatogenesis in Sebring mosquitoes at 1 and 4 dpe, 

but there were no observed effects at 7 and 14 dpe. There was no observed effect on wild 

mosquitoes. Spinosad, after being ingested or absorbed through the cuticle, binds at the nicotinic 

acetylcholine receptors (nAChRs) (Jiang and Mulla 2009). Lethal levels of spinosad induce 

convulsions and paralysis prior to death (Salgado 1998). Sub-lethal exposure to spinosad caused 
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sperm cell malformations in Rhynchophorus ferrugineus, but sperm were not quantified in this 

study (Abdelsalam et al. 2016). While there are not many comparable studies examining the effects 

of spinosad on insect sperm production, experiments on other organisms may shed some light on 

this study’s results. Nicotine, which also binds at nAChRs, has been shown to reversibly reduce 

sperm counts in rats (Oyeyipo et al. 2011). Rats fed a diet containing nicotine had significantly 

lower sperm counts than controls, but rats relieved of the nicotine laced diet resumed normal sperm 

production after 30 days. A similar effect was observed in the Sebring mosquitoes; seven days 

after leaving a spinosad contaminated environment, sperm production resumed normal levels. 

Perhaps the most compelling evidence to validate the results of the present study was also found 

in rats. After consuming a diet with 0.4% spinosad, male rats had significantly lower sperm counts 

and arrested sperm cell development (Yano et al. 2002). It is unknown what prevented 

hypospermatogenesis in the wild mosquitoes of this study, but point mutations and exposure to a 

number of xenobiotic factors have been shown to induce insecticide resistance and tolerance (Scott 

1999, Enayati et al. 2005, Berticat et al. 2008). The results of this study add to the body of evidence 

that sub-lethal exposure to spinosad during spermatogenesis may reduce sperm counts in naïve 

populations. 

 Lysinibacillus sphaericus exposure had no observed effect on the sperm production of wild 

mosquitoes. The only significant effect from L. sphaericus was on the Sebring mosquitoes at 1 

dpe. Spores produced by L. sphaericus are activated in the mosquito larvae’s alkaline midgut, 

releasing cytotoxic proteins which attack the midgut epithelial cells (Tangsongcharoen et al. 2017). 

Previous work on sub-lethal exposure to L. sphaericus found delayed pupation and decreased adult 

longevity in Cx. quinquefasciatus, but no effects on reproductive capacity were noted. There is no 

other recorded evidence of L. sphaericus exposure directly affecting reproductive health. It can be 



65 

 

supposed then that sub-lethal exposure to L. sphaericus causes only minor somatic damage, 

requiring energy to be spent on recovering from that exposure at the cost of reproductive vigor. 

However, it is worth pointing out that this is the only treatment to have a significant difference at 

1 dpe, with no differences at other ages. The rate of spermatogenesis has the greatest variability 

between individuals during the pupal stage (Mescher and Rai 1966). It is possible that the observed 

difference in this treatment at 1 dpe is due to residual variability from the irregularity of pupal 

sperm production. 

 Methoprene caused significant hyperspermatogenesis in both Sebring and wild mosquitoes 

at 1, 4, and 7 dpe, with both populations returning to normal levels by 14 dpe. Methoprene is an 

insect hormone mimic which, in lethal doses, indirectly kills insects by interrupting metamorphosis 

(Wu et al. 2006). Mosquitoes, exposed to sub-lethal concentrations of methoprene as larvae, have 

experienced reduced longevity, increased longevity, reduced fecundity, and delayed development 

of external male genitalia (Robert and Olson 1989, O'Donnell and Klowden 1997, Ritchie et al. 

1997). The effects of methoprene exposure on spermatogenesis in mosquitoes have not previously 

been studied, but methoprene has been used to accelerate sexual maturation in fleas and fruit flies 

(Dean and Meola 1997, Bachmann et al. 2017).  

Before attempting to explain the hyperspermatogenic effect of methoprene on Cx. 

quinquefasciatus, there are some important points to be made on spermatogenesis. First, the 

number of testicular germ cells, which mature and produce sperm, are predetermined during 

embryonic development (Dumser 1980). Second, spermatocyte divisions are not synchronous, 

resulting in waves of sperm production (Ndiaye et al. 1996). Based on these two facts, there are 

two ways methoprene could have caused such a rapid and prolonged increase in sperm production. 

First, the sub-lethal levels of methoprene could have caused an accelerated division of 
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spermatocytes. Second, the methoprene exposure could have recruited inactive germ cells and 

prematurely initiated meiosis. Knowing which of these phenomena occurred would require and 

ultrastructural review of spermatogenesis during methoprene exposure. How methoprene could 

have initiated either of these events is also unknown. However, two potential explanations are 

presented. JH titers increase significantly in in male mosquitoes 2-3 dpe (Nouzova et al. 2018). 

This increase in JH titers corresponds with the steepest increase in sperm production in untreated 

Sebring mosquitoes. Sperm counts increased 171% from 1 to 4 dpe, and only 63% from 4 to 14 

dpe. If this is a true correlation, JH may indeed play a direct role in spermatogenesis, a role which 

can be augmented by sub-lethal applications of the JH mimic methoprene. The second potential 

explanation, remembering that JH regulates nutritional tradeoffs in mosquitoes and directly 

controls ovarian nutrient allocation (Zhu and Noriega 2016), is that JH might also regulate nutrient 

allocation to the testes and methoprene artificially enhances nutrient delivery. 

Perhaps more important than the how and why described above, two implications of these 

results are presented. First, if the methoprene enhanced sperm production observed in the 

laboratory also occurs in field conditions, a review of methoprene applications for mosquito 

control may be in order. Males exposed to sub-lethal concentrations at the end of a service period 

may have increased sperm counts. This could potentially negate the lethal effects of the treatment 

by them being able to more rapidly repopulate an area. This highlights the importance of applying 

methoprene at designated label rates, keeping clear records of application dates and areas, and 

applying methoprene at appropriate intervals for maximum control efficacy. Second, if the 

methoprene enhanced males are indeed capable of inseminating more females than non-treated 

males, methoprene could be a useful addition to SIT rearing strategies. Methoprene is already 

under consideration as part of the SIT rearing procedure for fruit flies (Tephritidae) (Bachmann et 



67 

 

al. 2017). In the case of mosquitoes, methoprene treated males would be capable of inseminating 

more females than wild males with lower sperm counts. If these males were sterile, through 

irradiation or other methods, the increased sperm count could potentially increase their efficacy. It 

is important to note, however, that the credibility of methoprene dosed mosquitoes as an SIT 

strategy is dependent upon a significant amount of further research. The results described above 

only suggest that methoprene may provide a sexual advantage due to the increased sperm count. 

No effects were observed in either the Sebring or wild mosquitoes after exposure to 

atrazine. Previous experiments exposing mosquito larvae to atrazine failed to observe any negative 

effects in regards to male reproduction. The predominate effect of atrazine exposure to mosquito 

larvae, in published literature, is a decrease in their sensitivity to pesticides. Aedes aegypti larvae 

exposed to atrazine were significantly less sensitive to the pesticides Bacillus thuringiensis 

israelensis, and temephos (Boyer et al. 2006, Jacquet et al. 2015). Atrazine has the potential to 

increase aquatic microorganism densities (Muturi et al. 2013) which could result in greater food 

supply and thereby larger mosquitoes with higher sperm counts, but this effect was not observed 

in the present study. 

No effects were observed in either the Sebring or wild mosquitoes after exposure to 

glyphosate. While glyphosate has been shown to reduce fecundity in spiders and lacewings, it is 

not known if these decreases in fecundity were due to lowered sperm counts (Schneider et al. 2009, 

Benamú et al. 2010). Glyphosate has also been implicated as a xenobiotic capable of inducing the 

expression of monooxygenase P450 enzymes, heightening mosquito tolerance to pesticide 

exposure (Riaz et al. 2009). Glyphosate is also capable of causing a significant number and variety 

of mutations in mosquito larvae DNA, though none so far that indicate any change in reproductive 

processes (Bansal and Chaudhry 2010). There is no evidence thus far to implicate glyphosate as a 
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chemical capable of reducing sperm in insects, and this research does not contribute any evidence 

toward the hypothesis that it could.  

 The second hypothesis of this study was that these chemical exposures would not affect 

body size, measured by wing length, and that any observed reduction in sperm would be caused 

by mechanisms other than retarded somatic growth. None of the treatment groups from either 

population experienced any significant changes in wing length when compared to their controls. 

These results do not describe any causality for increases or decreases in sperm count, but they do 

rule out simple body size related changes in sperm production. 

This was the first study to measure the effects of larval exposure to pesticides on sperm 

production in mosquitoes. The effects of pesticide exposure varied by population and treatment. 

The Sebring mosquitoes experienced decreases in sperm count after being exposed to spinosad 

and L. sphaericus, increases in sperm count after being exposed to methoprene. None of the 

pesticide exposures negatively affected sperm count in the wild mosquitoes, but an increase was 

observed after methoprene exposure. None of the pesticide exposures had any significance on body 

size, as measured by wing length. These results provide us with a greater understanding of how 

pesticides may alter populations of mosquitoes by influencing the reproductive capacity of male 

mosquitoes. This serves as a reminder to the various pest control industries to be judicious in the 

use and frequency of pesticides. These results also provide background information which may be 

valuable in increasing the maximum reproductive output of male mosquitoes used in SIT releases, 

pending further research. 
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Summary and Conclusion 

 Mosquitoes are indisputable public health pests. The pathogens they vector are capable of 

causing disease, disfigurement, and death. The control of mosquito borne diseases can be 

accomplished through a variety of means: pesticide applications to control mosquito populations, 

vaccinations, habitat alterations, personal application of mosquito repellents, and more.  The 

success of all of these strategies depends, in part, upon a thorough understanding of the biology of 

the mosquito vectors themselves. The more we know about the biology of a vector species, the 

better able we are to exploit their natural weaknesses and better protect public health. 

 Female mosquitoes, the only sex that blood feeds on and transmits pathogens to humans, 

are the primary targets of most control strategies. However, some strategies target mosquito mating 

as an opportunity to suppress mosquito populations. These strategies require a thorough 

understanding of the reproductive biology of both males and females. The female reproductive 

biology has been well studied, but many fundamental questions about male reproductive biology 

have gone unanswered. The goal of this study was to answer the following fundamental questions 

about male mosquito sperm production for the species Culex quinquefasciatus. Does sperm 

production increase with age? Do sperm production rates vary between laboratory mosquitoes and 

wild mosquitoes? Can sub-lethal pesticide exposure during the larval stage affect sperm production 

as an adult?   The answers to these questions not only broaden general entomological knowledge 

of reproductive processes, they may also influence mosquito control practices. For example, the 

efficacy of any method of modified male release depends, in part, upon sexually competitive lab 

reared males.   

 The results of these studies showed that sperm production in Culex quinquefasciatus does 

continue with age, until at least 14 days post eclosion (dpe). The Sebring colony was shown to 
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produce more sperm than locally collected wild mosquitoes, especially at 14 dpe. Virgin males 

have significantly greater sperm capacity from 4-14 dpe than they do at 1 dpe. Pesticide exposure 

during the larval stage can impact sperm production as was seen in the spinosad, Lysinibacillus 

sphaericus, and methoprene treatments for the Sebring colony, and methoprene treatments for the 

wild collected mosquitoes.  Both spinosad and methoprene have been implicated in other 

experiments as having the potential to interrupt or enhance sperm production and other 

reproductive processes. The cumulative results of this study add to the currently small body of 

knowledge concerning mosquito sperm production and some external factors which may influence 

that production. 

 The most compelling result of this study was the significant increase in sperm production 

in both the Sebring and wild mosquitoes after exposure to methoprene. There are two significant 

implications to be made from this discovery. First, if applications of methoprene become 

inconsistent, or are not well tracked, mosquito populations may actually benefit, over time, from 

sub-lethal exposure due to their potentially increased reproductive ability. Second, if the 

methoprene enhanced sperm counts occur in conjunction with a male’s ability to successfully 

inseminate more females than an untreated male, further researcher could use these findings to 

manipulate mosquito reproductive biology to better control mosquitoes. 

 As this research focused on answering fundamental questions about sperm production in 

Culex quinquefasciatus mosquitoes, many crucial questions remain unanswered. We learned more 

about sperm production at different ages and that sub-lethal levels of some pesticides interact with 

that process, but other important factors should be evaluated. Would these chemical exposure have 

similar effects on other mosquito species? There are other larvicides used against mosquitoes that 

could be evaluated. Would LC20 treatments amplify or diminish the effects observed in this 
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research? Do any of these treatments, whether or not they affected sperm production, affect the 

viability of the sperm produced? How would results from semi-field studies differ from the current 

results, and what applications for control would they have?  The ground work has been laid so that 

these questions, and others, can be answered.
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