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Abstract 
 
Introduction:  With the ubiquity of mobile phones, mobile health (mHealth) has the ability to 

transform healthcare specifically in regard to substance use interventions. Current mHealth 

interventions targeting substance use are limited as they require self-monitoring and user input.   

Objectives:  The objective of this study was to determine if text message content can predict 

substance use attitudes and behaviors.  The aims were three-fold: (1) To assess the prevalence 

of discussion of substance use in text messages (2) To evaluate the relationship between text 

message content and substance use attitudes and behaviors; and (3) To examine social 

network structure using texting interactions related to substance use.   

Methods:  Text messages from 91 males ages 18-25 were monitored over a period of six 

months and examined for content related to substance use.  Self-report data indicating 

substance use attitudes and behaviors were used to determine relationships between text 

message content, social network structure, and substance use attitudes and behaviors.  

Results: In total, 23,173 text messages were analyzed with 166 text messages including 

alcohol related terms and 195 text messages including drug related terms. Individuals who sent 

text messages related to alcohol use were more likely to have problematic alcohol use and 

positive attitudes toward alcohol use, and individuals who sent text messages related to 

marijuana use reported higher frequency of marijuana use and more positive attitudes toward 

marijuana use.  Individuals with problem alcohol use were in positions that controlled the 

network structure whereas individuals with problem marijuana use were in positions that had 

less control over network structure.   

Conclusion:  The results of this study indicate that monitoring text message content and social 

network structure among emerging adult males can potentially predict substance use attitudes 

and behaviors.  This may allow for development of real-time interventions aimed at predicting 

and reducing problematic substance use.   
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Introduction 

Emerging adulthood (age 18-25) is an important period of developmental transition for 

men between adolescence and adulthood where men seek employment or education, and 

relationships (1, 2). During this time, peers become more influential as men increasingly 

become independent from their family as they seek to establish their own identities (3, 4). 

Additionally, it is a period when behavioral patterns related to alcohol and drug use can peak (2, 

5, 6), and heavy use of alcohol and drugs at this phase are predictors for alcohol and substance 

use disorders later in life (7-10). 

 Social network theory is based on the idea that individuals are affected by directly and 

indirectly interacting with their own friends as well as with friends of friends (11).  Use of alcohol 

and other substances have been linked to an individual’s social network (12) with peer 

substance use being a strong predictor of individual substance use (13).  The association 

between individual substance use and involvement in social networks with high levels of 

substance use may be due to socialization in which peers model substance use behavior, 

provide opportunities for substance use, and encourage attitudes and expectations that are 

positive toward substances (14, 15).  The composition and quality of social networks during 

emerging adulthood may be of particular influence as men spend less time with families and 

more time with peers (3).   

 Mobile phones are used by approximately 94% of adults (16), and as a result, mobile 

health (mHealth), the application of mobile and wireless technology to support health objectives, 

is a rapidly growing field in preventative medicine.   With existing mobile technology 

infrastructure and the high prevalence of mobile phone use, mHealth has the ability to transform 

health service delivery.  In particular, mobile phones can monitor various behaviors of users and 

deliver interventions in real-time in the individual’s natural environment (17-20).  It is widely 

known that continuing care is most effective for addiction treatment, but this becomes more 

difficult once patients have completed treatment and leave the clinic (21, 22).  mHealth provides 



8	

the opportunity to increase self-management and make continuing care widely available to 

those not receiving inpatient care (20).     

 Current mHealth applications that target alcohol and substance use disorders include 

text message monitoring and reminder systems to monitor alcohol use or remind the individual 

to report alcohol consumption, intervention systems that monitor alcohol use but also deliver 

text messages to promote abstinence and recovery, and comprehensive recovery management 

systems that have internal sensors (like GPS) to deliver multifaceted messages and 

interventions (18, 23-25).  Although many applications for treatment of substance use disorders 

exist, none have shown substantial effectiveness, and all are insufficient as interventions for 

treating substance use disorders (20).   These applications require users to self-monitor alcohol 

and drug use, but technology with the capability to predict alcohol and other substance use 

without requiring user inputs may be more a more efficient way to prevent alcohol and drug use.   

 Advances in social technologies offer new tools and opportunities for large-scale data 

collection and analysis of social networks previously not available.   As a result, there is a 

substantial basis of literature assessing the role that social technologies can play at 

understanding social networks and predicting user health and behavior with topics of focus 

including risky sexual behavior, substance use, mental health issues, and medical conditions 

(26-29).   For example, a number of studies have examined how exposure to alcohol or drug 

related content on social networking sites such as Facebook, Twitter, Instagram, and Snapchat 

is associated with substance use behaviors and attitudes (30-35).   Although there is a breadth 

of research examining a number of social technologies, the role that text messaging content 

sent through mobile phones may play in understanding health behavior has been neglected 

from the literature thus far.  With the ubiquity of cell phone use, analyzing text message content 

may be a novel approach to understand health and behavior among networks of friends for the 

purposes of designing real-time interventions aimed at preventing problem substance use 

behaviors.        
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 The goal of this research is to examine the relationship between text message content 

related to substance use and substance use behavior and attitudes among a network of 

emerging adult males. The primary aims are to:  

1) Assess the prevalence of discussion of substances and alcohol use in text messages 

2) Examine the relationship between sending and receiving text messages related to 

substance use on problematic substance use, frequency of substance use, and 

substance use attitudes.  

3) Evaluate social network structure using texting interactions related to substance use.   

To our knowledge, this is the first study that seeks to understand how text message 

content can be linked to social network structure and peer influence of health and behavior.  

Results from this study will demonstrate the effectiveness of using text message content and 

social network structure to predict risky behavior relating to alcohol and substance use.  

Findings will better enable researchers to develop new and effective mHealth technologies 

aimed at targeting alcohol and substance use.    

 

Methods 

Procedures 

The study included 119 emerging adult men participating in a longitudinal study of social 

networks.  Trained outreach workers recruited participants from areas of high risk (i.e. high 

crime, poverty) visiting locations frequented by emerging adult men.  Snowball sampling was 

then used to recruit friends of participants, and participants were enrolled as they were identified 

by network members.  Inclusion criteria included: 1) male gender; 2) age 18-25; 3) English-

speaking; 4) heterosexual; 5) in possession of a cell phone with texting capabilities; and 6) 

ability to maintain cell phone service.   

 Participants were screened for eligibility in person or over the phone and scheduled for a 

baseline interview.  Baseline assessments occurred between March 2011 and September 2013.  
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All participants provided written informed consent.  Participants then completed an Audio 

Computer-Assisted Self Interview (ACASI) that collected self-reported information on 

demographics and substance use behaviors and attitudes.  Additionally, participants consented 

to retrieval of all text messages sent and received over the course of six months from their cell 

phones.  Due to snowball sampling methods, individuals were differentially followed over time in 

that text messages were retrieved from all individuals for a six-month period, however, if one 

individual engaged in texting interactions with another participant who had been followed over a 

different six-month period, there are a greater number of texts for that individual.   Participants 

were compensated $75 for completing the computerized interview.  All procedures were 

approved by the Yale University Human Investigation Committee.   

Measures 

Text mining was used to extract information related to substance use from all text 

messages sent and received by participants included in the study.  The tm package in R (36) 

was used to determine the number of text messages sent and received by participants that 

related to substance use.  A keyword list was developed that included common terms 

associated with alcohol use (i.e. liquor, alcohol, drunk) and drug use (i.e. weed, ounce, blunt), 

and this list was augmented after manually reading a subset of texts.  Each text message sent 

and received by participants included in the study was processed to locate mentions of any 

keywords.  Additional keywords related to substance use were identified by examining words 

frequently associated with each keyword.   

The outcome measures included frequency of alcohol consumption, frequency of 

marijuana use, problematic alcohol consumption, problematic marijuana use, attitudes toward 

alcohol use, and attitudes toward marijuana use.  Outcome measures were determined using 

information provided at baseline.  Frequency of alcohol consumption was measured as the 

number of days a participant had at least one drink of alcohol during the previous 30 days.  

Frequency of marijuana consumption was measured as the number of days a participant used 
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marijuana during the previous 30 days.  Problematic alcohol use was a dichotomous variable 

assessed using the 3-item version of the Alcohol Use Disorders Identification Test (AUDIT) with 

standard cut-offs to define hazardous alcohol use (≥4).  Prior studies have indicated that the 3-

item AUDIT is comparable to the longer 10-item version for detecting problem alcohol use (37). 

Problematic marijuana use was a dichotomous variable defined by whether or not the 

participant indicated using marijuana 2 or more times per day.  

 Attitudes toward alcohol use and marijuana use were assessed using four items with 7 

point Likert scales.  Items began with “Drinking alcohol is:” or “Smoking marijuana is:” with the 

endpoints of Unpleasant/Pleasant, Fun/Boring, Bad/Good, and Wise/Foolish (38).  Internal 

reliability for indicators was good for both alcohol (α=0.73) and marijuana indicators (α=0.91).  A 

mean score for attitudes were calculated for alcohol use and marijuana use.   

 Several variables were used for statistical controls.  Age was a continuous variable.  

Education level was coded as a categorical variable with three levels: some high school, high 

school degree attainment, and college degree attainment.  Race was coded as a categorical 

variable with three levels: non-Hispanic African-American, Hispanic, and non-Hispanic 

White/other.  

Analyses 

Generalized Estimating Equations (GEE) were generated using SAS 9.4 (SAS Institute 

Inc, Cary, NC, USA) to assess whether frequency of texts sent or received related to substance 

use were associated with the primary outcomes.  The participants (n=91) were the unit of 

analysis and were nested by recruitment network to control for correlation between individuals 

from the same network.  The responses were assumed to be equally correlated, and therefore 

an exchangeable correlation structure was used as this is the structure recommended for this 

type of data.  Age, race, and education were controlled for in the models.  Additionally, due to 

differential follow-up times, total texts messages sent and received by individuals were used as 
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a statistical control.  As total texts messages sent and total texts messages received were 

collinear, the mean of total texts sent and received was used.     

A social network of texting interactions was built for individuals in the network where 

individuals represented the vertices (nodes) and texting interactions represented the edges 

(links).  A link existed between two individuals when they were both involved in a texting 

interaction.  The networks were directed so that links were outgoing from the individual that sent 

a text and incoming for the individual that received the text.  Unweighted directed networks 

showed whether or not there were any texting interactions between individuals.  Weighted 

directed network links were weighted based on the frequency of texts related to alcohol or 

marijuana use.  Statistical analysis and network visualization were conducted using the igraph 

package in R (39). 

Measures of centrality were also calculated for each individual in the network.  Both 

weighted and unweighted measures of centrality were calculated.  The degree centrality 

measure shows how well-connected individuals are in the network (40, 41).  It is a highly 

effective measure of influence as individuals with more connections tend to have more power 

(42).  Taking into consideration the direction of links (i.e. whether an individual sent a text or 

received a text), it is necessary to distinguish between out-degree centrality and in-degree 

centrality.  In an unweighted relationship, the occurrence of an interaction between any pair of 

individuals determines the presence of a link.   Therefore, individuals with relatively high 

unweighted degree centrality, have more direct contacts, but it does not necessarily mean they 

sent or received more texts.  Individuals with high unweighted out-degree centrality have more 

direct distinct contacts to which they sent texts, and individuals with high unweighted in-degree 

centrality have more direct distinct contacts from whom they received texts.  In weighted 

relationships, the frequency of texts containing substance use content between two specific 

individuals is considered and defines the strength of the link or in other words the magnitude of 

the degree centrality.  Therefore, weighted out-degree centrality is defined by the frequency of 
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texts an individual sent containing terms related to alcohol or drug use, and the weighted in-

degree centrality is defined by the frequency of texts an individual received containing terms 

related to alcohol or drug use.    

The betweenness centrality measures the number of times an individual lies on the 

shortest path between other individuals in a group (43, 44).  In other words, it is a measurement 

of the extent to which an individual indirectly links pairs of other individuals that are not directly 

linked as contacts.  A geodesic is the shortest path connecting two individuals, and 

betweenness centrality for a particular individual is calculated by determining the number of 

geodisics between all pairs of other individuals that include the particular individual of choice 

(41).  Conceptually, an individual that has a high betweenness centrality lies on many geodesics 

and is considered the bridge between individuals from different parts of the network that are not 

directly connected to one another (41).  In social network analysis, individuals with high 

betweenness centrality are thought to control the social interactions within the group especially 

if they are the bridge between two network components (40, 41, 43).  Removing these 

individuals will disrupt the network and can fragment it into groups as these individuals act as 

almost a gate-keeper between others in the network (43).  Both unweighted and weighted 

measures of betweenness centrality were measured.   

Measures of centrality were stratified by problem alcohol use, problem marijuana use, or 

any problem substance use.  Spearman rank correlations were performed using SAS 9.4 to 

determine relationships between the centrality parameters and self-reported problem substance 

use.   

 

Results 

The sample consisted of 91 emerging adult males (Table 1).  The mean age of 

participants was 20.63 years old, and participants were predominately non-Hispanic black 

(64.8%) or Hispanic (25.3%).  Of all participants, 80 (87.9%) had at least a high school degree 



14	

or GED, and 42 (46.2%) were not working.  Any alcohol use in the previous year was reported 

by 73 (79.1%) individuals and previous life-time marijuana use was reported by 70 (76.92%) 

individuals.  Twenty-nine (31.9%) of individuals had problem alcohol use and 35 (38.5%) of 

individuals had problem marijuana use.   

In total, there were 23,173 text messages sent and received between the 91 participants 

included in the study.  There were 166 text messages that included alcohol related terms and 

195 text messages that included drug related terms.  Figure 1 visually displays the frequency of 

words related to substance use.  Although the overall number of text messages depicting 

substance use was low, 30 (33.0%) participants sent text messages related to alcohol, 31 

(34.1%) participants received text messages related to alcohol, 38 (41.8%) participants sent 

texts related to drug use, and 36 (39.6%) participants received texts related to drug use.  In 

total, 44 (48.4%) individuals sent at least one message containing any mentions of alcohol or 

drug use, and 47 (51.6%) individuals received at least one message containing any mention of 

alcohol or drug use.   

GEE analyses were performed to explore correlates of substance use attitude and 

behaviors.   Predictors modeling alcohol use attitudes and behaviors included number of texts 

sent containing alcohol related terms and number of texts received containing alcohol related 

terms.    Predictors modeling marijuana use attitudes and behaviors included number of texts 

sent containing marijuana related terms and number of texts received containing marijuana 

related terms.   

Individuals who sent more texts containing terms related to alcohol were more likely to 

have positive attitudes toward alcohol use (β=0.0823, p<0.01) (Table 2).  Additionally, those 

with increased number of texts sent containing alcohol related terms were 1.11 times (95% CI: 

1.04-1.18) more likely to have problematic alcohol use (Table 3).   Interestingly, receiving more 

texts containing alcohol related terms was negatively associated with attitudes toward alcohol 

use, problem alcohol use, and days of alcohol use (Table 2, Table 3). 
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Individuals who sent more texts with marijuana related content were more likely to have 

positive attitudes toward marijuana use (β=0.0823, p<0.01) (Table 2).  Additionally, for 30-day 

marijuana use, sending texts with marijuana related content was significantly associated with 

frequency of marijuana use in the previous 30 days (β=0.77, p<0.01) (Table 2).  For problematic 

marijuana use, sending or receiving text messages with marijuana related content was non-

significant (Table 3).   

Figure 2 shows the unweighted non-directed social network of all texting interactions 

where individuals are represented by nodes color-coded by problem substance use and texting 

interactions are depicted by edges (number of connections with distinct individuals).  There 

were 176 linkages total with an average number of 3.96 linkages per person.  The mean degree 

(number of contacts per person) was 3.50 for those without problem substance use, 4.65 for 

those with only problem alcohol use, 3.75 for those with only problem marijuana use, and 3.52 

for those with both problem alcohol and marijuana use.    The mean unweighted betweenness 

score was 24.11 for those without problem substance use, 51.93 for those with problem alcohol 

use, 14.29 for those with problem marijuana use, and 14.17 for those with both problematic 

alcohol and substance use (Table 4).    

Figure 3 shows the directed social network of texting interactions weighted by number of 

texts containing alcohol related terms, stratified by problematic alcohol use.  Those with 

problematic alcohol use had a mean out-degree centrality of 4.31 and those without problematic 

alcohol use had a mean out-degree centrality of 2.95.  Those with problem alcohol use had a 

mean betweenness score of 34.48 and those without problem alcohol use had a mean 

betweenness score of 25.94 (Table 5). 

Figure 4 shows the directed social network of texting interactions weighted by number of 

texts containing content related to marijuana use.  Those with problem marijuana use had a 

mean out-degree centrality of 7.00 and a betweenness score of 15.53.  Those without problem 

marijuana use had a mean out-degree centrality of 4.93 and a mean betweenness score of 
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42.16.  The mean betweenness score for those without problem marijuana use was significantly 

different from the mean betweenness score for those with problem marijuana use (p=0.048).  

 

Discussion 

 This study utilized text conversations between emerging adult males to examine the 

relationship between sending and receiving texts and social network structure on substance use 

attitudes and behaviors.  Results indicate that substance use is high among this population.  Of 

the individuals that participated, 79.1% reporting alcohol use in the previous year and 31.9% of 

individuals had problem alcohol use.  Rates of lifetime marijuana use were also high with 76.9% 

reporting marijuana use and 38.5% of individuals having problem marijuana use.  Additionally, 

although overall rates of texting about substance use were low, 33.0% of individuals sent texts 

messages with alcohol related content, 41.8% of individuals sent text messages with drug 

related content, and 48.4% of individuals sent text messages with any substance use related 

content.   

 Results from this study indicate that sending texts messages containing alcohol or 

marijuana related content is indicative of substance use attitudes and behaviors for both 

marijuana and alcohol use.  Participants sending alcohol related texts were more likely to have 

problematic alcohol use and more positive attitudes toward alcohol use.  Individuals that sent 

texts with marijuana related content were more likely to have smoked on more days in the 

previous month and more positive attitudes toward marijuana use.  Receiving texts related to 

marijuana use was not a predictor for marijuana use attitudes and behaviors suggesting that 

individuals may not be being influenced by their peers.  Moreover, those who received 

increased texts related to alcohol use were less likely to have positive attitudes toward alcohol 

use and problematic alcohol use behaviors.  This suggests that among this social network, 

substance use attitudes and behaviors are not being encouraged by receiving text messages 

containing substance use related terms from peers.  
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 With respect to network attributes, individuals had similar mean degrees of unweighted 

connectivity regardless of their status of problematic substance use.  Betweenness centrality 

was also measured as this allowed for identification of individuals who served as bridges 

between individuals in the network and therefore potentially could control the network structure 

(41).  It was included as it can be interpreted as an indirect measure of influence as individuals 

with high betweenness have control over the spread of information across the network (43). 

Although not significant, individuals with only problematic alcohol use did have relatively high 

unweighted betweenness scores as compared to individuals without problematic alcohol use 

indicating that these individuals may be important for controlling the social connections between 

the group.  This finding was also supported by the weighted measures of centrality where 

individuals with problem alcohol use had relatively higher weighted betweenness scores than 

those without. This relationship is consistent with previous analyses assessing social network 

structure and substance use among peers, which found higher levels of betweenness centrality 

predicted alcohol use (45-47).   Taken together with these other studies, these results suggest 

that individuals with problematic alcohol use may have more control of the social network and a 

greater potential to encourage problematic alcohol consumption in more peers.   

Individuals with only problematic marijuana use and both problematic marijuana and 

alcohol use have relatively lower unweighted betweenness scores suggesting that these 

individuals have less control over the social connections between the group.  More specifically, 

those with problematic marijuana use had significantly lower weighted betweenness scores 

suggesting they were more isolated than those without problematic marijuana use.  This finding 

is important as those with problematic marijuana use have less connectivity to encourage and 

influence problematic marijuana use among peers.  Previous studies that sought to understand 

the relationship between marijuana use among peers have suggested that more popular 

individuals are more likely to to have previous marijuana use (6, 48-50), which conflicts with our 

findings.  One potential explanation for the conflicting results is that previous studies have 
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assessed any marijuana use in a given time period whereas the outcome measured here is 

problem marijuana use.  We defined problem marijuana use as using marijuana more than one 

time in a given day in the previous 30 days.  It could be that casual marijuana users may be 

centrally located and popular and problem marijuana users may be more isolated.  We feel it is 

important to measure problem marijuana use rather than any use as problem users are the 

individuals most at risk for marijuana use associated harms.   More frequent use of marijuana is 

associated with poor academic achievement, family problems, increased likelihood of using 

other drugs, and postponement of marriage and employment (51-56).  Additionally, heavy use 

has been associated with cognitive impairments and higher levels of anxiety, depression, and 

suicidal ideation (57-63).  As such, additional studies should be conducted among larger 

networks to better understand the relationship between network structure and problematic 

marijuana use rather than just any marijuana use as this study suggests that these individuals 

may be harder to reach in terms of network structure which would impact intervention strategies.    

These results have a number of important public health implications and add to the 

increasing literature emphasizing the utility of using social technologies to predict substance use 

behaviors.  Although a number of mHealth interventions targeting alcohol and substance use 

have been implemented, they all require user inputs and self-monitoring which can limit their 

effectiveness (64-67), and interventions that can predict risky behavior to design real-time 

targeted interventions are urgently needed.  Social technologies including Twitter, Instagram, 

Snapchat, and Facebook provide a massive resource of data that have been used to better 

understand substance use health and behaviors (68-72).  These social technologies allow for 

the possibility for design of interventions aimed at reducing risky behaviors that target the most 

influential individuals in a network.  The results of this study add to the growing body of literature 

and demonstrate a novel way in which social technologies can be linked to health and behavior 

through social network and content analysis of the data provided by text messaging interactions.       
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 There are several limitations to this study.  One limitation is that individuals were 

differentially followed over time due to the snowball recruitment strategy.  For example, text 

messages were retrieved from all individuals for a six-month period, however, if one individual 

engaged in texting interactions with another participant who had been followed over the course 

of a different six-month period, there are a greater number of texts for that individual.  We 

controlled for this possibility of differential follow-up by including the mean number of texts sent 

and received by each individual in our model.  Another limitation was that the small sample size 

limited the statistical power of this analysis particularly for the assessment of differences in 

centrality parameters and prevented the addition of covariates into the model.  Additionally, 

substance use behaviors were all indicated through self-report and individuals knew in advance 

that their text messages were being monitored which could have limited open discussions 

surrounding substance use.  Participants all received Certificates of Confidentiality to 

discourage this potential bias.  Finally, this study focused on a population of male high risk 

individuals, ages 18-25, and the results of this study may not be generalizable to the general 

population.   

 Despite these limitations, this study demonstrates a novel approach to examining 

substance use behavior and social networks.  To our knowledge, this is the first study 

examining the potential of peer influence through text messages and social network structure 

based on text messages sent and received.  As cell phone use is ubiquitous and text messaging 

is a primary means of communication for many individuals, predicting substance use behavior 

by monitoring text messages could encourage the development of real-time mHealth 

interventions to prevent risky substance use behaviors.      
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Tables 
 
Table 1:  Participant Demographics and Characteristics a 

 N=91 b 

Demographics  
    Age 20.63 (1.8) 
    Race  
        Non-Hispanic White 3 (3.3) 
        Hispanic 23 (25.3) 
        Non-Hispanic Black  59 (64.8) 
        Other 6 (6.6) 
    Education  
        Less than high school 11 (12.1) 
        High school degree or GED 33 (36.3) 
        Some College 39 (42.9) 
        College degree 5 (5.5) 
        Graduate degree 3 (3.3) 
    Annual Household Income  
        $ 0-4,999 22 (24.2) 
        $5,000-9,999 11 (12.1) 
        $10,000-14,999 11 (12.1) 
        $15,000-24,999 10 (11.0) 
        $25,000-34,999 7 (7.7) 
        $35,000-49,999 9 (9.9) 
        $50,000 or more 11 (12.1) 
   Employment  
        Not working 42 (46.2) 
        Part-time employment 32 (35.2) 
        Full-time employment 17 (18.7) 
   Relationship Status  
        Single 37 (40.7) 
        In a relationship 54 (60.3) 
   Children  
        No children 71 (78.0) 
        1 or more children 20 (22.0) 
   Living Situation (not mutually exclusive)  
        Live with mother/father   51 (56.0) 
        Live with biological children  3 (3.3) 
        Live with partner  7 (7.7) 
        Live with sibling  25 (27.5) 
        Live with other relative   21 (23.1) 
        Live with friend 6 (6.6) 
        Live alone 6 (6.6) 
Outcomes  
   Alcohol Use 72 (79.1) 
   Marijuana Use 70 (76.9) 
   Problem Alcohol Use 29 (31.9) 
   Problem Marijuana Use 35 (38.5) 

 
a Table values are mean ± SD for continuous variables and n (column %) for categorical variables. 
b Percentages may not sum to 100% due to rounding or missing variables. 
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Table 2: Multivariate GEE analysis associations between text messages sent and received containing 
substance use related terms and substance use attitudes and behaviors  
 
 Marijuana 

Attitudes Alcohol Attitudes 
Days of  

Marijuana Use 
 β p β  p β  p 
Age 0.0260 0.70 0.1649 <0.01 0.2417 0.74 
Race/Ethnicity       
     Non-Hispanic White/Other Reference -- Reference -- Reference -- 
     Hispanic 0.5006 0.32 0.1841 0.64 2.49 0.57 
     Non-Hispanic Black 0.3016 0.36 0.0901 0.82 1.27 0.69 
Education       
     Some High School Reference -- Reference -- Reference -- 
     Completed High School -1.1553 0.04 -0.2112 0.53 -6.98 0.21 
     Completed College -0.9682 0.18 -0.0930 0.80 -8.30 0.22 
Sent Alcohol Related Texts -- -- 0.0160 0.04 -- -- 
Received Alcohol Related Texts -- -- -0.0126 <0.01 -- -- 
Sent Marijuana Related Texts 0.0823 <0.01 -- -- 0.77 <0.01 
Received Marijuana Related Texts -0.0229 0.28 -- -- 0.32 0.13 
Mean of Total Texts Sent  & 
Received 

-0.0005 0.04 0.0003 0.06 -0.01 <0.01 
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Table 3:  Multivariate GEE analysis examining associations between text messages sent and received 
containing substance use related terms and problematic substance use and behaviors  

 Problematic 
Alcohol Use 

Problematic 
Marijuana Use 

Days of  
Alcohol Use 

Age 1.46 (0.95-2.25) 0.89 (0.74-1.07) 1.49 (1.04-2.13) 
Race/Ethnicity    
     Non-Hispanic White/Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Reference Reference Reference 
     Hispanic 2.18 (0.38-12.63) 0.46 (0.06-3.28) 3.78 (0.68-20.80) 
     Non-Hispanic Black 1.74 (0.48-6.39) 0.64 (0.21-2.01) 2.14 (0.43-10.69) 
Education    
     Some High School Reference Reference Reference 
     Completed High School 0.46 (0.11-1.84) 0.68 (0.07-6.68) 0.67 (0.15-2.92) 
     Completed College 0.31 (0.05-2.11) 0.33 (0.03-4.20) 1.14 (0.18-7.36) 
Sent Alcohol Related Texts 1.11 (1.04-1.18) -- 1.00 (0.98-1.04) 
Received Alcohol Related Texts 0.94 (0.92-0.97) -- 0.97 (0.94-0.99) 
Sent Marijuana Related Texts -- 1.16 (0.88-1.51) -- 
Received Marijuana Related Texts -- 1.04 (0.88-1.23) -- 
Mean of Total Texts Sent  & Received 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 
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Table 4:  Mean of unweighted centrality parameters, stratified by problematic substance use   
 Problematic Substance Use  
 None Only Alcohol Only Marijuana Alcohol & Marijuana p 
Degree 3.50 4.65 3.75 3.52 0.306 
Out-Degree 1.67 2.31 2.00 1.83 0.837 
In-Degree 1.83 2.35 1.75 1.70 0.815 
Betweenness 24.11 51.93 14.29 14.17 0.544 
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Table 5:  Mean of centrality parameters both unweighted and weighted by frequency of texts sent and 
received relating to substance use 
 Problem Alcohol Use Problem Marijuana Use 
 Yes No p Yes No p 
Unweighted       
     Degree 4.12 3.57 0.338 3.60 4.04 0.461 
     Out-Degree 2.08 1.81 0.461 1.71 2.07 0.266 
     In-Degree 2.04 1.76 0.300 1.88 1.96 0.804 
     Betweenness 34.21 21.31 0.308 14.21 37.03 0.077 
Weighted       
     Degree 7.92a 6.71a 0.680 13.97b 9.88b 0.136 
     Out-Degreec  4.31a 2.95a 0.925 7.00b 4.93b 0.209 
     In-Degreed 3.62a 3.76a 0.399 6.97b 4.95b 0.175 
     Betweeness 34.48a 25.94a 0.508 15.53b 42.16b 0.048 

 

a Weighted by texts related to alcohol use 
b Weighted by texts related to drug use 
c Weighted by texts sent 
d Weighted by texts received 
 
  



29	

Figures 
 
Figure 1:  Word cloud depicting frequently used words relating to substance use.  Each word’s frequency 
is correlated with font size.   
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Figure 2: Social network of texting interactions where individuals are represented by nodes color coded 
by problematic substance use and texting interactions are depicted by edges 
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Figure 3: Social network of texting interactions where individuals are represented by nodes color coded 
by problematic alcohol use and texting interactions are depicted by edges weighted by frequency of texts 
involving alcohol related terms 
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Figure 4: Social network of texting interactions where individuals are represented by nodes color coded 
by problematic marijuana use and texting interactions are depicted by edges weighted by frequency of 
texts involving marijuana related terms 
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