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ABSTRACT 

The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a target pest of Bacillus 

thuringiensis (Bt) corn in North and South America. In this study, multiple tests were 

conducted in the laboratory and greenhouse to 1) determine the susceptibility of two field 

populations of S. frugiperda collected from Florida (FL) and Puerto Rico (PR) to purified 

Cry1F protein and Bt corn leaf tissue and 2) evaluate larval survival of and plant injury by 

Cry1F-susceptible, -resistant, and -heterozygous genotypes of S. frugiperda on whole plants 

of transgenic corn containing single and pyramided Bt genes. Corn hybrids evaluated in this 

study included five non-Bt corn hybrids, two single-gene Bt corn products: Herculex
®

I 

(Cry1F corn) and YieldGard
®
 (Cry1Ab corn), and four pyramided Bt corn traits: Genuity

®
VT 

Double Pro
TM

, VT Triple Pro
TM

, SmartStax
TM

, and Agrisure
®
 Viptera

TM
 3111. Diet-

incorporated bioassays showed that FL was susceptible to Cry1F protein with a LC50 value of 

0.13-0.23 µg/g, while PR was highly resistant to Cry1F (>137-fold). Leaf tissue bioassays 

also exhibited that FL was susceptible to all Bt corn hybrids, while PR was highly resistant to 

Cry1F corn leaf tissue. Both FL and PR could not survive on leaf tissue of Viptera
TM 

3111. 

However, PR exhibited a significant cross-resistance to the leaf tissue of the other three 

pyramided Bt corn traits. In greenhouse whole plant tests, larvae of the three insect genotypes 

on non-Bt corn hybrids survived well and caused serious plant damage. Cry1Ab corn was 

ineffective against all three insect genotypes. On Cry1F corn plants, resistant larvae survived 

on 72.9% plants after 12-15 d and caused significant leaf injury. In contrast, no live larvae 

and little or no leaf injury were observed on the Cry1F corn plants that were infested with 

susceptible or heterozygous genotypes, or on the pyramided Bt plants infested with the three  
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insect genotypes. The results demonstrated that the Puerto Rico population of S. frugiperda 

was highly resistant to both purified Cry1F protein and Cry1F corn plants and the resistance 

was recessive. Corn hybrids containing any one of the four pyramided Bt traits are effective 

for managing the Cry1F resistance in S. frugiperda.  
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CHAPTER 1. INTRODUCTION 

1.1 Corn Production in the United States 

Field corn (Zea mays L.) is the most widely planted field crop in the United States. In 

2013, corn acreage in the United States was 97.4 million acres and the total harvest was 89.3 

million acres with a production value of $63 billion (NASS, 2013). In 2013, Bt corn 

accounted for 76% of the total acres (NASS, 2013).  Corn also contributes significant value 

to the agriculture in Louisiana. In 2012, 540,000 acres of corn was planted in Louisiana with 

a yield of 75,000 tons valued at $632.6 million (NASS, 2013).  

1.2 Major Corn Insect Pests 

There are various arthropod pests that damage field corn. A majority of these pests are 

generally divided into two groups, including the above-ground group and the below-ground 

group. Lepidopteran species are the major above-ground pests of corn plants, while 

coleopteran species are major pests that attack below ground plant tissues. The major 

lepidopteran species which damage corn in the U.S. mid-southern region include the corn 

earworm (Helicoverpa zea (Boddie)), fall armyworm (Spodoptera frugiperda (J.E. Smith)) 

and a complex of corn stalk borers (Siebert et al., 2012). Across the north central and mid-

western region, European corn borer (Ostrinia nubilalis (Hubner)) and southwestern corn 

borer (Diatraea grandiosella Dyar) are the two major corn borer species (Ostlie et al., 1997, 

Huang et al., 2011). Yield losses of traditional non-Bt corn by a corn borer complex of the 

sugarcane borer, Diatraea saccharalis (F.) and D. grandiosella are estimated at up to 28% in 

mid-southern states (Sankula and Blumenthal, 2004). Recently, it is also reported that S. 

frugiperda infestations occur frequently across the Southern region of the U.S. in 
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conventional non-Bt and Bt corn varieties, especially when fields are planted after the 

optimum seeding dates (Hardke et al., 2011). 

1.3 Spodoptera frugiperda (J.E. Smith) 

S. frugiperda is native to the tropical regions of the western hemisphere from the 

United States to Argentina (Pashley et al., 1985; Adamczyk et al., 1999). It normally 

overwinters successfully in southern Florida and southern Texas of the United States. S. 

frugiperda is a strong flier, and disperses long distances annually during the summer months 

(Belay et al., 2012). It can be found in most U.S. states. However, as a regular and serious 

pest, its range tends to be mostly the southeastern states. The life cycle is completed in about 

30 days during the summer, but 60 days in the spring and fall, and 80 to 90 days during the 

winter. The number of generations varies with the appearance of the dispersing adults in an 

area (Pitre and Hogg, 1983; Ashley et al., 1989; Sparks, 1979).S. frugiperda has historically 

been one of the most common pests of field corn in the Southern U.S. (Pitre and Hogg, 1983; 

Buntin, 1986; Buntin et al., 2004). This pest has a wide host range of more than 80 plant 

species. It does not overwinter in most of the corn-production regions of the United States 

(Wyckhuys and O’Neil, 2006).  

1.4 Management of Spodoptera frugiperda 

Traditional chemical control strategies often provide unsatisfactory control of S. 

frugiperda in field corn. Almost immediately after larval hatching, neonates move into the 

whorl region of corn plants where they are protected from foliar insecticide sprays (Harrison, 

1986; Castro, 2002; Bokonon-Ganta et al., 2003; Siebert et al., 2008a). Those insecticides 

which are generally effective against other pests, such as the corn earworm, Helicoverpa zea 
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(Boddie), typically provide only limited control of S. frugiperda (Young, 1979; Guillebeau 

and All, 1990). Regional populations of S. frugiperda have developed resistance to several 

classes of insecticides including carbamates, organophosphates, and pyrethroids (Adamczyk 

et al., 1999). Thus, transgenic corn varieties have become a more viable option for controlling 

S. frugiperda.   

1.5 Transgenic Bt Corn Technology 

The ability to transfer foreign genes to desired plant genomes represents a major 

technological advance in modern agriculture (James, 2011). Bacillus thuringiensis (Bt) is a 

rod shaped soil bacterium that produces specific crystalline (Cry) endotoxin during the 

reproductive stages and vegetative insecticidal proteins (VIP) during the vegetative growth 

stages that are toxic to specific insect species (Vaeck et al., 1989, Gasser and Fraley, 1989). 

The sotto disease that killed vast populations of silkworms Bombyx mori (L.), in Japan in 

1901 made bacteriologist Shigetane Ishiwata discover, isolate and name the soil bacterium 

(Ishiwata, 1901). Later, a German biologist, Ernst Berliner, confirmed this discovery while 

isolating the bacterium that had caused the death of the Mediterranean flour moth, Ephestia 

kuehniella (Zell), in 1911 (Berliner, 1915; Siegel, 2000; Sanahuja et al., 2011). Such 

insecticidal proteins produced by Bt have been used by farmers for insect-pest control under 

various trade names including Sporeine
®
, Thuricide

®
, Able

TM
, Biobit

®
, and Dipel

®
 (Baum et 

al., 1999; Kaur et al., 2000; NPTN, 2000). Pesticides with Bt formulation are considered as 

friendly to the environment, people, soil decomposers, pollinators, parasitoids, and wildlife. 

Bt toxins are highly diverse, highly effective, and relatively cheap. These merits have made it 
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widely used all over the world for controlling lepidopteran, coleopteran larvae and several 

dipteran pests (Baum et al., 1999; Kaur, 2000). 

The primary target pests of Bt are specific insect species. Bt controls insects with 

toxins called insecticidal crystal proteins or delta endotoxins. When insects ingest toxin 

crystals, which are then dissolved and cut with proteases in the highly alkaline of insect 

midgut, making the cry toxin release from the crystal. The Cry toxin is then inserted into the 

insect gut cell membrane, paralyzing the digestive tract and forming a pore, which makes the 

insect stop eating and starve to death (Dean, 1984). 

Bt crops are the plants which can express Bt proteins. Transgenic Bt tobacco was the 

first plant modified to express ∂- endotoxins with Cry1Ab gene in 1987 in Belgium (Vaeck et 

al., 1989). Bt potatoes were first developed for the control of Colorado potato beetle, 

Leptinotarsa decemlineata (Perlak et al., 1993). Bt corn were first commercialized in the U.S. 

in 1996 primarily for management of O. nubilalis and D. grandiosella (Ostlie et al., 1997). 

Since then, many Bt corn products have been produced for controlling Diabrotica spp., H. 

zea, and S. frugiperda. Bt corn expressing a single protein (Cry1Ab) was introduced in the 

U.S. southern States and commercially planted in 1999 (Buntin et al., 2000, 2004; Huang et 

al., 2006). 

1.6 Bt Resistance in Spodoptera frugiperda 

 Resistance development in target pest populations has been a big challenge for the 

sustainable use of transgenic Bt crops (Alstad and Andow, 1995; Ostlie et al., 1997; Gould, 

1998; Tabashinik et al., 2008). Resistance to Bt insecticides were earlier detected and 

reported in field populations of diamondback moth, Plutella xylostella (L.) (Tabashnik, 1994), 
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and cabbage looper, Trichoplusia ni (Hubner) in Canada (Kain et al., 2004). Major resistance 

genes to Bt crops have been found in laboratory selections in tobacco budworm, Heliothis 

virescens (Fabricius), (Gould et al.,1995, 1997), pink bollworm, Pectinophora gossypiella 

(Saunders) (Tabashnik et al., 2000), poplar leaf beetle, Chrysomela populi (L.) (Génissel et 

al., 2003), D. saccharalis to Cry1Ab corn (Huang et al., 2007a, b, 2008, 2009), O. nubilalis 

to Cry 1F corn (Pereira et al., 2008), H. zea to Cry1Ac cotton in the U.S (Tabashnik et al., 

2008; Moar et al., 2008) and Helicoverpa armigera (Hübner) to Cry1Ac cotton in Australia 

(Akhurst et al., 2003; Downes et al., 2007; Mahon et al., 2007) and China (Li et al., 2004; Xu 

et al., 2009). 

 Resistance of S. frugiperda to Cry1F corn observed in 2006 in Puerto Rico was the 

first documented field resistance to Bt crops in the world (Matten et al., 2008; Storer et al., 

2010). Since then another three cases of field resistances to Bt crops have been reported, 

which are the resistance of the African stem borer, Busseola fusca (Fuller), to Cry1Ab corn in 

South Africa in 2007 (Van Rensburg, 2007), resistance of P. gossypiella, to Cry1Ac cotton in 

western India (Monsanto, 2010a; Dhurua and Gujar, 2011), and recently resistance of western 

corn rootworms, Diabrotica virgifera to Cry3Bb1 corn in the United States (Gassmann et al., 

2011). 

 Cry1F-expressed corn was registered in 2001 in United States to control the major 

and secondary Lepidoptera pests. In 2003, Cry1F corn was cultivated in Puerto Rico to 

control S. frugiperda which is the most important corn pest in Puerto Rico (Hardke et al., 

2011). A document has revealed that resistance to Cry1F corn in S. frugiperda occurred in 

late 2006. There might have several factors that had contributed to this resistance (Storer et 
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al., 2010; Huang et al., 2011). Among these, the lack of a high Bt dose expressed in 

Herculex
®
 I hybrids for S. frugiperda could be a major reason for the resistance development. 

In addition, the isolated island geography of Puerto Rico, tropical environment, and limited 

availability of alternate hosts favorable for S. frugiperda could intensify S. frugiperda 

infestations (Huang et al., 2011). In 2006, large populations of S. frugiperda were recorded in 

Puerto Rico that caused severe damage to traditional non-Bt corn, and a serious drought from 

October 2006 to April 2007 also forced the populations to rely more on the irrigated crops 

such as the Cry1F corn (Storer et al., 2010). 

1.7 Bt Resistance Management 

 The wide use of Bt corn demands an effective insecticide resistance management 

(IRM) plan to ensure the sustainable use of Bt corn technologies (Ostlie et al., 1997; Gould, 

1998; US EPA, 1998, 2001; Baute, 2004). To delay resistance development, the United States 

and Canada have implemented an IRM plan named the ‘high dose/refuge’ strategy for 

planting Bt crops (Ostlie et al., 1997; Gould, 1998; Baute, 2004). This strategy firstly aims to 

use ‘high-dose’ Bt plants to kill resistant heterozygotes of the target pests (US EPA, 2001). 

Thus the resistance alleles of resistant heterozygous insects can’t be transmitted into the next 

generation. Secondly, the remaining area is planted to non-Bt varieties that serve as a refuge 

for susceptible insects. The susceptible insects emerged from the non-Bt crop should mate 

with the rare resistant homozygous individuals that have survived on the Bt crop. If the 

frequency of resistance is very low (e.g. 0.001), majority of offspring carrying resistance 

alleles will be heterozygous and the heterozygotes should be killed by the high does Bt crops 

(Huang et al., 2011). Through this strategy, the resistance allele frequency in the target pest 
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populations can be maintained at low levels for a long-period of time.  There are three key 

assumptions for the success of the “high does/refuge” IRM strategy (Huang et al., 2011). 

First, the Bt crops should produce a high dose of Bt proteins that can kill the individuals of 

the target species that carry one copy of the resistance allele. In other words, the resistance 

should be functionally recessive. Second, the initial resistance allele frequency should be very 

low, usually <0.001. And finally, the rare survivors that are homozygous for resistance can 

mate with the susceptible individuals from the non-Bt refuge plants (Ostile et al., 1997; US 

EPA, 2001). Previous studies have demonstrated that resistance development to Bt crops in 

target pest populations can be significantly delayed if these three assumptions are met (Huang 

et al., 2011). For example, in North America, the major target pest species of Bt corn, O. 

nubilalis and D. grandiosella and the major targets of Bt cotton, H. virescens and P. 

gossypiella are still very susceptible and have not shown any resistance to Bt corn or Bt 

cotton after 16 years of intensive use of transgenic Bt crops in the U.S and Canada (Huang et 

al., 2011). Analysis of these cases showed that the three assumptions of the “high 

dose/refuge” strategy are met for all of the four species. In contrast, at least one of the three 

assumptions was not met in the four cases of documented field resistance to Bt crops. For 

example, none of the Bt crops associated with the four cases expressed a “high dose” of Bt 

proteins against the target species as required in the “high dose/refuge” IRM strategy (Huang 

et al., 2011).  

 Previous studies have shown that neither the Cry1Ab nor Cry1F Bt corn expresses a 

‘high dose’ against S. frugiperda. In addition, with the increased planting of Bt crops in the 

United States and Canada, compliance rates with the requirements of the “high dose/structural 
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refuge” IRM strategy have decreased significantly in both countries. During the early 

commercialization of Bt corn, grower compliance to refuge requirements was reported to be 

high. For example, an early report indicated that >85% corn growers in the United States 

complied with the refuge planting requirements of the strategy (ABSTC, 2002). From 2001 to 

2006, compliance rates dropped as low as 72% (ABSTC, 2005; Goldberger et al., 2005). By 

2007 and 2008, the compliance rate with the refuge planting in the United States was 74-80% 

(US EPA, 2010). A similar decrease in the compliance rate in refuge planting requirements 

was also reported in Canada (Canadian Corn Pest Coalition, 2005; Dunlop, 2009). 

Furthermore, modeling has shown that target insect pests could develop resistance more 

rapidly to single gene Bt crops than to multiple toxins (Roush, 1998, Zhao et al., 2003). To 

delay resistance development, a gene-pyramiding strategy has been employed to develop 

transgenic plants that express multiple Bt toxins for targeting a same group of insect pests. 

The first commercialized pyramided Bt corn technologies in the U.S. for managing 

lepidopteran pests are Genuity
®
 VT Double Pro

TM
, Triple Pro

TM
, SmartStax

TM
, and Agrisure

®
 

Viptera
TM

 3111. Corn hybrids containing these pyramided Bt traits were first commercially 

planted in the United States during the 2010 crop season (Monsanto, 2010b). It is expected 

that the use of pyramided Bt corn should delay resistance development in field (Roush, 1998; 

Zhao et al., 2003; Monsanto, 2010b).   

1.8 Objectives  

1. To determine the susceptibility of two field populations of Spodoptera frugiperda 

collected from Florida and Puerto Rico to purified Cry1F protein and corn leaf tissue 

containing single and pyramided Bt genes; and 
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2. To evaluate larval survival and plant injury of Cry1F-susceptible, -resistant, and -

heterozygous genotypes of Spodoptera frugiperda on transgenic corn containing single and 

pyramided Bt genes. 
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CHAPTER 2.  SUSCEPTIBILITY OF FIELD POPULATIONS OF THE 
FALL ARMYWORM (LEPIDOPTERA: NOCTUIDAE) FROM 
FLORIDA AND PUERTO RICO TO PUERIFIED CRY1F PROTEIN 
AND CORN LEAF TISSUE CONTAINING SINGLE AND PYRAMIDED 
BT GENES 

2.1 Introduction 

Transgenic corn hybrids expressing Bacillus thuringiensis (Bt) proteins were initially 

developed to reduce injury from corn stalk borers such as the European corn borer, Ostrinia 

nubilalis (Hübner) and southwestern corn borer, Diatraea grandiosella (Dyar). Fall 

armyworm, Spodoptera frugiperda (J.E. Smith), is an important pest of corn in both North 

and South America (Pashley et al., 1985; Pashley, 1986; Buntin et al., 2004; Chilcutt et al., 

2007). Several studies have evaluated the field efficacy of first generation single gene Bt corn 

products (e.g. YieldGard
®
 Corn Borer, Herculex

®
I) against S. frugiperda (Buntin et al., 2000; 

2004; Buntin, 2008; Siebert et al., 2008). Results of these studies showed that the single gene 

Bt corn also could suppress S. frugiperda but the suppression levels were usually not high 

enough to qualify as “high dose”. For this reason, S. frugiperda is not listed as a target species 

of the first generation Bt corn technologies except Herculex
®

I expressing the Cry1F protein 

(US-EPA, 2001a).  

Herculex
®

I Cry1F corn was first registered in 2001 in the United States and later 

became commercially available in the United States and Puerto Rico to control stalk borers 

and some Noctuidae moths including S. frugiperda. This insect has been reported as the most 

important corn pest in Puerto Rico (US-EPA, 2007; Storer et al., 2010). Unfortunately, field 

resistance to Cry1F corn was observed in S. frugiperda populations in Puerto Rico in 2006 

(Storer et al., 2010). This became the first example of field resistance to commercial Bt crops 
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in the world (US-EPA, 2007; Matten et al., 2008; Storer et al., 2010). Besides intensive 

plantings of Cry1F corn in Puerto Rico, several other factors might have contributed to the 

development of field resistance (US-EPA, 2007; Storer et al., 2010; Huang et al., 2011). To 

delay resistance development and broaden the target spectrum, a gene-pyramiding strategy 

has been utilized to develop transgenic plants that express multiple Bt proteins with 

dissimilar modes of action for targeting a same group of insect pests (Ghimire et al., 2011). 

The first commercialized pyramided Bt corn technologies for managing lepidopteran pests in 

the United States included Genuity
®

VT Double Pro
TM

, Genuity
®

VT Triple Pro
TM

, Genuity
®

 

SmartStax
TM

, and Agrisure
®
 Viptera

TM
 3111. Compared to the first generation single-gene Bt 

corn, the pyramided Bt corn products are more effective for controlling some Noctuidae 

species including S. frugiperda (Burkness et al., 2010) and thus S. frugiperda is listed as a 

target in all pyramided Bt corn traits that have been commercialized for managing above-

ground lepidopteran corn pests in the United States (US-EPA, 2009; 2010; Monsanto, 2012; 

Syngenta, 2012).  

During 2011, two field populations of S. frugiperda were established from larvae 

collected from corn fields in Florida and Puerto Rico, respectively. Preliminary studies 

showed that the Puerto Rico population was highly resistant to Cry1F corn plants, while the 

Florida population was still susceptible to the Cry1F corn. Therefore, these two populations 

of S. frugiperda should provide great value for analyzing cross-resistance to other Bt corn 

technologies, especially to the recently commercialized pyramided Bt corn. The objectives of 

this study were to 1) document the resistance of the field population of S. frugiperda from  
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Puerto Rico to purified Cry1F protein and commercial Cry1F corn and 2) to determine the 

cross-resistance of this population to pyramided corn products.  

2.2 Materials and Methods 

2.2.1 Insect Sources  

 Two field populations of S. frugiperda were established from larvae collected from 

corn fields in Florida and Puerto Rico, respectively, in 2011. The Florida population (FL) was 

initiated from 96 larvae sampled from Hendry County in south Florida and the Puerto Rico 

population (PR) was developed from >300 larvae collected in southern Puerto Rico. Field-

collected larvae were reared individually on a meridic diet (Ward’s Stonefly Heliothis diet, 

Rochester, NY) in 30-ml plastic cups (Fill-Rite, Newark, NJ) until the pupal stage. The 

larval-rearing cups were held in 30-well trays (Bio-Serv, Frenchtown, NJ) and placed under 

room conditions until pupation. Pupae of each population were placed in 3.8-L paper 

containers (Huhtamaki Foodservice, De Soto, KS) containing ~100g of vermiculite (Sun Gro, 

Pine Bluff, AR) for adult emergence, mating, and oviposition. Insect populations had been 

maintained in the laboratory for two generations for FL and three generations for PR when 

this study was initiated.   

Susceptibility of S. frugiperda was evaluated using two approaches: 1) a diet 

incorporating bioassay with purified Cry1F protein and 2) testing on leaf tissue of Bt and 

non-Bt corn hybrids. There were two independent trials for each test approach. For the diet 

incorporation bioassays, the first trial used the original two populations (FL and PR) that 

were established from larvae collected from fields without further selection in the laboratory. 

In the first trial with leaf tissue bioassays, larval mortality was evaluated for three insect 
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populations including FL, PR, and an F1 population (FL x PR) that was generated by crossing 

FL and PR. Results of the first trial showed that compared to FL, the PR population was 

highly resistant to both the purified Cry1F protein and Cry1F corn leaf tissue (see below). 

After the first trial with Cry1F protein and corn leaf tissue, the original PR larvae were 

selected on Cry1F corn (Pioneer 31D59) leaf tissue for two generations. In the selection 

process, 2-3 pieces of leaf tissue were placed in each well of 32-well C-D International trays 

(Bio-Ba-32, C-D International, Pitman, NJ). Approximately 5-10 newly hatched larvae were 

released in each well.  For each generation, >1000 neonates were selected on Cry1F corn leaf 

tissue. After 7 days, the survivors were transferred into the diet. After each selection, 

approximately 120-180 survivors were reared until the next generation. If the number of 

survivors was more than enough (e.g. >180 larvae), only the survivors with a relatively 

bigger body size were used to develop the next generation. The Cry1F corn leaf tissue 

selected-PR populations were then backcrossed with the FL population and reselected for 

Cry1F resistance in F2 generations on Cry1F corn leaf tissue. The procedures of the 

reselections for Cry1F resistance in the F2 generations of the backcrosses were the same as 

described above. Thereafter, the backcrossed and reselected population was referred as 

Cry1F-RR. The Cry1F-RR population had been continuously selected on Cry1F corn leaf 

tissue for at least two more generations before it was used for this study. In addition, another 

F1 population (Cry1F-RS) was developed by crossing individuals from FL and Cry1F- RR. In 

the second trial, susceptibility of S. frugiperda was evaluated for all three populations 

including FL, Cry1F-RR, and Cry1F-RS in both diet incorporation and leaf tissue bioassays. 
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2.2.2 Source of Cry1F Protein and Corn Leaf Tissue  

In the diet incorporation bioassays, purified trypsin-activated (99.9%) Cry1F protein 

was obtained from Case Western Reserve University, Cleveland, OH (Huang et al. 2007). The 

Cry proteins were produced using recombinant Escherichia coli culture and were 

subsequently activated with trypsin. The activated Cry proteins were lyophilized before they 

were used in the bioassays. The purity of Cry1F proteins was determined using high-

performance liquid chromatography and sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (Pusztai-Carey et al., 1995; Masson et al., 1998).  

In the leaf tissue tests, susceptibility of S. frugiperda was evaluated on leaf tissue of 

five non-Bt and seven Bt corn hybrids (Table 2.1). The seven Bt corn hybrids represent five 

Bt corn traits, which include one single-gene Bt corn product, Herculex
®

I and four pyramided 

Bt corn products, Genuity
®

VT Double Pro
TM

, Genuity
®
VT Triple Pro

TM
, Genuity

®
 

SmartStax
TM

, and Agrisure
®
 Viptera

TM
 3111. Herculex

®
I contains a single Bt gene, Cry1F 

(Event TC1507), effective for above-ground lepidopteran insects. VT Double Pro
TM 

expresses two Cry proteins, Cry1A.105 and Cry2Ab2 (Event MON89034) and both proteins 

are effective against above-ground lepidopteran species including S. frugiperda (Monsanto, 

2012). VT Triple Pro
TM

 contains the same two Cry proteins in VT-2P plus Cry3Bb1 

(MON88017) which is effective against below-ground corn rootworms Diabrotica spp. 

(Coleoptera: Chrysomelidae) (Monsanto, 2012). SmartStax
TM

 produces six Bt proteins 

including the three Bt proteins of VT Triple Pro
TM

 plus Cry1F (Event TC1507) targeting 

lepidopteran species and Cry34/35Ab1 (Event DAS-59122) against rootworms (Monsanto 

2012). Viptera
TM

 3111 expresses three Bt proteins including Vip3A (Event MIR162) and 
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Table 2.1. Hybrids used in evaluation of susceptibility of Spodoptera frugiperda to Bt corn 

Traits Corn hybrid Event Used in Abbreviation in 

the figures 

Bt genes Major target pests 

Non-Bt  DKC 61-22 -- Trial 1 NonBt-1 closely related to DKC 61-21 -- 

Non-Bt DKC 67-86 -- Trial 1 NonBt-2 closely related to DKC 67-88 -- 

Non-Bt  DKC 63-45 -- Trial 2 NonBt-1 closely related to DKC 61-21 -- 

Non-Bt N78N-GT -- Trial 2 NonBt-2 closely related to N78N-3111 -- 

Non-Bt  Pioneer 

31G66 

-- Trial 2 NonBt-3 closely related to Pioneer 

31D59 

-- 

Herculex
®

I Pioneer 

31D59 

TC1507 Trial 1&2 HX1 Cry1F lepidoptera 

Genuity
®

VT 

Double Pro
TM

 

DKC 64-04 MON89034 Trial 1 VT-2P Cry1A.105, Cry2Ab2 lepidoptera 

 DKC 63-87 MON89034 Trial 2 VT-2P Cry1A.105, Cry2Ab2 lepidoptera 

Genuity
®

VT 

Triple Pro
TM

 

DKC 67-88 MON89034+ 

MON 88017 

Trial 1 VT-3P Cry1A.105, Cry2Ab2, 

Cry3Bb1 

lepidoptera 

&rootworms 

 DKC 62-97 MON89034+ 

MON 86017 

Trial 2 VT-3P Cry1A.105, Cry2Ab2, 

Cry3Bb1 

lepidoptera 

&rootworms 

Genuity
®

 

SmartStax
®
 

 

DKC 61-21 MON89034+ 

MON88017+TC

1507+ DAS-

59122 

Trial 1&2 SmartStax Cry1A.105, Cry2Ab, Cry1F, 

Cry3Bb1, Cry34/35Ab 

lepidoptera & 

rootworms 

Agrisure
®
 

Viptera
TM

 3111 

N78N-3111 MIR162+Bt11+

MIR604 

Trial 1&2 VIP Vip3A,Cry1Ab,mCry3A 

 

lepidoptera & 

rootworms 
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Cry1Ab (Event Bt11) for controlling lepidopteran species and mCry3A (Event MIR604) for 

managing rootworms (DiFonzo and Collen, 2012). The five non-Bt corn hybrids were 

genetically closely related to one or two of the seven Bt corn hybrids. In each of the two 

trials, larval mortality of S. frugiperda was evaluated on corn leaf tissue of five Bt corn 

hybrids representing five Bt corn technologies along with two (1
st
 trial) or three (2

nd
 trial) 

non-Bt corn hybrids (Table 2.1). Expression (or not expression) of Bt proteins in plants was 

confirmed using ELISA-based assays (EnviroLogix, Quantiplate
TM

 kits, Portland, ME).  

2.2.3 Diet Incorporation Assays  

 Larval susceptibility of S. frugiperda to purified Cry1F protein was individually 

assayed using a diet incorporation procedure in 128-cell trays (C-D International, Pitman, 

NJ). In each bioassay, 6-8 Cry1F concentrations were used. Cry1F concentrations used in 

each bioassay were slightly different depending on the insect population and amount of 

Cry1F protein available. In the first trial, Cry1F concentrations of 0, 0.1, 0.316, 1, 3.16, 10, 

and 31.6µg/g were used to assay both FL and PR populations. Based on the results of the first 

trial, Cry1F concentrations used in the 2
nd

 trial were modified to 0, 0.0316, 0.1, 0.316, 1, 

3.16, and 10µg/g in assaying FL. In addition, concentrations of 31.6 (for both PR and Cry1F-

RS) and 100µg/g (for PR only) were also included in the second bioassays. To prepare the 

appropriate concentrations of Bt diet, purified Cry1F protein was first suspended in distilled 

water at the room temperature and stirred completely using an iron stick to ensure that the 

protein was uniformly distributed in the solution. The Cry1F solutions were then mixed with 

a meridic diet (WARD’S Stonefly Heliothis diet) just prior to placing the diet into individual 

cells of the 128-cell trays. In the bioassay, approximately 1 g of treated diet was placed into 
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each cell. One neonate (< 24 h) was released on the diet in each cell. After larval inoculation, 

cells were covered with vented lids (C-D International, Pitman, NJ). The bioassay trays were 

placed in environmental chambers maintained at 28 
°
C, 50% RH, and a 16:8 (L: D) h 

photoperiod. Larval mortality was recorded on the 7
th

 day after inoculation. Larvae were 

considered dead if they did not respond after being touched with a camel hair bush. In a 

bioassay, each combination of insect population by Cry1F concentration was replicated four 

times with 16-32 larvae in each replicate.  

2.2.4 Leaf Tissue Test 

Fully expanded leaf tissues of Bt and non-Bt corn plants were removed from 

greenhouse grown V5-V8 stage plants. In the bioassays, 2-3 pieces of leaf tissue were placed 

in each well of a 32-well C-D International tray (Bio-Ba-32, C-D International, Pitman, NJ). 

In each of the two trials, four neonates (<24 h old) of each of three populations were placed 

on the surface of the leaf tissue in each well. Bioassay trays containing leaf tissues and 

neonates were placed in growth chambers maintained at the same conditions as for the diet 

incorporation bioassays. Larval mortality was recorded on the 7
th

 day after release of 

neonates. As mentioned above, larvae were considered dead if they did not respond after 

being touched with a camel hair bush. In each trial, there were four replications for each 

combination of corn hybrid and insect population and each replication included 32 neonates 

in eight wells (n = 128).   

2.2.5 Data Analysis 

In the diet incorporation bioassay, larval mortality of S. frugiperda at a Cry1F 

concentration was corrected with mortality on the control diet using the method as described 
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in Abbott (1925). The corrected concentration/mortality data were then subjected to a probit 

analysis to determine the Cry1F concentration that produced a 50% mortality value (LC50) 

and the corresponding 95% confidence interval (CI) (Finney, 1971; SAS Institute, 2010). For 

each bioassay, the Cry1F concentrations used in the probit analysis included the highest 

concentration that produced zero mortality, the lowest concentration that resulted in 100% 

mortality, and all results between those extremes (Huang et al., 2007). In the bioassays with 

PR and Cry1F-RR, no significant larval mortality was observed even at the highest Cry1F 

concentrations tested, and thus the LC50 values for these two populations were considered to 

be greater than the highest Cry1F concentrations used in the bioassays. Resistance ratios for 

each Cry protein were calculated using the LC50 value of PR, Cry1F-RR, or Cry1F-RS 

divided by the LC50 of the FL population. 

Because the LC50 values of the PR and Cry1F-RR populations couldn’t be calculated 

with the probit analysis, larval mortality data, after transformed by arcsine of (x)
0.5

, were also 

subjected to a two-way analysis of various (ANOVA) with Cry1F concentration and insect 

population as the two main factors. Similarly, in the two trials using corn leaf tissue, 

percentage larval mortalities were first transformed by arcsine of (x)
0.5

 and then analyzed 

using a two way ANOVA with corn hybrid and insect population as the two main factors 

(SAS Institute, 2010). Treatment means in all ANOVAs were separated with LSMEANS test 

at α= 0.05 level (SAS Institute, 2010).  

In addition, the dominance level of Cry1F resistance in S. frugiperda was estimated 

using two approaches. The first approach involved the use of the Stone’s dominance “D” 

value. The LC50 values estimated in the 2
nd

 diet incorporation bioassays were used to 
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calculate the dominance “D” value using the formula described in Stone (1968). 

D =
2logLCRS-logLCRR-logLCSS

logLCRR-logLCSS
 

The “D” value ranges from -1 to 1: a value of -1 indicating resistance is completely recessive; 

a value of 0 suggesting resistance is additive; and a value of 1 implying resistance is 

completely dominant. The dominance level of Cry1F resistance in S. frugiperda was also 

estimated as “effective dominance”, DML, using the method as described in Bourguet et al. 

(2000). DML ranges between 0 and 1. DML = 0 refers to a completely recessive resistance and 

DML = 1 means the resistance is completely dominant. In this study, DML was estimated using 

the mortality data of the three insect populations recorded in each of the two trials on corn 

leaf tissue of four Bt corn technologies. DML for Viptera
TM

3111 couldn’t be calculated 

because all insect populations exhibited 100% mortality on the Bt corn leaf tissue in both 

trials.    

2.3 Results 

2.3.1 Susceptibility of Field Populations from Florida and Puerto Rico to Purified 

Cry1F Protein: Trial One 

The FL population was susceptible to the purified Cry1F protein with a LC50 of 

0.23µg/g and a 95% CI of 0.11-0.37µg/g (Table 2.2). Relative to FL, PR was highly resistant 

to the Cry1F protein. No significant larval mortality (≤13.7%, corrected mortality) of PR 

was observed across all the Cry1F concentrations assayed and thus the LC50 value of this 

population was estimated to be > 31.6 µg/g, which corresponded a resistance ratio of >137-

fold. Two-way ANOVA showed that the main effects of both Cry1F concentration and insect 

populations on the 7-day larval mortality were significant (F = 31.31; df = 6, 41; P < 
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Table 2.2. LC50s and 95% confidence intervals (CI) based on larval mortality of Spodoptera frugiperda neonates on diet treated with purified       

Cry1F Bacillus thuringiensis protein 
* 

Population N
#
 Slope ± SE LC50(95%CI)

  

(μg/g)     

χ
2
 df Resistance ratio 

Trial 1 

FL 503 1.13 ± 0.18 0.23(0.11-0.37)         45.87 18 --- 

PR   --- >31.6 --- --- >137 

Trial 2 

FL 553 1.38 ± 0.22 0.13(0.07-0.20)      71.62 18 --- 

Cry1F-RS  675 1.47 ± 0.16 1.07(0.76-1.50) 64.08 22 8.2 

Cry1F-RR  --- >100 --- --- >769 

      #
Total number of neonates assayed. 

      †
Resistance ratio of an insect population was calculated by dividing the LC50 value of the population by that of the FL population.
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0.0001 and F = 308.16; df = 1, 41; P < 0.0001, respectively). The effect of the interaction of  

 

the two factors was also significant (F = 26.82; df = 6, 41; P < 0.0001). Significant larval  

 

mortality (50.2%) of the FL population occurred at 0.1 µg/g, the lowest concentration  

 

assayed, and the mortality reached 95.4% at 3.16 µg/g and 100% at 10µg/g (Figure 2.1). In  

 

contrast, Cry1F at all tested concentrations did not cause any significantly greater mortality to  

 

PR than those observed on non-Bt control diet.    

Figure 2.1. Larval mortality of Spodoptera frugiperda after 7 days on diet treated with 

different concentrations of purified Cry1F protein. Mean values across all treatments in each 

figure followed by a same letter are not significantly different (P <0.05; LSMEANS test)  
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2.3.2 Susceptibility of FL, Cry1F-RR, and Cry1F-RS Populations to Purified Cry1F 

Protein: Trial Two 

Similarly as observed in the first trial, the FL population was still susceptible to the 

purified Cry1F protein with a LC50 of 0.13µg/g and a 95% CI of 0.07-0.20µg/g, which was 

not significantly different compared to the LC50 value calculated in the first trial based on the 

overlapped 95% CIs (Table 2.2). The backcrossed and reselected population, Cry1F-RR, was 

also highly resistant to the purified Cry1F protein. Again, no significant mortality (≤8.7%, 

corrected mortality) of Cry1F-RR was recorded at the tested concentration range (up to 

100µg/g) and thus the LC50 value was estimated to be > 100 µg/g, which was at least 769-

fold greater than the LC50 of FL. The LC50 value of Cry1F-RS, the F1 population of the cross 

between FL and Cry1F-RR, was 1.07µg/g with a 95% CI of 0.76-1.50µg/g, which was 

significantly greater than the LC50 of FL based on the non-overlapped 95% CIs. However, the 

value of 1.07µg/g was considerably less than the LC50 of Cry1F-RR.  

Two-way ANOVA also showed that effects of Cry1F concentration, insect population, 

and their interaction on 7-day larval mortality were all significant (F = 56.79; df = 8, 72; P < 

0.0001 for, F = 130.88; df = 2, 72; P < 0.0001, and F = 32.15; df = 13, 72; P < 0.0001, 

respectively). Compared to the non-treated control diet, Cry1F at the tested concentrations 

did not result in any significant levels of mortality against the Cry1F-RR population, even at 

the highest concentration evaluated in the bioassays (100µg/g) (Figure 2.1). In contrast, 

significant mortality (39.1%) was observed for the FL population at the lowest concentration 

tested (0.0316µg/g). Mortality of FL reached 94.6% at 1µg/g and 100% at 3.16µg/g. 

Mortality of the Cry1F-RS population at ≤1 µg/g was low, between 11.3 (0.0316 µg/g) and 

30% (1.0 µg/g). The mortality values were significantly less (P < 0.05) than those of the FL 
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population, but in general were not significantly different compared to the mortalities 

observed for the Cry1F-RR population (P > 0.05). At ≥3.16 µg/g, mortality of Cry1F-RS 

increased significantly as the Cry1F concentration increased and reached 80.7% at 3.16 µg/g 

and 96.6% at 10µg/g. The mortality of Cry1F-RS at 10µg/g was not significantly different 

from 100% that was observed for the FL population.     

2.3.3 Susceptibility of FL, PR, and FL x PR Populations to Bt Corn Leaf Tissue: Trial 

One 

The effect of corn hybrid, insect population, and their interaction on larval mortality 

at 7 days was significant (F = 82.42; df = 6, 63; P < 0.0001, F = 35.91; df = 2, 63; P < 

0.0001, and F = 4.22; df = 12, 63; P < 0.0001, respectively). Larval mortality of the three 

insect populations on leaf tissue of the two non-Bt corn hybrids after 7 days varied 

significantly, ranging from 9.4% for PR to 66.4% for FL on DKC 67-86 (Figure 2.2). Except 

for these two extremes, there was generally no significant difference in larval mortality on the 

two non-Bt corn hybrids. A high mortality (96.9%) of FL larvae was observed on leaf tissue 

of Herculex
®

I expressing the Cry1F protein, which was significantly greater than the 

mortality observed on the non-Bt corn leaf tissue. In contrast, the PR larvae appeared to be 

highly resistant to Cry1F corn leaf tissue, with a 7-day mortality of only 39.1%. This 

mortality level was similar to the average mortality (38.5%) of the three populations on the 

two non-Bt corn leaf tissue. The F1 population of the cross between FL x PR was susceptible 

to Cry1F leaf tissue, producing a 7-day mortality of 83.6% (Figure 2.2). This was 

significantly greater (P < 0.05) than that observed for PR but significantly less (P < 0.05) 

than the mortality of FL. However, all three insect populations were susceptible to leaf tissue 

of the four pyramided Bt corn hybrids. No survivors of FL were observed after 7 days on the 
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four pyramided Bt corn hybrids. Mortality of the FL x PR population was also high on these 

pyramided Bt corn products (>95%), which was not significantly different (P > 0.05) than 

that observed for the FL population. 

 

Figure 2.2. Larval mortality of Spodoptera frugiperda after 7 days feeding on leaf tissue 

removed from non-Bt and Bt corn plants. Mean values across all treatments in each figure 

followed by a same letter are not significantly different (P < 0.05; LSMEANS test). NonBt-

1in trial one = DKC 61-22, NonBt-1 in trial two= DKC 63-45, NonBt-2 in trial one= DKC 

67-86, NonBt-2 in trial two= N78N-GT, NonBt-3 in trial two= Pioneer 31G66, HX1= Pioneer 

31D59, VT-2P in trial one=DKC 64-04, VT-2P in trial two=DKC 63-87, VT-3P in trial 

one=DKC 67-88 VT-3P in trial two=DKC 62-97, SmartStax= DKC 61-21, VIP= N78N-3111 
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PR larvae couldn’t survive on Agrisure
®
 Viptera

TM
 3111 leaf tissue, while a few larvae (e.g. 

6.2-14.1%) of PR survived on the other three pyramided Bt corn hybrids (Genuity
®

VT 

Double Pro
TM

, VT Double Pro
TM

, and SmartStax
TM

 ).  

2.3.4 Susceptibility of FL, Cry1F-RR, and Cry1F-RS Populations to Bt Corn Leaf 

Tissue: Trial Two 

As observed in the first trial, the effect of corn hybrid, insect population, and their 

interaction on larval mortality was all significant (F = 147.88; df = 7, 71; P < 0.0001, F = 

120.67; df = 2, 71; P < 0.0001, and F = 21.27; df = 14, 71; P <0.0001, respectively). The 7-

day larval mortality was in general similar (P > 0.05) on leaf tissue of the three non-Bt corn 

hybrids across the three insect populations with an average mortality of 36.3% (Figure 2.2). 

Again, larval mortality of the FL population was high and not significantly different (P > 

0.05) on the five Bt corn hybrids, ranging from 98.4-100%. The Cry1F-RS population was 

also susceptible to the five Bt corn hybrids with a mortality range of 93.0 to 100%. The 

mortality (93.0%) of Cry1F-RS on Herculex I was similar to that (94.5%) observed on the 

VT Double Pro
TM

 but was significantly less than the mortalities (100%) on VT Triple Pro
TM

, 

SmartStax, and Viptera3111. The backcrossed and reselected Cry1F-RR population was also 

not able to survive on the Viptera 3111 hybrid. In contrast, larvae of the Cry1F-RR population 

survived well on the Cry1F corn hybrid with a 7-day mortality of 43.8%, which was not 

significantly different compared to the mortalities observed on the three non-Bt corn hybrids. 

However, unlike the performance of the PR population observed in the first trial, larvae of 

Cry1F-RR survived well on the other three pyramided Bt corn hybrids. The 7-day mortality 

of Cry1F-RR was only 34.4% on SmartStax
TM

, which was not significantly different than the 
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mortalities observed on the three non-Bt corn hybrids. The mortality (49.2%) of Cry1F-RR 

on VT Double Pro
TM

 was also not significantly different compared to those values recorded 

on the non-Bt corn leaf tissue. Mortality (67.2%) of Cry1F-RR on the VT Triple Pro
TM

 hybrid 

was significantly greater (P<0.005) than the mortality on non-Bt corn leaf tissue but 

significantly less (P < 0.001) than that of FL and Cry1F-RS populations on Bt corn hybrids.    

2.3.5 Dominance Level of Cry1F Resistance in S. frugiperda 

Dominance level “D” measured using Stone’s method (Stone, 1968) based on the 

LC50 values of FL, Cry1F-RR, and Cry1F-RS populations was < -0.37, suggesting that Cry1F 

resistance in Cry1F-RR was recessive or incompletely recessive (Table 2.3). Because all 

three populations could not survive on leaf tissue of the Viptera
TM

 3111 hybrid (N78N-3111) 

in both trials, effective dominance level, DML, couldn’t been calculated for this Bt corn 

product. DML values measured based on larval mortality on leaf tissue of the other six Bt corn 

hybrids were consistent in the two trials, ranging from 0 to 0.33 in trial one and from 0 to 

0.22 in trial two. The results suggested that the Cry1F resistance in S. frugiperda was 

functionally recessive to incompletely recessive on leaf tissue of the five Bt corn hybrids 

representing four Bt corn traits, Herculex
®

I, Genuity
®

VT Double Pro
TM

, Triple Pro
TM

, and 

SmartStax
TM

 .  

2.4 Discussion 

Since first being commercialized in 1996, Bt crops have gained an international 

attention and widely acceptance in the world, especially among corn and cotton producers in 

the United States (James, 2011; NASS, 2012). Cry1F expressed corn (event TC1507) was 

registered in 2001 in the United States to control above-ground lepidopteran pests including 
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Table 2.3. Dominance Level of Cry1F resistance in Spodoptera frugiperda computed using 

data from diet incorporating and leaf tissue bioassays. 

Test material and trial Dominance level* 

Stone’s dominance “D” value 

Diet incorporating, trial-2  -0.37 

Effective dominance “DML” 

Pioneer 31D59, leaf tissue, trial-1 0.23 

DKC 64-04, leaf tissue, trial-1 0.19 

DKC 67-88, leaf tissue, trial-1 0.33 

DKC 61-21, leaf tissue, trial-1 0.00 

N78N-3111, leaf tissue, trial-1 --- 

Pioneer 31D59, leaf tissue, trial-2 0.12 

DKC 63-87, leaf tissue, trial-2 0.08 

DKC 62-97, leaf tissue, trial-2 0.00 

DKC 61-21, leaf tissue, trial-2 0.00 

N78N-3111, leaf tissue, trial-2 --- 

* Stone’s dominance “D” value ranges from -1 to 1: a value of -1 indicates resistance is 

completely recessive; a value of 0 suggests resistance is addictive; and a value of 1 implies 

resistance is completely dominant. Effective dominance “DML” ranges between 0 and 1. DML 

= 0 refers to a completely recessive resistance and DML = 1 means the resistance is completely 

dominant.  

 

S. frugiperda. In 2003, Cry1F corn was first commercially cultivated in Puerto Rico to 

control S. frugiperda. This insect is the most important lepidopteran corn pest in Puerto Rico 

(US-EPA, 2007; Storer et al., 2012). Studies have revealed that field resistance to Cry1F corn  

in S. frugiperda occurred in late 2006 (US-EPA, 2007; Matten et al., 2008; Storer et al., 2010; 

Huang et al., 2011). In the current study, susceptibility of two field populations of S. 
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frugiperda collected from Florida and Puerto Rico to purified Cry1F protein and corn leaf 

tissue of a commercial Cry1F corn hybrid was evaluated in the laboratory. Limited by the 

available amount of purified Bt protein, Cry1F susceptibility of S. frugiperda could be 

assayed up to only 100 µg/g in this study. No significant larval mortality of the PR and 

Cry1F-RR populations was observed even at the highest Cry1F concentrations examined in 

the bioassays. The LC50 values, therefore, could not be determined with the probit analysis 

for both populations (Table 2.2). Nevertheless, the results of this study clearly demonstrated 

that the population from Puerto Rico, compared to the Florida population, was highly 

resistant to both purified Cry1F protein and Cry1F corn leaf tissue. The Cry1F resistance was 

recessive or incompletely recessive as measured with both the Stone’s dominance “D” value 

on Cry1F diet and the effective dominance level “DML” on Cry1F corn leaf tissue. In the 

calculation of dominance, the FL population was considered homozygous susceptible with no 

resistance alleles. The resistance could be more recessive than that measured in this study if 

the assumption was not true. The dominance levels of the Cry1F resistance estimated in this 

study appeared to be similar as reported in another population of S. frugiperda collected from 

Puerto Rico in 2007 (Storer et al., 2010). It was reported that upon an initial confirmation of 

the field resistance to Cry1F corn in Puerto Rico, the technology providers immediately 

stopped the commercial sale of Cry1F corn seeds to growers in this area (Matten et al., 2008; 

Storer et al., 2010). Although limited by the insect sampling in the current study, our results 

suggest that the field resistance to Cry1F corn was persistent in Puerto Rico even after several 

years without planting of Cry1F corn. A recent study also reported that field populations of S.  
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frugiperda collected from two other locations in 2011 were still highly resistant to Cry1F 

protein in diet (Storer et al., 2012).    

In both leaf tissue tests, all five populations of S. frugiperda could not survive for 7 

days on the Agrisure
®
 Viptera

TM
 3111 hybrid. The results suggested that Viptera

TM
3111 Bt 

corn could completely overcome the Cry1F resistance and thus should provide a means for 

managing Cry1F resistance in this important target pest of Bt corn. In a previous study, 

survival of 14,400 neonates from 150 two-parental family lines of S. frugiperda collected 

from Florida and Louisiana was evaluated on Agrisure
®
 Viptera

TM
 3111 plants using an F2 

screen (Yang et al., 2013a). Results of that study showed that all larvae were killed within 7 

days on Viptera
TM

 3111 corn leaf tissue. Although both the current and previous studies were 

not designed to evaluate the high dose assumption, the results of these studies suggest that 

Viptera
TM

 3111 corn is highly effective and likely produces a “high-dose” against S. 

frugiperda.   

The Cry1F-susceptible population, FL, and the two F1 populations of two crosses, FL 

x PR and Cry1F-RS, were also susceptible to the other three pyramided Bt corn products: 

Genuity
®

VT Double Pro
TM

, Triple Pro
TM

, and SmartStax
TM

. The 7-day mortality on these Bt 

corn products was ≥94.5% in both trials (Figure 2.2). The results demonstrated that the 

Cry1F resistance in S. frugiperda was functionally recessive or nearly completely recessive 

on corn leaf tissue of the three pyramided Bt corn traits as showed in the DML values in Table 

2.3. However, performance of the Cry1F resistant populations (PR and Cry1F-RR) on corn 

leaf tissue of Genuity
®

VT Double Pro
TM

, Triple Pro
TM

, and SmartStax
TM

 varied between the 

two trials. In the first trial, PR larvae appeared to be susceptible to the three pyramided Bt 
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corn products with a 7-day mortality of 85.9-93.8% (Figure 2.2). In contrast, larvae of the 

backcrossed and reselected population, Cry1F-RR, survived well on the three pyramided Bt 

corn products in the second trial with a 7-day mortality of only 34.4 to 67.2% (Figure 2.2). 

The exact reasons causing the difference are unknown. One of the most likely reasons could 

be due to a result of the continued selections on Cry1F corn leaf tissue both before and after 

the backcross. For example, the original population (PR) collected from Puerto Rico might 

still not be homozygous for the Cry1F resistance and continued selection on Cry1F corn leaf 

tissue could eliminate the susceptible and probably heterozygous individuals in the 

population and thus could further elevate the resistance level in the Cry1F-RR population.  

Additional studies are still needed to demonstrate if the Cry1F-RR population could 

survive on whole plants of these pyramided Bt corn products. Nevertheless, the results of the 

current study suggest that at least some levels of cross-resistance to the three pyramided Bt 

corn traits exist in Cry1F corn resistant S. frugiperda. Both VT Double Pro
TM

 and Triple 

Pro
TM

 contain Cry1A.105 and Cry2Ab2, while SmartStax
TM

 expresses those proteins and 

Cry1F. Cry1A.105 is a chimeric gene comprised of domains I and II which are identical with 

the respective domains from Cry1Ab and Cry1Ac and domain III of Cry1F (Biosafety 

Clearing-House, 2009). Thus it should not be surprising that some levels of cross-resistance 

could exist between Cry1F and Cry1A.105 because of the association in the gene structures 

of the two proteins. Studies have shown that S. frugiperda was somewhat tolerant to the 

single gene Cry1Ab corn hybrids (US-EPA, 2001b; Chilcutt et al., 2007; Hardke et al., 2011; 

Huang et al., 2011). In addition, Cry1Ac usually shares similar binding sites with Cry1Ab in 

the insect midgut membranes (Ballester et al., 1999; Ferré and Van Rie, 2002; Hua et al., 
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2001; Tan, 2010) and thus Cry1Ab resistance is often found to be cross-resistant to Cry1Ac in 

many insect species (Tabashnik et al., 1994; Ferré and Van Rie, 2002; Rang et al., 2004; 

Siqueira et al., 2004; Wu et al., 2009; Pereira et al., 2010; Tan, 2010; Crespo et al., 2011; 

Zhang et al., 2013). Cry2Ab2 is a different protein compared to Cry1A and studies have 

shown that a Cry1A resistant insect is usually not cross-resistant to Cry2Ab2 (Wu et al., 

2009; Brévault et al., 2009; Sivasupramaniam et al., 2008). Thus, the survival of the Cry1F-

RR population on the three pyramided Bt corn products, Genuity
®

VT Double Pro
TM

, VT 

Triple Pro
TM

, and SmartStax
TM

, could be due to a combination factor of cross-resistance and 

the expression level of Cry2Ab2 protein that may be not high enough by it alone to kill the 

Cry1F resistant larvae in a 7-day period of bioassays. The possible cross-resistance between 

single-gene and pyramided Bt corn in S. frugiperda suggest that careful selection of different 

Bt genes is essential in use of gene pyramiding strategy for resistance management.  
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CHAPTER 3. LARVAL SURVIVAL AND PLANT INJURY OF CRY1F-
SUSCEPTIBLE, -RESISTANT, AND -HETEROZYGOUS FALL 
ARMYWORM (LEPIDOPTERA: NOCTUIDAE) ON NON-BT AND BT 
CORN CONTAINING SINGLE OR PYRAMIDED GENES 

3.1 Introduction 

Event TC1507 Bacillus thuringiensis (Bt) corn (e.g. Herculex
®

I), Zea mays L.,  was 

first registered in 2001 in the United States and later cultivated in Puerto Rico in 2003 for 

controlling above-ground stalk borers and some noctuid moths including the fall armyworm, 

Spodoptera frugiperda (J.E. Smith),  which is the most important corn pest in Puerto Rico 

(US-EPA, 2007; Storer et al., 2010). Unfortunately, field resistance of S. frugiperda to 

TC1507 was first observed in Puerto Rico in 2006 (US-EPA, 2007; Matten et al., 2008; 

Storer et al., 2010). Besides the intensive use of TC1507 products in Puerto Rico, several 

other factors might also contribute to the resistance (US-EPA, 2007; Storer et al., 2010; 

Huang et al., 2011). Modeling has shown that target insect pests could develop resistance 

more rapidly to single Bt protein than to multiple toxins (Roush, 1998; Zhao et al., 2003). To 

delay resistance development, a gene-pyramiding strategy has been utilized to develop 

transgenic plants that express multiple Bt proteins for targeting a pest species (US-EPA, 2010; 

Ghimire et al., 2011; Matten et al., 2012). The first commercialized pyramided Bt corn traits 

for managing lepidopteran pests in the United States included Genuity
®

VT Double Pro
TM

 

(hereafter called VT-2P), Genuity
®

VT Triple Pro
TM

 (VT-3P), Genuity
®

 SmartStax
TM

 

(SmartStax), and Agrisure
®

 Viptera
TM

 3111 (VIP3) (Difonzo and Collen, 2012). Compared to 

the first generation single-gene Bt corn, the pyramided Bt corn products are more effective 

for controlling some noctuid moth species including S. frugiperda (Burkness et al., 2010, 

Yang et al., 2013a; 2013b), and thus S. frugiperda has been listed as a target for all 

pyramided Bt corn traits that have been commercialized for managing above-ground 

lepidopteran corn pests (US-EPA, 2009; 2010; Monsanto, 2012; Syngenta, 2012).                                                  
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During 2011, a field population of S. frugiperda was established from larvae collected 

from corn fields in Puerto Rico. A previous study showed that the Puerto Rico population 

was highly resistant to both purified Cry1F protein and Cry1F corn leaf tissue (Niu et al., 

2013). Leaf tissue bioassays also showed that the Cry1F-resistant population collected from 

Puerto Rico exhibited a significant level of cross-resistance to several pyramided Bt corn 

traits that are currently used in the United States and several other countries (Niu et al., 2013). 

The objective of this study was to determine if the currently used pyramided Bt corn traits are 

effective against the Cry1F- resistant S. frugiperda. Information generated from this study is 

useful in developing effective strategies to manage Cry1F resistance in S. frugiperda.   

3.2 Materials and Methods 

3.2.1 Insect Sources 

Three populations, RR, SS-FL, and SS-LA, of S. frugiperda collected from Puerto 

Rico, Florida, and Louisiana, respectively, were used as the insect sources in this study. RR 

was originated from >300 feral larvae collected from a corn field in south Puerto Rico in 

2011. Laboratory bioassays have shown that progeny of the original RR were highly resistant 

to purified Cry1F protein and Cry1F corn leaf tissue (Niu et al., 2013). SS-FL was initiated 

from 96 larvae sampled from non-Bt corn fields in Hendry County in south Florida in 2011, 

which was documented to be highly susceptible to the Cry1F protein (Niu et al., 2013). SS-

LA was established from cotton and corn fields in 2008 in Louisiana (Hardke et al., 2011). 

Since then, SS-LA had been maintained in the laboratory without exposure to Bt proteins or 

any other insecticides. Diet incorporated bioassays also showed SS-LA was susceptible to 

Cry1F protein (FH unpublished data).  

In the laboratory, larvae of S. frugiperda were reared individually on a meridic diet 

(WARD’S Stonefly Heliothis diet, Rochester, NY) in 30-ml plastic cups (Fill-Rite, Newark, 

NJ) until pupal stage. The larvae were held in 30-well trays at room conditions until pupation 
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(Niu et al., 2013). Pupae were placed in 3.8-liter paper containers (Huhtamaki Foodservice, 

De Soto, KS) containing ~100 g of vermiculite (Sun Gro, Pine Bluff, AR). A cotton/paper ball 

saturated with 10% sugar solution was held in a 100-ml cup and placed in each container. The 

containers were then placed in growth chambers maintained at 28 
o
C, >90% RH, and a 

photoperiod of 14:10 (L: D) h for adult emergence, mating, and oviposition.  

Before the RR strain was used for this study, it was selected on Cry1F corn (Pioneer 

31D59) leaf tissue for two generations as described in Niu et al. (2013). The RR strain was 

then backcrossed with SS-FL and reselected on Cry1F corn leaf tissue in the F2 generations 

(Niu et al., 2013). In addition, two F1 hybrid genotypes, RS-FL and RS-LA, were also 

developed for this study. RS-FL was generated by crossing SS-FL with the backcrossed and 

reselected RR, while RS-LA was developed by crossing SS-LA with RR. During 2011-2013, 

a total of three independent trials were conducted in the greenhouse. SS-FL, the backcrossed 

and reselected RR, and RS-FL were utilized in trial 1 that was conducted in 2011. In 2013, 

SS-LA, RR, and RS-LA were used in the trials 2 and 3 because SS-FL was not available 

when these two trials were conducted. 

3.2.2 Source of Corn Plants 

Larval survival and plant injury of S. frugiperda were evaluated on five non-Bt and 

eight Bt corn hybrids in the three trials (Table 3.1).  The eight Bt corn hybrids represent six 

Bt corn traits including two single-gene Bt corn hybrids containing Herculex
®
 I (hereafter 

called HX1) and YieldGard
®
 (YG) traits, respectively, and six pyramided Bt corn hybrids 

representing four traits: VT-2P, VT-3P, SmartStax, and VIP3.  HX1 contains a single Bt 

gene, Cry1F, for controlling above-ground lepidopteran species including S. frugiperda. YG
 

expresses one Bt gene, Cry1Ab, mainly targeting above-ground stalk borers. VT-2P
 
produces 

two Cry proteins, Cry1A.105 and Cry2Ab2, which are active against above-ground 

lepidopteran species. VT-3P contains the same two Cry proteins in VT-2P plus Cry3Bb1. 
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Table 3.1. Corn hybrids and traits evaluated in the three greenhouse trials 

Corn hybrid Bt trait Event Bt genes Major target pests 
a
 Used in 

trials 

DKC 61-22 Non-Bt corn, closely 

related to DKC 61-21 

--- --- -- 1 

DKC 67-86 Non-Bt corn, closely 

related to DKC 67-88 

--- --- -- 1 

DKC 63-45 Non-Bt corn, closely 

related to DKC 63-87 

--- --- -- 2, 3 

N78N-GT Non-Bt corn, closely 

related to N78N-3111 

--- --- -- 2, 3 

Pioneer 

31P40 

Non-Bt corn, closely 

related to Pioneer 31D59 

--- --- -- 2, 3 

Pioneer 

31D59 

Herculex
®

I TC1507 Cry1F Stalk borers, FAW 1, 2, 3 

DKC 69-70 YieldGard
®

 MON810 Cry1Ab Stalk borers  1, 2, 3 

DKC 64-04 Genuity
®

VT Double 

Pro
TM

 

MON89034 Cry1A.105, Cry2Ab2 Stalk borers, CEW, 

FAW 

1 

DKC 63-87 Genuity
®

VT Double 

Pro
TM

 

MON89034 Cry1A.105, Cry2Ab2 Stalk borers, FAW, 

CEW 

 

2, 3 



(Table 3.1 continued) 
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Corn hybrid Bt trait Event Bt genes Major target pests 
a
 Used in  

Trials 

DKC 67-88 Genuity
®

VT Triple Pro
TM

 MON89034+ 

MON88017 

Cry1A.105, Cry2Ab2, Cry3Bb1 Stalk borers, FAW, 

CEW, rootworms 

1 

DKC 62-97 Genuity
®

VT Triple Pro
TM

 MON89034+ 

MON88017 

Cry1A.105, Cry2Ab2, Cry3Bb1 Stalk borers, FAW, 

CEW,  rootworms 

2, 3 

DKC 61-21 Genuity
®

 SmartStax
®
 

 

MON89034+ 

TC1507+MON

88017+DAS-

59112-7 

Cry1A.105, Cry2Ab, Cry1F, 

Cry3Bb1, Cry34/35Ab 

Stalk borers, FAW, 

CEW, rootworms 

1,2, 3 

N78N-3111 Agrisure
®
 Viptera

TM
 3111 Bt11+MIR162+

MIR604 

Vip3A, Cry1Ab, mCry3A Stalk borers, FAW, 

CEW, rootworms 

1,2 & 3 

a 
Major stalk borer species in the United States include European corn borer, Ostrinia nubilalis (Hübner) and southwestern corn borer Diatraea  

grandiosella Dyar. Major corn rootworm species in the United States include western corn rootworm, Diabrotica virgifera virgifera LeConte, 

northern corn rootworm, Diabrotica barberi Smith and Lawrence, and Mexican corn rootworm, Diabrotica virgifera zeae Krysan and Smith. 

FAW: fall armyworm, Spodoptera frugiperda (J.E. Smith), CEW: corn earworm, Helicoverpa zea (Boddie). 
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SmartStax produces six Bt proteins including the three Bt proteins of VT-3P plus Cry1F 

and Cry34/35Ab1 (Monsanto, 2012). Cry3Bb1 and Cry34/35Ab1 are active against the 

below-ground corn rootworms, Diabrotica spp (Coleoptera: Chrysomelidae) but offer no 

activity against lepidopteran species. VIP3 expresses three Bt proteins including Vip3A 

and Cry1Ab for controlling lepidopteran species and mCry3A for managing rootworms 

(DiFonzo and Collen, 2012). The five non-Bt corn hybrids were genetically closely 

related to one or two of the eight Bt corn hybrids.  In each trial, seven (trial 1) or nine 

(trials 1 and 2) of the 13 corn hybrids were evaluated in the greenhouse (Table 3.1). 

Two corn seeds of a hybrid were planted in 18.9-liter pots containing ~5 kg of a 

standard potting soil mixture. Pots were placed within a Louisiana State University 

Agricultural Center greenhouse located in Baton Rouge, LA. The plants were irrigated 

and fertilized for optimum growth during the tests as described in Wangila et al. (2012). 

Expression/not expression of Bt proteins in plants was confirmed using ELISA-based 

assays (EnviroLogix, QuantiplateTM kits, Portland, ME). 

3.2.3 Insect Infestation 
 

Three (trial 1) or five (trials 2 and 3) neonates of an insect genotype of S. 

frugiperda mentioned above were manually placed into the whorl of a plant at V6-V8 

(trial 1) or V8-V10 (trials 2 and 3) plant stages. Treatment combinations of corn hybrid 

and insect genotype in each trial were replicated four times in a randomized complete 

block design with 4 plants (or 2 pots) in each replication.  To minimize larval movement 

from plant to plant, there was an approximately 1-meter alley between blocks and a 

distance that did not allow the plants to touch each other between treatment combinations 

within a block. Corn leaf injury ratings were made twice using the Davis’ 1 (no injury or 
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few pinholes) to 9 (most leaves with long lesions) scales (Davis et al., 1992). The first 

sampling of leaf injury for all trials was taken at the 7
th

 d after larval infestation, while 

the second data were sampled at the 15
th

 d for the trial 1 when the trial was terminated. 

Numbers of live larvae of S. frugiperda in each plant in trial 1 was also recorded at the 

2
nd

 data samplings. Observations during trial 1 showed that some of heavily damaged 

plants did not contain live larvae after 15 d, suggesting that some larvae already matured 

and moved out from the plants for pupation. To increase the accuracy of larval 

survivorship, larval growth and development of S. frugiperda on non-Bt plants in trials 2 

and 3 were monitored carefully. Based on the monitoring, the second sampling of leaf 

injury along with the number of live larvae in trials 2 and 3 was checked after 12 d of 

larval release when most larvae on the non-Bt corn plants were in the 4
th

 and 5
th

 instars. 

3.2.4 Data Analysis  

Because of the cannibalistic behavior of S. frugiperda, especially in the late larval 

stages (Raffa, 1987), larval survivorship in this study was measured as percentage of the 

plants containing live larvae at the termination of each trial (after 15 d for trial 1 and after 

12 d for trials 2 and 3). Data of the greenhouse tests showed that performance between 

the two susceptible strains (SS-FL and SS-LA) as well as between the two heterozygous 

genotypes (RS-FL and RS-LA) was similar across all corn hybrids in the three trials 

(Tables 3.2-3.4). To facilitate data analysis, both SS-FL and SS-LA were treated as a 

same susceptible genotype (SS), while both RS-FL and RS-LA were considered as a 

same heterozygous genotype (RS) during data analysis and result presentations (Tables 

3.2-3.4).  Also the performance of an insect genotypes was similar among non-Bt corn 

hybrids in each trial (data not shown); and thus data on larval survival and leaf injury 



 

49 
 

Table 3.2. Leaf injury ratings (mean ± sem) of non-Bt and Bt corn plants containing single or multiple Bt genes recorded after 7 d 

infested with neonates of Cry1F-susceptible (SS), -heterozygous (RS), and -resistant (RR) genotypes of Spodoptera frugiperda 

Corn traits
a
 Insect  Trial-1

b
 Trial-2

b
 Trial-3

b
 Combined 

b
 

Non-Bt SS 6.4 ± 0.2c 5.4 ± 0.1b 5.6 ± 0.2 b 5.7 ± 0.1 c 

RS 6.2 ± 0.3c 5.4 ± 0.1b 6.0 ± 0.1 b 5.8 ± 0.1 c 

RR 6.0 ± 0.2c 5.3 ± 0.1b 5.6 ± 0.2 b 5.6 ± 0.1 c 

HX1 SS 1.9 ± 0.2 b 1.1 ± 0.1a 1.3 ± 0.1 a 1.4 ± 0.1 b 

RS 1.4 ± 0.2 ab 1.3 ± 0.2a 1.4 ± 0.3 a 1.4 ± 0.1 b 

RR 5.8 ± 0.3 c 5.5 ± 0.1b 6.0 ± 0.3 b 5.7 ± 0.2 c 

YG SS --- 5.0 ± 0.5b 5.2 ± 0.2 b 5.1 ± 0.2 c 

RS --- 5.0 ± 0.0b 5.1 ± 0.1 b 5.0 ± 0.0 c 

RR --- 4.8 ± 0.3b 5.7 ± 0.1 b 5.2 ± 0.2 c 

VT-2P SS 1.8 ± 0.2 ab 1.0 ± 0.0 a 1.2 ± 0.1 a 1.3 ± 0.1 ab 

RS 1.1 ± 0.1 a 1.0 ± 0.0 a 1.1 ± 0.1 a 1.0 ± 0.0 ab 

RR 1.8 ± 0.1 b 1.1 ± 0.1a 1.0 ± 0.0 a 1.3 ± 0.1 ab 

VT-3P 

 

SS 2.0 ± 0.1 b 1.0 ± 0.0 a 1.1 ± 0.1 a 1.4 ± 0.1 ab 

RS 1.3 ± 0.2 ab 1.0 ± 0.0 a 1.0 ± 0.0 a 1.1 ± 0.1 ab 

RR 2.4 ± 0.4 b 1.0 ± 0.0 a 1.3 ± 0.1 a 1.6 ± 0.2 b 

SmartStax 

 

SS 1.4 ± 0.1 ab 1.0 ± 0.0a 1.2 ± 0.1 a 1.2 ± 0.1 ab 

RS 1.1 ± 0.1 ab 1.0 ± 0.0a 1.0 ± 0.0 a 1.0 ± 0.0 ab 

RR 2.1 ± 0.2 b 1.0 ± 0.0a 1.1 ± 0.1 a 1.4 ± 0.2 ab 
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Corn traits
a
 Insect  Trial-1

b
 Trial-2

b
 Trial-3

b
 Combined 

b
 

VIP3 

 

SS 1.3 ± 0.2 ab 1.0 ± 0.0a 1.2 ± 0.2 a 1.2 ± 0.1 ab 

RS 1.1 ± 0.1 a 1.0 ± 0.0a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RR 1.3 ± 0.1 ab 1.0 ± 0.0a 1.0 ± 0.0 a 1.1 ± 0.0 ab 

Analysis of 

variance 

 

Effect of insect  F2,63 = 64.50 

P < 0.0001 

F2,84 = 64.66 

P < 0.0001 

F2,84 = 34.26  

P < 0.0001 

F2,268 = 93.54 

P < 0.0001 

Effect of corn  F5,63 = 281.52 

P < 0.0001 

F6,84 = 1533.96 

P < 0.0001 

F6,84 = 621.56 

P < 0.0001 

F6,268 = 1243.72 

P < 0.0001 

Effect of insect x 

corn  

F10,63 = 15.81 

P < 0.0001 

F12,84 = 67.17 

P < 0.0001 

F12,84 = 29.28 

P < 0.0001 

F12,268 = 57.44 

P < 0.0001 

a
 Non-Bt = Non-Bt corn plants; HX1 = Herculex

®
 I; YG = YieldGard

® 
Corn Borer ; VT-2P = Genuity

®
VT Double Pro

TM
; VT-3P =  

Genuity
®

VT Triple Pro
TM

 ; SmartSta = Genuity
®

 SmartStax
TM

;  and VIP3 = Agrisure
®
 Viptera

TM
 3111. 

b
 Mean values followed by a same letter in a column are not significantly different (P >0.05; Tukey's honestly significant difference 

tests). 
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Table 3.3. Leaf injury ratings (mean ± sem) of non-Bt and Bt corn plants containing single or multiple Bt genes recorded at the trial 

terminations after 15 d (for trial 1) or 12 d (for trials 2 and 3) infested with neonates of Cry1F-susceptible (SS), -heterozygous (RS), 

and -resistant (RR) genotypes of Spodoptera frugiperda 

Corn trait 
a
 Insect    Trial 

b
 Trial 2

b
 Trial 3

b
 Combined 

b
 

Non-Bt SS 8.9 ± 0.1 b 6.8 ± 0.1 c 7.2 ± 0.2 b 7.5 ± 0.2 c 

RS 8.8 ± 0.1 b 7.2 ± 0.1 c 7.6 ± 0.2 b 7.7 ± 0.2 c 

RR 9.0 ± 0.0 b 7.0 ± 0.2 c 7.3 ± 0.3 b 7.6 ± 0.2 c 

HX1 SS 2.3 ± 0.5 a 1.0 ± 0.0 a 1.1 ± 0.1 a 1.4 ± 0.2 a 

RS 1.6 ± 0.3 a 1.0 ± 0.0 a 1.1 ± 0.1 a 1.3 ± 0.1 a 

RR 8.4 ± 0.2 b 6.8 ± 0.1 c 7.6 ± 0.4 b 7.6 ± 0.2 c 

YG SS --- 4.9 ± 0.4 b 6.5 ± 0.4 b 5.7 ± 0.4 b 

 RS --- 5.2 ± 0.6 b 6.4 ± 0.1 b 5.8 ± 0.4 b 

 RR --- 6.3 ± 0.5 c 7.6 ± 0.2 b 6.9 ± 0.4 bc 

VT-2P SS 1.2 ± 0.2 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.1 ± 0.1 a 

 RS 1.4 ± 0.4 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.1 ± 0.1 a 

 RR 2.3 ± 1.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.4 ± 0.3 a 

 VT-3P 

 

SS 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RS 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RR 2.1 ± 0.7 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.4 ± 0.3 a 
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Corn trait 
a
 Insect    Trial 

b
 Trial 2

b
 Trial 3

b
 Combined 

b
 

 SmartStax 

 

SS 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RS 1.0 ± 0.0 a 1.1 ± 0.1 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RR 1.3 ± 0.3 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.1 ± 0.1 a 

 VIP3 

 

SS 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RS 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.0 ± 0.0 a 

RR 1.4 ± 0.4 a 1.0 ± 0.0 a 1.0 ± 0.0 a 1.1 ± 0.1 a 

Analysis of 

various 

 

Effect of insect  F2,63 = 30.61 

P < 0.0001 

F2,84 = 104.88 

P < 0.0001 

F2,84 = 81.20 

P < 0.0001 

F2,268 = 114.53 

P < 0.0001 

Effect of corn  F5,63 = 201.36 

P < 0.0001 

F6,84 = 1534.72 

P < 0.0001 

F6,84 =  1301.19 

P < 0.0001 

F6,268 = 1308.69 

P < 0.0001 

Effect of insect x 

corn  

F10,63 = 7.87 

P < 0.0001 

F12,84 = 76.96 

P < 0.0001 

F12,84 = 63.76 

P < 0.0001 

F12,268  = 59.61 

P < 0.0001 

a
 Non-Bt = Non-Bt corn plants; HX1 = Herculex

®
 I; YG = YieldGard

® 
Corn Borer ; VT-2P = Genuity

®
VT Double Pro

TM
; VT-3P =  

Genuity
®

VT Triple Pro
TM

 ; SmartSta = Genuity
®

 SmartStax
TM

; and VIP3 = Agrisure
®
 Viptera

TM
 3111. 

b
 Mean values followed by a same letter in a column are not significantly different (P >0.05; Tukey's honestly significant difference 

tests)
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Table 3.4. Percent plants (mean ± sem) containing live larvae of non-Bt and Bt corn plants containing single or multiple Bt genes 

recorded at the trial terminations after 15 d (for trial 1) or 12 d (for trials 2 and 3) infested with neonates of Cry1F-susceptible (SS), -

heterozygous (RS), and -resistant (RR) genotypes of Spodoptera frugiperda 

  Corn trait
a
 Insect  Trial 1

b
 Trial 2

b
 Trial 3

b
 Combined 

b
 

  Non-Bt 

 

SS 56.3 ± 9.1 b 97.9 ± 2.1 b 93.8 ± 3.3 b 85.9 ± 4.0 b 

RS 50.0 ± 8.2 b 95.8  ±2 .8 b 91.7 ± 4.7 b 82.8 ± 4.4 b 

RR 68.8 ± 9.1b 97.9 ± 2.1 b 87.5 ± 5.8 b 86.7 ± 3.7 b 

Herculex I 

 

SS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RR 43.8 ± 12.0 b 100 ± 0.0 b 75.0 ±14.4 b 72.9 ± 8.9 b 

  YG SS --- 81.3 ± 12.0 b 93.8 ± 6.3 b 87.5 ± 6.7 b 

RS --- 91.7 ± 8.3 b 100 ± 0.0 b 95.8 ± 4.2 b 

RR --- 93.8 ± 6.2 b 100 ± 0.0 b 96.9 ± 3.1 b 

VT-2P 

 

SS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RS 0.0 ± 0.0 a  0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RR 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

 VT-3P 

 

SS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RR 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

 SmartStax 

 

SS 0.0 ± 0.0 a 0.0 ± 0.0a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RS 0.0 ±0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RR 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

 VIP 

 

SS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RS 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 

RR 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 0.0 ± 0.0 a 
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  Corn trait
a
 Insect  Trial 1

b
 Trial 2

b
 Trial 3

b
 Combined 

b
 

Analysis of 

variance 

Effect of insect  F2,63  =  28.20 

P < 0.0001 

F2,84 = 28.36 

P < 0.0001 

F2,84  = 7.22 

P = 0.0013 

F2, 268 = 20.29 

P < 0.0001 

Effect of corn  F5,63 = 82.07 

 P < 0.0001 

F6,84 = 408.67 

P < 0.0001 

F6,84 = 2109.6 

P < 0.0001 

F6,268 = 401.46 

P < 0.0001 

Effect of insect x 

corn 

F10,63 = 3.20 

P = 0.0025 

F12,84  = 22.31 

P < 0.0001 

F12,84 = 7.27 

P < 0.0001 

F12,268 = 16.44 

P < 0.0001 
a
 Non-Bt = Non-Bt corn plants; HX1 = Herculex

®
 I; YG = YieldGard

® 
Corn Borer ; VT-2P = Genuity

®
VT Double Pro

TM
; VT-3P =  

Genuity
®

VT Triple Pro
TM

 ; SmartSta = Genuity
®

 SmartStax
TM

; and VIP3 = Agrisure
®
 Viptera

TM
 3111. 

b
 Mean values followed by a same letter in a column are not significantly different (P >0.05; Tukey's honestly significant difference 

tests). 
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ratings recorded from the non-Bt corn hybrids (two hybrids in trial 1 and three in trials 2 and 

3) were combined for data analysis. Data of leaf injury ratings were transformed to the 

log(x+1) scale, while percentages of plants with live larvae were transformed using arcsine of 

(x
0.5

) to normalize treatment variances (Zar, 1984). The transformed data were first analyzed 

with a two-way analysis of variance (ANOVA) for each trial (SAS Institute, 2010) with corn 

hybrid and insect genotype as the two main factors. In addition, because the overall results 

were also consistent across the trials, data for each variable were combined across the three 

trials. The leaf injury ratings recorded at the trial terminations were treated as one variable in 

the combined data because both observation times measured nearly the maximum leaf injury 

of the insect. Correspondingly, data on the percent plants containing live larvae in the three 

trials were combined in the same way. The combined data were analyzed using mixed models 

with trial as a random factor (SAS Institute, 2010). Treatment means for each trial and the 

combined data were separated using Tukey's honestly significant difference tests at α = 0.05 

level.   

3.3 Results 

3.3.1 Leaf Injury Ratings of Non-Bt and Bt Corn Containing Single or Pyramided 

Genes caused by Cry1F-susceptible, -resistant and –heterozygous Genotypes of S. 

frugiperda 

Leaf injury ratings caused by S. frugiperda were consistent across trials and 

observation times. The effects of corn hybrid, insect genotype, and their interaction on leaf 

injury ratings at both sampling times were all significant for individual trials and for 

combined analysis (Tables 3.2 and 3.3). There were no significant (P < 0.05) differences in 

the leaf injury ratings among non-Bt corn traits infested with the three insect genotypes. All 

three insect genotypes caused heavy leaf injuries to non-Bt corn plants with an average leaf 

injury rating of 5.7 after 7 d (Table 3.2) and 7.6 after 12-15 d (Table 3.3).  
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On Bt corn plants, both SS and RS caused little damage to HX1 with a leaf injury 

rating of 1.4-1.9 after 7 d and 1.0 - 2.3 after 12-15 d and the differences between the two 

insect genotypes were not significant (P > 0.05) in all three trials as well as in the combined 

analysis (Tables 3.2 and 3.3). However, leaf injury rating of HX1 by the Cry1F-resistant RR 

strain was high, averaging 5.7 after 7 d and 7.6 after 12-15 d, which were the same levels as 

the overall leaf injury ratings observed on the non-Bt corn plants. Leaf injury rating of YG 

plants was also high and not significantly different among the three insect genotypes, ranging 

from 4.8-5.7 after 7 d and 4.9-7.6 after 12 d in the two trials (Tables 3.2 and 3.3). Based on 

the combined analysis, the leaf injury ratings of YG were not different after 7 d compared to 

those of non-Bt corn plant and they were significantly (P < 0.05), although only a little less 

than those of the non-Bt corn after 12-15 d. In contrast, no or little leaf damage was observed 

on plants of the four pyramided Bt corn traits infested with the three insect genotypes. For the 

three trials, RR larvae caused an average leaf injury rating of 1.1-1.6 after 7 d and 1.0-1.4 

after 12-15 d across the four pyramided Bt corn traits. The amount of injury caused by the RR 

strain was not significantly (P < 0.05) different compared to that caused by SS (1.2-1.4 after 

7 d and 1.0-1.1 after 12-15 d) or RS (1.0-1.1) (Tables 3.2 and 3.3). 

3.3.2 Larval Survival of Cry1F-susceptible, -resistant and –heterozygous genotypes of S. 

frugiperda on Non-Bt and Bt Corn Containing Single or Pyramided genes 

Larval survivorship rates of the three genotypes of S. frugiperda on a corn hybrid 

were highly correlated with the leaf injury ratings of the plant. The overall percentage of 

plants containing live larvae observed in the trial 1 at 15 d was less than those recorded in the 

trials 2 and 3 which were observed at 12-d after larval release. Based on our observation in 

trial 1, this difference was likely due to the difference in number of larvae infested per plant 

and because some mature larvae that had pupated before the data were taken in trial 1. 

However, the overall survival of the three insect genotypes on each corn trait was consistent 

across all trials. As observed in the leaf injury ratings, the effect of corn trait, insect genotype, 
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and their interaction on larval survival was all significant across the three trials and in the 

combined analysis (Table 3.4). Live larvae were observed on 50.0-97.9% of the non-Bt plants 

after 12-15 d and the differences among the three insect genotypes were not significant (P > 

0.05) across the three trials as well as for the combined analysis (Table 3.4).  

On Bt corn plants, no live larvae were observed from HX1 plants infested with either 

SS or RS, while across the three trials, 43.8-100% HX1 plants contained live larvae if they 

were inoculated with RR larvae. Survival on HX1 plants infested with RR larvae were not 

different than the larval survival recorded on non-Bt corn plants for each of the three trails as 

well as for the combined data (Table 3.4). In trials 2 and 3 in which YG was evaluated, an 

average of 87.5-96.9% YG plants that were inoculated with the three insect genotypes 

contained live larvae after 12 d, which was not (P > 0.05)  different than the larval 

survivorship rates observed on the non-Bt corn plants (Table 3.4). In contrast, no live larvae 

were found after 12-15 d from plants of the four pyramided Bt corn traits inoculated with any 

of the insect genotypes (Table 3.4). 

3.4 Discussion 

The overall survival and damage of the three insect genotypes of S. frugiperda on 

each corn product was consistent across the three trials. The greenhouse study showed that 

the RR strain of S. frugiperda, which was highly resistant to purified Cry1F protein (Niu et al. 

2013), was also highly resistant to whole plants of Cry1F Bt corn. Field resistance of S. 

frugiperda to Cry1F corn was initially confirmed in Puerto Rico in 2006 and the technology 

providers immediately stopped the commercial sale of Cry1F corn seeds to growers in this 

area (Matten et al., 2008; Storer et al., 2010). A recent study by Storer et al. (2012) also 

showed that field populations of S. frugiperda collected from two other locations in Puerto 

Rico in 2011 were highly resistant to Cry1F protein in diet. The results of the current study 
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further confirmed that the field resistance of S. frugiperda to Cry1F corn was persistent in 

Puerto Rico even after several years without planting of Cry1F corn (Niu et al., 2013).  

Data of this study also showed that leaf injury rating and survivorship of RR larvae on 

Cry1F corn plants was nearly the same as observed on non-Bt corn plants, suggesting that the 

RR strain had a complete resistance (Tabashnik and Carrière, 2007) to Cry1F corn. In most 

other cases, resistance to Bt plants have been reported to be incomplete, in which resistant 

populations on Bt plants usually has a less fitness compared to on non-Bt plants (Liu et al., 

1999; US-EPA, 2002; Bird and Akhurst, 2004; Carrière et al., 2006; Huang et al., 2007; 

Pereira et al., 2008). Several factors have been discussed to be major contributors for the field 

resistance of S. frugiperda to Cry1F corn in Puerto Rico (Storer et al., 2010; Huang et al., 

2011). Results of the current study suggest that the complete resistance feature could be 

another major factor that had contributed to the rapid development of Cry1F resistance in the 

field populations of S. frugiperda in Puerto Rico. In all three trials, larvae of the heterozygous 

genotype (RS-FL or RS-LA), just like the susceptible genotypes (SS-FL or SS-LA), could not 

survive on Cry1F corn plants, suggesting that the resistance in the RR strain was recessive. 

The recessive inheritance of the Cry1F resistance observed in the RR strain in the current 

study was similar to a previously reported population collected from Puerto Rico in 2006 

(Storer et al., 2010). In addition, data of this study also showed that larvae of the three insect 

genotypes of S. frugiperda survived well and caused heavy leaf injury on YG corn plants. 

The results demonstrated that the single-gene Cry1Ab corn product (YG) was not effective 

against S. frugiperda.   

Data from our greenhouse tests showed that the highly Cry1F-resistant S. frugiperda, 

just like its susceptible and heterozygous counterparts, could not survive on the plants of the 

four pyramided Bt corn products, and they caused only little or no leaf injury to the plants.  
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The results demonstrated that these pyramided Bt corn traits were effective for controlling the 

Cry1F-resistant populations of S. frugiperda. 

A previous study with leaf tissue bioassays showed that the Cry1F-resistant strain (RR)  

of S. frugiperda also exhibited a significant level of cross-resistance to three of the four 

pyramided Bt corn traits tested in the current study (Niu et al., 2013). In a 7-d leaf tissue 

bioassay, mortality of the Cry1F-susceptible strain (SS-FL) on leaf tissue of VT-2P, VT-3P, 

and SmatStax was 100%, while 65.6, 32.8, and 50.8% of RR larvae survived on leaf tissue of 

the three pyramided Bt corn traits, respectively (Niu et al., 2013). Results of the current study 

showed that the cross-resistance levels reported in the 7-d leaf tissue bioassay (Niu et al., 

2013) was not sufficient enough to allow the Cry1F-resistant S. frugiperda to survive on 

whole plants of the pyramided Bt corn hybrids. A similar conclusion was also made based on 

an F2 screen of two-parent families of S. frugiperda established from field populations 

sampled in Florida and Louisiana (Yang et al., 2013b).  

In recent years, unexpected survival of S. frugiperda on Bt corn hybrids has been 

reported in several occasions in the U.S. south region (FH, unpublished data). Results of our 

recent monitoring indicate that there is a serious threat of Cry1F resistance in S. frugiperda in 

the U.S. south region. For example, an F2 screen conducted in 2011 showed that resistance 

allele frequency to Cry1F corn in S. frugiperda was estimated to be 0.058 in two Louisiana 

populations and 0.252 in a Florida population (FH unpublished data), which are considerably 

greater than the values reported in other corn lepidopteran species in the U.S. (see reviews in 

Tabashnik et al., 2009; Huang et al., 2011). In addition, diet incorporated bioassays also 

showed that field populations of S. frugiperda collected from non-Bt corn fields in several 

locations in Louisiana and Florida in 2012 exhibited a significant level of resistance to 

purified Cry1F protein (FH unpublished data). Our results suggest that these pyramided Bt 

corn technologies can be used for managing the Cry1F resistance in S. frugiperda. However, 
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“pyramided” Bt corn may not be considered as “pyramided” anymore if resistance to one Bt 

protein (e.g. Cry1F) exists. Thus, IRM strategies for such conditions still need to be 

investigated.     
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

 The fall armyworm, Spodoptera frugiperda, is a major corn pest in both the South and 

North America. Except for Cry1F corn, the first generation Bt corn expressing a single Cry 

gene is not very effective against S. frugiperda.  In 2006 after only three years of commercial 

use of Cry1F corn in Puerto Rico, field populations of S. frugiperda in Puerto Rico became 

highly resistant to Cry1F corn (Storer et al. 2010). It was reported that upon an initial 

confirmation of the field resistance to Cry1F corn in Puerto Rico, the technology providers 

immediately stopped the commercial sale of Cry1F corn seeds to growers in this area (Storer 

et al. 2010). During 2010-2011 crop seasons, transgenic corn technologies (e.g. Genuity
® 

SmartStax
TM

, Agrisure
®
 Viptera

TM
 3111) expressing multiple dissimilar Bt proteins that 

target lepidopteran pests were first commercially planted in the United States. The use of 

pyramided Bt corn hybrids is expected to delay resistance development in target insect 

populations. With the recent availability of the more effective pyramided Bt corn, S. 

frugiperda becomes a target species of the 2nd generation (pyramided) Bt corn. The 

objectives of this study were 1) to determine the susceptibility of two field populations of S. 

frugiperda collected from Florida and Puerto Rico to purified Cry1F protein and corn leaf 

tissue containing single and pyramided Bt genes and 2) to evaluate larval survival and plant 

injury of Cry1F-susceptible, -resistant, and -heterozygous genotypes of S. frugiperda on 

whole plants of transgenic corn containing single and pyramided Bt genes.  

In the objective 1 of this study, larval survival of Cry1F-susceptible (FL), -resistant 

(PR and Cry1F-RR), and -heterozygous (FL x PR and Cry1F-RS) populations of S. 

frugiperda  to purified Cry1F protein and corn leaf tissue of seven Bt corn hybrids and five 

non-Bt corn hybrids was evaluated in the laboratory. The seven Bt corn hybrids represent five 

Bt corn traits: Herculex
®

I, which expresses a single Bt protein (Cry1F), and Genuity
®

VT 

Double Pro
TM

, VT Triple Pro
TM

, SmartStax
TM

, and Agrisure
®
 Viptera

TM
 3111, which contain 
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≥ two pyramided Bt genes. The original FL and PR populations were collected from corn 

fields in 2011 in Florida and Puerto Rico, respectively. Susceptibility of S. frugiperda was 

evaluated using two approaches: 1) a diet incorporating bioassay with purified Cry1F protein 

and 2) testing on leaf tissue of Bt and non-Bt corn hybrids. There were two independent trials 

for each test approach. For the diet incorporation bioassays, the first trial used the original 

two populations (FL and PR) that were established from larvae collected from fields without 

further selection in the laboratory. In the first trial with leaf tissue bioassays, larval mortality 

was evaluated for three insect populations including FL, PR, and an F1 population (FL x PR) 

that was generated by crossing FL and PR. In the second trial, susceptibility of S. frugiperda 

was evaluated for all three populations including FL, Cry1F-RR (a documented Cry1F-

resistant population), and Cry1F-RS (F1 cross of Cry1F-RR and FL) in both diet 

incorporation and leaf tissue bioassays. 

Diet-incorporation bioassays showed that FL was susceptible to Cry1F protein with a 

LC50 value of 0.13-0.23 µg/g, while PR was highly resistant to Cry1F protein (>137-fold). FL 

was also susceptible to all seven Bt corn hybrids with a 7-day mortality of >95%, while PR 

and a backcrossed and reselected population, Cry1F-RR, were highly resistant to Cry1F corn 

leaf tissue. The resistance was recessive or incompletely recessive in the diet-incorporated 

bioassays and leaf tissue tests. All five populations of S. frugiperda could not survive on 

Viptera
TM 

3111, suggesting this Bt corn trait can completely overcome the resistance and thus 

should provide a means of managing Cry1F resistance in S. frugiperda. However, Cry1F-RR 

exhibited a significant cross-resistance to the leaf tissue of the other three pyramided Bt corn 

traits. The possible cross-resistance between single-gene and pyramided Bt corn products 

suggest that careful selection of Bt genes is essential in use of gene pyramiding strategy for 

resistance management.  
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To accomplish the 2
nd

 objective of the study, three greenhouse trials were conducted 

to evaluate larval survival and leaf injury of Cry1F-susceptible , -resistant, and -heterozygous 

genotypes of S. frugiperda on whole plants of five non-Bt and eight Bt corn hybrids including 

all the seven Bt corn hybrids used in the objective one plus  a YieldGard (Cy1Ab) hybrid. In 

each trial, 3-5 neonates of a genotype of S. frugiperda were manually placed into the whorl of 

a plant at vegetative plant stages (V6-V10). Larvae of the three insect genotypes on non-Bt 

corn hybrids survived well and caused serious plant damage. Cry1Ab corn was ineffective 

against all three insect genotypes. On Cry1F corn plants, resistant larvae survived on 72.9% 

plants after 12-15 d and caused a leaf injury rating (Davis’ 1 to 9 scales) of 5.7 after 7 d and 

7.6 after 12-15 d. Both the larval survivorship and leaf injury rates of the resistant larvae on 

Cry1F corn plants were not significantly different from those observed on non-Bt corn 

hybrids. In contrast, no live larvae and little or no leaf injury were observed on the Cry1F 

corn plants that were infested with susceptible or heterozygous genotypes, or on the 

pyramided Bt plants infested with the three insect genotypes. The results demonstrated that 

the Cry1F-resistant S. frugiperda was highly resistant to whole plants of Cry1F corn and the 

resistance was recessive in the whole plant tests. Corn hybrids containing anyone of the four 

pyramided Bt traits are effective for managing the Cry1F resistance in S. frugiperda.  

In recent years, unexpected survival of S. frugiperda on Bt corn hybrids has been 

mentioned in several occasions in the U.S. south region. Results of the current study showed 

that all corn hybrids containing one of the four pyramided Bt traits were very effective in 

controlling the Cry1F-resistant S. frugiperda. The results suggest that these pyramided Bt 

corn technologies can be used as an effective tool for managing the Cry1F resistance in S. 

frugiperda. However, the “pyramided” Bt corn may not be considered as “pyramided” 

anymore if resistance of a target species to one Bt protein (e.g. Cry1F) in the plant occurs and 

the corresponding IRM strategies for such conditions still need to be investigated.    
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