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Abstract 
 

Aedes aegypti (L. 1762), the yellow fever mosquito, and Culex quinquefasciatus Say 

1823, the southern house mosquito, are prevalent in tropical and subtropical areas worldwide and 

are responsible for the spread of a number of devastating diseases to humans and livestock. The 

development of new control methods, as well as continued study of mosquito biology, is vital for 

improving human health. This study aimed to examine the efficacy of sugar alcohols as a novel 

means for mosquito control, as well as how sugar alcohols and other factors are involved in 

thermal tolerance in mosquitoes.  

No-choice tests with the sugar alcohols erythritol, sorbitol, and xylitol resulted in 

significant mortality in at least one species, with erythritol resulting in the highest mortality. A 

two-choice test between sucrose with or without added erythritol showed no significant 

preference between the two in either Ae. aegypti or Cx. quinquefasciatus. Based on our findings, 

erythritol and other sugar alcohols have good potential as novel mosquito toxins, and further 

study should be conducted into the efficacy of deployment in the field.  

Thermal tolerance assays demonstrated that the consumption of sugar alcohols does not 

improve cold tolerance in Cx. quinquefasciatus, but that consumption of mannitol can decrease 

heat tolerance. We observed similar levels of cold tolerance between all diets tested. However, 

we found that Cx. quinquefasciatus was inherently significantly more cold tolerant than Ae. 

aegypti, while Ae. aegypti had improved heat tolerance compared to Cx. quinquefasciatus. There 

were no differences in thermal tolerance between sexes within either species. Our results suggest 

that although dietary factors such as sugar alcohols and sugars may play a role in thermal 

tolerance in mosquitoes, there are likely physiological and genetic factors that can have a greater 

influence on the limits of thermal tolerance within a species.       
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Chapter 1. Literature Review 

1.1. Mosquito Biology 

1.1.1. Mosquitoes as Vectors 

 

 Mosquitoes are often referred to as nature’s deadliest animals due to their ability to vector 

a myriad of debilitating and sometimes life-threatening parasites and pathogens. Mosquitoes in 

the genus Anopheles transmit the malarial parasites (Plasmodium spp.) that resulted in 216 

million cases of malaria and 445,000 deaths in 2016 alone (Baird 2000, Centers for Disease 

Control 2018). Outside of the genus Anopheles, the species Aedes aegypti (L. 1762) and Culex 

quinquefasciatus Say 1823 are two of the most notable vectors, due to both their widespread 

ranges throughout the world as well as the nature of the pathogens and parasites they are capable 

of transmitting. Aedes aegypti is considered the most important vector of dengue virus (Bhatt et 

al. 2013), which infects as many as 400 million people a year and is one of the leading causes of 

illness and death in the tropics and subtropics (Centers for Disease Control 2016). Additionally, 

Ae. aegypti is a competent vector for yellow fever (Barrett and Higgs 2007), chikungunya (Vega-

Rua et al. 2014), and Zika viruses (Ioos et al. 2014). Culex quinquefasciatus acts as a vector for 

Wuchereria bancrofti in the Western hemisphere, with long-term infections resulting in 

lymphatic filariasis (Centers for Disease Control 2013). In the southern United States, Cx. 

quinquefasciatus acts as the primary vector for West Nile virus (Hayes et al. 2005). Knowledge 

of the biology and ecology of these two species is vital for understanding the risk of infectious 

diseases for people in all parts of the world.        
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1.1.2. Aedes aegypti Life History 

 

 Aedes aegypti, the yellow fever mosquito, likely originated from Africa but in the past 

several centuries has expanded its range to encompass most of the world between the 35º 

northern and the 35º southern latitudes (Nelson 1986). In the United States, persistent 

populations are largely limited to the southern-most states, such as Florida, Louisiana, Texas, 

Arizona, and southern areas of California (Hahn et al. 2017). Aedes aegypti mosquitoes are 

highly associated with urban environments, and larvae are commonly found in man-made 

container habitats such as used tires, water storage containers, gutters, and buckets (Nelson 

1986). Adults feed preferentially on humans (Scott and Takken 2012) and are voracious feeders, 

often taking multiple bloodmeals for each gonotrophic cycle (Scott et al. 1993).  

 Aedes aegypti females deposit their eggs singly in water-filled container habitats just 

above the water line; once embryonic development is complete, eggs become highly resistant to 

desiccation for months to potentially over a year (Nelson 1986, Sota and Mogi 1992). Upon 

immersion in water, eggs hatch within 24 to 48 hours, with greater success in water low in 

dissolved oxygen (Gjullin et al. 1941) and containing bacteria or organic matter (Christophers 

1960). Larvae filter feed on microorganisms and detritus suspended in the water and progress 

through four larval instars before reaching the pupal stage (Christophers 1960). The rate of 

development is highly dependent on a variety of factors such as temperature, nutrition, and 

population density (Christophers 1960), but generally lasts from seven to ten days (Tun-Lin et al. 

2000, Mohammed and Chadee 2011). Upon emergence, both males and females will consume 

plant sugars for energy for flight and mating; several days after emergence females will seek a 

blood meal and begin the gonotrophic cycle (Christophers 1960).    
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1.1.3. Culex quinquefasciatus Life History 

 

 Culex quinquefasciatus, the southern house mosquito, is one of the most prolific 

mosquito species in the world and is a common and medically important species in the southern 

United States. Like Ae. aegypti, Cx. quinquefasciatus is likely native to Africa but was spread 

throughout the globe through human travel and activity (Lounibos 2002). In North America, it is 

often considered together with its counterpart, Culex pipiens pipiens, the northern house 

mosquito; adults of these species are morphologically indistinguishable and interbreed in regions 

where their distributions overlap (Burkett-Cadena 2013). Culex quinquefasciatus larvae can 

withstand and thrive in highly organic water and are often associated with man-made habitats 

such as sewage effluent (Su et al. 2003, Calhoun et al. 2007, Metzger et al. 2008). Although 

many Culex species are considered primarily avian feeders, Cx. quinquefasciatus adults are 

opportunistic and often feed on both mammals and birds (Zinser et al. 2004, Reisen 2012), likely 

due to their association with cosmopolitan habitats.  

 Culex quinquefasciatus females lay their eggs in rafts on the surface of water, preferring 

to oviposit in nutrient-dense habitats such as septic tanks and ditches (Clements 1992). Like Ae. 

aegypti and many other larval mosquitoes, Cx. quinquefasciatus larvae are filter feeders, 

subsisting on detritus and microorganisms (Merritt et al. 1992). Development is dependent on 

factors such as crowding (Roberts and Kokkinn 2010) and temperature (Rueda et al. 1990), but 

takes between five and eight days under optimal conditions (Gerberg et al. 1994). After 

emerging, adults will seek sugar sources and mate. Females then begin host-seeking, securing the 

blood meal required to develop viable eggs (Clements 1992). The gonotrophic cycle lasts an 

average of 2-3 days (Elizondo-Quiroga et al. 2006), with females able to lay up to five egg rafts 

in a lifetime (Gerberg et al. 1994).   
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1.1.4. Overwintering  

Mosquitoes utilize a diversity of overwintering strategies varying with genus, species and 

environment. Mosquitoes in the genus Aedes diapause in the egg stage, with hatch occurring with 

the arrival of adequate temperatures and rainfall. Aedes aegypti mosquitoes are active year-round 

throughout most of their range; however, in more temperate areas they may spend colder months 

in the egg stage (Vezzani et al. 2004, Fischer et al. 2011). For those species that cannot enter egg 

diapause, the most common overwintering method is dormancy in adult females, especially for 

species in the genera Anopheles and Culex (Clements 1992). In temperate areas, Culex 

mosquitoes will often seek out hibernacula in which to undergo dormancy; hibernacula can 

include natural areas such as tree hollows or animal burrows, or anthropogenic structures such as 

barns or tunnels (Mitchell 1979, Reisen et al. 1986b, Spielman 2001, Wallace 2008). Dormancy 

can range from complete diapause to quiescence, depending on environmental conditions and the 

species in question (Eldridge 1968, Schaefer et al. 1971, Reisen et al. 1986a). Culex 

quinquefasciatus females do not enter true diapause, instead exhibiting quiescence based on 

environmental temperatures (Nelms et al. 2013, Thareja et al. 2016). In order to survive through 

the winter season when feeding opportunities are scarce, mosquitoes are reliant on lipid reserves 

(Clements 1992).   

 While some species develop lipid reserves from blood (Ramsdale and Wilkes 1985), 

most species, including most Culex, are thought to use sugars to enhance overwintering 

capabilities (Schaefer and Miura 1972, Reisen et al. 1986b, Jaenson and Ameneshewa 1991, 

Bowen 1992). Feeding behavior of overwintering females is additionally dependent on climate. 

In areas where winter temperatures go below 0°C, females are likely immobile and do not feed at 

all during dormancy (Jaenson 1987, Spielman 2001). However, in areas where mean 
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temperatures are above freezing, females often remain vagile and have been found to feed on 

sugars and occasionally take blood meals (Mitchell 1979, Reisen et al. 1986a, Nelms et al. 2013). 

The vast majority of field studies on overwintering diets in Culex mosquitoes have occurred in 

California on Cx. tarsalis and occasionally Cx. pipiens pipiens, leaving the habits of Culex 

mosquitoes in the southeastern United States relatively unknown.  

1.2. Diets  

1.2.1. Flight Energy and Reproduction 

 

 The diets of mosquitoes consist of two food sources: sugars and protein. In most species, 

females are obligate blood-feeders in order to secure the protein needed to produce eggs, but also 

utilize sugars for other sources of energy; males of all species rely on sugar as a sole food source 

(Clements 1992, Foster 1995). Mosquitoes can utilize sugar sources, such as decaying fruits or 

honeydew, but most commonly obtain sugars from the floral nectaries of plants (Joseph 1970, 

Clements 1992, Russell and Hunter 2002). Nectar composition differs among plants, but 

primarily consists of sucrose, D-fructose, or D-glucose in varying proportions (Wykes 1952). 

Carbohydrates from plant sugars are thought to be the main source of energy for flight in both 

males and females, with lipids derived from blood meals being a less efficient source (Nayar and 

Sauerman 1971, Nayar and Van Handel 1971). However, there is evidence that some populations 

of highly anthropophilic species such as Ae. aegypti feed minimally on nectar in nature (Edman 

et al. 1992, Van Handel et al. 1994), and laboratory studies support an ability to maintain 

reproductive success provided ample blood meals are available (Scott et al. 1997, Gary and 

Foster 2001, Braks et al. 2006). However, Ae. aegypti is likely more the exception than the rule; 

the literature largely supports that in most species, females continue to sugar feed throughout 

their lifetimes (Magnarelli 1978, Vargo and Foster 1984, Reisen et al. 1986b).  
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 While blood may provide energy for other activities, its main purpose in the mosquito 

diet is for the development of eggs. Although autogeny does occur in wild mosquito populations 

(Trpis 1977, Strickman and Fonseca 2012), in most cases a blood meal is essential for the 

successful completion of the gonotrophic cycle. After finding a sugar meal and mating, females 

will engage in host-seeking behavior, using cues such as carbon dioxide and octanol (Takken and 

Kline 1989, Costantini et al. 1996) to locate a suitable host. Consumption of a blood meal 

initiates ovarian development and provides the protein necessary for the formation of eggs, 

leading to oviposition several days later (Clements 1992). In order to reach maximum fertility 

throughout a lifetime, most female mosquitoes must continuously locate appropriate sources for 

both sugar and blood meals. 

1.2.2. Effects of Diet on Thermal Tolerance 

 

 While field observations, as well as laboratory experiments, support an important role of 

sugars in preparing mosquitoes for overwintering, direct measures of how diet influences cold 

tolerance are largely absent from the literature. In other insects, diet seems to have the ability to 

significantly alter certain parameters for cold tolerance (Andersen et al. 2010, Owen et al. 2013, 

Li et al. 2014). These have been particularly well-studied in Drosophila melanogaster. Shreve et 

al. (2007) found that a cholesterol-augmented diet increased survival after cold shock and 

improved cold-hardening ability; Andersen et al. (2010) saw faster chill coma recovery of adult 

flies when reared as larvae on carbohydrate-rich diets as compared to protein-rich diets. 

However, Colinet et al. (2013) observed that increasing the concentration of sugars in adult diets 

increased recovery times and negatively affected cold tolerance. While there are still many 

questions regarding the effects of diet on Drosophila cold tolerance, there are even more 
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regarding mosquitoes, the answers to which could play an important role in understanding the 

overwintering biology and behavior of these insects.  

 The influence of feeding on heat tolerance is even less explored in mosquitoes; this is 

generally true regarding other insects as well, with the exception of a few species. Certain sugars, 

such as sucrose, as well as sugar alcohols, have been demonstrated to increase the thermal 

stability of proteins (Back et al. 1979). In insects, sorbitol, a sugar alcohol, increases tolerance to 

heat stress in whiteflies (Wolfe et al. 1998, Salvucci 2000), and mannitol acts in a similar manner 

in aphids (Hendrix and Salvucci 1998). Whiteflies derive sorbitol from fructose (Salvucci et al. 

1998), and whiteflies given access to sorbitol-supporting diets show increased survival at high 

temperatures (Salvucci 2000). Andersen et al. (2010) found somewhat differing results in 

Drosophila melanogaster, which had increased heat tolerance when reared on a protein-rich diet 

as compared to a carbohydrate-rich diet. Understanding if and how mosquitoes can increase heat 

tolerance by dietary means is an unknown and perhaps relevant part of their life history and 

feeding habits.     

1.3. Sugar Alcohols 
 

 Sugar alcohols are polyols with the general formula HOCH2(CHOH)nCH2OH found 

abundantly throughout nature. They are similar to sugars in structure, but have two additional 

hydrogen atoms, and tend to exist as chains instead of rings. They occur in a wide variety of 

plants; in particular, galactitol, mannitol, and sorbitol are found abundantly throughout the 

angiosperms in both leaf tissues and fruits (Loescher 1987, Moing 2000). Mannitol and sorbitol, 

as well as xylitol, are found in the fruits of numerous plant species, particularly within the 

Rosaceae (Lee 2015). This includes many fruits commonly cultivated for human consumption, 

such as strawberries, apples, pears, plums, and cherries.  
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 Sugar alcohols impart a sweet taste to fruits, while generally containing less calories than 

sugars; this has led to the production and commercialization of sugar alcohols as low-calorie 

sugar alternatives. While sugar alcohols can be extracted from natural sources, they are more 

commonly synthesized industrially through the process of hydrogenation of sugars (Park et al. 

2016). Although sugar alcohols have been determined as safe for human consumption by the 

U.S. Food and Drug Administration (Department of Health and Human Services 2018), recent 

research indicates that certain sugar alcohols and non-nutritive sweeteners may have toxic effects 

on insects. 

 Baudier et al. (2014) provided the first evidence for the toxicity of sugar alcohols using 

Drosophila melanogaster. They compared survival of adult flies on five non-nutritive 

sweeteners; the sugar alcohol erythritol resulted in the greatest mortality. In Drosophila suzukii, 

erythritol and its sugar counterpart erythrose also result in significant mortality, while mannitol, 

sorbitol and xylitol do not (Choi et al. 2017). The tephritid fly Bactrocera dorsalis displays 

increased inactivity and mortality when fed non-nutritive sweeteners, with the greatest effect 

seen with erythritol (Zheng et al. 2016). Although the mechanism through which mortality 

occurs in these various fly species is not fully understood, there is evidence that erythritol cannot 

be metabolized, and consumption results in greatly elevated osmotic pressure due to 

accumulation in the hemolymph, leading to death (Tang et al. 2017). 

 Although direct consumption of erythritol can be toxic for insects, some species 

synthesize and store erythritol for use as a cryoprotectant (Baust and Edwards 1979, Kostal et al. 

2007). Other sugar alcohols, namely sorbitol and mannitol, also act as protectants against cold 

stress in a number of insects (Story and Storey 1983, Kostal et al. 2007, Michaud and Denlinger 

2007). As discussed in detail previously, these compounds can confer protection against heat 
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stress as well. Sugar alcohols are usually not directly consumed, but metabolized from sugars 

such as fructose (Hendrix and Salvucci 1998). 

 Both the toxicity of sugar alcohols and their function in cold tolerance have not been 

explored in mosquitoes. Mosquitoes can produce sorbitol through the metabolism of fructose 

(Van Handel 1969), but whether or not it is utilized in thermoprotection is unknown. While the 

toxicity of sugar alcohols against mosquitoes is also not known, the consistent toxicity of 

erythritol within Diptera, and the non-specificity of its proposed toxic mechanism make it a 

likely candidate as a mosquito toxin. Toxic sugar alcohols may be a novel insecticidal compound 

that could be integrated into mosquito control techniques such as attractive toxic sugar baits, 

which combine sugar sources with orally ingested insecticides.       

1.4. Thermal Tolerance in Mosquitoes 

1.4.1. Developmental Temperatures 

 

Temperature is possibly the most important factor governing the ranges, seasonality, and 

development times of mosquitoes (Clements 1992). Aedes aegypti has traditionally thought to be 

limited in range by a 10˚C winter isotherm (Christophers 1960), although more recent research 

suggests a 15˚C average yearly isotherm may be more appropriate for broad range predictions 

(Otero et al. 2006). Egg hatch is stimulated by submergence in water usually brought on by 

rainfall; however, egg hatch is limited by temperatures below 13˚C (Christophers 1960). 

Complete larval development occurs on average between 15˚C and 35˚C; at temperatures closer 

to 30˚C, development usually takes less than a week, but lower temperatures can increase this to 

closer to three weeks (Tun-Lin et al. 2000, Costa et al. 2010, Carrington et al. 2013, Marinho et 

al. 2016). Adults can withstand prolonged exposure of temperatures as low as 7˚C to 9˚C 

(Nelson 1986), but become inactive and unlikely to feed at temperatures below 14˚C to 16˚C 
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(Christophers 1960, Yang et al. 2009). Temperatures above 35˚C are unfavorable for adults, and 

blood feeding decreases as temperatures are increased; exposures above 40˚C are usually fatal 

(Christophers 1960, Carrington et al. 2013).  

 Culex quinquefasciatus has a very comparable life history to Ae. aegypti in regards to 

temperature. In North America, the range of Cx. quinquefasciatus is generally south of the 36˚N 

latitude line (Barr 1957), and for Ae. aegypti it is below the 35˚N latitude line (Nelson 1986); 

temperature tolerances likely influence these similarities in geographic ranges. Culex 

quinquefasciatus larvae can complete development between 15˚C and 34˚C, with survival 

highest between 20˚C and 30˚C (Rueda et al. 1990); models by Ahumada et al. (2004) suggest 

that populations can persist when average yearly temperatures exceed 14.6˚C. Adults cannot 

withstand long-term exposures of 5˚C or lower (Tekle 1960) and blood feeding is limited below 

15˚C (Eldridge 1968). Adult survival drops off drastically at temperatures greater than 34˚C 

(Rueda et al. 1990).  

1.4.2. Supercooling Point 

 

 The supercooling point (SCP) is the temperature at which the cells of an organism’s body 

begin to freeze. To determine SCP, a thermocouple is placed on an insect, and the temperature is 

gradually lowered at a constant rate; upon the start of freezing the latent heat of crystallization 

initiates an exotherm, and the lowest temperature reached just prior to this point marks the SCP 

(Sinclair et al. 2015). SCP is often thought of as the starting point for determining cold tolerance; 

for most organisms it has limited ecological relevance and must be considered along with other 

cold tolerance parameters (Renault et al. 2002). There are three general categories of cold-

tolerance strategies: chill-susceptible, freeze-avoidant, and freeze-tolerant (Sinclair et al. 2015). 

Chill-susceptible insects cannot survive any internal ice formation and die from cold exposure 
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well before the SCP is reached (Bale 1993). Freeze-avoidant insects adapt to freezing conditions 

by supercooling bodily fluids and therefore preventing ice formation; freeze-tolerant insects can 

actually withstand a substantial amount of internal freezing (Salt 1961).  

 The cold tolerance strategy of mosquitoes can vary depending on species, life stage, and 

acclimation. Copeland and Craig Jr (1990) found that Orthopodomyia and Anopheles species 

overwintering as larvae in tree-holes were freeze-tolerant, but only when acclimated to low 

winter temperatures. However, Liu et al. (2018) determined that all stages of Culex pipiens 

pallens were chill-susceptible, even though adults had significantly lower supercooling points 

than larvae and pupae. Eggs of Ae. aegypti, Ae. triseriatus, and Ae. albopictus are chill-

susceptible as well, with mortality occurring at much higher temperatures than the SCP 

regardless of cold acclimation (Hanson and Craig 1995). Given what is known about their 

biology, both Ae. aegpyti and Cx. quinquefasciatus are likely chill-susceptible species; however, 

as yet this has not been determined for adults.    

1.4.3. Critical Thermal Limits 

 

 The critical thermal maximum (CTMax) of organisms was first assessed in reptiles and 

was defined as “the thermal point at which locomotory activity becomes disorganized and the 

animal loses its ability to escape from conditions that will promptly lead to its death” (Cowles 

and Bogert 1944). Since this time, CTMax has been evaluated in a large variety of animals, 

including mammals (Erskine and Hutchinson 1982), amphibians (Zweifel 1957, Miller and 

Packard 1974), fish (Currie et al. 1998, Rajaguru 2002) and invertebrates (Poulton et al. 1989, 

Dallas and Ketley 2011, Vinagre et al. 2015). CTMax is determined by exposing an organism to 

a temperature regime with a constant rate of increase, until a physiologically relevant end point 

signaling a loss of control of function. While this endpoint for CTMax can vary greatly 
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depending both on experimental design as well as the organism being tested, the two most 

common endpoints used are loss of righting response and the onset of spasms (Lutterschmidt and 

Hutchison 1997).  

The critical thermal minimum (CTMin) is defined as the point at which an organism 

enters into a reversible state of paralysis known as chill coma, which is often preceded by loss of 

coordination (Hazell and Bale 2011). In practice, the CTMin is determined by the point at which 

an insect loses the ability to move or respond to an environmental stimulus (Sinclair et al. 2015). 

To determine CTMin, an organism is exposed to a temperature regime with a constant rate of 

decrease, usually between 0.1 and 0.25ºC per minute (Huey et al. 1992, Sinclair et al. 2015). The 

endpoint for entry into chill coma depends on the organism in question, but commonly used 

metrics include lack of response to prodding (Klok and Chown 1997), onset of inactivity 

(Cokendolpher and Phillips 1990, Andersen et al. 2015), or reduced motor function (Lyons et al. 

2012).  

Studies of critical thermal limits in mosquitoes in the literature are scarce. Lyons et al. 

(2012) thoroughly assessed thermal limits in Anopheles arabiensis and Anopheles funestus. For 

CTMin protocols, they determined that a mosquito had entered chill coma when it could no 

longer cling to the tip of a paintbrush and displayed reduced motor function, such as spasms. The 

endpoint for CTMax was defined as reduced motor function following a period of rapid flight. 

Their success with these methods supports the ability to use mosquitoes in thermal limits assays, 

and provides a basis for experimental design to test other species.   

1.4.4. Chill Coma Recovery Time 

 

 Chill coma recovery time (CCRT) is often coupled with CTMin experiments and 

measures the amount of time required for an insect to regain function after entering into chill 
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coma (Hazell and Bale 2011). After determining the CTMin, the organism is exposed to a 

temperature below this threshold for a set amount of time, usually determined by ecological 

relevance, and brought into a state of chill coma. The organism is then removed and allowed to 

recover at a warmer temperature, often room temperature; the average time for this process to 

take place is the CCRT (Sinclair et al. 2015). As chill coma is defined by paralysis and loss of 

muscle or nerve function (MacMillan and Sinclair 2011), the regaining of any coordinated 

movement usually marks the recovery of an organism.  

 Like thermal limits, investigations into CCRTs of mosquitoes are also largely absent 

from the literature. However, once the CTMin has been determined, CCRT experiments are a 

relatively easy extension that can provide further information on the cold tolerance ability of a 

species. The most important consideration for designing a CCRT experiment is the relevant 

exposure time to the CTMin. For mosquito species such as Cx. quinquefasciatus and Ae. aegypti, 

which live in tropical to temperate areas, a relevant exposure time would likely be more short-

term, representing the overnight lows during colder months of the year.    

1.4.5. Lethal Temperatures 

 

 Lethal temperatures (LTs) quantify the temperature at which mortality occurs in an 

organism given a set exposure time and acclimation regime. Often, lethal temperatures are 

expressed proportionally, such as the LT50 being the temperature at which 50 percent of 

individuals die (Sinclair et al. 2015). Like the CCRT, ecological relevance usually dictates how 

long insects are exposed to a temperature regime. This can range from acute exposures, 

modelling extremes likely to be experienced during a summer or winter, to more long-term 

exposures, such as an overnight exposure to an average daily low during the winter (Sinclair et 

al. 2015). Once exposure regime is determined, groups of insects are exposed to a range of 
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temperatures; ideally, this range should include at least five temperatures and must include 

groups with both 0% and 100% survival. Analysis using linear regression, similar to probit 

analysis, can yield a temperature-response curve that predicts the temperatures required for any 

proportion of survival (Sinclair et al. 2015). 

 Measures of lethal temperatures in mosquitoes are somewhat more common than other 

metrics of thermal tolerance. Both Ae. aegypti larvae and adults have a LT99 close to 45˚C for 

short term exposures of ten to fifteen minutes; this temperature decreases to 41˚C for adults 

when the exposure time is increased to one hour (Christophers 1960, Mourya et al. 2004, 

Andersen et al. 2006). Adults can survive exposures of one hour at 4˚C, but longer exposures 

result in mortality (Christophers 1960). Upper and lower lethal temperatures for Cx. 

quinquefasciatus are largely unexplored. Lyons et al. (2012) examined lethal temperatures in An. 

arabiensis and An. funestus using a four hour exposure time to represent the period of daily peak 

temperatures. These kinds of more ecologically relevant exposure times have not been examined 

to determine LTs in either Ae. aegypti or Cx. quinquefasciatus.  

1.5. Objectives 

 Our goal was to understand how consumption of sugar alcohols impacts mortality in 

mosquitoes, as well as how sugar alcohols and other factors impact thermal tolerance. We 

examined toxicity using the following objectives: 1) to determine mortality of Ae. aegpyti and 

Cx. quinquefasciatus fed on the sugar alcohols erythritol, sorbitol, and xylitol, and 2) to 

determine the preference of these two species between sugar alcohols and sugars. To determine 

impacts of sugar alcohols, diet, species, and sex on thermal tolerance, we investigated an 

additional two objectives: 1) to evaluate and compare thermal tolerance in Ae. aegypti and Cx. 
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quinquefasciatus, and 2) to examine how thermal tolerance is impacted by consumption of 

sugars, sugar alcohols, and blood in Cx. quinquefasciatus.  
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Chapter 2. Lethality of Sugar Alcohols against Culex 

quinquefasciatus and Aedes aegypti 
 

2.1. Introduction 

 The mosquito is often considered one of the deadliest animals in the world; millions of 

people worldwide are at risk for mosquito-borne diseases that result in hundreds of thousands of 

cases of illness and death every year. Aedes aegypti (L. 1762) is the primary vector for a number 

of devastating viruses, including dengue, yellow fever, and chikungunya viruses (Barrett and 

Higgs 2007, Bhatt et al. 2013, Vega-Rua et al. 2014), while Culex quinquefasciatus Say 1823 is 

responsible for the transmission of Wuchereria bancrofti, the causative agent of lymphatic 

filariasis, and West Nile virus in the Americas (Hayes et al. 2005, Centers for Disease Control 

2013). Both species have large global distributions and are found abundantly in most tropical and 

subtropical areas (Barr 1957, Nelson 1986, Farajollahi et al. 2011). Currently, reducing the 

disease burden caused by these mosquito species largely relies on reduction of mosquito 

populations.      

 Historically, mosquito control has relied heavily on chemical insecticides; however, 

effective chemicals are limited in number and many rely on the same modes of action. The 

consequential cases of resistance development, as well as environmental concerns, have led to 

the call for novel chemistries and methods for eliminating mosquitoes (World Health 

Organization 2012). Over the past few decades, a number of researchers have investigated the 

efficacy of attractive toxic sugar baits as a novel means of controlling mosquitoes over a broad 

range of genera and species (Muller et al. 2010a, Fulcher et al. 2014, Qualls et al. 2014, Revay et 

al. 2015, Scott-Fiorenzano et al. 2017). 

 Attractive toxic sugar baits (ATSBs) take advantage of mosquitoes’ natural sugar feeding 

behavior in order to control them. Almost all mosquitoes seek sugar meals shortly after 
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emerging, and many continue to sugar-feed throughout their lifetimes, acquiring energy for flight 

and reproduction (Clements 1992, Foster 1995). ATSBs combine a sucrose-based attractant with 

toxins such as boric acid (Muller et al. 2010a, Muller et al. 2010b), spinosad (Muller et al. 2008), 

or eugenol (Revay et al. 2014). Deployment of ATSBs usually occurs either through bait 

stations, or as foliar sprays applied to vegetation (Fiorenzano et al. 2017). Studies have reported 

non-target feeding on ATSBs, particularly when applications occur on flowering vegetation; 

however, in general, the non-target effects of ATSBs seem to be low, with by far the greatest 

effects on mosquitoes and midges (Khallaayoune et al. 2013, Qualls et al. 2014).   

 In order to fully take advantage of this control strategy, finding toxins that have the least 

environmental impact and monetary cost is a priority. Sugar alcohols, a class of polyol 

compounds, have recently been found to have insecticidal activity against some fly species, with 

erythritol being especially toxic (Baudier et al. 2014, Zheng et al. 2016, O'Donnell et al. 2018). 

Sugar alcohols are found abundantly in nature in various plant species (Shindou et al. 1989, 

Pharr et al. 1995, Stoop et al. 1996, Lee 2015), and many are commercially available for human 

consumption as non-nutritive sweeteners. Due to their low cost and high human safety, sugar 

alcohols present a potential ideal toxin for use in ATSBs.  

 We examined the lethality of three sugar alcohols (erythritol, sorbitol, and xylitol) against 

adult female Ae. aegypti and Cx. quinquefasciatus mosquitoes. We hypothesized that feeding on 

sugar alcohols at high concentrations (30%) would significantly reduce survivorship compared to 

survival on sucrose. We additionally conducted choice tests to determine if mosquitoes exhibit a 

preference between sugars and sugar alcohols, with the hypothesis that mosquitoes would not 

exhibit a preference. This research will help determine if consumption of sugar alcohols results 

in adult mosquito mortality, and if mosquitoes are likely to feed on sugar alcohols in the 
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presence of alternative sugar sources. Ultimately, this study provides a basis for determining the 

efficacy of sugar alcohols for use in mosquito control through the method of attractive toxic 

sugar baits.  

2.2. Materials and Methods 

2.2.1. Mosquitoes 

 Mosquito colonies were obtained from East Baton Rouge Mosquito and Rodent Control. 

This included the Sebring strain of Cx. quinquefasciatus, which was originally collected in 

Sebring, Florida and colonized by staff at the USDA Agricultural Research Station in Gainsville, 

FL, as well as the Rockefeller strain of Ae. aegypti, originally collected in the Caribbean and 

colonized at the Rockefeller Institute in 1930 (Kuno 2010). The Sebring strain has been 

maintained in colony at the medical entomology lab at Louisiana State University since 2017, 

and the Rockefeller strain has been maintained since 2018.  

 Prior to experiments, mosquitoes of both species were maintained at 27˚C on a 14:10 

L:D cycle. Adults were housed in 31cm3 collapsible cages and provided 10% sucrose solution ad 

libitum from cotton dental wicks. Cages were draped with damp cloth covered with plastic bags 

to maintain humidity. Mosquitoes were provided blood once a week using an artificial feeding 

system (Hemotek® Ltd, England) using Parafilm M® (Bemis Company, Oshkosh, WI) as a 

membrane. Culex quinquefasciatus were provided defibrinated chicken blood and Ae. aegypti 

were provided defibrinated sheep blood (Rockland™ Immunochemicals, Limerick, PA). Culex 

quinquefasciatus were given small plastic cups containing aged DI H2O for oviposition; Ae. 

aegypti received the same cups lined with seed germination paper. Culex quinquefasciatus egg 

rafts or dried (> 1 week) Ae. aegypti eggs on seed paper were hatched in 1.9 L plastic hinged deli 

containers in 600 mL of aged DI H2O with 2.5 mL of bovine liver powder solution (60 g/L). 
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Larval densities were maintained at 100 to 150 larvae per container with more containers made 

as needed; each container was provided 1.5 mL of bovine liver powder solution every other day. 

Pupae were removed individually with plastic pipettes into small plastic containers with aged DI 

H2O and placed into cages for emergence.  

2.2.2. Mortality Assays 

 Three sugar alcohols were assessed for lethality: erythritol, sorbitol, and xylitol. Each 

sugar alcohol was dissolved into a 10% sucrose-DI water solution at either 10, 20, or 30% 

concentration, with each sugar alcohol assessed at all concentrations simultaneously. Sugar 

alcohols were added to sucrose solutions instead of DI water alone, as preliminary trials showed 

improved feeding with sucrose, and tarsal contact with sucrose acts as a stimulant for feeding 

(Clements 1992). A 10% sucrose solution was used to assess control mortality. Each treatment 

was tested with three replicates of 20-25 mosquitoes each.  

 For use in mortality experiments, 3-5 day old Ae. aegypti or Cx. quinquefasciatus females 

reared on 10% sucrose were starved for 24 hours prior to the start of each trial. Mosquitoes were 

aspirated into 500 mL plastic cups containing 30 mL of their designated treatment solution in a 

small plastic cup with a cotton dental wick. One drop of blue food coloring was added to each 

solution so feeding could be observed throughout the trial by the presence of blue coloring in the 

abdomen. We did not attempt to quantify feeding, but observed high feeding rates, particularly 

during the first 24 hours. The 500 mL cups were covered with fine mesh secured with rubber 

bands and each was topped with a Petri dish to reduce evaporation. Each cup was assessed for 

mortality every 24 hours for 72 hours. Mosquitoes were disturbed by tapping the bottom of the 

cup, and any individual that did not display coordinated movement (flying or walking on all six 

legs) was recorded as dead.   
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2.2.3. Choice Tests 

 After determining the lethality of the sugar alcohol solutions, we selected the most 

effective solution for use in a two-choice test for both Ae. aegypti and Cx. quinquefasciatus to 

determine preference between sucrose alone and sucrose with an added sugar alcohol. We tested 

1-2 day old never-fed mosquitoes, to eliminate any effects of previous feeding on sucrose on 

preference. Replicates of 10-15 mosquitoes were aspirated into 950 mL plastic cups covered with 

fine mesh secured with rubber bands. Each cup contained both 30 mL of 10% sucrose solution 

and 30 mL of 30% erythritol in 10% sucrose, provided in small plastic cups with cotton dental 

wicks. We added either red or blue food dye at 1% concentration to each solution; we used a 

total of ten replicates, five of combination A (red sucrose and blue sucrose-erythritol) and five of 

combination B (blue sucrose and red sucrose-erythritol). Mosquitoes were allowed to feed for a 

period of two hours, after which point they were killed by freezing for later examination. Each 

mosquito’s abdomen was observed using a dissecting microscope and scored as red, blue, purple, 

or unfed. To determine preference, the following choice index (CI) was calculated for each 

replicate cup (Ignell et al. 2010): 

CIred= ( nred + npurple ) / ntotal 

CIblue= ( nblue + npurple ) / ntotal 

The mean CIs for the sucrose and erythritol-sucrose solutions were calculated for both 

combination A and B; we compared mean CIs of the same solutions between combinations using 

a Fisher’s exact test (JMP®, Version 14) to test for differences in color preference. We combined 

datasets that showed no statistically significant differences (P<0.05).    
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2.2.4. Statistical Analysis 

 

 Mortality over time was analyzed separately for each species with generalized linear 

models with sugar alcohol (erythritol, sorbitol, and xylitol) and concentration (0, 10, 20, and 

30%) as the effect variables (PROC GLIMMIX; SAS Version 9.4). We additionally produced 

generalized linear models for each sugar alcohol separately to determine LC50 and LC99 values 

for each species, with concentration as the main effect (PROC GLIMMIX; SAS Version 9.4). 

Estimation was based on Laplace approximation for all models. Several GLMs were assessed for 

fit (binomial with probit link, binomial with logit link, and beta with logit link), and Akaike’s 

information criteria corrected for small sample size and Pearson’s χ2/ degrees of freedom were 

used to rank and select the most appropriate models. In Cx. quinquefasciatus, for all selected 

models the error distribution was binomial and the link was probit; in Ae. aegypti, the error 

distribution was beta and the link was logit. To analyze preference data, we calculated choice 

indices as described in the previous section for sucrose, sucrose-erythritol, and no-choice, and 

compared these indices with a one-way ANOVA (JMP® Pro Version 14). The assumption of 

normality of the residuals was upheld (Shapiro-Wilk Pr<W=0.86); as well as homogeneity and 

linearity, which were assessed by visual examination of the residual plot. Post hoc comparisons 

were performed using a Tukey test with a significance value of α=0.05.  

2.3. Results 

2.3.1. Mortality Assays 

 

 In Ae. aegypti, sugar alcohol was not a significant predictor of mortality (F2,137= 0.65, p= 

0.52); however, concentration and the interaction term sugar alcohol x concentration were both 

significant (F1,137=213.74, p<0.01; F2,137=15.23, p<0.01; Figure 2.1). In Cx. quinquefasciatus, 

sugar alcohol was a significant predictor of mortality (F2,137=5.06, p<0.01; Figure 2.2), in  
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Figure 2.1. Predictions for mortality of Ae. aegypti adults over time fed erythritol, sorbitol, or 

xylitol at concentrations of 10, 20 and 30%. Predictions and 95% confidence intervals were 

calculated using generalized linear models with a beta distribution and logit link and appear as 

lines; symbols represent data obtained in mortality trials.  
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Figure 2.2. Predictions for mortality of Cx. quinquefasciatus adults over time fed erythritol, 

sorbitol, or xylitol at concentrations of 10, 20 and 30%. Predictions and 95% confidence 

intervals were calculated using generalized linear models with a binomial distribution and 

probit link and appear as lines; symbols represent data obtained in mortality trials.  
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addition to concentration (F2,137=53.04, p<0.01) and sugar alcohol x concentration (F2,137=29.67, 

p<0.01). There were significant differences between the effects of all three sugar alcohols, with 

erythritol having the greatest effect, followed by xylitol, and with sorbitol being the least 

effective (Figure 2.2).  

 Erythritol additionally had the lowest LC50 of the three sugar alcohols for both species 

(Table 2.1).  For Ae. aegypti, the LC50 for xylitol increased over 4-fold, as compared to the LC50 

for erythritol, and 5-fold for sorbitol. For Cx. quinquefasciatus, the LC50 values for xylitol and 

sorbitol were roughly 35 times that of erythritol, and both were far beyond the range of solubility 

for either compound.    

Table 2.1. LC50 and LC99 values for three sugar alcohols for Ae. aegypti and Cx. 

quinquefasciatus, expressed as percentage concentration in sucrose solution. LC50 and LC99 

values represent the concentration necessary to kill 50 and 99 percent of the population, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

2.3.2. Choice Test 

 

 In both species tested, mosquitoes did not exhibit a preference between sucrose and 

sucrose-erythritol. Color did not affect preference in either Ae. aegypti (p=0.54) or Cx. 

quinquefasciatus (p=0.16) as determined by Fisher’s exact test, allowing us to combine datasets 

from both choice-test combinations. Although one-way ANOVA showed significant differences 

between choice indices (CI) for both Ae. aegypti (F2,27 =4.05, p=0.03) and Cx. quinquefasciatus 

(F2,27=24.32, p<0.01), post hoc tests revealed only the CI for non-fed mosquitoes was 

 Ae. aegypti Cx. quinquefasciatus 

Sugar Alcohol LC50  LC99 LC50 LC99 

Erythritol 7.59 ±  44.3  44.3 ± 1.82e6 3.94 ± 9.16 37.9 ± 2.41e11 

Sorbitol 40.0 ± 23.0 427 ± 8.51e6 131 ± 23.4 3790 ± 6.10e4 

Xylitol 25.5 ± 20.5 235 ± 2.14e7 150 ± 17.8 323,000 ± 4.34e14 
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significantly higher, with no significant differences between CIs for sucrose and sucrose-

erythritol (Table 2.1). On average, greater than fifty percent of mosquitoes of both species did 

not feed during the trial (Figure 2.2). In Ae. aegypti, 22% of mosquitoes fed on a combination of 

both solutions, with the remaining mosquitoes split relatively evenly between sucrose (13%) and 

sucrose-erythritol (11%). This differed from Cx. quinquefasciatus, in which no mosquitoes fed 

on a combination of solutions. However, similarly to Ae. aegypti, preference was similar 

between sucrose (25%) and sucrose-erythritol (19%) (Figure 2.3).  

Table 2.2 Average choice index (mean ± SE) in a two-choice test for never-fed Ae. aegypti and 

Cx. quinquefasciatus. Means with different letters are statistically significantly different.   

                           Average Choice Index (CI) 

Choice Ae. aegypti Cx. quinq. 

No Choice 0.54  (± 0.04) A 0.56  (± 0.04) A 

Sucrose 0.35 (± 0.04)  B 0.25 (± 0.04)  B 

Erythritol  0.33 (± 0.01)  B 0.19 (± 0.04)  B 

 

Figure 2.3 The percentage of Ae. aegypti and Cx. quinquefasciatus mosquitoes feeding on 

sucrose, erythritol (in sucrose solution), both, or neither in a two-choice test.  
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2.4. Discussion 

 Sugar alcohols, particularly erythritol, have been shown to have insecticidal properties in 

several different fly species, including Drosophila melanogaster (Baudier et al. 2014), 

Drosophila suzukii (Choi et al. 2017), and Bactrocera dorsalis (Zheng et al. 2016). The results of 

this study support that erythritol, as well as the sugar alcohols sorbitol and xylitol, can cause 

significant mortality in the two mosquito species evaluated, with dose-dependent and species-

specific effects.  

 Sorbitol was the least effective sugar alcohol in models for Cx. quinquefasciatus, and had 

the highest LC50 in Ae. aegypti. Within mosquitoes, there is a reversible pathway that converts 

sorbitol to fructose and vice versa with the use of a polyol:NAD oxioreductase also found in rat 

liver; this differs from the more common aldose reductase pathway used by lepidopteran insects 

(Van Handel 1969). Furthermore, at a concentration of 10%, sorbitol has no negative effects on 

long-term survival of Ae. aegypti or the closely related species Ae. taeniorhynchus, and seems to 

even improve survival in comparison to sugar alone (Nayar and Sauerman 1971). The ability of 

these Aedes mosquitoes and potentially other species to metabolize sorbitol effectively may 

explain the results we obtained. Although we did not observe a significant effect of concentration 

of sorbitol on Ae. aegypti mortality, we found that increasing sorbitol concentration did 

significantly negatively impact Cx. quinquefasciatus survival. These results provide some 

evidence that at high concentrations, the sorbitol↔fructose pathway may not be efficient enough 

to break down large quantities of sorbitol. However, without direct evidence this remains a 

tentative hypothesis to account for the mortality caused by consumption of sorbitol.       

 Although the role of sorbitol in physiological processes in mosquitoes is largely 

unknown, in many insects and other organisms sorbitol is commonly stored and used as a 
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cryoprotectant (Story and Storey 1983, Wolfe et al. 1998, Salvucci 2000, Kostal et al. 2007, Lee 

2010). Sugar alcohols and other polyol compounds can depress freezing points, stabilize cell 

membranes, and protect protein structures; xylitol and erythritol can perform these functions in 

some organisms, but sorbitol is far more commonly utilized across insects (Baust and Edwards 

1979, Lee 2010). It is possible that mosquitoes also utilize sorbitol for thermal protection, and 

are therefore adapted to tolerate and even benefit from certain levels of sorbitol. Given the rarity 

of insects using xylitol or erythritol as thermoprotectants, we can hypothesize that mosquitoes do 

not utilize them, which could potentially help explain why we saw greater toxicity with xylitol 

and erythritol than with sorbitol.   

  Like sorbitol, xylitol is also sometimes present in insect tissues as a cryoprotectant, albeit 

less commonly (Storey and Storey 2004, Colinet et al. 2012). There is no direct evidence for a 

metabolic pathway for xylitol in mosquitoes or other insects; however, our results support that 

xylitol is at least partially metabolized in mosquitoes. Choi et al. (2017) found that Drosophila 

suzukii flies could survive as well on xylitol as compared to 1.0 M sucrose solution, as long as 

the concentration was above 0.05 M. However, survivorship on xylitol was lower than on 

sorbitol at similar concentrations. In mammals, xylitol is converted to glucose in the liver, 

although it is often taken up slowly and only partially by the gastrointestinal tract, resulting in 

gastric distress (World Health Organization). Although mammal and insect systems function 

drastically differently, xylitol may have similar effects in insects, being only partially absorbed 

and at high concentrations resulting in stress, leading to death.  

 Erythritol was highly effective in both species, with LC50 values of less than 10% in both 

species. Although the mechanism by which erythritol causes death in flies is not fully 

understood, Tang et al. (2017) posit that accumulation of erythritol in the hemolymph causes 



36 

 

elevation of osmotic pressure which ultimately results in death. They observed in D. suzukii that 

after consuming erythrtitol, flies had extremely high levels of erythritol in the hemolymph, as 

well as lower levels in frass; they hypothesize that erythritol cannot be metabolized and is 

instead transported directly from the midgut to the hemolymph without being broken down or 

stored. This potential mode of action suggests a broad target group that likely extends beyond 

just the two mosquito species tested in these experiments, making erythritol a good candidate for 

general mosquitocidal activity. 

 The results from our choice test experiments also indicate potential usefulness of 

erythritol as a mosquitocide. We observed no significant differences between preference for 

sucrose alone and a 30% erythritol solution in sucrose. In nature, mosquitoes use a variety of 

interacting cues such as plant odor and color in order to locate nectar sources, which can be 

highly dependent on the species and habitat, as well as other factors (Foster and Hancock 1994, 

Burkett et al. 1998, Nyasembe et al. 2012, Nikbakhtzadeh et al. 2014). Once an appropriate 

source has been located, contact of the proboscis or tarsi with sucrose or another sugar will 

stimulate a feeding response (Clements 1992). In our experiment, we saw no preference between 

the red and blue coloration of the different sugar solutions; from this, we can posit that 

consumption was likely randomly based on which solution each mosquito happened to encounter 

first. However, this is merely speculation without direct observation of the landing and probing 

behavior of the mosquitoes, a component which we did not include in this experiment.  

 Surprisingly, we found that in both Ae. aegypti and Cx. quinquefsaciatus over 50% of 

mosquitoes did not feed on either sugar solution. It is possible that the two-hour period allowed 

for feeding was not long enough for mosquitoes to acclimate to their new environment, and that 

the stress of aspiration impacted the desire or ability to feed. Future experiments would benefit 
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from a set-up where the sugar solutions could be added to the arena instead of the mosquitoes. 

The experiment would also be improved by direct observation of the mosquitoes to determine if 

preference is actually based purely on chance encounter, or, more likely, is a more complicated 

combination of sensory factors. However, despite the potential for improvement, the results of 

this study provide evidence that mosquitoes will readily consume sucrose solution containing 

erythritol, even when pure sucrose solution is present. 

 The results of our choice test experiments, as well as no-choice survival experiments, 

indicate that erythritol has high potential for use as a mosquito toxin. Sorbitol and xylitol, though 

having some effects on mortality at high concentrations, were not nearly as potent as erythritol in 

either species of mosquito examined. If the mode of action of erythritol proposed by Choi et al. 

(2017) is indeed correct, erythritol likely exhibits broad toxicity across mosquito species, 

although this remains to be tested and cannot be concluded from the two species tested in these 

experiments. This potential broad toxicity also merits investigation into the effects erythritol may 

have on non-target insects, particularly pollinators. However, because erythritol has been deemed 

safe for human consumption and is already produced commercially, it is a great candidate for use 

in mosquito control. It would be particularly suited for use in attractive toxic sugar baits, which 

have already be shown to be effective in the field, and to generally have low non-target impacts 

(Fiorenzano et al. 2017). We conclude that erythritol has high toxicity when consumed by Ae. 

aegypti and Cx. quinquefasciatus mosquitoes, and that mosquitoes will voluntarily feed on 

erythritol even when other sugar sources are available. Further investigation of the efficacy of 

erythritol in the field when deployed in ATSBs should be conducted to determine if erythritol 

can be used in mosquito control.     
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Chapter 3. Thermal Tolerance in Culex quinquefasciatus and Aedes 

aegypti: Effects of Species, Sex and, Diet 

3.1. Introduction 

 The mosquito species Aedes aegypti (L. 1762) and Culex quinquefasciatus Say 1823 are 

responsible for the spread of a number of debilitating pathogens and parasites around the world. 

Aedes aegypti is considered the primary vector for dengue (Bhatt et al. 2013), yellow fever 

(Barrett and Higgs 2007), and Chikunguya viruses (Vega-Rua et al. 2014), while Cx. 

quinquefasciatus contributes to the spread of Wuchereria bancrofti, the causative agent of 

lymphatic filariasis (Centers for Disease Control 2013), and West Nile virus (Hayes et al. 2005) 

in the Americas. These two species have similar ranges worldwide, with Ae. aegypti typically 

found between 35˚N and 35˚S latitudes (Nelson 1986), and Cx. quinquefasciatus populations 

inhabiting regions from 36˚N down to 36˚S (Barr 1957, Farajollahi et al. 2011). The ranges of 

these two species are thought to be largely temperature-dependent; Ae. aegypti has been found to 

be limited to areas within a 15˚C average annual isotherm (Otero et al. 2006), while models for 

Cx. quinquefasciatus suggest populations can persist only in areas with average annual 

temperatures above 14.6˚C (Ahumada et al. 2004).  

 While Ae. aegypti and Cx. quinquefasciatus mosquitoes occupy a mostly overlapping 

climatic range, their life history strategies for dealing with thermal stress are markedly different. 

Aedes aegypti does not overwinter throughout most of its range and is active year-round; 

however, in more temperate areas on the edge of its range it may spend colder months in the egg 

stage (Vezzani et al. 2004, Fischer et al. 2011). In tropical areas, Cx. quinquefasciatus 

populations are also active year-round, but in colder regions only adult females survive the 

winter, seeking hibernacula, such as tree hollows or barns, in which to undergo quiescence, but 

not entering a state of complete reproductive diapause (Eldridge 1968, Nelms et al. 2013).  Due 



43 

 

to these differences in life history it is possible that Cx. quinquefasciatus females may require 

better cold tolerance strategies than Ae. aegypti adults or males of their own species. 

    Though different mosquito species potentially have inherent differences in cold 

tolerance, some can also alter their physiology through dietary means. Prior to entering diapause 

or quiescence, overwintering mosquitoes will often build up lipid reserves from blood meals 

(Ramsdale and Wilkes 1985) or, more commonly, from sugar meals (Schaefer and Miura 1972, 

Reisen et al. 1986b). In areas where temperatures go above freezing in the winter season, 

mosquitoes often remain vagile and continue to sugar feed and take blood meals sporadically 

(Mitchell 1979, Nelms et al. 2013). While both laboratory and field studies support an important 

role of diet in cold tolerance, direct measures of how specific diets affect tolerance are sparse in 

the literature, especially for non-diapausing species such as Cx. quinquefasciatus. 

 The diets of adult mosquitoes can be broadly classified into two categories: protein and 

sugar. Protein is acquired through blood feeding in most mosquitoes, with the exception of only 

a few species (Clements 1992). Sugars can be obtained from a wide variety of sources and 

include a variety of carbohydrates in different proportions. Nectar is the most common sugar 

source for most mosquito species (Clements 1955, 1992), and is primarily composed of sucrose, 

glucose, and fructose (Wykes 1952); in addition, mosquitoes can obtain sugars through rotting 

fruits (Joseph 1970, Clements 1992), which usually contain fructose as well as various sugar 

alcohols (Lee 2015). The sugar alcohols mannitol and sorbitol have been found to bolster 

thermal tolerance in a variety of insects (Hendrix and Salvucci 1998, Wolfe et al. 1998, Michaud 

and Denlinger 2007), and direct consumption of cryoprotectants has been shown to increase cold 

hardiness in some insects (Li et al. 2014). In Cx. quinquefasciatus and mosquitoes in general, the 

effects of different diets on thermal tolerance are largely unexplored.      
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 Our goal was to understand how diet influences thermal tolerance in mosquitoes, as well 

as how inherent thermal tolerance differs between sexes and species. Because Cx. 

quinquefasciatus has a more northerly range than Ae. aegypti and is more prevalent throughout 

its northern border (Barr 1957, Nelson 1986, Farajollahi et al. 2011), we hypothesized that Cx. 

quinquefasciatus would have greater cold tolerance than Ae. aegypti. Additionally, we predicted 

that Cx. quinquefasciatus females would be the most cold tolerant due to their capacity for 

overwintering, and that increased cold tolerance would result in a trade-off of decreased heat 

tolerance. Because only Cx. quinquefasciatus females overwinter as adults, we selected them as 

our model to examine how diet influences thermal tolerance. We hypothesized that diet would 

have a significant impact on thermal tolerance, with diets enhanced with the cryoprotectants 

mannitol and sorbitol resulting in increased tolerance. We measured a variety of parameters, 

including supercooling capacity, critical thermal limits, chill coma recovery times, and lethal 

temperatures to examine how thermal tolerance is influenced by species, sex, and dietary regime 

in Ae. aegypti and Cx. quinquefasciatus. The information gained from this study could allow for 

a better understanding of differences in thermal tolerance between species with different life 

histories, as well as how diet can impact thermal tolerance in mosquitoes.  

3.2. Materials and Methods 

3.2.1. Mosquitoes 

 

 Mosquito colonies were obtained from East Baton Rouge Mosquito and Rodent Control. 

This included the Sebring strain of Cx. quinquefasciatus, which was originally collected in 

Sebring, Florida and colonized by staff at the USDA Agricultural Research Station in 

Gainseville, FL, as well as the Rockefeller strain of Ae. aegypti, originally collected in the 

Caribbean and colonized at the Rockefeller Institute in 1930 (Kuno 2010). The Sebring strain has 
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been maintained in colony at the medical entomology lab at Louisiana State University since 

2017, and the Rockefeller strain has been maintained since 2018.  

 Prior to experiments, mosquitoes of both species were maintained at 27˚C on a 14:10  

L:D cycle. Adults were housed in 31cm3 collapsible cages and provided 10% sucrose solution ad 

libitum from cotton dental wicks. Cages were draped with damp cloth covered with plastic bags 

to maintain humidity. Mosquitoes were provided blood once a week using an artificial feeding 

system (Hemotek® Ltd, England) using Parafilm® (Bemis Company, Oshkosh, WI) as a 

membrane. Culex quinquefasciatus were provided defibrinated chicken blood and Ae. aegypti 

were provided defibrinated sheep blood (Rockland™ Immunochemicals, Limerick, PA). Cx. 

quinquefasciatus were given small plastic cups containing aged DI H2O for oviposition; Ae. 

aegypti received the same cups lined with seed germination paper. Egg rafts or dried (> 1 week) 

egg papers were hatched in 64 oz plastic hinged deli containers in 600 mL of aged DI H2O with 

2.5 mL of bovine liver powder solution (60 g/L). Larval densities were maintained at 100 to 150 

larvae per container with more containers made as needed; each container was provided 1.5 mL 

of bovine liver powder solution every other day. Pupae were removed individually with plastic 

pipettes into small plastic containers with aged DI H2O and placed into cages for emergence. 

Newly emerged adults were taken from the colonies and used for experiments as needed.   

3.2.2. Thermal Tolerance Metrics 

To assess thermal tolerance, we used four experimental metrics: supercooling point 

(SCP), chill coma recovery time (CCRT), critical thermal limits, and lethal temperatures (LTs). 

SCP was defined as the point of intracellular freezing, determined as the body temperature of the 

insect directly prior to initiation of an exotherm (Sinclair et al. 2015). CCRT was defined as the 

length of time required to recover (stand on all six legs (Andersen et al. 2010)) from a six-hour 
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exposure to 0°C. The critical thermal minimum (CTMin) was defined as the point at which 

mosquitoes entered a reversible state of paralysis (chill coma) (Hazell and Bale 2011); the 

critical thermal maximum was defined as “the thermal point at which locomotory activity 

becomes disorganized and the animal loses its ability to escape from conditions that will 

promptly lead to its death” (Cowles and Bogert 1944). LTs were determined as the point of 

mortality for a four-hour temperature exposure.  

3.2.3. Experimental Rearing and Acclimation Regimes 

 

To determine the effects of species and sex on thermal tolerance, we measured 

supercooling points, chill coma recovery times, and lethal temperatures for males and females of 

Ae. aegypti and Cx. quinquefasciatus. For each experiment, we placed a small plastic cup with 

DI H2O containing 50 to 100 pupae of one species in a disposable 5 L cardboard cage. Cages 

were housed in the insectary at 27°C on a 14:10 L:D cycle, and after mosquitoes had emerged 

and were 1-2 days old they were provided a 10% sucrose solution containing 1% green food dye 

ad libitum for 72 hours. For use in cold tolerance experiments (supercooling, CTMin, chill coma 

recovery, and lower LT50), we acclimated mosquitoes for an additional 72 hours at 18˚C on a 

14:10 L:D cycle using an insect growth chamber (Caron® Model 6025-1, Marietta, OH). This 

temperature was chosen for acclimation because it mimics conditions at which quiescence and 

diapause may be triggered, but at which regular feeding still occurs (Eldridge 1968). Mosquitoes 

used in heat tolerance experiments (CTMax, upper LT50) continued to be maintained at 27˚C in 

the insectary on a 14:10 L:D cycle, also for 72 hours. All mosquitoes were provided free access 

to sucrose solution during the acclimation period, with the exception of mosquitoes used in SCP 

experiments. Mosquitoes used in SCP experiments were starved for the last 24 hours of 

acclimation, as the presence of ice nucleators in the gut can affect SCP (Sinclair et al. 2015). For 
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all other experiments, recently fed mosquitoes (determined visually by green coloration of the 

abdomen) were used.     

To determine the effects of diet on thermal tolerance, we examined SCPs, critical thermal 

limits, and CCRTs for female Cx. quinquefasciatus mosquitoes reared on five diet treatments: 

10% fructose, 10% sucrose, 5% mannitol in 10% sucrose, 5% sorbitol in 10% sucrose, and 10% 

sucrose supplemented with one blood meal. For each diet treatment, we aspirated 10 to 20 

mosquitoes into a 235 mL plastic cup covered with mesh netting. Each cup received 30 mL of 

the diet treatment with 1% green food dye in a cup with a cotton dental wick. Mosquitoes were 

acclimated according to the same procedures as described above, except all mosquitoes were 

removed from acclimation 48 hours before experiments for a period of two hours, at which time 

the mosquitoes receiving a blood meal as part of their diet treatment were offered defibrinated 

chicken blood using an artificial feeding system (Hemotek® Ltd, England). Any mosquitoes that 

did not blood feed at this time were removed and discarded. We used recently fed mosquitoes for 

all experiments with the exception of SCPs, as described above.  

3.2.4. Supercooling Points 

 

To measure supercooling points (SCPs), mosquitoes were attached to type T 

thermocouples (TC6-T, HOBO®, Onset Computer Corporation, Bourne, MA) at the thorax 

using a small amount of high vacuum grease (DOW CORNING, Dow Corning Corporation, 

Midland, MI). Thermocouple wiring was threaded through the lid of a 2 mL cryogenic vial 

(Corning®, Corning Incorporated, Corning NY), and the thermocouple and attached mosquito 

were placed inside the vial. Four vials were placed into a freezing container (Corning® 

CoolCell® LX Freezing Container, Corning Incorporated, Corning NY), which was placed into a 

-30˚C freezer, cooling the insects at a rate of -1.0˚C per minute. Temperatures of individual 
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mosquitoes were recorded once every second using 4-channel thermocouple HOBO® data 

loggers (UX120-014M, HOBO®, Onset Computer Corporation, Bourne, MA). The SCP was 

determined as the lowest temperature reached before the initiation of the heat of exotherm 

(Sinclair et al. 2015). Replicates of 3 to 4 individuals per treatment were assessed for SCP 

simultaneously. SCPs were determined for 20 to 30 individuals per treatment, with each 

individual acting as a replicate.  

3.2.5. Critical Thermal Limits  

 

         Measurements of upper (CTMax) and lower (CTMin) critical thermal limits were 

conducted using a Peltier thermoelectric plate (Model no: CP-200HTTT, TE Technology INC); 

temperature and ramping rate of the plate was controlled using a thermoelectric temperature 

cooler (Model no: TC-720, TE Technology INC, MI).  We placed 2 to 3 mosquitoes per 

treatment onto the plate and covered them individually with 16 mm ethylene caps (TainerTop™, 

Fisher Scientific, Waltham, MA) with a thin mesh covering for observation. For both upper and 

lower limits mosquitoes were held at 20 ºC for two minutes at the start of the trial. The 

temperature was then lowered to 10ºC for CTMin and increased to 30ºC for CTMax at a rate of 

0.65ºC per minute and then held for two minutes. At this point the temperature was decreased or 

increased at a rate of 0.25ºC per minute (Lyons et al. 2012). The temperature of the plate was 

monitored using a thermocouple to determine the exact temperature of the plate at the time of 

entry into CTMin or CTMax. Mosquitoes were determined to have reached their CTMin when 

they lost the ability to cling to the sides of their covering and movement of legs and wings had 

ceased. The CTMax was established as the point at which mosquitoes ceased movement after a 

period of rapid flight (Lyons et al. 2012). Mosquitoes that reached their CTMin or CTMax were 

removed and allowed to recover at room temperature; any mosquitoes that did not recover were 



49 

 

excluded from analysis. The CTMin and CTMax were determined for 20 to 30 individuals each 

per treatment, with each individual acting as a replicate.   

3.2.6. Chill Coma Recovery Time 

 

 To evaluate CCRT, mosquitoes were induced into chill coma by exposure to 0˚C for a 

period of six hours. Three to five mosquitoes per treatment were aspirated into 120 mL plastic 

cups covered with fine mesh and then placed into an incubator. After six hours, mosquitoes were 

removed to room temperature (21˚C); individuals were placed into plastic petri dishes with their 

dorsal side down and monitored every 30 seconds for recovery. An individual was determined as 

recovered when it was able to stand upright on all six legs without overturning (Andersen et al. 

2015). A total of 20 to 30 mosquitoes per treatment were scored for recovery time, with each 

individual counting as a replicate. 

3.2.7. Lethal Temperatures 

 

Mosquitoes were exposed to a range of temperatures between -8˚C and 4˚C for lower or 

34°C and 42°C for upper lethal temperatures at two-degree intervals in four-hour increments. 

These temperatures encompassed 0% to 100% mortality and allowed us to determine lower and 

upper LT50 and LT90 values. Groups of fifteen to twenty mosquitoes were transferred into 4 oz 

plastic cups covered with fine mesh using a mouth-operated aspirator and placed in an incubator 

set to the desired temperature. Temperatures inside the incubators were monitored using 

HOBO® data loggers. After a four-hour exposure period, mosquitoes were removed from the 

incubator, provided 10% sucrose solution from cotton dental wicks and allowed to recover for 24 

hours in an incubator held at 20˚C (±0.2˚) for lower LT, or in the insectary at 27˚C (±0.2˚) for 

upper LT. After the recovery period, mosquitoes were scored for mortality by tapping the bottom 
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of the plastic cup; mosquitoes that did not display coordinated movement (either climbing or 

flying) were scored as dead. Three to six replicates per temperature were used per treatment.  

3.2.8. Wing Lengths 

 

 We compared wing length measurements to SCP, CTMin, CTMax, and CCRT values to 

determine the impact of body size on thermal tolerance parameters, as body size can have effects 

on some of these metrics (Sinclair et al. 2015). Numerous studies have found a correlation 

between wing length and body size in mosquitoes (Briegel 1990, Lounibos et al. 1995, Koella 

and Lyimo 1996), and wing length is a commonly used metric for estimation of body size in the 

literature (Nasci 1986, Armbruster and Hutchinson 2002, McCann et al. 2009, Helinski and 

Harrington 2011). We stored whole mosquitoes in a freezer at -18°C after experimentation until 

wings were measured. We removed the right wing from each mosquito and placed it on a 

microscope slide with 70% ethanol covered with a glass cover slip. We examined wings using a 

Leica L2 microscope with EC3 camera attachment; we photographed each wing and determined 

wing length using the LAS EZ 3.4 software package (Leica Microsystems, Wetzlar, Germany). 

Wing length was defined as the distance between the base of the costal vein and the distal 

extreme of the R3 vein (Loetti et al. 2011).   

We compared wing lengths between treatment groups using one-way ANOVA with post 

hoc Tukey test (α=0.05), and performed a linear regression analysis for each thermal tolerance 

parameter using wing length as the explanatory variable (JMP®, Version 14).  We assessed the 

model assumption of normality of residuals with Shapiro Wilk tests (Pr W>0.05) and the 

assumptions of homogeneity of variance and linearity by visual inspection of the residual plot. 

For all experiments, there were either no significant differences in wing lengths between 

treatments, or wing length was not a significant predictor of thermal tolerance. Therefore, we did 
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not include wing length as a variable in further analysis of differences in thermal tolerance 

parameters between treatments. Complete results from this study are included in the appendix.   

3.2.9. Statistical Analysis 

 

The residuals for SCP, critical thermal limit, and CCRT datasets were tested for 

normality using a Shapiro-Wilk test, and differences between treatments were analyzed using a 

Kruskal-Wallis test. Pairwise comparisons were performed using Wilcoxon rank tests, with a p-

value of 0.05 corrected for multiple comparisons (p=0.05/K, K=number of comparisons). For 

lethal temperature experiments, the data were analyzed using generalized linear models with 

probit link and LT50 and LT90 values were predicted from the model. Non-overlapping 

confidence intervals of LT50 and LT90 values indicated significant differences between treatments 

(Payton et al. 2003). All analyses were performed in JMP®, Version 14.  

3.3. Results 

3.3.1. Effects of Species and Sex 

 

Supercooling points varied significantly between treatments (χ2= 49.98, p<0.01). Post 

hoc tests showed significant differences between species, but not between sexes within the same 

species (Figure 3.1). Ae. aegypti males had the highest average SCP (-10.7 ± 0.27°C, mean ± 

SE), followed by Ae. aegypti females (-11.8 ± 0.86°C). SCPs of Cx. quinquefasctiatus males  

(-18.5 ± 0.92°C) and females (-20.6 ± 0.61°C) were significantly lower than those of Ae. aegypti, 

but not significantly different from each other. Unfortunately, wing length data were not 

available for this experiment, so we were unable to exclude this as a contributing factor for these 

results. Chill coma recovery times also varied significantly between treatments (χ2= 53.92, p 

<0.01) (Figure 3.2). Aedes aegypti adults took on average more than three times as long as Cx.  
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Figure 3.1. Supercooling points (SCP) (C°) for Ae. aegypti and Cx. quinquefasciatus females and 

males. Bars with different letters are statistically significantly different (χ2= 49.98, p<0.01).   

quinquefasciatus adults to recover. There were no significant differences between Ae. aegypti 

males (44.4 ± 2.28 min, mean ± SE) and females (42.1 ± 2.42 min), or Cx. quinquefasciatus 

males (13.67 ± 2.28 min) and females (14.2 ± 2.19 min), respectively.  

Lower LT50 (LLT50) values differed significantly between treatments; LLT90 values 

differed between species but not sexes within each species (Table 3.1). In Cx. quinquefasciatus, 

males had slightly lower average LLT50 and LLT90 values than females, but there were no 

significant differences between the sexes. This trend was reversed in Ae. aegypti, in which 

females had a significantly lower average LLT50 compared to males. LLT90 values were not 

significantly different between sexes in Ae. aegypti. Upper LT50 (ULT50) values differed 

significantly between all treatments (Table 3.2). Ae. aegypti females had the highest ULT50; 

based on the parameter of LT50 values, females were both more heat- and cold-tolerant males. 

This is not true of Cx. quinquefasciatus; in this species, females had a significantly higher ULT50 
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than males, the reverse of the trend observed in the LLT50. There were significant differences in 

ULT90 values between sexes in Ae. aegypti but not in Cx. quinquefasciatus. Overall, Ae. aegypti 

had significantly higher ULT50 and ULT90 values than Cx. quinquefasciatus.    

 

Table 3.1. Lower LT50 and LT90 values for Ae. aegypti and Cx. quinquefasciatus females and 

males. LT50 and LT90 values represent the temperature (C°) required to kill 50 and 90% of the 

population during an exposure of 4 hrs. Differences in treatments are indicated by non-

overlapping 95% confidence intervals (CI), marked by different letters. The chi-square value for 

the likelihood-ratio is the test statistic for the goodness-of -fit of the model compared to a null 

model (p-values for all models are <0.01).       

Species Sex n Slope ± SE LT50 (95% CI) C° LT90 (95% CI) ) C° L-R χ2 

Cx. quinq. M 496 -0.55 ± 0.04 -3.59 (-3.91, -3.29) A -5.91 (-6.50, -5.45) A 304.31 

Cx. quinq. F 499 -0.47 ± 0.04 -3.00 (-3.34, -2.69) A -5.71 (-6.37, -5.20) A 302.34 

Ae. aegypti F 303 -1.7 ± 0.22 -1.61 (-1.84, -1.36) B -2.90 (-3.37, -2.59) B 194.89 

Ae. aegypti M 359 -0.87 ± 0.08 -1.06 (-1.30, -0.83) C -2.53 (-2.96, -2.21) B 249.52 

 

Figure 3.2. Chill coma recovery times (CCRT) (min) for Ae. aegypti and Cx. quinquefasciatus 

females and males. Bars with different letters are statistically significantly different (χ2= 53.92,    

P <0.01).  
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Table 3.2. Upper LT50 and LT90 values for Ae. aegypti and Cx. quinquefasciatus females and 

males. LT50 and LT90 values represent the temperature (C°) required to kill 50 and 90% of the 

population during an exposure of 4 hrs. Differences in treatments are indicated by non-

overlapping 95% confidence intervals (CI), marked by different letters. The chi-square value for 

the likelihood-ratio is the test statistic for goodness-of -fit of the model compared to a null model 

(p-values for all models are <0.01).       

Species Sex n Slope ± SE LT50 (95% CI) C° LT90 (95% CI) C° L-R χ2 

Ae. aegypti F 324 0.95 ± 0.10 38.51 (38.25, 38.78) A 39.87 (39.55, 40.30) A 317.62 

Ae. aegypti M 303 0.81 ± 0.08 37.13 (36.88, 37.39) B 38.72 (38.72, 39.22) B 222.07 

Cx. quinq. F 400 1.53 ± 0.15 35.21 (35.01, 35.40) C 36.05 (35.84, 36.31) C 462.74 

Cx. quinq. M 379 0.52 ± 0.05 33.92 (33.62, 34.23) D 36.38 (35.92, 37.02) C 196.64 

3.3.2. Effects of Diet 

 

 Supercooling points did not vary between the five diet treatments (χ2= 6.92, P=0.14) 

(Figure 3.3). Sucrose-fed mosquitoes had the lowest average SCP of all treatments (-19.2 ± 

0.85°, mean ± SE), followed by sorbitol (-18.1 ± 0.96°), fructose (-17.7 ± 0.95°), blood (-16.7 ± 

0.96°), and mannitol (-16.1 ± 1.07°).  

 Critical thermal minima and chill coma recovery times also did not differ significantly 

between diet treatments (χ2= 2.12, p=0.72; χ2= 3.87, p=0.43) (Figure 3.4). For all treatments, the 

average CTMin was between 0 and 1°C. Mean chill coma recovery times ranged from 13.24 

minutes (± 2.89 minutes) for mannitol-fed mosquitoes to 16.23 minutes (± 2.22 minutes) for 

fructose-fed mosquitoes.  

Unlike cold tolerance parameters, we did observe significant differences between critical 

thermal maxima (CTMax) between diet treatments (χ2=28.09, p<0.01) (Figure 3.6). The average 

CTMax values for all treatments were between 38° and 42°C. Fructose-fed mosquitoes 

had the highest CTMax (41.60 ± 0.33°, mean ± SE), followed by sorbitol (40.80 ± 0.40°C), 
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Figure 3.3. Supercooling points (SCP) (C°) for Cx. quinquefasciatus females reared on five diets: 

10% sucrose supplemented with one blood feeding, 10% fructose, 5% mannitol in 10% sucrose 

solution, 5% sorbitol in 10% sucrose solution, and 10% sucrose.  

 

 

 

 

 

 

 

 

Figure 3.4. Critical thermal minima (CTMin) (C°) for Cx. quinquefasciatus females reared 

on five diets: 10% sucrose supplemented with one blood feeding, 10% fructose, 5% 

mannitol in 10% sucrose solution, 5% sorbitol in 10% sucrose solution, and 10% sucrose. 
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Figure 3.5. Chill coma recovery times (CCRT) (min) for Cx. quinquefasciatus females reared on 

five diets: 10% sucrose supplemented with one blood feeding, 10% fructose, 5% mannitol in 

10% sucrose solution, 5% sorbitol in 10% sucrose solution, and 10% sucrose. 

 

Figure 3.6. Critical thermal maxima (CTMax) (C°) for Cx. quinquefasciatus females reared on 

five diets: 10% sucrose supplemented with one blood feeding, 10% fructose, 5% mannitol in 

10% sucrose solution, 5% sorbitol in 10% sucrose solution, and 10% sucrose. Bars with different 

letters are statistically significantly different (p<0.01).  
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sucrose (40.59 ± 0.35°C), and blood (40.17 ± 0.36°C); however there were no significant 

differences between these treatments. Mannitol-fed mosquitoes did have a significantly lower 

CTMax than all other diet groups (38.5 ± 0.36°C).   

3.4. Discussion 

We determined that Cx. quinquefasciatus was significantly more cold tolerant than Ae. 

aegypti based on the parameters tested, and that this was accompanied by a lesser tolerance for 

heat, as measured by upper lethal temperatures. However, overall we did not see a strong effect 

of sex on thermal tolerance within either species, contrary to our hypothesis that Cx. 

quinquefasciatus females would be more cold tolerant than males. In Cx. quinquefasciatus 

females, we did not see any significant differences in thermal tolerance based on diet treatment, 

with the exception of the CTMax, which was significantly lowered when mosquitoes were fed 

mannitol.  

 We predicted that Cx. quinquefasciatus females would be the most cold tolerant of all 

sex-species combinations tested in the study. This hypothesis was based on distribution data that 

show that Cx. quinquefasciatus populations are present in colder geographic areas than Ae. 

aegypti (Nelson 1986, Farajollahi et al. 2011, Hahn et al. 2017), as well as the life history trait 

that Cx. quinquefasciatus females overwinter as adults in a quiescent state, unlike males or both 

sexes of Ae. aegypti, which cannot survive winter conditions in temperate areas (Christophers 

1960, Almiron and Brewer 1996, Fischer et al. 2011). However, it was unclear if this 

hypothesized cold tolerance would be exhibited by lab-colonized mosquitoes, or if it is largely a 

product of environmental adaptation.  

 Conducting thermal tolerance studies under laboratory conditions allowed us to control 

for adaptation by standardizing rearing regimes and acclimation conditions for all groups. Based 
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on our results, adaptation alone cannot explain differences in thermal tolerance between species. 

We observed that Cx. quinquefasciatus adults were, on average, twice as efficient at 

supercooling, three times as efficient at chill coma recovery, and had LLT50 values several 

degrees cooler than Ae. aegypti. However, Ae. aegypti males, and especially females, could 

survive significantly higher temperatures than Cx. quinquefasciatus. Although we did not 

directly examine the mechanisms behind these results, we propose several ways in which 

physiological processes may influence thermal tolerance in these mosquito species. 

 The mechanisms by which mosquitoes undergo cold hardening are largely unexplored, 

and most research on cold tolerance focuses on the physiological changes invoked upon 

exposure to diapause-inducing conditions. Most of this literature examines the same species, 

Culex pipiens pipiens, the northern house mosquito, which is often considered a model for 

mosquito diapause. Culex quinquefasciatus is very closely related to Culex p. pipiens; they are 

virtually morphologically indistinguishable and capable of interbreeding, and differ mainly in 

geographic range and overwintering strategies (Jupp 1978, Almiron et al. 1995, Urbanelli et al. 

1997). While we cannot assume that the findings of research on Cx. p. pipiens can be applied to 

the species examined in our experiments, we can hypothesize some broader implications for the 

mechanisms by which mosquitoes in general may tolerate temperature stress.     

 Although some mechanisms for cold tolerance in Cx. p. pipiens occur only under 

diapause conditions, some result simply from exposure to lower temperatures. Kim et al. (2006) 

found that two actin genes are expressed in response to low temperatures regardless of diapause 

condition; these genes redistribute actin from clusters in the midgut to more evenly cover the 

cytoskeleton, hypothesized to fortify the insect body against cold conditions. However, gene 

expression was only triggered by below-freezing conditions that would likely be lethal to Cx. 



59 

 

quinquefasciatus or Ae. aegypti. Rinehart et al. (2006) found that rearing temperatures of 18°C 

significantly increased survival at low temperatures as compared to 25°C. They also observed 

upregulation of the heat shock protein hsp70 in response to short-term cold shock but not to 

diapause conditions, a finding with implications for adaptation to cold stress in non-diapause 

states.  

 Heat shock proteins (HSP) are an important mechanism for stress mitigation in many 

organisms (Parsell and Lindquist 1993, Feder and Hofmann 1999), and are a major component in 

cold tolerance and overwintering across a diversity of insect orders and life stages (Rinehart et al. 

2007).  The (2006) Rinehart et al. study supports a crucial role for HSPs in cold tolerance of non-

diapausing Cx. p. pipiens adults. As the name implies, HSPs are also an important physiological 

means by which organisms mitigate heat stress (Kregel 2002). Aedes aegypti upregulates a 

number of HSPs in response to acute heat stress, with the most highly upregulated being hsp26 

and hsp83 (Zhao et al. 2009, Zhao et al. 2010). Interestingly, Benoit et al. (2011) found that Ae. 

aegypti, as well as Cx. p. pipiens, Anopheles gambiae, and the bed bug, Cimex lectularius, 

upregulate expression of hsp70, the same protein expressed in Cx. p. pipiens cold stress, upon 

ingestion of a blood meal, most likely to protect the midgut from heat stress. To date, there are 

no studies specifically examining HSP expression in Cx. quinquefasciatus, and none which 

examine the effects of cold stress on expression in Ae. aegypti. Investigation into whether 

differences in expression exist between the two species could potentially help explain the 

differing tolerances we observed in this study, and perhaps explain why we found differences 

only between species and not sexes.  

 We hypothesized that in addition to species- and sex-dependent differences in thermal 

tolerance, we would observe differences in thermal tolerance within the same sex and species 
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when groups were given different diet treatments. Of the five diet treatments tested, we did not 

see any significant effects of diet on cold tolerance, and only saw a significant difference in heat 

tolerance in mannitol-fed mosquitoes. There are several hypotheses to explain why we did not 

see effects of our diet treatments. 

 The accumulation of sugars and polyols is a common mechanism for promotion of cold 

tolerance in many organisms. These substances can directly prevent freezing by depressing the 

freezing point of bodily fluids; they can also serve to stabilize proteins and protect cell 

membranes, a likely more relevant function in mosquitoes, which are mostly not freeze-tolerant 

(Lee 2010). Consumption of sugars prior to overwintering is thought to be a critical component 

for survival for both diapausing and quiescent mosquitoes (Schaefer et al. 1971, Reisen et al. 

1986a, Bowen 1992). However, whereas this behavior is known to be essential for accumulation 

of lipid energy stores (Clements 1992, Robich and Denlinger 2005), the extent to which sugars 

function in a true cryoprotective role is largely unexplored.  

 Whether or not mosquitoes utilize polyols for thermoprotection is also unknown. While it 

is reasonable to speculate that they do, given the widespread utilization of polyols throughout 

insects, there is no direct evidence to support this. Benoit and Denlinger (2007) found that in Cx. 

p. pipiens, neither the induction of diapause nor exposure to low temperatures (18°C) resulted in 

increases in sorbitol, glycerol, or trehalose. The authors of this study only compared the polyol 

content of mosquitoes reared at two temperatures: 25° and 18°C, so it is possible that more 

extreme conditions could have different results. Additionally, we cannot directly apply their 

findings to our study as they did not examine the same species as we did. However, with the 

current lack of evidence we have no basis to determine how important polyols are for 
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cryoprotection in mosquitoes, if at all, and the indirect results of our study do not give conclusive 

evidence one way or another.  

 It is possible that polyols are not a vital mechanism for cryoprotection in Cx. 

quinquefasciatus; however, it is also possible that the differences in the diets we tested were not 

distinct enough to impact thermal tolerance. Below is the expected breakdown of sugars in 

mosquitoes (Van Handel 1969, Clements 1992): 

sucrose → fructose + glucose 

glucose → trehalose + glycogen 

fructose → trehalose + glycogen + sorbitol (reversible) 

 

Essentially, since all groups were provided either sucrose or fructose, all mosquitoes would be 

expected to have some level of trehalose, glycogen, and sorbitol, although the amounts of these 

compounds would likely vary with diet. Additionally, we used a feeding period of six days; this 

length of time was chosen to be more field-realistic, as mosquitoes in the wild would likely 

spend considerable time sugar feeding before the on-set of winter. However, it also gave us less 

control over how much mosquitoes consumed, which additionally could impact the amounts of 

these compounds each mosquito stored. It is possible that all mosquitoes were able to obtain 

enough cryoprotectants to enhance cold tolerance capability to the same degree, and that 

additional stores did not confer additional protection. Colinet et al. (2013) found that fruit flies 

fed diets of sucrose, fructose, glucose, and trehalose in varying concentrations were able to 

effectively incorporate all sugars consumed into storage, but that cold tolerance was actually 

negatively impacted by diets with higher concentrations of sugars. This suggests that even 

though sugars and polyols are essential for cryoprotection in many insects, more does not 

necessarily equate to better. Our study did not directly measure sugar or polyol consumption and 

storage, so our results do not support or refute this hypothesis. However, our results do support 
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the idea that Cx. quinquefasciatus mosquitoes can tolerate cold conditions equally effectively 

with the consumption of either sucrose or fructose, and that tolerance is not affected negatively 

or positively by the consumption of a blood meal. Additionally, our results show that at the low 

concentration of five percent, direct consumption of polyols does not improve cold tolerance as 

compared to consumption of sugars alone. 

 While we did not see an effect of sugar alcohols on cold tolerance, we did observe 

decreased heat tolerance in mosquitoes that had fed on mannitol-enriched sucrose solution. We 

hypothesized that consumption of mannitol would have the opposite effect, based on its positive 

influence on heat tolerance in other insects, namely aphids (Hendrix and Salvucci 1998). 

However, in aphids mannitol is produced from fructose in response to heat stress and is not 

directly consumed. Mannitol metabolism is largely uncharacterized in animals, so the fate of 

mannitol consumed by insects is not known. Research has been conducted with human subjects: 

the majority of mannitol consumed is not metabolized, but when it is metabolized it is converted 

to glucose (Saunders and Wiggins 1981). 

 Although we may not understand how insects metabolize mannitol, research supports that 

mosquitoes are capable of effectively doing so. Nayar and Sauerman (1971) found that Aedes 

taeniorhynchus mosquitoes were able to survive as long on a ten percent mannitol solution as 

they did on the same concentration of sucrose. However, in Ae. aegypti, they found that survival 

on mannitol was significantly less than that on sucrose, fructose, or sorbitol. Unfortunately, there 

are no data available for Cx. quinquefasciatus, so their capacity for mannitol metabolism is 

unknown. However, we can speculate from Nayar and Sauerman’s (1971) work that there are 

likely differences between species in their ability to metabolize different sugars and sugar 

alcohols, and that the effects of sugar alcohols may be variable. It is possible that in Cx. 



63 

 

quinquefasciatus, mannitol is not as effectively metabolized as other sugars and consumption 

may have negative effects. In Droposhila suzukii, it is believed that the sugar alcohol erythritol 

cannot be metabolized, and that this results in accumulation of erythritol in the hemolymph after 

it is not absorbed in the midgut (Tang et al. 2017). The accumulation of sugar alcohols elevates 

osmotic pressure within the hemolymph, eventually resulting in death of the organism in the case 

of the fly. In Cx. quinquefasciatus, the impartial absorption of mannitol could lead to osmotic 

stress, reducing the ability of the mosquito to combat other stresses such as extreme heat. 

However, mannitol-fed mosquitoes were as effective at tolerating cold stress as all other 

treatment groups, which does not support this hypothesis. 

 The results of our study suggest that overall, mosquitoes that have adequate access to 

sugar sources have an equal capacity for cold tolerance, regardless of the type of sugar or the 

addition of blood meal or sugar alcohols. However, different species of mosquitoes have inherent 

differences in their ability to tolerate cold stress, even when provided equal access to sugar 

sources and acclimated under the same conditions. This suggests that although environmental 

adaptation likely does play a role in thermal tolerance, there are underlying physiological or 

genetic differences that limit the abilities of certain species to adapt to thermal stress. 

Investigation into the mechanisms behind these differences would greatly contribute to our 

understanding of how non-diapausing mosquitoes overwinter and tolerate thermal stress.  
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Chapter 4. Conclusion 
 

 Mosquitoes are some of the most important medical, veterinary, and economic pests 

globally; Aedes aegypti (L. 1762) and Culex quinquefasciatus Say 1823 are prevalent throughout 

much of the world and greatly contribute to the spread of debilitating viruses and pathogens. It is 

imperative to fully understand the life history and biology of these species in order to control 

them, and to consequently develop new and innovative methods for control.  

 This study sought to evaluate how sugar alcohols may be used as a method for mosquito 

control, and additionally how they and other factors may influence thermal tolerance in 

mosquitoes. We found that consumption of the sugar alcohols erythritol, sorbitol, and xylitol had 

negative effects on survival in adult female Ae. aegypti and Cx. quinquefasciatus, and that 

erythritol at concentrations of twenty percent or greater can result in complete mortality in both 

species. We additionally examined the preference of both species for sucrose with or without 

erythritol, and found that mosquitoes exhibited no preference between the two. We conclude that 

sugar alcohols, especially erythritol, have excellent potential for use in mosquito control 

techniques such as attractive toxic sugar baits, and that field trials should be performed to 

determine efficacy in wild populations. 

 The third chapter of this study examined how consumption of sugar alcohols, sugars, and 

blood affect thermal tolerance in Cx. quinquefasciatus females, as well as how the non-dietary 

factors species and sex may determine limitations to tolerance. We found that diet did not impact 

cold tolerance, while consumption of mannitol significantly lowered heat tolerance. We 

hypothesize that other factors such as heat shock protein regulation may be more important than 

sugar- or sugar alcohol-derived cryoprotectants in mosquitoes, or that our diet treatments all 

provided adequate cryoprotectant sources. However, we did find that species played a major role 
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in determining thermal tolerance, and that Cx. quinquefasciatus is more cold tolerant, while Ae. 

aegypti is more heat tolerant. Sexes within the same species had similar tolerance levels. We 

conclude that the type of diet consumed by Cx. quinquefasciatus likely does not greatly impact 

thermal tolerance, and that different mosquito species may have underlying genetic or 

physiological factors that are more important in determining thermal tolerance.       
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Appendix. Wing Lengths  

Supercooling Points  
 

Diet Treatments 

 Wing length was not a good predictor of supercooling point for Cx. quinquefasciatus 

females based on r2 and p-values for a simple linear regression analysis (Figure A.1). 

Additionally, we did not observe any significant differences in average wing lengths between 

treatment groups in this experiment (F4, 104= 1.09, p= 0.36).  

 
Figure A.1. Simple linear regression model with Cx. quinquefasciatus female wing length as the 

explanatory variable for supercooling point. R2 values indicate the amount of variation in SCPs 

explained by wing length, and F- and P-values give the fit of the model as compared to a null 

model.      

Critical Thermal Limits 
 

CTMin (Diet Treatments) 

 The simple linear regression model with Cx. quinquefasciatus female wing length as an 

explanatory variable for CTMin was significant as compared to a null model; however, wing 

length did not explain a large amount of the variation in CTMin values we observed based on the 
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r2 value (Figure A.2). Additionally, we did not observe any significant differences in average 

wing lengths between treatment groups in this experiment (F4, 97= 0.63, p= 0.64).  

  

 

 Figure A.2. Simple linear regression model with Cx. quinquefasciatus female wing length as the 

explanatory variable for CTMin. R2 values indicate the amount of variation in CTMin values 

explained by wing length, and F- and P-values give the fit of the model as compared to a null 

model.      

 

CTMax (Diet Treatments) 

 Wing length was not a good predictor for CTMax for Cx. quinquefasciatus females based 

on r2 and p-values for a simple linear regression analysis (Figure A.3). We did not see any 

significant differences in average wing lengths between treatment groups in this experiment (F4, 

80= 0.33, p= 0.86).  
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Figure A.3. Simple linear regression model with Cx. quinquefasciatus female wing length as the 

explanatory variable for CTMax. R2 values indicate the amount of variation in CTMax values 

explained by wing length, and F- and P-values give the fit of the model as compared to a null 

model.      

 

Chill Coma Recovery Time 

Sex-Species Comparisons 

We did observe significant differences in average wing lengths between treatment groups 

in this experiment (F3, 63= 142.7, p< .001) (Table A.1). However, wing length was not a good 

predictor for CCRT for Ae. aegypti and Cx.quinquefasciatus males and females based on r2 and 

p-values for a simple linear regression analysis (Figure A.4). 
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Table A.1. Mean wing length values for Ae. aegypti and Cx. quinquefasciatus males and females. 

Means with different letters are statistically significantly different.  

Species Sex N Wing Length (mean ± SE) (mm) 

Ae. aegypti F 16       2.99 ± 0.03 A 

Cx. quinq. F 15       2.76 ± 0.03 B 

Cx. quinq. M 20       2.29 ± 0.03 C 

Ae. aegypti M 20       2.26 ± 0.03 C 

 

 
Figure A.4. Simple linear regression model with wing length as the explanatory variable for 

CCRT of Ae. aegypti and Cx. quinquefasciatus males and females. R2 values indicate the amount 

of variation in CCRTs explained by wing length, and F- and P-values give the fit of the model as 

compared to a null model.      
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