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ABSTRACT 

Evolution of resistance in target pest populations is a major threat to the sustainability of 

transgenic crops expressing Bacillus thuringiensis (Bt) proteins. Fall armyworm, Spodoptera 

frugiperda (J.E. Smith), is a cross-crop target pest of Bt corn, Bt cotton, and Bt soybean. This 

pest, thus far, is the only target pest species that has developed field resistance to Bt crops in 

multiple areas across countries. Cry2Ab2 is a common Bt protein expressed in transgenic corn 

and cotton targeting lepidopteran pests including S. frugiperda. The objective of this study was 

to characterize fitness costs and inheritance of Cry2Ab2 resistance in S. frugiperda. In the fitness 

cost test, performance of the Cry2Ab2-resistant, -susceptible, and two reciprocal F1 colonies of 

S. frugiperda was assayed on non-toxic diet and non-Bt corn leaf tissue. Biological parameters 

measured were 7-day larval weight, neonate-to-pupa development time, neonate-to-pupa 

survivorship, pupal weight, sex ratio, and egg production. In the inheritance study, larval 

mortalities of the resistant- and –susceptible parents, and eight other cross-strains were assayed 

using diet-incorporated and leaf tissue bioassays with Cry2Ab2. Maternal effects were examined 

by comparing the larval mortalities between the two F1 strains. Dominance levels of resistance 

were measured by comparing the larval mortalities of resistant, susceptible, and F1 heterozygous 

strains. Number of genes associated with the resistance was estimated by fitting the observed 

mortalities of F2 and backcross strains with the Mendelian monogenic inheritance model. There 

were no significant differences among the four insect strains for all the fitness parameters 

measured with few exceptions, suggesting that the resistance was not associated with fitness 

costs. The Cry2Ab2 resistance in S. frugiperda was likely inherited as a single, autosomal, 

recessive gene. Information generated from this study should be useful in assessing resistance 

risk and developing management strategies for the sustainable use of Bt crop technology.
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CHAPTER 1: INTRODUCTION 

1.1. Corn production in the United States of America  

Field corn, also called as maize (Zea mays L.) is one of the economically important crops 

in the world. Although the origin and ancestry of corn is contested, it probably descended from 

an annual species of teosinte and was domesticated several thousand years ago, somewhere in 

present-day Mexico (Benz and Long, 2000; Piperno and Flannery, 2001). In the United States 

(U.S.), conventional corn varieties were cultivated as an open-pollinated crop for centuries until 

commercial hybrid seeds became available in 1930s. Introduction of hybrid corn seeds in the 

corn growing region of Midwest sharply increased the crop yield and the technology 

progressively diffused to the rest of the nation, rendering corn as one of the major agricultural 

crops of the country (Ryan and Gross, 1943; Griliches, 1960). For the past six years, corn was 

planted on an average of 37.6 million hectares (92. 95 million acres) annually, with a total 

plantation area of 38.2 million hectares (94.5 million acres) in 2016 (NASS, 2016). In the U.S. 

corn production is mainly concentrated in the states of Illinois, Iowa, Indiana, eastern portions of 

South Dakota and Nebraska, western Kentucky and Ohio, and northern Missouri. Although it is a 

staple food of many countries for millions of people, it is mainly used for animal feed and 

biofuel production in North America (NASS, 2016). Other industrial uses include starch, 

sweeteners, oil, beverages, industrial alcohol etc. In addition, approximately 10-20% of corn 

grain produced in the U.S. is exported, making U.S. the world’s largest producer and exporter of 

corn. Recently, higher corn prices are associated with strong demand of ethanol production, 

which has encouraged farmers to increase their corn acreage (USDA Economic Research 

Service, 2016). 
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1.2. Major corn insect pests and their control  

Insects are a major group of pests that attack corn plants in the field and in storage, 

eventually hampering the quantity and quality of the product. Corn rootworms are probably the 

most serious insect pests of corn plants in the U.S. Rootworms damage corn both as larvae and 

adults (Levine and Oloumi-Sadeghi, 1991). The corn rootworm complex includes several 

species, namely the northern corn rootworm (Diabrotica barberi Smith and Lawrence), western 

corn rootworm (Diabrotica virgifera virgifera LeConte), Mexican corn rootworm (Diabrotica 

virgifera zeae Krysan and Smith), and southern corn rootworm (Diabrotica undecimpunctata 

howardi Barber). The U.S. Corn Belt is threatened more by D. virgifera virgifera and D. barberi 

than closely related D. undecimpunctata, as larvae of the latter species cannot diapause in the 

colder climate of the North. D. barberi can exhibit a type of behavioral modification, “extended 

diapause”, where eggs are capable of remaining dormant in the soil through two winters and one 

growing season before hatching in the second season (Levine et al., 1992). D. virgifera virgifera, 

an exclusive corn feeder, is reported to have altered its ovipositional behavior, thereby reducing 

the effectiveness of crop rotation in controlling this pest, especially in the Eastern Corn Belt 

(Levine et al., 2002).  

Several other soil-dwelling insect pests that feed on corn seeds or young seedlings 

represents another group of serious corn pests. For example, larvae of black cutworm (Agrotis 

ipsilon Hufnagel) may notch the stems of corn seedlings right below the soil, forcing the plant to 

wilt, or may cut through the stalks, resulting in reduced crop stand. Larvae of several species of 

click beetles, collectively called wireworms, may feed on the germ of corn kernels and cut off 

small roots of young plants. Seedcorn maggot (Delia platura Meigen) feeds on corn seeds and 
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the damaged seeds may not emerge. White grub attack on corn field results in stressed, stunted, 

wilted, discolored and dead seedlings, reducing crop stand (Carter et al., 1982). 

Many lepidopteron insects feed on the above-ground parts of corn plants. The major corn 

borer species in the U.S. are the European corn borer (Ostrinia nubilalis Hübner) and the 

southwestern corn borer (Diatraea grandiosella Dyar). Both attack whorl, leaf midrib, can bore 

into the stalk, and feed on silks and ears. In Louisiana and several other states in the mid-south 

region of the U.S., the sugarcane borer (Diatraea saccharalis Fabricius) larvae tunnels into the 

pith of stalk, lessening the vitality of plant. In addition, the fall armyworm (Spodoptera 

frugiperda J. E. Smith) feed on foliage and in corn ears. Corn earworm larvae (Heliothis zea 

Boddie) normally feed near the tip of corn ear but may go progressively down towards the base, 

resulting in developing a track of damaged kernels. Western bean cutworm (Striacosta albicosta 

Smith) larvae penetrate ears and damage kernels (Carter et al., 1982). 

Historically, a range of insect pest management strategies were practiced by corn 

growers. Up to the early twentieth century, an effort to find the chemicals to control insect pests 

was underway, but the effective chemical compounds were not yet synthesized, and the crop 

protection specialists had to rely on knowledge of pest biology and cultural practices (Gaines, 

1957; Kogan, 1998). With the advent of organosynthetic insecticides in 1940s, pest management 

began to heavily depend on the chemical compounds. The Post-World War II period saw a surge 

of many chlorinated hydrocarbons and organophosphates used as pesticides. However, the 

criticism began to develop on public health and environmental risks of overreliance on chemical 

insecticides in late 1950s and 1960s (Carlson, 1962; Doutt and Smith, 1971; Pimental, 2005). 

The need for more environmentally friendly and safer strategies was highlighted in successive 

years (Van den Bosch and Stern, 1962), which led to public policy changes in 1970s that put 
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more emphasis on integrated pest management (IPM) to control insect pests. One fallout of the 

excessive use of chemical pesticides was the development of resistance by pests to the pesticides 

designed to kill them. For instance, corn rootworms developed resistance to various groups of 

chemical insecticides (Meinke et al., 1998; Parimi et al., 2006) and so did the many lepidopteran 

pests (Brown, 1981; McCaffery, 1998).  

1.3. Transgenic technology and Bt corn 

As conventional approaches to insect-pest control were increasingly becoming less 

effective, the new idea of transgenic technology was about to come into realization. With the 

discovery of recombinant DNA technology in 1970s, coupled with advancement in tissue culture 

techniques and elucidation of genetics of bacterium Agrobacterium, it became possible for 

scientists to transfer genes of interest from one organism to another. As early as 1983, scientists 

sought to apply genetic engineering to insect, weed and external stress management in crops 

(Barton and Brill, 1983). Now, a wide array of genetically engineered crop products are on the 

market such as non-browning apple and potato, ring spot virus resistant papaya, high-oleic acid 

soybean, drought-tolerant corn, and glyphosate resistant cotton, soybean, and alfalfa. Application 

of genetic engineering to control specific phytophagous insect pests by incorporating one or 

more genes from a soil dwelling bacterium Bacillus thuringiensis (Bt) into the genome of plants 

is a huge success story of the past two decades with a lot of environmental and economic 

benefits (Vaeck et al., 1987; Grasser and Fraley, 1989; Hutchison et al., 2010; Tabashnik, 2010; 

National Academies of Sciences, Engineering, and Medicine, 2016). 

Bt is an aerobic, gram positive, endospore forming bacterium first discovered by a 

Japanese scientist in 1901 (Gill et al., 1992; Madigan and Martinko, 2005). During the 

sporulation phase, Bt produces insecticidal proteins as parasporal crystals. Those crystals consist 
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of crystal (Cry) and cytolitic (Cyt) toxins, together called as δ-endotoxins (Bravo et al., 2007). Bt 

also synthesizes insecticidal proteins during the vegetative growth phase which are called 

vegetative insecticidal proteins (Vips) (Palma et al., 2014). The Cry proteins are toxic to the 

specific group of insects. Bt has been registered as a microbial insecticide in the U.S. since 1961 

(U.S. EPA, 1998). Bt microbial insecticides or Bt crops pose no risk to the human health and to 

the environment (Mendelshon et al., 2003; Comas et al., 2014; National Academies of Sciences, 

Engineering, and Medicine, 2016). So far, insect resistant varieties of cotton, corn, poplar, and 

soybean are in commercial production, Bt corn and Bt cotton being the top two in terms of 

acreage and production. In 1996, when Bt corn was first commercialized in the U.S., it was 

planted in fewer than 300,000 hectares of land (James, 1997). Bt corn represented just 19 

percentage of total corn acreage in 2001, but by 2015, it already occupied 53.7 million hectares 

which accounted to 81 percentage of total corn acreage in the U.S., which was approximately 

one-third of all land planted to corn worldwide that year (James, 2015). In the southern region of 

the U.S., transgenic field corn was first commercially planted in 1999 (Buntin et al., 2004). 

Many Bt corn products are available on the market which express different Bt proteins 

and their efficiency towards various target pests differs. Broadly, the Bt proteins Cry3Bb1, 

mCry3A, eCry3.1Ab, and Cry34/35Ab1 are effective against below-ground coleopteran insect 

pests and Bt proteins Cry1F, Cry1Ab, Cry1Ac, Cry1A.105, Cry2Ab2, and Vip3A are effective 

against above-ground lepidopteran pest species. The Bt proteins may be stacked with traits 

that express crop tolerance to herbicides such as glyphosate or glufosinate. Before 2010, all Bt 

corn planted in the U.S. expressed only a single toxin for a target pest. In case they expressed 

more than one Bt toxin, the different toxins targeted different insects. These are referred as the 

first generation Bt crops (Huang, 2015). The recent Bt products express more than one Bt 
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proteins targeting the same pest species and are often referred to as second generation pyramided 

Bt products (Huang, 2015). 

One of the impulses to shift from the single-toxin Bt crop to pyramided Bt crops was the 

concern of reduced susceptibility (developing resistance) of pests to the single toxin Bt crops. 

Cry2Ab2 is a common Bt protein expressed in many pyramided Bt cotton and Bt corn hybrids, 

such as the popular Bt corn products Genuity® VT Double Pro®, Genuity® VT Triple Pro® and 

Genuity® SmartStax® (DiFonzo et al., 2017). Cry2Ab2 protein is expressed in the Bt corn event 

MON 89034 along with Cry1A.105. Cry1A.105 is a chimeric protein composed of portions of 

Cry1Ab, Cry1Ac, and Cry1F proteins (Head, 2006). MON 89034 was developed by 

Agrobacterium-mediated transformation of corn using the 2TDNA plasmid vector PV-ZMIR245 

(Head, 2006). Since 2002, Bt cotton containing Cry2Ab2 gene has been commercially planted in 

the U.S., but Cry2Ab2 is a relatively new protein used in Bt corn products, which were first 

commercialized in 2010 (U.S. EPA, 2010). Whereas the major initial lepidopteran targets of Bt 

corn were stalk borers (e.g. O. nubilalis, D. grandiosella) and H. zea (Huang et al., 2011), the Bt 

corn can also be used to reduce S. frugiperda damage, which is one of the major pests in the 

southern region of the U.S. (Buntin et al., 2004; Siebart et al., 2008). Thus, S. frugiperda has 

been listed as a major target species of Bt corn event MON 89034. 

1.4. Mode of action of Bt toxin 

Understanding the mechanism of action of Bt toxins and how insects develop resistance 

provides the basis for taking measures to counter resistance (Bravo and Soberón, 2008). 

However, the exact mode of action of Bt toxin is still a subject of ongoing research. The widely 

believed hypothesis of Bt toxicity holds that the protoxin is first solubilized in the alkaline 

environment of insect alimentary canal and proteolytically activated by endopeptidases. The 



 

7 

 

activated monomeric cry toxin binds to its receptors in varying affinity in the midgut epithelium 

which involves the proteolytic removal of N-terminal end of the toxin, exposing hydrophobic 

region of the toxin followed by oligomerization of toxin to form pre-pore structure. The pre-pore 

structure inserts into the midgut epithelial cell membrane, forming pore and cell lysis that kills 

the insect (Pardo-López et al., 2006; Bravo et al., 2007; Vachon et al., 2012). 

At least three different kinds of Bt receptors are reported which include cadherin-like 

protein (Gahan et al., 2001; Morin et al., 2003; Flannagan et al., 2005; Sayed et al., 2007; Park 

and Kim, 2013; Ren et al., 2013), aminopeptidase N (Gill et al., 1995; Luo et al., 1997; 

Rajagopal et al., 2002; Herrero et al., 2005; Zhang et al., 2009; Tiewsiri and Wang, 2011), and 

alkaline phosphatase (McNall and Adang, 2003; Perera et al., 2009; Ning et al., 2010; Jurat-

Fuentes et al., 2011; Caccia et al., 2012). Recent studies show that both the protoxin and trypsin-

activated toxin bind to cadherin and form two different pre-pores. These two pre-pores are 

assembled before inserting into membrane of midgut cells, suggesting a dual mode of action of 

Bt (Gómez et al., 2014, Tabashnik et al., 2015). Another hypothesis of Bt toxicity holds that 

monomeric Cry toxins binds to a cadherin receptor which activates intracellular transduction 

pathway. The G protein is activated in the process, which activates adenylate cyclase, giving rise 

to increased cyclic AMP level. Eventually, protein kinase A is activated causing cell necrosis 

(Zhang et al., 2005; Zhang et al., 2006). The role of ATP-binding cassette (ABC) transporter 

proteins in Bt toxicity is being investigated recently (Gahan et al., 2010; Baxter et al., 2011; 

Atsumi et al., 2012; Heckel, 2012; Tanaka et al., 2013; Xiao et al., 2014; Tay et al., 2015). 

1.5. Fall armyworm, Spodoptera frugiperda (J.E. Smith) 

S. frugiperda has a tropical-subtropical origin in the western hemisphere. It survives 

throughout the year in tropical areas of South and Central America, Mexico and in a few sub-
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tropical areas of the southern U.S. (Sparks, 1979). In the U.S. mainland, the insect overwinters in 

southern Florida and Texas, because the optimum temperature ranges it requires are not available 

elsewhere in the U.S. mainland (Sparks, 1986). The life cycle is completed in about one month in 

summer, two months in spring and nearly three months in winter (Capinera, 1999). A single 

female moth is capable of laying about 1500 dome-shaped eggs in her lifetime (Capinera, 1999). 

The larvae undergo six instars before pupating in the soil. The pupae emerge into adult moths 

with wingspan of about 32-40 mm. Adults are nocturnal in behavior (Capinera, 1999). 

S. frugiperda does not have an ability to undergo winter diapause, and thus it must travel 

northward each spring if it is to infest crops in the temperate regions (Mitchell, 1979; Johnson, 

1987). It has a wide host range of more than 80 plant species. Along with corn, it also attacks 

other major crops such as cotton, sorghum, soybean, rice, forages, and turf grasses. It is one of 

the most serious crop pests in the southern U.S. (Buntin et al., 2004). Based on its host 

specificity, at least two genetically differentiated strains of S. frugiperda, namely corn strain and 

rice strain, exist (Pashley, 1986). However, substantial controversy remains about whether they 

should be referred as “host strains” or “host forms” or “sibling species” (Cañas-Hoyos et al., 

2014; Juárez et al., 2014). Polymorphism in cytochrome oxidase I gene can be used to identify 

different host strains (Levy et al., 2002). The corn strain population can be subdivided into four 

haplotype subgroups as defined by the COI marker (Nagoshi et al., 2007). 

Populations of S. frugiperda from Florida and Texas differ significantly in terms of the 

relative proportion of different haplotypes (Nagoshi et al., 2008). Migration from Texas is the 

primary source of S. frugiperda infestations west of the Appalachian Mountains, while the 

Florida population migrates to the states located on the Atlantic coast. The two populations 
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probably mix within the states of Alabama-Georgia in the south and Mid-Atlantic region in the 

east (Nagoshi et al., 2012).  

Larvae damage corn plants by devouring foliage, burrowing into the bud and whorl, 

damaging the husk or clipping the leaves, as well as feeding on the ears (Capinera, 1999). 

Traditionally, chemical control had been the most common method for S. frugiperda control in 

the U.S., but it is increasingly considered an inefficient method. Immediately after the eggs 

hatch, neonates move into and begin feeding the whorl region of corn plants where they usually 

escape foliar sprays of chemical insecticides (Harrison, 1986; Bokonon-Ganta et al., 2003). 

Moreover, there are reports of regional populations of S. frugiperda having developed resistance 

to several chemical insecticides including carbamates (carbaryl), organophosphates (methyl 

parathion) and pyrethroids (Young et al., 1979; Guillebeau and All, 1990; Adamczyk et al., 

1999; Yu et al., 2003).   

1.6. Bt resistance  

WHO (1957) defined insecticide resistance as “the inherited ability of a strain of some 

organisms to survive doses of a toxicant that would kill the majority of individuals in a normal 

population of the same species”. Owing to the difficulty of defining “normal population” and its 

inapplicability to individual insects, various modifications have been suggested to the definition. 

Tabashnik et al. (2009) have defined field-evolved resistance as “genetically based decrease in 

susceptibility of a population to a toxin that is caused by exposure of the population to the toxin 

in the field”. Although it is possible for pests to develop resistance with continuous exposure to 

toxins in laboratory and not necessarily in the field (Tabashnik et al., 2003), field-evolved 

resistance is an issue of practical concern. Field-evolved resistance has been analyzed as the 

continuum with five categories ranging from incipient resistance to practical resistance, 
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depending on the percentage of resistant individuals in the insect population (Tabashnik et al., 

2014). The term field-evolved resistance does not necessarily imply control failure or reduced 

efficacy in the field. Field-evolved resistance that results in reduced control efficacy or control 

failure can be defined as “field resistance” (Huang et al., 2011) or “practical resistance” as 

suggested in Tabashnik et al (2014).   

So far there are at least seven documented cases of practical resistance (or field 

resistance) by different target pests to Bt crops reported, with >50% resistant individuals and 

reduced efficacy of crops in field (Van Rensburg et al., 2007; Storer et al., 2010; Dhurua and 

Gujar, 2011; Gassmann et al., 2011; Farias et al. 2014, Huang et al. 2014; Dively et al., 2016). 

Three years after the commercial introduction of TC1507 corn seeds expressing Cry1F protein in 

Puerto Rico, the reports of unusual damage by S. frugiperda began to appear in the island (Storer 

et al., 2010). Laboratory bioassays of field populations confirmed that the field resistance had 

developed in S. frugiperda to the Cry1F toxin in the plants. Field resistance of S. frugiperda to 

Cry1F corn was also documented in Brazil (Farias et al., 2014; Monnerat et al., 2015), and the 

southeast region in the mainland U.S. (Huang et al., 2014). This insect, thus far, is the only target 

pest that has developed field resistance to Bt corn at multiple locations across different countries 

and continentals (Dangal and Huang, 2015). Other notable cases of field resistance include the 

African stem borer (Busseola fusca Fuller) resistance to Cry1Ab corn in South Africa (Van 

Rensburg, 2007), pink bollworm (Pectinophora gossypiella Saunders) resistance to Cry1Ac 

cotton in India (Dhurua and Gujar, 2011), D. virgifera virgifera resistance to Cry3Bb1 and 

mCry3A corn (with the cross resistance between these two toxins) in North Central Corn Belt of 

the U.S. (Gassmann et al., 2011, Gassmann et al., 2014), and H. zea resistance to Cry1Ab sweet 

corn in the U.S. (Dively et al., 2016).  
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1.7. Bt resistance management  

The evolution of resistance to Bt crops can be attributed to the widespread use of 

transgenic plants that places a high selection pressure on the target pests (Ostlie et al., 1997; 

Gould, 1998; Tabashnik et al., 2003). Anticipating the evolution of resistance, the 1998 Science 

Advisory Panel recognized that resistance management programs should be based on the use of 

high dose of Bt plants and planting of non-Bt plants (U.S. EPA, 2001). This strategy of 

resistance management is called as “high dose/refuge strategy” and is mandated by the United 

States Environmental Protection Agency (U.S. EPA). This strategy relies on some important 

assumptions: 1. Bt plants should produce toxins in a sufficiently high dose that can kill all or 

nearly all heterozygotes, in other words, the resistance should be functionally recessive; 2. Non-

Bt refuges should provide abundant susceptible adult insects to mate; and 3. Low initial 

resistance allele frequency (Ostile et al., 1997; U.S. EPA, 2001; Huang et al., 2011). 

Not always withstanding the assumption of recessive inheritance as required by the “high 

dose/refugee strategy”, studies have shown that the inheritance of resistance can vary from 

completely recessive to incompletely dominant (see section 1.9). In addition, non-compliance on 

refuge planting is a serious issue in the U.S. and elsewhere resulting in inadequate susceptible 

individuals which can exacerbate the problem of resistance development (Goldberger et al., 

2005). Huang et al. (2011) have shown that the documented cases of field resistance are likely 

due to the violations of one or more assumptions of the “high dose/refugee strategy”. For 

example, the Cry1F maize planted in Puerto Rico, where the S. frugiperda has been shown to 

have developed resistance, cannot be considered as high-dose and the refuges are believed to be 

inadequate. Similarly, the field resistance of B. fusca to Cry1Ab maize in S. Africa and P. 

gossypiella resistance to Cry1Ac cotton in India is likely due to noncompliance in refuges 
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planting and a use of non-high dose Bt varieties (Huang et al., 2011). In India, commercial cotton 

hybrids expressing Cry1Ac protein were released in 2002. Central and southern India witnessed 

an exceptionally high adoption of Bt cotton, compromising refuges requirement, and field 

failures due to P. gossypiella occurred as early as in 2009 (Kathage and Qaim, 2012; Mohan et 

al., 2015). Recently, there are reports of P. gossypiella developing resistance to dual toxin cotton 

(Cry1Ac + Cry2Ab) in different parts of Gujarat, Andhra Pradesh, Telangana, and Maharashtra 

(Kranthi, 2015; Kasabe, 2016). 

To solve the problem of non-compliance in planting of structured refuges, a new seed 

mixture strategy called “refuge-in-the-bag (RIB)” has been approved by U.S. EPA for planting 

pyramided Bt corn in the Corn Belt since 2010. Although models show that RIB could be an 

effective strategy in some circumstances (Carroll et al., 2013), larval movement from non-Bt 

plants to Bt plants is a serious concern. For instance, larvae of O. nubilalis may move between Bt 

and non-Bt plants in the seed mixture and get exposed to some dose of the toxin, an event that 

contradicts the requirement of adequate susceptible insects should be harbored in the refuge 

plants (Mallet and Porter, 1992; Gould, 1998). In general, block (structured) refuges may be 

more effective than seed mixtures in pests with larvae that are more mobile and have inherently 

low susceptibility to Bt toxins (Brévault et al., 2015). Furthermore, the pollen-mediated gene 

flow from Bt crops to refuge plants, which is already a matter of concern in structured refuge 

(Chilcutt and Tabashnik, 2004) could be even more serious under RIB strategy. As a result of 

this kind of gene flow, a portion of kernels in refuge ears may express Bt toxin and the larvae 

feeding on those ears are selected to Bt toxin compromising the purpose of refuge plants to 

harbor susceptible insects (Yang et al., 2014).  
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In conjunction with the “high dose/refuge strategy”, another approach to delay resistance 

evolution is the use of pyramided Bt products which express more than one toxins that target the 

same pest species. The key assumption of this strategy is that insects resistant to one toxin will 

be killed by the other toxin in the pyramid (Roush, 1998). In fact, application of compounds with 

multiple modes of action is useful not only in insecticide resistance management but also in 

resistance management with weed, fungicide and drugs (Brent and Holloman, 1995; Bergstrom 

et al., 2004; Beckie, 2006). Pyramided Bt crops are progressively replacing the single toxin Bt 

crops. Single-gene Cry1Ac cotton was progressively and completely replaced in the U.S. from 

2003 to 2011 by pyramided Bt cotton that produces two Bt toxins (Cry1Ac/Cry2Ab or 

Cry1Ac/Cry1F) (Brévault et al., 2013). Although the actual data is not available, pyramided Bt 

corn is believed to have surpassed the first generation Bt corn in total acreage. Mathematical 

models indicate resistance development will be delayed with pyramided Bt toxins (Roush, 1998; 

Zhao et al., 2003). Empirical studies seem to agree with this conclusion. Combinations of 

Cry1Ac and Cry2Ab2 (Bollgard II) cotton in general is superior over Cry1Ac only (Bollgard) 

cotton against the major cotton lepidopteran pests (Sivasupramaniam et al., 2008). Efficacy 

provided by pyramided Bt corn was reported to be either statistically equal to or better than 

single toxin Bt corn in several major pests including D. saccharalis, H. zea and S. frugiperda 

(Siebart et al., 2012; Niu et al., 2014). 

The pyramid strategy, however, works better only if cross resistance among toxins is 

absent. Gene pyramiding should be done in such a way that the crop expresses protein that can 

overcome the insect resistance to other protein(s) in the pyramid (Moar and Anilkumar, 2007). If 

selection for resistance to one Bt toxin results in cross-resistance to another toxin in the pyramid, 

the pyramided Bt crops fare no better than single toxin Bt crops (Roush, 1998; Tabashnik et al., 
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2009). Different cases of cross-resistance of Bt toxins in several lepidopteran and coleopteran 

insects have been documented (Tabashnik et al., 2000; Ferré and Van Rie, 2002; Brévault et al., 

2013; Jakka et al., 2016). Cross-resistance normally occurs when pesticides share similar binding 

sites or similar detoxifying pathways (Wu, 2014). It is hypothesized that Cry1 and Cry2 proteins 

have different binding sites and thus insect show very low or no cross-resistance to these proteins 

(Xu et al., 2005; Hernández-Rodríguez et al., 2008; Brévault et al., 2009; Wu et al., 2009; Vélez 

et al., 2013; Huang et al., 2014; Wu, 2014). However, H. zea strain selected for Cry1Ac cotton 

had increased survival on two-toxin (Cry1Ac and Cry2Ab) cotton indicating that cross-resistance 

can still evolve between Cry1A and Cry2A (Brévault et al., 2013).  

The sustainability of Bt crops perhaps rests on the extent growers integrate Bt crops as a 

component of IPM, and not as the silver bullet. There are several reported cases of regional 

populations of insects being suppressed to the level below the economic threshold due to the 

widespread use of Bt crops. For example, the population density of O. nubilalis across Iowa, 

Illinois, Minnesota, Nebraska, and Wisconsin (Hutchison et al., 2010; WI Department of 

Agriculture, 2014) and Pennsylvania (Bohnenblust et al., 2014), P. gossypiella in Arizona 

(Carrière et al., 2003; Liesner, 2015) and tobacco budworm (Heliothis virescens) in Mississippi 

Delta and Louisiana (Adamczyk and Hubbard, 2006; Micinski et al., 2008) has been drastically 

reduced over the years. Populations of D. saccharalis on corn, sorghum, and rice have been very 

low since 2010 in the mid-southern region of the U.S. (Fangneng Huang, personal 

communication). Switching to non-Bt crops in those areas for a certain period of time may not 

only be helpful in delaying resistance evolution but could also be economically advantageous 

(National Academies of Sciences, Engineering, and Medicine, 2016). 
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1.8. Fitness costs of resistance 

Although not explicitly assumed in the “high dose/refuge strategy” of insecticide 

resistance management described in section 1.7, fitness costs can greatly influence the evolution 

of resistance (Gassmann et al., 2009). Fitness costs of Bt resistance happen if the fitness of insect 

individuals carrying at least one allele of resistance in the absence of selection is lower than the 

fitness of individuals lacking resistant alleles (Gassmann et al., 2009). Broadly, fitness refers to 

the ability of an organism to survive, reproduce and pass its genes to the next generation (Orr, 

2009). Laboratory experiments assessing insect fitness usually involves measuring growth, 

development, and reproductive parameters. In some cases, fitness costs may be obvious such as 

developmental time (Minkoff and Wilson, 1992) and in some cases, they can be less noticeable 

such as in the case of reduced overwintering success (McKenzie, 1990). Fitness costs are often 

associated with resistance and can be used in insect resistance management. For non-recessive 

fitness costs, development of resistance in insect populations in field can be delayed or even 

reversed if there is absence of selection pressure for long period time (Tabashnik et al., 2005). In 

cases where resistance to Bt has been detected, there has been a decline in resistance level after 

the selection pressure is removed (Gassmann et al., 2009). Although most fitness costs are 

recessive, non-recessive costs help in delaying resistance as they can strongly select against 

resistant genotypes (Gassmann et al., 2009).   

 Fitness costs are commonly assessed by comparing one or more fitness components such 

as life-cycle traits (survival, neonate to emergence period), body weight and fertility parameters 

between insect strains with and without resistant allele, in the absence of selection pressure (e.g. 

insecticide). Since this method indicates fitness costs only when the components under study are 

significantly lower in resistant strains than in the susceptible strains, it is theoretically a less 
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comprehensive approach. Another method involves monitoring the stability of resistance in 

heterozygous populations in the absence of Bt toxin over several generations. This method 

detects the reduction in frequency or level of resistance over time (Gassmann et al., 2009). 

Researchers should be careful of following fallacies on fitness cost study: a. comparisons made 

between unrelated strains, b) experiments performed under optimal laboratory conditions to 

which some strains may be acclimatized, and c) experimental conditions with little or no 

relevance to field conditions (Bourguet, 2004; Gassmann et al., 2009). 

There are numerous published studies on fitness costs regarding resistance to chemical 

insecticides as well as Bt toxins. For example, Oswald et al. (2012) found no fitness costs 

associated with Cry3Bb1 resistance in D. virgifera virgifera. However, in laboratory selected O. 

nubilalis strain, weak and recessive fitness costs were reported to be associated with the Cry1F 

resistance (Pereira et al., 2011). Studies on fitness costs of Bt resistance in S. frugiperda have 

shown contrasting results. In two separate studies, Vélez et al. (2014) & Jakka et al. (2014) 

showed a lack of strong fitness costs associated with a Cry1F-resistant population from Puerto 

Rico, but Dangal and Huang (2015) reported non-recessive fitness costs associated with 

resistant-populations from Florida and Puerto Rico. 

1.9. Inheritance of resistance 

Knowledge of the genetic basis of resistance is imperative to develop effective resistance 

management strategies (Bourguet, 2004; Tabashnik and Carrière, 2007). In the pesticide 

resistance literature, it is commonly hypothesized that laboratory selection tends to exhibit 

polygenic inheritance, whereas field selection favors monogenic response (Roush and McKenzie, 

1987; Ffrench-Constant, 2013). It is probably because laboratory selections with usually small 

populations draw in common phenotypic variations where the alleles conferring high level of 
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resistance are rare. Moreover, adaptation to laboratory conditions and selection for resistance to 

toxins may cause inbreeding and genetic bottlenecks, reducing genetic variation (Fritz et al., 

2016). In contrast, in field high selection intensities are presumed to be associated with 

insecticide application and the selection on novel variation are more likely which favor 

resistance alleles of major effect (Roush and McKenzie, 1987). For example, the finding of 

inheritance of Cry1F resistance in laboratory-selected O. nubilalis was consistent with 

monogenic model of resistance (Pereira et al., 2008). This hypothesis, however, is not always 

substantiated by published data both for conventional insecticides (Groeters and Tabashnik, 

2000) and Bt insecticides (Gahan et al., 2001). Single major gene is responsible for 40 to 80% of 

resistance in laboratory selected strains of tobacco budworm, Heliothis virescens (Gahan et al., 

2001). This means that laboratory selected strains are useful tool to study field-evolved 

resistance. However, compared with laboratory strains derived from single field populations, the 

screen of F1 and F2 progeny in laboratory derived from field populations across the range of 

geographic locations provide better prediction (Wu, 2014). 

Studies on inheritance of resistance usually involves assessment of dominance level, 

detection of maternal effect and number of genes controlling resistance. Dominance relationships 

are usually measured in three different ways: the dominance of insecticide resistance or Stone’s 

dominance, effective dominance or dominance level of survival at a given insecticide dose and 

the dominance of relative fitness. The three approaches may not be directly correlated with each 

other (Bourgeut et al., 2000). Presence of maternal effect is inferred if the F1 populations 

generated from reciprocal crosses of parental resistant and susceptible strains perform differently 

when presented with the toxin. Identification of number of genes conferring resistance involves 

sophisticated molecular techniques but they could be estimated by statistical tests. 
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Although the “high dose/refuge strategy” of resistance management requires recessive, 

monogenic inheritance of resistance, requirements are not always met. The dominance of Bt 

resistance greatly varies and has been found ranging from completely recessive to dominant 

(Ferré et al., 2008). For example, highly recessive and monogenic inheritance of resistance in S. 

frugiperda to Cry1F protein in Puerto Rico (Storer et al., 2010) sharply contrasts with the 

dominant Cry1Ab inheritance in B. fusca (Campagne et al., 2013). Moreover, a strain of D. 

saccharalis that was highly resistant to both purified Cry1Ab protein and Cry1Ab corn plants 

was found to be incompletely dominant on several commercial Cry1Ab corn hybrids with a DML 

level of 0.32-0.78 (Ghimire et al., 2011; Wangila et al., 2012). The incompletely dominant 

inheritance character of the Cry1Ab resistance in D. saccharalis was also documented with Bt 

corn leaf tissue bioassays (Wu et al., 2007; Ghimire et al., 2011; Wangila et al., 2012). Recently, 

Jin et al. (2013) reported that two field-selected populations of the cotton bollworm, Helicoverpa 

armigera, that were highly resistant to Cry1Ac, was dominant at a diagnostic concentration in 

diet and on Cry1Ac cotton leaves. 

The dominance level may vary across different species, type of toxin or even for different 

strains of a same species (Jin et al., 2013). The dominance of resistance, however, is not an 

entirely intrinsic property of alleles, and can be influenced by the dose of toxin. Expression of 

the Cry proteins in high enough levels can convert an incompletely dominant resistance to a 

functionally recessive resistance (Bourguet et al., 2000). In one study where inheritance of 

Cry1Ab resistance in D. saccharalis was examined, the effective dominance level was found to 

be dose dependent, resistance being incompletely recessive at low dose and completely recessive 

at high dose (Wu et al., 2009). In some cases, field-selected resistance may involve diverse 

genetic basis including both recessive and non-recessive alleles (Zhang et al., 2012). Such a 
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diversity and variation on findings suggest non-recessive resistance to Bt crops in target species 

is not uncommon and thus species-toxin-specific knowledge of inheritance of resistance is 

required (Janmaat et al., 2004).  

1.10. Objectives 

The objectives of the present study were to determine if fitness costs were associated with 

the Cry2Ab2 resistance and to characterize the inheritance of the resistance in S. frugiperda. 
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CHAPTER 2: ANALYSIS OF FITNESS COSTS AND INHERITANCE OF BT CRY2AB2 

RESISTANCE IN FALL ARMYWORM, SPODOPTERA FRUGIPERDA (J.E. SMITH) 

2.1. Introduction 

Bacillus thuringiensis (Bt) is a widespread, soil living, gram positive bacterium (Gill et 

al., 1992). The bacterium produces insecticidal crystalline (Cry) proteins during sporulation and 

vegetative insecticidal proteins (Vips) during vegetative phase (Bravo et al., 2007; Palma et al., 

2014). Microbial pesticides containing Bt proteins have been deployed for the past several 

decades in the United States (U.S.) and elsewhere to control agricultural pests and medically 

important insect vectors (Sanahuja et al., 2011). Bt has been registered as a microbial insecticide 

in the U.S. since 1961 (U.S. EPA, 1998).   

With the advancement of biotechnology, it is possible to genetically engineer crops that 

express Bt proteins which are toxic to the target insect-pests yet safe for human and non-target 

organisms (Mendelshon et al., 2003; Comas et al., 2014; National Academies of Sciences, 

Engineering, and Medicine, 2016). Transgenic plants that express the Bt insecticidal proteins 

have been commercialized since 1996 to control different agricultural pests. Bt crops have 

greatly changed the landscape of pest management by suppressing target pest populations, 

reducing application of conventional insecticides, and economically benefitting farmers (Carrière 

et al., 2003; Hutchison et al., 2010; Kathage and Qaim, 2012; National Academies of Sciences, 

Engineering, and Medicine, 2016). In 2015, Bt crops were planted on 84 million hectares 

globally (James, 2015). Although varieties of Bt cotton, eggplant, field corn, sweetcorn, poplar, 

and soybean are in commercial production, Bt corn and Bt cotton are the two most widely 

planted agricultural Bt crops. Currently, Bt corn and Bt cotton occupy 81% and 84% of the total 

corn and cotton acreage in the U.S., respectively (USDA Economic Research Service, 2016). 
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Transgenic Bt crops are deployed to control a range of lepidopteran and coleopteran insect pests. 

Broadly, the Bt proteins Cry3Bb1, mCry3A, eCry3.1Ab, and Cry34/35Ab1 are effective 

against corn coleopteran insect pests and the Bt proteins Cry1F, Cry1Ab, Cry1Ac, Cry1A.105, 

Cry2Ab2, and Vip3A target the lepidopteran insect-pests of corn and cotton.  

Due to the strong selection pressure imposed by the widespread adoption of Bt crops, 

evolution of resistance in target pest populations has been a major threat to the sustainability of 

transgenic Bt crop technology (Huang et al., 2011; Tabashnik et al., 2013). Thus far, at least 

seven cases of field resistance and control failure are documented which include the resistance 

developed by fall armyworm, Spodoptera frugiperda (J.E. Smith), to Cry1F maize in Puerto 

Rico (Storer et al., 2010), Brazil (Farias et al., 2014; Monnerat et al., 2015), and the U.S. 

mainland (Huang et al., 2014); African stem borer, Busseola fusca (Fuller), to Cry1Ab maize in 

South Africa (Van Rensburg, 2007); pink bollworm, Pectinophora gossypiella (Saunders), to 

Cry1Ac cotton in India (Dhurua and Gujar, 2011); western corn rootworm, Diabrotica virgifera 

virgifera (LeConte), to Cry3Bb1 and mCry3A maize in Northern U.S. (Gassmann et al., 2011, 

Gassmann et al., 2014; Jakka et al., 2016); and recently by corn earworm, Helicoverpa zea 

(Boddie), to Cry1Ab and Cry1A.105 + Cry2Ab2 sweet corn in Maryland, U.S. (Dively et al., 

2016).  

S. frugiperda is a major economic pest of corn in many regions of North and South 

America (Cruz and Turpin, 1983; Buntin et al., 2004). It does not undergo winter diapause and 

hence is only a sporadic pest in temperate regions but is a serious pest of southern U.S. where it 

overwinters in southern Texas and Florida (Sparks, 1979; Johnson, 1987; Nagoshi et al., 2012). 

Although chemical-based control measures are deployed for its control, they are largely 

unsuccessful due to resistance development (Young, 1979; Guillebeau and All, 1990; Yu, 1991). 
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S. frugiperda is a cross-crop target pest of Bt corn, Bt cotton, and Bt soybean. The first 

transgenic corn expressing the Cry1F protein was registered in the U.S. in 2001 for controlling 

various lepidopteran pests including S. frugiperda (Siebert et al., 2008). This pest is, thus far, the 

only target pest species that has developed field-resistance to Bt crops in multiple areas across 

different countries and continentals (Dangal and Huang, 2015).  

To delay resistance evolution, the “high dose/refuge strategy” and “gene-pyramiding” are 

implemented in the U.S. and several other countries (U.S. EPA, 2001; Zhao et al., 2003; Baker et 

al., 2008; Tabashnik et al., 2009; Huang et al., 2011). In the “high dose/refuge strategy”, non-Bt 

plants (refuges) are planted along with high dose Bt plants so that the refuges can harbor 

adequate susceptible insects to mate with the rare resistant individuals that survive on Bt plants. 

Heterozygous progenies are killed by the high dose of toxin expressed in Bt plants. The success 

of this strategy depends on some important assumptions: 1) the resistance should be functionally 

recessive and the plant should express Bt proteins in a high enough dose so that >95% of 

heterozygous individuals are killed; 2) random mating between susceptible and resistant 

homozygote individuals, and 3) low initial resistance allele frequency in the field pest 

populations (Gould, 1998; U.S. EPA, 2001; Tabashnik et al., 2009; Huang et al., 2011). 

Although the strategy requires recessive inheritance of resistance, the inheritance may vary 

across the spectrum from completely recessive to dominant. Thus, it is important to study the 

inheritance of resistance in each target pest species in all relevant Bt toxins to develop effective 

insect resistance management (IRM) strategies for the sustainable use of Bt crop technology 

(Wu, 2014). 

Resistance evolution is also influenced by fitness costs (Tabashnik et al., 2005; Gassman 

et al., 2009). If the insect genotypes conferring at least one resistance allele have lower fitness 
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than insect genotypes lacking resistance allele in the absence of Bt proteins, fitness costs occur 

(Gassmann et al., 2009). Presence of fitness costs is commonly assessed by comparing fitness 

parameters such as survival, growth, development, and reproduction among Bt-resistant, -

susceptible, and heterozygous strains or by analyzing the stability of Bt resistance in 

heterozygous populations over extended period of time. Laboratory studies and mathematical 

models show that fitness cost could play a major role in delaying evolution of resistance by 

selecting against resistant genotypes (Gassmann et al., 2009).  

Cry2Ab2 is a common Bt protein expressed in transgenic corn and cotton targeting 

lepidopteran pests including S. frugiperda. In Bollgard II cotton, Cry2Ab2 is expressed along 

with Cry1Ac. In Bt corn, Cry2Ab2 is expressed in the transformation event MON 89034 which 

expresses Bt proteins Cry2Ab2 and Cry1A.105. In a narrow pool of Bt proteins targeting S. 

frugiperda, the pest has already developed field resistance to Cry1F protein in multiple regions. 

Because the Cry1F shares similar resistance mechanisms, and/or cross-resistance to other Cry1 

proteins such as Cry1Ab, Cry1Ac, and Cry1A.105 (Hernández-Rodríguez et al., 2013; Vélez et 

al., 2013; Huang et al., 2014; Yang et al., 2016a;), Cry2Ab2 would essentially be the only fully-

active Bt protein targeting this pest in many currently used Bt corn and Bt cotton varieties. 

A Cry2Ab2-resistant strain of S. frugiperda was recently established using an F2 screen 

of a two-parent family collected from Georgia, U.S. (Niu et al., 2016). The resistant family is the 

first-ever strain of S. frugiperda that is highly resistant to Cry2Ab2 protein in diet bioassays as 

well as to Cry2Ab2 corn plants. The availability of this resistant strain provided a unique 

opportunity to analyze the fitness costs and inheritance of Cry2Ab2 resistance in S. frugiperda. 

Information generated from this study should be valuable in monitoring evolution of the 
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resistance to Cry2Ab2 in S. frugiperda and developing effective IRM strategies for the 

sustainable use of Bt corn technology. 

2.2. Materials and methods  

2.2.1. Sources of Bt protein and corn materials 

Cry2Ab2 protein and the associated buffer were provided by Monsanto Company (St. 

Louis, MO). Once received from the company, Cry2Ab2 protein was stored at -80 oC, while the 

related buffer was maintained around 4-8 oC in a refrigerator. Before the Cry2Ab2 protein was 

used in bioassays, it was dissolved in the buffer under room conditions to make desired 

concentrations.  

Seeds of a Cry2Ab2 corn line and a non-Bt corn iso-line were provided by Monsanto 

Company (St. Louis, MO). Corn seeds were planted in plastic pots filled with standard potting 

mixture (Perfect Mix, Expert Gardener products, St. Louis, MO) in a greenhouse of the 

Louisiana State University Agricultural Center in Baton Rouge, LA as described in Wu et al 

(2007). Two plants per pot were maintained and the plants were provided with irrigation water 

and fertilizer when necessary. Corn leaves at the vegetative stage (V4-V7) were used in the 

bioassays. Presence and absence of Bt proteins in the Bt and non-Bt corn plants were confirmed 

using an ELISA-based assay (EnviroLogix, QuantiplateTM kits, Portland, ME).  

2.2.2. Sources of insects 

A Bt-susceptible (SS) and a Cry2Ab2-resistant (RR) strains of S. frugiperda were used as 

the original insect sources (Table 2.1). SS strain was collected from non-Bt corn fields near 

Weslaco, Texas in 2013. This strain has been documented to be susceptible to Bt proteins 

Cry2Ab2, Cry1F, and Cry1A.105 as well as corn plants expressing one or more of these Bt 

proteins (Huang et al., 2014; Niu et al., 2014; Dangal and Huang, 2015). SS has been maintained 
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in the Corn and Small Grain Insect Research Laboratory at the Louisiana State University 

Agricultural Center in Baton Rouge, LA. It has not been exposed to any Bt proteins or 

insecticides. RR strain was derived from one of the 211 two-parent families established using 

single pair mating of feral individuals collected from seven locations in four states (Texas, 

Louisiana, Georgia, and Florida) in 2012-2013 (Niu et al., 2016). RR has been documented to be 

highly resistant to both purified Cry2Ab2 protein in the diet and Cry2Ab2 corn plants in the 

greenhouse (Niu et al., 2016). To ensure a similar genetic background between the two strains, 

before RR was used in the current study, it was backcrossed to SS two times and reselected using 

Cry2Ab2 corn leaf tissue for two generations. The reselections were done in 8- well trays (C-D 

International, Pitman, NJ), where each well contained 4 to 5 pieces of leaf tissues of Cry2Ab2 

corn line. Newly hatched neonates were released at a rate of 20-30 per well for a total of 5-7 

trays. Fresh leaf tissues were added every three days. A week after the release, the survivors 

were transferred into meridic (WARD’s Stonefly Heliothis) diet.  

2.2.3. Genetic crosses   

Using the SS and the backcrossed-and-reselected RR mentioned above, three types of 

crosses were performed to generate eight additional genetic strains: 1) two F1 strains, F1ARmSf 

and F1BRfSm, produced by the reciprocal crosses between SS and RR; 2) two F2 strains, F2ARmSf 

and F2BRfSm, obtained by sib-mating of the two F1 strains, respectively; and 3) four backcross 

strains, BCF1AmRf, BCF1AfRm, BCF1BmRf, and BCF1BfRm, generated by reciprocal crosses between 

RR and each of the two F1 strains (Table 2.1). Because the resistance was recessive (see results), 

backcrosses were conducted by crossing RS with RR only (Roush et al., 1986; Tabashnik, 1991). 
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2.2.4. Assessing fitness costs of the Cry2Ab2 resistance in Spodoptera frugiperda.   

To determine if the Cry2Ab2 resistance in S. frugiperda is associated with any fitness 

costs, biological parameters including 7-day larval body weight, pupation rate, pupation time, 

pupal weight, sex ratio, and egg production of SS, RR, and the two F1 hybrid strains of S. 

frugiperda were evaluated on non-Bt diet and non-Bt corn leaf tissue using similar methods to 

Dangal and Huang (2015). 

2.2.4.1. Relative fitness of SS, RR, F1ARmSf, and F1BRfSm on non-Bt diet 

  In the non-Bt diet assay, approximately 1 g of a meridic (WARD’s Stonefly Heliothis) 

diet was placed in each cell of the 128-cell trays (C-D International, Pitman, NJ), upon which 

one neonate (<24 h old) of S. frugiperda was placed. The bioassay trays were then placed in 

growth chambers maintained at 260C, ~50% r.h., and a photo period of 16h:8h (L: D). The 

Table 2.1.  Strains of Spodoptera frugiperda used in the study and their description 

Insect 

strain 

Description 

SS Bt-susceptible strain originally collected from Texas in 2013. It was 

susceptible to Cry2Ab2, Cry1F, and Cry1A.105. 

RR Cry2Ab2-resistant strain originally developed from F2 screen and re-selected 

on Cry2Ab2-corn leaf tissue. 

F1ARmSf  F1 progeny generated by crossing RR males with SS females 

F1BRfSm F1 progeny generated by crossing RR females with SS males 

F2ARmSf  F2 progeny generated by sib-mating of F1ARmSf 

F2BRfSm F2 progeny generated by sib-mating of F1BRfSm 

BCF1AmRf Backcrossed progeny generated by crossing F1ARmSf males with RR females 

BCF1AfRm Backcrossed progeny generated by crossing F1ARmSf females with RR males 

BCF1BmRf Backcrossed progeny generated by crossing F1BRfSm males with RR females 

BCF1BfRm Backcrossed progeny generated by crossing F1BRfSm females with RR males 
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bioassays were run using a randomized block design where growth chambers acted as blocks.  

There were four blocks (growth chambers) with 30 larvae per block for each insect strain (n = 4 

x 30 = 120). After 7 days, live larvae were transferred from the 128-cell trays to 30-ml plastic 

cups (Fill-Rite, Newark, NJ) each containing approximately 8 g of the same diet, and 

continuously reared in the same growth chambers until the pupal stage. Once first pupa was 

observed, pupation was checked daily. Biological parameters measured in the rearing were 7-day 

larval body weight, neonate-to-pupa development time, neonate-to-pupa survivorship, pupal 

weight, and sex ratio. A larva was considered dead if it did not move when prodded with a fine 

brush. 

Pupae collected from the above rearing were separated by sex for each insect strain. A 

pair of newly emerged (<24 h old) virgin male and female adult of an insect strain were placed 

into each 3.78-L paper container, which was placed in a growth chamber at 260C, >90% r.h., and 

a photo period of 14h:10h (L: D) for mating and reproduction as described in Niu et al. (2016). 

The egg masses produced per pair were weighed. Sample size of single-pairs (n) for RR, SS, 

F1ARmSf, and F1BRfSm were 11, 16, 19, and 15, respectively. The egg mass produced was 

analyzed with completely randomized design.   

2.2.4.2. Relative fitness of SS, RR, F1ARmSf, and F1BRfSm on non-Bt corn leaf tissue 

In the leaf tissue assay, leaves from the greenhouse-grown non-Bt corn (iso-line of 

Cry2Ab2 corn-line) plants at the vegetative stage V4-V7 were used. Two to three pieces (≈3 cm 

long) of the non-Bt corn leaves were placed in each well of 32-well trays (Bio-Ba-32, C-D 

International, Pitman, NJ), and a neonate (<24-hr old) was then placed on the leaf tissue in each 

well (1 larva/well) as described in Dangal and Huang (2015). One tray (or 32 larvae) for each 

strain was placed in each of four growth chambers (n = 4 x 32 = 128). As mentioned above, the 
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assays were run with a randomized block design with growth chambers as the block factor. The 

growth chambers were maintained at 260C, ~50% r.h., and a photo period of 16h:8h (L: D). Leaf 

tissue was replaced every 2-3 days. After 7 days, live larvae were transferred to the 8-well trays 

(C-D International, Pitman, NJ) containing the same non-Bt corn leaf tissue (1 larva/well) and 

reared in the same growth chambers until the pupal stage. As in the non-Bt diet assay, once the 

first pupa was observed, pupation was checked daily. Virgin adults were single-paired in the 

3.78-L paper containers and eggs produced from each pair were collected as described in the 

non-Bt diet assays. Sample size of single-pairs (n) for RR, SS, F1ARmSf, and, F1BRfSm were 13, 

16, 7, and, 12 respectively. The egg masses produced were analyzed with completely randomized 

design. Life history parameters measured in the leaf tissue assays were the same as recorded in 

the non-Bt diet assays.   

2.2.5. Analysis of inheritance of Cry2Ab2 resistance in Spodoptera frugiperda  

To assess inheritance of Cry2Ab2 resistance in S. frugiperda, larval survival of RR, SS, 

and the eight genetic-crossed strains of S. frugiperda listed in Table 2.1 were assayed using two 

assay methods: 1) diet-incorporated Cry2Ab2 protein bioassays and 2) bioassays using corn leaf 

tissue expressing Cry2Ab2 protein. In the diet-incorporated bioassay, three Cry2Ab2 

concentrations, 10, 31.6, and 100 µg/g, plus a buffer only control were used in each bioassay.  

Three Cry2Ab2 concentrations were prepared by dissolving the appropriate amount of Cry2Ab2 

protein in the buffer first and then the Bt solutions were mixed thoroughly in the meridic diet 

mentioned above. Approximately 1 g of the Bt-treated or non-treated diet was placed on each 

cell of the 128-cell trays (C-D International, Pitman, NJ) and in each cell one neonate was 

released on the surface of the diet. Bioassay trays with diet and larvae were placed in growth 

chambers maintained at 260C, ~50% r.h., and a photoperiod of 16h:8h (L: D). The bioassays 
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were run with a randomized block design where four growth chambers acted as blocks. For each 

combination of insect strain and Bt concentration, there were 25 larvae per block (n = 25x 4 = 

100). Larval mortality for each combination of insect strain and Bt concentration was recorded at 

7th day of larval infestation. 

Leaf tissue bioassay was carried out in the 32-well trays (C-D International, Pitman, NJ). 

The corn leaves were collected from the greenhouse-grown corn plants at V4-V7 stages.  

Collected leaves were cut into 2-3 cm pieces and 3-4 pieces of the leaf tissue were placed in each 

well of the 32-well trays. One neonate was then released on the surface of the leaf tissue in each 

well. Bioassay trays with leaf tissue and larvae were placed in the growth chambers at the same 

conditions as used in the diet-incorporated bioassays. Similar to the diet-incorporated bioassay, 

the bioassay was run with a randomized block design where four growth chambers acted as 

blocks. For each insect strain, there were 32 larvae (in a tray) per block (n = 32x 4 = 128). Larval 

mortality of each insect strain was checked at 7th day of larval infestation. 

2.2.6. Data analysis 

 The 7-day larval mortalities of the ten strains used in the inheritance study on Cry2Ab2 

diet or Cry2Ab2 leaf tissue were corrected for the control mortalities using the formula in Abbott 

(1925). The various life history data recorded in the fitness cost tests and the corrected 7-day 

mortalities obtained in the inheritance study were found to be normally distributed (SAS 

Institute, 2010). Data from diet and leaf bioassays for fitness cost study and from leaf assays for 

inheritance study were analyzed using one-way analysis of variance (ANOVA) where insect 

strain was the main factor (SAS Institute, 2010). Data from the diet-incorporated bioassays for 

inheritance study were analyzed with a two-way ANOVA (SAS Institute 2010) with Cry2Ab2 
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concentration and insect strains as the two major factors including the interaction of these 

factors. Treatment means were separated using Tukey’s HSD at the α = 0.05 level. 

 Sex-linkage of resistance was assessed by comparing the 7-day larval mortality of the 

two F1 hybrid progenies derived from the reciprocal crosses between SS and RR. Student’s t test 

was also employed to compare if the mortality was significantly different between the two F1 

strains in each toxin concentration. An absence of significant differences in mortality response 

between the two strains was considered as an indicator of absence of sex-linkage. 

Effective dominance level (DML) of resistance at a given Cry2Ab2 concentration or on 

Cry2Ab2 leaf tissue was quantified as the formula in Bourguet et al. (2000). 

𝐷𝑀𝐿 =
(𝑀𝐿𝑅𝑆 − 𝑀𝐿𝑆𝑆)

(𝑀𝐿𝑅𝑅− 𝑀𝐿𝑆𝑆)
, 

where MLRS, MLSS and MLRR are the respective mortalities for F1 heterozygous, susceptible and 

resistant insects. The value of DML ranges from 0 to 1; where 0 refers that the resistance is 

completely recessive, while 1 means that the resistance is completely dominant. In this study, 

because the resistance was autosomal (see results), the mortality data of the two F1 strains were 

pooled in calculating the DML values. In addition, because larval mortalities at the Cry2Ab2 

concentration of 10 µg/g in the diet-incorporated bioassay were low, ranging from 3.1 to 13.8% 

(see results) across the four insect strains, DML was not calculated for this concentration.    

To test whether the inheritance of resistance fitted the Mendelian monogenic model of 

inheritance, a Chi-Square test was employed to compare if the observed mortalities of the F2 and 

backcrossed strains fitted the expected mortalities. The null hypothesis tested is that resistance is 

controlled by one locus with two alleles. If the null hypothesis is true, the F2 strains are expected 

to consist of 25% RR, 50% heterozygous (RS) and 25% SS individuals and the backcross strains 
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should contain 50% RS and 50% RR individuals. If the observed mortality of RR, SS and F1 are 

PRR, PSS and PRS, respectively, under the null hypothesis, the expected mortality (p1) of F2 strains 

can be estimated as: 

𝑝1 =  (𝑃𝑅𝑅 +  2 𝑃𝑅𝑆  +  𝑃𝑆𝑆)/4, 

and that for the backcross strains (p2) should be 

𝑝2 =  0.5 (𝑃𝑅𝑅  + 𝑃𝑅𝑆). 

Chi-square value is calculated as: 

χ2 =
(O – 𝑛𝑝𝑖)

2

 𝑛𝑝𝑖(1 − 𝑝𝑖)
 , 

where O is the observed number of dead insects in the F2 or backcross strains. The null 

hypothesis is rejected if the calculated χ2 value is greater than the book value of χ2 at α = 0.05 

and df =1. As mentioned above, because the 7-day larval mortality of SS, RR, and F1 hybrid 

strains at the Cry2Ab2 concentration of 10 µg/g was not a good discriminating concentration, 

tests for fitting the monogenic model were performed for 31.6 µg/g and 100 µg/g in the diet-

incorporated assay and for the leaf tissue assay. 

2.3. Results 

2.3.1. Fitness costs of the Cry2Ab2 resistance in Spodoptera frugiperda 

2.3.1.1.  Relative fitness of SS, RR, F1ARmSf, and F1BRfSm on non-Bt diet 

The effect of insect strain on the 7-day larval weight reared on non-Bt diet was 

significant (F3,9 = 6.64, P = 0.0117), while it was not significant for all other life history 

parameters measured (F3,26.4 = 0.52, P = 0.52 for egg production and F3,9 ≤ 2.82, P ≥ 0.0992 for 

other parameters) (Table 2.2). The average weight of an SS larvae after feeding on non-Bt diet 

for 7 days was 49.8 mg. The 7-day average larval weight of RR (35.0 mg/larva) was not 
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significantly different (P > 0.05) from SS. The average weight of each of the two F1 hybrid 

strains was significantly greater than the weight of RR (P < 0.05) but not SS (P > 0.05) (Table 

2.2). 

Neonate-to-pupa survival rate of the four insect strains feeding on non-Bt diet ranged 

from 41.7-73.3% with an overall average of 55% (Table 2.2). Males and females had a similar 

larval developmental rate. On average, a male neonate needed 16.0 days to develop to the pupal 

stage, and a female took 15.7 days. The average weight of a male pupa of the four insect strains 

was 180.3 mg, while a female pupa weighed 173.4 mg. Sex ratios (male/female) of the four 

strains ranged from 0.8 to 1.5 with a grand average of 1.05. Egg productions of the four strains 

ranged from 57.8-72.8 mg/pair with a grand average of 64.5 mg/pair (Table 2.2).  

2.3.1.2. Relative fitness of SS, RR, F1ARmSf, and F1BRfSm on non-Bt corn leaf tissue 

The effect of insect strain on egg production was significant (F3,18.6 = 6.21, P = 0.0042), 

while it was not significant for all other life history parameters measured (F3,9 ≤ 2.52, P ≥ 

0.1237) (Table 2.3). SS female feeding on the non-Bt corn leaf tissue laid an average of 34.5 mg 

eggs, which was not significantly different (P > 0.05) compared to the egg production of RR 

(61.4 mg/pair) or F1ARmSf (58.8 mg/pair), but it was significantly less (P < 0.05) than the eggs 

(91.6 mg/pair) produced by F1BRfSm. 

Larval weight of the four insect strains after 7 days feeding on non-Bt corn leaf tissue 

ranged from 58.0 to 70.9 mg/larva with a grand average of 64.1 mg/larva (Table 2.3). Similar to 

the non-Bt diet assay, a grand average of 55.1% larvae survived after 7 days feeding on non-Bt 

corn leaf tissue. Males and females also had a similar larval developmental rate on non-Bt corn 

leaf tissue, but larvae feeding on non-Bt leaf tissue apparently developed somewhat faster than 

on non-Bt diet. On average, a male neonate on non-Bt corn leaf tissue needed 13.9 days to 
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*Mean values within a column followed by a same letter are not significantly different at α = 0.05 (Tukey’s HSD tests). 

 

 

*Mean values within a column followed by a same letter are not significantly different at α = 0.05 (Tukey’s HSD tests).

Table 2.2. Survival, growth, development, and egg production (mean ± sem) of Bt-susceptible (SS), Cry2Ab2-resistant (RR), and 

two reciprocal F1 (F1ARmSf and F1BRfSm) strains of Spodoptera frugiperda on non-Bt diet* 

Insect  

Strain 

 

 

7-day larval 

weight 

(mg/larva) 

Neonate-to-

pupa survival 

%  

Neonate-to-pupa 

development time (day) 

Pupal mass (mg/pupa) Sex ratio 

(m:f) 

Egg mass 

per pair 

(mg) 

Male Female Male Female   

SS 49.8 ± 10.5 ab 56.7 ± 11.0 a 16.0 ± 0.7 a 16.2 ± 1.0 a 182.2 ± 3.6 a 168.9 ± 10.5 a 0.8 ± 0.1 a 64.6 ± 8.8 a 

RR 35.0 ± 8.8 b 41.7± 10.4 a 16.5 ± 0.9 a 16.4 ± 1.1 a 182.9 ± 5.8 a 166.9 ± 14.0 a 1.5 ± 0.8 a 57.8 ± 8.2 a 

F1ARmSf 59.5 ± 12.5 a 48.3 ± 12.0 a 15.5± 1.1 a 15.1 ± 1.0 a 180.3 ± 8.2 a 171.4 ± 3.3 a 0.8 ± 0.1 a 62.9 ± 7.2 a 

F1BRfSm 58.3 ± 14.0 a 73.3 ± 9.9 a 15.8 ± 1.1 a 15.2 ± 0.9 a 175.6 ± 12.6 a 186.3 ± 8.2 a 1.1 ± 0.25 a 72.8 ± 8.9 a 

ANOVA 

P-value 

F3,9 = 6.64  F3,9 = 1.41  F3,9 = 0.64  F3,9 = 2.82  F3,9 = 0.15  F3,9 = 0.85  F3,9 = 0.43  F3,26.4 = 0.52  

0.0117 0.3021 0.6106 0.0992 0.9297 0.5005 0.7350 0.6744 

Table 2.3.  Survival, growth, development, and egg production (mean ± sem) of Bt-susceptible (SS), Cry2Ab2-resistant (RR), and 

two reciprocal F1 (F1ARmSf and F1BRfSm) strains of Spodoptera frugiperda on non-Bt corn leaf tissue* 

Insect 

Strain  

7-d larval 

weight 

(mg/larva) 

Neonate-to-

pupa 

survival %  

Neonate to pupa 

development time (day) 

 Pupal mass (mg/pupa) Sex ratio  

(m:f) 

Egg mass per 

pair (mg) 

Male Female Male Female 

SS 58.0 ± 9.2 a 54.3 ± 7.4 a 14.1 ± 0.7 a 13.9 ± 0.7 a 203.9 ±5.0 a 198.4 ± 4.9 a 1.7 ± 0.7 a 34.5 ± 8.0 b  

RR 60.2 ± 8.8 a 57.8 ± 4.9 a 14.2 ± 0.6 a 13.9 ± 0.5 a 194.9 ±2.9 a 199.3 ± 4.3 a 1.2 ± 0.3 a 61.4 ± 8.1 ab 

F1ARmSf 67.3 ± 13.3 a 53.5 ± 5.8 a 13.8 ± 0.5 a 13.7 ± 1.0 a 208.0 ± 3.9 a 196.5 ± 4.5 a 1.1 ± 0.3 a 58.8 ± 15.1 ab 

F1BRfSm 70.9 ±13.2 a 54.7 ± 7.9 a 13.4 ± 0.6 a 13.5 ± 0.5 a 201.3 ± 6.5 a 195.3 ± 6.2 a 1.5± 0.07 a 91.6 ± 10.7 a 

ANOVA 

 

F3,9 =2.45 F3,9 = 0.11  F3,9 = 2.20  F3,9 = 0.52  F3,9 = 2.52  F3,9 = 0.14  F3,9 = 0.46  F3,18.6 = 6.21  

P = 0.1305 0.9505 0.1577 0.6783 0.1237 0.9360 0.7189 0.0042 
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develop to the pupa stage, and a female took 13.8 days. Pupae developing from larvae feeding on 

non-Bt corn leaf tissue were also somewhat heavier than those from non-Bt diet. On average, 

male and female pupae of the four insect strains weighed 202.0 and 194.4 mg, respectively. On 

the leaf tissue, relatively more males than females survived to the pupal stage; sex ratios 

(male/female) of the four strains ranged from 1.1 to 1.7 with an average of 1.38 (Table 2.3). 

2.3.2. Inheritance of Cry2Ab2 resistance in S. frugiperda. 

2.3.2.1. Overall results of the analysis of variance for the 10 insect strains and performance of SS 

and RR on Cry2Ab2-treated diet and Cry2Ab2 corn leaf tissue 

In the two-way ANOVA of the data observed from the diet-incorporated bioassay, a 

significant effect of insect strain (F9,87 = 42.28, P < 0.0001), Cry2Ab2 concentration (F2, 87 = 

398.90, P < 0.0001), and the interaction between Cry2Ab2 concentration and insect strain (F18, 87 

= 12.30, P < 0.0001) was detected. The 7-day mortality of SS at the Cry2Ab2 concentration of 

10 µg/g was as low as 11.8%, but reached 43% at 31.6 µg/g and 96.8% at 100 µg/g, with 

significantly higher mortalities at higher concentrations (Table 2.4). Similarly, the mortalities of 

two F1 strains were significantly higher as toxin concentration increased. In contrast, mortality 

of RR was low across all three Cry2Ab2 concentrations and ranged from 3.1 to 6.1% that did not 

differ across the toxin concentrations (Table 2.4). 

In the one-way ANVOA of the data collected from the leaf tissue test, the effect of insect 

strain on larval mortality was significant (F9,27 = 56.18; P < 0.0001) (Table 2.5). After 7 days of 

feeding on Cry2Ab2 corn leaf tissue, 97.6% SS larvae were killed, which was considerably (P < 

0.05) greater than the corresponding mortality (5.7%) of RR (Table 2.5). 
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a Sample size (N, number of larvae) in diet-incorporated bioassay for each strain was 100. 
b Means within the same column followed by different letters were significantly different based 

on Tukey’s HSD tests at α= 0.05. 

 

 

 

 

Table 2.4. 7-day larval mortality (% mean ± sem) of ten strains of Spodoptera frugiperda in diet-

incorporated bioassays 

Cry2Ab2 

Concentration (µg/g) 
Insect Strain a Mean ± sem b 

10  SS  11.8 ± 2.8 ghi 
10  RR  3.1 ± 1.0 i 
10  F1ARmSf  13.8 ± 5.1 fghi 
10  F1BRfSm  7.5 ± 2.8 hi 
10  F2ARmSf  32.6 ± 4.5 cdef 
10  F2BRfSm  7.0 ± 1.9 i 
10  BCF1AmRf  20.4 ± 6.1 efghi 
10  BCF1AfRm  9.5 ± 2.7 ghi 
10  BCF1BmRf  5.2 ± 2.9 i 
10  BCF1BfRm  4.4 ± 1.8 i 
31.6  SS  43.0 ± 2.1 c 
31.6  RR  5.1 ± 2.0 i 
31.6  F1ARmSf  41.4 ± 3.9 cd 
31.6  F1BRfSm  28.0 ± 6.2 cdefg 
31.6  F2ARmSf  33.7 ± 5.6 cdef 
31.6  F2BRfSm  22.1 ± 7.2 defghi 
31.6  BCF1AmRf  27.6 ± 3.5 cdefgh 
31.6  BCF1AfRm  10.5 ± 3.2 ghi 
31.6  BCF1BmRf  11.3 ± 3.6 ghi 
31.6  BCF1BfRm  35.9 ± 3.3 cde 
100 SS  96.8 ± 2.1 a 
100  RR  6.1 ± 1.7 i 
100  F1ARmSf  80.5 ± 2.2 ab 
100  F1BRfSm  72.0 ± 2.8 b 
100  F2ARmSf  70.8 ± 1.3 b 
100  F2BRfSm  67.4 ± 3.3 b 
100  BCF1AmRf  46.9 ± 2.9 c 
100  BCF1AfRm  46.3 ± 4.0 c 
100  BCF1BmRf  42.3 ± 5.1 cd 
100  BCF1BfRm  42.4 ± 2.7 c 



 

52 

 

a Sample size (N, number of larvae) in each bioassay was 128. 
b Means within the same column followed by different letters were significantly different based 

on Tukey’s HSD tests at α= 0.05. 

2.3.2.2. Sex linkage and effective dominance level (DML) of Cry2Ab2 resistance in Spodoptera 

frugiperda 

The multiple comparison of Tukey’s HSD tests showed no significant differences in 

larval mortality between the F1 strains generated from reciprocal crosses of SS and RR for all 

three Cry2Ab2 concentrations in the diet incorporated bioassay (Table 2.4) and for the corn leaf 

tissue tests (Table 2.5). Mortality of the two F1 strains was low (7.5-13.8%) at 10 µg/g but 

reached 72.0% (F1BRfSm) and 80.5% (F1ARmSf) at 100 µg/g, which were significantly (P < 0.05) 

greater than the mortality of RR, but less than the mortality of SS (Table 2.4). On Cry2Ab2 leaf 

tissue, mortality of the two F2 strains was 99.1%, which was also considerably greater (P < 0.05) 

than the mortality of RR but not significantly different (P > 0.05) from SS (Table 2.5). Similarly, 

mean comparison between the two F1 strains based on the Student’s t-test also showed that there 

Table 2.5. 7-day larval mortality (% mean ± sem) of ten strains of Spodoptera frugiperda 

in corn leaf tissue bioassays 

Insect Strain a Mean ± sem b 

SS 97.6 ± 0.8 ab 

RR 5.7 ± 2.5 d 

F1ARmSf  99.1 ± 0.9 a 

F1BRfSm 99.1 ± 0.9 a 

F2ARmSf  78.3 ± 5.8 b 

F2BRfSm 81.0 ± 2.5 ab 

BCF1AmRf 54.7 ± 2.2 c 

BCF1AfRm 52.6 ± 6.2 c 

BCF1BmRf 54.3 ± 5.4 c 

BCF1BfRm 42.2 ± 5.2 c 

ANOVA F9, 27 = 56.18, P < 0.0001 
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were no significant differences in the mortalities between the two F1 strains for each of the three 

Cry2Ab2 concentration and leaf tissue bioassays (Table 2.6).  Thus, no sex-linkage or maternal  

effect was evident in the Cry2Ab2 resistance in S. frugiperda in this study. 

 Effective dominance levels were calculated based on the larval mortality at each of the 

toxin concentration in diet-incorporated bioassay and Cry2Ab2 leaf tissue test. Based on the diet-

incorporated bioassays, the calculated DML was 0.22 at 31.6 µg/g and 0.23 at 100 µg/g, while it 

was -0.02 based on the Cry2Ab2 leaf tissue tests (Table 2.7). These results indicate that the 

Cry2Ab2 resistance in S. frugiperda was functionally recessive in the leaf tissue and 

incompletely recessive in the diet-incorporated assays.  

 

Table 2.6. Larval mortality (% mean) of the two F1 reciprocal strains of Spodoptera 

frugiperda in diet-incorporated and leaf tissue bioassays 

Assay Method Cry2Ab2 

concentration 

or plant Stage 

Mean 

Mortality % 

(F1ARmSf) 

Mean 

Mortality % 

(F1BRfSm) 

|t| value  P-value 

Diet-

incorporated 

10 µg/g 13.8 7.5 1.24 0.3025 

 31.6 µg/g 41.4 28.0 2.09 0.1277 

 100 µg/g 80.5 72.0 1.85 0.1621 

 Leaf tissue V4 – V7 99.1 99.1 0.00 0.9881 

Table 2.7. Effective dominance level (DML) of Cry2Ab2 resistance in Spodoptera 

frugiperda in diet-incorporated and leaf tissue bioassays 

 Assay method Cry2Ab2 

concentration or 

plant stage 

 

Dominance level 

(DML) 

Conclusion  

Diet-incorporated 31.6 µg/g 0.22 Incompletely 

recessive 

 100 µg/g 0.23 Incompletely 

recessive  

Leaf tissue V4 – V7 -0.02 Completely 

recessive 
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2.3.2.3. Test for fitting the Mendelian monogenic model of inheritance  

In general, 7-day larval mortality was similar between the two F2 strains for the leaf 

tissue tests and at each Cry2Ab2 concentration in the diet-incorporated bioassays except for 10 

µg/g. At a Cry2Ab2 concentration of 31.6 µg/g in diet-incorporated bioassays, mortality of the 

two F2 strains was low (33.7% for F2ARmSf and 22.1% for F2BRfSm), but they had higher 

mortality at 100 µg/g concentration (70.8% and 67.4%, respectively), which was significantly 

greater than the mortality of RR, but significantly less than SS (Table 2.4). The mortality of the 

two F2 strains on Cry2Ab2 corn leaf tissue (78.3% for F2ARmSf and 81.0% for F2BRfSm) was also 

considerably greater (P < 0.05) than that observed for RR but the differences between the F2 

strains and SS were not significant (P > 0.05) (Table 2.5). 

Some variation in the larval mortality at Cry2Ab2 concentration of 10 µg/g and 31.6 µg/g 

in the diet-incorporated bioassays were observed among the four backcross insect strains, but the 

overall mortality at these two concentrations was low across the four insect strains, ranging from 

4.4 to 35.9% (Table 2.4). There were no significant differences in the larval mortality among the 

four backcross strains at 100 µg/g in the diet-incorporated bioassay (ranged from 42.3-46.9%) 

(Table 2.4) as well as in the leaf tissue test (ranged from 42.2-54.7%) (Table 2.5).   

χ2 tests showed that the larval mortality data observed fitted well the expected data (χ2 = 

0.145 to 2.55, df = 1, P = 0.11 to 0.703) based on the Mendelian monogenic model of inheritance 

for both the F2 and backcrossed strains, and in both the diet-incorporated and leaf tissue 

bioassays (Table 2.8). Thus, it is very likely that the Cry2Ab2 resistance is controlled by a single 

or a few tightly-linked genes.    
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a N = total number of insect individuals assayed. 

2.4. Discussion 

Although a few minor differences were observed among SS, RR, and the two F1 strains 

in the fitness cost study, the performance of SS and RR was similar on non-Bt diet or on non-Bt 

corn leaf tissue across all the life history parameters measured. In addition, the two F1 hybrid 

strains had comparable fitness to SS in both assay methods. Together with the results from the 

inheritance study, Cry2Ab2 resistance in S. frugiperda appears to be inherited as a single (or a 

few tightly-linked), autosomal, recessive gene and the resistance is not associated with 

significant fitness costs.  

The presence of fitness costs, especially non-recessive fitness costs, could be important in 

delaying the evolution of resistance by selecting against resistant genotypes after selection 

pressure is removed (Gassmann et al., 2009). Past studies have shown that Bt resistance are 

associated with fitness costs in some cases (Carrière et al., 2001; Bird and Akhurst, 2004; 

Anilkumar et al., 2008; Gassmann et al., 2009; Pereira et al., 2011; Dangal and Huang, 2015). 

However, the lack of fitness costs in Bt resistance is not uncommon. In particular, a lack of 

Table 2.8. Test for fitting the Mendelian monogenic model for Cry2Ab2 resistance in 

Spodoptera frugiperda 

Assay 

Method 

Cry2Ab2 

concentration  

Insect strains N a Observed 

dead (O) 

Expected 

dead (E) 

χ2 P-

value 

Diet-

incorporated 

31.6 µg/g Pooled 

Backcross 

400 84.8 79.0 0.530 0.470 

Pooled F2 200 56.0 58.5 0.145 0.703 

100 µg/g Pooled 

Backcross 

400 178.0 164.4 1.910 0.167 

Pooled F2 200 138.2 127.5 2.470 0.116 

Cry2Ab2 

leaf tissue 

V4-V7 stage Pooled 

Backcross 

512 260.9 268.3 0.420 0.517 

Pooled F2 256 204.3 193.0 2.550 0.110 
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fitness costs has been documented in the three most notable cases of field resistance to Bt crops, 

which are the resistance of the B. fusca to Cry1Ab corn (Kruger et al., 2014); D. virgifera 

virgifera, to Cry3Bb1 corn (Petzold-Maxwell et al., 2012); and S. frugiperda to Cry1F corn 

(Jakka et al., 2014; Vélez et al., 2014; Leite et al., 2016). The similar results for these three cases 

indicate that the absence of fitness costs may play an important role in resistance development in 

the field. In addition, a lack of fitness costs was reported for the Cry1A.105 resistance in S. 

frugiperda (Niu et al., 2017), Cry2Ab2 and Cry1Ab resistance in the sugarcane borer, Diatraea 

saccharalis (Fabricius) (Wu et al., 2009a; Zhang et al., 2014b; Huang et al., 2015), and Cry1Ac 

resistance in Plutella xylostella Linnaeus (Sayyed and Wright, 2001). If the current finding of a 

lack of fitness costs for Cry2Ab2 resistance translates into field scenarios, it would suggest that 

having effective proactive resistance management strategies in place before field-evolved 

resistance occurs will be critical to preserve susceptibility to this protein. 

The finding of lack of maternal effect/sex linkage for the Cry2Ab2 resistance in S. 

frugiperda in the current study is consistent with a wide body of published studies on Bt 

resistance. For example, Cry1F resistance in several other populations of S. frugiperda that have 

been evaluated was also autosomally inherited (Storer et al., 2010; Vélez et al., 2013; Leite et al., 

2016; Santos-Amaya et al., 2016; Camargo et al., 2017). Similar results were also found for the 

Cry1Ab and Cry1Ac resistance in Asian corn borer (Ostrinia furnacalis Guenée) (Zhang et al., 

2014a), Cry1Ac and Cry2Ab resistance in Helicoverpa armigera Hübner (Kranthi et al., 2006; 

Mahon et al., 2007), Cry1Ac resistance in P. gossypiella (Tabashnik et al., 2002), Cry1F 

resistance in Ostrinia nubilalis Hübner (Pereira et al., 2008), and Cry1Ab and Cry2Ab2 

resistance in D. saccharalis (Wu et al., 2009c; Huang et al., 2015).  

http://www.sciencedirect.com/science/article/pii/S0022201115001329#b0150
http://www.sciencedirect.com/science/article/pii/S0022201115001329#b0230
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Past studies also have reported that high level resistance to Bt toxins is largely recessive 

(Bourguet et al., 2000; Ferré and van Rie, 2002; Mahon et al., 2007; Huang et al., 2011). The 

findings of recessive (or incompletely recessive) inheritance of the Cry2Ab2 resistance in S. 

frugiperda in the current study is also consistent with many studies, which include the Cry2Ab 

resistance in H. armigera (Mahon et al., 2007) and Cry1F resistance in S. frugiperda (Storer et 

al. 2010; Vélez et al., 2013; Camargo et al., 2017). However, some recent studies have shown 

that functionally non-recessive resistance to Bt crops can occur frequently, particularly against 

single toxin, non-high dose products. For example, the resistance of B. fusca to Cry1Ab corn was 

reported to be dominant (Campagne et al., 2013) and resistance to Cry3Bb1 corn in D. virgifera 

virgifera was found to be incompletely recessive to partially dominant (Petzold-Maxwell et al., 

2012; Ingber and Gassmann, 2015). Non-recessive resistance to Bt crops also has been observed 

with Cry1Ac resistance in H. armigera (Nair et al., 2010; Jin et al., 2013), Cry1F resistance in S. 

frugiperda (Farias et al., 2016; Leite et al., 2016), and Cry1Ab and Cry2Ab2 resistance in D. 

saccharalis (Wu et al., 2009c; Ghimire et al., 2011; Wangila et al., 2012; Huang et al., 2015). 

Diverse genetic basis of resistance has been documented in H. armigera where Cry1Ac 

resistance is governed by recessive cadherin mutations as well as non-recessive resistance alleles 

(Zhang et al., 2012). All these findings imply that species-and toxin-specific knowledge on Bt 

resistance is needed to develop scientifically sound resistance management strategies.  

The method employed here to determine the number of loci involved in the resistance is 

based on the expected mortality of F2 and backcross strains. The null hypothesis assumes that 

the resistance is controlled by one locus with two alleles (Tabashnik, 1991). Due to the 

complexity, two or more gene hypotheses were not tested, but the multiple tests with the diet-

incorporated bioassays at two Cry2Ab2 concentrations as well as with corn leaf tissue bioassays 
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all pointed to a monogenic inheritance of the Cry2Ab2 resistance in S. frugiperda. Studies have 

shown that the number of genes conferring Bt resistance can vary depending on insect species, 

toxin types, and even selection regimes (Liang et al., 2008; Wang et al., 2016). However, in most 

cases, Bt resistance was found to be controlled by a single gene (or a few tightly-linked genes), 

such as the Cry1F resistance in S. frugiperda (Vélez et al., 2013; Santos-Amaya et al., 2016; 

Camargo et al., 2017) as well as the Cry2Ab2 resistance in H. armigera (Mahon et al., 2007) and 

D. saccharalis (Huang et al., 2015).  

Documentation of a single, autosomal, recessive gene associated with the Cry2Ab2 

resistance in S. frugiperda (particularly when confronted with Bt corn tissue) in the current study 

should have significant implications for resistance management. If the findings of the current 

study hold true under field conditions, it suggests that the recessive resistance assumption of the 

currently implemented “high-dose/refuge” IRM strategy is likely satisfied for managing the 

Cry2Ab2 resistance in S. frugiperda. Recessive resistance is a key requirement for the “high-

dose/refuge” IRM strategy so that the heterozygous individuals carrying a single Bt resistance 

allele can be killed by the “high dose” Bt plants (Huang et al., 1999; Huang et al., 2011).  

Besides the high dose/refuge strategy, a gene-pyramiding strategy has been implemented 

for Bt crop resistance management in the U.S. and globally. This strategy relies on the use of 

transgenic crops that produce two or more dissimilar Bt proteins targeting the same insect pests. 

To be effective, the pyramided proteins should lack cross-resistance so that resistance to one Bt 

protein does not confer resistance to others (Zhao et al., 2003; Moar and Anilkumar, 2007). In 

the current Bt crop market, none of the commercial Bt corn or Bt cotton express the Cry2Ab2 

protein alone. In corn, Cry2Ab2 is one of the two genes in the event MON89034 which has been 

incorporated into some common commercial Bt corn hybrids such as Genuity® VT Double 
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Pro™, Genuity® VT Triple Pro™, Genuity®SmartStax™ and PowerCornTM (Buntin and 

Flanders, 2015; DiFonzo et al., 2017). Other Bt genes in these corn products targeting 

lepidopteran pests are Cry1A.105 and Cry1F. In cotton, Cry2Ab2 is combined with the Cry1Ac 

protein in a common Bt cotton product, Bollgard II (Monsanto, 2012). These Bt corn and cotton 

plants are shown to control S. frugiperda along with other insect pests such as H. zea (Adamczyk 

et al., 2008; Siebert et al., 2012; Rule et al., 2014).  Recently, another Bt protein, Vip3A, which 

has a novel mode of action, has been incorporated into some Bt corn and cotton varieties 

(Estruch et al., 1996). Many studies have shown that there is no cross-resistance among Cry1A, 

Cry2A and Vip3A proteins in S. frugiperda (Sivasupramaniam et al., 2008; Niu et al., 2013; 

Vélez et al., 2013; Huang et al., 2014; Niu et al., 2014; Santos-Amaya et al., 2015; Niu et al., 

2016; Yang et al., 2016a; Yang et al., 2017) and in other target pests (Brévault et al., 2009; Wu 

et al., 2009b; Yang et al., 2015; Sivasupramaniam et al., 2008). However, cross-resistance 

among Cry1 (e.g. Cry1F to Cry1Ab, Cry1Aa, and Cry1A.105) proteins is very common 

(Hernández-Rodríguez et al., 2013; Huang et al., 2014; Bernardi et al., 2015). Because S. 

frugiperda has developed field resistance to Cry1F corn in multiple locations (Storer et al., 2010; 

Farias et al., 2014; Huang et al., 2014), and Cry1F cross-resistance with other Cry1 proteins, 

Cry2Ab2 would essentially be the only fully active Bt protein targeting this pest. Moreover, H. 

zea has shown decreased Cry1Ac susceptibility in some field populations of H. zea collected 

from the U.S. Cotton Belt (Yang et al., 2016b). Recently, Dively et al. (2016) reported that field 

resistance of H. zea to MON89034 sweet corn has occurred in Maryland. This highlights the 

importance of preserving susceptibility of Cry2Ab2 to its target pest populations such as S. 

frugiperda and H. zea for the sustainability of Bt crops. The information from the current study 
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should be useful in developing effective IRM strategies to prevent further spread of the 

resistance and preserve the Cry2Ab2 susceptibility of the field pest populations.   
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CHAPTER 3: SUMMARY AND CONCLUSIONS 

Genetically engineered crops expressing proteins from Bacillus thuringiensis (Bt 

proteins) have been commercialized since 1996, which has greatly changed the landscape of pest 

management in corn and cotton by suppressing target pest populations, reducing application of 

conventional insecticides, and economically benefitting farmers. Due to the strong selection 

pressure imposed by the widespread adoption of Bt crops, evolution of resistance in target pest 

populations has been a major threat to the sustainability of transgenic Bt crop technology.  

The polyphagous insect, fall armyworm, Spodoptera frugiperda (J.E. Smith) is one of 

target pests of Bt corn, Bt cotton, and Bt soybean. It is a major economic pest of corn in many 

regions of North and South America. This pest, thus far, has developed field-resistance to Bt 

corn in Puerto Rico, Brazil, and U.S. mainland. Cry2Ab2 is a relatively new Bt protein that was 

deployed in transgenic corn to control lepidopteran pests including S. frugiperda. This particular 

Bt protein remains the chief Bt protein in Bt products to control S. frugiperda because the pest 

has already developed field resistance to Cry1F protein, and the resistance development to other 

Cry1-proteins is likely to hasten because of their cross-resistance to Cry1F. The proper 

knowledge on fitness costs and genetic basis of resistance is crucial because they are important 

factors that dictate the rate of evolution of resistance. Using an F2 screen, a Cry2Ab2-resistant 

strain S. frugiperda was established in the Corn and Small Grain Insect Research Laboratory at 

the Louisiana State University Agricultural Center, which paved the way to analyze the fitness 

costs and inheritance of Cry2Ab2 resistance in S. frugiperda. 

In the fitness tests, larval survival, development, and reproduction of the Cry2Ab2-

resistant, -susceptible, and two reciprocal F1 heterozygous strains were assayed on non-toxic diet 

and non-Bt corn leaf tissue. Biological parameters measured in the rearing were 7-day larval 
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body weight, neonate-to-pupa development time, neonate-to-pupa survivorship, pupal weight, 

sex ratio, and egg production. In inheritance study, larval mortalities of the resistant- and 

susceptible-parents, and 8 other cross-strains were assayed using diet-incorporated and leaf tissue 

bioassays. Maternal effects were examined by comparing the larval mortalities between the two 

reciprocally crossed F1 strains. Dominance levels of resistance were measured by comparing the 

larval mortalities of resistant, susceptible, and F1 heterozygous strains. Number of genes 

associated with the resistance was estimated by fitting the observed mortalities of F2 and 

backcross strains with the Mendelian monogenic inheritance model. 

 In the absence of selection pressure, there were no significant differences among the four 

insect strains for all the fitness parameters measured with few exceptions, suggesting that the 

resistance was not associated with fitness costs. Student’s t-tests showed that there were no 

significant differences in the mortalities between the two F1 strains for each of the three 

Cry2Ab2 concentration and leaf tissue bioassays. Based on the diet-incorporated bioassays, the 

calculated DML was 0.22 at 31.6 µg/g and 0.23 at 100 µg/g, while it was -0.02 based on the 

Cry2Ab2 leaf tissue tests which suggests that the Cry2Ab2 resistance in S. frugiperda was 

functionally recessive in the leaf tissue and incompletely recessive in the diet-incorporated 

assays. χ2 tests showed that the larval mortality data observed fitted well the expected data based 

on the Mendelian monogenic model of inheritance for both the F2 and backcrossed strains, and 

in both the diet-incorporated and leaf tissue bioassays. In summary, the Cry2Ab2 resistance in S. 

frugiperda was likely inherited as a single, autosomal, and recessive gene. Information generated 

from this study should be useful in assessing resistance risk and developing management 

strategies for the sustainable use of Bt crop technology. 
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