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ABSTRACT 

Soybean looper, Chrysodeixis includens (Walker), is one of the most destructive pests of 

soybean in the southern U.S.  It is highly resistant to most insecticides.  Induced host plant 

resistance and cultural control are sought as alternative control tactics.  In this study, effects of 

induced resistance by exogenous application of elicitors were estimated on soybean looper 

development in soybean.  Three different known elicitors of SAR (systemic acquired resistance), 

Actigard 50WG (acibenzolar-S-methyl), Regalia (extract of Reynoutria sachalinensis) and 

methyl jasmonate (MeJA), were applied to soybean plants at R2 and R5 stages to determine if 

these chemicals could induce plant resistance and lower soybean looper fitness in the field.  All 

of the SAR elicitors had significantly adverse effects on soybean looper development time, 

defoliation, and pupal weight.  In particular, applications of MeJA significantly reduced pupal 

weight by 6.8% and delayed larval development by 14.3% compared to untreated checks.  The 

results suggest that exogenous elicitors can trigger plant resistance against herbivores and may 

have a place in integrated pest management. 

Inorganic fertilizers increase yield but sometimes also stimulate insect outbreaks.  

Potassium (K) fertilizer plays an important role in crop production.  In this study, different rates 

of K fertilizer were used to detect their effects on soybean yield and soybean looper 

development.  Soybean plants were supplied with six different rates of K (0, 33.6, 67.3, 100.9, 

134.5, and 168.1 kg/ha as K2O) in field trials.  Soybean leaves were sampled at R1, R3, R5, and 

R6 stages and fed to soybean looper in laboratory bioassays.  Soybean looper consumed more 

tissues and spent less time completing larval development when fed on foliage from treatments 

of 134.5 and 168.1 kg/ha.  Pupal weight significantly increased at 134.5 and 168.1 kg/ha.  

Soybean yield and 100 seed weight were also significantly enhanced at 168.1 kg/ha, but seed 
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protein and oil content were not affected by K fertilization.  Higher K fertilizer rates can enhance 

soybean yield but also improve soybean looper development.  Therefore, K fertilizer rates will 

need to be balanced between increased yields and reduced herbivore populations. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

Soybean, (Glycine max (L.) Merrill, is an important crop worldwide and soybean seed is a 

significant source for human and animal to obtain nutrition of protein, oil, and minerals (Kolar 

and Grewal 1994).  In the United States, soybean is the second most planted field crop, with a 

total of 77.2 million acres planted in 2013 (USDA-NASS 2013).  Soybeans are the world’s 

largest protein feed source for animals and the second largest source of vegetable oil for human 

beings (USDA-ERS 2012).  In Louisiana, soybean production includes several hundreds of 

thousands of hectares and plays an important role in the agricultural economy (Boyd and Boethel 

1998).  It is one of the most adaptable crops for varying soil types and climatic conditions in 

Louisiana (Morrison and McCormick 1996).  

Like other agricultural crops, soybean plants can be damaged by a variety of insect pests 

which feed on leaves, stems, roots, nodules, pods and seeds, from emergence to harvest 

(Turnipseed and Kogan 1987).  In general, occurrence of soybean pest insects is greatest in the 

South, especially in the Southern states neighboring the Gulf of Mexico and the Atlantic Ocean, 

because the warm climate facilitates high survival and multiple generations each year (Gianessi 

2009).  In Louisiana, numerous insect pest species consume soybean.  The most damaging 

defoliating insects of soybean in the southern U.S. are the green cloverworm, Plathypena scabra 

(Fabricius), velvetbean caterpillar, Anticarsia gemmatalis (Hübner), and soybean looper, 

Chrysodeixis includens (Walker) (Higley and Boethel 1994).  Soybean looper cost growers more 

than $10/acre in expenses and yield loss during 2012 (Musser et al. 2013).  In Louisiana, 95% of 

the soybean acreage was treated for this pest with a yield loss plus cost of insecticide treatment 

reaching $26 million (Musser et al. 2013).  In addition, soybean looper is highly resistant to most 

insecticides and few products exist for control (Leonard et al. 1990).  Alternative control 
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strategies are needed.  

1.1 Soybean Looper Life Cycle  

Soybean looper, Chrysodeixis includens (Walker), is a leaf defoliator that belongs to the 

family Noctuidae in the order Lepidoptera.  Its life cycle includes egg, larval, pupal, and adult 

stages.  The average duration of the egg, larval and pupal stages is 2.7, 13.4 and 7.0 days under 

rearing conditions at 26.5 ± 1°C (Canerday and Arant 1967), and adult males and females can 

live for 13.5 and 14.1 days respectively at 26.7°C (Mitchell 1967).  Larvae typically develop 

through six stages (Canerday and Arant 1967). 

Soybean looper eggs are small, round, and greenish-white, laid singly on the underside of 

leaves of the mid-to-lower canopy.  Soybean looper larvae are pale green or green with 

longitudinal white stripes along the sides with small dark spots on the abdomen.  Larvae have 

pale hairs and can reach 45 mm in length.  The body of larvae has three pairs of prolegs, tapers 

gradually from the rear to the head, and crawl with a distinct looping motion.  Larvae spin loose 

silken cocoon under leaves and then pupate in it.  The pupa is greenish or greenish-white with 

irregular black spots in it.  The adult has mottled brown forewings and dusty brown hind wings.  

There are various brown and gray shades and silvery white makings at the forewings.  The 

wingspan measures about 30 to 39 mm (Canerday and Arant 1967).  The forewings are darker in 

color than the hindwings and a silver figure-8 marking appears near the middle of the distinctive 

forewings (Smith 1994). 

1.2 Soybean Looper Biology 

Soybean looper is a polyphagous species that has 73 known host-plant species in 29 families 

(Herzog 1980) including important agricultural crops such as sweet potatoes, tomatoes, okra, and 

beans (Bottimer 1926).  However, soybean is the most preferred host for its feeding and 
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oviposition (Herzog 1980).  Soybean looper larvae attack soybean plants by feeding on the 

foliage, with the lower two thirds of the crop canopy as a preferred feeding area for this insect 

(Herzog 1980).  Caterpillars move upward and outward from the inside of the canopy and then 

consume the entire plant, leaving a ragged appearance at heavy infestations (Smith 1994).  For 

each larva, approximately 114 cm
2
 of leaf material is consumed during its whole larval stage 

(Reid and Greene 1973).  Initial feeding of soybean looper larvae does not cause economic 

damage to soybean yield because the foliage consumption is relatively minimal and soybean 

plants can withstand up to 30% defoliation before blooming stage (R2) (Fehr et al.1971, 

Trunipseed and Kogan 1987).  Later foliage consumption of soybean looper during fourth to 

sixth instars accounts for 95% of the total defoliation (Sullivan and Boethel 1994).  This is 

detrimental to yield because the period of greatest leaf consumption by soybean looper coincides 

with soybean growth stages after R3 (pod formation) (Carter-Wientjes et al. 2004). 

Soybean looper adults migrate annually from overwintering areas in Florida, southern Texas, 

and the Caribbean Islands (Mitchell et al. 1975) to build economically damaging populations in 

Gulf Coast States (Herzog 1980).  Three to four generations can occur in the Mid-South in one 

soybean growing season (Funderburk et al. 1999).  In Louisiana, this insect can be found in May 

or June when cotton begins to flower (Sullivan and Boethel 1994).  Adult females feed on cotton 

nectar that provides more carbohydrates than soybean flowers for egg production.  Females then 

move to adjacent soybean fields to lay eggs on the bottom side of soybean leaves (Jensen et al. 

1974, Carter-Wientjes et al. 2004).  Soybean looper outbreaks usually occur in late August and 

early September in the cotton-soybean ecosystem where cotton and soybean are planted as 

principal crops (Burleigh 1972).  
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1.3 Soybean Looper Management  

Since soybean looper is an important pest in soybean, a variety of control measures have been 

applied to suppress its population.  Recommendations for preventing yield loss from defoliating 

insects in soybeans were designed not to exceed 30% defoliation in vegetative stages and 20% in 

reproductive stages (Layton and Boethel 1998).  In addition, scouting once a week during 

vegetative stages and twice weekly from early flowering to late podding is recommended (Bailey 

2007).  The economic threshold was established at 8 and 4 worms that were longer than one half 

inch per row foot during vegetative stages and pod filling stages, respectively (Kogan 1976).  

Historically, broad-spectrum insecticides have been the major tools to control soybean 

loopers.  These include cycloidenes, organophosphates, carbamates, and pyrethroids (Boethel et 

al. 1992).  However, soybean loopers have become difficult to manage in recent years (Temple et 

al. 2008).  Overuse of these insecticides has led to resistance (Leonard et al. 1990).  Insecticides 

have also resulted in non-target effects on natural enemies which flare populations (Temple et al. 

2008).  Although soybean looper is a migratory pest insect, this species can be used as a host by 

native parasitoids and fungi in southern soybean fields (Gianessi 2009).  Parasites and fungal 

pathogens provided some impact on reducing soybean looper population in the field.  Burleigh 

(1972) reported that seven different parasite species and two fungal pathogens attacked soybean 

looper in three different agricultural ecosystems, suggesting that some of these biotic control 

factors may be potentially useful for soybean looper management when the population density 

reached a high level.  However, economic damage usually occurs before these natural control 

agents can reduce soybean looper populations (Gianessi 2009).  Smith (1994) also reported that 

naturally occurring parasites and pathogens have not provided much help in controlling soybean 

looper in recent years because they only affect a small portion of soybean looper populations.  
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Soybean plant breeding for insect resistance to herbivory has been studied since 1970s, but 

there is limited success probably due to the quantitative nature of resistance (Narvel et al. 2001).  

Three soybean varieties with defoliator resistance were commercialized in the United States: 

‘Crockett’, ‘Lamar’, and ‘Lyon’ (Boethel 1999).  However, none of these were widely accepted 

by growers due to low yield, late maturity, and inadequate resistance levels (Lambert and Tyler 

1999, Gianessi 2009). 

1.4 Induced Host Plant Resistance 

In order to protect themselves from pathogens and herbivores, plants have developed a wide 

range of strategies.  These strategies consist of two categories of defenses: constitutive defenses 

and induced plant defenses.  Constitutive defense is resistance that is expressed regardless of the 

previous history of the plants, which includes physical and chemical barriers that are always 

present and active in plants.  In contrast, induced defenses include defensive mechanisms that 

become activated after plants are attacked by herbivores (Karban and Myers 1989).  Induced 

defense can be categorized into direct and indirect resistance.  Direct induced resistance is 

characterized by reducing host plant quality and preference for subsequent herbivorous insects 

through changes in host plant biochemistry, physiology, or morphology, which could negatively 

impact the herbivore’s physiology and could reduce the preference or performance of feeding 

herbivores (Karban and Baldwin 1997).  Except for the direct induced resistance, plants also 

defend themselves indirectly by releasing volatile organic compounds (VOCs) that may attract 

natural enemies of herbivorous insects to reduce the populations of insect pest.  Induced plant 

resistance has been well studied and reported in more than 100 plant species, which included 

agricultural crops like soybean (Lin and Kogan 1990), tomato (Thaler et al. 1996), and cotton 
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(Karban and Carey 1984).  These induced resistance strategies could provide significantly 

ecological and economic benefits to global agriculture and environment.  

1.5 Elicitors of Induced Plant Resistance 

Plants protect themselves against herbivores by reducing plant suitability or palatability to 

reduce the performance and preference of herbivores directly, and by attracting natural enemies 

of herbivores indirectly with VOCs.  In natural systems, because the direct and indirect induced 

defenses are not presented at maximum levels all the time; various stimuli are needed to induce 

higher levels of resistance (Karban and Badwin 1997, Walling 2000).  Multiple biotic and abiotic 

challenges such as drought, nutrient deficiency, low/high temperature, and previous damage by 

herbivores can result in various plant responses (Karban and Myers 1989).  Herbivores can 

produce elicitors that trigger plant gene expression to create toxic secondary metabolites that 

reduce herbivore feeding, growth, fecundity, and fertility, and also produce VOCs that attract 

parasites and predators (Walling 2000, Stout et al. 2002, Heil et al. 2001).  Likewise, elicitors, 

natural or synthetic chemicals, have the similar or even equal roles in inducing plant responses as 

natural herbivores (Karban and Kuć 1999, Stout et al. 2002).  Induced responses caused by 

elicitors can potentially protect crop plants by activating direct and indirect resistance against 

pests at proper time during the development of crops (Stout et al. 2002).  These elicitors provide 

an opportunity to investigate induced resistance at the absence of natural herbivores (Stout et al. 

2002).  

Jasmonic acid (JA) and salicylic acid (SA) are the best documented elicitors for inducing 

resistance to herbivores.  JA is reported to involve in signaling transduction pathways in 

response to mechanical wounding and damage by some species of herbivores (Staswick and 

Lehmanm 1999).  Plants respond to a broad range of pathogens and some insects by those 
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signaling pathways that are related to SA (Dempsey et al. 1999).  In addition to JA and SA, a 

number of other synthetic chemicals have been used as resistance elicitors (Buzi et al. 2004); 

such as Actigard 50WG (acibenzolar-S-methyl) (Syngenta Crop Protection, Greenboro, NC), 

Regalia (extract of Reynoutria sachalinensis) (Marrone Bio Innovations, Davis, CA), and MeJA 

(methyl jasmonate) (Bedoukian Research, Danbury, CT).  Actigard 50WG, Regalia, and MeJA 

are well known elicitors of SAR, systemic acquired resistance, which is defined as the 

mechanism by which plants acquire a variety of systemic immunity when responding to previous 

localized infections (Ross 1961).   

Actigard 50 WG has been registered as a plant fungal and bacterial pathogen protectant and 

has been reported to induce resistance to cereal, tobacco, cucumber and soybean pathogens by 

activating the plants’ own defense mechanisms (Srinivas and Danielson 2001).  Actigard 50 WG 

is a novel compound that mimics host-pathogen interactions in plants in responding to pathogens 

(Perez et al. 2003).  Gorlach et al. (1996) demonstrated that a single application of Actigard 50 

WG provided long lasting protection in wheat and rice against fungal diseases.  In addition, 

Actigard 50WG has been reported to induce resistance to insects.  Exogenous application of 

Actigard 50 WG reduced the population of leaf miner in tomatoes and this insect preferred to 

consume untreated leaves in field (Inbar et al. 1998).  Furthermore, the exogenous use of 

Actigard 50 WG in soybean can induce resistance to bean leaf beetle and reduce its defoliation 

(Srinivas and Danielson 2001).  Thus, an application of Actigard 50WG has the potential to 

protect plants against both pathogens and herbivores.   

Regalia, extract of Reynoutria sachalinensis, is a wettable powder formulation that has been 

commercialized for control of powdery mildew and other pathogens (Daayf and Bélanger 1995).  

Applying Regalia as a foliar spray in plants was very effective for controlling a wide range of 
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fungal and bacterial diseases by the unique mechanism of induced plant resistance (Su et al. 

2012).  Daayf and Bélanger’s study (1995) showed that exogenous application of Regalia in 

Long English cucumber significantly reduced the incidence of powdery mildew.  In addition, 

treatments with extracts from R.sachalinensis have been proposed to prevent infection of tomato, 

apple, and begonia against powdery mildew in greenhouse (Herger and Klingauf 1990).  

MeJA, methyl ester of jasmonic acid, is a volatile organic compound used in a wide range of 

developmental pathways such as seed germination, flowering, fruit development, and leaf 

senescence.  MeJA and JA are found in a variety of plant species and they are also defined as 

endogenous regulators of wound-induced compounds in plants (Wasternack and Hause 2002).  

In addition, jasmonates are considered potent elicitors or signaling agents, and they are viewed as 

mediators of plant responses to herbivores (Staswick & Lehman 1999).  Previous research has 

documented that MeJA is involved as a signaling agent in plant cellular responses, plant-and-

plant interactions, as well as plant-and-herbivore interactions, (Cheong and Choi 2003).  

Franceschi et al. (2002) demonstrated that exogenous use of MeJA to spruce tree could induce 

defense response to bark-beetle attack.  In addition, lima beans treated with JA and MeJA 

produced a volatile mixture, which was the same as plants damaged by the two-spotted spider 

mite Tetranychus urticae Koch (Dicke et al. 1999). 

Some of these elicitors have been commercialized and used to control plant diseases, with few 

focusing on the herbivores.  Therefore, more research is needed to study the effectiveness of 

elicitors on herbivore management (Tally et al. 1999, Lyon and Newton 1999, Stout et al. 2002).   

1.6 Potassium (K) Fertilizer 

Fertilizer is an important input for increased agricultural productivity (Yardtm and Edwards 

2003).  Inorganic fertilizers, especially nitrogen (N), phosphorus (P) and Potassium (K) are 
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critical nutrients in maintaining or improving crop yields (Belay et al. 2002).  Potassium (K) is 

one of the primary crop nutrients and its function on plants has been studied since the 1950s 

(Dibb 1998).  It is well known that K is involved in numerous plant physiological and 

biochemical processes including enzyme activation, photosynthesis, assimilate transport, protein 

synthesis, and plant water relations (Pettigrew 2008).  Wyn Jones and Pollard (1983) reported 

that almost 60 different enzymes involved in plant growth depend on activity of potassium and 

these enzymes have critical functions in organic compounds and nitrogen metabolism.  These 

physiological roles have direct impacts on plant growth, yield production and crop quality.  

Insufficient potassium can cause yield loss due to reduced production of photosynthetic 

assimilates.  Pettigrew and Meredity (1997) have reported that short plant stature is likely to be 

observed when grown under K-deficiency conditions, which is often accompanied by decreased 

number and size of leaf tissues.  Besides crop yield, crop quality is also determined by K 

nutrition.  Grain protein content and amino acid content were increased by potassium fertilization 

applications in maize (Usherwood 1985) and cotton fiber traits were reduced when cotton was 

not supplied sufficient potassium (Pettigrew 1999).  

Potassium nutrition is involved in uptake and utilization of other nutrients.  N is the most 

critical component of amino acids and proteins in plants.  A positive relationship was observed 

between K supply and the utilization of N in protein synthesis in rice (Mengel et al. 1976) and 

tobacco (Koch and Mengel 1974).  For the family of Leguminosae, it is well known that they can 

fix their own nitrogen through nodulation.  Studies have been conducted to evaluate the effects 

of K nutrition on nitrogen fixation in the leguminous plants.  Parthipan and Kulasooriya (1989) 

and Lynd et al. (1983) reported that K was positively related to the activation of specific 
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nitrogenases.  Moreover, Cowie (1951) also reported that K and P increased the number of 

nodules and the efficacy of nitrogen fixation in soybean.  

1.7 Effects of K Nutrition on Insect Development in Plant 

Changes of nutrient availability may influence herbivore population size and/or herbivore 

development.  Previous studies have shown that potassium is a critical component in the 

synthesis and allocation of primary metabolites in plants, and such physiological traits influence 

metabolic, hormonal and signaling pathways in plants.  These changes can have strong impacts 

on plant susceptibility and attractiveness to insects and diseases (Amtmann et al. 2008).  More 

than 2000 studies have been reviewed by the International Potash Institute (Perrenoud 1990) to 

compile the effects of K nutrition on pest incidence, with 63% demonstrating that application of 

K fertilizer reduced insects and mites in plants (Amtmann et al. 2008).  But it is also true that K 

fertilizer sometimes has no effect on insect pest development.   

In general, both plant nutrition levels and insect pest attack could change plant metabolic, 

hormonal and signaling pathways, and these pathways could affect each other and have 

significant effects on plant susceptibility against insect pests (Amtmann et al. 2008).  For 

example, some K-deficient plants prefer to accumulate low-molecular weight organic 

compounds like sugars, organic acids, and nitrate, while failing to synthesize high-molecular 

weight compounds such as starch, proteins, and cellulose.  Such low-molecular weight organic 

compounds in both leaves and roots make plants more susceptible and attractive to some insect 

pests (Marschner 1995, Amtman et al. 2008).  

K-deficiency can increase plant defenses.  It induces various genes related to JA that are 

important plant hormones related to signaling transduction pathways responding to mechanical 

wounding and damage by some herbivores (Armengaud et al. 2004, Staswick and Lehman 
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1999).  It is clear that there is a relationship between K nutrition levels and plant resistance due 

to the interactions of signaling pathways when plants are subject to both nutritional and insect 

pest stress.  Furthermore, increased susceptibility and attractiveness to insect pests caused by 

physical and metabolic changes can be counteracted by increased plant resistance in plants 

(Amtman et al. 2008).  More detailed information is needed to document the relationship 

between K fertilization and specific herbivores in the field.  

1.8 K Fertilizer and Soybean Looper in Soybean 

N is the most limiting to plant feeding insects and the most important for cellular growth.  

However, not all crops receive supplemental nitrogen.  Soybean fixes its own nitrogen via 

rhizobacteria and N fertilization can inhibit nodulation.  Potassium and phosphorus are often 

limiting in Louisiana rice/soybean rotations and supplemental fertilizer is added.  High K 

availability in soybean fields may affect soybean looper populations.  Previous work on soybean 

has shown that K can increase velvetbean caterpillar, Anticarsi gemmatalis (Hubner), but not 

southern green stink bug, Nezara viridula (L.), population densities (Funderburk et al. 1991).  

Studies should be conducted to estimate the interactions of K fertilization and soybean looper 

development in soybean because excessive K fertilization in soybean may increase soybean 

looper pressure in the field.   

1.9 Objectives 

The objectives of this research were to 1) determine the effects of induced resistance by 

exogenous application of Actigard 50 WG, MeJA, and Regalia on soybean looper development 

in soybean plants, 2) evaluate the effect of potassium fertilization rates on soybean yield and 

soybean looper development.  

 

 



 12 

1.10 References Cited 

Amtmann, A., S. Troufflard, and P. Armengaud. 2008. The effect of potassium nutrition on pest 

and disease resistance in plants. Physiol. Plant. 133: 682-691. 

Armengaud, P., R. Breitling and A. Amtmann. 2004. The potassium-dependent transcriptome of 

Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Physiol. Plant. 

136: 2556–2576. 

Bailey, P. T. 2007. Pests of field crops and pastures: identification and control, pp. 252-253. 

CSIRO Publishing. Australia.  

Belay, A., A. S. Claassens, and F. C. Wehner. 2002. Effect of direct nitrogen and potassium and 

residual phosphorous fertilizers on soil chemical properties, microbial components and maize 

yield under long-term crop rotation. Biol. Fertil. Soils. 35: 420-427. 

Boethel, D. J. 1999. Assessment of soybean germplasm for multiple insect resistance, pp. 101-

129. In S. L. Clement and S. S. Quisenberry (eds.), Global Plant Genetic Resources for Insect-

Resistant Crops. CRC Press, Boca Raton, FL. 

Boethel, D. J., J. S. Mink, A. T. Wier, J. D. Thomas, B. R. Leonard, and F. Gallardo. 1992. 

Management of insecticide resistant soybean loopers (Pseudoplusia includens) in the southern 

United States, pp. 66-87. In: L. G. Copping, M. B. Green, and R. T. Rees (eds.), Pest 

Management in Soybean. Society of Chemical Industry, Essex, England. 

Bottimer, L. J. 1926. Notes on some Lepidoptera from eastern Texas. J. Agric. Res. 39: 797-819. 

Boyd, M. L. and D. J. Boethel. 1998. Susceptibility of predaceous Hemipteran species to 

selected insecticides on soybean in Louisiana. J. Econ. Entomol. 91: 401-409. 

Burleigh, J. G. 1972. Population dynamics and biotic controls of the soybean looper in 

Louisiana. Environ. Entomol.1: 290-294. 

Buzi, A., G. Chilosi, D. D. Sillo, and P. Magro. 2004. Induction of resistance in melon to 

Didymella bryoniae and Sclerotinia sclerotiorum by seed treatment with Acibenzolar-S-

methyl and Methyl Jasmonate but not with Salicylic Acid. J. Phytopathol.152: 34-42. 

Canerday, T. D. and F. S. Arant. 1967. Biology of Pseudoplusia includens and notes on biology 

of Trichoplusia ni, Rachiplusia ou, and Autographia biloba. J. Econ. Entomol. 60: 870-871. 

Carter-Wientjes, C. H., J. S. Russin, D. J. Boethel, J. L. Griffin, and E. C. McGawley. 2004. 

Feeding and maturation by soybean looper (Lepidoptera: Noctuidae) larvae on soybean 

affected by weed, fungus, and nematode pests. J. Econ. Entomol. 97: 14-20. 

Cheong, J. J. and Y. D. Choi. 2003. Methyl jasmonate as a vital substance in plants. Trends 

Genet. 19: 409-413. 



 13 

Daayf, F. and A. Schmit. 1995. The effects of plant extracts of Reynoutria sachalinensis on 

powdery mildew development and leaf physiology of long English cucumber. Plant Dis.79: 

577-580. 

 

Dempsey, D. A., J. Shah, and D. F. Klessig. 1999. Salicylic acid and disease resistance in plants. 

Crit. Rev. Plant Sci. 18: 547-575. 

Dibb, D. W. 1998. Potassium: an essential plant food nutrient, pp. 3. In: D. L. Armstrong (ed.), 

Better Crops with Plant Food, vol. 82. Potash & Phosphate Institute (PPI), Norcross, GA. 

Dicke, M., and L. E. M. Vet. 1999. Plant-carnivore interactions: evolutionary and ecological 

consequences for plant, herbivore and carnivore, pp. 483-520. In: H. Olff, V. K. Brown and 

R. H. Drent (eds.), Herbivores: Between Plants and Predators. Blackwell Science, Oxford, 

UK. 

Fehr, W. R., C. E. Caviness, D. Burmood, and J. S. Pennington. 1971. Stage of development 

descriptions for soybeans, Glycine max (L.) Merr. Crop Sci. 11: 929-931. 

Franceschi, V. R., T. Krekling, and E. Christiansen. 2002. Application of methyl jasmonate on 

Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. 

Bot. 89: 578-576. 

Funderburk, J., R. McPherson, and D. Buntin. 1999. Soybean insect management, pp. 273-290. 

In: L. G. Heatherly and H. F. Hodges (eds.), Soybean Production in the Midsouth. CRC Press, 

Boca Raton, FL.  

Gianessi, L. 2009. The benefits of insecticide use: soybeans. CropLife Foundation. Washington, 

DC. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB0QFjAA

&url=http%3A%2F%2Fcroplifefoundation.files.wordpress.com%2F2012%2F07%2Fcombine

d_document_soybeans.pdf&ei=xYWtU5j8L9GYqAaAoYKQAw&usg=AFQjCNEKxU_rK_6

R407xVBWVE4Pks_5XAA&sig2=WrMivvL1ut4PXLEJO9SQHg 

Goralch, J., S. Volrath, G. Knauf-Beiter, G. Hengy, U. Beckhove, K. H. Kogel, Oostendorp, M. 

Oostendorp, T. Staub, E. Ward, H. Kessmann, and J. Ryals. 1996. Benzothiadiazole, a novel 

class of inducers of systemic acquired resistance, activates gene expression and disease 

resistance in wheat. Plant Cell 8: 629-643. 

 

Heil M., T. Koch, A. Hilpert, B. Fiala, W. Boland, and K. E. Linsenmair. 2001. Extrafloral 

nectarie production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, 

defensive response elicited by jasmonic acid. Proc. Natl. Acad. Sci. USA. 98:1083-1088. 

Herger, G. and F. Klingauf. 1990. Control of powdery mildew fungi with extracts of the giant 

knotweed, Reynoutria sachalinensis (Ploygonaceae). Med. Fac. Landbouww. Rijks Univ. 

Gent. 55: 1007-1014. 

 

Herzog, D. C. 1980. Sampling soybean looper on soybean, pp. 141-168. In: M. Kogan and D. C. 

Herzog (eds.), Sampling Methods in Soybean Entomology. Springer-Verlag, NY. 



 14 

Higley, L.G. and D. J. Boethel. 1994. Handbook of Soybean Insect Pests. Entomol. Soc. Am.  

http://www.ers.usda.gov/topics/crops/soybeans-oil-crops.aspx 

http://www.nass.usda.gov/Statistics_by_Subject/result.php?972223B2-858C-34E7-AB81-

8EF96B4749D7&sector=CROPS&group=FIELD%20CROPS&comm=SOYBEANS 

 

Inbar, M. H. Doostdar, R. M. Sonoda, G. L. Leibee, and R. T. Mayer. 1998. Elicitors of plant 

defense systems reduce insect densities and disease incidence. J. Chem. Ecol. 24: 135-149. 

 

Jensen, R. L., L. D. Newsom, and J. Gibbens. 1974. The soybean looper: effects of adult 

nutrition on oviposition, mating frequency, and longevity. J. Econ. Entomol. 67: 467-470. 

Karban R., and J. Kuć 1999. Induced resistance against pathogens and herbivores: an overview, 

pp. 1-18. In: A. A. Agrawal, S. Tuzun and E. Bent (eds.), Induced Plant Defenses against 

Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture. The American 

Phytopathological Society Press, St. Paul, MN. 

Karban, R. and J. H. Myers. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 

20: 331-348. 

Karban, R., and I. T. Baldwin. 1997. Induced responses to herbivory. University of Chicago 

Press, Chicago, Illinois, USA. 

Karban, R., and R. Carey. 1984. Induced resistance of cotton seedlings so mites. Science 223:53-

54. 

Koch, K. and K. Mengel. 1974. The influence of the level of potassium supply to young tobacco 

plants (Nicotiana tabacum L.) on short-term uptake and utilization of nitrate nitrogen (15N). 

J. Sci. Food Agric. 25: 465–471. 

Kogan, M. 1976. Evaluation of economic injury levels for soybean insect pests. World Soybean 

Research. 515-533. 

Kolar, J. S. and H. S. Grewal. 1994. Effect of split application of potassium on growth, yield and 

potassium accumulation by soybean. Fert. Res. 39: 219-222. 

Lambert, L., and J. Tyler. 1999. An appraisal of insect resistant soybeans. In: J. A. Webster and 

B. R. Wiseman (eds.), Economic, Environmental, and Social Benefits of Insect Resistance in 

Field Crops. Thomas Say Publication, Entomological Society of America, Lanham, MD. 

Layton, M. B. and D. J. Boethel. 1998. Defoliation by insects reduces nitrogen-fixing ability of 

soybeans. Louisiana Agricul. Spring. 31: 3. 

Leonard, B. R., D. J. Boethel, A. N. Sparks, M. B. Layton, J.S. Mink, A. M. Pavloff, E. Burris, 

and J. Graves. 1990. Variations in soybean looper (Lepidoptera:Noctuidae) response to 

selected insecticides in Louisiana. J. Econ. Entomol. 83: 27-34. 



 15 

Lin, H. and M. Kogan. 1990. Influence of induced resistance in soybean on the development and 

nutrition of the soybean looper and the Mexican bean beetle. Entomol. Exp. Appl. 55: 131-

138. 

 

Lynd, J. Q., C. Lurlarp and B. E. Fernando. 1983. Perennial winged bean yield and nitrogen 

fixation improvement with soil fertility treatments of a Typic Eutruto. J. Plant Nutr. 6: 641-

656. 

Lyon, G. D., and A. C. Newton. 1999. Implementation of elicitor mediated induced resistance in 

agriculture, pp. 299-318. In: A. A. Agrawal, S. Tuzun, E. Bent, (eds.), Induced Plant Defenses 

against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture. The American 

Phytopathological Society Press, St. Paul, MN. 

Marschner, H. 1995. Mineral nutrition of higher plants, 2
nd

 ed. Academic press, London. 

Mengel, K., M. Viro and G. Hehl. 1976. Effect of potassium on uptake and incorporation of 

ammonium-nitrogen of rice plants. Plant Soil. 44: 547–558. 

Mitchell, E. R. 1967. Life history of Pseudoplusia includens (Walker) (Lepidoptera: Noctuidae). 

J. Ga. Entomol. Soc. 2: 53-57. 

Mitchell, E. R., R. B. Chalfant, G. L. Greene, and C. S. Creighton. 1975. Soybean looper: 

populations in Florida, Georgia, and South Carolina as determined with pheromone-baited BL 

traps. J. Econ. Entomol. 68: 747-750. 

Morrison, W. C., and L. L. McCormick. 1996. The soybean crop: history in Louisiana, pp. 4-8. 

In J. Honeycutt (ed.), Louisiana Soybean Handbook, Louisiana State University Agricultural 

Center and Louisiana Coop Ext. Serv. Pub. 2624. 

Musser, F. R., A. L. Catchot, Jr., J. A. Davis, D. A. Herbert, Jr., G. M. L orenz, T. Reed, D. D. 

Reisig, and S. D. Stewart. 2013. 2012 Soybean insect losses in the Southern US. Midsouth 

Entomologist. 6: 12-24. 

Narvel, J. M., D. R. Walker, B. G. Rector, J. N. All, W. A. Parrott, and H. R. Boerma. 2001. A 

retrospective DNA marker assessment of the development of insect resistant soybean. Crop 

Sci. 41: 1931-1939. 

Parthipan, S. and S. A. Kulasooriya. 1989. Effects of nitrogen- and potassium-based fertilizers 

on nitrogen fixation in the winged bea, Psophocarpus tetragonolobus. MIRCEN J. Appl. 

Microb. 5: 335-341. 

Perez, L., M. E. Rodriguez, F. Rodriguez, and C. Roson. 2003. Efficacy of acibenzolar-S-methyl, 

an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora 

hyoscyami f. sp. Crop Prot. 22: 405-413. 

Perrenoud, S. 1990. Potassium and plant health. International Potash Institute, Basel. 

 



 16 

Pettigrew, W. T. 1999. Potassium deficiency increases specific leaf weights and leaf glucose 

levels in field-grown cotton. Agron. J. 91: 962-968. 

Pettigrew, W. T. 2008. Potassium influence on yield and quality production for maize, wheat, 

soybean and cotton. Physiol. Plant. 133: 670-681. 

Pettigrew, W. T. and W. R. Meredith Jr. 1997. Dry matter production, nutrient uptake, and 

growth of cotton as affected by potassium fertilization. J. Plant Nutr. 20: 531–548. 

Reid, J. C., and G. L. Greene. 1973. The soybean looper: pupal weight, development time, and 

consumption of soybean foliage. Fla. Entomol. 56: 203-206. 

Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. 

Virology. 14: 340-358. 

Smith, R. H., B. Freeman, and W. Foshee. 1994. Soybean loopers: late season foliage feeders on 

cotton. The Ala. Coop. Ext. Syst. ANR-0843.  

Srinivas, P. and S. D. Danielson. 2001. Effect of the chemical inducer Actigard in inducing 

resistance to bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), 

feeding in soybean. J. Agric. Urban Entomol. 18: 209-215. 

 

Staswick, P. E. and C. C. Lehman. 1999. Jasmonic acid-signaled responses in plants, pp. 117-

136. In: A.A. Agrawal, S. Tuzun and L. Bent (eds.), Induced Plant Defenses against Pathogens 

and Herbivores: Biochemistry, Ecology, and Agriculture. The American Phytopathological 

Society Press, St Paul, MN. 

 

Stout, M. J., G. W. Zehnder, and M. E. Baur. 2002. Potential for the use of elicitors of plant 

resistance in arthropod management programs. Arch. Insect Biochem. Physiol. 51: 222-235. 

Su, H., R. Blair, T. Johnson, and P. Marrone. 2012. Regalia bioprotectant in plant disease 

management. Outlook on pest management. 23: 1. 

 Sullivan, M. J., and D. J. Boethel. 1994. Loopers, pp. 68-70. In L. G. Higley and D. J. Boethel 

(eds.), Handbook of Soybean Insect Pests. Entomol. Soc. Am., Lanham, MD. 

Tally, A., M. Oostendorp, K. Lawton, T. Staub, B. Bassi. 1999. Commercial development of 

elicitors of induced resistance to pathogens, pp. 357-370.  In: A. A. Agrawal, S. Tuzun and E. 

Bent (eds.), Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, 

Ecology, and Agriculture. The American Phytopathological Society Press, St. Paul, MN.  

Temple, J., S. Brown, J. A. Davis, and B. R. Leonard. 2010. Soybean loopers in Louisiana 

soybean. http://agfax.com/LibRepository/soybean-looper-white-paper-08122010.pdf 

 

Thaler, J.  S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate 

insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. 

Chem. Ecol. 22: 176-1781. 

 



 17 

Turnipseed, S. G., and M. Kogan. 1987. Integrated control of insect pests, pp. 779-817. In J. R. 

Wilcox (ed.), Soybeans: Improvement, Production, and Uses, 2nd ed. Agron. Monogr. 16. 

American Society of Agronomy, Madison, WI. 

Usherwood, N. R. 1985. The role of potassium in crop quality, pp. 489-513. In: R. D. Munson 

(ed.), Potassium in Agriculture. ASA, CSSA and SSSA, Madison, WI.  

Walling, L. 2000. The myriad plant responses to herbivores. J. Plant Growth Reg. 19:195-216. 

Wasternack, C. and B. Hause. 2002. Jasmonates and octadecanoids: signals in plant stress 

responses and development. Prog. Nucleic Acid Res. Mol. Biol. 72: 165-221. 

 

Wyn Jones, R. J. and A. Pollard. 1983. Proteins, enzymes and inorganic ions, pp. 528-562. In: A. 

Lauchli, A. Pirson (eds.), Encyclopedia of Plant Physiology. Springer, Berlin. 

Yardtm, E. N. and C. A. Edwards. 2003. Effects of organic and synthetic fertilizer sources on 

pest and predatory insects associated with tomatoes. Phytoparasitica 31: 324-329. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

CHAPTER 2 

EFFECTS OF INDUCED PLANT RESISTANCE IN SOYBEAN TO 

SOYBEAN LOOPER (CHRYSODEIXIS INCLUDENS) BY EXOGENOUS 

ELICITORS 
2.1 Introduction 

Soybean, Glycine max (L.) Merrill, is the second most planted field crop in the United States 

with a total of 77.2 million acres grown in 2013 (NASS 2013).  Like other agricultural crops, 

soybean plants can be damaged by a variety of insect pests feeding on leaves, stems, roots, 

nodules, and pods during different plant stages (Turnipseed and Kogan 1987, Turnipseed 1972).  

The soybean looper, Chrysodeixis includens (Walker), is an important defoliating pest of 

soybean in the southern U.S. with soybean being its preferred host for feeding and oviposition 

(Herzog 1980).  Adults of soybean looper migrate annually from overwintering areas in Florida, 

southern Texas, and the Caribbean Islands to build economically damaging populations in Gulf 

Coast States (Mitchell et al. 1975, Herzog 1980).  Three to four generations can occur in the 

Mid-South in one soybean growing season (Funderburk et al. 1999).  Prior to R3 (Fehr et al. 

1971), soybeans can tolerate up to 30% defoliation without yield loss (Turnipseed and Kogan 

1987).  However, during R3 to R5, defoliation greater than 20% can cause significant yield loss 

to soybean plants (Turnipseed and Kogan 1987).  

Traditionally, insecticidal control strategies using organophosphates, pyrethroids, and 

carbamates were the main tools for soybean looper control (Boethel et al. 1992).  However, the 

efficacy of insecticides has significantly decreased and soybean looper has become a difficult 

pest to manage in recent years (Temple et al. 2008).  Widespread use of these insecticides has 

caused soybean looper to develop high insecticidal resistance (Felland et al. 1990, Boethel et al. 

1992, Leonard et al. 1990).  In addition, application of these insecticides has resulted in negative 

effects on non-target natural enemies and reduced their populations (Temple et al. 2008).  
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Induced plant resistance is an alternative way to manage soybean looper.  Plants have evolved 

numerous strategies to defend themselves against insect attacks.  These strategies can be 

classified as constitutive and induced defenses (Kempel et al. 2011).  Constitutive defenses are 

always present regardless of herbivory, whereas induced resistance are generated by previous 

damage of herbivory or mechanical injury in plants (Smith 1989).  Plant responses induced by 

previous herbivores are generally assumed to benefit plants by reducing the suitability or 

palatability of plants during current or subsequent attack (Stout et al. 2009).  Induced resistance 

can reduce the preference and/or performance of herbivores by negatively affecting behavior and 

growth, which has been studied and reported in more than 100 plant species (Karban and 

Baldwin 1997).  Induced resistance in soybean has also been studied and stated previously 

(Kogan and Fischer 1991, Chiang et al. 1986, Bi et al. 1994).  Chiang et al. (1986) reported that 

Mexican bean beetles, Epilachna varivestis (Mulsant), were subjected to delayed development 

resulting from previous Mexican bean beetle herbivory.  Bi et al. (1994) also observed that corn 

earworm, Helicoverpa zea (Boddie), larvae induced resistance in soybean plants, resulting in 

reduced larval growth rates.  

Elicitors, natural or synthetic chemicals, can trigger plant resistance against herbivores and 

provide a tool to investigate the effect of induced resistance on herbivory without natural 

herbivores (Stout et al. 2002, Wittstock and Gershenzon 2002).  Induced responses by 

application of elicitors have the similar or even the same roles in inducing plant responses by 

natural herbivores (Karban and Kuć 1999, Stout et al. 2002).  Stout et al. (2009) showed induced 

resistance produced by exogenous application of JA to fall armyworm Spodoptera frugiperda in 

rice.  JA is one of plant hormones in response to mechanical wounding and some herbivore 

injury that activate the expression of resistance-related compounds to protect plants from 



 20 

herbivores (Thaler et al. 1996, Korth and Thompson, 2006).  Franceschi et al. (2002) also 

documented that exogenous use of methyl ester of jasmonic acid (MeJA) to spruce trees caused 

induced defense response against bark-beetle attack.  MeJA is a volatile organic compound for 

activating plants’ defenses against insect-driven wounding and various pathogens (Wasternack 

and Parthier 1997, Franceschi et al. 2002). 

Because soybean can tolerate significant defoliation without affecting yield and high 

caterpillar infestations in soybean in the southern United States occur in late August and 

September when most soybeans are in the R2 to R5 stage (Herzog et al. 1980), elicitor induced 

resistance may be an alternate means of controlling soybean looper populations.  In this study, 

three different elicitors, Actigard 50WG (acibenzolar-S-methyl), Regalia (extract of Reynoutria 

sachalinensis) and MeJA (methyl jasmonate), were applied to soybean plants at two different 

growth stages, R2 (full flowering) and R5 (pod filling) respectively, to evaluate the efficacy of 

induced plant resistance on soybean looper.  Actigard 50 WG (Syngenta Crop Protection, 

Greenboro, NC) has been registered as a plant fungal and bacterial pathogen protectant for 

tomatoes, spinach and tobacco; and has been documented to induce resistance against pathogen 

in tomato, pepper, tobacco, rice, cotton and soybean (Mondal et al. 2005, Faessel et al. 2007, 

LaMondia 2008, Cole 1999, Babu et al. 2003).  Regalia (Marrone Bio Innovations, Davis, CA) is 

a commercial product of extracts from leaves of Reynoutria sachalinensisand and exogenous 

treatment with Regalia can induce resistance in long English cucumber, tomato, apple and grape 

against powdery mildew and grey mold (Schmitt 2002).  The objectives of this study were to 

determine the effects of a single field application of Actigard 50WG, Regalia, or MeJA on field 

grown soybean on mortality, leaf consumption, pupal weight, egg hatch rate, and development 

time of soybean looper. 
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2.2 Materials and Methods 

2.2.1 Insect Colony.  The soybean looper colony (MR08) used in this study was collected 

from soybean fields using a standard cloth sweep net with a 38.1 cm opening at Macon Ridge 

Research Station in Winnsboro, LA in 2008 (Brown 2012).  The colony is maintained as follows.  

Larvae were reared in 30-ml plastic cups (2 larvae/ cup) with about 10 ml artificial soybean 

looper diet (Southland Products, Lake Village, AR).  The larval-rearing cups were placed in a 

rearing room with 28.5 °C, 50% RH and 14:10 (L:D) photoperiod until pupal stage 

(Mascarenhas and Boethel 2000).  Pupae collected from larval-rearing cups were placed into 

plastic rearing containers containing about 30 g of vermiculite (Sun Gro, Bellevue, WA).  Two 

30-ml plastic cups containing towel paper saturated with approximate 10% honey solution were 

placed in the center of the container as supplementary nutrition for the adults (Mascarenhas and 

Boethel 2000).  The inside of the container was covered with strips (8 x23 cm) of paper towel as 

oviposition sheets and the container was sealed with a muslin cover (Jensen et al. 1974).  The 

10% honey solution and ovipositon sheets were changed every 2 days and egg sheets were 

placed into plastic bags until eclosion (Brown 2012).  

2.2.2 Field Planting and Chemical Induction.  Soybean variety Pioneer 94Y90 (Pioneer Hi-

Bred, Johnston, IA) was used in the field experiments at Ben Hur Research Station, LSU 

AgCenter, Baton Rouge and Dean Lee Research Station, LSU AgCenter, Alexandria, LA in 

2011 (experiment A), and at Ben Hur Research Station and Burden Research Station, LSU 

AgCenter, Baton Rouge, LA in 2012 (experiment B).  In each experiment, seeds were sown at 8 

seeds per 30 cm with 76 cm centers.  In experiment A, the plots were 7.6 m long by 4 rows wide 

and two treatments, Actigard 50 WG (Syngenta Crop Protection, Greenboro, NC) at 21 mg/m
2
 

(Actigard 3X) and negative control with water (UTC) were applied to each two rows at R2 (full 
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flower) stage.  In experiment B, a total of six treatments were used:  water (negative control; 

UTC), Belt SC (positive control; Bayer Crop Science, Research Triangle Park, NC) at 21.0 

ul/m
2
, Actigard 50WG at 7.0 mg/m

2 
(Actigard 1X), Actigard 50 WG at 21.0 mg/m

2
 (Actigard 

3X), Regalia (Marrone Bio Innovations, Davis, CA) at 0.47 ml/m
2
, and MeJA (Bedoukian 

Research, Danbury, CT) at 5.49 ml/m
2
.  In soybean, R2 (full flower) and R5 (pod filling) stages 

play a very important role in soybean yield, and soybean plants are less tolerant for defoliation 

during the period between R2 to R5 stages (McWilliams et al. 1999, Turnipseed and Kogan 

1987).  Therefore, treatments were sprayed at R2 and R5 using a CO2 backpack sprayer equipped 

with Teejet 8006 flat spray nozzles, delivering 14.03 ml/m
2 

at 2.1 kg/cm
2
.  

 
Soybean plants were 

sprayed thoroughly wet by each treatment.  All treatments were arranged in a randomized 

complete block design (RCBD) with four and three replications in the experiment A and 

experiment B, respectively. 

2.2.3 Laboratory Bioassays. Two days after treatment, fifty leaf samples per treatment were 

randomly selected and brought back to laboratory.  Each leaf was cut using a #149 Arch Punch 

(Osborne and Co., Harrison, NJ) to produce an 11.34 cm
2
 leaf core.  Soybean looper neonates 

previously placed on artificial diet for 24 hr to reduce handling mortality were transferred to leaf 

cores, one per core, and placed into a sterile petri dish (100×15 mm) with Whatman 90 mm (#1) 

filter paper wetted for moisture.  Petri dishes were placed in a growth chamber at 26°C, 75% RH 

and a 14:10 (L: D) photoperiod.  Leaf cores were changed daily after the 4
th

 day, while filter 

paper was wetted daily and changed when needed.  Leaf core defoliation (cm
2
), mortality, and 

stadia of soybean looper were recorded daily.  To estimate defoliation of each larva, defoliation 

percentage of each leaf core consumed by each larva was visually estimated and then calculated 
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based on the total area of each leaf core with 11.34 cm
2
.  Pupae of soybean looper from each 

treatment were individually weighted and sexed according to Shorey et al. (1962).   

At the end of feeding, developmental time from the 1
st
 day of laboratory bioassay to pupation 

was calculated.  Ten pairs (male and female) of soybean looper pupae were randomly selected 

from each treatment for mating and oviposition.  Pupae were then placed into 3.8-L paper rearing 

containers (Huhtamaki Foodservice, De Soto, KS) containing about 30 g of vermiculite (Sun 

Gro, Bellevue, WA).  A 30-ml plastic cup containing a towel paper saturated with approximate 

10% honey solution was placed in the center of the container as supplementary nutrition for the 

adults.  The inside of the container was covered with a strip (8×23 cm) of paper towel as 

oviposition sheets and the container was sealed with one single layer of pored poly plastic paper 

(23×31cm) (Jensen et al. 1974).  The containers were maintained in a rearing room at 26°C, 50% 

RH and a 14:10 (L: D) photoperiod.  The 10% honey solution and ovipositon sheets were 

changed daily.  Ovipostion sheets for each treatment were placed into a poly bag (23cm x 31cm) 

until hatching.  The number of eggs deposited by soybean looper females on the oviposition 

sheets was counted using a head magnifying glass, and the number of neonates hatched from 

these eggs was also recorded.  Percentage egg hatch was then calculated by dividing the number 

of hatched neonates by the number of eggs. 

2.2.4 Data Analysis. Life tables were conducted to estimate population parameters of 

soybean looper following the methods of Birch (1948) in the experiment A.  Age (x), age-

specific female survival (lx), days to each stadia, and number of offspring produced by females 

at age x (mx) was recorded, and age-specific fecundity (lxmx) was calculated.  Intrinsic rate of 

increase (rm) was calculated as∑e
-rx

 lxmx =1, and net reproductive rate (R0) was calculated as: ∑ 

lxmx.  In the experiment A, data on intrinsic rate of increase (rm), net reproductive rate (R0), leaf 
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defoliation (cm
2
), pupal weight (g), and development time (day) were transformed to log (x + 1) 

scale first, while mortality and egg hatch rate were converted to arcsine square-root scale for 

normal distribution.  Transformed data were then analyzed by one-way analysis of variance 

(ANOVA) using PROC MIXED to determine the differences among the treatments.  Means were 

separated using Turkey’s honestly significant difference (HSD) tests at ɑ= 0.05 level.   

In experiment B, all soybean looper larvae were killed with Belt SC within 3 days when 

placed on leaf cores.  Data collected from this treatment were excluded from statistical analysis.  

Data collected from the experiment B were net reproductive rate (R0), leaf defoliation, mortality, 

pupal weight, egg hatch rate, and development time of soybean looper.  Similarly, the original 

data were first transformed using log (x + 1) scale or arcsine square-root scale as described in the 

experiment A for normal distribution, and the transformed data were then analyzed by two-way 

analysis of variance (ANOVA) using PROC MIXED with elicitors and plant stages as two main 

factors.  Means were separated using Turkey’s honestly significant difference (HSD) tests at ɑ= 

0.05 level.   

2.3 Results 

In experiment A, compared to the UTC, treatment effects for application of Actigard 3X on 

net reproductive rate (R0) (F =14.68; df = 1, 3; P = 0.0313), leaf defoliation (F =6.20; df = 1, 344; 

P = 0.0133), pupal weight (F =166.30; df = 1, 344; P < 0.0001), mortality (F =20.57; df = 1, 3; P 

= 0.0201), and egg hatch rate (F =684.00; df = 1, 3; P = 0.0001) were all significant.  However, 

there were no significant differences for intrinsic rate of increase (F =0.12; df = 1, 3; P = 0.7521) 

and developmental time of soybean looper (F =0.36; df = 1, 343; P = 0.5482) between the two 

treatments.  Soybean looper defoliation on Actigard 3X treated leaf was 62.1 cm
2
, which was 

significantly reduced relative to 63.5 cm
2 

on UTC (Table 2.1).  In addition, pupal weight  
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Table 2.1. Induction effects (mean ± se) of Actigard 50 WG on soybean looper in 2011 

(experiment A)
*
 

Parameters UTC Actigard 3X F-value P-value 

Intrinsic rate of increase (rm) 1.126 ± 0.061 a 1.106 ± 0.051 a F1, 3 = 0.12 0.7521 

Net reproductive (R0) 514.5 ± 53.5 a 305.8 ± 41.3 b F1, 3 = 14.68 0.0313 

Defoliation (cm
2
) 63.5 ± 1.1 a 62.1 ± 1.2 b F1, 344 = 6.20 0.0133 

Pupal weight (g) 0.173 ± 0.001 a 0.147 ± 0.001 b F1, 344 = 166.30 <0.0001 

Mortality (%) 2.50 ± 1.26 b 23.00 ± 6.56 a F1, 3 = 20.57 0.0201 

Egg hatch rate (%) 93.6 ± 0.7 a 82.9 ± 1.2 b F1, 3 = 684.00 0.0001 

Development time (day) 13.91 ± 0.12 a 13.90 ± 0.13 a F1, 344 = 0.36 0.5482 
*
Means within a row followed by the same letter are not significantly different (P > 0.05; 

Tukey’s HSD). 

obtained from Actigard 3X treated leaves was only 0.147 g, which was significantly lower than 

that 0.173 g from UTC (Table 2.1).  Overall, results from the experiment A conducted in 2011 

suggested that application of Actigard 3X on soybean plants induced resistance and caused 

negative impacts on the development and performance of soybean looper. 

In experiment B, all soybean looper larvae were killed with Belt SC within the average of 3 

days of being placed on leaf cores.  The results from the remaining treatments showed that the 

main effects of both elicitor and plant stage as well as their interactions were not significant on 

the net reproductive rate (F = 2.33; df = 4, 18; P = 0.0955, F = 2.36; df =1, 18; P = 0.1419, and F 

= 0.79; df = 4, 18; P = 0.5466, respectively), mortality (F = 2.66; df = 4, 18; P = 0.0667, F = 

0.21; df =1, 18; P = 0.6550, and F = 0.38; df = 4, 18; P = 0.8232, respectively) and egg hatch 

rate (F = 1.91; df = 4, 18; P = 0.1530, F = 10.48; df =1, 18; P = 0.0500, and F = 0.03; df = 4, 18; 

P = 0.9979, respectively).  However, both plant elicitor and plant stage significantly affected 

soybean looper defoliation (F = 41.58; df =4, 1295; P < 0.0001 for elicitors, F = 1039.25; df =1, 

1295; P < 0.0001 for plant stages), pupal weight (F = 61.72; df =4, 1295; P < 0.0001 for elicitors, 

F = 493.74; df =1, 1295; P < 0.0001 for plant stages) and developmental time (F = 124.06; df =4, 
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Table 2.2. Induction effects (mean ± se) of three different elicitors on soybean looper in 2012 (experiment B)
*
 

Plant stage Elicitors Net reproductive (R0) Defoliation (cm
2
) Pupal weight (g) Mortality (%)  Egg hatch rate (%) Developmental time (day) 

R2 Actigard 1X 1333.2 ± 72.8 a 70.8 ± 1.2 b 0.250 ± 0.002 a 12.67 ± 3.33 a 51.99 ± 4.07 a 14.66 ± 0.10 b 

 Actigard 3X 1541.8 ± 180.2 a 68.5 ± 1.0 b 0.251 ± 0.002 a 18.00 ± 12.22 a 48.48 ± 0.68 a 14.95 ± 0.10 b 

 MeJA 1218.9 ± 244.5 a 76.4 ± 0.9 a 0.223 ± 0.003 c 19.33 ± 5.21 a 51.07 ± 2.01 a 16.81 ± 0.12 a 

 Regalia 1050.2 ± 85.9 a 71.5 ± 0.9 b 0.238 ± 0.003 b 7.33 ± 1.76 a 53.88 ± 1.67 a 14.64 ± 0.10 bc 

 UTC 1505.3 ± 179.2 a 72.0 ± 0.8 b 0.251 ± 0.002 a 8.67 ± 2.91 a 55.48 ± 2.42 a 14.93 ± 0.09 b 

R5 Actigard 1X 1039.1 ± 262.1 a 52.1 ± 0.8 e 0.213 ± 0.003 cd 16.67 ± 7.69 a 56.98 ± 3.07 a 14.60 ± 0.13 bc 

 Actigard 3X 1514.9 ± 123.2 a 48.9 ± 0.7 e 0.210 ± 0.003 d 23.33 ± 5.81 a 54.31 ± 5.64 a 14.67 ± 0.14 b 

 MeJA 846.2 ± 106.6 a 61.1 ± 0.9 c 0.184 ± 0.002 e 16.67 ± 5.46 a 57.35 ± 1.77 a 16.50 ± 0.17 a 

 Regalia 1400.9 ± 477.6 a 55.8 ± 0.8 d 0.223 ± 0.002 c 8.00 ± 1.15 a 59.71 ± 3.04 a 14.54 ± 0.09 bc 

 UTC 1243.1 ± 241.9 a 58.5 ± 0.7 dc 0.220 ± 0.002 c 6.67 ± 0.67 a 62.40 ± 1.33 a 14.20 ± 0.08 c 

F-test Elicitor F4, 18 = 2.33 F4, 1295 = 41.58 F4, 1295 = 61.72 F4, 18 = 2.66 F4, 18 = 1.91 F4, 1295 = 124.06 

  0.0955 < 0.0001 < 0.0001 0.0667 0.1530 < 0.0001 

 Stage F1, 18 = 2.36 F1, 1295 = 1039.35 F1, 1295 = 493.74 F1, 18 = 0.21 F1, 18 = 10.48 F1, 1295 = 19.70 

  0.1419 < 0.0001 < 0.0001 0.6550 0.0500 < 0.0001 

 Elicitor*Stage F4, 18 = 0.79 F4, 1295 = 8.52 F4, 1295 = 11.23 F4, 18 = 0.38 F4, 18 = 0.03 F4, 1295 = 3.46 

  0.5466 < 0.0001 < 0.0001 0.8232 0.9979 0.0081 

*
Means within a column followed by the same letter are not significantly different (P > 0.05; Tukey’s HSD).
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1295; P < 0.0001 for elicitors, F = 19.70; df =1, 1295; P < 0.0001 for plant stages).  In addition, 

the interaction between plant stage and elicitor also showed significant differences on these three 

parameters (F = 8.52; df =4, 1295; P < 0.0001 for defoliation, F = 11.23; df =4, 1295; P < 

0.0001 for pupal weight, F = 3.46; df =4, 1295; P = 0.0081 for development time).  Overall, the 

average defoliation of soybean looper during R2 was 71.8 ± 1.3 cm
2
, which was significantly 

more than 55.3 ± 2.2 cm
2
 during R5.  Within each plant stage, the defoliation of elicitor treated 

leaf was either numerically or significantly reduced compared to the UTC, except for MeJA leaf, 

in which the leaf consumption was more than that on the UTC (Table 2.2).  Treatment effects of 

elicitors were also significant on the pupal weight during these two stages.  Pupal weight 

obtained from leaves sprayed with MeJA (0.223 ± 0.003 g) and Regalia (0.238 ± 0.003 g) were 

significantly reduced relative to the UTC (0.251 ± 0.002 g) during R2; while significant effects 

of pupal weight, compared to the UTC (0.220 ± 0.002 g), were observed on leaves treated with 

Actigard 1X (0.213 ± 0.003 g), Actigard 3X (0.210 ± 0.003 g), and MeJA (0.184 ± 0.002 g) 

during the R5 (Table 2.2).  As observed in the defoliation, the overall pupal weight during R5 

was 0.210 ± 0.007 g, which was significantly less than 0.243 ± 0.005 g compared to R2.  

Delayed development of soybean looper was also found on the MeJA leaf during R2 (16.81 ± 

0.12 d) and R5 (16.50 ± 0.17 d), which was significantly longer than that observed on the UTC 

of R2 (14.93 ± 0.09 d) and R5 (14.20 ± 0.08 d), respectively (Table 2.2).  However, significant 

treatment effects on developmental time for the other three elicitors were not found in this 

experiment.  Overall, results of experiment B suggest that exogenous application of elicitors had 

adverse effects on the development and performance of soybean looper.  
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2.4 Discussion 

The results of this study showed that inducible responses of soybean plants by exogenous 

elicitors such as Actigard 50WG, MeJA, and Regalia in the field had adverse effects on the 

development and performance of soybean looper.  Effects of Regalia induction on soybean 

looper were very limited compared to Actigard 50WG and MeJA either during both the R2 and 

R5 stages.  In the experiment A, defoliation was significantly decreased on Actigard 50WG than 

on UTC leaves.  Although the differences were statistically significant, the defoliation on 

Actigard 50WG was numerically close to UTC for a single soybean looper.  Unlike lab 

conditions, in the fields a soybean plant could be damaged by numerous soybean loopers, which 

could make the defoliation differences between Actigard 50WG and UTC more obvious.  In this 

study, MeJA showed most significant induced effects on soybean looper during both R2 and R5 

stages.  Several other studies have indicated that induced responses to MeJA-treatment than 

induced responses to Actigard treatment (Boughton et al. 2005, Buzi et al. 2004).  In this study, 

MeJA caused a significant reduction in pupal weight with a 11.2% and 17.9% lower pupal 

weights relative to those in UTC leaf at R2 and R5 plant stages, respectively.  Moreover, 

development of soybean looper on MeJA treated leaves was also significantly delayed with a 

12.8% and 16.2% developmental time reduction compared to soybean loopers feeding on UTC 

leaves, on R2 and R5 growth stages, respectively.  Previous studies also showed that application 

of exogenous JA could induce resistance to insects by reducing their performance and/or slowing 

down their development (Stout et al. 2009, Mészáros et al. 2011, Omer et al. 2001).  Lin and 

Kogan (1990) found that soybean looper fed on leaves of previously injured soybean plants had 

an 8.5% longer developmental time and a 10.4% lower pupal weight compared to larvae fed on 

leaves of uninjured plants. Our results showed the retarding effects on soybean looper 
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development are greater than those found by Lin and Kogan (1990), further demonstrating that 

MeJA could induce defensive responses against herbivores, and showed the potential use of 

elicitors in field applications.  Overall, defoliation, pupal weight and developmental time of 

soybean looper were significantly affected by feeding on elicitor treated leaves compared to the 

UTC in both experiments in this study.  The results confirm that exogenous elicitors can trigger 

plant resistance against herbivores and provide a means for pest population control in the field. 

Elicitor concentrations play a critical role in the process of triggering plant defense response 

(Rijhwani and shanks 1998).  In this study, two different concentrations of Actigard 50WG were 

used.  However, treatment effects of induced resistance by these three concentrations were 

different.  In the experiment A conducted in 2011, Actigard 3X exhibited significant effects on 

net reproductive, defoliation, pupal weight, egg hatch rate and mortality of soybean looper, but 

no significant effects on intrinsic rate of increase and developmental time.  In contrast, 

application of Actigard 1X and Actigard 3X in the experiment B showed significant effects only 

on defoliation and pupal weight.  Srinivas and Danielson (2001) showed that the highest level of 

induction by Actigard against bean leaf beetle, Cerotoma trifurcata (Forster) feeding was 

produced at 25 ppm concentration with the treatments ranging from 0, 15, 25, 40, 60, to 80 ppm.  

In addition, Plażek et al. (2003) found defense responses of winter oilseed rape callus to different 

concentrations of elicitors were different and not positively correlated with the concentration.  

Similarly, Namdeo et al. (2002) also reported higher concentration (5.0 %) of elicitor extracts 

induced higher ajmalicine in plant cells compared to lower concentration (0.5%).  However, the 

accumulation of ajmalicine was negatively impacted when the concentration was increased 

to10.0% (Namdeo et al. 2002).  All of these studies suggested the importance of using an 

appropriate concentration of elicitors to maximize the defense response of the plants.  Because 
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our study was conducted in different years and plant stages, it is possible that Actigard 50WG 

induced response interacted with the environments and plant stages, and further confirmation of 

detailed correlations between concentration of Actigard 50WG and intensities of defense 

responses is needed.   Moreover, Dann et al. (1998) suggested that multiple applications of 

Actigard were necessary in field and greenhouse soybean to reduce fungal disease incidence and 

severity.  However, other studies indicated a single application of Actigard was sufficient to 

induce resistance in soybean against the pests (Gorlach et al. 1996, Srinivas and Danielson 2001).  

Our study demonstrated that a single application of Actigard could induce resistance in soybean 

against soybean looper either at R2 or R5 stages. 

In this study, total defoliation by soybean looper was numerically or significantly greater on 

MeJA treated leaves than on UTC leaves.  These results are consistent with the reports from Lin 

and Kogan (1990) who also found induced resistance increased the total leaf consumption of 

soybean looper.  Studies have shown that the activity of phytoalexins and proteinase inhibitors 

was changed by induced resistance after subject to herbivory and jasmonic acid in soybean plants 

(Kogan and Fischer 1991, Accamando and Cronin 2012).  These changes would decrease the 

nutritional quality of soybean leaves (Lin and Kogan 1990).  When soybean looper consumes 

these low nutritional leaves, they may increase their total consumption in order to get equivalent 

nutrition (Lin and Kogan 1990).  In addition, the low nutritional quality food could have some 

toxic impacts on insects, resulting in a delayed development and lower weight gain (Tabashnik 

and Slansky 1987, Lin and Kogan 1990).  These results were further confirmed by our study; 

soybean looper development was significantly delayed and pupal weight was significantly lower 

on MeJA-treated leaves than on UTC leaves.  
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Plant development stage plays an important role in induced plant responses, and the level of 

induction is often higher in early plant stages or young plants (Cipollini and Redman 1999, Omer 

et al. 2001).  Mészáros et al. (2011) reported that large plants produced higher levels of induced 

resistance than small plants to fall armyworm after plants were applied exogenously with JA.  

Similarly, Quintero and Bowers (2011) also showed that the ability of plant to stimulate 

defensive reaction was stronger at juvenile plant stages rather other mature plant stages.  In our 

study, treatment effects on defoliation, pupal weight and developmental time were all significant 

between R2 and R5 stages, suggesting induced response by elicitors were different among plant 

stages.  However, contrary to the pervious findings that induced response is most pronounced in 

young stages, we found induced responses were stronger on R5 stages than on R2 stages for both 

Actigard and MeJA when compared UTC.   In the field, environment is more complicated and 

likely to affect induced resistance expression (Walters et al. 2005).  Dietrich et al. (2005) 

demonstrated that induction response on seed production was related to environmental 

conditions like nitrogen supply, nutrient and water stress, and weed competition.  Therefore, 

application of elicitors at appropriate plant stages is critical to maximize the impact of resistance 

induction.  Future research should also focus on the optimal concentration of elicitors in the field 

against soybean loopers and explore the possibilities of using elicitors like MeJA in combination 

with other managements for insect pest management in soybean. 
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CHAPTER 3 

EFFECTS OF POTASSIUM FERTILIZER RATES ON SOYBEAN YIELD 

AND SOYBEAN LOOPER (CHRYSODEIXIS INCLUDENS) 

DEVELOPMENT  
3.1 Introduction 

Fertilizers are important inputs used to increase agricultural productivity (Yardtm and 

Edwards 2003).  Inorganic fertilizers, especially nitrogen (N), phosphorus (P) and potassium (K) 

are critical nutrients in maintaining or improving crop yields (Belay et al. 2002).  K is one of the 

primary crop nutrients and plays an important role in crop physiological growth processes and 

yield development (Pettigrew 2008).  Previous studies have reported that K had an impact on the 

distribution of primary metabolites in plant tissues.  Evans and Sorger (1966) demonstrated that 

K activated some enzymes that were involved in sugar and nitrogen metabolism.  Blatt (1988) 

stated that K influenced the transport rate of nutrients in xylem and phloem through regulating 

cell opening and closing.  Furthermore, K was also recognized as key in maintaining pH, 

voltage, charge balance, and osmotic gradient in plant cells (Streeter and Barta 1984, Mengel and 

Haeder 1977, Marschner 1995).   

However, fertilizer supplement in crops may influence herbivore populations and/or their 

development.  Plant nutritional changes could have an impact on metabolism and hormonal and 

signaling pathways, which may result in changes in plant susceptibility and attractiveness to 

insects and diseases (Amtmann et al. 2008).  More than 2000 studies have been compiled by the 

International Potash Institute to summarize K supplement/pest interactions in the field and 

greenhouse (Amtmann et al. 2008, Perrenoud 1990).  Approximate 63% of these studies reported 

that K applications reduce insect and mite populations in crops (Amtmann et al. 2008).  

Nevertheless, K fertilization in some cases may also simulate insect outbreaks and/or improve 

insect performance, while in other cases K fertilizer had no effects.  Funderburk et al. (1991) 
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showed that application of K fertilizer on soybean plants increased population densities of 

velvetbean caterpillar, Anticarsi gemmatalis (Hubner), but had no effects on southern green stink 

bug, Nezara viridula (L.), population densities.  Therefore, the interactions for insect 

performance and K fertilizer are dependent on specific insect species and plants.  

Soybean looper, Chrysodeixi includens (Walker), is an important defoliator of soybean, 

Glycine max (L.) Merrill, in the southern U.S. (Herzog 1980).  As a polyphagous insect, soybean 

looper has 73 known host-plant species in 29 families including several cultivated hosts, but 

soybean is the most preferred host for its feeding and oviposition (Herzog 1980).  In 2012, 95% 

of the soybean acreage in Louisiana was treated for this pest with a yield loss plus cost of 

insecticide treatments reaching $26 million (Musser et al. 2013).  Furthermore, soybean looper is 

highly resistant to most insecticides and few products exist for control.  The problem Louisiana 

is now facing is methoxyfenozide resistant soybean looper.  Resistance ratios (resistance relative 

to a susceptible laboratory colony) of soybean looper to methoxyfenozide have been documented 

up to 24X in Louisiana (Brown 2012).  Alternative control strategies (such as cultural control) 

are needed to extend insecticide life while reducing pest populations.  

Soybean is one of major crops in the world, and it is an important food source in providing 

protein, oil, and minerals for humans and livestock.  About one-third of the world’s edible oils 

and two-thirds of its proteins are derived from soybeans (Maxwell and Hauppauge 2011).  In the 

U.S., soybean is the second most planted crop and it requires high K availability for optimal 

yield because utilization of K in plants is critical for the vegetative growth, yield production and 

crop quality.  Moreover, K has also been reported to affect nitrogen accumulation and carbon 

assimilation in plants, and a correlative relationship between N and K has been found in various 

crops such as maize, rice, and soybean (Barta 1982, Osaki 1995, Wojcieska and Kocoñ 1997).  It 
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is well known that N is an essential ingredient of protein and chlorophyll in plants and the 

availability of N in host plants impacts phytophagous insect feeding and development (Wier and 

Boethel 1995; Scriber, 1984).  Wier and Boethel (1995) demonstrated that soybean looper fed on 

leaves from soybean plants supplied with high rates of N fertilizer had less number of stadia and 

short larval development period.  Similarly, development and performance of soybean looper on 

soybean plants could also be influenced by external application of K fertilizers.  Understanding 

the effects K fertilization has on soybean looper population densities is an important step in 

controlling this pest.  

The objectives of this study were to evaluate 1) the effects of K fertilizer rates on soybean 

yield and seed quality, 2) the relationship between N concentration and K fertilizer rates in 

soybean plants, and 3) the effects of K fertilizer rates on soybean looper development. 

3.2 Materials and Methods 

3.2.1 Field planting. Soybean commercial variety DynaGro 31RY45 (Dyna-Gro, Richmond, 

CA) was planted in a field at the LSU AgCenter’s Rice Research Station in Crowley, Acadia 

Parish, Louisiana on April 8, 2013.  Seeds were planted at a rate of 321,236 seeds per hectare, 

and rows spacing was approximate 76 cm.  Six different rates of K fertilizer; 0, 33.6, 67.3, 100.9, 

134.5, and 168.1 kg/ha were applied at planting as K2O.  Different rates of K fertilizer was 

achieved by mixing K2O with water and sprayed to the soil based on a spray volume of 200 L 

per hectare.  These six different K rates were six different treatments in the experiment.   Each 

treatment was applied into a plot of 4 rows wide by 7.0 m long.  Treatments were arranged in a 

completely block design (CBD) with four replications.   

3.2.2 Insect colony. The soybean looper colony (MR08) used in this study was collected from 

soybean fields using a standard cloth sweep net with a 38.1 cm opening at Macon Ridge 
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Research Station in Winnsboro, LA in 2008 (Brown 2012).  The colony was maintained as 

follows.  Larvae were reared in 30-ml plastic cups (2 larvae/ cup) with about 10 ml artificial 

soybean looper diet (Southland Products, Lake Village, AR).  The larval-rearing cups were 

placed in a rearing room with 28.5 °C, 50% RH and 14:10 (L:D) photoperiod until pupal stage 

(Mascarenhas and Boethel 2000).  Pupae collected from larval-rearing cups were placed into 

plastic rearing containers containing about 30 g of vermiculite (Sun Gro, Bellevue, WA).  Two 

30-ml plastic cups containing a towel paper saturated with approximate 10% honey solution 

were placed in the center of the container as supplementary nutrition for the adults (Mascarenhas 

and Boethel 2000).  The inside of the container was covered with strips (8 x23 cm) of paper 

towel as oviposition sheets and the container was sealed with a muslin cover (Jensen et al. 1974).  

The 10% honey solution and ovipositon sheets were changed every 2 days and egg sheets were 

placed into plastic bags until eclosion (Brown 2012).  

3.2.3 Leaf and seed analysis. Whole soybean plants were destructively sampled when plants 

reached R1 and R3 (five plants), and R5 and R6 (two plants) growth stages, respectively (Fehr et 

al. 1971).  All leaf tissues were removed from these plants and placed into paper bags by 

treatment with a total of 24 paper bags; four replicates per each treatment.  Leaf tissues were 

maintained in a cooler box with ice packs and submitted to the Soil Testing & Plant Analysis 

Lab of Louisiana State University, Baton Rouge, LA, for nutritional analysis of K and N content.  

Soybean plants were harvested on 18 September 2013.  Four rows of each plot were harvested in 

the field and seeds of each plot were put into paper bags and brought back to the laboratory.  

Total weight of soybean seeds from each plot was recorded.  Soybean seed moisture was tested 

using a moisture meter (Model GAC®500 XT).  Three samples of 100 soybean seeds were 

randomly selected from each plot and weighed and recorded.  275g seeds were randomly 
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selected from each plot and were sent to Analab (Division of Agri-King, Inc.) for nutritional 

analysis including the content of protein, oil, fiber, and K percentage with a total of 24 samples. 

3.2.4 Laboratory bioassays. To reduce mortality due to handling, newly hatched neonates 

were maintained on 30-ml cups (2 larvae per cup) with 10-ml soybean looper artificial diet 

(Southland Products, Lake Village, AR) for 24 hours before laboratory bioassays.  Fifty leaf 

samples per treatment were randomly selected at R1, R3, R5, and R6, respectively, and brought 

back to the laboratory.  Leaves were cut using a #149 Arch Punch (Osborne and Co., Harrison, 

NJ) to produce leaf cores (11.34 cm
2
).  A single soybean looper neonate and a leaf core were 

placed onto a sterile petri dish (100 X 15 mm) covered with a moistened Whatman 90 mm filter 

paper using a fine camel hair paintbrush.  All Sterile petri dishes were maintained in a growth 

chamber at 26°C, 75% RH and a 14:10 (L: D) photoperiod.  A completely randomized design 

(CRD) was used in the laboratory bioassay with 4 replications and 50 neonates per replication 

for each treatment.  New, fresh leaf cores and clean moistened filter paper were changed when 

needed.  Soybean looper development in sterile petri dishes was checked daily until pupal stage.  

Leaf defoliation (cm
2
), mortality, and stadia of soybean looper were recorded daily.  Larval 

developmental time was determined based on the number of days needed from neonate to pupae.  

Pupae were weighted individually to the nearest 1.0 mg and sexed according to the methodology 

described by Shorey et al. (1962).  Ten pairs (male and female) of soybean looper pupae were 

randomly chosen from each treatment and were confined in a 3.8-L paper-rearing container 

(Huhtamaki Foodservice, De Soto, KS) with about 30g of vermiculite (Sun Gro, Bellevue, WA) 

for mating and oviposition.  The containers were maintained in the same conditions as described 

above.  The number of eggs deposited on the oviposition sheets was counted using a head 

magnifying glass, and the number of larvae hatched from these eggs was counted with a fine 
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camel hair paint brush.  The egg hatch ratio was calculated by dividing the total number of 

hatched larvae by the total number of eggs.  

3.2.5 Data analysis.  Data on soybean seed yield (bu/A), 100 seed weight (g), soybean looper 

leaf defoliation (cm
2
), pupal weight (g), no. eggs/10 female, and development time (day) were 

transformed to log (x + 1) scale first, while soybean seed moisture (%), seed nutritional 

parameters including protein (%), oil (%), fiber (%), and K content (%), soybean looper 

mortality (%) and egg hatch rate (%) were converted to arcsine square root scale for normal 

distribution.  Transformed data were then analyzed by one-way analysis of variance (ANOVA) 

using PROC MIXED to determine the differences among the treatments (SAS Institute 2011). In 

addition, data on K and N content (%) in leaf tissues were transformed with arcsine square root 

scale and analyzed by two-way ANOVA using PROC MIXED in SAS with K fertilizer rates and 

plant stage as two main factors (SAS Institute 2011).  Means were separated using Turkey’s 

honestly significant difference (HSD) tests at ɑ= 0.05 level.  

3.3 Results  

Treatment effects of K fertilizer rates on soybean seed moisture were not significant (F = 

0.62; df = 5, 15; P = 0.6854).  The average moisture for soybean seed was 11.66% (Fig. 3.1).  

However, there were significant differences for soybean yield (F = 5.39; df = 5, 14; P = 0.0057) 

and 100 seed weight (F = 3.15; df = 5, 63; P = 0.0134).  In general, a positive correlation was 

observed for K fertilizer rates and soybean yield as well as 100 seed weight (Fig. 3.2, Fig. 3.3). 

Increasing application of K fertilizer rates also enhanced soybean yield and 100 seed weight (Fig. 

3.3).  Soybean yield significantly increased at the highest K rate 168.1 kg/ha with 46.3 bu/A 

compared with other K rates (Fig. 3.2).  
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Figure 3.1. Soybean seed moisture (%) (± se) at different K fertilizer rates. Bars accompanied by 

the same letter indicate means do not differ significantly (P = 0.6854). 

  
Figure 3.2. Soybean yield (bu/A) (± se) at different K fertilizer rates. Bars accompanied by 

different letters indicate means differ significantly (P = 0.0057). 
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Figure 3.3. Soybean 100 seed weight (g) (± se) at different K fertilizer rates. Bars accompanied 

by different letters indicate means differ significantly (P = 0.0134). 

 
Figure 3.4. Foliage mineral content (%) (± se) of N and K at different K fertilizer rates. Bars 

accompanied by different lower case letters indicate means differ significantly for foliage K 

content  (P < 0.0001) while bars accompanied by the same upper case letter indicates means do 

not differ significantly for foliage N content (P = 0.3380).  



 44 

K fertilizer rates did not significantly affect soybean seed nutritional value in protein (F = 

0.86; df = 5, 15; P = 0.5322), fiber (F = 0.74; df = 5, 15; P = 0.6084), and oil (F = 2.36; df = 5, 

15; P = 0.0909), but significant impact on K content (F = 4.60; df = 5, 15; P = 0.0096).  The 

average values for protein, fiber, and oil were 39.46 %, 8.81 %, and 22.05 %, respectively (Table 

3.1).  Increasing K fertilizer rates also improved soybean seed K content (Table 3.1).  The 

highest seed K content was 1.82 %, which was observed on the highest K rate 168.1 kg/ha.  

Table 3.1. Effects of K fertilizer rates on soybean seed nutritional value (mean ± se)
*
  

Treatment Protein (%) Oil (%) Fiber (%) K content (%) 

0 kg/ha 39.94 ± 0.66 a 22.14 ± 0.38 a 8.52 ± 0.43 a 1.69 ± 0.04 b 

33.6 kg/ha 39.45 ± 0.42 a 22.37 ± 0.06 a 8.93 ± 0.30 a 1.69 ± 0.03 b 

67.3 kg/ha 39.00 ± 0.29 a 22.30 ± 0.22 a 9.12 ± 0.28 a 1.73 ± 0.04 ab 

100.9 kg/ha 39.62 ± 0.28 a 21.75 ± 0.22 a 8.50 ± 0.64 a 1.79 ± 0.03 ab 

134.5 kg/ha 39.72 ± 0.35 a 21.80 ± 0.23 a 8.67 ± 0.26 a 1.78 ± 0.05 ab 

168.1 kg/ha 39.01 ± 0.37 a 21.93 ± 0.40 a 9.12 ± 0.40 a 1.82 ± 0.03 a 

F - value F5,15 = 0.86 F5,15 = 2.36 F5,15 = 0.74 F5,15 = 4.60 

P - value 0.5322 0.0909 0.6084 0.0096 
*
Means within a column followed by the same letter are not significantly different (P >0.05; 

Tukey’s HSD). 

Two-way ANOVA results showed that the main effects of K fertilizer rates were not 

significant on the foliage N content (F = 1.16; df = 5, 69; P = 0.3380), but plant stages 

significantly affected N content in soybean leaf tissues (F = 46.65; df = 3, 69; P < 0.0001).  The 

average N content in leaf tissues for the six K fertilizer rates was 3.963 % (Fig. 3.4).  The highest 

N content (4.569 %) in leaf tissues was observed on R5 stage, while the lowest (3.447 %) was on 

R6 stage (Fig. 3.5).  The interactions between K fertilizer rates and plant stages were not 

significant (F = 0.57; df = 15, 69; P = 0.8855).  The main factors of K fertilizer rates and plant 

stages all significantly affected the K content in soybean plant leaf tissues (F = 18.24; df = 5, 69; 

P < 0.0001 for K fertilizer rates; and F = 84.00; df = 3, 69; P < 0.0001 for plant stages).  Overall, 

increasing K fertilizer rates also improved K content in plant leaf tissues.  But the interactions 
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between K fertilizer rates and plant stages were not significant (F = 0.64; df = 15, 69; P = 

0.8339).  Average leaf K content was 0.807, 0.883, 0.909, 1.009, 1.004, and 1.085 % for the 

treatments 0, 33.6, 67.3, 100.9, 134.5, and 168.1kg /ha, respectively (Fig. 3.4).  The lowest 

(0.772 %) and highest (1.132 %) leaf K content were observed on the R6 and R3 stages, 

respectively, which were significantly different from other plant stages (Fig. 3.5).  

 

Figure 3.5. Foliage mineral content (%) (± se) of N and K at different soybean growth stages. 

Bars accompanied by different lower case indicate means differ significantly for foliage K 

content (P < 0.0001) while bars accompanied by different upper case letters indicate means 

differ significantly for foliage N content (P < 0.0001). 

Laboratory bioassay showed that treatment effects for K fertilizer rates on soybean looper 

mortality (F = 0.23; df = 5, 15; P = 0.9940), no. eggs/10 females (F = 1.88; df = 5, 15; P = 

0.1583), and egg hatch rate (F = 0.74; df = 5, 15; P = 0.6070) were not significant.  The average 

values for mortality, number of eggs/10 females, and egg hatch rate were 5.1%, 14,517.0, 58.6%, 

respectively (Table 3.2).  However, K fertilizer rates significantly affected soybean looper
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Table 3.2. Effects of K fertilizer rates on soybean looper (mean ± se)
 *

 

Treatment % Mortality  Defoliation (cm
2
)  Pupal wt. (g) No. egg/10 females % Egg hatch Development time (day) 

0 kg/ha 0.030 ± 0.006 a 64.23 ± 0.52 b 0.209 ± 0.002 c 15918.75 ± 1207.12 a 0.602 ± 0.036 a 13.86 ± 0.09 a 

33.6 kg/ha 0.055 ± 0.015 a 64.75 ± 0.46 b 0.212 ± 0.002 bc 13880.75 ± 2552.19 a 0.604 ± 0.035 a 13.68 ± 0.08 ab 

67.3 kg/ha 0.070 ± 0.040 a 65.76 ± 0.45 ab 0.214 ± 0.001 bc 13262.00 ± 2834.22 a 0.578 ± 0.038 a 13.54 ± 0.08 bc 

100.9 kg/ha 0.040 ± 0.014 a 64.50 ± 0.47 b 0.212 ± 0.002 bc 13775.50 ± 1626.90 a 0.583 ± 0.035 a 13.28 ± 0.08 c 

134.5 kg/ha 0.050 ± 0.024 a 65.95 ± 0.49 ab 0.215 ± 0.001 ab 13772.50 ± 1898.95 a 0.556 ± 0.028 a 13.27 ± 0.09 c 

168.1 kg/ha 0.060 ± 0.022 a 66.68 ± 0.48 a 0.221 ± 0.002 a 16492.75 ± 2628.78 a 0.590 ± 0.039 a 12.95 ± 0.07 d 

F - value F5,15 = 0.23 F5,1131 = 4.52 F5,1131 = 8.18 F5,15 = 1.88 F5,15 = 0.74 F5,1131 = 24.91 

P - value 0.9440 0.0004 < 0.0001 0.1583 0.607 < 0.0001 

*
Means within a column followed by the same letter are not significantly different (P > 0.05; Tukey’s HSD).
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defoliation (F = 4.52; df = 5, 1131; P = 0.0004), pupal weight (F = 8.18; df = 5, 1131; P < 

0.0001), and developmental time (F = 24.91; df = 5, 1131; P < 0.0001).  In general, soybean  

looper defoliation increased as K fertilizer rates increased.  The highest defoliation by soybean 

looper was 66.68 cm
2
, which was observed on the highest K rates168.1 kg/ha.  Larval 

development time of soybean looper was also significantly affected by K fertilizer rates.  The 

higher K fertilizer rates, the less larval development time.  Soybean looper neonates took only 

12.95 days to become pupae at the highest K rate168.1 kg/ha, which was significantly shortened 

compared with other K rates.  Overall, soybean looper consumed more leaf tissues and spent less 

time completing larval development when fed on foliage from treatments of 134.5 and 168.1 

kg/ha.  Pupal weight was also significantly affected by the K rates.  The higher the K rates, the 

more the pupal weight.  The highest pupal weight was 0.221 g obtained from the highest K rate 

168.1 kg/ha (Table 3.2). 

3.4 Discussion 

Crop yield and quality are the most important factors impacting producer profits.  Previous 

research has documented that K fertilization benefited crop yields in maize, wheat, cotton, and 

soybean (Pettigrew 2008, Bharati et al. 1986).  Bharati et al. (1986) reported that high K fertility 

increased soybean yield due to increased number of pods per plant and the weight of individual 

seeds.  In our study, soybean yield was significantly enhanced by the highest K fertilization rate.  

Moreover, 100 seed weight was also increased with higher K rates.  Seed moisture is an indicator 

of plant maturity and K content could influence crop maturity.  In our study, the seed moistures 

were identical among the different K rates, suggesting the maturity was not affected by the K 

rates.  Soybean seed quality is also of great economic value.  Protein and oil content are the two 

important parameters for the soybean seed quality and they were found to be affected by the K 
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fertilization (Weber 1985).  Data from our study showed soybean seed protein and seed oil 

content did not increase with higher K fertilizer rates, which was consistent with the results 

shown by Haq and Mallarino (2005) and Seguin and Zheng (2006), but inconsistent with those 

found by Gaydou and Arrivets (1983) and Yin and Vyn (2003) who stated that K fertilization 

increased seed oil content while decreased seed protein content.  

N and K are critical nutritional components for plants.  It was reported that K promoted the 

incorporation of N into proteins, resulting in higher levels of proteins in crops such as tobacco, 

rice, and barley (Koch and Mengel 1974, Mengel et al. 1976, Helal and Mengel 1979).  In 

addition, K has been reported to enhance specific nitrogenase activation and nitrogen fixation in 

the family Leguminosae (Cowie 1951, Parthipan and Kulasooriya 1989).  However, in this study, 

N content in leaf tissues was not significantly different among the K rates.  Similarly, protein 

content in soybean seeds was also identical for the six K fertilizer rates.  The failure of a 

correlative relationship between N and K content in leaf tissues might be due to physiological 

and genotypic differences among soybean varieties.  Soybean genotypic differences could 

influence its root systems such as root morphology and root hair, which lead to variability of K 

utilization efficiency (Rengel and Damon 2008).  Thus, it is highly possible that soybean 

varieties result in different K utilization levels, which affected the relationship between K and N 

fixation in soybean.  Furthermore, our results also showed soybean plants accumulated the most 

amount of K at R3 stage when soybean began podding, which was consistent with the results 

showed by Batchelor and Scott (1979) that the majority of total K uptake occurred after 

flowering (R1-R2) in soybean plants. 

     Most previous research has focused on the effects of nitrogen on insect pest.  N is the most 

limiting to plant feeding insects and the most critical nutrient for cellular growth.  However, 
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soybean can fix its own nitrogen via rhizobacetria, and supplemental nitrogen can inhibit 

nodulation and specific nirogenase activity in soybean (Hardarson et al. 1984).  Generally, N 

fertilizer is not recommended for cultivation of soybean (Hardarson et al. 1984).  But K and P 

are limiting when rice and soybean are rotated in Louisiana and supplemental fertilizer is needed.  

In this study, the effects of K fertilizer rates on soybean looper development were evaluated.  

The results showed positive interactions between K fertilizer rates and soybean looper 

development and performance.  Soybean looper consumed more leaf tissues and developed faster 

on higher rates of K fertilizer, which suggested that foliage from plants treated with higher K 

fertilizer is more suitable for soybean looper development.  Funderburk et al. (1990) also 

demonstrated that population of velvetbean caterpillar, Anticarsia gemmatalis (Hübner), were 

increased under higher soil level of K in soybean.  Studies indicate fertilizer applications of 

influence pest injury because fertilizers change plant growth rates, size, time of maturity, and 

defense (Altieri and Nicholls 2003).  Furthermore, K nutrition is involved in chemical signals 

and hormonal pathways that are relevant to defense mechanisms (Amtmann et al. 2008).  

Jasmonic acid (JA) is one of most important plant hormones in response to mechanical and 

herbivory injury that stimulate to express resistance-related metabolites to defend herbivory 

(Korth and Thompson 2006). Interactions between K nutrition and JA response have been 

studied in Arabidopsis (Amtmann et al. 2008).  K nutrition regulated plant defense hormonal 

pathways at several levels (Amtmann et al. 2008).  Shin and Schachtman (2004) showed that 

ethylene (ET) concentration was associated with JA and JA increased when Arabidopsis planted 

under K deficient conditions (Lorenzo et al. 2003).  Armengard et al. (2004) found that JA 

played a vital role in K nutrition signaling.  Numerous JA responsive genes were strongly 

stimulated in K-deficient Arabidopsis, while the expression of these genes was rapidly decreased 
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after K resupplied (Armengard et al. 2004).  Arabidopsis thaliana has been the model plant to 

study the interactions between potassium nutrition levels and pest development (Amtmann et al. 

2008).  The model plant presented the basic studies to establish causal relationships between 

metabolite profile and hormonal pathways and pest susceptibility (Amtmann et al. 2008).   This 

knowledge can further extend to other agricultural crops to improve crop performance by 

balancing crop nutrition and pest pressure (Amtmann et al. 2008).  In our study, K fertilizer 

improved soybean plant performance but made it more susceptible and preferred for soybean 

looper.  It is possible that increased K fertilizer rates reduced the levels of plant resistance and 

insect-deterrent metabolites in soybean. 

In conclusion, understanding the complex interactions between host/herbivore/nutrient 

inputs is key to creating action thresholds and management plants as well as maintaining a 

balance between yield (productivity) and control strategies.  Based on our results, K fertilizer 

rates will need to be balanced between increasing yields and reducing population growth. 
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SUMMARY AND CONCLUSION 

Soybean is the second most agronomic crop in the U.S.  Strategies are required to 

simultaneously manage herbivores populations while optimizing fertilization to obtain optimal 

yield.  In order to achieve an economically and environmentally sustainable agroecosystem, 

Integrated Pest Management (IPM) is widely recommended.  Soybean looper in soybean has 

become the most expensive insect in Louisiana due to rapidly developed insecticide resistance. 

Induced host plant resistance has been sought as an important strategy to reduce herbivore 

populations and/or lower its fitness.  Commercial elicitors could be used to induce host plant 

resistance to regulate herbivore populations.  Fertilizer supplement in crops could increase yield 

but also influence insect pest populations.  In this study, Actigard 50WG, Regalia, and MeJA 

were used as elicitors to evaluate if induce resistance would lower soybean looper fitness on 

soybean plants; and different K fertilizer rates were supplied to estimate their effects on soybean 

yield and quality as well as on soybean looper development. 

In the first objective, exogenous application of Actigard 50WG, MeJA and Regalia in soybean 

plants induced resistance and had adverse effects on soybean looper development and 

performance.  The induced effects by Regalia were very limited compared to the other two 

elicitors.  Pupal weight of soybean looper was significantly reduced by 11.2% and 17.9% on 

MeJA treated leaves than on control leaves on R2 and R5 stages, respectively.  Moreover, larval 

development of soybean looper on MeJA treated leaves was elongated by12.8% and 16.2% on 

R2 and R5 stages, respectively compared with that on control leaves.  The induced effects by 

MeJA were consistent at both R2 and R5 stages.  In this project, MeJA was the most effective 

elicitor.  MeJA could be potentially considered as an alternative tactic to be compatible with 
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other control strategies in the field.  However, use of MeJA as an independent approach to 

control herbivores in the field still requires future research.  

In the second objective, six different K fertilizer rates were applied to soybean at planting. 

Soybean yield and soybean quality were positively related to K rates.  At the rate of 168.1 kg/ha 

soybean yield reached 46.33 bushel per acre, which was increased by19.38% and 22.66% 

compared to those at rates of 0 and 33.6 kg/ha.  Additionally, 100 seed weight was also increased 

significantly from treatment of 168.1 kg/ha.  However, the two important nutritional values, 

protein and oil, were not increased with increasing K fertilizer rates.  Soybean looper 

development and performance were enhanced due to K supplement in soybean.  Soybean 

mortality and fecundity were not significantly affected by K fertilization.  However, soybean 

looper defoliation and pupal weight were significantly increased with increasing K fertilizer 

rates, while larval development time was shortened.  Larval development time at 168.1kg/ha rate 

was decreased up to 6.57% and 5.34% in contrast to those at the rates of 0 and 33.6kg/ha, 

respectively, which could be a contribution to complete the 4
th

 generation for soybean looper in 

Louisiana.  In this project, soybean plants with high K levels were more susceptible and suitable 

to soybean looper.  K fertilization improved host plant nutritional quality, which had a direct 

impact on herbivore development and performance.  Moreover, high nutrition levels could 

reduce host plant defense mechanism such as reduction of deterred metabolites, which could 

increase herbivore development and performance.  Therefore, understanding these complex 

interactions between host/herbivore/nutrient inputs is an important step to maintain a balance 

between crop productivity and herbivore management. 
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