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ABSTRACT 

Insect herbivores can induce a range of plant defenses. Signal pathways can be activated 

that result in the production of secondary metabolites. Many of these compounds can reduce 

insect fitness, deter feeding, and attract beneficial insects. Additionally, organic and inorganic 

chemicals applied as a foliar spray or soil drench can activate these plant responses. Azelaic acid, 

benzothiadiazole (BTH), gibberellic acid (GA3), harpin, and jasmonic acid (JA) are thought to 

mediate plant response to pathogens and herbivores. The effects of these elicitors on the 

induction of plant defenses were determined by measuring the weight gain of fall armyworm 

(FAW), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) on four important crops, 

cotton, corn, rice, and soybean, treated with elicitors, under greenhouse conditions. JA 

consistently induced cotton and soybean resistance to FAW. In contrast, azelaic acid, BTH, and 

harpin treated plant material increased weight gain of FAW, suggesting negative crosstalk 

between the salicylic acid and JA signaling pathways. No induction of defense was observed in 

corn and rice, and the lack of spray mixture adhesion to those crops inspired a second experiment 

in which four adjuvants were co-applied with a reduced rate of JA (0.25X) to corn and cotton. 

Corn was more responsive to the use of an adjuvant than was cotton. The differential 

effectiveness of two elicitors, JA and BTH, was investigated on FAW and another noctuid 

species, the soybean looper (SBL), Chrysodeixis includens (Walker). Weight gain of FAW 

offered JA-treated soybean was significantly lower than FAW offered non-treated soybean in all 

trials, whereas growth of SBL was significantly reduced in only one trial. BTH was not effective 

in reducing weight gain of SBL offered plant material treated at the 1X or 5X rates. BTH 

reduced weight gain of FAW only in trial 2, at the 5X rate. The findings presented herein provide 

further support that foliar applications of JA increase resistance to arthropod herbivores, and that 
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this relationship between plant and herbivore could be transitioned to the field, with the ultimate 

goal of using elicitor-induced defense as a part of an integrated pest management program. 
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1. INTRODUCTION 

Fall armyworm (FAW), Spodoptera frugiperda (Smith), and soybean looper (SBL), 

Chrysodeixis includens (Walker), are examples of lepidopteran larvae that can cause serious 

losses in crop yields due to plant defoliation and fruit injury. In 2006, approximately 10% of 

corn, Zea mays (L.), acres in Georgia required treatment for FAW, resulting in a cost of 

$616,000 (Guillebeau et al. 2008). In 2012, FAW infested 763,000 acres of cotton, Gossypium 

hirsutum (L.), in the U.S., causing an estimated loss of 1,116 bales at a cost of greater than 

$450,000 (Williams 2013). In soybean, Glycine max (L.), the armyworm complex (Mythimna 

unipuncta, S. exigua, S. frugiperda, S. ornithogalli) infested 2.67 million acres and caused 

economic losses of over $27 million, including yield loss and treatment costs, in Alabama, 

Arkansas, Louisiana, Mississippi, North Carolina, Tennessee, and Virginia, during 2011 (Musser 

et al. 2012). Finally, in the same year and locations, SBL infested 4.66 million acres of soybean 

and caused economic losses of over $59 million, including loss and treatment costs (Musser et al. 

2012). 

Historically, control of herbivorous insect pests has relied on broad-spectrum synthetic 

insecticides that exhibit several negative effects. Such effects include: development of resistance 

in pests, high costs of new chemistries, non-target effects, secondary pest resurgence, and 

deleterious effects on the environment. With the adoption of transgenic Bacillus thuringiensis 

(Bt) varieties beginning in 1996, many foliage feeding insects have been successfully managed 

in corn and cotton. However, there are no commercial Bt soybean varieties currently available, 

and there is variation in the susceptibility of FAW to Bt in the crops that are available 

(Adamczyk et al. 1997).  
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Recently, interest has increased in host plant resistance and research on chemical elicitors 

to stimulate host plant defense against pest insects (Boughton et al. 2006, Bruinsma et al. 2007, 

Dervinis et al. 2010, Hamm et al. 2010). Host plant resistance can be categorized as either 

constitutive or inducible. Constitutive resistance is defined as morphological or chemical 

attributes always present in a plant that act to deter or have negative effects on herbivores. 

Inducible resistance refers to a plant’s response to herbivory. Both constitutive and inducible 

resistance can be classified as either direct, which negatively affects physiology and/or behavior 

of herbivores, or indirect, which increases the performance of natural enemies (Schoonhoven et 

al. 2005). 

Constitutive and inducible plant resistance can include mechanical and/or chemical plant 

traits (Traw and Bergelson 2003, Schoonhoven et al. 2005). Mechanical adaptations include 

thorns, trichomes, and tough leaf tissues to reduce feeding. Chemical defenses are much more 

complex and can include hypersensitive responses such as localized cell death, the production of 

volatiles that attract natural enemies, and endogenously produced chemicals that decrease 

herbivore fitness (Fritz and Simms 1992). Typically, induced plant defense involving viruses, 

fungi, and bacteria is termed systemic acquired resistance whereas induced plant defense 

involving insect herbivory is characterized as induced resistance (Inbar 2001). 

The use of plant defense elicitors should be considered as an additional approach in 

integrated pest management programs. Plant defense elicitors that demonstrate effectiveness 

against foliage and plant feeding guilds of insects could be beneficial in crops including field 

corn, cotton, sorghum, Sorghum bicolor (L.), and rice, Oryza sativa (L.), as an alternative to 

conventional insecticides. This could reduce early season chemical control needs by boosting 

plant resistance to herbivores, and decreasing losses to secondary pests by minimizing non-target 
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beneficial insect mortality. Additionally, their use could extend the life of transgenic Bt 

technologies by being included as an additional tactic with a different mode of action thereby 

aiding in insecticide resistance management. This potential, coupled with the ability to 

“piggyback” their application with a planned herbicide application, encourages consideration for 

the use of plant defense elicitors in an integrated pest management program.  

Due to the dynamics of the pest arthropod complexes for most crops throughout the U.S., 

there is a need to continuously re-evaluate existing management strategies. The purpose of this 

project is to screen potential elicitors for their potential use in inducing resistance to herbivorous 

insects in field trials of major agricultural commodities, evaluate the effectiveness of adjuvants in 

increasing elicitor activity, and examine differential effects of elicitors on selected crop plants 

and herbivorous insects. 
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2. REVIEW OF LITERATURE 

2.1 Identification and Biology of Target Insects 

2.1.1 Fall Armyworm 

Fall armyworm (FAW), Spodoptera frugiperda (Smith), is in the family Noctuidae in the 

order Lepidoptera (Anonymous 2012). Larvae can vary greatly in color, from light tan to green 

to nearly black, with stripes running the length of the body. Later instars lack primary setae and 

tend to be smooth (Oliver and Chapin 1981, Capinera 1999). Larvae of FAW can be 

distinguished from other members of the family by the presence of an inverted “Y” on the front 

of the head capsule (Oliver and Chapin 1981, Drees 1998). Adult FAW possess dark gray 

mottled forewings with a distinctive lighter colored spot near the tip, and whitish hindwings. The 

wingspan measures approximately 3.8 centimeters from tip to tip (Oliver and Chapin 1981, 

Capinera 1999). 

The larval stage of FAW is polyphagous, feeding on foliage and occasionally fruit. FAW 

is a pest of many crops, including corn, Zea mays (L.), cotton, Gossypium hirsutum (L.), rice, 

Oryza sativa (L.), soybean, Glycine max (L.), turf grass, pastures, and vegetables (Luttrell and 

Mink 1999). Adult females oviposit in large masses on the abaxial leaf surface (Cranshaw 2004). 

Larvae are the damaging stage and cause defoliation resulting in yield loss (Leigh et al. 1996). 

The larval stage of FAW consume 80 percent of their total feeding intake during the last two 

days of the larval stages; therefore, it is beneficial to eliminate early instars or to affect larval 

fitness such that populations of successive generations are reduced (Knutson 2008).  

Overwintering of FAW usually occurs in the pupal stage. However, in very mild winters 

it is not uncommon to see all life stages. The tropical nature of FAW does not allow this species 

to survive winter temperatures in midwestern and northern U.S. states. However, FAW do 
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overwinter across southern U.S., specifically in Florida and South Texas (Knutson 2008). In 

addition, each year FAW adults migrate north from Mexico and the Caribbean islands (Cranshaw 

2004). Females may oviposit as many as 400 or more eggs in a large mass (Luginbill 1928, 

Drees 1998). Typical development time for larvae is two to three weeks, depending on 

temperature, as well as availability and quality of food. Late instars leave the host plant and 

pupate in the soil. The pupal stage often lasts 10 to 14 days, after which the adult emerges and 

mates (Luginbill 1928, Knutson 2008). Southern states can have as many as ten (typically three 

to four) generations per year, while the northern states have only one or two generations per year 

(Capinera 1999, Cranshaw 2004).   

Two strains of FAW that are morphologically identical, but differ in host specificity, 

occur in Louisiana (Pashley 1986). They are commonly referred to as the corn-strain and the 

rice-strain; the former preferring corn and the latter preferring rice and bermudagrass, Cynodon 

dactylon (L.) (Quisenberry 1991, Nagoshi and Meagher 2004). Additionally, the corn-strain 

develops in greater numbers on cotton, compared to the rice-strain (Nagoshi et al. 2007). Inter-

strain mating can occur with rice-strain females accepting corn-strain males; however, corn-

strain females and rice-strain males appear to be reproductively incompatible (Whitford 1988, 

Quisenberry 1991). 

2.1.2 Soybean Looper 

Soybean looper (SBL), Chrysodeixis includens (Walker), is in the family Noctuidae in 

the order Lepidoptera (Anonymous 2012). SBL larvae are green and usually have lighter-colored 

longitudinal stripes and small dark spots on the abdomen. The body of the larvae tapers slightly 

from posterior to anterior and they possess three pairs of true legs and three pairs of prolegs. 

Adult SBL possess brown, mottled forewings with a silvery spot near the center, lighter-colored 
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hindwings and fore- and hindwing margins, and a wingspan that measures approximately 3.3 

centimeters (Higley and Boethel 1994, Stewart et al. 2010). 

The larval stage of SBL is a polyphagous foliage feeder and rare fruit feeder that is 

known to feed on soybean, cotton, peanut, Arachis hypogaea L., sweet potato, Ipomoea batatas 

(L.), tomato, Lycospersicum esculentum Miller, and many other hosts (Herzog 1980). Higher 

SBL populations occur when soybean and cotton are grown in close proximity (Herzog 1980, 

Funderburk et al 1999). Adult females oviposit single eggs on the abaxial leaf surface, where 

they hatch after two to three days and begin to feed on foliage, causing defoliation that can result 

in yield loss (Herzog 1980, Higley and Boethel 1994, Stewart et al. 2010). SBL larvae consume 

approximately 80 percent of their total feeding intake in the last (sixth) instar; therefore, as with 

FAW, it can be beneficial to eliminate early instars to mitigate yield loss (Boldt et al. 1975).  

 Overwintering of SBL occurs in the United States across southern Florida and southern 

Texas. Generally, moths migrate north from these areas, Mexico and Central America, and the 

Caribbean islands (Herzog 1980). Females may oviposit as many as 600 or more eggs after 

mating (Higley and Boethel 1994, Stewart et al. 2010). Typical development time for larvae is 

two to three weeks, again depending on temperature, as well as availability and quality of food. 

Late instars spin a loose cocoon and pupate on the abaxial leaf surface. The pupal stage often 

lasts 7 to 10 days, at which time the adult emerges and mates. In Louisiana, there are three to 

four SBL generations on soybeans annually (Burleigh 1972, Higley and Boethel 1994). 

2.2 Insect – Host Relationships 

Grasses are preferred by FAW larvae, but they have been observed feeding on over 80 

host species of plants, including both monocots and dicots (Pashley 1988, Leigh et al. 1996, 

Knutson 2008). Early instars feed on the abaxial leaf surface; usually not chewing completely 
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through the leaf, allowing them to go unnoticed (Knutson 2008). Second and later instars begin 

eating holes and feeding inward from the margin of the leaf, causing defoliation (Barlow and 

Kuhar 2009). 

In corn, FAW larvae will feed on the whorl, resulting in stunted growth and misshapen 

leaves, and later on the tassels and the ear, causing grain loss (Herbert and Malone, 2005). In 

cotton, first and second instars typically feed on foliage, while third instars and older larvae tend 

to prefer squares, blooms, and bolls (Luttrell and Mink 1999). In soybean, FAW may feed on 

leaves, stems, pods, and beans (Stewart et al. 2011), and in rice, FAW can cause serious yield 

loss with early-season feeding on seedling rice that results in stand reduction and significant 

defoliation (Shipp 2002). 

Adult SBL oviposit on the abaxial leaf surface and emerging larvae begin to feed on 

leaves in the middle canopy of soybean plants. As they defoliate the plant, larvae move higher in 

the canopy and consume upper leaves as they move (Herzog 1980). Feeding by SBL larvae is 

most damaging when it occurs during the pod-fill stage (R1-R6) and causes a reduction in 

canopy, decrease in photosynthesis, and yield loss. After plants reach the R8 development stage, 

SBL feeding has little or no effect on yield (Funderburk et al. 1999). 

2.3 Plant Hormones, Elicitors of Plant Defense, and Adjuvants 

Induced resistance against plant pathogens was recognized over a century ago while 

induced resistance against herbivorous arthropod pests was discovered only in the last half-

century (Karban and Kuć 1999). To date, over 30 plant species have demonstrated induced 

resistance against pathogens and over 100 plant species have demonstrated induced resistance 

against herbivores (Karban and Kuć 1999). Plant hormones most commonly identified as 

mediating plant responses to pathogens and herbivores are salicylic acid and jasmonic acid (JA), 
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respectively (Smith et al. 2009). However, azelaic acid, benzothiadiazole, harpin, gibberellins, 

and several other organic and inorganic chemicals can affect plant response to pathogen and/or 

herbivorous arthropod attack (Kahl et al. 2000, Traw and Bergelson 2003, Nombela et al. 2005, 

Yang et al. 2005, Jung et al. 2009, Hamm et al. 2010). 

2.3.1 Azelaic Acid 
 

Azelaic acid is a naturally occurring saturated dicarboxylic fatty acid that has 

demonstrated anti-inflammatory and antibacterial properties (Garelnabi et al. 2010), as well as 

inducing local and systemic resistance to the plant pathogen, Pseudomonas syringae, in 

Arabidopsis (Jung et al. 2009). Research involving the effects of azelaic acid as a primer in 

systemic acquired resistance is very limited. Its role in induced resistance has not been 

investigated. 

2.3.2 Benzothiadiazole and Salicylic Acid 
 

Benzothiadiazole (BTH) is labeled as a promoter of systemic acquired resistance for plant 

protection from bacterial and fungal pathogens including Psuedomonas syringae, Xanthomonas 

campestris, and Peronospora destructor (Anonymous 2011). BTH is labeled under the trade 

name Actigard® by Sygenta Crop Protection. BTH is a salicylic acid mimic and has shown 

promise in systemic reduction of infections by plant pathogens, but has limited effects on 

reducing damage or affecting host preference for insects. Salicylic acid is the primary signaling 

hormone for induced plant defense to pathogenic infection, especially biotrophic pathogens 

(Glazebrook 2005, Smith et al. 2009).  

Infection frequency of the plant pathogen Uromyces pisi was shown to be significantly 

decreased in Pisum sativum (L.) with the application of BTH (Barilli et al. 2010). Additionally, 

BTH induces local, but not systemic, resistance in tomato (Solanum lycopersicum) to Bemisia 
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tabaci (Gennadius) (Hemiptera: Aleyrodidae), causing a decrease in the number of eggs and 

resulting pupae (Nombela et al. 2005). Boughton et al. (2006) demonstrated that application of 

BTH reduces growth of populations of green peach aphid, Myzus persica, on tomato. However, 

Inbar et al. (2001) showed that BTH had no significant effect on host preference of B. tabaci or 

feeding efficiency of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on cotton. 

2.3.3 Gibberellins 
 

Gibberellins belong to a group of plant compounds called terpenoids (Naqvi 1995). 

Gibberellins are at highest concentrations in immature seed and lower concentrations in root and, 

especially, shoot tissue, comparatively (Naqvi 1995). Currently, 126 gibberellins have been 

identified in 128 plants, 7 fungi, and 7 bacteria (Macmillan 2002). They are biologically active in 

plants and cause the elongation of cells, breaking of seed and bud dormancy, and the 

mobilization of nutrients including the synthesis of hydrolytic enzymes in barley, Hordeum 

vulgare (L.), wheat, Triticum spp., and wild oat, Avena fatua (L.) (Naqvi 1995). 

Plant damage from insect feeding can be reduced by gibberellins. They promote 

morphological changes resulting in physical defense strategies. When used alone or in 

conjunction with fenchlorfenuron, a synthetic cytokinin, as a pretreatment for the black pecan 

aphid, Melanocallis caryaefoleiae (Davis) (Hemiptera: Aphididae), on pecan, Carya illinoensis 

(Wangenh), gibberellic acid significantly reduced leaf chlorosis (Cottrell et al. 2010). 

Additionally, gibberellic acid acted synergistically with JA to increase the number and density of 

leaf trichomes in Arabidopsis (Traw and Bergelson 2003).  

2.3.4 Harpin 
 

According to the Plant Health Care, Inc. federal registration label, Harpin αβ protein is a 

biochemical pesticide that suppresses nematode egg production and enhances plant growth, 
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stamina, and vigor (Anonymous 2011). Harpin is produced by the bacterium Erwinia amylovora 

(Baker et al. 1993). It promotes resistance to plant pathogens including fungi and bacteria (Yang 

et al. 2005, Dong et al. 1999). Harpin is registered under the trade name Employ® H&T (Plant 

Health Care, Incorporated, Pittsburgh, PA, USA).  

Harpin significantly decreased lesion diameter of Trichothecium roseum in certain 

varieties of harvested hami melons, Cucumis melo (L.) var. inodorus (Jacq.), without a 

significant effect on mycelial growth (Yang et al. 2005). Additionally, harpin induced resistance 

to the fungal pathogen, Peronospora parasitica, and the bacterial pathogen, Pseudomonas 

syringae, in Arabidopsis spp., but did not decrease green peach aphid (Myzus persicae) 

populations when applied exogenously to tomato (Dong et al. 1999, Boughton et al. 2006). 

2.3.5 Jasmonic Acid 
 

In plants, JA acts as a signaling molecule in the octadecanoid pathway (Staswick 1995). 

JA is involved in the inhibition of seed germination and plant growth, and promotes leaf 

senescence, fruit abscission, tuber formation, flower and fruit development, pigment formation, 

and tendril coiling (Davies, 1995, Staswick 1995).  

As a major signaling molecule, JA is responsible for mediating plant responses to 

herbivorous insect attack. Levels of endogenous JA increase following attack and, in response, 

secondary metabolites are produced in vivo. These metabolites deter insect feeding, inhibit 

digestion of plant material, or attract natural enemies (Smith et al. 2009). Omer et al. (2001) 

showed that the application of a 1mM solution of methyl ester of JA significantly decreased 

preference of cotton aphids, Aphis gossypii (Glover), two-spotted spider mites, Tetranychus 

urticae (Koch), and western flower thrips, Frankliniella occidentalis (Pergande), on cotton, 

compared to non-treated cotton. Survivorship and reproduction of cotton aphid were reduced by 
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40% and 75%, respectively. Egg production was reduced by more than 75% in two-spotted 

spider mite, and leaf feeding was reduced by more than 80% in western flower thrips. 

Additionally, Hamm et al. (2010) showed that rice treated with JA had fewer rice water weevil, 

Lissorhoptrus oryzophilus (Kuschel), eggs ranging from 23% to 69% and 54% to 85% for 1mM 

and 5mM concentrations, respectively, compared to a non-treated control. Thaler (1999) showed 

that tomato plants treated with JA had twice as many Hyposoter exiguae (Viereck) parasitized 

Spodoptera exigua (Hübner) (both naturally occurring in the field) compared to control plants. 

Additionally, there were 37% more parasitized S. exigua on treated plants, compared with 

control plants. Additionally, trichome number is increased by artificial wounding, application of 

JA alone, or JA with gibberellin (Traw and Bergelson 2003).   

2.3.6 Adjuvants 
 

In an attempt to maximize pesticide efficacy, adjuvants have been used in agriculture as 

dispersants, stickers, emulsifiers, penetrants, and for other various purposes, since the onset of 

modern pesticide use (Stevens 1993, Witt 2012). Following the development and advancement 

of pesticides, adjuvants have been improved and their use is considered standard practice in 

agriculture. Holloway et al. (2000) showed that the use of organosilicone and methylated 

vegetable oil surfactants on pea, Pisum sativum, resulted in leaf coverage of 93% and 34% 

coverage, respectively, compared to the 0.3% coverage achieved with only water. Dyne-Amic, 

an organosilicone-oil surfactant, decreases surface tension of water by 30% at concentrations as 

low as 0.01% (Singh and Mack 1993). The modes of action for adjuvants most relevant to this 

study include increasing stomatal infiltration via reduction in spray mixture surface tension, and 

enhancing penetration of the plant cuticle. 
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3. OBJECTIVES AND HYPOTHESES 

The following objectives and hypotheses were developed for this work.  

Objective 1: Determine the effects of application of suspected elicitors of plant resistance 

- azelaic acid, benzothiadiazole (BTH), harpin, gibberellic acid, and jasmonic acid 

(JA) - on the resistance of cotton, Gossypium hirsutim (L.), corn, Zea mays (L.), rice, 

Oryza sativa (L.), soybean, Glycine max (L.), as measured by weight gain of larval 

fall armyworm (FAW), Spodoptera frugiperda (Smith), offered treated excised 

leaves. 

H0 = No significant difference in weight gain between FAW larvae offered 

elicitor/hormone treated plant material will be detected, compared to FAW larvae 

offered non-treated plant material. 

HA = Weight gain of FAW larvae offered elicitor/hormone treated plant material will be 

significantly lower compared to FAW larvae offered untreated plant material.  

 

Objective 2: Determine if the use of adjuvants enhance the response of corn and cotton to 

JA as measured by weight gain of FAW larvae offered treated excised leaves. 

H0 = No significant difference of weight gain between FAW larvae offered  plant 

material treated with JA + adjuvant compared to FAW larvae offered plant material 

treated with JA alone. 

HA = Weight gain of FAW larvae offered JA + adjuvant-treated plant material will be 

significantly lower than FAW larvae offered on plant material treated with JA alone. 
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Objective 3: Determine if applications of BTH or JA to soybean differentially affect 

soybean resistance to FAW and soybean looper (SBL), Chrysodeixis includens 

(Walker) fed excised leaf tissue. 

H0 = No significant difference in weight gain of FAW or SBL larvae offered excised leaf 

tissue of soybean treated with JA or BTH will be detected, compared to those offered 

non-treated soybean.. 

HA = Weight gain of FAW and SBL larvae offered non-treated soybean or soybean 

treated with JA or BTH will be differentially affected.  

 

This study served as an initial screen of elicitors to evaluate their potential use in field 

trials on major agronomic crops and against economically important target species of insects.  

This research compared the effect of selected elicitors on the weight gain of FAW larvae across 

four major agronomic crops: corn, cotton, rice, and soybean.  The elicitors used had previously 

been shown to increase resistance of one or more plants to arthropods or pathogens (Omer et al. 

2001, Dong et al. 2004, Nombela et al. 2005, Jung et al. 2009, Cottrell et al. 2010, Hamm et al. 

2010). This work also evaluated adjuvants in increasing the effectiveness or activity of JA 

applied to two agronomic crops, corn and cotton. Results will provide a better understanding of 

overall elicitor effectiveness, differences in effectiveness between monocots and dicots, and will 

offer insight into the effect of adjuvants on the activity of JA. Finally, this research serves as a 

basis for further field experiments using elicitor-mediated induction of plant defense as a 

potential tactic in integrated pest management.
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4. MATERIALS AND METHODS 

4.1 Effects of Putative Elicitors on Induced Plant Resistance to Fall Armyworm 

Cotton (cv LA1110017, LSU AgCenter, Agronomy Department Cotton Breeding 

Program), field corn (cv Trucker’s Favorite Yellow, River Valley Heirloom Seeds, Glenwood, 

AR, USA.), rice (cv CL131, BASF, Research Triangle Park, NC, USA), and soybean (cv 

Clifford, LSU AgCenter, Agronomy Department Soybean Breeding Program) were grown in 1.6 

liter round (15 cm diameter) plastic pots using Clegg’s potting soil (peat - aged pine bark - 

perlite, 50-40-10; Sun Gro Horticulture, Bellevue, WA, USA). Plants were maintained in the 

greenhouse under natural lighting with temperatures ranging from 20 ºC to 35 ºC (Table A1). 

After plant emergence, granular fertilizer (13.5 g, N-P-K, 13-13-13; Meherrin Fertilizer Inc., 

Severn, NC, USA) was applied. The plants were watered to maintain adequate soil moisture. 

Cotton, corn, and rice were grown to the 3-4 leaf stages, and soybean was grown to the V1-V2 

stage.  

Fall armyworm (FAW) larvae were obtained from a fallow rice field at the Rice Research 

Station in Crowley, Louisiana in 2011. This collection is presumed to be rice-strain and will be 

referred to as such in this paper. Another FAW colony was established from larvae collected 

from a cotton field at the Macon Ridge Research Station in Winnsboro, Louisiana in 2005, and 

supplemented in 2006 and 2008. The FAW populations sampled in Winnsboro have been 

genetically confirmed as being the corn-strain and will be referred to as such in this paper 

(Hardke 2011). The rice-strain and corn-strain colonies were maintained in the laboratory on 

meridic diet (Fall Armyworm Diet (Southland Products Incorporated, Lake Village, AR, USA) 

and Stonefly Heliothis Diet (Ward‘s Natural Science, Rochester, NY) for rice –strain and corn-strain 

FAW, respectively) using the methods as described by Hardke (2011). Pupae were placed in 
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buckets covered with cheese cloth and provided with fresh water and a mixture of honey, beer, 

water, and ascorbic acid (150ml-150ml-300ml-12g). After emergence, adults mated and females 

oviposited eggs onto the cheesecloth, which was collected daily and placed in a plastic bag, 

labeled, and set aside. When neonates began to emerge, they were placed in 8-cell trays (Bio-

Serv, Frenchtown, NJ, USA), 20-30 per cell, and supplied with meridic diet (Fall Armyworm 

Diet, Southland Products Incorporated, Lake Village, AR, USA). The FAW larvae were kept on 

diet until third instars (approximately 6-7 days), and were synchronized by selecting larvae that 

were about to molt (noticeable gap behind head associated with slippage of the head capsule). 

The larvae were then placed individually into cells of 32-cell trays (Bio-Serv, Frenchtown, NJ, 

USA) and starved for 18-24 h to ensure that the gut was evacuated before mass was measured. 

Larval mass were determined using a microbalance (model XS105, Mettler-Toledo LLC, 

Columbus, OH, USA). For every 10 larvae needed for the experiment, at least 15 were evaluated 

and only newly molted larvae with the most similar masses (mean ± 1 standard deviation) were 

used in the experiment. See Appendix for FAW strain used by experiment. After the feeding 

assay was completed (approximately 72 h), the larvae were returned to individual cells for an 

additional 6-24 h starvation period to ensure that the larval gut was evacuated before final mass 

was measured and recorded.  

Azelaic acid, benzothiadiazole, gibberellic acid, harpin, and jasmonic acid (JA) were 

measured at a 3X rate (Table 1) for trial one, and at the 1X rate for trials two, three, and four (if 

applicable). The 1X rates for benzothiadiazole, gibberellic acid, and harpin were equivalent to 

label rates whereas azelaic acid and JA were mixed at concentrations of 1.0 and 2.0 mM, 

respectively (Jung et al. 2009, Hamm et al. 2010). The elicitors were thoroughly mixed into 
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Table 1. Putative Elicitors of Plant Defense Used in this Study 
Chemical Trade Name                

(if applicable) 
Manufacturer 1X rate (g/100ml) 

unless otherwise noted 
Maximum amount 

per plant 

Azelaic Acid n/a Sigma Aldrich 0.019                                
(1 mM) 

1.9 mg 

Benzothiadiazole Actigard® 50wg Syngenta Crop Protection 0.005                                           0.5 mg 

Gibberellin (GA3) ProGibb® 40% Valent BioSciences 0.01 1.0 mg 

Harpin Employ® H&T Plant Health Care, Inc. 0.03 3.0 mg 

Jasmonic Acid n/a Tokyo Chemical Industry 
Co., Inc. 

0.042                               
(2 mM) 

4.2 mg 

Organosilicone surfactant Dyne-Amic® Helena Chemical Co. 50µl/100ml 5 µl 

Nonionic oil surfactant Penetrator Plus® BASF 50µl/100ml 5 µl 

Polyethylene glycol  Triton X100 Sigma Aldrich 50µl/100ml 5 µl 

Polyoxyethylene (20) 
sorbitan monolaurate 

Tween 20 Sigma-Aldrich 50µl/100ml 5 µl 
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100 ml of deionized water and applied using a gas (propane, butane, dimethylether) propellant-

powered hand sprayer (Preval, Coal City, IL, USA). The JA was first dissolved in 1 ml of 

ethanol; the spray jar containing azelaic acid and water was placed in a sonicator for 

approximately five minutes to aid in mixing. The control treatment was 1.0% (v/v) ethanol in 

deionized water. To prevent cross-treatment exposure, each group of plants was removed from 

the greenhouse bench, placed in front of an exhaust fan for treatment, and allowed to dry before 

being returned to common greenhouse area. 

Approximately 48 h after elicitor treatment, all leaves were removed from plants, using 

scissors, and were placed on ice for transport to the lab. Excised leaf material was placed in 9cm 

plastic petri dishes (for rice) or 32-cell trays (for cotton, corn, and soybean) containing four 

layers of cotton batting saturated with deionized water. Selected FAW larvae were placed on 

excised leaves for feeding and the petri dish or cell was labeled with the identification number of 

the larva.  Larvae were allowed to feed for 72 hours and were checked daily to ensure they were 

not food-limited. 

Data Analysis: Analysis of covariance (ANCOVA) was performed with final weight as 

the response variable, initial larva weight as the covariate, and treatment (elicitor) as a fixed 

effect. The ANCOVA was performed using PROC MIXED in SAS 9.3 (SAS Institute 2010) 

(Stout et al. 2009). Each experiment was tested for a treatment by covariate interaction using 

PROC MIXED. If a significant interaction was found, a contrast was performed comparing 

treatments at the mean of the covariate. Means were separated using Dunnett’s method for 

multiple comparisons to a control. Least squares means for estimated final weight are reported in 

results. 
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4.2 Adjuvant Effects on the Response of Corn and Cotton to Jasmonic Acid and 
Induced Resistance to Fall Armyworm 

 
Corn and cotton plants were managed as described in Objective 1. They were grown 

under greenhouse conditions and lighted with 400 watt metal halide lights placed 1.25 meters 

above the pots, on a 14:10 hour (light: dark) schedule. Corn-strain FAW were reared and treated 

as described in Objective 1. Tween 20, Triton X100, Penetrator Plus®, and Dyne-Amic® were 

mixed at 50µl per 100ml of solution (0.05% v/v), half the concentration of Tween 20 used in 

application of JA in previous studies by Bruinsma et al. (2007) and Xin et al. (2012), and one-

fifth the label rate of Penetrator Plus® and Dyne-Amic®. This rate was selected to minimize 

phytotoxic effects of JA previously reported (Boughton et al. 2006), while improving penetration 

and increasing spray coverage (Sengh and Mack 1993). The treatments included: adjuvant with 

0.5 mM JA (0.25X rate) (four treatments), adjuvant alone (four treatments), 0.5 mM JA (0.25X 

rate), 2.0 mM JA (1X rate), and 1.0% ethanol (v/v) in deionized water (control). Elicitor 

application, feeding assay, and data analyses were performed as described in Objective 1. 

4.3 Effects of Benzothiadiazole and Jasmonic Acid on Induced Resistance of 
Soybean to Fall Armyworm and Soybean Looper  

 
Soybean plants were managed as described in Objective 1. They were grown under 

greenhouse conditions and lighted with 400 watt metal halide lights placed 1.25 meters above the 

pots, on a 14:10 hour (light: dark) schedule. 

Corn-strain FAW larvae were reared as described in objective 1. Soybean looper (SBL) 

larvae were obtained from the soybean entomology research laboratory at Louisiana State 

University. The colony was originally collected in 2008 from a soybean field at the Macon Ridge 

Research Station near Winnsboro, Louisiana.  The colony was maintained in the laboratory 

following methods described by Brown (2012). The laboratory growth room was kept at 
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approximately 27 ºC and 80 % humidity, under a 14:10 hour photoperiod (light:dark). Pupae 

were placed in covered buckets lined with paper towels and provided with a mixture of 10% v/v 

honey-water mixture. After emergence, adults mated and females oviposited onto the paper 

towels, which were collected and placed in a plastic bag, labeled, and set aside. When neonates 

emerged from eggs, they were placed in one ounce solo cups containing SBL diet (Southland 

Products Incorporated, Lake Village, AR, USA).   For trials one and two, third instars were used; 

for trial three, second instars were used. SBL and FAW larvae were treated comparably in 

preparation for the feeding assay.  

Benzothiadiazole treatments were applied at 1x, 5X, and 5X for trials one, two, and three, 

respectively. The control treatment and JA treatment (1X) were prepared as explained in 

Objective 1 and all treatments were applied as described in Objective 1. The feeding assay was 

performed as explained in Objective 1. Data analysis was performed as explained in Objective 1, 

with comparisons made only within the same insect species for each trial. 
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5. RESULTS 

5.1 Effects of Putative Elicitors on Induced Plant Resistance to Fall Armyworm 
 

For corn, elicitor treatment had a significant effect on final weight of fall armyworm 

(FAW) larvae in trial 1 (F5,51 = 3.80, P = 0.0053) and trial 2 (F5,53 = 2.51, P = 0.0410), but not in 

trial 3 (F5,53 = 0.26, P = 0.9311) (Table 2). In trial 1, only the weight gain of larvae offered 

benzothiadiazole treated corn was different from that of the larvae fed non-treated corn, being 

significantly greater (P = 0.0322).  While there was a significant treatment effect in Trial 2, no 

treatments differed significantly from the control treatment. There was a significant initial weight 

(covariate) effect for trial 1 (P < 0.0001), trial 2 (P = 0.0001), and trial 3 (P = 0.0041). 

Table 2. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Elicitor-Treated Corn. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2 Treatment using 3X elicitor rates. 
* Indicates final weight is significantly different from the control treatment (P < 0.05) as 
determined by Dunnet’s test for multiple comparisons to a single control. 
 
 
 For cotton, elicitor treatment had a significant effect on final weight of FAW larvae in 

trial 1 (F5,50 = 5.94, P = 0.0002), trial 2 (F5,53 = 7.31, P < 0.0001), trial 3 (F5,50 = 11.01, P = 

<0.0001), and trial 4 (F5,48 = 7.72, P < 0.0001) (Table 3). In three trials, final weights of larvae 

reared on jasmonic acid (JA) treated leaves were significantly lower than that of larvae reared on 

 Trial Number; Treatment Date1 
Treatment 1; 4/11/20122 2; 4/27/2012 3; 7/11/2012 
Control 58.0 ± 6.2  107.5 ± 5.8  71.1 ± 6.0  
Azelaic Acid 75.2 ± 6.0  109.3 ± 5.9  68.7 ± 6.0  
Benzothiadiazole 81.6 ± 5.9 * 115.8 ± 5.8  76.1 ± 6.0  
Gibberellic Acid 69.4 ± 5.9  115.6 ± 5.8  73.1 ± 6.0  
Harpin 66.7 ± 5.9  113.5 ± 5.8  67.6 ± 6.0  
Jasmonic Acid 48.3 ± 6.3    91.3 ±5.8  72.5 ± 6.0  
Treatment p-value   0.0053 0.0410 0.9311 
Initial weight p-value <0.0001 0.0001 0.0041 
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non-treated leaves. For larvae offered leaves treated with benzothiadiazole (P = 0.0226) and 

harpin (P = 0.0328) in trial 2, and azelaic acid (P = 0.0145) in trial 4, weight gain was 

significantly higher compared to larvae fed non-treated cotton. There was a significant initial 

weight (covariate) effect for trial 1 (P < 0.0001), trial 2 (P < 0.0001), and trial 3 (P < 0.0001). 

Table 3. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Elicitor-Treated Cotton. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2 Treatment using 3X elicitor rates. 
* Indicates final weight is significantly different from the control treatment (P < 0.05) as 
determined by Dunnet’s test for multiple comparisons to a single control. 
 
 
 For rice, elicitor treatment had a significant effect on the growth of FAW in trial 1 (F5,45) 

= 4.26, P = 0.0029), but not in trial 2 (F5,51 = 0.46, P = 0.8021), trial 3 (F5,52 = 0.79, P = 0.5645), 

or trial 4 (F5,52 = 1.70, P = 0.1500) (Table 4). In trial 1, final weights of FAW larvae offered 

azelaic acid-treated rice were higher than the control (P = 0.0141). There was a significant initial 

weight (covariate) effect for trial 1 (P < 0.0001), trial 2 (P < 0.0001), trial 3 (P = 0.0014), and 

trial 4 (P < 0.0001). 

 

 

 Trial Number; Treatment Date1 
Treatment 1; 3/7/20122 2; 7/11/2012 3; 7/18/2012 4; 8/1/2012 
Control 56.5 ± 4.7  34.0 ± 3.9  30.7 ± 1.9  20.0 ± 1.8  
Azelaic Acid 49.1 ± 4.7  39.4 ± 3.9  35.8 ± 1.8  27.7 ± 1.7 * 
Benzothiadiazole 45.9 ± 4.4  50.7 ± 4.2 * 34.7 ± 1.8  22.6 ± 1.7  
Gibberellic Acid 43.5 ± 5.4  40.3 ± 4.0  31.5 ± 1.9  20.0 ± 1.7  
Harpin 46.3 ± 4.4  50.0 ± 4.2 * 33.0 ± 1.8  23.8 ± 1.7  
Jasmonic Acid 22.3 ± 4.7 * 20.2 ± 4.0  16.5 ± 2.2 * 11.4 ± 2.2 * 
Treatment p-value 0.0002 <0.0001 <0.0001 <0.0001 
Initial weight p-value 0.0111   0.0694   0.3184 <0.0001 
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Table 4. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Elicitor-Treated Rice. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2 Treatment using 3X elicitor rates. 
* Indicates final weight is significantly different from the control treatment (P < 0.05) as 
determined by Dunnet’s test for multiple comparisons to a single control. 
 
 In soybean, elicitor treatment had a significant effect on weight gain of FAW in trial 1 

(F5,53 = 9.09, P < 0.0001), trial 2 (F5,51 = 10.18, P < 0.0001), trial 3 (F5,52 = 9.32, P < 0.0001), and 

trial 4 (F5,53 = 3.98, P = 0.0038) (Table 5). Weight gains of FAW offered soybean leaves treated  

Table 5. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Elicitor-Treated Soybean. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2 Treatment using 3X elicitor rates. 
* Indicates final weight is significantly different from the control treatment (P < 0.05) as 
determined by Dunnet’s test for multiple comparisons to a single control. 
 

 Trial Number; Treatment Date1 
Treatment 1; 4/12/20122 2; 6/6/2012 3; 7/11/2012 4; 12/05/2012 
Control 61.0 ± 4.7  59.5 ± 4.2  50.0 ± 3.7  47.2 ± 4.4  
Azelaic Acid 81.6 ± 4.7 * 58.9 ± 4.4  52.1 ± 3.5  40.1 ± 4.6  
Benzothiadiazole 62.1 ± 5.5  60.4 ± 4.2  50.0 ± 3.6  36.4 ± 4.4  
Gibberellic Acid 63.9 ± 4.7  56.7 ± 4.2  55.1 ± 3.5  35.4 ± 4.4  
Harpin 63.9 ± 4.5  65.4 ± 4.2  56.5 ± 3.5  42.7 ± 4.4  
Jasmonic Acid 50.4 ± 5.0  59.8 ± 4.4  48.6 ± 3.6  31.2 ± 4.4  
Treatment p-value   0.0029    0.8021 0.5645    0.1500 
Initial weight p-value <0.0001 <0.0001 0.0014 <0.0001 

 Trial Number; Treatment Date1 
Treatment 1; 4/12/20122 2; 5/16/2012 3; 7/25/2012 4; 12/05/2012 
Control 79.4 ± 7.2  76.2 ± 4.9  14.6 ± 0.8  34.3 ± 3.7  
Azelaic Acid 94.3 ± 7.4  79.3 ± 4.4  14.6 ± 0.8  38.7 ± 3.7  
Benzothiadiazole 92.5 ± 7.2  73.1 ± 4.4  17.0 ± 0.8  33.0 ± 3.7  
Gibberellic Acid 94.1 ± 7.2  66.7 ± 4.4  15.5 ± 0.8  29.0 ± 3.7  
Harpin 95.8 ± 7.4  84.5 ± 4.6  15.2 ± 0.8  44.3 ± 3.7  
Jasmonic Acid 40.4 ± 7.2 * 44.6 ± 4.4 * 9.9 ± 0.8 * 23.3 ± 3.7  
Treatment p-value <0.0001 <0.0001 <0.0001 0.0038 
Initial weight p-value   0.0073 <0.0001 <0.0001 0.0330 
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with JA were significantly lower than larvae offered control plants in trial 1 (P = 0.0015), trial 2 

(P < 0.0001), and trial 3 (P = 0.0005). While there was a significant treatment effect in trial 4, 

none of the treatments were significantly different from the control. There was a significant 

initial weight (covariate) effect for trial 1 (P = 0.0073), trial 2 (P < 0.0001), trial 3 (P < 0.0001), 

and trial 4 (P = 0.0330). 

5.2 Adjuvant Effects on the Response of Corn and Cotton to Jasmonic Acid and 
Induced Resistance to Fall Armyworm  

 
For corn, treatment had a significant effect on weight gain of FAW in trial 1, (F10,85 = 

4.49, P < 0.0001), and trial 3 (F10,96 = 2.13, P = 0.0289), but not in trial 2 (F10,96  =  1.87, P = 

0.0595) (Table 6). In trial 3, weight gain of FAW fed plants treated with 0.5 mM JA + Penetrator 

Plus was significantly lower than FAW offered plants treated with 2.0 mM JA in trial  

Table 6. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Treated Corn. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2  Values in the same column followed by the same letter not significantly different as 
determined by Tukey-Kramer method for multiple comparisons. 
 

 Trial Number; Treatment Date2 
Treatment 1; 09/28/2012 2; 10/24/2012 3; 11/06/2012 
Control    111.3 ± 7.1 a 124.6 ± 4.6 a 141.5 ± 7.6 a 
Triton X100 77.9 ± 7.9 ab 113.8 ± 4.6 a 127.7 ± 7.1 ab 
Tween 20 81.0 ± 7.7 ab 125.4 ± 4.6 a 132.4 ± 7.2 ab 
Penetrator Plus 85.2 ± 11.2 ab 120.1 ± 4.6 a 124.8 ± 7.2 ab 
Dyne-Amic 68.8 ± 7.1 b 121.4 ± 4.6 a 130.8 ± 7.2 ab 
0.5 mM JA 71.1 ± 7.5 b 109.7 ± 4.6 a 124.4 ± 7.2 ab 
2.0 mM JA 72.7 ± 7.5 b 109.3 ± 4.6 a 138.5 ± 7.2 a 
0.5 mM JA + Triton X100 63.4 ± 7.1 b 124.5 ± 4.8 a 125.7 ± 7.2 ab 
0.5 mM JA + Tween 20 76.1 ± 8.3 ab 120.5 ± 4.6 a 113.0 ± 7.3 ab 
0.5 mM JA + Penetrator Plus 59.3 ± 7.1 b 128.1 ± 4.6 a 104.2 ± 7.2 b 
0.5 mM JA + Dyne-Amic 54.2 ± 7.1 b 121.4 ± 4.8 a 128.3 ± 7.5 ab 
Treatment p-value <0.0001    0.0595   0.0289 
Initial weight p-value <0.0001 <0.0001 <0.0001 
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3 (P = 0.0389). Additionally, FAW reared on corn treated with 0.5 mM JA + Penetrator Plus 

gained significantly less weight than those offered non-treated corn in trial 1 (P < 0.0001) and 

trial 3 (P = 0.0228). For Trial 1, weight gain of FAW reared on all JA treatments except 0.5 mM 

JA + Tween 20 were significantly lower than the control. There was a significant initial weight 

(covariate) effect for trial 1 (P < 0.0001), trial 2 (P < 0.0001), and trial 3 (P < 0.0001). 

For cotton, treatment had a significant effect on the growth of FAW in trial 1 (F10,98 = 

7.98, P < 0.0001), trial 2 (F10,82 = 5.49, P < 0.0001), and trial 3 (F10,81 = 4.63, P < 0.0001) (Table 

7). Only FAW larvae offered 2.0 mM JA-treated cotton in trial 1 showed significantly different 

weight gain compared to the control (P = 0.0003). There was a significant initial weight  

Table 7. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm 
Offered Treated Cotton. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2  Values in the same column followed by the same letter not significantly different as 
determined by Tukey-Kramer method for multiple comparisons. 
3  Because trial 3 showed a significant treatment by initial weight interaction (F10,81 = 2.76, P = 
0.0056), a contrast was performed to determine significant differences at the mean of the 
covariate of each treatment. 
 

 Trial Number; Treatment Date2 
Treatment 1; 09/07/2012 2; 10/12/2012 3; 11/09/2012 
Control 40.9 ± 3.1 abc 21.6 ± 2.0 ab 42.2 ± 4.2 ab 
Triton X100 45.9 ± 3.1 ab 30.0 ± 2.0 a 39.3 ± 2.9 ab 
Tween 20 50.0 ± 3.1 a 25.6 ± 2.2 ab 43.4 ± 2.8 a 
Penetrator Plus 41.6 ± 3.1 abc 22.7 ± 2.2 ab 48.0 ± 3.6 a 
Dyne-Amic 40.3 ± 3.1 abc 19.7 ± 1.7b 45.5 ± 3.6 a 
0.5 mM JA 36.1 ± 3.1 abc 23.2 ± 1.7 ab 33.7 ± 2.9 ab 
2.0 mM JA 20.4 ± 3.1 d 17.4 ± 1.9 b 29.1 ± 2.9 b 
0.5 mM JA + Triton X100 31.7 ± 3.1 bcd 29.5 ± 1.7 a 34.7 ± 3.2 ab 
0.5 mM JA + Tween 20 28.6 ± 3.1 cd 30.6 ± 1.8 a 29.3 ± 3.0 b 
0.5 mM JA + Penetrator Plus 29.5 ± 3.1 cd 23.8 ± 1.8 ab 35.8 ± 2.8 ab 
0.5 mM JA + Dyne-Amic 30.2 ± 3.1 cd 19.4 ± 2.2 b 29.1 ± 2.9 b  
Treatment p-value <0.0001 <0.0001  <0.00013 

Initial weight p-value <0.0001 <0.0001 <0.0001 
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(covariate) effect for trial 1 (P < 0.0001), trial 2 (P < 0.0001), and trial 3 (P < 0.0001). In trial 3, 

there was a significant treatment by initial weight (covariate) interaction and a contrast statement 

was used to compare the final weight at the mean of initial weight. In trial 3, no treatments were 

different from the control and there was no difference among JA treatments. 

5.3 Effects of Benzothiadiazole and Jasmonic Acid on Induced Resistance of 
Soybean to Fall Armyworm and Soybean Looper. 

 
 Elicitor treatment had a significant effect on growth of FAW in trial 1(F2,35 = 11.17, P = 

0.0002), trial 2 (F2,37 = 5.49, P = 0.0082) and trial 3 (F2,40 = 31.76, P < 0.0001) and soybean 

looper (SBL) in trial 1 (F2,39 = 3.31, P  = 0.0472) and trial 3 (F2,41 = 12.54, P < 0.0001), but not in 

trial 2 (F2,41 = 0.10, P = 0.9062) (Table 8). In trial 1, 2, and 3, weight gain of FAW offered JA-

treated plants was lower than the control (P = 0.0001, P = 0.0043, P < 0.0001, respectively). 

Additionally, weight gain of FAW reared BTH-treated soybean was lower than the control, only 

in trial 3 (P = 0.0043). In trials 1 and 3, SBL fed soybean treated with JA gained less weight than 

SBL fed the ethanol-water treatment (P = 0.0497 and P <0.0001, respectively). There was a 

significant initial weight (covariate) effect for FAW in trial 1 (P < 0.0001) and trial 3 (P = 

0.0111), but not in trial 2 (P = 0.7416), and trial 3 (P < 0.0001). For SBL, there was a significant 

covariate effect in trial 2 (P = 0.0002) and trial 3 (P = 0.0231), but not in trial 1 (P = 0.0932).
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Table 8. Least Squares Means Estimate1 for Final Larval Weight (mg) of Fall Armyworm and Soybean Looper Offered Elicitor-
Treated Soybean. 

1  Estimate based on LS means from analysis of covariance performed in SAS 9.3. 
2  Larvae for treatment date 11/06/2012 were only on tissue for 48 h. 
3  Treatment using 5X elicitor rate for benzothiadiazole. 
* Indicates final weight is significantly different from the control treatment (P < 0.05) as determined by Dunnet’s test for multiple  
   comparisons to a single control.  
 

 Trial Number; Treatment Date1 
Treatment 1; 11/06/20122 2; 12/07/20123 3; 01/15/20133 

 SBL FAW SBL FAW SBL FAW 
Control 204.2 ± 4.1  39.9 ± 1.4  221.8 ± 6.0  49.1 ± 3.4  130.1 ± 4.9  75.7 ± 3.9  
Benzothiadiazole 203.4 ± 4.0  38.4 ± 1.5  225.5 ± 5.9  43.0 ± 3.5  120.2 ± 4.9  58.1 ± 3.7 * 
Jasmonic Acid 190.9 ± 4.1 * 29.8 ± 1.7 * 222.84 ± 6.0  32.9 ± 3.4 * 96.5 ± 4.9 * 33.1 ± 3.7 * 
Treatment p-value 0.0472    0.0002 0.9026 0.0082 <0.0001 <0.0001 
Initial weight p-value 0.0932 <0.0001 0.0002 0.8448   0.0231   0.0111 
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6. DISCUSSION 

Host plant resistance can be categorized as either constitutive, referring to morphological 

or chemical attributes that are always present, or inducible, referring to a plant’s response to 

herbivory or chemical elicitors. Plant defense can be subsequently categorized as direct, 

negatively affecting the physiology or behavior of herbivores, or indirect, increasing the 

performance of natural enemies (Schoonhoven et al. 2005). Induced resistance against 

herbivorous arthropod pests was discovered only in the last half-century and, to date, over 100 

plant species have demonstrated inducible resistance against herbivores (Karban and Kuć 1999). 

The plant hormones most responsible for mediating plant responses to pathogens and herbivores 

are salicylic acid and jasmonic acid (JA), respectively; however, azelaic acid, benzothiadiazole 

(BTH), harpin, gibberellins, and several other organic and inorganic chemicals have been shown 

to alter plant resistance to pathogens or herbivores when applied exogenously (Kahl et al. 2000, 

Traw and Bergelson 2003, Nombela et al. 2005, Yang et al. 2005, Smith et al. 2009, Jung et al. 

2009, Hamm et al. 2010). For this study, we were interested in elicitor-mediated induction of 

direct defenses, specifically those that could reduce growth and, consequently, herbivore fitness. 

Ultimately, the goal is to incorporate the use of chemical defense elicitors into an integrated pest 

management program. 

Although there is a large body of research regarding elicitor-mediated plant defense 

responses to insect herbivores (Smith et al. 2009), much of the research in this area has been 

performed on a limited number of plants including tomato, Arabidopsis, and cotton (Dong et al. 

1999, Stout et al. 1999, Thaler 1999, Omer et al. 2001, Thaler et al. 2001, Boughton et al. 2005, 

Boughton et al. 2006). Additionally, most studies focus on a single plant species and a limited 

number of elicitors (Bi et al. 1997, Black et al. 2003, Traw and Bergelson 2003, Nombela et al. 
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2005, Weston 2008). A comprehensive examination of several elicitors across multiple 

agronomic crops in a single study is lacking in the scientific literature. The goal of this research 

was to screen several elicitors on four agronomic crops, two monocots and two dicots (Objective 

1), investigate the possibility of increasing the effectiveness of a confirmed elicitor by combining 

it with an adjuvant (Objective 2) and, examine differential effects of elicitors on two species of 

lepidopteran larvae fed treated soybean tissue (Objective 3). 

The results of experiments for the first objective support previous findings that JA 

induces a defense response when applied exogenously (Thaler 1999, Omer et al. 2001, Boughton 

et al. 2006, Hamm et al. 2010). In this study, that response was stronger and more consistent in 

the dicotyledonous crops, cotton and soybean, than the monocotyledonous crops, corn and rice. 

Interestingly, in the second experiment, corn was more responsive to the application of an 

adjuvant with JA than was cotton, indicating that the ineffectiveness of JA alone on corn may 

have been due to poor spray adhesion or reduced penetration, both as a result of the plant 

cuticular barrier. Finally, the results of experiment three demonstrate a differential effect of 

elicitor-induced resistance on two chewing insect herbivores in soybean: Spodoptera frugiperda 

showed greater sensitivity to induced resistance from elicitor application, than did to 

Chrysodeixis includens. 

Of the five putative elicitors, JA was the only one to consistently reduce weight gain of 

fall armyworm (FAW) when larvae consumed treated leaf tissue, especially from cotton and 

soybean. Weight gains of FAW fed JA-treated cotton and soybean were significantly lower than 

those of FAW offered non-treated cotton and soybean in six of eight trials. For corn and rice, 

significant differences in weight gain of FAW between JA-treated and control leaves were not 

observed in any of the seven trials. There are three possible explanations for these findings: 1) 
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there was a difference in penetration of exogenous JA due to inherent differences in plant cuticle 

between the selected monocots and dicots, 2) the selected monocots and dicots differed in their 

inherent sensitivity to JA and thus in the ability of exogenous JA to induce a defense response, 

and 3) FAW larvae are more tolerant of the defense response elicited in the monocots, corn and 

rice, than in the dicots.  

In support of the first hypothesis, spray mixtures adhered better to cotton and soybean 

foliage than corn and rice foliage, spreading better and resulting in decreased run-off. On corn 

and rice, the mixture appeared to simply form beads and roll off the plant. It is widely accepted 

that there is considerable variation in structure and permeability of plant cuticles, which could 

account for the observed differences in water adherence in monocots and dicots in this study 

(Schönherr and Baur 1994). As a result of decreased adherence, less elicitor could make contact 

with the leaf surface and be available for plant uptake, thus reducing activation of defense 

responses.  

Alternatively, different plant species employ different defense strategies, and corn, rice, 

and cotton have been shown to produce volatiles that may act as attractants to parasitoids and 

other natural enemies (Rodriguez-Saona et al. 2003, Schoonoven et al. 2005, Rostás and 

Turlings 2008, Yuan et al. 2008, Köllner et al. 2009). It is possible that the primary defense 

response in corn and rice is an indirect defense mechanism to attract natural enemies pests, 

which these experiments were not designed to test, as opposed to a direct induced chemical 

defense mechanism. Lastly, the preference by FAW for grasses as a primary host suggests that it 

has developed tolerance of, or resistance to, the direct defenses produced by common host plants, 

specifically field corn and rice.  



30 
 

Experiment 2 was designed to investigate the possibility that the lack of difference in 

growth of FAW on corn and rice, compared to cotton and soybean, was a result of decreased 

adherence of spray mixtures to corn and cotton previously observed. These results demonstrate 

that the use of some spray adjuvants co-applied with JA decreased the final weights of FAW 

offered treated corn, but not cotton.  In the first experiment, there was a significant decrease, 

compared to the control, in weight gain FAW offered cotton treated with the 3X JA rate (6.0mM)  

and in two of the three 1X JA rate (2.0mM) treatments, but no difference in any of the corn trials. 

These results may have occurred due to the use of a spray adjuvant increasing spray adhesion to 

and penetration of the leaf surface, which in turn aids in elicitation of a defense response in corn. 

The use of adjuvants appeared to increase elicitation of a defense response by exogenous JA 

application. The differential response between corn and cotton treated with a co-application of 

JA (0.5mM) and an adjuvant is supported by the concept of variability in cuticle structure and 

water adherence among plant species (Schönherr and Baur 1994). In the corn experiment, the 

0.5mM JA  + Penetrator Plus® treatment reduced growth of FAW compared to the 0.5mM JA 

and control treatments in one of three and two of three trials, respectively. Additionally, the 

2.0mM JA only treatment reduced FAW weight compared to the control in only one of three 

trials. In the cotton experiment, only one trial demonstrated a significant effect on FAW from JA 

treatment. The lack of significant treatment differences in cotton between the first and second 

series of experiments is likely due to a combination of two factors. First, the addition of 

adjuvants does not dramatically affect the adhesion and spreading of water on the already 

receptive leaf surface of cotton, and second, the use mean separation by Tukey’s method in 

experiment 2, compared to Dunnett’s method in experiment 1, increases discrimination of 
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significance. The findings in these experiments indicate that field corn responds to exogenous 

application of JA, and that FAW is susceptible to direct induced defenses of corn elicited by JA. 

Also notable in a few trials and crops, FAW offered leaf material treated with azelaic 

acid, BTH, and harpin demonstrated greater larval weights compared to the control.  These 

elicitors have previously been shown to promote resistance to plant pathogens, probably by 

activating the salicylic acid pathway (Dong et al. 1999, Yang et al. 2005, Jung 2009, Barilli 

2010).   Increased weight gain of FAW larvae fed leaves treated with these specific elicitors is 

consistent with other research showing crosstalk between the salicylic acid (SA) and JA 

signaling pathways. The activation of the SA pathway, responsible for resistance to some 

pathogens and piercing-sucking insects, can have a suppressive effect on the JA pathway and 

induced defenses, especially against chewing insect herbivores (Thaler et al. 1999, Stout et al. 

1999, Felton and Korth 2000, Leon-Reyes et al. 2010). 

The results presented here agree with those in previous studies that demonstrate induction 

of plant defenses by JA (Thaler 1999, Omer et al. 2001, Boughton et al. 2005, Hamm et al. 2010) 

but not SA (Bi et al. 1997, Inbar et al. 2001). The results with harpin are supported by Boughton 

et al. (2005), who showed that harpin was not effective in reducing growth of insect populations 

on treated plants. Our findings indicated no significant negative effect of BTH-treated tissue on 

FAW weight gain. These results are similar those from  Bi et al. (1997) and Inbar et al. (2001) 

who found that BTH- treated cotton had no effect on growth of corn earworm, Helicoverpa zea, 

or cotton bollworm, Helicoverpa armigera. However, Boughton et al. (2005) demonstrated that 

BTH did decrease development of green peach aphid populations on tomato.  The SA pathway is 

believed to be more responsive to and instrumental in plant defense against piercing-sucking 

arthropods and biotrophic pathogens (Glazebrook 2005, Leitner et al. 2005, Smith et al. 2009), 
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and can have a suppressive effect on the JA pathway. The findings presented here, in conjunction 

with prior literature, further support the suggested roles of SA and JA in defense signaling in 

piercing-sucking versus chewing insect herbivores. 

 Finally, whereas soybean looper (SBL) and FAW are known to be polyphagous, with 

each known to feed on over 40 host species, it is not surprising that there is a differential effect 

of elicitors on larval weights using soybean as the treated host. FAW larvae prefer grasses 

(Luttrell and Mink 1999) and SBL larvae prefer dicots, especially legumes such as soybean 

(Herzog 1980). The preference of grasses by FAW could explain the tolerance of secondary 

defensive chemistry presumably produced by grasses following elicitor treatment. The SBL, in 

contrast, prefers legumes, especially soybeans (Martin et al. 1976, Herzog 1980, Jost and Pitre 

2002), and may be more tolerant to direct defenses produced by those plants. In the third 

experiment, there were only minor indications of elicitor effectiveness. SBL weights were 

reduced by JA application to soybean in two of three trials, but did not respond to BTH 

applications in the 1X trial or either of the 5X rate trials. Second and third SBL instars are 

approximately two and ten times larger than FAW, respectively, which could have influenced 

these results. Additionally, one trial of FAW offered soybean treated with the 5X rate of BTH 

resulted in decreased weight, compared to the control (P = 0.0043). Schmelz et al. (2009) 

demonstrated that there is considerable variation in response across several species of plants 

(soybean included), in terms of the variety and amounts of phytohormones produced in response 

to elicitors from insect secretions.  It is possible that soybean produces a mixture of secondary 

metabolites at different concentrations in response to specific elicitors. This variability could 

differentiate between the two target species. 
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 The findings presented here support previous research suggesting that JA induces 

defenses against insect herbivores. For the sum of all results, there are important implications for 

the potential use of elicitors, specifically JA, as an additional tool in an integrated pest 

management program. JA-treated cotton and soybean consistently reduced weight gain of FAW. 

The co-application of an adjuvant with a reduced-rate JA treatment on field corn also decreased 

FAW weights. The next logical step is to investigate specific plant-arthropod herbivore 

interactions, especially in cotton and soybean, which could be manipulated using JA as a defense 

elicitor, and to transition this experimentation to field trials against native populations. As 

indicated in the studies presented herein, 48 h is sufficient time for some plants to initiate 

defense characters and provide positive results reducing the success of insect herbivores. An 

important follow-up study would be to determine the duration of defense traits elicited in plant 

species to have a better understanding of the residual effects of the induced state. There is a lag 

time in the induction of defenses, and a prophylactic or pre-infestation application may be most 

useful against a pest with a predictable pattern of infestation. Similarly, additional laboratory and 

greenhouse research is warranted to clarify the interactions and influence of co-applications of 

adjuvants on JA-induced defense characters. As demonstrated, corn and cotton respond 

differently to JA applied with an adjuvant.  The optimal combination of adjuvant, adjuvant rate,  

JA concentration, and application timing to maximize induction of defenses and minimize plant 

injury is needed. 

 These results will add to the current literature on chemically induced herbivore resistance 

in selected crops and will serve as the foundation for ongoing and future research involving 

elicitor-induced defenses, and the potential value for co-application with adjuvants. Currently, 

field studies are being conducted to assess the effectiveness of JA in reducing population growth 
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of two-spotted spider mite (Tetranychus urticae Koch) in cotton. Preliminary results suggest that 

JA treatments provide population reductions equivalent to that of Zeal® (Etoxazole), an 

acaricide (spider mite growth regulator), at 15 days after treatment (J. Gordy, unpublished data). 

Eventually, the strategy of inducing herbivore resistance with elicitors may be incorporated into 

an integrated pest management program.
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7. SUMMARY AND CONCLUSIONS 

 Integrated pest management is a multifaceted approach to mitigate damage by 

herbivorous insect pests which usually relies heavily on broad-spectrum synthetic insecticides 

that exhibit several negative effects. The use of elicitors for the induction of plant defenses that 

result in decreased herbivore fitness should be considered as an additional approach in integrated 

pest management. The purpose of this project was to screen potential elicitors for their use in 

inducing resistance to herbivorous insects in field trials of major agricultural commodities, to 

evaluate the effectiveness of adjuvants in increasing uptake of jasmonic acid (JA), and to 

examine possible differential effects of JA and benzothiadiazole on soybean looper (SBL) and 

fall armyworm (FAW) fed treated soybean. 

In objective one, JA was the only elicitor to consistently reduce weight gain of FAW. In 

the two dicotyledonous crops, cotton and soybean, JA was most effective as an elicitor. In cotton 

and soybean, six of eight trials resulted in reduced weight gain of larvae fed JA treated plant 

tissue. This supports previous findings that exogenous application of JA can cause changes in 

plant chemistry that negatively affect the growth or fitness of arthropod herbivores (Thaler 1999, 

Omer et al. 2001, Boughton et al. 2005, Hamm et al. 2010). Additionally, weight gain of FAW 

fed azelaic acid, benzothiadiazole, and harpin-treated plant tissue tended to be higher than FAW 

fed control-treated plant material, although only five treatments over four trials exhibited 

significant differences. These three elicitors had previously been shown to induce resistance to 

plant pathogens (Yang et al. 2005, Jung et al. 2009, Barilli et al. 2010), which may explain the 

resulting increased growth of FAW and further support the proposal that activation of the 

salicylic acid signaling pathway against plant pathogens suppresses the JA signaling pathway 

(Thaler et al. 1999, Stout et al. 1999, Felton and Korth 2000, Leon-Reyes et al. 2010). 
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 In performing objective one, it was noted that the spray mixtures appeared to be less 

adherent to the monocotyledonous crops, corn and rice, and so objective two was designed to 

investigate the use of adjuvants to increase plant contact and/or cuticle penetration as a means of 

increasing the effectiveness of JA. Interestingly, in objective two, corn showed a greater 

response to the use of an adjuvant compared to cotton, even with a reduced JA concentration and 

an adjuvant rate below the label recommendation. This suggests that the lack of response in 

objective one was a result of inadequate spray coverage limiting the amount of elicitor available 

for plant uptake. Additionally, this finding indicates that grasses, specifically corn, are capable of 

producing a direct defense response that negatively affects growth of FAW, and that FAW may 

not be tolerant of or resistant to that response, despite grasses being the preferred host for FAW.   

In objective three, the two lepidopteran foliage feeders, FAW and SBL, were 

differentially affected by elicitor application. FAW larvae fed JA-treated plant tissue gained less 

weight than FAW fed control-treated plant material in trials one, two, and three, in which weight 

gain reduced by 25%, 33%, and 56%, respectively. For SBL, only trials one and three showed 

reduced weight gain of 6.3% and 26%, respectively, for larvae fed JA treated plant material, 

compared to the control. The application of BTH showed no effect on SBL and was effective at 

reducing growth of FAW in only one trial, at the 5X rate. It is hypothesized that the SBL host 

preference of soybean (Martin et al. 1976, Herzog 1980, Jost and Pitre 2002), and FAW host 

preference of grasses (Luttrell and Mink 1999), is responsible for the differential effect observed 

here. SBL may be more tolerant than FAW to the induced response of soybean resulting from the 

application of JA, compared to FAW. Additionally, it is possible that SBL was less sensitive to 

the induced plant defenses because of the larger size, compared to FAW. 
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Results from this study provide support for the investigation of JA as an elicitor of plant 

defense in field studies. The addition of an adjuvant increased activity of JA in corn, and that 

relationship should be studied more extensively. There was differential growth of FAW and SBL 

fed soybean treated with JA and BTH, with SBL being less affected. All of these results indicate 

that JA may be effective as a tool in an integrated pest management program. Currently, there are 

plans to continue field trials investigating how JA affects populations of two-spotted spider mite 

in cotton, and to begin field trials investigating the effect of JA on populations of thrips in 

seedling cotton.  
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APPENDIX:  TRIAL INFORMATION 

Information for planting date, treatment date, temperature, and fall armyworm (FAW) strain by 
crop and objective. 
Objective Crop Plant Date Treat Date Temp. Range (ºF: ºC) FAW Strain 

Objective 1 Corn 9-Mar-12 11-Apr-12 65-90: 18-32 Rice 
12-Apr-12 27-Apr-12 70-90: 21-32 Corn 
28-Jun-12 11-Jul-12 75-95: 24-35 Corn 

Cotton 7-Feb-12 7-Mar-12 65-85: 18-29 Rice 
28-Jun-12 11-Jul-12 75-95: 24-35 Corn 
5-Jul-12 18-Jul-12 75-95: 24-35 Corn 
11-Jul-12 1-Aug-12 75-95: 24-35 Corn 

Rice 14-Mar-12 12-Apr-12 65-90: 18-32 Rice 
15-May-12 6-Jun-12 70-95: 21-35 Rice 
28-Jun-12 11-Jul-12 75-95: 24-35 Rice 
14-Nov-12 5-Dec-12 65-85: 18-29 Rice 

Soybean 14-Mar-12 12-Apr-12 65-90: 18-32 Rice 
2-May-12 16-May-12 70-90: 21-35 Corn 
11-Jul-12 25-Jul-12 75-95: 24-35 Corn 
18-Nov-12 5-Dec-12 65-85: 18-29 Corn 

Objective 2 Corn 14-Sep-12 28-Sep-12 70-95: 21-35 Corn 
8-Oct-12 24-Oct-12 65-90: 18-32 Corn 
19-Oct-12 6-Nov-12 65-85: 18-29 Corn 

Cotton 17-Aug-12 7-Sep-12 70-95: 21-35 Corn 
21-Sep-12 12-Oct-12 65-90: 18-32 Corn 
17-Oct-12 9-Nov-12 65-85: 18-29 Corn 

Objective 3 Soybean 21-Oct-12 6-Nov-12 65-85: 18-29 Corn 
20-Nov-12 7-Dec-12 65-85: 18-29 Corn 
21-Dec-12 15-Jan-13 65-85: 18-29 Corn 
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