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Abstract

Plant protection products play an important role in protecting our food supply

against pests, diseases and weeds. As global food demand rises, their role in main-

taining the quality and quantity of our food production is likely to increase in the

absence of other control methods. To manage the risks associated with pesticide

usage, EU laws regulate the placing of plant protection products on the market and

the monitoring of pesticide residues in food. This involves assessing the potential

risks associated with human dietary exposure by conducting dietary risk assessments

which take both consumption patterns and residue levels of pesticides in and on food

items into account. Residue levels will vary from one food item to the next so we

need to know what the distribution of residues over food items is in order to assess

how high residue levels can be.

In this thesis we introduce novel statistical approaches that can be used to ob-

tain better estimates of the variation and uncertainty in pesticide residue levels on

raw agricultural products. The first approach uses monitoring data and pesticide

usage information to model the correlation in pesticide residue levels when multiple

pesticides have been used. Next we introduce an approach that can be used to de-

scribe the variation in log-residue levels in units, assuming that multiple data sets

share a common shape. The final model describes both within-field and between-

field variation of residue levels. These new approaches, which provide promising

alternatives to existing methods, can be implemented in existing dietary risk assess-

ment software and will expand the suite of models available to risk assessors when

assessing dietary exposure to pesticides.
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Chapter 1

Introduction to Human Dietary

Risk Assessment

1.1 Introduction

Pesticides are used to protect crops before and after harvest from infestation by pests

and plant diseases. A pesticide is any substance, preparation or organism prepared

or used, to protect plants or wood or other plant products from harmful organisms,

to regulate the growth of plants, to give protection against harmful creatures, or to

render such creatures harmless (FEPA, 1985). A possible consequence of pesticide

use on food crops may be the presence of pesticide residues in or on treated prod-

ucts. Residue levels will vary from one food item to the next and to account for

this, we need to know what the distribution of residues is over food items in order

to assess how high residue levels can be.

To assess the dietary risk associated with pesticide residues, information is needed

about the residue levels associated with food items and the consumption of food

items. This chapter will describe the regulatory context for dietary risk assessment

in the European Union (EU) as well as the pesticide registration process. We will de-

scribe the current deterministic approach to dietary risk assessment and the recently

developed probabilistic alternatives. We will also discuss several issues with the

1
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quality and quantity of data available and with the existing modelling approaches.

Finally, we present the motivation for this thesis followed by a short overview of

how we propose to overcome some of the obstacles associated with current practices

which we then develop further in Chapters 3, 4 and 5.

1.2 Regulatory Context

The regulation of pesticides, commonly referred to as plant protection products, in

the EU was first harmonised under Council Directive 91/414/EEC (EC, 1991). This

Directive established agreed criteria for considering the safety and effectiveness of

formulated plant protection products. The Directive set out a two-stage assessment

system which focuses on a consideration of the safety of active substances at the EU

level and (once safety of the active substance has been established) the authorisation

of formulated products at a national level.

1.2.1 Active Substance Authorisation

The two most important regulatory tools in the EU for plant protection products

are Directive 1107/2009 (EC, 2009) on the placing of plant protection products

on the market and Regulation 396/2005 (EC, 2005) on maximum residue levels of

pesticides allowed in food and animal feed. Directive 1107/2009 regulates the use

of plant protection products and their residues in food and it provides procedures

for approval of active substances and plant protection products containing these

substances. This Directive states that substances cannot be used in plant protec-

tion products unless an appropriate risk assessment has shown that the substance

is without unacceptable risk to people or the environment. The Directive aims to

harmonise the authorisation process of plant protection products within the EU and

to establish a list of active substances (Regulation 540/2011; EC, 2011a), that have

been shown to be without unacceptable risk. The process for deciding whether an

active substance can be included in the list of approved active substances eligible for

use in plant protection products in the EU involves all the Member States, the Eu-

ropean Food Safety Authority (EFSA) and the European Commission (EC). Once a



1.2. Regulatory Context 3

substance is included in the list of approved active substances Member States may

authorise the use of products containing them (see Section 1.2.2).

The active substance authorisation process starts with an application being made by

a company, the notifier, for the inclusion of a new or existing active substance in the

list of approved active substances. Authorisations can be granted for a fixed period

of up to 10 years. After this period, the authorisation may be renewed after verifi-

cation that the standards then in force are adhered to. An application needs to be

supported by a dossier which contains the required data (as specified in Regulation

545/2011; EC, 2011b) including information on the physical and chemical properties

of the active substance and its effects on target pests and on non-target organisms.

As these properties may depend on characteristics of the plant protection product

in which the active substance is used, detailed information on at least one proposed

plant protection product must be included to support the proposed use or uses. The

dossier will include a risk assessment for any possible effects on workers/operators,

consumers, the environment and non-target plants and animals. On behalf of the

EC, a Rapporteur Member State (RMS) will evaluate the dossier in the areas of

physical chemical properties, analytical methods, mammalian toxicology, operator

exposure, environmental fate and ecotoxicology. The evaluation of the submitted

studies, a risk assessment and a proposal for inclusion or non-inclusion of the active

substance in the approved list of substances is summarised in a Draft Assessment

Report (DAR).

The RMS submits the DAR to the Pesticide Risk Assessment Peer Review (PRAPeR)

unit of EFSA. EFSA was established in 2002 as an independent European Agency

whose role includes providing independent scientific advice to the EC and European

Community Member States concerning plant protection products. The PRAPeR

unit is responsible for making arrangements for the distribution of the DAR to all

Member States and for collecting comments from both Member States and the gen-

eral public, the latter via open public consultations. The RMS will respond to the

comments received and the responses will be evaluated by EFSA experts. Com-
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ments that were not addressed satisfactorily may be discussed in expert meetings

with experts drawn from Member States and EFSA. The outcome of the expert

discussions will be recorded in EFSA’s draft conclusion document which will be

circulated to all Member States before it is finalised. EFSA then presents a compre-

hensive summary of the risk assessment to the EC, Member States and the notifier

in a report which will be considered by the Member States and the EC. Depending

on the conclusions and a consideration of risk management options, the EC will

then propose whether or not to include the substance in Regulation 540/2011 (EC,

2011a) subject to a vote by Member States. In formulating a proposal for a decision,

the EC may consult with Member States at the Standing Committee on the Food

Chain and Animal Health (SCoFCAH). In special cases, clarifications may also be

sought from EFSA on aspects of the risk assessment, e.g. by referring open issues to

EFSA’s independent Panel on Plant Protection Products and their Residues (PPR)

for further consideration. In addition, confirmatory data requirements may be iden-

tified to support decision making about plant protection products after inclusion of

the active substance in the list of approved active substances.

Once an active substance has been approved, Member States must ensure that all

authorised plant protection products which contain this active substance, comply

with Directive 1107/2009. This ensures that authorisations issued in all Member

States are assessed to the same standards. After a decision to remove an active

substance from Regulation 540/2011, Member States must apply for withdrawal of

products containing the active substance within a timescale defined in the decision.

1.2.2 Plant Protection Product Authorisation

Once approval is granted for the active substance at the EU level, Member States

may approve the uses of a specific product if all the data and/or information on

the safety, efficacy and, where relevant, humaneness of the pesticide are considered

to be acceptable. Before any pesticide can be used, sold, supplied, advertised or

stored it must be approved for use. Pesticide approvals may at any time be subject

to review, amendment, suspension or revocation. Revocation of approval may occur
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for various reasons, e.g. the identification of safety concerns or an approval holder’s

failure to meet a data submission deadline. On expiry or revocation of approvals it

becomes unlawful to advertise, sell, supply, store or use the products.

1.2.2.1 Maximum Residue Levels (MRLs)

To assess whether pesticides are applied in accordance with the conditions of use set

by Member States, legal limits on residues in or on food are set which are referred

to as maximum residue levels (MRLs). If residue levels in food items are above the

MRL for a particular product, this may suggest that the product was not applied to

crops in accordance with the conditions of use set by the Member State’s approval.

Regulation 396/2005 (EC, 2005) establishes the MRLs of pesticides permitted in

products of plant or animal origin intended for human or animal consumption. The

Regulation replaces all national MRLs with harmonised EU MRLs for all food items.

It facilitates the harmonisation of pesticide MRLs whilst ensuring better consumer

protection throughout the EU. The EC decided to set the MRLs for active sub-

stances which are no longer used in agriculture in or outside the EU at the limit

of determination (LOD), the lowest level surveillance laboratories can measure. For

the remaining substances that are still in use, temporary EU MRLs have been set

at the highest national level MRLs, indicating that MRLs are primarily intended as

trading standards. Where uses of pesticides are not authorised at the EU level (e.g.

because the product is considered to be unsafe) or authorised use does not result in

detectable levels of residues, the MRL is set at the LOD. The MRL is also set to

the LOD for crops on which there are no uses of the pesticide.

In addition to statutory EU MRLs, international non-statutory (Codex) levels are

set for a wide variety of pesticide/commodity combinations. The Codex Alimen-

tarius Commission (CAC), responsible for setting Codex MRLs, is an international

body that aims to protect the health of consumers, ensure fair trade practices in

the food trade and promote co-ordination of all food standards work undertaken by

international governmental and non-governmental organisations. Codex sets MRLs

for countries which do not have their own MRL-setting capacity and aims for the
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harmonisation of MRL-setting. The Codex MRLs may help inspection services to

decide whether imported agricultural products containing traces of residues can be

further traded. However, where produce is marketed within the EU and an EU MRL

exists, it is the EU MRL that must be complied with. Regulation 396/2005 (EC,

2005) states that MRLs set at the international level by the CAC should be con-

sidered when EU MRLs are being set. To harmonise the MRL setting process even

further, the Organisation for Economic Co-operation and Development (OECD) de-

veloped a MRL calculation procedure to support experts in the derivation of MRLs

(OECD, 2011b).

1.2.2.2 Surveillance Programmes

Directive 396/2005/EC (EC, 2005) states that Member States shall establish multi-

annual national control programmes for pesticide residues. These surveillance pro-

grammes aim to monitor the levels of pesticide residues in food to ensure that

residue levels do not exceed the statutory MRLs for approved products as MRL ex-

ceedance may indicate that there are incidents of misuse. EC Directive 2002/63/EC

(EC, 2002) specifies sampling procedures for these surveillance programmes. The

programmes are designed to select the majority of food items at random with the

remainder coming from targeted sampling based on, e.g. the violation rate in pre-

vious years. If the results of the monitoring programmes suggest that pesticides are

not being applied in accordance with the approved conditions of use, Member States

may take enforcement action.

1.3 The Pesticide Registration Process

Pesticide registration involves an assessment of a population’s dietary intake of a

pesticide. In this section we first provide a detailed overview of the data available

and how these data are used in dietary risk assessments for the pesticide registra-

tion process. Then we will outline both the deterministic and currently available

probabilistic approaches for calculating dietary intake. For brevity, we will restrict

our focus to acute (short-term) intake assessment.
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1.3.1 Data

In this section we will briefly discuss the types of data that are available for dietary

risk assessment for the pesticide registration process and how they are obtained.

1.3.1.1 Residue Levels

The EU framework for risk assessment of pesticides results in the collection of two

types of residue level data related to human dietary risk assessment. Before approval

is granted, notifiers have to provide supervised field trial data which are used in the

risk assessment that is conducted as part of the DAR. Following approval, pesticide

residue levels will be monitored in food products to determine any MRL exceedance

and to indicate whether unauthorised pesticides have been applied.

Supervised Field Trial Data

For the authorisation of a new use, the only residue data available come from a

number of supervised field trials. These trials are conducted to determine the mag-

nitude of the pesticide residue in or on raw agricultural commodities (RACs) and are

designed to reflect pesticide use patterns that lead to the highest possible residues

under ‘Critical Good Agricultural Practice’ (cGAP). This is the GAP selected to

represent the worst-case use scenario that produces the highest possible field residues

on crop commodities. It usually includes the maximum use-rate, the maximum num-

ber of applications and the minimum re-treatment and pre-harvest intervals (OECD,

2011a). Supervised field trial data are used to propose MRLs and to provide the Su-

pervised Trial Median Residue (STMR) and Highest Residue (HR) values for use

in intake assessments. Generally, composite samples consisting of several units of a

raw agricultural commodity are obtained from a supervised field trial (OECD, 2009).

EC (1997) and OECD (2009) provide guidelines for supervised field trials and give

an overview of a wide range of considerations that need to be taken into account

when conducting them. Field trial characteristics include:

Number of Trials: The precise number of trials necessary is difficult to determine
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in advance of a preliminary evaluation of the trial results. Assuming compara-

bility can be established between production areas (e.g. climate, application

techniques, growing seasons, etc.), a minimum of eight trials representative

of the proposed growing area is required for major crops. For minor crops

normally four trials representative of the proposed growing area are required.

If comparability cannot be established, more trials should be conducted to

represent the variation in conditions.

Site Selection: Supervised field trials which are carried out in open fields should

include data from four different sites in the same growing season. For appli-

cations under glass, a single site is sufficient as the conditions are controlled.

Trials should be conducted in regions where the crops are predominantly grown

commercially and should reflect the main types of agricultural practice, espe-

cially if this has a significant impact on residue levels. Furthermore, the sites

should be chosen to reflect variations in weather conditions, different types of

soil and the special characteristics of each crop.

Plot Size: The plot size depends on the crop but should be large enough to allow

application of the test substance in a manner which reflects routine use and

such that sufficient representative samples can be obtained.

Post-harvest Treatment: Records should be kept on post-harvest treatments and

storage location conditions for those crops that are routinely treated or stored

after harvesting (e.g. potatoes, seeds, etc.).

Application: Supervised field trials should be based on the highest proposed rate

of application consistent with GAP. Test substance applications should not

be made in strong wind, during rain or when rainfall is expected shortly af-

ter application. The formulation should be the intended formulation of the

product for the crop or commodity. The maximum proposed label rate, the

maximum number of applications and minimum treatment interval should be

used when applying the test substance. Application timing is determined by

plant growth stage and/or the number of days prior to harvest. If a specific

minimum pre-harvest interval is indicated on the label (e.g. ‘Do not apply
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this product less than 14 days prior to harvest.’), it should be used in the field

trials.

Sampling of RACs: For the purpose of MRL setting, samples taken from super-

vised field trials should be of the whole RAC as it is used in the food supply

chain. The residue level on the edible portion of the commodity needs to be

obtained for use in dietary risk assessment (WHO, 1997). For plants or plant

products with inedible skin (such as citrus, banana, kiwi, pineapple) a separate

analysis of flesh and skin should be performed on some samples in order to

provide data on the distribution of residues between flesh and skin (EC, 1997).

For some crops, there may be more than one RAC (e.g. maize). Guidelines

for the sampling strategy for RACs from supervised field trials are provided

in EC (1997).

Monitoring Data

Residue level data may also be available from monitoring surveys. These surveys

do not only focus on pesticides that have been approved but may also test for pes-

ticides that have not been approved in order to assess compliance with approval

regulations. EC Directive 2002/63/EC (EC, 2002) specifies sampling procedures

for the official control of pesticide residues in and on products of plant and animal

origin. The procedure is based on taking a representative sample from a ‘lot’. A

‘lot’ is defined as a quantity of a food material delivered at one time and presumed

to have uniform characteristics such as origin, producer, variety, etc. The guidelines

specify the quantity to sample, both in terms of the total weight and the number

of units. The number of units do not necessarily correspond to the number of units

that are sampled in supervised field trials: for example, in supervised field trials a

composite sample of cucumbers will consist of 12 units whereas in monitoring sur-

veys the number of units is at least 5. However, there is little information available

on how commodities and pesticides should be selected for inclusion in monitor-

ing programmes. EFSA (2011) states that many countries determine the sampling

frequency of different commodities based on the results of previous monitoring pro-

grammes (monitoring of similar crops to determine trends in residue levels), food
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consumption figures and exceedances in previous years. Therefore, the extent of

monitoring programmes varies between countries and different amounts of data will

be available.

1.3.1.2 Consumption Data

For dietary intake assessments, consumption data is obtained from dietary surveys.

The most basic survey is a food frequency survey in which participants record or

recall the number of occasions each food was consumed over a specified period of

time (Brandstetter et al., 1999). Another type of survey is a 24 hour recall study

in which the quantities consumed are retrieved in the course of an interview. The

interviewer may use appropriate memory aids (e.g. photographs of prepared dishes

and/or calibrated portion sizes) and information on cooking methods, recipes and

labels of industrially prepared foods may also be retrieved (Lallukka et al., 2001).

A further type of survey is a dietary record survey which involves recording the

amount of food consumed in a specified period of time. These surveys can either be

based on weighing all foods prior to their consumption or comparing the food with

photographs of calibrated portion sizes (Gregory et al., 2000; Hoare et al., 2004;

Ocké et al., 2007; VCP, 1998).

Figure 1.1 shows an overview of the general characteristics of dietary surveys and

a few examples of surveys that have been conducted in EU countries. To obtain

an EU-wide conservative intake estimate for dietary risk assessments, it is impor-

tant to obtain a representative sample of consumption in each country as EU sub-

populations may have different dietary habits.
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Consumption Data

UK NLCountry

• 1699 indiv.

• Age: 4-18 y

• 7 days

• Weighed intakes

• ... 

Gregory et al. 

(2000)

NDNS

Young People 

• 1724 indiv.

• Age: 19-64 y

• 7 days

• Weighed intakes

• ... 

Hoare (2004)

NDNS-2001 

• 6250 indiv.

• Age: 1-97 y

• 2 consecutive 

days

• Dietary Record 

Survey

• Estimated and/or 

weighed intakes

• ... 

VCP (1998)

VCP-3 

• 452 indiv.

• Age: 2-6 y

• 2 non-

consecutive days

• Dietary Record 

Survey

• Estimated and/or 

weighed intakes

• ... 

Ocké et al. (2008)

DNFCS 

Young Children 

• Number of 

participants

• Age Group

• Duration

• Type

o Measured 

(weighed)

o Estimated 

(visual / 

standard 

measures)

• ...

Survey ... 

Figure 1.1 – Examples of existing dietary survey data.

Figure 1.2 provides an overview of how information from dietary surveys are pro-

cessed before they can be used in dietary risk assessments. For each person a daily

record of which food items were consumed during various eating events (e.g. a pizza

for dinner) is available. For dietary risk assessments, we need to estimate how many

units of RACs were consumed and how much each of them weighs. Therefore, these

data may have to be converted from a portion size to a weight-based amount (using

photographs of food items of various portion sizes, e.g. if the portion consumed is

similar to the photograph of a medium pizza, a weight of 300 grammes of pizza is

assigned to the eating event). Processed food items will have to be converted into

ingredients (e.g. tomato puree, mushroom slices), which then need to be converted

into RACs (e.g. tomatoes, mushrooms). This is done using generic recipe databases

and may depend on the food item’s brand. Conversion into RACs is necessary

because residue data are collected at the RAC level.
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Figure 1.2 – Generic approach for modelling of consumption data in dietary

risk assessments.
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1.3.2 Current Approaches

The current approach for dietary risk assessment as part of the pesticide registration

process is deterministic and involves three steps:

1. Conduct supervised field trials to provide information on residue levels in and

on RACs.

2. Deterministic intake assessment using the International Estimate of Short

Term Intake (IESTI) equations. These are based on conservative consump-

tion estimates and conservative residue levels obtained from supervised field

trials.

3. Comparison of the intake assessment with an acceptable intake estimate lead-

ing to acceptance or rejection of the pesticide use and the MRL.

We discuss each step in detail in the following sections and a summary of the process

is shown in Figure 1.3.

Supervised 

Field Trial
MRL Proposal

Median (STMR) 

& Highest 

Residue (HR)

Consumption 

Data

Conservative 

Consumption

NEW USE

Acute 
Intake 

Assessment 

(IESTI)

IESTI ≤ ARfD?

Modify use 

conditions?

MRL / New Use

Accepted

Acute 

Reference Dose 

(ARfD)

NOYES

MRL = LOD

NO

YES

Figure 1.3 – Use of supervised field trial data for dietary risk assessment and

MRL setting.
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1.3.2.1 Residues from Supervised Field Trials

Supervised field trial data (see Section 1.3.1.1) are used to propose MRLs and to

provide the Supervised Trials Median Residue (STMR) and Highest Residue (HR)

for use in intake assessments (blue boxes in Figure 1.3).

1.3.2.2 Intake Assessment

Dietary risk assessment for pesticides focuses on effect levels and intake estimates

in order to establish that pesticide usage is unlikely to lead to impacts on health

when a high-residue unit is consumed or when someone consumes a treated product

over a longer period. Intake estimation is based on two factors: residue levels on

food items and consumption amounts of food items. Regulation EC 396/2005 (EC,

2005) states that the acute exposure of consumers to pesticide residues via food

products should be evaluated taking into account the guidelines published by the

World Health Organisation (WHO, 1997).

Intake assessments are based on the following simple equation:

Intake (mg/kg/day) =
Amount Consumed (kg/day)× Concentration (mg/kg)

Body weight (kg)

where consumption is divided by body weight to enable a comparison with the out-

come of a toxicological effect assessment. The World Health Organisation (WHO)

proposed the IESTI equations as a measure of acute dietary exposure (JMPR, 2002).

To calculate the IESTI the following definitions are used:

LP Largest portion provided (kg food/day).

STMR Supervised trials median residue (mg/kg food).

STMRP Supervised trials median residue (mg/kg food) in processed

commodity, calculated by multiplying the STMR in the raw

commodity by a processing factor.

HR Highest residue (mg/kg food) in composite sample of edible portion

from the supervised field trials from which the proposed MRL and

STMR were derived.
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HRP Highest residue (mg/kg food) in the processed commodity, calculated by

multiplying the HR in the raw commodity by a processing factor.

bw Average consumer body weight (kg), from the country that provided the

dietary survey with the selected largest portion, LP .

U Unit weight (kg) of edible portion, converted from the RAC provided by

a country in the region where the supervised field trials were carried out

that resulted in the highest residue level.

v The variability factor, v, is a measure used to reflect the variability of

residue levels in or on individual commodity units and is defined as the

97.5th percentile of the distribution of unit residues divided by the mean

residue level (EFSA, 2005). It is applied to account for the fact that some

of the units making up the composite sample may have had higher

residue levels than the residue level of the composite sample itself.

For the deterministic IESTI calculations, the 97.5th percentile consumption value

of a RAC is often used as the LP (JMPR, 2002). This means that 2.5% of the

population is consuming a larger portion of the RAC than the LP . However, as the

IESTI equations consist of some conservative estimates (e.g. HR) and residue levels

from supervised field trials are assumed to be higher than residue levels in food

items available on the market, it is unclear what level of protection is achieved.

The IESTI is calculated using one of 3 standard equations, depending on the type

of commodity involved (JMPR, 2002):

Case 1

This case is used for commodities for which a meal-sized portion consists of a

number of units that is similar to the number of units in a composite sample

(e.g. peanuts, grapes). The concentration of residue in a composite sample

(raw or processed) reflects that in a meal-sized portion of the commodity (unit

weight <25g).

IESTI =
LP × (HR or HRP)

bw
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Case 2

This case reflects the situation where a consumer eats a few units (but less

than the number in a composite sample) in one day, one of them possibly

having high residue levels (e.g. apples). A meal-sized portion, such as a single

piece of fruit or vegetable, might have a higher residue than the composite

(unit weight of the whole portion is >25g). Standard variability factors, v,

are applied in the equation unless sufficient data are available on residues in

single units to calculate a more realistic variability factor.

IESTI =


U×(HR or HRP )×v+(LP−U)×(HR or HRP )

bw
if U ≤ LP

U×(HR or HRP )×v
bw

if U > LP

It is clear that the higher the unit weight, U, the higher the intake is. As

weights may vary considerably between units, care must be taken when select-

ing a value for U .

When data are available on residues in single units and allow for the estimation

of the highest residue in a single unit, HRunit, the equations become:

IESTI =


U×(HRunit or HRunit

P )+(LP−U)×(HR or HRP )

bw
if U ≤ LP

U×(HRunit or HRunit
P )

bw
if U > LP

Case 3

In this case, the number of units is larger than the number of units in a

composite sample and the residue level is assumed to be similar to the median

of the composite samples from the supervised field trial (e.g. orange juice,

tomato soup). When a processed commodity is bulked or blended, the STMRP

value represents the probable highest concentration of residue.

IESTI =
LP × STMRP

bw

The deterministic IESTI equations are currently used for pesticide registration as

illustrated in the red box in Figure 1.3.
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1.3.2.3 Decision on pesticide approval and MRL

Data from toxicological tests on the pesticides are used to derive an ‘Acute Reference

Dose’ (ARfD). The ARfD is the amount of a chemical that can be consumed at one

meal or on one day in the practical certainty, on the basis of all known facts, that

no harm will result (JMPR, 2002). It provides a measure of exposure that relates to

the hazards occurring during short-term exposure and can be obtained from short-

term (repeated daily doses for 14-28 days), sub-chronic and reproductive toxicity

tests that provide an estimate of the no-observed-adverse-effect-level (NOAEL), a

‘safe’ dose for a group of experimental animals. The ARfD is obtained by dividing

a NOAEL by a safety factor, usually 100, to account for interspecies differences and

human variability in sensitivity (Renwick, 2002). This 100-fold safety factor has been

attributed to Lehman and Fitzhugh (1954) who stated that ‘the chemical additive

should not occur in the total human diet in a quantity greater than 1/100 of the

amount that is the maximum safe dosage in long-term animal experiments’ (Ren-

wick and Lazarus, 1998; Dorne and Renwick, 2005). Lehman and Fitzhugh (1954)

emphasised the arbitrariness of the value by stating that ‘The 100-fold margin of

safety is a good target but not an absolute yardstick as a measure of safety. There

are no scientic or mathematical means by which we can arrive at an absolute value.

However, this factor of 100 appears to be high enough to reduce the hazard of food

additives to a minimum and at the same time low enough to allow some use of

chemicals which are necessary in food production or processing’. This statement is

still valid today despite several attempts to justify the chosen value (Vermeire et al.,

1999).

If the consumer intake is below the ARfD, then the proposed MRL and pesticide

use is accepted, assuming that the pesticide does not have detrimental effects on

non-target organisms. If not (i.e. calculated intake is higher than the ARfD), the

use conditions will have to be modified to reduce the residue levels on the commod-

ity. Examples of modifications include lowering the dose (providing that it will still

be effective), extending the period between treatment and harvest and/or applying

the pesticide to a different crop altogether. This process is illustrated in the green
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boxes in Figure 1.3.

In this section, we have discussed the deterministic IESTI approach for the pes-

ticide registration process, which is currently the most commonly used approach

for dietary risk assessment (Paul Hamey, Chemicals Regulation Directorate; per-

sonal communication, 21 January 2013). In the next section, we detail alternative

probabilistic approaches.

1.3.3 Probabilistic Approaches

In recent years there has been a growing interest in the application of probabilis-

tic techniques to estimate consumer exposure to chemicals in food. In contrast to

the deterministic methodology, probabilistic techniques allow the distribution of in-

takes for multiple individuals in a specified population to be estimated, taking into

consideration the variability in food consumption between individuals and the vari-

ability in occurrence of residues in food commodities. As in the deterministic IESTI

equations, estimating intake from one commodity for a single person on a single

day requires the multiplication of the amount of commodity they consumed by the

concentration of pesticide it contained, followed by a division by the person’s body

weight. To assess how often that person’s intakes exceed the ARfD, this process can

be repeated for every day of the year. If we want to assess what proportion of a

population exceeds the ARfD, we need to repeat this calculation for each person in

the population. Since this is not possible in practice, dietary exposure models are

based on the principle that, if we have a representative sample from the population,

we should be able to make inferences about characteristics of the whole population.

For dietary risk assessment, probabilistic approaches infer these characteristics by

taking descriptions of the variation in consumption and body weights for multiple

people and multiple days and combining them with a description of the variation in

residue levels, selected at random. Consumption and body weight data are derived

from national dietary surveys and residue concentrations are derived from supervised

field trials or monitoring programmes, depending on whether the risk assessment is
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part of the registration process or not.

The basic procedure is as follows:

1. Select one ‘person-day’ record from a dietary survey, comprising consump-

tion and body weight. The consumption and body weight data are sampled

together to account for the perceived dependencies between those quantities.

2. Sample a single concentration at random from a distribution describing the

variation in pesticide residue levels.

3. Calculate the modelled intake for this person-day by multiplying consumption

with concentration and dividing this product by body weight.

4. Repeat steps 1-3 for a large number of person-days, calculating a modelled

intake for each.

5. Determine the percentage of modelled intakes for all the person-days that are

below the ARfD for the pesticide.

Until EFSA (2012) recently developed guidelines on the use of probabilistic method-

ology for modelling dietary exposure to pesticide residues, little guidance existed on

how probabilistic dietary modelling should be conducted. EFSA (2012) proposes a

tiered approach for probabilistic dietary risk assessments and focuses on a ‘basic’

assessment which may be refined if it results in uncertainty about the risk associ-

ated with pesticide exposure. This ‘basic’ assessment consists of two model runs,

a pessimistic model run that is expected to overestimate intake and an optimistic

model run that should lead to an underestimate of the intake. The idea is that if

the former does not raise any concern for risk managers, the ‘true’ dietary intake

should also not raise concerns. If the optimistic model indicates an unacceptable

level of risk, it is considered that refining the model is unlikely to be worthwhile.

Various probabilistic dietary risk assessment models have been developed (CREMe,

McNamara et al., 2003; MCRA, De Boer and Van der Voet, 2011; Uni-HB, EFSA,

2007b).
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Most models used in probabilistic dietary risk assessment include several of the

following characteristics:

• Residue Levels

◦ Data: For a proposed new use, typically only supervised field trial data

on composites of food items are available. Each composite sample con-

sists of several units of a raw agricultural commodity from a supervised

field trial. If the pesticide is already used for other commodities, mon-

itoring data may be available for those commodities. If a product has

been approved, monitoring data can be used to either assess the risk as-

sociated with a high residue event (i.e. one of the monitored samples has

residue levels above the MRL) or for an evaluation of risk associated with

pesticide exposure.

It is important to note that concentration data are often used as ac-

tual residue levels, not accounting for measurement errors and report-

ing/rounding errors. Data below the limit of determination may be mod-

elled using simple replacement rules (e.g. set to LOD, half the LOD or

zero) or by more advanced modelling that treats them as latent (censored)

values from either a residue level distribution or a mixture distribution,

allowing for a proportion of these values to be true zeros.

◦ Choice of Model: Currently pesticide residue levels may be modelled

with empirical or parametric distributions. In the former case, composite

residue samples are resampled with replacement. Sometimes a bootstrap

approach (Efron, 1979) is applied to account for uncertainty. Bootstrap-

ping involves resampling the data with replacement to generate new ‘data

sets’ of the same size which can be described by empirical distributions.

To model the variation in residue levels these empirical distributions are

then subsequently sampled with replacement. In the parametric case,

a (set of) distribution(s) is fitted to the residue data and samples from

this (set of) distribution(s) are drawn to generate estimates of the mean

residue level. EFSA (2012) recommends using either an empirical distri-
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bution or a Lognormal distribution although more advanced models have

been suggested that make use of extreme value theory (Kennedy et al.,

2011).

◦ Unit variation: Unit variation can be modelled using two different ap-

proaches (EFSA, 2012) depending on the data available:

− Sample-based: This approach comes from interpreting each of the

composite samples as the average concentration of a population of a

finite number of units (e.g. the potatoes in a bag of potatoes or a

bunch of bananas). We can describe the variation in the mean residue

levels using an empirical or parametric distribution, F , assuming

composite data are representative of the field mean. Once we have

generated a new meanR from F , the finite number of units, n, implies

that there is an upper bound on the unit distribution: the highest

possible residue is now equal to n × R (i.e. the case where all of

the residue is contained in one unit). EFSA (2012) suggests that in

this case a Beta distribution should be used to sample a unit residue

value.

− Lot-based: This approach can be thought of as having m composite

sample values based on taking n units (e.g. potatoes) from each of

the m fields. In contrast to the sample-based approach, this method

assumes that there are an infinite number of units in each field. We

can again use an empirical or parametric distribution, F , to describe

the variation in mean residues. To sample a unit residue level for a

unit from a random field, a Lognormal distribution is assumed with

the mean value sampled from F and the variance calculated using this

mean and a variability factor, representing variation in residue levels

between units. The value of the variability factor depends on the

type of data. For supervised field trial data, the variability factor is

sampled from a Lognormal distribution based on unit field trial data

(EFSA, 2005) or fixed at a value of 3 or 6.83 (EFSA, 2007a). For

monitoring data the variability factor is sampled from a Lognormal
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distribution based on unit monitoring data (EFSA, 2005) or fixed at

6.83, 5 or 1 (EFSA, 2007a).

◦ Food Processing: Residue levels are likely to be affected by various pro-

cessing steps before the raw agricultural commodity is consumed. Dietary

risk assessment models use fixed values of processing factors, defined as

the ratio of the concentration in processed and unprocessed food, when

processing information is available.

• Consumption

◦ Data: Consumption data are taken from dietary surveys for various age

groups and are obtained from a wide range of survey types (see Section

1.3.1.2).

◦ Choice of Model: Variation in consumption is typically modelled em-

pirically (EFSA, 2012), resampling the observed consumption data as

recorded in a dietary survey with replacement, rather than by fitting

parametric models to the data. This approach retains potentially com-

plex patterns in the data, in particular correlations between consumption

of different foods. However, modelling a variable empirically using the

observed data is likely to underestimate the maximum intake. This is

because it is unlikely that the survey recorded the most extreme eating

event in the population for every commodity. An alternative would be

to use parametric approaches, which allow values higher than the highest

observed consumption amount, but this would require modelling of de-

pendencies. In order to model dependencies using parametric approaches,

many observations are needed. As these are often not available for food

types that are consumed rarely this approach may only be reasonable for

some food types (e.g. staple foods consumed frequently such as bread or

potatoes). One approach to model consumption parametrically is to use

a latent Gaussian model (Allcroft2007, Chatterjee2008). Rather than in-

troducing a parameter to account for non-consumption events the model

uses an underlying multivariate Gaussian distribution such that the part
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of the distribution below a defined threshold corresponds to zero con-

sumption.

◦ Unit Weights: The total amount consumed (in kg food/day) needs to

be converted into the number of items consumed so we can account for

the effect of unit variation in residue levels on intake.

◦ Recipes: Dietary consumption surveys record data on food items ‘as

eaten’ whereas dietary risk assessment models are based on residue levels

on raw agricultural commodities. Therefore, consumption data from sur-

veys need to be converted to (units of) RACs. This conversion consists of

two steps: a) identify which ingredients are used and b) for each ingredi-

ent, convert the amount (e.g. flour, tomato puree) to a RAC (e.g. wheat,

tomatoes) using standard recipes (e.g. a pizza contains 17% wheat and

8% tomatoes, etc.).

◦ Body Weight: Information on body weight comes from the consumption

surveys. To account for the dependency of consumption and body weight,

both quantities are often sampled together.

• Model Characteristics

◦ Population: Dietary exposure assessments may focus on the whole pop-

ulation or on various subgroups of the population. The latter could refer

to only those individuals who consume the commodity in question, vul-

nerable groups (e.g. children, pregnant women, etc.) or groups that

are expected to have higher exposures from other routes (e.g. operators,

workers, etc.).

◦ Monte Carlo: Monte Carlo approaches are often used to obtain popula-

tion intake distributions by sampling from the consumption and residue

level distributions.

◦ Uncertainty: Typically uncertainty in consumption and residue data

is quantified using bootstrap or parametric approaches (EFSA, 2012).

Uncertainty for other factors (e.g. processing factors) is generally not

quantified with the exception of the variability factor.
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◦ Model Output: Probabilistic dietary risk assessment methods will re-

sult in an intake distribution. If a probabilistic intake assessment replaced

the deterministic IESTI equations, the outcome would be a probability

that the ARfD is exceeded (with a confidence or credibility statement).

In this section we have discussed the data and models available for the pesticide

registration process. In the next section we will discuss issues with both.

1.4 Discussion of current procedures

In this section we will raise several concerns with regard to the data and method-

ologies used in current procedures for dietary risk assessment.

1.4.1 Data

1.4.1.1 Residue levels

• Purpose of data collection: Data on residue levels in food items comes

from either supervised field trials or from monitoring programmes, neither of

which are collected for the purpose of dietary risk assessment. The fact that

residue data are not generated with dietary risk assessments in mind, leads to

the following more specific issues:

◦ Supervised Field Trial - Composite Data: The most common pre-

registration data set consists of a small set of composite data from super-

vised field trials. These composite samples may provide a conservative

estimate of residue levels that consumers are unlikely to be exposed to.

The reason for this is that the trials are conducted under cGAP condi-

tions which aim to minimise residue loss, thus leading to higher residue

levels than we would expect for RACs available on the market. However,

the level of conservatism of supervised trial data is difficult to assess be-

cause of various factors that may make residue levels in food as consumed

by the general population higher or lower (e.g. farmers may not comply

with GAP procedures, local conditions may be different than those in
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the trials, not every unit on the market is treated, longer time between

harvest and consumption may lead to lower residue levels due to degrada-

tion processes, etc.). A further issue is that supervised field trial data are

collected at the composite level so the data do not provide information

on residue levels for food items that may be consumed as individual units

(e.g. apples).

◦ (Supervised) Field Trial - Unit Data: Unit data from supervised

field trials are relatively scarce. However, even if they were available,

they would suffer from the same conservatism issues as the composite

data from supervised field trials. Some unit data, which are useful to de-

scribe the variation in residue levels between units, are available from field

trials (Ambrus, 2006). Field trials are different to supervised field trials

in that they are conducted under normal agricultural practice with two

deviations. The first is that they are designed to facilitate the detection

of residue levels. As a consequence, field trials might either be conducted

at higher application rates than normal or use a shorter time between

application and harvesting. The second deviation is that pesticides are

often applied in mixtures, so-called tank mixes, to assess whether varia-

tion in residue levels is pesticide-specific.

Field trial data sets have been used to estimate variability factors (EFSA,

2005). However, unit data collected from (supervised) field trials under

controlled conditions, may not include as many sources of variation as

residue levels observed in units obtained from real applications under a

variety of weather conditions, application equipment, local practices, etc.

Therefore, variability factors calculated using (supervised) field trial data

may underestimate the true variation in residue levels on units.

Unit data cannot be used directly in dietary risk assessment as they do

not include between-field variation. However, they would be useful if

information about between-field variation could be obtained from other

sources. For example, in principle we could use composite data from
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supervised field trials to describe the variation between fields as long as

we account for the fact that composite samples, based on very few units,

only provide an estimate of the field mean.

◦ Monitoring - Composite Data: Monitoring programmes generally re-

sult in composite data, which would provide a more realistic residue level

estimate than those obtained from supervised field trials if they had been

sampled at random from food items available to consumers. However,

monitoring programmes tend to be a mixture of surveillance sampling,

in which samples are collected at random and enforcement sampling, in

which samples are taken based on suspicions about the safety or non-

compliance with the legal limits of a product and/or as a follow-up of

violations found previously (EFSA, 2011). Samples taken as part of the

EU coordinated programme are considered to be surveillance samples

whereas enforcement samples are taken as part of national programmes

(EFSA, 2011). Existing residue level databases do not distinguish data

obtained from targeted sampling from those obtained from random sam-

pling. As a result, unless the data obtained from monitoring programmes

are labelled as being obtained using a random sampling approach, they

should not be regarded as a random sample of pesticide residue levels as

experienced by consumers. However, guidelines for probabilistic dietary

risk assessment currently assume that monitoring data are a random sam-

ple (EFSA, 2012).

Another issue with the collection of monitoring data is that the pro-

portion of samples obtained from various sources as part of monitoring

programmes may not reflect availability to consumers. For example, in

2008, 29 out of 48 cherry samples taken in the UK originated from Spain

(PRC, 2008; PRC, 2009), whereas it is unknown what proportion of cher-

ries consumed by the UK population are of Spanish origin. In addition,

monitoring samples are generally taken from retail outlets to mimic the

selection of food by consumers. This may not be representative for the
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residue levels on RACs that are used in processed food, e.g. tomatoes

in pizza, as tomatoes used in pizzas may come from a different source

or be subject to different treatments (pesticide application, storage time

and conditions, etc.) than tomatoes sold on the shelf. As little is known

about the origins and/or treatment history of units within a composite,

i.e. whether they originate from the same field or multiple fields, compos-

ite residue data should be treated with care when inferring residue level

distributions.

◦ Monitoring - Unit Data: Unit data are rarely collected as part of

regulatory monitoring programmes. In one publicly available study (Hill

and Reynolds, 2002), units were only measured if positive residue levels

were found in a composite sample. Therefore unit data obtained from

this study were a biased sample from the residue level distribution. Con-

sequently we cannot use the data obtained from this study as if they were

representative of food items that are available to consumers. When we

have unit data, we cannot always infer whether the variation observed in

unit residue levels is caused by a proportion of untreated units in the sam-

ple or whether the variation is caused by variation in application factors,

crop and environmental factors and/or dissipation factors. As a conse-

quence, unit data from monitoring programmes should be treated with

care and may only be suitable for estimating variability factors. However,

as they are a biased sample from the upper tail of the residue distribu-

tion, they are likely to underestimate the true variability in residue levels.

In addition, if the proportion of non-treated units is very different to the

proportion of non-treated food items considered in the dietary risk as-

sessment, the variability factor may not provide a good estimate of unit

variation.

Given that the currently collected residue level data cannot easily be used to

model residue levels on food items, it would be sensible to reconsider what

data should be collected for use in the pesticide registration process. If for

a new use, supervised field trials were to be conducted in such a way that
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unit data were collected from multiple fields, whilst recording which data was

obtained from which field, these data could be used to model within-field and

between-field variation. The residue level estimates, obtained from these data,

would still be conservative as they would not account for untreated food items

and the trials are conducted according to cGAP. However, this would be an

improvement on current practice.

If these data were available, surrogate residue data sets, such as the field trial

data used to derive variability factors (EFSA, 2005), would not have to be

used to model unit variation. However, if the principles for data collection do

not change, we need to make sure that the data that are available are treated

appropriately in dietary risk assessments.

• Residue level variation in composite samples: Monitoring programmes

provide estimates of residue levels in composite samples. Combining treated

and untreated units of a commodity will lead to a reduction of residue levels:

if a sample consists of twelve apples, three with a residue level at twice the

MRL of chemical A and nine untreated, this will result in residue levels of half

the MRL of A in the composite sample, indicating that there is no reason for

regulatory action, despite some of the units having residue levels of twice the

MRL on them.

• Dealing with censored data: A common issue with residue data, partic-

ularly those obtained in monitoring programmes, is that many samples will

contain residue levels that are not quantifiable and are reported as less than

the limit of determination (LOD). The LOD is the lowest concentration at

which quantitative results can be reported with a high degree of confidence.

It is important to realise that <LOD values are only reflecting our technical

abilities to measure residues. Even unquantifiable concentration levels may

lead to adverse effects and therefore it is important to deal with <LOD data

appropriately. An often proposed solution to deal with <LOD data is to re-

place them by k × LOD where k ∈ {0, 1/2, 1} (EFSA, 2012; OECD, 2011b).

However, this does not take into account the distribution shape of the under-
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lying population and may in fact violate distributional assumptions that are

often made when conducting probabilistic dietary risk assessments.

Some probabilistic approaches are more suitable for dealing with <LOD data

than others. For example, empirical methods based on resampling the data

with replacement cannot offer an alternative method to replacing <LOD val-

ues with another value, whereas assuming a distribution allows samples to be

imputed for values below the LOD. When modelling monitoring data it may

be appropriate to replace <LOD with a zero if information is available on the

proportion of untreated food items available on the market. In this case, a

<LOD result may indicate that either no residues were present in the sam-

ple or the pesticide was present but concentrations were too low to quantify.

Paulo et al. (2005) introduced a mixture model approach which specifically

addresses this case.

EFSA (2010b) explored various statistical approaches for fitting distributions

to left-censored data sets. Their conclusion was that when there are >25 cen-

sored values in data sets consisting of <50 samples, or when more than 80%

of the data are censored, no probabilistic assessment should be conducted.

However, they did not consider Bayesian approaches which can deal with high

levels of censoring and account for the uncertainty caused by the censored

data. An analysis of UK monitoring data sets (PRC, 2010; PRC, 2011a; PRC,

2011b; PRC, 2011c) that are not completely censored showed that, on average,

93% of values were reported as below the LOD as shown in Figure 1.4. EFSA

(2010b) recommends that when data consists of >80% censored data, similar

food categories should be pooled together or more data should be collected.

As collecting more data is not likely to increase the proportion of positive

samples, EFSA (2012) suggest that <LOD data should be replaced by 0 or by

the LOD, stating that the latter is conservative. However, this ignores the fact

that even though replacing the values with the LOD will increase the mean

it also reduces the variance, making it unclear what the overall effect on the

residue distribution is.
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Figure 1.4 – Proportion of data <LOD in data collected as part of the 2010

UK residue monitoring programme. Chemicals for which 100% of the data

were below the LOD were excluded as in those cases the pesticide may not be

registered for use on that crop.

• Reporting error: Residue level data are often reported after rounding (ei-

ther to ns significant figures or nd decimal places). As a result, many of the

values in a data set may be repeated, which might suggest that the population

distribution is discrete. If the rounding method applied to the data is known,

Bayesian methods can be used to account for the uncertainty introduced by

rounding (see Chapter 4 for details).

• Measurement error: The effect of measurement error on estimating residue

levels is often ignored, perhaps due to the laboratory process conforming to the

relevant international standards. Kennedy and Hart (2009) provide a general

approach that allows for the integral modelling of measurement uncertainty in

dietary risk assessments. Their analysis indicates, however, that the effect of
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measurement error may be significantly smaller than the uncertainty caused

by the limited number of composite data. As a result, EFSA (2012) considers

it unnecessary to take measurement error into account.

• Sample Size: Sample sizes for both types of data (supervised field trials and

monitoring programmes) tend to be very small compared with the number of

food items consumed. Figure 1.5 shows the number of trials conducted for

a large set of pesticides obtained from EFSA draft risk assessment reports.

The most common number of field trials is 8 and the median number of field

trials is 10. When very few trials are conducted, it is essential to quantify the

uncertainty resulting from the small number of data in an appropriate manner,

e.g. using Bayesian approaches.
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Figure 1.5 – Overview of the number of field trials conducted for 730 pesticides

and reported in draft risk assessment reports.

With regards to monitoring data, 416 active substances (SANCO, 2012) are

approved for use in the EU which may be applied to up to 383 food com-

modities (WHO, 2012). In addition to these approved pesticides, monitoring
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programmes will also have to focus on pesticides that are not approved to as-

sess whether they have been used illegally. In 2009, 10,553 composite samples

were analysed in an EU-coordinated programme focusing on 138 pesticides and

10 different food commodities (EFSA, 2011). In addition, 67,978 samples were

analysed as part of national monitoring programmes, focusing on 834 distinct

pesticides in 300 different food commodities. Apart from the fact that various

commodities have not been monitored at all, this shows that sample sizes in

monitoring studies are small. However, one could argue that food items come

from a finite number of sources and that one may be prepared to make the as-

sumption that all products from one source are likely to have received the same

treatment. If so, one could in theory obtain a reliable estimate of pesticide

residue levels of food products on the market from a small sample provided

that it was representative of pesticide residue levels on all food products.

1.4.1.2 Consumption data

• Age of surveys: Dietary surveys provide a snapshot of people’s diets for

a specific period of time. It is questionable how relevant historical dietary

records are for current risk assessments as available products and dietary habits

change over time (e.g. consumption of bottled water and ready meals has

increased in recent years).

• Sample Size: Food consumption surveys are expensive and time-consuming

as they may require face-to-face contact (interviews, physical measurements),

analyses of food samples and analyses of dietary records. As a result sample

sizes are kept low, particularly when considering seasonality in consumption

and variation in consumption patterns in the population. Therefore, they

may not capture the extensive variation in consumption patterns between

individuals and sub-groups (e.g. based on age). A small stratified sample

may be sufficient because dietary surveys are designed to be representative of

the population of interest. However, it is difficult to assess how representative

they are because not every individual selected for consumption surveys will

take part and non-respondents will not always be replaced (Hoare et al., 2004).
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• Bias: Food surveys are often run with volunteers and even though individuals

are selected to create a representative sample of the population, high levels of

non-response increase the potential for bias. In the 2002 UK National Diet

and Nutrition Survey (Hoare et al., 2004), only 47% of the selected individuals

completed a full 7-day dietary record. Assessing and dealing with bias is

particularly difficult when there is little or no information on subgroups within

the study population.

Another type of bias is caused by the fact that people’s behaviour may be

affected by their involvement in surveys. They may be reluctant to record

sensitive or taboo subjects and therefore either decide not to record them

or they may change their behaviour. A simple example of this in dietary

records is that people may record lower consumption amounts for foods that

are considered to be socially unacceptable.

• Minor Foods: Food surveys are only able to reliably record the consumption

of food types that form a major part of our diet (i.e. staple foods). They

tend to underestimate the consumption of minor food items or food items

that are only consumed on a seasonal basis. EFSA (2012) suggest that if

a consumption survey does not contain records of a rarely eaten food, the

consumption amounts could be estimated from consumption data of related

food types that may have been recorded in the survey.

1.4.2 Modelling

• IESTI Equations: Although the IESTI equations are simplistic, if the results

are interpreted appropriately, they may be useful to manage the dietary risk

associated with pesticide intake. However, when interpreting the outcome of

an IESTI-based risk assessment, the following should be considered:

◦ Conservatism: The deterministic IESTI equation does not provide an

indication of how conservative it is. It is expected that combining conser-

vative estimates for residue levels and consumer consumption will result

in a conservative intake estimate. EFSA (2007a) explored what level of
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conservatism was obtained by using the IESTI equation. The level of

conservatism was assessed in terms of the proportion of the EU popu-

lation that would be exposed to a dose not exceeding the ARfD. This

was estimated in case studies for 13 pesticides, 8 countries and various

subgroups (based on age) of the population using a range of probabilis-

tic dietary exposure models. In the case studies, the IESTI results were

compared with the output of the probabilistic models and residue lev-

els from monitoring studies. The comparison indicated that the level of

protection, i.e. the number of person-days with intakes below the ARfD,

was at least 99% and above 99.9% for most probabilistic models for the

total population. However, as we do not know what level of protection is

achieved by the probabilistic methods used in the study, we do not know

what the true level of protection is.

◦ IESTI assumes exposure to a single chemical: The IESTI equa-

tions assume that consumers will only be exposed to a pesticide on one

commodity at a time. This relies on the assumptions that multiple com-

modities have not been treated by the same pesticide, that multiple com-

modities would not all have high residue levels at the same time and that

the consumption of large portions of these commodities in a short period

of time is unlikely.

A brief analysis of residue level data from the UK monitoring programme

shows that several pesticides have detectable residue levels on multiple

crops (PRC, 2010; PRC, 2011a; PRC, 2011b; PRC, 2011c). For exam-

ple, imidacloprid was detected on thirteen out of twenty crops (including

broccoli, cabbage, cherries, grapes, lettuce, nectarines and peaches). In

fact, out of 134 pesticides analysed, 85 were detected in two or more

crops. This suggests that the first assumption conflicts with the avail-

able residue data. Given that the same pesticide appears to be used on

multiple crops, it is possible that consumers are exposed to a particular

pesticide multiple times by eating portions of different commodities.
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◦ Estimation of LP: One issue with the estimation of LP is that it ap-

pears to be generally accepted to use the 97.5th percentile commodity

consumption value (JMPR, 2002). However, for a commodity for which

fewer than 40 consumption days have been recorded in dietary surveys,

it is not possible to calculate the 97.5th percentile without extrapolation

and/or making distributional assumptions. Van der Velde-Koerts et al.

(2011) state that no guidelines are available about how many consumers

are needed per commodity to get an accurate value for the LP. They sug-

gest using the 95th percentile commodity consumption value if there are

between 20 and 40 consumption days recorded. If less then 20 consump-

tion days are available, the 90th percentile is suggested and if less than 10

consumption days are reported, the maximum value is suggested. This

practice does not appear to be conservative as it is unlikely that with sam-

ple sizes as small as these, the full spectrum of consumption behaviour

will have been captured by dietary surveys.

◦ Use of IESTI for MRL setting: One feature of MRL setting using the

IESTI equations is that an MRL may be higher than the effect threshold

(e.g. ARfD). The OECD MRL calculator suggests that the MRL should

be proposed as the maximum of the highest residue, the mean + 4 ×

standard deviation and 3 × mean ×(1− 2F
3

), where the residue data are

obtained from supervised field trials and F is the fraction of censored

data. Therefore, the proposed MRL may be greater than the highest

residue, which is used in the IESTI equation. If the IESTI equation

results in an intake just below the effect threshold, then the MRL will

be accepted and the pesticide will be approved. If the residue level on

commodities on the market are below the MRL but above the highest

residue observed in the supervised field trial, consumers may be exposed

above the effect threshold. However, as the value is below the MRL there

is no legal issue of non-compliance, demonstrating that MRLs are trading

standards.
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• Recipe conversion factors: Consumption surveys record food as eaten by

individuals which includes processed food whereas for dietary risk assessment

we are interested in which raw agricultural commodities (RACs) individuals

have consumed. Therefore recipe databases have to be used to make assump-

tions about the proportions of RACs used in processed food. As recipe in-

formation for food products is commercially sensitive and will vary between

products and possibly even batches of products, (manufacturers may introduce

a ‘new recipe’ for various reasons, e.g. reducing sugar or salt levels), these con-

versions are often based on simple models and standard conversion factors for

commodities. Converting ingredients to RAC amounts can be complex due

to various types of processing and little is known about the impact of these

conversions on the overall exposure estimate.

Another issue is that some food items can be either bought as processed food

or prepared at home, e.g. apple pie. Therefore it is important to consider

whether the ingredients came from different sources or whether the ingredi-

ents were bought in a single purchase. In the latter case, residue levels for

multiple food items may be similar and may be the driving force behind ex-

treme exposure events, e.g. an individual who buys apples with higher than

average residue levels and consumes some of them as whole apples, some of

them in a homemade apple pie and some of them as homemade apple juice.

• Distribution choice: EFSA (2012) recommends either using an empirical

distribution or a Lognormal distribution to model composite residue data.

Given the small sample size of composite residue data, empirical distributions

are unlikely to be a viable approach for describing the variation in residue lev-

els. EFSA justified the suggestion of a Lognormal distribution by referring to

an analysis by Boon et al. (2003) on 10 data sets (consisting of 5-66 compos-

ite samples) for which a Lognormal distribution could not be rejected. Given

the type of study, the small number of data sets and small number of sam-

ples per data set, it is questionable whether this provides sufficient evidence

to recommend a Lognormal distribution in general. EFSA (2012) discussed

other approaches to model unit variation in residue levels because the Lognor-
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mal distribution, often used in combination with variability factors (VF), was

found to be inappropriate for multiple unit data sets. EFSA concluded that

further simulations are needed to assess how residue distributions may best

be represented. Whether this can be done with parametric distributions or

whether non-parametric approaches are necessary is one area of research that

will be addressed as part of this thesis.

EFSA (2012) proposes the use of empirical distributions for consumption data.

Given that consumption data sample sizes are much larger than residue data

sample sizes, this may be a reasonable choice provided that the consumption

data are representative of the population of interest. However, it still may

not provide a reasonable estimate of some individual’s extreme consumption

habits.

• Bootstrap approaches: Some existing dietary risk assessment models, e.g.

MCRA (De Boer and Van der Voet, 2011), rely on bootstrap techniques to

quantify uncertainty resulting from small data sets and empirical distributions

to describe the variation in consumption and residue levels. Bootstrap tech-

niques can be useful and their simplicity has made them a popular choice in

dietary risk assessment. However, it is important to know their limitations and

to avoid using them inappropriately. The main idea in statistical inference is

that a sample is used to learn about a population’s characteristics. This can

be done with a wide range of inference techniques, the bootstrap being one of

them. However, certain population characteristics may be poorly estimated

by bootstrap approaches, particularly for small to medium sample sizes. Cor-

rections may be applied to counter the estimation bias introduced by small

sample sizes, but they require additional assumptions and computations.

In dietary risk assessments, bootstrapping is used to describe uncertainty

about the consumption and residue level distributions. For consumption dis-

tributions, the number of data may be sufficient to estimate certain parameters

(e.g. mean, median, non-extreme percentiles) of the population consumption

distribution. However, as it is unclear whether the risks associated with di-

etary intake are caused by extreme consumers, extreme residue levels or a
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combination of both, distributional approaches need to be able to provide re-

alistic estimates of extreme consumer intakes. With an EU population size

exceeding 500 million, the number of data from surveys is relatively small and

unlikely to be representative of the whole population so it is doubtful that

bootstrapping approaches will be able to predict extreme intakes.

More worrying is the fact that bootstrap approaches are also used to model

residue levels. Figure 1.6 shows the results from simulation studies where n =

2, 4, 8 and 100 samples were taken from a N (0, 1) distribution.
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Figure 1.6 – Results of bootstrapping samples X of size n = 2, 4, 8 and

100 from a standard Normal distribution. The blue line indicates the target

N (0, 1) distribution, the red line indicates the median distribution, obtained

from generating 10,000 bootstrap samples. The grey dashed lines indicate the

95% confidence interval. For each value of n, the simulation was repeated 3

times to demonstrate the impact of the original n values on the performance.
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These sample sizes were chosen to represent typical sample sizes of residue

data sets for which bootstrap approaches are currently applied in dietary risk

assessment. The samples were then bootstrapped 10,000 times and the median

estimates are displayed as cumulative distribution functions together with a

95% confidence interval and the target distribution. The exercise was repeated

3 times for each sample size. It is obvious that for small sample sizes, the

distribution produced by bootstrapping provides a very poor estimate of the

underlying distribution. For a sample size of 100, one could argue that the

bootstrap distribution starts to reflect the target distribution. However, it

is still far from perfect and when we look at the tails of the distribution, it

is clear that the population distribution is not represented very well. If we

believe that dietary risk is caused by either extreme consumption amounts,

extreme residue levels or a combination of both, more advanced techniques

are needed to describe the variation in both.

• Derivation of Variability Factors: Variability factors (VFs) were derived

using various unit residue data sets (EFSA, 2005). The VF is defined as the

97.5th percentile of the distribution of unit residues divided by the mean residue

level (EFSA, 2005). Sample sizes used to determine VFs are relatively small

to estimate the 97.5th percentile (e.g. the median number of unit values in

unit residue studies is around 120) and therefore may lead to a poor estimate

of the VF. In the following simulation study, we show that VFs estimated

from a typical field trial sample size provide a poor estimate of the true VF.

We generated 120 log unit residue levels from a N (log(100), σ2) distribution

with σ = 0.170, 0.620 and 1.76, corresponding to the 2.5th, 50th and 97.5th

percentiles of the standard deviation of the unit field trial data discussed in

Chapter 4. Then we estimated the ratio of the 97.5th percentile and the mean

of the back-transformed samples, i.e. the VF. We repeated this 10,000 times to

obtain a distribution of VF estimates. Figure 1.7 shows a kernel density plot

(Silverman, 1981) of the VF estimates (red line), together with the true VF

(blue dashed line) for each value of σ. It is clear that using a small sample to

estimate the VF results in some uncertainty around the VF estimate. Ideally,
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approaches that make use of VFs should account for this uncertainty.

Figure 1.7 – Kernel density plots of simulated variability factors. VF distri-

butions (red lines) were obtained by simulating unit residue data for various

values of σ. The true VF is indicated by the blue dashed line.
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Another important question is whether the population VF varies between

crops/pesticides. Hamilton et al. (2004) assumed that the observed varia-

tion in estimated VFs is the result of sampling error (i.e. uncertainty about

the VF as a result of small sample sizes), whereas EFSA (2005) showed that

the population VF varies between data sets. The models describing unit vari-

ation in residue levels, presented in Chapters 4 and 5, are based on this latter

observation.

• Treatment of composite supervised field trial data as field means:

Current probabilistic models assume that the composite values obtained from

supervised field trials are field means and that fitting a distribution to the

composite samples from multiple fields can be regarded as the field mean

distribution. A composite sample obtained in a supervised field trial consists

of a small number of units (e.g. 12 for apples) and may therefore provide a

poor estimate of the field mean residue level. Figure 1.8 shows kernel density

plots of simulated composite samples obtained from repeatedly sampling 12

log unit residue values from a N (log(100), σ2) distribution, where σ = 0.170,

0.620 and 1.76, as before. The blue dashed lines indicate the true mean of

the unit distribution and the red kernel density line shows the distribution of

simulated composite samples. It is clear that the resulting composite samples
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are poor estimates of the true field mean because, for example, for σ = 0.620

composite samples ranged from 50 to 250 mg/kg whereas the true mean is 121

mg/kg.

The variation in composite samples is a result of the variation in residue levels

on individual units and the small number of units making up a composite

sample. We should account for both these factors when aiming to obtain a

field mean distribution.

Figure 1.8 – Kernel density plots of simulated composite samples. The blue

dashed lines represent the true means of the unit distributions which were used

to simulate the composite samples. The red lines indicate the distribution of

simulated composite samples.
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Composite samples are currently used together with variability factors (VFs)

to simulate unit residue levels. However, the definiton of the VF implies that

it should be applied to an estimate of the field mean. When inferring the field

mean distribution from composite samples we first need to ‘remove’ the unit

variation component in the observed variation in composite samples to obtain

a distribution which only describes the variation in field mean residue levels.

Therefore in this thesis we present an approach which allows us to estimate

residue levels on units in this way (see Chapter 5).

• Mixtures of pesticides: Up until recently, dietary risk assessments focused

on a single pesticide at a time. However, with increasing numbers of pesti-

cides being approved, concerns have been raised about exposure to multiple

pesticides (EFSA, 2009; Van Klaveren et al., 2009). This can occur because
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consumers are exposed via a range of commodities, because commodities may

have been treated with a range of pesticides or because commodities which

have received different treatments are mixed before they arrive on the market.

Monitoring programmes already show that some samples contain residues from

multiple pesticides (PRC, 2011a; PRC, 2011b). As monitoring programmes fo-

cus on composite samples, it is unclear whether a composite sample consists

of units that have received different treatments or whether units have been

treated with various pesticides. Pesticide Usage Survey (PUS) data (Fera,

2011) indicate that the latter is not uncommon, so an important question is

how we should assess the risk associated with exposure to multiple pesticides.

Apart from the fact that no legal framework exists for dealing with these

cumulative risk assessments, current dietary risk models have only been de-

veloped to deal with a single pesticide at a time. An important consideration

is how to model dependencies between residue levels when a commodity has

been treated with multiple pesticides.

• Interpretation of model: A problem with current acute probabilistic di-

etary risk assessments is that they are based on the concept of ‘person-days’

as a result of the way dietary surveys are treated in existing models. Cur-

rent models tend to resample person-days and consequently the output of the

assessment represents variation between person-days, not individuals. Model

outcomes indicating that 1% of ‘person-days’ are above the effect threshold

level could refer to every individual of the population experiencing an intake

above the threshold for 3.65 days annually (on average), refer to one individual

in a hundred experiencing an intake above the threshold for every day of the

year or, more likely, somewhere in between. It would be much better if con-

sumer intakes were modelled on an individual basis, so that we could estimate

for each individual the probability of exceeding the threshold value and ideally

by how much on a daily basis. It should then be possible to extrapolate this

to the population level, e.g. x% of the population will have a y% probability

of being exposed to a dose equal to n times the threshold level. This would

allow risk-managers to interpret the outcome of dietary risk assessments more
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easily. The downside of this would be that risk managers would have to derive

a set of politically sensitive acceptability criteria, e.g. a product is considered

to be safe if up to 0.01% of the population is exposed to the ARfD level on one

day of the year unless a) 0.001% of the population is exposed to more than

three times the ARfD on one day or b)..., etc. In absence of these criteria,

one could try to assess what level of protection the current regulations offer in

an exercise similar to the EFSA (2007a) study into what level of conservatism

was obtained by using the IESTI equation.

• Summary of output: With regards to model outputs, the focus is currently

on the likelihood of exceeding a toxicological threshold, e.g. proportion of the

population exceeding the ARfD (EFSA, 2012). Although this is an important

statistic, it would be more informative if this were accompanied by an assess-

ment of how extreme exceedances are. This information can be obtained from

some current dietary risk assessment models as illustrated in EFSA (2007b).

• Validation of dietary risk assessment models: Another issue with the

use of probabilistic modelling in dietary risk assessment is that ideally the

models should be validated before being used in a regulatory context. How-

ever, dietary risk models cannot be validated as a whole because it would

require knowledge of the population exposure distribution for a wide range

of scenarios. Gibney and Van der Voet (2003) suggested that a probabilistic

dietary exposure model is fit for purpose when (a) the modelled exposure does

not underestimate the true exposure and (b) the modelled exposure was lower

than the IESTI approach. However, there is no reason why the IESTI results

should provide an upper bound on exposure. In fact EFSA (2007a) already

showed that the IESTI equation only corresponds to high percentiles of expo-

sure estimates from various probabilistic models. A more thorough validation

exercise could consist of validating various parts of the exposure models. If

we know that the consumption model and the residue level models are valid,

then we can assume that a model consisting of both model parts is validated as

well, assuming that dependencies are dealt with appropriately. Validating sub-
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models has the added advantage that if more advanced, validated approaches

become available for parts of the model, they can be added without having

to revalidate the whole model. Given that, even for sub-models, we often do

not know what the truth is, the only validation options available are either

using synthetic data or using a large number of case studies. In the latter case,

the model’s output can be ‘validated’ if the model output seems reasonable

according to some pre-defined criteria.

Currently available probabilistic dietary exposure models have attracted criti-

cism for resulting in unrealistic exposure estimates (EFSA, 2012). One reason

for this may be that little information is available to estimate the parameters

for consumption and residue level distributions. When dietary risk models

have tried to account for this lack of information, the population intake dis-

tributions became very uncertain and high intake levels, that were labelled as

unrealistic, were observed (EFSA, 2012). However, it may not always be clear

when an exposure estimate is unrealistic and when it is a realistic extreme

case.

The issues presented in this section could have a significant impact on the outcome

of the risk estimate and should therefore be considered carefully by risk assessors.

However, the issues not related to the modelling of pesticide residues are considered

to be outside the scope of this thesis and thus are not discussed further.

1.5 Motivation for Thesis

This thesis will focus on the development of novel approaches for describing the vari-

ation and uncertainty in pesticide residues on raw agricultural products. The main

reason for selecting this particular area of the overall pesticide registration process

is that current methods, both deterministic and probabilistic approaches, for acute

human dietary risk assessment are based on very basic models for residue levels in

food items which neither reflect the data well nor provide an adequate quantification

of uncertainty.
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Deterministic risk assessment is by far the most commonly used risk assessment

approach but the use of probabilistic risk assessment approaches is likely to increase

now that guidance documents (EFSA, 2012) and software tools (CREMe, McNa-

mara et al., 2003; MCRA, De Boer and Van der Voet, 2011) are available. However,

the implementation of probabilistic approaches for dietary risk modelling is still in

its infancy and many issues have not been dealt with appropriately. As determinis-

tic risk assessments are also based on probabilistic elements, e.g. percentiles of the

consumption and residue level distributions, there is a need for robust approaches

that can be used to model the available data in a more appropriate way. Currently,

most probabilistic risk assessments are based on strong distributional assumptions,

e.g. Lognormal and other parametric distributions to account for the variability

in residue levels. For most risk assessments there are relatively few data available

and so there is little evidence to support these distributional choices for individual

crop/pesticide populations. More importantly, the current approaches for dietary

risk assessment do not make best use of the available data as each field trial data

set is analysed separately. In other words, when conducting a risk assessment, the

analysis is not making use of available information from previous analyses of pesti-

cide residue levels on food items.

Another issue is that current probabilistic models are based on poor modelling

choices which fail to account for the lack of unit data. For example, the defini-

tion of variability factors can only be justified if they are applied to estimates of the

field mean and take into account appropriate distribution shapes for units. As nei-

ther is the case, more advanced approaches are needed to account for unit variation.

One aim of this thesis is to solve some of the issues mentioned in this chapter.

However, obtaining estimates of dietary risk is very challenging given financial and

practical constraints on data collection practices. These constraints affect the esti-

mation of the variability in consumption amounts and residue levels and thus intake

amounts and emphasise the importance of quantifying uncertainties associated with

these quantities.
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1.6 Overview of Thesis

This thesis aims to improve the way in which residue data are modelled in dietary

risk assessments, although some of the methods will be applicable to consumption

data as well. The approaches presented in this thesis aim to obtain better estimates

of the variation in residue data and can be used to improve both deterministic and

probabilistic risk assessment approaches. With regards to deterministic assessments,

the distributions can be used to obtain better estimates of the conservative param-

eters that are used in routine deterministic risk assessments. Chapter 2 provides an

introduction to the mathematical concepts which are used extensively throughout

the thesis. Chapter 3 introduces a novel approach to modelling the correlation in

residue levels of multiple pesticides which makes use of monitoring data and pes-

ticide usage information. Chapters 3 and 4 introduce new approaches to model

pesticide residues on raw agricultural products for the registration process. Chapter

4 introduces a model that can be used to describe unit variation in residue levels

and accounts for censored data and reporting errors. Unlike current models describ-

ing the variation in residue levels, this model aims to learn the distribution shape

from data. Chapter 5 presents an approach to model within-field and between-field

variation of residue levels in a way that does not overestimate the variation in su-

pervised field trial data and accounts for uncertainty. Finally, Chapter 6 provides

an overview of all the new approaches and identifies further research needs.



Chapter 2

Bayesian approaches for Dirichlet

Process Mixture Models

This chapter aims to introduce several concepts that are used extensively throughout

this thesis. The approaches introduced in Chapters 3, 4 and 5 rely heavily on

Bayesian techniques, Markov Chain Monte Carlo (MCMC) and either the Dirichlet

distribution or Dirichlet Process Mixture models. This chapter will provide an

overview of these concepts.

2.1 Bayesian Inference

Bayesian inference is based on Bayes’ rule to express our uncertainty about a pa-

rameter of interest θ given some form of evidence. Bayes’ rule is based on updating

our beliefs, expressed in a prior distribution p(θ), with data, y, using the likelihood

function p(y|θ):

p(θ|y) =
p(y|θ)p(θ)
p(y)

Often prior distributions are selected from standard distribution families to facilitate

calculations in Bayesian inference. Conjugate prior distributions are a common

choice as they result in a posterior distribution that is from the same family as the

prior distribution. This is particularly helpful if the family is easy to characterise.

If it is not, we need to use numerical approaches such as Monte Carlo methods.

47
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2.1.1 Monte Carlo methods

If the posterior distribution, p(θ), is not in a form from which we can calculate sum-

mary statistics of interest (e.g mean, credible intervals, etc.) we may instead have

to use numerical approaches to draw samples from the distribution, a process often

referred to as Monte Carlo simulation (Metropolis and Ulam, 1949; Von Neumann,

1951). We can then calculate summary statistics from these samples to characterise

the distribution. For example, if we are interested in the mean of the distribution,

we can calculate this using N samples, x, and the fact that E[θ] ≈
∑N
i=1 xi
N

. In a

Bayesian context, Monte Carlo simulation can be helpful if we are interested in the

joint posterior distribution of multiple variables. To illustrate this, let us consider

the posterior distribution of the mean, µ, and standard deviation, σ, of a N (µ, σ2)

distribution. Assuming a prior distribution π(µ, σ) ∝ 1
σ
, the joint posterior is given

by:

p(µ, σ|y) ∝ σ−(n+1) exp

[
−(n− 1)s2 + n(µ−m)2

2σ2

]
where s is the standard deviation of the data vector (denoted by a bold typeface

throughout this thesis), y, m is the mean and n is the sample size (Box and Tiao,

1973). If we cannot easily obtain a summary statistic of interest from this distribution

we can factorise it and generate samples using the marginal distribution, p(σ|y), and

the conditional distribution, p(µ|σ,y):

σ|y ∼
√
n− 1s

χ2
n−1

µ|σ,y ∼ N
(
m,

σ2

n

)
where χ2

ν is a Chi-squared distribution with ν degrees of freedom. In many cases we

cannot factorise the joint posterior distribution and then we have to use other nu-

merical simulation techniques, including acceptance/rejection sampling, importance

sampling and MCMC, which are discussed in the following sections.

2.1.1.1 Acceptance/Rejection Sampling

Another approach for generating random samples from a probability density function

f(θ) is acceptance/rejection sampling. Let g(θ) be a probability density function
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that is easy to sample from and that satisfies the following condition for all θ:

f(θ) ≤ cg(θ)

where c > 0. We can obtain samples from f(θ) using the following algorithm:

1. Generate θ∗ ∼ g(θ).

2. Generate u ∼ Uniform(0, 1).

3. Accept θ∗ as a sample from f(θ) if u ≤ f(θ∗)
cg(θ∗)

.

To prove that this process results in samples from f(θ) we make use of Bayes theo-

rem:

p(θ|accept) =
p(accept|θ)p(θ)
p(accept)

We know that:

p(accept|θ) =
f(θ)

c× g(θ)

p(θ) = g(θ)

p(accept) =

∫
θ

p(accept|θ)p(θ)dθ

=
1

c

∫
θ

f(θ)dθ =
1

c

which leads to:

p(θ|accept) =

f(θ)
c×g(θ)g(θ)

1
c

= f(θ)

The difficulty with implementing this approach is finding a distribution, g(θ), that

satisfies the condition f(θ) ≤ c× g(θ) whilst using a value for c that does not result

in a high frequency of rejections. For this reason, it is recommended that the g(θ)

is similar to the target distribution. To overcome the problem of finding a suitable

g(θ) over the whole sampling space, adaptive acceptance-rejection sampling has been

proposed to sample from log-concave distributions (Gilks and Wild, 1992). This

approach is based on the idea that the target distribution can be approximated by

enclosing it using piecewise-exponential functions. The more samples generated, the

better the approximation of f(θ). The advantage of adaptive acceptance-rejection

sampling is that sampling new values of θ will become more efficient in time. A
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disadvantage is that as well as being restricted to log-concave functions, we need

to differentiate f(θ) to obtain the slope of the tangent line at θ∗. Gilks (1992)

suggests a derivative-free alternative if we cannot differentiate f(θ). This approach

is generally less useful for multivariate problems as the efficiency of the algorithm

may become very low.

2.1.1.2 Importance Sampling

Importance sampling is an alternative technique that can be used to estimate proper-

ties of a distribution from which we cannot sample directly. It is a variance reduction

technique which is based on the idea that some samples in a Monte Carlo simulation

will have more impact on the estimation of the parameter of interest than others.

The aim of importance sampling is therefore to sample these ‘important’ values more

frequently to reduce the estimator variance. It makes use of the observation that

the expected value of an arbitrary function of θ, h(θ), where θ ∼ p(θ) is given by:

E[h(θ)] =

∫ ∞
−∞

h(θ)p(θ)dθ (2.1)

We can use ordinary Monte Carlo simulation to estimate E[h(θ)] if we can sam-

ple easily from p(θ). If we cannot sample from p(θ), but we can sample from a

probability density function g(θ), we can rewrite Equation 2.1 as:

E[h(θ)] =

∫ ∞
−∞

h(θ)p(θ)

g(θ)
g(θ)dθ

We can now estimate E[h(θ)] using:

1. Sample θ ∼ g(θ).

2. Calculate w(θ) = p(θ)
g(θ)

.

3. Ê[h(θ)] = 1
N

∑N
i=1 h(θ)w(θ).

Unlike acceptance-rejection sampling, every sampled value is used. The disadvan-

tage of importance sampling is that if a few of the w(θ) are much larger than the

others, those values will determine Ê[h(θ)] and the result will behave as if it was

estimated from a small sample. To overcome this behaviour, a distribution shape for
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g(θ) needs to be selected in such a way that p(θ) is slightly smaller than g(θ) in the

tails. Analogously to acceptance-rejection sampling, the choice of g(θ) determines

the performance of this approach.

Sequential importance samplers are an extended version of the importance sampling

algorithm above that can be used to sample from K-dimensional distributions:

1. Sample θ1 ∼ g(θ1).

2. Sample θk ∼ g(θk|θ1, . . . , θk−1) for k = 2, . . . , K.

3. Calculate:

w(θ1, . . . , θk) =
p(θ1, . . . , θk−1)

g(θ1, . . . , θk−1)

p(θ1, . . . , θk)

p(θ1, . . . , θk−1)g(θk|θ1, . . . , θk−1)

= w(θ1, . . . , θk−1)w(θk|θ1, . . . , θk−1)

4. Ê[h(θ)] = 1
N

∑N
i=1 h(θ)w(θ).

One problem with the sequential importance sampler is that if the weight, wk, for

sample θk is small, the weights for θk+1, . . . , θK will be small as well due to the mul-

tiplicative character of the weights. Sequential importance resampling algorithms

aim to overcome this by resampling the samples proportionally to their weights

(Kitagawa, 1996).

2.1.1.3 Markov Chain Monte Carlo Sampling

If we cannot sample easily from p(θ), but we can evaluate the density function,

Markov Chain Monte Carlo (MCMC) sampling may provide a solution to generate

samples from p(θ). MCMC approaches aim to generate samples from a probability

distribution by constructing a Markov chain, X1, . . . , Xn whose equilibrium distri-

bution is p(θ). A Markov chain is a discrete-time stochastic process X1, X2, . . .

taking values in an arbitrary state space and having the property that the con-

ditional distribution of Xn+1 depends only on the present state Xn. In other

words, MCMC approaches make use of P (Xn+1, Xn) = P (Xn+1|Xn)P (Xn) and

P (Xn+1|X1, . . . , Xn) = P (Xn+1|Xn). For a more detailed overview of MCMC we
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refer to Gamerman and Lopes (2006) and Roberts and Casella (2005).

Limitations of MCMC approaches include:

1. Subject to regularity conditions, the Markov chain will converge to the distri-

bution of choice but initial samples may be from a different distribution. As

a result, a number of ‘burn-in’ samples will have to be discarded.

2. Depending on the shape of the posterior distribution and the transition struc-

ture of the Markov chain, it may take a long time before the sampling space

is fully explored.

3. Samples obtained using MCMC algorithms are correlated. If we want to reduce

this correlation, we will have to discard many of the samples.

Well-known MCMC approaches include the Metropolis-Hastings algorithm, Gibbs

sampling and slice sampling, which will be discussed in the following sections.

Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) can be

used to generate samples from a probability density function p(θ) from which we

cannot generate samples directly. Let q(θ∗|θ(t)) be an arbitrary distribution that we

can sample from, which we will call the proposal distribution. Given an arbitrarily

chosen starting value θ(0), we can generate a new sample θ(t+1), given the most recent

sample θ(t) using the following steps:

1. Generate a proposal value θ∗ ∼ q
(
θ∗|θ(t)

)
.

2. Calculate the acceptance probability α = min

{
p(θ∗)q(θ(t)|θ∗)
p(θ(t))q(θ∗|θ(t))

, 1

}
. Note that

for symmetrical proposal distributions, e.g. θ∗|θ(t) ∼ N (θ(t), σ2), q
(
θ∗|θ(t)

)
=

q
(
θ(t)|θ∗

)
and this becomes α = min

{
p(θ∗)

p(θ(t))
, 1

}
.

3. Set θ(t+1) = θ∗ with probability α and θ(t) with probability 1− α.

Metropolis-Hastings samplers are popular because they can be used even if the nor-

malising constant is unknown. The reason for this is that the normalisation constant
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will cancel out in the acceptance ratio. In addition to the generic limitations for

MCMC approaches mentioned above, the main problem with Metropolis-Hastings

algorithms is that in multivariate problems it may be hard to find an efficient pro-

posal distribution. As a result the acceptance probability may be low, resulting in

a slow exploration of the sampling space.

Gibbs sampling

Gibbs sampling (Geman and Geman, 1984; Gelfand and Smith, 1990) can be used

to sample from a multivariate distribution p(θ1, . . . , θn|y) when we cannot sample

directly from the distribution itself. It can be seen as a special case of the Metropolis-

Hastings algorithm. In multivariate cases, we want to generate a Markov chain with

stationary distribution p(θ1, . . . , θn|y). However, in many cases it is easier to sample

from the posterior conditional distributions:

p(θi|θ1, . . . θi−1, θi+1, . . . , θn) =
p(θ1, . . . , θn)

p(θ1, . . . θi−1, θi+1, . . . , θn

∝ p(θ1, . . . , θn)

This follows from the observation that the denominator is independent of θi and is

therefore a normalisation constant. The easiest way to obtain a conditional distri-

bution is to ignore all factors that are not dependent on θi as they are part of the

normalisation constant. If this results in a familiar distribution form, we can sample

from the conditional distribution directly. If not, we can use sampling approaches

that do not require the normalisation constant for those variables, for example we

can use a Metropolis-Hastings step within a Gibbs sampler.

Gibbs sampling is useful if the conditional distributions of a variable are known and

consists of the following steps for a model with three random variables, θ1, θ2 and

θ3:

1. Generate θ
(t+1)
1 ∼ p

(
θ1|θ(t)

2 , θ
(t)
3

)
.

2. Generate θ
(t+1)
2 ∼ p

(
θ2|θ(t+1)

1 , θ
(t)
3

)
.

3. Generate θ
(t+1)
3 ∼ p

(
θ3|θ(t+1)

1 , θ
(t+1)
2

)
.
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Gibbs samplers are a special case of Metropolis-Hastings samplers with acceptance

probability one:

p (θ∗)

p
(
θ(t)
) q
(
θ(t)|θ∗

)
q
(
θ∗|θ(t)

) =
p(θ∗i |θ∗−i)p(θ∗−i)

p
(
θ

(t)
i |θ

(t)
−i

)
p
(
θ

(t)
−i

) p
(
θ

(t)
i |θ

∗
−i

)
p
(
θ∗i |θ

(t)
−i

)
= 1

where θ−i = {θ1, . . . , θi−1, θi+1, . . . , θn} and θ∗−i is equal to θ
(t)
−i.

An alternative to the standard Gibbs sampler is the ‘blocked Gibbs sampler’ where

variables can be grouped together and samples are taken from their joint distribu-

tions. For the model above we can use a ‘blocked Gibbs sampler’ which samples θ1

and θ2 together:

1. Generate
(
θ

(t+1)
1 , θ

(t+1)
2

)
∼ p

(
θ1, θ2|θ(t)

3

)
.

2. Generate θ
(t+1)
3 ∼ p

(
θ3|θ(t+1)

1 , θ
(t+1)
2

)
.

Alternatively, a ‘collapsed Gibbs sampler’ may be useful if it is easier to sample

from a marginal distribution than from the full conditional distribution of one of

the variables. Let us again consider the above model but now use the following

collapsed Gibbs sampler:

1. Generate θ
(t+1)
1 ∼ p

(
θ1|θ(t)

3

)
.

2. Generate θ
(t+1)
2 ∼ p

(
θ2|θ(t+1)

1 , θ
(t)
3

)
.

3. Generate θ
(t+1)
3 ∼ p

(
θ3|θ(t+1)

1 , θ
(t+1)
2

)
.

Note that the first two steps result in p
(
θ1, θ2|θ(t)

3

)
which we used in the first step

of the ‘blocked Gibbs sampler’. In this algorithm we integrated out θ2 from the

joint distribution p(θ1, θ2|θ3) to obtain a sample of θ1 assuming that it is easier to

sample from p
(
θ1|θ(t)

3

)
than from p

(
θ1|θ(t)

2 , θ
(t)
3

)
. Note that the opposite of collapsed

Gibbs sampling is often used as well: in many models auxiliary variables are added

to facilitate sampling. If the auxiliary variables are latent, i.e. not observed and

inferred from other variables through a mathematical model, this is referred to as

data augmentation (Tanner and Wong, 1987).
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Slice sampler

A special case of a sampler that makes use of data augmentation is the slice sampler

(Neal, 2003). In the univariate case, where we want to sample from p(θ), the idea is

to sample from the two-dimensional region that lies under p(θ). This can be achieved

by introducing an auxiliary variable h and defining a joint distribution over θ and

h that is uniform over the region U = {θ, h} : 0 < h < p(θ) below the curve defined

by p(θ). Using Gibbs sampling, we can obtain samples from p(θ) as follows:

1. Sample h(t+1) ∼ Uniform
(
0, p

(
θ(t)
))

which defines a ‘horizontal’ slice S = {θ :

h < p(θ)}.

2. As it may be difficult to find the whole region S, it has been suggested to

instead find an interval S ′ = (L,U) around θ(t).

3. Sample θ∗ ∼ Uniform(L,U).

4. Set θ(t+1) = θ∗ if p(θ∗) ≥ h and return to Step 3 if p(θ∗) < h.

To be most efficient, S ′ should be the smallest interval that contains S, but this is

often impossible. Therefore, estimates of S can be obtained from e.g. the domain

of θ or by stepwise increasing/decreasing the interval S ′ until a point outside/inside

the interval is obtained.

The main advantage of a slice sampler over a Gibbs sampler is that it does not

require the (conditional) distributions to be in a form that we can easily sample

from. The main advantage in comparison with a Metropolis-Hastings sampler is

that we do not have to tune the proposal distribution as a slice sampler will dynam-

ically adjust the scale of the proposal distribution, depending on the current value

θ(t). The main disadvantage of a slice sampler is that it can be hard to find the

interval S and that it may not be as efficient as a Gibbs sampler for multivariate

problems.
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2.1.1.4 Conclusion

As discussed, several approaches exist to obtain samples from a probability density

function. Depending on the characteristics of the distribution of interest, some

methods may be easier to implement or more efficient than others. These sampling

techniques can be combined to obtain the most efficient sampling approach for a

given model, e.g. Metropolis-Hastings steps within a Gibbs sampler.

2.2 The Dirichlet distribution

The Dirichlet distribution is a probability distribution over the C-dimensional stan-

dard simplex ∆C = {(θ1, . . . , θm) : θj ≥ 0,
∑m

j=1 θj = 1}, where C = m − 1. The

standard m − 1 simplex is the space of all discrete probability distributions on m

possible outcomes. The Dirichlet distribution is a family of continuous, multivariate

distributions with a single parameter vector γ. It is the multivariate generalisation

of the Beta distribution and is often used in a Bayesian context as the conjugate

prior in problems involving a Multinomial likelihood. If we let

θ = {θ1, . . . , θm−1}

θ ∼ Dirichlet(γ1, . . . , γm)

then the probability density function of the Dirichlet distribution is given by:

p(θ1, . . . , θm−1; γ1, . . . , γm) =
Γ(
∑m

j=1 γj)∏m
j=1 Γ(γj)

m∏
j=1

θ
γj−1
j

Note that θm = 1−
∑m−1

j=1 θj as the θjs need to sum to one. The Dirichlet distribution

is sometimes represented using two parameters: a concentration parameter γ0 =∑
γj and a base measure {γ′1, . . . , γ′m} with γ′j =

γj
γ0

.

2.2.1 Derivation

Let w = {w1, . . . , wm} and wi
i.i.d.∼ Gamma(γi, 1) with γi > 0. Let us define the

normalising constant W =
∑m

i=1wi and θi = wi
W

for i ∈ {1, . . . ,m − 1}, leading to



2.2. The Dirichlet distribution 57

θ ∈ ∆m−1. To determine the distribution of θ, we can use our knowledge about w.

We know that:

p(w) =
1∏m

i=1 Γ(γi)
exp

[
−

m∑
i=1

wi

]
m∏
i=1

wγi−1
i

=
1∏m

i=1 Γ(γi)
exp [−W ]

m∏
i=1

wγi−1
i

We can find the distribution of θ by changing variables from w to (θ,W ) using the

fact that the determinant of the Jacobian equals Wm−1:

p(θ1, . . . , θm−1,W ) =
1∏m

i=1 Γ(γi)
exp[−W ]W (

∑m
i=1 γi)−1

m∏
i=1

θγi−1
i

To obtain the marginal distribution of θ = {θ1, . . . , θm−1}, we need to integrate over

W .

p(θ1, . . . , θm−1) =
1∏m

i=1 Γ(γi)

(
m∏
i=1

θγi−1
i

)∫ ∞
0

exp(−W )W (
∑m
i=1 γi)−1dW

=
Γ(
∑m

i=1 γi)

Γ(γ1) . . .Γ(γm)
θγ1−1

1 . . . θγm−1
m (2.2)

As the integral
∫∞

0
exp(−W )W (

∑m
i=1 γi)−1dW is in the form of a Gamma(

∑m
i=1 γi, 1)

probability density function bar the normalisation constant, Γ(
∑m

i=1 γi), we can

easily integrate over W . In Equation 2.2 we recognise the Dirichlet probability

density function.

2.2.2 Relation to other distributions

Before we explore how the Dirichlet distribution can be used, we first describe the

relationship between the Dirichlet distribution and the Gamma and Beta distribu-

tions.

2.2.2.1 Relation to the Gamma distribution

Given the previously explored relationship between the Gamma distribution and

the Dirichlet distribution (see Section 2.2.1), it will be interesting to see how several

characteristics of the Gamma distribution affect the properties of the Dirichlet dis-

tribution. This will be useful when explaining the stick-breaking algorithm for the
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Dirichlet process in Section 2.3.3.1.

We will first explore the summation property of the Gamma distribution. Let X1

andX2 be two independent random variables, with distributionsX1 ∼ Gamma(γ1, b)

and X2 ∼ Gamma(γ2, b). The joint probability density function can be written as:

p(x1, x2) =
bγ1+γ2

Γ(γ1)Γ(γ2)
exp [−(x1 + x2)b]xγ1−1

1 xγ2−1
2

Now, define u = x1 + x2 and v = x1
x1+x2

so that x1 = uv and x2 = u(1 − v).

Reparameterising the joint distribution requires the determinant of the Jacobian

matrix:

J(x1, x2) =

∣∣∣∣∣∣
dx1
du

dx1
dv

dx2
du

dx2
dv

∣∣∣∣∣∣ =

∣∣∣∣∣∣ v u

1− v −u

∣∣∣∣∣∣ = | − vu− (u− vu)| = u

This leads to:

p(u, v) =
bγ1+γ2

Γ(γ1)Γ(γ2)
exp[−ub]uγ1+γ2−1vγ1−1(1− v)γ2−1

The sum of X1 and X2, u, has density:

p(u) =

∫
p(u, v)dv =

∫ 1

0

bγ1+γ2

Γ(γ1)Γ(γ2)
exp[−ub]uγ1+γ2−1vγ1−1(1− v)γ2−1dv

=
bγ1+γ2 exp[−ub]uγ1+γ2−1

Γ(γ1)Γ(γ2)

∫ 1

0

vγ1−1(1− v)γ2−1dv

Apart from the normalising constant, the integral is equal to the Beta(γ1, γ2) prob-

ability density function, so the integral equals Γ(γ1)Γ(γ2)
Γ(γ1+γ2)

. Therefore:

p(u) =
bγ1+γ2 exp[−ub]uγ1+γ2−1

Γ(γ1 + γ2)

in which we recognise a Gamma(γ1 +γ2, b) distribution. So the sum of two indepen-

dent Gamma random variables with the same rate/scale parameter has a Gamma

distribution.

The summation property of the Gamma distribution can be translated into the

aggregation property of the Dirichlet distribution. In section 2.2.1 we showed

that if we had independent samples wi ∼ Gamma(γi, 1), the variables θi = wi
W
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for i = 1, . . . ,m − 1 followed a Dirichlet(γ1, . . . , γm) distribution. If we define

w∗ = w1 + w2, we know from the previous section that w∗ ∼ Gamma(γ1 + γ2, 1).

Extending this to θ∗ = w1+w2

W
leads to:

(θ∗, θ3, . . . , θm−1) ∼ Dirichlet(γ1 + γ2, γ3, . . . , γm)

Note that as well as aggregating θis, the Dirichlet variables can also be split, i.e.

there exist θ1+ and θ1− such that:

(θ1+ , θ1− , . . . , θm−1) ∼ Dirichlet(γ1+ , γ1− , . . . , γm)

with γ1+ + γ1− = γ1 and θ1 = θ1+ + θ1−.

2.2.2.2 Relation to the Beta Distribution

We can use the aggregation property of the Dirichlet distribution to derive the

marginal distribution of θi:

θi,
∑
j 6=i

θj ∼ Dirichlet

(
γi,
∑
j 6=i

γj

)

As
∑

j 6=i γj = γ0 − γi and
∑

j 6=i θj = 1− θi, the marginal distribution for θi is:

p(θi) =
Γ(γ0)

Γ(γi)Γ(γ0 − γi)
θγi−1
i

(∑
j 6=i

θj

)γ0−γi−1

=
Γ(γ0)

Γ(γi)Γ(γ0 − γi)
θγi−1
i (1− θi)γ0−γi−1

in which we recognise a Beta (γi, γ0 − γi) distribution.

2.2.3 Properties of the Dirichlet distribution

2.2.3.1 Mean and Variance

The mean of a Dirichlet distribution can easily be derived from the Beta marginal

distributions, θi ∼ Beta(γi, γ0 − γi):

E[θi] =
Γ(γ0)

Γ(γi)Γ(γ0 − γi)

∫ 1

0

θiθ
γi−1
i (1− θi)γ0−γi−1 =

γi
γ0

(2.3)

The variance is given by:

Var[θi] =

∫
(θi −E[θi])

2f(θi)dθi =
γi(γ0 − γi)
γ2

0(γ0 + 1)
(2.4)
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It is clear from the properties of the Dirichlet distribution that small values of γ0

favour more dispersed distributions and that as γ0 →∞, the probabilities are known,

i.e. the Dirichlet distribution approximates a Dirac delta function at {γ1
γ0
, . . . , γm

γ0
} =

{γ′1, . . . , γ′m}.

2.2.4 Random Number Generation

In this section we present three different ways to generate random values from the

Dirichlet distribution. Even though we use the random number generator based on

normalised Gamma random variates, discussed next, we will discuss two alternative

approaches for completeness.

2.2.4.1 Using the Gamma distribution

One way to generate samples, θ, from a Dirichlet(γ1, . . . , γn) distribution is based

on the relationship with the Gamma distribution (see Section 2.2.1). The algorithm

is as follows:

1. For i = 1 to n, repeat yi ∼ Gamma(γi, 1).

2. θi = yi∑n
i=1 yi

.

2.2.4.2 Using the Pólya Urn scheme

The Pólya urn scheme is related to the Dirichlet-Multinomial distribution. In this

model an urn contains balls of m colours. After a draw of a ball of a particular

colour, the ball is put back together with an extra ball of the same colour. In the

bivariate case, the Dirichlet-Multinomial distribution is known as the Beta-Binomial

distribution. Let us consider an urn with red and black balls. Before the first draw,

the probability of drawing a red ball is given by γR
γR+γB

, where the parameters γR

and γB are the number of red and black balls respectively. If the first ball drawn is

red, the probability of a red ball in the second draw is γR+1
γR+γB+1

and as a consequence

the probability of drawing a sequence (red, red) is
(

γR
γR+γB

)(
γR+1

γR+γB+1

)
. Let Xn be a

random variable denoting the number of red balls, k, after n draws. As P (Xn = k)
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does not depend on the order in which the balls are drawn (easily shown) it can be

written as:

P (Xn = k) =

(
n

k

)∏k
i=1 [γR + i− 1]

∏n−k
i=1 [γB + i− 1]∏n

i=1 [γR + γB + i− 1]

=
Γ(n+ 1)

Γ(n+ γR + γB)

Γ(k + γR)

Γ(k + 1)

Γ(n− k + γB)

Γ(n− k + 1)

Γ(γR + γB)

Γ(γR)Γ(γB)

In this we recognise the Beta-Binomial distribution, which in a Bayesian context

can be obtained as the posterior predictive distribution when a Binomial likelihood

function is combined with a Beta prior distribution on the probability parameter.

Using Stirling’s approximation, x! = Γ(x + 1) ≈
√

2πx
(
x
e

)x
as x → ∞, we can

explore the distribution of Xn as n becomes very large. This leads to:

Γ(x+ a)

Γ(x+ b)
≈
√

2π(x+ a− 1)
(
x+a−1

e

)x+a−1√
2π(x+ b− 1)

(
x+b−1
e

)x+b−1

≈ xa−b

as x→∞ (and x >> a and x >> b). If n→∞, k →∞ and (n− k)→∞ we can

rewrite the Beta-Binomial distribution as:

P (Xn = k) =
Γ(γR + γB)

Γ(γR)Γ(γB)
kγR−1n1−γR−γB(n− k)γB−1

As n → ∞, the proportion of red balls, θn = k
n
. becomes effectively continuous.

Change of variables with dk = n dθ leads to:

p

(
Xn

n
= θn

)
=

Γ(γR + γB)

Γ(γR)Γ(γB)
(nθn)γR−1n1−γR−γB(n− θnn)γB−1n

=
Γ(γR + γB)

Γ(γR)Γ(γB)
θγR−1
n (1− θn)γB−1

in which we recognise a Beta(γR, γB) distribution. As a result, sampling using a

Pólya urn scheme converges to samples from a Beta(γR, γB) distribution as n →

∞. Analogously to the Beta-Binomial, sampling from the Dirichlet-Multinomial

distribution converges to a Dirichlet distribution as the number of draws n→∞.

2.2.4.3 Using a Stick-breaking Scheme

A third alternative to generate samples, θ, from a Dirichlet distribution is based on a

stick-breaking algorithm (Connor and Mosimann, 1969) and uses Beta distributions.
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Let βi ∼ Beta(ai, bi) for i = 1, . . . ,m− 1 and βm = 1. Let us define:

θi = βi

i−1∏
j=0

(1− βj) =

(
1−

i−1∑
j=1

θj

)
βi

with
∑m

i=1 θi = 1 and β0 = 0 and define Si =
∑i

j=1 θj with S0 = 0, we obtain:

θi = (1− Si−1)βi

We know that:

p(β1, . . . , βm−1) ∝
m−1∏
i=1

βai−1
i (1− βi)bi−1

Changing variables to θi (using the fact that the determinant of the Jacobian matrix

is
∏m−1

i=1 (1− Si−1)−1) results in:

p(θ1, . . . , θm−1) ∝
m−1∏
i=1

1

1− Si−1

(
θi

1− Si−1

)ai−1(
1− θi

1− Si−1

)bi−1

∝
m−1∏
i=1

(
m∑
j=i

θj

)bi−1−(ai+bi)

θai−1
i

(∑m
j=i+1 θj

)bi−1

(∑m
j=i θj

)bi−1−1

where θi = Si − Si−1 and 1− Si−1 =
(

1−
∑i−1

j=1 θj

)
=
∑n

j=i θj. With:

m−1∏
i=1

(∑m
j=i+1 θj

)bi−1

(∑m
j=i θj

)bi−1−1
=

(θ2 + · · ·+ θm)b1−1

(θ1 + · · ·+ θm)b0−1

(θ3 + · · ·+ θm)b2−1

(θ2 + · · ·+ θm)b1−1
. . .

(θm−1 + θm)bm−2−1

(θm−2 + θm−1 + θm)bm−1−1

(θm)bm−1−1

(θm−1 + θm)bm−2−1

= (θm)bm−1−1

we obtain:

p(θ1, . . . , θm−1) ∝ θbm−1−1
m

m−1∏
i=1

θai−1
i

(
m∑
j=i

θj

)bi−1−(ai+bi)

which is known as the generalised Dirichlet distribution (Connor and Mosimann,

1969). If we set bi−1 = ai + bi for i = 2, . . . ,m− 1 and bm−1 = am, we find:

p(θ1, . . . , θm−1) ∝ θam−1
m

m−1∏
i=1

θai−1
i
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So:

θ1, . . . , θm−1 ∼ Dirichlet(a1, . . . , am)

If we define bi =
∑m

j=i+1 aj and sample βi ∼ Beta(ai, bi), we can obtain samples

from a Dirichlet distribution by setting θ1 = β1 and θi = βi
∏i−1

j=1(1− βj).

The basic idea behind this approach is that a stick of unit length can be broken

sequentially into N pieces of different length in such a way that the lengths of the

pieces follow a Dirichlet distribution. In other words, the Dirichlet distribution can

be used to specify the expected value of the relative length of each piece. The stick-

lengths will be sampled from Beta distributions as defined above. A Dirichlet(4, 2, 1)

indicates that for a large number of sticks, the average ‘first’ stick length will be

twice as long as the ‘second’ stick, which will in turn be twice as long as the third

stick.

2.2.5 Bayesian Inference using Dirichlet distributions

2.2.5.1 Posterior Distribution for multinomial trials

For multinomial trials, the probability of an observation X being in category k

can be written as: P (X = k|θ) = θk where
∑m

k=1 θk = 1 and m is the number of

categories. The likelihood for nk observations in category k in N =
∑m

k=1 nk is given

by:

p(n|θ) = N !
m∏
k=1

θnkk
nk!

The Dirichlet distribution is the conjugate prior for the event probability parameter

θ:

p(θ|γ) ∝
m∏
k=1

θγk−1
k

where γ = {γ1, . . . , γm}. This will lead to the posterior:

p(θ|n1, . . . , nm,γ) ∝
m∏
k=1

θγk+nk−1
k

in which we recognise a Dirichlet(γ1 + n1, . . . , γm + nm) distribution. If θ is con-

sidered as a sample from a Dirichlet distribution of possible parameter vectors of
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a Multinomial distribution, then this will lead to a distribution over distributions.

The idea of a distribution over distributions can be explained using Figure 2.1.

Figure 2.1 – Illustration of a distribution over distributions.

(a) Data set (n = 20) which is as-

sumed to be a sample from a Nor-

mal distribution.
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(c) Other Normal distributions that

can credibly be fitted to the data.
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(d) Median distribution (red solid

line) and 95% credible intervals

(grey dashed lines) over the set of

distributions that can be used to

describe the data.
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Suppose we have a data set of size 20 for a random variable X which we believe

to be a sample from a Normal distribution. We do not know what the parameters

of the Normal distribution are, so we use a Bayesian framework to account for our

uncertainty. A possible Normal distribution that could be credibly fitted to the

data is given in Figure 2.1b. However, given the small sample size other Normal

distributions may fit the data just as well or even better. Figure 2.1c shows a set of

five Normal distributions that can all be credibly used to describe the data, but we
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can extend this to more distributions. Figure 2.1d summarises this by plotting the

median and the 95% credible intervals. A 100(1−α)% credible interval is an interval

C on the parameter space Θ such that
∫
C p(θ|y)dθ = 1− α, where p(θ|y) represents

the posterior distribution. In this thesis we will use equal-tailed credible intervals

where the probability of θ being below the interval is equal to the probability of

θ being above it (α/2). In other words we can calculate the 95th credible interval

using the 2.5th and 97.5th percentiles of the set of distributions for each value of x

and this provides us with a distribution over (Normal) distributions.

It is important to realise that the distribution over the Normal distributions repre-

sents uncertainty around the Normal density functions. In other words, we assume

the variability in the data is constrained to have a Normal distribution form so

that the distribution over the Normal density functions only describes our lack of

knowledge about the parameters µ and σ of the Normal densities. Analogously to

the posterior distributions of the uncertain parameters of the Normal distribution,

the Dirichlet distribution can be thought of as the natural probability distribution

of the uncertain parameter vector θ of a Multinomial distribution.

2.2.5.2 Predictive distribution for multinomial trials

The predictive distribution for the next observation XN+1 can be derived as:

P (XN+1 = k|X) =

∫ 1

0

p
(
XN+1|θ

)
p(θ|X)dθ

=
γk + nk
γ0 +N

2.2.6 Applications of the Dirichlet distribution

In this section we discuss the use of Dirichlet distributions in finite mixture models

and for clustering problems.
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2.2.6.1 Finite Mixture Models

From Discrete to Continuous

The fact that the Dirichlet distribution provides a distribution over discrete dis-

tributions is obvious from the different representations discussed previously. For

example, in the Pólya urn representation, a finite, fixed number of coloured balls

could be observed and in the stick-breaking representation the number of pieces

of stick was fixed. Therefore, to make the Dirichlet distribution useful to describe

continuous data, we need to define a mixture distribution, consisting of continuous

distributions as mixture components whose weights follow a Dirichlet distribution.

Generative

Let us first consider a data generating process which assumes that data can be

associated with C components of the same family of distributions in a mixture dis-

tribution. Let wk be the probability that data will be generated from component

k and let data within each component be distributed as f(·|θk), where θk
i.i.d.∼ G0,

a distribution over the component parameters. To generate a value from this pro-

cess, we will first select a component k from the distribution of components with

probability w = {w1, . . . , wC}. Next we can generate a data value yi ∼ f(·|θk).

This results in the finite mixture model p(y|θ,w) =
∑C

k=1 wkf(y|θk). The continous

mixture model can be represented as mixing a discrete distribution on the space of

component parameters θ with a continuous distribution f(y|θ):

yk|θk ∼ f(·|θk)

p(θk) =
C∑
k=1

wkδθk

θ1, . . . , θC ∼ G0 i.i.d.

{w1, . . . , wC−1} ∼ Dirichlet(γ1, . . . , γC)

where δθk is a measure with a point mass of one at θk. Using this representation

we can generate data by first sampling C parameters θi from G0 and subsequently

sampling the data, y, from f(y|θi).
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Another representation makes use of a latent Multinomial variable K, a component

assignment variable. If Ki = k, the ith data value is considered to be associated

with component k:

p(yi|θ,w,K) =
C∑
k=1

p(Ki = k|w)p(yi|Ki = k,θ)

=
C∑
k=1

wkp(y|θk)

This leads to:

yi|θ,K ∼ f(·|θKi)

Ki|w ∼ Multinomial(w1, . . . , wC)

θ1, . . . , θC ∼ G0

w1, . . . , wC−1 ∼ Dirichlet(γ1, . . . , γC) (2.5)

Bayesian Inference

If we want to fit a mixture model in a Bayesian context, we will need to define prior

distributions for w and θ. As we saw in the previous section, a Dirichlet distribu-

tion can be used as a conjugate prior distribution for w so we only need to define

G0, the prior distribution for θ. We want to obtain either the posterior distribu-

tion p(θ,w|y) or the predictive distribution p(yn+1|y1 . . . , yn). Since no analytical

solution exists, we need to generate samples from these distributions for inference

purposes. The simplest MCMC sampling scheme, a collapsed Gibbs sampler (see

Section 2.1.1.3), makes use of the latent component assignment variable K. Samples

from the posterior distributions of the parameters of a finite mixture model can now

be obtained using the following collapsed Gibbs sampling scheme:

p(K|w,θ,y)

p(w|K,y)

p(θ|K,y)

where y = {y1, . . . , yn}. We explain each step in the following sections.
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p(K|w, θ, y)

The distribution of component allocations is given by:

p (Ki = k|w,θ,y) =
wkf(yi|θk)∑C
k=1wkf(yi|θk)

(2.6)

p(w|K, y)

Let mk =
∑n

i=1 δKi,k (i.e. the number of data values assigned to component k) and

m = {m1, . . . ,mC}. Given m, the posterior distribution of w is:

w|K,y ∼ Dirichlet(γ1 +m1, . . . , γC +mC)

p(θ|K, y)

The introduction of K allows the parameters θ for each component to be updated

separately, which is easier if G0 and f(y|θ) are conjugate. For a mixture of Normal

components, N (θk, 1/τ), choosing a conjugate Normal distribution G0 = p(θk) ∼

N (µ0, 1/τ0) for the location parameters, θk, means that they can be updated using

a simple Bayesian step:

p(θk|K,y) ∼ N

(
µ0τ0 + τ

∑N
i=1 yiδKi,k

τ0 +mkτ
,

1

τ0 +mkτ

)
(2.7)

where
∑N

i=1 yiδKi,k is the sum of the data allocated to component k, τ is the known

precision parameter for the Normal components and µ0 and τ0 are the mean and

precisions of the Normal prior distribution. However this only allows us to learn

about the mean of the Normal components k. If we want to learn about both the

mean and variance we can use a Normal-Gamma conjugate prior distribution for

G0:

π(µ, τ) = Normal-Gamma(µ, τ |µ0, κ, α, β)

= N (µ|µ0, (κτ)−1)Gamma(τ |α, β)

Using the mk observations, y, assigned to component k, the posterior is given by:

p(µk, τk|K, y) ∝ N

(
µ;
κµ0 +

∑N
i=1 yiδKi,k

κ+mk

,
1

(κ+mk)τ

)
×

Gamma

(
τ ;α +

mk

2
, β +

1

2

N∑
i=1

(yi − ȳk)2 +
κmk(ȳk − µ0)2

2(κ+mk)

)
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where ȳk = m−1
k

∑N
i=1 yiδKi,k. We can illustrate the Bayesian inference steps for

the Dirichlet mixture of Normal distributions model more intuitively in Figure 2.2.

Figure 2.2a shows a sample obtained from a distribution that we will be modelling

using a Dirichlet mixture of Normal distributions. For graphical purposes, we have

limited the number of components in the mixture to two. In Figure 2.2b, we have

sampled θ which define the locations of the two Normal components, p(θ|y,K). In

Figure 2.2c, data are assigned to the Normal distributions in the mixture according

to p(Ki|w,θ). The green dots have been assigned to the green distribution and

similarly the blue dots have been assigned to the blue distribution by the model.

The last steps are to assign weights, w, to the components (Figure 2.2d) and to

update the component parameters. Repeating steps b to d twice will lead to two

other realisations (Figures 2.2e and 2.2f). Figure 2.2g shows four realisations from

the posterior Dirichlet mixture distribution. This is then summarised by calculating

a median and a 95% credible interval, shown in Figure 2.2h.
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Figure 2.2 – Graphical representation of updating the parameters of a mixture

model with two Normal components.

(a) Data
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(b) Two Normal compo-
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(c) Allocation of each data

value to one of the two

components
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(d) Model output (red line)

after weights have been

updated.
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(e) Component parameters

are updated using the

data assigned to each

component.
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(f) Another iteration of the

Monte Carlo approach.

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

Y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

(g) Model outputs after

four iterations.
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(h) The mixture distribu-

tion can be summarised

using the median and a

95% credible interval.
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2.2.6.2 Clustering

The use of Dirichlet distributions in mixture models can be extended to mixtures of

multivariate distributions. The probability density function for x of a d-dimensional

multivariate Normal distribution is:

1

2π
d
2 |Σ| 12

exp

[
−1

2
(x− µ)Σ−1(x− µ)T

]
where µ is the mean and Σ is the covariance matrix. In a Bayesian setting, we

can obtain samples from the posterior distribution p(µ,Σ|x) using Gibbs sampling

if we select conjugate prior distributions. The conjugate prior distribution of a

multivariate Normal distribution with mean vector µ and precision matrix Λ = Σ−1

is the Normal-Wishart distribution NW(µ0, κ0,Ψ0, ν0):

π(µ, σ) = N
(
µ|µ0, (κ0Λ)−1

)
W(Λ|Ψ0, ν0)

=
1

Z
|Λ|

1
2 exp

[
−κ0

2
(µ− µ0)Λ(µ− µ0)T

]
|Λ|

κ0−d−1
2 exp

[
−1

2
tr(Ψ0

−1Λ)

]
where Ψ0 is the prior precision matrix, Z =

(
κ0
2π

) d
2 |Ψ0|

κ0
2 2

dκ
2 Γd(

κ0
2

) , Γd(x) is the

multivariate Gamma function and d is the number of dimensions, i.e. d = 2 for a

bivariate Normal distribution. The likelihood function for n observations x is:

(2π)
−dn
2 |Λ|

n
2 exp

[
−1

2
(x− µ)Λ(x− µ)T

]
DeGroot (1970) shows that the posterior is a NW(κ0µ0+nx̄

κ0+n
, κ0 + n,Q, ν0 + n) dis-

tribution, where Q = Ψ−1
0 + κ0n

κ0+n
(µ0 − x̄)(µ0 − x̄)T +

∑n
i=1(xi − x̄)(xi − x̄)T .

We can generate samples from the posterior distribution by sampling Λ from a

Wishart distribution with parameters Q−1 and ν0+n and by sampling µ from a mul-

tivariate Normal distribution with mean κ0µ0+nx̄
κ0+n

and covariance matrix ((κ0 + n)Λ)−1.

2.3 Dirichlet Process

In Section 2.2, we showed that the Dirichlet distribution can be used to describe the

probability of observing an event when the number of events is finite. In a Bayesian

context, we can use the Dirichlet distribution to describe our prior and posterior
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beliefs, i.e. uncertainty, about the probabilities associated with a particular event.

For example we could use the Dirichlet distribution to describe the variation in

people’s favourite colours in a finite set of colours (e.g. red, yellow, green and blue).

However, if we do not want to restrict the colours to a finite set (e.g. allow for

any colour in the infinite RGB colour space) we need a distribution over an infinite

sample space. The Dirichlet Process, DP (γ,G0), is a stochastic process that is a

distribution over probability measures whose domain is defined by its base measure

G0. As a DP is a stochastic process, it can be used to generate an infinite sequence

of random variables, φ. Random variables can be generated from a DP by first

drawing a random distribution G from the DP. Next, an infinite sequence of random

variables or observations, φ, can be drawn from G. Conditional on G, the variables

are independent and identically distributed:

G ∼ DP(γ,G0)

φ ∼ G (2.8)

Probability measures G drawn from a Dirichlet Process are discrete and cannot

be described using a finite number of parameters. As a consequence, models that

are based on DPs are considered to be non-parametric models. The concentration

parameter γ is a measure of the likelihood of repeated values in G.

2.3.1 Formal definition

Ferguson (1973) was the first to show the existence of a DP when he introduced it

to solve the problem of finding a workable prior distribution which allows Bayesian

approaches to be used in non-parametric settings. The DP provides a class of prior

distributions which has two desirable properties: it has the same support as G0

and it leads to a posterior distribution that is manageable analytically. Let G0 be

a probability distribution on a measurable space Φ and let γ be a positive scalar.

Consider a finite partition (A1, . . . , AK) of Φ.

K⋃
k=1

Ak = Φ Ak ∩ Al = ∅ k 6= l
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A random probability measure G on Φ is drawn from a DP if for every measurable

partition (A1, . . . , AK), the random vector (G(A1), . . . , G(AK)) follows a Dirichlet

distribution:

(G(A1), . . . , G(AK)) ∼ Dirichlet (γG0(A1), . . . , γG0(AK)) (2.9)

Samples from a DP are discrete with probability one (Sethuraman, 1994). Figure

2.3 provides a graphical overview of a DP with base measure G0 and concentration

parameter γ. Figure 2.3a shows how the parameter space Φ can be split into four

parts. The arrows indicate the probability of observing a value in each part Ak.

Given γ, we can generate samples of G, shown in Figures 2.3b and 2.3c. The weight

that a random measure G ∼ DP(γ,G0) assigns to each part follows a Dirichlet dis-

tribution. Note that γ determines the deviation of samples G from G0: the smaller γ

is the larger the variation in G. For large γ the samples of G reflect the probabilities

as indicated by the arrows in Figure 2.3a. Figure 2.3d shows that because of the

aggregation property of the Dirichlet distribution (see Section 2.2.2.1), all possible

partitions are consistent.

In a Bayesian setting, the concentration parameter can be referred to as a strength

parameter, as it determines the strength of the prior distribution when using a DP

as a non-parametric prior distribution over distributions. In that setting, its value

can be considered as the sample size (or mass) of prior observations. Although a

small value for γ implies little strength of the prior distribution it asserts that most

of the probability is on a single point. For large γ and as the number of parti-

tions increase, G provides a discrete approximation of G0, whereas for small γ the

uncertainty around G0 is larger.
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Figure 2.3 – Graphical overview of a DP(γ,G0) using a finite partition of the

parameter space Φ.

(a) Four partitions of the 1-

dimensional parameter space Φ

with the cumulative distribution

function of example base measure
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(b) Two samples of G with γ = 1.
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2.3.2 Properties of a Dirichlet Process

2.3.2.1 Expected Distribution

The Dirichlet Process is a distribution of distributions and therefore the expectation

is a distribution. The expectation of a DP can be obtained using Equations 2.3 (page
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59) and 2.9:

E[G](Ai) = E[G(Ai)] =
γG0(Ai)∑∞
k=1 γG0(Ak)

=
γG0(Ai)

γ
= G0(Ai)

as
∑∞

k=1 G0(Ak) = 1. It is interesting to note that despite the fact that any realisa-

tion of G is discrete, the expectation is a continuous distribution if G0 is continuous.

2.3.2.2 Variance

The variance of a DP can be obtained using Equations 2.4 (page 59) and 2.9:

Var[G(Ai)] =
G0(Ai)(1−G0(Ai))

(γ + 1)

For large values of γ, the variance is small whereas for small values of γ, the variance

may be large as shown in Figure 2.3b.

2.3.2.3 Exchangeability

The predictive distribution after observing samples φ from a DP (see Section 2.3.4.2

for details) is given by:

p(φN+1 ∈ Ak|φ1, . . . , φN) =
1

γ +N

(
γG0(Ak) +

N∑
i=1

δφi∈Ak

)
Using the predictive distribution of a DP we can iteratively draw a sequence φ1, . . . , φn.

This results in the joint distribution:

p(φ1, . . . , φN) = p(φ1)
N∏
i=2

p(φi|φ1, . . . , φi−1)

De Finetti’s theorem (De Finetti, 1931) states that a sequence φ1, . . . , φN of random

variables is exchangeable if and only if there exists a distribution function P on [0, 1]

such that for all i, the joint distribution can be represented as a mixture:

p(φ1, . . . , φN) =

∫ 1

0

[
N∏
i=1

G(φi)

]
dP (G)

For a DP, using Equation 2.8 (page 72) we know that the φi are exchangeable because

P (G) = DP(γ,G0) .
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2.3.2.4 Discreteness

Another property of a DP that is apparent from the predictive distribution is that

it has point masses at previously observed draws φ1, . . . , φN . The predictive distri-

bution also shows that with non-zero probability ( nk
N+γ

, where nk is the number of

times a value has been observed in φ and N is the total number of observations)

new draws will take on the same value as previously observed draws, regardless of

the distribution G0. As any value of φ will be repeated given a long enough sequence

of draws, G is a discrete distribution.

2.3.2.5 Clustering

We can use the predictive distribution after observing samples, φ, from a DP to

derive another property of a DP. The fact that values of φ are repeated implies that

DPs have a clustering property that is essential for the use of DPs in infinite mixture

models. Infinite mixture models assume that observations come from a mixture of

an infinite number of distributions. Note that N observations still come from at

most N different distributions, which shows that many components will have no

data associated with them. If we draw from a DP mixture model, we would expect

a clustering of the φ, i.e. multiple observations yi are expected to come from the

same component. In contrast, if φ were drawn from a Gaussian distribution, no two

values would be the same.

2.3.2.6 Effect of G0

The base measure G0 determines the support of the distribution and can be inter-

preted in a Bayesian context as an expression of one’s prior beliefs of the distribution

of the variable that is modelled by a DP. In DP mixture models, the selection of G0

is often determined by mathematical convenience as conjugate distributions will fa-

cilitate a simple updating step for the parameters of the mixture components. Both

conjugate and non-conjugate base measures have been used extensively (Escobar,

1994; Escobar and West, 1995; MacEachern and Müller, 1998). However, Görür and

Rasmussen (2010) suggested that the choice of a conjugate G0 may affect the num-
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ber of components being utilised, so care must be taken when selecting G0 when

using DP mixture models for clustering purposes.

2.3.2.7 Effect of g

The concentration parameter γ expresses the strength of belief in the base measure

G0. As we observed in Section 2.3.2.2, γ has an effect on the variance of a DP.

For small values of γ, samples from a DP are likely to consist of samples that have

the same value, whereas for large values of γ, samples from a DP are likely to be

distinct, similar to samples from G0. For each draw φ, taken from a DP(γ,G0), the

probability of observing a new, distinct value of φ is γ
γ+
∑
i ni

, where ni indicates the

number of times a distinct value φi has been observed before (see Section 2.3.3.2).

The probability of a new draw taking on the same value as previously observed

draws, φN+1 ∈ {φ1, . . . , φN}, is ni
γ+
∑
i ni

. The expected number of distinct φ values,

C, after N draws from a DP(γ,G0), is given by Antoniak (1974):

E[C(γ,N)] =
N∑
i=1

γ

γ + i− 1

≈ γ log

(
1 +

N

γ

)
So if we set γ = 10 and we generate 20,000 values from a DP, E[C] = 77, i.e.

we would expect 77 distinct values of φ. Figures 2.4a and 2.4b show the expected

number of components C as a function of the number of random variables, N ,

sampled from the DP and γ. C grows logarithmically as a function of the number

of samples, which demonstrates the discreteness and clustering properties of DPs.

For large γ, C = N . If we look at the frequency of components (Figures 2.4c and

2.4d), we notice that this approaches N for small γ and 1 for large γ, indicating

that in the latter case, the distribution of φ will be a discrete approximation of the

continuous distribution G0.
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Figure 2.4 – Expected number of clusters C as a function of the sample size

N for various values of γ.
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Figure 2.5 shows the effect of γ on samples obtained from a DP(γ,G0) for various

values of γ and G0 = N (0, 1). We generated three sets of samples to illustrate

that the variation of the DP is large for small γ. As γ → ∞, the distributions G

become closer to G0. However this does not mean that G → G0 as G is discrete.

To generate a continuous distribution, we need to extend the DP by convolving G

with a continuous distribution f(φ) with latent parameter φ so that the resulting

random distribution is continuous. This is analogous to the finite Dirichlet mixture

distributions discussed in Section 2.2.6.1. If we compare the behaviour of a DP with

the Dirichlet distribution, we notice that in both cases we would observe repeated

values. The Dirichlet distribution is used to assign probabilities to a finite number

of categories, e.g. the sides of a die (1, 2, 3, 4, 5, 6). For the DP, the number of
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Figure 2.5 – Effect of γ on samples, G, (red) obtained from a DP(γ,G0) for

various values of γ and G0 = N (0, 1) (blue). The summary graphs show

the median cumulative distribution function (red) and a 95% credible interval

(grey).

categories is infinite, so we need to assign probabilities to categories in a different

way. In the Dirichlet distribution case, we assign prior weights (γ1, . . . , γ6) to each

category, where γ0 =
∑6

i=1 γi is a measure for how certain we are about the relative

weights. In the DP case we assign a value to γ whose value is again a measure for

how certain we are about the relative probabilities G(φ) assigned by G0.

2.3.3 Generating observations from a Dirichlet Process

In this section we discuss various methods to generate observations, φ, from a Dirich-

let Process using three representations. In Chapters 4 and 5 we make use of the

stick-breaking approach to infer the weights of components in a DP mixture model.

However, we discuss the other representations of a DP for completeness.
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2.3.3.1 Stick-Breaking Approach

In the stick-breaking representation of a DP, the main idea is that a stick of unit

length will be broken into pieces. In contrast to the Dirichlet distribution, however,

we do not specify how many pieces. This construction of the DP (Sethuraman,

1994) offers a mechanism for sampling from a DP. Sethuraman (1994) provided a

constructive definition of the DP that is based on the observation that draws from

a DP are composed of a weighted sum of point masses. Let w = {w1, w2, . . . } be an

infinite set of mixture weights that can be derived from the following stick-breaking

process with parameter γ > 0:

βk ∼ Beta(1, γ) i.i.d.

wk = βk

k−1∏
j=1

(1− βj)

Given base measure G0, Sethuraman (1994) derived that the following random mea-

sure guarantees that G ∼ DP (γ,G0):

φk ∼ G0 i.i.d.

G(φ) =
∞∑
k=1

wkδφk

The non-trivial proof in Sethuraman (1994) is based on the observation that the

following approaches are equivalent:

G ∼ DP (γ,G0)

φ|G ∼ G
⇔

φ ∼ G0

G|φ ∼ DP (γ + 1,
γG0+δφ
γ+1

)

After we have observed a sample φ from G0, we can partition the parameter space

Φ in two: {φ,Φ \ φ}. This leads to:

(G|φ(φ), G|φ(Φ \ φ)) ∼ Dirichlet (γG0(φ) + 1, γG0(Φ \ φ))

≈ Dirichlet(1, γ)

as G0(φ) ≈ 0 and G0(Φ \ φ) ≈ 1. So G|φ has a point mass w located at φ:

G|φ = wδφ1 + (1− w)G′ with w ∼ Beta(1, γ) (2.10)
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where G′ is the renormalised probability measure after removing point mass w.

Using the aggregation property, we can partition Φ further into {φ,A1, . . . , Ak}:

(G|φ(φ), G|φ(A1), . . . , G|φ(Ak)) ∼ Dirichlet (1, γG0(A1), . . . , γG0(Ak))

We know that:

(G|φ(φ), G|φ(Φ \ φ)) = (w, (1− w)G′0(A1), . . . , (1− w)G′0(Ak))

This leads to:

(w, (1− w)G′0(A1), . . . , (1− w)G′0(Ak)) ∼ Dirichlet (1, γG0(A1), . . . , γG0(Ak))

For notational convenience, let h ∼ Gamma(1, 1) and gi ∼ Gamma (γG0(Ai), 1). We

can write the Dirichlet random variable in terms of a normalised set of independent

Gamma random variables:

w =
h

h+
∑k

j=1 gj

(1− w)G′(Ai) =
gi

h+
∑k

j=1 gj

G′(Ai) =
gi

(h+
∑k

j=1 gj)(1−
h

h+
∑k
j=1 gj

)

=
gi∑k
j=1 gj

So G′(Ai) is a normalised set of independent Gamma random variables which we

know to be equal to a Dirichlet distribution:

(G′(A1), . . . , G′(Ak)) ∼ Dirichlet (γG0(A1), . . . , γG0(Ak))

Based on Equation 2.9 (page 73), this implies that:

G′ ∼ DP(γ,G0)

So with G′ ∼ DP(γ,G0), Equation 2.10 can be rewritten as:

G|φ = wδφ + (1− w)DP (γ,G0)
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Recursively applying this, leads to:

G|φ1 = w1δφ1 + (1− w1)DP (γ,G0)

G|φ1, φ2 = w1δφ1 + w2δφ2 + (1− w1 − w2)DP (γ,G0)

...

G|φ1, . . . , φn, . . . =
∞∑
k=1

wkδφk

with wk = βk

(
1−

∑k−1
j=1 wk

)
= βk

∏k−1
j=1(1− βj). As k− 1→∞, this almost surely

goes to zero with probability one. To prove this we have
∏k−1

j=1(1 − βj) = 0 ⇐⇒∑∞
j=1 βj = ∞ (Folland, 1999). For any constant ε ∈ (0, 1),

∑∞
j=1 P ([βj > ε]) = ∞

so using the second Borel-Cantelli lemma we obtain P ([βj > ε], i.o.) = 1. In other

words, for an infinite sequence of events [βj > ε] for which the sum of the probabilities

goes to ∞, the probability of observing infinitely many of the events is one and

therefore
∑∞

j=1 βj = ∞ almost surely. As a result G|φ =
∑∞

k=1wkδφk is a valid

probability measure with φk ∼ G0. So we have:

wk = βk

(
1−

k−1∑
j=1

wk

)

= βk

k−1∏
j=1

(1− βj)

βk ∼ Beta(1, γ)

φ ∼ G0

G|φ =
∞∑
k=1

wkδφk

which is the stick-breaking scheme. It is important to emphasise the ‘symmetry-

breaking’ nature of the stick-breaking representation as the weights, wi, obtained

via this approach are size-biased towards large values of w for small i. To overcome

the dependency of weights on label i, label-swapping approaches have been proposed

which will be discussed in Section 2.3.5.3.

We can calculate the expected weight E[wk] of cluster k in the stick-breaking scheme

using the fact that E[βj] = 1
1+γ

. Given that the βj are independent (E[XY ] =
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E[X]E[Y ] for two independent random variables X and Y ), the expected value for

component k is given by:

E[wk] = E[βk]
k−1∏
j=1

E[(1− βj)]

=
1

1 + γ

k−1∏
j=1

γ

1 + γ

=
1

γ

(
γ

1 + γ

)k
(2.11)

The variance of component weight wk is given by:

Var[wk] = E[w2
k]− E[wk]

2

=
2

γ(γ + 1)

(
γ

γ + 2

)k
− 1

γ2

(
γ

1 + γ

)2k

The first term can be derived as follows:

E[w2
k] = E

[
β2
k

k−1∏
j=1

(1− βj)2

]

= E[β2
k ]
{
E[(1− βk)2]

}k−1
as βj are i.i.d.

βj = Beta(1, γ)

1− βj = Beta(γ, 1)

E[(1− βk)2] =
Γ(γ + 1)

Γ(γ)

∫ 1

0

(1− βk)2(1− βk)γ−1d(1− βk) =
Γ(γ + 1)

Γ(γ)

1

γ + 2

Given that Γ(α + 1) = αΓ(α), we get

E[(1− βj)2] =
γΓ(γ)

Γ(γ)

1

(γ + 2)
=

γ

γ + 2

For E[β2
k ] we have:

E[β2
k ] =

Γ(γ + 1)

Γ(γ)

∫ 1

0

β2
k(1− βk)γ−1dβk

=
Γ(γ + 1)

Γ(γ)

Γ(3)Γ(γ)

Γ(γ + 3)
=

2

(γ + 1)(γ + 2)

leading to:

E[w2
k] =

(
γ

γ + 2

)k−1
2

(γ + 2)(γ + 1)
=

2

γ(γ + 1)

(
γ

γ + 2

)k
The second term follows from Equation 2.11.
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2.3.3.2 Pólya Urn Representation

The Pólya urn representation (Blackwell and MacQueen, 1973), sometimes referred

to as the Blackwell-MacQueen urn provides an alternative technique for generating

samples from a DP with G0 representing a distribution over an unlimited number

of colours. In this scheme, we start with an empty urn and we draw a colour from

G0 and paint ball φ1 with that colour. For each subsequent draw, we either add a

ball φN+1 with a new colour sampled from G0 with probability γ

γ+
∑N
j=1 δφ

or draw a

ball from the urn with probability N
γ+N

where N is the number of previous draws,

paint a new ball with the same colour and put both balls back in the urn. If we

have observed nc balls of colour c, we will draw a ball of that same colour with

probability
∑N
j=1 δφj,c

γ+N
where δφj ,c is Kronecker’s delta, which equals one if ball φj has

a previously observed colour c. It is clear that for large γ the probability of drawing

a new colour is larger than drawing a ball of colour c and therefore, we will end

up with many different coloured balls in the urn. If γ is small, we see the opposite

happening: if we assume that a blue ball is added to the urn in the first draw, the

probability of drawing another blue ball from the urn in the next draw is 1
γ+1
≈ 1,

whereas the probability of picking a new colour is γ
γ+1
≈ 0, as γ → 0. As a result,

the first colour sampled from G0 will dominate the sample and repeating the whole

exercise many times will lead to urns dominated by a single colour. The balls φ of

an infinite sequence of draws from the Pólya urn scheme follow the same distribution

as observations obtained from a DP.

Chinese Restaurant Process

The Chinese restaurant representation is very similar to the Pólya urn representa-

tion. Consider a Chinese restaurant with an infinite number of tables. For each

customer arriving in the restaurant, there are two options: the customer either sits

at a new table and selects a meal from distribution G0 or (s)he joins a table that is

already in use and is assigned the same meal as the other customers at that table.

If ni is the number of customers sitting at table i and N =
∑

i ni is the number

of customers already present in the restaurant, the probability of customer N + 1

joining a previously occupied table i is ni
γ+N

and the probability that (s)he sits at
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the next unoccupied table is γ
γ+N

. Small values for γ indicate that most customers

end up at the same table, just as a small value for γ in the Pólya urn representation

leads to many balls having the same colour.

2.3.4 Bayesian Inference for a Dirichlet Process

2.3.4.1 Posterior distribution

Let G ∼ DP(γ,G0) and φ ∼ G where φ ∈ Ak. We can use the conjugacy of the

Dirichlet distribution to obtain the posterior distribution:

p(G(A1), . . . , G(AK))|φ ∈ Ak, γ, G0) = Dirichlet(γG0(A1), . . . , γG0(Ak)+1, . . . , γG0(AK))

The observation φ only affects the parameter of the Dirichlet distribution for part

k. For K → ∞, the posterior distribution has a point mass centered on each

observation. Extending to multiple observations leads to:

p(G(A1), . . . , G(AK)|φ ∈ Ak, γ, G0) = Dirichlet(γG0(A1) + n1, . . . , γG0(AK) + nK)

= DP

(
γ +N,

1

γ +N

(
γG0 +

N∑
i=1

δφi∈Ak

))
(2.12)

So analogously to the Dirichlet distribution, whose posterior after observing Multi-

nomial data is a Dirichlet distribution, the posterior of a DP is a DP itself. DPs are

characterised by their neutrality with respect to every partition. This means that

the posterior distribution p(G(Ak)|φ) depends only on the number of observations

that fall within Ak, regardless of the locations of φ within Ak. Observations near

boundaries provide the same amount of information as observations in the centre.

The expected value of the posterior distribution is given by:

E[G(Ak)|φ, γ,G0] =
1

γ +N

(
γG0 +

N∑
i=1

δφi∈Ak

)

For finite values of γ this leads to:

lim
N→∞

E[G(Ak)|φ, γ,G0] =

∑N
i=1 δφi∈Ak
N

=
∞∑
k=1

wkδφk
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where wk is the limiting frequency of the unique φk values. This implies that

E[G(Ak)|φ, γ,G0] is a discrete measure, which in turn implies that p(G(Ak)|φ, γ,G0)

is discrete as well. This alternative representation of a DP was introduced by The-

orem 2 in Ferguson (1973).

2.3.4.2 Predictive distribution

The predictive distribution for observations from a DP p(φN+1|φ1, . . . , φN) can be

obtained using:

p(φN+1 ∈ Ak|φ1, . . . , φN) =

∫
G

p(φN+1|G)p(G|φ1, . . . , φN)dG

=

∫
G

Gp(G|φ1, . . . , φN)dG

= E[G(Ak)|φ1, . . . , φN ]

=
1

γ +N

(
γG0(Ak) +

N∑
i=1

δφi∈Ak

)

as p(φN+1|G) ∼ G. By integrating out G, all the random variables φ become

identically distributed but not independent. Two common metaphors which are

used in the interpretations of this result are the Pólya Urn scheme and the Chi-

nese Restaurant Process (see Section 2.3.3.2). This follows from the observation

that we draw a new value from G0 with probability γ
γ+N

and a previously ob-

served value φi with probability ni
γ+N

, where ni indicates the number of times

we have observed φi in the previous N observations. Given that p(φ1, . . . , φN) =

p(φ1)p(φ2|φ1) . . . p(φN |φ1, . . . , φN−1), this predictive distribution can be used to gen-

erate samples from a DP.

2.3.5 Applications of a Dirichlet Process

2.3.5.1 Infinite Mixture Models

The Dirichlet distribution is ideal to model distributions of distributions in finite

mixture problems whereas a Dirichlet Process can be used for infinite mixture prob-

lems, where the number of components in the mixture is unlimited (Antoniak, 1974;
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Escobar and West, 1995; Lo, 1984). Using DP mixture models overcomes the prob-

lem that finite Dirichlet mixture models require a specification of the number of

components that will be used to model the data.

The DP mixture model is given by:

yi|φi ∼ f(·|φi) independently

φi|G ∼ G i.i.d.

G ∼ DP (γ,G0)

which can also be written as the limit of a finite model (Equation 2.5 on page 67)

where the number of components C goes to infinity. A common way of describing

a DP mixture model is based on the stick-breaking approach (see Section 2.3.3.1)

and the fact that we can use the random variables θ, the set of unique φ values, as

the parameters of a continuous kernel (e.g. a Normal distribution) which is used to

smooth out the discrete draws from the DP:

yi|θ,K ∼ f(yi|θKi)

Ki|w ∼
∞∑
k=1

wkδk

wk = βk

k−1∏
j=1

(1− βj)

∞∑
k=1

wk = 1

βk ∼ Beta(1, γ)

θk ∼ G0 (2.13)

2.3.5.2 Generative

We can use the predictive distribution of a DP to generate samples from a DP mix-

ture model as follows. We first sample component parameters φ1 from G0 and then

generate a sample y1 from the component distribution f : y1 ∼ f(φ1). Subsequent

values are sampled from a new component with likelihood γ
γ+N

or from existing

component j with probability
nj
γ+N

, where nj is the number of observations obtained
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from component j and N =
∑

j nj. Repeating this, results in a sample y1, . . . , yN

from mixing a DP(γ,G0) with component distribution f .

2.3.5.3 Inference

To fit an infinite mixture model in a Bayesian context, we need to infer the pos-

terior distribution of the component parameters θ, the unique set of values in φ,

and weights w. The DP provides a prior distribution for θ via G0 and the concen-

tration parameter γ determines the spread of the weight over the components: the

smaller γ, the fewer components have non-negligible weights. Exact computation of

the posterior distribution p(θ,w|y) is not feasible for more than a few observations

(Neal, 2000), so MCMC algorithms have been proposed to estimate the posterior

distribution (Escobar, 1994; Escobar and West, 1995; Liu, 1996; MacEachern and

Müller, 1998; MacEachern et al., 1999; Neal, 2000; Green and Richardson, 2001;

Fearnhead, 2004; Jain and Neal, 2004; Blei and Jordan, 2006; Walker, 2007; Pa-

paspiliopoulos and Roberts, 2008; Papaspiliopoulos, 2008). The reason why exact

computation is practically impossible is that direct simulation from the posterior

distribution is difficult due to the intractability of the normalising constant which

involves a summation over an infinite number of terms.

Ishwaran and Zarepour (2000) proposed a sampling approach, based on the stick-

breaking algorithm, which was further developed in Ishwaran and James (2001) and

Ishwaran and James (2003). The method allows inference for the latent random mea-

sure G of the DP and does not rely on being able to integrate out components of the

hierarchical model analytically, thereby making it more flexible. We use this method

when sampling from a DP mixture model in Chapter 4. As the stick-breaking al-

gorithm requires the imputation of the infinite-dimensional vectors w and θ, and

the computation of an infinite sum of random terms,
∑∞

k=1wkf(y|θk), Ishwaran and

Zarepour (2000) suggested using a C-dimensional approximation of the DP, using a

truncation of the stick-breaking algorithm (Equation 2.13) by fixing C and letting

βC = 1. This implies that wk = 0 for k > C, overcoming the issues caused by

the infinite-dimensional variables w and θ in the stick-breaking representation of a
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DP. We can update the parameters K, w, θ and γ using a blocked collapsed Gibbs

sampler:

p(K|w,θ,y)

p(w|K,y)

p(θ|K,y)

p(γ|β,y)

The truncation allows samples for Ki and θ to be generated using the distributions

derived for the finite mixture model (Equations 2.6 and 2.7 on pages 68 and 68,

respectively). To facilitate the update of θ, one could use a conjugate prior G0 for

p(y|θ), but this is not necessary as one could use alternative MCMC approaches.

To update w and γ we follow Ishwaran and Zarepour (2000):

p(w|K, y)

Let us define mk as the number of values that are assigned to cluster k, i.e. mk =∑N
i=1 δKi,k where N is the number of observations. We can now update w using:

w1 = β1

wk = βk

k−1∏
j=1

(1− βj)

βk ∼ Beta

(
1 +mk, γ +

C∑
j=k+1

mj

)
for k = 1, . . . , C − 1 (2.14)

p(γ|β, y)

As the number of components with significant posterior probability is sensitive to γ,

it has been suggested that a weakly informative prior for γ should be used. Using

a conjugate prior distribution, Gamma(ν1, ν2) (Ishwaran and Zarepour, 2000), the

posterior distribution is given by:

γ|β,y ∼ Gamma

(
ν1 + C − 1, ν2 −

C∑
k=1

log(1− βk)

)

where βk comes from Equation 2.14.
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Figure 2.6 – Expected prior probability of cluster C, E[wC ], as a function of

C and γ.
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Approximation Error

To assess whether the truncation level C is adequate, we can explore the properties

of
∑∞

k=C wk = 1−
∑C−1

k=1 wk for the prior DP mixture model. Ishwaran and Zarepour

(2000) suggest that one can test whether or not wC is small enough by evaluating

its mean and variance. As βC is set to 1 by definition, i.e. the stick length that has

not been assigned yet will be assigned to the last component C, we can calculate

the expected weight of the final component C as:

E[wC ] =

(
γ

1 + γ

)C−1

(2.15)

The variance is given by:

Var[wC ] =

(
γ

γ + 2

)C−1

−
(

γ

γ + 1

)2(C−1)

To assess the impact of truncation, one could either compare Equations 2.11 (page

83) and 2.15, showing that there is a factor (γ+ 1)−1 difference, or one could simply

assess the expected probability of the final component C using Equation 2.15. Figure

2.6 shows how E[wC ] depends on the choice of C and γ. If E[wC ] is large, this implies

that one should consider increasing C or reducing γ.

Ishwaran and James (2001) provide an alternative estimate of the approximation

error, defined as the distance between the marginal distributions of a truncated
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prior DP, pC(y), and a DP with an infinite number of components, p∞(y):∫
|pC(y)− p∞(y)|dX ≈ 4N exp

[
−C − 1

γ

]
where N is the number of observations.

To assess whether the truncation level C is reasonable for the posterior distribution

of the DP mixture model we would like to calculate the expected tail probability.

However as this is not possible our only option is to assess the tail probability post-

analysis, as we do in Chapter 4. If the tail probabilities are too high, the analysis

can be redone, either with smaller values of γ (unless that causes issues with the

smoothness of the curve) or with a higher truncation level. This can be adjusted

after some training runs to suit each application.

Gelfand and Kottas (2002) provide an alternative approximate sampling approach

that limits the number of components. They make use of the posterior distribution

(Equation 2.12 on page 85) and the expected weight of the final component (see

Equation 2.15) to find an acceptable level of approximation error.

Label-swapping

In the stick-breaking representation, the weights assigned to clusters depend on

the cluster labelling, i. For components j and k with j < k, E[wj] > E[wk],

although there is a non-zero probability that wj < wk, particularly if |j−k| is small.

The posterior distributions of w are multimodal which might lead to poor mixing

in Gibbs sampling algorithms as the sampler has to visit all the different modes.

Label-swapping moves have been introduced (Porteous et al., 2006; Papaspiliopoulos

and Roberts, 2008) to improve the performance of the algorithm. Without label-

swapping the Gibbs sampler for the wi distributions is likely to remain in one of the

modes. For example, for w1 it is likely that the sampler remains in the upper tail of

its distribution as the stick-breaking algorithm results in w1 being on average higher

than the other wi. The problem is likely to arise when there are two (or more)

clusters of data which are separated, e.g. n values sampled from N (µ1, σ
2) and n

values sampled from N (µ2, σ
2) where |µ1 − µ2| > 5σ. The stick-breaking algorithm



2.3. Dirichlet Process 92

is likely to assign higher weights to cluster j, associated with the data around µ1,

than cluster k, associated with the data around µ2 if j < k, despite the fact that

for both clusters the same number of data were observed. If there was an additional

observation, y2n+1 = µ1+µ2
2

, i.e. exactly in between the two clusters, this observation

is more likely to be assigned to cluster j than to k, increasing the likelihood that

we sample wj to be larger than wk. To ensure that the weights wj and wk, for

clusters of equal size, are similar, the labels should be swapped regularly. Swapping

labels encourages the model to move around the sample spaces for w more efficiently.

Without label-swapping moves, many iterations would be needed to overcome the

problem that the sampler is not efficiently exploring the whole sampling spaces for

each of the wi and high thinning factors would be necessary to reduce the correlation

between samples. Three types of label-swapping steps are introduced to overcome

this problem:

1. Swap two randomly chosen pairs.

2. Swap adjacent pairs in order.

3. Swap adjacent pairs in random order.

These steps require Metropolis-Hastings steps for which we will derive the algo-

rithms next.

1. Swap two randomly chosen pairs

The first label-swap involves swapping the data assignments and component pa-

rameters θk of two randomly chosen labels j and l. By doing so, we keep the data

assigned to the components that they were assigned to before the swap but we pro-

pose to remove the link to the weights wk. If we want to swap the labels of two

randomly chosen components, C1 and C2, the proposal ratio equals 1 because (i) the

transition from old values to proposal values and proposal values to old values is the

same (as we swap the same pair of labels) P (C1 = j ∩C2 = l) = P (C1 = l∩C2 = j)

and (ii) the mechanism for choosing the pair is independent of the state of the chain.
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The posterior distribution is given by:

p(θ,K,w|y) ∝
N∏
i=1

p(yi|θKi , Ki, wKi)p(K|θ,w)p(θKi)p(w)

where K is a vector of allocations Ki, the component to which data value i is

allocated, θ is the set of component parameters and w is the set of component

weights. The probability that an observation yi will be assigned to a component k

is:

p(Ki = k|wk, θk) ∝
wkp(yi|θk)∑C
q=1wqp(yi|θq)

where C is the total number of components. The target ratio is given by the prob-

ability that the nl data, y(l), assigned to l will now be assigned to component j and

the nj data, y(j), assigned to j will now be assigned to component l:

Target Ratio =

∏nl
i=1

[
wjp(y

(l)
i |θl)

]∏nj
i=1

[
wlp(y

(j)
i |θj)

]
∏nj

i=1

[
wjp(y

(j)
i |θj)

]∏nl
i=1

[
wlp(y

(l)
i |θl)

]
=

(
wj
wl

)nl−nj
where y

(c)
i is the ith data value assigned to component c.

2. Swap adjacent pairs in order

Swapping random pairs works well if the two components have similar weights, but

does not work well for very unequal components (with respect to the number of data

allocated and the weights). To swap labels for unequal components, an alternative

label-swapping step is introduced. Like the previous type of label-swaps the pro-

posal ratio equals 1, so we can focus on the target ratio. Swapping the labels j and

j + 1 of two neighbouring components together with the unit stick-breaking lengths

βj and βj+1 means that data, yi, associated with component j with probability

w
(t)
j p
(
yi|θ(t)

j

)
is proposed to be allocated to component j + 1:

Target Ratio =

∏nj
i=1w

∗
j+1p

(
yi|θ∗j+1

)∏nj+1

i=1 w∗jp
(
yi|θ∗j

)
∏nj

i=1w
(t)
j p
(
yi|θ(t)

j

)∏nj+1

i=1 w
(t)
j+1p

(
yi|θ(t)

j+1

)
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where:

w
(t+1)
j+1 = (1− β1)(1− β2) . . . (1− βj−1)(1− βj+1)βj

w
(t)
j = (1− β1)(1− β2) . . . (1− βj−1)βj

w
(t+1)
j = (1− β1)(1− β2) . . . (1− βj−1)βj+1

w
(t)
j+1 = (1− β1)(1− β2) . . . (1− βj−1)(1− βj)βj+1

The factors (1− β1) . . . (1− βj−1) cancel out and with θ
(t)
j = θ∗j+1 and θ

(t)
j+1 = θ∗j the

Normal density functions cancel out as well. As a result, the stick breaking lengths

βj and βj+1 are the only terms left in the target ratio:

Target Ratio =

∏nj
i=1 w

∗
j+1

∏nj+1

i=1 w∗j∏nj
i=1w

(t)
j

∏nj+1

i=1 w
(t)
j+1

=

nj∏
i=1

(1− βj+1)βj
βj

nj+1∏
i=1

βj+1

(1− βj)βj+1

=
(1− βj+1)nj

(1− βj)nj+1

If the swap is accepted, we calculate new weights w using the reordered βj:

w1 = β1

wk = βk

k−1∏
j=1

(1− βj) k ≥ 2

3. Swapping adjacent pairs in random order

In addition to swapping the adjacent pairs in a fixed order we also propose a ran-

domisation step which allows us to swap adjacent pairs in random order. This is

easily done by random permutation of the C − 1 adjacent pairs. The acceptance

ratio is equal to the ratio derived in the previous section:

Acceptance Ratio =
(1− βj+1)nj

(1− βj)nj+1
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2.4 Conclusion

In this chapter we have provided an introduction to several of the mathematical

concepts that will be used throughout this thesis. This included an introduction

to Bayesian inference, MCMC, the Dirichlet distribution and Dirichlet Processes.

The Dirichlet distribution plays an important role in the model in Chapter 3 whilst

Dirichlet Process mixture models are used in Chapter 4.



Chapter 3

Multivariate modelling of

pesticide residues

3.1 Introduction

The use of pesticides to protect crops from pests and diseases may result in pesticide

residues on agricultural produce. Farmers may treat a crop with multiple pesticides

for various reasons including managing various types of pests, using up old stock

as part of a tank mix, creating a commercial product using two generic, cheaper

products or reducing the risk of resistance by using a range of pesticides which have

different modes of action. When multiple pesticides are applied to a crop, either at

the same time in a tank mix or at different growth stages, residue levels of multi-

ple pesticides may occur on individual food items. Therefore the variation in these

residue levels should be modelled using multivariate techniques to account for any

correlations in residue levels. These techniques can then be used in a cumulative

risk assessment to assess whether dietary exposure from eating products that are

treated with multiple pesticides are below the level of concern.

This chapter introduces two novel approaches to model pesticide log-residues in

composite samples which are able to combine information on pesticide usage with

data on residue levels from monitoring programmes. They make use of the GB Pes-

96
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ticide Usage Survey (PUS) data to inform the models on the proportion of composite

samples that have been treated with pesticides. One of the approaches also offers

a solution to model both presence/absence of multiple pesticide residues and the

correlation between log-residue amounts when multiple pesticides have been applied

to a single crop.

In this chapter, we will begin with a discussion of the available data (Section 3.2)

and currently proposed approaches for modelling co-occurrence of pesticides (Sec-

tion 3.3). In Section 3.4 we will illustrate that it is important to develop models

that account for correlations between pesticide log-residue levels. Section 3.5 in-

troduces the new approaches which we will validate using synthetic data sets and

compare with current approaches in Section 3.6. Finally, the new approaches will

be demonstrated in a case study (Section 3.7).

3.2 Data

3.2.1 Pesticide Usage Survey Data

In Great Britain, Pesticide Usage Survey (PUS) data are collected for a number of

purposes including informing the pesticide approval process, assessing the economic

and/or environmental implications of introducing new active substances and inform-

ing the targeting of monitoring programmes for residues in food and the environment

(Fera, 2011). For produce grown in GB, these data can be used to identify patterns

in absence/presence of pesticides on different raw agricultural commodities for use

in dietary risk assessment if we assume that the proportion of fields with a given

treatment equals the probability that a composite monitoring sample has received

a certain treatment. When using the PUS data we need to account for the fact that

the survey only samples a proportion of total British production, often for broad

classes of crops. As a result, it is possible that other combinations of pesticides

were used but not sampled, in which case not all possibilities are represented in the

survey. We also need to account for the fact that pesticide application may result

in a higher yield. As a consequence, it may be the case that the proportion of fields

treated with a pesticide is not equal to the proportion of composite samples with
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that treatment.

To overcome these issues when using PUS data in dietary risk assessment, the PUS

data should be treated as an uncertain estimate of the proportion of composite sam-

ples having received a certain treatment. The advantage of including PUS data in

a dietary risk assessment is that it provides more information about possible crop

treatment histories which is important when we have composite samples with high

levels of censoring.

In this chapter we present a case study for British carrots and therefore use GB

PUS data. However for produce not grown in GB, other pesticide usage information

would need to be identified and used together with residue level information from

the country of origin.

3.2.2 Monitoring Data

As described in Section 1.3.1.1, samples of raw agricultural commodities (RACs) are

routinely collected and residue levels are measured in composite samples which are

derived from multiple units of the commodity. However, little is known about the

origin of the units in a composite sample as products that are collected may come

from various sources (e.g. different fields with different treatments). As discussed

in Chapter 1, the fact that monitoring programmes are primarily aimed at assess-

ing compliance with MRLs introduces various problems when using them in dietary

risk assessments. Firstly, monitoring data are a mixture of samples, obtained using

some random sampling and an unknown degree of targeted sampling based on e.g.

the violation rate in previous years. However, in the absence of other data, we fol-

low existing dietary models by treating these data as though they were a random

sample. Secondly, residue levels on composite samples obtained as part of moni-

toring programmes are often left-censored (see Section 1.4.1.1). Therefore methods

describing the variation in residue levels need to model censored data appropriately.

Bayesian methods can be used but high levels of censoring increase the influence

of the prior distribution on the posterior distribution. Therefore, it is important to

obtain prior distributions that are supported by independent data, e.g. PUS data,

or expert knowledge.
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3.3 Current Approaches for Cumulative Risk

Assessment

When modelling residue levels from multiple pesticides two questions need to be

answered: (1) what is the likelihood that combinations of pesticides occur (i.e.

presence) and (2) given that pesticides co-occur, how can we model the dependency

in residue levels (i.e. amounts). Several approaches have recently been proposed for

cumulative dietary risk assessments when multiple pesticides need to be considered

(EFSA, 2009; Van Klaveren et al., 2009; EFSA, 2012).

One approach (pairwise empirical sampling) resamples observed residue level vec-

tors from a number of composite samples. For each of n composite samples, residue

levels are measured for m pesticides and reported in a n × m matrix. In this ap-

proach, residue levels will be obtained by sampling rows from this matrix to account

for dependencies between pesticide residues. Pesticide residue data sets may come

from multiple sources and samples may be tested for different pesticides. Therefore

when combining different data sets, there will be missing values for those pesticides

that were not measured in a particular data set. In this approach only observed

values can be resampled and non-detects, i.e. values below the limit of determina-

tion (LOD), and missing values are set to zero. An implication of the first feature

is that residue levels other than the measured ones cannot occur and thus residue

concentrations cannot be higher than the highest value observed in the data. EFSA

(2010a) reported that in 2008, in 29 countries approximately 53 carrots were sam-

pled per country on average. Given this small sample size, it is unlikely that the

observed concentrations provide a representative sample of the whole spectrum of

residue levels on carrots. The second feature of setting <LOD and missing values

to zero may underestimate the true residue levels. To account for the uncertainty

in residue levels bootstrap approaches (Section 1.4.2) have been suggested.

Another approach for cumulative risk assessment ignores dependencies in residue

concentrations by modelling the residue levels for each pesticide separately. We will

explore two implementations of this approach, the first is based on sampling the
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data for each chemical independently assuming an empirical distribution and set-

ting <LOD values to zero. To account for uncertainty a bootstrap approach was

used. A more sophisticated implementation made use of a Bayesian mixture model

(Paulo et al., 2005) that accounts for the fact that a censored observation may be

either a positive, undetectable residue level or the result of untreated food items.

Both implementations only use data from those laboratories that have measured the

pesticide of interest, thus missing data are no longer part of the model. If pesticide

residue levels are not correlated, this approach may be appropriate.

EFSA (2012) suggested two approaches for cumulative dietary risk assessment de-

pending on the exposure scenario and whether the available data included missing

values. The first scenario, termed the optimistic approach, assumes that all <LOD

and missing values are zeros and uses pairwise bootstrap approaches to account for

uncertainty in residue levels. The second scenario, termed the pessimistic approach,

assumes that all <LOD are equal to the LOD and then fits a Lognormal distribution

to the positive residue data. Missing values are dealt with by imputation from the

fitted Lognormal distribution. As imputing missing values independently for each

chemical may affect the dependencies in residue levels, EFSA (2012) proposed an

approach in which missing data will be dealt with in such a way that a conservative

estimate of residue levels is obtained.

3.4 Correlations in log-residue levels

To assess the correlations in log-residue levels of different pesticides in composite

samples, we analysed the 2010 UK monitoring data. Composite samples for 20

crops, which had at least 30 samples with detectable residue levels, were selected

from the 2010 surveys (PRC, 2010; PRC, 2011a; PRC, 2011b; PRC, 2011c) and

Pearson correlation coefficients were calculated for all pesticide combinations for

each crop. The calculated correlation coefficients were only based on residue levels

above the limit of determination (LOD). As composite monitoring data tend to have

high proportions of data below the LOD, very few composite samples are generally



3.4. Correlations in log-residue levels 101

Figure 3.1 – Analysis of 2010 UK monitoring data.

(a) Frequency of the number of composite

samples available to calculate the correla-

tion coefficients (i.e. samples containing

detectable residues for any pair of possi-

ble pesticides) for 20 crops from the 2010

UK monitoring data.
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(b) Correlations between log pesticide

residue levels in composite samples from 7

crops in 2010 UK monitoring data. Only

correlation coefficients based on more

than 15 data values are included.
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available to determine the correlations in residue levels. This is shown in Figure

3.1a where for each of the 20 crops we count how many of the available composite

samples had detectable residues for each possible pair of pesticides. For example, for

apples there are 143 composite samples available in which 36 chemicals have been

measured. We count the number of cases where only n composite samples of apples

contain detectable residues of any pair of pesticides, where n is any integer between

2 and 143. We find that there are 41 cases where only 2 composite samples contained

detectable residues of any pair of pesticides, 14 cases where only 3 of the composite

samples contained detectable residues of any pair of pesticides, etc. Repeating this

process for the other 19 crops leads to the frequencies shown in Figure 3.1a. As we

can see, there are more likely to only be 3 composite samples available with detected

pesticide residues (frequency of 139) to calculate the pairwise correlation coefficients

than 20 composite samples (frequency of 2).

Figure 3.1b shows the distribution of correlation coefficients for those cases where at

least 15 residue levels were detected for both pesticides (26 correlation coefficients

from 7 crops). This number was a pragmatic choice to ensure there were enough cor-
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relation coefficients to observe the variation in correlations. However, we are aware

that small sample sizes will have an effect on the estimation of the correlation coef-

ficient. Figure 3.1b indicates that non-zero correlations do occur and that therefore

correlations in log-residue levels should be modelled when conducting cumulative

dietary risk assessments.

Given that the monitoring samples may contain units from different fields from one

or more countries and the pesticides which are authorised may vary between coun-

tries, the treatment that food products will have received is likely to vary. Therefore,

we need a model which can describe the variation in residue levels and deal with the

fact that residue levels that are reported to be below the LOD can either be zero

(i.e. product was not treated with a particular pesticide) or somewhere between

zero and the LOD (i.e. product was treated but levels are too low to quantify). The

model will also need to account for any correlations suggested by available evidence

e.g. from monitoring or PUS data. The final requirement for a residue model is that

it should be able to account for the uncertainty about the model parameters caused

by the small number of observations available to estimate them.

3.5 Model Descriptions

In this section we discuss two approaches: the independent mixture model which

can be used when we are interested in either a single pesticide or multiple pesticides

where log-residue levels are thought to be independent; and a bivariate mixture

model that aims to model correlations in log-residue data.

3.5.1 Independent Mixture Model

Paulo et al. (2005) introduced a univariate mixture model to model the variation in

residue levels for a single pesticide. Their model assigned log-residue levels above

the limit of determination to a Normal distribution. Data below the limit of deter-

mination could either be a zero (i.e. not treated with pesticide) or a value between

zero and the limit of determination. In their model, residue data, y, is therefore
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described using the following mixture distribution:

f(y) = p0δy,0 + (1− p0)LN (y;µ, σ2)

where p0 is the probability of a residue level being zero, δy,0 is the Kronecker delta

function and LN (µ, σ2) indicates a Lognormal density with parameters µ and σ2.

From this, it is clear that the probability that ‘a datum is less than the LOD and

greater than zero’ is:

(1− p0)Φ
(
log(LOD);µ, σ2

)
This follows from the fact that the Normal cumulative distribution function,

Φ (log(LOD);µ, σ2), provides the probability of observing a value less than log(LOD).

To infer the parameters of this model, Paulo et al. (2005) used a MCMC algorithm:

1. Sample the number of samples below the LOD with zero residue level, n0.

2. Sample latent residue values for the number of data that are between zero and

the LOD: n<LOD − n0.

3. Sample p0, σ and µ.

4. Go to step 1.

The conditional probability that the residue level for a single sample <LOD is zero

is:

pz =
p0

p0 + (1− p0)Φ(log(LOD);µ, σ2)

If we know pz, we can sample how many of our observations below the limit of

determination are zero using:

n0 ∼ Binomial(n<LOD, pz)

where n<LOD is the number of values less than the LOD. Since we do not know the

model parameters p0, µ and σ, we have to learn these from the data by sampling

latent values for the censored data to update p0, µ and σ. Paulo et al. (2005) use

a non-informative prior, π(µ, σ) ∝ 1
σ
, for the Normal distribution parameters and



3.5. Model Descriptions 104

π(p0) = Beta(p0; 1, 1) as a prior for p0. This allows for a simple Bayesian update for

p0, µ and σ:

p0|y ∼ Beta(1 + n0, 1 + n− n0)

(n+ − 1)s2

σ2
|y ∼ χ2

n−1

µ|σ,y ∼ N
(
m,

σ2

n+

)
where n is the total number of log-residue observations, y, n+ = n− n0 and m and

s are the mean and standard deviation, respectively, of the n+ non-zero residues

including the latent ones.

We propose a generalisation of the Paulo et al. (2005) model by using information

on the proportion of untreated field area from the GB PUS data. Although one

could argue that we can replace p0 by this fixed number, we propose the following

model:

p0 ∼ Beta (w × PUS0, w × (1− PUS0))

where PUS0 is the proportion of untreated field area and w is the prior sample size,

a factor that can be used to express our belief that the PUS data is relevant for the

composite monitoring data. Note that limw→∞ p0 = PUS0, which means that for

large w we believe that we know the proportion of untreated field area and therefore

the proportion of untreated samples. For smaller values of w, we assert that p0 will

be more uncertain.

This model can be used in cumulative risk assessment if we assume that two or

more pesticide residue distributions are independent.

3.5.2 Bivariate Mixture Model

We now describe a bivariate mixture model for cumulative risk assessments which

accounts for the correlations between log-residue concentrations.
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Model Specification

Let us assume that two chemicals, X and Y , were measured in a composite sample.

The results of the analysis will fit into one of four categories: {x, y}, {x,< LODY },

{< LODX , Y } and {< LODX , < LODY }, where x and y indicate a measured residue

level above the limits of determination (LODX and LODY , respectively), < LODX

indicates that the composite sample either did not contain residue levels of X (i.e.

x = 0) or that the levels were too low to be determined (0 < x < LODX) and

< LODY similarly indicates that y = 0 or the residue levels of Y were too low to be

determined. Let us now define the observable indicator functions MX and MY to

distinguish the cases where X and Y are above the LOD from the cases where they

are below the LOD.

MX =

1 if X ≥ LODX

0 if X < LODX

MY =

1 if Y ≥ LODY

0 if Y < LODY

As we do not know whether <LOD values are true zeros or positive residues which

are <LOD, we also need to define the latent indicator functions ZX and ZY :

ZX =

1 if X = 0

0 if X > 0

ZY =

1 if Y = 0

0 if Y > 0

The probability that a residue sample comes from each of the four mixture compo-

nents mentioned above is:

α0 = p(ZX = 1, ZY = 1)

αX = p(ZX = 0, ZY = 1)

αY = p(ZX = 1, ZY = 0)

αXY = p(ZX = 0, ZY = 0)

Now let us define a mixture density, f , that can be used to describe the observed

composite samples:

f(x, y) = α0δx,0δy,0 + αXδy,0fX(x) + αY δx,0fY (y) + αXY fXY (x, y)

where fX is the probability density function (pdf) of X given ZX = 0 and ZY = 1,

fY is the pdf of Y given ZX = 1 and ZY = 0, fXY is the joint pdf of (X, Y ) given
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ZX = 0 and ZY = 0 and δk,0 is the Kronecker delta function. For the remainder

of this chapter, we will assume that residue levels can be described with Lognormal

distributions (fX and fY ) and a bivariate Lognormal distribution (fXY ) as assuming

Lognormal distributions is common practice in current dietary risk assessments.

However, the approach presented here can be applied to any other distribution

shape as well. We now have:

fX(x) = LN (x;µX , σ
2
X)

fY (y) = LN (y;µY , σ
2
Y )

fXY ({x, y}) = LN 2({x, y};µXY ,ΣXY )

where µX and µY are the mean log-residue levels for X and Y respectively, σX and

σY are the standard deviations of the log-residue levels and the mean and covariance

matrix of the bivariate Normal distribution are:

µXY =

 µXYX

µXYY


ΣXY =

 (σXYX )2 σXYX σXYY ρXY

σXYX σXYY ρXY (σXYY )2


Inference

To infer the parameters of the model we use an MCMC algorithm. The residue

samples need to be assigned to each distribution to infer the probabilities α0, αX ,

αY and αXY and the distribution parameters of fX , fY and fXY . For this purpose

we define K to be a latent variable which indicates which distribution an observation

i is assigned to, where i = 1, . . . , n and n is the sample size:

Ki =



1 if ZX = 1 ∧ ZY = 1

2 if ZX = 0 ∧ ZY = 1

3 if ZX = 1 ∧ ZY = 0

4 if ZX = 0 ∧ ZY = 0

For each composite sample we now have the following conditional allocation proba-

bilities given the four possible combinations of the indicator functions, MX and MY ,
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{0, 0}, {1, 0}, {0, 1} and {1, 1}:

p(K = j|MX ,MY ) =
p(MX ,MY |K = j)p(K = j)

p(MX ,MY )

where p(MX ,MY ) =
∑

j p(MX ,MY |K = j)p(K = j) for j = 1, . . . , 4 where applica-

ble (e.g. j ∈ {1, 2, 3, 4} for {0, 0} and for {1, 1} we know j = 4).

For the {0, 0} case, we can calculate the probabilities as follows:

p(K = 1|MX = 0,MY = 0) ∝ α0

p(K = 2|MX = 0,MY = 0) ∝ αXΦ

(
log(LODX)− µX

σX

)
p(K = 3|MX = 0,MY = 0) ∝ αY Φ

(
log(LODY )− µY

σY

)
p(K = 4|MX = 0,MY = 0) ∝ αXY Φ2

(
{log(LODX), log(LODY )};µXY ,ΣXY

)
where Φ is the standard Normal cumulative distribution function and Φ2 is the bi-

variate Normal cumulative distribution function.

For {1, 0}, we can calculate the probabilities as follows:

p(K = 2|MX = 1,MY = 0) ∝ αXφ

(
log(x)− µX

σX

)
/σX

p(K = 4|MX = 1,MY = 0) ∝ αXY pX(x)PY (Y < LODY |X = x)

where φ is the standard Normal density function, pX(x) is the marginal distribution

of X obtained from fXY and PY (Y < LODY |X = x) is the conditional probability

Y |X:

pX(x) = φ

(
log(x)− µXYX

σXYX

)
/σXYX

PY [Y < LODY |X = x] = Φ

(
log(LODY )|µXYY +

σXYY
σXYX

ρ{log(x)− µXYX }, (1− ρ2)σ2,XY
Y

)
The other probabilities can be calculated in a similar way.

We will assume the following prior distribution, based on the GB PUS data, for

the weights α:

α ∼ Dirichlet(PUS0 × w,PUSX × w,PUSY × w,PUSXY × w)
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where PUSL(j) are the proportions of field area in each treatment combination, where

L ∈ {0, X, Y,XY } and j ∈ {1, 2, 3, 4}. As in the independent mixture model, we

multiply these proportions by a weight w to indicate how certain we are that the

PUS data is representative of the probability that a composite monitoring sample

is treated with one of these combinations. If w goes to infinity, then the posterior

proportions will match the prior proportions (i.e. the PUS proportions) and if w

goes to zero the posterior proportions are determined by the monitoring data.

The Gibbs sampler MCMC algorithm can be summarised by the following steps:

1. Sample the latent allocation variable Ki for each composite monitoring sample

{x, y} using the probabilities above.

2. Sample weights αL(j) given allocations: αL(j) ∼ Dirichlet(PUS0×w+n0,PUSX×

w + nX ,PUSY × w + nY ,PUSXY × w + nXY ), where nL(j) is the number of

data assigned to distribution fL(j): nL(j) =
∑n

i=1 δKi,j.

3. Sample residue values for <LOD data allocated to ZX = 0 or ZY = 0 from

distributions to which they were assigned.

4. Sample distribution parameters given allocations and positive residues.

5. Store distribution parameters and weights and go to Step 1.

Step 4 is a standard Bayesian parameter update based on conjugate distributions (a

Normal-Gamma distribution for the univariate distributions and a Normal-Wishart

distribution for the bivariate Normal distribution, see Section 2.2.6 for more details).

3.5.3 Extending to higher dimensions

The model can in theory be extended to more dimensions but the number of dis-

tribution parameters that will have to be estimated increases considerably. For n

pesticides, the number of parameters P is given by:

P = 2n − 1 +
n∑
k=1

(
n

k

)
×
(
k(k + 3)

2

)
For one chemical, we would have three parameters (mean, standard deviation and

weight), for a mixture of two chemicals, we would have 12 parameters (two means
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and two standard deviations for the univariate distributions, two means for the

bivariate distribution, two standard deviations for the bivariate distribution, the

correlation coefficient and three weights), for three chemicals we would have 37 pa-

rameters and for four chemicals we would have 103 parameters.

Given that composite monitoring data sets consist of very few samples with residue

levels above the LOD (see Figure 3.1a), it is unrealistic to expect that a multi-

dimensional model can be fitted adequately unless prior information is available on

all of the model parameters. However, one option would be to reduce the number

of parameters by assuming that the location and scale parameters of the bivariate

distribution are equal to the parameters of the univariate distributions. This would

reduce the number of parameters to 2n − 1 + n(n+3)
2

which in the two chemical case

equals eight (µX , σX , µY , σY , correlation coefficient ρ and three weights). The PUS

data for carrots, used in the case study in Section 3.7, might support this approach

as the median application rate for treatment with Difenoconazole only is the same

as the median application rate for Difenoconazole if both Difenoconazole and Tebu-

conazole were applied (0.125 kg/ha for both). Analogously the median application

rate for Tebuconazole when only Tebuconazole was applied (0.18 kg/ha) was simi-

lar to the median application rate for Tebuconazole when both Difenoconazole and

Tebuconazole were applied (0.17 kg/ha). Even though it is unknown whether these

results can be extrapolated to other crops and pesticides, one could assess from ap-

plication rates provided in the PUS data whether it is reasonable to use a simpler

model.

3.6 Validation Studies

To assess the performance of the models, we use three validation data sets to test

whether the models are able to determine the true, underlying distribution from

which the log-residue data set was sampled. Since monitoring data sets typically

consist of between 50 and 150 composite samples, we present three validation studies

based on a sample size of 100. For each validation data set, we run the independent
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mixture model and the bivariate mixture model and compare the results with the

target distribution.

3.6.1 Design of Validation Studies

Prior distributions used in validation studies

For the independent mixture model we use the same non-informative prior distri-

bution for µ and σ that was used in Paulo et al. (2005). For the bivariate mixture

model the parameters of the prior distributions are given in Table 3.1. For all vali-

dation data sets we run the bivariate mixture model with the non-informative prior

distributions. However, for validation data set C, we also show an example where we

use weakly informative prior distributions. These prior distributions were based on

simulated composite samples derived from unit market survey data (see Appendix

A). The parameters κ, νXY and κXY were all set to 10 to add more weight to the

prior distributions than in the non-informative case. For all validation studies, we

used w = 100, indicating that the PUS data provide as much information about the

true treatment proportions as the 100 log-residue data values.
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Table 3.1 – Prior distribution parameters for univariate Normal and bivari-

ate Normal distributions of log-residue data in the bivariate mixture model.

The parameters α, β, κ and µ0 are the parameters of the Normal-Gamma

prior distribution used for the univariate Normal distributions fX and fY and

the parameters λXY , νXY , κXY and µXY are the parameters of the Normal-

Wishart prior distribution used for the bivariate Normal distribution fXY .

Parameter Non-informative Value Weakly informative Value

α 1 0.77

β 0.05 0.04

κ 1 10

µ0 95th percentile of data -2

λXY

 10−3 0

0 10−3

  4.95 3.72

3.72 4.95


νXY 2 10

κXY 10−3 10

µXY

 −2

−2

  −2

−2
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Validation Data Set A

Validation data set A was generated by sampling 25 values from each of the fol-

lowing four distributions with relative weights α = {0.25, 0.25, 0.25, 0.25}: not

treated, log(X) ∼ N (−1, 0.252), log(Y ) ∼ N (−1, 0.252) and {log(X), log(Y )} ∼

N2

−3

−3

 ,

 0.252 0.0619

0.0619 0.252

, i.e. correlation coefficient ρ = 0.99. We assume

that LODX = LODY = 0, leading to a data set where 50% of the values had reported

residue levels.

Validation Data Set B

In validation data set A, the marginal distributions for log(X) and log(Y ) are both

bimodal due to the choice of the distributions for log(X), log(Y ) and {log(X), log(Y )}.

To include more overlap between the univariate and bivariate distributions, valida-

tion data set B of size 100 was generated from the following four distributions

with relative weights α = {0.4, 0.3, 0.2, 0.1}: not treated, log(X) ∼ N (−2, 0.252),

log(Y ) ∼ N (−2, 0.352), {log(X), log(Y )} ∼ N2

−1.9

−2.1

 ,

 0.252 0.0469

0.0469 0.252

,

i.e. with correlation coefficient ρ = 0.75. We assume that LODX = LODY = 0,

leading to a data set where 35% of the values had reported residue levels.

Validation Data Set C

In reality, many of the monitoring data will have residue levels below or near the

limit of determination with unknown proportions of true zeros and censored data.

Therefore for our final validation study C we generate samples from the same distri-

butions as in validation study B but we assume a more realistic level of censoring.

To do this we calculate the 75th percentile of the observed data and set this to be the

limit of determination for X and Y . As a result, 9% of the data had detected residue

levels. As the models may struggle when very few data are available to estimate

the parameters, we investigate whether using weakly informative prior distributions

improves the model performance for the bivariate mixture model.
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3.6.1.1 Results of Validation Studies

We ran both the independent mixture model and the bivariate mixture model on

all three validation data sets (A, B and C). For validation data set C, we ran the

bivariate mixture model twice, once with non-informative prior distributions and

once with weakly informative prior distributions. Each model was run in Matlab

2012a on a computer with an Intel i7-860 2.80 Ghz processor and 8GB RAM. Model

runs with 1,000,000 iterations took approximately 10 minutes to complete for the

independent mixture model and 100 minutes for the bivariate mixture model. Tables

3.2, 3.3, 3.4 and 3.5 provide an overview of the estimated model parameters together

with the true parameters for the validation studies described above. The resulting

median and 95% credible intervals of the marginal posterior distributions are shown

in Figure 3.2.

Table 3.2 – Comparison of true values and model estimates for validation data

set A.

True Independent Mixture Model Bivariate Mixture Model

Variable Value Mean Median 95% CI Mean Median 95% CI

α0 0.25 0.25 0.25 (0.20, 0.30) 0.25 0.24 (0.19, 0.31)

αX 0.25 0.25 0.25 (0.20, 0.30) 0.25 0.25 (0.19, 0.31)

αY 0.25 0.25 0.25 (0.20, 0.30) 0.25 0.25 (0.20, 0.32)

αXY 0.25 0.25 0.25 (0.20, 0.30) 0.25 0.25 (0.19, 0.31)

µX -1 -1.98 -1.98 (-2.29, -1.68) -0.92 -0.92 (-1.01, -0.84)

σX 0.25 1.10 1.09 (0.90, 1.36) 0.23 0.22 (0.17, 0.30)

µY -1 -2.01 -2.01 (-2.30, -1.70) -0.98 -0.98 (-1.09, -0.87)

σY 0.25 1.08 1.07 (0.88, 1.32) 0.28 0.27 (0.21, 0.37)

µXN2
-3 -3.03 -3.03 (-3.14, -2.92)

µYN2
-3 -3.02 -3.02 (-3.13, -2.92)

σXN2
0.25 0.27 0.26 (0.20, 0.36)

σYN2
0.25 0.27 0.26 (0.20, 0.36)

ρN2 0.99 0.99 0.99 (0.98, 1.00)
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Table 3.3 – Comparison of true values and model estimates for validation data

set B.

True Independent Mixture Model Bivariate Mixture Model

Variable Value Mean Median 95% CI Mean Median 95% CI

α0 0.4 0.43 0.43 (0.37, 0.49) 0.40 0.40 (0.33, 0.47)

αX 0.3 0.27 0.27 (0.22, 0.33) 0.30 0.30 (0.23, 0.36)

αY 0.2 0.18 0.18 (0.14, 0.23) 0.21 0.21 (0.15, 0.27)

αXY 0.1 0.12 0.12 (0.09, 0.15) 0.09 0.09 (0.06, 0.14)

µX -2 -1.97 -1.98 (-2.06, -1.89) -1.98 -1.98 (-2.08, -1.89)

σX 0.25 0.27 0.27 (0.22, 0.34) 0.27 0.26 (0.21, 0.34)

µY -2 -2.04 -2.04 (-2.16, -1.92) -1.97 -1.97 (-2.13, -1.81)

σY 0.35 0.32 0.31 (0.25, 0.42) 0.36 0.35 (0.27, 0.49)

µXN2
-1.9 -1.90 -1.90 (-2.10, -1.70)

µYN2
-2.1 -2.13 -2.13 (-2.26, -2.00)

σXN2
0.25 0.31 0.30 (0.20, 0.48)

σYN2
0.25 0.19 0.18 (0.13, 0.30)

ρN2 0.75 0.77 0.80 (0.46, 0.94)

Table 3.4 – Comparison of true values and model estimates for validation data

set C using non-informative prior distributions.

True Independent Mixture Model Bivariate Mixture Model

Variable Value Mean Median 95% CI Mean Median 95% CI

α0 0.4 0.41 0.41 (0.33, 0.50) 0.42 0.42 (0.32, 0.52)

αX 0.3 0.28 0.27 (0.20, 0.35) 0.30 0.30 (0.21, 0.40)

αY 0.2 0.19 0.19 (0.13, 0.25) 0.20 0.20 (0.13, 0.29)

αXY 0.1 0.12 0.12 (0.08, 0.18) 0.08 0.07 (0.04, 0.12)

µX -2 -2.10 -2.07 (-2.47, -1.88) -2.12 -2.09 (-2.55, -1.89)

σX 0.25 0.36 0.34 (0.21, 0.66) 0.34 0.31 (0.19, 0.64)

µY -2 -2.35 -2.31 (-2.98, -1.98) -2.47 -2.40 (-3.46, -1.90)

σY 0.35 0.53 0.48 (0.27, 1.05) 0.65 0.58 (0.31, 1.39)

µXN2
-1.9 -1.59 -1.56 (-1.92, -1.43)

µYN2
-2.1 -1.75 -1.73 (-2.03, -1.66)

σXN2
0.25 0.14 0.12 (0.06, 0.37)

σYN2
0.25 0.09 0.07 (0.04, 0.28)

ρN2 0.75 0.76 0.82 (0.14, 0.99)
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Table 3.5 – Comparison of true values and model estimates for validation data

set C for the bivariate mixture model using weakly informative prior distribu-

tions.

True Bivariate Mixture Model

Variable Value Mean Median 95% CI

α0 0.4 0.44 0.44 (0.34, 0.53)

αX 0.3 0.29 0.29 (0.21, 0.38)

αY 0.2 0.16 0.16 (0.10, 0.24)

αXY 0.1 0.10 0.10 (0.06, 0.16)

µX -2 -2.03 -2.02 (-2.19, -1.93)

σX 0.25 0.23 0.21 (0.14, 0.39)

µY -2 -2.16 -2.12 (-2.64, -1.89)

σY 0.35 0.50 0.43 (0.23, 1.19)

µXN2
-1.9 -1.93 -1.93 (-2.10, -1.78)

µYN2
-2.1 -1.99 -1.99 (-2.14, -1.84)

σXN2
0.25 0.30 0.29 (0.21, 0.45)

σYN2
0.25 0.27 0.26 (0.18, 0.40)

ρN2 0.75 0.85 0.86 (0.64, 0.95)
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Figure 3.2 – Median (red line) and 95% credible intervals (grey dashed lines)

of the marginal posterior distributions inferred using the independent mixture

model and the bivariate mixture model with the target distribution plotted in

blue.
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(c) Validation Data Set C - non-informative

prior distributions
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(d) Validation Data Set C - bivariate mix-

ture model using weakly informative prior

distributions
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It is clear from Figure 3.2a that the bivariate mixture model results in a good de-

scription of the true marginal distributions for data set A, whereas the independent

mixture model struggles to handle the bimodal character of the marginal distribu-

tions. As the independent mixture model tries to fit a single Normal distribution

to the log-residue values, it compensates for the observed bimodality by increasing

the variance, leading to a poor fit as seen in Table 3.2. The model also assumes

that the log-residue data for X and Y are independent and therefore provides no

indication of the correlation. In contrast, the bivariate mixture model provides a

good estimate of the correlation between the log-residue levels (Table 3.2).

Figure 3.2b clearly shows that both models provide a good description of the true

marginal distributions for validation data set B. Although both models provide good

parameter estimates, the independent mixture model results in better estimates for

some parameters and narrower credible intervals than the bivariate mixture model

(Table 3.3). This is because the bivariate mixture model assigns a proportion of

the observed data to four different distributions (untreated, treated with X only,

treated with Y only or treated with both X and Y ) and therefore fewer data are

available to estimate the distribution parameters for each distribution. However the

bivariate mixture model provides a good estimate of the correlation between log-

residue levels which the independent mixture model ignores. Therefore overall the

bivariate mixture model results in a better representation of validation data set B.

For validation data set C, which has a high proportion of values below the LOD,

it is clear from Figure 3.2c that the low number of data has a strong influence on

both models when non-informative prior distributions are used. For the bivariate

mixture model it means that the estimate of the proportion of data that are not

treated and the marginal posterior distributions for X and Y are more uncertain

than for validation data set B. In addition, the mean and median estimates of the

correlation are reasonable but the credible interval is wider than for validation data

set B. The independent mixture model performs slightly better than the bivariate

mixture model in terms of estimating the distribution parameters (Table 3.4) for
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the same reasons explained for validation data set B. Overall the bivariate mixture

model results in a better representation of validation data set C because it takes

the correlation between the log-residue values into account. However as there are

few data available it is interesting to investigate if the bivariate mixture model can

be improved by using more informative prior distributions. Figure 3.2d shows that

using weakly informative prior distributions improves the estimates of the model

parameters and reduces the uncertainty about them. Therefore it would be advis-

able to incorporate any relevant information available into the prior distributions to

improve the model performance.

To assess in more detail how well the bivariate mixture model describes the cor-

relation, we generate log-residue level predictions from the posterior distributions.

These samples are shown together with the validation data sets A, B and C in Fig-

ure 3.3. For data sets A and B, the predictions closely follow the observations. For

data set C it is harder to assess the performance as there are fewer data available.

However, the model appears to do well using both the non-informative and weakly

informative prior distributions.

3.6.2 Comparison with current approaches

In this section we will compare the new approaches with the current approaches

for cumulative risk assessments (see Section 3.3) using the validation data sets A,

B and C. We have described the method from Paulo et al. (2005) previously so

here we only briefly illustrate how the pairwise and independent empirical sampling

approaches are applied to data using validation data set C. Bootstrap approaches

are used to account for uncertainty about the log-residue levels. We will now re-

fer to these methods which use bootstrapping of the empirical distribution of the

log-residue data as pairwise and independent bootstrap. Figure 3.4 shows the pre-

dictive distribution when values below the limit of determination were set to zero

(i.e. untreated) for each bootstrap method. The resulting samples do not reflect the

information from the validation scenario (see Table 3.6). If we had instead set all

values below the LOD to (a proportion of) the LOD (0.01 for both X and Y ), all the
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Figure 3.3 – Predictive sample (dark blue dots for predictions ‘treated’ with

both pesticides, light blue dots for predictions ‘treated’ with X only, green

dots for predictions ‘treated’ with Y only) obtained from applying the mixture

model to the validation data sets (red circles). Samples from the univariate

components are plotted along the axes. Red dashed lines indicate the LOD

where applicable.
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Figure 3.4 – Predictive empirical bootstrap samples for validation data set C.

The percentage next to each sample indicates the percentage of the samples at

that residue value. Labels for values which were sampled less frequently than

0.9% are omitted for clarity.
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Table 3.6 – Comparison of true proportions of units having received a certain

treatment type and predictions of those proportions using the pairwise and

independent bootstrap approaches for validation data set C.

Treatment True Proportion Pairwise Bootstrap Independent Bootstrap

Untreated 0.4 0.86 0.83

X 0.3 0.06 0.09

Y 0.2 0.04 0.07

X and Y 0.1 0.04 0.01

samples would have been assumed to be treated with both pesticides, which does

not reflect the information we have from the validation scenario either (10% (true

values) vs 100% (both bootstrap approaches) treated with X and Y ). This shows

that empirical bootstrap approaches cannot deal with censored data very well as the

censored data will have to be set to 0, the LOD or a fraction of the LOD. Another

issue with using the empirical distribution is that it is very unlikely that only 15

(pairwise) or 99 (independent) distinct sets of values are possible and that residue

levels will not be higher than the highest observation. The independent bootstrap

approach cannot be used to model correlations in residue levels. The pairwise boot-
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strap approach may provide a good estimate of the correlation for large data sets

with little or no censoring but will not be suitable for residue data sets where there

are often few positive residue data values. Comparing the results with the predictive

distributions from the bivariate mixture model (Figures 3.3c and 3.3d) shows that

the bivariate mixture model allows a larger number of distinct values and accounts

for the uncertainty in the correlation and distribution parameter estimates caused

by the small number of samples and high levels of censoring and therefore provides

a better description of the data.

Marginal posterior cumulative distribution functions for all the methods (bivariate

mixture model, independent mixture model, Paulo et al. (2005) and the indepen-

dent and pairwise bootstrap) are shown in Figures 3.5 and 3.6. As the marginal

distributions for the pairwise and independent bootstrap are very similar, we only

display the independent case. For validation data set A, the independent mixture

model and Paulo et al. (2005) both perform poorly because they cannot describe

the bimodal nature of the target distribution. The bivariate mixture model and

bootstrap approaches appear to do better. However the independent bootstrap as-

sumes that pesticide residue levels are independent and therefore will not provide

an estimate of the correlation in residue levels. The pairwise bootstrap will provide

a good estimate of the correlation and the uncertainty of the correlation coefficient

because there is no censoring. However the bivariate mixture model seems to be the

best approach of those tested because it provides an estimate of the uncertainty of

the correlation coefficient of log-residue levels and it allows values other than those

observed in the data set to be sampled.

The results for validation data set B show that all methods perform well for this

data. The bivariate mixture model and independent mixture model are less uncer-

tain than the Paulo et al. (2005) and bootstrap approaches due to the use of the

GB PUS data. Again the bivariate mixture model and pairwise bootstrap are the

only methods to provide an uncertain estimate of the correlation coefficient.

For the heavily censored validation data set C, the bivariate mixture model provides

an acceptable estimate of the true marginal distribution when using non-informative
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Figure 3.5 – Median (red line) and 95% credible intervals (grey dashed lines) of

the marginal posterior distributions for validation data sets A and B inferred

using various methods with the target distribution plotted in blue.
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(b) Validation Data Set B
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Figure 3.6 – Median (red line) and 95% credible intervals (grey dashed lines)

of the marginal posterior distributions for validation data set C inferred using

various methods with the target distribution plotted in blue.
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(b) Bivariate mixture model with weakly informative prior distributions
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prior distributions and an improved estimate when using weakly informative prior

distributions. The marginal distributions of the independent mixture model look

reasonable but the method incorrectly assumes independence between log-residue

levels of X and Y and therefore does not provide a good description of the under-

lying distributions. As the Paulo et al. (2005) method does not make use of PUS

data, it results in very uncertain estimates of the marginal distributions. It also

does not account for any correlations between pesticide residues. The performance

of the bootstrap approaches is very poor, regardless of whether the censored data

are considered to be untreated or set to a proportion of the LOD. As the bootstrap

approaches also underestimate the uncertainty in the correlation for validation data

set C (see Figure 3.4), other methods may be a better choice when analysing data

sets which are heavily censored.

Overall, to describe the variation in log-residue levels in composite monitoring data,

the bivariate mixture model seems to provide the best description of the data sets

used in this section, particularly if expert knowledge is available to define the prior

distributions. The independent mixture model performs well for unimodal distri-

butions and is applicable when there is no evidence of correlations between the

log-residue levels. The use of PUS data results in a reduction of the uncertainty so

whenever PUS data are available, they should be considered to provide an initial

estimate of treatment proportions. Empirical bootstrap approaches seem to provide

a reasonable estimate when large data sets are available that do not contain any

censored data. As this is unlikely to be the case when modelling log-residue levels,

empirical bootstrap approaches may be inappropriate for modelling residue levels.

3.7 Case Study

In this section we show the results of our new approaches for triazoles which are a

group of chemicals used as fungicides on carrots. To apply the proposed approaches

in a case study, we need monitoring data on residue levels on carrots and PUS data

on pesticide treatments for carrots. For this case study, monitoring data on car-
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Table 3.7 – Summary of UK monitoring data for carrots for triazoles Difeno-

conazole (D) and Tebuconazole (T). Values within brackets provide the num-

ber of times a value was observed.

D T Number of samples Proportion

<LOD <LOD 68 0.71

0.03 <LOD 1 0.01

<LOD 0.01 (10), 0.02 (9), 26 0.27

0.03 (2), 0.04 (4),

0.06 (1)

0.01 0.01 1 0.01

rots from the UK for the triazoles difenoconazole (D) and tebuconazole (T) were

obtained from PRC reports for 2008 (PRC, 2008; PRC, 2009) and are summarised

in Table 3.7. Out of 96 values, only 1 sample contained residue levels above the

LOD of both D and T and in total only 28 samples had detectable values. The PUS

data from 2007 for carrots (Fera, 2011) indicate that 46.1% of carrot fields are not

treated with any triazoles, 5.3% are treated with D, 33.4% are treated with T and

15.3% are treated with D and T.

We ran the independent mixture model and the bivariate mixture model on the

carrot data using the non-informative prior distributions described in Table 3.1 and

with differents weights, w, which reflect our belief in how representative the PUS

data are for the residue data set. The marginal posterior distributions for D and T

are shown in Figure 3.7 and the posterior distributions for the weights α are shown

in Figure 3.8. As only one observation was available with residue levels above the

LOD for both D and T, the only information the model has about the variation in

residue levels for samples treated with both D and T comes from the choice of prior

distribution. As the chosen non-informative prior distribution did not suggest large

variation for samples treated with both D and T, the bivariate mixture model has

a sharp peak at 0.01 for both D and T. One could argue that this is unreasonable,

but a counterargument would be that we have not observed any variation in the

monitoring data, so there is no evidence to support large variation in the bivariate

Normal distribution. If there was evidence from other sources, this should be in-
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Figure 3.7 – Median (red line) and 95% credible intervals (grey dashed lines)

of the marginal posterior distributions of D and T for both the independent

and bivariate mixture models applied to the UK carrot data set with different

prior weights, w, for the GB PUS data.
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(c) w = 10
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cluded in the analysis by using a different prior distribution. The peaks seen in the

bivariate mixture model are not seen in the independent mixture model because in

the latter a single distribution is used to describe all the data for D and another

distribution is used for T.

The low number of positive data values means the results depend strongly on the

choice of the prior distributions. Therefore it is important that the chosen prior

distributions reflect our beliefs. It is clear from Figure 3.8, where we show posterior

weights α, that the stronger our belief in the treatment probabilities from the GB
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Figure 3.8 – Median (dots) and 95% credible intervals of the posterior weight

distributions, α, for both the independent (red line) and bivariate (green line)

mixture models applied to the UK carrot data set with different prior weights,

w, for the GB PUS data (blue line).
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PUS data, i.e. the higher the value of w, the lower the uncertainty about the prob-

abilities α. This is because if w = 1000, the prior sample size has more influence on

the posterior distribution of α than the data sample size of 96. When w is smaller

the data drives the model leading to values of α that are less influenced by the

evidence provided by the PUS data. This can be seen in the results for the bivariate

mixture model where for w = 1000 the posterior distributions of α are in agreement

with the PUS values. For w = 10 and w = 100 the posterior estimates of α are

influenced by both the PUS data and the log-residue data. Therefore it is important

to use a value for w that reflects our belief in how representative the PUS data are of
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the proportion of samples receiving a certain treatment. For the independent mix-

ture model, the posterior distribution for α does not follow the PUS data estimates

for any value of w as a result of the assumption that the distributions for D and

T are independent. Since we do not know what the true values are for any of the

model parameters, we cannot assess the model performance and therefore we do not

compare the results with current approaches.

3.8 Extension of model to predict unit residue

levels

The approaches presented in this chapter offer improved modelling of pesticide

residues in composite samples. However, for an acute dietary risk assessment, we

need a model that can also simulate correlations in residue levels between units.

Little information is available about how composite samples are generated and a

composite sample could consist of units that come from fields that have received

different treatments. For example, for a composite sample consisting of 5 units, it is

unknown whether a sample consists of 5 units from a single field treated with just a

single pesticide or a range of pesticides, 5 units from different fields treated with a

single (but possibly different) pesticide or 5 units from different fields treated with

a range of pesticides.

We first show that information on correlations on residue levels between compos-

ite samples may provide little information on the correlations on residue levels in

units using an example. In Table 3.8 we consider three simulated composite sam-

ples. The unit correlations are 0.01 for the units in composite sample 1, 0.01 for the

units in composite sample 2 and 0.02 for the units in composite sample 3. However,

the correlation coefficient for the three composite samples 1, 2 and 3 is 0.99. If

we sort the columns to induce high correlations between the units, the correlation

coefficient for the composite samples will stay the same. This indicates that knowl-

edge of the correlations in the composite samples may not provide any information

on unit correlations. Therefore, to model correlations in unit residues, we propose
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Table 3.8 – Simulated unit residue level data used to explain the limited relation-

ship between correlations in unit residue levels and correlations in composite

sample residue levels.

Composite 1 Composite 2 Composite 3

Units X Y X Y X Y

1 2.1 3.3 0.9 1.8 5.1 2.1

2 2.5 8.2 1.7 6.1 4.8 11.9

3 3.8 3.5 2.6 2.4 8.0 6.7

4 3.5 5.7 2.5 4.0 5.7 8.1

5 5.5 6.5 3.7 4.9 8.4 5.8

6 5.9 5.0 3.8 3.2 7.9 4.6

7 6.5 7.2 4.7 5.3 9.4 9.6

8 7.9 4.5 5.6 2.8 9.9 6.1

9 8.6 8.7 6.2 6.4 9.2 9.6

10 9.4 2.7 7 1.4 12.5 7.1

Composite Residue Level: 5.6 5.5 3.9 3.8 8.1 7.2

Unit Correlation: 0.01 0.01 0.02

Composite Correlation: 0.99

the following solution. Firstly, model correlations in composite samples to gener-

ate composite residue levels for dietary modelling and then model unit variation

using various scenarios (see Table 3.9). If there is at least some variation between

unit residue levels (Scenarios A, B, D, E and F in Table 3.9), we could model the

correlations in residue levels using multiple scenarios. This seems to be the only

feasible solution when little is known about unit residue levels in units available on

the market. Depending on the selected scenario, unit residue levels can be generated

by assigning all residues to a single unit (Scenarios A and B), assigning the same

residue level to every unit (Scenario C) or by assigning different residue levels to

each unit (Scenarios D-F). For Scenarios D-F, the level of heterogeneity, which is a

measure of how much variation there is likely to be between units in a composite

sample, has to be chosen and unit values will be sampled in each iteration of the

Monte Carlo procedure. This could easily be implemented in current dietary risk as-

sessment software by adding a heterogeneity variable. Once the values are sampled,
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Table 3.9 – Scenarios for unit variation modelling based on composite residue

values 10 and 20 for pesticide X and Y, respectively, which consist of 5 units

all assumed to be of equal weight. The numbers presented here represent a

single iteration in a Monte Carlo simulation.

Residue on a single unit All units treated

Scenario A: Scenario B: Scenario C: Varying concentration

one unit

treated with

both pesticides

different units

treated with a

single pesticide

same

concentration

on each unit

Scenario D:

independent

Scenario E:

strong positive

correlation

Scenario F:

strong negative

correlation

X Y X Y X Y X Y X Y X Y

50 100 50 0 10 20 2.5 2.5 2.5 2.5 2.5 45.5

0 0 0 100 10 20 3.5 9 3.5 9 3.5 28.5

0 0 0 0 10 20 7 45.5 7 14.5 7 14.5

0 0 0 0 10 20 12 28.5 12 28.5 12 9

0 0 0 0 10 20 25 14.5 25 45.5 25 2.5

rank correlations can be induced according to the chosen scenario. If the choice of

scenario has a significant impact on the outcome of the dietary risk assessment, one

could consider measuring residue levels on units to obtain a better understanding

of which of the unit modelling scenarios is most likely to reflect the distribution

of residue levels on units. As this is likely to vary between analyses the scenario

approach provides a pragmatic way of exploring the possible residue levels on unit

food items.

3.9 Discussion

This chapter discussed various techniques to model pesticide residue levels for cu-

mulative exposure assessments and introduced two new approaches that are able to

combine information on pesticide usage with data on residue levels from monitoring

programmes. One of the new approaches is also able to account for correlations in

residue levels in composite samples. The approaches have been tested alongside al-

ternative approaches in a series of validation studies (see Section 3.6.2). The results

of these validation studies indicate that the bivariate mixture model offers a more

flexible way of describing residue levels of multiple pesticides in food products which

can be used in cumulative risk assessments. The bivariate mixture model is the only
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method that provides an accurate estimate for the correlation in log-residue levels

whilst accounting for uncertainty when there is high censoring and few data values.

The independent mixture model provides a good estimate if the log-residue levels

are independent. Both models seem to provide a better description of the target

distribution in comparison with existing approaches. When there are high levels

of censoring, e.g. validation data set C, the use of informative prior distributions

seems to provide a transparent approach for predicting residue levels in food items

which allows for an assessment of the impact of choosing different prior distribu-

tions. For example, the PUS data were used to inform the prior distributions of the

proportion of composite samples that have received a certain treatment. This led

to both proposed mixture models providing a better description of residue levels in

composite samples than existing approaches when censoring levels are high. The

PUS data could also be used to assess whether pesticide combinations were applied

in a tank mix or not, to help inform the prior distribution on correlations.

The bivariate mixture model presented in this chapter is based on mixtures of uni-

variate and bivariate Normal distributions. As the number of parameters increases

considerably for more than two pesticides, it is clear that they cannot be estimated

reliably from the limited number of monitoring data that is generally available. As a

result, any attempt to model the cumulative exposure for more than two pesticides

will have to rely heavily on assumptions, e.g. by eliciting prior distributions from

experts, collecting larger data sets than are currently available and/or reducing the

number of parameters as discussed in Section 3.5.3.

When modelling the acute dietary risk associated with pesticide exposure, we need

to be able to estimate residue levels on individual items. Currently, dietary risk as-

sessments ignore whether units in composite samples originate from the same field

or multiple fields because there is little information available. In the absence of data

on how units are mixed before they are consumed, we have suggested a scenario-

based approach (Table 3.9), but more work is needed to assess which of the proposed

scenarios are realistic.
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Despite issues related to the residue data available for dietary risk assessment for

pesticides (see Section 1.4.1.1), which cause problems for all available methodolo-

gies, both approaches presented in this chapter make better use of the available

data. Both mixture models performed well in validation studies in comparison with

other available techniques and offer promising alternatives which could improve the

modelling of cumulative dietary exposure.



Chapter 4

Modelling unit variation in residue

data

4.1 Introduction

To assess the risk associated with acute exposure to pesticide residues, we need in-

formation on residue levels on unit food items. However, unit residue data are not

routinely collected as part of the pesticide registration process. Therefore in current

acute dietary risk assessments unit variation is modelled using a variability factor

(see Section 1.3.3) which has been derived using data from field trials for other crops

and chemicals (EFSA, 2005). For probabilistic risk assessments, a distributional form

needs to be selected to describe the variation in unit residue levels. EFSA (2012)

recommend the use of a Lognormal distribution, but also provide evidence that the

Lognormal distribution may not always be appropriate to describe the variation in

unit residue levels.

In this chapter we introduce a novel non-parametric Bayesian approach which pro-

vides a distribution of unit residue levels, which may be a better alternative to

the commonly used Lognormal distribution. The approach aims to determine the

location, scale and shape of log-residue distributions whilst accounting for the un-

certainty of these parameters. To overcome the issue with the relatively small size

133
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of unit log-residue data sets, the shape of the distribution will be determined by

sharing information between various data sets, by assuming that they share a com-

mon shape. The shape of a probability distribution is determined by (a set of)

parameter(s) that are neither location or scale parameters or functions thereof. The

distribution shape is modelled using a Dirichlet Process mixture model (see Section

2.3.5). After specifying the model, we briefly explain the challenges associated with

applying the model to log-residue data. The method is then tested in a wide range

of simulation studies to assess the performance for different distributions and sam-

ple sizes before being applied to log-residue data. Finally, we compare the method

to the current approach for describing the variation in unit log-residue levels and

investigate some model refinements.

4.2 Model

In this section, we propose a novel statistical method that uses non-parametric

Bayesian techniques to (a) move away from an assumption of Lognormality and (b)

share knowledge from multiple data sets to learn about the distribution shape for all

the pesticide/crop scenarios under consideration. The new approach is fundamen-

tally based on the observation that populations may share certain characteristics

(e.g. shape) whilst others (e.g. location, scale) will be population-specific. Even

when sample sizes for the individual populations are considered to be too small to

define the shape distribution, we can still use the data to learn about their locations

and scales. Subsequently, we can use these characteristics to relocate and rescale

(i.e. normalise) the data and pool them to obtain a larger data set from which we

may be able to learn other, common characteristics, for example the distribution

shape.

For our application this means that instead of analysing each pesticide/crop sce-

nario individually, a common shape can be used for pooled log field trial data sets.

This assumption is supported by an analysis of available unit field trial data (Am-

brus, 1979; Ambrus, 1995; Ambrus, 2006; Holland and Malcolm, 2002; Kaethner,
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2001a; Kaethner, 2001b; Tew, 1993; Valdez-Flores et al., 2002; Xu et al., 2008)

which showed that the location (e.g. median) and scale (e.g. range) of log-residue

data vary considerably between pesticide/crop scenarios. The analysis also indi-

cated that there may be a common shape that is shared between several scenarios

although possibly more than one shape may be needed to describe all scenarios. The

advantage of sharing information between pesticides/crops is that more information

will be available to estimate the shape of the distribution. As current approaches

commonly assume that log pesticide residue distributions share a common Normal

shape, an approach in which the common shape is learned from the log-residue data

rather than selected for pragmatic reasons seems to be an improvement.

The model developed in this chapter uses a blocked Gibbs sampler which alter-

nates sampling location and scale parameters for each data set with sampling a

common shape distribution for the pooled, normalised log-residue data. Figure 4.1

shows an overview of one iteration of this blocked Gibbs sampler for three fictitious

pesticide log-residue data sets. After taking logs of the unit residue data, we sample

a location and scale parameter from the posterior distribution of each of the three

pesticides in each iteration (given the log-residue data and current realisation of

the shape distribution). These will then be used to normalise the log-residue data.

After pooling this normalised data, a new realisation of the shape is sampled from

the posterior shape distribution (given the log-residue data and current location and

scale parameters). This Bayesian approach will account for the uncertainty of the

distribution parameters caused by the limited size of the data sets. When these steps

are repeated we will ultimately obtain an uncertain distribution over distributions

of pesticide log-residues.

We use a Dirichlet Process Mixture of Normal distributions (DPMN; see Section

2.3.5) to learn about the shape of the log-residue distribution. This may provide a

better way to describe pesticide log-residue levels on unit food items than simply

assuming a Normal distribution.
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Figure 4.1 – Graphical overview of the proposed blocked Gibbs sampler to de-

scribe variation in unit log-residue levels. In each iteration, the fictitious

pesticide log-residue data sets (3 in this example) will be normalised using a

sample from the posterior distribution of their location and scale parameters

given the current shape distribution. Subsequently the normalised data will be

pooled to obtain a single shape distribution given the current location and scale

parameters. After n iterations, we will obtain n samples from the posterior

distributions of the location, scale and shape parameters.

The shape, location and scale parameters will together define the distribution of

pesticide log-residue levels on units for existing pesticide/crop data sets. This dis-

tribution can either be used to infer a more realistic estimate of the variability factor

or to model unit variation if a second model is available to model the distribution

of field means, as explored in Chapter 5.
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4.2.1 Inference for the distribution shape

In this section, we discuss how to model the distribution shape of log-residues with

a DPMN model. DPMNs offer a flexible approach to distribution fitting which as-

sumes that the observed data set is a random sample from a population distribution

that consists of a mixture of an infinite number k = {1, 2, . . . } of Normal distribu-

tions, N (θk, σ
2
c ), each with relative weight wk, where θk is the location parameter

of component k and σ2
c is the fixed variance for all of the components. We select

Normal distributions for the components because this leads to a simple conjugate

Bayesian update of the distribution parameters. DPMN models have mostly been

used to describe the population distribution given an observed data set (Escobar

and West, 1995; Ishwaran and Zarepour, 2000; Neal, 2000; Papaspiliopoulos and

Roberts, 2008). However, in the model presented here, we want to use the DPMN

model to describe the shape of the unit log-residue distribution. As a consequence,

we want the location and scale parameters of the DPMN to be zero and one respec-

tively. This will have an impact on both the DPMN itself and the prior distribution,

G0, which we will discuss in the next two sections.

4.2.1.1 Relation between location, scale and shape parameters

In the approach presented here, the data ỹ will be the pooled normalised unit log-

residue data for J pesticide/crop combinations. This pooled data, ỹ, will be used

to infer the distribution shape using a DPMN model. Applying a standard DPMN

model would not restrict the location and scale parameters so we instead use a dif-

ferent approach to ensure that the prior shape distribution has location and scale

parameters of approximately zero and one, respectively. To do this we split the

Dirichlet Process into three separate processes on the intervals (−∞,−φ), (−φ, φ)

and (φ,∞), where the first and last intervals have probability p and the middle

interval has probability 1 − 2p. If we define φ as a quantile of the distribution, we

automatically obtain p. A convenient choice would be to map −φ onto the lower

tertile and φ onto the upper tertile. This way, each of the three Dirichlet Processes

has a probability of a third. The choice of tertiles seems logical because the shape
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distribution can be divided into three parts with equal probability and tertiles are

relatively robust statistics to estimate, i.e. they are not affected as much by outliers

as more extreme quantiles, while also being able to capture the scale of the data.

Now we need to define the location and scale parameters, µj and σj, of the distribu-

tion for data set j as a function of φ in such a way that the normalised log-residue

data will have location zero and scale one. If Q
i
3
j are the ith tertiles of the jth

log-residue data set we can ensure that the scale for the jth data set is one using:

σj =
Q

2
3
j −Q

1
3
j

2

To centre the normalised shape distribution around 0 we use:

µj =
Q

2
3
j +Q

1
3
j

2

Thus Q
2
3
j = µj + σj for each log-residue data set, the first tertile of each of the

normalised log-residue data sets is -1 and the second tertile is 1.

4.2.1.2 Prior distribution G0 and consequent calculations

Now that the location and scale parameters, µj and σj, are defined we need to infer

the distribution shape using the DPMN model. If nj defines the number of data for

each pesticide/crop population j, the first step is to normalise the log-residue data

yij with i = 1, ..., nj for the jth pesticide/crop data set:

ỹij =
yij − µj
σj

(4.1)

Then we can pool the normalised log-residue data ỹ = {ỹ11, . . . , ỹnjJ} where J is

the number of pesticide/crop populations for which we have data. We need to select

a prior distribution G0, where G0(θ) = F (θ;µ0, σ0), for the location parameters of

the Normal components, θk. We will discuss two possible distribution shapes for F

below, but first we focus on the prior location and scale parameters µ0 and σ0 and

the fixed component variance σ2
c . The selection of values for µ0, σ0 and σ2

c is critical

for the performance of the model. Given that the log-residue data that will be used

in the model are normalised and will approximately have location zero and scale
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one, it seems logical to set µ0 = 0. If we assume F is a N (µ0, σ
2
0) distribution, we

have:

θk ∼ N (µ0, σ
2
0)

ỹij|Kij = k ∼ N (θk, σ
2
c )

where Kij is an index parameter, indicating which component ỹij is assigned to. If

we set µ0 = 0, we need to select σ0 in such a way that a-priori the first and second

tertiles of ỹ will be at -1 and 1, respectively. If we assume that σc = 0, i.e. all

the observed variation in ỹ is a result of variation in the location parameters of the

Normal components, we can define σ0 in such a way that the following condition is

true:
Φ−1(2/3; 0, σ2

0)− Φ−1(1/3; 0, σ2
0)

2
= 1

where Φ−1(p;µ, σ2) is the inverse of the cumulative Normal distribution. Due to

symmetry, this can be rearranged to result in:

σ0 =
1

Φ−1(2/3; 0, 1)
≈ 2.32

Instead of assigning this variance to the prior distribution, G0, we can use this value

as the total observed variance. Then, to define the variance, σ2
0, of G0 assuming that

the component variance parameters, σ2
c , are fixed but non-zero, we can make use

of the fact that the observed variance is the sum of the variance of the component

locations, σ2
0, and the component variance, σ2

c :

σ2
observed = σ2

0 + σ2
c

We now define κ as a factor indicating the proportion of σobserved that is assigned to

the Normal components:

σc = κσobserved

=
κ

Φ−1(2/3, 0, 1)

and the proportion that is assigned to σ0:

σ0 =
√
σ2
observed − σ2

c

=

√
1− κ2

Φ−1(2/3, 0, 1)
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We can either define κ, σc or σ0 given the predefined tertiles. Of these three, it is

easiest to define κ as it is a value on the interval [0, 1]. Note that the derivation

above is equally valid for other symmetric prior distribution shapes for G0. When

G0 is not a Normal distribution we need to set the parameters of G0 in such a way

that the normalised log-residue data, ỹ, generated from a N (θk, σ
2
c ) distribution

with θk ∼ G0(µ0, σ
2
0) have location parameter zero and scale parameter one. This

can easily be achieved by selecting σc and using a numerical solver to find the value

of σ0 that leads to tertiles of ỹ at -1 and 1.

Even though DPMN models allow σc to be uncertain (i.e. to be inferred from

observations) and to vary between components, the restriction of having a scale

parameter of approximately one for the shape distribution, means that we assume

σc is fixed and known. It is important to realise that the model as defined above will

result in some leaching of probability beyond the tertile borders as the infinite tails

of the Normal components will stretch beyond them. This will result in the scale of

the shape distribution not being precisely equal to one, but this is accounted for in

the sampling of the pesticide/crop scale parameters σj.

Choice of prior distribution G0

Several functional forms are available for G0. In the following sections we will explore

the Normal and Student’s t distributions as prior distributions for θ.

N (µ0, σ
2
0) prior with known σ0

The case with G0(θ) = N (θ;µ0, σ
2
0) has already been mentioned above, but will

be discussed here in more detail for completeness. Let us define a Normal prior

distribution, π(θk), for each location parameter, θ1, . . . , θC , with mean, µ0, and

variance, σ2
0:

π(θk) = N
(
θk;µ0, σ

2
0

)
After assigning the normalised log-residue data ỹ = {ỹ11, . . . , ỹnjJ} to one of the

Normal components k = 1, . . . , C with location parameter, θk, and known standard
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deviation, σc, the likelihood function becomes:

p(ỹ|θ,K) ∝
J∏
j=1

nj∏
i=1

σ−1
c exp

[
− 1

2σ2
c

(ỹij − θKij)2

]
(4.2)

As this factorises, we can regard each component location, θk, in turn and focus

on a subset of the data ỹ[k]|K where ỹ[k] are those values of ỹ that are currently

allocated to component k. The likelihood function is given by:

p(ỹ[k]|θ,K) ∝ σ−mkc exp

[
− 1

2σ2
c

J∑
j=1

nj∑
i=1

δKij ,k(ỹij − θk)2

]

where δi,j is the Kronecker delta function and the number of data allocated to

component k, mk, is given by :

mk =
J∑
j=1

nj∑
i=1

δKij ,k (4.3)

The posterior distribution is now given by:

p(θk|ỹ,K) = N

(
θk;

µ0σ
2
c + σ2

0

∑J
j=1

∑nj
i=1 δKij ,kỹij

σ2
c +mkσ2

0

,
σ2

0σ
2
c

σ2
c +mkσ2

0

)
(4.4)

Thus using a Normal prior distribution for θk leads to a simple conjugate update

once the normalised data have been allocated to the components. When many data

are allocated to component k, the component becomes approximately fixed in that

location. For components to which no data are assigned, i.e. mk = 0, the locations

follow the prior G0, θk ∼ N (µ0, σ
2
0).

Student’s tν prior

When there is evidence to suggest that the shape distribution has longer tails than

a Normal distribution, it may be better to use a Student’s t distribution with ν

degrees of freedom. The Student’s t distribution can be represented as a mixture of

a Normal distribution and a Gamma distribution:

p(θk|ν, µ0, σ
2
0) =

∫ ∞
0

N
(
θk;µ0,

σ2
0

λ

)
Gamma

(
λ;
ν

2
,
ν

2

)
dλ

=
Γ
(
ν+1

2

)
σ0

√
νπΓ

(
ν
2

) {(θk − µo)2

νσ2
0

+ 1

}− ν+1
2
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Note that σ0 can be selected to ensure that tertiles, which are affected by both

the component variance σ2
c and the scale parameter σ2

0 of G0, are at -1 and 1 as

described previously. If we assume a Student’s t prior distribution for the location

parameter, θk, of each component k, the standard approach to generate samples

from the posterior distribution of θk would be to use:

p(θk|ỹ) ∝ p(ỹ|θk)
∫ ∞

0

p(θk|λk)p(λk)dλk

where λk is the prior precision parameter for each component. Let us assume that

θk|λk, µ0, σ0 ∼ N
(
µ0,

σ2
0

λk

)
, resulting in the following prior distribution for C com-

ponents:

π(θ,λ) = π(θ1, . . . , θC , λ1, . . . , λC)

∝
C∏
k=1

N
(
θk;µ0,

σ2
0

λk

)
Gamma

(
λk;

ν

2
,
ν

2

)
Using the likelihood function (Equation 4.2) we obtain the posterior distribution:

p(θ,λ|ỹ,K) ∝
C∏
k=1

N
(
θk;µ0,

σ2
0

λk

)
Gamma

(
λk;

ν

2
,
ν

2

) J∏
j=1

nj∏
i=1

σ−1
c exp

[
−

(ỹij − θKij)2

2σ2
c

]
This factorises, so it is easier to focus on each of the C components individually:

p(θk, λk|ỹ,K) ∝ N
(
θk;µ0,

σ2
0

λk

)
Gamma

(
λk;

ν

2
,
ν

2

)
exp

[
−
∑J

j=1

∑nj
i=1 δKij ,k(ỹij − θKij)2

2σ2
c

]
(4.5)

The posterior of θk can be obtained by integrating Equation 4.5 over λk, but an

easier solution is to retain the auxiliary variable λk and sample from p(λk|θk, ỹ,K)

and p(θk|λk, ỹ,K) using the following Gibbs sampler:

p(λk|θk, ỹ,K) = Gamma

λk; ν + 1

2
,
ν +

(
θk−µ0
σ0

)2

2


p(θk|λk, ỹ,K) = N

(
θk;

µ0λkσ
2
c + σ2

0

∑J
j=1

∑nj
i=1 δKij ,kỹij

mkσ2
0 + λkσ2

c

,
σ2

0σ
2
c

mkσ2
0 + λkσ2

c

)

If the number of data assigned to a component is very large, the posterior distribu-

tion of θk will approach N
(∑J

j=1

∑nj
i=1 δKij,kỹij

mk
, σ

2
c

mk

)
for small ν.
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4.2.1.3 Controlling smoothness

Effect of γ

Using a DPMN model requires the selection of a concentration parameter γ. This

can be considered as a prior sample size which controls the extent to which samples

from a Dirichlet Process reflect the prior distribution G0. It is therefore important

to compare the value of γ to the pooled sample size
∑J

j=1 nj. As the approach

presented in this chapter consists of a DPMN model for each tertile, the model uses

a prior sample size of γ/3 for each tertile.

We explained in Section 2.3.2.7 how γ affects the behaviour of the Dirichlet Process:

the smaller γ, the more weight will be given to a few components in the Normal

mixture. For γ → 0, the posterior distribution resembles the data, almost becoming

a step function. For γ ≈
∑J

j=1 nj the posterior distribution is a mixture of the prior

distribution G0 and the population distribution from which the sample was taken

and for γ >>
∑J

j=1 nj, the posterior distribution resembles G0. The reason for this

is that for larger γ, more of the components in the Normal mixture distribution

will have non-zero weights. In addition, the few data that are assigned to each

component k have a minimal effect on the weight wk as γ +mk ≈ γ.

Effect of κ

The smoothness of the DPMN is also affected by κ, a parameter on the interval [0, 1],

which determines the standard deviation of the Normal components in the mixture

distribution (see Section 4.2.1.2). If κ is large then all the component locations, θk,

will tend to be close to µ0 and the shape distribution will tend to be close to the

prior distribution, N (µ0, σ
2
0). If κ is small then the components, k, will have a small

variance, σ2
c , and as a result, the shape distribution will not be as smooth. Figure 4.2

shows the results of simulation studies where 100 values were sampled from a mix-

ture of two Normal distributions, p(y) = p×N (y;−1, 0.52)+(1−p)×N (y; 0.5, 0.252)

with p = 0.3 and a DPMN model was used with G0(θ) = N (θ; 0, σ2
0), γ = 10 and

κ equals 0.001, 0.25, 0.5 and 0.999, respectively. The larger the value of κ, the

smoother the distribution is, however, if κ is too large, e.g. κ = 0.999, the model
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will not be able to describe peaks. Therefore the choice of κ will depend on the

application.

Figure 4.2 – Results of simulations using 1000 samples from a Normal mixture

distribution (p(y) = p×N (y;−1, 0.52)+(1−p)×N (y; 0.5, 0.252) with p = 0.3)

with γ = 10 and varying κ. The population distribution is displayed as a blue

line and a kernel density estimate is represented by a green line. The red line

represents the median estimate of the population distribution and the dashed

grey lines show the 95% credible interval.
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(b) κ = 0.25
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(c) κ = 0.5
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(d) κ = 0.999
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In many applications, one wants a relatively smooth distribution that can still ac-

count for any existing non-smooth areas of the population distribution. In these

applications, gaps in the data are considered to be a result of the sampling proce-

dure, for example, because few data were collected or because data were reported

as rounded figures. However, in applications where one would only expect certain
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values to appear and gaps in the data are likely to be real, smoothing the posterior

distribution would result in incorrect inferences. We explore the effect of κ in multi-

ple simulation studies in Section 4.3. It is clear from these studies that κ has a clear

effect on the smoothness of the distribution and on the fit. In many applications,

we will not have much information on the expected smoothness of the population

distribution and there will be no ‘true’ population distribution that we can use to

compare results against. Therefore, the analyst will have to decide what level of

smoothness is considered reasonable. The results of the simulation studies in this

chapter provide some guidance on the effect of κ on the smoothness of the posterior

distribution for our model and which values for κ could be considered appropriate

for our application of log-residue data.

Effect of γ and κ together

Now that we have determined that both κ and γ can act as smoothing parameters,

we need to assess how they work together. If κ → 1, the influence of γ becomes

limited as it does not matter whether the shape distribution consists of a mixture of

N (µ0, σ
2
0) distributions where one distribution has the vast majority of the weight or

a mixture of manyN (µ0, σ
2
0) distributions where the weights are spread more equally

across the distributions. Small γ will result in one (or a few) component(s) in the

mixture having most of the weight. Large γ will spread the weight over multiple

components. Either way, the posterior distribution will barely be influenced by the

data. If κ→ 0, γ will have a larger influence: for small γ the posterior distribution

will essentially be an empirical step function at the data values. For large γ many

components in the mixture will have non-zero weights which are hardly influenced

by the data, resulting in a posterior distribution that is similar to G0.

4.2.1.4 Computation of the shape distribution

The inference challenge for the shape distribution is to learn the component location

parameters, θ, and weights, w, given the normalised log-residue data ỹ. For this

purpose, we propose a Markov Chain Monte Carlo algorithm, which consists of the

following steps:
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1. Allocate each data point ỹij to one of the Normal components N (θk, σ
2
c ) of the

mixture distribution using allocation parameter Kij.

2. Update weights for each Normal component wk|mk wheremk =
∑J

j=1

∑nj
i=1 δKij ,k,

i.e. the number of data assigned to component k.

3. Update location parameters θ|ỹ,K

These steps are explained in Figure 4.3 and result in a sample from the posterior

shape distribution.

We use the truncated stick-breaking representation of the DPMN (Ishwaran and

Zarepour, 2000) as it leads to a simple step to allocate data to the Normal compo-

nents and a straightforward conjugate update of the weights. One issue with the

truncated stick-breaking representation is that unassigned weights will be assigned

to the last component in the mixture. If this value is high, the approximation of the

DPMN will be poor and the truncation level, defined by the number of components

C, should be increased. This is discussed in detail in Section 2.3.5.3. Sampling from

a posterior DPMN model requires a fine balance between computational efficiency

and finding an approximation that meets the required quality criteria. This can be

achieved by selecting a large number of components and by monitoring the tail prob-

abilities. To improve the mixing of the Markov chain, we make use of label-swapping

moves (see Section 2.3.5.3 for details).

Allocations Kij

Given that we use a truncated approximation of the DPMN model, the allocation

of data ỹij is given by:

p(Kij = k|ỹij) =
wkN (ỹij; θk, σ

2
c )∑C

k=1wkN (ỹij; θk, σ2
c )

(4.6)

With uij ∼ Uniform(0, 1), we set Kij = k if and only if

k−1∑
l=0

wlN (ỹij; θl, σ
2
c ) < uij ≤

k∑
l=1

wlN (ỹij; θl, σ
2
c )

where w0 = 0.
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Figure 4.3 – Graphical overview of the shape model using a mixture distribu-

tion with two Normal components. Given initial values of the weights w and

locations θ, data will be assigned to one of the Normal components (upper

right pane) based on the likelihood. Given the allocations, we can update the

weights w (bottom left pane) and locations θ (bottom right pane). These three

steps will be alternated with updates of the location and scale parameters and

the subsequent normalisation step.
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Weights wk

Given the allocations K and mk =
∑J

j=1

∑nj
i=1 δKij ,k, the posterior distribution of w

is given by:

w1 = β1

wk = βk

k−1∏
l=1

(1− βl) for k > 1

βk|K ∼ Beta

(
1 +mk, γ +

C∑
l=k+1

ml

)
(4.7)

The prior expected tail probability plots in Figure 2.6 (page 90) indicate that a

value of γ = 10 results in a low mean tail probability. Therefore, we use this value

in simulation studies in cases where γ is a fixed parameter. In Section 4.6 we allow

γ to be learned from the data to see how this effects the shape distribution for the

log-residue data. To assess whether the number of components is sufficient, the tail

probability can be monitored post-analysis.

Location parameters θ

The selection of a conjugate prior G0(θ) = N (θ;µ0, σ
2
0) for θ leads to the posterior

distribution, p(θk|ỹ,K), given in Equation 4.4. We then need to sample the location

parameters from truncated posterior distributions to make sure that they are within

the ranges of each of the three tertiles. If there are C components in the mixture,

the first C/3 component location parameters will have to be in the range [−∞,−1],

the second C/3 component location parameters in the range (−1, 1] and the third

set in (1,∞].

4.2.2 Estimating the location and scale parameters

Before we can infer the distribution shape, we need to normalise the log-residue

data sets from the various populations. As explained before, the model is based

on the assumption that we have samples from multiple populations which share a

distribution shape but each of which has different location and scale parameters.

Normalising the log-residue data will allow us to infer the distribution shape by
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sharing information between data sets. The normalisation requires the definition of

the location and scale parameters, µj and σj, of the jth population of unit log-residue

data from which we have obtained a sample of size nj from a unit field trial. Both

µj and σj were defined in Section 4.2.1.1 as the mean of the two tertiles and half

the intertertile range, respectively. Since we do not know what µj and σj are, we

need to use a Bayesian framework to learn them from the data. We will update the

values of µj and σj, given the shape distribution, which is defined by the locations,

θ, and weights, w. Given θ and w, the shape distribution is given by:

p(ỹ|θ,w) ∝
C∑
k=1

wkN
(
ỹ; θk, σ

2
c

)
To obtain a new µ = {µ1, ..., µJ} and σ = {σ1, ..., σJ} we need to sample from the

conditional distribution:

p(µ,σ|θ,w,y) ∝ π(µ,σ)p(y|θ,w,µ,σ)

∝ π(µ,σ)
J∏
j=1

nj∏
i=1

1

σj
p(ỹij|θ,w)

where π(µ,σ) is the joint prior distribution for µ and σ. We propose to use in-

dependent Jeffreys priors, π(µ,σ) ∝
∏J

j=1 σ
−1
j , given the reasonably large sample

sizes. This results in the following posterior distribution:

p(µj, σj|θ,w,y) ∝ σ
−nj−1
j

nj∏
i=1

p(ỹij|θ,w) (4.8)

As we cannot easily sample from Equation 4.8, we will use a Metropolis-Hastings

step within Gibbs.

Let µ
(t)
j and σ

(t)
j be the values for the location and scale parameters of population j

at the tth iteration of the Markov Chain Monte Carlo simulation. In a Metropolis-

Hastings step, we propose new values µ∗j and σ∗j which we will either accept or reject

using the Metropolis-Hastings rule applied to Equation 4.8. Firstly, we need to de-

fine proposal distributions for µj and σj. If we look at σj first, we have the following

characteristics of the distribution of the sample variance s2 for moderate to large

nj: E[s2] = σ2 and Var[s2] = 2σ4

n−1
. From this we can derive that the expected value
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and variance of the random variable s2

σ2 is given by:

E

[
s2

σ2

]
= 1

Var

[
s2

σ2

]
=

1

σ4
Var

[
s2
]

=
2

n− 1

Using the central limit theorem, we can approximate the distribution of s2

σ2 with a

Normal distribution.
s2

σ2
∼ 1 + z

√
2

n− 1

where z ∼ N (0, 12). Taking logs and using the Taylor series for log(1 + q) for small

values of q, i.e. log(1 + q) ≈ q, leads to:

2 (log(s)− log(σ)) ≈ z

√
2

n− 1

for large n. This results in:

log s ∼ N
(

log σ,
1

2(n− 1)

)
Using a proposal distribution for log(σ) that makes steps of size proportional to

1√
n−1

results in reasonable acceptance rates, so we suggest the following proposal

distribution for log(σ):

q(log σ∗j | log σ
(t)
j ,yj) = N

(
log σ∗j ; log σ

(t)
j ,

1

nj − 1

)
If we focus on µj, using a standard random walk could be considered as the proposal

distribution in a Metropolis-Hastings step:

q(µ∗|µ(t), σ∗) = N
(
µ∗;µ(t),

(σ∗)2

n

)
The disadvantage of this is that if σ∗ is much smaller than σ(t), we will frequently

find that µ(t) is far into the tail of p(µ(t);µ∗, σ∗) and the random walk will result in

many rejections. To overcome this, we could limit the proposal step size for σj, but

this would also lead to a need for more thinning. Therefore we instead propose:

q(µ∗j |µ
(t)
j , σ

(t)
j , σ

∗
j ,yj) = N

(
µ∗j ; ȳj +

σ∗j (µ
(t)
j − ȳj)
σ

(t)
j

,
(σ∗j )

2

nj

)
Fundamentally, we expect the variance of the location parameter given the scale

parameter to be roughly proportional to the scale parameter divided by the square
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root of the sample size. We also expect the ‘relative uncertainty’ about the scale

parameter to be related to 1/
√
nj. This proposal distribution firstly normalises

the current location with respect to the sample location and the current scale and

then returns to the original scale using ȳj and the proposed scale. As a result, our

proposal distribution aims to keep the proposed location at the same percentile of

the conditional distribution of the location parameter for both the proposed and

current scale values. We then propose the location parameter using a random step

based on the proposed scale parameter divided by the square root of the sample size.

So let the proposal distributions for µ∗j and σ∗j be:

q(log σ∗j | log σ
(t)
j ,yj) = N

(
log σ∗j ; log σ

(t)
j ,

1

nj − 1

)
q(µ∗j |µ

(t)
j , σ

(t)
j , σ

∗
j ,yj) = N

(
µ∗j ; ȳj +

σ∗j (µ
(t)
j − ȳj)
σ

(t)
j

,
(σ∗j )

2

nj

)
(4.9)

where ȳj =
Q

2
3
j +Q

1
3
j

2
. Let uj ∼ Uniform(0, 1). We accept the proposed values if:

uj ≤
p(µ∗j , σ

∗
j |θ,w,y)

p(µ
(t)
j , σ

(t)
j |θ,w,y)

q
(
µ

(t)
j |µ∗j , σ∗j , σ

(t)
j ,yj

)
q
(
µ∗j |µ

(t)
j , σ

(t)
j , σ

∗
j ,yj

) q
(
σ

(t)
j |σ∗j ,yj

)
q
(
σ∗j |σ

(t)
j ,yj

)
The first fraction, the target ratio, can be calculated directly using Equation 4.8.

The second fraction, the proposal ratio for µj, will lead to:

q(µ
(t)
j |µ∗j , σ∗j , σ

(t)
j ,yj)

q(µ∗j |µ
(t)
j , σ

(t)
j , σ

∗
j ,yj)

=

√
nj

σ
(t)
j

√
2π

√
nj

σ∗
j

√
2π

=
σ∗j

σ
(t)
j

and the proposal ratio for σj leads to:

q(σ
(t)
j |σ∗j ,yj)

q(σ∗j |σ
(t)
j ,yj)

=
σ∗j

σ
(t)
j

As a result, the acceptance ratio becomes:

uj ≤

(
σ∗j

σ
(t)
j

)−(nj−1) ∏nj
i=1 p(ỹ

∗
ij|θ,w)∏nj

i=1 p(ỹ
(t)
ij |θ,w)

(4.10)

where ỹ∗ij is the normalised log residue data given the proposed values mu∗j and σ∗j .

We have now discussed the technical aspects of the model. To apply the model to

pesticide log-residue data two additional model refinements are necessary which will

be discussed in the next section.
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4.2.3 Handling censored and rounded data

The model introduced above describes an approach that can be used to learn the

location, scale and shape distribution for a data set consisting of samples from

multiple populations which share a common shape but each of which has their own

location and scale parameters. This section will discuss two application-specific

issues that are important to address before the model can be applied to unit log-

residue data sets.

4.2.3.1 Censoring

Residue levels in food items are often lower than concentrations that can be mea-

sured reliably, i.e. the observed response cannot be distinguished from the response

observed when analysing a blank sample (see Section 1.4.1.1). For field trial data

we know that the field was treated with the pesticide under consideration and there-

fore, if we ignore measurement uncertainty as suggested by EFSA (2012), the residue

level will be somewhere between zero and the reported limit of determination (LOD).

Therefore, if we have observed a data set x with values reported as <LOD, we can

use a simple data augmentation procedure to account for the limited amount of

information provided by the <LOD values. Given a distribution form f(x;ω) with

cumulative distribution function F (x;ω) and given a prior distribution and initial

values for the parameter(s) ω, repeat the following steps:

1. For each of the q = 1, . . . , Q values that are reported as <LOD, sample a new

value using the following steps:

(a) Calculate umax = F (LOD|ω)

(b) u ∼ Uniform(0, umax)

(c) xq = F−1(u|ω)

2. Update ω given the observations xx>LOD and imputed values xx<LOD

We could use a similar approach for dealing with <LOD data in the DPMN model.

However, calculation of umax and in particular F−1(u|ω) is not very efficient so we
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instead propose an approach which has the additional benefit that it will implicitly

lead to allocating the censored value to one of the components of the mixture distri-

bution. Let yij be a censored log-residue value, <log(LOD), originating from data

set j. We impute values using the following algorithm:

Algorithm 1

1. Normalise the log(LOD): ỹij =
log(LOD)−µj

σj

2. Calculate pk = wkΦ
(
ỹij−θk
σc

)
where Φ is the standard Normal cumulative dis-

tribution function.

3. Sample allocation Kij = Multinomial
(

pk∑C
k=1 pk

)
4. Given Kij, it is easy to calculate rmax = Φ

(
log(LOD)−θKij

σc

)
5. r ∼ Uniform(0, rmax)

6. ỹij = θKij + Φ−1 (r)σc

We can then update the weights and parameters of the Normal components of the

shape distribution and the location and scale parameters for each log-residue data

set.

4.2.3.2 Uncertainty in reported values

The second issue with residue data is that they are often reported after rounding to

nd decimal places or ns significant figures. As a result, many of the values in a data

set are repeated, which could suggest that the population distribution is discrete.

Figure 4.4a shows cumulative empirical distribution functions of the four field trial

data sets with the highest proportion of repeated values. Figure 4.4b shows that

repeated values occur frequently in field trial residue data. As we expect residue

level distributions to be continuous, we add some random noise around each reported

value. The approach to do this depends on which rounding rules were used when

reporting the values.



4.2. Model 154

Figure 4.4 – Level of reporting uncertainty in residue data sets.

(a) Cumulative empirical distribu-

tion functions of the four data sets

with the highest proportions of re-

peated values.
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each field trial data set, defined as
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, where nuj is the number of

unique values in field j.
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Two common rounding rules are:

1. Decimal places: If the data were rounded to n decimal places, we know that

the value before rounding was in the interval: [xreported − δ, xreported + δ), where

δ = 1/2×10−n. For example, if n = 2, 18.90 could be the result from rounding

any observation in the range [18.895, 18.905) and a value of 0.02 could be the

result from any observation in the range [0.015, 0.025).

2. Significant Figures: If n significant figures were used, we know that the

value before rounding was in the interval: [xreported − δ, xreported + δ), where

δ = 1/2× 10blog10 |x|c−n+1, bqc is the largest integer not greater than q and |x|

is the absolute value of x. For example, if n = 2, a value of 0.17 could be the

result from rounding any observation in the range [0.165, 0.175) and a value

of 15 could be the result from any observation in the range [14.5, 15.5).

The following algorithm provides an approach for dealing with reporting uncertainty

in each iteration of the MCMC simulation. First decide which rounding rule (e.g.

number of decimal places or significant figures) was used for the data set x. Then

given a distribution form f(x;ω), with cumulative distribution function F (x;ω)

and given a prior distribution and initial values for the parameter(s) ω, repeat the

following steps:
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1. For each value xreported that was subject to rounding, sample a new value:

(a) Calculate δ using the following equations and the selected rounding method:

i. Decimal Places: δ = 1/2× 10−n

ii. Significant Figures: δ = 1/2× 10blog10 |x|c−n+1

(b) Calculate rmin = F (xreported − δ|ω) and rmax = F (xreported + δ|ω)

(c) Sample r = Uniform(rmin, rmax)

(d) x = F−1(r|ω)

2. Update ω given the observations x

Analogously to the censored data approach, several adjustments are necessary to

model rounded unit residue data with the DPMN model. The first reason for this

is that the analysis is conducted on log-residue data, whereas the data are rounded

before they are log-transformed. Secondly, as in the censored data approach, it is

easier to sample from a Normal component after the data are allocated to compo-

nents than to sample from F directly. For the log-residue data, the algorithm is

given by:

Algorithm 2

1. Allocate the normalised log-residue data to one of the Normal components as

described before. If ỹij is assigned to component k, Kij = k.

2. For each data set, we determine whether the reported residue levels are rounded

using one of the two approaches (decimal places or significant figures). With

yij being observation i from field j of the log-transformed residue data, calculate

δ:

(a) Decimal Places: δ = 1/2× 10−n

(b) Significant Figures: δ = 1/2× 10blog10 | exp[yij ]|c−n+1

3. Calculate Lmin =
log(exp(yij)−δ)−µj

σj
and Lmax =

log(exp(yij)+δ)−µj
σj
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(a) The situation for residue levels is slightly more complex because we are

analysing pesticide residue levels after log-transforming the data. As

residue levels are bounded below at zero, we have to put in an additional

condition: exp(yij)− δ > 0.

4. Calculate umin = N (Lmin|θKij , σ2
c ) and umax = N (Lmax|θKij , σ2

c )

5. Sample u = Uniform(umin, umax)

6. ỹij = Φ−1(u|θKij , σ2
c )

7. Update θ, w, µ and σ given ỹ
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4.2.3.3 Summary of MCMC Algorithm

Let us define:

j Data set index, j ∈ {1, . . . , J}.

nj Total number of observations in data set j.

i Unit index for an observation from a data set j, i ∈ {1, . . . , nj}.

yij Log-residue data observation i from data set j.

ỹij Normalised log-residue data observation i from data set j.

γ Concentration parameter of the DP.

G0 The base measure of the DP, which will act as the prior distribution

for θ, here defined as N (µ0, σ
2
0).

µ0 Mean of Normal prior distribution G0.

σ0 Standard deviation of Normal prior distribution G0.

κ Proportion of observed variance that is assigned to the Normal

components.

nit Number of MCMC iterations.

nburn - in Number of burn-in iterations.

nthin Thinning factor.

µj Location parameter for log-residue data set j.

σj Scale parameter for log-residue data set j.

wk Weight assigned to Normal component k in the mixture distribution.

θk Location parameter of Normal component k in the mixture

distribution.

σc Standard deviation of all Normal components in the mixture

distribution.

Kij Allocation indicator for normalised log-residue observation i from data

set j.

mk Number of data allocated to a component k.
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The algorithm for the DPMN model for log-residue data which can be used to

generate samples from the posterior distribution p(θ,w,K,µ,σ|y, G0, γ, σ
2
c ) can be

summarised as follows:

1. Select γ, G0, κ, µ0, nit, nburn - in and nthin.

2. Calculate the component standard deviations σc and the scale parameter of

the prior σ0.

(a) Alternatively, γ can be considered to be a model parameter that needs

to be learned from the data. In that case, distribution parameters v1 and

v2 (see Equation 4.11 on page 178) will have to be defined for the prior

Gamma(ν1, ν2) distribution of γ and an initial value needs to be assigned

to γ.

3. Set initial values for µ and σ by calculating the tertiles of data sets.

4. Set initial values for the component locations θ and the component weights

w.

5. Repeat the following steps for (nit + nburn - in)× nthin iterations:

(a) Normalise data (Equation 4.1 on page 138).

(b) Update data allocations Kij (Equation 4.6 on page 146).

(c) Calculate mk (Equation 4.3 on page 141).

(d) Account for censored data (Algorithm 1 on page 153) if necessary.

(e) Account for rounding error (Algorithm 2 on page 155) if necessary.

(f) Update distribution shape:

i. Swap component labels (see Section 2.3.5.3).

ii. Update weights (Equation 4.7 on page 148).

iii. If γ is considered to be a model parameter (see Section 4.6), update

γ (Equation 4.11 on page 178).

iv. Update locations (Equation 4.4 on page 141).
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(g) Update location and scale for each data set using a Metropolis-Hastings

step:

i. Propose µj and σj (Equation 4.9 on page 151).

ii. Calculate acceptance probability (Equation 4.10 on page 151) and

accept or reject proposed values.

(h) Store values of θ, w, µ, σ and (if appropriate) γ if t− nburn - in > 0 and

the remainder after division, rem(t − nburn - in , nthin) = 0, where t is the

iteration index.

4.3 Validation Studies

Before applying the non-parametric Bayesian method to a case study, we want to

assess whether the method is capable of recovering a common shape distribution.

To assess the performance of our DPMN approach, we cannot apply the data to

real residue data as we do not know what the true underlying distribution is and

therefore we will not be able to determine whether the resulting shape distribution

provides a good estimate of the population shape distribution. Therefore, one way

to test the method is to compare it with data generated from a distribution or

set of distributions for which we know the shape. In this section, we present the

results of several simulation studies to assess whether the new approach is capable

of determining the shape of a selection of distributions. The validation simulations

focus on two aspects:

• Determination of the distribution shape using samples obtained from various

populations with a shared shape.

• Determination of the distribution shape for large sample sizes (n = 1000) for

a wide range of distributions.

For all validation studies, we ran the model with 1000 iterations after 1000 burn-in

samples using a thinning factor of 25 and fixed the number of components in the

mixture to 201. Each study was run in Matlab 2012a on a computer with an Intel i7-

860 2.80 Ghz processor and 8GB RAM and took approximately 70 minutes. The first
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type of study is based on an overall sample size of n = 1000, but instead of taking

1000 samples from a single distribution, 1000
p

samples are taken from p populations,

each with different location and scale parameters. We begin by explaining the

general approach for the validation studies for a sample generated from a mixture

of two Normal distributions. To test the performance of the approach, we generated

n = 1000 samples from the distribution:

p(y) = p×N
(
y;−1, 0.52

)
+ (1− p)×N

(
y; 0.5, 0.252

)
where p = 0.3. The aim of the simulation study is to estimate the shape of the

distribution using these samples. Figure 4.5a shows the results from applying our

DPMN model to these data, with γ = 10 and κ = 0.3. Clearly, the estimated shape

is very close to the true shape of the distribution, i.e. the DPMN model is capable

of estimating the shape of the distribution, indicating that DPMN models can be

used to fit distributions to data sets. One of the reasons why the DPMN model was

capable of estimating the shape may be the large sample size that was used in this

test. For many applications, the number of samples taken from a population will be

much lower. However, the application that we will be working on will have samples

from multiple populations. The challenge will be to use these multiple samples to

estimate both the common shape and the location and scale parameters of each

population. For that purpose, we sampled n = 100 values from 10 populations with

a common shape, each with their own location and scale parameters. Applying our

DPMN model to these data sets to learn a common shape resulted in the shape distri-

bution in Figure 4.5b. The results indicate that even when the 1000 samples come

from 10 populations with different location and scale parameters and we have to

learn both the common shape and the population-specific location and scale param-

eters, the DPMN model is able to describe the shape, location and scale parameters.

To assess the performance of the method for smaller sample sizes, we took 10 sam-

ples from 100 distributions, again with different location and scale parameters but

a common shape. Figure 4.5c shows that even for such small sample sizes, the per-

formance of the DPMN model is acceptable, although the uncertainty in the shape

distribution and location and scale parameters, indicated by a 95% credible interval,
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Figure 4.5 – Results of validation exercise for a mixture of two Normal distri-

butions, p(y) = p×N (y;−1, 0.52) + (1− p)×N (y; 0.5, 0.252), with p = 0.3,

κ = 0.3 and γ = 10. The population distribution is displayed as a blue line

and a kernel density estimate is represented by a green line. The red line

represents the median estimate of the population distribution and the dashed

grey lines show the 95% credible interval. For b - d, we only illustrate the

results for one of the populations.

(a) Results of simulation using 1000

samples from a Normal mixture

distribution.
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(b) Results of DPMN simulation us-

ing 100 samples from 10 popula-

tions.
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(c) Results of DPMN simulation us-

ing 10 samples from 100 popula-

tions.

−2 0 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(d) Results of DPMN simulation us-

ing 5 samples from 200 popula-

tions.
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becomes more pronounced. This is even more evident in the final study (Figure 4.5d)

in which 5 values were sampled from 200 population distributions. These analyses

show that if populations do share a common shape, even a few samples from each

population should be sufficient to learn the shape of the distribution. However, the

problem is that when only a few samples are available per population there is very

little information available to estimate the population location and scale parameters.

As a result, even though pooling the data in the DPMN model may lead to a good

estimation of the shape distribution, the location and scale parameter estimates are

very uncertain. Even if the distribution shape was known, small sample sizes would

often result in poor estimates of the location and scale parameters and in those

cases, a hierarchical model may have to be considered. However our method is an

improvement on current approaches which make assumptions about the distribution

shape and are likely to result in considerable parameter uncertainty as a result of

analysing each data set individually.

In the following sections we will summarise the results for other target distribu-

tions, highlighting strengths and weaknesses of the DPMN approach. We start by

exploring how well the approach applies to different distribution shapes using various

values of κ. In addition, we will explore the effect of sample size.

4.3.1 Performance for various distributions

In this section we will discuss the results of simulation studies for a range of dis-

tributions to assess the robustness of our approach for heavy tailed and/or highly

skewed distributions. For all simulation studies γ was set to be 10 and 1000 samples

were taken from a single population distribution, i.e. the target distribution, unless

indicated otherwise. We ran the model with 4 different values for κ: 0.1, 0.2, 0.4

and 0.8. The posterior probability density functions for each simulation study are

supplied in Appendix B.
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4.3.1.1 Normal Distribution

The first distribution for which we assess the performance of the DPMN model

is the Normal distribution. For larger values of κ the DPMN model provides a

reasonable fit (Figures B.1c and B.1d). The posterior probability density function

for lower values of κ is clearly less smooth and shows the importance of selecting an

appropriate value for κ.

4.3.1.2 Student’s t Distribution

The second distribution function that is used in the simulation studies is Student’s t

distribution with density function p(x|ν) =
Γ( ν+1

2 )
√
νπΓ( ν2 )

(
1 + x2

ν

)−(ν+1)/2

where ν is the

number of degrees of freedom (ν > 0). We sample data from Student’s t distributions

with ν = 3, 4 and 5. Student’s t distributions have relatively long tails, particularly

for small values of ν. The simulation studies (Figures B.2 to B.4) indicate that

the DPMN model struggles to ‘learn’ the Student’s t shape from the samples. The

reason for this is that to describe the central peak, κ needs to be small, but to

describe the long tails κ needs to be large. The results indicate that the method

needs to be refined to describe data with long tails or the data may need to be

transformed before applying the model.

4.3.1.3 Skew-Normal Distribution

The next family of distributions considered is the Skew-Normal distribution with

density p(x|λ) = 2φ(x)Φ(λx) where φ(x) is the standard Normal probability density

function and Φ(x) is the standard Normal cumulative distribution function. Note

that for λ = 0, the Skew-Normal distribution is the standard Normal distribution

function. The simulations (Figures B.5 to B.14) show that for various values of

λ, the DPMN is capable of describing the Skew-Normal distribution. Again, the

quality of the description depends to some extent on the value of κ: for small values

of κ the distribution is too jagged and for large values of κ, the DPMN overestimates

the upper tail for left-skewed distributions and the lower tail for right-skewed ones.
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4.3.1.4 Exponential Power Distribution

The Exponential Power distribution, also known as the generalised Normal distribu-

tion is defined as p(x|µ, σ, λ) = λ
2σΓ(1/λ)

exp

[
−
∣∣∣ (x−µ)2

σ

∣∣∣λ]. For λ = 2, the Exponen-

tial Power distribution becomes the Normal distribution. This symmetric family of

distributions allow for heavier tails than the Normal distribution for λ < 2 and for

lighter tails than the Normal distribution for λ > 2. Note that if λ→∞, the distri-

bution resembles a symmetric Uniform distribution, centred at µ. In the simulation

studies presented in Figures B.15 to B.19, we set µ = 0 and σ = 1. When fitting

a DPMN model to a sample obtained from the Exponential Power distribution, it

is clear that for λ < 2, as with the simulations for the Student’s t distribution,

the DPMN model struggles to capture the central peak and the heavy tails. Small

values for κ are needed to capture the narrow peak but this generally leads to jagged

distributions. For λ > 2, the performance of the DPMN model seems better, par-

ticularly for larger values of κ. However, the clear plateau for the λ = 5 simulation

is not matched.

4.3.1.5 Beta Distribution

The Beta distribution is a family of continuous distributions, generally defined by

2 shape parameters α and β, on the interval (0,1). The two parameter probability

density function is p(x|α, β) = Γ(α+β)
Γ(α)Γ(β)

xα−1(1 − x)β−1. For α = β = 1 the Beta

distribution is the Uniform(0,1) distribution and for α < 1 and β < 1 it is U-

shaped. The Beta distribution can be extended to the interval (p, q) by introducing

two additional variables p and q: p(x|α, β) = Γ(α+β)
Γ(α)Γ(β)(q−p)α+β−1 (x− p)α−1(q − x)β−1.

In the simulations, we used p = −2 and q = 2. It is clear from the simulations

(Figures B.20 to B.22) that for the selected range, the DPMN model worked best

in terms of smoothness for large values of κ. However, large values of κ also meant

that the modelled tails extended beyond the limits of the Beta distribution.
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4.3.1.6 Normal Mixture Distribution

The final family of distributions that we use in the simulation studies is a mixture

distribution of two Normal distributions: p(y|p, µ1, σ1, µ2, σ2) = p × N (y;µ1, σ
2
1) +

(1 − p) ×N (y;µ2, σ
2
2). Here, we used a symmetrical setup with µ1 = −µ2 = 2 and

σ1 = σ2 = 1 and we varied p. The simulation studies (Figures B.23 to B.27) show

that the DPMN model performs well depending on the value of κ. For p = 0.5 the

DPMN model works best for κ = 0.2. Smaller values for κ are not very smooth and

larger values for κ lead to poorer fits as the DPMN starts to struggle to pick up

the bimodality. In contrast, for the p = 0.1 and p = 0.9 case the DPMN model fits

better when larger values for κ are used whereas the p = 0.75 simulation works best

with κ = 0.4. The results indicate again the importance of selecting an appropriate

value for κ.

4.3.2 Effect of Sample Size

To assess how the DPMN results depend on the overall sample size, we limit

our attention to the Normal mixture distribution we used earlier, p(y) = p ×

N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252) with p = 0.3. Figure 4.6 shows that

the DPMN model is capable of describing the shape of the distribution reasonably

well for a sample size as small as 50. For n = 5, there is only a slight indication of

bimodality from the data, whereas it is clearly visible for n = 50. For both these

simulations, it is clear that uncertainty about the location parameter and the scale

parameter is considerable. For larger n, the model is able to learn the distribution

shape from the data.

4.3.3 Results of Simulation Studies

The simulation studies above indicate that the DPMN model is capable of deter-

mining the shape of a distribution when we have a large sample size, either from a

single population or from multiple populations which share the same shape. How-

ever, two issues have been identified that need to be addressed. Firstly, the model

struggled to fit distributions with long tails such as the Student’s t distribution and
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the Exponential Power distribution with λ ≤ 2. The problem is caused by the scale

of the Normal components which need to be small for components with location

parameters close to the mode to capture the central peak and large for components

in the tails to capture the longer tails. As a result, choosing small values of κ will

provide a better description of the central part of these distributions whereas large

values of κ will provide a better description of the tails. Therefore, changing κ can-

not provide a solution. However, one could try learning κ from the data, to obtain

a compromise between the best fit for the central part of the distribution and the

Figure 4.6 – Results of simulations determining the effect of sample size on the

performance of the DPMN model for a Normal Mixture Distribution, p(y) =

p × N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252), with p = 0.3, κ = 0.3 and

γ = 1. The population distribution is displayed as a blue line and a kernel

density estimate is represented by a green line. The red line represents the

median estimate of the population distribution and the dashed grey lines show

the 95% credible interval.
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(b) n = 50
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(c) n = 500
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(d) n = 5000
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best fit for the tails.

If we believe that the population distribution has long tails, we have several options

available. The first option is to select a different distribution shape for the com-

ponents in the mixture (e.g. Student’s t distribution). The second is to allow the

component variance, σ2
k, to be variable and uncertain. By learning the variance from

the data assigned to each component, we can use Normal distributions with large

values for σ2
k for components that aim to describe the tails and Normal distributions

with small values for σ2
k for components that are used to describe the central part of

the distribution if this is necessary. These solutions would also work for population

distributions whose tails are bounded like the Beta distribution. The main problem

with this solution is that it will cause problems when defining the prior shape dis-

tribution.

Another option may be to transform the data before we infer the distribution shape.

A simple example would be to log-transform data sampled from populations which

are expected to have a long upper tail (e.g. pesticide residue data). More complex

transformations may also be possible but they will affect the ease of interpretation of

the model output. For example, applying the model to log-transformed data means

that the location parameter for the log-residue data matches the scale parameter

for residue data and that the scale and shape parameters for log-residues become

aspects of the shape of the residue distribution.

The second issue is that the model requires the analyst to select κ. In the simula-

tion studies, it is often clear which of the 4 selected values of κ is most appropriate

because we know the target distribution. For real applications, however, we do not

have this luxury and the analyst needs to decide what level of smoothness is appro-

priate. The simulation studies indicate that a value for κ between 0.2 and 0.4 seems

to work reasonably well for most distributions shown here.
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4.4 Application to residue data

In this section, we apply the DPMN model to unit pesticide field trial data. All

data analysed in this section are log-transformed before the analysis to account for

the fact that residue levels should be larger than zero and that their distributions

tend to have long upper tails. Before we can apply the DPMN approach we briefly

summarise the available data and the selection process of which data are included

in the analysis.

4.4.1 Data

Unit residue data are often collected as part of research programmes. For example,

Ambrus (2006) reports a large set of unit residue data that were collected as part of

a research programme which was intended to provide a better estimate of variability

factors. These research studies are often conducted under different circumstances

to supervised field trials, e.g. by applying more than one pesticide in a tank mix

or measuring residue levels immediately after the last application to increase the

probability of obtaining measurable residue levels. Ambrus (2006) states that the

variability of residue levels is not significantly affected by the average residue level,

nor by the time interval between the application and sampling, so we assume that

the shape of the distribution is not affected by these deviations either.

Unit field trials in which tank mixes are applied result in residue levels which cannot

be considered to be independent. An analysis of the data shows that rank corre-

lation coefficients between residue levels of pesticides in a tank mix are often very

high, i.e. 66% of rank correlations are larger than 0.75 and 39% are higher than

0.9. To deal with this, we could use average concentrations (EFSA, 2005), but there

are two disadvantages of this: firstly, we need to decide how to deal with <LOD

data as we cannot calculate the average concentration for units on which one of the

pesticides could not be quantified. Secondly, the data may be influenced heavily

by measurement imprecision for those residue levels that are close to the limit of

determination. To overcome these issues, we apply two somewhat arbitrary rules



4.4. Application to residue data 169

to select a single data set for those field trials that were conducted with multiple

chemicals:

1. Select the data sets with the highest number of measurements above the LOD.

2. If more than one data set was available after applying the rule above, the data

set for the pesticide with the highest average residue level was selected. The

argument for this is that we assume that the higher the residue level, the more

reliable the residue level estimation will be.

Field trial data were available for 164 pesticide/crop combinations. However, as pes-

ticides were applied in tank mixes, only 75 independent pesticide/crop combinations

could be used for the analysis, using the selection process explained above. For those

data sets, residue levels were measured on between 66 and 319 crop units, resulting

in a data set consisting of 9314 normalised log-residue values (see Appendix A for

details).

4.4.2 Results

Figure 4.7a shows the distribution of the common shape for the field trial log-

residue data. Due to the number of data available, the uncertainty about the shape

is relatively small. As explained in Section 4.2.1.4, we need to explore whether the

number of components used in the DPMN model is adequate. The tail probabilities

for the three truncated Dirichlet Processes for each of the tertiles, given γ = 10 and

using 201 components in the mixture, are given in Figure 4.7b. Even though these

probabilities may appear relatively small at first sight, the question as to whether

they are small enough depends on the protection target of probabilistic dietary risk

assessments. Assigning a probability of 10−6 to a single component rather than

multiple components may affect residue levels for food items that are consumed

on a regular basis by a large proportion of the population of interest. However, the

impact on the analysis will most likely be relatively small as the tail probability may

be spread over the whole tertile range and could then be considered as random noise

that is almost negligible in comparison with the uncertainty of the shape, location

and scale parameters. The shape distribution in Figure 4.7a can be combined with
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the uncertain location and scale parameters to obtain an estimate of the posterior

distribution for an individual data set (Figure 4.8). The approach is compared with

a kernel density distribution of the data.

Comparison with current approach

There are no existing models which use unit residue data directly, as most proba-

bilistic risk models are based on a variability factor approach, assuming a Lognormal

distribution for unit residue levels. Therefore, it seems appropriate to compare the

results of the DPMN model with a Lognormal shape. Figure 4.7a shows that the

shape obtained from the DPMN model is similar to the Normal distribution, al-

though the DPMN model has longer tails. However, the Normal shape results in

higher estimates for percentiles up to the first tertile and between the second tertile

and the 99th percentile. Therefore, the 97.5th percentile of the DPMN shape distri-

bution is generally lower than that of the Normal distribution. This is illustrated in

Figure 4.9 where we compare the 97.5th percentile of the log-residue data estimated

using the DPMN model with using a Normal distribution. The percentiles have

been rescaled by empirical estimates of the 97.5th percentile to aid the comparison.

We do not know which method provides a better representation of unit residues

Figure 4.7 – Results from applying the DPMN model (with κ = 0.3 and γ = 10)

to log-transformed field trial data.

(a) Median (red line) with 95% cred-
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Figure 4.8 – Posterior distribution for one of the field trial data sets using

the DPMN model with κ = 0.3 and γ = 10. Median (red line) with 95%

credible interval (grey dashed line) compared with a kernel density estimate

(green line).

because we do not know the true distribution. However it is interesting to note that

including the uncertainty about the distribution shape has generally not resulted

in wider uncertainty intervals for the 97.5th percentile. If the whole distribution is

taken into account, further differences can be seen (Figure 4.7a) which will result in

different exposure distributions if both approaches were to be used in a probabilistic

dietary risk assessment.

Effect of crop and pesticide

Next we explore whether there are crop and/or pesticide effects which could be

used to refine the model. For this purpose, we cannot just look at quantiles of the

distributions as they are affected by application rates which may vary between pes-

ticide/crop combinations. Therefore, to account for the effect of application rates,
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Figure 4.9 – Comparison of the distribution of the 97.5th percentile of field trial

data using a Lognormal distribution (median (blue dot) with 95% credible

interval (grey lines)) and using a DPMN model with κ = 0.3 and γ = 10

(median (red dot) with 95% credible interval (black lines)). The blue dashed

line represents the case where the 97.5th percentile of the model predictions is

equal to the 97.5th percentile of the data.
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a comparison of variability factors calculated using the DPMN shape distribution

seems to be more appropriate. A simple graphical comparison (Figure 4.10) was

conducted to assess whether any patterns could be explained by either the crop

type or the pesticide. As there is limited data available it is not feasible to assess

whether there are crop and/or pesticide effects.

It is interesting to see that the variability factor varies between field trials, for exam-

ple field trials with aldicarb on potatoes resulted in median estimates of variability

factors ranging from 2 to 4. Our analysis produced similar variability factors to

those presented in EFSA (2005) and also supports their conclusion that variability

factors vary between datasets.
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Figure 4.10 – Comparison of variability factors (VFs), based on field trial

data, estimated using the DPMN model with κ = 0.3 and γ = 10 for different

crops and pesticides. Median estimates (dots) and 95% credible intervals are

given for each data set.
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4.5 Inferring the shape distribution for

individual data sets

The assumption of a single shape shared between all pesticide/crop combinations

may not be realistic. A simple screening analysis to test the shared shape assumption

would be to apply the DPMN model to each data set separately. This will lead to

an increase in uncertainty for the location, scale and shape parameters for the log-

residue data. Although this would take away the advantage of sharing information

between data sets, it allows for more flexible shapes and may therefore be useful in

cases when unit data are available for a new pesticide/crop combination where (a)

the shape seems to be different to the shape obtained from existing data sets and

(b) the data cannot be described by a standard parametric family of distributions.

Figure 4.11 shows the 97.5th percentile of the DPMN model when applied to the

data set described in Section 4.4.1, assuming a shared shape distribution and when

applied to each data set individually. The results indicate that the estimates of

the 97.5th percentile are very similar for a large proportion of data sets. In those

cases where the estimate is different, the data seem to indicate that the distribution

shape inferred using the DPMN model may not be applicable to that data set. To

investigate this further, we focus on data sets 34 and 48 which appear to have a

different shape. Figure 4.12 shows the shared shape distribution compared with the

shape obtained by running the DPMN model on data sets 34 and 48 individually.

Figure 4.12b indicates that a different shape may be needed to describe data set 34

whereas in Figure 4.12d we observe that there is only a difference in shape due to

a cluster of data below the LOD. Therefore, it may still be reasonable to assume a

shared shape for this data set. This also illustrates the value of pooling normalised

data to obtain a shape estimate because it leads to a smoother representation of

the shape distribution than one obtained from one small data set. Ideally, we would

like to either select the number of shapes that are necessary to describe the data

using objective criteria (e.g. based on crop or pesticide characteristics) or by letting

the model determine the number of shapes that are needed. We will discuss further

refinements of the model in Chapter 6.
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Figure 4.11 – Comparison of the 97.5th percentile residue level based on the

DPMN model (γ = 10, κ = 0.3) applied to the selected field trial data sets

(median (red dot) and 95% credible intervals (black lines)) and to individual

pesticide/crop combinations (median (blue dot) and 95% credible intervals

(grey lines)). Data sets 34 and 48 have been numbered as they will be discussed

in more detail. The blue dashed line represents the case where the 97.5th

percentile of the model predictions is equal to the 97.5th percentile of the data.



4.6. Uncertain γ 177

Figure 4.12 – Difference in shape distributions when the shape distribution is

assumed to be shared or not shared between pesticides for data sets 34 and

48. Median (red line) with 95% credible interval (grey dashed line) compared

with a kernel density estimate (green line).
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(b) Not shared shape for data set 34
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(c) Shared shape for data set 48
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(d) Not shared shape for data set 48
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4.6 Uncertain γ

The results presented so far required the selection of the Dirichlet Process concentra-

tion parameter γ. An alternative approach would be to treat γ as a parameter, which

was first suggested by Ishwaran and Zarepour (2000). As demonstrated in Section

2.2.4.3, the stick-breaking representation for a truncated Dirichlet Process, based on

C components, leads to weights w which have a Generalised Dirichlet(1, γ, . . . , 1, γ)

distribution:

p(w|γ) ∝ γC−1wγ−1
C
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As the model presented in this chapter consists of a DPMN model for each of the

three tertiles, we have:

p(w|γ) ∝ γC
(1)−1w

γ/3−1

C(1) γC
(2)−1w

γ/3−1

C(2) γC
(3)−1w

γ/3−1

C(3)

∝ γC−3(wC(1)wC(2)wC(3))γ/3−1

where C(i) = C/3 is the number of components for tertile i. Using a Gamma(v1, v2)

prior for γ, the posterior distribution becomes:

p(γ|w) = Gamma

(
γ;C + v1 − 3, v2 −

log(wC(1)) + log(wC(2)) + log(wC(3))

3

)
(4.11)

After sampling γ from its posterior, we can assign γ/3 to each tertile.

4.6.1 Choice of Prior Distribution

As γ is now a random variable, we have to assign a prior distribution to γ. In

the simulations in the remainder of this section, we have used a Gamma(2, 0.25)

distribution as a prior distribution for γ. This is an arbitrary choice that is merely

used to illustrate the approach. The prior mean equals 8 which is similar to the

fixed value that was used before (γ = 10). The main reason for selecting this prior

was that the probability of γ ≤ 1 ≈ 2.6% and γ ≥ 25 ≈ 1.4%. We do not want very

small values for γ because we want the posterior to be somewhat smooth nor do we

want γ to be very large because it leads to issues with high tail probabilities (see

Section 2.3.5.3).

4.6.2 Simulation Studies

4.6.2.1 Using validation data sets

To assess the performance of the model with uncertain γ we ran the model on

the data sets that we used in the validation studies earlier. The simulations were

conducted using κ = 0.3 and the fitted distributions and posterior distributions of γ

are shown in Appendix B. The figures indicate that the distribution fit is very similar

to the model output when γ was fixed. The posterior densities of γ for almost all
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simulation studies are in the region 1 to 5 with the exception of the simulation study

for the Student’s t distribution with 3 degrees of freedom, which is in the range 5 to

20 with a mode around 12. Although our fixed value of γ was generally larger than

the mode and range for γ inferred from the data, this did not have a noticeable effect

on the posterior shape distribution because γ is small in comparison with the sample

size (n = 1000). These results imply that learning γ from the data has very little

influence and that it can therefore be omitted for simplicity. However, it is unclear

whether these results can be extrapolated to other applications and therefore we

recommend using a model that infers γ from the data to assess whether a chosen

fixed value is reasonable.

4.6.2.2 Using Unit Log-Residue Data

Figure 4.13a shows the shape distribution resulting from applying the DPMN model

to log-residue field trial data when γ was considered to be an uncertain parameter.

As in the simulation studies, the shape distribution with uncertain γ is very similar

to the results when γ was fixed. If we look at the posterior distribution of γ in Figure

4.13b, we observe that the mode of the posterior distribution is around 2 with γ

ranging from 0.5 to 5, slightly lower than the selected fixed value of 10. Although

our fixed value of γ was larger than the mode and range for γ inferred from the data,

this did not have a noticeable effect on the posterior shape distribution because γ is

small in either case in comparison with the size of the normalised log-residue data

set which had 9314 values.
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Figure 4.13 – Results from applying the DPMN model (with κ = 0.3 and

uncertain γ) to log-transformed field trial data.

(a) Median (red line) with 95% cred-
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4.7 Discussion

In this chapter we have introduced a novel approach which allows information on

common population characteristics to be shared between multiple data sets. We use

a blocked Gibbs sampler to alternate sampling the individual location and scale pa-

rameters of each data set and the common shape distribution using the normalised,

pooled log-residue data. The approach for estimating the shape distribution is

based on Dirichlet Process Mixture models that have been extensively used in semi-

parametric models to describe data sets obtained from a single population. Sharing

shape information between samples obtained from multiple populations with a com-

mon shape leads to a larger data set from which we can infer the population shape.

The Bayesian framework used in this model allows us to account for parameter

uncertainty. Model runs generally took around 70 minutes to complete. This is

much longer than the currently used models due to the extra complexity. Whilst

this complexity is desirable to get better estimates, this may impact on the ability

to determine the sensitivity of the model to assumptions (e.g. parameter values,

distribution choices).
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The model was applied to unit log-residue field trial data sets. As these data are not

routinely collected, acute probabilistic dietary risk models need to assume a shape

for unit residue levels based on surrogate data. Unlike existing approaches which

assume a Normal distribution for log-residues, our method uses data to learn the

shape of the distribution. As there is evidence that the Normal distribution may

not always provide an adequate fit to the log-residue data (EFSA, 2012), the new

approach is an improvement as it provides a better description of the data.

The method assumes that a single distribution shape can be used to model the

variation in log-residue levels, whilst acknowledging that the location and scale of

log-residue level populations will vary between pesticide/crop combinations. How-

ever the field trial data indicates that some of the data sets may in fact have different

distribution shapes, although this is difficult to assess for small data sets. If we did

not believe that all the data sets shared a common shape, we could identify groups

of pesticide/crop combinations which are thought to share a distribution shape and

run our model on the subsets of data. Alternatively we could extend the model to

allow for multiple shape distributions and infer a clustering from the data. This is

discussed further in Chapter 6.

The DPMN model presented here differs from existing DPMN models because it

is used to model the distribution shape of log-residues. For our application we also

had to refine the DPMN model to deal with censored and rounded data. The per-

formance of our method was extensively tested in validation studies. The validation

studies indicated that the model performs well for a range of distributions with short

and medium tails. However for heavy-tailed distributions the method would need to

be refined if a transformation could not be applied to remove the heavy tail of the

data. Suggestions for refining the model to deal with heavy-tailed distributions are

discussed in Chapter 6 where we also discuss further options for model validation.

We investigated the effect of sample size and concluded that for n > 50 the model

performed well. The effect of learning the DPMN concentration parameter γ for

the validation study data and the unit log-residue data was shown to be negligible
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because the inferred range of γ values was relatively similar to the fixed value of γ

compared to the pooled sample size.

Applying the DPMN model to unit log-residue data allows us to estimate vari-

ability factors for each data set. The VFs obtained using our model on field trial

data indicate that a value of 3 as proposed by Hamilton et al. (2004) and Ambrus

(2006) may not be sufficiently protective, a result that is in line with the EFSA

analysis (EFSA, 2005). Our method improves on the current VFs because it also

provides the unit variation distribution which can then be used in a model that

accounts for between-field variation (see Chapter 5). A hierarchical model that de-

scribes the variation in variability factors between data sets, similar to the EFSA

(2005) analysis but based on a DPMN distribution may be more appropriate to

describe unit variation. We present such a model in Chapter 5.

The model presented in this chapter can also be used in other applications in-

cluding modelling consumption data and composite supervised trial data. Outside

dietary risk assessment, the approach could also be used for ecotoxicity data that

are used to describe the variation in sensitivity between species to chemicals. These

applications are discussed in more detail in Chapter 6.



Chapter 5

Modelling within-field and

between-field variation in pesticide

residues

5.1 Introduction

To estimate the acute dietary risk associated with pesticide residues in food items,

we need to know how residue levels vary between food items. Variation in pesticide

residues is thought to be affected by four types of factor: application, crop, envi-

ronmental and dissipation factors (Ambrus, 1979; EFSA, 2005). Prior to pesticide

registration for a new use (i.e. the use of a new pesticide on any crop or an existing

pesticide on a new crop), there are two sources of data available that could be of

use: supervised trial data and unit field trial data (see Section 1.4.1). As unit field

trial data are generally not collected for pesticide registration it has been suggested

(JMPR, 1999; Ambrus, 2000; JMPR, 2002; Hamilton et al., 2004; EFSA, 2005; Am-

brus, 2006) that existing unit data from field trials for other crops and pesticides can

be used to provide an estimate of the amount of variation between units. These data

were used in Chapter 4 to describe the variation in unit residue levels (within-field

variation) for multiple field trials. However, to predict residues levels in consumed

food items we also need to account for variation between unit residue levels that are

183
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obtained from different fields (between-field variation).

To describe the within-field and between-field variation in residue levels, we need

to obtain residue levels on food items from multiple fields under a wide range of

conditions. This is important as for some food items (e.g. a bunch of bananas),

a consumer is likely to be exposed to units obtained from a single field, whereas

for others, e.g. a bag of apples, the bag may contain units that come from the

same or multiple fields. As a consequence, when estimating the dietary exposure of

consumers, we need to be able to quantify both the within-field and between-field

variation in residue levels.

In current probabilistic dietary risk assessment approaches, a distribution is fit-

ted to composite samples from multiple supervised trials and this is then regarded

as a distribution of field means. However, this approach ignores uncertainty in the

estimation of the field means and results in a distribution describing a mixture of

between-field and unit variation. As a result, the current methods count unit varia-

tion twice and do not account for the uncertainty caused by the low number of units

used to create composite samples. To overcome this, we propose a new statistical

model that will a) provide a more realistic description of residue level variation in

units than the currently assumed Lognormal distribution, b) take account of the

small number of units used in composite samples and the small number of compos-

ite samples used to describe between-field variation and c) account for the fact that

composite residue levels from supervised trials already include unit variation. The

proposed method uses the same information as existing methods (e.g. composite

samples from supervised trial data) and can therefore be implemented in existing

software.

5.2 Model Specification

In this section, we propose a novel approach to model variation in residue levels

that will not only be based on a data-driven description of unit variation but, un-
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like existing approaches, it will not double-count unit variation when accounting

for within-field and between-field variation. When inferring the field mean distribu-

tion we need to ‘remove’ the unit variation component in the observed variation in

composite samples in order to obtain a distribution describing the variation in field

mean residue levels.

Let us assume that residue levels on units k from field l can be described using:

ykl = ξFl Ukl

where ξFl is the mean residue level of field l and Ukl is the ‘relative unit variation’

with E[Ukl] = 1. We can use a refined version of the unit residue model developed

in Chapter 4 as the basis for our model for Ukl. We can then fit this model to the

unit log-residue data in Chapter 4 and use the resulting posterior distribution as a

prior distribution for Ukl.

5.2.1 Refined unit model

Figure 5.1 shows the Directed Acyclic Graph (DAG) of the unit log-residue variation

model from Chapter 4 but now refined to model the variation in the scale parameter

of the unit log-residue distribution, σul , using a Gamma distribution with parameters

α and β. The data requirements for the registration of a new pesticide use result in

a set of composite samples from supervised field trials which will be used to infer the

between-field variation. Each composite sample, yl, is the average residue level of nl

units obtained from field l, yl =
∑nl
k=1 ykl
nl

, where l = 1, . . . , L and L is the number of

supervised field trials. As no unit data will be collected as part of the registration

process, the information on unit variation in log-residue levels needs to come from

other sources. To infer the within-field variation, we have unit field trial data, xij,

with i = 1, . . . , nj and j = 1, . . . , J , where nj is the number of units obtained from

field trial j and J is the number of unit field trials. In the model presented in this

chapter we have unit data, xij, from J fields and composite data, ykl from L fields.

Throughout this chapter we assume that the variation in unit residue levels in fields

from which composite samples were obtained can be described using the unit data

even though the measurements were not taken from the same fields. Therefore we
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use different indices to denote the different fields that the unit and composite data

were collected from. After normalising the unit log-residue data, xij, using location

parameter, µuj , and scale parameter, σuj , we model the normalised log-residue values,

zij, using a Dirichlet mixture shape distribution with weight and location parameters

w and θ. We do not need a hierarchical model for the µuj because changing the value

of µuj changes the distribution of xij but not the distribution of Uij, where Uij is

defined as:

Uij =
exp[xij]

E
[
exp[xij]|µuj , σuj ,w,θ

]
5.2.2 Within- and between-field model

To model composites, y, we need to model between-field variation so we introduce

a location parameter, µF , and a scale parameter, σF , to describe the variation in

field means, ξF . This results in the following joint probability density function:

p(w,θ, α, β)p(x|w,θ, α, β)

× p(µF , σF )p(y|µF , σF ,w,θ, α, β)

zij

i = 1, ..., n

µj
uxij

Uij

σj
u

j = 1, ..., J

i = 1, ..., nj

w,θ α, β

Figure 5.1 – DAG for refined unit residue generation model which accounts for

within-field variation of log-residue levels. The red arrows correspond to the

dependencies between the variables and the blue arrows represent deterministic

dependencies.
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However, as the distribution p(y|µF , σF ,w,θ, α, β) is complex, we need to include

the field-specific scale parameter, σul , as an auxiliary parameter in the model:

p(w,θ, α, β)p(x|w,θ, α, β)

× p(µF , σF )
L∏
l

p(σul |α, β)p(y|µF , σF ,w,θ, σul , α, β)

As the conditional distributions p(σul |y, µF , σF , α, β) and p(µF , σF |y,σu, α, β) are

still complex, we propose to introduce another auxiliary variable, Ul = 1
nl

∑nl
k=1 Ukl,

describing the variation of composite residue levels around the field mean, ξFl :

log(yl) = log(ξFl ) + log(Ul)

In other words, residue levels on units and composite samples are a function of the

variation in field means and the variation in units, Ukl, or composites, Ul, respec-

tively. The distribution of Ul depends on the number of units, nl, that are used

in a composite sample and the relative unit variation, Ukl. The refined unit model

provides us with the distribution of Ukl, but the distribution of Ul is unknown. We

now have the following joint probability density function:

p(w,θ, α, β)p(x|w,θ, α, β)

× p(µF , σF )
L∏
l

p(σul |α, β)p(Ul|w,θ, σul )p(y|Ul, µF , σF )

resulting in the blocked Gibbs conditional distributions:

p(w,θ, α, β|x,U,σu) (5.1)

p(σul |Ul, α, β) (5.2)

p(Ul|yl, µF , σF ,w,θ, σul ) (5.3)

p(µF , σF |y,U) (5.4)

5.2.3 MCMC Approach

Equation 5.1 simplifies to p(w,θ, α, β|x) assuming that the number of data, yl, for

the crop-pesticide scenario of interest is relatively small and provides little informa-

tion on w, θ, α and β. Although there is some information about unit variation in
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the composite data, yl, we ignore this because the number of units in the composite

samples is small compared to the number of unit data, xij. In addition, we expect

that a significant proportion of the total variation of yl is due to the variation in field

means which makes it difficult to extract information about the unit variation from

the composite samples, particularly as the scale parameter of the unit log-residue

distribution, σul is field-specific rather than crop/pesticide specific.

Therefore we only use the unit data, xij, to infer α, β and the parameters of the

Dirichlet Process Mixture distribution obtained from the refined unit model and

assume that the distribution for unit variation based on the field trial data, xij,

can be used to describe the unit variation for new pesticide/crop combinations, Ukl.

This relies on two assumptions:

1. The Uij (or Ukl) are exchangeable within a field j (i.e. Uij are independent

and identically distributed given σuj , w and θ).

2. The only parameter that varies between fields is σuj and these are exchangeable

and independent and identically distributed given α and β.

The use of existing unit data, xij, for multiple crop/pesticide combinations to infer

the unit variation for a new crop/pesticide combination is supported by the results

of the analysis in Chapter 4 and JMPR (2003), which indicated that the variability

factor and hence the scale parameter does not seem to be dependent on the crop

type or pesticide. As a result, the variation in unit residue levels for a new use can

be regarded as a random sample from the refined unit model applied to a suitably

representative sample of existing unit data sets. In a similar way to Equation 5.1,

we can simplify Equation 5.2 to p(σul |α, β) as Ul contains little information about σul .

We cannot calculate nor sample from Equation 5.3 as we do not know the dis-

tribution of Ul, even without conditioning on yl. Instead we propose to sample from

p(Ul|yl, µF , σF ,w,θ, σul ) and use the fact that if we know Ul, we also know Ul. We

now have:

p(Ul|yl, µF , σF ,w,θ, σul ) ∝ p(yl|Ul, µF , σF )

nl∏
k=1

p(Ukl|w,θ, σul ) (5.5)
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We can calculate Equation 5.5, but as it is difficult to sample from this distribution,

we propose a Metropolis-Hastings algorithm in which we use our knowledge of the

moments of Ukl to obtain a Lognormal approximation of p(Ul|yl, µF , σF ,w,θ, σul ).

We can use this approximation to obtain a proposal value for ξFl which, given yl,

can be used to calculate a proposal value Ul
∗
. We subsequently sample proposal

values, U∗l , from p(Ul|Ul,w,θ, σul ) by approximating p(Ukl|w,θ, σul ) with a Gamma

distribution. We then accept/reject the proposed values, U∗l and Ul
∗
, using the tar-

get probability distribution in Equation 5.5. We have chosen this approach instead

of using random walk steps because a random walk in nl dimensions may not be

very efficient when nl is large. We will discuss the logic behind using these proposal

distributions in more detail in Section 5.2.6. Updating µF and σF (Equation 5.4) is

straightforward given ξF if we assume a conjugate distribution for ξF (see Section

5.2.7). Throughout this chapter we will assume that ξF follows a Lognormal distri-

bution as is current practice in existing dietary exposure approaches.

Figure 5.2 shows DAGs describing the within-field and between-field variation model.

Figure 5.2a highlights the structure of the conceptual model. However, the MCMC

algorithm that we implement is a blocked Gibbs sampler in which we replace some

Gibbs steps with Metropolis-Hastings steps. As you cannot use a Gibbs sampler on

a DAG with logical dependencies (Lunn et al., 2000), Figure 5.2b illustrates which

quantities are sampled in the blocked Gibbs algorithm.

Figure 5.2 – DAGs for our model describing within-field and between-field vari-

ation in residue levels.

(a) Including logical dependencies.

ξl Ukl σl
u

lUl
y

βα, Ukl

μ F, σF

l = 1, ..., L

k = 1, ..., nl

w,θ

βα, 

(b) Without logical dependencies.

Ukl σl
u

l
y

βα, Ukl

μ F, σF

l = 1, ..., L

k = 1, ..., nl

w,θ

βα, 
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5.2.4 Summary

To sample from the posterior distribution p(µF , σF ,w,θ,σu|y,x), we propose the

following Metropolis-Hastings within blocked Gibbs algorithm:

1. From the refined unit model in Section 5.2.8 and Figure 5.1, sample values for

w, θ, α and β.

2. For each field l:

(a) Sample σul for each field from the hierarchical Gamma(α, β) model.

(b) Impose the constraint E[Ukl] = 1 on the unit variation distribution, i.e.

determine µul .

(c) Update Ukl using a Metropolis-Hastings step. Using an approximation

to the conditional distribution Ul|yl, µF , σF ,w,θ, σul (see Section 5.2.6.1)

we first propose a value for ξFl . Given yl, we can use this to calculate

a proposal value for Ul. Then we propose values for the Ukl using an

approximation to Ukl|Ul,w,θ, σul (see Section 5.2.6.2). Finally we decide

whether or not to accept the Ukl proposed.

3. Sample µF and σF from the conditional distribution given the ξFl (see Section

5.2.7).

Before we can discuss the sampling steps for each distribution in more detail, we

first need to consider the distribution of Uij.

5.2.5 Distribution of Uij

For the new use of a pesticide, we are not likely to have unit residue data from

a range of fields. Therefore, we need to use information about variation in unit

residue levels obtained from the refined unit model (see Figure 5.1) to learn about

the distribution of Uij. Let us define zij =
log(xij)−µuj

σuj
. From the unit residue model

in Chapter 4 we know that zij are independent and identically distributed given w

and θ:

p (zij|w,θ, σc) =
1

σc

C∑
q=1

wqφ

(
zij − θq
σc

)



5.2. Model Specification 191

where φ is the standard Normal density function and σc is the fixed standard de-

viation of the C Normal components in the refined unit model. Setting log(xij) =

µuj + σuj zij and Ûij = eσ
u
j zij , we find xij = eµ

u
j eσ

u
j zij = eµ

u
j Ûij. If we define ρj =

E[Ûij|w,θ, σuj ], we can write xij = eµ
u
j ρj Uij where Uij = Ûij/ρj does not involve µuj

and E[Uij|w,θ, σuj ] = 1. We can now write: log(Uij) = log(xij) − µuj − log(ρj) =

σuj zij − log(ρj). Changing variables from zij to Uij leads to:

p(Uij|w,θ, σc, σuj ) =
1

Uijσ∗j

C∑
q=1

wqφ

(
log(Uij)− (θ∗qj − log(ρj))

σ∗j

)
(5.6)

where θ∗qj = θqσ
u
j and σ∗j = σcσ

u
j . To obtain the distribution of Uij we need to

compute ρj = E[Ûij|w,θ, σuj ].

5.2.5.1 Moments of Uij

In this section we derive the moments of Uij which we will use in the following section

to propose values for Ul and Ul. The moment generating function for log(Y ), where

log(Y ) is Normally distributed, is defined as:

E[Y t] = exp

[
µt+

σ2t2

2

]
From this it is easy to find the expected value for Y and Y 2 by setting t = 1, 2,

respectively:

E[Y ] = exp

[
µ+

σ2

2

]
E[Y 2] = exp[2(µ+ σ2)]

The variance of Y is given by:

Var[Y ] = (E[Y ])2(exp[σ2]− 1)

If the probability distribution of a random variable Y is a mixture distribution with

weights, wq, and component probability density function, pq(y), then we can use

an auxiliary discrete random variable, Q, to select a component of the mixture

distribution together with the conditional probability density function of Y |Q = q,

pq(y), to obtain the moments of the mixture distribution. With E[Û t
ij|w,θ, σc, σuj ] =
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E[etẑij |w,θ, σc, σuj ] where ẑij = log(Ûij), ẑij|Qij = q ∼ N (θ∗qj, (σ
∗
j )

2) and p(Qij =

q) = wq, we obtain the moments of Ûij conditional on w, θ, σc and σuj :

E[Û t
ij|w,θ, σc, σuj ] =

C∑
q=1

wqE[etẑij |Q = q]

This leads to:

ρj = E[Ûij|w,θ, σc, σuj ] = E[E[Ûij|Q = q]]

=
C∑
q=1

wq exp

[
θ∗qj +

(σ∗j )
2

2

]
where wq is the weight of component q. Conditional on w, θ, σc and σuj , the variance

of Ûij can be obtained using:

Var[Ûij] = E[(Ûij −E[Ûij])
2] = E

[
Var

[
Ûij|Q = q

]
+ (E[Ûij|Q = q]−E[Ûij])

2
]

With Var[Ûij|Q = q] =
(
E[Ûij|Q = q]

)2

(exp[(σ∗j )
2]− 1) we obtain:

Var[Ûij] =
C∑
q=1

wq((E[Ûij|Q = q])2(exp[(σ∗j )
2]− 1) + (E[Ûij|Q = q]−E[Ûij])

2))

This can be simplified by taking out a factor of f = exp
[
− (σ∗)2

2

]
to find Var[Ûij]:

a = E[fÛij|Q = q] = exp[θ∗qj]

b = E[fÛij] =
∑

wqa

c = exp[(σ∗j )
2]

d = Var[fÛij|Q = q] = a2(c− 1)

Var[Ûij] = c
∑(

wq(d+ (a− b)2)
)

(5.7)

With Uij = Ûij/ρj, the moments of p(Uij) are given by:

E[Uij] = 1 Var[Uij] =
Var[Ûij]

ρ2
j

5.2.6 Sampling from p(Ul, Ul|yl, µF , σF ,w,θ, σul )

To sample from p(Ul, Ul|yl, µF , σF ,w,θ, σul ), we propose a Metropolis-Hastings sam-

pler which uses approximations of p(Ul|yl, µF , σF ,w,θ, σul ) and p(Ul|Ul,w,θ, σul ) as
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the proposal distributions. In the next three sections, we will first derive these pro-

posal distributions and then present the Metropolis-Hastings algorithm to sample

from p(U,U|y, µF , σF ,w,θ,σu).

5.2.6.1 Step 1: Proposal distribution of p(Ul|yl, µF , σF ,w,θ, σul )

Here we consider the distribution of Ul and show how approximating Ul with a Log-

normal distribution allows us to approximate the posterior distribution p(log(ξFl )|yl).

Let us assume that:

log(ξFl ) ∼ N (µF , (σF )2)

log(Ul) ·∼· N (η, ψ2)

We know that log(yl) = log(ξFl ) + log(Ul). If log(ξFl ) is known, we have:

p(log(yl)| log(ξFl )) ≈ N (log(yl); log(ξFl ) + η, ψ2)

We are actually interested in p(log(ξFl )| log(yl)) and using Bayes rule we obtain:

p(log(ξFl )| log(yl)) =
p(log(ξFl ), log(yl))

p(log(yl))

≈ N
(

log(ξFl );
µFψ2 + (log(yl)− η)(σF )2

(σF )2 + ψ2
,

(σF )2ψ2

(σF )2 + ψ2

)
(5.8)

We can now generate a sample from the Normal approximation of p(log(ξFl )| log(yl))

which will provide a proposal value log(ξF,∗l ). As log(U∗l ) = log(yl) − log(ξF,∗l ), we

can use the proposed value for log(U∗l ) in a Metropolis-Hastings step to accept or

reject log(ξF,∗l ).

Finding values for η and ψ

To approximate Ul with a LN (η, ψ2) distribution, we need to find values for η and

ψ. We propose to do this by matching the moments of this Lognormal distribution

with the moments of the distribution of Ul. As we do not know the distribution of

Ul, we use the moments of Ukl to derive the moments of Ul.

Moments of Ul

Using the moments of Ukl, the expected value of Ul is given by:

E[Ul] = 1 (5.9)
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For the variance, we know that if Xi are independent random variables:

Var
[
X
]

= Var

[
1

n

n∑
i=1

Xi

]
=

1

n2

n∑
i=1

Var [Xi] =
Var [Xi]

n

So:

Var[Ul] =
Var[Ukl]

nl
(5.10)

Calculating parameters of the LN (η, ψ2) distribution

The moments of the distribution of Ul can be matched to the moments of a Lognor-

mal approximation of the distribution of Ul with parameters:

ψ2 = log

(
Var[Ul]

(E[Ul])2
+ 1

)
η = log(E[Ul])−

ψ2

2

After observing composite residue level, yl, from supervised field trials, the approx-

imate conditional posterior distribution that we use to propose values of ξFl is given

by Equation 5.8.

5.2.6.2 Step 2: Proposal distribution of Ul|Ul,w,θ, σul : A constraint

problem

The second step of the Metropolis-Hastings algorithm involves proposing values for

Ul|Ul. Sampling nl unit values from the mixture distribution of Ukl that have mean

Ul can be achieved using a Gamma approximation.

Gamma approximation

Suppose that U1l, . . . , Unll
i.i.d.·∼· Gamma

(
ζ
nl
, γ
nl

)
. We need the probability density

function of nl−1 samples when we know the mean of nl samples, p(U1l, . . . , U(nl−1)l|Ul).

This is because if nl − 1 samples and the mean are known, then the nlth sample is

also defined. We change variables from U1l, . . . , Unll to f1l, . . . , f(nl−1)l, nlUl, where

fhl = Uhl∑nl
k=1 Ukl

for h = 1, . . . , nl−1 and nlUl =
∑nl

k=1 Ukl. This results in (see Section



5.2. Model Specification 195

2.2.1 for details):

p(f1l, . . . , f(nl−1)l|nlUl) = Dirichlet

(
ζ

nl
, . . . ,

ζ

nl

)
Now we can sample {f1l, . . . , f(nl−1)l} which will provide fnll = 1−

∑nl−1
k=1 fkl. These

are the proportions that each sampled residue value will contribute to nlUl.

Next, assuming that U1l, . . . , Unll
i.i.d.∼ Gamma

(
ζ
nl
, γ
nl

)
, we need to determine the

distribution of Ul. If we assume that all Ukl are independent, the moment-generating

function for
∑nl

k=1 Ukl is:

M∑
Ukl(t) =E [exp[t(U1l + · · ·+ Unll)]]

=

 γ
ζ
nl(

γ
nl
− t
) ζ
nl


nl

=

(
γ
nl

)ζ
(
γ
nl
− t
)ζ

which shows that
∑nl

k=1 Ukl ∼ Gamma
(
ζ, γ

nl

)
and thus Ul ∼ Gamma(ζ, γ). Given

the moments of the distribution of Ul from Equations 5.9 and 5.10 we can obtain

the parameters ζ and γ by matching the moments of Ul with the moments of the

Gamma distribution:

ζ =
E[Ul]

2

Var[Ul]

γ =
E[Ul]

Var[Ul]

This allows us to propose values from p(Ul|Ul) using:

f1l, . . . , fnll ∼ Dirichlet

(
ζ

nl
, . . . ,

ζ

nl

)
Ukl = nlUlfkl

5.2.6.3 Step 3: Metropolis-Hastings Algorithm to sample from

p(U,U|y,w,θ,σu)

In Section 5.2.6.1 we learned that if we approximate the distribution of Ul with a

Lognormal distribution, we can propose values, Ul
∗
, from an approximation of the

posterior distribution p(Ul|yl, µF , σF ,w,θ, σul ). In Section 5.2.6.2 we observed that

if we approximate the distribution of Ukl with a Gamma distribution, we can propose
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values U∗l from an approximation to p(Ul|Ul,w,θ, σul ). We can use these proposed

values in a Metropolis-Hastings step, ultimately leading to samples from our target

distribution p(Ul, Ul|yl, µF , σF ,w,θ, σul ). Let ξ∗l be the proposed value at iteration

t, sampled from proposal density q(·). The acceptance probability, paccept, is defined

as:

paccept = min

(
1,
q(Ul, Ul|yl, µF , σF ,w,θ, σul )

q(U∗l , U
∗
l |yl, µF , σF ,w,θ, σul )

p(U∗l |yl, µF , σF ,w,θ, σul )

p(Ul|yl, µF , σF ,w,θ, σul )

)
The first term,

q(Ul,Ul|yl,µF ,σF ,w,θ,σul )

q(U∗
l ,U

∗
l |yl,µF ,σF ,w,θ,σ

u
l )

is referred to as the proposal ratio and the

second term,
p(U∗

l |yl,µF ,σF )

p(Ul|yl,µF ,σF ,w,θ,σul )
, as the target ratio. We will discuss both ratios in

more detail in the following sections.

Proposal Ratio

As we use a proposal distribution that is based on approximations of the posterior

distributions p(Ul|yl,w,θ, σul ) and p(Ul|yl, Ul,w,θ, σul ), the proposal ratio is given

by:

q(Ul, Ul|yl, µF , σF ,w,θ, σul )

q(U∗l , U
∗
l |yl, µF , σF ,w,θ, σul )

=
p(Ul|yl, µF , σF ,w,θ, σul )

p(U∗l |yl, µF , σF ,w,θ, σul )

p(Ul|Ul,w,θ, σul )

p(U∗l |U∗l ,w,θ, σul )

The first term, p(Ul|yl,w,θ, σul ), can be obtained using the approximation of the

posterior distribution of p(log(ξFl )| log(yl)). Changing variables from log(ξFl ) to Ul

using log(ξFl ) = log(yl)− log(Ul) and d log(ξFl ) = Ul
−1
dUl, results in:

p(Ul|yl) =
1

Ul
N
(
log(yl)− log(Ul);µpost, σ

2
post

)
(5.11)

where µpost = µFψ2+(log(yl)−η)(σF )2

(σF )2+ψ2 and σ2
post = (σF )2ψ2

(σF )2+ψ2 . For the second term,

p(Ul|Ul,w,θ, σul ), we use a Gamma approximation to propose values U∗1l, . . . , U
∗
nll

and apply a Metropolis-Hastings step to accept/reject them. The proposal distri-

bution for f l = {f1l, . . . , f(nl−1)l} is given by:

p

(
f l|Ul,

ζ

nl
,w,θ, σul

)
=

1

B
(
ζ
nl

) nl∏
k=1

f
ζ
nl
−1

kl

where B
(
ζ
nl

)
=

Γ
(
ζ
nl

)nl
Γ(ζ)

. So let fkl = Ukl
nlUl

, then dfkl
dUkl

= 1
nlUl

, leading to:

p

(
Ul|Ul,

ζ

nl
,w,θ, σul

)
∝ 1

Ul
ζ−1

nl∏
k=1

U
ζ
nl
−1

kl (5.12)
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The proposal ratio can then be obtained from Equations 5.11 and 5.12:

p(ξFl |yl,w,θ, σul )

p((ξFl )∗|yl,w,θ, σul )

p(U1l, . . . , Unll)|yl, Ul,w,θ, σul )

p(U∗1l, . . . , U
∗
nll)
|yl, U∗l ,w,θ, σul )

=
N
(
log(ξFl );µpost, σ

2
post

)
N
(
log((ξFl )∗);µpost, σ2

post

)×
U∗l

ζ∏nl
k=1 U

ζ
nl
−1

kl

Ul
ζ∏nl

k=1(U∗kl)
ζ
nl
−1

Target Ratio

From Equation 5.5 (page 188), we know that we are interested in:

p(Ul|yl, µF , σF ,w,θ, σul ) ∝ p(yl|Ul, µF , σF )

nl∏
k=1

p(Ukl|w,θ, σul )

To be able to calculate p(yl|Ul, µF , σF ), we make use of the logical dependencies,

log(yl) = log(ξFl ) + log(Ul) and Ul =
U1l + ...+Unll

nl
. Changing variables and using

log(ξFl ) ∼ N (µF , (σF )2) leads to:

p(yl|Ul, µF , σF ) =
1

Ul
pξFl

(
yl

Ul
;µF , σF

)
=

1

yl
N
(

log

(
yl

Ul

)
;µF , (σF )2

)
The second term in the target distribution, p(Ukl|w,θ, σul , σc), can be obtained from

the revised unit model (Equation 5.6 on page 191). As a result, the target distribu-

tion is:

p(U∗l |yl, µF , σF ,w,θ, σc, σul )

p(Ul|yl, µF , σF ,w,θ, σc, σul )
=
N
(

log
(
yl
U∗
l

)
;µF , (σF )2

)
N
(

log
(
yl
Ul

)
;µF , (σF )2

)×
∏nl

k=1 Ukl
∑C

q=1wqφ
(

log(ρjU
∗
kl)−θqσ

u
l

σcσul

)
∏nl

k=1 U
∗
kl

∑C
q=1wqφ

(
log(ρjUkl)−θqσul

σcσul

)

5.2.7 Distributions of µF and σF for various prior

distributions

Now we have samples of ξFl , we want to obtain samples of the posterior distribution

p(µF , σF |ξF). If we assume log(ξFl ) ∼ N (µF , (σF )2), we have various options for

the prior distribution, π(µF , σF ). In this section, we explore three different prior

distributions.
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5.2.7.1 π(µF, σF) = 1/σF

Using a 1/σF prior (Box and Tiao, 1973), updating the parameters µF and σF

of the Lognormal distribution for ξFl given the data is relatively simple. However,

Gelman (2006) states that for hierarchical variance parameters in a one-way ANOVA

setting, with group-level effect αj ∼ N (0, σ2
α), a 1/σα prior results in an improper

posterior distribution. As the data cannot rule out a group-level variance of zero, a

1/σα prior distribution that puts an infinite mass near zero will result in inferences

that favour the absence of a group effect. For our model, when using a 1/σF prior

distribution, the data, yl, cannot rule out that σF can be zero as the model will use

the distribution of Ul to explain the observed variation in yl. Therefore, alternative

prior distributions for σF should be considered.

5.2.7.2 Normal-Gamma prior

An alternative to the 1/σF prior distribution is a Normal-Gamma prior for (µF , τF )

where τF = (1/sigmaF )2. This prior distribution allows available information on µF

and σF to be incorporated into the model, e.g. by restricting σF to be more likely

in a certain range. The Normal-Gamma distribution is a 4 parameter distribution,

defined as:

π(µF , τF |µ0, κ0, α0, β0) = N (log(ξF );µ0, (κ0τ
F )−1)Gamma(τF ;α0, β0)

∝ (τF )
1
2 exp

[
−κ0τ

F

2
(log(ξF )− µ0)2

]
(τF )α0−1 exp

[
−τFβ0

]
A sequential sampler can be used to sample τF from a Gamma distribution and

µF |τF from a Normal distribution:

τF | log(ξF) ∼ Gamma

(
L

2
+ α0, β0 +

Lκ0(log(ξF )− µ0)2

2(L+ κ0)

+
1

2

L∑
l=1

(
log(ξFl )− log(ξF )

)2
)

µF |τF , log(ξF) ∼ N

(
κ0µ0 + Llog(ξF )

κ0 + L
,

1

(L+ κ0)λF

)

where log(ξF ) =
∑L
l=1 log(ξFl )

L
.
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5.2.7.3 Uniform Prior

A non-informative alternative to the 1/σF prior distribution is to use a Uniform prior

distribution for µF and σF . The conditional distribution of µF can be obtained by

treating σF as a constant and factorising:

p(µF |σF , log(ξF)) ∝ exp

[
L

2(σF )2

(
µF − log(ξF )

)2
]

in which we recognise a N
(

log(ξF ), (σF )2

L

)
distribution. The marginal distribution

of τF = (σF )−2 can now be obtained using:

p
(
τF | log(ξF)

)
∝ (τF )

L−2
2
−1 exp

[
−τ

F (L− 1)s2

2

]
where s2 is the sample variance of log(ξF). In this we recognise that τF (L −

1)s2| log(ξF) ∼ χ2
L−2, i.e. a χ2-distribution with L− 2 degrees of freedom.

5.2.7.4 Choice of prior distribution for within-field and between-field

model

If no information is available on σF , the recommended prior distribution for σF is

the Uniform distribution (Gelman, 2006) as it does not favour small values of σF

and does not require the specification of many parameters. However, if information

was available that would allow us to specify an informative prior distribution on σF ,

it might be useful to select a Normal-Gamma prior distribution for τF . Although

the Normal-Gamma distribution may provide more flexibility than the other two

prior distributions, it requires 4 parameters to be specified. A weakly informative

non-conjugate alternative would be the half-Cauchy distribution (Gelman, 2006).

As we do not have prior information for σF we use the Uniform prior distribution

for the model runs illustrated in this chapter.

5.2.8 Hierarchical model for the scale parameter of the

unit model

The refined unit model (see Figure 5.1) allows us to infer the shape and scale param-

eters for the unit log-residue distribution for a new pesticide for which unit data are
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not available. We considered a hierarchical Gamma model for the scale parameter

σuj and for the precision τuj = (σuj )−2 of log-residue data obtained from field trial

j. However, in tests we found that the model worked better when parameterised

with the scale parameter so we only discuss that model here. Figure 5.3 shows the

results of an exploratory data analysis of the unit field trial data. We calculated the

scale parameter, σuj , defined as half the intertertile range, for each of the 75 available

field trial data sets and fitted a Gamma distribution. The results indicate that the

model provides a reasonable fit, but may predict more extreme values for σuj than

we observed in the data.
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Figure 5.3 – QQ Plot of scale parameter σ̂uj . Empirical estimates are plotted

against quantiles based on a maximum likelihood estimate of the parameters

of a Gamma distribution.

5.2.8.1 Model Description

Metropolis-Hastings algorithm for µuj and σuj

Using a hierarchical model for σu affects the posterior distribution of the location

and scale parameters, µj and σj respectively, of the unit model. Therefore in this

section we discuss the new Metropolis-Hastings algorithm that is necessary to sample

these parameters.
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Proposal ratio

For the proposal ratio we use the previously used proposal distributions (see Section

4.2.2 for details) leading to:

q(µuj , σ
u
j ; (µuj )

∗, (σuj )∗)

q((µuj )
∗, (σuj )∗;µuj , σ

u
j )

=

(
(σuj )∗

σuj

)2

Target ratio

Let us replace the 1/σuj prior from the unit model in Chapter 4 with a Gamma(α, β)

prior distribution for the scale parameter σu = {σu1 , . . . , σuJ} where J is the number

of unit data sets as before:

π(µuj , σ
u
j |α, β) =

βα

Γ(α)
(σuj )α−1 exp[−βσuj ]

This leads to:

p(µ,σ|α, β) =
βJα

Γ(α)J
exp

[
−β

J∑
j=1

σuj

]
J∏
j=1

(σuj )α−1

We know that the shape distribution for normalised log-residue data, log(x̃ij), is

given by:

plog(x̃)(log(x̃ij)|θ,w, σc) =
C∑
q=1

wq
σc
φ

(
log(x̃ij)− θq

σc

)
where C is the number of components in the mixture and φ is the standard Normal

density. Given α, β and the shape distribution, the {µuj , σuj } sets are independent,

so:

p(µuj , σ
u
j |x,θ,w, α, β) ∝ p(µuj , σ

u
j |α, β)p(x|θ,w, µuj , σuj )

∝ exp[−βσuj ](σuj )α−1−nj
nj∏
i=1

plog(x̃)(x̃ij)

where x are the unit log-residue data from field trials. The target ratio for each

{µuj , σuj } pair is:

p((µuj )
∗, (σuj )∗|x,θ,w, α, β)

p(µuj , σ
u
j |x,θ,w, α, β)

=
exp[−β(σuj )∗]((σuj )∗)α−1−nj

∏nj
i=1 plog(x̃)(x̃

∗
ij)

exp[−β(σuj )](σuj )α−1−nj
∏nj

i=1 plog(x̃)(x̃ij)

= exp[−β((σuj )∗ − σuj )]

(
(σuj )∗

σuj

)α−1−nj nj∏
i=1

plog(x̃)(x̃
∗
ij)

plog(x̃)(x̃ij)
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Distributions of α and β

The next step is to update the parameters α and β of the Gamma distribution.

Let us assume v
i.i.d.∼ Gamma(α, β) and use the following Jeffreys prior for α and β

(Miller, 1980):

π(α, β) =
1

αβ

Therefore the posterior distribution for α and β is:

p(α, β|v) ∝ 1

αβ

βJα

Γ(α)J
exp

[
−β

J∑
j=1

vj

]
J∏
j=1

vα−1
j

where v = {v1, . . . , vJ}. From this, we can obtain:

p(β|α,v) ∝ βJα−1 exp

[
−β

J∑
j=1

vj

]
So:

p(β|α,v) = Gamma

(
β; Jα,

J∑
j=1

vj

)
We know α has a marginal distribution given by:

p(α|v) =

∫ ∞
0

p(α, β|v)dβ

∝
∫ ∞

0

βJα−1

αΓ(α)J
exp

[
−β

J∑
j=1

vj

]
J∏
j=1

vα−1
j dβ

This leads to:

p(α|v) ∝ Γ(Jα)(∑J
j=1 vj

)Jα
∏J

j=1 v
α−1
j

αΓ(α)J
(5.13)

Since we cannot sample easily from p(α|v), we use a Metropolis-Hastings step.

Proposal ratio

We use the following proposal density:

q(α∗|α) ∼ N (α,W (α)2)

where W (α) is the Wald Standard Error for α. The log-likelihood for J observations

v from a Gamma(α, β) distribution is given by:

log(L(α, β)) = Jα log(β)− J log (Γ(α)) + (α− 1)
J∑
j=1

log(vj)− β
J∑
j=1

vj
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Maximising with respect to β results in β̂ = α
v̄
. Substitution in the log-likelihood

function leads to the profile log-likelihood of α:

log(L(α)) = Jα log(α)− Jα log(v̄)− J log (Γ(α))− Jα + (α− 1)
J∑
j=1

log(vj)

Now we calculate the Fisher information I for α:

I(α) = −E
[
∂2

∂α2
log(L(α))

∣∣∣∣α]
= JΨ′(α)− J

α
=
J(αΨ′(α)− 1)

α

where Ψ′(z) is the trigamma function Ψ′(z) = d2

dz2
log(Γ(z)). The Wald Standard

Error is given by:

W (α) =
1√
I(α)

=

√
α

J(αΨ′(α)− 1)

Although the maximum likelihood estimator, α̂, is normally used in this expression,

we instead use W (α) as a quick approximation in a Metropolis-Hastings step. The

proposal ratio is:

q(α|α∗)
q(α∗|α)

=
W (α)

W (α∗)
exp

[
(α∗ − α)2

2

W (α∗)2 −W (α)2

W (α∗)2W (α)2

]

Target ratio

The target distribution is given by Equation 5.13 leading to the target ratio:

pα|v(α∗)

pα|v(α)
=

(
J∑
j=1

vj

)J(α−α∗)

Γ(Jα∗)

Γ(Jα)

αΓ(α)J

α∗Γ(α∗)J

(
J∏
j=1

vj

)α∗−α

Now that we have defined a hierarchical model for the unit variation of log-residue

data sets, we can use a Metropolis-Hastings within Gibbs algorithm to sample µuj ,

σuj , α and β.

5.2.8.2 Results of applying the hierarchical unit model to field trial

data

In this section we show the results from applying the hierarchical unit model to the

unit log-residue data from field trials. We considered two different setups: the first

model run used a fixed value of γ = 10 (see Chapter 4 for details about γ), whereas
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the second run aimed to learn γ from the data. As there was little difference between

these two cases we only show the results using uncertain γ here and we use these

in the model runs later in this chapter. Figure 5.4 shows the results from running

the hierarchical unit model on unit log-residue field trial data. Figure 5.4a shows

Figure 5.4 – Results from running the hierarchical model applied to unit log-

residue data from field trials with uncertain γ.

(a) Shape distribution
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(c) Posterior Gamma distribution for

σu
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(d) Empirical versus posterior distri-

bution of σu
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the unit shape distribution which is similar to the shape obtained in Chapter 4.

Figure 5.4b shows the QQ plot for the posterior mean for σu for each of the 75

data sets versus the median and 95% credible interval of the predictions based on

the Gamma distribution. This suggests that the Gamma distribution provides an

adequate fit to the scale parameters, σu. Figure 5.4c shows the posterior Gamma

distribution of the scale parameters σu. It is clear that for a new use for which

no unit data are available, predicting the scale of the unit log-residue distribution

is going to be very uncertain as the variation in the scale parameter is relatively

large with expected values of the 2.5th and 97.5th percentiles being 0.12 and 1.06

respectively. Figure 5.4d shows the empirical scale parameter, σu, defined as half

the intertertile range of the unit data, plotted against the median and 95% credible

interval of the posterior distributions of σu. The results indicate that the posterior

distributions tend to be higher than the empirical estimates. The reason for this

is that the shape model does not restrict the tertiles of the shape distribution to

be at -1 and 1 due to probability leaching (see Chapter 4). In our application half

the intertertile range is approximately 0.7 (rather than 1) for the normalised log-

residue unit data leading to a narrower shape distribution. Therefore σuj needs to

be larger to match the scale of the shape distribution to the unit data. Figure 5.4e

shows the predictive distribution of the variability factor based on the revised unit

model. Samples were generated from the shape and scale distributions to obtain

realisations of the unit distribution. Subsequently, the ratio of the 97.5th percentile

and mean was calculated for each realisation. The results indicate that based on

the hierarchical, common-shape distribution, the median estimate of the variability

factor is 2.6 with a 95% credible interval ranging from 1.3 to 5.0, which is in line

with the VF estimated in EFSA (2005).
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5.3 Summary of MCMC Algorithm

Let us define:

yl Composite residue level measurement from supervised field trial l.

nl Number of units that are used in a composite sample.

Ukl Random quantity describing variation in unit data 1, . . . , nl from

field l, defined by the scale and shape parameters of the unit data

distribution with E[Ukl] = 1.

Ul Random quantity describing variation in composite samples around

the field mean.

ξFl Mean residue in field l.

L Number of fields from which composite samples, yl, were collected.

N (µF , σF ) Normal distribution with parameters µF and σF describing the

variation in log field means, log(ξFl ).

xij Residue on unit i from field j.

The inference steps can be summarised using the following algorithm:

1. Sample a unit distribution (w,θ, α, β) from our posterior distributions for Ukl

obtained from the hierarchical unit model.

2. Sample a scale parameter σul for each field for which we have a supervised trial

composite value yl: σ
u
l

i.i.d.∼ Gamma(α, β).

3. Rescale the unit distribution using parameter ρj =
∑C

q=1wq exp
[
θ∗qj +

(σ∗
j )2

2

]
where θ∗qj = θqσ

u
l and σ∗j = σul σc.

4. Calculate moments of the rescaled unit distribution and hence those of Ul:

E[Ul] = 1 and Var[Ul] = Var[Ûkl]

nlρ
2
j

, where Var[Ûkl] is given by Equation 5.7 (page

192).

5. Use a Metropolis-Hastings step to sample values for ξFl :

(a) Propose Ul|yl:
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i. Calculate parameters η, ψ2 of the LN (η, ψ2) distribution used to

approximate p(Ul).

η = log(E[Ul])−
1

2
log

(
1 +

Var[Ul]

E[Ul]2

)
ψ2 = log

(
1 +

Var[Ul]

E[Ul]2

)
.

ii. Propose a new value for (ξFl )∗ (see Section 5.2.6.1):

log((ξFl )∗)| log(yl) ∼ N
(
µFψ2 + (log(yl)− η)(σF )2

(σF )2 + ψ2
,

(σF )2ψ2

(σF )2 + ψ2

)
iii. Calculate Ul

∗
= yl

(ξFl )∗
.

(b) Propose Ul|Ul
∗
:

i. Calculate the parameters of the Gamma(ζ, γ) distribution used to

approximate p(Ul) (see Section 5.2.6.2):

ζ =
E[Ul]

2

Var[Ul]

γ =
E[Ul]

Var[Ul]

ii. Propose U∗1l, ..., U
∗
nll

:

f1l, . . . , fnll ∼ Dirichlet

(
ζ

nl
, . . . ,

ζ

nl

)
U∗kl = nlUlfkl

(c) Sample u ∼ Uniform(0, 1).

(d) Accept or reject the proposed
(
ξFl
)∗

, U∗1l, . . . , U
∗
nll

if u ≤ paccept where

paccept is as described in Section 5.2.6.3.

6. Sample µF and σF assuming a Uniform prior distribution:

p(σF | log(ξF)) =

√
(L− 1)s2

χ2
L−2

p(µF |σF , log(ξF)) ∼ N
(

log(ξF ),
(σF )2

L

)
where s is the standard deviation of the log(ξFl ), log(ξF ) =

∑L
l=1 log(ξFl )

L
and

χ2
L−2 is a χ2 distribution with L− 2 degrees of freedom.

7. Store µF , σF , σu, w, θ, α and β.
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5.4 Validation Studies

To assess the performance of our new model we conduct a series of validation ex-

ercises. As we do not have information about the distribution of field means, the

validation exercises had to be based on synthetic examples. To inform us about

typical values to use for these examples, we analysed a large number of composite

supervised trial data with no values below the limit of determination. For each

supervised trial with five or more values we calculated the standard deviation of

the log-transformed values, resulting in 345 standard deviations. The distribution

of standard deviations is given in Figure 5.5.

Figure 5.5 – Distribution of the standard deviations of log composite residue

levels observed in 345 supervised field trials with five or more values.
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(b) Standard deviation for each of the data

sets plotted against the number of com-
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Next we calculated the 2.5th, 50th and 97.5th percentiles of this distribution (0.24,

0.71 and 1.4 respectively). Although the variation in composite supervised trial data

includes unit variation, we decided to use similar values as examples of small (0.25),

typical (0.75) and large (1.5) values for σF in our validation studies.

Next we created samples from a known target distribution of field means to deter-

mine whether the model was capable of retrieving this distribution. To do this
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we first sampled L log field means from the log field mean distribution ξFl ∼

N (−2, (σF )2). From each of the L fields, we then generated nl units from which

we calculated a composite supervised trial value for each field. For a wide range of

crops (including pome fruit, citrus fruit, tropical fruit with inedible skin, root and

tuber vegetables, bulb vegetables, stem vegetables and brassicas), nl = 12 is used in

regulatory practice, so we used nl = 12 in the first validation study (Section 5.4.1).

We also explored a range of values for nl to assess whether 12 units is sufficient to

obtain a reliable estimate of the field mean (Section 5.4.2).

Figure 5.6 – Two sampling approaches used to create validation data sets for

L = 5 and nl = 12. The true field mean distribution is shown in blue. The 12

unit residue values are indicated by green crosses and the 5 composite samples,

based on the 12 units, are red circles.
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(b) Stratified Sample
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We implemented two sampling approaches to generate the field means and units.

The first approach generated both field means and units at random. However, for

small L this may result in a poor representation of the field mean distribution (blue

line) as shown in Figure 5.6a where no field means were sampled from the upper

third of the distribution. The composite samples (red circles) do not fall on the

field mean distribution so they do not provide good estimates of the field mean.

Therefore, we also applied a stratified sampling approach to obtain the field means

and unit residues (Figure 5.6b). Another reason for using this alternative approach
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is that as there are generally very few composite samples available for a new use

of a pesticide we would have to repeat all validation studies several times to assess

the performance of the model whilst accounting for sampling variation. As the

alternative approaches that we compare our model with would also struggle with

‘poor’ samples, we instead show how well the model performs using both random

and stratified data sets. Each study was run in Matlab 2012a on a computer with

an Intel i7-860 2.80 Ghz processor and 8GB RAM and took between 10 minutes

and 9 hours depending on the scenario (number of composite samples and number

of units per composite sample).

5.4.1 Validation Study 1: Multiple runs with typical

between-field variation

The first validation exercise consists of applying the model to a data set generated

using a ‘typical’ value for σF , i.e. σF = 0.75. Data sets were generated using both

the random and stratified sampling approaches to simulate 10 composite samples

from supervised field trials based on 12 units per composite sample. The model

output in Figure 5.7 shows that the field mean distribution inferred by the model is

close to the true distribution, indicating that the model performs well for a typical

data set.

Next, we compare the outcome of the models with existing approaches recommended

by EFSA (2012). Figure 5.8 shows the posterior predictive distribution of unit log-

residue levels, assuming that all units are obtained from separate fields, compared

with existing approaches. These results indicate that our model is much better at

describing the true distribution of within-field and between-field variation than the

alternative approaches. The ‘EFSA - Optimistic’ model is based on bootstrapping

the composite samples and does not explicitly model unit variation. This model

provides a poor estimate of the distribution tails. The ‘EFSA - Pessimistic’ model

assumes a Lognormal distribution for the composite samples and uses a Lognormal

variability factor approach to describe unit variation. Using a variability factor of

6.82, the pessimistic EFSA model overestimates extreme residue levels (longer upper

tail) and underestimates the main body of the unit residue distribution. EFSA
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Figure 5.7 – The top two panes show the sample obtained from the target field

mean distribution (blue) with the 12 unit residue values indicated by green

crosses and the 10 composite samples, based on the 12 units, as red circles.

The bottom two panes show the output of running the within-field and between-

field model on the random (left pane) and stratified data (right pane) with the

target distribution in blue. The red lines represent the median estimate of the

posterior field mean distribution and the grey dashed lines represent the 95%

credible intervals.
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(b) Stratified data set
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(c) Posterior field mean distribution - Ran-

dom data set
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Figure 5.8 – Comparison of the posterior predictive distributions obtained from

applying the new within-field and between-field model (red) with the currently

recommended approaches (EFSA, 2012) in green on the random and stratified

samples. The blue line indicates the true unit distribution.
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(2012) state that a variability factor of 6.82 ‘generates an excessive proportion of

very high residues’, so one could argue that the comparison presented here may be

inappropriate. However, EFSA (2012) does not provide an alternative suggestion

for the VF. Moreover, using any other value for the VF will result in two Lognormal

distributions (because log(V F ) = kσ−σ2/2 where k = Φ−1(0.975) ≈ 1.96 and σ > 0

has two solutions for 1 < V F < exp(k2/2), a single solution for 0 < V F < 1 and

V F = exp(k2/2) and no solutions for V F > exp(k2/2), where exp(k2/2) ≈ 6.82).

Even though it is common to select the solution with smaller σ (Kennedy and Hart,

2009), no justification is given. Therefore we decided to use a variability factor of

6.82 in these simulations as it is the only option mentioned in the EFSA (2012)

guidance document.

5.4.2 Validation Study 2: Effect of sample size with typical

between-field variation

We ran our new model on data sets with varying numbers of simulated field com-

posite samples (L ∈ {5, 10, 25}) and varying numbers of units per composite sample

(nl ∈ {1, 10, 25, 100}) with σF = 0.75. Figure 5.9 shows the field mean distribution
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as inferred by the model using a random sample from the target distribution.

Figure 5.9 – Effect of sample size using a random sample (black circles) from

the target distribution (blue line). The red line indicates the median field mean

distribution estimate with a 95% credible interval indicated by grey dashed

lines.

(a) L = 5, nl = 1

0.001 0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

ξF

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

σF
: 1.16 (0.21, 4.62)

µF
: −1.95 (−3.56, 0.02)

(b) L = 10, nl = 1

0.001 0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

ξF

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

σF
: 1.02 (0.32, 2.23)

µF
: −1.85 (−2.79, −0.96)
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(d) L = 5, nl = 10
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It is clear that the model does well for most sample sizes but for small sample sizes

it has a tendency to assign the observed variation in log composite-residue values to

between-field variation, thereby overestimating the between-field variation. Gelman

(2006) stated that for small sample sizes (L = 4 or 5), the heavy right tail of the Uni-

form prior is likely to result in an overestimate of σF . Therefore one could consider

using a more appropriate prior distribution for small L. For example, if information

was available that suggests our new approach overestimates the between-field varia-

tion, we could replace the Uniform prior distribution for σF with a prior distribution

(e.g. a Normal-Gamma or a half-Cauchy distribution) that takes that information

into account, such as by specifying limits for the variation in field means.

If the number of composite samples, L, increases, the model is able to obtain the

target distribution even when the number of units per composite is very small. Al-

though our new approach may overestimate the between-field variation for data sets

with small L it is an improvement on current dietary risk assessment approaches for

the following reasons. Current approaches ignore the uncertainty about σF and are

likely to overestimate σF because they assign all the observed variation in composite

samples to between-field variation. This ignores the fact that some of the variation

should be attributed to within-field variation. As current composite data sets only

provide poor estimates of field means, we have no evidence to establish whether the

observed variation in composite samples stems from between-field variation or unit

variation.

The issue when we have a small number of fields in combination with a small number

of sampled units per composite is that the data may provide a poor estimate of the

between-field variation as illustrated in Figure 5.10.
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Figure 5.10 – Sampling small numbers of field trials may result in a poor

representation of the variation in field means. In this example, five field

studies were simulated at random by generating 1 or 25 units (green crosses)

for each of the five fields. The red circles indicate the composite sample and

the blue line indicates the true field mean distribution.
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(b) L = 5, nl = 25
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With only one unit sampled per field, the units provide poor estimates of the field

means despite the fact that the field means sampled (red circles) represented a wide

range of values from the target distribution. In the example with 25 units per

composite, the five simulated fields were all sampled from the central part of the

distribution, so despite the fact that the 25 units from each field provide a reason-

able estimate of each field mean, the model has underestimated the variance of the

field mean distribution (see Figure 5.9g).

If we take stratified samples (Figure 5.11), we observe an improvement in the model

performance as the median field mean distribution now better reflects the target

distribution.
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Figure 5.11 – Effect of sample size using stratified samples from the target dis-

tribution (blue line). The red line indicates the median field mean distribution

estimate with a 95% credible interval indicated by grey dashed lines.
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The model still overestimates the variation in field means for L = 5 for small values

of nl but in general the model is able to infer the target field mean distribution.

This implies that if field trials are designed in such a way that we observe the full

range of application conditions (in terms of equipment and weather conditions), as

few as 5 trials could be sufficient to determine the variation in mean residue levels

between fields. However, given that the simulations are based on a typical value for

the between-field variation and that in practice we are unlikely to know whether the

fields from which composite samples are obtained provide a representative sample

of the variation between fields, further work is needed to recommend sample sizes

for the number of field trials and the number of units needed per field trial.

The results indicate that the effect of reducing the uncertainty about the field mean

by obtaining more units per composite sample is limited in comparison to a reduction

in uncertainty that could be achieved by using a larger number of composite samples.

For L = 25, the model provides a better and less uncertain estimate of the field mean

distribution, even for nl = 1. In contrast, for L = 5, the field mean distribution is

very uncertain even when nl is large. For typical data sets, L = 10 and nl = 10 and

25, the model performs well.

5.4.3 Validation Study 3: Effect of σF

To assess the impact of σF on the model performance, we ran further simulation

studies in which we set σF to be the small (0.25), typical (0.75) and large (1.5)

observed variation in composite samples. We used stratified samples to ensure that

the simulated data provided a reasonable spread of field means and we generated 12

units per composite sample.
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Figure 5.12 – Effect of σF for various numbers of field trials. The target

distribution is indicated by the blue line. The red line indicates the median

field mean distribution estimate with a 95% credible interval indicated by grey

dashed lines.
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Figure 5.12 shows that the model is capable of inferring the field mean distribution

for all values of σF , although the performance is better for large values of L. Figure

5.5b seems to indicate that small variation in composite residue levels only occur

in supervised trials in which a small number of fields were sampled. It is possible

that the variation in equipment, weather conditions, etc. in those supervised trials

is smaller than the variation that would be observed if the pesticide was applied in

practice.
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5.4.4 Validation Study 4: Removing uncertainty about the

unit distribution

The fourth set of validation studies aim to remove the uncertainty about the unit

distribution to assess whether the model will be better able to infer the between-field

distribution shape if we have a better estimate of the unit distribution shape. The

first approach taken was to fix the shape of the unit distribution for every field whilst

allowing different fields to have different scale parameters. Using a typical σF = 0.75,

L ∈ {5, 10, 25} and nl ∈ {1, 10, 25, 100}, the model results, not shown here, indicate

that the performance of the model is better than before with the model no longer

overestimating σF . This suggests that the inference of the between-field distribution

will profit from obtaining a more precise estimate of the unit log-residue distribution.

As we may not be able to obtain a more precise estimate of the unit log-residue

distribution, another approach is to remove the effect that the uncertainty about

the unit distribution has on the inference of the field mean by taking a large sample

(e.g. nl = 400) of units per simulated field. In theory we can collect more units

to obtain composite samples in supervised field trials, so it is worth exploring what

the benefits of doing so would be for the inference of the field mean distribution.

Using more units to estimate Ul will result in a more certain estimate of ξFl and

the field mean distribution parameters. As in the nl = 100 cases, shown in Figures

5.9 and 5.11, the model output (not shown) provides a good estimate of the field

mean distribution. However, as mentioned before, the inference of the field mean

distribution benefits more from increasing the number of composite samples than

from increasing the number of units per composite sample.

5.4.5 Validation Study 5: Simulating no between-field

variation

Here we assess the performance of the model if we effectively remove the between-

field variation by setting σF = 10−8 and simulate only 1 unit per field. This should

in theory result in a simulated sample that reflects the unit distribution and a field
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mean distribution that indicates that there is no between-field variation. Figure

5.13 shows the model results for different numbers of simulated field trials. The

model struggles to infer the correct field mean distribution as it assigns some of

the observed variation to between-field variation, potentially as a result of using a

Uniform prior distribution for σF . However, if we look at the posterior predictive

distributions, the model’s performance is acceptable with the possible exception of

the L = 5 case which overestimates the variation in unit residue levels. The model

appears to perform better than the current approaches (Figures 5.13d-f).

Figure 5.13 – Model results for σF = 10−8 for various field trial sizes and nl =

1. The upper panes (a-c) show the target distribution (blue line), the median

field mean distribution estimate (red line) and a 95% credible interval (grey

dashed lines). The bottom panes (d-f) show the predictive distributions of our

within-field and between-field model in red and the currently recommended

approaches (EFSA, 2012) in green together with the target distribution (blue

line).
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5.4.6 Validation Study 6: Using different distributions for

field means and units

The validation studies presented thus far were all based on a Lognormal distribu-

tion for field means and the distribution obtained from the DPMN model for units,

i.e. the same distributions as used by the within-field and between-field model. As

current literature and methods use a Lognormal distribution for field means, we feel

that it is not unreasonable to make this assumption here. Nevertheless, to assess

how sensitive the results are to the selection of these distributions, an additional

set of validation studies was conducted in which we assume a Gamma distribution

for the field mean distribution and a Lognormal distribution for the unit variation.

Figure 5.14 shows two examples of samples taken from the new target distribution

with different values of σF . It is clear that assuming a Gamma field mean distribu-

tion results in a much longer lower tail for larger values of σF .

Figure 5.14 – Twelve unit residue values (green crosses) generated from a

Lognormal distribution with mean ξl ∼ Gamma(a, b) where a and b are set so

that the mean equals 0.01 and the standard deviation equals σF . The red cir-

cles indicate the composite samples and the blue line indicates the cumulative

distribution function of the Gamma field mean distribution.
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As expected, the model struggles to infer the target distribution from the simulated

data set for large values of σF due to the long lower tail. This is not as obvious in the

posterior distributions in Figure 5.15, but if we look at the predictive distributions

(Figure 5.15d-f) it becomes clear that the model is struggling to some extent with

the Gamma shape of the field mean distribution and the Lognormal distribution

for units. For σF = 0.25 and σF = 0.75, the model’s performance is acceptable as

the true distribution falls within the 95% credible intervals. For those two values of

σF the posterior predictive distributions do well given the fact that both the field

mean distribution and the unit distribution in our model have a different shape to the

target distributions. These results imply that the method may, within reason, not be

very sensitive to slight deviations from the Lognormal shape assumption for the field

mean distribution for small and typical σF , however it struggles for σF = 1.5. As

the target σF has been calculated based on composite samples containing a mixture

of within-field and between-field variation, we would expect that σF is more likely to

be smaller than 1.5. For the more likely value σF = 0.75, our model clearly performs

much better than the methods currently recommended by EFSA (Figure 5.15d-f).
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Figure 5.15 – Field mean and posterior predictive distributions based on sim-

ulation studies in which the 10 field means were generated from a Gamma

distribution and the units were generated from a Lognormal distribution. For

the field mean distributions (a-c), the target distribution is indicated by the

blue line. The red line indicates the median field mean distribution estimate

with a 95% credible interval indicated by grey dashed lines. For the posterior

predictive distributions (d-f), the target distribution is indicated by the blue

line, two alternative EFSA approaches are shown in green and the results

from applying our model are shown in red.
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5.4.7 Summary of Validation Studies

The validation simulations indicate that the model is capable of retrieving the target

distribution, even for sample sizes as small as L = 5, as long as the samples provide

a good representation of the true distribution of field means. As we may not know

this in practice, the model results seem to suggest that if we want to obtain an es-

timate of the between-field variation, field trials should be conducted on more than

five fields or the number of units used to obtain a composite sample should be at

least 25.
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The validation studies demonstrated that taking 12 units from a single field may re-

sult in very poor representations of the field means. Figure 5.6a shows an example of

this where the red circles, representing composite residue levels, are poor estimates

of the field means. This issue would affect any model so we recommend increasing

the minimum data requirements if regulators want to obtain reliable estimates of

residue levels on food items.

A second issue is that the model may overestimate the field mean variation if the

variation between composite samples is small due to the Uniform prior distribution

for σF . In these cases, the model attributes the observed variation in composite

samples to the between-field variation, even when it is caused by unit variation.

This effect is less pronounced if composite samples from more than 5 fields are col-

lected or if the number of units used to create a composite sample is increased. The

obvious solution is to replace the Uniform prior distribution, used in all validation

studies, with a different prior distribution (e.g. Normal-Gamma) to express one’s

beliefs about reasonable values for σF . However this would require eliciting values

from experts so it was considered to be outside the scope of this thesis.

As no data exist that would provide more information about the field mean dis-

tribution shape, we have to rely on simulation studies to assess the sensitivity of

the method when other distribution shapes are used to simulate data. The results

of these simulation studies imply that the proposed model performs reasonably well

and is better at describing the variation in residue levels than existing approaches for

small and typical σF when the true distributions are Gamma (field mean) and Log-

normal (unit residue levels). If evidence became available which suggests different

distributions for field means, the model could be adjusted to reflect this.

5.5 Case Studies

To illustrate how the model can be used in practice, we ran the model on various

supervised trial data sets. Figure 5.16 shows the field mean distribution for four

data sets. As we do not know what the true field mean distribution is, we can only
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demonstrate that the model can be applied to existing residue data. It is interesting

to see the effect of the number of composite samples, L, on the uncertainty of the

field mean distribution. In all cases the model attributed some of the observed vari-

ation to between-field variation with E[σF ] of the log field mean distribution being

1.1 for apple, 0.97 for peach, 0.30 for orange and 0.89 for kiwi. Comparing these

values to the posterior distribution of σu (Figure 5.4c), it seems that the expected

between-field variation for all but one of the data sets (orange) is larger than the

expected within-field variation (E[σu] = 0.46). However, as both σF and σu are

uncertain and of the same order of magnitude, both within-field and between-field

variation should be modelled in dietary exposure assessments.

Figure 5.16 – Field mean distribution obtained from applying the model to four

supervised trial data sets. As before L indicates the number of supervised field

trials and nl is the number of units per composite sample.
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Figure 5.17 – Posterior predictive distributions obtained by applying the model

(green line) and two alternative approaches (blue), recommended by EFSA,

to two supervised trial data sets.
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Figure 5.17 shows a comparison of the posterior predictive distributions of the pro-

posed approach with two approaches recommended by EFSA (2012). As the results

are similar for all case studies, we only show two examples here. In the validation

studies we observed that the ‘EFSA Optimistic’ approach, based on bootstrapping

the composite samples, provided a poor estimate of the residue distribution. This is

because the L composite samples are resampled and as L is typically less than ten,

this is unlikely to provide a good description of the distribution tails. The ‘EFSA

Pessimistic’ approach includes a large variability factor so it provides the most con-

servative estimates due to its longer upper tail. However it cannot be considered

conservative because the use of a large variability factor leads to a lower mean of

the assumed Lognormal distribution and therefore it also provides lower estimates

of unit residues than the other approaches.

5.6 Residue Generator

The within-field and between-field model can be used to generate samples from

residue level distributions that can be used in probabilistic dietary risk assessment

using a series of straightforward algorithms, depending on the aim of the risk as-
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sessment.

1. For acute risk assessments for food items that are consumed as single units

(e.g. apples, pears, etc.):

(a) Select the number of units that are obtained from a single field, nF .

(b) Select the number of residue levels that you want to simulate, n, where

n is a multiple of nF and set the field index m = 0.

(c) If m× nF ≤ n, repeat the following steps:

i. Select a set of parameters, (µF , σF , α, β), from the niter samples of

their posterior distributions:

A. Sample u ∼ Discrete Uniform(1, niter).

B. Select uth value from the posterior distribution sample of ξF , σF ,

α and β.

ii. Sample a field mean: log(ξFl ) ∼ N
(
µF , (σF )2

)
.

iii. Sample a scale parameter for the unit distribution: σul ∼ Gamma (α, β)

and calculate ρj =
∑C

q=1wq exp
[
θ∗qj +

(σ∗
j )2

2

]
with θ∗qj = θqσ

u
l and

σ∗j = σul σc.

iv. Repeat the following steps nF times:

A. Sample u ∼ Uniform(0, 1).

B. Select component j from the unit mixture distribution if
∑k−1

j=0 wj <

u ≤
∑k

j=1wj, where w0 = 0.

C. Sample log unit residue: log(zkl) ∼ N (θj, σ
2
c ) where θj is the

location parameter of the selected component and σc is the com-

ponent scale parameter.

D. Rescale zkl so that E[zkl] = 1: Runit =
exp[ξFl +log(Ũkl)σ

u
l ]

ρj
.

v. Set m = m+ 1, i.e. select the next field from which we will generate

residue levels.

2. For acute risk assessments for food items that are either consumed in bulk

per eating event (e.g. grapes, peanuts) or which have been blended during

processing (e.g. fruit juice):
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(a) If all units are expected to originate from a single field:

i. Select the number of unit residue levels that need to be sampled

from a single field (e.g. portion size, number of units in one portion

of juice): nportion.

ii. Sample unit residue levels Runit using the previous algorithm for sin-

gle units with n = nF = nportion.

(b) If units are expected to originate from multiple fields:

i. Select the number of units in a portion: nportion.

ii. Select the number of unit residue levels that need to be sampled from

a single field: nF . Note that nportion should be divisible by nF .

iii. Sample unit residue levels Runit using the previous algorithm for sin-

gle units with n = nportion.

(c) Calculate the average concentration over nF units assuming that the unit

weights are constant: R =
∑nportion
i=1 Runit
nportion

.

5.7 Discussion

In this section we will provide a brief discussion of issues related to the data, the

model performance and the model’s sensitivity to prior distributions.

5.7.1 Data

We assume that variation in unit field trial data is representative of variation in

residue levels on units in supervised trials, despite the fact that field trials are often

conducted at higher residue levels and consist of mixtures of pesticides. This is

supported by both Ambrus (2006) and MacLachlan and Hamilton (2011) who state

that studies indicate that the variation in log-residues levels is not significantly

influenced by the application rate.

We also assume that the variation in the scale parameter of the unit log-residue

model based on the 75 unit data sets provides a representative estimate of the

variation in unit residue levels in supervised trials for a new pesticide. It is possible
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that the variation in residue levels from field trial unit data is larger than one

would expect for a new pesticide use as field trial data include a range of pesticides

and crops and may consist of a wider range of spraying techniques, environmental

conditions etc.

5.7.2 MCMC Performance

The MCMC performance of the model was monitored post-analysis by plotting the

chains and assessing the auto-correlation. Generally, a thinning factor of 300 was

used for each model run to overcome mixing problems. These problems were caused

by the fact that we sample unit scale parameters σul from a Gamma distribution

independently of Ukl. Large increases in σul (e.g. moving from small within-field

to large within-field variation) result in a high rejection probability which causes

the chain to get stuck temporarily. Although thinning overcomes this problem, a

neater solution that could be explored in future research would be to either sample

values of σul dependent on Ukl or to propose a new σul that is not too far from the

current value. However, as both options may result in smaller step changes between

iterations, it is unclear whether they will lead to an improved exploration of the

parameter space.

5.7.3 Choice of Prior distributions for σF

All model calculations presented in this chapter are based on a Uniform prior dis-

tribution for σF . The reason for selecting this prior distribution is that it is non-

informative and unlike the informative Normal-Gamma prior, it does not require

the specification of 4 input parameters. As the Normal-Gamma prior distribution

is not recommended if one wants to use a non-informative prior (Gelman, 2006), we

suggest using a Uniform prior distribution for σF . However, when L is small this

distribution may result in an overestimation of σF , so care must be taken when few

composite samples are available.



5.8. Conclusions 230

5.8 Conclusions

The novel approach presented in this chapter accounts for within-field and between-

field variation and provides a better estimate than current methods of the variation

in residue levels on crop units. The within-field model, used to describe variation be-

tween unit residue levels, was adapted from the model described in Chapter 4 which

also included a full discussion of the benefits and disadvantages of that model. The

hierarchical refinements made to the unit model in this chapter allow us to estimate

the unit variation over the selected data sets, conditional on the common shape

assumption. The analysis of the available unit data sets (Figure 5.4e) implies that

the median variability factor is 2.6 with a 95% credible interval ranging from 1.3 to

5.0.

It is clear from the application of the recommended EFSA methods in the validation

exercises that using a parametric or empirical distribution for composite values may

lead to a poor estimate of residue levels. Figure 5.7a shows that the link between

composite values and field means is relatively weak and that we should account for

the fact that composite samples are an uncertain estimate of the field mean when

inferring the field mean distribution. Methods that are based on fitting a distribu-

tion directly to composite samples double-count the unit variation and incorrectly

assume that the resulting distribution is a distribution of field means to which a

variability factor can be applied. Figure 5.8 shows how two approaches, currently

recommended by EFSA (2012), provide poor estimates of the target distribution

whilst the novel within-field and between-field model performs well.

The results from four case studies indicate that a significant proportion (up to

60%, calculated as the median of E[Var[Ul]]/(E[Var[Ul]] + (σF )2)) of the observed

variation in composite samples from supervised trials is a result of the variation in

units. This illustrates the importance of accounting for the unit variation when in-

ferring the field mean distribution. Applications of the model to various validation

data sets indicate that the model may sometimes overestimate the variance of the
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field mean distribution, particularly when only a few fields were included in the field

trials. To overcome this, either residue data needs to be collected from more fields

or the Uniform prior distribution used in the validation studies could be replaced

by a suitable alternative.

One of the main challenges for probabilistic dietary risk assessment is the absence

of good quality residue level data. The large variation in the scale parameter of the

unit log-residue distribution means that any predictions based on this scale param-

eter distribution will be very uncertain. If notifiers were asked to provide unit data

from supervised field trials we would have a much better picture of the within-field

variation. This may lead to less uncertainty about the residue levels on units if

the scale parameters of the provided unit data have a smaller range than the range

suggested by the hierarchical log-residue unit model. However, as it is unlikely that

regulators will reconsider the data requirements for dietary risk assessments, the

model presented here provides a better estimate of residue levels given the available

data than alternative approaches as proposed by EFSA (2012).



Chapter 6

Conclusions and Future Research

This chapter provides a summary of this thesis, highlights the novel approaches

developed to describe the variation of pesticide residue levels on food items and

discusses future areas of research.

6.1 Summary

Chapter 1 presents an overview of the current regulatory framework for dietary risk

assessment for plant protection products in the EU. It also introduces current de-

terministic and probabilistic methods and provides an overview of issues with the

data that are routinely collected, the use of these data by current methods and the

methods themselves. Chapter 2 introduces several mathematical concepts that are

used throughout the thesis. This includes an introduction to Bayesian methods,

Monte Carlo algorithms and Dirichlet Distributions and Processes which are essen-

tial for the novel approaches developed in this thesis. We also provide an overview

of various methods for sampling from a Dirichlet Process.

Residue levels of multiple pesticides may occur on individual food items when more

than one pesticide is applied to a crop. To model the variation in these residue

levels multivariate techniques are needed to account for any correlations in residue

levels. Chapter 3 presented two novel approaches to model pesticide log-residues

232
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in composite samples using available monitoring data and Pesticide Usage Survey

(PUS) data. The models use the PUS data to inform them about the proportion of

composite samples that have been treated with pesticides. The independent mix-

ture model assumes independence between pesticide log-residue levels on composite

samples whereas the bivariate mixture model infers the correlation between them.

We used validation studies to show that our models performed well for synthetic

data sets and compared the novel approaches with the currently used approaches.

These comparisons indicated that the use of PUS data improved the inference of

the log-residue distributions, particularly when commonly observed high levels of

censoring were induced. For the validation simulations presented in this thesis the

novel approaches performed better than the existing approaches. The independent

mixture model is an improvement on the existing Paulo et al. (2005) approach as the

use of PUS data reduces the uncertainty about the proportion of untreated samples.

Therefore this method is useful when log-residue levels in a composite sample are

assumed to be independent. The bivariate mixture model is an improvement on the

existing bootstrap methods because it provides a better description of the log-residue

distribution as it is not restricted to the observed values and provides an estimate

of the correlation between log-residue levels. Therefore these novel approaches offer

a promising alternative to current approaches for dietary risk assessment. However,

we only consider the bivariate case in this thesis as the number of model parameters

increases considerably in higher dimensions. If more than two pesticides have been

applied to a crop, there may not be enough data to infer the parameters reliably

unless more data are available or stronger assumptions are made. In addition, high

levels of censoring in residue data means that the results rely on the choice of prior

distributions and the availability and relevance of PUS data.

In Chapter 4 we introduced a novel non-parametric Bayesian approach to describe

the distribution of unit log-residue levels. As unit log-residue data sets are relatively

small, the novel approach shares information on the shape distribution between sam-

ples obtained from multiple populations, leading to a larger data set from which the

population shape distribution can be inferred. We use a blocked Gibbs sampler to
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alternately sample the individual location and scale parameters of each log-residue

data set and the common shape distribution using the normalised, pooled log-residue

data. The shape distribution for the log-residue levels is modelled using a Dirichlet

Process mixture of Normal distributions (DPMN) model and accounts for uncer-

tainties introduced by censored and rounded data. The Bayesian framework used

in this model also allows us to account for parameter uncertainty. Despite EFSA

(2012) suggesting that a Normal distribution may not always be appropriate, cur-

rent approaches tend to assume a Normal distribution for log-residues. Therefore

our new approach is an improvement as it learns the shape distribution from the

data. Validation studies showed that the model performed well for a range of dis-

tributions with short and medium tails. For heavy-tailed distributions a refinement

may be needed if the distribution cannot be transformed to have a shorter tail. The

validation studies also indicated that the model performed well for n > 50 and that

learning the DPMN concentration parameter γ did not have a large effect. The

method depends on the assumption that the individual log-residue data sets share

the same shape distribution. However, it may not always be easy to assess whether

this assumption is justified due to the small sample sizes available. To assess the

impact of the common shape assumption, the model can be run on individual data

sets or subsets of the data.

In Chapter 5 we proposed a novel approach to model variation in residue levels

that not only uses a data-driven description of unit variation but, unlike existing

approaches, does not double-count unit variation when accounting for within-field

and between-field variation. When inferring the field mean distribution we need to

‘remove’ the unit variation component in the observed variation in composite sam-

ples to obtain a distribution describing the variation in field mean residue levels.

The within-field model, used to describe variation between unit residue levels, was

adapted from the model described in Chapter 4. The new approach accounts for the

small number of units used in composite samples, the small number of composite

samples used to describe between-field variation and for the fact that composite

residue levels from supervised trials already contain unit variation.
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Validation studies indicated that the novel approach performs better than existing

approaches. This may be because current approaches are based on fitting a distri-

bution directly to composite samples and therefore double-count the unit variation.

If only a few composite samples (i.e. <5) are available, the new approach may

overestimate the variance of the field-mean distribution. Possible solutions include

either collecting data from more fields or replacing the uniform prior distribution

by a suitable alternative (Gelman, 2006). The novel method can be applied to data

sets that are routinely collected as part of the pesticide registration process and

therefore provides a feasible alternative to current approaches.

A major challenge for probabilistic dietary risk assessment is that there is a lack of

good quality residue level data. If it was a requirement that notifiers had to provide

unit field trial data, this would result in a much clearer picture of within-field and

between-field variation. However, as regulators are unlikely to impose this require-

ment, the models presented in this thesis provide better estimates than existing

approaches and account for the relevant uncertainties.

6.2 Future Research

In this section we discuss areas of research which would either be beneficial to refine

the new approaches presented in this thesis or to explore areas where the approaches

could be applied in the future.

6.2.1 Ideas for future research

6.2.1.1 Extending the bivariate mixture model

The bivariate mixture model presented in Chapter 3 is based on a mixture of univari-

ate and bivariate Normal distributions. This is in line with current dietary exposure

models which make the assumption that log-residue data are Normally distributed.

However EFSA (2012) suggested that this assumption is not always valid and there-

fore it would be useful to extend the model to mixtures of other distributions.
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Another area of research would be to extend the bivariate mixture model to more

dimensions as there may be occasions where more than two pesticides are used on

units in a single composite sample. As the number of model parameters that need

to be inferred increases considerably for more than two pesticides, it is unlikely that

they can be estimated reliably from the limited number of monitoring data that are

generally available. As a result, any attempt to model the cumulative exposure for

more than two pesticides will have to rely heavily on assumptions, e.g. by eliciting

prior distributions from experts or by reducing the number of model parameters as

discussed in Section 3.5.3.

6.2.1.2 Modelling of correlations of unit log-residue levels

Correlations in composite monitoring data are unlikely to provide any indication

about the correlation in unit log-residue levels. As there is generally little infor-

mation available about these correlations we proposed a scenario-based approach

in Section 3.8 which can be used to estimate log-residue levels on individual food

items. However, more research is needed to validate this approach and/or to reduce

the number of scenarios considered.

6.2.1.3 Refinement of common shape assumption

The DPMN model presented in Chapter 4 is based on the assumption that log-

residue data for multiple pesticide/crop combinations can be described by a single

shape. This reflects the current state of the art which assumes that a Normal shape

can be fitted to unit log-residue data. However, QQ-plots of the field trial data

indicate that instead of a single shape, the log-residue data may be better described

by multiple shapes. One solution would be to model each data set separately but

this approach effectively reverts back to existing implementations of DPMN models.

This also has the disadvantage that the shape distribution will have to be inferred

from relatively small sample sizes, leading to more uncertainty in the parameter

estimates. Therefore it may be preferable to replace the common shape assumption

with a more flexible approach.

One option is to ask pesticide/crop specialists to select subsets of data for which



6.2. Future Research 237

the common shape assumption seems reasonable (i.e. supervised learning). Alter-

natively, we can use unsupervised learning approaches (e.g. a hierarchical DP or

reversible jump MCMC) to let the data determine how many shapes are necessary

to describe the data. The advantage of this is that it would only use the data to

infer the subsets of data which share a common shape.

One drawback of any approach that involves fitting multiple shape distributions

to the data is that fewer data sets will be available to infer each shape distribution.

In other words, the more shapes we fit, the fewer residue data that will be available

to estimate the parameters of each shape distribution. As a result, we may be more

uncertain about each shape distribution. Therefore the number of shapes that we

use to describe the data needs to be balanced with the amount of data available

to learn each of the shapes. However, as forcing all data to share a single shape

introduces uncertainty about the distribution shape as well, we do not know the net

effect. Another issue is that both supervised and unsupervised learning may result

in undesirable clustering of data sets. For example, if multiple unit residue data sets

for pesticide X on crop Y are assigned to different shape distributions (by experts

or a model), predicting unit residue levels for pesticide X on crop Y may be quite

complex to explain.

6.2.1.4 Mixture of other distributions

Another area of future research to improve the DPMN model from Chapter 4 is to

explore mixtures of other distributions. The validation studies for the DPMN model

indicated that the model struggled to describe distributions with long tails because

of the tail characteristics of the Normal components. To overcome these problems,

we could either consider using a different shape for the components or develop a

new approach that combines a DPMN model with another distribution, for example

a Generalised Pareto distribution (GPD). The DPMN model can then be used for

the main body of the distribution and the GPD can be used to model the lower and

upper tails. Alternatively, we can apply data transformation techniques, use the

existing DPMN model on the transformed data and transform back to the original
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scale afterwards.

6.2.1.5 Accounting for non-treated data

The DPMN model, introduced in Chapter 4, could also be extended to allow for

non-treated data, offering a more flexible approach to the univariate mixture model

introduced in Chapter 3, e.g. p(y) = w0δ0 + (1 − w0)DPMN(y|G0, γ), where w0

is the proportion of untreated data and δ is the Kronecker delta function. Such

a model would be particularly helpful to describe composite data from monitoring

programmes as they may contain untreated and treated samples.

6.2.1.6 Further Validation Studies

The existing validation studies that were carried out for the DPMN model from

Chapter 4 consisted of generating a sample from either multiple populations with a

common shape (mixture of Normal distributions) or a single population (all other

simulations). Even though the method assumes a common shape for all the data, it

might be useful to assess how sensitive the method is to deviations to the common

shape assumption. This would provide us with some indication of how robust the

approach is and how much effort should be put into establishing that a data set

obtained from multiple populations can be considered to be a data set from popu-

lations with a common shape.

Another aspect that could be explored further is to assess to what extent the conclu-

sions regarding the effect of sample size, the DP concentration parameter γ and the

smoothness parameter κ from the existing validation studies can be extrapolated to

distribution shapes other than the mixture of two Normal distributions.

A final set of additional validation studies could explore the effect of the DP base dis-

tribution G0. All the model runs in Chapters 4 and 5 were based on G0 ∼ N (µ0, σ
2
0).

We proposed the Student’s t distribution as an alternative for G0 but the effect of

changing G0 has not been assessed.

The validation studies for the within-field and between-field model from Chapter

5 can be extended to assess the performance of the method when other distributions
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are used to simulate the validation data sets. As we do not have information on the

field mean distribution, this would provide us with a better understanding of the

model’s limitations.

6.2.1.7 Other applications of the DPMN model

The DPMN model, introduced in Chapter 4, was developed to model the variation

in unit log-residue levels and is based on the assumption that multiple data sets can

be described using a common shape distribution. However, it may be applicable

to other risk-related problems where distributional assumptions are made. One

example could be to model consumption data, possibly by allowing different shapes

for different types of food. For example we could distinguish staple foods, food

items that are eaten regularly and in such quantities that it constitutes a dominant

portion of a diet and food items that are consumed rarely.

The approach could also be applied outside the field of dietary risk assessments.

For example, the DPMN model can be applied to ecotoxicity data that are used to

describe the variation in sensitivity between species. Even though the number of

species tested for each chemical is relatively small, large data sets exist for a wide

range of chemicals. Both examples indicate that there is a much wider scope for

common shape DPMN models in probabilistic modelling. Further applications of

the model will help us obtain a better understanding of the model’s behaviour and

may provide new application-specific challenges to overcome.

6.2.1.8 Refinements to the within-field and between-field model

The within-field and between-field model, introduced in Chapter 5, offers various

options for refinements. Firstly, we could explore whether it is feasible to replace the

non-informative Uniform prior distribution for the scale parameter of the field mean

distribution with alternative distributions, in particular by using a Normal-Gamma

distribution. Secondly, we could replace the Lognormal distribution assumption for

field means and/or the unit residue distribution with (an) alternative distribution(s),

e.g. the unit distribution could be obtained using a different grouping of data sets

than the group used in Chapter 4. A further refinement that could be considered is



6.2. Future Research 240

to improve the MCMC performance for the within-field and between-field model by

sampling σul in the Metropolis-Hastings step t to be dependent on Ul in step t− 1.

However, although this would overcome the high rejection probability, smaller step

changes in σul may not result in a more efficient exploration of the sample space.

6.2.1.9 Elicitation of prior distributions

Using a weakly informative prior for the bivariate mixture model in Chapter 3, im-

proved the estimates for the parameters. When there are high levels of censoring,

e.g. validation data set C, the use of informative prior distributions seems to provide

a transparent approach for predicting residue levels in food items which allows for

an assessment of the impact of choosing different prior distributions. For the model

presented in Chapter 5, using information from other pesticides may improve the

estimate of the field mean distribution, particularly for small data sets. Expert elic-

itation is a systematic approach that aims to translate subjective judgements into a

probability distribution (Slottje et al., 2008). This approach could be used to incor-

porate any available information into prior distributions for the models presented in

this thesis.

6.2.2 Prioritisation of refinement options

In this chapter we have discussed several possibilities for future work to improve or

further test the approaches developed in this thesis. We will now briefly discuss the

three options which we feel should be the main priorities.

1. Refining the common shape assumption is an important area for future re-

search because the unit data used in Chapter 4 suggested that the data sets

may not share a common shape. However this is difficult to assess for small

sample sizes which contain rounded and censored values. If the model in

Chapter 5 is to be used in a regulatory context it is important that the shape

distribution provides a good representation of the variation in residue levels.

2. Although we have tested the models introduced in this thesis extensively in

validation studies, additional validation studies as described in Section 6.2.1.6
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would be useful to assess how robust the common shape DPMN model is,

particularly to deviations from the common shape assumption.

3. There are various areas where the models presented in this thesis may improve

current practice as described in Section 6.2.1.7 so it would be useful to explore

these fully to assess in which other application areas the models can be useful.

Using the model in different areas would also provide more opportunities for

validation and further development of the model.
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Journal of Statistics. 65, 577–592.

Ishwaran, H. and M. Zarepour (2000). Markov Chain Monte Carlo in Approximate

Dirichlet and Beta Two-parameter Process Hierarchical Models. Biometrika.

87 (2), 371–390.

Jain, S. and R. M. Neal (2004). A Split-Merge Markov Chain Monte Carlo Procedure

for the Dirichlet Process Mixture Model. Journal of Computational and Graphical

Statistics. 13 (1), 158–182.

JMPR (1999). Joint FAO/WHO Meeting on Pesticide Residues. Report of the Joint

Meeting of the FAO Panel of Experts on Pesticide Residues in Food, the Envi-

ronment, and the WHO Core Assessment Group on Pesticide Residues. Rome,

Italy.

JMPR (2002). Pesticide residues in food - 2002. Report of the Joint Meeting of the

FAO/WHO Meeting of Experts. Rome, Italy.

JMPR (2003). Pesticide Residues in Food - 2003. 2003 Joint FAO/WHO Meeting

on Pesticide Residues. Geneva.

Kaethner, M. (2001a). Determination of Residue Variability in Head Lettuce Follow-

ing a Tank-mix Application of Anilinopyrimidine, Triazole, Pyrethroid, Organophos-

phate and Dicarboximide Crop Protection Products, France/Germany 2000 to

2001. BASF DocID 2002/1007078. Unpublished. European Crop Protection As-

sociation (ECPA), Residue Expert Group. Belgium.

Kaethner, M. (2001b). Determination of Residue Variability in Table and Wine

Grapes After a Tank-mix Application of Anilinopyrimidine, Triazole, Pyrethroid,

Organophosphate and Dicarboximide Crop Protection Products, France/Germany

2000 to 2001. BASF DocID 2002/1007077. Unpublished. European Crop Pro-

tection Association (ECPA), Residue Expert Group. Belgium.



BIBLIOGRAPHY 248

Kennedy, M. and A. Hart (2009). Bayesian Modeling of Measurement Errors and

Pesticide Concentration in Dietary Risk Assessments. Risk Analysis. 29 (10),

1427–1442.

Kennedy, M., V. Roelofs, C. Anderson, and J. Salazar (2011). A hierarchical Bayesian

model for extreme pesticide residues. Food and Chemical Toxicology. 49 (1), 222–

232.

Kitagawa, G. (1996). Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear

State Space Models. Journal of Computational and Graphical Statistics. 5 (1),

1–25.

Lallukka, T., M. Lahti-Koski, and M. Ovaskainen (2001). Vegetable and Fruit Con-

sumption and its Determinants in Young Finnish Adults. Scandinavian Journal

of Nutrition. 45, 120–126.

Lehman, A. J. and O. G. Fitzhugh (1954). 100-Fold Margin of Safety. Association

for Food and Drug Official US Quarterly Bulletin. 18, 33–35.

Liu, J. S. (1996). Nonparametric Hierarchical Bayes via Sequential Imputations. The

Annals of Statistics. 24 (3), 911–930.

Lo, A. Y. (1984). On a Class of Bayesian Nonparametric Estimates: I. Density Esti-

mates. The Annals of Statistics. 12, 351–357.

Lunn, D., A. Thomas, N. Best, and D. Spiegelhalter (2000). WinBUGS - a Bayesian

modelling framework: concepts, structure, and extensibility. Statistics and Com-

puting. 10 (4), 325–337.

MacEachern, S. N. and P. Müller (1998). Estimating Mixture of Dirichlet Process

Models. Journal of Computational and Graphical Statistics. 7 (2), 223–238.

MacEachern, S. N., M. Clyde, and J. S. Liu (1999). Sequential Importance Sampling

for Nonparametric Bayes Models: The Next Generation. The Canadian Journal

of Statistics. 27 (2), 251–267.

MacLachlan, D. J. and D. Hamilton (2011). A Review of the Effect of Different

Application Rates on Pesticide Residue Levels in Supervised Residue Trials. Pest

Management Science. 67, 609–615.



BIBLIOGRAPHY 249

McNamara, C., B. Naddy, D. Rohan, and J. Sexton (2003). Design, Development

and Validation of Software for Modelling Dietary Exposure to Food Chemicals

and Nutrients. Food Additives and Contaminants. 20 (Supplement 1), S8–26.

Metropolis, N. and S. Ulam (1949). The Monte Carlo Method. Journal of the Amer-

ican Statistical Association. 44 (247), 335–341.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, and A. Teller (1953). Equation

of State Calculations by Fast Computing Machines. The Journal of Chemical

Physics. 21 (6), 1087–1092.

Miller, R. B. (1980). Bayesian Analysis of the Two-Parameter Gamma Distribution.

Technometrics. 22 (1), 65–69.

Neal, R. M. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture

Models. Journal of Computational and Graphical Statistics. 9 (2), 229–265.

Neal, R. M. (2003). Slice Sampling. The Annals of Statistics. 31 (3), 705–767.
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Appendix A

Unit Residue Data

Table A.1 – Unit Field Trial data used for DPMN model.

Data Rounding

Set Commodity Pesticide n n >LOD method* Reference

1 Blackcurrant Vinclozolin 120 120 - Ambrus (2006)

2 Cabbage Triazophos 130 130 4 dp Ambrus (2006)

3 Cabbage Chlorpyrifos 120 120 4 dp Ambrus (2006)

4 Cabbage Profenofos 120 120 3 dp Ambrus (2006)

5 Cabbage Profenofos 120 120 3 dp Ambrus (2006)

6 Cherry Chlorpyrifos 120 120 3 dp Ambrus (2006)

7 Cherry Lambda-cyhalothrin 120 120 3 dp Ambrus (2006)

8 Cherry Phosalone 120 120 5 dp Ambrus (2006)

9 Chicory Tolclofos-methyl 121 121 3 dp Ambrus (2006)

10 Cucumber Pirimyphos-methyl 120 120 - Ambrus (2006)

11 Cucumber Acetamiprid 120 115 3 dp Ambrus (2006)

12 Cucumber Pymetrozine 120 106 3 dp Ambrus (2006)

13 Cucumber Chlorothalonil 130 130 4 dp Ambrus (2006)

14 Cucumber Tolylfluanid 120 120 - Ambrus (2006)

15 Cucumber Pirimiphos-methyl 130 130 - Ambrus (2006)

16 Grape Chlorpyrifos 120 114 3 dp Ambrus (2006)

17 Grape Chlorpyrifos 120 120 2 dp Ambrus (2006)

18 Grape Chlorpyrifos-methyl 133 133 - Ambrus (2006)

19 Grape Vinclozolin 120 120 3 dp Ambrus (2006)

20 Grape Folpet 120 120 - Ambrus (2006)

21 Kale Chlorpyrifos-methyl 120 120 3 dp Ambrus (2006)

22 Kale Chlorothalonil 121 121 - Ambrus (2006)

23 Kale Profenofos 160 160 - Ambrus (2006)

24 Lettuce Indoxacarb 121 121 3 dp Ambrus (2006)

25 Lettuce Vinclozolin 121 120 2 dp Ambrus (2006)

Continued on next page
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Table A.1 – continued from previous page

Data Rounding

Set Commodity Pesticide n n >LOD method* Reference

26 Lettuce Procymidone 120 120 3 dp Ambrus (2006)

27 Lettuce Alphamethrin 120 120 3 dp Ambrus (2006)

28 Lettuce Alphamethrin 120 120 3 dp Ambrus (2006)

29 Lettuce Chlorothalonil 120 120 2 dp Ambrus (2006)

30 Lettuce Pirimiphos-methyl 130 130 3 dp Ambrus (2006)

31 Mango Parathion-methyl 153 153 3 dp Ambrus (2006)

32 Mango Deltamethrin 120 120 3 dp Ambrus (2006)

33 Mango Cypermethrin 135 135 - Ambrus (2006)

34 Mango Phenthoate 127 127 4 dp Ambrus (2006)

35 Mango Phenthoate 130 130 5 dp Ambrus (2006)

36 Mango Prophiofos 176 176 - Ambrus (2006)

37 Papaya Diazinon 66 66 2 dp Ambrus (2006)

38 Papaya Methidathion 136 136 2 dp Ambrus (2006)

39 Papaya Diazinon 122 122 3 dp Ambrus (2006)

40 Papaya Deltamethrin 130 130 4 dp Ambrus (2006)

41 Squash Methidathion 128 128 - Ambrus (2006)

42 Strawberry Procymidone 120 120 3 dp Ambrus (2006)

43 Strawberry Procymidone 141 141 - Ambrus (2006)

44 Strawberry Endosulfan 130 130 4 dp Ambrus (2006)

45 Strawberry Procymidone 141 141 5 dp Ambrus (2006)

46 Zucchini Azoxystrobin 120 120 3 dp Ambrus (2006)

47 Zucchini Azoxystrobin 120 120 3 dp Ambrus (2006)

48 Kale Indoxacarb 108 90 3 dp Ambrus (2006)

49 Chicory Tolclofos-methyl 121 121 3 dp Ambrus (2006)

50 Cucumber Vinclozolin 120 120 3 dp Ambrus (2006)

51 Cherry Dimethoate 120 120 3 dp Ambrus (2006)

52 Apple Chlorpyrifos-methyl 319 319 - Ambrus (1995)

53 Apple Phosphamidon 108 108 2 dp Ambrus (1979)

54 Kiwi Vinclozolin 209 209 2 dp Holland and Malcolm (2002)

55 Potato Aldicarb 100 100 2 dp Tew (1993)

56 Potato Aldicarb 100 100 2 dp Tew (1993)

57 Potato Aldicarb 79 79 2 dp Tew (1993)

58 Potato Aldicarb 100 100 2 dp Tew (1993)

59 Potato Aldicarb 100 100 2 dp Tew (1993)

60 Potato Aldicarb 100 100 2 dp Tew (1993)

61 Potato Aldicarb 100 100 2 dp Tew (1993)

62 Potato Aldicarb 100 100 2 dp Tew (1993)

63 Potato Aldicarb 100 100 2 dp Tew (1993)

64 Potato Aldicarb 100 100 2 dp Tew (1993)

65 Potato Aldicarb 100 100 2 dp Tew (1993)

66 Grape Dicarb-oximide 120 120 2 sf Kaethner (2001b)

67 Grape Dicarb-oximide 120 120 2 sf Kaethner (2001b)

68 Grape Dicarb-oximide 120 120 2 sf Kaethner (2001b)

Continued on next page
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Table A.1 – continued from previous page

Data Rounding

Set Commodity Pesticide n n >LOD method* Reference

69 Grape Dicarb-oximide 120 120 2 sf Kaethner (2001b)

70 Lettuce Dicarb-oximide 120 120 2 sf Kaethner (2001a)

71 Lettuce Dicarb-oximide 120 120 2 sf Kaethner (2001a)

72 Lettuce Dicarb-oximide 120 120 2 sf Kaethner (2001a)

73 Lettuce Dicarb-oximide 120 120 2 sf Kaethner (2001a)

74 Peach Diazinon 200 200 3 dp Valdez-Flores et al. (2002)

75 Apple Captan 348 78 0.0001 Xu et al. (2008)

* When the data were rounded to nd decimal places, this is represented by nd dp where nd ≤ 5 and when the

data were rounded to ns significant figures, this is represented by ns sf. When data was rounded above 5

decimal places, rounding error was ignored. These data sets are indicated by ‘-’.

Table A.2 – Unit Market Survey data used to obtain weakly informative prior

distributions for the bivariate mixture model in Chapter 3. The data set is

a subset from the data set reported by Hill and Reynolds (2002). Data sets

31, 32, 36, 53 and 63 were excluded because >50% of the observations had

residue levels below the LOD.

Data Set Commodity Pesticide n n >LOD LOD

1 Apple Carbaryl 108 108 0.001

2 Apple Carbaryl 95 78 0.01

3 Apple Carbaryl 100 90 0.01

4 Apple Phosalone 100 100 0.001

5 Apple Phosalone 100 100 0.001

6 Apple Chlorpyrifos 110 108 0.001

7 Apple Chlorpyrifos 110 103 0.001

8 Apple Carbaryl 100 100 0.001

9 Apple Carbaryl 100 100 0.01

10 Apple Chlorpyrifos 100 100 0.001

11 Apple Carbaryl 100 99 0.001

12 Banana Chlorpyrifos 100 100 0.0001

13 Banana Chlorpyrifos 100 93 0.0001

14 Kiwi Phosmet 100 98 0.001

15 Kiwi Parathion-methyl 100 99 0.001

16 Kiwi Parathion-methyl 100 100 0.001

17 Kiwi Quinalphos 100 91 0.001

18 Kiwi Diazinon 100 97 0.001

19 Orange Imazalil 100 100 0.001

20 Orange Imazalil 110 109 0.001

21 Orange Chlorpyrifos 100 88 0.001

22 Orange Imazalil 100 99 0.001

23 Orange Imazalil 100 92 0.001

Continued on next page
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Table A.2 – continued from previous page

Data Set Commodity Pesticide n n >LOD LOD

24 Peach Dimethoate 100 89 0.001

25 Peach Carbaryl 100 71 0.01

26 Peach Carbaryl 100 68 0.01

27 Peach Methamidophos 100 65 0.001

28 Peach Phosalone 100 90 0.001

29 Pear Phosalone 110 75 0.001

30 Pear Phosalone 100 100 0.001

33 Pear Carbaryl 110 95 0.001

34 Pear Carbaryl 100 86 0.001

35 Plum Chlorpyrifos 100 74 0.001

37 Plum Phosalone 100 81 0.001

38 Plum Pirimicarb 100 59 0.001

39 Plum Phosalone 100 100 0.001

40 Plum Acephate 100 98 0.001

41 Plum Dimethoate 100 65 0.001

42 Plum Pirimiphos-methyl 100 99 0.001

43 Plum Fenitrothion 100 99 0.001

44 Plum Acephate 101 101 0.001

45 Potato Aldicarb 100 81 0.001

46 Potato Aldicarb 100 84 0.001

47 Potato Aldicarb 100 67 0.001

48 Potato Aldicarb 100 72 0.001

49 Potato Aldicarb 100 94 0.001

50 Potato Aldicarb 100 99 0.001

51 Potato Aldicarb 100 85 0.001

52 Potato Aldicarb 100 94 0.001

54 Potato Aldicarb 100 100 0.001

55 Tomato Methamidophos 100 95 0.001

56 Tomato Formetanate 100 94 0.001

57 Tomato Methamidophos 100 62 0.001

58 Celery Tolclofos-methyl 40 40 0.001

59 Celery Heptenophos 40 40 0.001

60 Celery Disulfoton 40 39 0.001

61 Celery Disulfoton 40 40 0.001

62 Celery Phorate 40 40 0.001

64 Celery Chlorpyrifos 40 40 0.01

65 Celery Chlorpyrifos 40 40 0.001

66 Celery Chlorpyrifos 40 40 0.001
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B.1 DPMN model output when γ = 10

B.1.1 Normal Distribution

Figure B.1 – Output of DPMN model using a Normal target distribution with

γ = 10.
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B.1.2 Student’s t Distribution

Figure B.2 – Output of DPMN model using a Student-t target distribution with

γ = 10.
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Figure B.3 – Output of DPMN model using a Student-tν=4 target distribution

with γ = 10.
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Figure B.4 – Output of DPMN model using a Student-tν=5 target distribution

with γ = 10.
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B.1.3 Skew-Normal Distribution

Figure B.5 – Output of DPMN model using a Skew Normal target distribution

with λ = −5 and γ = 10.
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Figure B.6 – Output of DPMN model using a Skew Normal target distribution

with λ = −4 and γ = 10.
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Figure B.7 – Output of DPMN model using a Skew Normal target distribution

with λ = −3 and γ = 10.
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Figure B.8 – Output of DPMN model using a Skew Normal target distribution

with λ = −2 and γ = 10.
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Figure B.9 – Output of DPMN model using a Skew Normal target distribution

with λ = −1 and γ = 10.

(a) κ = 0.1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(b) κ = 0.2

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(c) κ = 0.4

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(d) κ = 0.8

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density



B.1. DPMN model output when γ = 10 264

Figure B.10 – Output of DPMN model using a Skew Normal target distribution

with λ = 1 and γ = 10.
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Figure B.11 – Output of DPMN model using a Skew Normal target distribution

with λ = 2 and γ = 10.

(a) κ = 0.1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(b) κ = 0.2

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(c) κ = 0.4

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(d) κ = 0.8

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density



B.1. DPMN model output when γ = 10 265

Figure B.12 – Output of DPMN model using a Skew Normal target distribution

with λ = 3 and γ = 10.
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Figure B.13 – Output of DPMN model using a Skew Normal target distribution

with λ = 4 and γ = 10.

(a) κ = 0.1

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(b) κ = 0.2

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(c) κ = 0.4

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(d) κ = 0.8

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density



B.1. DPMN model output when γ = 10 266

Figure B.14 – Output of DPMN model using a Skew Normal target distribution

with λ = 5 and γ = 10.
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B.1.4 Exponential Power Distribution

Figure B.15 – Output of DPMN model using an Exponential Power target

distribution with λ = 1 and γ = 10.
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Figure B.16 – Output of DPMN model using an Exponential Power target

distribution with λ = 1.5 and γ = 10.
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Figure B.17 – Output of DPMN model using an Exponential Power target

distribution with λ = 2.5 and γ = 10.
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Figure B.18 – Output of DPMN model using an Exponential Power target

distribution with λ = 3 and γ = 10.
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Figure B.19 – Output of DPMN model using an Exponential Power target

distribution with λ = 5 and γ = 10.
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B.1.5 Beta Distribution

Figure B.20 – Output of DPMN model using a Beta(2, 2) target distribution

with γ = 10.
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Figure B.21 – Output of DPMN model using a Beta(4, 2) target distribution

with γ = 10.
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Figure B.22 – Output of DPMN model using a Beta(2, 4) target distribution

with γ = 10.
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B.1.6 Mixture of Two Normal Distributions

Figure B.23 – Output of DPMN model using a Normal mixture target distri-

bution, p(y) = p × N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252), with p = 0.5

and γ = 10.
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Figure B.24 – Output of DPMN model using a Normal mixture target distri-

bution, p(y) = p × N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252), with p = 0.1

and γ = 10.
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Figure B.25 – Output of DPMN model using a Normal mixture target distri-

bution, p(y) = p × N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252), with p = 0.9

and γ = 10.
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Figure B.26 – Output of DPMN model using a Normal mixture target distri-

bution, p(y) = p ×N (y;−1, 0.52) + (1 − p) ×N (y; 0.5, 0.252), with p = 0.75

and γ = 10.
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Figure B.27 – Output of DPMN model using a Normal mixture target distri-

bution, p(y) = p × N (y;−1, 0.52) + (1 − p) × N (y; 0.5, 0.252), with p = 0.3

and γ = 10.
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B.2 DPMN model output when γ is inferred

from the data.

B.2.1 Normal Distribution

Figure B.28 – Output of DPMN model using a Normal target distribution with

uncertain γ.
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B.2.2 Student’s t Distribution

Figure B.29 – Output of DPMN model using a Student-t target distribution

with uncertain γ.
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B.2.3 Skew-Normal Distribution

Figure B.30 – Output of DPMN model using a Skew Normal target distribution

with uncertain γ.
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Figure B.30 – Output of DPMN model using a Skew Normal target distribution

with uncertain γ - Continued.
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Figure B.30 – Output of DPMN model using a Skew Normal target distribution

with uncertain γ - Continued.

(q) λ = 4

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(r) λ = 4

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Prior

Posterior

(s) λ = 5

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Target Distribution

Data

Median

95% CI

Kernel Density

(t) λ = 5

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ

P
ro

b
a

b
ili

ty
 D

e
n

si
ty

 

 

Prior

Posterior



B.2. DPMN model output when γ is inferred from the data. 282

B.2.4 Exponential Power Distribution

Figure B.31 – Output of DPMN model using a Exponential Power target dis-

tribution with uncertain γ.
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Figure B.31 – Output of DPMN model using a Exponential Power target dis-

tribution with uncertain γ - Continued.
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B.2.5 Beta Distribution

Figure B.32 – Output of DPMN model using a Beta target distribution with

uncertain γ.
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B.2.6 Mixture of Two Normal Distributions

Figure B.33 – Output of DPMN model using a Normal mixture target distribu-

tion, p(y) = p×N (y;−1, 0.52) + (1− p)×N (y; 0.5, 0.252), for various values

of p and with uncertain γ.
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(c) p = 0.1
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(e) p = 0.9
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B.2. DPMN model output when γ is inferred from the data. 286

Figure B.33 – Output of DPMN model using a Normal mixture target distribu-

tion, p(y) = p×N (y;−1, 0.52) + (1− p)×N (y; 0.5, 0.252), for various values

of p and with uncertain γ - Continued.
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(i) p = 0.3
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