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Abstract

In this work, basic theory and some proposed developments to lo-

calised principal components and curves are introduced. In addition,

some areas of application for local principal curves are explored.

Only relatively recently, localised principal components utilising kernel-

type weights have found their way into the statistical literature. In

this study, the asymptotic behaviour of the method is investigated

and extended to the context of local principal curves, where the char-

acteristics of the points at which the curve stops at the edges are

identified. This is used to develop a method that lets the curve ‘de-

lay’ convergence if desired, gaining more access to boundary regions

of the data. Also, a method for automatic choice of the starting point

to be one of the local modes within the data cloud is originated.

The modified local principal curves’ algorithm is then used for fit-

ting multi-dimensional econometric data. Special attention is given

to the role of the curve parametrisation, which serves as a feature

extractor and also as a prediction tool when properly linked to time

as a probable underlying latent variable. Local principal curves pro-

vide a good dimensionality reduction and feature extraction tool for

insurance industry key indicators and consumer price indices. Also,

through ‘calibrating’ it with time, curve parametrisation is used for

the purpose of predicting unemployment and inflation rates.
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Chapter 1

Introduction

1.1 Fitting Multi-dimensional Data

In many real-time situations, economical, demographic, geological and even social

studies deal with complex multidimensional data sets. With this type of data,

one of the key roles of statistics is to analyse and describe data providing useful

summaries that can help developing the current knowledge about this data and

also help extracting useful measures that may be of some importance in predicting

and analysing the expected future behaviour of the phenomenon under study.

Different approaches of learning from data can be applied. The more suitable

is the learning process, the more useful are the summaries extracted. In this

context, statistical learning can play an important role in many areas of science,

especially applied sciences [40]. A famous approach of statistical learning, namely,

supervised learning, is of interest in situations where data can be organised in the

form of two blocks, input and output, that are thought to be causally related.

Supervised learning is mainly about developing a good learner, or prediction

1



1. Introduction

model, that enables predicting the future behaviour of the output (outcomes)

set based upon studying that of the input (features) set. Another alternative

learning approach is that of ‘unsupervised learning ’. The latter is used mainly in

the cases where we have a set of data that cannot be easily organised in the form

of inputs and outputs. In this case, data is thought of as the joint probability

distribution of some underlying variables and statistical methods based upon

the unsupervised approach of learning are mostly about gaining knowledge on

the structure of data and the way it is clustered as well as recognising its main

patterns and extracting its main features [40, 51].

It is well expected that data in many areas like actuarial and econometric sci-

ences are of the multidimensional complex structure where unsupervised statis-

tical learning methods can play a main role in reducing data dimensionality and

extracting its main features. This is because data does not always imply specific

asymmetric relationships between variables under consideration that provide a

basis to classify these variables into dependent and independent. Whenever sym-

metry is assumed, the shape of the relations between variables does not change

by interchanging variables’ roles.

In such cases, it could be beneficial to know the shapes of the existing relationships

as this may give useful interpretations of certain aspects related to the variables

under study. When dealing with high-dimensional data, identifying the main

landmarks of data and studying its underlying structure and relationships is

not that straightforward. The more the dimensions of data the more difficult

summarising and visualising the data becomes.

Now, we provide a simple example comparing some traditional supervised and un-

supervised learning techniques. We use two-dimensional speed-flow data recorded

2



1. Introduction

for a freeway in California-US on July 2007(1). Figure 1.1 shows different fits for

the traffic data. Three supervised methods were used, linear regression, quadratic

form, linear interpolation using R function ’approx()’. The solid line in the figure

is a typical representative of unsupervised learning techniques, and is known as

‘the first principal component line’. Using this figure, a basic comparison between

the alternative ways to fit such data can be done.
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Figure 1.1: Fits for traffic data

This example indicates how the principal components fit can be useful when we

need to represent data in smaller dimensions. The two-dimensional data example

can be extended to more complicated multi-dimensional data sets, but visualising

the data and principal components will be much more difficult.

(1)observations of speed and flow are recorded from 9th of July 2007, 9am, to 10th of July
2007, 10pm, on Line 5 of the Californian Freeway SR57-N, VDS number 1202263. The data
were originally measured in intervals of thirty seconds, and then aggregated over intervals of 5
minutes length.
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1. Introduction

In many practical situations, data cannot be well represented by traditional meth-

ods such as regression line and interpolation. From Figure 1.1, it is clear that

none of the traditional methods used to represent traffic data example gives an

adequate fit for the data, and this problem is expected to be more complicated

in more complex data sets. The basic problem of the three supervised methods

illustrated in Figure 1.1 is that they use an asymmetric view on the variables, im-

plying that each x (flow) will be associated with exactly one estimated y (speed),

which is clearly inadequate here.

Although principal components can detect basic patterns in the data set, it is

desirable to find a good graphical representation for the data. A group of non-

traditional approaches that proves to be more efficient in the majority of these

complex situations are methods based on what is called “Principal Curves”, an

extension to principal component analysis. Principal curves can provide a flexible

and not too complicated way to live with high-dimensionality without being a

serious obstacle to effectively explore and analyse complex data structures.

One of the main advantages of principal curves based algorithms is the ability to

extract information from multidimensional data in one dimension only through

the fitted curve. Figure 1.2 displays an example of a principal curve fitted to a

three-dimensional life-insurance industry main indicators data. The data consists

of three variables; gross claims paid (GCP), number of employees (Emp), total

capital and reserves (TCR). The curve is clearly passing through the middle of

the data and can provide a good summary for the three variables.

Principal curves shall be introduced and further illustrated in section 2.2 of the

coming chapter.
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1. Introduction

A principal curve fitted to life insurance indicators
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Figure 1.2: A Principal Curve fitted to multi-dimensional data

1.2 Outline of the Thesis

The flow of the topics presented in the work is as follows:

In Chapter 2, we provide a short introduction to principal components and curves

viewing the main properties of both. We specially highlight the characteristics

of principal components related to explaining the total variance of the data as a

whole and of single variables. Principal curves are introduced as a non-parametric

alternative to principal components for summarising and extracting features from

symmetric data. Also, some alternative approaches and advances for principal

curves are briefly reviewed.

The localised versions of linear principal components and principal curves are

introduced in Chapter 3. Contributing to the literature, in that chapter, we also

5



1. Introduction

explore the asymptotic behaviour of localised principal components (for high di-

mensions and large samples) highlighting some of the asymptotics for the method.

Local principal curves, a ‘bottom-up’ strategy for fitting principal curves are in-

troduced. Some of the main features and technicalities for the latter are pre-

sented. We also point out some possible improvements to the local principal

curves’ algorithm.

In Chapter 4, the concept of mean shift, as a mode detection tool, is introduced

and the convergence of the mean shift algorithm is discussed. Building upon the

asymptotics of localised principal components, some asymptotics for the method

are introduced. We study the asymptotics of local principal curves which gives

a more clear idea about the curve path around boundary areas. Most impor-

tantly, some developments for local principal curves based upon the mean shift

algorithm are proposed. In particular, we show how the mean shift algorithm can

work as an automatic starting point selection tool. Last, based upon the asymp-

totic expected behaviour of local principal curve at boundaries, we propose a way

of extending the reach of the fitted curve into boundary areas.

In Chapter 5, we introduce some possible applications for local principal curves in

the fields of insurance and econometrics, specially for data of time series charac-

ter. We first explore the application of principal components and local principal

curves as a summary performance or efficiency measure for insurance markets. A

second example of such applications is what is well known in economy as ‘Phillips

Curves’, where the comparison between fitted curves is highlighted as well as the

possible link between time as a latent variable and the curve parametrisation

which is a key block for predictions in data of time series character. Another

6



1. Introduction

application for local principal curves was about estimating a curve to model the

relationship between gold and currency exchange rates, a case in which time can

be integrated as a third dimension to improve the fit. Last, the possible use of the

curve parametrisation as a summary index is proposed. Local principal curves

are used to construct a global price index using two or more sub-indices.

Main findings and conclusions as well as highlights of possible future research are

outlined in Chapter 6.

At the end of this work, some important mathematical results and justifications

related to the theory developed in this thesis are separately displayed in the

Appendix.

7



Chapter 2

Principal Components and

Curves

2.1 Principal Components

2.1.1 Introduction

The term ‘principal components’ was first introduced in statistics literature in

1901 by Karl Pearson [58]. It is a procedure that involves linearly transforming

a number of possibly correlated variables to a group of uncorrelated variables

(principal components) less in number. In this sense, principal component anal-

ysis is a way of restructuring data by reducing its dimensionality retaining most

of its variation (information) and also it is a means to identify new underlying,

and possibly meaningful, variables.

Principal component analysis can be mathematically defined as an orthogonal

8



2. Principal Components and Curves

linear transformation that transforms the data to a new coordinate system such

that the greatest variance by any projection of the data comes to lie on the first

coordinate (called the first principal component), the second greatest variance on

the second coordinate, and so on [42].

In practice, principal components can provide a good representation of data in

much less dimensions without being significantly affected by any loss of informa-

tion, that is by capturing most of the variation in the data. Principal components

in that sense provide information about the main directions of variance in the

data. Extracting principal components typically starts with computing the co-

variance (or correlation) matrix and then finding the eigenvectors and eigenvalues

of the covariance matrix and sorting them according to decreasing eigenvalue to

get the principal components in order from largest to smallest.

Let X = (X1, · · · , Xd) ∼ (µ,Σ) : S −→ T ∈ Rd be a multivariate random

vector, with mean µ and variance matrix Σ, which maps elements from a sample

space S into a subset T of Rd. (The sample space S may be considered as

latent and does not play a role henceforth). Suppose that we have a random

sample of n independent replicates for each variable (Xj)j=1,...,d in the random

vector X, then we have a data set that can be represented as an (n× d) matrix

X∗ = (xij)1≤i≤n, ,1≤j≤d.

Typically, obtaining the sample principal components is done through the follow-

ing steps:

1. First, subtract the mean from each of the data dimensions; this gives an

(n× d) matrix, U , with (i, j)th element (xij − X̄j).

9



2. Principal Components and Curves

2. Calculate the sample covariance matrix of U , C = 1
n−1
UTU .

3. Calculate the eigenvalues and eigenvectors of C (let V denote the (d× d)

matrix of eigenvectors).

4. Order the eigenvectors by eigenvalues highest to lowest and choose a set of

significant eigenvectors. By doing this, the dimension of the eigenvectors

matrix’ is reduced to (d × v) instead of a (d × d), where v is the number

of eigenvectors chosen. Denote the matrix containing the chosen set of

eigenvectors by V ∗.

5. Finally, the required principal components’ scores, Z∗ are computed as:

Z∗ = V ∗TUT

The eigenvalues of Σ, λ = λ1 ≥ · · · ≥ λd, are the roots of

|Σ− λI| = 0

where
n∑
i=1

λi = tr(Σ) ,
n∏
i=1

λi = det(Σ)

and the eigenvectors of Σ, γ = γ1 ≥ · · · ≥ γd, are the normalised eigenvectors

satisfying

Σγi = λi γi

γTi γj =

 1 : i = j

0 : i 6= j

Principal components (principal component lines) are computed in a way such

that the sum of squared orthogonal distances between data and their projections

10



2. Principal Components and Curves

on the line is a minimum. In other words, the principal component line minimises

the sum of squared errors in all the variables [37].

Now, we shall use a distance-minimisation-based approach to derive principal

components. This is not the standard way of deriving principal components,

which is done through maximising the total variance, but we are using this ap-

proach here to be consistent with the related material that will be introduced in

the coming chapter.

Consider any linear combination of the random vectorX, say g(t) = m+tγ ∈ Rd,

with t ∈ R and suitable vectors m and γ, denote the coordinate of X projected

orthogonally onto g by Xg, where

Xg = m+ γγT (X −m) = (I − γγT )m+ γγTX

≡ Aγm+ γγTX (2.1)

The matrix Aγ = (I − γγT ) is positive semi-definite, which is evident by noting

that AT
γAγ = Aγ , and hence ||Aγu||2 = uTAγu, for u ∈ Rd (see Appendix for

details).

Now, for all data points xi, we find m and γ such that the line g minimises the

squared distances between the data and their projections xgi = Aγm + γγTxi.

Normalising the linear combination [2] by setting γTγ = 1, the expression to

minimise is

Q(m,γ) =
n∑
i=1

||xi − xgi ||2 − λ(γTγ − 1) (2.2)

=
n∑
i=1

||xi −Aγm− γγTxi||2 − λ(γTγ − 1)

11



2. Principal Components and Curves

=
n∑
i=1

||Aγ(xi −m)||2 − λ(γTγ − 1)

=
n∑
i=1

(xi −m)TAγ(xi −m)− λ(γTγ − 1) (2.3)

where λ is a Lagrange multiplier.

Minimising Q(m,γ) for γ, we get (Note that ∂
∂γ
uTAγu = −2(uuT )γ)

∂Q(m,γ)

∂γ
=

n∑
i=1

∂

∂γ
(xi −m)TAγ(xi −m)− λ ∂

∂γ
(γTγ)

=
n∑
i=1

[
−2 (xi −m)(xi −m)T γ

]
− 2λγ

= −2

[
n∑
i=1

(xi −m)(xi −m)Tγ + λγ

]
(2.4)

and setting this equal to zero yields

[
n∑
i=1

(xi −m)(xi −m)T

]
γ = −λγ;

Σ̂γ = −λγ; (2.5)

so that γ needs to be an eigenvector of Σ̂, which is the unbiased estimator of the

covariance matrix Σ.

Multiplying both sides of (2.5) by γT , we get

γTΣγ = λγTγ = λ, (2.6)

so that

Var(γTX) = γTVar(X)γ = γTΣγ. (2.7)

12



2. Principal Components and Curves

Hence γ needs to be the eigenvector corresponding to the largest eigenvalue of Σ

such that the total variance accounted for is maximised.

Now, minimising Q(m,γ) for m yields

∂Q(m,γ)

∂m
=

n∑
i=1

∂

∂m
(xi −m)TAγ(xi −m)− λ ∂

∂m
(γTγ)

= −2
n∑
i=1

Aγ(xi −m) (2.8)

which, when equated to zero, leads to

−2
n∑
i=1

Aγ(xi −m) = 0

n∑
i=1

(Aγxi −Aγm) = 0

Aγ

n∑
i=1

xi = Aγ

n∑
i=1

m

The previous expression will generally have more than one solution. One of them

is such
n∑
i=1

xi = nm

Then,

m =
1

n

n∑
i=1

xi (2.9)

Hence, the “best” value of m is an estimate of the global mean (µ).

Denoting the largest eigenvector of Σ by γ(1), we can summarise that the line

that minimises the weighted squared distances between data points and their

13



2. Principal Components and Curves

projected counterparts is given by

g(t) = µ+ tγ(1),

i.e. a line through the global mean in the direction of the first eigenvector of the

covariance matrix, which is the global first principal component line. In other

words, the global first principal component line would be that line through the

data cloud which minimises the expected squared distances between data and

their projections onto the line.

In general, the jth principal component line is

g(j)(t) = µ+ tγ(j) (2.10)

where γ(j) is the jth eigenvector of Σ.

2.1.2 Properties of Principal Components

Let U be the data matrix after subtracting the means and let V be the matrix

of eigenvectors of Σ. Denote by Z the principal components’ scores, then the

principal components can be represented as Z = V T UT and the kth principal

component is

zk = γkU
T (2.11)

where γk is the kth row of the matrix V (the kth eigenvector), which can be

referred to as the vector of coefficients γkj(j = 1, · · · , d) for the kth principal

component. The coefficient γkj measures the contribution of the jth variable

14



2. Principal Components and Curves

towards the kth principal component.

Those coefficients represent an important quantity of interest that helps inter-

preting principal components analysis (hereafter: PCA) results. This quantity

can be considered a measure of the association between a component and a vari-

able which is in some form an estimate for the information they share. This is

called ‘loading ’. Loadings (coefficients of association) provide very useful inter-

pretations for the PCA in many applications.

When the eigenvectors are standardised to have length 1 (i.e. γTk γk = 1), which is

usually the case, the sum of squared loadings over each vector γk is equal to one.

In this case, it follows directly from (2.7) that the variance of the kth principal

component is given by:

V ar(zk) = λk (2.12)

and the variance of a principal component is greater than or equal to the variance

of any proceeding component, i.e.

Var(zi) ≥ Var(zj), i < j

The percentage of variance accounted for by the first m principal components is

100×

m∑
k=1

λk

d∑
j=1

λj

(2.13)

where
d∑
j=1

λj is the total variance.
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2. Principal Components and Curves

Furthermore, the variance of any variable Xj can be expressed in terms of the

eigenvalues and eigenvectors as follows

V ar(Xj) =
d∑

k=1

λkγ
2
kj (2.14)

Other properties of principal components include [47, 50]

• A principal component is centred around the origin, i.e. E(zk) = 0

• Principal components are orthogonal. This implies that

Cov(zi, zj) = 0, i 6= j

• The variance of the first principal component, Var(z1), is greater than or

equal to the variance of any standardised linear combination of the data.

• Principal components are not scale-invariant. In other words, changing the

scale of data would lead to different principal components’ scores Z.

• The number of principal components needed to entirely explain the total

variation of data is equal to the rank of the covariance matrix Σ. Hence, if

rank(Σ) = r < d, then the first r components can entirely explain the total

variance.

• For any p-dimensional subspace of the data, Sp , the subspace of the first

p principal components has a smaller mean square deviation from the data

than Sp.
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2. Principal Components and Curves

2.1.3 Visualising Principal Components - an example

It could be useful to see an example of how principal components can give a good

representation of the data set in the sense that it reduces dimensionality retaining

most of the information (variation) within the data. For illustration purposes,

we choose a two-dimensional data set (this can be extended to more than two

dimensions, but would require more advanced graphical tools). The data used

are the speed-flow data referred to earlier in this chapter. To try visualising the

first two principal components for this data, it was loaded and processed in R

(refer to Appendix for sample R code to do this), yielding the graph that appears

in Figure 2.1.
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Figure 2.1: Principal Components Graph - an example

It can be seen from Figure 2.1 that the first principal component captures the

basic pattern (direction of largest variation) in the data set. Using a simple

calculation (see Appendix), the first principal component accounts for 90.7%

of the total variance. The second principal component shows another possible,
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2. Principal Components and Curves

but not basic, direction that data points spread around. This simple example

indicates how useful can the principal components be in summarising data using

fewer dimensions. Also, in this sense, principal components can provide a basis

for finding intrinsic dimensionality of data [34].

Although principal components can give a basic indication of main patterns in

the data set, in many practical situations the linearised way of summarising data

through principal components or other traditional methods such as regression and

interpolation may not be ideal. There exist non-linear equivalents for principal

components. Those are basically methods based upon principal curves.

2.2 Principal Curves

The concept of Principal Curves (hereafter: PCs) was firstly brought into the

Statistics literature in 1989 by Hastie and Stuetzle [38] (hereafter: HS). As repre-

senting multi-dimensional data in fewer dimensions through principal components

is an appealing idea, HS suggested a summary technique that goes further and

represent the data by a smooth one-dimensional curve that passes through the

middle of the data cloud. In fact, their work was based on the idea of captur-

ing the basic and most significant pattern in the data through the largest (first)

principal component, then try to modify the straight line representing the first

principal component and produce a smooth curve representation instead of a

straight line. This implies that principal curves, like linear principal components,

focus on the orthogonal or shortest distances to the points, and is fit in a way

that minimises these orthogonal distances. In this sense, a principal curve can be

considered a non-linear equivalent to a globally fitted principal component line.
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2. Principal Components and Curves

2.2.1 The HS Approach

According to HS, a principal curve is defined as ‘a smooth one-dimensional curve

that passes through the middle of a multi-dimensional data set, providing a non-

linear summary of the data’. This one-dimensional curve can be thought as a

curve that is parametrised over some parameter τ .

HS stated that, for a given data set X, a one-dimensional curve, ν, is said to be

a principal curve if the following hold:

(i) The curve does not intersect itself.

(ii) The curve has finite length inside any bounded subset of Rd.

(iii) The curve is self consistent.

Denote by ν a smooth (C∞) unit-speed curve(1) in Rd that does not intersect

itself and that is parametrised over a closed interval T ⊆ R1 and has finite length

inside any finite ball in Rd. HS have defined a projection index τν : Rd → R1 as

follows:

τν(x) = sup
τ
{τ : ‖x− ν(τ)‖ = inf

µ
‖x− ν(µ)‖} (2.15)

meaning that the projection index of any point, x is the largest value of τ which

minimises the distance between this point and ν(τ).

The main property of principal curves is that they are self-consistent [73] for a

particular distribution or data set. This means that any point on the curve is the

average of all points that project there. A curve, ν, is said to be self-consistent

or a principal curve if the following hold for a.e. τ :

E(X|τν(X) = τ) = ν(τ) (2.16)

(1)A curve ν is said to be a unit speed parametrised curve if ‖ν′‖ ≡ 1.
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2. Principal Components and Curves

HS have also showed that principal curves, analogue to principal components,

are critical points of the expected squared distance from the points to their pro-

jections on the curve. HS defined a distance function that is based upon the

Euclidean distance from a point x to its projection on the curve ν and this

function is used to optimise the curve.

Let d(x,ν) be the Euclidean distance from a point x to its projection on the

curve

d(x,ν) ≡ ‖x− ν(τν(x)‖ (2.17)

Define the expected squared distance function D2(ν) ≡ E(d2(X,ν)), if we con-

sider any two straight lines ν and g, then ν is said to be a critical value of D2

iff

∂D2(ν + εg)

∂ε

∣∣∣∣
ε=0

= 0

If we assume ν ∈ ι and g ∈ ι, where ι is the class of differentiable one-dimensional

curves in Rd parametrised by τ , then principal curves have the property of being

critical points of the distance function as well [38].

Based on this, the algorithm for finding principal curves usually starts with the

straight line representing the largest principal component, then it ensures that

the curve is self-consistent by projecting and averaging at each point, and this

process is repeated until the value of the expected distance function reaches a

specific threshold. In other words, the principal curve is fit in a way such that

the average squared distance of the data points and the curve is minimised.

The HS algorithm for finding a principal curve is as follows(1):

(i) Perform a principal component analysis and extract the first principal com-

(1)The HS algorithm was originally implemented in SPlus.

20
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ponent. Let ν0(τ) be the first principal component line for the data X. Set

j = 0.

(ii) Find the data projections on ν0(τ). The projections set is defined as

τνj(x) = max{τ : ‖x− ν(τ)‖ = min. ‖x− ν(.)‖} ∀x ∈ Rd.

(iii) Compute the average of data points and check for self-consistency. Define

ν(j+1)(τ) = E[X|τν(j)(X) = τ ].

(iv) Let % denote a pre-defined threshold for the algorithm to stop. If the

quantity
∣∣∣1− ∆(ν(j+1))

∆(ν(j))

∣∣∣ falls below % stop the iteration, otherwise, let j =

j + 1 and go to step (ii).

HS have not explicitly shown the convergence of the algorithm, though they

suggested that there is evidence that the state of convergence is expected to be

reached. Factors supporting this latter assumption were [46]:

1. HS principal curves are, by definition, fixed points of the algorithm.

2. The expected squared distance converges, as long as each iteration is well

defined and produces a differentiable curve.

3. If the fitted principal curve happens to be a straight line, then it is a princi-

pal component [38]. Moreover, Kégl [46] has mentioned that, if the second

step in the algorithm (projection) is replaced by the fitted least squares

straight line, the procedure converges to the largest principal component.

We think that the latter statement can only be true if the regression line

replaces the third, not the second, step of the algorithm (calculating expec-

tations).

The convergence of the distance function does not necessarily lead to that the

fitted principal curve converges [46]. All principal curves are saddle points of
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the distance function [20]. Furthermore, the largest principal component min-

imises the distance function and the smallest principal component maximises it.

Without restricting the set of admissible curves, the distance function will fail to

converge to a stable solution [46].

Principal curves can be considered as a nonparametric extension to linear princi-

pal components which is of interest mainly in the cases where the variables under

consideration, the values of which formulate the data cloud, are considered to be

symmetric, rather than one or more variable being dependent upon or generated

from the remaining ones.

Figure 2.2 shows the HS principal curve fitted to the two-dimensional flow-speed

data introduced earlier in this current chapter(1). Of course, this is not likely to

be the best non-linear fit for this data, but it is still expected to be better than

all linear-based fits.

Principal curves have found their way to a variety of statistical applications and

practical multi-dimensional data situations. Some areas of current applications

of principal curves include [46]:

• Image processing and feature extraction [4, 44].

• Clustering [71].

• Speech processing [63, 64].

• Process monitoring [19, 82]

(1)This HS principal curve is obtained through the princurve package in R [39] by using
the function principal.curve() with its default settings. For more details, please refer to the
‘princurve’ package help via http://cran.r-project.org/web/packages/princurve/princurve.pdf
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Figure 2.2: HS Principal Curve for traffic data

2.2.2 Alternative Principal Curve Algorithms

Since 1989, there have been several developments to the original principal curve

algorithm suggested by Hastie and Stuetzle. The HS approach was mainly based

on the self-consistency concept. It also uses two different smoothing techniques

to avoid over-fitting [38].

Tibshirani [75] introduced an alternative definition for principal curves, based on

a mixture model. Estimation was carried out focusing on one-dimensional curves

through an EM algorithm. Banfield et al. [4] have extended the HS algorithm

to closed curves and suggested that the new extension reduces both bias and

variance of the estimation. Kégl et al. [45] have represented principal curves as

polygonal lines. They have shown that the suggested polygonal line algorithm,

due to its adaptive way of smoothing, is more robust than the HS algorithm.
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Also, the former approach of fitting principal curves reduces the estimation bias

by minimising the average distance from the curve rather than from the vertices

of the curve. Verbeek et al. [77] proposed an incremental method of constructing

principal curves. The method depends on forming polygonal lines by connect-

ing line segments (basically representing local principal component lines) and

then checking the quality of the resulting line. Although there is no smoothing

contained within the algorithm, smoothing can be done through any regression

method using the fitted polygonal line as a basis to assign a latent variable value

to each datum (implying an ordering on the data).

Further to the global approaches mentioned above, there exist local approaches

for fitting principal curves. One of the main privileges of locally-based approaches

is accounting for the local topology of the data. Delicado [17] has suggested an

alternative method for defining and constructing principal curves based upon an

iterative locally-oriented algorithm to find a set points composing the curve. The

latter is what is called ‘Principal Oriented Points’ (POPs). Einbeck et al. [27]

proposed an algorithm for fitting principal curves through iteratively performing

localised principal component analysis and applying mean-shifts to construct the

set of points defining the curve. Ozertem and Erdogmus [56] have proposed an

alternative definition for principal curves and surfaces that characterises the curve

or surface in terms of the gradient and the Hessian of the density estimate. It

was pointed out that, compared to the traditional methods for manifold learning,

the approach adapted defines the underlying manifold from a more differential

geometric point of view.

In the next chapter, one of the local approaches for fitting principal curves, in

particular, the local principal curve approach introduced by Einbeck et al. [27]

shall be further illustrated.
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Last, it is worth pointing to another important development for the idea of prin-

cipal curves which is known as ‘principal surfaces’ or manifolds. Mostly, those

manifolds are represented using multidimensional base functions. Different ap-

proaches vary according to the set of base functions applied and the approach of

optimising the parameters.

LeBlanc and Tibshirani [48] have introduced an adaptive way of constructing

a principal surface of the data optimising linear base functions through multi-

variate adaptive regression splines. Dong and McAvoy [19] have integrated the

HS principal curve algorithm and neural networks using the conjugate gradient

method for optimising the parameters. Smola et al. [70] have used a constrained

quantisation approach in the context of unsupervised learning and showed that

the proposed work can be closely linked to length-constrained principal curves.

They have used a minimisation-oriented iteration to optimise Gaussian kernels.

The authors suggested that the used approach can be looked at as a link between

principal curves and surfaces and generative topographic mapping [5]. Der et al.

[18] have applied the self-organising map algorithm to extract principal curves and

manifolds from data and shown experimentally the applicability of the suggested

approach using noisy data. Chang and Ghosh [9, 10] have introduced the concept

of ‘Probabilistic Principal Surfaces’ (PPS). Extending the basic concept that uses

manifold oriented covariance noise model, they have also proposed a parametric

model based on minimising PPS-reconstruction-error. Einbeck and Evers [22]

have presented local principal manifolds as a nonparametric data reduction ap-

proach for modelling data with low-dimensional non-linear latent structure. This

latent structure is used to define new data-dependent topologies. The proposed

approach was exploited for regression problems. The authors also suggested that

the method can be applied for classification or density estimation on the manifold.
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Chapter 3

Local Principal Components and

Curves

3.1 Local Principal Components

3.1.1 Introduction

Let X ∼ (µ,Σ) : A −→ S ∈ Rd be a multivariate random vector, with mean µ

and variance matrix Σ, which maps elements from a sample space A into a subset

S of Rd. (The sample space A may be considered as latent and does not play

a role henceforth.) The global first principal component line would be that line

through the data cloud which minimises the expected squared distances between

data and their projections onto the line.

It is well known that the solution to this problem is the line through µ which

points into the direction of the eigenvector γ1 of Σ corresponding to the largest

eigenvalue λ1 of Σ. Turning from the probabilistic to the empirical setting, i.e.
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given n independent replicates of X, say x1, . . . ,xn ∈ S, then µ and Σ need to

be replaced by consistent estimators, for instance the ML estimators µ̂ = x̄ and

Σ̂ = 1
n−1

(xi − x̄)(xi − x̄)T .

This concept is straightforwardly extended to a scenario in which, given a (non-

random) vector x ∈ Rd, and weights wx(xi) centred at x, we aim to minimise

the weighted squared distances between data and their projections onto the line.

If the weights are of bell–shaped and symmetric shape, their role is effectively to

localise the estimation problem at x. Weight functions of this type are known as

kernels, with the prominent example of the Gaussian kernel. As we will verify

later, it turns out that, unsurprisingly, the solution to this problem is the line

through the locally weighted mean, or short, local mean(1)

µx =

n∑
i=1

wx(xi)xi

n∑
i=1

wx(xi)

(3.1)

which points into the direction of the first eigenvector(2) of the local covariance

matrix

Σx =

n∑
i=1

wx(xi)(xi − µx)(xi − µx)T

n∑
i=1

wx(xi)

. (3.2)

That is, the “locally weighted” first principal component is given by a vector

pointing into the direction which explains most of the “local variance” around x,

or, in simpler terms, which locally gives the best fit.

(1)For denotational convenience, we will from now on omit all ‘hats’ on symbols denoting
estimators – it is clear that µx etc. are empirical and not theoretical quantities.

(2)When using the term ‘first eigenvector’, we mean the eigenvector corresponding to the
largest eigenvalue.
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Let x = (x1, . . . ,xd)
T ∈ Rd and κ(·) be a bounded symmetric uni-variate function

which integrates to 1 (we do not strictly require it to be non-negative, but usually

this will be the case).

A d- variate kernel function K can be defined by either:

• A product kernel function, K(x) = κ(x1)× . . .× κ(xd), or

• A radial kernel function, K(x) = κ(||x||).

The two formulations for K(x) are equivalent if the base kernel κ is the Gaussian

probability density function,

κ(x) =
1√
2π
e−x

2/2,

and the following applies to either construction of K.

Now, let H ∈ Rd×d denote a positive definite bandwidth matrix. If we localise

only in the directions of the coordinate axes, then H = diag(h2
1, . . . , h

2
d), where

hj, j = 1, . . . , d, are the individual bandwidths; and if we smooth equally strong

in all directions, then H = h2I, where I is the identity matrix [78]. Then we

can define

KH(·) = |H|−1/2K
(
H−1/2 ·

)
(3.3)

which is a d-variate probability density function in itself.

Given any line in Rd, say g(t) = m+ tγ ∈ Rd, with t ∈ R and suitable vectors m

and γ, denote the coordinate of X projected orthogonally onto g by Xg, where

Xg = m+ γγT (X −m) = (I − γγT )m+ γγTX
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≡ Aγm+ γγTX

The matrix Aγ = (I − γγT ) is positive semi-definite, which is evident by noting

that AT
γAγ = Aγ , and hence ||Aγu||2 = uTAγu, for u ∈ Rd.

Now, at point x, we seek to find m and γ such that the line g locally minimises

the weighted squared distances between the data and their projected counterparts

xgi = Aγm+ γγTxi. Restricting ||γ|| = 1, the expression to minimise is

Q(m,γ) =
n∑
i=1

KH(xi − x)||xi − xgi ||2 − λ(γTγ − 1) (3.4)

=
n∑
i=1

KH(xi − x)||xi −Aγm− γγTxi||2 − λ(γTγ − 1)

=
n∑
i=1

KH(xi − x)||Aγ(xi −m)||2 − λ(γTγ − 1)

=
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)− λ(γTγ − 1) (3.5)

First, we minimise Q(m,γ) for γ.

∂Q(m,γ)

∂γ
=

n∑
i=1

KH(xi − x)
∂

∂γ
(xi −m)T (I − γγT )(xi −m)− λ ∂

∂γ
(γTγ)

Using the fact that ∂
∂γ
uTAγu = −2(uuT )γ,

∂Q(m,γ)

∂γ
=

n∑
i=1

KH(xi − x)
[
−2 (xi −m)(xi −m)T γ

]
− 2λγ

= −2

[
n∑
i=1

KH(xi − x)(xi −m)(xi −m)Tγ + λγ

]
(3.6)
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and setting this equal to zero yields

[
n∑
i=1

KH(xi − x)(xi −m)(xi −m)T

]
γ = −λγ;

Σxγ = −λγ; (3.7)

so that γ needs to be an eigenvector, typically the largest, of the local variance

matrix Σx as defined in (3.2).

Now, minimising Q(m,γ) for m, we get

∂Q(m,γ)

∂m
= −2

n∑
i=1

KH(xi − x)Aγ(xi −m) (3.8)

which, when equated to zero, yields

− 2
n∑
i=1

KH(xi − x)Aγ(xi −m) = 0

n∑
i=1

KH(xi − x)(Aγxi −Aγm) = 0

Aγ

n∑
i=1

KH(xi − x)xi = Aγ

n∑
i=1

KH(xi − x)m. (3.9)

Since det(Aγ) = 0, the solution to this equation is not unique. In any case, a

solution is

m =

n∑
i=1

KH(xi − x)xi

n∑
i=1

KH(xi − x)

= µx. (3.10)

Hence, the “best” value of m is the local mean at x as defined in (3.1).

Denoting the largest eigenvector of Σx by γx, we can summarise that, at any

given point x, the line that locally minimises the weighted squared distances
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between the data and their projections is given by

gx(t) = µx + tγx,

i.e. a line through the local mean in the direction of the first eigenvector of the

local covariance matrix, which is the localised first principal component line.

Localised principal components, in this kernel-weighted sense, have found their

way into the statistical literature only relatively recently. Examples of areas of

application for locally weighted principal component analysis include:

• Local dimensionality reduction [43, 66].

• Principal curve estimation using kernel-based approaches [27].

• Adaptive tracing of curvilinear structures [81].

• The implementation of geographically weighted principal components [11].

• Tracking the contribution of sub-indices to a summary index over time [86].

3.1.2 Some Asymptotics for Localised Principal Compo-

nents

When kernels are used as weights, it is of statistical importance to study the

‘asymptotic’ behaviour of localised principal components. For relatively large

samples and small window sizes (bandwidths), this type of analysis may enable

producing approximated estimates or expected values for key parameters and

quantities of interest in many multivariate data applications.

Although there has been considerable research on kernel-based asymptotics [8]
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in a variety of statistical applications, such as curve estimation, dimensionality

reduction, tracking changes and landmarks in multi-dimensional data structures

and nonparametric regression [28, 55, 83, 85], the asymptotics for kernel-based

localised principal components have not been deeply investigated yet. In this

section, we will provide some useful approximations of localised principal com-

ponents which shall be later extended for local principal curves as well.

Recalling the function Q(m,γ) (3.4), let f denote the density function of X with

support supp(f) ⊂ S. We assume that the following hold [65, 79]:

(A1) The kernel K is a bounded and compactly supported probability density

function such that
∫
uuTK(u) du = µ2(K)I, with µ2(K) ∈ R, µ2(K) 6= 0.

(A2) At x ∈ supp(f), f is continuously differentiable and f(x) > 0.

(A3) The sequence of bandwidth matrices H is such that n−1|H|−1/2 and each

entry of H tending to zero as n −→∞, with H remaining symmetric and

positive definite.

Let op(1) denotes a sequence which tends to zero in probability as n −→ ∞ [6]

and let 1 denote a generic matrix of corresponding dimensions having each entry

equal to 1.

We now provide the asymptotic versions for the local covariance matrix Σx and

its eigenvectors.

In order to derive an asymptotic version of (3.7), first, we try to find an asymptotic

version of Q(m,γ).
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Let’s consider the expected value of the first term in (3.5),

E

(
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)

For large values of n and small values of H (1)

E

(
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)
(3.3)
= E

(
|H|−1/2

n∑
i=1

K(H−1/2(xi − x))(xi −m)TAγ(xi −m)

)
= |H|−1/2

n∑
i=1

E

(
K(H−1/2(xi − x))(xi −m)TAγ(xi −m)

)
xi iid= n|H|−1/2

∫
K
(
H−1/2(s− x)

)
(s−m)TAγ(s−m)f(s) ds

= n

∫
K(u)(H1/2u+ x−m)TAγ(H1/2u+ x−m)f(x+H1/2u) du

= n

∫
K(u)

{
(x−m)TAγ(x−m) +O(1TH1/2u)

}{
f(x) +O(1TH1/2u)

}
du

= n [ f(x)(x−m)TAγ(x−m) + o(1) ], (3.11)

where
∫
K(u) du = 1, and 1 is a vector which only consists of 1’s.

Similarly, it can be shown that (see Appendix)

Var

(
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)
= o(n2),

so that, in summary, the following holds

n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m) = nf(x)(x−m)TAγ(x−m) + oP (n)

(1)see Appendix for further illustration.
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We arrive at the penalised asymptotic minimisation problem

Q̃(m,γ) = nf(x)(x−m)TAγ(x−m)− λ(γTγ − 1). (3.12)

Taking the derivative w.r.t. γ yields,

∂Q(m,γ)

∂γ
= −2

[
nf(x)(x−m)(x−m)Tγ + λγ

]
, (3.13)

and equating this to zero,

nf(x)(x−m)(x−m)Tγ = −λγ

Σ̃xγ = −λγ;

i.e. γ is eigenvector of Σ̃x = nf(x)(x−m)(x−m)T .

Although the matrix Σ̃x is not a typical variance matrix as it is singular, this

has no effect as we are only interested in its eigenvectors.

Noting that Σ̃x can be considered as a matrix of type Σ = cψψT (see Appendix),

the only eigenvector of Σ̃x is given by

x−m
||x−m||

.

Taking the derivative of (3.12) w.r.t. m will give the less useful result of m = x.

However, using that the local estimate of m is µx, we can replace x−m by the

asymptotic version of x−µx as will be shown in Section 4.1.3, where x−µx can
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be asymptotically approximated by

µ2(K)H
∇f(x)

f(x)
,

yielding the asymptotic version of γx,

γ̃x
a
=
−µ2(K)H∇f(x)/f(x)

µ2(K)||H∇f(x)||/f(x)
= − H∇f(x)

||H∇f(x)||
, (3.14)

where the notation
a
= means that in the expression succeeding this symbol all

terms of an asymptotically higher order than the leading term are omitted. This

shows that γ̃x always follows the gradient of the density function. This is a useful

result that shall be helpful later on in this context.

3.2 Local Principal Curves

3.2.1 The LPC Algorithm

3.2.1.1 Introduction

Based upon the foundations of ‘Principal Curves’ and the idea of local modelling

[29], and considering the situations of multi-dimensional data with symmetric

components, Einbeck et al. [27] presented the idea of “Local Principal Curves”

(hereafter: LPCs), a flexible technique to model the complex data patterns

arising in such situations.

Being based on principal component analysis, both local principal curves (LPCs)

and principal curves (PCs) are constructed in a way such that the squared or-

thogonal distances between points and their projections onto the fitted curve are
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minimised. The main difference between LPCs and PCs is that the former defines

the fitted curves through a set of points which is obtained by iteratively running

principal component analysis locally along the data cloud, rather than running

the analysis globally then iteratively averaging and projecting.

Among the features of the LPC algorithm that makes it relatively flexible com-

pared to other PC-based algorithms is that there is no distributional (or other)

form assumed for the data. This relaxes the assumption of the un-intersected

curves of the original HS algorithm, so that the fitted LPC can be of any shape

including closed and branched curves. Also, being classified as a ‘bottom-up’

strategy of fitting principal curves, the local topology of data is well accounted

for making it easier to fit more complex data structures. Another example of de-

sirable LPCs features is that the LPC algorithm is not computationally expensive

compared to other peer approaches [27].

Some selected computational and technical details for the LPC algorithm are

discussed in the coming subsection(s).

3.2.1.2 The Algorithm

The LPC is defined through a series of points which represent local centres of the

mass of the data. Connecting those points, we get a smooth curve that passes

through the middle of the data cloud.

If we have a d-dimensional data cloud X = (X1, · · · , Xd)
T ∈ Rd, i = 1, ..., n,

where xi = (xi1, ..., xid)
T , the LPC algorithm works as follows:

Step 1 Selecting a starting point x(o). Set x = x(o).

Step 2 Computing µx, the local mean (centre of mass) around x.
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Step 3 Performing a principal component analysis locally at x, and storing the

first local eigenvector, γx.

Step 4 Finding a new value for x by stepping from µx into the direction of γx .

Step 5 Repeating steps 2 to 4 until the value of µx remains approximately constant

(convergence).

Step 6 Having reached convergence, the local principal curve is then constructed

through smoothly connecting the values of the µx series.

In Step 4 above, the step size needs to be specified by the data analyst, and is

usually set equal to h if H = h2I (please refer to Einbeck et. al [27] for more

details).

The LPC algorithm was originally applied using the R software through the

function “lpc(.)”(1).

Figure 3.1 shows a local principal curve fitted to the traffic (flow-speed) data

example introduced earlier(2). It can be seen from the figure that the fitted

LPC closely follows the data topology providing ‘a curve that passes through the

middle of the data cloud’.

3.2.2 Curve Parametrisation

An important characteristic of local principal curves is that they can be parametrised.

The parametrisation of the curve plays a key role in calculating data projections

onto the curve as well as in extracting data features.

(1)In November 2010, a complete R package has been published for the method [21]. For
more details, please refer to http://cran.r-project.org/web/packages/LPCM/index.html.

(2)The figure was generated using the LPCM package ver.0.41-6.
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Figure 3.1: LPC fit for traffic data

Here, we briefly illustrate the steps followed by the LPC algorithm for parametris-

ing the curve [25].

Denote by µ` = (µ`1, · · · ,µ`d)T the series of the local centres of mass, µx’s defining

the curve. Let L be the length of the series µ` (i.e. ` = 1, · · · , L).

The parametrisation (projection index) τ is constructed such that the curve can

be expressed as a function

f : If → Rd, τ 7→ (f1(τ), · · · , fd(τ))T

where If ⊂ R is the domain of f .

Now, the parametrisation process goes as follows:

• Setting τ = 0 at one of the end points of the curve (this point is consid-
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ered as the origin). The parametrisation value τ is assumed to always be

increasing in the direction of γx(o) .

• Computing a discrete, preliminary parametrisation (ρ`)1≤`≤L, with the same

origin as τ . This is by adding up the Euclidean distances between subse-

quent µ` values.

• For each dimension j = 1, · · · , d, a cubic spline is fit to interpolate the

points (ρ`,µ
`
j)1≤`≤L. This results in a set of pairs of graphs (ρ,µj(ρ)),

which when put together yields a continuous differentiable spline function

(µ1, · · · ,µd)T (ρ) ≡ µ(ρ). The interpolation performed in this step does

not involve any smoothing. µ` points are just interpolated through a string

of cubic polynomials.

• Recalculating the parameter as the arc length of the spline function µ(ρ).

τ =

∫ ρ

0

√
[µ′1(u)]2 + · · ·+ [µ′d(u)]2 du (3.15)

Having completed all the steps above, a final parametrisation vector τ is obtained

and is then used for both projecting and feature extraction. It should be noted

that calculating the parameter via the arc length along the fitted curve makes it

‘unit-speed’, so that the distances in parameter space correspond to distances in

data space along the fitted LPC [24].

The projection of any data point xi, i = 1, · · · , n, onto the fitted LPC is the

nearest point on the curve to that point xi (in terms of Euclidean distances).

Doing this for all points in the data space yields the projection index τi. Figure

3.2 shows the projections of all data points onto the fitted local principal curve

for the traffic data example. Each data point has a projection on the curve based

upon minimising the squared orthogonal distance.
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Figure 3.2: LPC projections for traffic data

Now, for any given parameter value τi, predictions can be made by evaluating

the fitted LPC through the multi-dimensional spline function. This feature can

be of importance, especially for multi-dimensional time series data when time

can be thought of as an underlying variable that can be related to the curve

parametrisation. This shall be further discussed in more detail in Chapter 5.

In general, for any parametrised curve ν, the projection index (dimension reduc-

ing mapping) is defined as

τν(x) = sup
τ∈Iν
{τ : ‖x− ν(τ)‖ = inf

η∈Iν
‖x− ν(η)‖} (3.16)

The previous projection index function τν() can be used as a feature extractor

for the data as well [53]. For any point x, the feature extractor can be expressed
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in terms of the arc length as follows:

Fν(x) =


l(ν, τν(x(o)), τν(x)), τν(x) ≥ τν(x(o))

−l(ν, τν(x), τν(x(o))), τν(x) < τν(x(o))

(3.17)

i.e. the arc length between the projections of x and x(o) (the starting point) onto

the curve.

A final remark about dimensionality reduction mappings obtained through prin-

cipal curves is that, though they are more interpretable, they are not considered

topology-preserving. Projections calculated through topology-preserving map-

pings (like the inverse-weighted K-means [59]), have the property that the topol-

ogy of parameter space reflects that of the data space, which is not necessarily

the case with principal-curves-based algorithms.

3.2.3 Other LPC Algorithm Details

3.2.3.1 Choice of Parameters

The LPC algorithm involves several technicalities, some of which can be consid-

ered as directly related to the calculation detail (such as controlling the curve

direction and angle penalisation [27]) while others can be considered as more

relevant to the applicability of the LPC algorithm in different data situations.

Some of the latter are introduced hereby.

Starting point selection

There are two basic approaches for setting a value for the starting point x(o), the

first is to be chosen at random within the multidimensional data range, and the
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second is to choose the point with the highest estimated density as the initial

starting point. The first approach is relatively easy, but can result in an outlier

which can affect the fitting process. The second approach is more complicated as

it needs first a good density estimator, but it results in a more reliable choice of

the starting point. Alternatively, a starting point out of the set of observations

can be selected manually.

The default setting for the LPC algorithm (the source lpc() function) is to choose

the starting point at random(1).

Bandwidth selection

To apply the LPC algorithm, a bandwidth matrix, H , needs to be determined.

This matrix contains a set of bandwidths (or squared bandwidths), h1, h2, ..., hd,

that corresponds to the number of variables (data dimensions), d. Each band-

width determines the size of local neighbourhood around each point in a certain

direction. The optimal choice of the bandwidth matrix depends to a great extent

upon the nature of the data set under consideration and becomes more compli-

cated for noisy data.

The choice of the bandwidth(s) is also important for the smoothness of the fitted

curve. Over estimating the suitable value(s) of h can result in an over-smoothed

curve with relatively small coverage of the data and vice versa. Also too small

bandwidths are likely to lead the curve to stick (stop) near the starting point.

A suggested optimal bandwidth selection method specially designed for unsuper-

vised learning techniques is based on what is called ‘self coverage’ [26], which

leads to the bandwidth being set so that tubes centred at the fitted curve cover

(1)This was the case in the original lpc() function code. In the latest version of the LPCM
package (ver.0.44-5 published 28-09-2011), the default choice is to select the starting point
automatically in form of a local density mode.
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as much of the data as possible.

Although not explicitly designed for principal curves, there also exist several

automatic bandwidth selection tools in R which can provide a useful guidance re-

garding the choice of H . Some methods are related to nonparametric smoothing

[7], while others are specially designed for kernel density and density derivative

estimation [67, 68, 79]. Both methods, especially the latter, can be of some sense

in the LPC context since the way of fitting the curve makes it follow the density

ridges, which makes the density estimation based tools relevant.

The default initial setting for the LPC algorithm is to set the bandwidth equal

to 10% of the range in each direction.

Kernel function

To compute the local centre of mass around a point, a multidimensional kernel

function is needed to produce some weighting around the chosen point. There

are several types of kernel functions that are normally used. While reaching

convergence is faster when using some kernel forms (like the Uniform kernel),

other forms may be preferred in terms of smoothness.

The LPC algorithm uses a multidimensional Gaussian kernel, KH(.). The one-

dimensional Gaussian kernel usually takes the form: k(u) = 1√
2π
e−

1
2
u2 , and KH

is obtained from this as a product kernel.

kh(u) =
1

h
k
(u
h

)
, KH(u) = kh1(u)× kh2(u)× ...× khd(u) (3.18)

After choosing a starting point, x(o), and a d-dimensional kernel, KH(.), the

LPC algorithm computes the local centre of mass around the starting point then
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around each other point chosen in successive computations. The local centre of

mass around a point, x, is given by:

µx =

∑n
i=1KH(Xi − x)Xi∑n
i=1 KH(Xi − x)

(3.19)

Step size

The next step after calculating the local centre of mass µx is to perform a prin-

cipal component analysis around x. Denote by Σx the local covariance matrix

of x, and let γx be the first eigenvector of Σx, we then obtain an updated value

of x, µx + toγ
x, where a suitable value of the step size to is to be chosen.

When scaling the data and fixing the bandwidth for all directions, the default

setting for the LPC algorithm is to set the step size equal to the bandwidth.

The bandwidth/step-size factor h/to plays a key role in the convergence of the

algorithm, especially at data boundaries. This will be further investigated in

Chapter 4.

In fact, achieving the required ‘optimality’ in the choices of the parameters of

the lpc(.) function is not straightforward specially with high-dimensional data,

and it is one of the topics that has a potential to give other ideas of possible

improvements to the LPC algorithm.

3.2.3.2 Goodness of Fit in the LPC Context

Einbeck, et al. [27] also suggested a criterion to evaluate the performance of a

principal curve similar to the expected squared distances between data X and
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the curve ν. The expected square distance can be written in the following form:

∆(ν) = E(inf
τ
‖X − ν(τ)‖2) (3.20)

Empirically, instead of finding any critical values of (3.20) or minimising it over

a class of curves assuming some underlying stochastic model, Einbeck, et al. [27]

define the coverage of a principal curve by the fraction of all data points which

are situated in a certain neighbourhood of the principal curve. Denote the set

of points forming a principal curve ν by Pν , then the coverage of the curve with

parameter τ , Cν(τ) is:

Cν(τ) = #{x ∈ X| ∃ p ∈ Pν with ‖x− p‖ ≤ τ}/n (3.21)

The coverage function can be interpreted as the empirical distribution function

of residuals. It is also a monotone increasing function of τ that will reach 1 for τ

tending to infinity [27].

3.2.4 Methodological Improvements to LPC Algorithm

Local principal curves are best used for modelling data which feature a low-

dimensional non-linear latent structure. For such a curve fitting algorithm which

often deals with noisy multidimensional data structures, it is expected that there

arise situations which suggest the need for enhancing the algorithm to best suit

and accommodate more complex data sets.

An issue of special interest in our current context is the application of the LPC

algorithm to multidimensional time series data sets, especially real-life economet-

ric (and actuarial) data. One of the main things which makes the LPC algorithm
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relatively flexible compared to other PC-based algorithms is that, through re-

evaluating its parameters (by changing its calculation method or initial values),

it can be adapted to provide a better fit in cases of more complex or noisy data.

A natural basic step for exploring possible issues that may arise when applying the

LPC algorithm would be to visualise the fitted curve(s) for different combinations

of the parameters.

In the next chapter, we will simply show that applying the LPC algorithm could

result in several significantly different curves basically because of the different

possible choices of both the starting point x(o) and the bandwidth(s) H . The

more complex is the data, the more difficult becomes reaching a suitable combi-

nation of parameters which gives an acceptable result.

An improved version of the LPC algorithm function lpc(.) is produced to over-

come two main possible issues with applying the algorithm; one with the choice of

the starting point and the other with the curve behaviour near data boundaries.
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Chapter 4

Mean-Shift and Boundary

Extension

4.1 Mean-Shift Algorithm

Consider a set of data points as if they are sampled from some underlying prob-

ability density function. In this sense, the areas in the data cloud where points

are dense can be thought of as possible clusters whose centres correspond to the

modes (local maxima) of the underlying density function.

Let X be a d-variate random vector with density function f(.), mean µ ∈ Rd

and covariance matrix Σ ∈ Rd×d. Let X = (x1, · · · ,xn)T , xi ∈ Rd, be a random

sample from X.

We define a d-dimensional kernel function K(.) as a radially symmetric function

for which a kernel profile k(.) exists, such that:

K(u) = ck,dk(‖u‖2) (4.1)
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where ck,d is normalisation constant assumed to be ‘strictly positive’ so that K(u)

integrates to one. We assume the kernel profile k is:

• Non-negative (k(.) ≥ 0).

• Non-increasing (∀ a < b)

k(b) ≤ k(a) ⇒ k′(.) ≤ 0 (4.2)

• Piecewise continuous except for a finite subset and
∫∞

0
k(u)du <∞.

The local mean at a given point x, using a d-dimensional kernel function K

(weights) and a bandwidth matrix H , can be written as:

µx =

n∑
i=1

xiKH(x− xi)

n∑
i=1

KH(x− xi)
(4.3)

where KH(x) = |H|−1/2K(H−1/2x).

The difference µx − x = mH,K(x) is called the mean shift(1)

mH,K(x) =

n∑
i=1

(xi − x)KH(x− xi)

n∑
i=1

KH(x− xi)
(4.4)

(1)Note that both x and µx are vector-valued, so µx − x is vector-valued as well.
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which in the special case H = h2I simplifies to:

mh,K(x) =

n∑
i=1

(xi − x)K

(
x− xi
h

)
n∑
i=1

K

(
x− xi
h

) . (4.5)

The ‘Mean Shift Algorithm’ (hereafter: MS) was firstly introduced in computer

science literature in 1975 by Fukunaga and Hostetler [33]. It iteratively shifts a

data point to the local centre of mass in its neighbourhood. MS is a powerful

technique used in a range of nonparametric unsupervised learning methods, in-

cluding clustering, mode seeking [13], density estimation, tracking, feature space

analysis [15], etc.

For each data point, the MS algorithm defines a ‘window’ (through a bandwidth

matrix) which determines the local neighbourhood around this point, and then

computes a weighted mean of the data points, then the centre of the current

window is shifted to the computed mean and the same procedure is repeated

until convergence. The window shift in each iteration is a step towards a more

dense region of the data set, which will eventually lead to a local mode.

In other words, the MS algorithm iteratively uses (4.4) to shift a given point x

to other locations until mH,K(x) becomes nearly negligible. This will be further

illustrated in the next subsection.

4.1.1 Convergence of MS Algorithm

Comaniciu and Meer [15] have introduced a proof of the convergence for the

mean shift algorithm assuming that the basic condition needed for the algorithm

to converge is that the kernel function used has a profile which is convex and
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monotonically decreasing.

Denote by {yj}j=1,2,... the sequence of successive locations of the mean shift pro-

cedure and by {f̂(yj)}j=1,2,... the series of density estimates of the mean shift

locations.

Comaniciu and Meer’s strategy for the proof of convergence of the MS algorithm

is as follows [15]: If {f̂(yj)} is bounded (which is the case as n is finite) and

monotonically increasing, then it converges and is a ‘Cauchy sequence’. Accord-

ingly, the proof begins with showing that {f̂(yj)} monotonically increases. Then,

they argued that this is sufficient for the sequence {yj} to be a Cauchy sequence

in a Euclidean space (i.e., in a complete metric space [31]), and hence {yj} also

converges.

Li et al. [49] have argued that the latter approach for proving the convergence

of the mean shift is mathematically incorrect. In particular, they have shown

that the sequence {f̂(yj)} being a Cauchy sequence does not necessarily imply

that {yj} is a Cauchy sequence too. Using a convex kernel, the necessary con-

ditions for convergence were that {f̂(yj)} converges and monotonically increases

and that for a finite number of critical points, the iterative sequence of the mean

shift locations {yj} also converges. We think that the latter approach is more

convincing and mathematically correct.

Based upon the above, we hereby outline the convergence of the mean shift

algorithm. In particular, we briefly explore the following:

(I) The series of density estimates at successive locations of the mean shift pro-

cedure is monotonically increasing (implying that when {f̂(yj)} is bounded,
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it is also a Cauchy sequence) [15].

(II) For a finite number of critical points, the sequence of successive locations

of the mean shift procedure {yj} converges [49].

(III) At convergence, the MS algorithm always reaches a fixed point which is a

local mode. This is an additional result.

( I ) Given a d-dimensional kernel function K(.), and a symmetric positive

definite d× d bandwidth matrix H , the multivariate kernel density estimator at

x is given by [69]

f̂H(x) =
1

n

n∑
i=1

KH(x− xi) (4.6)

Setting H = h2I, for simplicity, the kernel density estimator (4.6) becomes

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)
(4.7)

Using the kernel profile notation, the above equation can be re-written as follows:

f̂(x) =
ck,d
nhd

n∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)

(4.8)

For convergence, it is firstly needed to show that, for any two successive locations

of the mean shift procedure (yj,yj+1) :

[f̂(yj) < f̂(yj+1)] ≡ [f̂(yj+1)− f̂(yj) > 0]

Re-expressing (4.3) using the kernel profile notation, a point yj+1 (the local centre
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of mass computed at iteration j) can be written as:

yj+1 =

n∑
i=1

xik

(∥∥∥∥yj − xih

∥∥∥∥2
)

n∑
i=1

k

(∥∥∥∥yj − xih

∥∥∥∥2
)

For any couple of successive locations of the mean shift, yj,yj+1, we need to show

that f(yj+1) ≥ f(yj), i.e.

f̂(yj+1)− f̂(yj) =
ck,d
nhd

[
n∑
i=1

k

(∥∥∥∥yj+1 − xi
h

∥∥∥∥2
)
−

n∑
i=1

k

(∥∥∥∥yj − xih

∥∥∥∥2
)]
≥ 0

(4.9)

The convexity of the kernel profile k implies that:

k(yj+1)− k(yj) ≥ k′(yj)(yj+1 − yj)

so (4.9) becomes

f̂(yj+1)− f̂(yj) ≥
ck,d
nhd

[
n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)(∥∥∥∥yj+1 − xi

h

∥∥∥∥2

−
∥∥∥∥yj − xih

∥∥∥∥2
)]

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)(

(y2
j+1 − 2yj+1xi + x2

i )− (y2
j − 2yjxi + x2

i )

)

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(y2
j+1 − y2

j − 2(yj+1 − yj)Txi)

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(y2
j+1 − y2

j − 2(yj+1 − yj)Tyj+1)

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(y2
j+1 − y2

j − 2(y2
j+1 − yjyj+1))

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(y2
j+1 − y2

j − 2y2
j+1 + 2yjyj+1)
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=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(−y2
j+1 − y2

j + 2yjyj+1)

=
ck,d
nhd+2

n∑
i=1

k′

(∥∥∥∥yj − xih

∥∥∥∥2
)

(−1)(y2
j+1 + y2

j − 2yjyj+1)

=
ck,d
nhd+2

n∑
i=1

−k′
(∥∥∥∥yj − xih

∥∥∥∥2
)

(||yj+1 − yj||2)

⇒ f̂(yj+1)− f̂(yj) ≥ 0 (4.10)

The last result (4.10) is true assuming that the derivative of the kernel profile k

exists for all x ∈ [0,∞), and that, by definition, k′(.) ≤ 0 (4.2).

It follows that the sequence {f̂(yj)}j=1,2,... is monotonically increasing and that

(yj+1 − yj)→ 0 (j →∞).

( II ) Now, we shall explore the convergence of the sequence of MS locations

{yj}j=1,2,....

Based on the kernel density estimator, to find the local optimum (mode), we need

to estimate the density gradient, which is given by the gradient of the density

estimate. Using (4.7),

∇̂f(x) = ∇f̂(x) =
1

nhd

n∑
i=1

∇K
(
x− xi
h

)

Using a Gaussian kernel G(.) = (2π)−d/2 exp(−1
2
‖.‖2), the density estimate is

given by:

f̂(x) =
1

nhd

n∑
i=1

G

(
x− xi
h

)

=
1

nhd

n∑
i=1

(2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)
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=
1

nhd

n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)

And the gradient of the density estimate is:

∇f̂(x) =
1

nhd

n∑
i=1

g
′

(∥∥∥∥x− xih

∥∥∥∥2
)

=
1

nhd

n∑
i=1

G
′
(
x− xi
h

)

G
′
(
x− xi
h

)
= ∇G

(
x− xi
h

)
= ∇

[
(2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)]

= (2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)
· ∇

[
−1

2

∥∥∥∥x− xih

∥∥∥∥2
]

= (2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)
·
[
−1

2

1

h2
(2)(x− xi)(1)

]

=
1

h2
(xi − x)(2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)

Then, the gradient of the density estimate can be expressed as follows [15]:

⇒ ∇f̂(x) =
1

nhd

n∑
i=1

1

h2
(xi − x)(2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)

=
1

nhd+2

n∑
i=1

(xi − x)(2π)−d/2 exp

(
−1

2

∥∥∥∥x− xih

∥∥∥∥2
)

=
1

nhd+2

n∑
i=1

(xi − x)G

(
x− xi
h

)
=

1

nhd+2

n∑
i=1

[
xiG

(
x− xi
h

)
− xG

(
x− xi
h

)]
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∇f̂(x) =
1

nhd+2

[
n∑
i=1

G

(
x− xi
h

)]
n∑
i=1

xiG

(
x− xi
h

)
n∑
i=1

G

(
x− xi
h

) − x


(4.11)

Using the kernel profile g(.), for x = yj, (4.11) can be re-written as follows:

∇f̂(yj) =
cg,d
nhd+2

[
n∑
i=1

g

(∥∥∥∥yj − xih

∥∥∥∥2
)]

[yj+1 − yj] (4.12)

Assuming that the number of critical points of f̂(x) is finite on the set Ao =

{y|f̂(y) ≥ f̂(y1)}, then those critical points will usually represent the modes or

classes in real applications [49].

Without loss of generality, assume there are mc critical points {x(c)
` , 1 ≤ ` ≤ mc}

such that [49]

∇f̂(x) = 0, x ∈ {x(c)
` , 1 ≤ ` ≤ mc}

and

∇f̂(x) 6= 0, x ∈ Ao but x /∈ {x(c)
` , 1 ≤ ` ≤ mc}

Define

do = min{‖x(c)
r − x(c)

s ‖, 1 ≤ r 6= s ≤ mc},

let

Aε,` = {x | ‖x− x(c)
` ‖ < ε, x ∈ Ao}, 1 ≤ ` ≤ mc

where 0 ≤ ε ≤ do/3.
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Then, on the bounded closed set {
mc⋃
`=1

Ao − Aε,`}, the following hold:

• ∇f̂(x) is continuous and ∇f̂(x) 6= 0.

• min ‖∇f̂(x)‖ 6= 0.

• There exists cε > 0 satisfying ‖∇f̂(x)‖ > cε.

Since (yj+1 − yj) → 0 (j → ∞) and ∇f̂(yj) → 0 (j → ∞) (4.12), there exists

Nε > 0 satisfying

‖yj+1 − yj‖ < ε , j ≥ Nε (4.13)

‖∇f̂(yj)‖ < cε , j ≥ Nε

so

{yj, j ≥ Nε} ⊂
mc⋃
`=1

Aε,`

Now, consider the quantity ‖x∗1 − x∗2‖, where

x∗1 ∈ Aε,i1 , x∗2 ∈ Aε,i2 , 1 ≤ i1 6= i2 ≤ mc

‖x∗1 − x∗2‖ = ‖x∗1 − x
(c)
i1

+ x
(c)
i1
− x(c)

i2
+ x

(c)
i2
− x∗2‖

≥ ‖x(c)
i1
− x(c)

i2
‖ − ‖x∗1 − x

(c)
i1
‖ − ‖x(c)

i2
− x∗2‖

≥ do − ε− ε

= 3ε− ε− ε

= ε

Therefore, from (4.13), the set of points {yj, j ≥ Nε} can only be those data

points neighbouring each local mode, which means that the sequence {yj}j=1,2,...

converges [49].
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( III ) Now, we shall try to provide an answer, in a more explicit form, to the

question: The MS algorithm converges, but does it always converge to a local

mode?

The second term in (4.11) is the mean shift

mh,K(x) =

n∑
i=1

xiK

(
x− xi
h

)
n∑
i=1

K

(
x− xi
h

) − x, (4.14)

so that the gradient is proportional to the mean shift

mh,K(x) = c.∇f̂h,K(x).

So, the direction of the mean shift and the gradient vector is the same. And since

the gradient vector is always directed to the maximum increase of the density, so

is the mean shift. It follows that the mean shift converges to a local maximum.

Furthermore, at convergence we have ∇f̂(x) = 0. Using this in (4.11), we get:

x =

n∑
i=1

xiG

(
x− xi
h

)
n∑
i=1

G

(
x− xi
h

)

which shows that the MS algorithm always converges to some point representing

the local centre of mass within the MS window. Since the mean shift algorithm

converges and since f̂(yj+1) > f̂(yj) > 0 ∀j, and knowing that the direction of

the mean shift vector is identical to that of the gradient, the point reached at

57



4. Mean-Shift and Boundary Extension

convergence is a local mode.

4.1.2 Mean Shift Properties

Using (4.7), the gradient of the density estimator (4.11), employing a kernel K(.)

and a bandwidth matrix H = h2I, can be expressed as follows

∇f̂(x) =
1

h2
×

[
1

nhd

n∑
i=1

K

(
x− xi
h

)]
× [mh,K(x)]

=
1

h2
× f̂(x)×mh,K(x)

⇒mh,K(x) = (h2)
∇f̂(x)

f̂(x)

Generalising this result to the case of a general bandwidth matrix as in (4.4), we

get the following interesting property of the mean shift [26]

mH,K(x) ∝H∇f̂(x)

f̂(x)
(4.15)

Thus, the mean shift at a data point x is proportional to the normalised density

gradient estimate. Also, there exists an asymptotic version of (4.15), which shall

be shown in Section 4.2.

This property of the mean shifts implies that, at a critical point x
(c)
m that corre-

sponds to a local mode of the density f̂(x), the mean shift becomes zero, because

∇f̂(x) = 0, and the local centre of mass around this local mode becomes a fixed

point identical to that local mode.

µx
(c)
m = x(c)

m (4.16)
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Einbeck [26] referred to the previous property (4.16) as local self consistency and

to all points satisfying this property as local principal points (LPPs).

Cheng [13] introduced the term ‘shadow of a kernel’. A kernel K(s)(.) is said to

be a shadow of kernel K(.) if the mean shift using K is in the gradient direction

of the density estimate using K(s). In this case, the mean shift at x is

mH,K(x) =
∇f̂H,K(s)(x)

2cf̂H,K(x)
(4.17)

where c > 0 is a constant.

A special case of (4.17) is when K(.) is a Gaussian or a truncated Gaussian

function. Only in this case the kernel itself is its own shadow, and the mean shift

becomes

mH,K(x) =
1

2c
∇ log(f̂H,K(s)(x)) (4.18)

The features of the MS algorithm make it a tool suitable for real data analysis.

It does not assume any prior knowledge of the density. The main thing to take

care with is the choice of the window size h. Although the adaptive magnitude

of the algorithm guarantees convergence regardless of the step size, inappropriate

window size can, in some cases, cause modes to be mis-detected. A common

problem when choosing a fixed window size is the slow shifts on plateaus of the

surface, which is further magnified through taking logs [13] as can be seen from

(4.18). In such cases, adaptive window size approach is preferred [12, 14, 16, 87].

The choice of the kernel function only affects the speed of the algorithm until

reaching convergence. Comaniciu and Meer [15] have shown that when a Uni-
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form kernel is employed, the number of steps to convergence is finite. They also

illustrated that the Gaussian kernel, although it is relatively slower to converge,

appears to be the optimal one for the mean shift procedure, as it satisfies what

they define as the smooth trajectory property. That is, when a normal kernel

is employed, the path of the MS procedure towards the mode follows a smooth

trajectory, and the angle between two consecutive mean shift vectors is always

less than 90◦ (the cosine is strictly positive). In the special case of H = h2I,

mh,G(yj)
Tmh,G(yj+1)

‖mh,G(yj)‖‖mh,G(yj+1)‖
> 0. (4.19)

4.1.3 Mean Shift Asymptotics

As mentioned earlier in Chapter 3 (Section 3.1), weighted local principal compo-

nent analysis, using kernels as weights, has recently been introduced in a variety

of statistical applications, but without the asymptotics of it having been ad-

dressed. Same applies to the mean shift procedure. Now, we shall provide an

approximation of the mean shift (4.4).

Recalling the functionQ(m,γ) (3.4), which represents the locally weighted squared

distances between data xi and their projections xgi , let f denote the density func-

tion of X with support supp(f) ⊂ T . We assume that the following hold [65, 79]:

(A1) The kernel K is a bounded and compactly supported probability density

function such that
∫
uuTK(u) du = µ2(K)I, with µ2(K) ∈ R, µ2(K) 6= 0.

(A2) At x ∈ supp(f), f is continuously differentiable and f(x) > 0.

(A3) The sequence of bandwidth matrices H is such that n−1|H|−1/2 and each

entry of H tending to zero as n −→∞, with H remaining symmetric and

positive definite.
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The first assumption (A1) is preliminary for the density estimation and asymp-

totics theory as introduced by Parzen [57] (Theorem 1A). Assumption (A3) im-

plies that n always tends to infinity faster than H tends to zero, which means

that there will be ‘sufficiently enough’ data within every neighbourhood.

Let op(1) denote a sequence which tends to zero in probability as n −→ ∞ and

let 1 denote a generic matrix having each entry equal to 1. Adapting the results

in [65](p.1352) for the current context, we get

n∑
i=1

(xi − x)KH(xi − x) = n[µ2(K)H∇f(x) + op(H1)]

n∑
i=1

KH(xi − x) = n[f(x) + op(1)]

Recalling the mean shift (4.4), mH,K(x) =

n∑
i=1

(xi − x)KH(x− xi)

n∑
i=1

KH(x− xi)
, an asymp-

totic version of the mean shift can be given by the quotient of the two previous

expressions

m̃H,K(x) = µ2(K)H
∇f(x)

f(x)
+ op(H1) (4.20)

Once again, knowing that the mean shift vector always shifts a given point x

into a direction in which data are more dense, this means that the larger the

shift (step size) the less dense are the data at x. In other words, using the

previous approximation for the mean shift (4.20), and since µ2(K) 6= 0, this

further confirms that when the mean shift value is zero, the gradient value will

be zero as well, which is why the mean shift is being used for density mode

detection. This result was used in Section 3.1.2.
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4.1.4 A MS-Based Methodological Improvement to the

LPC Algorithm

As described in Section 3.2, a local principal curve is fully determined by the

series of local centres of mass µx computed throughout successive iterations.

Apart from the window size (bandwidth) and the kernel applied, the first local

centre of mass µx(o) is highly sensitive to the choice of the starting point x(o).

Being chosen at random, by default, an extreme choice of the starting point may

result in some undesirable situations like forcing the curve to stick at some point

(area) that is relatively far from the dense areas of the data cloud, or causing

some bumps (un-smoothness) in the fitted curve. In such occasions, the fitted

local principal curve will not be considered as a good representation of the data.

The idea that the mean shift algorithm always converges to a fixed point (the

nearest local mode) can be very useful in this context. Using the MS algorithm,

an additional step has been added to the LPC algorithm as follows:

1. Choose a starting point x(o).

2. Apply the MS algorithm at x(o) until reaching convergence, based upon

some pre-determined threshold. At convergence, x(o) has been shifted to a

new location, x.

3. Calculate µx, the local centre of mass around x.

4. Perform a principal component analysis locally at x.

5. Find a new value for x by following the first local principal component

starting at µx.

6. Repeat steps 3 to 5 until µx remains (approximately) constant.
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Step (2) above, the mean shift step, shifts the starting point x(o) to the nearest

local mode, x, so that γx (the direction of the first principal component at x)

does not depend on the starting point any more. This ensures that the LPC

algorithm is less sensitive and unaffected by any random choice of x(o).

In order to graphically illustrate the idea of using the MS algorithm for enhancing

the random choice of the starting point, the ‘traffic’ sample data referred to in

Chapter 1 (the Introduction) shall be used.

First, it is expected that applying the LPC algorithm could result in several

significantly different curves, basically because of the different possible choices

of both x(o) and H . Using the ‘traffic’ data, applying the function lpc(.) with

its defaults (the starting point is chosen at random and the bandwidth in each

direction = 1/10th of the data range in this direction) may not always produce a

good fit. In this case, one should reach a suitable combination of x(o) and H that

gives an acceptable result. Usually, when trying to produce well fitted LPCs for

some complex data sets, a suitable bandwidth matrix is to be used and then the

algorithm is run several times, using the same H in each trial, until reaching a

reasonable fit.

Still the choice of x(o) is important. Figure 4.1 shows two different fitted curves

that result from using the lpc(.) function with fixed bandwidths and a different,

manually selected, starting point each time(1). The two specific starting points

shown in the plot were intentionally selected as examples of possible inadequate

outcomes for the starting point being poorly chosen. The area near each of those

(1)This figure was generated using the original source code for the function lpc() of the LPCM
package (ver.0.32-1).
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Figure 4.1: Different LPCs using the same bandwidth and different starting points

starting points is somehow far from the majority of data points in the high density

areas.

It is easily noticed that, fixing the bandwidth, the shape of the curve is affected

by the choice of the starting point, which is labelled with the “1” that appears

on each graph. This situation gives an indication that there is some ‘sensitivity

to the choice of the starting point’ problem existing.

Now, we apply the mean shift procedure. Using a Gaussian Kernel, G, the formula

to compute the mean shift at any point x is (4.14):

mh,g(x) =

n∑
i=1

xi g

(∥∥∥∥x− xih

∥∥∥∥2
)

n∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
) − x (4.21)

where:

• xi: data points in a d-dimensional space Rd, i = 1, ..., n

• g(.): the profile of the kernel function.
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• h: the selected bandwidth for the kernel function used.

Using the previous formula, the iterative mean shift process is executed several

times until reaching an approximately constant value, which represents the near-

est local mode to the starting point selected. This was done using R, and the

code for the mean shift was added consistently to the original LPC code. Figure

4.2 illustrates graphically how the mean shift procedure works(1). The series of

black boxes shows the successive shifts until convergence, and hence reaching a

reliable starting point. After applying the MS algorithm, the fit has significantly

improved and it is clear that the fitted LPC becomes less sensitive to the choice

of the starting point.
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Figure 4.2: Trials shown in Figure 4.1 with mean shift enabled

An interesting property worth mentioning is that for a given bandwidth matrix

H and a kernel function KH(.), when using iterative mean shift to find a starting

point, there is a finite set of starting points that result from applying the mean

shift function, and the number of points in this set is relative to the number of

(1)This figure was generated using a modified version of the LPCM package ver.0.32-1).
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local modes that exist in the data set. In other words, the number of possible

LPCs is bounded by the number of local maxima of the density function.

To graphically illustrate the previous property, a hundred LPCs were fit twice

for the same data, once using the defaults for the lpc() function (Figure 4.3)

and then once again using the modified code with the MS algorithm integrated

(Figure 4.4).
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Figure 4.3: A hundred fitted LPCs using lpc() default options

Interestingly, the number of local principal curves when using the MS algorithm

for enhancing the choice of the starting point is much less than a hundred and it

is bounded by the number of local modes (dense areas) in the data cloud.
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Figure 4.4: A hundred fitted LPCs with mean shift for x0 enabled

4.2 Asymptotics for Local Principal Curves

Building upon the developments in Section 3.1.2, in this section the asymptotic

local behaviour when fitting local principal curves for large sample sizes and

small neighbourhoods shall be investigated. We first recall that, when fitting a

LPC, at any iteration j, the LPC first moves from the current location x(j) to

the local centre of mass around that location µ(j), then steps to a new location

x(j+1). Typically, at each iteration, the size of the step is predetermined to be

a fixed distance t and the direction of the step is identical to that of the first

local eigenvector at x(j), γ(j). Considering this, the new location x(j+1) can be

represented as

x(j+1) = µ(j) ± tγ(j) (4.22)

where the sign in ‘±’ is given by sign(γ(j) ◦γ(j−1)) (this ‘signum flipping’ ensures
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4. Mean-Shift and Boundary Extension

that the curve maintains its direction).

Asymptotically, recalling the approximated version of γx(3.14), γ̃(j) = − H∇f(x(j))

||H∇f(x(j))||
,

this shows that the LPC always follows the gradient of the density function, which

means in practice that it will closely follow the density ridge [23].

Now, considering the difference between two neighbouring points x(j) and x(j+1),

from (4.22), one has

x(j+1) − x(j) = µ(j) − x(j) ± tγ(j)

a
= µ2(K)H∇f(x(j))/f(x(j))± t

H∇f(x(j))

||H∇f(x(j))||

=

(
µ2(K)

f(x(j))
± t

||H∇f(x(j))||

)
H∇f(x(j)).

where for all terms succeeding the
a
= symbol, any terms of an asymptotically

higher order than the leading term are omitted.

Let θ(x) ≡∇f(x)/f(x), then the Taylor expansion of θ at x is given by

θ(x± δ) = θ(x)±
[
H(x)

f(x)
− θ(x)θ(x)T

]
δ +O(δ2)

where δ −→ 0 (component-wise), and H(x) is the Hessian of f at x.

This implies that the difference between two neighbouring local centres of mass

µ(j) and µ(j+1) is first-order approximated by

µ(j+1) − µ(j)

= (µ(j+1) − x(j+1)) + (x(j+1) − µ(j))

a
= µ2(K)H

∇f(x(j+1))

f(x(j+1))

± t γ̃(j)

= µ2(K)H θ(x(j) + (x(j+1) − x(j)))± t
H∇f(x(j))

||H∇f(x(j))||
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4. Mean-Shift and Boundary Extension

= µ2(K)H

θ(x(j)) +

[
H(x(j))

f(x(j))
−

∇f(x(j))∇f(x(j))
T

f(x(j))2

]
(x(j+1) − x(j))︸ ︷︷ ︸

O(H)


±t

H∇f(x(j))

||H∇f(x(j))||
a
= µ2(K)H

∇f(x(j))

f(x(j))
± t

H∇f(x(j))

||H∇f(x(j))||

=

[
µ2(K)

f(x(j))
± t

||H∇f(x(j))||

]
H∇f(x(j)) (4.23)

The first term in (4.23) reflects the contribution of the mean shift towards the

LPC step at each iteration, whereas the second term reflects that of the local

principal component analysis. In other words, the two-step character of the LPC

algorithm is still visible through the previous result (4.23).

For analytical purposes, until the end of this section, the recommended default

setting for the LPC algorithm that H = h2I [27] shall be used. Applying this to

(4.23) we get

µ(j+1) − µ(j)
a
=

[
h2 µ2(K)

f(x(j))
± t

||∇f(x(j))||

]
∇f(x(j)) (4.24)

It is noticeable from (4.24) that the mean shift step will always pull the curve

towards higher densities. This implies that if the LPC is moving towards higher

densities in the data cloud, the effect of both the mean shift and the local PCA

steps will steer the curve in the same direction. On the other hand, if the curve

is moving towards less dense areas, the two effects will be working in different

directions leading the term µ(j+1)−µ(j) to be relatively small. When the two step

effects are equal, i.e. h2µ2(K)
f(x(j))

= t
||∇f(x(j))||

, then the LPC can get stuck. Denote
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4. Mean-Shift and Boundary Extension

by xs the point at which the curve stops, then at this point

f(xs) =
h2

t
µ2(K)||∇f(xs)|| (4.25)

This means that, for any kernel K, the position at which the curve stops depends

on the bandwidth h, the PCA step size t, the kernel function K and the density of

the random vector X. Furthermore, if a Gaussian kernel is used, then µ2(K) = 1

and (4.25) becomes

f(xs) =
h2

t
||∇f(xs)|| (4.26)

which indicates that, when using a Gaussian kernel the LPC stopping point only

depends on the bandwidth h, the PCA step size t and the density of X.

A more specific case of (4.26) is when we use the default setting of the LPC

algorithm that t = h, hence (4.26) becomes

f(xs) = h ||∇f(xs)|| (4.27)

So, when all the default settings for the LPC algorithm are employed (i.e. H =

h2I, K is Gaussian and t = h), the position at which the curve gets stuck only

depends on the bandwidth h and the underlying density of the random vector X.

Now, in order to verify the previous conclusion (4.27) by experiment, let us

assume that the random vector under consideration is given by

X ∼ N(0, σ2I) (4.28)

with 0 ∈ Rd being a vector of 0′s, and I ∈ Rd×d being the identity matrix. The
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4. Mean-Shift and Boundary Extension

density function can be expressed as

f(x) =
1

(2π)d/2σd
exp

{
− 1

2σ2
xTx

}

and

||∇f(x)|| = 1

(2π)d/2σd+2
exp

{
− 1

2σ2
xTx

}
||x||

so that (4.27) boils down to

||xs|| =
σ2

h
(4.29)

The previous result (4.29) gives an indication where the points satisfying the

property (4.27) are situated. To clarify this by experiment [23], we assume that

X is bivariate normal, i.e. of type (4.28) with d = 2. First, we simulate n = 10000

replicates from X assuming σ2 = 2 and then we do the same assuming σ2 = 3.

Next, we fit 20 local principal curves (using a Gaussian base kernel G(·) and

setting t = h = 1) to each of both data clouds, where the starting points are

randomly chosen among all those observations xi satisfying the property ||xi|| ≤

1. Without this affecting the simulation, to cope with the basic assumption for

kernels in the context of asymptotic LPCA [65] (compactly supported), the kernel

G(.) is truncated at ±5.

The resulting curves are displayed in Figure 4.5 (top row). In these plots, the

dashed and solid circle symbolise the radii ||x|| = 1 and ||x|| = σ2, respectively,

so according to the theory the curves are expected to get stuck close to the solid

circle satisfying (4.29), which is always the case (notice that for both σ2 = 2

(left) and σ2 = 3 (right), all principal curves converge to endpoints which are

very close to the solid circle).

According to (4.29), it is expected that the smaller is h the larger is the area
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Figure 4.5: 20 local principal curves with bandwidths h = t = 1 (top) and
h = t = 0.75 (bottom) through multivariate Gaussian data with σ2 = 2 (left)
and σ2 = 3 (right). The dashed circle indicates the radius ||x|| = 1, while the
radius of the solid circle is equal to ||x|| = σ2/h according to (4.29).

of the data visited by the curves and vise versa. The simulation was repeated

setting h = t = 0.75 (the bottom panels of the figure) and it is clear that the

previous statement is true by experiment.
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4.3 LPC Boundary Extension

Until now, we observed that by reducing the bandwidth one obtains curves which

proceed further into the boundary region of the data. Access to these boundary

regions can be of a special importance, for instance for time series data where

the endpoints correspond to the most current observations. Furthermore, curves

which are “too short” in the boundaries will result in projections clustered at

the endpoints, which impacts negatively on the usability of the curve as a data

compression tool, a problem which was observed by [24] in the context of nonlinear

compression of high-dimensional spectral data.

In practice, specifically for econometric data, it is desired to try extending the

local principal curve beyond its natural endpoint in order to reach more data

points at boundaries and enhance the type of summary obtained by fitting the

curve specially for short-term predictions. Obviously, decreasing the bandwidth

arbitrarily will not be the solution, as this will result in a curve which gets stuck

even sooner. Also, the way the LPC algorithm works makes it very difficult to

simply decrease h arbitrarily in order to get better access to the boundary regions,

as this will impact detrimentally onto other parts of the curve.

Starting from (4.24), one can find a more accurate and practicable way of dealing

with this problem. The difference between two successive centres of mass can be

written as

µ(j+1) − µ(j)
a
= h

[
hµ2(K)

f(x(j))
± t

h

1

||∇f(x(j))||

]
∇f(x(j))

Having re-expressed (4.24) in the above form, it can be noticed that the term

corresponding to the principal component step is multiplied by t/h. Hence, if t
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4. Mean-Shift and Boundary Extension

is increased relative to h, the PCA contribution increases relative to the mean

shift contribution, and the principal curve will proceed beyond the limit given by

(4.29).

We illustrate this effect again through simulation. Instead of running the simula-

tion using t = h, we now allow these two parameters to decouple. Using Gaussian

data X with σ2 = 3, 20 local principal curves have been fitted with different ra-

tios of t and h. The resulting curves are displayed in the first three panels of

Figure 4.6, and one observes that, for t/h < 1, the curve will stop inside the cir-

cle defined by (4.29), while for t/h > 1, it will stop outside (in fact, the radius at

which the curves converge is now σ2t/h2). However, in practice it is impractical

to increase t beyond h, as this would impact detrimentally onto large parts of the

curve, and cause erratic behavior especially in the boundary region. Therefore, it

is recommended to generally keep the default setting t = h, which has proven to

work generally well, for the non-boundary part of the principal curve, but reduce

h adaptively relative to t as soon as the curve begins to converge to its endpoint.

In the implementation of the LPC algorithm [21], this is achieved by defining

a threshold, say T1, such that when the difference between two successive local

centres of mass falls below the threshold

µ(j+1) − µ(j)

µ(j+1) + µ(j)

≤ T1 (4.30)

we start reducing the bandwidth adaptively setting h(j+1) = (1− δ)h(j), for some

small constant δ > 0.

Having done this, a second threshold, 0 < T2 < T1, is needed to be defined in

order to determine when the state of convergence is reached and the algorithm

is stopped. The performance of this technique is demonstrated in the bottom
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Figure 4.6: 20 local principal curves, all with h = 1, and t = 0.75 (top left), t = 1
(right), and t = 1.25 (bottom left) through a multivariate Gaussian sample of
size n = 10000 with σ2 = 3. The bottom right plot uses the boundary extension
proposed in Section 4.3. The outer (solid) circles have radius σ2, and the inner
(dashed) circles radius 1.
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Figure 4.7: Local principal curve - the effect of the boundary extension

right panel of Figure 4.6. Compared to the non-extended fit, it is clear that, after

applying the boundary extension, the local principal curves reach further into the

boundary region of the data cloud.

As a second real data example, Figure 4.7 shows a local principal curve fitted to

time series data for monthly unemployment and inflation rates in the US from

March 1984 until April 2008(1). The left panel shows the LPC fitted using default

settings, while the right panel shows the fitted curve using the LPC algorithm

adjusted for boundary extension. It is apparent that, in the latter case, the curve

reaches more data at both boundaries.

(1)For more information about this data, please refer to the ‘Phillips Curves’ application in
Chapter 5.
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Chapter 5

Applications

5.1 Introduction

Local principal curves can provide a very useful tool in a wide range of high-

dimensional data studies, specially when aiming to visualise and analyse this

data with a significantly reduced number of dimensions. On one hand, the idea

of graphically representing multidimensional data in a simple one dimensional

plot for the fitted curve will make it easier to gain some initial information about

the basic shape of the data set and also helps detecting basic patterns, which is

useful for doing further statistical inference and analyses. On the other hand, the

fact that the curve is parametrised over some parameter τ is of great importance

if a link is recognised between the curve parametrisation and some real variable(s)

which are thought to be related to the data set under study. This link can be

used in predicting real multidimensional data points with information about the

link variable(s) only.

In this chapter, we present some possible econometric applications for localised
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principal components and curves, namely; insurance market key indicators, Phillips

Curves, the relationship between gold and the dollar and price index construc-

tion. This does not mean that LPCs are limited to econometric applications

only. In fact, the LPC algorithm has the flexibility to deal with a wide variety of

multidimensional data, but it is just our current field of interest.

As introduced earlier in Chapter 4, the performance of the LPC algorithm is

expected to be better after applying the methodological improvements of the

boundary extension and the automatic selection of the starting point. Extending

the curve at data boundaries can be desirable specially for data of time series

character and using the MS algorithm for choosing a suitable starting point con-

siderably increases the robustness of the method.

If not stated otherwise, the enhanced LPC algorithm is used in all the applications

introduced in this chapter.

5.2 Insurance Market - Key Indicators

Insurance industry is considered one of the main branches of financial services

business all over the world. The analysis of aggregate insurance data, specially

multidimensional, can be troublesome because of the large number of variables

included and also the expected high correlation between those variables. It could

be of interest and benefit for analysing such data to try expressing the data space

in fewer dimensions which makes extracting useful summaries and information

from the data relatively less problematic.

In this section, we shall provide an example that involves applying both PCA and

LPC-based techniques for the purpose of analysing aggregate insurance data.
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5. Applications

The data sample consists of seven key indicators for the insurance market in EU

member states, Iceland and Norway (25 countries) for the year 2006 [1, 35]. The

variables of interest are as follows:

BST: Balance sheet total. (EUR million)

Emp: Number of persons employed.

GCP: Gross claims payments (EUR million):

Actual claims paid as indemnities to policyholders.

GOE: Gross operating expenses (EUR million):

Mainly, administrative expenses and acquisition costs.

GPW: Turnover or gross premiums written (EUR million):

Total premiums for current (valid) insurance policies

(before deductions for reinsurance and commissions).

NoE: Number of enterprises.

TCR: Total capital and reserves. (EUR million)

All the key indicators above are extracted for both Life and Non-Life insurance

industries in the EU countries in 2006(1).

Descriptive statistics (means and standard deviations) and correlations for the

EU life insurance data are displayed in Tables 5.1 and 5.2 respectively. Tables

5.3 and 5.4 show descriptives and correlations for non-life insurance data.

It is apparent from Tables 5.1 and 5.3 that there exists large variation in the data

set meaning that there is a considerable amount of information contained within

the data. Looking into correlations (Tables 5.2 and 5.4), we observe that most of

the variables (key indicators) are highly correlated, which suggests that there is

(1)Life insurance includes life insurance and life reinsurance with or without a substantial
savings element. Non-life insurance includes insurance and reinsurance of non-life insurance
business (accident; fire; health; property; motor, marine, aviation, transport; pecuniary loss
and liability insurance) [35].
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Mean St.Dev.
NoE 34.96 38.41

GPW 18794.74 43672.74
Emp 7750.72 17188.20
GCP 15389.42 41120.71
GOE 1590.13 3523.48
BST 160113.34 380199.73
TCR 60854.68 271520.48

Table 5.1: Mean and standard deviation for the EU life insurance business key
indicators

NoE GPW Emp GCP GOE BST TCR
NoE 1.00 0.80 0.79 0.76 0.82 0.81 0.59

GPW 0.80 1.00 0.91 0.99 0.96 0.98 0.90
Emp 0.79 0.91 1.00 0.90 0.95 0.93 0.77
GCP 0.76 0.99 0.90 1.00 0.95 0.99 0.95
GOE 0.82 0.96 0.95 0.95 1.00 0.98 0.80
BST 0.81 0.98 0.93 0.99 0.98 1.00 0.90
TCR 0.59 0.90 0.77 0.95 0.80 0.90 1.00

Table 5.2: Correlations for the EU life insurance business key indicators

a problem of information redundancy due to these powerful correlations.

The fact that principal components represent standardised linear combinations of

the original variables and that they are ‘orthogonal’ (uncorrelated) implies that

a primary purpose of PCA is to eliminate information redundancy, along with

dimensionality reduction [3].

Since the basic summary statistics for the data show large variability and strong

correlations among variables, this suggests that using PCA-based techniques

could be useful in terms of summarising such data through a less-dimensional

uncorrelated set of components (whether linear in the form of lines or nonlinear

in the form of curves).

As a pre-analysis step, to adjust the data set for the clear differences in the

measurement scales of the variables, all variables are log-transformed (Figures
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Mean St.Dev
NoE 77.88 90.43

GPW 11844.19 23457.41
Emp 21588.24 37101.46
GCP 7642.28 14421.03
GOE 2298.67 4425.05
BST 38510.25 81488.13
TCR 6681.52 11415.17

Table 5.3: Mean and standard deviation for the EU non-life insurance business
key indicators

NoE GPW Emp GCP GOE BST TCR
NoE 1.00 0.85 0.86 0.89 0.87 0.81 0.89

GPW 0.85 1.00 0.98 0.99 0.96 0.99 0.94
Emp 0.86 0.98 1.00 0.98 0.94 0.96 0.94
GCP 0.89 0.99 0.98 1.00 0.98 0.97 0.93
GOE 0.87 0.96 0.94 0.98 1.00 0.93 0.86
BST 0.81 0.99 0.96 0.97 0.93 1.00 0.95
TCR 0.89 0.94 0.94 0.93 0.86 0.95 1.00

Table 5.4: Correlations for the EU non-life insurance business key indicators

5.1 and 5.2). The feature of strong linear correlations between variables is still

easily noticed.

5.2.1 Classical Principal Component Analysis

Life Insurance Data

Now, to analyse the EU life insurance market aggregate data, principal com-

ponent analysis shall be carried out for the EU life insurance data in order to

try solving the redundancy problem and represent the multidimensional highly-

correlated data by a group of uncorrelated components taking into consideration

that most variation in the data set is to be retained. Summary PCA results are

displayed in Table 5.5.
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Figure 5.1: EU life insurance market key indicators 2006 (log transformed)

According to the Kaiser-Guttman criterion [60, 84], the results shown in Table

5.5 suggest that we keep the first three principal components as their standard

deviations are greater than one. The proportion of variance accounted for by the

first three components is 97.56%, which makes the presence of the rest of the

components nearly negligible. In other words, using PCA the seven-dimensional

data has been transformed into a three-dimensional set of components losing only

2.44% of the total variability in the original data space. The first PC by itself

extracts 92.16% of the total variance (information) contained within the data.

Capturing more than 90% of the variation in the data, the first PC can provide

a reliable classification of the 25 countries in the data set. This type of analysis
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Figure 5.2: EU non-life insurance market key indicators 2006 (log transformed)

can be done through the values (‘scores’) of the first PC along all the rows in

data matrix (the 25 countries), which are plotted as in Figure 5.3.

It can be concluded from Figure 5.3 that the leading five countries in the EU life

insurance business in 2006, among the 25 countries included in the analysis were

UK, Germany, France, Italy and Netherlands respectively. The countries with

smaller scores are less influential, like Iceland and Latvia which came at the end

of the list. The scores of the first three PCs with country labels are shown in

Figure 5.4.

One of the main and important results of the PCA is the correlation between
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5. Applications

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 6.3271 1.1544 1.0064 0.6700 0.5785 0.4545 0.2634

Proportion of Variance 0.9216 0.0307 0.0233 0.0103 0.0077 0.0048 0.0016
Cumulative Proportion 0.9216 0.9523 0.9756 0.9859 0.9937 0.9984 1.0000

Table 5.5: Summary of PCA results for EU life insurance data

Figure 5.3: Country scores for the first principal component - life insurance

variables and factors, which is usually referred to as ‘loadings’. Loadings provide

useful interpretations in terms of understanding the components’ structure and

the common effects for the variables. Table 5.6 displays the loadings’ values for

the first three principal components.

Taking into consideration the highest loading in each row in Table 5.6, we can

say that the first principal component represents the mutual effect of four vari-

ables: Gross premiums written, gross claims paid, gross operating expenses and

balance sheet total. Those variables may very well represent the overall operat-

ing efficiency and outcomes for the insurance market. Considering only relatively

large loadings [72], with absolute value greater than 0.4, would lead to a similar

interpretation. The second principal component is mainly representing the firm
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The largest three PCs’ scores
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Figure 5.4: Scores for the largest three principal components - life insurance

size in terms of the number of persons employed. The third principal component

can be interpreted as the firm solvency in terms of the total capital and reserves.

Non-Life Insurance Data

A similar analysis of that performed using life insurance data is carried out using

the data of key indicators for the EU non-life insurance business.

Running the principal component analysis on the EU non-life insurance data (the

data are log-transformed), the summary results were as shown in Table 5.7. Only

the first PC is to be retained. The first component accounts for 96% of the total

variation, which means that we are able to express the seven-dimensional data

by only one component losing only 4% of the information contained within the

data.
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PC1 PC2 PC3
NoE 0.17 -0.04 0.18

GPW 0.40 0.01 -0.02
Emp 0.26 -0.88 0.22
GCP 0.49 0.03 -0.39
GOE 0.33 -0.17 -0.25
BST 0.46 0.29 -0.31
TCR 0.43 0.32 0.78

Table 5.6: Loadings for the first three PCs - life insurance

PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 5.4741 0.8715 0.4734 0.3945 0.2508 0.1912 0.1041

Proportion of Variance 0.9600 0.0243 0.0072 0.0050 0.0020 0.0012 0.0003
Cumulative Proportion 0.9600 0.9843 0.9915 0.9965 0.9985 0.9997 1.0000

Table 5.7: Summary of PCA results for EU non-life insurance data

The scores of the first principal component were as shown in Figure 5.5. It

can be concluded from the graph that the non-life insurance business results for

Germany, UK and France are the most influential among all the EU states in

2006.

Figure 5.5: Country scores for the first principal component - non-life insurance
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The loadings for the first principal component (displayed in Table 5.8) give

an indication of the contribution of each variable towards the one-dimensional

data summary obtained through the first PC. The largest values were that of:

Gross claims paid (GCP), balance sheet total (BST) and gross premiums written

(GPW) respectively.

NoE GPW Emp GCP GOE BST TCR
Loadings 0.21870 0.40590 0.31227 0.45467 0.36929 0.44212 0.38902
Sq. Loadings 0.04783 0.16475 0.09751 0.20672 0.13638 0.19547 0.15134

Table 5.8: Loadings and squared loadings for the first PC - non-life insurance

5.2.2 LPC-Based Analysis

In this section, the insurance business key indicators will be analysed using lo-

calised principal components and curves. Unlike the traditional global princi-

pal component analysis, the localised version takes into consideration the local

topology of the data. This is important, specially in situations when there exist

significant clusters in the data space.

This type of analysis will involve using kernels and bandwidth (window size) as

introduced in the preceding chapters. This is to choose the type of weighting

(kernel functions) for localised principal component analysis and to define the

size of the local neighbourhood (the entries of the bandwidth matrix H).

Adapting a localised approach for analysing the data through fitting a local princi-

pal curve will result in the data dimensions being reduced only to one represented

by the LPC. One can conclude from the PCA results that this should be accept-

able knowing that the first principal component accounted for more than 90%

of the total variation for both life and non-life insurance data sets. In fact, this
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proportion of variance explained by the first principal component line is expected

to get higher when we replace that line by a curve which captures more of the

variation due to its locally-based method of fit.

Figure 5.6 displays the percentage of variance accounted for by the local principal

curve fitted to life-insurance data compared to that of the first global principal

component. The solid curve is a truncated smoothed version of the percentage

of variance captured through the first local eigenvectors along the fitted LPC.

The percentage of variance accounted for by local eigenvectors is computed as

in (2.13). We have truncated the values at boundaries, in particular when the

difference between two successive centres of mass falls below the pre-determined

threshold for applying the boundary extension (4.30). These values near bound-

ary regions were almost constant and very close to 100% (This is expected as, at

boundaries, the number of data points usually gets smaller and the bandwidth

nearly covers all the data points in the neighbourhoods close to boundaries, and

hence the local variance is almost ‘totally captured’ by the LPC).

Since the data are not perfectly linear, the non-linear summary for this data

(LPC) is expected to be better than the linear summary (first principal com-

ponent). Although the latter conclusion is statistically generally acceptable and

correct, it is not expected that, numerically, this will always be the case, specially

for complex data structures. This is mainly because, in each local neighbourhood,

we only have a short scene of the whole data such that the direction of the first

local eigenvector may not always be identical to that of the global first principal

component which is fitted based upon the whole scene of the data.

The average (mean) percentage of variance captured through the first local eigen-

vectors along the fitted LPC for life insurance data is approximately 86.84%,

which is, as expected, slightly less than the variance explained by the largest
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Figure 5.6: Variance accounted for by the LPC - life insurance

global principal component (92.16%). However, in the middle part of the curve,

the first local eigenvector was outperforming the first global principal component.

Furthermore, the average cumulative percentage of variance captured through the

first three local eigenvectors along the fitted curve for life insurance was 99.22%

which is greater than 97.56%, the cumulative proportion of variance for the first

three global principal components (Table 5.5). For non-life insurance, the first

local eigenvectors along the fitted curve captured around 94.99% on average of

the variance (also truncated at boundaries).

Another important quantity of interest to compare the LPC fit with the first

principal component line is the sum of squared Euclidean distances between the

data points and their projections onto the line (curve). Applying (2.1), we can
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compute the latter for the first principal component (see Appendix for R com-

putations). For the LPC, we use the built-in lpc.spline() function in the LPCM

package [21]. The sum of squared distances for the LPC fit for life insurance,

data was 7590.09 compared to 7608.18 for the first principal component, and for

non-life insurance 7380.86 and 7647.67 respectively.

The symmetric kernel function used for the LPC fit for insurance data is a Gaus-

sian kernel. Also, if needed, the initial default choice of the bandwidth vector

(diag(H1/2I) = h1, · · · , h7) can be checked and improved using any automatic

bandwidth choice function in R (for this purpose, the R package KernSmooth

was used as a direct plug-in methodology to select the bandwidth suitable for

kernel density estimate for each variable [79, 80]).

The LPC boundary-extended algorithm was used to fit both life and non-life

insurance data. It is quite hard to plot the fitted curve as we need a seven-

dimensional graphics tool which is not available yet in R. The LPC algorithm

automatically produces the 2D plots with the fitted LPC for all pairs of vari-

ables(see Figure 5.7). For illustration purpose only, a 3D projection plots for the

fitted seven-dimensional LPCs for life and non-life insurance data are shown in

Figures 5.8 and 5.9 respectively.

Similar to the traditional PCA, we are interested in the local contributions of the

variables (insurance business key indicators), i.e. the loadings in terms of localised

eigenvectors. For the standardised version of eigenvectors, a useful feature for

examining the total variance explained by the curve is that at every point on

the curve, the sum of squared loadings of the first eigenvector should be equal to

one (‖γx‖2 = 1). Figure 5.11 displays the ‘local’ loadings for each variable for

the non-life insurance data. Figures 5.10 and 5.12 show the cumulative squared
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Figure 5.7: The fitted LPC - non-life insurance

loadings of the first eigenvectors for life and non-life insurance data respectively.

The loadings’ plots show the contribution of each variable along the fitted curve.

These plots can be quite informative in some sense. For instance, if the curve

parametrisation can be thought of as some measure of scale (size), loadings in

this sense can provide a tool to observe changes of variables’ effects with respect

to the insurance market size. For example, we can notice that the effect of the

number of enterprises (NoE) is almost negligible for small life insurance markets

and that the influence of total capital and reserves (TCR) generally increases for

big life insurance markets (Figure 5.10). Also, it can be observed that claims paid

(GCP) has a larger effect for smaller non-life insurance markets(Figure 5.12).
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LPC for life insurance data
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Figure 5.8: A 3D plot for the fitted LPC - life insurance

LPC for Non−life insurance data
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Figure 5.9: A 3D plot for the fitted LPC - Non-life insurance

The squared loadings for life and non-life data are displayed in Tables 5.9, 5.10

respectively. For life insurance, the three most influential variables were total
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Figure 5.10: Cumulative squared loadings - life insurance

capital and reserves (TCR), gross claims paid (GCP) and number of employees

(Emp) respectively. For non-life insurance, gross claims paid (GCP), gross oper-

ating expenses (GOE) and gross premiums written (GPW) were respectively the

three most important variables.

Variable NoE GPW Emp GCP GOE BST TCR
Average Sq. Loadings 0.003 0.054 0.136 0.349 0.020 0.056 0.358

Total Sq. Loadings 0.557 8.741 22.067 56.510 3.195 8.992 57.940

Table 5.9: Variables’ loadings for the fitted LPC - life insurance

Variable NoE GPW Emp GCP GOE BST TCR
Average Squared Loadings 0.015 0.139 0.054 0.327 0.283 0.133 0.048

Total Squared Loadings 2.847 26.166 10.142 61.445 53.123 25.068 8.960

Table 5.10: Variables’ loadings for the fitted LPC - non-life insurance

We can compare the total squared loadings displayed in Table 5.10 (the LPC fit)

with those displayed earlier in Table 5.8 (largest principal component fit). We
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Figure 5.11: Loadings (first localised eigenvectors) - non-life insurance

can notice that the largest (GCP) and smallest (NoE) contributions are the same,

while the order of the remaining variables has slightly changed.

Loadings in terms of the squared values of the first localised eigenvectors may have

other useful interpretations, in particular, when linked to some other external

variable(s) that may be closely related to the data. This is done through the

curve parametrisation τ , a matter which shall be further illustrated later on in

this chapter.

5.3 Phillips’ Curves

‘Phillips curves’ is a famous term in economics. It refers to curves that study the

relation between unemployment and the rate of inflation in an economy. It was
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Figure 5.12: Cumulative squared loadings - non-life insurance

named after the famous economist Alban William Phillips who was responsible for

the first appearance of Phillips curves when he wrote a paper in 1958 in which he

observed an inverse relationship between money wage changes and unemployment

in the British economy over the period 1861-1957 [62]. After Phillips’ work in

1958, there were several and more recent versions of these curves [30, 32]. The

basic conclusion suggested by analysing Phillips’ curves is that the lower the

unemployment in an economy, the higher the rate of inflation.

In this study, we shall introduce the local principal curve as a possible estimate

(fit) for Phillips curves through exploring the relationship between unemployment

rate and consumer price index (CPI) which is the most commonly used measure

of inflation. Consumer price indices measure price changes for household goods

and services.
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The data sample used consists of(1):

• Consumer price indices (all goods and services) for both UK and US.

(monthly data)

• Unemployment rates for both UK and US. (monthly data)

Our data sample covers the period from Jan 1975 to April 2008.

Now, we shall try to fit a local principal curve through the two-dimensional

unemployment-CPI data. First, we explore the data by a simple summary and

a scatter plot (see Figure 5.13). This is important for identifying the basic char-

acteristics of each variable, and hence forming an initial idea about the possible

adequate choices for the parameters of the LPC algorithm, especially the band-

width matrix H and the starting point x(o).
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Figure 5.13: Unemployment vs. Inflation for UK and US(Jan 1975 - April 2008)

To fit a curve through the data, one usually starts with a random starting point

(1)Data source: University of Manchester, Source data from OECD, OECD Publications.
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and an arbitrary choice of the bandwidth vector diag(H1/2 I) = h1, h2. We can

then use the ‘coverage’ concept to check if the bandwidth selection is suitable for

the data. We also see if there is any sensitivity to the starting point selection

(if there is a trace of this, enabling the mean shift algorithm for modifying the

choice of x(o) is recommended).

After some effort, one should reach a reasonable combination of bandwidths that

produces a ‘good-looking’ curve. The bandwidth vector used for both data (UK

and US) was diag(H1/2 I) = (0.5, 1.0). The starting points were automatically

chosen through applying the MS algorithm. The LPC for our unemployment-

inflation data is plotted in Figure 5.14.
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Figure 5.14: LPC fit for Phillips data

It may be useful to conclude something from our trials until reaching a good fit.

In this context, the following about bandwidth selection is true: If the LPC is

monotone in one of the variables, then the bandwidth orthogonal to this direc-
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tion is not relevant as long as it is large enough. For our current data set, the

curve flows into a vertical direction with the inflation rate, so the choice of the

bandwidth for CPI is important, however, the bandwidth for unemployment rate

is not actually a main concern. Another note that is worth saying is that if the

curve does not seem to flow into one direction, and the variables are measured on

significantly different scales, it is important to consider re-scaling or transforming

some variables in order to increase data consistency and improve the curve fitting

process.

After fitting the LPC, one should go further and think about prediction. The

key issue now is to look for some link between the curve (actually what is meant

here is the parametrisation along the curve) and another real variable. In most

econometric applications, thinking about ‘time’ to play this link rule is a natural

choice. The time variable has a major role in economics, specially when analysing

past and expected future behaviour of some economic indicators. It can also

explain and clarify some facts about systematic cyclic behaviour.

It is worth trying to investigate the link between time and parametrisation along

the fitted LPC, since both of them increase in a monotone way. For our example,

this link can be represented as in Figure 5.15 and can be referred to as ‘calibration

curve’. If the link is looking reliable and seems to be unique for each value, we

can create some functional form or fit a spline to represent the relation between

time and the LPC parametrisation. Prediction will be possible once a spline has

been fit.

The prediction process typically goes as follows:

(i) Use the calibration curve to predict curve parametrisation given time.

(ii) Predict multidimensional data points, corresponding to the parametrisation
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Figure 5.15: Calibration curves for Phillips data

value(s), simultaneously through the fitted LPC.

To check for this, using the US data set, assume that we want to do the prediction

process given that time = 200. The following representation shows the prediction

process from time=200 to the corresponding real two-dimensional data point:

time = 200⇒ LPC-parameter = 52.165⇒ unemployment-rate = 6.92,CPI = 79.34

The corresponding real values for unemployment rate and CPI were 6.87 and

79.30 respectively. This shows that using calibration and fitting splines do pro-

duce very good estimates.

One last thing that may need further investigation regarding this data is the

cyclic(1) behaviour of data in both countries, UK and US. However, one can

(1)In Economy, a cycle shows the fluctuation between times of expansion and contraction. In
Macroeconomics, a cycle is usually referred to as ‘economic’ or ‘business’ cycle.
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already notice that:

• Cycles happen in both countries.

• Cycles happen more rapidly in the US compared to the UK (US cycle-time

length is less).

• A cycle starts first in the US, then, after some time, a corresponding cycle

starts in the UK.

The matter of detecting and measuring cycles within the context of LPCs and

comparing two or more curves can be a subject for expected future research.

5.4 Gold and Currency

In the theory of Economy, it is thought that there is a relation between gold price

and currency exchange rate. This comes from an argument which states that

one of the reasons for holding gold is hedging against currency movements [52].

This suggests that there is some relationship between gold prices and currency

exchange rates, which shall be subject to investigation through LPCs.

Data:

• Gold price per fine troy ounce in GBP.

• Average spot exchange rate(1) US Dollar $ into UK Sterling £.

The data sample covers the period from 2nd Jan. 1979 to 16th July 2008 - daily

values (7468 observations - 253 working days per year)(2). Logs are taken for all

(1)Also known as the ‘current exchange rate’. This is the exchange rate used for immediate
(spot) settlement for a transaction.

(2)Data source: Bank of England website - Statistical Interactive Database.
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data to reduce measurement-scale effect. A two-dimensional scatterplot for this

data is shown in Figure 5.16.
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Figure 5.16: Log (£-$ exchange rate) vs. Log (gold price)

LPC for gold-dollar data:

In this part, for LPC application, only part of the total data sample (from 2 Jan

2000 to 16 July 2008) is used. This is for simplicity and to avoid the big data

clustering that appears in the left panel of Figure 5.16. The reduced data sample

contains 2158 observations.

A local principal curve for the gold-dollar reduced data sample is plotted in

Figure 5.17. Using the MS algorithm, the starting point for the fitted curve was

x(o) = (0.36228, 5.21776). The small crosses along the curve in the plot represent

the successive local centres of mass which construct the LPC.

Similar to the Phillips Curves’ application, time is used as an additional external
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variable that is assumed to have a link with the LPC parametrisation. Figure

5.18 represents the calibration curve for the gold-dollar reduced data sample.
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Figure 5.17: LPC : Gold price and the GBP(£)-USD($) exchange rate

Important questions immediately arise when examining the calibration curve:

Does it represent a good calibration? Do we want this to be monotone? Can the

link in this form be reliable in the prediction process? Does ‘time’ play a major

role in forming a link with the curve? To get convincing answers for all these

questions, we should make sure first that we have reached a reasonable trade-off

between the smoothness of the local principal curve and that of the calibration

curve. It is expected that as the smoothness of the LPC increases, the smoothness

of the calibration curve decreases and vice versa. Maybe in the end, it is probably

useful to accept some trade-off, and this may be affected by the main purpose of

the analysis: Is it to reach a good representation or summary for the data rather

than making predictions or not?
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Figure 5.18: Calibration : Gold price and the GBP(£)-USD($) exchange rate

An alternative way for looking to the time variable is to add it to the main lpc(.)

function as a third variable (dimension) and see if this improves the curve fitting

for the data sample. In the sense of symmetry, this is not always the case, because

other variables may depend on or be affected by time. (Of course, time is never

expected to be dependent upon any other variable).

Figure 5.19 shows a 3D representation of the data with two alternative approaches

to fit a principal curve, the first is the original HS approach (which has been

applied using the R functions principal.curve(.) [39] and pcurve(.) [41]), and the

second is the LPC approach.

We can observe some improvement in the fitted LPC compared to the fit shown

in Figure 5.17. In terms of the total variance explained, the LPC fitted to the

two-dimensional data set captured around 82.94% on average of the local vari-

ance in all neighbourhoods along the curve, while the fitted LPC for the three-

dimensional data (after adding time) captured almost 99% of the variance.
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Figure 5.19: 3d HS(left) and LPC(right) curves for gold-dollar data

After all, a question remains; is it worth adding time to the original two-dimensional

data? The value and benefits of this type of three-dimensional curve fitting is

still to be explored in future research.

5.5 Consumer Price Index Construction

5.5.1 Introduction

Index number construction is an important and traditional subject in both the

statistical and the economical sciences. A standard problem in Economics is the

question of how to construct a single (summary) index from a series of individual

(sub-)indices. For instance, the main measure of inflation for national macro-

economic purposes is the Consumer Price Index (CPI), which covers essentially

the monetary expenditures on all goods and services by all households of a certain

economy (for instance, the UK). This index, say X0, is usually computed from
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sub-indices X = (X1, . . . , Xp)
T by weighted averaging of the form

X0 = w1X1 + . . .+ wpXp = wTX (5.1)

where w = (w1, . . . , wp)
T is a set of weights relating to the composition of expen-

diture, which is allowed to vary over time, i.e. w = w(t). Economists have taken

substantial efforts to derive formulas which give appropriate or ‘representative’

weights for a certain economy. The actual process of averaging in (5.1) is rather

crude from a statistical perspective for the following reasons:

• It is highly dependent on outlying (potentially erroneous) data.

• It is not able to deal with missing data.

• It does not allow an analysis of the relative contribution of the sub-indices

over time.

• It does not take into account the differing variability (information) con-

tained in the indices at different time points (other than through the weights,

perhaps).

Potential alternatives addressing these issues were already suggested by Tintner

[76] and Moser [54] in the context of production and price indices, and labour

market indicators, respectively. They proposed to construct a linear summary

index by finding that linear combination γTX of X1, . . . , Xp with maximal vari-

ance Var(γTX) among all unit vectors γ. The solution to this problem is found

via principal component analysis (PCA), and is given by the first eigenvector γ of

the covariance matrix Σ = Cov(X) of X. Assuming the existence of a ‘price line’

X = aX0 + ε, with a ∈ Rp, Theil [74] developed a variant of PCA to estimate

a and γ simultaneously. Neither of these authors used any additional weight-

ing, though (external) weights w can be easily accommodated by considering
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Xw = (w1X1, . . . , wpXp)
T instead of X itself.

If we have a set of variables, each can be represented as a mix of a systematic

component and an error, applying PCA to these variables results in construct-

ing a number of independent factors, usually smaller in number than the data

dimension, which capture most of the total variance in the data set. This is done

by finding some linear function of the variables in the data set, which is least

subject to errors. Principal components are of interest mainly in cases where the

variables under consideration, the values of which formulate the data cloud, are

considered to be symmetric, rather than one or more variable being generated

from the remaining ones.

PCA-based approaches have not yet found widespread application in the context

of economic index data. One reason for that is that PCA will find that line

through the multidimensional cloud of indices which gives globally the best fit in

terms of squared orthogonal distances; in other words ‘one line has to fit it all’.

The approximation done this way may be good in some parts of the data cloud

but poor in others. As a consequence, the loadings (entries of γ = (γ1, . . . ,γp)
T )

will reflect the contribution of the sub-indices 1, . . . , p towards the overall index

not equally well over the full data range — actually, the amount of information

that individual indices contribute towards the overall index may vary greatly; an

example for this is provided later in this chapter. Hence, what would be needed

is a tool to maximise the variance locally, providing at each point the best local

approximation to the data cloud. This implies that we need to fit a sequence of

localised principal components, rather than one global principal component. The

statistical concept corresponding to this viewpoint is a (local) principal curve.

Principal curves have recently attracted interest particularly in the engineering

literature [53] due to their ability to extract low-dimensional ‘features’ from high-
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dimensional data structures via the curve parametrisation τ . In particular, for

X ∈ Rp, one defines the projection index as the parameter of the closest point on

the curve (ν) to X ((2.15)).

In our context, the extracted feature τν(X) would be corresponding to the sum-

mary index of X, as we will illustrate in the following section. However, we are

not only interested in this overall index, but also in the local contributions of

the individual sub-indices, for which we need to determine loadings in terms of

localised eigenvectors. The original HS algorithm for principal curves does not

compute these, neither explicitly nor implicitly, so it is of limited use for our

development. Alternatively using a method which is explicitly based on localised

PCA is preferred.

As previously shown in Chapter 3, the local principal curve is determined by

the series of the local centres of mass, µx values, and the actual localisation

involved in the algorithm is performed through multivariate kernel functions.

After termination of the algorithm, the parametrisation τ is calculated retro-

spectively through the Euclidean distances between neighbouring µx, and inter-

polated between the µx through linear segments or cubic splines [24], yielding

a fully parametrised one-dimensional curve ν(τ) through p-dimensional space,

which passes precisely through all the local means µx’s. Due to the localised way

of averaging, the LPC algorithm is less robust to the outlying data points.

‘Anchoring’ the LPC:

For the LPC algorithm to be adapted for the role of summarising index data,

an important adjustment is useful. Normally, there is some reference date for

which all sub-indices take a baseline value, say 100, and also the overall index

107



5. Applications

takes this value. Hence, also the parametrised principal curve has to reflect this

property and this can be realised through an anchor: This is a point of prede-

termined coordinates, say x(0) = (100, . . . , 100)T , and predetermined parameter

value (‘index’) τ(o) = 100, through which the curve is forced to pass.

Recall that, normally, the LPC is fitted to the data through the following steps:

1. Choose a suitable starting point x(o) ∈ Rp. Set x = x(o).

2. Calculate µx.

3. Perform PCA locally at x, yielding a localised eigenvector γx.

4. Find a new value for x by following γx a predetermined step size, starting

at µx.

5. Repeat steps 2 to 4 until µx remains (approximately) constant.

Anchoring the curve is implemented by inverting steps 2 and 3 above, and recal-

culating τ by integrating over the arc length of the curve starting with the anchor

point. Of course, this method is only feasible when the baseline time point is part

of the time interval considered.

Forcing the curve to pass through the anchor at the start implies that we don’t

use the MS algorithm to select the starting point. For economic indices, in

general, the anchor (base point) will be an adequate starting point as it will not

reasonably be an outlier. This means that anchoring the LPC will still reserve

the robustness regarding the choice of the starting point.

Now, we shall illustrate the functionality of the LPC algorithm as a ‘feature

extractor’ for the summary index, in the subsequent section.
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5.5.2 Analysis of CPI data

For the purpose of fitting a local principal curve as a summary price index,

two sets of consumer price indices have been used, the first, as an introductory

example, is a two dimensional set, and the second is a twelve dimensional set.

All data are monthly UK data published through ‘National Statistics Online’

covering the period from January 1988 until December 2008. Both sets of indices

are complemented subsets of the same total summary index, which is the total

CPI for ‘All Items’. The indices used for analysis are: (2005 is the base year for

all indices , i.e. 2005=100)

D7BT: CPI INDEX 00 : ALL ITEMS

D7BU: CPI INDEX 01 : FOOD AND NON-ALCOHOLIC BEVERAGES

D7BV: CPI INDEX 02 : ALCOHOLIC BEVERAGES,TOBACCO & NARCOTICS

D7BW: CPI INDEX 03 : CLOTHING AND FOOTWEAR

D7BX: CPI INDEX 04 : HOUSING, WATER AND FUELS

D7BY: CPI INDEX 05 : FURN, HH EQUIP & ROUTINE REPAIR OF HOUSE

D7BZ: CPI INDEX 06 : HEALTH

D7C2: CPI INDEX 07 : TRANSPORT

D7C3: CPI INDEX 08 : COMMUNICATION

D7C4: CPI INDEX 09 : RECREATION & CULTURE

D7C5: CPI INDEX 10 : EDUCATION

D7C6: CPI INDEX 11 : HOTELS, CAFES AND RESTAURANTS

D7C7: CPI INDEX 12 : MISCELLANEOUS GOODS AND SERVICES

D7F4: CPI INDEX: ALL GOODS

D7F5: CPI INDEX: ALL SERVICES
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Index construction from two sub-indices

The aim is to reconstruct the overall index (CPI INDEX 00: ALL ITEMS) using

two sub-indices: the CPI INDEX: ALL GOODS and the CPI INDEX: ALL SERVICES.

We use the modified LPC algorithm applying an anchor at x(0) = 100×(w1, w2)T

and τ(o) = 100 corresponding to the reference point January 2005 as outlined ear-

lier. For simplicity, a constant weight w = 1/500 ∗ (547, 453)T for all years is

used. The weighted version of any sub-index Xj(j=1,··· ,p) is given by

X
(w)
j = p× wj

p∑
i=1

wi

×Xj (5.2)

Now, applying this adjusted LPC algorithm to fit a summary curve through the

two weighted indices, one obtains the fit produced in Figure 5.20. It seems to

give a reasonable summary for the two-dimensional data set in the form of a

one-dimensional curve.

A first property of interest when using this statistical approach in CPI context

could be; compared to the original overall index, how well is the resulting fit

capturing the overall index behaviour? Figure 5.21 compares how the projection

indices τν(X) and the original CPI INDEX 00 change over time. Figure 5.21

suggests that the statistically fitted overall index captures most movements in

the true index, which is a desirable situation. Also, it can be seen that the fitted

index looks smoother than the original index, due to the underlying smoothing

properties implied by using the LPC algorithm.

The other useful informative tool accompanying the use of LPCs is related to

the total variance explained by the curve and how each variable (sub-index)

contributes to the fitted overall index. This is statistically measured through
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Figure 5.20: LPC fit for 2D CPI data.

‘loadings’, i.e. the entries of the (local) eigenvectors. At every point on the

curve, the sum of squared loadings of the first eigenvector should be equal to

one. This ‘unity’ property of eigenvectors provides a good tool to indicate how

the sub-indices influence the fitted overall index at each point (time). Figure

5.22 shows the cumulative squared loadings of first eigenvectors for our example.

Useful interpretations could be derived from such a figure, for instance, around

the fitted curve’s parameter values from 80 to 100, the second sub-index has a

dominating effect on the fitted overall index.

As mentioned earlier in this chapter, one measure for the goodness of fit of the

LPC in comparison with the first principal component line is the sum of squared

Euclidean distances between data points and their projections onto the fitted

LPC. For the LPC fitted to the two-dimensional CPI data, the latter sum of
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Figure 5.21: LPC-based (top) and average-based (bottom) CPI behaviour over
time.

squares was 55.82 which was much better than the corresponding value for the

first principal component line (156.54).

Index construction from twelve sub-indices

Adopting the same techniques used in the previous example, the LPC algorithm

was applied to fit the overall consumer price index from the twelve sub-indices

(INDEX 01, INDEX 02, ..., INDEX 12). Main indicators from the resulting fit

are shown in Figure 5.23. Similar to the two-dimensional case, the procedure

allows us to explore the index behaviour and the dominating underlying factors

affecting it over time.

Looking at the bottom part of Figure 5.23, we can assess the contributions of the
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Figure 5.22: Cumulative squared loadings of first eigenvectors - 2D fit.

12 sub-indices over time. For example, it can be seen that the third index has

the largest effect on the fitted overall index around the LPC parameter value 150

(which corresponds to some time point near 150), and the same can be said about

index four around parameter values of 210 and 260 and that the first index alone

approximately contributes 25% to the aggregate fitted index around parameter

value of 260 (time near 250), and so on. All such interpretations can have useful

meanings in the econometrics context.

The sum of squared Euclidean distances between data points and their projections

onto the fitted LPC was 2383.79 compared to 12689.12 for the first principal

component line. This confirms again that the non-linear summary CPI obtained

through the LPC is outperforming linear summaries such as the first principal

component line.

One remaining important feature of the proposed technique is the ability to pre-

dict missing data points at any given time (discrete or continuous) within the
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data range. This is achieved, technically, through ‘calibration’ of time and the

LPC parametrisation (by plotting them against each other and using a nonpara-

metric smoother to find the functional relationship). Having done this, if we

assume that we want to predict the data point that corresponds to, say, time =

220.5, we plug this value into the calibrated object which gives a parameter value

of 215.34, then we get the corresponding estimated twelve-dimensional weighted

point on the fitted curve, and applying a simple adverse-weight formula to each

index, we get the real time estimated sub-indices’ values (102.09, 102.59, 96.32,

107.92, 99.57, 102.48, 102.79, 99.82, 98.89, 105.93, 102.86, 103.27). This could

be useful in handling missing data as well as predicting any assumed in-between

data points. Recalling (5.2), the estimated non-weighted version of any sub-index

Xj is given by

X̂j =
w̄

wj
× X̂(w)

j

where w̄ = (

p∑
i=1

wi)/p is the average weight for all the j indices and X̂
(w)
j is the

projected value of the weighted sub-index j onto the fitted LPC.

Finally, it is worth mentioning that the work presented in this part is merely

a statistically-based approach to fit and analyse main economic indices. The

computed index using the LPC algorithm has the ability to capture the basic

trend of the original corresponding index over time. Being based upon principal

component analysis, it allows to detect the influence of all variables (sub-indices)

on the fitted index at all points (time), and would furthermore allow to assess the

degree of ‘local linearity’ of the index, in terms of total local variance explained,

at each point in time by looking at the localised first eigenvalues. The main novel

feature of the proposed technique is that it is nonlinear and even nonparametric,

while the traditional PCA-based methods are linear, which may be of limited
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accuracy in particular if the time range considered is quite large.

It should be noted that the proposed technique, just as the PCA itself and the

modified version by Theil (1960), is an ‘ex-post’ algorithm, i.e. one needs to

have the full data available in order to reconstruct the indices retrospectively.

However, unlike other principal curve algorithms, the LPC methodology would

in principle allow for an updating algorithm, which would enable to extend the

previously fitted curve and the associated statistics once new data have come in.

This is a matter of future research.
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Figure 5.23: A 12-D example. Top: reconstructed summary index (LPC
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Chapter 6

Conclusions

6.1 Summary Conclusions

In this work we have introduced some asymptotics for localised principal compo-

nents using multivariate kernels as weights. It was shown that for small neigh-

bourhoods and large sample sizes, at any data point x, the largest eigenvector

of the local covariance matrix Σx can be approximated in terms of the density

function and the bandwidth matrix H .

For local principal curves (LPCs), this result implied that the LPC always follows

the gradient of the density function, which means in practice that it will closely

follow the density ridge. The previous approximation was extended to explore

the behaviour of the local principal curve in terms of the difference between

neighbouring local centres of mass which compose the fitted curve. Using the

first order approximation of the latter, the stopping criteria for the LPC were

further investigated. It was concluded that the position at which the curve stops

only depends on the topology of data in the neighbourhood in terms of the

density function and its derivative, the multivariate kernel function used and the

bandwidth matrix. When a Gaussian kernel is applied, where the curve gets stuck
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only depends on the bandwidth and the underlying density of the data. This was

verified experimentally using a random sample from a bivariate standard normal

distribution and simulating 20 local principal curves for this data. It was observed

that the smaller the bandwidth, the larger the area of the data covered (visited)

by the curves. The previous result was used to enhance the fitted LPC so that it

reaches more data points at boundaries. This was accomplished through reducing

the bandwidth adaptively relative to the step size of the local PCA as soon as the

curve tends to converge. The boundary-extended LPC version was again tested

using a time series data example, in which the curve was clearly going further at

boundaries compared to the non-extended version of the LPC algorithm.

In addition to the LPC boundary extension based upon the asymptotics of lo-

calised principal components, another useful enhancement for the LPC algorithm

was introduced. The mean shift algorithm as a mode seeking tool was employed

to improve the choice of the starting point of the LPC algorithm. Instead of

selecting this point at random, which may result in choosing an outlier or a mis-

located data point which may affect the goodness of fit of the curve, the mean

shift algorithm was integrated into that of the LPC so that the starting point is

selected from the set of the local modes (located in high density areas) within

the data cloud. Using this, the number of possible LPC fits for a given data is

delimited by the number of its local modes.

In terms of application, local principal curves provide a useful and flexible tool

to represent multidimensional and complex structures. It is important to apply

the algorithm with the optimal options for the specific data set of interest. It is

expected that LPCs and other PCA-based methods can be reliable for modelling

econometric data in general, and specifically data of time series character.

Local principal curves, through the curve parametrisation, can well serve as a
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prediction tool, especially when we can create a link between the parametrisation

of the curve and another external underlying variable that is expected to be

related to our data set. For econometric and financial data, time can play this

role efficiently. This type of link can be represented through a ‘calibration’ curve,

and a good link should give a precise and unique calibration as possible. In this

context, we should keep in mind the smoothness trade-off between the LPC and

the calibration curve.

When the prediction works fine with regard to predicting existing data points, it

is then possible to think about testing further prediction abilities, such as:

• Given a certain data point, which may or may not be a part of the original

data cloud, and after projecting this point onto the fitted curve, we could

try to reconstruct the time at which this observation could have occurred.

• Estimating future (or past) time observations, at least in the short run.

(i.e. extrapolating)

Both principal components and curves can produce a relatively meaningful anal-

ysis for multidimensional data. Local principal curves can be looked at as an ef-

ficient dimensionality reduction as well as feature and summary extraction tool.

The fitted LPC provides a good graphical one-dimensional representation for

complex multidimensional data. A well fitted curve, through the curve parametri-

sation, can also extract the main features of the multidimensional data providing

a useful interpretable summary of the data.

The previous role of local principal curves was explored in the context of two

econometric applications, insurance market key performance indicators and con-

struction of aggregate consumer price indices. In such cases, the LPC capture

the overall behaviour (trend) of the data. Also, using the standardised ‘loadings’
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obtained via localised principal components, the fitted LPC can be quite infor-

mative for analysing the total variance explained by the fitted curve and how

each variable (dimension) contributes to the overall summary obtained through

the parametrisation along the curve.

A flexibility issue related to the LPC algorithm as a summary is its ability to

accommodate different weights for each dimension.

6.2 Suggestions for Future Research

One natural idea is to continue exploring the applicability of the LPC algorithm

in other applications, which may suggest accommodating new features into the

LPC algorithm, in particular, for high-dimensional actuarial and econometric

data.

Besides this, there are several issues related to the LPC algorithm and its appli-

cations that may bring to mind some potential topics to be addressed. Among

those are the following:

(i) The role of parametrisation in local principal curve modelling, and its pos-

sible relation to important latent variables, not necessarily time, in some

applications.

(ii) Exploring statistical optimality for the choice of local principal curves pa-

rameters.

(iii) Using parametrised LPCs in prediction (forecasting), specially for time se-

ries data.

(iv) Measuring the correlation between principal curves and the possibility of
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predicting a principal curve using another.

(v) Exploring the role that principal curves can play in missing value analysis

and estimation.

(vi) Integrating local principal curves with other statistical methods providing

new semi-parametric or non-parametric statistical modelling tools. Among

those may be Bayesian methods and other statistical inference approaches.

(vii) The idea of ‘functional principal curves’. Analogue to functional data anal-

ysis, there may arise situations where we fit more than one principal curve,

each for a distinct group (cluster) of data. For example, in multidimen-

sional time series data, a separate principal curve may be fit to one ‘case’

(individual, country, ... etc.) along time.
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Appendix

(I) Abbreviations and Symbols Used

HS: The Hastie and Stuetzle version of principal curves.

LPC: Local Principal Curve.

MS algorithm: Mean shift algorithm.

PC: Principal Curve.

PCA: Principal Component Analysis.

X : A d-variate random vector with density function f(.), mean µ ∈ Rd and

covariance matrix Σ ∈ Rd×d.

X : X = (X1, X2, · · · , Xn)T , Xi ∈ Rd is a random sample from X.

x: A data point.

H : A positive definite bandwidth matrix with diagonal elements: h2
1, · · · , h2

d,

H ∈ Rd×d.

K( ): A multidimensional symmetric kernel function.

µx : The local mean at x.

γx: The first local eigenvector at x.

mh,K(x) : The mean shift vector, with a bandwidth h and a kernel K.

{yj}j=1,2,...: The sequence of successive locations of the mean shift procedure.

ν(τ): A curve ν with parametrisation τ .

d(x,ν): The Euclidean distance from a point x to its projection on the curve.
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(II) Math

Math for Section 2.1

The matrix Aγ = (I − γγT )

γ = (γ1,γ2, · · · ,γq)T

γγT =



γ1

γ2

.

.

.

γq


(
γ1, γ2, · · · , γq

)
=

 γ1γ1 · · · γ1γq

· · · · · · · · ·
γqγ1 · · · γqγq



γγT =


γ2

1 γ1γ2 · · · γ1γq

γ2γ1 γ2
2 · · · γ2γq

· · · · · · · · · · · ·
γqγ1 γqγ2 · · · γ2

q


It is evident that γγT is symmetric.

Now, examining the matrix Aγ = [I − γγT ], we get the following

(I − γγT ) =


1− γ2

1 γ1γ2 · · · γ1γq

γ2γ1 1− γ2
2 · · · γ2γq

· · · · · · · · · · · ·
γqγ1 γqγ2 · · · 1− γ2

q


And

AT
γAγ = [I − γγT ][I − γγT ]

= I − γγT − γγT + γγTγγT

= I − γγT − γγT + γγT
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= I − γγT

= Aγ

⇒ Aγ is idempotent[36].

For any matrix of type A = cψψT , with c ∈ R,ψ ∈ Rd, the only eigenvector of

the matrix is (in standardised form) γ = ψ/||ψ||, with eigenvalue λ = c||ψ||2 =

Tr(A). To verify this, multiplying A by ψ, we have

Aψ = c.ψ(ψTψ)

= c.ψ‖ψ‖2

Aψ = c.‖ψ‖2ψ

Then, ψ is an eigenvector of A with eigenvalue c.‖ψ‖2. Also, if we consider

A
ψ

‖ψ‖
= c.‖ψ‖2 ψ

‖ψ‖

then γ = ψ
‖ψ‖ is a standardised eigenvector of A with eigenvalue c.‖ψ‖2.

The sum of the eigenvalues of a matrix is its trace, then

λ1 + λ2 + · · ·+ λq = tr(A)

= c.

q∑
i=1

ψ2
i

= c‖ψ‖2

This leads to: λ2 = · · · = λq = 0, and γ = ψ
‖ψ‖ is the only non-zero eigenvector

of A = cψψT .

Then, in the special case where c = 1 and ψ = γ, the matrix γγT has only one

non-zero eigenvector with an eigenvalue equals tr(γγT ) = ‖γ‖2 = 1.

Also, let ϕ be an eigenvalue of an idempotent matrix A. This means that for

some vector ν, Aν = ϕν:

ϕν = Aν = A2ν = A(Aν) = A(ϕν) = ϕ(Aν) = ϕ2v
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which implies that ϕ2 = ϕ so ϕ(ϕ−1) = 0 which implies that the eigenvalues of A

are either 1 or 0 and that the trace of A is the number of its non-zero eigenvalues.

We conclude that the matrix γγT has only one non-zero eigenvector with an

eigenvalue equals one. Using the property of the eigenvalues that; if A is a

symmetric matrix, then[61](p.30)

eig(I + cA) = 1 + cλi,

which implies that

eig(I − γγT ) = 1− (1)(1, 0, · · · , 0) = (0, 1, · · · , 1)

and since all eigenvalues of Aγ are greater than or equal to zero, then, Aγ is

positive semi-definite[61](p.50). Also, the trace of Aγ is given by

tr(I − γγT ) =
n∑
i=1

(1− γ2
i )

= n−
n∑
i=1

γ2
i

= n− 1

which can be interpreted that the matrix Aγ has n eigenvalues, all of them are

ones except the first, and that the sum of those eigenvalues is n− 1.

‖Aγu‖2 = (Aγu)T (Aγu)

= uTAT
γAγu = uTAγu

∂

∂γ
Aγ =

∂

∂γ
(I − γγT ) = −2γ
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∂

∂γ
uTAγu =

∂

∂γ
uT (I − γγT )u

=
∂

∂γ
(uTu− uTγγTu)

= 0− ∂

∂γ
uTγγTu

= −2(uuT )γ

Math for Section 3.1.2

Details for (3.11):

xi → s, f(s) = 1
n
∀ s, u = H−1/2(s− x),

(s−m) = (s− x+ x−m) = H1/2u+ x−m

Applying Taylor expansion as in [79](p.94),

f(x+H1/2u) = f(x) + (H1/2u)Tf ′(x) +
1

2
(H1/2u)TH(x)H1/2u

+ o((H1/2u)TH1/2u) (1)

where: f ′(x) is the first derivative of f(x), H(x) is the Hessian matrix of of f(x).

Considering the last term in (1), o((H1/2u)TH1/2u)

o((H1/2u)TH1/2u) = o(1TH 1)

= o(tr(1TH 1)) = o(tr(H 1 1T )) = o(tr(H))

The third term in (1), 1
2
(H1/2u)TH(x)H1/2u gives

1

2
(H1/2u)TH(x)H1/2u = O(1TH1/2 1H1/2 1)

= O(tr(1T 1H 1)) = O(tr(H))
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And the second term in (1), (H1/2u)Tf ′(x) yields

(H1/2u)Tf ′(x) = O(1TH1/2 1)

= O(tr(1T H1/2 1)) = O(tr(1T 1H1/2) = O(tr(H1/2))

Then (1) can be re-written as

f(x+H1/2u) = f(x) +O(tr(H1/2)) +O(tr(H)) + o(tr(H))

= f(x) +O(tr(H1/2)) = f(x) + o(1)

E

(
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)
Applying (3.3), the previous expression can be re-written as:

E

(
|H|−1/2

n∑
i=1

K(H−1/2(xi − x))(xi −m)TAγ(xi −m)

)

and for large values of n and small values of H

E

(
|H|−1/2

n∑
i=1

K(H−1/2(xi − x))(xi −m)TAγ(xi −m)

)
= n|H|−1/2

∫
K
(
H−1/2(s− x)

)
(s−m)TAγ(s−m)f(s) ds

= n

∫
K(u)(H1/2u+ x−m)TAγ(H1/2u+ x−m)f(x+H1/2u) du

= n

∫
K(u)(H1/2u+ x−m)TAγ(H1/2u+ x−m)

{
f(x) +O(tr(H1/2))

}
= n

∫
K(u)

{
uTH1/2AγH

1/2u+ uTH1/2Aγ(x−m) + (x−m)TAγH
1/2u

+(x−m)TAγ(x−m)
}{

f(x) +O(tr(H1/2))
}

= n

∫
K(u)

{
uTH1/2AγH

1/2u+ 2uTH1/2Aγ(x−m)

+(x−m)TAγ(x−m)
}{

f(x) +O(tr(H1/2))
}

= n

∫
K(u)

{
(x−m)TAγ(x−m) +O(1TH1/2u)

}{
f(x) +O(1TH1/2u)

}
du
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= [nf(x)(x−m)TAγ(x−m)]∫
K(u)

{
(x−m)TAγ(x−m) +O(1TH1/2u)

}{
+O(1TH1/2u)

}
du

= nf(x) + o(n),

Var

(
n∑
i=1

KH(xi − x)(xi −m)TAγ(xi −m)

)

=
n∑
i=1

Var
(
KH(xi − x)‖Aγ(xi −m)‖2

)
=

n∑
i=1

{
E
(
K2
H(xi − x)‖Aγ(xi −m)‖4

)
− E2

(
KH(xi − x)‖Aγ(xi −m)‖2

)}
=

n∑
i=1

{
E
(
K2
H(xi − x)‖Aγ(xi −m)‖4

)
[f(x)(x−m)TAγ(x−m) +O(1TH1/21)]2

}
= n

[∫
1

|H|
K2(H−1/2(s− x))

[
(s−m)TAγ(s−m)

]2
f(s)ds

− f 2(x)[(x−m)TAγ(x−m)]2 −O(1TH1/21)−O(1TH1)

]
=

n

|H|

∫
K2(u)[(H1/2u+ x−m)TAγ(H1/2u+ x−m)]2f(x+H1/2u)|H|1/2du

− nf 2(x)[(x−m)TAγ(x−m)]2 − nO(1TH1/21)

=
n

|H|1/2

∫
K2(u)[(x−m)TAγ(x−m) +O(1TH1/2u)]2[f(x) +O(1TH1/2u)]du

− nf 2(x)[(x−m)TAγ(x−m)]2 −O(n1TH1/21)

=
nf(x)

|H|1/2
· 1 ·

(
[(x−m)TAγ(x−m)]2 +O(1TH1/21)

)
− nf 2(x)[(x−m)TAγ(x−m)]2 −O(n1TH1/21)

= nf 2(x)
O(1)

n|H|1/2
= O(n2)

Math for Section 4.2

∫
uuTK(u) du = µ2(K)I
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f(x) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
xTΣ−1x

}
=

1

(2π)d/2σd
exp

{
− 1

2σ2
xTx

}

∇f(x) =
1

(2π)d/2σd
exp

{
− 1

2σ2
xTx

}{
− 1

2σ2
∇(xTx)

}
=

1

(2π)d/2σd
exp

{
− 1

2σ2
xTx

}{ x
σ2

}
‖∇f(x)‖ =

1

(2π)d/2σd+2
exp

{
− 1

2σ2
xTx

}
‖x‖

Math for LPC boundary extension

µ(j+1) − µ(j) =

[
µ2(K)

f(x(j))
± t

||H∇f(x(j))||

]
H∇f(x(j))

when H = h2I

µ(j+1) − µ(j)
a
= h

[
hµ2(K)

f(x(j))
± t

h

1

||∇f(x(j))||

]
∇f(x(j))

when t = h

µ(j+1) − µ(j)
a
=

[
µ2(K)

f(x(j))
± 1

h ||∇f(x(j))||

]
h2∇f(x(j))
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(III) Sample R Code

a. Sample R code for principal components representation

ddd<-read.table("data19", header=TRUE)

data<-ddd[, c(3,4)]

e<-eigen(cov(data))

e1 <- e$ve[,1]

e2 <- e$ve[,2]

m <- mean(data)

p1 <- m + 75*e1

p2 <- m - 75*e1

p3 <- m + 75*e2

p4 <- m - 75*e2

plot(data, pch=20)

segments(p2[1],p2[2], p1[1], p1[2], col=2, lty=1)

segments(p3[1],p3[2], p4[1], p4[2], col=3, lty=2)

l<-lm(data[,2]~data[,1])

abline(63.484, -0.201, col=4, lty=3)

legend(0,25, c("1st PC", "2nd PC", "LM"), lty=c(1,2,3), col=c(2,3,4))

------------------------------------------

# % of variance captured by each PC:

traffic.pc <- prcomp(data) # OR traffic.pc <- princomp(data)

traffic.pc$sdev^2/sum(traffic.pc$sdev^2)

------------------------------------------

b. Sample R code for methods to fit traffic data

plot(data, pch=20)

# Linear fit:

fit1 <- lm(data[,2]~ data[,1])

abline(lm(data[,2]~ data[,1]), col=2)

# Quadratic fit:

fit2 <- lm(data[,2]~ data[,1] + I(data[,1]^2))
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lines(data[,1], fit2$fitted, col=3)

# Interpolation

fit3 <- approx(data, n=444)

lines(fit3$x, fit3$y, col=4)

legend(5, 27, c("Linear fit", "Quadratic fit", "Interpolation")

, fill=c(2,3,4))

c. Sample R code for mean-shift function

g1 <- function(xi, x, h){

1/2*exp(-1/2*((x-xi)/h)^2)

}

gd <- function(Xi,x,h){

d<-length(x)

k<-1

for (j in 1:d){k<- k* g1(Xi[,j],x[j],h[j])}

k

}

mean.shift<-function(data, x, h){

gd <- gd(data, x, h)

d <- dim(data)[2]

ms <- NULL

for (j in 1:d){

ms[j]<-sum(data[,j]*gd)/sum(gd)

}

ms

}

h<-c(20,5)

x<-c(50, 20)

x1<-mean.shift(data, x, h)

------------------------------------------

v3<-runif(444, 0,1)
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x.2 <- c(50, 20, 0.5)

h.2 <- c(10, 5, 0.05)

m1<-mean.shift(data2, x.2, h.2)

------------------------------------------

norm <- function (x){

d<-length(x)

v<-0

for(i in 1:d){v<-v+(x[i])^2}

v

}

norm(x.2)

--------------------------------------------

ms.rep <- function (data, x, h) {

iter <-10

th <- rep(0,iter)

for (j in 1: 10){

m <- mean.shift(data, x, h)

th[j] <- norm(m-x)/norm(x)

x <- m

}

#m

#th

return(list(m,th))

}

ms.rep(data2, x.2, h.2)

=======================

# FINAL MEAN-SHIFT CODE:

ms.rep <- function (data, x, h) {
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iter <-100

s <- 0

th <- rep(0,iter)

M <-matrix(0, iter, length(x))

for (j in 1: iter){

m <- mean.shift(data, x, h)

M[j,] <- m

th[j] <- norm(m-x)/norm(x)

if (th[j]<0.000001){s<-j;

print("required threshold reached"); break}

x <- m

}

return(list("Mean shift points"=M[1:s,],

"Threshold values"=th[1:s], "iterations"=s))

}

ms.rep(data2, x.2, h.2)

ms.rep(data2, c(50,20,1), h.2)

d. Sample R code for computing the squared distances (projections of

data points) (2.1)

pc7 <- prcomp(d) # principal components

summary(pc7); names(pc7)

pc7$rot

library(LPCM) # LPC

lpc77 = lpc(d)

lpc.proj = lpc.spline(lpc77, project=TRUE)

names(lpc.proj)

# ---------------------------------------

# Function for squared distances between data and their projections

dist.xg = function(data, gamma){

n = dim(data)[1]
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m = mean(data)

l = length(gamma)

I = diag(l)

g2 = gamma %*% t(gamma)

#print(g2)

a = (I - g2) %*% m

#print(a)

xg = data-data

for(i in 1:n){

xg[i,] = t( a + g2 * data[i,] )

}

xd = data - xg

sum(xd^2)

}

# ---------------------------------------

dist.pc1 = dist.xg(d, pc7$rot[,1])

dist.lpc = sum((d - lpc.proj$closest.coords)^2)

(IV) Analysis of insurance data - country codes

Code Country Code Country
AT Austria BG Bulgaria
CY Cyprus CZ Czech Republic
DE Germany DK Denmark
EE Estonia EL Greece (Hellenic Republic)
ES Spain FI Finland
FR France HU Hungary
IS Iceland IT Italy
LT Lithuania LU Luxemburg
LV Latvia NL The Netherlands
NO Norway PL Poland
PT Portugal RO Romania
SE Sweden SK Slovakia
UK United Kingdom

Table 1: Country codes for the insurance data application
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principal curves. Pattern Recognition Letters, 23:1009–1017, 2000.

[78] Wand, M. P. and Jones, M. C. Comparison of smoothing parameterizations in bi-

variate kernel density estimation. Journal of the American Statistical Association,

88:520–528, 1993.

[79] Wand, M. P. and Jones, M. C. Kernel Smoothing. Chapman and Hall, London,

1995.

[80] Wand, Matt (R port and updates by Brian Ripley). Functions for kernel smoothing

for Wand & Jones (1995), June 2011. URL http://cran.r-project.org/web/

packages/KernSmooth. R package version 2.23-6.

141

http://ida.first.fhg.de/publications/SmoMikSch98.ps
http://ida.first.fhg.de/publications/SmoMikSch98.ps
http://cran.r-project.org/web/packages/KernSmooth
http://cran.r-project.org/web/packages/KernSmooth


REFERENCES

[81] Wang, L., Assadi, A. H., and Spalding, E. P. Tracing branched curvilinear struc-

tures with a novel adaptive local pca algorithm. In Proceedings of the 2008 Inter-

national Conference on Image Processing, Computer Vision, and Pattern Recog-

nition, volume 17, pages 557–563. CSREA Press, Athens, GA, 2008.

[82] Wilson, D.J.H., Irwin, G.W., and Lightbody, G. RBF principal manifolds for

process monitoring. IEEE Transactions on Neural Networks, 10(6):1424–1434,

November 1999.

[83] Yao, Fang. Asymptotic distributions of nonparametric regression estimates for

longitudinal or functional data. Journal of Multivariate Analysis, 98:40–56, 2007.

[84] Yeomans, Keith A. and Golder, Paul A. The guttman-kaiser criterion as a predictor

of the number of common factors. Journal of the Royal Statistical Society. Series

D (The Statistician), 31(3):221–229, 1982. ISSN 00390526.

[85] Yu, Zhangsheng and Lin, Xihong. Nonparametric regression using local kernel

estimating equations for correlated failure time data. Biometrika, 95(1):123–137,

2008.

[86] Zayed, M. and Einbeck, J. Constructing economic summary indexes via principal

curves. In COMPSTAT 2010 Proceedings (e-book), pages 1709–1716, 2010.

[87] Zhao, Qi, Yang, Zhi, Tao, Hai, and Wentai, Liu. Evolving mean shift with adaptive

bandwidth: A fast and noise robust approach. In ACCV (1)’09, pages 258–268,

2009.

142


