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Statistical methods for supporting urgent care service delivery

Sarah Grace Stirling



Abstract

Forecasting procedures were developed and implemented in an out-of-hours GP provider in
the North East of England to ensure staffing levels were optimised, and server performance was
investigated. Initial methods included linear regression to predict calls per day into a call centre,
loess to predict arrival rates, and moving averages to deal with unexpected flu pandemics. We
also tried to understand the behaviour of GPs and develop a fair rating system, based on their
speed. Finally, we introduced some novel dissemination techniques so that the procedures could
be completed by non-experts through the implementation of the RExcel software.
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Nomenclature

A&E Accident and Emergency

AHT Average Handling Time

DoH Department of Health

HPA Health Protection Agency

KPI Key Performance Indicator

KTP Knowledge Transfer Partnership

NDUC Northern Doctors Urgent Care

NEAS North East Ambulance Service

NEEP North East Escalation Plan

NHS National Health Service

NPFS National Pandemic Flu Service

PCT Primary Care Trust

PTS Patient Transport Service

QSR Quality Standard Report

SCD Social Care Direct

SHA Strategic Health Authority

SPA Single Point of Access

UCC Urgent Care Centre

UHUK Urgent Health UK Ltd
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Chapter 1

Introduction

The research in this thesis took place through a Knowledge Transfer Partnership (KTP) between
Northern Doctors Urgent Care (NDUC) and Durham University, which ran between August
2008 and July 2010. This chapter explains the basic ideas of a KTP, as well as defining specific
project objectives, before giving an outline of the thesis for the reader.

1.1 Knowledge Transfer Partnership

Knowledge Transfer Partnerships (KTPs), are projects formed between a business, an academic
institution, and a recent graduate enabling a company to access skills and expertise to help
develop their business [5]. It is part-funded by a government grant, usually through the Tech-
nology Strategy Board, and is designed to provide three-way benefits to all parties. Businesses
could see increased performance and profitability, academic institutions may develop new teach-
ing material or publish high quality conference papers, and the graduate gets to spend 10% of
their time in training and personal development, as well as gaining the valuable experience of
tackling a strategic problem.

Each partnership will have specific project objectives and expectations. The tasks set out
for this KTP are detailed below, as stated in the KTP Grant Application and Proposal Form:

- To develop and implement robust statistical processes to underpin quality assurance for,
and planning of, GP out-of-hours service delivery through

1. Understanding the business case and sampling NDUC’s data; considering data struc-
tures and the meaning of variables and their relationships.

2. Establishing a data framework and Key Performance Indicators (KPIs); preparing
data for cleaning and harvesting.

3. Implementing routine data summaries against the KPIs to meet reporting needs.

4. Establishing research hypotheses with staff at NDUC, developing new KPIs and
collecting new data.

5. Carrying out statistical investigations on existing data to meet NDUC’s requirement
for analysis across its operations.

6. Implementing final methodology for automated analysis and reporting to underpin
decisions on resource allocation.

1.2 Outline of contents

NDUC is a not-for-profit community benefit society providing mainly out-of-hours health care
to nearly one million patients in the North East of England. The operations of NDUC are
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quite complicated, and there are various different patient paths through their system, as well as
different methods of data collection, and so the business and operations of NDUC are discussed
in chapter 2.

In chapter 3 we discuss the forecasting problem faced by many call centres: how many
calls will arrive into the centre on any particular day in the future (inter-day call demand)?
The process of data collection and cleaning is also described here. Chapter 4 moves on to
discuss the implementation of scatterplot smoothing techniques to forecast 30 minute arrival
rates (intra-day call demand).

In July 2009, England was hit by the swine flu pandemic; with wide spread media coverage
from the end of April. This meant there was a huge increase in expected demand for out-of-
hours services. Chapter 5 discusses the pandemic more thoroughly, and suggests the use of a
seven-day moving average to forecast during these conditions.

Central to a smoothly running operation is the performance of call handlers and GPs. These
people have direct contact with patients, and in order to achieve optimum staffing we need to
ensure they are being productive. This was particularly difficult among the GPs, as there can
be large variation in the types of cases they receive. The monitoring and predictive methods
implemented to assess this issue are discussed in chapter 6.

The final stage of our project was disseminating these techniques to be used in-house, by
non-specialists. Chapter 7 discusses the software RExcel which allows technical R functions to
run in the background of Excel spreadsheets.

Chapter 8 highlights suggestions for further work that could not be completed during our
project. For example, how will knowing accurate forecasts and server behaviour help you to
simulate queues? Not only this, it discusses recent developments in the government, and the
vision for a Single Point of Access (SPA) for all non-emergency calls, which could mean a
complete change for GP out-of-hours providers and commissioners.

Chapter 9 concludes the thesis and critically evaluates the project. What techniques were
implemented? How effective were they in practice? And what can be learnt by other out-of-
hours organisations to benefit the community further?

7



Chapter 2

Introduction to NDUC

This chapter discusses a range of problems faced by call centres trying to forecast demand, and
improve operational performance, as well as introducing the call centre used for this investiga-
tion.

2.1 Introduction to Northern Doctors Urgent Care

Northern Doctors Urgent Care (NDUC) is a not-for-profit community benefit society which
delivers full out-of-hours services to patients in the North East. It is commissioned and funded by
local Primary Care Trusts (PCTs) in four areas: Newcastle, North Tyneside, Northumberland,
and South Tyneside. The service provides care for approximately one million patients in these
areas.

Alongside the GP out-of-hours service NDUC facilitate district nurse provision, provide a
pathways service for the North East Ambulance Service (NEAS), an out-of-hours dental service,
a telephone answering service and a call handling service for Social Care Direct (SCD), the out-
of-hours social care provider for North Tyneside.

2.1.1 Patient paths through NDUC

Patients calling NDUC out-of-hours can expect to receive one of the following responses:

- Telephone advice from a clinician,

- face-to-face contact with a clinician at one of seven Urgent Care Centres (UCCs) based
around the North East,

- arrangements for face-to-face contact in a patient’s home,

- referral to an appropriate A&E department,

- advice that they require a 999 ambulance, and subsequent transfer to Ambulance Control,

- connection from the ambulance service to the pathways team,

- connection to the dental service,

- connection to the SCD service, or

- connection to the district nursing team.

8



2.1.2 NHS Pathways

When a patient calls 999, the patient assessment system, known as NHS Pathways, uses
evidence-based outcomes to determine the best care. This means that fewer patients will end
up in hospital. Where appropriate, a patient can be referred to NDUC from the North East
Ambulance Service (NEAS).

The pathways service has its own dedicated telephone line and team including nursing staff,
who triage 999 calls transferred from NEAS that require nursing intervention, and dispatchers,
who manage the disposition of the various types of pathways call.

Conversely, GPs based at NDUC also support the ambulance service through NEAS Clini-
cian Support. This will be activated in cases where an ambulance has been deployed and arrived
at a patient’s home, and found the case to be more appropriate to GP urgent care. NEAS then
speak to one of our GPs who offer triage support over the telephone.

2.1.3 Out-of-hours Dental

Operating between 18:30 and 23:00 on weekdays, and 09:00 and 22:00 on weekends and bank
holidays, NDUC provides an out-of-hours service for patients with dental problems outside nor-
mal surgery hours. This service only covers North of Tyne (Northumberland, North Tyneside,
and Newcastle PCT areas) differing from the patch covered in the GP service.

Patients using the dental service phone the dedicated dental out-of-hours telephone line.
Their call is triaged by a nurse and, if necessary, they will be referred to a Dentist for further
consultation.

2.1.4 District Nurses

Northumberland District Nurses assess, prioritise and offer relevant district nursing care for
patients living in Northumberland. This service runs at the same time as the GP out-of-hours
service, but has a nurse team separate to those working on pathways, dental, and GP out-of-
hours.

2.1.5 Social Care Direct

Call handlers at NDUC take calls for Social Care Direct to be actioned by social workers based
at NDUC. In the case where the social worker decides there needs to be a face-to-face visit, one
of our drivers will take them to the consultation. This service only covers North Tyneside, and
runs at the same time as the GP out-of-hours service.

2.2 Problems in Call Centres

There are two main statistical problems investigated during this study:

1. General Forecasting:

- Which services are used more than others?

- How long do different services take?

- How many calls will arrive on any given day?

- When will these calls arrive throughout the shift?

2. Monitoring staff efficiency:

- Agree performance measurements for call handlers, nurses and GPs.

- Establish the distributions of time taken to deal with particular cases.

9



2.3 Problems with Data Collection

The function of the four main types of out-of-hours staff is detailed below:

Call handlers Answer calls and assign a prioity to each case. These will
be picked up by a nurse or GP

GPs Deal with all out-of-hours triages and consultations. They
also support NEAS through telephone triage

Nurses Deal with all dental out-of-hours triages. They support GP
out-of-hours by triaging routine cases

Drivers Drive GPs to a patient’s home

NDUC record around 200,000 calls, with over 100 fields, every year. Each service is extracted
and thrown into one all-encompassing data-dump. Cleaning protocols were established to make
sure we were including the correct information needed in each investigation. For example, our
commissioners are only interested in GP out-of-hours cases for performance reporting; however,
when considering GP staffing levels we need to make sure we include NEAS Clinician Support
calls as these will take time away from the GPs triaging GP out-of-hours cases. Similarly, nurses
help with routine GP out-of-hours cases, but also triage dental out-of-hours calls, and therefore
when investigating nurses we extract only these cases.

As well as this, information may be incorrectly entered into the system by users, and a
five year data-set will be large, requiring substantial computer power for manipulation and
modelling. In particular we faced the following problems in our data-dump, and we implemented
sense checks to ensure cases like these were removed:

- Consultation lengths lasting more than a day

- Calls ending before they started

- Triage occuring before the call enters the system

- Calls having a consultation without being triaged

The data collection process changed in October 2005 with the introduction of a new program
Adastra. This is explained in more detail in section 3.1.1, and was the only time the process
changed.

2.4 GP Out-of-hours Service

The GP out-of-hours service provides GP cover between 18:30 and 08:00 on weekdays, and all
day on weekends and bank holidays.

A patient rings the out-of-hours number and reaches a non-clinical call handler who records
some details. Using specific urgency criteria, the patient is assessed at this stage as being urgent
or routine. At the end of the call the call handler will advise the patient that a clinician will
call them back, within a particular time frame. In most cases, one of three things will happen
when the GP calls:

1. Patient’s symptoms requires advice over the telephone from a GP.

2. The GP decides face-to-face consultation is necessary and arranges an appointment for
the patient at one of the UCCs (with or without transport).

3. The GP decides face-to-face consultation is necessary and arranges for a GP to visit the
patient at their home.

10



Figure 2.1: Flow chart of basic patient path through the OOH service

This patient path is illustrated in Figure 2.1, along with the KPIs aound time frames of waits
for patients.

Nearly all cases are triaged by GPs who are based at the call centre, and these triage GPs
choose the case outcome of telephone advice, centre visit, or home visit.

For centre visit consultations, there is a GP based at one of the seven UCCs, with 10 minute
appointment slots. If the GP has gaps in appointments, they will dip into the triage queue
remotely, as and when they can. This may be when the call centre is under pressure and close
to missing triage KPIs, while the UCC’s KPIs are fine, or when the centres are quiet.

For home visits, one of the GPs based at the call centre will be driven in one of NDUC’s
fleet vehicles, by a driver, to the patient’s home. The length of consultation here is likely to be
longer than for centre visits, as these are generally disposed to more complicated cases. At the
end of consultation, provided the patient’s needs have been met, the GP will either travel back
to NDUC base, or to another home visit case.

2.4.1 Quality Standard Reports

NDUC report monthly on its performance to their commissioners with respect to the following
Key Performance Indicators (KPIs):

1. Time to triage.

- Urgent calls triaged within 20 minutes.

- Routine calls triaged within 60 minutes.

2. Time to Centre Visit assessment

11
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Figure 2.2: The sequential system of NDUC

- Urgent cases seen within 2 hours of the end of telephone triage.

- Routine cases seen within 6 hours of the end of telephone triage.

3. Time to Home Visit assessment

- Urgent cases seen within 2 hours of the end of telephone triage.

- Routine cases seen within 6 hours of the end of telephone triage.

With the above targets NDUC will report as being:

- fully compliant if they achieve 95% or higher,

- partially compliant if they achieve between 90% and 95%, or

- non compliant if they achieve less than 90%.

2.4.2 Three-server System

With respect to the KPIs, NDUC run a three-server system as illustrated in figure 2.2. A patient
enters the system waiting for telephone triage (server 1), and then either receives telephone
advice (leaves the system), waits for a centre visit appointment (server 2), or waits for a home
visit consultation (server 3). To analyse such a system, and keep track of the KPIs in section
2.4.1, we need to keep track of the number of patients at server 1, server 2 and server 3.

2.5 Exploratory Data Analysis

2.5.1 Dental

Before analysing the GP out-of-hours service, we investigated the smaller dental service, to give
us an idea of what we faced, and motivate the main work of this thesis. We took a section of
data, and without knowing much about the service, tried to summarise its demand.

The dataset consisted of all dental calls arriving into NDUC in the financial year 2007-08.
There were 7,160 such calls in this time, and we began by investigating hourly call volume.

12



Let h = (h0, h1, ..., h22, h23) denote the total calls arriving in each hour (00:00-00:59, 01:00-
01:59,..., 23:00-23:59), and n be the number of distinct days over the whole dataset. In this
case, n = 366, as 2008 was a leap year and our date range ran from 1st April 2007 until 31st

March 2008. Define the daily average, h̄, by:

h̄ =
h
n

(2.1)

Next we assess the difference from the overall hourly average for eight different days; Mon-
days, Tuesdays, ..., Saturdays, Sundays, Bank Holidays. For each day i, (i = 1, ..., 8), define
hi = (hi,0, hi,1, ..., hi,22, hi,23) as the total calls arriving in each hour on that particular day, and
ni as the number different occurrances of that particular day. Define the daily hourly averages,
h̄i, i = (1, ..., 8), by:

h̄i =
hi
ni

(2.2)

Apply the same process to assess the difference from the overall hourly average for different
months, to understand seasonal variation. For each month, define hj = (hj,0, hj,1, ..., hj,22, hj,23),
where j = (1, ..., 12), as the total calls arriving in each hour on that particular month, and nj as
the number days of that particular month. Define the monthly hourly averages h̄j , j = (1, ..., 12),
by:

h̄j =
hj
nj

(2.3)

We explore how the call arrivals behave with respect to day of week by considering figure
2.3. This figure shows the difference between the daily hourly averages, and the overall hourly
average (h̄i − h̄). It seems that Saturday mornings, on average, are busier than Bank Holiday
mornings, which are busier, on average, than Sunday mornings. Friday evenings, on average,
are busier than any other evening. Referring back to the comment dental out-of-hours (section
2.1.3) the service operates between 18:30 - 23:00 on weekdays, and 09:00 - 22:00 on weekends and
bank holidays. There is no contribution of calls coming in between 09:00 - 18:30 on weekdays,
and the shape of the graph is not unsurprising.

We apply the same method to see how month affects the service. Figure 2.4 shows the
difference between the monthly hourly averages and the overall hourly average (h̄j − h̄), split
into four plots containing the months of Spring, Summer, Autumn, and Winter. Summer and
Autumn, are generally lower than average, and Winter and Spring are generally above average.
Some may be surprised with the ‘busy Spring’ effect, but it should be noted that when you
define Spring in this way (months March, April and May), it will always contain three Bank
Holidays; Easter and two May Bank Holidays. This is likely to influence why Spring is busier,
rather than the season.

Although these are very crude explorations of the data, they were still capable of revealing
aspects which had never been seen in NDUC before. These summaries motivated the method
used for forecasting GP out-of-hours calls, which is discussed in greater detail in chapter 3.
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2.5.2 Resource allocation

How should NDUC staff to meet demand? To motivate ideas about how we should approach
such a question, consider the home visit consultation stage, or server 3 in figure 2.2. Here, a
patient’s call has been triaged by a GP, and that GP has told them that someone will visit their
house within a certain time. Then another GP will be driven to the patient’s home, anywhere
in Northumberland, North Tyneside, Newcastle, or South Tyneside.

This in itself has its own complications. The number of vehicles in our fleet is fixed at 15,
so there can never be more than 15 visits occurring at any one time. Geographical factors need
to be taken into account: Northumberland is rural, and patients living in Berwick are about 60
miles from our call centre; the River Tyne separates South Tyneside from our headquarters, so
travelling there means we must use the tunnel or bridge, which are often congested.

Ignoring the complications for now, let’s model this purely in a demand-based way. Consider
figure 2.5, which shows a timeline of a Saturday shift running from 08:00 that morning until
07:59 the next day. In what follows, consider the graph between 08:00 - 23:59. The blue line
is a model fit of home visit consultations that will arrive in any hour1. This peaks at about 11
visits between 10:00-12:59, decreasing until 15:59, before slowly levelling off. Let’s now assume
that one GP can consult with one home visit case in an hour.

Next look at the orange and black solid lines in the figure, which represent the number of
home visit GPs and drivers on shift, respectively. You should notice that there are always more
drivers on shift than GPs to do home visits. There should always be a spare driver in the case
of car breakdowns, or collisions. At 16:00 something strange seemed to happen: the number of
visiting GPs decreased and the number of drivers stayed the same, causing an unnecessary gap
in the resource. There is a back up of potential GPs that can be pulled from triage to do home
visits (dashed orange line), but that doesn’t happen often in practice. Therefore understanding
the business case and being able to identify a wasteful use of resources would be very useful to
NDUC.

2.5.3 Moving forward

We have briefly discussed the issues we are likely to face when undertaking this research, and
have also given an argument for the necessity of this work. Firstly, it is essential for out-of-hours
healthcare providers to have accurate forecasting, allowing for complicated seasonal and holiday
components, that they may be unable to produce through being a small company subject to
tight funding. Secondly, they need visual aids that are quick and easy to produce to help
them with resource allocation. Most staff at NDUC were unaware of the overstaffing of drivers
illustrated in figure 2.5, because the drivers rota was tweaked on several different occasions,
resulting in a mismatch.

In what follows we take a deeper look into these issues, and make suggestions for practical
and transferrable solutions to GP out-of-hours providers.

1The model fit is obtain from applying the Daily Profile model set up in chapter 4 to arrival rates of home
visits at NDUC
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Chapter 3

Modelling Call Centre Demand

Understanding call volume at NDUC is essential for the operations team, and this chapter
introduces the methods used to address this problem. Before we begin, we split the investigation
into two parts:

1. Inter-day (day-to-day) call demand

2. Intra-day (within-day) call demand

This chapter will focus on the first problem, with the latter being explored in chapter 4.
It may be curious to the reader why we model these separately, and the main reason came

from the fact that 1. and 2. served different purposes, and were addressed at different stages of
the project. Day-to-day call demand would run from midnight to midnight, and would be used
externally to illustrate activity levels. Within-day call demand would run over shifts and was
designed as an internal communication, to help with staffing levels. It could be argued, however,
that inter-day and intra-day call demand are correlated; indeed Avramidis et al.[7] investigate
the property that there is correlation between arrival counts during parts of the day, as well as
dependency between arrival counts on successive days. For this research, it didn’t matter if we
detached these, provided the models worked well independently. Therefore we will ensure both
models adjust appropriately for seasonal and holiday effects, and progress with them separately.

3.1 Data Collection

The data was extracted from the database at NDUC, and is every out-of-hours case since
January 1st 2005. This refers to cases in our contracted PCT areas that end up as:

- Telephone advice,

- a centre visit (with or without transport (PTS)),

- a home visit, or

- an A&E Referral (cases referred to our UCCs from A&E departments for GP consultation)

The R output below shows a summary of the dataset (dprof.2) running between 1st January
2005 and 1st September 2010, which we will be using to forecast activity into the call centre.
You can see there are several fields identifying date, day of week, month, and year as well as
dummy variables flagging holiday effects like Easter and Christmas.

> summary(dprof.2)
constype month Date dow

A&E Referral : 52202 Min. : 1.000 Min. : 1.00 Min. :1.000
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Casualty Call : 22253 1st Qu.: 3.000 1st Qu.: 8.00 1st Qu.:1.000
Centre Visit :185735 Median : 6.000 Median :16.00 Median :4.000
Home Visit :115811 Mean : 6.252 Mean :15.81 Mean :4.115
PTS Centre Visit: 18731 3rd Qu.: 9.000 3rd Qu.:24.00 3rd Qu.:7.000
Telephone Advice:200248 Max. :12.000 Max. :31.00 Max. :7.000

hour hoursplit doy year
Min. : 0.00 Min. : 1.000 1 : 3766 2005:102043
1st Qu.: 9.00 1st Qu.: 4.000 360 : 3697 2006:105055
Median :14.00 Median : 7.000 2 : 3233 2007:109745
Mean :13.98 Mean : 6.505 361 : 3174 2008:103536
3rd Qu.:19.00 3rd Qu.: 9.000 84 : 3059 2009:108081
Max. :23.00 Max. :12.000 3 : 3052 2010: 66520

(Other):574999
bankhol hourq hourh realdate
Mode :logical Min. :1.000 Min. :1.000 27.12.2008: 1156
FALSE:562983 1st Qu.:2.000 1st Qu.:1.000 18.7.2009 : 1088
TRUE :31997 Median :3.000 Median :2.000 3.1.2005 : 1077
NA’s :0 Mean :2.502 Mean :1.504 29.12.2007: 1006

3rd Qu.:3.000 3rd Qu.:2.000 26.3.2005 : 996
Max. :4.000 Max. :2.000 19.7.2009 : 985

(Other) :588672
realtime xmas nyd xmasbh

18.2 : 27704 Mode :logical Mode :logical Mode :logical
19.1 : 25479 FALSE:592780 FALSE:591214 FALSE:568576
19.2 : 23661 TRUE :2200 TRUE :3766 TRUE :26404
20.1 : 22231 NA’s :0 NA’s :0 NA’s :0
20.2 : 21399
9.1 : 20723
(Other):453783
easterbh easterfri eastersat eastersun
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:576365 FALSE:590417 FALSE:589615 FALSE:590709
TRUE :18615 TRUE :4563 TRUE :5365 TRUE :4271
NA’s :0 NA’s :0 NA’s :0 NA’s :0

eastermon otherbh bhsat bhsun
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:590564 FALSE:560518 FALSE:582620 FALSE:583997
TRUE :4416 TRUE :34462 TRUE :12360 TRUE :10983
NA’s :0 NA’s :0 NA’s :0 NA’s :0

bhmon maybhsat maybhsun maybhmon
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:583861 FALSE:586459 FALSE:587310 FALSE:587262
TRUE :11119 TRUE :8521 TRUE :7670 TRUE :7718
NA’s :0 NA’s :0 NA’s :0 NA’s :0
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augbhsat augbhsun augbhmon we
Mode :logical Mode :logical Mode :logical Mode :logical
FALSE:591141 FALSE:591667 FALSE:591579 FALSE:234773
TRUE :3839 TRUE :3313 TRUE :3401 TRUE :360207
NA’s :0 NA’s :0 NA’s :0 NA’s :0

wd
Mode :logical
FALSE:360207
TRUE :234773
NA’s :0

We began with these restrictions as these are the cases used in the quality assessment of
our service with respect to the six KPIs introduced in section 2.4.1. Every year NDUC records
around 100,000 such out-of-hours cases (as can be seen from the R output under the field year).

The data was extracted and saved as a .csv file before exporting it into the statistical program
R for analysis [20]. The R system implements a dialect of the S language that was developed by
AT&T Bell Laboratories by Rick Becker, John Chambers and Allan Wilks. Versions of R are
available free of charge for 32-bit versions of Microsoft Windows, Linux and other Unix systems,
and the Macintosh. It is available through the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/.

We now move on to discuss how to build a model that can predict how many calls will arrive
into the call centre on any given day. First, you have to have an idea of the sorts of things
that will influence call volume. For example, there should be a ‘day of week’ effect because the
out-of-hours service runs for 14.5 hours on weekdays, and all day Saturdays, Sundays, and bank
holidays. You may also suspect that volumes are higher in winter than summer, due to longer
vacations, and fewer incidences of influenza.

3.1.1 Cleaning the dataset

We began exploring the dataset by aggregating the cases over individual dates, and plotting
them. Figure 3.1 illustrates the first data extract for calls per day for dates between January 1st

2005 and October 31st 2008 (observations y1, ..., y1400). This picture has two distinct patterns:
one for weekdays (along the bottom), and one for weekends and bank holidays (along the top).
The weekday pattern shows call volume ranges between about 100-200 calls per day, with a
slight wave, peaking around winter months. The top pattern is clearly oscillating around winter
months, and has two peaks every year; the Christmas fortnight and Easter weekend.

Before continuing with any analysis, there were three things which made us question the
cleanliness of this data extract: the notable jump, around October 2005, and possible irregu-
larities around June 2005 and June 2006. Discussions with the IT department highlighted the
following reasons to explain these irregularities:

1. In October 2005 a new program, Adastra, was introduced into NDUC as a means of
recording details. This meant there were more fields to include, and the exclusion criteria
used in Microsoft Access to extract the data, had changed.

2. Servers crashed on shift Thursday 30/06/2005. This meant that cases were recorded on
paper on this day, and input into the system on Friday 01/07/2005.
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Figure 3.1: Calls per day between 01/01/2005 and 31/10/2008

3. There were server problems in June 2006 for two weeks, resulting in inaccuarate calls per
day between Sunday 10/06/2006 and Wednesday 05/07/2006.

The following process was put in place to create a second dataset to use for analysis:

1. The data was extracted from the database again, with updated exclusion commands in
Microsoft Access.

2. Observations y181 (Thursday 30/06/2005) and y182 (Friday 01/07/2005) were replaced.

3. Observations y526, ..., y551 (Sunday 10/06/2006 to Wednesday 05/07/2006) were replaced.

The first part of the cleaning process is self explanatory. The second and third parts used
averages and linear regression as the method for replacement.

Consider observations y181 (Thursday 30/06/2005) and y182, and calculate the aggregate
call volume

Y = y181 + y182,

over these two days. Y seemed realistic over a normal Thurday and Friday, so we calculated T
and F , the sum of calls per day on Thursdays and Fridays, respectively,

T =
∑

Thursdays

yi

F =
∑

Fridays

yi.
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Figure 3.2: Calls per day between 01/01/2005 and 30/06/2009

The proportion p = T/(T +F ) was calculated and observations y181, y182 were replaced by pY ,
and (1− p)Y respectively.

Next, consider observations y526, ..., y551 (Sunday 10/06/2006 to Wednesday 05/07/2006).
These 26 observations were summed to give

Z = y526 + ...+ y551,

and this seemed realistic over the time period. Given the amount of days in this period, it
did not seem appropriate to replace these observations with averages. Therefore we tried back-
forecasting, using the model defined in equation 3.21 which is developed later in this chapter.
Equation 3.21 was used to produce fits for these days and these were summed to give

Ẑ = ŷ526 + ...+ ŷ551.

The proportion q = Z/Ẑ was calculated, and (y526, ..., y551) were replaced with q(ŷ526, ..., ŷ551).
Figure 3.2 shows the second dataset for calls per day between January 1st 2005 and June

30th 2009 (observations y1, ..., y1642). The only calculated replacements of observations remain
as described, and the October 2005 jump has disappeared.

3.1.2 Accessing archived data

Before we started forecasting and planning for the Christmas period 2009, we were aware that
our model would be restricted by a lack of Christmas holiday observations. We discovered
that NDUC archived its monthly Quality Standards Reports (QSRs), which publish monthly

22
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Figure 3.3: Calls per day between 01/11/2004 and 30/06/2009

performance for our commissioners, as well as activity levels, and calls per day. From this
we were able to find a table recording calls per day for November 2004 and December 2004
(x1, ..., x61). These observations are included in figure 3.3.

Next, we checked the validity of these new observations. To do this we added the new dates to
the start of the dataset, observations x1, ..., x61, and y1, ..., y1642. Then use the latest predictive
model to obtain fit errors for x̂1, ..., x̂61, and ŷ1, ..., ŷ1642 (see section 3.4 for the establishment
of the model used to generate these). Finally, split the dataset in to two parts:

1. a = a1, ...a1642: the fit errors for ŷ1, ..., ŷ1642 (01/01/2005 - 30/06/2009)

2. b = b1, ...b61: the fit errors for x̂1, ..., x̂61 (01/11/2004 - 31/12/2004)

Let fa(a) and fb(b) be the distribution functions of a and b, respectively. To check whether
the new data is trustworthy consider the null hypothesis (H0) that the distribution function of
b is equal to the distribution function of a, that is:

H0 : fa(a) = fb(b)

HA : fa(a) 6= fb(b)

We test the above hypothesis by using three statistical tests: the two-sample Kolmogorov-
Smirnov test, the two-sample t-test, and the two-sample Wilcoxon test (or Mann-Whitney test),
to test for the same distribution, means and median respectively. If we fail to reject the null
hypothesis, then we would include the new observations in our dataset. The details of this are
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discussed in this chapter in section 3.5, after we establish the predictive model in section 3.4. In
what follows, the description of building the model assumes we fail to reject the null hypothesis,
and use the dataset 01/11/2004 - 30/06/2009.

3.2 Possible Modelling Approches

Alternative approaches to modelling call centre demand are well documented in Shen and
Haung’s paper [21], which includes discussions on Singular Value Decomposition, ARIMA (Au-
toregressive Integrated Moving Averages), and Bayesian Gaussian Models. These methods have
been applied to core call centre operations, where profitability is often central to the company
implementing them, for example, Bank Customer Helplines. The forecasts we generated were
not from a regular telephone system, but instead were generated by call handlers. There are
clear guidelines about which cases go through as ‘real’ out-of-hours cases and whether they
should be routine or urgent. We are not forecasting calls arriving into our telephone line, but
out-of-hours cases being generated by call handlers, so the traditional call centre methods may
not be appropriate.

The U.S. Census Bureau’s software package for seasonal adjustment, X-12-ARIMA, was also
considered, for which documentation can be found online, and in Ladiary and Quenneville’s book
[17]. On testing the software in November 2008 we could not break it down to forecast to the
level that we wanted - daily, and 30 minute arrival rates, so we had to consider another method.

We sought an alternative approach through linear regression. This would be useful as it
handles dummy variables easily, and we would have several of these identifying different holiday
effects. On the other hand, we could not forget the underlying assumptions of modelling in this
way, particularly Normality of errors. Checks would be made throughout the process to ensure
this method was appropriate.

3.3 Linear Regression

A linear model assumes a straight line relationship to summarise the dependence of one variable
over another. Denote the response variable by Y , which depends on p covariates Z [15]. In our
case the response variable is calls per day, or CPD, and the covariates have to be established.
The linear model assumes that for given Z, a corresponding observation CPD is a combination
of β0 + βZ and an error ε, that is:

CPD = β0 + βZ + ε, (3.1)

where β is a vector with p elements. Equation 3.1 is the linear model. β0 + βZ is the model
function, and β0 and β are parameters. Denote the total number of previous observations of
CPD as nCPD. We can generate estimates of CPD for i = 1, ..., nCPD through the equation:

ĈPDi = β̂0 +
p∑
j=1

β̂jzij , (3.2)

from obtaining a least squares estimation of β = β0, ..., βp. Estimating the coefficients β in
this way means we can estimate the error ε by ε̂i = CPDi− ĈPDi. In other words, the residual
is equal to the observed value minus the fitted value, for i = 1, ..., n.

From this we can get an unbiased estimate of σ2, s2, defined below:

s2 =
ε̂21 + ...+ ε̂2n

n− p
=
RSS

n− p
, (3.3)

where RSS stands for the residual sum of squares, n is the number of observations, and p
is the number of covariates.
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3.3.1 Stepwise Regression

It was clear modelling CPD would depend on a number of covariates, so we used stepwise
regression [15] to build the final linear model. Here we choose the Z most correlated with
CPD, model CPD = β0 + β1Z + ε, and check if Z is significant. If it’s not, adopt the model
CPD = CPD, if it is, search for a second covariate to enter the model. We already know day
of week (dow) will have an effect on CPD due to different opening hours, so we begin with a
base model:

CPD = β0 + β1dow + ε (3.4)

3.3.2 Selection Criterion: AIC

The next problem we faced was deciding what the other relevant covariates were. In practice
we need to define a suitable selection criterion that will test whether different terms add value
to a model, or take it away.

Akaike defined an information criterion, AIC [9], as

AIC = −2 log(L(θ̂|y)) + 2K, (3.5)

where L(θ̂|y) is the likelihood of the estimated parameter θ, given observations y, and K is
the number of estimable parameters. In the least squares case, using linear regression, this is

AIC = n log(s2) + 2K, (3.6)

where s2 is the unbiased estimate of σ2, and K is the total number of estimated regression
parameters, including the intercept and σ2, so K = p+ 2, where p is the number of covariates.

3.3.3 Selection Criterion: Cp

Consider a submodel CPDI with pI covariates, which is different to the full model CPD which
has p covariates. Define the residual sum of squares of the submodel as RSSI . Colin Mallows
[18] defined the Cp statistic stated in equation 3.7, where s2 is the usual estimate of σ2 in the
full model.

Cp =
RSSI
s2

+ 2pI − n (3.7)

When pI = p, Cp = p [15], so good candidates for submodels are ones where:

1. Cp ≤ pI

2. pI is as small as possible.

The next section shows the steps taken to finalise the model for predicting CPD.

3.4 Establishing the model

3.4.1 List of possible Covariates

Before building the CPD model, table 3.1 states a list of plausible covariates with a short
justification to why they should be considered for inclusion to the model. Then we show the
thought process behind stepwise selection of the model.
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Covariate Explanation Justification
dow Day of week Out-of-hours service runs for 14.5 hours on week-

days and 24 hours on weekends and we suspect
that Mondays are busier than other weekdays.

month Month We suspect that summer months will be quieter
than winter months due to holidays and low rates
of influenza.

year Year Are there differences in demand between years?
time Chronological date Are there changes in demand over time? For ex-

ample do patient’s attitudes change to the out-
of-hours service after publicity campaigns or high
profile news stories?

easterbh Easter weekend Busier than normal Fridays-Mondays in March
and April.

easterfri Good Fridays Busier than normal Fridays in March and April.
eastersat Easter Saturday Busier than normal Saturdays in March and

April.
eastersun Easter Sunday Busier than normal Sundays in March and April.
eastermon Easter Monday Busier than normal Mondays in March and April.
eastmarch Easter holidays in March Expect Easters in March to be busier than April

as the weather tends to be colder.
otherbh Bank Holiday weekends in May and

August
We expect these days to be busier than normal
Saturdays-Mondays in May and August.

bhsat Bank Holiday Saturdays Busier than normal Saturdays in May and Au-
gust.

bhsun Bank Holiday Sundays Busier than normal Sundays in May and August.
bhmon Bank Holiday Mondays Busier than normal Mondays in May and August.
maybhsat Bank Holiday Saturdays in May Busier than normal Saturdays in May.
maybhsun Bank Holiday Sundays in May Busier than normal Sundays in May.
maybhmon Bank Holiday Mondays in May Busier than normal Mondays in May.
augbhsat Bank Holiday Saturdays in August Busier than normal Saturdays in August.
augbhsun Bank Holiday Sundays in August Busier than normal Sundays in August.
augbhmon Bank Holiday Mondays in August Busier than normal Mondays in August.
maybh1 First May Bank Holiday weekend Busier than other Bank Holiday weekends.
xmaswd Christmas Day falls on a weekday Busier than a normal weekday in December.
xmaswe Christmas Day falls on a weekend Different to a normal weekend in December.
xmasbhwd Christmas holidays on weekdays Public holidays on weekedays will be busier than

normal weekdays in December and January.
xmasbhwe Christmas holidays on weekends Busier than normal weekends in December and

January
nydwd New Years Day falls on a weekday Busier than a normal weekday in January.
nydwe New Years Day falls on a weekend Different to a normal weekend in January.
xmas4day1 Days following Christmas when its a

four-day holiday cycle
Unknown influence of the difference between a
four-day Christmas holiday versus a two-day
Christmas holiday.

Table 3.1: List of plausible covariates to predict CPD
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3.4.2 Assessing daily and monthly effects

Equation 3.4 is the base model and we now assess if it is advantageous to include any other
terms in the model. To assess the seasonal effect define month, to denote the twelve months in a
calendar year (January, ..., December) and let year denote the years in the dataset (2004, 2005,
2006, 2007, 2008, and 2009). Note that dow, month, and year are factors, denoting dummy
variables for each category. Finally, define time as the chronological date factor starting from
01/11/2004 until the end of the dataset.

Consider the three linear models defined in equations 3.8, 3.9, and 3.10.

CPD = β0 + β1dow + β2month+ ε (3.8)

CPD = β0 + β1dow + β2month+ β3year + ε (3.9)

CPD = β0 + β1dow + β2month+ β3year + β4time+ ε (3.10)

In R, you can use the function step, to select a linear model by AIC in a stepwise algorithm.
To start with, define the linear model of the starting point, in this case equation 3.4. Next
define the range of models to be examined in the stepwise search. This can be done with a list
containing components lower, equation 3.4, and upper, equation 3.10. Next you control the
argument scale which defines the AIC statistic used for selecting the models. In this instance
we use the estimate of σ2 from the largest model, that is s2 as generated from equation 3.10.
Defining the function in this way is equivalent to using the Cp statistic in our selection process.
Finally, we specify the direction as being “forward”.

It is important to comment here on the choice of our direction. It is well documented [15]
that forward selection is less effective than “both” or “backward”, which can be chosen when
using step in R. This is because forward selection ensures that covariates added to the model,
are not subsequently removed, and therefore does not guarantee a good model. Since we had
no starting point, and the “forward” selection is relatively simple, we progresssed in this way,
performing other checks as the model was built.

The R output below shows the output for the function step applied as described above. It
starts with the model in equation 3.4, and assesses how adding month, year, time, or no term
affects the model. In the first step month gives the lowest value of Cp = 30.251. Therefore we
add month into the model and move to the next step. Step 2 (where AIC = 30.25) now assesses
whether adding year, time, or no term affects the model. time and year both have a lower
value of Cp and we add in time and move to the next step. Finally, year gives a lower Cp than
adding no term, so the base model moves from equation 3.4 to equation 3.10.

Start: AIC=201.42
CPD ~ dow

Df Sum of Sq RSS Cp
+ month 11 1814593 17766226 30.251
+ year 6 156953 19423866 196.711
<none> 19580819 201.419
+ time 1 12751 19568068 202.061

Step: AIC=30.25
CPD ~ dow + month
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Df Sum of Sq RSS Cp
+ time 1 37726 17728500 28.235
+ year 6 125078 17641148 28.937
<none> 17766226 30.251

Step: AIC=28.24
CPD ~ dow + month + time

Df Sum of Sq RSS Cp
+ year 6 143120 17585380 25.000
<none> 17728500 28.235

Step: AIC=25
CPD ~ dow + month + time + year

This decision is, of course, supported by the Analysis of Variance table, shown below in
the R output. Terms year, and time are statistically significant at the 5% level, and month is
extremely influential. Therefore adding these terms to the model will be worthwhile, assuming
we trust the p values. Equation 3.10 remains as the base model.

Analysis of Variance Table

Model 1: CPD ~ dow
Model 2: CPD ~ dow + month
Model 3: CPD ~ dow + month + year
Model 4: CPD ~ dow + month + year + time
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1890 19580819
2 1879 17766226 11 1814593 17.5607 < 2e-16 ***
3 1873 17641148 6 125078 2.2191 0.03877 *
4 1872 17585380 1 55768 5.9367 0.01492 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Below shows the R output summarising the model in equation 3.10. The baseline day of
week, month and year are Monday, January and 2004, respectively. Day of week is most signif-
icant, with Monday being the busiest weekday, and Wednesday being the quietest compared to
it. Saturdays and Sundays are significantly busier than Mondays. January is the busiest month
with February, and June - September being significantly quieter at the 1% level of significance,
which we would certainly expect in the summer months. Finally, year and time effects are only
significant at the 10% level and have conflicting suggestions. Compared to 2004 the volume
has been decreasing, year after year. However, there appears to be a very small, and perhaps
negligible, increase as time continues to move on. Noting this unusual characteristic, we will
ignore it for now, and see if adding further terms to the model addresses this.

Call:
lm(formula = CPD ~ dow + month + year + time, data = cpd)

Residuals:
Min 1Q Median 3Q Max

-321.96 -39.03 -10.87 14.79 1032.62
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -6055.5520 3311.8497 -1.828 0.06766 .
dow[T.Tue] -52.1841 8.7426 -5.969 2.91e-09 ***
dow[T.Wed] -62.8096 8.7520 -7.177 1.07e-12 ***
dow[T.Thu] -56.7820 8.7518 -6.488 1.14e-10 ***
dow[T.Fri] -47.8778 8.7521 -5.470 5.17e-08 ***
dow[T.Sat] 461.9110 8.7521 52.777 < 2e-16 ***
dow[T.Sun] 354.4505 8.7517 40.501 < 2e-16 ***
month[T.Feb] -36.7717 13.7276 -2.679 0.00746 **
month[T.Mar] -28.4441 19.2083 -1.481 0.13884
month[T.Apr] -33.9393 26.3280 -1.289 0.19754
month[T.May] -48.6681 33.8427 -1.438 0.15060
month[T.Jun] -115.7716 41.6356 -2.781 0.00549 **
month[T.Jul] -133.6434 49.6752 -2.690 0.00721 **
month[T.Aug] -149.2879 57.7313 -2.586 0.00980 **
month[T.Sep] -187.3714 65.7251 -2.851 0.00441 **
month[T.Oct] -188.0671 73.7129 -2.551 0.01082 *
month[T.Nov] -198.0976 81.7105 -2.424 0.01544 *
month[T.Dec] -115.2010 89.7496 -1.284 0.19947
year2005 -192.2006 98.3032 -1.955 0.05073 .
year2006 -367.8767 194.9872 -1.887 0.05938 .
year2007 -538.2789 292.0269 -1.843 0.06547 .
year2008 -740.1746 389.3895 -1.901 0.05749 .
year2009 -930.7035 486.6429 -1.912 0.05598 .
time 0.5047 0.2664 1.895 0.05828 .
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 96.56 on 1679 degrees of freedom
Multiple R-squared: 0.8274, Adjusted R-squared: 0.8251
F-statistic: 350 on 23 and 1679 DF, p-value: < 2.2e-16

Looking at the standardised residual plot in figure 3.4 there is a lack of fit repeating itself
year on year around certain holidays. This is not unexpected; during bank holiday weekends
our service is open for 24 hours on the Monday, compared to 14.5 hours on a normal weekday.
To conclude this section equation 3.10 becomes the base model, and we proceed by searching
for holiday effects.
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Figure 3.4: Standardised residual plot for equation 3.10 between 01/11/2004 and 30/06/2009
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3.4.3 Easter

Easter is a weekend spanning holiday from Good Friday to Easter Monday. Do the Saturdays
and Sundays over this holiday behave differently to normal Saturdays and Sundays in March
or April? Does it matter whether Easter is in March or April?

Define the following variables to test this:

- easterbh: any Friday, Saturday, Sunday or Monday of an Easter weekend between 2005
and 2009.

- easterfri, eastersat, eastersun, and eastermon: separate variables for Good Friday,
Easter Saturday, Easter Sunday and Easter Monday

- eastmarch: True if Easter holidays occur in March.

Note here that it is important to fit the models hierarchically [15], that is, check whether
easterbh is worth fitting before going down to individual day level easterfri, ..., eastermon.
To do this, define three more linear models:

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β4easterbh+ ε (3.11)

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+ ε (3.12)

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9eastmarch+ ε (3.13)

First assess whether it is worth incorporating a term for the Easter. The R output below
shows that including easterbh gives a much lower value for Cp (26.0 rather than 392.2), so
equation 3.11 then becomes the base model.

Start: AIC=392.2
CPD ~ dow + month + year + time

Df Sum of Sq RSS Cp
+ easterbh 1 2891604 14693776 26.0
<none> 17585380 392.2

Step: AIC=26
CPD ~ dow + month + year + time + easterbh

Now we need to decide whether it’s better to fit to the level of individual days. That is,
is equation 3.11 or equation 3.12 a better model? The Analyisis of Variance output below
comparing equation 3.11 and equation 3.12 shows that equation 3.12 should now become the
base model.
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Analysis of Variance Table

Model 1: CPD ~ dow + month + year + time
+ easterbh
Model 2: CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1871 14693776
2 1868 13939947 3 753829 33.672 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Finally, we assess whether equation 3.13 is a better model than equation 3.12. That is, does
it matter whether Easter is in March or April? The R output from the step function gives a
lower value of Cp when we do not include eastmarch (28.047 rather than 30.000). Therefore
equation 3.12 remains as the base model.

Start: AIC=28.05
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon

Df Sum of Sq RSS Cp
<none> 13939947 28.047
+ eastmarch 1 353 13939594 30.000

The conclusion for Easter is that we improve the model by fitting individual Easter days,
and that Easters in March do not differ considerably to Easters in April, having adjusted for
other factors.

Below shows the R output summarising the model in equation 3.12. The day of week,
month, time and year effects behave similarly to before, and here you can see that the days
of the Easter weekend are significantly busier than normal Fridays, Saturdays, Sundays and
Mondays, as expected.

Call:
lm(formula = CPD ~ dow + month + year + time + easterfri +

eastersat + eastersun + eastermon, data = cpd)

Residuals:
Min 1Q Median 3Q Max

-321.247 -33.140 -5.899 15.007 1028.585

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -5392.8267 2903.9437 -1.857 0.06348 .
dow[T.Tue] -41.0120 7.7051 -5.323 1.16e-07 ***
dow[T.Wed] -51.4906 7.7137 -6.675 3.35e-11 ***
dow[T.Thu] -45.5106 7.7134 -5.900 4.38e-09 ***
dow[T.Fri] -49.6622 7.7528 -6.406 1.94e-10 ***
dow[T.Sat] 468.1730 7.7528 60.387 < 2e-16 ***
dow[T.Sun] 362.3476 7.7525 46.739 < 2e-16 ***
month[T.Feb] -35.0777 12.0354 -2.915 0.00361 **
month[T.Mar] -45.7277 16.8614 -2.712 0.00676 **
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month[T.Apr] -60.8536 23.1198 -2.632 0.00856 **
month[T.May] -42.1859 29.6739 -1.422 0.15531
month[T.Jun] -107.5494 36.5071 -2.946 0.00326 **
month[T.Jul] -123.8422 43.5567 -2.843 0.00452 **
month[T.Aug] -137.8991 50.6203 -2.724 0.00651 **
month[T.Sep] -174.1453 57.6298 -3.022 0.00255 **
month[T.Oct] -173.2904 64.6340 -2.681 0.00741 **
month[T.Nov] -181.7975 71.6464 -2.537 0.01126 *
month[T.Dec] -97.0800 78.6955 -1.234 0.21752
year2005 -172.5695 86.1956 -2.002 0.04544 *
year2006 -328.6013 170.9720 -1.922 0.05478 .
year2007 -479.3329 256.0600 -1.872 0.06139 .
year2008 -661.5763 341.4311 -1.938 0.05283 .
year2009 -832.3885 426.7066 -1.951 0.05126 .
time 0.4509 0.2335 1.931 0.05370 .
easterfriTRUE 630.3294 38.5491 16.351 < 2e-16 ***
eastersatTRUE 245.6433 38.5459 6.373 2.39e-10 ***
eastersunTRUE 166.2178 38.5474 4.312 1.71e-05 ***
eastermonTRUE 545.1145 38.5525 14.140 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 84.65 on 1675 degrees of freedom
Multiple R-squared: 0.8677, Adjusted R-squared: 0.8656
F-statistic: 406.8 on 27 and 1675 DF, p-value: < 2.2e-16

Figure 3.5 shows the standardised residual plot for equation 3.12, which is an improvement
from figure 3.4, but there are clearly several other holiday effects to be taken into account.
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Figure 3.5: Standardised residual plot for equation 3.12 between 01/11/2004 and 30/06/2009
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3.4.4 Other Bank Holidays

There are three other bank holiday weekends throughout the year. These three-day weekends
span the Saturday, Sunday and Monday of the first Monday in May, the last Monday in May,
and the last Monday in August. Define the following variables and consider model equations
3.14 to 3.16:

- otherbh: any Saturday, Sunday or Monday of a May or August Bank Holiday weekend
between 2005 and 2009.

- bhsat, bhsun, and bhmon: separate variables for Saturdays, Sundays and Mondays, re-
spectively, over May and August Bank Holiday weekends

- maybhsat, maybhsun, maybhmon, augbhsat, augbhsun, and augbhmon: separate vari-
ables for Saturdays, Sundays and Mondays, depending whether they are in May or August
Bank Holiday weekends

- maybh1: The Saturday, Sunday and Monday of the Bank Holiday landing on the first
Monday in May.

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9otherbh+ ε (3.14)

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+ ε (3.15)

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9maybhsat+ β10maybhsun+ β11maybhmon+
+ β12augbhsat+ β13augbhsun+ β14augbhmon+ ε (3.16)

The R output below shows that otherbh is worth fitting, giving a Cp value of 30.00 as opposed
to 238.52 when adding no term, and equation 3.14 becomes the base model over equation 3.12.

Start: AIC=238.52
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon

Df Sum of Sq RSS Cp
+ otherbh 1 1412561 12527386 30.00
<none> 13939947 238.52

Step: AIC=30
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ otherbh
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As with Easter, we needed to assess whether other bank holidays should be fitted to the day
level Saturday, Sunday, and Monday, and whether it made a difference if the holidays occurred
in May or August. The Analysis of Variance table below shows that equation 3.15 would be
the best fit, and we fit to the day level, but not to the month level.

Analysis of Variance Table

Model 1: CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ otherbh
Model 2: CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
Model 3: CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ maybhsat + maybhsun + maybhmon +
+ augbhsat + augbhsun + augbhmon
Res.Df RSS Df Sum of Sq F Pr(>F)

1 1867 12527386
2 1865 10910108 2 1617278 138.4093 <2e-16 ***
3 1862 10878502 3 31606 1.8033 0.1445
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

During workforce planning for the August Bank Holiday 2009, I reconsidered the assumption
that these three weekends behaved similarly, and checked whether the first May Bank Holiday
would have an effect. Define the following linear model to assess this:

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1 + ε (3.17)

Equation 3.17 was considered against equation 3.15, and it was better to include maybh1
than not as illustrated in the R output below (a Cp value of 33 against 37.931). Equation 3.17
now became the base model. The standardised residual plot (figure 3.6) has also improved
again.

Start: AIC=37.93
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon

Df Sum of Sq RSS Cp
+ maybh1 1 40420 10869688 33.000
<none> 10910108 37.931

Step: AIC=33
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1

36



The conclusion for May and August Bank Holidays is that we improve the model by fitting
individual weekend days, and the model should also adjust for the first Bank Holiday weekend
in May.

The R output below shows the summary for the linear model in equation 3.17, and you can
see how it is developing. Now we have included quite a few holiday effects, and the difference
of days of week from Monday is not as large, although still exists. A Bank Holiday weekend is
busier for every day than a normal weekend, but is only significant for Sundays and Mondays.

Call:
lm(formula = CPD ~ dow + month + year + time + easterfri +

eastersat + eastersun + eastermon + bhsat + bhsun + bhmon +
maybh1, data = cpd)

Residuals:
Min 1Q Median 3Q Max

-322.240 -23.172 -3.136 14.280 1028.329

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -3672.3817 2570.1718 -1.429 0.153235
dow[T.Tue] -12.9719 6.8279 -1.900 0.057626 .
dow[T.Wed] -23.5134 6.8348 -3.440 0.000596 ***
dow[T.Thu] -17.6143 6.8340 -2.577 0.010038 *
dow[T.Fri] -21.6936 6.8684 -3.158 0.001615 **
dow[T.Sat] 493.1902 6.9654 70.805 < 2e-16 ***
dow[T.Sun] 385.3655 6.9649 55.330 < 2e-16 ***
month[T.Feb] -31.1115 10.5438 -2.951 0.003215 **
month[T.Mar] -37.8972 14.8489 -2.552 0.010793 *
month[T.Apr] -50.9031 20.4332 -2.491 0.012828 *
month[T.May] -64.4693 26.2002 -2.461 0.013969 *
month[T.Jun] -86.4860 32.2767 -2.680 0.007445 **
month[T.Jul] -98.4602 38.5191 -2.556 0.010672 *
month[T.Aug] -126.0263 44.5735 -2.827 0.004749 **
month[T.Sep] -140.2821 50.9817 -2.752 0.005994 **
month[T.Oct] -134.8497 57.1839 -2.358 0.018480 *
month[T.Nov] -139.4914 63.3929 -2.200 0.027913 *
month[T.Dec] -50.4094 69.6346 -0.724 0.469221
year2005 -121.5304 76.2659 -1.594 0.111235
year2006 -226.3892 151.3113 -1.496 0.134795
year2007 -325.8904 226.6244 -1.438 0.150616
year2008 -456.9342 302.1857 -1.512 0.130698
year2009 -576.5041 377.6611 -1.527 0.127072
time 0.3107 0.2067 1.503 0.133003
easterfriTRUE 626.7509 33.6017 18.652 < 2e-16 ***
eastersatTRUE 245.1564 33.6211 7.292 4.70e-13 ***
eastersunTRUE 167.8705 33.6196 4.993 6.56e-07 ***
eastermonTRUE 569.9252 33.6211 16.951 < 2e-16 ***
bhsatTRUE 27.5586 22.5745 1.221 0.222341
bhsunTRUE 61.4703 22.6170 2.718 0.006638 **
bhmonTRUE 454.2798 22.6781 20.032 < 2e-16 ***
maybh1TRUE 60.1034 24.3076 2.473 0.013512 *
---
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Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 73.79 on 1671 degrees of freedom
Multiple R-squared: 0.8997, Adjusted R-squared: 0.8979
F-statistic: 483.6 on 31 and 1671 DF, p-value: < 2.2e-16
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Figure 3.6: Standardised residual plot for equation 3.17 between 01/11/2004 and 30/06/2009
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Christmas
Day

Four-day
cycle?

Cycle Which day
of cycle is
Christmas
Day?

Historical
Information

Monday X Sat-Tue 3 X2006
Tuesday × × × X2007
Wednesday × × × ×
Thursday X Thu-Sun 1 X2008
Friday X Fri-Mon 1 ×2009
Saturday X Sat-Tue 1 X2004
Sunday X Sat-Tue 2 X2005

Table 3.2: The seven cycles of Christmas

3.4.5 Christmas and New Year

There are three public holidays over Christmas: Christmas Day (25th December), Boxing Day
(26th December), and New Year’s Day (1st January). Experience within NDUC suggests that
the placement of Christmas within the week may have a strong implication for call volumes. For
example, when Christmas falls on a Saturday, NDUC operates a ‘four-day’ weekend running
from Friday evening until Wednesday morning. If it falls on a Tuesday NDUC only operate
from Monday evening until Thursday morning. NDUC expect to see greater call volumes per
day if Christmas is on a Saturday compared to a Tuesday. Depending on what day of week
Christmas Day falls on, there are seven configurations of this holiday. These are illustrated in
table 3.2, which highlights four key points:

1. Four-day cycle: Depending on the first day of the configuration, NDUC may be opera-
tional for four days continuously. When this happens NDUC are under greater pressure
and in-hours administrative tasks, such as preparing the drugs boxes for prescriptions,
must take place while the service is live.

2. Cycle: Depending when Christmas falls there are three possible four-day cycles; Thursday
to Sunday, Friday to Monday, and Saturday to Tuesday. It is suspected that the different
cycle may influence call volume.

3. Which day of cycle is Christmas Day? : We know that in a four-day cycle Christmas Day
will be the quietest. Therefore, depending on when Christmas Day lies in the cycle, this
could influence call volume. It is suspected that the busiest cycle is when Christmas Day
is the first day of the cycle.

4. Historical information: Given the dataset, and the obvious importance of Christmas
holidays, there is only one observation of holidays where Christmas lands on a Saturday,
Sunday, Monday, Tuesday, and Thursday. There were no observations for Christmas
holidays starting on a Wednesday or Friday, and we were trying to fit a Friday configuration
in 2009. This emphasises the lack of data for possibly important features.

Define the following variables and use equation 3.18 to assess the Christmas and New Year
effect:

- xmaswe: True for Christmas Days on Saturdays or Sundays.

- xmaswd: True for Christmas Days on weekdays.
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- xmasbhwe: Saturdays and Sundays falling before and after Christmas Day, which are not
Christmas Day or New Years Day

- xmasbhwd: Weekdays given as public holidays for Boxing day, or weekdays given in lieu
of Christmas Day/Boxing Day falling on weekends.

- nydwe: True for New Years Days on Saturdays or Sundays.

- nydwd: True for New Years Days on weekdays.

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+ ε (3.18)

The following R output uses the step function to show that equation 3.18 should now be
the base model instead of equation 3.17.

Start: AIC=5623.38
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1

Df Sum of Sq RSS Cp
+ xmasbhwd 1 6071939 4832065 1466.6
+ nydwd 1 798598 10105406 5078.4
+ xmasbhwe 1 650959 10253045 5179.5
+ xmaswd 1 179307 10724696 5502.6
+ xmaswe 1 131306 10772698 5535.4
+ nydwe 1 5176 10898828 5621.8
<none> 10904004 5623.4

Step: AIC=1466.58
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd

Df Sum of Sq RSS Cp
+ xmasbhwe 1 909198 3922867 845.85
+ nydwd 1 815477 4016587 910.04
+ xmaswd 1 249743 4582322 1297.53
+ xmaswe 1 94980 4737085 1403.53
+ nydwe 1 5781 4826284 1464.62
<none> 4832065 1466.58
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Step: AIC=845.85
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe

Df Sum of Sq RSS Cp
+ nydwd 1 814232 3108635 290.17
+ xmaswd 1 298976 3623891 643.08
+ xmaswe 1 69311 3853556 800.38
+ nydwe 1 8324 3914543 842.15
<none> 3922867 845.85

Step: AIC=290.17
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + nydwd

Df Sum of Sq RSS Cp
+ xmaswd 1 297530 2811105 88.384
+ xmaswe 1 71682 3036953 243.072
+ nydwe 1 11063 3097572 284.591
<none> 3108635 290.168

Step: AIC=88.38
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + nydwd + xmaswd

Df Sum of Sq RSS Cp
+ xmaswe 1 67473 2743633 44.170
+ nydwe 1 10599 2800506 83.124
<none> 2811105 88.384

Step: AIC=44.17
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + nydwd + xmaswd + xmaswe

Df Sum of Sq RSS Cp
+ nydwe 1 10469 2733164 39.00
<none> 2743633 44.17
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Step: AIC=39
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + nydwd + xmaswd + xmaswe + nydwe

The R output below shows the summary for the linear model in equation 3.18, and you
can see quite a change after the inclusion of Christmas covariates. Monday is still the busiest
weekday, but Thursdays are no longer significantly quieter. Month, year and time effects are
no longer significant, and only June to November are slightly quieter than January. Holiday
effects are highly significant, and quite interesting. For example, if Christmas Day lands on
a Saturday or Sunday, this will be quieter than a normal Saturday or Sunday in December,
something which may be unexpected to the reader, but is typical in out-of-hours organisations.

Call:
lm(formula = CPD ~ dow + month + year + time + easterfri +

eastersat + eastersun + eastermon + bhsat + bhsun + bhmon +
maybh1 + xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe,
data = cpd)

Residuals:
Min 1Q Median 3Q Max

-207.643 -15.658 -0.463 14.927 282.154

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 291.50653 1118.76879 0.261 0.794464
dow[T.Tue] -9.02705 2.94404 -3.066 0.002203 **
dow[T.Wed] -9.47566 2.95233 -3.210 0.001355 **
dow[T.Thu] -3.36873 2.95225 -1.141 0.254004
dow[T.Fri] -7.39328 2.96693 -2.492 0.012803 *
dow[T.Sat] 500.11378 3.03870 164.582 < 2e-16 ***
dow[T.Sun] 393.98927 3.03122 129.977 < 2e-16 ***
month[T.Feb] 6.30027 4.58120 1.375 0.169241
month[T.Mar] 8.95434 6.44932 1.388 0.165196
month[T.Apr] 5.72717 8.87650 0.645 0.518883
month[T.May] 1.20243 11.38384 0.106 0.915892
month[T.Jun] -10.05719 14.03076 -0.717 0.473601
month[T.Jul] -12.13562 16.74668 -0.725 0.468764
month[T.Aug] -30.75497 19.37981 -1.587 0.112712
month[T.Sep] -34.27450 22.17083 -1.546 0.122312
month[T.Oct] -18.89368 24.87039 -0.760 0.447550
month[T.Nov] -13.41202 27.57397 -0.486 0.626746
month[T.Dec] 20.66169 30.19297 0.684 0.493868
year2005 -2.10957 33.19541 -0.064 0.949336
year2006 10.87844 65.86464 0.165 0.868835
year2007 29.44304 98.64815 0.298 0.765385
year2008 16.16615 131.53898 0.123 0.902201
year2009 13.45832 164.39011 0.082 0.934761
time -0.01125 0.08998 -0.125 0.900550
easterfriTRUE 621.31399 14.48634 42.890 < 2e-16 ***
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Figure 3.7: Standardised residual plot for equation 3.18 between 01/11/2004 and 30/06/2009

eastersatTRUE 247.41818 14.49773 17.066 < 2e-16 ***
eastersunTRUE 168.75393 14.49605 11.641 < 2e-16 ***
eastermonTRUE 579.75445 14.49526 39.996 < 2e-16 ***
bhsatTRUE 34.11890 9.74091 3.503 0.000473 ***
bhsunTRUE 66.00642 9.75668 6.765 1.84e-11 ***
bhmonTRUE 467.11584 9.77893 47.768 < 2e-16 ***
maybh1TRUE 54.32068 10.48148 5.183 2.46e-07 ***
xmasbhwdTRUE 825.38808 10.90146 75.714 < 2e-16 ***
xmasbhweTRUE 221.37770 7.30418 30.308 < 2e-16 ***
xmaswdTRUE 292.80660 18.64611 15.703 < 2e-16 ***
nydwdTRUE 482.02039 18.63521 25.866 < 2e-16 ***
nydweTRUE 71.87613 22.74328 3.160 0.001604 **
xmasweTRUE -186.92506 22.78288 -8.205 4.58e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 31.81 on 1665 degrees of freedom
Multiple R-squared: 0.9814, Adjusted R-squared: 0.981
F-statistic: 2378 on 37 and 1665 DF, p-value: < 2.2e-16
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Although the residual plot (figure 3.7) has considerably improved, the model still fails to
predict well over the Christmas period, particularly failing to highlight the importance of the
four-day weekend.

Consider the variable xmas4day1, which indicates days 2, 3, and 4 of the four day cycle
when Christmas Day is the first day of the cycle. This will be true for the three days after
Christmas Day when it falls on a Thursday, Friday, or Saturday. Consider the linear model in
equation 3.19.

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+
+ β19xmas4day1 + ε (3.19)

The R output below gives a lower value of Cp if we include xmas4day1 than don’t (40.00
against 124.87), and equation 3.19 becomes the base model over equation 3.18. The standardised
residual plot for equation 3.19 is illustrated in figure 3.8.

Start: AIC=124.87
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmaswd + nydwd + xmaswe + nydwe + xmasbhwd + xmasbhwe

Df Sum of Sq RSS Cp
+ xmas4day1 1 121267 2611897 40.00
<none> 2733164 124.87

Step: AIC=40
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmaswd + nydwd + xmaswe + nydwe + xmasbhwd + xmasbhwe
+ xmas4day1

The R output below shows the summary for the linear model in equation 3.19, and you can
see the idea of the ‘four-day’ holiday is clearly important when forecasting for Christmas, and
is busier.

Call:
lm(formula = CPD ~ dow + month + year + time + easterfri +

eastersat + eastersun + eastermon + bhsat + bhsun + bhmon +
maybh1 + xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe +
xmas4day1, data = cpd)
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Figure 3.8: Standardised residual plot for equation 3.19 between 01/11/2004 and 30/06/2009
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Residuals:
Min 1Q Median 3Q Max

-183.1912 -15.4631 -0.4426 15.1281 164.3349

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1032.55476 1065.91738 0.969 0.332835
dow[T.Tue] -9.28678 2.80116 -3.315 0.000935 ***
dow[T.Wed] -9.46034 2.80898 -3.368 0.000775 ***
dow[T.Thu] -3.60737 2.80896 -1.284 0.199238
dow[T.Fri] -8.15805 2.82346 -2.889 0.003910 **
dow[T.Sat] 500.28720 2.89118 173.039 < 2e-16 ***
dow[T.Sun] 393.09858 2.88483 136.264 < 2e-16 ***
month[T.Feb] 6.42454 4.35877 1.474 0.140689
month[T.Mar] 10.83313 6.13781 1.765 0.077750 .
month[T.Apr] 9.43891 8.45016 1.117 0.264151
month[T.May] 6.72074 10.83911 0.620 0.535313
month[T.Jun] -2.68233 13.36111 -0.201 0.840913
month[T.Jul] -2.92878 15.94871 -0.184 0.854320
month[T.Aug] -19.75506 18.45753 -1.070 0.284640
month[T.Sep] -21.38092 21.11679 -1.013 0.311442
month[T.Oct] -4.17608 23.68891 -0.176 0.860089
month[T.Nov] 4.42897 26.26969 0.169 0.866135
month[T.Dec] 38.38348 28.75811 1.335 0.182157
year2005 26.76191 31.65879 0.845 0.398052
year2006 61.54632 62.78332 0.980 0.327082
year2007 101.89218 94.01766 1.084 0.278630
year2008 109.00011 125.34836 0.870 0.384657
year2009 129.42799 156.65321 0.826 0.408805
time -0.07121 0.08573 -0.831 0.406288
easterfriTRUE 621.77391 13.78299 45.112 < 2e-16 ***
eastersatTRUE 246.99988 13.79383 17.907 < 2e-16 ***
eastersunTRUE 169.45971 13.79229 12.287 < 2e-16 ***
eastermonTRUE 579.62950 13.79144 42.028 < 2e-16 ***
bhsatTRUE 34.40246 9.26796 3.712 0.000212 ***
bhsunTRUE 67.28501 9.28344 7.248 6.45e-13 ***
bhmonTRUE 467.43467 9.30415 50.239 < 2e-16 ***
maybh1TRUE 53.24841 9.97288 5.339 1.06e-07 ***
xmasbhwdTRUE 763.83523 11.36649 67.201 < 2e-16 ***
xmasbhweTRUE 196.89552 7.19135 27.380 < 2e-16 ***
xmaswdTRUE 294.05780 17.74099 16.575 < 2e-16 ***
nydwdTRUE 479.64586 17.73128 27.051 < 2e-16 ***
nydweTRUE 68.93834 21.64011 3.186 0.001471 **
xmasweTRUE -182.67045 21.67904 -8.426 < 2e-16 ***
xmas4day1 189.53003 14.31581 13.239 < 2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 30.26 on 1664 degrees of freedom
Multiple R-squared: 0.9832, Adjusted R-squared: 0.9828
F-statistic: 2563 on 38 and 1664 DF, p-value: < 2.2e-16
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The conclusion for Christmas Holidays is that we improve the model by fitting individual
Christmas, New Years Day, and other holiday days, by weekend and weekday. The model futher
improves also if we adjust for the four-day cycle starting with Christmas Day.

3.4.6 Interactions

To complete the model, we assessed the validity of including seven interactions, stated in equa-
tion 3.20:

1. Does it matter which month weekend days occur? Are weekends in Summer quieter than
weekends in Winter? Check this with the interaction between month and we, where we
is any Saturday or Sunday.

2. Does it matter which month the days of the week occur? Check this with the interaction
between dow and month.

3. Do months differ as time goes on? Check this with the interaction between month and
time.

4. Do months differ between years? Check this with the interaction between month and
year.

5. Do calls per day for different days of weeks change as time goes on? Check this with the
interaction between dow and time.

6. Do non-Christmas holidays change over time? Check this with the interactions between
time and easterbh, and time and otherbh.

7. Does it matter which days of the week it is for the three days after the Christmas 4-day
cycle cycle? By definition these days will not include Wednesdays or Thursdays, and check
this with the interaction between xmas4day1 and dow.

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+
+ β19xmas4day1+
+ β20month : we+ β21dow : month+ β22month : year+
+ β23month : time+ β24dow : time+
+ β25time : easterbh+ β26time : otherbh+
+ β27dow : xmas4day1 + ε (3.20)

The R output below suggests we should only include the interactions month : we, dow :
xmas4day1, month : year, month : time, and time : easterbh. This linear model is stated in
equation 3.21, with the residual plot illustrated in figure 3.9.
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Start: AIC=-2.73
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1

Df Sum of Sq RSS Cp
+ month:we 11 269415 1254729 -267.4881
+ dow:month 66 289617 1234527 -178.9904
+ dow:xmas4day1 4 127938 1396207 -130.9015
+ month:year 39 112839 1411305 -44.8310
+ time:easterbh 1 15893 1508251 -17.6429
+ month:time 11 28510 1495634 -11.0727
<none> 1524144 -2.7269
+ time:otherbh 1 361 1523783 -1.1116
+ dow:time 6 9718 1514426 -1.0710

Step: AIC=-267.49
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1
+ month:we

Df Sum of Sq RSS Cp
+ dow:xmas4day1 4 128715 1126014 -396.49
+ month:year 39 113396 1141333 -310.18
+ time:easterbh 1 15228 1239501 -281.70
+ month:time 11 29393 1225336 -276.77
<none> 1254729 -267.49
+ time:otherbh 1 148 1254581 -265.65
+ dow:time 6 8232 1246497 -264.25
+ dow:month 55 20202 1234527 -178.99

Step: AIC=-396.49
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1
+ month:we + dow:xmas4day1

Df Sum of Sq RSS Cp
+ month:year 39 115762 1010253 -441.70
+ time:easterbh 1 15286 1110728 -410.76
+ month:time 11 30988 1095026 -407.47
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<none> 1126014 -396.49
+ dow:time 6 10051 1115964 -395.19
+ time:otherbh 1 160 1125854 -394.66
+ dow:month 55 19765 1106249 -307.53

Step: AIC=-441.7
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1
+ month:we + dow:xmas4day1 + month:year

Df Sum of Sq RSS Cp
+ month:time 11 67647 942606 -491.71
+ time:easterbh 1 7221 1003032 -447.39
<none> 1010253 -441.70
+ dow:time 6 9508 1000744 -439.82
+ time:otherbh 1 7 1010246 -439.71
+ dow:month 55 20191 990061 -353.20

Step: AIC=-491.71
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1
+ month:we + dow:xmas4day1 + month:year + month:time

Df Sum of Sq RSS Cp
+ time:easterbh 1 7577.4 935028 -497.77
<none> 942606 -491.71
+ dow:time 6 9470.7 933135 -489.79
+ time:otherbh 1 75.2 942530 -489.79
+ dow:month 55 20504.2 922101 -403.53

Step: AIC=-497.77
CPD ~ dow + month + year + time
+ easterfri + eastersat + eastersun + eastermon
+ bhsat + bhsun + bhmon
+ maybh1
+ xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe
+ xmas4day1
+ month:we + dow:xmas4day1 + month:year + month:time + time:easterbh

Df Sum of Sq RSS Cp
<none> 935028 -497.77
+ time:otherbh 1 84.1 934944 -495.86
+ dow:time 6 9107.7 925920 -495.47
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Figure 3.9: Standardised residual plot for equation 3.21 between 01/11/2004 and 30/06/2009

+ dow:month 55 20708.3 914320 -409.81

The residual plot in figure 3.9 is slightly better, but still inadequate around Christmas.

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+
+ β19xmas4day1+
+ β20month : we+ β21dow : xmas4day1+
+ β22month : year + β23month : time+
+ β24time : easterbh+ ε (3.21)

The R output below shows the summary for the linear model in equation 3.21. Consider
the interaction dow : xmas4day1. The possible days of xmas4day1 are Friday, Saturday,
Sunday, Monday and Tuesday. This shows that the Mondays are the busiest, closely followed
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by the Tuesdays, with the Fridays, Saturdays, and Sundays being quieter. This captures the
expectations of NDUC as they described the worst day of any four-day weekend being the
Monday and Tuesday. This is when Christmas Day falls on a Friday or Saturday, and it is
believed that many patients expect their surgeries to be open on these days, causing high
demand at NDUC when their call is diverted to us. There are also several NA coefficients,
illustrating effects that are not estimable, for example, weekends in December.

Call:
lm(formula = calls ~ dow + month + year + time + easterfri +

eastersat + eastersun + eastermon + bhsat + bhsun + bhmon +
maybh1 + xmasbhwd + xmasbhwe + xmaswd + nydwd + nydwe + xmaswe +
xmas4day1 + we:month + dow:xmas4day1 + month:year + time:easterbh +
time:month, data = cpd)

Residuals:
Min 1Q Median 3Q Max

-126.32199 -13.31980 -0.06893 12.81517 163.55573

Coefficients: (19 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.688e+04 3.299e+03 5.117 3.49e-07 ***
dow[T.Tue] -9.578e+00 2.247e+00 -4.263 2.13e-05 ***
dow[T.Wed] -9.108e+00 2.252e+00 -4.045 5.49e-05 ***
dow[T.Thu] -2.961e+00 2.253e+00 -1.314 0.188958
dow[T.Fri] -6.908e+00 2.268e+00 -3.046 0.002360 **
dow[T.Sat] 5.448e+02 5.539e+00 98.361 < 2e-16 ***
dow[T.Sun] 4.389e+02 5.531e+00 79.359 < 2e-16 ***
month[T.Feb] -2.253e+04 4.889e+03 -4.609 4.37e-06 ***
month[T.Mar] -2.147e+04 4.594e+03 -4.675 3.19e-06 ***
month[T.Apr] 3.872e+03 4.711e+03 0.822 0.411317
month[T.May] -1.393e+04 4.847e+03 -2.874 0.004101 **
month[T.Jun] -1.322e+04 4.682e+03 -2.824 0.004799 **
month[T.Jul] -5.875e+03 4.715e+03 -1.246 0.212934
month[T.Aug] -5.019e+03 4.821e+03 -1.041 0.298063
month[T.Sep] -2.396e+04 4.854e+03 -4.935 8.84e-07 ***
month[T.Oct] -1.500e+04 4.732e+03 -3.170 0.001552 **
month[T.Nov] -2.991e+04 4.397e+03 -6.803 1.44e-11 ***
month[T.Dec] -2.813e+04 5.028e+03 -5.594 2.60e-08 ***
year2005 -2.501e+03 4.647e+02 -5.381 8.50e-08 ***
year2006 -2.125e+03 4.175e+02 -5.091 3.98e-07 ***
year2007 -1.677e+03 3.835e+02 -4.374 1.30e-05 ***
year2008 -1.281e+03 3.665e+02 -3.494 0.000488 ***
year2009 -8.958e+02 3.691e+02 -2.427 0.015349 *
time -1.111e+00 2.337e-01 -4.755 2.17e-06 ***
easterfriTRUE 1.172e+03 1.540e+02 7.608 4.72e-14 ***
eastersatTRUE 7.710e+02 1.540e+02 5.005 6.20e-07 ***
eastersunTRUE 6.928e+02 1.541e+02 4.497 7.40e-06 ***
eastermonTRUE 1.133e+03 1.541e+02 7.351 3.13e-13 ***
bhsatTRUE 5.441e+01 8.090e+00 6.725 2.43e-11 ***
bhsunTRUE 8.602e+01 8.170e+00 10.528 < 2e-16 ***
bhmonTRUE 4.706e+02 7.735e+00 60.837 < 2e-16 ***
maybh1TRUE 4.098e+01 9.129e+00 4.489 7.68e-06 ***
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xmasbhwdTRUE 7.421e+02 1.042e+01 71.203 < 2e-16 ***
xmasbhweTRUE 1.614e+02 7.220e+00 22.352 < 2e-16 ***
xmaswdTRUE 2.892e+02 1.450e+01 19.949 < 2e-16 ***
nydwdTRUE 4.647e+02 1.472e+01 31.579 < 2e-16 ***
nydweTRUE 4.099e+01 1.810e+01 2.264 0.023682 *
xmasweTRUE -2.229e+02 1.822e+01 -12.230 < 2e-16 ***
xmas4day1 3.741e+02 2.668e+01 14.020 < 2e-16 ***
monthJan:weTRUE -2.232e+01 6.547e+00 -3.409 0.000668 ***
monthFeb:weTRUE -9.575e+00 6.902e+00 -1.387 0.165592
monthMar:weTRUE -3.371e+00 6.822e+00 -0.494 0.621282
monthApr:weTRUE -2.544e+01 6.922e+00 -3.676 0.000245 ***
monthMay:weTRUE -5.470e+01 7.137e+00 -7.664 3.11e-14 ***
monthJun:weTRUE -6.099e+01 6.826e+00 -8.935 < 2e-16 ***
monthJul:weTRUE -6.888e+01 7.060e+00 -9.757 < 2e-16 ***
monthAug:weTRUE -8.468e+01 7.300e+00 -11.599 < 2e-16 ***
monthSep:weTRUE -9.496e+01 7.135e+00 -13.308 < 2e-16 ***
monthOct:weTRUE -6.272e+01 7.113e+00 -8.818 < 2e-16 ***
monthNov:weTRUE -5.469e+01 6.829e+00 -8.008 2.23e-15 ***
monthDec:weTRUE NA NA NA NA
dow[T.Tue]:xmas4day1 -7.315e+00 3.428e+01 -0.213 0.831070
dow[T.Wed]:xmas4day1 NA NA NA NA
dow[T.Thu]:xmas4day1 NA NA NA NA
dow[T.Fri]:xmas4day1 -3.631e+02 3.489e+01 -10.409 < 2e-16 ***
dow[T.Sat]:xmas4day1 -1.071e+02 3.671e+01 -2.917 0.003582 **
dow[T.Sun]:xmas4day1 -3.212e+02 3.202e+01 -10.033 < 2e-16 ***
month[T.Feb]:year2005 2.287e+03 5.004e+02 4.570 5.26e-06 ***
month[T.Mar]:year2005 2.190e+03 4.699e+02 4.660 3.43e-06 ***
month[T.Apr]:year2005 -3.958e+02 4.814e+02 -0.822 0.411113
month[T.May]:year2005 1.414e+03 4.946e+02 2.859 0.004303 **
month[T.Jun]:year2005 1.338e+03 4.773e+02 2.803 0.005127 **
month[T.Jul]:year2005 4.709e+02 3.693e+02 1.275 0.202543
month[T.Aug]:year2005 4.090e+02 3.771e+02 1.085 0.278289
month[T.Sep]:year2005 1.864e+03 3.792e+02 4.915 9.79e-07 ***
month[T.Oct]:year2005 1.172e+03 3.694e+02 3.173 0.001539 **
month[T.Nov]:year2005 2.115e+03 4.722e+02 4.478 8.05e-06 ***
month[T.Dec]:year2005 2.172e+03 3.913e+02 5.551 3.32e-08 ***
month[T.Feb]:year2006 1.743e+03 3.755e+02 4.642 3.73e-06 ***
month[T.Mar]:year2006 1.668e+03 3.525e+02 4.733 2.41e-06 ***
month[T.Apr]:year2006 -2.409e+02 3.612e+02 -0.667 0.504977
month[T.May]:year2006 1.089e+03 3.712e+02 2.934 0.003398 **
month[T.Jun]:year2006 1.026e+03 3.581e+02 2.865 0.004228 **
month[T.Jul]:year2006 3.685e+02 2.464e+02 1.496 0.134927
month[T.Aug]:year2006 3.148e+02 2.516e+02 1.251 0.211072
month[T.Sep]:year2006 1.295e+03 2.530e+02 5.121 3.41e-07 ***
month[T.Oct]:year2006 8.205e+02 2.464e+02 3.330 0.000888 ***
month[T.Nov]:year2006 1.380e+03 4.495e+02 3.070 0.002173 **
month[T.Dec]:year2006 1.489e+03 2.611e+02 5.703 1.40e-08 ***
month[T.Feb]:year2007 1.168e+03 2.505e+02 4.662 3.40e-06 ***
month[T.Mar]:year2007 1.091e+03 2.352e+02 4.640 3.78e-06 ***
month[T.Apr]:year2007 -1.963e+02 2.410e+02 -0.814 0.415483
month[T.May]:year2007 6.983e+02 2.476e+02 2.821 0.004850 **

53



month[T.Jun]:year2007 6.578e+02 2.390e+02 2.753 0.005978 **
month[T.Jul]:year2007 1.716e+02 1.235e+02 1.389 0.164990
month[T.Aug]:year2007 1.525e+02 1.261e+02 1.209 0.226875
month[T.Sep]:year2007 6.265e+02 1.268e+02 4.940 8.61e-07 ***
month[T.Oct]:year2007 4.068e+02 1.235e+02 3.294 0.001010 **
month[T.Nov]:year2007 5.700e+02 4.578e+02 1.245 0.213241
month[T.Dec]:year2007 7.242e+02 1.308e+02 5.537 3.58e-08 ***
month[T.Feb]:year2008 5.619e+02 1.256e+02 4.474 8.21e-06 ***
month[T.Mar]:year2008 5.346e+02 1.179e+02 4.534 6.22e-06 ***
month[T.Apr]:year2008 -1.129e+02 1.208e+02 -0.935 0.350133
month[T.May]:year2008 3.258e+02 1.240e+02 2.627 0.008695 **
month[T.Jun]:year2008 3.082e+02 1.197e+02 2.574 0.010149 *
month[T.Jul]:year2008 NA NA NA NA
month[T.Aug]:year2008 NA NA NA NA
month[T.Sep]:year2008 NA NA NA NA
month[T.Oct]:year2008 NA NA NA NA
month[T.Nov]:year2008 -2.066e+02 4.955e+02 -0.417 0.676732
month[T.Dec]:year2008 NA NA NA NA
month[T.Feb]:year2009 NA NA NA NA
month[T.Mar]:year2009 NA NA NA NA
month[T.Apr]:year2009 NA NA NA NA
month[T.May]:year2009 NA NA NA NA
month[T.Jun]:year2009 NA NA NA NA
month[T.Jul]:year2009 NA NA NA NA
month[T.Aug]:year2009 NA NA NA NA
month[T.Sep]:year2009 NA NA NA NA
month[T.Oct]:year2009 NA NA NA NA
month[T.Nov]:year2009 NA NA NA NA
month[T.Dec]:year2009 NA NA NA NA
time:easterbhTRUE -4.062e-02 1.129e-02 -3.599 0.000330 ***
month[T.Feb]:time 1.579e+00 3.424e-01 4.611 4.32e-06 ***
month[T.Mar]:time 1.504e+00 3.215e-01 4.679 3.12e-06 ***
month[T.Apr]:time -2.628e-01 3.293e-01 -0.798 0.424932
month[T.May]:time 9.792e-01 3.384e-01 2.893 0.003863 **
month[T.Jun]:time 9.298e-01 3.266e-01 2.847 0.004475 **
month[T.Jul]:time 4.301e-01 3.371e-01 1.276 0.202098
month[T.Aug]:time 3.698e-01 3.442e-01 1.074 0.282792
month[T.Sep]:time 1.712e+00 3.461e-01 4.946 8.37e-07 ***
month[T.Oct]:time 1.079e+00 3.371e-01 3.200 0.001403 **
month[T.Nov]:time 2.145e+00 3.267e-01 6.566 6.97e-11 ***
month[T.Dec]:time 2.004e+00 3.573e-01 5.609 2.40e-08 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 24.19 on 1598 degrees of freedom
Multiple R-squared: 0.9897, Adjusted R-squared: 0.989
F-statistic: 1475 on 104 and 1598 DF, p-value: < 2.2e-16
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3.5 Validating the new data

Given equation 3.21 is the working model for our predictions, use this to confirm the validity
of the data between 01/11/2004 - 31/12/2004. Below is the summary of the dataset to predict
calls per day, where day of week, month, year and the dummy variables relating to whether the
date was a holiday are omitted.

> summary(newdata)
CPD time

Min. : 94.0 Min. :01.11.04
1st Qu.: 132.0 1st Qu.:31.12.05
Median : 151.0 Median :02.03.07
Mean : 288.5 Mean :02.03.07
3rd Qu.: 528.5 3rd Qu.:30.04.08
Max. :1276.0 Max. :30.06.09

After applying equation 3.21 to newdata, we get the predictive model basemodel in R.
The residual plot of basemodel is shown in figure 3.10, with residuals for dates 01/11/2004 -
31/12/2004 coloured red, and 01/01/2005 - 30/06/2009 coloured blue, and on first glance, it
looks like they could be from the same distribution. The residuals range from a minimum of
-126.3 to a maximum of 163.6, and the R output summary of them is detailed below.

> summary(basemodel$resid)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.263e+02 -1.332e+01 -6.893e-02 4.275e-16 1.282e+01 1.636e+02

Let ε̂ be the full set of residuals from basemodel, and define a and b as follows:

1. a = a1, ...a1642: ε̂62, ..., ε̂1703 (01/01/2005 - 30/06/2009)

2. b = b1, ...b61: ε̂1, ..., ε̂61 (01/11/2004 - 31/12/2004)

Let m be the size of the sample a, in this case 1642, and n be the size of the sample b, in
this case 61.

The Kolmogorov-Smirnov tests if a and b are drawn from the same continuous distribution
[14]. Consider the problem in which a random sample of m observations, A = A1, ..., Am is
taken from a distribution for which the density function fA(a) is unknown, and an independent
sample B = B1, ..., Bn is taken from another distribution for which the density function fB(b) is
also unknown. Assume that both fA(a) and fB(b) are continuous functions, and the following
hypothesis is to be tested:

H0 : fA(x) = fB(x) for −∞ < x <∞, (3.22)

H0 : fA(x) 6= fB(x) for −∞ < x <∞. (3.23)

Let fa(x) denote the sample density function calculated from the observed values A1, ..., Am,
and let fb(x) denote the sample density function calculated from the observed values B1, ..., Bn.
Next we consider the statistic Dmn, the maximum difference between the two sample density
functions:

Dmn = sup
−∞<x<∞

|fa(x)− fb(x)|. (3.24)

If H0 is true and fA(x) = fB(x) then the sample density functions fa(x) and fb(x) will tend
to be very alike. Furthermore, Kolmogorov and Smirnov established the following result in the
1930s:
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Figure 3.10: Residual plot for equation 3.21 between 01/11/2004 and 30/06/2009

56



lim
m→∞,n→∞

Pr

[(
mn

m+ n

)1/2

Dmn ≤ t

]
= H(t), (3.25)

where

H(t) = 1− 2
∞∑
i=1

(−1)i−1 exp−2i2t2 . (3.26)

The test procedure specifies that we reject H0 if(
mn

m+ n

)1/2

Dmn ≥ c, (3.27)

Where c = H−1(1− α), m and n are large, and α is the level of significance. The values of
H(t) can be found in DeGroot and Schervish’s book in Table 9.30 [14, pp 570]. If n and m are
large and the test is to be carried out at significance level 0.05, we choose c = H−1(0.95) = 1.36.

In R, we use the function ks.test and run a two-sample, two-sided test for this. In our case
the product of n and m is 100,162 which means exact p-values cannot be generated (we require
n×m < 10, 000 for this), and asymptotic distributions are used. D = 0.0857 is the value of the
test statistic Dmn, as seen in the R output below.

In our case, m and n are large, and we will carry out the test at the 5% level of significance,
where c = 1.36. Therefore we check equation 3.27 and find that(

mn

m+ n

)1/2

Dmn = 0.6570973 < 1.36,

and we fail to reject H0 at the 5% level of significance.

Two-sample Kolmogorov-Smirnov test

data: a and b
D = 0.0857, p-value = 0.781
alternative hypothesis: two-sided

For completeness we also checked if a and b had the same means and medians by running
the functions t.test and wilcox.test in R.

Let ā be the mean of the sample a, and b̄ be the mean of the sample b. We test the
hypothesis

H0 : ā = b̄

HA : ā 6= b̄

Below shows the R output from the two-sample t-test, and we fail to reject H0

Welch Two Sample t-test

data: a and b
t = 0, df = 62.914, p-value = 1
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.479429 7.479429
sample estimates:

mean of x mean of y
3.862475e-16 1.527723e-15
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Below shows the R output to test the null hypothesis H0: the median of a = the median of
b. With a p-value of 0.6139 we fail to reject H0

Wilcoxon rank sum test with continuity correction

data: a and b
W = 48178, p-value = 0.6139
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-7.300309 4.348803
sample estimates:
difference in location

-1.479519

We therefore decided it was beneficial to add November and December 2004’s data to the
dataset, and have done so in forecasting since July 2009.

3.6 Validating model assumptions

By this point, we have fixed the linear model to be equation 3.21, and it is appropriate to make
standards checks of our assumptions, namely, Normality of the residuals. Figure 3.11 shows
the Normal Quantile plot for the residuals generated from equation 3.21. For the residuals to
be Normal, we would see a straight line here. This plot shows that the residual distribution
has fatter tails than the normal distribution. As such, we might want to treat any prediction
intervals that we develop as conservative, especially in predicting call volumes for days where
we feel the model is still not capturing important effects, typically Christmas.

It is also worth making a comment here about sample size. When there is a large sample
size, small p values are inevitable. We want to fit models which are good, and justified by
circumstances, but we don’t want to fit a model which over-tunes to effects which seem inexpli-
cable, even with hindsight. All of the covariates in our model were sensible choices before we
started building it (recall table 3.1), and it made sense to staff at NDUC.
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Figure 3.11: Normal quantile plot of residuals from equation 3.21
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Figure 3.12: Calls per day between 01/11/2004 and 10/01/2010

3.7 Swine flu

By February 2009 the CPD model was used to predict calls per day routinely, with updates
every 2-4 weeks using new observations, and in practice this worked quite well.

At the end of April 2009 swine flu hit the press, and the move from containment to treatment
of the virus in July 2009 meant NDUC saw a massive surge in unexpected calls. The National
Pandemic Flu Service (NPFS) launched later that month, meaning patients had an alternative
phoneline and website to obtain the antivirals separate to their GP. Shortly after this launch
NDUC’s excess call volume started decreasing and activity levels were back to normal by August.
The second, less pressured, wave occurred in October and November 2009, with the increase
being generally on weekends rather than weekdays. This section states how equation 3.21
changed to include swine flu, with the detail of what happened during the pandemic discussed
in Chapter 5.

Figure 3.12 shows calls per day between 01/11/2004 and 10/01/2010. Just past the middle
of 2009 you can see an uncharacteristic and unprecedented spike in activity, particularly in
weekdays, and similar to behaviour we would associate with Christmas. This is also illustrated
in figure 3.13, which shows the same calls per day between May and December 2009. Two key
things happened here:

1. Movement from containment to treatment on 02/07/2009, and

2. Dedicated swine flu website and phoneline to receive antivirals went live 23/07/2010.

Recall equation 3.21. For NDUC to continue to use the CPD model in the future we need
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Figure 3.13: Calls per day between 01/05/2009 and 31/12/2009
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to identify special dates with surges in activity. Consider equation 3.28 and define two new
dummy variables:

- sflu: any day in the two swine flu waves 04/07/2009 - 02/08/2009 (inclusive), and
17/10/2009 - 27/10/2009 (inclusive).

- sfluline: any day when the NPFS was running between 23/07/2009 - 11/02/2010 (inclu-
sive).

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+
+ β19xmas4day1+
+ β20month : we+ β21dow : xmas4day1+
+ β22month : year + β23month : time+
+ β24time : easterbh+
+ β25sflu+ β26sfluline+
+ β27sflu : sfluline+ ε (3.28)

In the R output below, we favour equation 3.28 over equation 3.21 during the period
01/11/2004 - 01/09/2010. However, consider figures 3.14 and 3.15 which show the standardised
residual plots for equations 3.28 and 3.21, respectively, with pandemic periods coloured in pink.
There is not much difference between the two, and both fail to predict well over the pandemic
period. Furthermore, in times when there is no pandemic (for the foreseeable future), and since
the NPFS stopped running in February 2010, terms sflu, sfluline, and, sflu:sfluline will be zero,
and the CPD model in equation 3.28 will be the same as equation 3.21. Is equation 3.28 really
superior? On the other hand, when forecasting for July 2011, say, if we use equation 3.21 this
is likely to inflate the estimates, as we know July 2009 observations were not representative
of normal activity. Therefore, in the absence of suitable alternatives equation 3.28 is used for
forecasting after July 2009.

One possibility for further work would be to find another way of dealing with July 2009
observations. Perhaps Weighted Least Squares could be imposed, or a back forecasting method
(similar to observations in June 2006) would be a better solution. For the purposes of this thesis,
we continued to use equation 3.28, but recognise that this choice of method is not perfect.

Start: AIC=239.14
CPD ~ dow + month + year + time + easterfri + eastersat + eastersun +

eastermon + bhsat + bhsun + bhmon + maybh1 + xmasbhwd + xmasbhwe +
xmaswd + nydwd + nydwe + xmaswe + xmas4day1 + we:month +
dow:xmas4day1 + month:year + time:easterbh + time:month

Df Sum of Sq RSS Cp
+ sflu 1 47319 1795352 186.43
+ sfluline 1 17679 1824992 220.70
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<none> 1842671 239.14

Step: AIC=186.43
CPD ~ dow + month + year + time + easterfri + eastersat + eastersun +

eastermon + bhsat + bhsun + bhmon + maybh1 + xmasbhwd + xmasbhwe +
xmaswd + nydwd + nydwe + xmaswe + xmas4day1 + sflu + month:we +
dow:xmas4day1 + month:year + time:easterbh + month:time

Df Sum of Sq RSS Cp
+ sfluline 1 20933 1774419 164.24
<none> 1795352 186.43

Step: AIC=164.24
calls ~ dow + month + year + time + easterfri + eastersat + eastersun +

eastermon + bhsat + bhsun + bhmon + maybh1 + xmasbhwd + xmasbhwe +
xmaswd + nydwd + nydwe + xmaswe + xmas4day1 + sflu + sfluline +
month:we + dow:xmas4day1 + month:year + time:easterbh + month:time

Df Sum of Sq RSS Cp
+ sflu:sfluline 1 37402 1737017 123.00
<none> 1774419 164.24

Step: AIC=123
CPD ~ dow + month + year + time + easterfri + eastersat + eastersun +

eastermon + bhsat + bhsun + bhmon + maybh1 + xmasbhwd + xmasbhwe +
xmaswd + nydwd + nydwe + xmaswe + xmas4day1 + sflu + sfluline +
month:we + dow:xmas4day1 + month:year + time:easterbh + month:time +
sflu:sfluline

In conclusion, we find the CPD model is inadequate for predicting pandemic periods, and
must seek other models. The model used to predict calls per day in the future remains as equa-
tion 3.21. An alternative method for forecasting during pandemics, through moving averages,
is discussed in detail in chapter 5.

3.8 Validating the model over time

3.8.1 Changes in CPD over time

To conclude this chapter we will briefly comment on the change to CPD predictions over time.
To do this consider two datasets and measure how they cope in predicting CPD for a week in
February 2010.

1. Dataset 1: Calls per day between 01/11/2004 - 01/12/2009

2. Dataset 2: Calls per day between 01/11/2004 - 01/09/2010

We use equation 3.21 as the linear model for forecasting. Dataset 1 has no observations for
February 2010, while Dataset 2 does. Predictions for February 2010 at the start of December
2009 and September 2010 are given in table 3.3, alongside the observations for the first week
in February 2010. The fits do not change much over time, and the prediction intervals become
smaller. The first week in February 2010 observed 1852 calls so the predictions made at the
start of December were only out by 38 calls for the week.
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Figure 3.14: Standardised residual plot for equation 3.28 between 01/11/2004 and 01/09/2010

Day Predicting in December
2009

Predicting in September
2010

Observation
February 2010

Monday 125 (20,230) 128 (49,208) 133
Tuesday 116 (10,221) 119 (40,199) 126
Wednesday 117 (11,222) 120 (41,199) 118
Thursday 123 (17,228) 127 (48,206) 139
Friday 118 (12,224) 123 (44,202) 119
Saturday 660 (553,766) 660 (580,740) 671
Sunday 555 (449,662) 557 (477,637) 546
Total 1814 1834 1852

Table 3.3: Forecasting CPD for February 2010 in December 2009 and September 2010
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Figure 3.15: Standardised residual plot for equation 3.21 between 01/11/2004 and 01/09/2010
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3.8.2 Periodically updating CPD

Every Monday morning NDUC holds an exception meeting were the performance and activity
for the previous week is discussed. Here, a short comment will be made about how well the
CPD forecasts matched the observed activity. It is from this monitoring that staff can choose
when to periodically update the CPD model.

If, after two weeks, it appears that CPD is not forecasting as well as it should, update the
model with the new observations. If it is still not fitting well, this could be due to external
reasons, such as a pandemic period, or after a publicity campaign, and alternative reasons
should be sought for this.

If the model is fitting well, it is recommended to update it after 4 weeks. This means that
there is nearly a whole new month added to the observations, capturing month further, which
is an important covariate in equation 3.21.

3.9 Conclusions and Recommendations

The motivation behind the CPD forecasting model in equation 3.28 is well documented in this
chapter, and the model itself has been critically evaluated. Applying linear regression in this
case worked well in practice. CPD has been formally forecast in this way since February 2009
and has been communicated to NDUC’s commissioners, improving NDUC’s reputation, and
allowing them to become a reliable source of data information. It should not be forgotten that
in exceptional times of activity, like Christmas and pandemics, this model does not work well,
and alternative methods should be sought.
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Chapter 4

Modelling Call Centre Demand

This chapter details the techniques implemented at NDUC to forecast intra-day call demand.

4.1 Establishing the Daily Profile

After establishing the forecasting procedure for calls per day, CPD, intra-day forecasting was
necessary to determine staff levels and build rotas. It was clear that call arrivals into the centre
were not constant, and instead there were peaks and troughs in demand, depending on the time
of day. This led to the growth of the Daily Profile model which answered the following question;
for any day in the future, how many calls will arrive in any 30 minute period?

4.1.1 Data Collection

We use a version of the dataset discussed in Chapter 3; every out-of-hours case from January 1st

2005, taken from the second run of the data extraction (recall figure 3.1 which highlighted an
error in the first data extract), but this time ending in September 2010, rather than June 2009.
Between 01/01/2005 and 01/09/2010 (inclusive) there were a total of 594,980 individual out-
of-hours observations over the various days, times and seasons. The dataset is defined exactly
as in Chapter 3, with various dummy variables indicating particular characteristics of any day.

The first step in this process was to discretize the data into 30 minute time slices and define
the time periods to forecast over. For operational reasons, we define the forecasting periods by
shifts:

Monday = Monday 18:00:00 until Tuesday 07:59:59
Tuesday = Tuesday 18:00:00 until Wednesday 07:59:59
...
Friday = Friday 18:00:00 until Saturday 07:59:59
Saturday = Saturday 08:00:00 until Sunday 07:59:59
Sunday = Sunday 08:00:00 until Monday 07:59:59

Monday, Tuesday, ..., Friday belong to weekday daily profiles, which have 28 unique time
periods. Saturday and Sunday belong to weekend daily profiles, which have 48 unique time
periods. As with the CPD model, we separate for different days of week, months, and holidays.
For example, Good Friday will only have previous Good Friday observations, and Good Fridays
are removed from normal Fridays in March or April.

To illustrate the application, consider the subset ‘Saturdays in August’. Saturdays in August
are defined as any Saturday in August in the dataset that does not precede an August Bank
Holiday Monday. Figure 4.1 shows observations for Saturdays in August, with the dates of
these observations detailed in table 4.1. These observations are used to forecast for Saturdays
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Saturdays in August
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Figure 4.1: Previous half-hourly observations with random variation

in August 2011. There are a total of 960 observations; 20 observations for each of the 48
time points. There is a clear pattern with a sharp increase between 08:00 and 09:29, a steady
decrease between 09:30 and 12:59, a slower decrease between 13:00 and 23:59, and a quieter
period overnight between 00:00 and 06:59.

Note also that there is quite significant variation in the number of calls arriving into each
time slot, and this variation does not seem to be constant.

4.1.2 Locally Weighted Regression

Locally weighted regression is a multivariate smoothing procedure which fits a regression surface
to a set of data points [11] [12]. Let yi, i = 1, ..., n be measurements of a response variable and
let xi = (xi1, ..., xip), i = 1, ..., n be the corresponding vector of measurements of p predictors.
The relationship between the response and predictors is

yi = g(xi) + εi,

where we assume εi ∼ N(0, σ2) are random errors and g is a smooth function of the predictors.
Locally weighted regression provides an estimate ĝ(x) at each value x1, ..., xp. The estimate

of g at xj , (j = 1, ..., p) is obtained from a neighbourhood of points, weighted according to their
distance from xj . Points close to xj have a large weight, and points far away from xj have a
small weight.
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Year Dates
2005 6th, 13th, 20th

2006 5th, 12th, 19th

2007 4th, 11th, 18th

2008 2nd, 9th, 16th, 30th

2009 1st, 8th, 15th, 22nd

2010 7th, 14th, 21st

Table 4.1: Dates in August used for the production of forecasts for ‘Saturdays in August’

To carry out locally weighted regression we need a distance function, ρ, a weight function,
W , and the specification of a neighbourhood size. Further details of Cleveland’s loess concept
are edited and well compiled in Chapter 8 of Chambers and Hastie’s book [10].

In our case we smooth by using the loess function in the stats package for R [20]. Here,
fitting is done locally and the size of the neighbourhood is controlled by the argument span. Due
to the curvature illustrated in figure 4.1 we use locally quadratic fitting by least squares. This
is controlled by the arguments degree = 2, and family = ‘‘gaussian’’, which are defaults
for loess in R.

The variation of the overall pattern shows some, but not much, unusual behaviour. The
observations at each time period seem evenly spread with possible exceptions around 12:30 and
17:00. Therefore we begin with the assumption that errors are Gaussian. In what follows span
is always less than 1, so the neighbourhood includes a proportion, span, of the points, and these
have tricubic weighting W .

As previously mentioned, the subset of Saturdays in August has 960 observations of two
variables; the response variable which is calls, which we will denote by C (arranged in a p× n
matrix), and the predictor is the half-hourly time period T (arranged in a p×1 matrix). Create
a data.frame in R so the observations are arranged in a p× (n+ 1) matrix (where p=48 and
n=20) like so:

Ap,n+1 =


t1 c1,1 · · · c1,n
t2 c2,1 · · · c2,n
...

...
. . .

...
tp cp,1 · · · cp,n


where ci = (c1,i, ..., c48,i), i = 1, ..., 20, are the previous observations for day i, (the response),

and t = (t1, .., t48) are the 30 minute time periods running from 08:00 on the Saturday until
07:59 the next Sunday. We can create the loess modelling in R by using the R command:

> loess(C~T,span=0.15)

A span of 0.15 was chosen because it worked well in practice, as illustrated in figure 4.2. Any-
thing higher than this underestimated the 08:00 peak (figure 4.3), and anything more becomes
too spiked (figure 4.4).

A span of 0.15 seemed to work for other days, with Tuesdays and Sundays in August loess
fit illustrated in figures 4.5 and 4.6, respectively. Choosing a span of 0.15 for weekdays (14 hour
periods) and weekends (24 hour periods) means the smoothing will be different for weekdays and
weekends, and this can be seen by comparing the smoothness of figures 4.5 and 4.6. However,
in practice this choice worked well to capture arrivals, and was adopted in the organisation.
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Figure 4.2: Previous half-hourly observations with random variation with loess fit using
span=0.15
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Figure 4.3: Previous half-hourly observations with random variation with loess fit using
span=0.25
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Figure 4.4: Previous half-hourly observations with random variation with loess fit using
span=0.05
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Figure 4.5: Tuesdays in August: half-hourly observations with loess fit using span=0.15

73



Sundays in August

Time

C
al

ls

0
10

20
30

08
:0

0
08

:3
0

09
:0

0
09

:3
0

10
:0

0
10

:3
0

11
:0

0
11

:3
0

12
:0

0
12

:3
0

13
:0

0
13

:3
0

14
:0

0
14

:3
0

15
:0

0
15

:3
0

16
:0

0
16

:3
0

17
:0

0
17

:3
0

18
:0

0
18

:3
0

19
:0

0
19

:3
0

20
:0

0
20

:3
0

21
:0

0
21

:3
0

22
:0

0
22

:3
0

23
:0

0
23

:3
0

00
:0

0
00

:3
0

01
:0

0
01

:3
0

02
:0

0
02

:3
0

03
:0

0
03

:3
0

04
:0

0
04

:3
0

05
:0

0
05

:3
0

06
:0

0
06

:3
0

07
:0

0
07

:3
0

● ●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●
● ●

●

● ●

●

●
● ● ● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

● ● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ● ●
● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ● ●

● ●

●

●

●

● ●

●

●

● ●

●

● ● ●

●

●
●

● ●
● ● ●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ● ● ●

●

●

● ● ●

● ● ●
● ●

●

●

● ●
●

●

●

●

●

● ●

●

● ●

● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ● ●
●

●
●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●
●

●

●

●

● ● ●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

● ● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

● ●
● ●

●

●
● ● ● ● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●

●
●

● ● ● ● ●
●

● ● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

● ●

●

● ●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●
●

● ● ● ● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

● ●

● ● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●
●

●

● ● ●

●

●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●

● ●

● ●
●

● ●

●
●

● ●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●
●

●
● ● ●

● ● ●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

● ● ● ●

●

●
● ●

● ●
● ●

●

Figure 4.6: Sundays in August: half-hourly observations with loess fit using span=0.05
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4.2 Establishing the Prediction Error

After establishing a reasonable method for predicting future patterns of call arrivals, we now
need to place confidence bounds on these predictions. This gives NDUC an accurate view on
possible maximum and minimum arrival rates. This knowledge will be essential for maximum
capacity planning around pressure periods like Christmas. During the busiest times, how many
phonelines will be occupied? Do they need more phonelines to cope with demand?

Recall the relationship between the response and predictor; yi = g(xi) + εi, where εi ∼
N(0, σ2), σ is unknown, and g is a smooth function. In least squares regression, when σ is
unknown, we can generate standard errors of the fitted values from equation 4.1 [14], where σ̂
is the estimate of σ and sxx =

∑n
i (xi − x̄)2. These standard errors are used when generating

confidence intervals on observations.

sefit = σ̂

√
1
n

+
(x− x̄)2

sxx
(4.1)

Furthermore, when we are trying to predict a new observation y0 = g(x0) + ε0, which is
independent of the observed data, the associated prediction error is stated in equation 4.2 [14].

sepred = σ̂

√
1 +

1
n

+
(x− x̄)2

sxx
(4.2)

The confidence and prediction intervals are then generated by ŷ0 ± Z1−α/2sefit, and ŷ0 ±
Z1−α/2sepred, respectively, where Z is the standard Normal distribution function, and α is
the level of significance. It is worth noting that the fits when using confidence and prediction
intervals are the same, but the prediction interval is wider than the confidence interval.

The least squares errors from equations 4.1 and 4.2 can be used to relate the fit and prediction
errors by equation 4.3.

sepred2 = σ̂2 + sefit2 (4.3)

This suggests that if we have a good estimate of σ2 and a good estimate of sefit, we
can derive an appropximate prediction error. As it happens, standard loess packages give an
estimate of σ2 and of sefit, so we will use these to generate plausible sepred for our prediction
intervals.

We also make note here that we are using a Normal-based prediction interval, and this
depends on a strong Normality assumption. In practice this may not be appropriate, however,
in what follows, we assume it is true.

4.2.1 Investigating t errors

In Chapter 8 of Chambers and Hastie [10] there is coherant discussion on the application
of confidence intervals using loess, but there is no comment on errors suitable for prediction.
Therefore we decided to test the t-distribution for errors, as this is used in generating confidence
and prediction intervals in the least squares case, when n is small.

The next thing to choose was the degrees of freedom. In linear regression we get an unbiased
estimate of σ2 from RSS/(n−p) (recall section 3.3), where RSS is the residual sum of squares,
n is the number of observations and p is the number of covariates. When using loess you
generate an output called equivalent number of parameters, or enp, in R. Therefore n − enp
would be an appropriate number to use for the degrees of freedom. Since σ2 is unknown, and
we are predicting y0, the degrees of freedom could also be n−2. Therefore a t-distribution with
n−max(2, enp) degrees of freedom was chosen.
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In practice this only worked well over ‘busy’ parts of the shift, and the upper limit was too
generous on the overnight part of the shift.

Consider figure 4.7 which contains three graphs. Firstly, it shows the previous observations
for Saturdays in August, with the blue line illustrating the loess fit, and the upper and lower
green lines illustrating the t errors. From this you can see the upper limit seems to be generous
on the overnight part of the shift, compared to the observations. Along the bottom there is
a normal quantile plot of the residuals (left) and a scatter plot of the standardised residuals
(right). There is curvature in the quantile plot, and the standardised residuals are not randomly
scattered. This motivated changing the errors to something more appropriate.
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Figure 4.7: Previous half-hourly observations with random variation with loess fit and t errors
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Time point χ2 df p value Time point χ2 df p value
t1 19.55633 13 0.10683870 t25 17.89380 7 0.01245844*
t2 26.33990 12 0.00960552* t26 18.56536 8 0.01736515*
t3 24.29513 12 0.01853983* t27 12.68433 7 0.08018356
t4 23.09211 10 0.01041164* t28 10.30718 9 0.3261944
t5 22.63181 11 0.01991085* t29 9.62981 7 0.2105405
t6 27.88999 11 0.003365318* t30 10.90561 5 0.05328381
t7 25.47500 10 0.004514292* t31 16.20925 7 0.02327188*
t8 24.65103 11 0.01025096* t32 5.93290 5 0.3128029
t9 19.74197 13 0.1018335 t33 7.89078 4 0.09566193
t10 27.25200 8 0.000639516* t34 3.10819 4 0.5398868
t11 15.04379 10 0.1304734 t35 5.689893 5 0.3375722
t12 19.08336 8 0.01442015* t36 6.130755 3 0.1054191
t13 12.68039 10 0.2420946 t37 10.04525 2 0.006587205*
t14 18.84898 11 0.06385873 t38 3.67406 3 0.2988793
t15 19.53425 9 0.02101462* t39 6.32985 4 0.1758323
t16 20.96129 10 0.0213651* t40 7.54552 6 0.2733249
t17 18.59836 9 0.02883298* t41 4.63632 4 0.326688
t18 9.80782 9 0.3662662 t42 3.28285 3 0.3500369
t19 17.65048 10 0.06115356 t43 1.82016 3 0.6105588
t20 28.48130 8 0.0003908762* t44 7.48336 3 0.05798758
t21 14.75672 10 0.1411863 t45 8.86022 4 0.06468998
t22 24.15219 6 0.0004896407* t46 10.21111 4 0.03701775*
t23 9.49610 10 0.4857554 t47 5.04210 7 0.6548254
t24 28.01161 10 0.001797541* t48 14.31237 6 0.02633493*

Table 4.2: Goodness-of-fit test for the Poisson distribution

4.3 Investigating Poisson errors

We explore the distribution of the number of arrivals c1,i, ..., c48,i during each time slice tj ∈ t,
j = 1, ..., 48, using the function goodfit from the package vcd [13]. This fits a Poisson distri-
bution for goodness-of-fit tests through maximum likelihood by specifying type = "poisson"
and method = "ML" in the arguments. Using summary(goodfit) in R outputs the likelihood
ratio statistic and p values. This is quoted in table 4.2. We fail to reject the hypothesis at the
5% level of significance for 27 of the time points. Therefore we will assume the that arrivals are
approximately Poisson.

If the expected number of occurrences in this interval is λ > 0, then the probability that
there are exactly x (x = 0, 1, 2, ...) occurrences is equal to

P (x) =
e−λλx

x!
. (4.4)

The mean and variance of the Poisson distribution are calculated from equations 4.5 and
4.6 [14], respectively.

E [X] = λ (4.5)

V ar [X] = λ (4.6)
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A Poisson(λ) distribution can be thought of as the sum of λ independent Poisson(1) distri-
butions. For sufficiently large values of λ, the Normal distribution with mean λ and variance
λ approximates the Poisson distribution well [14]. Recall our assumptions about ε and ci,j :
εi ∼ N(0, σ2), and ci,j ∼ Pois(λ). We transform by taking c̃i,j = √ci,j , and then apply loess
to the transformed values to obtain the predicted value, t̂j , before transforming back. The
estimated arrival rate for time slice tj is now λ̂j = t̂2j , and the Poisson(λ̂j) is used to generate
a forecast and a confidence envelope for the number of calls arriving into each time slice.

This provides a piecewise prediction interval for arrival rates for a specific day, as illustrated
in figure 4.8. Figure 4.8 contains three graphs: previous observations with loess fit and Poisson
errors overlaid, a Normal quantile plot of the residuals and a standardised residual plot. On
the top graph the loess fit is blue, as before, and the Poisson errors are red. These errors look
superior to the t errors, and fit the observations better. The quantile plot is quite straight,
and the standardised residual plot has improved from figure 4.7. There does, however, appear
to be pattern in the residuals on the overnight part of this shift, between 22:30 - 07:59, or X
= 30,...,48. Figure 4.9 shows three individual days of residuals in this time period on three
separate lines, and between 03:30 - 05:59 (X=39,...,44) something seems to be wrong. This
indicates that the model may not be quite right, but the residuals remain small. The period
03:00 - 05:59 is a quiet part of the shift, with little pressure, so operationally this will not matter
too much.

Even with this discrepancy, using Poisson errors was superior to using t errors, and we
progressed with forecasting this way. In practice, the square root transform and Poisson errors
gives very good results, with no substantial anomalies.

Intuitively, you would normalise these so that the total arrivals over a day match the CPD
model. In this case, however, the CPD model forecasts calls per day over a time period
00:00:00 - 23:59:59, while the Daily Profile model forecasts from either 18:00:00 or 08:00:00 on
that day until 07:59:59 the next day, so we do not normalise. The reason for this is because of
organisational requirements. NDUC’s monthly performance report records daily activity, and
this is defined as the same time period used in CPD. It makes sense to forecast CPD over the
time period, as this will highlight unusual activity to the PCTs clearly. This was particularly
useful in July 2009 when we were receiving far more calls than expected. On the other hand,
when planning rotas and building shifts it is better to forecast arrival rates over a shift.
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Figure 4.8: Previous half-hourly observations with random variation with loess fit and Poisson
errors
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Figure 4.9: Checking the residuals: not random overnight

81



4.4 Monitoring the Daily Profile

4.4.1 Changes in Daily profile over time

The Daily Profile model has been running at NDUC for two years, and it’s important to check
how it changed over time. For consistency, consider again the subset ‘Saturdays in August’.

The example previously described would be used to forecast arrival rates for Saturdays in
August 2011. Suppose we consider two datasets:

• Dataset 1: Saturdays in August 2005 - 2008.

• Dataset 2: Saturdays in August 2005 - 2009.

Next, use the method described in this chapter to generate forecasts and prediction intervals
to predict for Saturdays in August 2010.

Figures 4.10, and 4.11 show the fits, errors and observation plots, as well as the quantile
and standardised residual plots for loess forecasting with Dataset 1 and Dataset 2 respectively.
The main difference in having an extra year’s observations is it smoothes the predictions and
straightens the quantile plot slightly.

In practice, figures 4.12 and 4.13 show the predictions for Dataset 1 and Dataset 2, with
the observations from the three Saturdays in August overlaid in green. Again, the only real
difference is the smoothness of the fit and limits, but they both predicted well.

4.4.2 Periodically updating Daily Profile

Given the discussion in this chapter, particularly in section 4.4.1, it is recommended to update
the Daily Profile model as soon as fresh data arrives. The way that is constructed, means you
are able to forecast 30 minute arrivals eleven months in advance: August 2011 forecasts could
be generated at the start of September 2010, and so on.
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Figure 4.10: Previous half-hourly observations 2005-2008 with random variation with loess fit
and Poisson errors
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Figure 4.11: Previous half-hourly observations 2005-2009 with random variation with loess fit
and Poisson errors

84



Saturdays in August: 2005 − 2008 data
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Figure 4.12: Loess fit and Poisson errors for 2005-2008 data with 2010 observations
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Saturdays in August: 2005 − 2009 data
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Figure 4.13: Loess fit and Poisson errors for 2005-2009 data with 2010 observations
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4.5 Conclusions and Recommendations

In chapters 3 and 4 we created two separate models; CPD for forecasting calls per day, and Daily
Profile for forecasting arrivals rates. There could be mistakes made by approaching forecasting
in this way, for example, consider Property 3 from Avramidis et al.[7, pp 2]:

“There is strong positive association (correlation) between arrival counts in a time
partition of a day”.

Applying this property, it may be worthwhile using Daily Profile to generate calls per day
forecasts. Furthermore this may suggest updating your calls per day forecasts periodically
during a shift is a better method, as discussed by Shen and Huang [21].

In practice, forecasting separately works for NDUC, however further work could be carried
out to formalise the benefits and pitfalls of doing so. Currently, updating forecasts during shifts
could not be applied in this case, as the data is harvested during ‘in-hours’ periods, ensuring
there is no extra pressure on servers whilst patients are using the service.

To conclude; although there are some model faults, NDUC have two forecasting methods
which produce good results. They have been used in several aspects of the business from
workforce planning, to new bids for business. They improved the management information
available to staff on all levels, and were particularly useful for commissioners during the swine
flu pandemic in 2009.
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Chapter 5

The Swine flu Pandemic

By February 2009 the CPD model was used to predict calls per day routinely, with updates
every 2-4 weeks of new observations, and in practice this worked quite well. At the end of April
2009 swine flu hit the press in England. Widespread news coverage about the virus increased
public awareness, and headlines such as the New Scientist’s “Deadly new flu virus in US and
Mexico may go pandemic” [2], caused public concern. Although the underlying messages tended
to be to remain calm and not panic, the headlines did not support this message. An article
published by the BBC in June 2009 read “First UK swine flu patient death” [3]. Upon further
reading this patient had underlying health problems, and there was also a comment on the
bottom from a Virologist entitled “Chances remote”, advising the readers to not panic.

The uncertainty among the public was clear to us from GP feedback. Sessional GPs working
at practices during the day recalled that some patients were confused about what to do in special
cases. What about children, pregnant women, or those living in close quarters to someone who
is going through chemotherapy?

When the NHS published the first guidelines for patients dealing with swine flu, they advised
to contact your GP if you were experiencing symptoms, or had any concerns that you had
the virus. Therefore, any patient following this advice in Northumberland, North Tyneside,
Newcastle, or South Tyneside, out-of-hours would be directed to one of NDUC’s GPs for advice.
The initial publicity of the virus started just before the first May Bank Holiday 2009. During
this holiday NDUC ran the GP out-of-hours service from 18:30:00 on Friday 1st May, until
07:59:59 the following Tuesday. Although it was clear there would only be a handful of genuine
virus cases over this weekend, if any, we were still aware that anyone with normal flu symptoms,
the worried-well, and those recently back from Mexico or America might call the service.

The national strategy for dealing with the pandemic developed and changed as the virus
progressed. In May and June 2009 England remained in the containment phase. That meant,
any suspected swine flu cases were isolated, swabbed and confirmed, and received treatment.
On the 2nd July 2009, the UK moved from containment to treatment. This meant that anyone
suspected of having swine flu received antivirals for treatment, without confirmation of the
virus. It was after this date that we saw an unexpected influx of calls, described later in this
chapter.

On 23rd July 2009, the National Pandemic Flu Service went live across England, and pro-
vided patients with antivirals for swine flu. By 30th July 2009 our call volumes seemed to be
returning to normal. August and September 2009 remained at normal levels, but by October
we were seeing unusually high activity again, particularly at weekends. The second wave of the
pandemic hit England in October and November 2009, but without the extreme peak we saw
in July.

This unusual activity between June and October 2009 is illustrated in figure 5.1, which
shows the percentage increase above CPD forecasts between 01/06/2009 - 21/10/2009. We
would normally see a small oscillation above and below the dashed grey line, and this wasn’t
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the case in July, or October. The vertical blue lines are when NDUC implemented and stood
down its Rising Tide Policy, which is used in severe pressure periods, respectively.

All of these influences meant we needed to create an inflation term change the CPD model,
and the following sections highlight the thoughts and methods used to tackle this problem.

5.1 The Health Protection Agency

The Health Protection Agency (HPA) is an organisation that supports the NHS, Department of
Health (DoH), and other organisations by protecting UK public health mostly through advice.
Throughout the swine flu pandemic they reported on swine flu incidences through updates on
confirmed cases, press releases around travel advice, vaccines and treatment approaches, and
then through Weekly Pandemic Flu Updates. Throughout this chapter I will refer to several of
these reports, which are archived on the HPA website [4].

5.2 Strategic Health Authority

Strategic Health Authorities (SHAs) manage the local NHS on behalf of the secretary of state.
There are ten SHAs across England, and NDUC falls under the North East group. They are an
important link between the DoH and the NHS, and are responsible for making sure local health
services are of high quality and performing well.

5.3 May Bank Holiday 2009

As previously alluded, in May 2009 the number of confirmed cases in the UK was low, and
the impact on the out-of-hours service was likely to be those with the normal flu (which isn’t
too prevalent in May), and the worried well; like those returning from holidays in Mexico.
We had little information on how the population would react to the media, but could look at
previous service demand under normal conditions, and general characteristics of the population
of the North East. Table 5.1 shows the monthly figures for previous Mays, and summing up
the forecasts from the normal CPD model we expected the volume for May 2009 to be 10,058,
busier than any previous May on record.

On 30th April 2009 the HPA gave an update of swine flu cases in England, which were
around the London area, with one confirmed case in the North East of England. At this stage
all cases had mild symptoms and were responding to treatment at home. Let’s now consider the
one confirmed case in the North East of England, which was associated with travel to Mexico.
The HPA stated that close contacts to the infected could have antivirals as a precautionary
measure. That is anyone who has been exposed to the confirmed case over the last week for
more than one hour within a distance of 1 metre or less. The next day this news hit the press
in the North East. Paul James, writing for The Journal [16], revealed that the confirmed case
in the North East shared residence with two students at Newcastle University.

After consultation with sessional GPs and the operations team, it was agreed that a rea-
sonable estimate for the excess calls over the Bank Holiday weekend was around 100, and an
inflation coefficient I for CPD I1 = 5% was implemented for the 2nd-4th May 2009, inclusive.
Table 5.2 states how the forecasts looked in practice.

5.4 July 2009

The decision to move from containment to treatment of the virus was made on Thursday 2nd

July 2009. This meant that patients who met certain criteria were able to obtain the antivirals,
without confirming whether or not they had swine flu. These would be collected by a flu-friend
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Figure 5.1: Percentage increase from CPD between 01/06/2009 - 21/10/2009
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Table 5.1: Monthly figures for previous Mays
Year Total cases over month
2005 9796
2006 9335
2007 9843
2008 9592

Table 5.2: Inflated fit, fit and actual CPD for May Bank Holiday 2009
Date 02/05/2009 03/05/2009 04/05/2009 Total

Normal fit 721 650 644 2015
Inflated fit 757 683 676 2116

Observation 733 670 701 2104

from certain walk-in centres across the North East. It was after this date that NDUC started
to see a growing excess above call forecasts generated from the CPD model. Not only did this
put extra pressure on NDUC’s system at a time when they expect call volume to be low, but
it also occurred over the period where most GPs take their holidays (also related to the low
demand as well as school holidays). By 9th July NDUC were dealing with an unprecedented call
demand on weekdays, and weekends were behaving like the busiest days around the Christmas
holidays. Indeed, this activity was occuring all across England, with the HPA’s Weekly National
Influenza Report published on 16th July 2009 stating that GP consultation rates for influenza
and influenza-like illness in England were higher than those observed at the peak of the previous
winter, for the week ending on the 12th July. The HPA also had weekly suggestions of how
many swine flu cases there were in England, which are archived on their website [? ]. Estimates
were based on latest weekly consultation rates for flu-like illness, taking into consideration
positive swine flu cases (through HPA sampling, as swabbing was no longer the norm), and
assumptions related to the volume of patients attending GP appointments. These estimates
had large prediction intervals attached to them.

On Thursday 23rd July the National Pandemic Flu Service went live across England, and
patients now had two alternative routes for getting antivirals - through a website or dedicated
phoneline, and call volume at NDUC started to return back to normal. This unusual activity
in July 2009 is clearly visible in figures 3.12 and 3.13 in chapter 3.

5.5 October 2009

In October 2009 call volume began to increase again, and at this time we introduced the method
of moving averages to forecast excess call volume.

Let pCPD be the CPD predictions for calls per day in October 2009 generated from equation
3.21, and oCPD be the observed calls per day over the same time period. Consider the excess
denoted by the letter x, x = oCPD−pCPD. Now consider x with respect to the original forecast
pCPD, and define the increase ratio

I =
x

pCPD
.

5.5.1 Seven-day Moving Averages

Consider the excess x as a time series Xt. Moving averages are smoothing tools designed to
eliminate an undesirable component from the series [17]. Next assume that x is a series of a
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trend and irregular component. If the trend is smooth, then the values of the series around date
t must contain information about the value of the trend at instant t, and it must be possible to
use an average of these values as an estimate.

A moving average of coefficients, {xi}, is defined as [17, pp 25]:

M(Xt) =
future∑
i∈past

xiXt+i (5.1)

The value at instant t is replaced by a weighted average of past, past values, the current
value, and future, future values of the series.

The function filter in R allows us to apply a linear filter to a univariate time series.
Consider the dataset excessdata which runs from 14/09/2009 - 01/11/2009 (inclusive). The
R output of >summary(excessdata) is shown below. Here pCPD = fit, oCPD = obs, and x =
excess. We include some other dummy variables to indicate weekends, holidays, and whether
the NPFS was live.

> summary(excessdata)
day date dow fit obs

Min. : 1 Min. :09/14/09 Mon:7 Min. :110 Min. :104.0
1st Qu.:13 1st Qu.:09/26/09 Tue:7 1st Qu.:120 1st Qu.:138.2
Median :25 Median :10/08/09 Wed:7 Median :134 Median :162.0
Mean :25 Mean :10/08/09 Thu:7 Mean :247 Mean :286.3
3rd Qu.:37 3rd Qu.:10/20/09 Fri:7 3rd Qu.:463 3rd Qu.:540.2
Max. :49 Max. :11/01/09 Sat:7 Max. :610 Max. :769.0

Sun:7 NA’s : 7.0
excess h1n1 fluline weekend

Min. :-14.00 Min. :0 Flu Line:49 Length:49
1st Qu.: 17.25 1st Qu.:0 Class :character
Median : 30.00 Median :0 Mode :character
Mean : 41.05 Mean :0
3rd Qu.: 46.75 3rd Qu.:0
Max. :164.00 Max. :0
NA’s : 7.00

pc pred_excess ma
Min. :-6.30 Min. : 3.00 Min. : 6.929
1st Qu.:11.10 1st Qu.: 21.00 1st Qu.:14.086
Median :20.60 Median : 27.00 Median :18.986
Mean :19.30 Mean : 45.59 Mean :19.448
3rd Qu.:26.10 3rd Qu.: 57.00 3rd Qu.:27.279
Max. :45.00 Max. :156.00 Max. :30.243

NA’s : 6.000

Now we want to predict x, and assess the effects of day (the number of the day of the series
with 14/09/2009 = 1), and dow, and a possible interaction between the two. Limiting to this
date range, we wanted to assess the imminent swine flu impact for the next week. Consider the
following linear models defined in equations 5.2 and 5.3

x = β0 + β1day + β2dow + ε (5.2)

x = β0 + β1day + β2dow + β3day : dow + ε (5.3)

The Analysis of Variance table below in the R Output showed that, at this stage, and using
these exclusions, equation 5.2 is the favourable model, which is supported by the residual plot in
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figure 5.2. In this particular residual plot we have coloured the days ensuring there is no pattern,
and the interaction term can be omitted. The only alarm bell is that Sundays (black points)
seem to have a large variation, so we need to recheck the model as new Sunday observations
arrive.

> anova(predexcess1,predexcess2)
Analysis of Variance Table

Model 1: excess ~ day + dow
Model 2: excess ~ day * dow
Res.Df RSS Df Sum of Sq F Pr(>F)

1 34 25485
2 28 18112 6 7372.6 1.8996 0.1161

After we have established a way to predict x, we do so for the next seven days. Figure 5.3
illustrates this excess activity by plotting the observed excess, in green, for past days, and the
predicted excess, in blue, for future days. The predictions are generated from equation 5.2. At
this stage you can see that the excess was increasing, and we predicted about 50 excess calls on
weekdays, and over 100 excess calls for weekends on this patricular week.

Finally, we take the excesses, and calculate the percentage increase from pCPD, or fit. This
is the field pc in the summary of excessdata in the earlier R output. Finally, we define the
seven-day moving average (ma) with the R code:

> excessdata$ma<-filter(excessdata$pc,rep(1,7)/7)

Figure 5.4 plots these moving averages, with observed in green, and predicted in blue, as
before. This is what gives NDUC an idea of the imminent excess being predicted over a week.
At this particular time we were predicting weekly excesses of about 35%.
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Figure 5.2: Standardised residual plot of equation 5.2
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Figure 5.3: Predicting excess from equation 5.2
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Figure 5.4: Applying a seven-day moving average
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5.5.2 North East Strategic Health Authority

On Monday 19th October most of the out-of-hours providers, and several PCT representatives
from the North East group met to discuss the swine flu pandemic at the North East SHA. Six
outcomes were agreed at this meeting and our work contributed to two of them:

1. Out-of-hours providers should define their escalation policy, using the North East Escala-
tion Plan (NEEP) 1-6 framework

2. Provide timely out-of-hours activity data. This would help as an early warning trigger for
the rest of the healthcare system.

5.5.3 North East Escalation Plan

The idea behind NEEP was to implement a Pandemic Flu Escalation Framework, with clear
triggers and actions, so the organisation knew what was expected of them at every level of
pressure. The structure of the report a simple spreadsheet as illustrated in figure 5.5, and we
had to complete this form clearly and logically. The structure of the plan is that it defines the
organisation to be at one of six potential levels:

- Level 1: Normal (white)

- Level 2: Concern (green)

- Level 3: Pressure (amber)

- Level 4: Severe Pressure (red)

- Level 5: Critical (purple)

- Level 6: Potential Service Failure (black)

For each of the six levels you had to define six variables:

1. Trigger: What needs to have happened, or is expected to happen to move to this level?

2. Action: What will be done to mitigate the raised level of pressure as a result of this level?

3. Communication: What will be communicated internally and externally?

4. Command/control: Who has the authority to move to this level?

5. Impact: Expected impact of actions

6. Implications: Will actions affect other organisations?

Our main input was through the first variable, Trigger. Given that we had an accurate CPD
model, what sort of levels above CPD forecasts will result in a move to NEEP levels 2, 3, 4,
5, and 6? This was particularly difficult to assess, there wasn’t an obvious way to approximate
the number of excess calls as external factors, like time of year, and holidays, will affect it. The
document also required the increase to be written as a percentage. Then we needed to decide
what was the appropriate level to calculate this trigger? Daily? Weekly? Monthly?

Initially there was favouritism towards having a daily outlook, but as call volumes can be
low on weekdays a daily percentage increase or decrease trigger is not reliable. Monthly was
not viable as by the time you work out whether your activity was normal or not, the pressure
period is likely to have subsided. We proposed the best way to look at this would be similar
to the CPD model, but this time apply that logic for forecasting calls per week from Monday
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Figure 5.5: NEEP Framework

- Sunday CPW . Furthermore, why not take the previous seven-days forecasts from the CPD
model, aggregate them, and compare it to what’s actually happening? That way you don’t have
to wait until Monday morning to see how the previous week behaved. This approach was also
more convenient during a period when there were severe time pressures, and the organisation
was already familiar with the CPD model. This approach was adopted, and appropriate triggers
were chosen to complete NDUC’s NEEP policy, which is still in place today. The triggers for the
six NEEP levels are detailed below, and are percentage increase on calls per week, depending
what season it is.

Level Trigger
1 No trigger
2 17%− 23%
3 23%− 41%
4 41%− 53%
5 53%− 100%
6 > 100%

5.5.4 SHA Situation Reports

SHA Situation Reports, or SitReps, were created to provide timely out-of-hours activity data.
Between 28/10/2009 and 28/02/2010 the activity return form illustrated in figure 5.6 was com-
pleted and sent to the SHA contact, by 11:00 every morning, for the previous shift, firstly, seven
days a week, and then five days a week. Moreover, we had to complete two of these; one for
North of Tyne (Northumberland, North Tyneside, and Newcastle) and South Tyneside.

There were several issues with this form, the first being the frequency. Since the report had
to be completed seven days a week, and couldn’t be done remotely, this responsibility fell to the
Operations manager who was on call at weekends, so a user friendly process had to be created.
The next issue was that we had to split North of Tyne and South Tyneside. In Q1 in figure
5.6, we had to input the number of calls received, that is, calls that are going straight to a call
handler. In practice, this will always be higher than the number of out-of-hours cases created
for GPs to triage. Furthermore, with our telephone system at the time, we could not distinguish
where the calls were coming from; this classification is only recorded once a GP out-of-hours
case has been created. Therefore, we could only report on total calls coming into our system,
from all areas.

Then there was the forecasting; the CPD model forecast the number of genuine out-of-hours
cases for the whole organisation, and wasn’t split for area. Forecasts for home visits and centre
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Figure 5.6: SHA SitRep template

visits had large error bounds, and again were not split by area. We didn’t split forecasting down
to this level as it was organisationally unnecessary, and could result in misleading statistics.
Consider the following example to illustrate my point; home visits on Tuesdays in October in
South Tyneside. We expect there will be 3 home visit consultations on this particular day,
however, it would not be unheard of to see 0 or 1, or 5 or 6 consultations on a day like this
either. Reporting with the return in figure 5.6, we were occasionally saying that on certain
shifts there were 100% increases or decreases in activity levels, which is of course, misleading to
the reader.

Not only this, but the report was completed daily, and this was supposed to guide you to
choosing your NEEP level. Returning to home visits on Tuesdays and Wednesdays in October,
in South Tyneside, we would forecast 3 on each day. Say we observed 1 on Tuesday and 5 on
Wednesday we would report a 66% decrease followed by a 66% increase, which would take our
organisation from NEEP Level 1 to NEEP Level 5 in one day, when activity is just varying as
we would normally expect.

These issues were raised to our commissioners and it was clear there was some confusion
over the NEEP framework. For example we would report a daily decrease, but have a weekly
increase over the latest seven days warranting a move to NEEP level 2, and this decision would
be questioned. Then it was a case of reporting a daily increase but the week had behaved
normally, and we would be questioned on our decision to remain at NEEP level 1. We spent
some time explaining this method to the commissioners, and how we were assessing activity
differently, and they were happy to let us continue to do it on a seven-day basis. This open
communication built on already existing relationships with the commissioners, and we became
recognised as a reliable data source. Even though we identified the flaws in reporting like this,
and were mostly supported in our comments, the daily SHA SitRep remained in place for just
over four months, and the time invested in this could probably have been put to better use
elsewhere.
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Chapter 6

Performance Monitoring

Central to operations at NDUC, it is necessary to monitor the activity, average handling times,
and case outcomes of all the staff dealing with calls at the call centre. To meet the organisation’s
KPIs, it is necessary to make some assumptions, or expectations, around average handling time
(AHT), and how many calls they are expected to take in a certain time period, given appropriate
demand. This is more complicated to implement among the GPs, given the complexity of the
operational setup, and patient case mix.

This chapter discusses the resources available to managers for monitoring their staff on shift
before the KTP project, and the tools put in place to improve their management information,
for both call handlers and GPs. It then goes on to discuss the predictive methods implemented
when trying to model individual GP’s behaviour on shift.

6.1 Call handlers

After the recorded message, the first port of call for the patient is to speak with a call handler.
Here the call handler spends around 3 minutes taking personal details of the patient, a summary
of symptoms, and assigns an urgent or routine priority. Before making it through to a call
handler, the patient takes another journey; they listen to a recorded message, which is 19
seconds long. This explains the service they are about to receive, and that a call handler will
pick up the call shortly following the message. The patient will then be put on-hold, waiting for
a call handler to become available. After holding, they then speak to the call handler. During
this journey the patient has two slots to leave the system before reaching a call handler:

1. patient hangs up during the recorded message; call handler had no chance of picking up

2. patient hangs up while on-hold after the recorded message; this is classed as an abandoned
call

3. patient gets through to a call handler after being on-hold; this is classed as an answered
call

Every month NDUC report to their commissioners on two KPIs concerning abandoned calls
and on-hold times:

1. Following the end of the recorded telephone message, the abandoned calls rate should be
5% or less

2. 95% of answered calls should be answered within 60 seconds or less after the end of the
recorded message.
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Figure 6.1: Workflow of call handlers and GPs

We also note here that call handlers have a direct impact on the GP KPIs. This is because
call handlers classify calls as urgent and routine, and these cases carry different KPIs (as dis-
cussed in chapter 2 section 2.4.1 where urgent calls need to start definitive clinical assessment
within 20 minutes, and routine within 60 minutes). The higher the rate of urgent calls generated
by the call handlers, the greater the pressure on the GP triage workload. The different stages
of the patient path from call handler to GP is illustrated in figure 6.1.

For efficiencies of staffing we also need to have a realistic target for AHT, and communicate
that to staff. At the start of this research there was little information about call handler
behaviour, with none on a shift or individual level. Throughout this project time was spent
understanding the program MyCalls; this allowed extraction of raw data from which we could
generate summaries around shift performance and call handlers’ AHT. This information did not
progress past basic summary level, but the visibility of performance, shift and server wise, still
added value to NDUC as an organisation. Further work could develop the data extracted for
call handlers, and try to understand queuing from the front end of the system; the telephone
switch.

6.2 GPs

The research described in monitoring GPs, particularly around their triage times was collabo-
rative work with David Wooff at Durham University.

GPs are very expensive. The difference in cost between staffing three GPs on weekday
evenings versus four amounts to around £70,000 p.a. Therefore it is imperative we have accurate
forecasts to produce demand-driven staffing levels. These, however, are not enough. Experience
tells us that GPs are not interchangeable, and they will all have an individual productivity level,
dependent on the individual GP and external factors, such as the size of the queue. Varying
GP productivity will affect the response time to patients; if you have a group of GPs with low
productivity all working on one shift, patients will have longer waits before contact than if you
have a group of GPs with high productivity.

First we need to split the GP resource into two categories; triage, and face-to-face. Triage
is a telephone conversation between a GP and patient, where they assess the patient’s needs.
Face-to-face contact is where a GP assesses a patient either at one of the seven UCCs or a
patient’s home. Every OOH case will be triaged, but not every OOH case will require a face-
to-face consultation. Therefore in what follows we restrict GP productivity to considering only
triage activity, with obvious extension to other activity.
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Over any shift there will be different types of GP shift, where GPs have to undertake a
combination of roles. There are shifts based at headquarters where GPs will triage calls and
perform face-to-face home visits. There are shifts based at our UCCs where GPs will consult
with patients through centre visits and referrals from A&E departments, as well as triaging
calls remotely when there is enough demand. There are shifts where GPs triage remotely, from
their home, for a short period of time. Depending on the GPs surroundings, this may have an
impact on their productivity.

Furthermore, it is intuitive to think that the number of people in the system at any time, the
size of the triage queue, will also affect GP productivity. If the GP is triaging at headquarters
and there are 20 patients waiting for a call back with a steady arrival rate, you may expect that
GP’s productivity to be higher than if there were only one or two people sitting in the queue.
That is, if there is no queue, the GP can afford to spend longer triaging a call, and tends to do
so.

For every case triaged, the GP decides the outcome (recall figure 6.1): telephone advice,
centre visit, or home visit. Home visits are the most expensive outcome, followed by centre
visits, and then telephone advice. Naturally, you would expect different GPs to have different
rates of telephone advice versus home visits, however, there will also be GPs who naturally lean
towards deciding on a home visit rather than telephone advice. High home visit rates also put
pressure on the system further down the line. Not only this, you could expect final outcome to
affect the length the GP spends triaging the call. We would typically expect calls which turn
out to result in visits to be shorter in length.

We have briefly discussed a few issues as to why monitoring and modelling this productivity
is difficult. Given the nature of the setting, each out-of-hours case represents a patient, not a
number, and there is a duty of care to all patients who come through the system. Acknowledging
this fact, it is still essential to monitor GP behaviour, identify outliers for retraining purposes,
as well as trying to model their productivity for future planning.

The next two subsections show techniques developed and implemented during the KTP
project, which deal with the issues above.

6.2.1 Monitoring Productivity over Shifts

Given the setup of GP operations at NDUC, and that often GPs are working remotely from
headquarters, it is necessary to monitor when they are being active, and when they are not. We
created a timeline of the shift, with each GP’s activity illustrated individually, colour coding it
for different types of patient contact. Here you could identify whether certain GPs have gaps
in their activity. Then we had to assess the reasons behind their activity pattern. Maybe there
are gaps in their activity because there were no patients waiting to be triaged. Therefore we
created functions in R to generate the GP activity for each shift, and to visualise the triage
queue over the same period. To do this, define five types of shifts on any weekday:

- Triage/Home Visit shift (Tri/HV). Here the GP is based at headquarters for the evening
part of a weekday shift. Their shift will start at time t1 and finish at time t2. The GP is
responsible for triaging calls, as well as attending home visit consultations.

- Urgent Care Centre shift (UCC). There will be seven UCC shifts in any weekday evening
shift. Here, one GP is based at one of the UCCs NDUC operates. These GPs are
responsible for centre visit consultations, referrals to them from an A&E department,
and triaging calls from the UCC as and when required.

- Overnight shift (o/n). Here, the GP is based at headquarters for triaging calls and at-
tending home visit consultations.

- Nurse shift. Nurses work at headquarters during weekday evenings, dealing with dental
out-of-hours calls as well as routine GP out-of-hours calls.
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- Home triage shift (H/triage). Here, the GP is based at their home, and triages calls
remotely. They perform no face-to-face consultations.

We order the shifts as described above for convenience. It should also be noted that different
shifts can be done by the same GP. For example a GP may be working at a UCC in the evening,
and then return to headquarters to start an overnight shift.

6.2.2 The GP Activity Plot

Figures 6.2 and 6.3 show the GP activity plot and key, respectively, used at NDUC for a shift
on Tuesday 25th May 2010. There are seventeen rows in the picture in total. Horizontal lines
represent some sort of activity with a patient, and end points mark the end of this activity,
as well as giving an indication on the case type. Triage activity is denoted by the light blue
horizontal line, and routine home visits and urgent home visits are denoted by the green and red
horizontal lines respectively. Details of the meanings of the colours and end points are detailed
in figure 6.3.

You can see the picture looks quite complex, but if you split the GP resource into Tri/HV,
UCC and (o/n) it becomes less so. You should also note there can double shifts over a weekday
evening out-of-hours session. The GP working at UCC 7 finished their work, and then travelled
back to headquarters to start an overnight shift.

Consider figure 6.2 starting from the top and working down. There were four GPs based
at headquarters responsible for triaging and home visits. You can see that the first GP was
scheduled to be on shift between 19:30 and 01:00. They started their shift with some telephone
triage (5 calls in total), then went out to consult two routine home visit consultations, and then
returned to headquarters to triage a further three calls.

Compare this with the second Tri/HV GP who was scheduled to be on shift between 19:00
and 23:00. This GP triaged pretty much solidly throughout their shift, handling about 3 calls
an hour between 19:00 - 21:00, and then speeding up to 6 or 7 calls an hour between 21:00 -
23:00.

Underneath the Tri/HV GPs you have the seven UCC GPs. Consider now UCC 2 and UCC
4. The GP at UCC 2 started the shift by triaging eight calls. He moved on to a routine centre
visit consultation, before triaging another call. There was then a gap in activity for 30 minutes
before he finished his shift by alternating between triage and routine centre visit consultations.
The GP at UCC 4 recorded one centre visit routine consultation, over the whole shift, which
lasted for nearly four hours. It is highly unlikely that this is accurate; however, face-to-face
consultation times are entered by the user, which results in inputting errors from time to time.
In reality, we don’t know what the GP at UCC 4 was doing, but this highlights that something
strange was going on, perhaps to do with technical issues.

Next we move onto the overnight shifts, and you can see four GPs mostly triaging calls, and
a few going out to home visit consultations. There are regular gaps in activity.

To finish we have the nurse on shift, who handles a mixture of dental and GP calls, followed
by a few consultations coming up at one of our walk-in centres (Jarrow) that closes at 20:00,
and a GP triaging two calls at around 23:15 from their home.
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Figure 6.2: GP activity plot
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GP Activity Graph guide

The following graphs can be produced on a shift by shift basis.
The key to read them is set out below. Remember:

1. Lines represent contact with patient
2. End points represent outcomes
3. Nurses are based at N/House for routine triage/dental calls – their 

timeline shows the outcomes of their triage (coded below).

• Tri/HV: GP triage and home visit shift
• STP: South Tyneside UCC
• NTP: North Tyneside UCC
• NGH: Newcastle General Hospital UCC
• HEX: Hexham UCC (note A&E covered on 

evenings 1900-0800)
• BER: Berwick UCC
• ASH: Ashington UCC
• ALN: Alnwick UCC
• o/n: Overnight shift
• H/triage: Home triage available
• H/triage sched: Home triage scheduled
• Nurse: Nurse (also do dental calls).

Figure 6.3: GP activity plot key
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Tuesday May 25 − 145 calls
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Figure 6.4: Triage queue plot

6.2.3 The Triage Queue Picture

Consider now, figure 6.4, which shows how many routine and urgent cases were waiting to be
triaged on Tuesday 25th May. As with the GP activity plot, the triage queue picture is broken
down to minute level. The red bars show how many urgent cases are in the queue at any time,
and the routine calls (in green) are stacked above these to give the total number of cases waiting
to be triaged at any minute of the shift.

Recall the second Tri/HV GP from figure 6.2, and their varying work rate between 19:00-
21:00 and 21:30-00:00. If you look at figure 6.4, the triage queue was most pressurised between
21:30 - 00:00, which could have driven this GP to speed up their triage. On the overnight part
of the shift the queue is mostly empty, so it’s not unusual to see gaps in activity during this
time.

The GP activity plot and triage queue pictures have been produced daily at NDUC since
August 2009, and still make up a valuable piece of information when assessing shift performance
and understanding GP behaviour. As yet, we have not formalised a link between GP activity
and the triage queue, but future work could address this issue.

6.2.4 Monitoring Triage Lengths

NDUC have two conflicting issues to balance when monitoring GP productivity, or triage length.

1. To reach optimum staffing we need to know arrival rates and GP productivity. Ideally we
want GPs to work as quickly as possible.

2. Given the nature of the calls, NDUC cannot say “all GPs must deal with 5 calls per hour”.
Different case mixes will take different lengths of time, and there is duty of care towards
patients. On a lengthy case it is unacceptable to reach the ‘time limit’ of 12 minutes and
cut the case short. We know GPs will take longer or shorter on triage depending on their
conditions, ability and personal attributes. Particular GPs, like particular members of
any workforce, will be lazier than others, and it is important to be able to identify the
correct reasons for the differences in speed, and monitor accordingly.

The investigation began by exploring a cohort of GPs compared to each other, rather than
setting KPIs. For example if GP X and GP Y always work the same shifts, with the same case
mix, with the same experience, and GP X is always slower than GP Y, we need to know why.
Therefore this research will:

- Ensure there is an appropriate skill mix on each shift
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Histogram of GP triage lengths: 01/01/2007 − 24/11/2009

Triage length

F
re

qu
en

cy

0 10 20 30 40

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Figure 6.5: Histogram of GP triage lengths

- Highlight outliers for call reviews and possible retraining

In the first instance, all out-of-hours cases were collected from January 2007 until 24th

November 2009. From this, all telephone consultations, or triages, by each clinician were
recorded (over 250,000 such consultations). We cleaned the data by reducing to certain cases
in Adastra:

- Triage has a consultation type of ‘TELEPHONE ADVICE’ or ‘Streamed - Advice’. This
ensures such non-OOH triages, like North East Ambulance Service Clinician Support, are
removed.

- Triage has a final case type of ‘TELEPHONE ADVICE’, a derivative of ‘Centre Visit’,
or ‘Home Visit’, and ‘Patient Rejected Advice’. This ensures non-out-of-hours cases, like
‘Telephone Answering’, are removed.

- Triage GPs are fully qualified. Some calls are handled by Registrars, who are not fully
qualified, and may triage under supervision.

- GPs have triaged at least n cases, to ensure estimates are reasonably robust. In the
method that follows, n = 20

Triage lengths are rounded to the nearest minute, and we use exploratory data analysis to
establish the distribution we will use for GP triage lengths.

Let y denote GP triage lengths, in minutes. Figure 6.5 shows the distribution of y, which is
skewed as might be expected. When you have skewed observations, one possibility is to trans-
form to Normality before-hand. In this case, taking logs works well. However, a disadvantage is
that models which fit to a transformed response variable cannot easily be back-transformed in
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order to give results on the original scale [15]. A superior alternative in this case, as described
below, is to use a fitting technique which can take explicit account of the shape of the response
variable.

Next we needed to know what would affect y. All GPs triage two types of calls, routine
and urgent. Intuition would tell us that urgent triages will take longer than routine triages, as
they are more complicated. There were also clear time of day and time of year effects. For time
of year, triage lengths are slightly longer between April-November, than December-March. We
also know, however, that the service is much busier in the winter months, and a GP faced with
a busy shift and large queue will work faster than a GP faced with a quiet shift and a short
queue - that is, they can afford to take more time in Summer than Winter due to demand on
the service. Similarly, for time of day, triage lengths are highest on overnight periods (00:00:00
- 07:59:59), and shortest in the morning times. Again we also know that the morning time of
day (08:00:00 - 11:59:58) only occurs on Saturdays and Sundays, the busiest time of the week,
and overnights tend to be the quietest time.

As well as this, feedback from the Head of Clinical Services, who still works out-of-hours
GP triage shifts, suggested that different days and times throughout the week generate different
caseloads. Saturday mornings will generate a large number of routine cases, filled with simple
ailments and repeat prescription requests. Overnights will generate a small number of more
complicated cases. This knowledge backs up the findings in the model. A sensible way to
deal with these effects was to leave them out of the modelling, and subset the dataset used in
modelling to account for them. For example, when considering in April how GPs have been
behaving recently, take data from January-March, and limit to particular times of day, like
Saturday mornings in January - March. Then model GP behaviour from this dataset.

The GP also has a choice about the outcome, or case type, of the triage. This will either
be telephone advice, centre visit, or home visit. During the first minutes of triage it will be
apparent if a face-to-face contact is appropriate. If that is the case one will be arranged and
the GP can assure the patient that another GP will follow up on their case. If that is not the
case the GP will have to reassure the patient with advice, which will take longer than saying
“A receptionist will call you back shortly to arrange a centre visit”, or “A GP will call with
you at your house within two hours”. The different mix of outcomes will also reflect different
days and times. The UCCs are closed on the overnight time periods, and so the only possible
outcomes are telephone advice or home visit. This theory was tested and indeed, outcome was
an important correlate.

For the sake of simplicity we choose to fit a basic model which adjusts for whether or not
the case was urgent as well as the outcome. Then we apply different subsets of the dataset
to run through this model. For example run the model for the clean dataset for triages on
Saturday mornings (Saturday 08:00 - 11:59 excluding the Saturday before a Bank Holiday),
weekday evenings (Monday-Friday 18:30 - 23:59), overnights (Monday-Sunday 00:00 - 07:59),
and bank holiday weekends.

A generalised linear model, with gamma errors and a log link works in practice. This gives
the model of the form

ŷi = exp(α+
∑
i

βixi),

where the xi are dummy variables with respect to urgency and outcome. This, in turn, gives
us the model:

ŷi = eα
∏
i

eβixi .

The proportionate effect of xi on the intercept is a simple interpretation of the relevance of
xi.
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Consider all GPs triages in the second quarter of 2010 (April - June inclusive). The R
Output below shows the generalised linear model as described above, assessing the importance
of urgency (urg) and outcome (casetypeb) on triage length (triage). The baseline is a routine
call ending as telephone advice, and as we expected, face-to-face outcomes are all shorter, and
urgent calls are longer. The average triage time is nearly 00:10:30, and the practical implications
of these effects are under a minute for outcome, and about 00:01:20 for urgent cases.

Call:
glm(formula = triage ~ casetypeb + urg, family = Gamma(link = log),

data = data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7334 -0.4778 -0.1115 0.2428 1.9247

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.33157 0.02424 96.205 < 2e-16 ***
casetypeb[T.Centre Visit ROUTINE] -0.42619 0.03307 -12.888 < 2e-16 ***
casetypeb[T.Centre Visit URGENT] -0.21945 0.06672 -3.289 0.00102 **
casetypeb[T.Centre Visit With Transport] -0.14038 0.08892 -1.579 0.11456
casetypeb[T.Home Visit ROUTINE] -0.15593 0.03992 -3.906 9.7e-05 ***
casetypeb[T.Home Visit URGENT] -0.09061 0.06095 -1.487 0.13728
urg[T.Urgent] 0.08116 0.03590 2.261 0.02390 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for Gamma family taken to be 0.3459581)

Null deviance: 746.21 on 1857 degrees of freedom
Residual deviance: 682.66 on 1851 degrees of freedom
AIC: 10860

Number of Fisher Scoring iterations: 5

Analysis of Deviance Table

Model: Gamma, link: log

Response: triage

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 1857 746.21
casetypeb 5 61.733 1852 684.48 < 2e-16 ***
urg 1 1.819 1851 682.66 0.02184 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
ALL
With summer and winter months
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Average triage time: 10.29 minutes. Percentage multipliers are:
casetypeb[T.CV ROUTINE] casetypeb[T.CV URGENT]

-34.70 -19.70
casetypeb[T.CV With Transport] casetypeb[T.HV ROUTINE]

-13.10 -14.44
casetypeb[T.HV URGENT] urg[T.Urgent]

-8.66 8.45

Practical impact of the multiplier on the average
is a difference of these times in minutes:

casetypeb[T.CV ROUTINE] casetypeb[T.CV URGENT]
-0.99 -0.90

casetypeb[T.CV With Transport] casetypeb[T.HV ROUTINE]
-0.76 -0.80

casetypeb[T.HV URGENT] urg[T.Urgent]
-0.61 1.31

Our interest is in the activity of individual GPs when triaging, in particular: is the GP faster
or slower than average, and how variable are their triage lengths? The focus now moves to the
residuals from the model. The model adjusts for factors we know we need to take into account,
and the residuals now summarise GP behaviour. We examine this behaviour by looking at
boxplots of these residuals. Through the boxpolots, we can identify three groups of GP

1. GPs with 75% of their cases below the average triage length i.e. ‘quicker’ GPs.

2. GPs with 75% of their cases above the average triage length i.e. ‘slower’ GPs.

3. GPs performing similarly to the average.

Doing this will ensure very long triage lengths (e.g. due to mental health cases) and very
short triage lengths (e.g. due to engaged calls) do not affect the GP rating. It is also important
to consider how many cases each GP has triaged. In practice this will be illustrated by the
width of the box: the wider the box the more cases.

Figures 6.6 and 6.7 illustrate this boxplot method for residuals for weekday evenings, and
Saturday mornings, in the second quarter of 2010, respectively. ‘Quicker’ GPs appear to the left
of the graph and ‘slower’ GPs to the right. GPs behaving similarly to the average are omitted
from the picture (33 in the weekday case, and 27 on Saturday mornings). Now consider these
pictures carefully.

Does it seem that experienced GPs are on the left and inexperienced GPs are on the right?
In the weekday case the slow GPs have narrow boxes, indicating they have triaged fewer cases,
but quick GPs have a mixture of wide and narrow boxes. Slow Saturday GPs seem to have
narrower boxes than fast Saturday GPs. Is there typically the same pattern over different shifts?
In both pictures, SGP1D comes out at the extreme left, and no slow GPs are repeated in each
picture. Perhaps this is another indication of experience.

This process was piloted at NDUC for the second quarter of 2010 (see figures 6.6 and 6.7)
with good results. We found that we weren’t telling the company anything they didn’t know,
but provided evidence of what was once anecdotal, to feedback to the GPs. This was used to
identify slow GPs so the clinical team could perform call reviews, which influenced training of
those GPs.

In practice, it is recommended to re-run this process every three months. This will ensure
seasonal effects are kept to a minimum and can be omitted from modelling, and that GPs aren’t
classified as ‘slow’ or ‘quick’ for a long time without being able to change it, particularly after
addressing training needs.
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Figure 6.6: Comparing GP triage lengths: Weekday evenings
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Figure 6.7: Comparing GP triage lengths: Saturday mornings
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Chapter 7

Dissemination of Techniques using
RExcel

Chapter 7 explains the motivation and implementation of the R package RExcel, used to ensure
NDUC staff could use generate forecasts after project closure.

7.1 Motivation

Although R is well built for performing complex statistical analyses, it is not easily accessible
to a novice user due to the command prompt, and necessary knowledge of the S language. In
reality, not all organisations will have the scope, or need, to employ a statistician full time, so
it would be desirable to implement statistical procedures which have the flexibility of R, while
still being accessible to the casual user. Baier and Neuwirth [8] discuss this need a little further,
and suggest a process of integrating R and Microsoft Excel.

This work was particularly influential on this project, as NDUC continued to use the fore-
casting procedures in the absence of a statistician. The solution was to use the Excel add-in
RExcel, via the R package RExcelInstaller [19]. This allows the user to transfer data between
R and Excel, and use R functions in formatted worksheets in Excel, all by the click of a mouse,
rather than through a programming language.

7.1.1 Installation and startup

RExcel requires the package rcom to be installed first, followed by statconnDCOM. Using a
working internet connection you can install RExcel by typing the following commands into the
R Console, and following the prompt boxes for statconnDCOM and RExcel.

> install.packages("rcom")
> library(rcom)
> installstatconnDCOM()
> install.packages("RExcelInstaller")
> library(RExcelInstaller)
> installRExcel()

This command will automatically install the appropriate version of RExcel (2003 or 2007)
to your grade of Office. In what follows, the explanation refers to the Add-In for Excel 2007.
Once you have installed RExcel, it is very simple to use. On your usual toolbar at the top, you
will have a new tab called Add-Ins, as in figure 7.1. This is where RExcel is hidden. To open R
and connect your Excel worksheet you simply click on RExcel and choose the command ‘Start
R’, as in figure 7.2. A pop up naming statconnDCOM will appear, and then disappear, and an
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Figure 7.1: Connecting R and Excel: Add-In tab

R Console will open in the background. You are then left with a normal worksheet, connected
to R, which can handle R commands as well as Excel functions.

The main commands you can use directly from the Excel spreadsheet, as in figure 7.3, are:

Run code runs R code from a selected cell(s)
Get R Value returns R value into that cell
Put R Var reads selected cells into R
Get R DataFrame returns R dataframe into cells
Put R DataFrame reads selected cells as a dataframe into R

Now we are in a position that we can call the complicated functions we created in R, without
the user seeing any of it, while using a program they are familiar with.
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Figure 7.2: Connecting R and Excel: Start R

Figure 7.3: Connecting R and Excel: R commands in Excel
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Figure 7.4: Raw data extracted using Microsoft Access

7.2 Exception Reporting

Previously, NDUC relied on an historical, monthly, unvalidated performance report. There was
no real way of knowing what performance was going to look like for the organisation until the
end of the month. Ideally, NDUC wanted a shift by shift performance report, available by 11:00
every morning, so they could highlight any performance issues quickly.

The performance targets were set up to match the monthly report, and source files containing
the appropriate KPI functions were created in R to run through RExcel. The first step of the
process was to get the raw data into RExcel. You do this by extracting it from an Access
database into an Excel spreadsheet. Figure 7.4 shows the screen shot of the raw data. From
time to time, there will be blank cells in columns D to K, and it is necessary to replace these
blank cells with “#N/A” in order to read the data into R. This is done by using the Excel ‘Find
and Replace’ function, which uses the command ‘CTRL H’.

Once you have replaced the blank cells, the worksheet is ready to be read into R. To do this,
select all of the data (‘CTRL A’), right click, and choose the option Put R DataFrame (figure
7.6). You will then be asked to name your dataframe, and underneath ‘Dataframe name in R’,
type statstable, and then click OK (figure 7.7). The R data frame statstable now exists in
the background of your Excel worksheet.
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Figure 7.5: Find and Replace in Excel

Figure 7.6: Putting the data frame into R: using the command
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Figure 7.7: Putting the data frame into R: naming the dataset in R
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Figure 7.8: Formatted spreadsheet: at a glance

The next stage for the user is to open a pre-formatted worksheet to spit out daily, weekly
and month-to-date performance summaries, arrival rate pictures, queue pictures, and a list of
breaches for the month. Figure 7.8 shows a screen shot of the worksheet created to produce
the weekly performance reports, distributed on Monday mornings. There are five worksheets in
total in this document:

1. GP Performance summary: summarises performance over shifts, as well as case breakdown
and CPD

2. Arrival summary: draws the appropriate Daily profile (section 4.1) with the observation
overlaid to identify any unexpected peaks or troughs in activity

3. Queue picture: draws the triage queue (section 6.2.3) for the shift

4. Triage breaches: lists all the triage breaches (section 2.4.1) for review

5. CV and HV breaches: lists all the centre visit and home visit breaches (section 2.4.1) for
review

Each worksheet has a mixture of R code (always in column A and in courier new font),
and instructions (generally to the right of the page, and in a different font). Files setup.r,
performance.r, and all .rdata files containing the Daily profiles have been saved previously to
the user’s working directory. The steps to complete GP Performance summary are detailed in
table 7.1, and are illustrated in figures 7.9 - 7.12. Figure 7.13 shows the completed summary,
ready for transfer into a weekly performance report.
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Step 1 Select A1 → right click → Run code
Step 2 adjust the date in parenthesis in A2 to first

day of the week
Select A2 → right click → Run code
Select A3 → right click → Run code

Step 3 Select C7 → right click → Get R Value
→ click Get From Cell
→ select A7 → click OK
If you see New data will overwrite existing
data. Click OK to continue
Click OK
You now have correct values in C7:M15

Step 4 Select C16 → right click → Get R Value
→ click Get From Cell
→ select A16 → click OK
If you see New data will overwrite existing
data. Click OK to continue
Click OK
You now have correct values in C16:I16

Step 5 Select C22 → right click → Get R Value
→ click Get From Cell
→ select A22 → click OK
If you see New data will overwrite existing
data. Click OK to continue
Click OK
You now have correct values in C22:I25

Table 7.1: Process for completing GP Performance summary
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Figure 7.9: Formatted spreadsheet: right click to get R values

Figure 7.10: Formatted spreadsheet: choosing R code from a cell
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Figure 7.11: Formatted spreadsheet: right click to get R values

Figure 7.12: Formatted spreadsheet: choosing R code from a cell
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Figure 7.13: GP Performance Summary: completed for week commencing 16/08/2010
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Step 1 In cells A1 and A2 make sure the month in
the parentheses is correct;
january, february, ..., november, december

Step 2 Select A1:A2 → right click → Run code
Step 3 Select A4:A13 → right click → Run code
Step 4 Select A15:A18 → right click → Run code
Step 5 Select A21 → right click → Run code

You will now have pdfs of weekday profiles
saved in your working directory

Step 6 Select A23 → right click → Run code
You will now have pdfs of weekend profiles
saved in your working directory

Table 7.2: Arrival summary process

Step 1 Select A7:A20 → right click → Run code
Step 2 Select A23:A29→ right click→ Run code

You will now have the queue pictures
saved in your working directory.

Table 7.3: Queue picture process

Arrival summary and Queue picture worksheets come next. Although these are not intu-
itively obvious (figures 7.14 and 7.15), they produce and save the R graphics, in .pdf format,
with very little effort. The Daily profile pictures will be saved as ‘Monday Profile.pdf’,..., ‘Sun-
day Profile.pdf’, and the queue pictures will be save as ‘Monday.pdf’,..., ‘Sunday.pdf’, all in the
user’s working directory. These functions are also designed to read the date into the title, so
you can easily see if you’re drawing pictures for the correct week. Arrival summary and Queue
picture instructions are detailed in tables 7.2 and 7.3.
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Figure 7.14: Arrival summary: at a glance

Figure 7.15: Queue pictures: at a glance
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Step 1 Select B3 → right click → Get R Value
→click Get From Cell
→ select A3 → click OK
You will now have a list of triage breaches
in front of you
If 0 appears in cell B3, there were no triage
breaches

Table 7.4: Extracting breaches

Figure 7.16: Extracting breaches: select R code from cell

The final worksheets generate a full list of breaches to be reviewed by the Operations Man-
ager. The process is, again, very simple and generating the triage breaches is illustrated in
figures 7.16 and 7.17. The function you need to use is triage(statstable), and this outputs
a full list of triage breaches, and is written in cell A3 of the worksheet. Centre Visit and Home
Visit breaches follow the same process, using functions cv(statstable) and hv(statstable).
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Figure 7.17: Extracting breaches: completed for August to date
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7.3 Transferring CPD model into RExcel

Recall chapter 3 which described how we forecast calls per day CPD, and recall the linear
model in equation 3.21:

CPD =β0 + β1dow + β2month+ β3year + β4time+
+ β5easterfri+ β6eastersat+ β7eastersun+ β8eastermon+
+ β9bhsat+ β10bhsun+ β11bhmon+
+ β12maybh1+
+ β13xmasbhwd+ β14xmasbhwe+
+ β15nydwd+ β16xmaswd+
+ β17xmaswe+ β18nydwe+
+ β19xmas4day1+
+ β20month : we+ β21dow : xmas4day1+
+ β22month : year + β23month : time+
+ β24time : easterbh+
+ β25sflu+ β26sfluline+
+ β27sflu : sfluline+ ε (7.1)

To transfer this into RExcel we created two separate Excel worksheets to pilot among staff
at NDUC. The first step is to setup the data frame of previous observations, and the second is
to declare the linear model CPD in R, and generate forecasts. Setting up the data can be done
using an Excel spreadsheet (worksheet ‘Data frame’) as illustrated in figure 7.18.

Column B exists for the user to input new observations, and is coloured in pale yellow. The
rest of the worksheet does not need to be touched, and contains the fixed covariates used in
equation 7.1. As before, you need to read this data into R before you continue. Once new
observations have been included, select the data, right click, choose ‘Put R DataFrame’, and
name it cpd. The data frame cpd now exists in the background of your Excel worksheet. This
is illustrated in figure 7.19.
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Figure 7.18: Calls per day: Data frame worksheet

Figure 7.19: Calls per day: Put R DataFrame as cpd
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Figure 7.20: Calls per day: Calls per day Forecast worksheet

Now move onto the ‘Calls per day forecasts’ worksheet. In this illustration we have data up
until 31/05/2010, and are forecasting CPD for June, July and August. The file predict.r has
been saved to the user’s working directory. Choose cells H1:H3, right click, and choose ‘Run
code’. Then in cell C4, right click, and choose ‘Get R Value’, and then ‘Get From Cell’. Choose
cell H5 which contains the function fits, and new CPD forecasts with upper and lower limits
will appear in columns C, D, and E. This process is illustrated in figures 7.20 and 7.21.
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Figure 7.21: Calls per day: Updated forecasts
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7.4 Conclusions and Recommendations

This approach was adopted and used by members of the IT department from July 2010, with
a handover period of about 3 months. User feedback was good, with the process accessible to
IT and Analyst level.

In practice, these worksheets will only be as good as the models and the users. Users will
not know how to adjust the code behind these worksheets, and a statistician will need to be
consulted to fix any issues. There is also the ‘garbage in - garbage out’ risk. The method is
quite specific, particularly when naming your datasets. If you named the data range stastable,
rather than statstable, the process would not work.

The GP activity plots (section 6.2.2) can also be drawn using RExcel, by extracting the
data from the Adastra database through MySQL Server, and following steps similar to before.
This stage has been omitted from this chapter as there is still a manual element of the process;
cross-referencing GP names with a program RotaMaster to see what shifts they were working.
Further work would connect the two sources of data, Adastra and RotaMaster, but in the
meantime, the principals of generating the GP activity plots in RExcel are identical to the
Queue picture process.

In the absence of someone well versed in R, I would not recommend transferring the boxplot
monitoring method (section 6.2.4) into RExcel, as it is too complicated. Once this process
has been set up, however, it should not take an expert more than one day to run, therefore
companies who cannot afford a full time statistician could employ one only when they need
them.
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Chapter 8

Further work

Before we conclude this thesis, it is appropriate to mention further work that could be carried
out to address a number of other issues relating to this work, in particular, more detailed
modelling. This chapter discusses two important issues around out-of-hours call centres; queuing
and government legislation, before making some suggestions on how this work could be carried
forward.

8.1 Queues

Recall figure 2.2 in section 2.4.1. For performance measurements we need to know how many
urgent and routine patients are at server 1, server 2, and server 3.

Figure 8.1 shows nine potential patient paths. Let t0 be the time a patient enters the triage
queue. This patient has already spoken to a call handler, been assessed as urgent or routine,
and been told a GP will ring them back when they are available. Let UW and RW be the time,
in minutes, the patient waits for the GP to call them back for and urgent and routine case
respectively. To meet the KPI we need 95% of UW and RW to obey the following:

UW ∈ [0, 20]

RW ∈ [0, 60]

The next step is triage by a GP. This is GP dependent. Let TU and TR be the length of
time, in minutes, the GP spends triaging an urgent or routine call, respectively. There are no
national standards to report on this, but as an organisation we performance-manage this by
expecting our GPs to triage at least five cases per hour. That means:

TU < 12

TR < 12

If the patient’s ailment has been dealt with over the phone, they leave the system, and their
case is recorded as Telephone Advice. If there is further assessment and the GP arranges a
face-to-face consultation, the patient enters a second queue. Let HUW and HRW be the time,
in minutes, a patient has to wait between the end of the triage and the start of a home visit
consultation for urgent and routine cases respectively. Similarly, let CUW and CRW be the
time, in minutes, a patient has to wait between the arrival at a UCC and the start of a centre
visit consultation for urgent and routine cases respectively. To meet the KPI we need 95% of
HUW , HRW , CUW and CRW to obey the following:

HUW ∈ [0, 120]

HRW ∈ [0, 360]
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Patient enters triage 
queue at t0 

GP triage 
t0 + UW 

GP triage 
t0 + RW 

Telephone Advice 
t0 + UW + TU 

Home Visit (U)  
t0 + UW + TU 

Home Visit (R) 
t0 + UW + TU 

Centre Visit (U) 
t0 + UW + TU 

Centre Visit (R) 
t0 + UW + TU 

Routine case 

Urgent case 

Patient waits in 
triage queue (up 

to 60 mins) 

Patient waits in 
triage queue (up 

to 20 mins) 

Telephone Advice 
t0 + RW + TR 

Home Visit (U)  
t0 + RW + TR 

Home Visit (R) 
t0 + RW + TR 

Centre Visit (U) 
t0 + RW + TR 

Centre Visit (R) 
t0 + RW + TR 

GP results calls 

Home Visit (U)  
t0+UW+TU+HUW 

Home Visit (R) 
t0+UW+TU+HRW 

Centre Visit (U) 
t0+UW+TU+CUW 

Centre Visit (R) 
t0+UW+TU+CRW 

Home Visit (U)  
t0+RW+TR+HUW 

Home Visit (R) 
t0+RW+TR+HRW 

Centre Visit (U) 
t0+RW+TR+CUW 

Centre Visit (R) 
t0+RW+TR+CRW 

Patients wait 
for 

consultation 

Home Visit (U)  
t0+UW+TU+HUW+HUC 

Home Visit (R) 
t0+UW+TU+HRW+HRC 

Centre Visit (U) 
t0+UW+TU+CUW+CUC 

Centre Visit (R) 
t0+UW+TU+CRW+CRC 

Consultation 
with patient 

Home Visit (U)  
t0+RW+TR+HUW+HUC 

Home Visit (R) 
t0+RW+TR+HRW+HRC 

Centre Visit (U) 
t0+RW+RU+CUW+CUC 

Centre Visit (R) 
t0+UR+TR+CRW+CRC 

 

Figure 8.1: Nine potential patient paths
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CUW ∈ [0, 120]

CRW ∈ [0, 360]

Let HUC and HRC be the time, in minutes, of the GP home visit consultation urgent and
routine cases respectively. Similarly, let CUC and CRC be the time, in minutes, of the GP
consultation at the UCC, for urgent and routine cases respectively.

Using the working described in this thesis around forecasting arrival rates, and GP triage
length distributions, a simple extension would be to use this, and the above description to
simulate queues at NDUC.

We could link GP activity to queue lengths, as mentioned in section 6.2.3. From this we can
build an understanding of how queues develop, and how long it takes to service them. Then we
can assess how best to plan GP shifts, and other closely related workers, like drivers (recall a
gap in resource between drivers and GPs in section 2.5.2). Furthermore, we can develop work
we did not touch on in this thesis, but hat is important to NDUC. How can we ensure any
patient using the service is receiving the correct method of healthcare? Currently we send out
patient questionnaires, as we are required to by our commissioners. Could there be a better way
to evaluate this patient feedback? Could we design a better method of capturing this feedback?
All of these will answer questions about patient pathways through GP out-of-hours, which is
likely to be extremely useful in the wider healthcare system.

8.2 Government vision for the future of the NHS

The recent White Paper [6] caused a stir in among the health community, and in particular,
GP out-of-hours providers and commissioners. Urgent Health UK Ltd is a federation of social
enterprise unscheduled care providers [1], and NDUC is a member of this organisation. Urgent
Health UK (UHUK) is currently made up of nine leading out-of-hours and unscheduled care
providers who together serve over 9 million people and have a 17% share of the out-of-hours
service in England and Wales. The purpose of UHUK is to facilitate a forum for several out-
of-hours providers so that best practice can be adopted. It is quite an interesting idea as there
may be times when the member organisations are competing for contracts. The annual UHUK
conference took place in Birmingham this year and the White Paper was discussed in some
detail by the providers, raising concerns mentioned below.

8.2.1 GP consortia

Currently, Primary Care Trusts (PCTs) exist, and are responsible for local health improve-
ment, and commission out-of-hours providers, such as NDUC. PCTs are generally made up of
non-clinicians, and manage several different patient services in their local area. The process
of awarding contracts often goes through lengthy Pre Qualification Questionnaire (PQQs) or
Invitation To Tender (ITTs), before interviews and announcing preferred bidders. The vision is
to scrap PCTs completely, and replace them, instead, with GP consortia, who will commission
out-of-hours services.

This in itself has raised concerns among both providers, like NDUC, and commissioners,
the PCTs. If GP consortia are commissioning, this creates a situation where commissioners
can also be providers. What is to stop GP consortia deciding a provider is too expensive, and
then setting themselves up as a new provider, and undercutting the competition? On the other
hand, who is better to lead the out-of-hours commissioning process? GPs work in local surgeries
seeing their patients all the time, and know their needs.

If the vision of the White Paper goes ahead, it could completely change the current GP
out-of-hours system, and our project would need to be reassessed for relevance.
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8.2.2 Single Point of Access

The second issue for out-of-hours providers is the introduction of the Single Point of Access
(SPA), through the provision of a new three digit number, 111, to call when “it’s less urgent
than 999”. This is currently being piloted in Durham and Darlington and Dr Katherine Noble,
a GP and Clinical Lead for 111 in Durham and Darlington, spoke at the UHUK conference
giving an update on the service.

Before the pilot in the North East of England, there was a lot of research done around
current GP out-of-hours, and the choice of the SPA number. A WHICH? report at the end
of 2008 suggested that 52% of the population did not even know there was a GP out-of-hours
service. This, I could naturally believe, as before I started this KTP project I did not know
there was a GP out-of-hours service, and most people I have spoken to over the last two years
did not know this either. There were focus groups about trying to come up with the right
SPA number as well. Even those that are aware of the GP out-of-hours service said that in
an urgent, but non-emergency situation, 999 is the only number they can remember. NDUC’s
number is 0845 60 80 320, and if you need to use the service you would probably have to check
the internet to remind you of the number. Therefore, the choice of 111 seemed natural.

Future work will have to take into consideration the implementation of SPA. It will directly
affect call volumes of GP out-of-hours, and will need to be factored into forecasting models
when it goes nationwide.
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Chapter 9

Conclusions

During this research, we spent time familiarising ourselves with the, somewhat unknown, GP
out-of-hours service, and the requirements providers face from their commissioners. We built
a framework of a simple patient path, and highlighted that GP resource is, by far, the most
expensive when running such a service. Therefore, all further work was centred on the activity
the GPs would have to deal with, and indeed, the activity of the GPs themselves.

Two different forecasting methods were implemented at NDUC to predict calls per day,
and arrivals rates into a call centre providing GP out-of-hours services to the North East of
England. This was done through quite simple methods of linear regression and locally weighted
scatterplot smoothing. In practice, these simple methods worked, and were well received by the
company, so we continued to develop these for the final implementation. They are, also, by no
means perfect, but work well in this application, and further investigation could improve them
even more. Particular attention needs to be paid to time periods around Christmas.

This was certainly not the end of our story, and several interesting problems arose throughout
development. What do we do when a pandemic arises and throws the CPD and Daily profile
models out the window? We faced the issues of this in the middle of our project, and felt the
pressures from our commissioners and our patients, tackling it with updated forecasting methods
through moving averages. Time was also a pressure here and we weren’t able to implement the
updated forecasting procedures until October 2009. Documentation of the process in October
now exists, and should be transferrable to another pandemic situation, ensuring the healthcare
system does not get hit the same way it did in July 2009.

In contrast to forecasting, we investigated the sensitive problem of monitoring GP triage
lengths when working out-of-hours, using particular exclusions, comparing ‘like with like’ as far
as possible, and adopting a generalised linear model. This took the longest time during our re-
search as we wanted to produce something that could be used by any out-of-hours organisations
using Adastra. We also knew that GPs would question every step of the monitoring process, so
getting that right was key. This work was presented to a group of out-of-hours GPs, with an
explanation of the methodology, at the UHUK conference in Birmingham in October, and was
particularly well received. Looking to the future it would be ideal to disseminate this piece of
work into the healthcare community for the benefit of out-of-hours providers across England,
and therefore the patients. Finally, we suggested a solution for non-specialist users to access R
functions on Excel spreadsheets through the software RExcel. Initially, this will be fine, but as
discussed, care needs to be taken on the upkeep of these worksheets, as well as User training to
avoid the ‘garbage in - garbage out’ effect.

In the uncertain times ahead, it is important for GP out-of-hours providers to have a good
relationship with their commissioners to ensure renewal of contracts. Implementing the CPD
and Daily Profile models will allow an organisation to optimise staffing. Monitoring GP triage
lengths will allow them to improve performance, and both of these things will ensure the success
of the out-of-hours GP providers.
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