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Abstract

Local polynomial fitting for univariate data has been widely studied and dis-

cussed, but up until now the multivariate equivalent has often been deemed

impractical, due to the so-called curse of dimensionality. Here, rather than

discounting it completely, density is used as a threshold to determine where

over a data range reliable multivariate smoothing is possible, whilst accept-

ing that in large areas it is not. Further, the challenging issue of multivariate

bandwidth selection, which is known to be affected detrimentally by sparse

data which inevitably arise in higher dimensions, is considered. In an effort

to alleviate this problem, two adaptations to generalized cross-validation are

implemented, and a simulation study is presented to support the proposed

method. It is also discussed how the density threshold and the adapted gen-

eralized cross-validation technique introduced herein work neatly together.

Whilst this is the major focus of this thesis, modal regression via mean shift

is discussed as an alternative multivariate regression technique. In a slightly

different vein, bandwidth selection for univariate kernel density estimation

is also examined, and a different technique is proposed for a density with a

multimodal distribution. This is supported by a simulation study and its

relevance in modal regression is also discussed.
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Chapter 1

Introduction

Broadly speaking, the aim of regression is to identify the underlying trend

in a data set, whilst simultaneously not representing the random variation

within it. There are two main reasons for wishing to do this. Firstly, in some

situations a visual trend in data can be very useful, and secondly, finding

an expression which relates variables could help in the prediction at further

observations if this is desirable. Nonparametric regression is a large class of

such regression techniques in which, as Wand and Jones (1995) point out,

the model is shaped completely from the data. This is particularly useful

when a parametric model is too restrictive. Such nonparametric methods

are often referred to as smoothing and the result of such smoothing can be

seen visually in two or three dimensions as a smooth curve or surface. More

specifically, as detailed in Ramsay and Silverman (2005), for a function to

be smooth it should have one or more existing derivatives. There are several

different nonparametric regression techniques, which can largely be split into

the categories of spline-based and local methods. Smoothing splines, dating

from Whittaker (1923), and P-splines (Eilers and Marx, 1996) are both

examples of spline-based methods. A large part of this thesis is devoted to

a local method, local polynomial regression, which in its current form dates

from Stone (1977).

Univariate nonparametric regression is widely discussed and used so this

will not be elaborated on extensively here. Instead this thesis focuses on

15



multivariate nonparametric regression methods which are not so prevalent,

although several techniques do exist such as the additive models of Hastie

and Tibshirani (1990) and thin plate splines, introduced by Duchon (1977).

Here the multivariate case of local linear regression, a particular form of local

polynomial regression, is mainly examined. This multivariate technique has

often been deemed impractical due to the problems encountered in regions of

sparse data, which become practically an unavoidable part of data in higher

dimensions. This issue is often referred to as the curse of dimensionality.

However, multivariate local regression has been implemented successfully in

Cleveland and Devlin (1988), through LOESS in two and three-dimensional

data and in Fowlkes (1987) for data of even higher dimensions. Fowlkes

(1987) achieves this in the context of the evaluation of the fit of binary

logistic models.

The main focus of this thesis is to examine the curse of dimensionality in

the context of local linear regression and introduce techniques which make

it avoidable, and so regression feasible, for data of any reasonable dimen-

sion. Additionally, modal regression in the multivariate setting is introduced

in Chapter 4 as an alternative nonparametric regression technique and in

Chapter 5 a bandwidth selection tool for univariate kernel density estimation

on multimodal data is developed. These additional topics are introduced in-

dividually in the relevant chapters while this chapter serves to introduce the

local linear ideas. Here the basic methodology will be explained in detail

and the curse of dimensionality will be explored further. An overview of

competing techniques and software is also provided.

1.1 Multivariate local linear regression

Given d-dimensional covariates Xi = (Xi1, ..., Xid)T with density f(·) and

scalar response values Yi where i = 1, ..., n, the task is to estimate the mean

function m(.) = E(Y |X = .) at a vector x = (x1, ..., xd). Assumed is that

Yi = m(Xi) + εi (1.1)
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where εi are random variables with zero mean and variance σ2
ε . Local linear

regression uses a kernel-weighted version of least squares, in order to fit

hyperplanes of the form β0 + βT1 x locally, i.e., at each target point x ∈ Rd.

Both the scalar β0 and the vector β1 depend on x, but this dependence is

suppressed for notational ease.

Taylor’s Theorem is crucial in constructing this least squares problem.

The multivariate version of Taylor’s Theorem is used frequently in this the-

sis, particularly in Chapter 2, and it is given, in full, in the appendix. Using

this, m can be expressed around a data point x0 = (x01, ..., x0d) as

m(x) ≈ m(x0) +
∂m(x0)
∂x1

(x1 − x01) + ...+
∂m(x0)
∂xd

(xd − x0d) (1.2)

= β0 + β11(x1 − x01) + ...+ β1d(xd − x0d). (1.3)

In local linear regression this is used to find the regression estimate, m̂(x),

by minimizing with respect to β = (β0,β
T
1 )T = (β0, β11, ..., β1d)T ;

n∑
i=1

Yi − β0 −
d∑
j=1

β1j(Xij − xj)


2

KH(Xi − x). (1.4)

The estimator of the mean function m̂(x) is β̂0. Here K is a multivariate

kernel function with
∫
K(u)du = 1 and

KH(x) = |H|−1/2K(H−1/2x). (1.5)

The d×d matrix H is known as the bandwidth matrix and must be selected.

Minimization (1.4) is a weighted least squares problem. The solution to

this can be expressed as

β̂0 = m̂(x) = e1
T (XTWX)−1XTWY (1.6)

where

X =


1 X11 − x1 ... X1d − xd
1 X21 − x1 ... X2d − xd
...

...
. . .

...

1 Xn1 − x1 ... Xnd − xd

 (1.7)

17



Y =


Y1

...

Yn

 (1.8)

W = diag {KH(X1 − x), ...,KH(Xn − x)} (1.9)

and e1 is a vector with 1 as its first entry and 0 in the other d entries.

To clarify, in this thesis, univariate data refers to data with one predictor

variable and one response variable, bivariate data refers to data with two

predictor variables and one response variable and trivariate data refers to

data with three predictor variables and one response variable.

Local polynomial regression in general, and local linear regression in par-

ticular, has many advantages which makes it of interest to find a solution

to the problem of the curse of dimensionality. Firstly, the idea has great

intuitive appeal, as it is easily visualized and understood which data points

are contributing to the estimation at a point. Furthermore, kernels are at-

tractive from a theoretical point of view, since they allow straightforward

asymptotic analysis. It has been found that the technique exhibits excellent

theoretical properties. Local polynomials were shown to achieve optimal

rates of convergence in Stone (1980). In the univariate case, Fan (1993)

showed that local linear regression attains 100% minimax efficiency. The

asymptotic bias and variance are known to have the same order of magni-

tude at the boundary as in the interior of the data, which is particularly

useful for higher dimensional data sets (Ruppert and Wand, 1994). Work

by Cleveland and Devlin (1988) and Hastie and Loader (1993a) also sug-

gests that multivariate local polynomial regression is favourable in terms of

computational speed. Other advantages, as detailed in Hastie and Loader

(1993b), include that it adapts easily to different data design and also has the

interesting side-effect of implicitly providing the gradient of m̂ at x through

the same least squares calculation. Indeed, this is given by β̂1.

The estimated gradient at a point x0 is

∇m̂(x0) =


∂m̂(x0)
∂x1

...
∂m̂(x0)
∂xd

 =


β̂11(x0)

...

β̂1d(x0)
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which is the direction of maximum slope at that point. Newell and Einbeck

(2007) describe the applications of this in the univariate setting, in areas

such as the analysis of growth curves and change point problems. It is also

useful in expressions for the bias, variance, confidence intervals and some

bandwidth selection. There is also the possibility of producing derivatives

of a higher order, but in order to do this it is necessary to fit a higher

degree of polynomial locally. Fan and Gijbels (1996) suggest that in order

to calculate the j-th derivative, the use of a local polynomial of degree j+ 1

is optimal.

It is also easy to examine directional derivatives, using the by-product of

the regression, β̂1. These represent the derivative of the regression estimate

at a point in any chosen direction, defined as a vector u. The directional

derivative is then calculated as

∇m̂.u
|u|

. (1.10)

Such quantities could be useful in the analysis of the gradient of a function

over a surface, such as the variation in a climate variable in a particular

direction over a region/country/continent.

1.1.1 Bias and variance

Two quantities which are referred to frequently in this thesis are the bias

and variance of the estimator m̂, and so it is useful to define them here.

The bias, E(m̂)−m, measures the difference between the true function and

the regression estimate. The variance measures the amount that m̂ depends

on the one data sample used to generate it. For multivariate local linear

regression, these are quantified in Ruppert and Wand (1994) as

Bias(m̂(x)) =
1
2
eT1 (XTWX)−1XTW {Qm(x) + Rm(x)} (1.11)

where Rm(x) is a vector of Taylor series remainder terms and

Qm(x) =
[
(X1 − x)THm(x)(X1 − x), ..., (Xn − x)THm(x)(Xn − x)

]T
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where Hm(x) is the d×d Hessian matrix of m. The variance can be derived

immediately from (1.6) as

Var(m̂(x)) = eT1 (XTWX)−1XTWVWX(XTWX)−1e1 (1.12)

where V is a diagonal matrix with the error variance, σ2
ε , in each entry.

The asymptotic approximations (H → 0, nH → ∞ as n → ∞) of the

bias and variance will also be discussed in this thesis and they are, as given

in Ruppert and Wand (1994),

Bias {m̂(x)} =
1
2
µ2(K)trace {HHm(x)}+ op {trace(H)} (1.13)

where µ2(K)I =
∫

uuTK(u)du.

Variance {m̂(x)} =
1
n
|H|−

1
2

∫
K(u)2du

σ2
ε

f(x)
{1 + op(1)} . (1.14)

The mean squared error (MSE) and the mean integrated squared error

(MISE) are measures of error used throughout this thesis. They are useful

since they can be expressed in terms of bias and variance.

MSE(m̂(x)) = E[(m̂(x)−m(x))2] (1.15)

which can also be expressed as

MSE(m̂(x)) = [Bias {m̂(x)}]2 + Variance {m̂(x)} (1.16)

The MISE is the global extension of the local MSE.

MISE(m̂(x)) =
∫ {

[Bias {m̂(x)}]2 + Variance {m̂(x)}
}
dx. (1.17)

Using (1.13) and (1.14), the asymptotic MISE can be expressed as

AMISE(H) =
∫ (

(
1
2
µ2(K)trace {HHm(x)})2 +

1
n
|H|−

1
2

∫
K(u)2du

σ2
ε

f(x)

+op
{
n−1|H|−

1
2 + trace2(H)

})
dx (1.18)

20



1.1.2 The univariate case (d = 1)

The expressions (1.4) and (1.6) are provided for local linear regression since

this is the type of polynomial regression implemented in the multivariate

case in this thesis. However, at times here, local constant (polynomial of

degree zero) as well as local linear regression (polynomial of degree one)

is used in univariate examples. For this reason, the basic methodology of

the general case of univariate local polynomial regression is set out below.

To estimate at x0 with n observations (Xi, Yi), analogously to (1.4), one

minimizes with respect to β0, ...βp,
n∑
i=1

{Yi − β0 − β1(Xi − x0)− ...− βp(Xi − x0)p}2 κ
(
Xi − x0

h

)
where h is a univariate bandwidth, κ is a univariate kernel function, and

p is the degree of the polynomial. Practically, this is carried out using the

same least squares equation (1.6) and again m̂(x0) = β̂0. In the local linear

case X is as in (1.7) with d = 1, and for p = 0, X is an n× 1 vector with 1

in each entry. By implementing (1.6), it is trivial to show that for p = 0

m̂(x0) =

∑n
i=1 κ

(
Xi−x0
h

)
Yi∑n

i=1 κ
(
Xi−x0
h

) , (1.19)

which is also known as the Nadaraya-Watson estimator. For p = 1,

XTWX =

 ∑n
i=1 κ

(
Xi−x0
h

) ∑n
i=1(Xi − x0)κ

(
Xi−x0
h

)
∑n

i=1(Xi − x0)κ
(
Xi−x0
h

) ∑n
i=1(Xi − x0)2κ

(
Xi−x0
h

) 
(1.20)

and

XTWY =

 ∑n
i=1 κ

(
Xi−x0
h

)
Yi∑n

i=1(Xi − x0)κ
(
Xi−x0
h

)
Yi

 (1.21)

thus the univariate local linear estimator can be expressed as

m̂(x0) =

∑n
i=1 Yiκ

(
Xi−x0
h

)
{Sn,2 − (Xi − x0)Sn,1}∑n

i=1 κ
(
Xi−x0
h

)
{Sn,2 − (Xi − x0)Sn,1}

(1.22)

where

Sn,j =
n∑
i=1

κ

(
Xi − x0

h

)
(Xi − x0)j (1.23)
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(notation used here is as in Fan and Gijbels (1996)). There also exist asymp-

totic approximations to the bias and variance in the univariate case, which

will be referred to later. The asymptotic variance for both local constant

and local linear regression is

Variance {m̂(x)} =
∫
κ2(u)duσ2

ε

nhf(x)
+ op[(nh)−1]. (1.24)

For univariate local linear regression, analogously to the multivariate case

(1.13)

Bias {m̂(x)} =
1
2
h2m′′(x)µ2(κ) + op(h2). (1.25)

In the local constant case,

Bias {m̂(x)} = h2

[
m′(x)f ′(x)

f(x)
+
m′′(x)

2

]
µ2(κ) + op(h2). (1.26)

Here, µ2(κ) =
∫
u2κ(u)du. These univariate expressions are taken from

Simonoff (1996).

1.2 Different ways of representing m̂(x) in multi-

variate local regression

The local linear regression estimate at x is expressed in (1.6) as the solution

to a least squares problem. This solution takes the same shape for local

constant regression, but with X replaced by an n× 1 vector with 1 in each

entry. In either case, the estimator is a linear smoother which means that

the vector of fitted values Ŷ, can also be expressed in the form

Ŷ = SY, (1.27)

where S is known as the smoother matrix. This expresses the regression

estimate as a weighted sum of the Yi and this leads to an alternative way of

representing the local estimator–as a quotient of summations i.e.

m̂(x) =
∑n

i=1wiYi∑n
i=1wi

. (1.28)

Examples of this in the univariate case are given in (1.19) and (1.22) and in

the multivariate case the Nadaraya-Watson estimator is usually expressed
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as

m̂(x) =

∑n
i=1

∏d
j=1 κ

(
Xij−xj
hj

)
Yi∑n

i=1

∏d
j=1 κ

(
Xij−xj
hj

) . (1.29)

Local linear regression can also be expressed in the form (1.28) in higher

dimensions. The equivalent expressions for both bivariate and trivariate

data are set out in the appendix (A.2).

1.2.1 Using Cramer’s rule

There is a further alternative method for calculating m̂(x) which has advan-

tages when compared with those stated above. The following is based on

Cramer’s rule and is not used widely in the smoothing community.

m̂(x) =
det(XTWR)
det(XTWX)

(1.30)

where

R =


Y1 X11 − x1 ... X1d − xd
Y2 X21 − x1 ... X2d − xd
...

...
. . .

...

Yn Xn1 − x1 ... Xnd − xd

 .
The proof of this result is provided in the appendix (A.3).

In addition, det(AT ) = det(A), as specified in Petersen and Pedersen

(2008), which can lead to variations in the right hand side of (1.30).

When generalized, the above result is actually the same as Cramer’s

rule, but it was found and derived independently of this. The proof therefore

generalizes to a proof of Cramer’s rule. It is also the case that since Cramer’s

rule solves linear systems such as least squares, similar results can be used

to calculate any element of β̂, providing, for example, the gradient at a

point. This method is also applicable for local regression using any degree

of polynomial, but makes no sense for local constant regression.

In the literature there does not appear to be any mention of Cramer’s

rule being used computationally for local polynomial regression, but it is

used theoretically in this context in at least two papers, Delaigle and Meis-

ter (2011) and Horng (2004). This is undoubtedly because there are more
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efficient ways of solving least squares computationally such as Cholesky fac-

torization or QR decomposition. Cramer’s rule is generally used as a theo-

retical result in wider mathematics and computationally it is often ignored

due to its inefficiency in comparison with other methods. In R functions

designed to perform local polynomial regression, such as locpoly in the

KernSmooth package by Wand and Ripley (2010), algorithms are used

which are significantly faster than calculating determinants.

However, there are merits to using this method computationally when

compared with other basic ways that a novice might implement multivariate

local polynomial regression. Implementation of (1.30) turns out to be more

stable in practice than the textbook local polynomial regression method,

least squares, as well as being significantly faster. For example, for data set

E, described in Chapter 2, method (1.30) is seven times faster. Expressing

m̂(x) as a quotient of sums (1.28) is practical only in small dimensions.

This cannot be expressed for d dimensions without again including inverses

and the problems involved with their calculation. So, in summary, (1.30) is

attractive for use in local polynomial regression, when compared with (1.6)

and (1.28), due to both its simplicity and its speed. However, it is less

useful for the general linear model since this does not suffer from the issues

associated with the calculation of inverses of matrices.

1.3 Choices

The mean function can be well approximated using the techniques described

in section 1.1. However, before applying these some choices must be made,

in particular a multivariate kernel function and bandwidth matrix must be

selected. Another choice when looking at local polynomial regression more

generally is the degree of polynomial to fit. Properties of multivariate local

quadratic regression (degree of polynomial two) are provided in Ruppert and

Wand (1994), and in the examples in Cleveland and Devlin (1988) the best

fits are often produced using this type of regression. However, in this thesis

use is restricted primarily to degree one polynomials, since, as mentioned in

Fan and Gijbels (1996), these have been shown to give the best compromise
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between bias and variance, in particular at the boundaries, whilst keeping

computational costs reasonable. Clearly, a natural aim is to keep both the

bias and variance as small as possible and the success of the local linear and

constant estimators in achieving this is investigated in the simulation study

below.

1.3.1 Local linear v. local constant regression

Fan (1992) and others compare in depth local linear with local constant

regression. As expressed in Fan and Gijbels (1996), asymptotically, and

in the interior of the data, local linear and local constant regression have

variance of the same magnitude but local constant regression suffers from

high bias (see results (1.24)-(1.26)). Furthermore, at the boundary local

linear regression automatically adapts and so has the same levels of bias

and variance as in the interior, whereas the local constant case suffers from

a further increase in bias. Ruppert and Wand (1994) show that the same

occurs in higher dimensions. This theory applies asymptotically but the

small simulation study presented below gives an insight into what occurs in

practice with a finite sample size.

Simulation study

The aim of this study was to analyse the variance and mean squared error

(MSE) of local constant and local linear regression and observe how these

vary over the boundary and interior of a data set. Four different data sets,

of size n = 150, with bivariate covariates, were each simulated 200 times.

For each data set the covariates were sampled from the uniform distribution

between 0 and 1 and the response was simulated from the bivariate normal

function with parameters (µ, σ) and error variance εi. Table 1.1 summarizes

these details for each data set and Fig. 1.1 displays these underlying regres-

sion functions. The top plot shows the function used in simulations 1 and 2

and the bottom plot in simulations 3 and 4.

These functions were chosen to represent data with a variety of both

curvature at the boundary (in simulations 3 and 4 the response is almost
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Figure 1.1: The underlying functions used to generate the data in simula-

tions 1-4. The top plot shows the function used in simulations 1 and 2 and

the bottom plot in simulations 3 and 4.
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Simulation µ σ εi ∼

1 (0.5,0.5) (1,1) N(0,0.005)

2 (0.5,0.5) (1,1) N(0,0.001)

3 (0.5,0.5) (0.1,0.1) N(0,0.005)

4 (0.5,0.5) (0.1,0.1) N(0,0.001)

Table 1.1: The parameters and error variance used to simulate the response

(simulated from the bivariate normal function with parameters (µ, σ) and

error variance εi) in simulations 1-4.

constant at the boundary) and error variance. Local constant and local lin-

ear regression were carried out on each of the 800 data sets described above.

The bandwidth selection method used was AGCV, a technique developed in

Chapter 3. In each data set, each of the 150 points was then classified as

either a boundary or interior point. In this study the boundary was defined

as the region within one bandwidth of the edge of the data (a more detailed

definition is given in Chapter 2). Then, in each of these two classes, and for

each method of regression, the following two quantities were calculated,

Average variance =
1
nc

nc∑
ic=1

Var(m̂(Xic)) (1.31)

and

MSE =
1
nc

nc∑
ic=1

[m̂(Xic)−m(Xic)]
2, (1.32)

where Xic are data in that class and nc is the number of data points in

that class. Here, m̂ is calculated using (1.6) in the local linear case, and the

equivalent least squares formulation in the local constant case. Expression

(1.12) is employed in order to calculate the variance in (1.31).

When calculated, (1.31) and (1.32) nicely quantify the variance and mean

squared error of the estimators in each of these regions. These quantities

are displayed in box plots in Figs. 1.2-1.5. Each box plot represents these

variance and MSE values for the 200 simulations of one function. In the

plot labels, In represents the points in the interior, Bo the points in the

boundary, LL local linear regression and LC local constant.
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Figure 1.2: Average variance and MSE for simulation 1. V–variance, M–

MSE, In–interior, Bo–boundary, LL–local linear, LC–local constant.
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Figure 1.3: Average variance and MSE for simulation 2. V–variance, M–

MSE, In–interior, Bo–boundary, LL–local linear, LC–local constant.
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Figure 1.5: Average variance and MSE for simulation 4. V–variance, M–

MSE, In–interior, Bo–boundary, LL–local linear, LC–local constant.
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These plots show that throughout the simulations, in the interior, the

variance and the MSE are lower for local linear regression. This agrees with

the asymptotic theory (see (1.24)-(1.26) for the univariate case), and the

poor performance of the local constant regression in this area will be mostly

due to high bias. The results at the boundary are more interesting and

reveal that the variance there is higher for local linear than local constant

regression. However, on average, the MSE is still better at the boundary

for local linear regression, except when the true function in that region

is constant (simulations 3 and 4), in which case the advantage this gives

to local constant regression leads to a smaller MSE. In the simulations in

which the variance is larger and the MSE smaller for local linear regression

(simulations 1 and 2), this can be attributed to this estimator adapting to

the boundary and thus suffering significantly less bias than local constant

regression does here.

As is also observed in this study, Fan and Gijbels (1992) note that for

local linear regression the variance is higher, in practice, at the boundary

than in the interior, and they attribute this to the fact that “less observations

contribute in computing the estimator.” This is particularly likely to be the

case if the bandwidths are kept relatively small, as is the case with AGCV,

rather than, as some practitioners propose, using very large bandwidths as

a remedy for the curse of dimensionality. Ruppert and Wand (1994) also

stress that for finite samples, in certain situations, local constant regression

can be “considerately more accurate” near the boundary. They claim this is

due to the high variance and nonorthogonality of the regression parameters

in local linear regression.

The fact that, in the simulations in which the response is not constant

at the boundary (1 and 2) the MSE is on average lower for local linear

regression, indicates that this method offers the best compromise of bias and

variance and explains why it is preferred by many in the literature and in this

thesis. However, there are individual simulations where the variance that

this estimator gains at the boundary adds more to the error in the estimation

there than any boundary bias endured by the local constant estimator. For
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this reason, in contradiction to the asymptotic theory, but supported by

Ruppert and Wand (1994), there may be data sets where local constant

regression is more suitable at the boundary. In examples such as this it

may be useful to apply data adaptive ridging (Seifert and Gasser, 2000)

as a compromise between local linear and local constant regression. Chu

and Marron (1991) also emphasize the importance of choosing an estimator

based on the data set.

For these reasons, if the threshold developed in Chapter 2, (2.18), which,

as will be shown, works by placing an upper bound indirectly on the variance,

rejects local linear regression at x, it could be that the threshold (in its local

constant form), accepts local constant regression as an alternative method.

1.3.2 Kernel function

Kernel functions are crucial to the idea of local polynomial regression, and

contribute by assigning weight to the data points. In general, a kernel func-

tion acting at x assigns more importance, and so weight, to a data point

closer to x than to those further from it. There are several different types of

kernel function, but in this thesis either the Gaussian or the Epanechnikov

kernel is used. The Gaussian kernel is particularly useful in higher dimen-

sions since it assigns weights to points further from the point of interest, and

although these weights are small they reduce the chance of computational

instability occurring in the estimation. This makes it more suitable for the

analysis of regions of sparse data. Hastie and Tibshirani (1990) state that,

at least in the univariate case, the choice of kernel is not important regard-

ing the quality of the regression, which means that significant accuracy is

not sacrificed by using a Gaussian kernel. However, in the literature, the

Epanechnikov kernel is often regarded as optimal, and so this is used at times

when data sparsity is not considered to be an issue. Fan and Gijbels (1996)

state that this kernel is optimal in terms of minimizing the asymptotic MSE

and MISE for a point in the interior, and that it is fast computationally.

In the univariate case the kernel functions are as follows. The Gaussian
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kernel is

κ(t) =
exp(−t2/2)√

2π
, (1.33)

and the Epanechnikov kernel is

κ(t) =
3(1− t2)

4
(1.34)

(for |t| ≤ 1.)

These are then extended for use in the multivariate setting. The most

common way of generating the K used in (1.5) from the univariate kernels

is through a product kernel, and this is what is used here. This takes the

form

K(x) =
d∏
j=1

κ(xj) (1.35)

where κ is one of the univariate kernel functions (1.33) or (1.34).

Whilst the choice of degree of polynomial and kernel function do have

an impact, the most important choice to make is that of bandwidth matrix,

and this will be discussed in depth in the next section.

1.4 Bandwidth selection

The selection of the bandwidth is the most important choice you can make

in smoothing, since it is this that effectively determines how smooth the

resulting regression estimate is. In multivariate local linear regression, H

is crucial in determining the amount and direction of smoothing since it

determines the size of the neighbourhood in which the smoother acts at each

point. The term neighbourhood describes the ellipsoid which encloses data

points that are considered in the estimation at x. As the elements of H, hjk,

tend to 0, the regression estimate will follow the data very closely, and as the

hjk tend to infinity so the overall fit tends to a hyperplane of d dimensions.

One searches for an estimate between these two extremes.

H is a symmetric, positive definite d×d matrix, and as a result there are

d(d + 1)/2 smoothing parameters to select. This can be simplified greatly

by using a diagonal matrix of the form H = diag(h2
1, ..., h

2
d) or made even
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simpler by having just one smoothing parameter h and forming the matrix

h2I. The latter of these options is often not useful since this results in the

same amount of smoothing in each covariate direction. The diagonal matrix

is an improvement since it allows this to vary. However, it does not have the

flexibility of a full matrix which also allows smoothing in other directions,

which, as Wand and Jones (1995) point out in the context of multivariate

density estimation, can be very advantageous for some data sets. In this

way there is a flexibility versus complexity trade-off when choosing the type

of bandwidth matrix to employ. Clearly the more parameters one needs to

choose, the more complex the selection becomes, but at the same time, the

simpler bandwidth matrices perform less well, according to Chacón (2009),

in terms of MISE, at least in the context of related kernel density estimation.

Thus, a good compromise, supported by Yang and Tschernig (1999) and

others, is the diagonal matrix. Chacón (2009) shows that this is sufficient in

the majority of cases, by using relative efficiency to determine whether the

gain in computational ease caused by using a simpler matrix is worth the

increase in MISE for a data set. In the interest of computational simplicity

a diagonal bandwidth matrix, of the form H = diag(h2
1, ..., h

2
d), is used

throughout this thesis.

Figs. 1.7-9 demonstrate the importance of the choice of bandwidth,

using a data set of US temperatures. This bivariate data set is from the

SemiPar package by Wand (2010), and consists of measurements of the

average January minimum temperature in 56 US cities. The covariates are

the latitude and longitude of the cities. Fig. 1.6 presents the data in the form

suggested by Wand (2010). Here the higher temperatures are represented

by lighter shades of grey.

Fig. 1.7 shows the local linear regression surface for this data using a

bandwidth matrix of an appropriate magnitude ((h1, h2) = (2.45, 3.53) se-

lected using AGCV ). Fig. 1.8 shows the undersmoothing which occurs when

the bandwidth values used are too small ((h1, h2) = (0.5, 1)), and Fig. 1.9

shows the oversmoothing with large bandwidths ((h1, h2) = (50, 50)). It is

clear from these figures how poor estimation can become when inappropriate
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Figure 1.6: The US temperature data. The minimum temperatures range

from 0 to 65 F. The higher temperatures are represented by the lighter

shades of grey, and the lower temperatures by the darker shades.

bandwidth choices are made.

1.4.1 The bias variance trade-off

Ultimately, the treatment of bandwidth selection in this thesis concerns how

one chooses the parameters h2
1, ..., h

2
d. Most methods involve examining the

bias and variance of m̂, using different H, since this provides an effective

measure of the desirable features of an estimate. A trade-off occurs because

as one of these quantities increases the other decreases. As the bandwidth

parameters tend to infinity, the variance decreases, but unfortunately the

bias increases, and the opposite occurs as the parameters tend to zero. This

becomes apparent as one examines (1.13) and (1.14) since it is clear that

by reducing the magnitude of the elements of the diagonal of H, the bias

will be reduced, but at the same time H also appears in the denominator in

(1.14), and so a reduction in hj will lead to an increase in variance. The issue

therefore is how to choose these parameters in order to obtain a desirable
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Figure 1.7: Local linear regression on US temp. data ((h1, h2) = (2.5, 3.5)).
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Figure 1.8: Local linear regression on US temp. data ((h1, h2) = (0.5, 1)).
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Figure 1.9: Local linear regression on US temp. data ((h1, h2) = (50, 50)).

balance of bias and variance, and so the best fit.

In local polynomial regression, there are two principal ways of using the

bias and variance to select the bandwidth. The majority of methods use a

global criterion such as the MISE, but others favour the power of graphical

diagnostics. According to Cleveland and Loader (1996), by using diagnostics

one is able to see how bias and variance vary throughout a data set, and so

decide on where to prioritise each of them. This is the function of the M

Plot described in Cleveland and Devlin (1988) which displays how the bias

and variance compose the MSE for different bandwidth values. In this vein,

Ramsay and Silverman (2005) highlight that in some instances trial and

error is even considered as an acceptable bandwidth selection tool. Ruppert

and Wand (1994) state that bias increases in areas of greater curvature

and smoothing, and variance increases with a larger conditional variance

of Y given X = x and data sparsity. Therefore it might be useful for a

bandwidth selection tool to select different bandwidths in different regions of

the data to take these factors into account. One such method which achieves
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this is the empirical-bias bandwidth selector, formulated in Ruppert (1997).

Here, bias is estimated empirically, and an exact formula for the variance

of a finite sample is employed, and as a result no asymptotics are required.

Ruppert (1997) claims that a principal advantage of this method is that it

automatically produces a larger bandwidth in areas of sparse data.

In nearest-neighbour smoothing, implemented in the LOESS procedure

(Cleveland and Devlin, 1988) in the multivariate setting (a straight-forward

extension of the univariate LOWESS of Cleveland (1979)), the bandwidth

also adapts to different areas of the data. Here, a different approach is

taken in which the estimation of m̂(x) uses the q nearest Xi values to x.

In this way the distance from x to the q-th nearest Xi is used locally as an

effective bandwidth in the kernel function. The actual smoothing parameter

is q, and this can be selected using an M plot. Despite the advantages of

graphical diagnostics and varying bandwidths, Cleveland and Loader (1996)

concede that the computational costs are often too great and so the use

of an automatic selection method is often preferable. Furthermore, even

Cleveland and Devlin (1988) acknowledge that minimizing a criterion is

acceptable in terms of prediction. For these reasons, the efforts to find a

suitable bandwidth selection tool in this thesis are confined to those which

minimize the MISE.

1.4.2 Minimization of the MISE

Given the importance of bias and variance and the fact that it can be ex-

pressed in terms of these two quantities, it is sensible to attempt to minimize

the MISE. Indeed this is what a large number of existing methods seek to do.

The optimal choice for the bandwidth matrix would be found by differenti-

ating (1.18), with respect to H, and finding the minimum by equating it to

zero. This is derived later, resulting in (3.17), for the case h1 = ... = hd = h.

Fan and Gijbels (1996) do this for the MSE and so quantify the local opti-

mal bandwidth. The problem with these optimal bandwidth matrices, and

indeed the equivalents in univariate local polynomial regression (such as

(2.22)), is that they contain unknown quantities, usually functionals of m or
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f . A strategy is therefore needed to solve this. In the univariate setting there

exist a large variety of such bandwidth selection strategies which broadly

speaking fit into two categories; classical methods such as cross-validation

and Mallow’s Cp and plug-in methods, such as that in Ruppert, Sheather

and Wand (1995), which aim to substitute these unknowns by some other

quantity such as a local cubic. Fan and Gijbels (1996) also propose a rule

of thumb which approximates m globally by a quartic polynomial. In the

multivariate case there is comparatively little written, although there still

exist a range of possible methods. Many classical methods can be simply

extended (as is done with AGCV in Chapter 3), and Yang and Tschernig

(1999) use a form of local cubic regression to estimate the required unknown

second derivative of m in the multivariate setting.

A further alternative approach, particularly useful for d > 5, is the im-

plementation of variable selection and bandwidth selection simultaneously,

which was suggested by Cleveland and Devlin (1988). More recently, Laf-

ferty and Wasserman (2008) introduced the rodeo (regularization of deriva-

tive expectation operator). This initially assigns a large bandwidth in every

covariate direction, before gradually decreasing those assigned to covariates

which are considered relevant, until a threshold is reached. The bandwidths

assigned to the irrelevant variables remain large and so effectively these vari-

ables are removed from the local regression problem. By reducing the di-

mension in this way the curse of dimensionality is more likely to be avoided.

This technique is very useful for data with d > 5, in which some dimensions

could be considered irrelevant, and variable selection in general should be

considered as a first step with data of this type. For instance, it could be

applied before AGCV, which, for d > 5, is too time-consuming. There is

a large amount of literature on variable selection in nonparametric regres-

sion, in particular Vidaurre, Bielza and Larrañaga (2011) implement a lasso

locally to reduce the number of variables in local regression.

A criticism of the rodeo, which is also made in Vidaurre, Bielza and

Larrañaga (2011), is that it uses a strange definition of relevance of a variable

– it depends on how linear the function is in that covariate direction. The
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paradox is that local linear regression is to be used except when the true

function is linear, and it is likely that poor results are attained sometimes as

a result. Whilst suitable for data of large dimensions, due to this criticism

and its greedy nature, other methods are likely to be more effective for data

of 2 < d < 5 of which all dimensions could be considered relevant.

1.4.3 Cross-validation

The classical methods work by selecting the H which minimizes an expres-

sion which is an approximation of a measure of error, such as the MISE.

Classical methods could be more suitable for data of high dimensions since

plug-in methods rely on asymptotics. The asymptotic assumption of band-

widths tending to zero seems to be inappropriate in order to select the rela-

tively large bandwidths needed for multivariate local smoothing and this is

the justification for focussing on cross-validation, first introduced in Wahba

and Wald (1975), in this thesis. A further reason for using cross-validation

is that it can be easily simplified computationally. In local linear regression,

cross-validation is defined as

CV (H) =
1
n

n∑
i=1

{Yi − m̂−i(Xi)}2 (1.36)

where m̂−i(Xi) is the leave-one-out estimator. Härdle, Müller, Sperlich and

Werwatz (2004) state that the minimization of (1.36) is the equivalent to

the minimization of the MSE. A simplification of (1.36) is generalized cross-

validation (GCV), developed by Craven and Wahba (1979), and this can be

derived directly from (1.36). The following derivation is taken largely from

Gentle, Härdle, and Mori (2004).

Expression (1.27) implies that

m̂(Xi) =
n∑
j=1

SijYj , (1.37)

and

m̂−i(Xi) =
n∑
j 6=i

SijYj
1− Sii

(1.38)
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where Sij are elements of the smoother matrix S, and the weights Sij/1−Sii
are standardized to sum to 1. This can be re-written as

m̂−i(Xi) =
n∑
j 6=i

SijYj + Siim̂−i(Xi). (1.39)

Using (1.37) and (1.39),

m̂(Xi)− m̂−i(Xi) = Sii {Yi − m̂−i(Xi)} , (1.40)

and thus

Yi − m̂−i(Xi) =
Yi − m̂(Xi)

1− Sii
. (1.41)

In this way, CV(H) can be rewritten as

CV (H) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− Sii

}2

. (1.42)

(1.42) is simply a re-arranged version of (1.36) and this becomes GCV when

the Sii values are replaced by their average value. The criterion then takes

the form

GCV (H) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− trace(S)
n

}2

. (1.43)

GCV suggests the bandwidth matrix H = diag(h2
1, . . . , h

2
d) which minimizes

(1.43). Fahrmeir and Tutz (2001) highlight that since GCV is simply the

averaged squared residual, corrected by a factor, (1− trace(S)
n )−2, it is com-

putationally less costly than CV.

S will be examined further, in terms of influence, in Chapter 2. In fact,

in order to compute the GCV more easily and quickly, which should always

be a consideration when extending procedures to higher dimensions, it is

useful to compute the diagonal elements of S using the expression for the

influence (2.2).

Gentle, Härdle, and Mori (2004) highlight that GCV is simply a weighted

version of cross-validation, with weights (1 − Sii)2/(1 − trace(S)/n)2. It is

this bandwidth matrix selector which is the focus of the efforts in Chapter

3. Here, some adaptations are made in order to combat the problems which

bandwidth selection also encounters when faced with the curse of dimen-

sionality.
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1.5 The curse of dimensionality

Scott (1992) describes the curse of dimensionality as “the apparent paradox of

neighbourhoods in higher dimensions - if the neighbourhoods are ‘local’, then

they are almost surely ‘empty’, whereas if a neighbourhood is not ‘empty’,

then it is not ‘local’.” If there is not sufficient data in a neighbourhood,

then the variance of the fit is too high, or with some kernel functions, such

as the Epanechnikov kernel, the calculations break down completely. One

solution to this is to increase the bandwidth parameters, but, as noted by

Cornillon, Hengartner and Matzner-Løber (2011), this leads to an estimator

with a large bias. Hastie, Tibshirani and Friedman (2001) note that an-

other problem that occurs is that the majority of data points are closer to

the boundary than to another point. This makes prediction more difficult

since one must extrapolate from nearby data points rather than interpo-

lating between points. Hastie, Tibshirani and Friedman (2001), Cleveland

and Devlin (1988) and Fowlkes (1987) agree that the way to overcome these

problems would be to increase n in order to capture complexities in the

regression surface that might otherwise be lost through the necessary intro-

duction of larger bandwidths. Of course, increasing n is often not a realistic

option for a given data set, but, putting their statement in other words,

there must be sufficient data around x for a reliable estimate to be made

at that point. This is the attitude adopted in this thesis, and in Chapter

2 a solution is described which essentially identifies such “reliable” regions

by dismissing all neighbourhoods which do not contain enough data. The

actual smoothing step is then only performed over such regions in which

estimation is considered reliable, where the bias and variance of m̂ can be

kept reasonably low. This is achieved through a threshold imposed on a

suitable estimate of the density f . The threshold, (2.18), is developed from

the asymptotic influence function and aims only to accept points at which

the influence, and as a result the variance, is small.
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1.5.1 Beyond the data range

In an effort to further understand the curse of dimensionality, a small study

was carried out in order to identify approximately the region in which a

threshold should advise against estimation outside of the centre of the data

mass. Here, the behaviour of local polynomial regression in remote parts of

the data range is examined.

In this study only the Gaussian kernel function is used since it returns

estimates of some form, other than a computational error, at points further

away from the data mass than other kernel functions. This allows a more

complete understanding to be developed. Primarily, univariate local poly-

nomial regression is examined here since it is simpler to use and evaluate in

this exploratory setting. Here, local constant and local linear regression are

both evaluated.

Local polynomial estimates were calculated and plotted for a grid of

points which extends through the whole of the data range and then beyond

it, up to a point far enough from the data that R returns NaN as a regression

estimate. This was carried out on a number of real and simulated data sets.

Among the real data sets was the fossil data set, illustrated in Fig. 1.10, from

the SemiPar package of Wand (2010) on R. This contains 106 observations

on the ages and ratios of strontium isotopes of fossil shells. This analysis

was repeated for several different bandwidth values.

Figs. 1.11-12 illustrate the typical results of such analyses and show

the possibilities that can occur beyond the data range. These both show

the regression estimates for the fossil data set, for which the covariate data

range is 91.79 to 123. Figs 1.11-12 examine estimates on a grid where age

varies from 50 to 200. Fig. 1.11 shows local constant regression with h = 1,

and Fig. 1.12 shows local linear regression with h = 0.5. These values of

h are chosen purely to illustrate different possible eventualities of such an

analysis, and are not necessarily the optimal ones.

Within the data range, between 91.79 and 123, the function is estimated

reasonably, with the difference in smoothness between the two plots ac-

counted for largely by the difference in h values. The estimates appear to
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Figure 1.10: The fossil data set.
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Figure 1.11: Local constant regression with h = 1 for the fossil data set.
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Figure 1.12: Local linear regression with h = 0.5 for the fossil data set.

be reasonable for a short distance outside of this data range in both cases.

As one regresses further away from the actual data, in Fig. 1.11 the estima-

tor eventually settles on a constant fit, before R starts to return NaN, which

is not represented on the plot. Moving further from the data in Fig. 1.12,

the fit becomes linear, before a small period of computational instability,

visible at approximately age=80, before NaN s are also returned here.

The observations from these analyses are summarized in Fig. 1.13. This

figure shows the possible different stages of behaviour that the estimate

can exhibit and the order in which they can occur as you move away from

the data, when reasonably sized bandwidths are used. Depending on the

bandwidth and the degree of polynomial used, and the nature of the data,

not all of these will occur every time.

There is always a period of normal estimation, in which it appears that

the regression estimates are reasonable and the trend of the data from inside

the data range is being continued. There is also always a point at which

R starts to return NaN. This occurs because the numbers produced by the
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Figure 1.13: The different stages of behaviour an estimator can exhibit

outside the data range. Behaviour varies from A to D as one moves further

from the data.

kernel function become so small that R treats them as 0, and the division

of 0 by 0 in the regression problem returns NaN. In the course of this study,

some theory was developed on the intermediate stages, B and C. This is set

out below.

The effect of the last data point(s)

In this sub-section it is assumed that the value of h used is of a reasonable

or small magnitude, since not all of the following observations apply when

larger bandwidths are implemented.

For these smaller bandwidths stage B occurs as one regresses further

from the data points i.e. after the period of normal estimation, the estimates

settle into a constant fit for local constant regression, or a linear fit for local

linear regression. Throughout the analyses it was observed that these trends

were dependent on the data points nearest to them i.e. the points on the

very edge of the data. In fact, the constant estimate that is produced in the

local constant fitting is usually the y-value of the nearest data point to the
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closest edge of the data. Analogously in the local linear case, the gradient

of the approximately linear fit observed is usually approximately equal to

the gradient between the two data points nearest to that edge of the data.

These data points do not have to be outlying for this to be observed. This

is clearly a demonstration of an undesirably high level of variance, which is

not surprising in an area of data sparsity.

This phenomenon can be explained theoretically for local constant re-

gression, as follows. It should be highlighted that the following applies only

for Yi>0, and that the Gaussian kernel function, (1.33), is employed.

Define X1 as the data point on the edge of the data range and X2 as

the second closest point to the edge. Also define x0 as the point of interest,

which is far outside of the data range. Say,

X1 − x0 = ah where a ∈ R.

X2 − x0 = bh where b ∈ R and b> a.

Now, the local constant regression estimator is

m̂(x0) =

∑n
i=1 Yiκ

(
Xi−x0
h

)
∑n

i=1 κ
(
Xi−x0
h

)
which, when incorporating the Gaussian kernel, κ(t) = exp(−t2/2)√

2π
, and the

above substitutions, can be equated to

m̂(x0) =
Y1 exp (−a2/2) +A

exp (−a2/2) +B
,

where A<
∑n

i=2 Yi exp (−b2/2) and B<(n− 1) exp (−b2/2). Equally,

m̂(x0) =
exp (−a2/2)(Y1 + C)
exp (−a2/2)(1 +D)

=
Y1 + C

1 +D
(1.44)

where C<
∑n

i=2 Yi exp ((a2 − b2)/2) and D<(n− 1) exp ((a2 − b2)/2).

This demonstrates that if C and D are close to 0, then the regression

estimate at x0 will be equal to Y1, the response value of the data point on

the edge of the data. This is likely to happen in several different scenarios.

Firstly, if X1 is an actual outlier then a2−b2 will be smaller (more negative)
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and so C overall closer to 0. Secondly, a smaller bandwidth makes this more

likely to happen since this makes a and b larger, and so a2−b2 smaller (more

negative). The final factor is the size of the sum of the Yi. This does not

have as significant an impact, but if this quantity is extremely large then C

is less likely to be close to 0. C and D must be very small for this constant

fit to occur, and so in the region slightly closer to the data, where these are

sufficiently large to have an impact, estimates will be returned which are

very close to, and tend to, Y1.

It is likely that similar theory could be developed for the local linear

case, however this is significantly more complex.

Larger bandwidths

As mentioned earlier, these effects are not obvious when larger bandwidths

are used, and this is demonstrated in the theory at the end of the previous

section. When a larger bandwidth is used in local constant regression, a

constant fit other than Y1 is usually observed. Larger bandwidths make it

impossible for C to become very close to zero before the regression compu-

tationally breaks down. This is because the difference between a and b will

not be as large. In this case, points other than the nearest data point are

still making a contribution to the estimate at x0.

Similarly, in local linear regression with a larger bandwidth, the linear

trend is not observed outside the data range, and instead a curve is observed.

No definitive conclusions can be made, but it is likely that this also occurs

due to more data points contributing substantially to the estimate at x0.

It is possible that when a larger bandwidth is used, the regression cannot

reach stage B before computationally breaking down.

Computational instability

Some theory is now presented regarding the stage of computational insta-

bility, C. This stage only occurs with local linear regression and it manifests

itself in two possible ways. It can either appear in the form it does in Fig.

1.12, or the regression estimate can appear to approximately resemble a
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constant fit at this stage (see Fig. 1.14 for an example of this). The sec-

ond of these can be identified as a computational problem by examining the

formula for local linear regression for univariate data, given earlier as (1.22).

For an x0 situated far from the data, Sn,1 will be moderately sized, and

Sn,2 will be comparatively very large. In some cases this term may be so

much larger that it makes the term associated with Sn,1 insignificant in the

calculation. If this is swamped then the Sn,2 terms on the numerator and

denominator cancel and the remaining expression is identical to the univari-

ate local constant estimator, (1.19). Therefore this instability appears as a

local constant regression estimate at that point.

The second type of computational instability, demonstrated in Fig. 1.12

at approximately age=80, can be understood by examining the least squares

form of the estimator, (1.6). It is caused by XTWX, which is inverted in

this problem, being close to a singularity. The reason that local constant

regression does not suffer in the same way can be explained theoretically,

using the properties of condition numbers. Petersen and Pedersen (2008)

define the condition number of a matrix as “the ratio between the largest and

the smallest singular value of the matrix. The condition number can be used

to measure how singular a matrix is. If the condition number is large, it

indicates that the matrix is nearly singular”. For local constant regression,

the matrix XTWX (X is the univariate local constant equivalent of (1.7))

is a scalar. Therefore, using the definition of a condition number c(A) =

‖A‖ .
∥∥A−1

∥∥ (Petersen and Pedersen (2008)) it is clear that c(XTWX) is

always 1. Thus, the condition number is never large, and so the matrix is

never close to being singular. As a result, as one estimates further from

the data the estimation remains steady, becomes a constant fit, and then

immediately returns NaN.

Idealisations

The following idealisation, although not having been observed, is interesting

theoretically. It describes what might happen if R could calculate estimates

further from the data without computationally breaking down and returning
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NaN. This theorizes what happens when one estimates at a point, x0, which

is sufficiently far from the data that all the data points can be considered

equally far from it. In this case the contributions, given through the kernel

function, of each point are very small and approximately the same.

For univariate data and for the local constant case, a crude calculation

indicates that the mean of the response values, Ȳ , would be estimated at

such a point. For univariate data the local constant estimate is

m̂(x0) =

∑n
i=1 κ

(
Xi−x0
h

)
Yi∑n

i=1 κ
(
Xi−x0
h

) . (1.45)

In this idealisation, define w = κ
(
Xi−x0
h

)
for all Xi, resulting in

m̂(x0) =
w
∑n

i=1 Yi
nw

= Ȳ . (1.46)

In the local linear case, estimates this far from the data again resemble a

linear fit, but here, crude calculations indicate that the gradient of this fit is

the same as that which one would obtain performing simple linear regression

on the data. The gradient of the univariate local linear estimator, (1.22), is

m̂′(x0) =
∑
κ
(

Xi−x0
h

)∑
Yi(Xi − x0)κ

(
Xi−x0

h

)
−
∑

(Xi − x0)κ
(

Xi−x0
h

)∑
κ
(

Xi−x0
h

)
Yi∑

κ
(

Xi−x0
h

) {∑
κ
(

Xi−x0
h

)
(Xi − x0)2 − (Xi − x0)

∑
κ
(

Xi−x0
h

)
(Xi − x0)

} .

(1.47)

If w is defined as above, then (1.47) becomes

m̂′(x0) =
∑n

i=1w
∑n

i=1wYi(Xi − x0)−
∑n

i=1w(Xi − x0)
∑n

i=1wYi∑n
i=1w {

∑n
i=1w(Xi − x0)2 − (Xi − x0)

∑n
i=1w(Xi − x0)}

=
n
∑n

i=1 Yi(Xi − x0)−
∑n

i=1(Xi − x0)
∑n

i=1 Yi∑n
i=1 {

∑n
i=1(Xi − x0)2 − (Xi − x0)

∑n
i=1(Xi − x0)}

=
n
∑n

i=1 Yi(Xi − x0)−
∑n

i=1(Xi − x0)
∑n

i=1 Yi

n
∑n

i=1(Xi − x0)2 − (
∑n

i=1(Xi − x0))2

=
n
∑n

i=1XiYi −
∑n

i=1Xi
∑n

i=1 Yi

n
∑n

i=1X
2
i − (

∑n
i=1Xi)

2

=
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

(1.48)

which is the coefficient for the gradient in simple linear regression.

This can be generalized in the multivariate case by considering the gra-

dient in matrices form. Take for example the derivative in the x1 direction.
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As expressed earlier, this is β̂11, which is obtained in the minimization (1.4).

Specifically,

β̂11 = e2
T (XTWX)−1XTWY (1.49)

where e2 is a vector with 1 as its second entry and 0 in the other d entries.

In this idealised scenario, the weight matrix would take the form

W = diag {w, ..., w} (1.50)

and (1.49) becomes

β̂11 = e2
T (XTX)−1XTY, (1.51)

which is the slope coefficient in the x1 direction in multiple linear regression.

This may be more useful, since in the multivariate setting it probably makes

more sense to consider all the data an equal distance from such a point, and

so the assumption that all data make an equal contribution would be fairer.

With trivariate data

Since the focus of this thesis is multivariate data, it is of interest to establish

whether the behaviour of local polynomial regression outside the data range,

observed above, translates to the multivariate setting. The same analysis

as above was carried out but on trivariate data clouds. For each data set,

regression was performed along a line of points, passing through the centre

of the data cloud and extending out of it, in each covariate direction. One

real data set on which this was attempted was the California Air Pollution

data, of size n = 345, which measures the response of ozone level to various

meteorological variables in Upland, California, U.S.A., in 1976. This is

included in the SemiPar package by Wand (2010). Fig. 1.14 shows a

typical result from this analysis. This shows how the local linear regression

estimate changes as the covariate inversion base height is varied through the

centre of the data cloud. This data cloud is shown in Fig. 2.1. The data

range of this covariate is from 0 to 5000, and here the regression estimates

are calculated from 0 to 15,000.

From these analyses, as demonstrated in Fig. 1.14, it is apparent that

behaviour similar to that in the univariate setting occurs here. Similarities
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Figure 1.14: Trivariate local linear regression performed on the California

Air Pollution data. This plot displays the estimate of ozone level v. base

height (one of the covariates).

include the period where a linear fit is observed outside the data range, and

the computational instability. However, this behaviour is not observed as

consistently and the trends outside the data range vary, depending on from

where one estimates relative to the data cloud. However this inconsistency

usually occurs sufficiently far from the data cloud to not be of real interest

in this study. As one estimates just outside the data cloud, and gradually

estimates further away, there is always a small period of what could be

considered normal estimation, followed by an approximately linear fit.

It is difficult to determine the factors which influence the slope of this

period of linearity. It is likely to mimic the relationship between the near-

est two points, as in the univariate case, although this is only speculation.

The trivariate data sets also replicate the behaviour of the univariate exam-

ples by not exhibiting these standard patterns when larger bandwidths are

employed.

Overall, this study provided some interesting results. It did not help

51



directly with the development of the threshold in Chapter 2, but it did help

with the development of a greater understanding of the curse of dimension-

ality. It is clear that in the region outside the data range, where the local

linear regression estimate becomes part of an approximately linear fit, de-

termined only by the nearest two points, the variance is too high, and it is

totally unreasonable to estimate here. It is desirable therefore for the den-

sity threshold to cut off estimation at some point closer to the data cloud

than the point at which this linearity is reached, in the period of what could

still be considered normal estimation. If this occurs then it is likely that

at any point accepted by the threshold, with any data set, the density is

of a magnitude large enough for reasonable regression, as areas of a similar

magnitude of density demonstrated in this study.

It is also of interest to observe how poorly local polynomial regression

behaves outside of the data range. Parametric estimators do not behave

with the same instability or large variance in these areas, and this study

supports the notion that local regression simply should not be attempted in

these regions.

1.5.2 Competing methods

In nonparametric regression, the most common solution to the curse of di-

mensionality is to use an additive model. This models m as a sum of uni-

variate functions, each estimated by a method of smoothing, with one for

each covariate dimension i.e.

m̂A(x) = α̂+
d∑
j=1

m̂j(xj), (1.52)

where α̂ is a constant and m̂j are smooth univariate functions. If it can be

shown, for example by a locally weighted regression analysis, that there is no

interaction between the different variables, then Cleveland and Devlin (1988)

suggest that additive models can be used with confidence. However, if this is

not the case, Wand and Jones (1995) indicate that there is the potential for

greater error in the estimation since additive models do not have the same

flexibility as local polynomial regression. Variations to additive models exist,
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such as projection pursuit regression, developed by Friedman and Stuetzle

(1981).

A further alternative class of nonparametric regression techniques is that

of adaptive multivariate smoothing. Based on the fact that the curse of

dimensionality is not as severe for very smooth functions, Cornillon, Hen-

gartner and Matzner-Løber (2011) build on the work of Lepski (1991) and

others to develop a multivariate smoothing technique which “adapts to the

underlying smoothness of the true regression function.” This is essentially an

iterative bias reduction procedure which iterates from a very smooth pilot

estimator until the prediction error is minimized. One potentially question-

able feature of this method, and others, is the quality of the estimation in

areas where there is no data. It is likely that an estimate at such a point,

which is effectively a pilot estimate, is less informative than no estimate at

all. The disadvantages of these competing methods form a large part of the

motivation for the development of the techniques in Chapters 2 and 3.

1.6 R and the np package

The majority of the computational analysis covered in this thesis is carried

out on R (R Development Core Team, 2010). There exists very little in

terms of packages or code already available to perform multivariate local

polynomial regression, and for this reason all functions were written from

scratch, usually using the Cramer’s rule methodology given in (1.30). The

np package, by Hayfield and Racine (2008), does contain code for multi-

variate local polynomial regression, and the associated bandwidth selection,

however in practice this behaves strangely in areas of sparse data. The func-

tion npreg works with data of any dimension, but while (1.30) returns NaN

in areas of very sparse data, an adjustment is made in the np code which

results in NaN never being returned, and instead estimates extremely close

to 0 are given. This is clearly not always a sensible regression estimate,

for example in data where all Yi have a magnitude in the thousands. Ad-

ditionally, at points in regions of the data which are almost as sparse as

these, where the use of (1.30) still returns an estimate, this estimate differs
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from that given by npreg. These observations mean that the adjustments

made by the np package cause the regression estimates to diverge from the

basic exact expression for local polynomial regression, (1.6), since (1.30) is

identical to this. It should be noted that in this thesis, the simulated data

examined in three dimensions is generally quite sparse, in an effort to mimic

the impact of the curse of dimensionality in a higher number of dimensions,

and in areas of higher density npreg returns identical regression estimates

to (1.6) and (1.30).

Chapter 3 discusses in detail the effect that data sparsity has on band-

width selection, and in particular how the NaN s returned in this setting

mean that the inclusion of points from this area should be avoided. In the

np package, in the function npregbw, this problem is not encountered and

all points, as well as those with poor regression estimates mentioned above,

are included. One is given the choice between the Kullback-Leibler method

and least squares cross-validation (LSCV) described in Li and Racine (2004).

The Kullback-Leibler method is better suited to categorical data, as seems

to be a big focus of the package in general, and LSCV is to be used other-

wise. Under scrutiny, LSCV was found to often give bandwidth parameters

which were too large, which could be due to the inclusion of poor regres-

sion estimates. This poor performance is demonstrated in the simulation

study in Chapter 3. The authors themselves concede in a vignette (Hay-

field and Racine, 2008), published with the package, that their bandwidth

selection methods may produce poor results, possibly due to “outliers or the

discretisation of continuous data.”

In adapting to the computational problems which arise in areas of sparse

data, the approach of the np package appears to be that any estimate is

better than no estimate. After all, this helps computationally in bandwidth

selection and other areas. However in doing this the quality and purity

of regression estimates are sacrificed in these regions, and these are then

included in bandwidth selection, possibly to its detriment. This contrasts

with the philosophy of this thesis which is to first establish the feasibility of

regression at a point, and then to decide against any regression at all at that
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point if regression is considered infeasible. In this way, any regression esti-

mation carried out produces an estimate exactly equal to (1.6). Due to this

contrast in philosophies and its poor performance in bandwidth selection,

the np package was rarely used in the regression context in the examples

presented in this thesis.

1.7 Representing multivariate regression visually

Univariate regression is usually represented visually by a curve, and in the

bivariate case by a surface, however representation becomes an issue for

d > 2. Visualization is often one of the most important goals in smoothing

so it is vital that there are techniques available. Fortunately there is a range

of options, at least for data with covariates of up to three dimensions.

One widely-used technique is conditioning plots, which are particularly

suitable if one or more of the covariates can be split into categories. A curve

or surface can then be displayed in each plot, depending on the dimension of

the remaining covariates within each category. Alternatively these could all

be displayed on one plot, using colour to distinguish between the different

categories, however analysis then becomes difficult when the different colours

overlap.

Unfortunately, conditioning plots are not suitable when the covariates

cannot be categorized easily. For this reason it is sensible to use colour more

broadly. The problem is that it is difficult to interpret results other than at a

basic level, however Fig. 1.6 and Figs. 2.1-2 in the next chapter demonstrate

that it is effective at this level. In Fig. 2.2, at each grid point in the data

range at which the density is considered high enough for regression, using

the threshold developed in Chapter 2, a coloured point is plotted, the colour

of which depends on the regression estimate at that point. Here, for the

smallest regression values the points are bright green, and the largest values

are bright red. Any values in between are represented on this green-red

scale. At any point in the data range at which the density is not considered

to be high enough, no point is plotted. In this way, it is easier to view

the points of actual interest, while at the same time nicely representing the
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region where estimation is reasonable as a mass of colour.

A further improvement is derived from the use of the rgl package, by

Adler and Murdoch (2011), on R to construct this plot. The advantage here

is that one can move the resulting plot around on the computer screen in

order to best explore different parts of the data range. Another possibility

in the rgl package is to represent each point by a sphere, rather than a two-

dimensional cross. By varying the radius of the spheres and the fineness

of the grid one can create the impression that the spheres merge into one

object and so create a single coloured shape, which defines each region within

the data range where smoothing could be considered reliable. However, one

should be careful when adjusting the sphere radius and grid fineness, since if

the spheres are merged too much the ability to analyse the data in the middle

of the coloured region is lost. Therefore, they should be varied depending

on the data and the aim of the smoothing.

The procedure described above and applied to create Fig. 2.2 is unique

in creating a plot which represents both density, and local polynomial re-

gression, throughout a grid, by highlighting areas of high density and then

displaying the regression estimates via colour. This is only effective for

trivariate data, unless implemented within conditioning plots. The three-

dimensional contour plots used in Scott (1992) and Bowman and Azzalini

(1997) are similar but are used only in the density estimation context. In

this thesis, as the data of interest increases in dimension, the focus moves

away from visualizing the regression and towards producing the best possible

regression estimate at a single point at which it is considered feasible.

1.8 Density estimation

Density estimation is an important tool, used throughout this thesis. Wand

and Jones (1995) suggest that nonparametric density estimation is partic-

ularly important in high dimensions due to the issues faced by parametric

methods in this setting. In this thesis kernel density estimation is used.
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The kernel density estimate, for a multivariate point x is;

f̂(x) = n−1
n∑
i=1

KH(x−Xi) (1.53)

where KH is a multivariate kernel function as defined earlier and again a

bandwidth matrix is needed. In practice, multivariate kernel density esti-

mation has not been observed to suffer as severely from the curse of dimen-

sionality and therefore acts as a reliable first measure of a data set in the

procedure developed in Chapter 2.

Kernel density estimation is also the focus of Chapter 5, but in this

case in the univariate setting. The kernel density estimator for a univari-

ate random variable X, with standard deviation σ, is (analogously to the

multivariate estimate (1.53))

f̂(x) = (nh)−1
n∑
i=1

κ

(
x−Xi

h

)
, (1.54)

where κ is a kernel function and h is the univariate bandwidth. Chapter 5 is

devoted to the important issue of bandwidth selection in this context. The

techniques developed there are based on the normal reference rule of Sil-

verman (1986) which aims to select the asymptotically optimal bandwidth.

Due to its importance, the asymptotically optimal bandwidth is derived be-

low, again using the MISE as the starting point for its derivation. In the

density estimation context,

MISE(f, f̂) = E

∫
{f̂(x)− f(x)}2 dx, (1.55)

which can also be written in this context in terms of the bias and variance

of the density estimate,

MISE(f, f̂) =
∫ {[

Bias
(
f̂(x)

)]2
+ Var

(
f̂(x)

)}
dx. (1.56)

The asymptotic approximations (h → 0, nh → ∞ as n → ∞) of the bias

and variance are derived in detail in Silverman (1986). A summary of these

derivations is given below.

Bias
(
f̂(x)

)
= Ef̂(x)− f(x)

=
∫
h−1κ {(x− y)/h} f(y)dy − f(x). (1.57)
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Using the substitution y = x− hu and assuming
∫
κ(u)du = 1,

Bias
(
f̂(x)

)
=
∫
κ(u) {f(x− hu)− f(x)} du, (1.58)

and using the Taylor series and the assumption that
∫
uκ(u)du = 0,

Bias
(
f̂(x)

)
=
h2f ′′(x)

∫
u2κ(u)du

2
+O(h4). (1.59)

Now, the exact variance at f̂(x) is given as

Var
(
f̂(x)

)
= n−1

∫
h−2κ {(x− y)/h}2 f(y)dy−n−1

{
f(x) + Bias

(
f̂(x)

)}2
.

(1.60)

Here, again use y = x− hu, as well as expression (1.59) to give

Var
(
f̂(x)

)
≈ n−1h−1

∫
f(x− hu)κ(u)2du− n−1

{
f(x) +O(h2)

}2
. (1.61)

The implementation of a Taylor series then yields

Var
(
f̂(x)

)
≈
f(x)

∫
κ2(u)du
nh

+O(n−1). (1.62)

Substituting these asymptotic expressions into (1.56), one obtains the AMISE,

AMISE(h) =
h4

4

∫ [
f ′′(x)

]2
dx

[∫
u2κ(u)du

]2

+
1
nh

∫
κ2(u)du. (1.63)

Minimizing (1.63) w.r.t. h yields the asymptotically optimal bandwidth,

hopt = κ0

{∫ [
f ′′(x)

]2
dx

}−1/5

n−1/5 , (1.64)

where κ0 = [
∫
u2κ(u) du]−2/5[

∫
κ2(u) du]1/5 is a (known) constant depending

only on kernel moments.

The main aim of this thesis is to provide methods of dealing with the

curse of dimensionality in multivariate local polynomial regression, and

Chapters 2 and 3 concentrate on this. Chapters 4 and 5 cover the slightly

different, yet still related, topics of modal regression and bandwidth selection

for univariate multimodal density estimation respectively.
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Chapter 2

Assessing the reliability of

local linear regression

Recall that the curse of dimensionality is a problem which arises in higher

dimensions and results in reliable estimation using local polynomial regres-

sion not being possible in neighbourhoods where the data is too sparse. For

this reason, using this technique is often discounted as an option when look-

ing at multivariate data, and other techniques such as additive models or

thin-plate splines are favoured. There is however a significant increase in

flexibility when using local polynomials, particularly in comparison with ad-

ditive models, and for this reason the primary aim of the research composing

Chapters 2 and 3 is to find techniques which avoid the curse of dimension-

ality.

2.1 A solution using density

The solution presented in this chapter is one which essentially ignores all

neighbourhoods which do not contain enough data, and so only performs

smoothing over some region in which estimation is considered reliable, where

the bias and variance of m̂ can be kept reasonably low. In this way the curse

of dimensionality is avoided. This method is not universal in the sense that

it does not produce estimates over the whole data range, but it is satis-
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Figure 2.1: California Air Pollution data. Red represents the higher values

of ozone concentration (the response, in ppm), and green the lower.

factory in the sense that it produces estimates, with all the advantages of

local polynomial regression, in some regions of the data space. Fig. 2.2

illustrates the idea for trivariate data. For one, two and three-dimensional

covariates an envelope can be created to display visually the region in which

reliable estimation is possible. In dimensions higher than this it becomes

both harder to visualize, and computationally more demanding to calculate

this feasibility over a whole grid and so one concentrates on whether regres-

sion is advisable at particular points of interest over the data range. Fig.

2.1 shows the California Air Pollution data, introduced in Chapter 1. Here,

the response is represented by colour, where red represents the higher values

of ozone concentration, and green the lower. Fig. 2.2 shows an example of

an envelope in which smoothing can be considered somewhat reliable and

here the colour represents the smoothed regression estimate at the included

points. This example features two main regions where smoothing could be

considered reliable.
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Figure 2.2: Regression estimates displayed at only those points at which

regression is considered feasible for the California Air Pollution data. Red

represents the higher estimates of ozone (ppm), and green the lower.

To find these areas, and to discover where there is sufficient data, the

density f of X is examined, using (1.53). For reasons that will become

clear later, the same H is used in calculating f̂ as in the regression step. A

threshold T is sought such that, if f̂(x)>T at a point x, then an estimate

using local linear regression can be considered somewhat reliable, and other-

wise, care should be taken and an alternative method sought, possibly local

constant fitting. Intuitively, T should depend on n and H, as f̂ does, as

decreasing either of them will reduce the number of data points which are

locally available at x, requiring in turn a larger threshold to allow reliable

estimation.

2.1.1 The influence

In the derivation of the density threshold which follows, the concept of in-

fluence is crucial. By definition, the influence at a data point Xi, infl(Xi), is

the diagonal element of the ith row of the smoother matrix S. This describes

61



the contribution of observation Xi to the estimation at x = Xi.

The following theorem is taken from Loader (1999).

“Suppose the weight function K(x) is non-negative, symmetric and de-

creasing on [0,∞). Then

1. the influence function dominates the variance;

1
σ2
ε

Var(m̂(x)) ≤ infl(x)

2. at the observation points Xi,

infl(Xi) ≤ 1 (2.1)

and hence local regression is variance-reducing.”

Hence, bounding the influence implies bounding the variance, (1.12). If

an observation is very influential then the estimate at that point will be

very sensitive to it, and so the variance higher. This occurs primarily at

data points close to the boundary where the influence is close to 1. Local

regression is more feasible away from the boundary and since, according to

Hastie and Loader (1993b), so much of the data space in higher dimensions

can be considered as the boundary region, it is this area which needs to be

classified, and potentially excluded from the regression problem.

Now, the diagonal element of the ith row of S is

eT1 (XTWX)−1XTWẽi

where x = Xi and ẽi is a vector of length n with 1 in the ith position. This

is equivalent to

eT1 (XTWX)−1


KH(0)

0
...

0


where (KH(0), 0, ..., 0)T is a vector of length d+ 1. This is then equivalent

to

infl(Xi) = |H|−1/2eT1 (XTWX)−1e1K(0).
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where x = Xi in X. This formula is given in Loader (1999), and below,

generalized for any x. Here x = x in X.

infl(x) = |H|−1/2eT1 (XTWX)−1e1K(0). (2.2)

Justifying infl(Xi) ≤ 1

Although stated in Loader (1999) that infl(Xi) ≤ 1, this result is not proved

there.

Through a thorough examination of extremely isolated points, using very

small bandwidths, it is observed that, at a data point, the influence is never

greater than 1. This is proved below for the univariate local constant case.

For univariate local constant regression, where κh(x) = 1
hκ(xh), where h

is the bandwidth,

XTWX =
n∑
i=1

κh (Xi − x)

so using (2.2)

infl(Xj) =
κh(0)∑n

i=1 κh (Xi −Xj)

=
κh(0)

κh(0) +
∑

i 6=j κh(Xi −Xj)

≤ 1

since κh(x) is always non-negative.

Also, for univariate local linear regression, it is shown below that at a

point which is as isolated as possible, which one would expect to have the

highest possible influence, the influence is 1.

For univariate local linear regression,

XTWX =


∑n

i=1 κh(Xi − x0)
∑n

i=1(Xi − x0)κh(Xi − x0)

∑n
i=1(Xi − x0)κh(Xi − x0)

∑n
i=1(Xi − x0)2κh(Xi − x0)


so using (2.2)

infl(x0) =
κh(0)

∑n
i=1(Xi − x0)2κh(Xi − x0)∑n

i=1(Xi − x0)2κh(Xi − x0)
∑n

i=1 κh(Xi − x0)− [
∑n

i=1(Xi − x0)κh(Xi − x0)]2
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Figure 2.3: The influence plotted against the Euclidean distance of the point

from the centre of the data cloud, (7,7,7), for trivariate data simulation A.

If x0 is completely isolated so that κh(Xi − x0) = 0 for all Xi 6= x0 then

infl(x0) =
κh(0)∑n

i=1 κh(Xi − x0)− [
∑n
i=1(Xi−x0)κh(Xi−x0)]2∑n
i=1(Xi−x0)2κh(Xi−x0)

=
κh(0)

κh(0)− 0

= 1.

This is shown for univariate local linear regression, but is almost certainly

the case for higher dimensions too.

Fig. 2.3 plots the diagonal elements of the smoother matrix, i.e. the in-

fluence values at Xi, for the trivariate simulated data set A (introduced later

in this chapter). The plot shows the influence values versus the Euclidean

distances of the points from the centre of the data cloud. This simulated

data set has the form of a cloud which is denser in the middle and becomes

gradually sparser moving to the extremes in each covariate direction. Corre-
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sponding to this on the plot, are the high influence values, and the absence

of low values at larger Euclidean distances. The influence values peak at 1,

as discussed above. This plot is similar to the self-influence plots displayed

for univariate data in Buja, Hastie and Tibshirani (1989).

All of the above suggest strongly that the influence is never greater than

1, however this does not constitute a proof.

2.1.2 Deriving a density threshold

In order to relate the influence to the density, asymptotics are used to for-

mulate an influence function for any x over the data range, analogous to

the influence formula given for actual data points, (2.2), above. The follow-

ing assumptions are needed for the asymptotics: x ∈ Rd is in the support

of f which is continuously differentiable and f(x) > 0. All second-order

derivatives of m are continuous and the kernel is compactly supported and

bounded. Also assume that each entry of H tends to 0 and n−1|H|−1/2 → 0

as n→∞.

In notation, for sequences of real numbers, Un and Vn, Un = O(Vn) ⇔
∃c>0∀n∈N(|UnVn | ≤ c) and Un = o(Vn) ⇔ ∀c>0∃N∀n≥N (|UnVn | < c), where

N ∈ N. Hence O(1) means that the sequence is bounded and o(1) means

that it tends to 0 as n→∞. Convergence in terms of probability is expressed

similarly; Un = Op(Vn) ⇔ ∀c>0∃N,M∀n≥N
{
P (|UnVn | ≥M) < c

}
and Un =

op(Vn) ⇔ ∀c>0P (|UnVn | ≤ c) → 1 as n → ∞, where N ∈ N and M ∈ R. In

terms of probability, a sequence which is bounded is represented by Op(1)

and a sequence which tends to 0 as n → ∞, by op(1). In the instances in

which a matrix or vector appears within the order notation, this should be

read component by component. A matrix/vector with 1 in each entry is

represented by 1.

Now XTWX

=


∑n

i=1KH(Xi − x)
∑n

i=1KH(Xi − x)(Xi − x)T

∑n
i=1KH(Xi − x)(Xi − x)

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)T


(2.3)
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In approximating each of these entries, the following result derived using

Chebyshev’s inequality is used, where ς is a summation,

ς = E (ς) +Op

(√
Var (ς)

)
.

Firstly,

n∑
i=1

KH(Xi−x) = E

(
n∑
i=1

KH(Xi − x)

)
+Op


√√√√Var

(
n∑
i=1

KH(Xi − x)

) .

(2.4)

Since the Xi are i.i.d.

E

(
n∑
i=1

KH(Xi − x)

)
= nE (KH(X1 − x))

= n

∫
KH(t− x)f(t)dt

= n

∫
|H|−1/2K(H−1/2(t− x))f(t)dt

Then using the substitution u = (u1, ..., ud)T = H−1/2(t− x) one obtains

n

∫
|H|−1/2K(u)f(x + H1/2u)|H|1/2du

= n

∫
K(u)f(x + H1/2u)du

= n

(
f(x)

∫
K(u)du + o(1)

)
(2.5)

since according to Taylor’s theorem

f(x + H1/2u) = f(x) + f ′(x)(H1/2u)T +O(H).

Var

(
n∑
i=1

KH(Xi − x)

)
= n

[
E
(
(KH(X1 − x))2

)
− (E (KH(X1 − x)))2

]
= n

[∫
|H|−1K2(H−1/2(t− x))f(t)dt−

(∫
|H|−1/2K(H−1/2(t− x))f(t)dt

)2
]
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Then using the same substitution as above

Var

(
n∑
i=1

KH(Xi − x)

)

= n

[∫
|H|−1K2(u)f(x + H1/2u)|H|1/2du−

(∫
|H|−1/2K(u)f(x + H1/2u)|H|1/2du

)2
]

= n

[
|H|−1/2f(x)

(∫
K2(u)du + o(1)

)
−
(
f(x)

∫
K(u)du + o(1)

)2
]

= n

[
|H|−1/2f(x)

(∫
K2(u)du + o(1)

)
−
(
f2(x)

∫
K2(u)du + o(1)

)]
= n|H|−1/2

[
f(x)

∫
K2(u)du− |H|1/2

(
f2(x)

∫
K2(u)du + o(1)

)]
= n|H|−1/2

[
f(x)

∫
K2(u)du + o(1)

]
=
n2
[
f(x)

∫
K2(u)du + o(1)

]
n|H|1/2

= n2.O

(
1

n|H|1/2

)
= o(n2) (2.6)

Using (2.4)

n∑
i=1

KH(Xi − x) = n

(
f(x)

∫
K(u)du + o(1)

)
+Op

(√
o(n2)

)
= n

(
f(x)

∫
K(u)du + o(1)

)
+ n.op(1)

= n

(
f(x)

∫
K(u)du + op(1)

)
. (2.7)
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Similarly

E

(
n∑
i=1

KH(Xi − x)(Xi − x)

)
= nE (KH(X1 − x)(X1 − x))

= n

∫
KH(t− x)(t− x)f(t)dt

= n

∫
|H|−1/2K(H−1/2(t− x))(t− x)f(t)dt

= n

∫
|H|−1/2K(u)H1/2uf(x + H1/2u)|H|1/2du

= nH1/2

∫
uK(u)f(x + H1/2u)du

According to Taylor’s theorem, there exists a ξu such that f(x + H1/2u) =

f(x) + f ′(ξu)(H1/2u)T where ξu is on the line x + tH1/2u with t ∈ [0, 1].

Including this,

E

(
n∑
i=1

KH(Xi − x)(Xi − x)

)

= nH1/2

∫
uK(u)

(
f(x) + (H1/2u)T∇f(ξu)

)
du

= nH1/2

[
f(x)

∫
uK(u)du +

∫
uuTK(u)H1/2∇f(ξu)du

]
= nH1/2

[
f(x)

∫
uK(u)du +

∫
uuTK(u)H1/2(∇f(x) + o(1))du

]
= nH1/2

[
f(x)

∫
uK(u)du +

(∫
uuTK(u)du

)
H1/2∇f(x) + o(H1/2)

]
= nH1/2

[
f(x)

∫
uK(u)du +

(∫
uuTK(u)du

)
H1/2 (∇f(x) + o(1))

]
= nH1/2f(x)

∫
uK(u)du + nH1/2

(∫
uuTK(u)du

)
H1/2∇f(x) (1 + o(1))

(2.8)

And again using (2.4)
n∑
i=1

KH(Xi − x)(Xi − x)

= nH1/2f(x)
∫

uK(u)du + nH1/2

(∫
uuTK(u)du

)
H1/2∇f(x) (1 + op(1))

(2.9)
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Similarly

n∑
i=1

KH(Xi − x)(Xi − x)T

= nf(x)
∫

uTK(u)duH1/2 + n∇f(x)TH1/2

(∫
uuTK(u)du

)
H1/2 (1 + op(1))

(2.10)

And finally

E

(
n∑
i=1

KH(Xi − x)(Xi − x)(Xi − x)T
)

= nE
(
KH(X1 − x)(X1 − x)(X1 − x)T

)
= n

∫
KH(t− x)(t− x)(t− x)T f(t)dt

= n

∫
|H|−1/2K(H−1/2(t− x))(t− x)(t− x)T f(t)dt

= n

∫
|H|−1/2K(u)H1/2u(H1/2u)T f(x + H1/2u)|H|1/2du

= nH1/2

∫
K(u)uuT f(x + H1/2u)du(H1/2)T

= nH1/2

[(∫
uuTK(u)du

)
f(x) + o(1)

]
H1/2 (2.11)

And
n∑
i=1

KH(Xi − x)(Xi − x)(Xi − x)T

= nH1/2

[(∫
uuTK(u)du

)
f(x) + op(1)

]
H1/2 (2.12)

So XTWX can be written as
(2.7) (2.10)

(2.9) (2.12)

 (2.13)

For (2.2) one needs the top left entry of the inverse of (2.13). For a general

block matrix A, such as this one, Petersen and Pedersen (2008) state that
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this is equivalent to, (A11 −A12A
−1
22 A21)−1. Denoting matrix (2.13) as A,

(A11 −A12A
−1
22 A21)

= n

(
f(x)

∫
K(u)du + op(1)

)
−(

nf(x)
∫

uTK(u)duH1/2 + n

(
∇f(x)TH1/2

∫
uuTK(u)duH1/2

)
(1 + op(1))

)
×(

nH1/2

((∫
uuTK(u)du

)
f(x) + op(1)

)
H1/2

)−1

×(
nH1/2f(x)

∫
uK(u)du + nH1/2

(∫
uuTK(u)du

)
H1/2∇f(x) (1 + op(1))

)
= n

(
f(x)

∫
K(u)du + op(1)

)
− n

(
f(x)

∫
uTK(u)duH1/2 + op(1TH1/2)

)
×(

n

(
H1/2

(∫
uuTK(u)du

)
f(x)H1/2 + op(H)

))−1

× n
(

H1/2f(x)
∫

uK(u)du + op(H1/21)
)

(2.14)

Within (2.14), defining an as a sequence an = op(H), bn as a sequence

bn = op(1) and cn as a sequence cn = O(H−1) one uses the Kailath Variant

from Petersen and Pedersen (2008) to re-express the inverse. The Kailath

Variant states that (A+BC)−1 = A−1−A−1B(I+CA−1B)−1CA−1. Here,

say A = H1/2
(∫

uuTK(u)du
)
f(x)H1/2, B = an and C = I. Hence(

H1/2

(∫
uuTK(u)du

)
f(x)H1/2 + op(H)

)−1

=
(

H1/2

(∫
uuTK(u)du

)
f(x)H1/2

)−1

− cnan(I + cnan)−1cn

=
(

H1/2

(∫
uuTK(u)du

)
f(x)H1/2

)−1

− bncn

=
(

H1/2

(∫
uuTK(u)du

)
f(x)H1/2

)−1

+ op(H−1)

= H−1/2

(∫
uuTK(u)du

)−1

(f(x))−1H−1/2 + op(H−1)
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Substituting this in to (2.14) one obtains

(A11 −A12A
−1
22 A21)

= n

(
f(x)

∫
K(u)du + op(1)

)
− n

(
f(x)

∫
uTK(u)duH1/2 + op(1TH1/2)

)
×(

H−1/2

(∫
uuTK(u)du

)−1

(f(x))−1H−1/2 + op(H−1)

)
×
(

H1/2f(x)
∫

uK(u)du + op(H1/21)
)

= n

(
f(x)

∫
K(u)du + op(1)

)
− n

(∫
uTK(u)du

(∫
uuTK(u)du

)−1

H−1/2 + op(1TH−1/2)

)

×
(

H1/2f(x)
∫

uK(u)du + op(H1/21)
)

= n

[
f(x)

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]
+ op(1)

]
(2.15)

Applying the inverse as mentioned earlier, one obtains an approximation for

the top left entry of the inverse of (2.13)

(B11 −B12B
−1
22 B21)−1

= n−1(f(x))−1

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]−1

+ op(n−1)

Substituting this in (2.2) gives an approximation to the influence function

infl(x) =
K(0)

nf(x)|H|1/2

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]−1

+ op(n−1|H|−1/2)

(2.16)

Loader (1999) expresses
[∫

K(u)du−
∫

uTK(u)du
(∫

uuTK(u)du
)−1 ∫ uK(u)du

]−1

as eT1 M−1
1 e1 where M1 is

(∫
K(u)A(u)A(u)Tdu

)
and A(u) = (1,u)T . It

can be shown that these two are equivalent again using Petersen and Ped-

ersen (2008): In Loader (1999) M1 is
∫
K(u)du

∫
K(u)uTdu

∫
K(u)udu

∫
K(u)uuTdu

 (2.17)

so (A11−A12A
−1
22 A21)−1 is

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫ uK(u)du
]−1

.
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The above calculations for the asymptotic approximation to (XTWX)−1

are more general compared to those in most other sources, notably Ruppert

and Wand (1994), since here the kernel moments are not assumed to vanish.

This allows for non-symmetric kernels, as well as the handling of boundary

points.

Although the original definition of influence, (2.2), only applies at the

observed values Xi, the asymptotic influence given by (2.16) can be com-

puted at every x. It can be seen as the influence which would be expected

under idealized (asymptotic) conditions for a (hypothetical) data point situ-

ated at x. Similarly the inequality (2.1) applies only to the observed values

Xi. However, due to the implicit averaging process happening in the com-

putation of the asymptotic influence function, any x which is situated in

between or close to data points Xi is still likely to possess the property

infl(x) ≤ 1. In other words, in populated regions of the predictor space,

the asymptotic influence will be less than 1, while it will exceed 1 in very

sparse or remote regions. Therefore, using this asymptotic approximation,

a natural choice of T is straightforwardly derived by bounding the influence

by 1. This dismisses local regression at observations for which infl(Xi) is

very large;

K(0)
nf(x)|H|1/2

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]−1

≤ 1

so

f(x) ≥ K(0)
n|H|1/2

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]−1

so

T =
ρK(0)
n|H|1/2

(2.18)

where

ρ =

[∫
K(u)du−

∫
uTK(u)du

(∫
uuTK(u)du

)−1 ∫
uK(u)du

]−1

.

(2.19)

The bandwidth matrix, H, featuring in this density threshold stems from

an expression involving the influence of the regression, which explains the
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earlier statement that the bandwidth matrix used for the density estimation

should be the same as that used in the actual regression step.

2.1.3 Selection of ρ

Of great importance are the limits used in the integrals in ρ. These can be

altered, in an effort to make the asymptotic approximation to the influence

closer to the true influence in the area of interest. In order to do this, one

makes reference to the boundary of the data. The boundary is defined as the

entire edge of the support of f(x), in every direction in the covariate space,

such that outside the boundary f(x) = 0. A boundary point can be thought

of as a point x with f(x) > 0 such that, if a kernel KH is centred at x, parts

of the within-bandwidth region of KH would fall into a region with f(x) = 0;

Ruppert and Wand (1994) provide a rigorous definition of boundary points.

In this alteration, the upper integral limit is always∞. If one estimates at an

interior point, then the lower integral limit would be −∞. For a boundary

point, the lower integral limit would need to be altered according to the

distance to the boundary (for instance, if x is half a bandwidth hj away

from the boundary of the support of f in each coordinate direction, then

the lower limit of each integral would be -0.5). This is of crucial importance

here since the boundary region, where data becomes sparse, is the region

of interest. Hence, in order to represent the true influence as accurately as

possible in the area of interest, the lower integral limit is replaced by a small

negative value, say a, which reflects the distance between the boundary of

f and the area for which the criterion is optimized (the integrals in (2.19)

are d-variate, but the same a is always used for each co-ordinate direction

here). In this way, the region in which there is doubt over the validity of

local polynomial regression as a suitable regression technique can be assessed

reliably.

Fig. 2.4 shows how ρ varies as a changes for trivariate covariates. This

relationship is completely data-independent and suggests that a value of

a between -0.5 and -1 is approximately the point at which ρ stabilises as a

moves away from 0, which is one way of justifying a selection here. However,
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the primary method of selection of a has been to work backwards and look

directly at the data by examining the absolute error of estimated points as

in Fig. 2.5. This was carried out for a variety of real and simulated data

sets of varying dimension.

The following is a comprehensive list of the simulations included in this

chapter. The data sets vary in their sparsity but are intended to be par-

ticularly sparse in three dimensions in an effort to simulate the problems of

even higher dimensions, while maintaining computational ease.

• A- 3-dimensional covariates simulated through a t-distribution with 4

degrees of freedom centred at 7. The response values were generated

according to the model m(Xi) = 12 sin(Xi1)− 5 sin(Xi2)− 3 cos(Xi3)

and εi ∼ N(0, 1), i = 1, ..., 300.

• B- 3-dimensional covariates simulated through a t-distribution with 4

degrees of freedom centred at 7. The response values were generated

according to the model m(Xi) = −8 log(Xi1)+5 sin(5Xi2)+10 log(Xi3)

and εi ∼ N(0, 1), i = 1, ..., 300.

• C- 3-dimensional covariates simulated through a t-distribution with 4

degrees of freedom centred at 7. The response values were generated

according to the model m(Xi) = 12 log(Xi1)− 5 sin(Xi2) + 10 cos(Xi3)

and εi ∼ N(0, 1), i = 1, ..., 300.

• D- 3-dimensional covariates simulated through a t-distribution with

2 degrees of freedom centred at 15. The response values were gener-

ated according to the model m(Xi) = −12 cos(Xi1) + 5 sin(5Xi2) +

10 log(Xi3) + 17 and εi ∼ N(0, 1), i = 1, ..., 300.

• E- 5-dimensional covariates simulated through a t-distribution with

2 degrees of freedom centred at 15. The response values were gen-

erated according to the model m(Xi) = −12 cos(Xi1) + 5 sin(5Xi2) +

10 log(Xi3)+cos(3Xi4)+7 tan(Xi5)+17 and εi ∼ N(0, 1), i = 1, ..., 300.

• F- 3-dimensional covariates simulated through a t-distribution with 4

degrees of freedom centred at 7. The response values were generated

74



according to the model m(Xi) = log(Xi1)Xi2Xi3 and εi ∼ N(0, 1), i =

1, ..., 300.

• G- 3-dimensional covariates simulated through a t-distribution with

4 degrees of freedom centred at 7. The response values were gen-

erated according to the model m(Xi) = Xi1Xi2 sin(5Xi3) and εi ∼
N(0, 1), i = 1, ..., 300.

• H- 3-dimensional covariates simulated through a t-distribution with 4

degrees of freedom centred at 7. The response values were generated

according to the model m(Xi) = log(Xi1) sin(Xi2) cos(Xi3) and εi ∼
N(0, 1), i = 1, ..., 300.

• I- 3-dimensional covariates simulated through a t-distribution with 2

degrees of freedom centred at 15. The response values were generated

according to the model m(Xi) = cos(2Xi1) sin(5Xi2) log(Xi3)+17 and

εi ∼ N(0, 1), i = 1, ..., 300.

Figs. 2.5-2.7 demonstrate typical results and show how suitable f(x) is

as a quantity on which to apply a threshold. Fig. 2.5 shows the absolute

error, |m(Xi)− m̂(Xi)|, against f̂(Xi) for simulation D and the vertical line

in this figure shows approximately where the threshold should cut, in order

that the extreme errors, associated with lower density, are not considered.

The figures show that the points at which large errors occur can always be

excluded, via the threshold, by choosing a particular a, and so ρ. In Fig. 2.5

the vertical line represents T with a = −0.85 and consistently this value of a

performed well in these analyses, regardless of dimension. It should be noted

that although a remains constant, ρ varies depending on the dimension.

Figs. 2.6-2.7 examine the MSE of the points in a data set which are

accepted by the threshold using different values of ρ. In Fig. 2.6 the results

using simulation D are displayed and the results for simulation E are shown

in Fig. 2.7. A value of a = −0.85 gives ρ = 3.12 and ρ = 6.1 respectively.

In both of these cases the curves seem to flatten at approximately these

values of ρ, again suggesting a good choice of a, and a threshold successful

in eliminating large errors. Any further increase in T seems pointless.
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Figure 2.4: ρ v. the integral limit, a, for trivariate data (data independent).
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Figure 2.5: |m(Xi) − m̂(Xi)| v. f̂(Xi) for simulation D. The vertical line

represents the density at which T , with a = −0.85, cuts.
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There is no theoretical argument which will show exactly where the

threshold should cut. The most important aim of the threshold is to rule out

extreme estimates. These are estimates at which either estimation breaks

down computationally, or where |m(Xi)−m̂(Xi)| is very large when consid-

ering the magnitude of the response values. If this is achieved, at any point

accepted by the threshold, smoothing can be performed reasonably, with

only a small error. The various analyses carried out here do suggest that

by making a = −0.85, this threshold is capable of succeeding in these ways.

This value corresponds to a point situated 0.85hj inside the boundary. This

is quite intuitive as this is just about the region where one would assume

that data sparsity becomes a problem. At all points at which R returns

a computational instability or a NaN value as the local linear estimate,

in all simulations, the density is lower than the threshold, and so rightly

smoothing is considered inappropriate. The threshold also falls in the pe-

riod earlier described as the “period of normal estimation” as you leave the

data range. This is desirable in cutting out all the points where extreme

boundary effects occur. Since, according to Hastie and Loader (1993b), in

higher dimensions much of the data range suffers from boundary effects, it

is reassuring that the points at which issues arise at the boundaries in these

univariate examples are not considered suitable by the threshold.

2.1.4 An attempt to justify the use of asymptotics

Asymptotics play a crucial role here in relating density to a bound on reli-

able smoothing. To check that the use of the asymptotic approximation to

the influence is justified, a small simulation study was carried out. Using

asymptotics it was ascertained that

infl(x) = |H|−1/2eT1 (XTWX)−1e1K(0) ≈ ρK(0)
nf(x)|H|1/2

(2.20)

Re-arranging this, suggests that

ρ ≈ nf(x)eT1 (XTWX)−1e1 (2.21)

Using simulated data set A, the value in the right hand side of (2.21) was

calculated for a grid of x-values over the part of the cloud where data was
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Figure 2.6: The MSE of the points in simulation D which are accepted by

the threshold using different values of ρ.

3 4 5 6 7 8 9 10

20
0

40
0

60
0

80
0

ρ

re
m

ai
ni

ng
 M

S
E

Figure 2.7: The MSE of the points in simulation E which are accepted by

the threshold using different values of ρ.
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not considered to be sparse visually. For this data set, the median of all the

values calculated over this grid was determined as 2.54. This is very similar

to the 3.12 exact value of ρ for trivariate data, and this justifies, at least

to some degree, the use of asymptotics and the validity of (2.20). Although

not a perfect justification, it suggests that the asymptotic approximation to

the influence gives values of at least the right magnitude.

2.2 Performance of the density threshold

To fully analyse the success of this idea it is necessary to compare it to

other available techniques used to smooth high dimensional data. Two such

techniques are thin plate splines and additive models. Several data sets were

simulated to test these different methods. Data clouds such as simulations

A-I, which are denser in the middle, and gradually become sparser as you

move away from the centre, are ideal for testing the value of a threshold

since they provide the perfect mix of points of varying density in one data

set.

For each data set a further 200 test data points (300 for E) were gener-

ated, with no error applied to the generated response values. The density

of the training data was measured at each test data point, and the den-

sity threshold applied at each point individually. Tables 2.1-2.3 record the

RSS of the estimates at these points, firstly for all 200, and secondly for

only those points accepted by the threshold, using different methods of es-

timation. LP represents local polynomial, TPS thin plate splines, and AM

additive models. To give each method an equal chance of success, optimal

bandwidth parameters suggested by the respective R packages were used.

The tables also show the number of points that fall below the threshold.

Thin plate splines were computed using the fields package, by Furrer,

Nychka and Sain (2011), on R. This is a generalization of univariate smooth-

ing splines in higher dimensions. According to Green and Silverman (1994),

some, but not all, of the attractive aspects of spline smoothing in one di-

mension carry over.

Additive models were computed using the gam package, by Hastie (2011),
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Method LP TPS points omitted LP TPS

Threshold? No No - Yes Yes

A 459 432 58 59 52

B 284 2249 25 100 2025

C 6720 976 44 77 211

D 59708 7187 119 77 406

E NaN 4843668 184 52915 65504

Table 2.1: The values displayed here are the RSS for the estimates for

simulations A-E, using local polynomial regression and thin plate splines.

These include all 200 points, and only those accepted by the threshold. The

table also shows the number of points omitted by the threshold out of the

200.

on R. This fits additive models using the method of Hastie and Tibshirani

(1990). The algorithm iteratively fits additive models by backfitting. In

this simulation the composite univariate functions used were splines, with

bandwidth parameters chosen by generalized cross-validation.

These simulations were all successful in showing that local polynomial

fitting is superior in areas accepted by the density threshold.

Table 2.1 shows that without applying a density threshold, local polyno-

mial fitting is generally worse than thin plate splines, with higher RSS values.

However, when points are discriminated against using the threshold, and es-

timation is only carried out at the points accepted by the threshold, the

local polynomial fitting generally performs better. Table 2.2 shows similar

results when comparing local polynomials with additive models. However,

within the group of simulations in which the data-generating mechanism is

additive, shown in Table 2.3, the additive models perform better as would

be expected. Despite the additive data-generating mechanism local polyno-

mial regression yielded the lower RSS with data set E, the five-dimensional

data set which is by far the sparsest data set simulated. It appears that

the sparser the data set, the more evident the usefulness of the threshold

is, exemplified by data sets D and I. This is likely to be because the local
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Method LP AM points omitted LP AM

Threshold? No No - Yes Yes

F 1889 6548 70 13 480

G 25137 48419 95 299 9514

H 308 156 59 96 77

I 1308 376 105 74 194

Table 2.2: The figures displayed here are the RSS for the estimates including

all 200 points, and including only those accepted by the threshold, for local

polynomial regression and additive models in those simulations (F-I) where

the data-generating mechanism has interaction between covariates. The

table also shows the number of points omitted by the threshold out of the

200.

Method LP AM points omitted LP AM

Threshold? No No - Yes Yes

A 459 39 58 59 13

B 284 64 25 100 24

C 6720 228 44 77 42

D 59708 2365 119 77 18

E NaN 927753 184 52915 58047

Table 2.3: The figures displayed here are the RSS for the estimates including

all 200 points, and including only those accepted by the threshold, for local

polynomial regression and additive models in those simulations (A-E) where

the data-generating mechanism is additive. The table also shows the number

of points omitted by the threshold out of the 200.
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polynomial estimator behaves very poorly, and can give extreme estimates,

in sparser areas.

In most of the simulations, at least half of the data points are accepted

by the threshold. This seems like a reasonable proportion, and makes it

worthwhile applying the threshold, performing local linear regression, and

benefiting from its advantages at the accepted points. The large number of

points omitted from simulation E also represents a successful result for the

threshold. Simulation E is a five dimensional data set, simulated through a

t-distribution with 2 degrees of freedom. With this level of sparsity, and with

these values of n and d, it seems likely that local polynomial regression is

inappropriate, and the number of points omitted indicates that the threshold

is a competent measure of this. However, for the 16 points accepted by the

threshold, the local polynomial regression outperforms additive models and

thin plate splines and so may still be useful if estimation at these points is

of interest.

2.3 Discussion

The difficult and fundamental decision to make when designing the density

threshold is just how dense must the data be to perform smoothing ade-

quately. This choice is made here through the selection of the lower integral

limit, a, in ρ i.e. by defining the area of interest to be a = 0.85 bandwidths

away from the edge of the data cloud in each dimension. This is, in the

author’s opinion, justified both by the testing carried out for this value of

a, and the feeling that this is approximately the region in which one would

expect data sparsity to be becoming an issue. In any potential threshold

developed there would always have to be a decision of this nature to be

made, and the feeling is that in this case the theoretical justification, via

the asymptotic approximation of the influence function, is good. The thresh-

old formula developed, T = ρK(0)/n|H|1/2, is neat in the sense that it takes

the form of a multiple of the density of one point, where ρ is the multiple, so

for example a value of ρ = 3 would represent a threshold that only allowed

estimation at points at which there was a density equivalent to 3 data points
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at that point. The threshold is effectively imposing a required equivalent

number of data points at the point. The interpretability of this threshold is

another advantage. Alternatively, one could argue that, for sufficient local

estimation of a hyperplane with p = d+1 parameters, one needs effectively p

pieces of information in the neighbourhood of x. This could be achieved by

having p observations situated exactly at x, or, realistically, having a larger

number of observations in the vicinity of x which essentially contribute the

same amount of information. A threshold of this type would have the form

T0 =
(d+ 1)K(0)
n|H|1/2

.

In practise, a threshold of this magnitude works well in lower dimensions

and could work as an effective rule of thumb. However, it does not increase

dramatically enough in higher dimensions, as is shown in Table 2.4. The

values in this table are data-independent; so the table can be used for general

reference.

Testing has suggested that if one uses T0 for 16-dimensional data, then

many points unsuitable for local regression are accepted by the threshold.

The density threshold (2.18) is satisfactory in the way it adapts automat-

ically to higher dimensions by becoming significantly larger. This is illus-

trated below using a real data set. This data set contains variables con-

cerning 12000 chamois, which is a species of goat-antelope. The response

is body mass and the 8 covariates are various climate variables, age and

elevation. This can be used as training data while a further 2000 points can

act as test data for which body mass can be estimated and compared with

the observed values. The regression function m̂(x) is estimated at all 2000

test points using local linear regression for eight-dimensional covariates. The

hj , j = 1, ..., 8, are taken as the data range in each direction divided by 15,

since bandwidth selection using a criterion is too time-consuming in 8 di-

mensions. The density at each point is also measured using kernel density

estimation and T and T0 are calculated to determine which points are ac-

cepted by the threshold developed from the asymptotic influence function,

as well as the cruder version detailed above. For this data T = 0.000000193

which classifies 273 out of 2000 points acceptable for local polynomial re-
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Dimension p ρ

1 2 1.50

2 3 2.19

3 4 3.12

4 5 4.46

5 6 6.10

6 7 8.35

7 8 11.22

8 9 15.34

9 10 20.41

10 11 27.82

11 12 36.94

12 13 51.13

13 14 68.72

14 15 88.72

15 16 110.49

16 17 147.30

Table 2.4: Comparing the number of parameters in the regression, p, with

the corresponding value of ρ for d = 1, ..., 16 (data independent).

gression. Using ρ = d + 1, T0 = 0.000000113 which classifies 599 points

acceptable for smoothing. Figures 2.8-2.10 show the difference between the

estimated values and the actual values, all plotted against density, for all

2000 points (Fig. 2.8), and for just those points accepted by the thresholds.

The necessity for a threshold is highlighted in Fig. 2.8. The range of the

body masses is approximately 40, and so some of the errors exhibited at

points at which the density is lowest are clearly unacceptable products of

the local regression. Fig 2.9 shows that, as expected for such a high di-

mension, some of the larger errors are still accepted by a threshold of the

form of T0 (the equivalent of ρ = d + 1 in T ). The threshold developed

in this thesis, with ρ = 15.34, only allows points at which the estimate is

excellent as shown in Fig. 2.10. This exemplifies the need for a threshold
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Figure 2.8: m̂(Xi)−Yi v. f̂(Xi) for all 2000 test data points in the chamois

data.

which increases substantially in higher dimensions.

Another related idea, with the aim of assessing data points, would be

to restrict estimation to only those points which are less than thj , where

t is a constant, away from any Xi. Whilst appealing due to its simplicity,

a value of t must still be chosen. In the threshold (2.18) a similar process

was carried out via asymptotic considerations, related to the density, and

vigorous testing with data, to produce the values in Table 2.4. There seems

to be no obvious theoretical path by which to determine a suitable value of

t. These two ideas are similar, since a point which is thj away from x causes

a minimum density at x, which is then effectively the minimum density that

is considered sufficient for estimation to be considered reliable. However,

this simpler concept has a further disadvantage when compared with (2.18),

since, for any value of t, it would allow estimation at a point at which there

was just one isolated Xi nearby, which, as has been shown in this chapter,

is insufficient for data of any dimension.
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Figure 2.9: m̂(Xi) − Yi v. f̂(Xi) for only those points, in the chamois test

data, accepted by a similar threshold, T0 (T with ρ = d+ 1).
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Figure 2.10: m̂(Xi)− Yi v. f̂(Xi) for only those points, in the chamois test

data, accepted by the threshold developed in this thesis, (2.18).
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A different angle from which one might consider approaching this prob-

lem is through analysis of the standard error of the estimate, which is after

all a measure of the uncertainty of the estimate. One would expect that a

large standard error would be observed in regions of sparse data, indicating

that the regression is not a sensible option in these areas. Unfortunately this

approach is not suitable due to the curse of dimensionality. In local polyno-

mial regression, the standard error is expressed, as in Hastie and Tibshirani

(1990), as
√

diag[SSTσ2
ε ], which contains the smoother matrix. The entries

of the smoother matrix are affected adversely by the curse of dimensionality,

and as a result the magnitude of the calculated value of the standard error

may be completely different to the true magnitude of the error at that point.

In other words, if an estimate at x is unreliable, then the standard error at x

is also unreliable, and so no valid conclusions can be drawn. The threshold

(2.18) solves this problem by determining the areas in which regression is

feasible, without itself being affected by the curse of dimensionality.

When approaching a data set a decision must be made regarding the

modelling strategy that will be adopted. There is a choice to be made be-

tween a simpler additive model, which lacks flexibility, but does not suffer

from significant computational problems and reliability issues, and a local

regression model, which gains flexibility but suffers from the curse of dimen-

sionality and so larger uncertainty. In between, interactions can be included

in additive models in order to form a compromise in this flexibility relia-

bility trade-off. Whilst this thesis favours the local regression end of this

spectrum, additive models (with and without interactions) should certainly

not be dismissed since the reliability of a model is always important. An

additional advantage when using additive models is that one can also gain

insight into the individual effects of covariates. The threshold attempts to

classify regions in which local linear regression is reliable. This then sepa-

rates the data space into regions in which local linear regression should not

be attempted, and so the use of additive models (using all the data) is ad-

vised, and regions in which local linear regression can be considered reliable.

In these “reliable” regions the curse of dimensionality is not deemed to have
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a significant effect and so the unreliability, which is the major disadvantage

of this technique, is reduced. As a result, the option of a flexible model, pos-

sessing the advantages of local polynomial regression, as well as a certain

amount of reliability, is provided. While this is not an option everywhere

in the data space, it is certainly a competitive alternative to the additive

model in some areas, as was demonstrated in section 2.2.

Of equal importance in devising a way of performing local polynomial

fitting in higher dimensions, is the bandwidth matrix selection. To fully

analyse the success of the density threshold it is necessary to be able to

evaluate smoothing estimates fitted using optimal bandwidth values, other-

wise observed large errors could be as a result of poor bandwidth selection

rather than the curse of dimensionality. Therefore to fully test the thresh-

old, AGCV was developed and is explained in Chapter 3. This method is

used throughout this chapter unless otherwise stated. This bandwidth se-

lection technique and the density threshold are designed to work together,

since AGCV focuses specifically on the denser areas of the data. When used

together, a powerful local regression tool in higher dimensions is realised.

It should be noted that all of the above analysis was carried out using

the Gaussian kernel. However, the threshold is easily adapted to different

choices of kernel function. In limited testing using the Epanechnikov kernel

function, the threshold proved very capable of excluding all points where

estimates were sufficiently poor. In theory, the threshold can also easily be

extended to polynomials of different degree, but little work has been done

with this aim due to the advantages of local linear regression in terms of bias

and variance. As explained in Chapter 1, it could be beneficial to employ a

local constant version of the threshold in areas where local linear regression

is not considered reliable. Indeed, this threshold is implemented in Chapter

4.

When using (1.53) to calculate the density at a point, to examine using

the threshold developed in this chapter, it is necessary to use the same H

as will be used for the regression. As a result, certain quantities, usually

only considered in the regression bandwidth selection procedure will affect
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the bandwidth used in the density estimation, and so the density estimate

on which the threshold is applied. It is interesting to briefly compare the

optimal bandwidths for local linear regression and density estimation, in

the simpler univariate case, in order to identify these quantities. Using

the MSE, the asymptotically optimal bandwidth for density estimation is

derived earlier and given as (1.64). The equivalent for local polynomial

regression, following from (1.24)-(1.26), is

hopt =
[

σ2
ε

∫
[κ(u)]2du

n(
∫
u2κ(u)du)2

∫
[m′′(x)]2f(x)dx

]1/5

(2.22)

where σ2
ε is the error variance of the regression at each Xi, assuming ho-

moscedasticity (Simonoff, 1996). It is apparent that, in the selection of the

regression bandwidths, in which one searches for a bandwidth as close as

possible to the optimal (2.22), one is implicitly taking into account m(x),

the true mean function, and σ2
ε . As a result, by using the same H in the

density estimation, the same quantities are involved in the density estima-

tion procedure despite having no association with the density. A similar

issue would occur in the multivariate setting. However, this is unimportant

in this context since an optimal density bandwidth is not the priority here,

but rather a bandwidth which works with the threshold.

Interestingly, in the special case when∫
[m′′(x)]2f(x)dx = σ2

ε

∫
[f ′′(x)]2dx (2.23)

is satisfied, the optimal bandwidths for regression and density estimation are

equal. In this case, any bandwidth selection procedure for local polynomial

regression, which seeks to approximate (2.22), will also, when the resulting

bandwidth is applied in the density estimation, produce the optimal density

estimate.
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Chapter 3

Bandwidth matrix selection

The curse of dimensionality also causes problems in the area of bandwidth

matrix selection. As was mentioned earlier, the use of a classical rather

than a plug-in method is favoured in this thesis, due to the reliance on

asymptotics of the latter. This was less of an issue in the previous chapter,

where asymptotics were solely used to find an approximation of the influ-

ence function, but it is an issue here as the goal is now bandwidth selection

itself. One such classical method, introduced in Chapter 1, is generalized

cross-validation which is less precise than other cross-validation, but compu-

tationally less demanding. When implemented on R, GCV struggles greatly

to cope with high dimensional data. GCV is a minimization problem, and it

is the actual minimization which causes problems. A GCV value can easily

be calculated for any H using (1.43) but a variety of issues arise through

the minimization over d-dimensional data, carried out on R by the optim

function (found in the base package). Often, extreme values will be sug-

gested for hj , significantly larger than even the data range. Alternatively

R just returns an error message. Within the optim function, one must

specify a starting point, in this case a starting set of hj from which the

Nelder-Mead algorithm, detailed in Nelder and Mead (1965), can start the

minimization. Often this process is very sensitive to the starting point, and

different parameters are suggested depending on the starting point. This

is not a problem with GCV itself, but rather a problem of optim selecting
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one of many minima, which sometimes occur in the GCV function, with-

out it being necessarily the smallest as desired. Even if these problems are

avoided and a selection which appears reasonable is made, often the chosen

bandwidth matrix performs poorly and is consequently responsible for poor

local polynomial regression.

3.1 AGCV

3.1.1 Adaptations

Here the original GCV, developed by Craven and Wahba (1979), has been

adapted in two ways in order to alleviate the problems mentioned above.

Both of these steps are taken to remove the influence of data points in

less dense areas which otherwise may have a disproportionate effect on the

procedure. This effect is more likely to occur as d increases.

Firstly, it is proposed that the median of the diagonal elements of the

smoother matrix, S, is used in the place of trace(S)
n (effectively the mean

of the diagonal elements). Denote the median of the diagonal elements

of the smoother matrix as ψ. The introduction of the median eradicates

the possibility of extremely large values of hj being chosen. This is best

shown through an example using the simulated data set E, detailed in section

2.1.3. GCV was carried out on this data set in order to select an optimal

bandwidth matrix. Both the original GCV, (1.43), and the original GCV

with trace(S)
n replaced by ψ were used. The unaltered GCV selected extreme

hj values, while the altered one selected hj values of a reasonable magnitude,

as desired. Table 3.1 helps to show the cause of this, by displaying the impact

on different parts of the GCV formula when different magnitudes of hj are

entered.

This demonstrates that the denominator of the altered GCV is rela-

tively unaffected by the size of the bandwidths chosen here. In fact, this

alters significantly only for very small values of hj . In contrast, in the range

of bandwidths tested here, 1 − trace(S)
n varies significantly, depending on

the hj . In the GCV minimization process, the larger the denominator the
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extremely large hj small hj
trace(S)

n 0.02 0.108

ψ 0.01 0.038

1− trace(S)
n 0.98 0.892

1− ψ 0.99 0.962

Table 3.1: Comparing components of the GCV, with and without ψ, for

data set E, with different sizes of hj .

smaller the GCV becomes. In the case of the altered GCV, in which the

denominator remains relatively unchanged regardless of hj , the numerator

can, rightly, have an influence in choosing the optimal parameters through

the minimization. However, in the original GCV, there is a significant differ-

ence in possible denominators, depending on hj , and if this is significantly

greater than the difference in the numerator (between favourable small hj

and extreme hj), then the GCV will be minimized by extreme hj values,

without the numerator having any significant input. This example shows

how at times the unaltered GCV can select extreme hj .

The value of 0.108 recorded in Table 3.1 is caused by some extreme (close

to 1) influence values, which indicates that it is the curse of dimensionality

causing this issue. The extreme nature of these points is ignored when the

median is used as in the altered version of GCV. By including the median,

small bandwidth values, which contribute to an increase in influence values,

are penalized less harshly, and so bandwidths of a reasonable magnitude can

be chosen. By softening this penalization slightly, extreme values of hj can

never enjoy the advantage they possess in the denominator in the original

GCV, and their poor performance in the numerator will correctly see them

discounted as possible bandwidths.

Figs. 3.1-2 show graphically the effect of using the median. Both of

these display the GCV value calculated over a grid of values for a simulated

bivariate data set. A t-distribution with 1.3 degrees of freedom was used to

create some very sparse areas of data, since the effect being demonstrated

here would not usually occur as frequently in such a low dimension. Fig. 3.1

92



h1

5

10

15

20

h2

15

20

25

30

G
C

V

7600

7800

8000

Figure 3.1: GCV function for a very sparse simulated bivariate data set,

using the unaltered version of GCV.

shows the unaltered GCV decreasing as the hj increase, explaining why in

this case the GCV minimization process chooses extremely high hj . Fig. 3.2

shows how the alteration stops this from occurring, with a clear minimum

at approximately (2.5,11).

The second adaptation proposed to GCV is the removal of isolated points

from the process. In this setting, an isolated point is one at which no point

other than itself contributes to its local regression estimate. Whether a point

is isolated or not depends on the bandwidth matrix selected, but there are

some points which will always be isolated for any reasonable H. Often an

isolated point will impose a computational constraint on the minimization

process. Within the expression for GCV, the diagonal elements of S in the

denominator, and the m̂(Xi) in the numerator, are very sensitive to hj . On

R, it is computationally impossible to compute these at an isolated point

if the hj are not sufficiently large to make the point not isolated. This

means that within optim on R, only values of hj which achieve this, and

stop computational error, will be considered. In effect the isolated points
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Figure 3.2: GCV function for a very sparse simulated bivariate data set,

using the median within GCV.

are enforcing a minimum hj which is in fact higher than the optimal hj

for the majority of the data. This has been observed over several trials.

Silverman (1986) describes a similar effect caused by outliers in the context

of likelihood cross-validation in univariate density estimation.

Applying these two adaptations to GCV, adapted generalized cross-validation

(AGCV) is formulated, which is defined as follows;

AGCV (H) = n−1
n∑
i=1

{
Yi − m̂(Xi)

1− ψw

}2

w(Xi) (3.1)

where ψw is the median of the diagonal elements of the smoother matrix, S,

after excluding the elements contributed by the points for which w(Xi) = 0.

Set w(Xi) = 1 for all i except the r points at which f(Xi) are smallest,

at which it is 0. Set r as the number of points which could be consid-

ered isolated i.e. where the density at that point is equal to the density

of just one data point. This is examined using kernel density estimation

with Epanechnikov kernels. The bandwidth parameters to be used in the

density estimation here should be the optimal values for density estimation,
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calculated from an external source such as the np package by Hayfield and

Racine (2008) in R.

Here the effects of the isolated points are avoided by excluding these

points from both the numerator, via w, and the median in the denominator.

In a simple example showing the effect of these points, consider a simulated

five-dimensional data set, of size n = 300, simulated through a t-distribution

with 1 degree of freedom. The response values were generated according to

the model m(Xi) = −12 cos(Xi1)+5 sin(5Xi2)+10 sin(0.01Xi3)+cos(3Xi4)+

7 tan(Xi5) + 17 and εi ∼ N(0, 1). The altered GCV containing the me-

dian, but without the isolated points removed, is minimized by hj values

of (21.1, 3.45, 11.1, 0.8, 50.9), and here it is impossible for optim to select

h1 smaller than 20, and h5 smaller than 50, due to the restrictions men-

tioned above caused by the points in less dense areas. If the 100 data points

at which the density is smallest are removed from the procedure, equiva-

lent to taking r = 100 in AGCV, then the AGCV can be minimized at

hj = (2.5, 4.5, 2.4, 0.4, 1.6), parameters of a more reasonable size, given the

range of the majority of the data.

3.1.2 Choice of r

Removing points is both a matter of removing any computational constraint

imposed by points in sparser regions, and also fine-tuning by focussing on

the denser regions of data, which are of interest. As discussed in Chapter 2,

local polynomial regression is only possible in regions where there is sufficient

data. Any points excluded from AGCV should be outside these regions. In

this way AGCV is tailored towards finding optimal hj for the areas accepted

by the density threshold, (2.18). Choosing r is effectively choosing a pilot

region in which local polynomial regression is considered feasible, before

(2.18) defines a more accurate region. In practice r is the number of points

for which the density at that point is equal to the density of just one data

point. This means that r is sufficiently large to remove any points that

impose a computational constraint in R, as mentioned above.

It is however possible to choose a larger value of r than this (as in the
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illustrative example above), and such values will provide hj values optimal

for only denser parts of the data range. An r which includes just the points

accepted by (2.18) would be ideal since the implementation of this would

then provide the best regression estimates at those points. However, since

at the bandwidth selection stage it is not known where the threshold will

deem that local polynomial regression is reliable, since (2.18) depends on the

hj selected, an optimal r cannot be chosen. Thus the choice of r specified

above acts as a useful rule of thumb. Another positive feature of this choice

of r is that it usually leaves a reasonable number of points to be included in

the GCV minimization, which can break down if too few points remain.

It would be neat to apply weighting with w(Xi) > 0 to all n points, for

example equivalent to f(Xi). However, this is not possible since this would

still require m̂(Xi) to be calculated for all points, including isolated ones,

which would apply a restriction on the hj selected by R, as mentioned above.

For this reason it is preferable to remove these points completely from the

process.

Epanechnikov kernels are used to calculate f̂(Xi) for determining r be-

cause this results in less ambiguity concerning what can be considered an

isolated point, compared with, for example, a Gaussian kernel.

3.1.3 Starting point selection

Since optim is used for this minimization, it is necessary to choose a starting

point. This can be chosen automatically, but a successful minimization is

more likely if this point is chosen with more care. The presence of more than

one minimum is common, and makes the selection of the overall minimum

more difficult. There is no way of guaranteeing that the overall minimum

is selected, but chances of this are increased if the starting point is close

to this minimum. From practical experience it is observed that a starting

point smaller than the actual minimum is often more successful, but this

is not justified theoretically here. It is often helpful to perform the mini-

mization more than once using different starting values each time. These

steps increase the reliability of the method, but due to the nature of optim,
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the selection of the overall minimum can never be guaranteed. Hayfield and

Racine (2008) also discuss the necessity to try several starting points, in

order to adjust to the presence of local minima, in the bandwidth selection

methods in the np package.

3.1.4 AGCV as a measure of error

Cross-validation is a measure of error to be minimized and is an improvement

on the average squared residual which is inadequate since it is minimized by

an interpolation of the data,

ASR(H) =
1
n

n∑
i=1

{Yi − m̂(Xi)}2 . (3.2)

Cross-validation can be expressed, as given earlier, as

CV (H) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− Sii

}2

. (3.3)

As explained earlier, Craven and Wahba (1979) introduced GCV, which is a

computationally less costly version where the Sii is replaced by the average
Sii
n .

GCV (H) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− 1
n

∑n
j=1 Sjj

}2

= ASR(H)

(
1− 1

n

n∑
i=1

Sii

)−2

.

(3.4)

As shown, this is the average squared residual, corrected by a factor. This is

shown in Craven and Wahba (1979) as being effective in finding an estimate

of the smoothing parameter which minimizes the mean squared error. Now

AGCV (H) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− ψw

}2

w(Xi) = AWSR(H)(1− ψw)−2 (3.5)

with the average of weighted squared residuals,

AWSR(H) =
1
n

n∑
i=1

{Yi − m̂(Xi)}2w(Xi). (3.6)

So AGCV is the average of weighted squared residuals, corrected by a factor.

The factors used in (3.4) and (3.5) perform exactly the same function. They
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both calculate an average over the Sii and subtract it from 1. The factor used

in the AGCV is simply more robust, as explained previously. The only other

difference between the GCV and the AGCV is that the AGCV approximates

the average weighted squared residual rather than the unweighted, as GCV

does. Again, this is used to make the procedure more robust.

AGCV can be justified as a legitimate approximation to the mean squared

error since it works in exactly the same way as GCV, but in a more robust

manner.

3.1.5 Simulation study

A rigorous simulation was carried out to measure the performance of AGCV

against other bandwidth selection tools for multivariate data. Two trivariate

data sets were generated with this purpose.

• P- 3-dimensional covariates simulated through a t-distribution with

5 degrees of freedom. The response values were generated according

to the model m(Xi) = −12 cos(Xi1) + 5 sin(5Xi2) + 10 sin(Xi3) and

εi ∼ N(0, 1), i = 1, ..., 250.

• Q- 3-dimensional covariates simulated through a t-distribution with

1.5 degrees of freedom. The response values were generated according

to the model m(Xi) = −12 cos(Xi1) + 5 sin(5Xi2) + 10 sin(Xi3) and

εi ∼ N(0, 3), i = 1, ..., 250.

The only difference between the two data sets is that Q contains much

sparser regions of data.

Each of these data sets was simulated 100 times and the optimal smooth-

ing parameters were calculated using four different methods; AGCV, GCV,

LSCV (the default method in the np package) and GCV for thin plate

splines (calculated using the fields package). The MSE was then calculated

for estimates using each set of smoothing parameters. The MSE was cal-

culated both including all 250 points and for just the densest 50 percent of

each data set. The density was measured using kernel density estimation

tools in the np package.
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As mentioned in the discussion in Chapter 2, this technique is suited for

use alongside the threshold, (2.18), since it is tailored towards use in the

denser areas of the data. One cannot however use T here to compare pro-

cedures since different methods, selecting different hj , would select different

numbers of points with density higher than T , and so no fair comparison

could be made between methods. For this reason, the same densest fifty

percent of points were compared for all methods, ensuring fairness, whilst

keeping in mind the philosophy of this thesis that local polynomial regres-

sion is only advisable in some regions of the data range. This is not ideal,

in accordance with the threshold, but fairness is essential.

Other steps were taken to ensure fairness. AGCV, GCV and the method

in the np package are all very dependent on the starting point selected by the

user. Due to the computational time associated with bandwidth selection

for each simulation, a maximum of 3 starting points was chosen for each

method each time. These were chosen carefully to give each method the

best chance of finding the optimal bandwidth parameters.

Analysis

AGCV consistently outperforms the other techniques, yielding a smaller

median MSE. With the less sparse data, P, shown in Fig. 3.3, the AGCV

and GCV perform best, with the AGCV performing better for the densest

50 percent as expected. The np and thin plate spline methods have larger

MSEs as well as larger interquartile ranges. With the sparser data, Q, shown

in Fig. 3.4, the AGCV and thin plate splines are the only techniques whose

MSEs could be considered of a reasonable size given the magnitude of the

response values. Among these, AGCV is marginally better with a slightly

smaller median, which again improves when only including the densest 50

percent of the data. The GCV and the np least squares cross-validation both

perform extremely poorly on this sparser data. Taking into account both P

and Q, the AGCV is the only technique which consistently outperforms the

others.

The plots in Fig. 3.5, which are all similar in trend, show how the
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Figure 3.3: Each boxplot represents the 100 MSEs for simulation P for

different bandwidth selection techniques. all represents the MSE of all n

points, and half represents the MSE for the densest 50 percent.
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Figure 3.4: Each boxplot represents the 100 MSEs for simulation Q for

different bandwidth selection techniques. all represents the MSE of all n

points, and half represents the MSE for the densest 50 percent.
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Figure 3.5: Each boxplot represents the 100 hj values chosen by each band-

width selection technique for simulation P. The top plot is h1, the middle

h2 and the bottom h3.
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individual hj values compare between different methods, for simulation P.

They show how AGCV tends to pick smaller hj values, which is likely to be

due to the fact that the isolated points are ignored. This contributes to the

improved regression carried out in the denser areas. These plots also reveal

how relatively inconsistent the method in the np package is.

3.1.6 Discussion

The adaptations implemented in AGCV are effective not only in terms of

providing more reliable parameter estimates and reducing the number of er-

ror messages in R, but also general performance. The minimization is much

faster using AGCV when compared with GCV, and with higher dimensions

this can be a significant amount of time. The dependence on the starting

point, although still present, is much less of an issue with AGCV than with

GCV, and so the overall minimum is much easier to find.

A thorough simulation study was carried out which demonstrates the

way in which AGCV clearly outperforms competing methods. The main

reason for this is that it is robust to the effects of points in sparse regions,

and both of the adaptations made contribute towards this. Removing the

isolated points in the way detailed is a robust enough step alone to be effec-

tive for most data sets, however the step of including the median provides

extra assurance. This could be crucial since the r removed points are con-

sidered isolated density-wise when using bandwidth parameters chosen to

be optimal in the density estimation. These bandwidth parameters define

the neighbourhoods, which determine which points are considered isolated.

It may be that the magnitudes of the regression bandwidth parameters are

very different, and other points are isolated, in terms of the neighbourhoods

defined by potential hj , when GCV is carried out, which were not initially

removed. The median importantly limits the issues that may arise as a re-

sult of this. The classification of an isolated point using density bandwidth

parameters is not ideal but is the best that can be achieved at this initial

stage.

The adjustments made to GCV here are made specifically in response
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to problems encountered on R. The removal of isolated points in particular

is to avoid the error messages encountered through a combination of sparse

data and small hj . Despite the fact that this is an adjustment developed

in this way, it fits perfectly with the general solution to the curse of dimen-

sionality expressed in this thesis, of excluding the areas of low density from

consideration. The points that are ignored in AGCV are sufficiently iso-

lated that they would never be accepted by the density threshold discussed

in Chapter 2. In this way, the hj selected by AGCV are more suited to the

points accepted by the threshold, by not having to take into account other

points excluded by it.

In practice in higher dimensions, smaller hj , specifically selected for a

smaller region of the data, give better estimates, for points in that region,

than larger hj , chosen for a greater area. This is particularly true when

compared with the larger than normal bandwidths often chosen as a remedy

for the curse of dimensionality. In high dimensions there is more space for

variation in the nature of the data to occur and so hj of different magnitudes

could be suitable for different regions. This is more the case here than for

the univariate equivalent, where varying bandwidths are already employed,

as examined in Fan and Gijbels (1992). A variable bandwidth matrix is a

potential way of adapting to this, as is already considered for kernel density

estimation in Sain (2002). As mentioned in Chapter 1, multivariate variable

bandwidth selection strategies do exist in local polynomial regression, such

as the empirical-bias bandwidth selector and LOWESS. AGCV is similar to

these in the way that suitably small hj are selected in areas, determined by r,

where the data is dense. AGCV differs by using the philosophy of the density

threshold, and reducing the computational cost by incorporating only the

points in dense areas, to be used, in conjunction with the threshold, only

in these regions. In this way AGCV can be seen as a first step towards

a variable bandwidth matrix, whilst avoiding the expensive computational

costs associated with this.

Alternative classical bandwidth selection methods may benefit from sim-

ilar adaptations to those proposed in this chapter. In the multivariate set-
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ting, one such method, the Akaike information criterion (AIC), takes the

form

AIC(H) = log

[
1
n

n∑
i=1

(Yi − m̂H(Xi))
2

]
+

2trace(S)
n

,

and is likely to suffer in a similar way to GCV. Isolated points would impose

exactly the same constraints here, and the inclusion of the median could

also be beneficial. Hurvich, Simonoff and Tsai (1998) propose a corrected

version of the Akaike information criterion (AICc), which takes the form

AICc(H) = log

[
1
n

n∑
i=1

(Yi − m̂H(Xi))
2

]
+

1 + trace(S)
n

1− trace(S)+2
n

,

which is also likely to suffer in a similar way to GCV. However it is possible,

due to the position of trace(S) in both the numerator and the denominator

that the introduction of the median is not necessary in AICc. This has not

been tested, but it could be of interest to explore further.

It should be noted that on R it is practically very difficult to select hj

for d greater than 5. This is an issue of time, due to the extremely large

parameter space that optim must search over in such high dimensions. A

solution to this is to choose a constant h, selected by GCV, to be used

in every entry of the diagonal bandwidth matrix, and so apply the same

amount of smoothing in each covariate direction. In this case the covariates

should first be standardized. This is significantly quicker to compute, but

the quality of the m̂(Xi) suffers as a result. It is also useful here to remove

the most isolated points from the process for the same reason as in AGCV.

This is very similar to the scaling approach, mentioned in Bowman and

Azzalini (1997) and used in the context of multivariate density estimation.

Alternatively, variable selection can be initially employed as discussed in

Chapter 1.

Unfortunately, many bandwidth selection tools for density estimation,

which are employed initially in AGCV in order to determine r, also struggle

with a large value of d or n. In this situation it is useful to employ the rule

of thumb for multivariate density estimation bandwidth selection of Scott

(1992) at this initial stage.
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3.2 Further approaches

There are many further angles from which the bandwidth selection problem

can be approached. The investigation into two of these, which unfortunately

are restricted in use, is described below.

3.2.1 OSCV

This section is motivated by Hart and Yi (1998), in which an alternative

method, one-sided cross-validation (OSCV) is proposed for univariate lo-

cal polynomial regression bandwidth selection. The aim here is to extend

this method for use in the multivariate setting. Hart and Yi (1998) claim

that OSCV possesses the same advantages as cross-validation, and is better

statistically with a much lower bandwidth variance.

The method developed uses different types of regression estimators at

the bandwidth selection and estimation stages, due to the observation, by

Marron (1986) and others, that often cross-validation is more effective when

applied to an inefficient regression estimator. The method described in

Hart and Yi (1998) is outlined below. Consider the less efficient estimator,

m̃b(Xi), with smoothing parameter b, which here is a local linear estimator

using the data only on one side of the point at which estimation is taking

place, for example (X1, Y1), ..., (Xi, Yi) where the Xi are ordered. The cross-

validation for m̃b, minimized by b̂, is defined as

OSCV (b) =
1

n− l

n∑
i=l+1

(m̃i
b(Xi)− Yi)2 (3.7)

where l is some small integer. This is a normal expression for cross-validation,

applied to m̃b. The minimizer of OSCV (b) is approximately the same as

that of the MASE (mean average squared error),

MASE∗(b) = E

{
1

n− l

n∑
i=l+1

(m̃i
b(Xi)−m(Xi))2

}
. (3.8)

If m has two continuous derivatives, then asymptotically the minimizer of

(3.8) is

bn = Cm,σε

[ ∫
L(x)2dx[∫
x2L(x)dx

]2
] 1

5

n−
1
5 (3.9)
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where L is the half-kernel used in OSCV which assigns weight only to data on

the one side of the point being estimated, and Cm,σε is a constant depending

only on m and σε.

Now considering the more efficient universal local polynomial regression,

the mean average squared error of m̂ is defined by

MASE(h) = E

{
1
n

n∑
i=1

(m̂(Xi)−m(Xi))
2

}
. (3.10)

The minimizer of MASE(h) is asymptotic to

hn = Cm,σε

[ ∫
κ(x)2dx[∫
x2κ(x)dx

]2
] 1

5

n−
1
5 . (3.11)

So asymptotically,

hn
bn
→

[ ∫
κ(x)2dx[∫
x2κ(x)dx

]2
[∫
x2L(x)dx

]2∫
L(x)2dx

] 1
5

. (3.12)

This means a suitable value of h for use in the regression problem can be

obtained by multiplying the b̂ resulting from (3.7) by an adjusting constant

C where

C =

[ ∫
κ(x)2dx[∫
x2κ(x)dx

]2
[∫
x2L(x)dx

]2∫
L(x)2dx

] 1
5

(3.13)

as confirmed in Yi (1996).

Multivariate OSCV

In order to solve the bandwidth matrix selection problems cited at the be-

ginning of this chapter for data in higher dimensions and due to the success

of this method in the univariate case, an extension to OSCV has been con-

sidered. Here the technique can be considered again one-sided through the

choice of the inefficient initial estimator. Here, m̃B(Xi), with bandwidth

matrix B, is a local linear estimator which takes into account only the data

points for which the covariate has a smaller Euclidean distance to the origin

than that of the point at which estimation is taking place. This is rep-

resented in Fig 3.6. All other parts of the method are a straightforward
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Figure 3.6: m̃B(Xi) is a local linear estimator based on the data only with

a smaller Euclidean distance to the origin than that of the point at which

estimation is taking place, X0. Here the data included is shown in red for a

simple bivariate data set.

extension of those steps described above for univariate data. Here, analo-

gously to (3.7),

OSCV (B) =
1

n− l

n∑
i=l+1

(m̃i
B(Xi)− Yi)2. (3.14)

It is necessary to find the multivariate equivalent to C and in order to do

this it is necessary to find expressions equivalent to (3.9) and (3.11). In order

to do this, the MISE is examined (the MASE is simply the empirical version

of the MISE.) In order to simplify finding the optimal H from the asymptotic

expression for the MISE, (1.18), only diagonal bandwidth matrices with

h1 = ... = hd = h are considered. This is suitable for use in finding C

for OSCV, since each bj will be multiplied by the same C regardless of the

covariate direction, so the relative magnitudes of the different hj are not

important.

107



In condensing this into a single parameter minimization problem

trace {HHm(x)} = h2
d∑
i=1

∂2m

∂xi
.

In this case

AMISE(H) ≈
∫ (

(
1
2
µ2(K)h2

d∑
i=1

∂2m

∂xi
)2 +

1
nhd

∫
K(u)2du

σ2
ε

f(x)

)
dx

(3.15)

=
∫

1
4
µ2(K)2h4

[
d∑
i=1

∂2m

∂xi

]2

dx +
∫

1
nhd

∫
K(u)2du

σ2
ε

f(x)
dx

=
1
4
h4µ2(K)2

∫ [ d∑
i=1

∂2m

∂xi

]2

dx +
1
nhd

∫
K(u)2du

∫
σ2
ε

f(x)
dx

Minimization is performed in the usual way, by differentiating with respect

to h, and equating the result to 0. Differentiating with respect to h yields

h3µ2(K)2
∫ [ d∑

i=1

∂2m

∂xi

]2

dx− d

nhd+1

∫
K(u)2du

∫
σ2
ε

f(x)
dx = 0

h3µ2(K)2
∫ [ d∑

i=1

∂2m

∂xi

]2

dx =
d

nhd+1

∫
K(u)2du

∫
σ2
ε

f(x)
dx

hd+4µ2(K)2
∫ [ d∑

i=1

∂2m

∂xi

]2

dx =
d

n

∫
K(u)2du

∫
σ2
ε

f(x)
dx

hd+4 =
d
∫
K(u)2du

∫ σ2
ε

f(x)dx

nµ2(K)2
∫ [∑d

i=1
∂2m
∂xi

]2
dx

h = n−
1
d+4

 ∫ σ2
ε

f(x)dx∫ [∑d
i=1

∂2m
∂xi

]2
dx


1
d+4 [

d
∫
K(u)2du
µ2(K)2

] 1
d+4

(3.16)

So, analogously to the optimal h calculated for univariate local polynomial

regression, and given in Chapter 2 as (2.22), the multivariate equivalent is

h = Cm,σε

[
d
∫
K(u)2du
µ2(K)2

] 1
d+4

n−
1
d+4 (3.17)
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where

Cm,σε =

 ∫ σ2
ε

f(x)dx∫ [∑d
i=1

∂2m
∂xi

]2
dx


1
d+4

(3.18)

In this way, one could find a multivariate equivalent to (3.11). However,

an equivalent to (3.9) cannot be found due to the fact that the equivalent

to L cannot be expressed easily as a kernel function, that is not dependent

on the point of estimation, for this multivariate technique. For this reason

any choice of C must be made in a less theoretical manner.

Simulations were carried out on simple bivariate data sets, for which

bandwidth selection tools work without computational problems. Data sets

were simulated with differing covariate and response distributions, and GCV

and the multivariate OSCV, (3.14), were carried out and h1, h2, b1 and b2

were selected. The hj are obtained from GCV under the assumption that it

finds a sufficient approximation of the hj which minimize the MASE (these

are after all simple data sets on which GCV should not struggle), and the

bj are obtained from the multivariate OSCV. hj/bj was then examined to

see if it was consistent, since this is the ratio which determines C.

The results of this simulation study are inconclusive. Throughout the

simulations an encouraging outcome was that h1/b1 ≈ h2/b2 for each data

set. However, this value varied depending on the data set. Also it was

not apparent which factor influenced the differing values since it seems that

varying both the response and the covariates has an effect. The results are

summarized in Table 3.2.

xj distribution Y med. h1
b1

med. h2
b2

N(0,0.5) x2
1 + x2

2 +N(0, 1) 1 1.01

N(0,0.5) sin(3x1) + sin(3x2) +N(0, 0.2) 0.67 0.68

N(0,1) x2
1 + x2

2 +N(0, 0.2) 0.54 0.55

Table 3.2: Details of the simulated data used to determine C. The figures

in the med. h1
b1

and med. h2
b2

columns represent the median for h1
b1

and h2
b2

(which determine C) from 100 simulations of each data set.

Table 3.2 shows the median value, which is approximately equal to the
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mode in every case, of the 100 simulations for each data set. In conclusion,

these simulations appear to suggest that C depends on the data set being

used, but there is good evidence that it is close to 1, at least for bivariate

data.

Discussion

Since no definitive value has been obtained for C in higher dimensions it

is impossible to test the success of this multivariate OSCV technique accu-

rately and determine whether it holds the same advantages as the univariate

technique, discussed in Hart and Yi (1998). The technique mentioned above

however is an improvement on other possible multivariate extensions of the

univariate method tested. Amongst other possibilities is using a product

kernel, taking the form of a product of half-kernels. It would certainly have

been easier to find an equivalent to L in this case, however this was found

to be more problematic in practice, for trivariate data at least. For some

simple data sets, the multivariate OSCV surface (of the form put forward

in this section) has been found to have the significant advantage of hav-

ing only one minimum, while GCV has many minima. In these cases the

overall minimum is clearly easier to find using OSCV. An example is shown

through Figs. 3.7 and 3.8 which show GCV and OSCV values respectively

for different two-dimensional bandwidth values using two covariates from

the California Air Pollution data, introduced in Chapter 1. The OSCV

function shown in Fig. 3.8 is much smoother, and it is this which makes the

overall minimum easier to find. This is not the case generally, but makes

OSCV attractive for some specific data sets. It is not immediately obvious

which characteristics a data set should exhibit for OSCV to be the more

appropriate technique.

Despite these advantages, OSCV has limited use in the multivariate set-

ting, particularly when taking into account the variable transformation con-

stant C. It could however be used as a rough indication of the magnitude

of the optimal bandwidths, in order to select a suitable starting point for

another procedure such as AGCV. This could be used in cases such as the
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Figure 3.7: The GCV function for two covariates from the California Air

Pollution data, displaying many local minima.
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Figure 3.8: The OSCV function for two covariates from the California Air

Pollution data, displaying one minimum.
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above example where the OSCV surface has just one minimum compared

to the many in the GCV surface. Unfortunately, in general, multivariate

OSCV is also temperamental computationally, and would probably benefit

from adaptations similar to those made in AGCV to combat data sparsity.

It is successful in finding a minimum for some data sets but for others it

returns multiple minima or error messages when using optim on R. There is

also the additional complication that a value of l to be used in (3.14) must be

chosen. In Hart and Yi (1998) different values of l are tested for univariate

data, with the only constraint being that it is a small integer larger than 1.

The same guidelines have been followed in the multivariate setting, however

for some data, different values of l lead to dramatically different outputs for

the same data set, with one value giving a reasonable output whilst another

causes R to return error messages. Fortunately, with the relative success

of AGCV, multivariate OSCV with its complications, does not have to be

relied upon too heavily.

3.2.2 Univariate GCV via Newton-Raphson

As expressed earlier, optim on R can be unreliable. In an effort to avoid it

the Newton-Raphson method can be employed in order to select the band-

width for univariate local polynomial regression. The univariate case is

focussed on initially since it is not obvious how to proceed with this in the

multivariate case. The quantity to minimize is again the GCV, and in the

univariate setting,

GCV (h) =
1
n

n∑
i=1

{
Yi − m̂(Xi)

1− 1
ntrace(S)

}2

The aim is to find the value of h for which the derivative of this is equal

to zero. Differentiating the above by h one obtains

d

dh
(GCV ) =

2
n

n∑
i=1

{
Yi − m̂(Xi)

1− 1
ntrace(S)

}
d

dh

(
Yi − m̂(Xi)

1− 1
ntrace(S)

)
.

Using the quotient rule for differentiating a quotient,

d

dh

(u
v

)
=
v dudh − u

dv
dh

v2
, (3.19)
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here u = Yi − m̂(Xi), v = 1 − tr(S)
n , du

dh = − d
dhm̂(Xi), dv

dh = − 1
n
d
dhtr(S). So

here

v dudh − u
dv
dh

v2
=
−
(

1− tr(S)
n

)
d
dhm̂(Xi) +

(
Yi−m̂(Xi)

n

)
d
dhtr(S)[

1− tr(S)
n

]2 .

So d
dh(GCV ) becomes

d

dh
(GCV ) =

2
n

n∑
i=1

{
Yi − m̂(Xi)
1− 1

ntr(S)

}
−
(

1− tr(S)
n

)
d
dhm̂(Xi) +

(
Yi−m̂(Xi)

n

)
d
dhtr(S)[

1− tr(S)
n

]2


=
2

n
[
1− tr(S)

n

]3 n∑
i=1

{Yi − m̂(Xi)}
{(

tr(S)
n
− 1
)
d

dh
m̂(Xi) +

(
Yi − m̂(Xi)

n

)
d

dh
tr(S)

}
(3.20)

This function is the function for which the zeroes are sought. Denote (3.20)

as s(h). The Newton-Raphson method, originally described by Isaac New-

ton, is carried out through iterations where the (k + 1)th iteration is given

by

h(k+1) = h(k) − s(h(k))
ds
dh(h(k))

(3.21)

and iterations are carried out until ||h
(k+1)−h(k)||
||h(k)|| ≤ ε where ε > 0 is small.

With an appropriate h0, chosen to be sufficiently large, Newton-Raphson

can be tailored to almost always find the largest minimum, in terms of h,

regardless of whether or not it is the minimum with the smallest overall

GCV value. optimize (available in the base package on R), which is the

univariate equivalent of optim, will always find a minimum, but it will not

always be the minimum overall GCV value, or indeed the smallest or largest

h value at which there is a minimum. This is the case for any starting

point, and in this way it is more erratic than the use of Newton-Raphson

described here. It may be unclear why choosing the largest minimizer could

be an advantage, but Hart and Yi (1998) endorse the comments of Scott

and Terrell (1987) and Park and Marron (1990) which suggest that this be

used in density estimation in order to avoid undersmoothing. They also

point out further justification in Hall and Marron (1991). If a similar view
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is taken regarding regression then the Newton-Raphson procedure outlined

below would appear to be effective and consistent enough at achieving this

to be applied confidently.

To express the derivatives in (3.20) the following expansions, based on

the definition of a derivative, are used;

d

dh
m̂(Xi) =

[
m̂(Xi)− m̂(1+δ)h(Xi)

]
hδ

(3.22)

d

dh
tr(S) =

[
tr(S)− tr(S(1+δ)h)

]
hδ

(3.23)

where S(1+δ)h is the smoother matrix and m̂(1+δ)h(Xi) the regression esti-

mate, with a bandwidth of (1 + δ)h employed in the place of h, and δ is

small.

Including these changes

s(h) =
2

n
[
1− tr(S)

n

]3 n∑
i=1

{Yi − m̂(Xi)}
{(

tr(S)
n
− 1
)(

1
hδ

)[
m̂(Xi)− m̂(1+δ)h(Xi)

]
+
(
Yi − m̂(Xi)

n

)(
1
hδ

)[
tr(S)− tr(S(1+δ)h)

]}
=

2

nhδ
[
1− tr(S)

n

]3 n∑
i=1

{Yi − m̂(Xi)}
{(

tr(S)
n
− 1
)[

m̂(Xi)− m̂(1+δ)h(Xi)
]

+
(
Yi − m̂(Xi)

n

)[
tr(S)− tr(S(1+δ)h)

]}
(3.24)

In order to perform the Newton-Raphson procedure ds
dh must be cal-

culated. In an effort to simplify this s(h) is split into two parts where

s(h) = s1(h) + s2(h).

s1(h) =
2

nhδ
[
1− tr(S)

n

]3 n∑
i=1

{Yi − m̂(Xi)}
{(

tr(S)
n
− 1
)[

m̂(Xi)− m̂(1+δ)h(Xi)
]}

(3.25)

s2(h) =
2

nhδ
[
1− tr(S)

n

]3 n∑
i=1

{Yi − m̂(Xi)}
{(

Yi − m̂(Xi)
n

)[
tr(S)− tr(S(1+δ)h)

]}
(3.26)
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Now,

s1(h) = −2
n∑
i=1

1

nhδ
[
1− tr(S)

n

]2 {Yi − m̂(Xi)}
[
m̂(Xi)− m̂(1+δ)h(Xi)

]

= −2
n∑
i=1

{Yi − m̂(Xi)}
[
m̂(Xi)− m̂(1+δ)h(Xi)

]
nhδ

[
1− tr(S)

n

] [
1− tr(S)

n

]
=
−2
δ

n∑
i=1

Yim̂(Xi)− Yim̂(1+δ)h(Xi)− [m̂(Xi)]
2 + m̂(Xi)m̂(1+δ)h(Xi)

nh− 2h [tr(S)] +
h[tr(S)]2

n

(3.27)

Now ds1
dh is calculated using the quotient rule (3.19), where

u1 = Yim̂(Xi)− Yim̂(1+δ)h(Xi)− [m̂(Xi)]
2 + m̂(Xi)m̂(1+δ)h(Xi)

v1 = nh− 2h [tr(S)] +
h [tr(S)]2

n

du1

dh
= Yi

d

dh
m̂(Xi)− Yi

d

dh
m̂(1+δ)h(Xi)− 2m̂(Xi)

d

dh
m̂(Xi)

+m̂(Xi)
d

dh
m̂(1+δ)h(Xi) +

d

dh
m̂(Xi)m̂(1+δ)h(Xi)

dv1
dh

= n− 2h
d

dh
tr(S)− 2tr(S) +

1
n

[
(tr(S))2 + 2h (tr(S))

d

dh
tr(S)

]
In this way

ds1
dh

=
−2
δ

n∑
i=1

v1
du1
dh − u1

dv1
dh

v2
1

(3.28)

d
dhm̂(Xi) and d

dhtr(S) are calculated as specified in (3.22) and (3.23), and

similarly
d

dh
m̂(1+δ)h(Xi) =

[
m̂(1+δ)h(Xi)− m̂(1+2δ)h(Xi)

]
hδ

(3.29)

So
ds1
dh

=
−2
δ

n∑
i=1

A

h2
[
n− tr(S) + [tr(S)]2

n

]2 (3.30)
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where

A =

(
n− 2tr(S) +

[tr(S)]2

n

)
1
δ

{
m̂(Xi)

[
Yi − 2m̂(Xi) + 4m̂(1+δ)h(Xi)− m̂(1+2δ)h(Xi)

]
+m̂(1+δ)h(Xi)

[
−2Yi − m̂(1+δ)h(Xi)

]
+ Yim̂(1+2δ)h(Xi)

}
−
(
m̂(Xi)

[
Yi − m̂(Xi) + m̂(1+δ)h(Xi)

]
− Yim̂(1+δ)h(Xi)

){
n− (

2
δ

+ 2)tr(S) +
2
δ

tr(S(1+δ)h)

+
1
n

[
(
2
δ

+ 1) [tr(S)]2 − 2
δ

tr(S)tr(S(1+δ)h)
]}

All of these terms can easily be calculated on R for given h.

The same procedure is carried out below for s2(h).

s2(h) =
2

n2hδ
[
1− tr(S)

n

]3 n∑
i=1

(Yi − m̂(Xi)) (Yi − m̂(Xi))
(
tr(S)− tr(S(1+δ)h)

)

=
2

n2hδ
[
1− tr(S)

n

]3 n∑
i=1

(
Y 2
i + [m̂(Xi)]

2 − 2Yim̂(Xi)
) (

tr(S)− tr(S(1+δ)h)
)

=
2

n2hδ
[
1− tr(S)

n

]3 n∑
i=1

(
Y 2
i tr(S) + [m̂(Xi)]

2 tr(S)− 2Yim̂(Xi)tr(S)

−Y i2tr(S(1+δ)h)− [m̂(Xi)]
2 tr(S(1+δ)h) + 2Yim̂(Xi)tr(S(1+δ)h)

)
(3.31)

Now ds2
dh is calculated using the quotient rule (3.19), where

u2 = Y 2
i tr(S) + [m̂(Xi)]

2 tr(S)− 2Yim̂(Xi)tr(S)

− Y i2tr(S(1+δ)h)− [m̂(Xi)]
2 tr(S(1+δ)h) + 2Yim̂(Xi)tr(S(1+δ)h)

v2 = n2h+ 3h [tr(S)]2 − 3nhtr(S)− h [tr(S)]3

n

du2

dh
=Y 2

i

d

dh
tr(S) + 2m̂(Xi)

d

dh
m̂(Xi)tr(S) + [m̂(Xi)]

2 d

dh
tr(S)− 2Yi

d

dh
m̂(Xi)tr(S)

− 2Yim̂(Xi)
d

dh
tr(S)− Y 2

i

d

dh
tr(S(1+δ)h)− 2m̂(Xi)

d

dh
m̂(Xi)tr(S(1+δ)h)

− [m̂(Xi)]
2 d

dh
tr(S(1+δ)h) + 2Yim̂(Xi)

d

dh
tr(S(1+δ)h) + 2Yi

d

dh
m̂(Xi)tr(S(1+δ)h)
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dv2
dh

=n2 + 3 [tr(S)]2 + 6h [tr(S)]
d

dh
tr(S)− 3n [tr(S)]

− 3nh
d

dh
tr(S)− [tr(S)]3

n
− 3h

n
[tr(S)]2

d

dh
tr(S)

in which the substitution

d

dh
tr(S(1+δ)h) =

[
tr(S(1+δ)h)− tr(S(1+2δ)h)

]
hδ

is applied in calculation, analogously to (3.22), (3.23) and (3.29).

As a result,
ds2
dh

=
2
δ

n∑
i=1

v2
du2
dh − u2

dv2
dh

n4h2
[
1− tr(S)

n

]6 (3.32)

For an estimate of ds
dh , (3.32) and (3.30) are combined

ds

dh
=
ds1
dh

+
ds2
dh

(3.33)

In this way everything necessary for the Newton-Raphson algorithm,

(3.21), is obtained. This has been implemented on R satisfactorily, using

δ = 1
100 , and consequently h via GCV is chosen.

Problems can occur in the implementation of univariate GCV on R when

the GCV function is relatively flat with more than one minimum. In this

case optimize is inconsistent in selecting the overall minimum and is very

dependent on the starting point.

In contrast, the use of Newton-Raphson has been observed to show a

degree of consistency. Newton-Raphson is also dependent on the initial h,

h0, used at the start of the algorithm, but as mentioned earlier this can

be chosen so that the largest value of h at which a minimum in the GCV

function is observed, is usually selected. An h0 of 0.5 times the x data range

has been trialled with some success. This is best illustrated through an

example.

One-hundred x-values were simulated through a normal distribution with

mean 50 and standard deviation 25. The response values were generated

according to the model m(Xi) = log(Xi) + Xi and εi ∼ N(0, 1). Fig. 3.9
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Figure 3.9: The GCV function for the simulated data set m(Xi) = log(Xi)+

Xi + εi.

shows the GCV function for this data, displaying how it varies for different

values of h. There are two minima, one at approximately h = 2 and one at

approximately h = 6.5. Clearly the minimum at h = 2 leads to a smaller

GCV value and so would be the natural choice of smoothing parameter.

In this example, optimize selects the h = 1.941 value whereas Newton-

Raphson selects the h = 6.356 value. This is how Newton-Raphson behaves

consistently-with an h0 of 0.5 times the data range, the algorithm usually

stops at the larger minimum in terms of h. This may not always be optimal

in terms of GCV, but the consistency is valuable.

This starting point is thought to be effective in achieving this for most

data sets. At a starting point of this magnitude the GCV value is high

relative to that at smaller h. This suggests that after the Newton-Raphson

algorithm iterates down the slope of the GCV the first stationary point, at

which the algorithm stops, will be a minimum, rather than a maximum. It

is assumed that the optimal h is smaller than 0.5 times the data range and

an alteration is made in the R code to ensure that initially the Newton-
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Raphson algorithm iterates towards smaller values of h rather than those

greater than h0.

The Newton-Raphson algorithm can be used with any h0 but, without

sufficient care, it is difficult to determine at which minimum the algorithm

is likely to stop, and so it no longer has an advantage over optimize, and

is in fact less likely to choose the overall minimum.

It should be noted that, while in the author’s experience this algorithm

has been successful at identifying the largest local minimum, it has not been

proven mathematically that this will be the case for any data set.
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Chapter 4

Modal regression

In this chapter an alternative regression method is discussed. In previous

chapters the focus has been on mean regression, but now modal regression

is assessed as a possible alternative. As is nicely expressed in Scott (1992),

the mode summarizes the “most likely” conditional values rather than the

conditional average. Again the focus is on multivariate data, and the ba-

sic methodology discussed here is a multivariate extension of the univariate

techniques of Einbeck and Tutz (2006). Modal regression has advantages,

which will be discussed after first explaining the methodology, although it is

worth mentioning initially that one of the main benefits of modal regression

is its ability to represent a multimodal response. Modal regression has re-

ceived little attention in the literature, and virtually none in the multivariate

case. Scott (1992) and others propose it in the univariate case, but little

methodology is given on how to actually implement it. Einbeck and Tutz

(2006) fill this gap using mean shift which will be explained with regards to

multivariate data later.

Simply put, modal regression uses the mode of the y values at x as the

regression estimate at x. There could be more than one mode, and hence

more than one regression estimate at x. Scott (1992) defines the regression

estimate in the following way

m̂(x) = args maxyf̂(y|x). (4.1)

Therefore, of crucial importance is the conditional density function, f(y|x).
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Now, in the nonparametric setting and for multivariate data,

f̂(y|x) =
f̂(x, y)

f̂(x)
=

∑n
i=1G

(
Yi−y
b

)∏d
j=1 κ

(
Xij−xj
hj

)
b
∑n

i=1

∏d
j=1 κ

(
Xij−xj
hj

) , (4.2)

where G and κ are univariate (e.g. Gaussian) kernels, and the subscript j

denotes the j−th component of the corresponding vector. The values b and

hj are bandwidth parameters to be selected. The maxima at x of function

(4.2) form the regression estimates at x. It is therefore the derivative of the

multivariate conditional density estimator, (4.2), that is important, and in

order to calculate this it is assumed that G in (4.2) is a radially symmetric

kernel function of the form

G(.) = Cgg((.)2),

where Cg is a positive constant and g is called the profile of G. Estimator

(4.2) can then be re-written as

f̂(y|x) =
Cg
b

n∑
i=1

wi(x)g

((
Yi − y
b

)2
)

(4.3)

where

wi(x) =

∏d
j=1 κ

(
Xij−xj
hj

)
∑n

i=1

∏d
j=1 κ

(
Xij−xj
hj

) . (4.4)

An example of a conditional density function is given in Fig. 4.1, for one

value of x, for a data set that will be introduced later. Here the regression

estimates would be approximately 1 and 3. The idea of using the maxima

of the conditional kernel density estimate as estimators for the conditional

modes is supported by Samanta and Thavaneswaran (1990) and Berlinet,

Gannoun and Matzner-Løber (1998), who demonstrate that this estimator is

“consistent and asymptotically normally distributed under suitable regularity

conditions” (Einbeck and Tutz, 2006).

Modal regression in any dimension can be justified theoretically. It can

be seen as the solution to a minimization problem in the same way that

mean regression minimizes the MSE. Fan, Hu and Truong (1994) detail that

the minimization problem

ml(x) = arg minαE(l(Y − α)|X = x) (4.5)
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Figure 4.1: An example conditional density function, with regression esti-

mates at approximately 1 and 3. This is at x=(0.75,0.5) for simulation B

(this data will be introduced in Section 4.2).

is solved by the mean if the loss function l(z) = z2 (the MSE) and the median

if l(z) = |z|. If l(z) = −δ(z) where δ(.) is the delta-function (δ(x) = 0 for

x 6= 0 and
∫
δ(x)dx = 1), then (4.5) is solved by the mode, as detailed in

Einbeck and Tutz (2006).

4.1 Conditional mean shift

As mentioned, modal regression as a technique has been suggested in the

literature, but with few details on how to implement it. As Einbeck and

Tutz (2006) point out, finding the maxima of a density function is a well

established problem, but relatively little has been written on finding the

maxima of a conditional density function. No mention at all has been

made of relating these few techniques to modal regression. Scott (1992)

and Carreira-Perpiñan (2000) both suggest methods for finding the maxima

of a conditional density function but these are fairly complicated. It is worth

122



noting that a grid search is a possible solution to this problem whereby for

each x a search is performed over y, however this is computationally very

expensive, particularly when the data is multivariate. Einbeck and Tutz

(2006) reflect on this and then successfully employ conditional mean shift

on data with univariate predictors to find the maxima and hence perform

modal regression.

Extending their work to the case of multivariate predictors results in the

following. The maxima exist where the derivative of (4.3) is equal to 0;

∂f̂(y|x)
∂y

=
2Cg
b3

n∑
i=1

wi(x)g′
((

Yi − y
b

)2
)

(y − Yi) = 0.

Rearranging, leads to the following as an estimator for the conditional

modes, ym, at x

ym =

∑n
i=1wi(x)g′

((
Yi−ym

b

)2
)
Yi∑n

i=1wi(x)g′
((

Yi−ym
b

)2
) . (4.6)

Let

h(.) = −g′(.)

where h is a kernel profile belonging to

H(.) = Chh((.)2).

Using this, (4.6) can be rewritten as

ym =

∑n
i=1H

(
Yi−ym

b

)∏d
j=1 κ

(
Xij−xj
hj

)
Yi∑n

i=1H
(
Yi−ym

b

)∏d
j=1 κ

(
Xij−xj
hj

) . (4.7)

In the examples presented in this chapter κ and G in (4.2) are Gaussian

kernels, and as a resultH is also Gaussian. This is easily shown by examining

the profile of G. As a Gaussian kernel G(u) = 1√
2π

exp
{
−u2

2

}
which in

the above notation means Cg = 1√
2π

and g(u) = exp
{
−u

2

}
. In this case

h(u) = −g′(u) = −1
2 exp

{
−u

2

}
and if one takes Ch as −2√

2π
, then H(u) =

Chh((u)2) = G(u), the Gaussian kernel.
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Equation (4.7) expresses the conditional mode, ym, as a function of itself,

denoted henceforth as µ(ym). Since this cannot be solved analytically, it is

solved iteratively using the result in Cheng (1995) that, starting from any

y0 ∈ IR, the mean shift procedure y`+1 = µ(y`) converges to a nearby

conditional mode. The term mean shift describes µ(y) − y, the distance

moved at each iteration by the procedure. Cheng (1995) describes how with

each iteration, one shifts from a data point “to the average of data points in

its neighbourhood.” According to Comaniciu and Meer (2002) the mean shift

“always points towards the direction of maximum increase in the density”,

leading to a stationary point. They go on to reveal that in areas of high

density the mean shift steps are smaller in comparison with areas of low

density, meaning a more detailed analysis takes place in the high density

area leading to a more accurate estimate of the mode which inevitably falls

there.

Mean shift is a relatively unknown technique in the statistics community.

It first appeared in Fukunaga and Hostetler (1975), in the context of pattern

recognition. It was then largely ignored until Cheng (1995) highlighted the

benefits of using mean shift to find the mode of a density. More recently

it has been used in computer vision and feature space analysis such as in

Comaniciu and Meer (2002). It was then used in Einbeck and Tutz (2006)

in the univariate equivalent of the above. It is clearly very suitable there

and here, since a method to seek a mode iteratively is both what is sought

and a description of mean shift.

In order to detect more than one mode for each x it is necessary to specify

more than one starting point for the mean shift, typically two. To identify

modes in an M -modal conditional distribution, for a given multivariate x,

choose a set of starting points in the y-direction and then from each of these

iterate y
(j)
l+1(x) = µ(y(j)

l (x)) until convergence is reached. The resulting

ŷ
(1)
m (x), ..., ŷ(M)

m (x) are then the M regression estimates at x. In plots of the

type in Fig. 4.4, there would then be M surfaces at x. As in the univariate

case, it is often sensible to set the number of starting points greater than

M . More than one starting point can converge to the same mode, so if
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Figure 4.2: The bivariate wheat yield data set.

unsure about the actual number or location of modes, there is no harm in

choosing a higher number of starting points from which all modes will be

reached at least once. For the univariate case, Einbeck and Tutz (2006) state

that a conditional mode is almost always reached after 30 iterations, and

that this occurs fairly quickly. In the examples contributing to this chapter,

the multivariate case has also been observed to behave satisfactorily in this

sense.

4.2 Examples and properties

Fig. 4.2 shows data from a wheat yield trial, where latitude and longitude

serve as covariates (the data are part of R package nlme, Pinheiro et al.

(2011)). Fig. 4.3 provides the surface formed after 30 iterations of the mean

shift process on the data set. Here h1 = 3.18, h2 = 3.18 and b = 5.61 after

using the bandwidth selection methods described later.

Fig. 4.4 illustrates the characteristics of this smoothing technique through

simulated bivariate data sets of size n = 200. Data set A is simulated from
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Figure 4.3: The modal regression estimate for the wheat yield data set, using

conditional mean shift with 30 iterations.

the function y = sin(0.2x1) + cos(x2) and subjected to Gaussian error with

standard deviation 0.05. Data set B has a partially bimodal response, which

splits for x1 ≥ 0.5 into two branches. For x1 < 0.5 the response is simulated

from the univariate function y = 1.5 + 3x1 with Gaussian error of standard

deviation 0.4. For x1 ≥ 0.5, the upper plane is centred at y = 3 and the

lower plane at y = 1; the error standard deviation is 0.2 each. One observes

from Fig. 4.4 how the estimated surfaces develop after different numbers of

iterations, `, with starting points positioned above (upper estimated surface)

and below (lower estimated surface) all responses. For bivariate predictors,

if y0 is (for all x) set greater than all Yi, the simultaneous iterative execution

of the mean shift resembles visually a net falling onto the data and forming

a surface. Of course, if y0 is below rather than above all Yi, one would

talk about a “rising” net. In the instance where there are more than two

modes in the response distribution, these will clearly not all be detected by

the “falling” and “rising” nets. These can be thought of instead as being

detected by further nets, which, starting at points in between these two,
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either rise or fall depending on the nearest conditional modes.

The technique is clearly visually appealing for bivariate data. The

method can be applied to perform modal regression to data of any dimen-

sion in theory, but this has not been thoroughly examined, and in any case

would not possess the same visual advantages. The right hand column of

Fig. 4.4 demonstrates clearly the main advantages of modal regression. It

is able to identify multiple modes when the underlying conditional distribu-

tion is multimodal, where other regression techniques could not successfully

describe it. As is also mentioned in Scott (1992), modal regression is also

edge-preserving, an important benefit when comparing it to mean regres-

sion. It is important to emphasize that the techniques proposed in this

section do neither require the estimation of any density function, nor the

solution of any optimization problem (such as least squares) at any stage;

all computational work is carried out by the mean shift.

A further interesting property is that for a b value of b =∞, the modal

regression estimate is equal to the Nadaraya-Watson estimate. This can be

demonstrated by examining the modal regression estimate, the conditional

mode estimator, (4.7),

ym =

∑n
i=1H

(
Yi−ym

b

)∏d
j=1 κ

(
Xij−xj
hj

)
Yi∑n

i=1H
(
Yi−ym

b

)∏d
j=1 κ

(
Xij−xj
hj

) .

If b =∞, then for all Yi,

H

(
Yi − ym

b

)
= H(0).

This means

ym =
H(0)

∑n
i=1

∏d
j=1 κ

(
Xij−xj
hj

)
Yi

H(0)
∑n

i=1

∏d
j=1 κ

(
Xij−xj
hj

)
=

∑n
i=1

∏d
j=1 κ

(
Xij−xj
hj

)
Yi∑n

i=1

∏d
j=1 κ

(
Xij−xj
hj

) ,

which is the multivariate Nadaraya-Watson estimate at x (see (1.29)). The

implications of this in bandwidth selection are discussed later.
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Figure 4.4: The left column displays modal regression surfaces for simulation

A, for ` = 1, 2, 3, 15 (from top to bottom). The right column shows the

same for simulation B. The pink surfaces are comprised of modes captured

by mean shift with starting points above all data, and the green surfaces,

with starting points below all data.
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4.3 Bandwidth selection

As with any smoothing technique, smoothing parameters must be chosen.

The importance of this process, and the impact it has on the overall regres-

sion estimate was highlighted earlier in the context of local linear regression,

and it is no less important here. The conditional mode estimator, equation

(4.7), contains two types of smoothing parameters. The hj are the manifes-

tation of a diagonal bandwidth matrix H, as adopted in local polynomial

regression earlier. The hj together describe the neighbourhood in the co-

variate space from which data is contributed to the modal regression. The

parameter b influences the amount of smoothing applied in the response

direction, the vertical direction in plots such as those in Figs. 4.3-4. Ef-

fectively, this determines the amount of smoothing applied to the actual

conditional density curves, such as that in Fig. 4.1.

Equation (4.7) is essentially a manipulation of the conditional kernel

density estimation formula (4.2). For this reason it makes sense to use

bandwidth selection techniques developed for this purpose here. Amongst

relatively little literature written on bandwidth selection for conditional den-

sity estimation, the most comprehensive variety of methods and discussion

is given in Bashtannyk and Hyndman (2001) and Hyndman and Yao (2002).

Although only univariate methods are discussed, extensions to multivariate

versions are alluded to. The methods covered here include reference rules, a

bootstrap approach, a regression-based approach as well as a combination of

these methods. Of these methods, the regression-based approach seems the

most straightforward to extend to the multivariate case, whilst performing

well in the univariate simulations presented in Bashtannyk and Hyndman

(2001). The regression-based approach was also reported as being less time-

consuming than some others. The disadvantage of this technique is that it

only calculates an optimal h, given b. For this reason a different strategy is

needed to calculate b, which will be discussed after first explaining the ex-

tension of the regression-based bandwidth selector for use with multivariate

data.
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4.3.1 Estimating hj

In this section the regression-based bandwidth selector of Bashtannyk and

Hyndman (2001) is extended. This method centres around the penalized

average square prediction error and is motivated by the use of such a measure

by Härdle (1991) in selecting a bandwidth for regression. The conditional

density estimator can itself be expressed as a regression problem as noted

by Fan, Yao and Tong (1996), and in this way Bashtannyk and Hyndman

(2001) exploited the bandwidth selection technique for regression for their

purpose. Equally in the multivariate case, f̂(y|x) can be expressed as the

value of β which minimizes
n∑
i=1

wi(x)
{

1
b
G

(
Yi − y
b

)
− β

}2

(4.8)

where wi(x) is as in (4.4). By re-writing the conditional density estimate as

a regression problem in the multivariate case one can use the multivariate

penalized average square prediction error, Q(h), in bandwidth selection.

This is defined as

Q(h) =
∆
n

N∑
k=1

n∑
i=1

{
1
b
κ

(
Yi − y′k

b

)
− f̂(y′k|Xi)

}2

×p

 (κ(0))d∑n
l=1

∏d
j=1 κ

(
Xij−Xlj

h

)
 (4.9)

where {y′1, ..., y′N} are equally spaced over the sample space Y with y′i+1 −
y′i = ∆ and where p(u) = (1 − u)−2 is a penalty function. Here one seeks

an optimal h = h1 = ... = hd which minimizes (4.9), keeping b fixed. In

practice, the covariates are standardized prior to the minimization, and then

the resulting h is unstandardized in each co-ordinate direction along with

the covariates prior to the actual regression.

Bashtannyk and Hyndman (2001) states that minimizing the univariate

equivalent of (4.9), with respect to h, is the same as minimizing the MISE,

which is defined therein in the conditional density estimation context as

MISE(h, b; f̂ , f) =
∫ ∫

E
{
f̂(y|x)− f(y|x)

}2
f(x)dxdy. (4.10)
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They then explicitly suggest extending the univariate equivalent in the way

carried out above, suggesting that they believe the minimization of (4.9) is an

effective approximation to the minimization of the MISE in the multivariate

case.

The R code for the univariate regression-based bandwidth selector is pro-

vided in the package hdrcde, Hyndman (2010), in the function cde.bandwidths(method=3)

and is fairly straightforward to extend to the multivariate setting. The

penalty function p(u) = (1 − u)−2 (the same as in GCV) suggested above

for use with the multivariate Q(h), (4.9), differs from the one used typi-

cally in the univariate case, since this was found to perform badly when

applied here in the multivariate setting. It was found not to penalize very

small values of h strongly enough. This alternative p(u) is suggested in the

cde.bandwidths code.

This method of selecting the hj seems to work satisfactorily, as Figs.

4.3-4 suggest. These were constructed using hj values obtained from this

technique, and appear to show an appropriate amount of smoothing in the

horizontal direction.

4.3.2 Estimating b

As mentioned, one cannot select values of hj before first having a value of b

to use in (4.9). When analysing the univariate regression-based bandwidth

selector, Bashtannyk and Hyndman (2001) mainly use the normal reference

rule detailed in their article to perform this task. This rule was inspired

by work which uses reference distributions in bandwidth selection for kernel

density estimation such as Silverman (1986). Such work is discussed in much

more depth in Chapter 5. Bashtannyk and Hyndman (2001) formulate the

reference rule by first calculating the optimal bandwidths in terms of MISE

(the following uses the same notation as in their article). They then assume

that f(y|x) is normal with linear mean c+dx and standard deviation p, and

that f(x) is a truncated normal density with mean µh and standard deviation

σh. Using these assumptions, everything that is required to calculate the

optimal bandwidths becomes available through some manipulation. After
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which, the optimal bandwidth for b is given by

bNR =

{
d2v(k)

3
√

2σ5
hλ(k)

} 1
4

 16k
∫
κ4(u)dup5(288π9σ58

h λ
2(k))

1
8

n
∫
u4κ2(u)dud

5
2 v

3
4 (k)

[
v

1
2 (k) + d(18πσ10

h λ
2(k))

1
4

]


1
6

(4.11)

where

λ(k) =
∫ k

−k
φ(t)dt,

with φ(t) the standard normal density function, and

v(k) =
√

2πσ3
h(3d2σ2

h + 8p2)λ(k)− 16kσ2
hp

2e
−k2

2

with k controlling the size of the sample space in the x direction.

This method is also implemented in cde.bandwidths, and is also used

by Einbeck and Tutz (2006). There is also a normal reference rule which

selects h, but this is omitted here due to the success of the regression-based

bandwidth selector. Unfortunately, extending this normal reference rule for

b to the multivariate setting is extremely difficult, so instead the univariate

rule is modified. This seems acceptable since the rule itself, (4.11), does not

depend directly on the number of dimensions in the data. Performing (4.11)

for each covariate xj separately, yielding bj , and then setting

bN =
1
d

d∑
j=1

bj (4.12)

is generally effective here.

Figs. 4.5-6 show the results of using (4.12) in conjunction with (4.9)

for the selection of the bandwidths. Fig. 4.5 shows modal regression via

mean shift carried out on some air quality data measuring the air quality

in New York in 1973. 117 observations are given on the response of ozone,

measured in ppb, to the wind speed in mph and the temperature in F (this

data is available in the R base package). The bandwidths selected here are

h1 = 1.51, h2 = 4.01 and b = 22.15.

Fig. 4.6 shows the result of modal regression on a simulated bivariate

data set J of size n = 200. The response is simulated from the function
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Figure 4.5: The modal regression estimate for the air quality data set, using

conditional mean shift. The bandwidths were calculated using (4.9) and

(4.12).

y = sin(12x1 + 0.2) + sin(12x2) and subjected to Gaussian error with stan-

dard deviation 0.5. This data has a unimodal response distribution. The

top plot shows the result when the bandwidths developed using the meth-

ods above are implemented (h1 = 0.072, h2 = 0.072, b = 0.34), and the

bottom figure shows a surface formed using Nadaraya-Watson kernel regres-

sion. This bottom figure can be considered to give a true representation of

the shape of the data.

Figs. 4.5-6 give an insight into the weakness of this bandwidth selection

strategy – it struggles to deal with data with a unimodal response which has

a significant amount of curvature. Although the air quality data regression is

satisfactory in general, there is still a hint that things might not be perfect

on the front left hand side of the surface where it splits. This could be

a genuine feature of the data, or more likely a result of a poor choice of

b. It should be noted that the two surfaces do not fail to meet due to

an insufficient number of iterations in the mean shift, rather these are the

surfaces settled upon after any reasonable number of iterations. In effect,
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Figure 4.6: The top figure shows modal regression on data set J, which is

known to have a unimodal response distribution, using the b obtained from

(4.12). The bottom figure shows the same data represented by a Nadaraya-

Watson kernel regression surface.
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this bandwidth selection method is effective when the data has a multimodal

response distribution, but in practise when it is unimodal, the value of b

selected is too small. One could say that when using the modified normal

reference rule the data is undersmoothed. If anything, an increase in b

is necessary, which is in contrast to the conclusions in Chapter 5 in the

discussion on univariate density estimation. This is also in contrast to the

opinion of Einbeck and Tutz (2006) who show that the normal reference rule

oversmooths in the univariate version of modal regression via mean shift. It

is unsurprising that the use of (4.12) to find b is not perfect. This is after

all a univariate technique, which is being used in the multivariate setting,

and so it is likely that it does not adapt sufficiently when encountering the

curse of dimensionality. However, in this shift to the multivariate case it has

become suitable for use with multimodal responses. It should be mentioned

that Fig. 4.6 acts as a slightly unfair comparison, since Nadaraya-Watson

regression will always outperform modal regression on a data set where the

data is smooth with no edges. Nevertheless, Fig. 4.6 (top) highlights a

weakness of modal regression using bN .

Adaptation for data which is known to have a unimodal response

distribution

The method described above should be implemented when the data of inter-

est has a multimodal response distribution. However, in order to combat the

problems encountered when the response is unimodal throughout, if one is

certain that this is the case, an adaptation is proposed to ensure that only

one regression estimate results at each x. In this case a variable vertical

bandwidth is proposed of the form

b(x) = max
{
bN ,min

(
b : ŷ(1)

m (x) = ... = ŷ(M)
m (x)

)}
. (4.13)

Firstly, the modified normal reference rule is carried out as above. For any x

at which only one regression estimate is produced (ŷ(1)
m (x) = ... = ŷ

(M)
m (x)),

b remains at (4.12) when performing regression at that point. At all other

points, i.e. any point on a plot, such as Fig. 4.6 (top), at which the surfaces
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Figure 4.7: Modal regression on data set J, by conditional mean shift. A

variable vertical bandwidth b, (4.13), is implemented.

do not meet, b is gradually increased until the two surfaces meet, resulting

in a single regression surface throughout. At any x, as soon as ŷ(1)
m (x) =

... = ŷ
(M)
m (x), the minimum value of b which achieves this is taken as the

bandwidth at that x. In this way, b(x) varies over the whole covariate space.

Despite having a variable vertical bandwidth, it still works well to specify

b = bN when calculating the hj , given b, using (4.9).

Increasing the value of b increases the amount of smoothing in a condi-

tional density estimate, such as Fig. 4.1, until eventually only one mode is

present. This procedure forces the existence of only one regression estimate

at each x whilst also retaining the edge-preserving quality which is such an

important feature in modal regression. This is demonstrated in Fig. 4.7,

which shows the same simulated data as in Fig. 4.6, but examined using

(4.13). The function which generated this simulated data set J is known to

have a unimodal response distribution, and so this adaptation is applicable

here. It is clear in Fig. 4.7 that a much more appropriate regression surface

is produced, particularly when compared to the plot produced when using

the fixed value of b, Fig. 4.6 (top).
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As well as being methods of bandwidth selection for this type of modal

regression, the techniques described above are equally suitable for the wider

field of bandwidth selection for multivariate conditional density estimation.

Investigating alternative methods of selecting b

The above bandwidth strategy was developed after first pursuing another

direction of research, which itself had some interesting results. Of interest

was determining if the optimal b value is independent of the number of

dimensions in the data, d. In order to do this, a simulation study was carried

out analysing the MSE of the modal regression estimate for different values

of b on various simulated functions. However, it quickly became apparent

that this study was not going to be successful, when it appeared that the

use of very large values of b always yielded the smallest MSE values. It was

whilst reflecting on this further that the observation was made that modal

regression with b = ∞ is equivalent to Nadarya-Watson regression. This is

an estimate of the mean at x and it makes sense that this estimate would

minimize the MSE when compared to any estimate of the mode, particularly

since the optimal hj are of a similar magnitude to the optimal bandwidths

for Nadaraya-Watson. For this reason, simulations analysing MSE are not

appropriate when considering modal regression.

On a positive note, one cannot make a huge error if one chooses a large

value of b. In fact the worst result would be the Nadaraya-Watson estimate

and this is after all optimal in terms of MSE. For this reason, if given a choice

of bandwidths it is probably sensible to choose the slightly larger value of

b, since the quality of the regression estimate is unlikely to worsen. The

problem with choosing a larger value of b is that the estimate loses the very

qualities which make modal regression different i.e. the ability to represent

a multimodal response and provide an edge-preserving surface.

A crude measure of estimating b was also examined. This focused on at-

tempting to capture the same proportion of the multivariate covariate space

with hj and b, as the univariate bandwidths of Bashtannyk and Hyndman

(2001) capture in the univariate space. This measure also often suggested
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very large bandwidths which were favourable in terms of MSE, but failed in

terms of producing an edge-preserving estimate.

There are also bandwidth selection tools already available for multivari-

ate conditional density estimation in the np package by Hayfield and Racine

(2008). However, in general, these select values which are too small as both

hj and b, provoking undersmoothing in every direction.

4.4 Relevance of a mode

This section is an extension of the univariate work by Einbeck and Tutz

(2006). When there exist more than one mode of the conditional response

distribution for a given x, it is interesting to evaluate the relevance of the

different modes. To estimate the probability associated with a conditional

mode, one integrates numerically over the part of the estimated conditional

density which forms that modal peak. The conditional density estimate in

Fig. 4.1 is for x = (0.75, 0.5) for simulation B (the data on the right hand

side of Fig. 4.4). This plot indicates clearly that this point falls in the half

of this data set which has a bimodal response. The area covered by the peak

on the left represents the probability that the data at x = (0.75, 0.5) has a

response value of approximately y = 1, and the area covered by the peak

on the right represents the same but for a response value of approximately

y = 3. Einbeck and Tutz (2006) state that the search for the minimum and

the integration can be performed simultaneously, by descending in small

steps from the modes and increasing the integral, until either the boundary

or the next dip separating the modes is reached. They note that this method

of integration, although not being the most sophisticated, is “surprisingly

accurate.” For simulation B, Fig. 4.8 displays a surface of probabilities,

calculated as described for every x, showing the probability that data is

present in the mode captured by the “falling net”. Fig. 4.9 shows the same

for the “rising net.” For this data set, the plots show a probability of 1 for

approximately half of all values of x; this is expected since the response

is unimodal for these x. Note that in these two figures, the orientation is

rotated in order to allow for a better view of the probability surface.
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Figure 4.8: Bivariate probability plot for the “falling net” for the fitted sur-

face from Fig. 4.4 (bottom right). For each x, this displays the probability

associated with the mode captured by the pink surface in Fig. 4.4.
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Figure 4.9: Bivariate probability plot for the “rising net” for the fitted sur-

face from Fig. 4.4 (bottom right). For each x, this displays the probability

associated with the mode captured by the green surface in Fig. 4.4.
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Figure 4.10: Estimated conditional density function at wind=3 and temper-

ature=71 for the air quality data set.

Fig. 4.10 shows the conditional density estimate at wind=3, tempera-

ture=71 for the air quality data, previously exhibited in Fig. 4.5. This value

of x is of interest due to its location in the part of the regression surface

which splits into two branches. If one calculates the probabilities associated

with each mode, as described above, one can estimate that the probability

that the data at this point belongs to the lower (green) branch is 0.698, and

the probability to the higher (pink) branch is 0.302. This suggests that the

existence of two surfaces is justified here, but it is important to remember

that these probabilities themselves are dependant on the choice of b, and

thus a poor choice of b will yield poor estimates of the probabilities.

Whilst these surfaces of probabilities are neat, inference of a more tra-

ditional type is also possible. Since the modes of the conditional density

function at x are the regression estimates at x it is the properties of these

conditional modes which must be considered. Samanta and Thavaneswaran

(1990) show that a conditional mode, estimated using kernels as in this

chapter, is asymptotically normally distributed, and Berlinet, Gannoun and

Matzner-Løber (1998) study this property in the context of confidence in-
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tervals. This implies that such inference is possible for this modal regression

technique.

4.5 Discussion

In summary, the advantages of this method of performing modal regres-

sion are that it can capture a multimodal response and is edge-preserving

while also being a computationally simple and visually appealing procedure.

However, it should be admitted that multivariate data with a multimodal

response is relatively rare, and that multiple modes in the response distribu-

tion may be an indicator that important covariates have been omitted from

the model. Nevertheless, the presented approach may still serve to detect

and visualize situations of this type. In any case, Einbeck and Tutz (2006)

note that in the univariate case there are parametric approaches to repre-

senting a multimodal response, such as those given by Wedel and Kamakura

(1995) and Cherkassy and Ma (2005). They also note that any existing non-

parametric methods require knowledge of which mode each data point is

associated with, and so the mean shift technique is clearly different to, and

holds advantages over, other existing methods attempting to perform the

same task.

A bandwidth selection strategy was set out above, including an action

to deal with the scenario where multiple regression estimates are given at

a point at which one knows that the true response is unimodal. If one

obtains a single regression estimate at x, with b = bN , one can be quite

sure that the true response distribution is unimodal at this point, since the

value of b, which broadly speaking determines the number of modes, has

only been found to undersmooth when using (4.12), and never oversmooth.

However there is one outcome that has not been examined thoroughly –

if one obtains more than one regression estimate at x, but does not know

for sure how many modes the response should have at that point. At x,

more than one regression estimate could arise for one or more of three main

reasons:
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• Data sparsity

• Response distribution is truly multimodal

• The value of b is too small.

An example of this situation is illustrated in the regression surface of the

air quality data in Fig. 4.5.

Data sparsity can affect the regression estimate in two main ways. The

first is the presence of an outlier in the y-direction. As Scott (1992) reports,

modal regression in its purest form is resistant to outliers. Provided that

one sets enough starting points in the mean shift, the true function will be

detected as a conditional mode(s), unaffected by an outlier, which may also

be represented by its own mode. The mode representing the outlier can

then be ignored, however one has the inconvenience of determining whether

each mode is caused by an outlier or not. Alternatively, if one implements

the variable b(x), detailed in (4.13), in an attempt to force the existence of

only one regression estimate at each x, and in doing so preventing an out-

lier causing a mode, the outlier is having an influence by imposing a higher

value of b than would be necessary without it, and so changing the regres-

sion estimate as a result. So outliers are inconvenient in both situations,

either by adding another layer to the regression surface which is inconve-

nient for anyone who wishes to analyse the true function, or by influencing

the regression detrimentally when one imposes (4.13). For this reason, it is

recommended that one removes outliers from the process prior to the mean

shift. This can be done using any standard outlier detection and removal

process. A further option is to adopt the approach which Breiman, Meisel

and Purcell (1977) take in the context of multivariate density estimation.

Here the bandwidth varies depending on data sparsity, and a larger band-

width in an area of greater data sparsity ensures that outliers do not have

an unwanted effect on the density estimate. Implementing a technique sim-

ilar to this and employing a variable b at each x in modal regression could

prevent the problem of outliers described above.
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4.5.1 Implementing the density threshold (2.18)

The second way in which data sparsity influences this technique is through

the curse of dimensionality, which was widely discussed earlier in this the-

sis. Around the edges of the data, modal regression is particularly sensitive

to individual data points. This leads to multiple regression estimates be-

ing produced more commonly around the edges than in the centre of the

data. It makes sense to attempt to implement the threshold developed ear-

lier, (2.18), particularly given the relationship between this technique and

Nadaraya-Watson smoothing on which this threshold can be easily used.

Briefly, in order to compare Nadaraya-Watson smoothing and modal re-

gression via mean shift directly, assume that both use the same hj in the

covariate directions (in fact they are usually of a similar magnitude). The

neighbourhood at x described by the kernels is always larger for Nadaraya-

Watson, since it encapsulates the same space in the covariate space as well

as the entire space in the response direction. The modal regression is limited

in the response direction by the bandwidth b, reducing the neighbourhood

size. Therefore, if (2.18) considers that Nadaraya-Watson smoothing is not

reliable at x, it seems a sensible indication that modal regression, with a

smaller neighbourhood, will also not be reliable. In this way, (2.18) can

be used to dismiss some areas of sparse data, without having to develop a

new threshold especially for modal regression. For reference, the value of ρ

to be used in the threshold, (2.18), for Nadaraya-Watson smoothing with

bivariate data is 1.55. When applying this to the air quality data in Fig.

4.5, the density threshold is approximately 0.00035. The density is smaller

than this at only three of the actual data points and these are all for high

values of wind speed, and not in the area in the front left where the sur-

face splits. When examining grid values in the area of the surface which

splits, the density at the majority of these is also greater than 0.00035. The

exception seems to be in the area around wind=3, temperature=70, where

the density is approximately 0.00004. Here, the split in the surface could be

due to data sparsity, however further back, at higher temperature values,

the bimodal response is probably as a result of something else.
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4.5.2 Further discussion

Having taken into account the methods above in order to diminish the effects

of data sparsity, it is then necessary to decide whether any remaining x

values, at which more than one regression estimate is produced, are the

result of a truly multimodal underlying response distribution or a value of b

which is too small. Of course if one knows for sure that the response should

be unimodal this would be the time to implement the variable bandwidth,

(4.13), without it suffering from any data sparsity related issues.

It should be stressed that modal regression via mean shift should not

be used itself to determine the number of modes in the response at x, since

the bandwidth selection technique above favours a multimodal response, nor

should the probability plots discussed in the last section be used as an in-

dication, since these also depend on b. Essentially, the perfect bandwidth

selection technique will choose a bandwidth which produces the correct num-

ber of modes in the response, but in order to know which technique to use

it is necessary to know the modality of the response. If the modality of the

response varies throughout the data then the bandwidth selection technique

should vary accordingly. The idea of anticipating the number of modes prior

to the bandwidth selection is the central theme of the next chapter, where

this is applied in kernel density estimation. It is a common problem in

density estimation to be unsure of the exact modality of data. This should

however be seen as less of a problem to have in the regression context, since

with most other methods only one estimate is possible at each x. Silverman

(1981) and Müller and Sawitzki (1991) describe strategies for detecting the

number of modes in a univariate distribution, but these do not extend to

multivariate conditional distributions. As a result there is no fixed answer

to how one should act in this situation, it is simply important that one acts

with caution when interpreting a modal regression surface generated using

the techniques described in this chapter.
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Chapter 5

Bandwidth selection for

multimodal kernel density

estimation

In the previous chapter it would have been useful to be able to adapt the

normal reference rule to suit conditional density estimates of varying modal-

ity. In this chapter two possible methods are discussed in order to do exactly

this in the simpler setting of kernel density estimation. To clarify, the work

in this chapter is restricted solely to univariate data.

It is the kernel density estimator, (1.54), for a univariate random vari-

able X, with standard deviation σ, which is of interest, and of particular

interest is the selection of the bandwidth h. This estimator was originally

proposed by Rosenblatt (1956) and has been investigated thoroughly in the

literature since, notably in Parzen (1962) and Silverman (1978). The issue

of bandwidth selection itself has been studied just as thoroughly, and is just

as crucial in kernel density estimation as in the other areas in which it has

been discussed in this thesis. As well as the normal reference rule, developed

by Silverman (1986), there are also various other bandwidth selection tech-

niques, but as discussed in Zhang and Wang (2009), they each suffer from

at least one problem. Least squares cross-validation (LSCV) was introduced

by Rudemo (1982) and Bowman (1984), but under the alternative name of
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unbiased cross-validation. This technique, which selects h by minimizing the

empirically estimated quantity whose expectation is identical to the MISE,

is the best for minimizing the asymptotic MISE according to Stone (1984),

but as noted by Zhang and Wang (2009) it tends to be highly variable as

well as undersmooth the density. Zhang and Wang (2009) also review other

methods introduced by Scott and Terrell (1987) and Sheather and Jones

(1991), claiming that these suffer from computational problems and from

not being robust to outliers. They themselves come up with one solution to

these problems by developing a bandwidth selector which “adapts to differ-

ent types of densities.” A recent paper by Srihera and Stute (2011) develops

a density estimation and bandwidth selection tool which also adapts to the

data at hand, however here it is the kernel function which is adjusted to suit

f . This appears successful but only limited testing has been carried out.

In this chapter the focus is on the simplest of all these methods, the

normal reference rule. This attempts to approximate the asymptotically

optimal bandwidth, (1.64), which in turn minimizes an asymptotic version

of the MISE. The unknown quantity in (1.64) is
∫

[f ′′(x)]2 dx, and in order to

form the normal reference rule, Silverman proposed using the normal density,

φ(x) = (2π)−1/2 exp−x
2/2 with standard deviation σ, as an approximation

of f(x), i.e.∫ [
f ′′(x)

]2
dx ≈ σ−5

∫ [
φ′′(x)

]2
dx =

3
8
√
π
σ−5 ≈ 0.212σ−5. (5.1)

When κ is Gaussian κ0 = 0.776 in (1.64), and using this normal approxima-

tion, Silverman derived the normal reference bandwidth selector,

hNR = 1.06sn−1/5 (5.2)

where the sample standard deviation, s, is used to approximate σ.

Silverman (1986) observed that this rule “will work well if the population

is unimodal, it may oversmooth somewhat if the population is multimodal.”

It is this oversmoothing in the multimodal densities that is addressed in this

chapter. This problem has been tackled elsewhere previously in a number of

ways. Firstly, different approaches are taken to approximating σ. Silverman

(1986) proposes a more robust measure of spread, A = min(s, IQR/1.34),
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which seeks to avoid oversmoothing in multimodal data as well as skew

data. Zhang and Wang (2009) adapt this by using a quantile-based measure

of spread. Secondly, adaptations are proposed to the constant 1.06 which

was derived above from the normal reference assumption. Silverman (1986)

proposes replacing 1.06 by 0.9, without providing any reasoning behind this

other than that 0.9 is smaller than 1.06. This fits with the intuitive notion

that the more modes the density has, the smaller the bandwidth should be

in order to enable an adequate degree of resolution. This is indeed the line of

thinking that is followed in this chapter. Here however, the aim is to provide

a bandwidth selection method, with justification, which quantifies how much

smaller the bandwidth should be for a density with m modes. If the data are

multimodal, the normal reference rule will underestimate
∫

[f ′′(x)]2 dx and

so overestimate h. Here, alternative ways of approximating
∫

[f ′′(x)]2 dx are

considered to address this problem.

5.1 Approaches to bandwidth selection with ref-

erence to a Gaussian mixture

5.1.1 Reference to a fitted Gaussian mixture

One possible method of approximating
∫

[f ′′(x)]2 dx more accurately is to

replace the concept of making reference to a normal density with making

reference to a mixture of normal densities. Here it is sensible to have m

normal densities φµk,σk centred at locations µk, with standard deviations

σk, and associated mixture probabilities πk, k = 1, . . . ,m. For a given data

set, these parameters can be estimated to form a mixture density close to

the density of the data. These parameters can be estimated using the EM

algorithm of Laird (1978) which is implemented in R in packages such as

npmlreg by Einbeck, Darnell and Hinde (2009). In this case the estimated

density is then given by

f̂m(x) =
m∑
k=1

π̂kφµ̂k,σ̂k(x). (5.3)
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Now, the quantity of interest is
∫

[f ′′(x)]2 dx. For this density

f̂ ′m(x) =
1√
2π

m∑
k=1

π̂k
σ̂3
k

(µ̂k − x) exp

{
−1

2

(
x− µ̂k
σ̂k

)2
}
,

and

f̂ ′′m(x) =
1√
2π

m∑
k=1

π̂k
σ̂3
k

((
µ̂k − x
σ̂k

)2

− 1

)
exp

{
−1

2

(
x− µ̂k
σ̂k

)2
}
.

Hence,

∫ [
f̂ ′′m(x)

]2
dx =

1
2π

 m∑
k=1

π̂2
k

σ̂6
k

∫ ((
µ̂k − x
σ̂k

)2

− 1

)2

exp

{
−
(
x− µ̂k
σ̂k

)2
}
dx

+
∑
k 6=l

π̂kπ̂l
σ̂3
kσ̂

3
l

∫ ((
µ̂k − x
σ̂k

)2

− 1

)((
µ̂l − x
σ̂l

)2

− 1

)
exp
− 1

2

((
x−µ̂k
σ̂k

)2
+
(
x−µ̂l
σ̂l

)2
)
dx

 .
This integral can be calculated explicitly through convolutions of normal

densities (see Theorem 4.1 of Marron and Wand (1992)), or by using soft-

ware such as Mathematica. In this way, the asymptotic optimal bandwidth,

(1.64), can be approximated by

hm = κ0

{∫ [
f̂ ′′m(x)

]2
dx

}−1/5

n−1/5. (5.4)

When approximating f by a mixture density one has the option of how large

to make m before applying the EM algorithm. In this way, one specifies an

expected modality prior to the density estimation, and so it is necessary that

one has some prior knowledge of approximately how many modes the data

should have in order for this method to be effective. This will be discussed

in more detail later. It should be noted that choosing m densities to make

up the mixture does not necessarily translate into m modes. In fact, this

leads to at most m modes in the mixture density, and will often result in

less.

5.1.2 Rule of thumb

A further bandwidth selection method has been developed which approxi-

mates
∫

[f ′′(x)]2 dx differently again. This also uses a mixture density but
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does not require the actual fitting of a mixture or the complicated inte-

gration. This can be thought of as a rule of thumb, since it is sufficiently

simple and completely data independent. In order to create this rule of

thumb, some simplifying assumptions are required. The shape of the mix-

ture density is restricted to an equal mixture of m normal densities, each

with identical standard deviation σc, which are placed at equidistant loca-

tions µk, k = 1, . . . ,m.

In this specific case, the density takes the form

f̂(x) =
1
m

m∑
k=1

1√
2πσ2

c

exp

{
−1

2

(
x− µk
σc

)2
}
. (5.5)

Applying the calculations from the previous sub-section,∫ [
f̂ ′′(x)

]2
dx =

1
2πm2σ6

c

 m∑
k=1

∫ ((
µk − x
σc

)2

− 1

)2

exp

{
−
(
x− µk
σc

)2
}
dx

+
∑
k 6=l

∫ ((
µk − x
σc

)2

− 1

)((
µl − x
σc

)2

− 1

)
exp
− 1

2

((
x−µk
σc

)2
+
(
x−µl
σc

)2
)
dx

 .
As the integral over the squared second derivatives is a location invariant

functional, the position of the locations can be written w.l.o.g. as µk = kdσc,

with a distance parameter d. For instance, a value of d = 2 means that all

modes are two component standard deviations away from each other. Using

the fact that the µk are set at a distance of dσc apart, substitute x−µk
σc

= u

and x−µl
σc

= u+ (k − l)d. This leads to∫ [
f̂ ′′(x)

]2
dx =

1
2πm2σ5

c

3
√
πm

4
+
∑
k 6=l

∫
(u2 − 1)

[
(u+ (k − l)d)2 − 1

]
exp−

1
2 [u2+(u+(k−l)d)2] du

 .
(5.6)

Examining everything to the right hand side of the
∑

in (5.6),∫
(u2 − 1)

[
(u+ (k − l)d)2 − 1

]
exp−

1
2 [u2+(u+(k−l)d)2] du

=
∫

(u2 − 1)
[
u2 + 2u(k − l)d+ (k − l)2d2 − 1

]
exp−

1
2 [u2+(u+(k−l)d)2] du

= exp
{
−(k − l)2d2

4

}∫ (
u4 + 2u3(k − l)d+ u2(k − l)2d2 − 2u2 − 2u(k − l)d− (k − l)2d2 + 1

)
× exp

{
−
(
u+

(k − l)d
2

)2
}
du. (5.7)
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By substituting t = u+ (k−l)d
2 , manipulation yields (5.7) to be equal to

exp
{
−(k − l)2d2

4

}∫ [
t4 −

(
2 +

(k − l)2d2

2

)
t2 + 1− (k − l)2d2

2
+

(k − l)4d4

16

]
exp−t

2
dt

= exp
{
−(k − l)2d2

4

}[∫
t4 exp−t

2
dt−

(
2 +

(k − l)2d2

2

)∫
t2 exp−t

2
dt

+
(

1− (k − l)2d2

2
+

(k − l)4d4

16

)∫
exp−t

2
dt

]
. (5.8)

For Gaussian integrals it is well established that∫ ∞
−∞

tn exp−t
2
dt = Γ

(
n+ 1

2

)
. (5.9)

As a result ∫
t4 exp−t

2
dt = Γ

(
5
2

)
=

3
√
π

4∫
t2 exp−t

2
dt = Γ

(
3
2

)
=
√
π

2

and ∫
exp−t

2
dt = Γ

(
1
2

)
=
√
π.

Using these, one can rewrite (5.8) as

exp
−
(

(k−l)2d2
4

) [
3
√
π

4
−
√
π

2

(
2 +

(k − l)2d2

2

)
+
√
π

(
1− (k − l)2d2

2
+

(k − l)4d4

16

)]
=

3
√
π

4
exp
−
(

(k−l)2d2
4

) [
1− (k − l)2d2 +

(k − l)4d4

12

]
(5.10)

If one substitutes (5.10) back into (5.6) one now has

∫ [
f̂ ′′(x)

]2
dx =

3
8
√
πm2σ5

c

m+
∑
k 6=l

exp
−
(

(k−l)2d2
4

) [
1− (k − l)2d2 +

(k − l)4d4

12

] .
Now substituting s = k − l,∫ [

f̂ ′′(x)
]2
dx =

3
8
√
πmσ5

c

[
1 +

1
m

m−1∑
s=1

2(m− s) exp−
d2s2

4

[
1− s2d2 +

s4d4

12

]]

which can be rewritten as∫ [
f̂ ′′(x)

]2
dx =

3
8
√
πmσ5

c

[1 + F (m, d)] , (5.11)
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where

F (m, d) =
1
m

m−1∑
s=1

2(m− s) exp−
d2s2

4

[
1− s2d2 +

s4d4

12

]
.

[In the special case m = 2, an equivalent formulation of this result was pro-

vided by Zhang and Wang (2009).] Substituting (5.11) into the expression

for hopt, (1.64), one obtains

hopt = κ0

(
8
√
π

3

)1/5

m1/5n−1/5σc [1 + F (m, d)]−1/5 . (5.12)

It is important to remember that here σc is the component standard devi-

ation, which is different from the overall standard deviation. However, the

following shows how the component standard deviation can be written in

terms of the overall one.

With f̂(x) as (5.5), a mixture of normal densities, the expectation can

be written as

E(X) =
1
m

m∑
k=1

µk.

Equally,

E(X2) =
1
m

(
m∑
k=1

µ2
k +mσ2

c

)
,

and so the variance

Var(X) = E(X2)− [E(X)]2

=
1
m

(
m∑
k=1

µ2
k +mσ2

c

)
−

(
1
m

m∑
k=1

µk

)2

=
1
m

(
m∑
k=1

µ2
k +mσ2

c −
1
m

m∑
k=1

µ2
k −

2
m

∑
k<l

µkµl

)

=
m− 1
m2

(
m∑
k=1

µ2
k −

2
m− 1

∑
k<l

µkµl

)
+ σ2

c .

Using the same substitution as earlier, µk = kdσc and µl = ldσc,

Var(X) =
m− 1
m2

(
m∑
k=1

k2d2σ2
c −

2
m− 1

∑
k<l

kld2σ2
c

)
+ σ2

c

=
m− 1
m2

(
d2σ2

c

m∑
k=1

k2 − 2d2σ2
c

m− 1

∑
k<l

kl

)
+ σ2

c . (5.13)
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∑
k<l kl can be rewritten as

∑m−1
i=1 i

∑m
k=i+1 k. The following uses some

common results for summations.

m−1∑
i=1

i

m∑
k=i+1

k =
m−1∑
i=1

i

(
m(m+ 1)

2
− i(i+ 1)

2

)

=
m2(m− 1)(m+ 1)

4
− 1

2

m−1∑
i=1

i2(i+ 1)

=
m2(m− 1)(m+ 1)

4
− 1

2

m−1∑
i=1

i3 − 1
2

m−1∑
i=1

i2

=
m2(m2 − 1)

4
− m2(m− 1)2

8
− m(m− 1)(2m− 1)

12

=
m(3m3 + 2m2 − 3m− 2)

24
(5.14)

This can then be substituted into (5.13), as well as the well-known result

m∑
k=1

k2 =
m(m+ 1)(2m+ 1)

6
.

The variance then becomes

Var(X) =
(m− 1)d2σ2

c

m2

(
m(m+ 1)(2m+ 1)

6
− m(3m3 + 2m2 − 3m− 2)

12(m− 1)

)
+ σ2

c

=
(m− 1)d2σ2

c

6m

(
(m+ 1)(2m+ 1)− 1

2
(m+ 1)(3m+ 2)

)
+ σ2

c

= σ2
c

(
1 + (m2 − 1)

d2

12

)
(5.15)

So, σ2
c can be estimated by s2/(1 + (m2 − 1)d

2

12), where s is the overall

sample standard deviation. Substituting this into (5.12), and using now

κ0 = 0.776 for a Gaussian kernel, yields

hopt = 1.06m−
4
5n−

1
5 s

2
√

3

d
√

1 + (12
d2
− 1)/m2 [1 + F (m, d)]

1
5

. (5.16)

This expression still contains the unknown d, and a tool which does not

involve the estimation of this, or the computation of an expression as cum-

bersome as (5.16), would be preferred. One area where further simplification

is possible is by specifying a value of d. A value of d = 2
√

3 has a number of

advantages, as well as representing a fairly typical distribution, where the
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Figure 5.1: Three normals, each separated by a distance of d = 2
√

3 com-

ponent standard deviations.

modes overlap slightly. Fig. 5.1 shows a distribution of this shape. This

value of d considerably simplifies (5.15) to Var(X) = m2σ2
c . It also performs

favourably when examining F (m, d), as is shown by the curves in Fig. 5.2 in

which the function is plotted over a range of d values. Each curve represents

a different m value for m = 1, ..., 10. For d = 2
√

3, F (m, d) is approxi-

mately zero for all sensible values of m, for example F (2, 2
√

3) = 0.050,

F (3, 2
√

3) = 0.067, and F (4, 2
√

3) = 0.076. Also, F (m, d) is only included

in (5.16) in a fifth root, and so it is safe to assume that [1 + F (m, d)]
1
5 ≈ 1.

In taking these simplifications into account (5.16) becomes

h∗m = 1.06m−
4
5 sn−

1
5 . (5.17)

This is a simple rule of thumb, which, in the same way as the normal ref-

erence rule does, only makes use of the spread of the data. In fact, it only

differs from it by a factor of m−4/5.

Table 5.1 shows the factor in h∗m which is dependent on m and shows

how it decreases as m increases. These factors differ significantly from the
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Figure 5.2: The function F (m, d) plotted over a range of d values. Each

curve represents a different m value, m = 1, ..., 10.

m 1 2 3 4 5 6 7 8

m−4/5 1.000 0.574 0.415 0.329 0.276 0.235 0.211 0.189

Table 5.1: Multimodal correction factor m−4/5 for m = 1, ..., 8 modes.

equivalent 0.85 suggested by Silverman (1986) to cope with any modality.

Similarly to (5.4), it is necessary to anticipate prior to the density estima-

tion how many modes one expects the data to have in order to choose a

bandwidth tailored to the data set.

5.2 Investigating these methods using real data

sets

These two bandwidth selection methods were tested on a variety of real

data sets. Here the full analysis and results are presented for a traffic flow

data set, before summarizing the results for the other data sets in Table
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Figure 5.3: A histogram showing the traffic flow data.

5.3. The traffic data consists of n = 876 measurements of traffic flow (in

vehicles/ 5 min.), taken from 10-12/07/07 on a Californian freeway. This

data is retrieved from PeMS (http://pems.dot.ca.gov/). Fig. 5.3 shows a

histogram of this data which suggests that the approximate shape of the

data is bimodal. In any case it is almost certainly multimodal, which makes

either (5.4) or (5.17) more suitable than the simple normal reference rule.

Traffic engineers believe that such data tend to have at least two modes, one

corresponding to freeflow, and another one to busy traffic.

Firstly, the fitting of a Gaussian mixture bandwidth selection method,

(5.4), is examined. Using npmlreg, mixture parameters were estimated for

m = 1, ..., 4. These are displayed in Table 5.2. Fig. 5.4 then displays these

Gaussian mixtures. These are the densities which are being used in (5.4)

as an approximation of the true density. When m = 1, hm is identical to

the normal reference rule, and this is clearly the worst approximation of the

true data out of the four. Of interest are the bottom two plots in Fig. 5.4,
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m µ̂k σ̂k π̂k

1 117.64 50.83 1.00

2 36.34, 142.16 18.36, 25.76 0.23, 0.77

3 34.87, 137.42, 160.21 17.14, 27.56, 8.70 0.22, 0.65, 0.13

4 17.54, 44.15, 138.92, 160.41 3.69, 15.39, 26.85, 7.00 0.07, 0.16, 0.67, 0.11

Table 5.2: The mixture parameters estimated for m = 1, ..., 4 using the

npmlreg package for the traffic flow data.

which both show a mixture density with one less mode than the number

of densities used to generate it. This highlights the fact that the number

of mixture components is an upper bound on the number of modes. It is

unimportant that the value of m specified is not replicated in the number

of modes in the mixture, and the reason for this will be explained in the

discussion at the end of this chapter.

With the Gaussian mixtures estimated, the bandwidths h1, ..., h4 can

then be calculated. Fig. 5.5 (top) shows the estimated density estimate

when incorporating each of these. It appears that using h1, equivalent to

hNR, the density estimate is oversmoothed. The estimates using both h2

and h3 are likely to be of a more adequate resolution. Anticipating m = 2

reveals a third mode for small flow values, and anticipating m = 3 reveals

potential fourth and fifth modes at flow values of approximately 70 and

125 veh/5 min. The possible existence of these further modes is completely

missed when hNR is implemented. By choosing a value of m which is too

high, such as m = 4, the density estimate clearly becomes undersmoothed.

The rule of thumb, (5.17), was also trialled on the traffic flow data set.

This method is the subject of a simulation study later, so only a brief analysis

will be offered here. This is much more straightforward to implement and

requires no fitting of a mixture, instead only the value of m within (5.17)

itself needs to be varied. Fig. 5.5 (bottom) shows the density estimates

using h∗1, ..., h
∗
4. This is the same analysis as given in Fig. 5.5 (top), but

using a different bandwidth selection method. The results and conclusions

are very similar to those for Fig. 5.5 (top), with the only real difference
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Figure 5.4: The Gaussian mixtures generated by npmlreg for the traffic

flow data from m = 1 (top left) to m = 4 displayed clockwise. In each plot

the black curve is the mixture density and the grey curves are the individual

component densities.
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Figure 5.5: Top: Estimated densities for traffic flow using h1, ..., h4. Bottom:

Estimated densities for traffic flow using h∗1, ..., h
∗
4.
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being that the rule of thumb method is less temperamental with a higher

value of m.

This analysis was carried out on several further data sets. These are

described briefly below and the results are presented in Table 5.3.

• Traffic speed is data concerning the same n = 876 traffic measurements

as in the traffic flow data above. Here the variable of interest is speed

in m.p.h.

• Galaxy is a well-known data set from the MASS package on R (see

Venables and Ripley (2002)), comprising of the velocities in 1000km/s

of n = 82 galaxies from an unfilled survey of the Corona Borealis

region.

• Penny thickness is from the locfit package, by Loader (2010), on R

measuring the thickness of two U.S. pennies every year from 1945 to

1989.

• Eruptions is the eruptions variable from the well-known faithful data

set, which measures the eruption time in minutes of n = 272 eruptions

of the Old Faithful geyser in Yellowstone National Park.

• Energy use is the log-energy consumption, in kg oil equivalent per

capita in the year 2007, for a sample of n = 135 countries. This data

was retrieved from the World Bank data base. See

http://data.worldbank.org/indicator/EG.USE.PCAP.KG.OE.

For each of the data sets in Table 5.3, both hm and h∗m were calculated

for m = 1, ..., 4. The number of modes was then observed when f̂(x) was

plotted using each of these bandwidths. Throughout the data sets, it is clear

that for both bandwidth selection methods the number of modes observed is

rarely equal to the number of modes anticipated. One can also see that h∗m is

fairly effective as a rule of thumb since it shows similar behaviour to the data

dependent hm. Generally, the two bandwidth selectors decrease at a similar

rate as m increases and one almost always observes at least as many modes

as one anticipates. Increasing m to be greater than 1 usually increases the
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Data m 1 2 3 4

Traffic flow
∫

[f̂ ′′m(x)]2dx in hm 6.24e-10 1.75e-08 8.44e-08 1.74e-06

hm 13.89 7.13 5.20 2.84

Modes observed (hm) 2 3 5 8

h∗m 13.89 7.97 5.77 4.57

Modes observed (h∗m) 2 3 3 5

Traffic speed
∫

[f̂ ′′m(x)]2dx in hm 4.86e-08 0.00058 0.0032 0.0037

hm 5.81 0.89 0.63 0.61

Modes observed (hm) 2 12 16 17

h∗m 5.81 3.34 2.41 1.92

Modes observed (h∗m) 2 3 3 3

Galaxy
∫

[f̂ ′′m(x)]2dx in hm 0.000107 0.00486 0.118 0.12

hm 2.00 0.93 0.49 0.49

Modes observed (hm) 3 4 7 7

h∗m 2.00 1.15 0.83 0.66

Modes observed (h∗m) 3 3 5 5

Penny thickness
∫

[f̂ ′′m(x)]2dx in hm 0.01 0.0496 0.257 0.284

hm 0.79 0.57 0.41 0.41

Modes observed (hm) 1 1 3 3

h∗m 0.79 0.46 0.33 0.26

Modes observed (h∗m) 1 3 6 7

Eruptions
∫

[f̂ ′′m(x)]2dx in hm 0.11 38.03 62 5056.5

hm 0.39 0.12 0.11 0.05

Modes observed (hm) 2 3 3 14

h∗m 0.39 0.23 0.16 0.13

Modes observed (h∗m) 2 2 2 2

Energy use
∫

[f̂ ′′m(x)]2dx in hm 0.151 0.961 2.93 2.98

hm 0.43 0.29 0.24 0.23

Modes observed (hm) 2 2 2 2

h∗m 0.43 0.24 0.18 0.14

Modes observed (h∗m) 2 2 3 4

Table 5.3: hm and h∗m for various data sets for m = 1, ..., 4 and the number

of modes observed in each case. 160



number of modes produced which suggests the oversmoothing problem of

hNR is avoided. However, this does not always happen, as is exemplified

by the energy use data which is promising in itself since it shows a certain

robustness to the choice of m. One difference between the two methods is

that h∗m would appear to be significantly less temperamental. This is evident

in the traffic flow, eruptions and traffic speed data, where an unrealistically

high number of modes is observed for m = 4 when using hm. This represents

an obvious overfitting, and a clear disadvantage when compared with the

rule of thumb.

5.3 Simulation study

The following simulation study demonstrates further the efficiency of the

rule of thumb, (5.17). In order to do this it is important to remember that

the goal is to produce the best quality density estimate possible, not to

produce in the density estimate the number of modes that were anticipated

when m was selected. In any case, as was demonstrated with the real data

sets, it is relatively rare to attain a number of modes equal to m. To measure

the quality of the density estimate the MSE is examined. Here

MSE(f, f̂) =
1
n

n∑
i=1

{
f̂(Xi)− f(Xi)

}2
(5.18)

is an empirical version of (1.55). The question of interest is whether one

attains, for a data set generated from a distribution of known modality, the

best density estimate, in terms of MSE, when the value of m used in (5.17)

is equal to the number of modes in that data set. The following results

suggest that this is the case.

Data sets of size n = 500 were generated from Gaussian mixtures made

up of a number of component densities. In this study, the number of com-

ponents, c, varies from 1 to 4. In total, data sets were generated from 8

different distributions. The specifications from which these were generated

are given in Table 5.4. Data sets (a)-(d) are generated from an ideal sce-

nario i.e. the scenario under which the rule of thumb was derived. Here,
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Density c µk σk πk

(a) 1 0 1 1

(b) 2 0, 2
√

3 1, 1 0.5, 0.5

(c) 3 0, 2
√

3, 4
√

3 1, 1, 1 0.33, 0.33, 0.33

(d) 4 0, 2
√

3, 4
√

3, 6
√

3 1, 1, 1, 1 0.25, 0.25, 0.25, 0.25

(e) 2 0, 2 1, 0.5 0.8, 0.2

(f) 2 0, 0.7 0.2, 0.4 0.4, 0.6

(g) 3 0, 2, 3 0.8, 0.3, 0.3 0.1, 0.4, 0.5

(h) 4 0, 1, 2, 3 0.3, 0.3, 0.3, 0.3 0.2, 0.3, 0.1, 0.4

Table 5.4: The mixture parameters, and the number of components, used

to generate the simulated densities (a)-(h).

the data are simulated from an equal mixture of c Gaussian densities with

equal standard deviation and with a distance of 2
√

3 component standard

deviations between them. For these data sets the rule of thumb produces

the asymptotically optimal bandwidth. Data sets (e)-(h) are more complex,

and for these h∗m is indeed only a rule of thumb.

Each data set was generated 200 times, and the MSE was calculated each

time as in (5.18) with h∗m as the bandwidth in the density estimate. This

was done for m = 1, ..., 6 for each data set. Fig. 5.6-7 show the results of

this study, where Fig. 5.6 includes the ideal densities, and Fig. 5.7 the less

ideal. The left hand column of each of these shows the mixture densities,

and alongside each of these is a box plot displaying the 200 MSEs for each

value of m for that mixture. For comparison, the rule of thumb of Silverman

(1986), whereby one replaces 1.06 by 0.9 in hNR, is also included, denoted

S.

Additionally, Table 5.5 shows the percentage of times, out of the 200

simulations of each data set, that each value of m, when used in h∗m, led to

the smallest MSE for that simulation. Here, the suggestion from Silverman

(1986) is not included. These figures and the table all suggest that the

rule of thumb is successful. Firstly, for the ideal scenarios in Fig. 5.6, as

would be expected, when m = c (the modality is anticipated correctly in

162



−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

(a)

x

f(
x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

S 1 2 3 40.
00

0
0.

00
2

0.
00

4

MSE

−4 −2 0 2 4 60.
00

0.
05

0.
10

0.
15

0.
20

(b)

x

f(
x)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

S 1 2 3 40.
00

00
0.

00
04

0.
00

08
0.

00
12

0 5 100.
00

0.
04

0.
08

0.
12

(c)

x

f(
x)

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

S 1 2 3 4 5

1e
−

04
3e

−
04

5e
−

04

0 5 10 150.
00

0.
04

0.
08

(d)

x

f(
x)

●

●

●

●

●

●

●
●

●

S 1 2 3 4 5 6

1e
−

04
3e

−
04

Figure 5.6: Results for (a)-(d). Left: The generating densities with the

individual component densities which form these shown in grey. Right:

Box plots representing the 200 MSEs using the rule of thumb, (5.17), for

m = 1, ..., 6. Silverman’s rule of thumb, whereby one replaces 1.06 by 0.9 in

hNR, is also included, denoted S.
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Figure 5.7: Results for (e)-(h). Left: The generating densities with the

individual component densities which form these shown in grey. Right:

Box plots representing the 200 MSEs using the rule of thumb, (5.17), for

m = 1, ..., 6. Silverman’s rule of thumb, whereby one replaces 1.06 by 0.9 in

hNR, is also included, denoted S.
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Density c m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

(a) 1 90 10 0 0 0 0

(b) 2 6 81 13 0 0 0

(c) 3 0 18 69 13 0 0

(d) 4 0 0 38 52 9 1

(e) 2 72 28 0 0 0 0

(f) 2 15 81 4 0 0 0

(g) 3 0 6 48 36 9 1

(h) 4 0 0 22 52 23 3

Table 5.5: The percentage of times, out of the 200 simulations of each data

set, that each value of m, when used in the rule of thumb (5.17), led to the

smallest MSE for that simulation. The largest percentage for each density

is expressed in bold.

the bandwidth selection), the MSE tends to be lowest. This is supported

by the first four lines of Table 5.5. Encouragingly, the same behaviour is

exhibited by the more complex densities where for every density, with the

exception of (e), the MSE is minimal most frequently for m = c. However,

the results for density (e) are also positive, and the reason for this can

be seen by examining the plot of the generating mixture density. This

reveals that although c = 2, the actual modality is only one, since one

component is swamped by the other. For this data set, the bandwidth

which performs best is h∗1 i.e. when one anticipates that the modality is

one. Since the true modality here is one, this means that the bandwidth

technique has performed best throughout when m is chosen as the modality

of the generating mixture density. This highlights that it is the number of

modes which is important rather than the number of components, which is

useful since one is more likely to have an idea about the modality of a data

set rather than the number of component densities which forms it. This

study shows that, when the modality is anticipated accurately, this rule of

thumb outperforms the normal reference rule (m = 1) as well as Silverman’s

suggested adaptation, when the true modality of the density is greater than
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one.

5.4 Discussion

Two potential bandwidth selection methods have been presented in this

chapter, and, whilst they have both been shown to be effective, there are

several reasons why the rule of thumb should be favoured over the fitting

of a Gaussian mixture. The main reason is that fitting a mixture requires

significantly more effort, with very few apparent advantages. The fitted

mixture is a density estimate in itself so it seems unnecessary to then use this

as one step in another density estimation technique. Also, the integration

required in this process is relatively demanding. As was shown with the

real data sets earlier, the rule of thumb is also less temperamental when

larger values of m are specified. This is an advantage in a type of technique

which depends on the choice of m, a choice which often will be made without

knowing exactly the true modality. It is useful that h∗m is somewhat robust

to misspecification of m.

An important point for discussion is the idea of anticipating the modality.

To use either of these methods it is important to have some idea of the

modality. It is important that one should not solely use some other density

estimation tool, such as a histogram, to ascertain the modality of the data

set, since this also depends on an initial bandwidth choice, which may not

suit the true modality. Therefore, one needs some sort of notion of what

the modality should be from an external source. This is the case with the

traffic flow data, as discussed earlier, and similar ideas exist for many other

data sets. As mentioned, h∗m is somewhat robust to misspecification of m,

and so there is some margin for error.

As was explained in the introduction to the simulation study, the modal-

ity is anticipated in order to produce the best possible density estimate, not

to produce a density estimate of the anticipated modality. Indeed the aim

of density estimation is not usually to assess how many modes it has. The

simulation study showed that the rule of thumb did indeed achieve the best

density estimates for a suitable choice of m, which indicates that the con-
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cept of modality-dependent bandwidths is sensible. Recall that the quantity

approximated in these methods is
∫

[f ′′(x)]2 dx, which is a functional of the

curvature of the density. Therefore the rule of thumb quantifies how much

curvature one would expect in a typical m-modal density, and effectively

introduces this amount of curvature into the estimated density, via (5.17).

The Gaussian mixture fitting method works in the same way, but using

an even closer, data-dependent, approximation of the curvature in the true

density. It then depends on the data set, how many modes are caused by

incorporating a certain amount of curvature into the density estimate. The

amount of curvature required for the most accurate density estimate is not

necessarily the amount of curvature which gives exactly m modes in the

estimate and this explains why it is not realistic to expect the number of

anticipated modes to appear in the density estimate. In the derivation of

the rule of thumb, if one takes d = 3, this can sometimes lead to the number

of modes observed being closer to the number anticipated, however since

this is not the priority, and this makes the rule of thumb considerably less

neat, the value of d = 2
√

3 is retained.

When viewed from this perspective the normal reference rule of Silver-

man (1986) appears extremely restrictive. It incorporates an amount of

curvature in to the density estimate which is typical in a normal unimodal

density. This is clearly insufficient for many data sets, and explains the

oversmoothing which often results from the application of this bandwidth

selector. In comparison, h∗m, as well as hm, is capable of producing a den-

sity estimate of a more appropriate resolution. This was shown in the traffic

flow data, in which features of the density were revealed, which were missed

when hNR was implemented. Since (5.17) is a rule of thumb method, for

which the priorities are simplicity and convenience, it is only fair to compare

its performance with that of existing simple procedures, such as hNR. Due

to the nature of rule of thumb methods in general, it is likely that more

sophisticated methods, such as those discussed at the start of the chapter,

will outperform (5.17) in estimating the true density. However it should

be noted that, due to its simplicity, it fares well when compared to these
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sophisticated methods, in terms of computational problems and robustness

to outliers. Zhang and Wang (2009) describe the same advantages for their

simple procedure.

It would have been useful to be able to apply the bandwidth selection

techniques, developed in this chapter, to the work on conditional density

estimation bandwidth selection in the previous chapter. Unfortunately, in

that setting, the modified normal reference rule undersmooths unimodal

conditional densities and consequently works well for multimodal densities.

If this was not the case then the methods in this chapter may be applicable,

however due to the fact that these methods select a bandwidth smaller than

the normal reference rule for a multimodal density and do not adjust the

strategy for a unimodal density, these techniques could not improve the

bandwidth selection methods of the previous chapter as they stand.
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Chapter 6

Overview and applications

The purpose of this chapter is to give an overview of the techniques pre-

sented in this thesis and provide some useful comparisons and potential

applications.

An important consideration in every setting in this thesis is bandwidth

selection, either in scalar or matrix form. Chapter 5 is devoted to bandwidth

selection in univariate kernel density estimation. This is the only chapter

dedicated to univariate techniques, but it has relevance when considered

alongside the conditional density estimation in Chapter 4. The rule of thumb

method (5.17) presented in Chapter 5 compares favourably with other kernel

density bandwidth selection techniques, such as the normal reference rule

and LSCV. An important concept here is that one must have a notion, prior

to estimation, of the true number of modes in the data. For some data,

such as the traffic flow data, industry experts have an idea of an expected

modality. In other cases, one might have the notion that the density of

a data set is definitely not unimodal, in which case applying the rule of

thumb with m = 2 will give a more accurate density estimate than the

normal reference rule. Also, as mentioned earlier, there are various methods

in the literature which aim to estimate the modality of a distribution, so

these could possibly be applied here.

The issue of modality is also relevant in Chapter 4 in the setting of mul-

tivariate conditional density estimation. Here, one needs a notion of the
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modality of the response distribution to choose an appropriate bandwidth

selection tool for b. It seems likely that the multimodal correction factor,

m−4/5 (see Table 5.1), presented in Chapter 5 would be useful for any ker-

nel density estimation, whether conditional or not. It seems sensible that

the amount of curvature assigned by the rule of thumb to an m−modal

kernel density estimate would apply equally to its conditional counterpart.

However, it is difficult to confirm this since the bandwidth selection tool

presented in Chapter 4 already undersmooths, and so a further reduction in

the bandwidth for anticipated higher modality is not appropriate. In both

Chapters 4 and 5, the only reason that adaptations, depending on modality,

to the bandwidth selection are needed, is that the method initially proposed

is not perfect, and either undersmooths (Chapter 4) or oversmooths (Chap-

ter 5). Having said that, the tools presented here should not be used for the

purpose of determining the modality of a distribution.

The other bandwidth selection technique introduced in this thesis, in

Chapter 3, is AGCV, (3.1), for multivariate local polynomial regression.

Through the removal of isolated data points and the introduction of the

median, this method has become robust to sparse regions of data. The

removal of isolated points could also be applied inQ(h), (4.9), the bandwidth

selection tool associated with the covariates in modal regression, in Chapter

4. This method has not been trialled with data of d > 2 although it can be

performed in higher dimensions, with the only limitation being that it is not

as attractive to visualize as when bivariate data is examined. If this was to

be carried out, it is likely that adaptations to Q(h) would be valuable.

It has been demonstrated that AGCV is more effective, quicker and less

sensitive to the minimization starting point than competing methods. The

two adjustments made to GCV were in response to computational difficulties

encountered on R, however they are both helpful when using any software.

The inclusion of the median ensures that extremely large bandwidth param-

eters are not chosen, and the removal of isolated points is a sensible measure

when considering the threshold developed in this thesis. As mentioned ear-

lier, the estimation at points accepted by the density threshold is improved
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by removing sufficiently isolated points from the bandwidth selection pro-

cess. This allows relatively small values of hj to be chosen, which yield im-

proved estimates in denser regions, when compared with larger bandwidths

which others may employ as a solution to the curse of dimensionality.

It is useful that the threshold developed in Chapter 2, as the primary

method of tackling the curse of dimensionality, works so neatly with AGCV.

It was shown in Chapter 2 that the density threshold, derived from a bound

on the influence, and so a bound on the variance, was successful in dis-

tinguishing where over a data range local polynomial regression could be

considered sensible. Due to the relationship, mentioned in Chapter 4, be-

tween modal regression and Nadaraya-Watson regression, this threshold can

also be used in this context to try to prevent problems arising from data

sparsity in modal regression. The formula for the threshold, (2.18), neatly

takes the form of a multiple of the density of one point, and in this way re-

flects the amount of information required at x for regression to be considered

feasible.

Both mean and modal regression are covered in this thesis as potential

nonparametric methods of multivariate regression. It is advisable to use

mean regression in most circumstances, since it is optimal in terms of MSE,

and this explains why it is covered significantly more than modal regression

in the literature. In the author’s experience, local linear regression performs

better in terms of MSE over the whole data range, apart from on an edge

(within the interior) where the modal regression outperforms it. As a general

rule, it is sensible to use modal regression only when there is a specific reason

to do so. This could be that the response is multimodal, or that there are

edges in the true function which would suit an edge-preserving technique.

However, Chu, Glad, Godtliebsen and Marron (1998) describe a compromise

between modal and mean regression. The estimate at x given by the sigma

filter, described in this article, is effectively one mean shift iteration from

the Y value at x. This is used in image processing and may provide some

competition for modal regression when a function with edges is evaluated.

Whilst local mean and modal regression are both studied here, local

171



median regression is not touched upon. In the univariate setting this has

been explored as an alternative and its strength, according to Truong (1989)

and others, is its robustness to outliers in the y-direction. Truong (1989)

shows that local conditional median regression also has favourable asymp-

totic properties. The same paper suggests that this type of regression is

particularly suitable for data with an asymmetric conditional response dis-

tribution (examples given are income and housing data) since the resulting

regression is easier to understand. Median regression does not appear to

have been developed substantially in the multivariate setting, and so this

in-between stage is a possible area of interest.

As discussed, the topics covered in Chapters 4 and 5 are useful for data

sets with specific characteristics. The density threshold and AGCV are

applicable more widely. Within the subject of local polynomial regression

they are suitable for use with any kernel function, degree of polynomial

or type of bandwidth matrix. Additionally, the density threshold can be

used with data of any dimension, and a desirable property of this threshold

is the substantial nature with which it increases as the dimension of the

data increases. This was shown using the chamois data in Chapter 2. This

characteristic reflects how inappropriate local regression is for d > 5 without

a large sample size. The threshold itself will work with any combination

of sample size and dimension of data, although it is unlikely to find any

regions where regression is feasible if an unsuitable combination of these is

present. As an approximate guide, for d ≤ 5, the threshold will typically

yield regions where regression is considered sensible for a data set where n

is in the hundreds, and for d greater than this realistically the magnitude of

n needs to be in the thousands. Of course there may always be individual

x-points within the data range where the data is sufficiently clustered for

the threshold to accept when n is smaller.

An interesting source of data, for which the sample size is often more

likely to be suitable for local regression in high dimensions, is computer-

generated data. One of the computer-generated data sets examined with

these methods is the gaia data from the LPCM package, by Einbeck and
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Evers (2011). Here n = 8286 and up to 19 different variables can be included.

The threshold does not discriminate against either data generation method

but the use of computer-generated data may lead to some unexpected re-

sults unless the user is properly informed. To analyse the performance of

the density threshold with data of this type, it would typically be split into

training and test data. Frequently in this situation, at test points rejected

by the threshold, the regression estimates have been observed to be as good,

when compared with the simulated response at that point, as at those ac-

cepted by the threshold. The reasons for this are not immediately clear,

but it is likely that this is mainly due to the small error variance typically

used in computer-generated data. At the points rejected by the threshold,

the variance of the regression estimate is large, as one would expect, but

this is not reflected obviously in the quality of the estimate. The data is

typically clustered and so any test data will not be sufficiently isolated for

the estimator to suffer from any serious computational instability. Instead,

it is likely that the estimate at such a point is influenced solely by the re-

sponse value of the nearest training point. Since this response value was

generated with a very small error variance, the regression estimate, despite

suffering such a high level of variance, could still be considered a reasonable

approximation to the response value of the test point, also generated with

a small error variance. In any case, the regression estimates at these points

do not often appear to be significantly worse than those at points accepted

by the threshold. The threshold can still be employed on data sets of this

type, and it is still effective at ruling out points at which NaN is returned,

as well as points at which estimates with high variance are produced, but it

is sensible to apply caution when analysing the performance of the threshold

in such a scenario.

The choice of bandwidth matrix is the other factor which influences

the magnitude of sample size required to yield regions of feasibility. If the

bandwidth parameters are larger, data points further away from x can be

included in estimation at that point and so a smaller value of n is likely to

produce points at which estimation is possible. AGCV works well with any
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medium-sized data set. If a data set is too large, the computation will be

too time-consuming, and this also occurs if d > 5, unless standardization

is applied and the bandwidth selection is reduced to a single parameter

problem. For this reason, the implementation of AGCV and the density

threshold combined is best suited to medium-sized data sets of 2 ≤ d ≤ 5.

However, these techniques can potentially be applied to data of a very high

dimension.

There are many data sets for which d is very large, and in some cases

d > n, such as with genomic data in computational biology. Here, one could

use variable selection, as mentioned earlier, to reduce the data set into one

which AGCV can handle. Functional data can also be thought of as a form

of almost infinitely high dimensional data. Ferraty, Hall and Vieu (2010)

introduce an algorithm which reduces functional data, again via variable

selection, into a local linear regression problem, with the intention of im-

proving prediction. This local linear problem typically has 2 ≤ d ≤ 10 and

so once such an algorithm has been implemented, AGCV and the density

threshold could be employed to further improve performance in functional

data analysis. The threshold could avoid the problems of “numerical insta-

bility” which Ferraty, Hall and Vieu (2010) describe as an issue for larger

values of d.
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Some of the ideas presented in this thesis have also been submitted to

journals for publication. The topics in Chapters 2 and 3 have been submit-

ted under the title Challenging the curse of dimensionality in local linear

regression (Taylor and Einbeck), and are also included in the conference

proceedings of the International Workshop on Statistical Modelling 2010, un-

der the title Strategies for local smoothing in high dimensions: using density

thresholds and adapted GCV (Taylor and Einbeck). The ideas in Chapter 5

have been submitted under the title A mixture-of-normals reference rule for

density estimation under multimodality (Einbeck and Taylor). The material

in Chapter 4 is included in the conference proceedings of the International

Workshop on Statistical Modelling 2011, under the title Multivariate regres-

sion smoothing through the “falling” net (Taylor and Einbeck). All of the

publications mentioned above in which I am the first author are solely my

work, while both authors contributed equally to the paper in which I am

the second author.
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Appendix A

A.1 Multivariate Taylor’s theorem

The multivariate version of Taylor’s Theorem is used frequently in this the-

sis, particularly in Chapter 2, and so it is included here in full for completion.

The following is exactly as it is expressed in Wand and Jones (1995).

Let m be a d-variate function, and αn be a sequence of d×1 vectors with

all components tending to zero. Also let ∇g(x) be the vector of first-order

partial derivatives of m and Hm(x) be the Hessian matrix of m, the dxd

matrix having (i, j) entry equal to

δ2m(x)
δxiδxj

.

Then, assuming that all entries of Hm(x) are continuous in a neighbourhood

of x,

m(x + αn) = m(x) + αTn∇g(x) +
1
2
αTnHm(x)αn + o(αTnαn).

A.2 Quotients of summations

Bivariate and trivariate data can be expressed in the form (1.28).

For bivariate data,

wi = KH(Xi − x)×

{[K11K22 −K12K12] + (Xi1 − x1) [K12K2 −K22K1] + (Xi2 − x2) [K12K1 −K11K2]}

where
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Ka =
n∑
i=1

KH(Xi − x)(Xia − xa),

and

Kab =
n∑
i=1

KH(Xi − x)(Xia − xa)(Xib − xb).

For trivariate data,

wi = KH(Xi − x)(ς − τ + υ − ω) (A.1)

where

ς = K11(K22K33−K23K23)−K12(K12K33−K13K23)+K13(K12K23−K13K22),

τ = (Xi1−x1) [K1(K22K33 −K23K23)−K12(K2K33 −K3K23) +K13(K2K23 −K3K22)] ,

υ = (Xi2−x2) [K1(K12K33 −K23K13)−K11(K2K33 −K3K23) +K13(K2K13 −K3K12)]

and

ω = (Xi3−x3) [K1(K12K23 −K13K22)−K11(K2K23 −K3K22) +K12(K2K13 −K3K12)] .

A.3 Proof of (1.30)

As given in Ruppert and Wand (1994),

XTWX =


∑n

i=1KH(Xi − x)
∑n

i=1KH(Xi − x)(Xi − x)T

∑n
i=1KH(Xi − x)(Xi − x)

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)T


(A.2)

and XTWR is XTWX but with the adjustment of including the Yi in the

summations in the left column,

XTWR =


∑n

i=1KH(Xi − x)Yi
∑n

i=1KH(Xi − x)(Xi − x)T

∑n
i=1KH(Xi − x)(Xi − x)Yi

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)T


(A.3)

187



Now,

m̂(x) = eT1 (XTWX)−1XTWY

=
eT1 adj(XTWX)XTWY

det(XTWX)
(A.4)

since, generally,

B−1 =
adj(B)
det(B)

(A.5)

where adj(B) is the adjugate matrix.

Now, due to the way the adjugate matrix is calculated by taking the

transpose of the matrix of cofactors, the first row of the adjugate matrix of

B depends on all entries other than the first column of B. In this way

eT1 adj(XTWR) = eT1 adj(XTWX)

since XTWR and XTWX are identical except for the first column, which

is not involved here.

Substituting this into (A.4), one obtains

m̂(x) =
eT1 adj(XTWR)XTWY

det(XTWX)

=
eT1 (XTWR)−1XTWY det(XTWR)

det(XTWX)
(A.6)

again using (A.5).

Now,

XTWY =


∑n

i=1KH(Xi − x)Yi

∑n
i=1KH(Xi − x)(Xi − x)Yi


which is identical to the first column of XTWR i.e.

XTWY = XTWRe1.

Substituting this into (A.6), one obtains

m̂(x) =
eT1 (XTWR)−1XTWRe1 det(XTWR)

det(XTWX)

=
eT1 Ie1 det(XTWR)

det(XTWX)

=
det(XTWR)
det(XTWX)

.
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