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Abstract: In principle, holography provides a well-defined non-perturbative formu-
lation of quantum gravity, but to really use it to address questions about the nature
of spacetime, we need to understand the emergence of the bulk spacetime from the
dual field theory description. A number of field theory properties are believed to
be dual to aspects of the geometry, ranging from simple two-point correlation func-
tions, known to be approximately dual to the length of geodesics, to the quantum
complexity, which is conjectured to be dual to either the size of a maximal volume
slice of the bulk, or to the action of a patch of the bulk spacetime.

In this thesis, we use the duality between correlation functions and geodesics (and
to a lesser extent, that between entanglement entropy and bulk surfaces proposed by
Ryu and Takayanagi) to extend a holographic analysis of quantum chaos initiated by
Shenker and Stanford. We then explore the more speculative holographic complexity
conjectures, analysing the divergence of complexity in general and testing the conjec-
tures in a number of specific spacetimes. For certain cases, we obtain qualitatively
different results for the two conjectures, raising questions for future research.
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Chapter 1

Introduction

1.1 AdS/CFT and bulk reconstruction

Since the introduction of the AdS/CFT correspondence by Maldacena [50], research-
ers have sought to use the tools of gauge/gravity duality, or holography, to provide
insight into a range of physical phenomena1. On the one hand, the duality may
be used to rephrase questions in strongly coupled quantum systems (including con-
densed matter systems that might be realised in the laboratory) in terms of a more
computationally tractable, weakly coupled, gravitational theory [35]. On the other
hand, we may attempt to use knowledge of the boundary field theory (which does
not explicitly involve gravity), to tackle questions in quantum gravity. The research
outlined herein belongs in this second category, with particular focus on the rela-
tionship between the geometry of the gravitational theory and the properties of the
dual field theory.

In its original setting, the strongest form of the AdS/CFT correspondence posits
a complete correspondence between type II-B string theory on AdS5×S5 and N = 4

Super Yang-Mills — a conformal theory (CFT) — in 4 dimensions. It is conjectured
that such a correspondence applies more generally, i.e. that given a theory of
quantum gravity on AdSd+1 × X, where X is some compact, positively curved,
Einstein manifold, then this is dual to a CFT in d dimensions. Performing Kaluza-
Klein reduction on the compact (S5 or X) dimensions, the conformal theory may
be (loosely) considered to live on the boundary of the remaining AdS spacetime.
Hence, as is standard, the AdS spacetime will be referred to as the ‘bulk’, with the
gravitational (string) theory being the ‘bulk theory’, while the CFT will be referred
to as the ‘boundary’ theory. Typically, the boundary theory is considered as living
in flat Minkowski space, though as will be seen in chapter 4, we may consider other

1In addition to the original research papers, the student of gauge/gravity duality may now refer
to two textbooks [4, 57] and a number of overview papers [44, 56, 39, 61, 56, 24]
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boundary spacetimes. In either case, the boundary theory is not gravitational, that
is, the boundary spacetime merely provides the theatre in which the boundary theory
acts and is not a dynamic object in its own right.

Researchers in AdS/CFT refer to the still growing ‘holographic dictionary’ that
relates properties of one theory to the other. A basic entry in the holographic
dictionary indicates a correspondence between fields in the bulk and (sources for)
local operators in the field theory. In particular, a scalar field φ in the bulk is dual
to (a source for) a scalar primary operator O on the boundary. The mass, m, of the
scalar field is related to the scaling dimension, ∆, of the operator via

∆ =
d

2
+

√
d2

4
+m2l2, (1.1.1)

where l is the AdS radius and d is the dimensionality of the boundary theory [85].
The boundary condition for the bulk scalar field is given, up to a divergent factor,
by the source for the operator on the boundary. In detail, in Poincaré coordinates
where z → 0 denotes the boundary,

φ(z, x)→ zd−∆φ0(x) as z → 0, (1.1.2)

where φ0 is a source for operator O, i.e.

LCFT = L0 +

∫
ddxφ0(x)O(x). (1.1.3)

The relationship between correlators in the bulk and on the boundary can be inferred
from the equivalence of the partition functions, proposed by Witten [85] and Gubser
et al. [31]:

ZCFT(φ0) = Zstring(φ, φ0) ' e−Ssugra(φ,φ0). (1.1.4)

Here φ gives the bulk field solution satisfying the boundary conditions (1.1.2) imposed
by the boundary source φ0. The intractability of the second expression here leads
us to consider a limiting case where the string theory is approximated by classical
supergravity, giving the third expression. This leads [10] to two-point correlation
functions in the field theory being related to those in the bulk (anchored at two
points on the cutoff surface z = ε), via

〈O(x1)O(x2)〉 = ε−2∆ 〈φ(x1, ε)φ(x2, ε)〉 . (1.1.5)

For non-causally related points, the semi-classical, leading order approximation to
the right hand side is then given by a sum over geodesics [49]

〈φ(x1, ε)φ(x2, ε)〉 =
∑
g

e−Lg∆, (1.1.6)
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where g runs over the geodesics connecting (x1, ε) and (x2, ε) and Lg is the geodesic
length. This is then dominated by the shortest geodesic when the field mass m (and
hence scaling dimension ∆) is large.

The relationship between correlators in the CFT and geodesic length in the bulk
marks the start of attempts to reconstruct bulk geometry from properties of the
dual field theory, and is used in chapter 2 in the context of quantum chaos, where a
small perturbation in the distant past can have a significant impact on correlation
functions and hence, it must be inferred, on the geometry of the bulk solution. A
second such relationship considered here is that proposed by Ryu and Takayanagi
[70, 69] and extended by Hubeny et al. [40], whereupon the entanglement entropy
of a region, A, in the boundary theory is proposed to be related to the area of
a particular co-dimension 2 surface in the bulk. Given a state in the field theory
represented by the density matrix ρ, the entanglement entropy of a region A provides
a measure of the ‘amount of entanglement’ between A and its complement B = AC ,
provided the state ρ is pure. It is given by the von-Neumann entropy of the reduced
density matrix ρA, i.e.

SA = − trA ρA log ρA, (1.1.7)

where ρA = trB ρ. Direct calculation of this quantity is far from straightforward,
involving the calculation of related quantities — the Renyi entropies — via the
calculation of path integrals over a Riemann surface consisting of multiple sheets,
carefully stitched together, followed by the application of analytic continuation and
the taking of a limit. This is referred to as the ‘replica trick’ [19]. The proposal, by
Ryu and Takayanagi [70, 69], that this complex calculation might be replaced by
the determination of a minimal surface in the bulk therefore offered a considerable
simplification. In the original proposal, the bulk spacetime is presumed to be static
and the required surface is the minimal (co-dimension 1) surface in the timeslice of
the bulk that has the boundary ∂A and that is homologous to A, as shown in figure
1.1. Entanglement entropy is then given by

SA =
Area(γ(A))

4GN
, (1.1.8)

where γ(A) is the minimal surface. Hubeny et al. [40] produce a covariant version
of holographic entanglement entropy, valid for non-static spacetime, by considering
co-dimension 2 surfaces in the bulk as a whole but otherwise satisfying the same
conditions.2

For reasons to be described in section 1.3, the correspondences between geometric

2Note that, for 2 + 1 dimensional bulk spacetimes such as those considered in chapter 2, the
minimal co-dimension 2 surfaces are, again, simply geodesics.
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A

B = AC

SA
SB

Figure 1.1: Schematic diagram of the minimal surfaces used in the
calculation of entanglement entropy. Without the black hole, the
surface, labelled SA, that gives the entanglement entropy of A would
also be the correct surface for B = AC . However, with the presence
of the black hole, this surface is not homologous to B and hence a
larger surface must be selected.

objects in the bulk and properties of the field theory described thus far were found to
be insufficient for bulk reconstruction. Certain properties of the bulk spacetime, in
particular the increasing behind-the-horizon volume of the bulk spacetime for black
hole solutions, could not be explained using two-point correlation functions and
entanglement entropy. This led to the more speculative complexity conjectures first
suggested by Susskind [81], who conjectured that there may be a relation between the
bulk geometry and the complexity of the dual boundary state. Here, the quantum
computational complexity of a state is loosely defined as the minimal number of
quantum gates required to construct the state from some specified simple state. This
conjecture was refined, first into the complexity-volume (CV) conjecture, where the
complexity is supposed to be dual to the volume of a co-dimension 1 surface in the
bulk [79, 83, 82] and then into the alternative complexity-action (CA) conjecture,
where the holographic complexity is given by the action of a co-dimension 0 patch
of the spacetime [18, 17]. These complexity conjectures are described in more detail
in section 1.3.

This thesis summarizes our research into different aspects of the relationships,
described briefly above, between geometric properties of the bulk spacetime and
properties of the field theory state on the boundary. The first component of this
research, introduced in section 1.2 and described in detail in chapter 2, involves
an extension of the work of Shenker and Stanford [72] in holographic chaos — a
study of how chaotic effects in the field theory are mirrored in the dual bulk solution.
The second, larger component, explores the holographic complexity conjectures in a
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number of different spacetimes, where we obtained apparently contradictory results.
An introduction to the complexity conjectures is given in section 1.3, with our
research presented in detail in chapters 3–5.

1.2 Scrambling, chaos and holography

In gauge/gravity duality, black hole bulk solutions are dual to thermal states in
the boundary field theory [85]. For example, the BTZ black hole is dual to the
thermofield double state (TFD) — a pure but entangled state on two copies of a
CFT, described in more detail in chapter 2 [51, 41]. While the overall state is pure,
the density matrix produced by considering only a single copy of the CFT is that
of the thermal state, i.e. 1

Z

∑
i e
−βEi |Ei〉 〈Ei|. Such systems exhibit the property of

‘scrambling’ [71]. Starting from a state that is, in some way, ‘special’, time evolution
results in a change to more disordered ‘typical’ states.

Of course, to refine this definition of scrambling, we need to describe what is
meant by ‘typical’ and ‘special’ states. Indeed, in some sense, every state has
some distinguishing property, so it is perhaps better, initially, to consider typical
properties of states. That is, properties that one expects, with high probability, a
randomly selected state (according to an appropriate measure) to possess. Here,
where we consider purifications of the thermal state, a key such property is that
density matrices for small subsystems (by which we mean any subsystem smaller
than half the whole system) are approximately thermal and the associated von-
Neumann entropy is maximized. Distinguishing two such randomly selected states
requires (with high probability) an observable that probes at least half of the degrees
of freedom.

The concept of scrambling is well illustrated by the thermofield double state,
dual to the BTZ black hole. At time t = 0, the state exhibits an unusual, local
entanglement structure, in that small subsystems of the two CFTs may be found to
be highly entangled. This special structure is revealed in calculations of the mutual
information

I(A;B) = SA + SB − SA∪B (1.2.1)

of the two subsystems [37] and in calculations of two point correlation functions
between the two CFTs. For a randomly selected purification of the thermal state,
one would expect both the mutual information of small subsystems and the two
point correlation functions to be close to zero, while for the TFD this is not the case.
However, this atypical entanglement structure is destroyed under time evolution, as
the state evolves into a more typical purification of the thermal state.

It is conjectured that black holes are the fastest ‘scramblers’ in nature [36, 71, 80,
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45]. The scrambling time is roughly defined to be the time required to render the
density matrix of a small subsystem A, in a state such as the TFD, thermal. The
scrambling time, for the fastest scramblers, is conjectured to be ts = β logS, where
S is the entropy of the system.

One may also consider evolving such states backward in time, in which case a
special state such as the TFD, still evolves into a more disordered ‘typical’ state, |ψ〉.
At least, the state |ψ〉 appears to be a typical state until one evolves forward in time,
whereupon the special structure of the TFD at t = 0 is again revealed. One may
think of the state |ψ〉 as being very carefully set up so as to produce the TFD upon
applying time evolution. However, it is difficult to distinguish (without evolving
forward in time) such a state from other typical states that apparently change very
little over time — as discussed above, one requires an observable that probes at least
half of the degrees of freedom. Hence there is the sensitive dependence on initial
conditions that is referred to as chaos. Applying the smallest perturbation to the
state at a point far enough in the past can destroy the special features of the state
at t = 0.

In the context of gauge/gravity duality, this chaotic behaviour in the boundary
field theory must be mirrored, in some way, in the bulk spacetime. However, it is
initially surprising that a small perturbation in the bulk, near the boundary, could
possibly lead to changes to the bulk geometry sufficient to significantly affect the
geodesics and extremal surfaces dual to the two-point correlators and entanglement
entropy of the field theory. A closer examination, performed by Shenker and Stanford
[72], reveals that, in the t = 0 frame in the bulk, the quanta released in the distant
past at the boundary have exponentially blue-shifted energy. The result is a shock-
wave geometry [26], with an associated lengthening of the wormhole resulting in the
decay of the correlations and local entanglement.

In chapter 2, we extend the results of Shenker and Stanford [72] to consider the
behaviour in the presence of chemical potentials for charge or angular momentum.
This means considering charged or rotating black holes in the bulk. We wished to
explore the question of how the chaotic effects would be modified by the presence of
the additional scale introduced. In particular, if chaos is signalled, in the bulk, by
the lengthening of the wormhole, how would this be affected in the cases where the
wormhole is already long, for example, when considering near-extremal charged or
rotating black holes?

Motivation for examining holographic chaos may be fairly direct — one may
wish to determine what holography can tell us about quantum chaos. For example,
Maldacena et al. [54] use holography to propose a bound on the rate of growth of
chaos in thermal quantum systems. Alternatively, one’s motivation may be less direct.
From the publication of Shenker and Stanford’s paper [72], research into quantum
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chaos has been linked to research into the firewall proposal [3, 2]. As summarized by
Shenker and Stanford, Almheiri et al. “argue that the existence of a smooth region
connecting the outside and inside of the horizon requires special entanglement of
degrees of freedom on the two sides. But during the evaporation of the black hole the
system scrambles, and these delicate correlations are destroyed. No smooth region
can remain.” Subsequent work [73] is also linked to the ER = EPR conjecture of
Maldacena and Susskind [53]. While Marolf and Polchinski [55] argued that, for
truly typical, highly entangled states, the small correlations (of order e−S) between
the two field theories could not be interpreted geometrically, Shenker and Stanford
[73] attempt to create such a state via the application of multiple perturbations to
the TFD. While the resulting state has features that makes it atypical, the small
correlations are explained by the extremely long wormhole that results from the
perturbations.

1.3 Holographic complexity

As briefly mentioned above, the duality between minimal surfaces in the bulk and the
entanglement entropy of regions in the boundary field theory may be insufficient for
the purposes of bulk reconstruction. In this section, we briefly outline two reasons for
this: entanglement shadows and the growth, behind the horizon, of Einstein-Rosen
bridges. While the first issue might be solvable through considerations of properties
closely related to entanglement, such as entwinement [8], the second issue led directly
to the consideration of computational complexity by Susskind [81]. This section then
proceeds to provide the details of the holographic complexity conjectures required
for the subsequent chapters 3–5.

An entanglement shadow is simply a region of the bulk spacetime that is not
probed by the minimal surfaces described by the Ryu-Takayanagi proposal. A simple
(though perhaps somewhat artificial) example, given by [8], is provided by the bulk
spacetime AdS3/Zn and is illustrated, for n = 3 in figure 1.2. Here, entanglement
surfaces for small regions are as for AdS3, but for larger regions, an alternative
smaller surface becomes available, connecting the right hand boundary with a copy
of the left hand boundary in an adjacent copy of the spacetime. The result is that
certain minimal surfaces for AdS3, required if the aim is to cover the spacetime,
become non-minimal for AdS3/Z3, with the result that an entanglement shadow is
present. While this is an artificial example, such shadows also occur in more natural
situations, such as in AdS black holes and the BTZ spacetime [27].

Proposals for penetrating such shadows include the idea of entwinement [8],
that is, considering not just entanglement between spatial regions (as the the Ryu-
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Figure 1.2: Entanglement surfaces in AdS3/Z3. The left hand
diagram shows the entanglement surfaces of AdS3/Z3 but in the
covering space AdS3, while the right hand diagram illustrates just
AdS3/Z3. For the small blue region, the entangling surface is the
same as that one would obtain in plain AdS3. As the region is
increased in size, becoming the red region (partially obscured by
the blue), an alternative minimal surface appears, with the right
boundary of the region being connected to the identification of the
left boundary in an adjacent copy of the spacetime. For larger
regions, such as that in green, this becomes the smaller surface.
The result is an entanglement shadow, shown in grey.

Takayanagi proposal) but also between internal degrees of freedom. However, a
possibly greater challenge is posed by the continued growth of Einstein-Rosen bridges.
In, for example, the case of the Schwarzschild-AdS black hole, the volume of the
Einstein-Rosen bridge continues to grow linearly, long after the boundary field
theory has thermalized and hence ceased to evolve in any obvious way. So Susskind
[81] asked the question, what is dual to this volume increase? It cannot be the
entanglement entropy (or indeed entwinement) as this becomes maximal as the
boundary theory thermalizes. A more subtle measure of the scrambling of quantum
information is required. The suggestion is that quantum computational complexity
— the minimum number of quantum gates required to produce the state from some
simple, unentangled reference state — satisfies the requirements. In particular, it
can continue to increase linearly after thermalization.

This proposal was later refined by Stanford and Susskind [79] into the conjecture
that the computational complexity, C, of the boundary state at a given time — i.e.
on some spacelike slice Σ of the boundary — could be identified with the volume, V ,
of the maximal co-dimension 1 spacelike slice, B, in the bulk ending on the boundary
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slice,
CV ∝

V (B)

GNlAdS
. (1.3.1)

This is commonly referred to as the complexity-volume, or CV conjecture, further
developed by Susskind and Zhao [83] and Susskind [82]. Note that this measure
of holographic complexity has a UV divergence proportional to the volume of Σ,
in much the same way that the holographic entanglement entropy of a region A

has a divergence proportional to the size of the boundary of A. Earlier analyses
of the complexity conjectures considered the rate of increase of the complexity, the
calculation of which resulted in the elimination of this divergence. Comparison of
this rate of increase with a proposed bound [48, 17],

dC
dt
≤ 2M

π~
, (1.3.2)

expected to be saturated in the case of black hole spacetimes, provided evidence for
the veracity of the CV proposal. The structure of the divergences in the complexity
calculation were, comparatively, ignored. Here, however, in chapter 3, we consider
the divergences more seriously, both as a physical component of the field theory
complexity (just as divergences in holographic entanglement entropy can be identified
with a physical UV contribution in the field theory) and because we will explore, in
chapter 4, situations where the cancellation of divergences in the calculation of the
rate of change of complexity no longer occurs.

More recently [18, 17], an alternative conjecture, referred to as the complexity-
action or CA conjecture, was proposed. This identifies the complexity of a state in
the boundary field theory with the action of the Wheeler-DeWitt (WdW) patch: the
domain of development of the slice B considered previously, illustrated in figure 1.3.
The proposal is that

CA =
SW

π~
,

where SW is the action of the Wheeler-DeWitt patch. This proposal has the advant-
age that it is more universal, containing no explicit reference to any bulk length
scale. It may also be easier to calculate, as there is no maximization problem to
solve — finding the Wheeler-DeWitt patch is easier than finding the maximal volume
timeslice.

While we avoid the task of solving a maximization problem, until recently it
was not known how to determine the appropriate boundary terms of the action
for null boundaries and for corners between boundaries when one or both are null.
Clearly, the action of the WdW patch will include both such terms. Inspired by the
CA proposal, Lehner et al. [46] constructed a prescription for the action including
such terms, by requiring that the variation of the action vanish on-shell when the
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∂B=Σ

W

Figure 1.3: The maximal co-dimension 1 surface, B (in blue), and
the Wheeler-DeWitt patch, W (in orange), in global AdS. The
maximal surface is anchored on the boundary timeslice we wish to
calculate the complexity for, while the WdW patch is the domain
of development of B.

variation of the metric vanishes on the boundary of the region. The resulting form
for the action for a general region, with timelike, spacelike and null boundaries, is

SV =

∫
V
(R− 2Λ)

√
−g dV + 2

∑
Ti

∫
Ti

K dΣ + 2
∑
Si

sign(Si)

∫
Si

K dΣ

− 2
∑
Ni

sign(Ni)

∫
Ni

κ dS dλ+ 2
∑
ji

sign(ji)

∮
ηji dS + 2

∑
mi

sign(mi)

∮
ami

dS.

(1.3.3)

In this expression

• Ti and Si are respectively timelike and spacelike components of the boundary
of the region V , and K is the trace of the extrinsic curvature of the boundary.
For Ti, the normal is taken outward-directed from V. For Si, the normal is
always taken future-directed, and sign(Si) = 1(−1) if V lies to the future (past)
of Si, that is if the normal vector points into (out of) the region of interest.

• Ni are null components of the boundary of V , λ is a parameter on null generat-
ors of Ni, increasing to the future, dS is an area element on the cross-sections
of constant λ, and kα∇αk

β = κkβ, where kα = ∂xα/∂λ is the tangent to the
generators. sign(Ni) = 1(−1) if Ni lies to the future (past) of V .

• ji are junctions between non-null boundary components, where η is the logar-
ithm of the dot product of normals. We do not give the rules in detail as such
junctions do not occur for Wheeler-DeWitt patches; see Lehner et al. [46] for
full detail.
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• mi are junctions where one or both of the boundary components are null.
We have a null surface with future-directed tangent kα and either a spacelike
surface with future directed unit normal nα, a timelike surface with outward
directed unit normal sα, or another null surface with future-directed tangent
k̄α, and

a =


ln |k · n|
ln |k · s|

ln |k · k̄/2|
(1.3.4)

respectively. We set sign(mi) = +1 if V lies to the future (past) of the null
boundary component and mi is at the past (future) end of the null component,
and sign(mi) = −1 otherwise.

While this action is diffeomorphism invariant under changes of coordinates in
the bulk and on the timelike and spacelike boundaries, Lehner et al. [46] show that
it depends on the choice of coordinate λ on the null boundary components. This
coordinate dependence seems a highly undesirable feature. Fortunately, they also
found that the coordinate dependence could be eliminated by adding to the action
a term

∆S = −2
∑
Ni

sign(Ni)

∫
Ni

Θ ln |cΘ|dSdλ, (1.3.5)

where Θ is the expansion of the null generators of Ni,

Θ =
1
√
γ

∂
√
γ

∂λ
, (1.3.6)

γ is the metric on the cross-sections of constant λ and c is a constant. We will
therefore use S = SV + ∆S as our definition of the action for a region with null
boundaries. We will find, in chapter 3, that the adoption of this counterterm will
also result in additional advantages.

Note that, due to the presence of the constant c, the counterterm does not
remove all ambiguity from the action. Alternatively, as noted by Lehner et al. [46],
there is a freedom to add an arbitrary function independent of the bulk metric to
ami

. We see this as a subcase of a general freedom in the action: the requirement
that the variation of the action vanish fixes the form of the boundary terms only
up to contributions whose variations vanish under variations of the metric. Since
the metric variation vanishes on the boundary, this includes the freedom to add
arbitrary functions of the intrinsic geometry of the boundary. If we ignored the
requirement of coordinate independence, this freedom would include the freedom to
add terms like (1.3.5), as its variation under metric variations (with the metric fixed
on the boundary) vanishes. Since we want to insist on coordinate independence, the
coefficient in (1.3.5) is fixed, but we still have freedom to add terms which are scalars
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on the null boundary, such as
∫
Ni

Θf(γ) dS dλ, where f(γ) is any scalar function of
the cross-section metric γ and curvature invariants built from this metric such as its
Ricci scalar. Also we have the freedom to add such scalar terms at the corners.

As with the CV conjecture, the CA conjecture produces a holographic complexity
that is UV divergent. The nature of this divergence and the interplay between the
divergence structure and the presence of the counterterm in the action are described
in detail in chapter 3.

Given the recent introduction of the complexity conjectures and the existence
of two different forms of conjecture, it seemed natural to test the conjectures in
previously unconsidered scenarios. In particular, we explored the application of
the conjectures for asymptotically AdS spacetimes in a de Sitter slicing, and hence
a de Sitter boundary rather than a flat one. The results of this exploration are
described in detail in chapter 4, after the examination of divergences, presented
in chapter 3, that this work required. The nature of these results, in particular
the unexpected quantitative differences between the CV and CA results obtained
for ‘bubble of nothing’ spacetimes, led us to attempt to replicate the findings in a
simpler scenario: that of the AdS soliton. The holographic complexity calculations
for the AdS soliton are given in detail in chapter 5. This includes an attempt to
calculate complexity directly in the field theory — a fermionic theory on a torus with
antiperiodic boundary conditions in one direction — based on the circuit complexity
work of Jefferson and Myers [42].



Chapter 2

The Butterfly Effect for Rotating
and Charged Black Holes

2.1 Introduction

Recent holographic studies [72, 73, 54] have produced new insights regarding quantum
chaos and the behavior of entanglement in near-thermal systems. In particular,
Shenker and Stanford [72] examined how a perturbation, applied at some early time,
affects the entanglement structure of the thermofield double (TFD) state,

|ψ〉 =
1√
Z

∑
i

e−βEi/2 |Ei〉L ⊗ |Ei〉R . (2.1.1)

This is a state over two entangled quantum subsystems, labelled here as being ‘left’
or ‘right’, with isomorphic Hilbert spaces, HL and HR. Energy eigenstates for each
system are represented by |Ei〉, while Z = tr e−βH is the partition function. Note
that this is a purification of the thermal density matrix: tracing out over either of
the component Hilbert spaces produces the thermal state.

The thermofield double state exhibits a specific entanglement structure. Given
regions A ⊂ L and B ⊂ R, these may be found to be highly entangled, according to
mutual information measures, even if they are small subsystems of L and R, with
non-zero correlations 〈O1O2〉 between operators in the two subsystems L and R.
However, time evolution of the state (under HL + HR) results in a dissipation of
this entanglement: the entanglement spreads out to larger regions linearly in time
(as studied holographically by Hartman and Maldacena [34]), while the two-sided
correlators decay. This dissipation of the entanglement structure also occurs if one
evolves backwards in time. Hence the state at time −tw in the distant past does
not have the correlations or the short-scale entanglement of the TFD state at t = 0.
However, it can be thought of as being carefully set up so as to evolve into the TFD
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state with all of its atypical entanglement structure. One therefore expects that a
small perturbation applied at time −tw would destroy the entanglement structure
present at t = 0. The question, answered by Shenker and Stanford [72], is: how is
this effect manifested in the holographic dual?

The holographic dual to the thermofield double state is an eternal black hole,
where the two copies, HL and HR, of the Hilbert space are associated with the two
asymptotic boundaries of the black hole spacetime [51]. Adding a perturbation to
the left hand CFT corresponds with adding a few quanta to the left hand boundary
of the spacetime. Naively, this might be expected to make little difference to the bulk
geometry. However, relative to the t = 0 frame, these quanta have exponentially
blue-shifted energy and hence their back-reaction on the metric must be considered.
The result, as will be reviewed in section 2.2 of this chapter, is a shock wave in the
geometry near the horizon of the black hole. Shenker and Stanford [72] consider
this effect specifically for 1 + 1 dimensional conformal field theories, for which the
dual of the TFD state is given by the BTZ black hole solution, and show how this
results in a lengthening of geodesics that pass through the wormhole between the two
boundaries. This in turn results in the loss of entanglement between small regions
A ⊂ L and B ⊂ R, via the Ryu-Takayanagi proposal [70], and also in the decay in
the correlation functions.

These results were extended to include multiple shocks [73], localized shocks
[68] and stringy corrections [74], while field theory arguments have been used to
show that these results apply not only to CFT’s with a holographic dual, but more
generally [54, 66, 13, 33, 78].

Here we focus on extending these results to include the presence of chemical
potentials for charge or angular momentum. The thermofield double state is then
generalized to

|ψ〉 =
1√
Z

∑
i

e−β(Ei+µQi)/2 |Ei, Qi〉L ⊗ |Ei,−Qi〉R , (2.1.2)

with the holographic dual being a charged or a rotating black hole. The holographic
correspondence for eternal charged black holes was studied by Brecher et al. [16] and
Andrade et al. [5]. The entanglement structure of these states is similar to that of the
TFD, but as T = 1/β decreases, the entanglement becomes more non-local. In the
extremal limit, T → 0, the wormhole in the holographic dual becomes infinitely long.
As before, this means correlators between the two copies of the CFT typically1 decay
to nothing, as does the entanglement between all but the largest regions A ⊂ L and
B ⊂ R. L and R, however, remain entangled, while there are classes of operators

1There may be ‘extremally-charged’ operators whose two-point functions remain finite in the
T → 0 limit.
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with two-sided correlation functions that remain finite.

It is therefore interesting to ask how small perturbations to (2.1.2) behave, given
that, near extremality, the associated wormhole has already been lengthened with
respect to the non-rotating, uncharged case. How is the sensitive dependence on
initial conditions in the basic case modified by the introduction of charge or rotation.
This chapter explores this question holographically, in the simple context of 1 + 1

dimensional CFTs, dual to 2 + 1 dimensional black hole solutions.2

Section 2.2 reviews the calculations for the uncharged non-rotating case — here
the length of geodesics connecting the two boundaries in the perturbed solution at
t = 0 is given by

d

l
= 2 log

r

r+

+ 2 log
(

1 +
α

2

)
, (2.1.3)

where l is the AdS scale, r is a large-distance cutoff, r+ is the radius of the black
hole horizon3 and

α ∼ E

M
e2πtw/β =

E

M
eκtw (2.1.4)

is a parameter controlling the strength of the shock and hence the lengthening of
the geodesics. Here, E is the asymptotic energy of the perturbation, M is the mass
of the black hole, while κ = 2π/β is the surface gravity. In section 2.3, we generalize
to the rotating case, finding that the growth of the geodesics is still controlled by
the temperature:

α =
∆r+

2κl2
eκtw =

r2
+

(r2
+ − r2

−)2

(
E

4M
(r2

+ + r2
−)− L

2J
r2
−

)
exp

(
r2

+ − r2
−

l2r+

tw

)
. (2.1.5)

Here L is the angular momentum of the perturbation while J is that for the original
black hole. ∆r+ is the change in the outer momentum radius. This is consistent with
the results of Leichenauer [47]. The Lyapunov exponent characteristic of quantum
chaos is thus still λL = κ, as in the simple thermal system, while the prefactor is
also controlled by the surface gravity (or the temperature). Hence the dynamics are
only sensitive to the additional scale associated with the angular momentum via the
surface gravity. In the extremal limit, at fixed mass, the temperature goes to zero
and the decorrelation slows down. The same slowing of time evolution controlled
entirely by the temperature is seen in correlation functions on unperturbed charged
black holes [16, 5]. In contrast, in the limit of vanishing rotation, the results reduce

2After completing this work, we realised that this extension had been previously considered by
Leichenauer [47]. (More recent related work in this area has also been performed by Sircar et al.
[75] and by Roberts and Swingle [67].) While there is some overlap with our work, that paper
focuses on the mutual information and higher dimensional black holes, while here we focus on
correlation functions in 2 + 1 dimensional spacetimes.

3We use r+ for the horizon radius rather than the R of Shenker and Stanford [72] to be consistent
with the rotating and charged cases to be considered later.
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to the previous analysis of Shenker and Stanford [72], as expected.

In section 2.4, we consider the charged case. In this case, it is not possible
to proceed as far analytically, though numerical results are consistent with those
found for the other cases. The Lyapunov exponent is again controlled solely by
the temperature, with the decorrelation slowing down in the extremal limit. As
expected, as the charge vanishes we smoothly recover the previous analysis. In
section 2.5, we comment on the extension to higher dimensions, where we argue that
holographic analysis of correlation functions requires the consideration of geodesics
in the complexified spacetime. Further exploration of this is a matter for future
research.

2.2 A review of the uncharged, non-rotating case

We first review the work of Shenker and Stanford [72] which, for simplicity, considers
the effect of a spherically symmetric perturbation on the uncharged, non-rotating
BTZ black hole in 2 + 1 dimensions. The unperturbed metric is simply

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dφ2, (2.2.1)

where4

f(r) =
r2 − r2

+

l2
=
r2

l2
−M. (2.2.2)

Here the horizon radius is r+, while l is the AdS scale and M is the black hole mass.

To more easily analyse the effect of adding a perturbation, it is necessary to use
Kruskal coordinates. For r > r+ we define

U = −e−κu,

V = eκv,
(2.2.3)

where κ = r+/l
2 is the surface gravity5, and u, v = t∓r∗, with the tortoise coordinate

r∗ = −
∫ ∞

r

dr′

f(r′)
=

l2

2r+

log

(
r − r+

r + r+

)
. (2.2.4)

This gives
UV = −r − r+

r + r+

(2.2.5)

4Shenker and Stanford [72] have an extra factor of 8GN here, which we absorb into the mass
M .

5This factor of κ in the definitions of U and V is necessary to eliminate the coordinate singularity
at r = r+.
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I

II

III

IV

U V

t t

Figure 2.1: Regions I to IV in Kruskal coordinates.

and
ds2 =

−4l2 dU dV + r2
+(1− UV )2 dφ2

(1 + UV )2
, (2.2.6)

defining the relation between the ordinary BTZ coordinates and the Kruskal co-
ordinates in region I of figure 2.1. For r < r+ we can perform a similar coordinate
transformation, arranging for U to be positive and V to be negative, resulting in
the same metric as in (2.2.6), but for region II of figure 2.1. Region III corresponds
to a second copy of r < r+, while region IV is a second copy of r > r+. In the new
coordinate system, the two boundaries of the spacetime correspond to UV = −1,
while the two singularities occur at UV = 1. Between these extremes, the metric is
manifestly non-singular.

We add energy to the system on the left boundary at some early time, i.e. at a
large value, tw, of the t coordinate. For simplicity, it is assumed that the perturbation
is spherically symmetric, while the asymptotic energy of the perturbation, E, is
assumed to be small compared with the black hole mass M . Formally, we take the
limit E/M → 0, tw →∞ with Eeκtw/M fixed.

In this limit, the perturbation approximately follows null geodesics along the
surface Uw = e−κtw . The perturbed geometry is then obtained by gluing a BTZ
solution, with mass M to the right/past of the perturbation, to another with mass
M +E to the left/future. To the right of the shock, we have coordinates U , V and φ,
with parameter M or r+. To the left, we have Ũ , Ṽ , φ and parameter M̃ = M + E

or r̃+ =
√

M+E
M

r+. The relationship between the two coordinate systems on the
shock is fixed by imposing two conditions:

1. The time coordinate t is required to be continuous at the boundary, i.e. at
r =∞. This fixes a relative boost ambiguity.

2. The size of the S1 must be continuous across the shock.
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U V

t

t

Figure 2.2: Kruskal coordinates and the perturbed BTZ solution.

The first of these conditions means that, to the left of the shock, Ũw = e−κ̃tw , where
κ̃ = r̃+/l

2. In the limit we get Ũw = Uw(1− tw∆κ), where tw∆κ is small. Using this
result in combination with the second condition then gives

Ṽ = V + α, (2.2.7)

where
α =

∆r+

2κl2
eκtw =

E

4M
er+tw/l

2

. (2.2.8)

This is illustrated in figure 2.2.

Note that the positivity of α, the step change in the V coordinate, is simply
related to the second law of thermodynamics for black holes. We can make α as
large as desired by pushing the perturbation further back in time, i.e. by increasing
tw.

The essential features of the above calculation — the derivation of Kruskal
coordinates in terms of the tortoise coordinate and the matching conditions across
the shock — will be the same in the other cases that we will consider, as will the
general form of the perturbation α.

As BTZ is locally AdS3, geodesic length is conveniently calculated by using the
embedding coordinates in a flat 2 + 2 dimensional spacetime, in which the length of
geodesics between points p and p′ is given by

cosh
d

l
=

1

l2
(T1T

′
1 + T2T

′
2 −X1X

′
1 −X2X

′
2) . (2.2.9)
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These coordinates are related to the Kruskal and BTZ coordinates by

T1 = l
V + U

1 + UV
=

l

r+

√
r2 − r2

+ sinh
r+t

l2
,

T2 = l
1− UV
1 + UV

cosh
r+φ

l
=
lr

r+

cosh
r+φ

l
,

X1 = l
V − U
1 + UV

=
l

r+

√
r2 − r2

+ cosh
r+t

l2
,

X2 = l
1− UV
1 + UV

sinh
r+φ

l
=
lr

r+

sinh
r+φ

l
,

(2.2.10)

in region I. (Since rotating BTZ is also locally AdS3, we will be able to use the same
method for this case later. The case of charged BTZ will require an alternative
approach.)

Geodesics between points on opposite boundaries of the perturbed spacetime
must necessarily cross the shock. To calculate distances between such points, it is
necessary to

1. Calculate the geodesic distance between a general location, U = 0, V = Vshock,
on the shock and each of the two boundary points.

2. Extremize the sum over Vshock.

This is illustrated in figure 2.3. We use the coordinates to the right of the shock to

Figure 2.3: Geodesics through the perturbed wormhole are found
by gluing geodesics from each side at a general location on the
shock and extremizing the total length over this location. The blue,
dashed line shows two geodesics glued at an arbitrary location. The
red, solid line, passing through the centre of the conformal diagram,
extremizes the total length and is therefore the geodesic required.
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label the point on the shock. If the two boundary points are both at t = 0 and at
equal angular coordinate φ, we find that the geodesic crosses the shock at the centre
of the conformal diagram at Vshock = −α/2, as one would expect from symmetry.
Regulating the overall divergence in the length of the geodesic by taking the distance
between points at some large fixed radius r, we obtain

d

l
= 2 log

2r

r+

+ 2 log
(

1 +
α

2

)
. (2.2.11)

The second term gives the increase in the length of the geodesic resulting from
the addition of the perturbation. This increase may be made arbitrarily large by
increasing tw, i.e. by moving the perturbation further back into the past.

As mentioned previously, we can use geodesic length to obtain an approximation
to the two-point correlation function of operators inserted on the two boundaries of
the black hole. In this case, we obtain

〈W |VLVR|W 〉 ∼ e−∆d/l ∼ r−2∆
(

1 +
α

2

)−2∆

, (2.2.12)

where |W 〉 is the state obtained by acting on the TFD with the perturbation W (tw)

on the left hand Hilbert space, HL, while ∆ is the scaling dimension of the inserted
operators.

2.3 The butterfly effect for rotating BTZ

2.3.1 Kruskal coordinates for rotating BTZ

The simplest extension of this calculation is to consider the rotating BTZ solution,
as the geometry is still locally AdS3, so geodesic calculations remain simple and a
good deal of progress can be made analytically. This generalization introduces an
additional length scale associated with the rotation, so it is interesting to examine
to what extent the physical effects depend on this scale.

The rotating BTZ metric is [9]

ds2 = −f 2(r) dt2 + f−2(r) dr2 + r2
[
Nφ(r) dt+ dφ

]2 (2.3.1)

where
f 2(r) = −M +

(r
l

)2

+
J2

4r2
, (2.3.2)

and we adopt co-rotating coordinates, since we are interested in the behaviour near
the (outer) horizon, so

Nφ(r) =
J

2

r2 − r2
+

r2r2
+

. (2.3.3)
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The horizon radii r+ and r− are the solutions to f 2(r) = 0,

r2
± =

1

2

(
Ml2 ±

√
(Ml2)2 − J2l2

)
. (2.3.4)

We will find it useful to express the metric entirely in terms of r+ and r−, rather
than M and J , which are

M =
r2

+ + r2
−

l2
,

J =
2r+r−
l

.

(2.3.5)

We will assume without loss of generality that J is positive. The metric functions
in terms of r± are

Nφ(r) =
r−
r+

r2 − r2
+

lr2
(2.3.6)

and
f 2(r) =

(r2 − r2
+)(r2 − r2

−)

l2r2
. (2.3.7)

We introduce Kruskal coordinates by writing as before

U = −e−κu, (2.3.8)
V = eκv, (2.3.9)

where u, v = t∓ r∗ and the tortoise coordinate is

r∗ =
1

2κ
log

√
r2 − r2

− −
√
r2

+ − r2
−√

r2 − r2
− +

√
r2

+ − r2
−

(2.3.10)

where κ is given by

κ =
r2

+ − r2
−

l2r+

. (2.3.11)

This gives the metric

ds2 =
−4l2 dU dV − 4lr−(U dV − V dU) dφ+

[
(1− UV )2r2

+ + 4UV r2
−
]
dφ2

(1 + UV )2
.

(2.3.12)
Note that this derivation of Kruskal coordinates assumes r > r+ and is the

equivalent of the calculation for region I in the non-rotating case. As in the basic
case, we can extend the coordinate system to cover regions II–IV. In this case,
r > r+ gives two regions, I and IV (as in the basic case) while regions II and III
have r− < r < r+. The metric (2.3.12) covers all four regions. These four regions do
not cover r < r−, but are sufficient for our purposes. 6

6Note also that the Kruskal coordinates defined here are not those described by Bañados et al.
[9].
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2.3.2 Adding the perturbation

We consider a spherically symmetric shell which meets the boundary at some time
tw. For finite tw, the trajectory of this shell in the U , V plane depends on the
angular momentum it carries, but if we take the limit of large tw, we apply a large
boost in the U , V plane and the trajectory becomes approximately lightlike, along
a line of constant U as in the non-rotating case. (For any small part of the shell,
this line is also approximately constant in φ, regardless of the angular momentum
of the perturbation.) The matching problem is then very similar to that in the
non-rotating case. We glue two copies of the rotating BTZ spacetime together along
a shock at U = e−κtw . To the right of the shock, the black hole has mass M , angular
momentum J and coordinates U , V and φ, while to the left of the shock, we have
mass M̃ = M +E, angular momentum J̃ = J +L and coordinates Ũ , Ṽ and φ. We
impose continuity of t at the boundary and r across the shock. The result is a jump
in V ,

Ṽ = V + α, (2.3.13)

where
α =

∆r+

2κl2
eκtw (2.3.14)

exactly as in the non-rotating case. In terms of M , J , E and L

α =
r2

+

(r2
+ − r2

−)2

(
E

4M
(r2

+ + r2
−)− L

2J
r2
−

)
exp

(
r2

+ − r2
−

l2r+

tw

)
. (2.3.15)

Since the rotating black holes have a throat which grows infinitely long in the
extremal limit, one might think that, for near-extremal black holes, it would be
possible to add a shock that takes one away from extremality, lowering the length of
the wormhole. However, we find that so long as the second law of thermodynamics
is obeyed, so that ∆r+ > 0, the jump α is positive, as indicated by (2.3.14). We will
now see that this leads to a longer wormhole.

2.3.3 Geodesic lengths

As in the non-rotating case, we calculate the length of the geodesics in embedding co-
ordinates. For our co-rotating coordinates, the relation to the embedding coordinates
(adjusted from Bañados et al. [9, section III.B.3] to take into account the co-rotation)
is

T1 = ±
√
±B(r) sinh t̃(t, φ),

T2 =
√
A(r) cosh φ̃(t, φ),

X1 = ±
√
±B(r) cosh t̃(t, φ),

X2 =
√
A(r) sinh φ̃(t, φ),

(2.3.16)
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where
A(r) = l2

r2 − r2
−

r2
+ − r2

−
,

B(r) = l2
r2 − r2

+

r2
+ − r2

−

(2.3.17)

and
φ̃ =

r+φ

l

t̃ = κt− r−
l
φ.

(2.3.18)

Here the first ± in the formulae is positive for regions I and II and negative for
regions III and IV, while the second is positive for regions I and IV and negative
for regions II and III. The transformation from the Kruskal coordinates to the
embedding coordinates is then easily shown to be

T1 = l
V + U

1 + UV
cosh

r−φ

l
− l V − U

1 + UV
sinh

r−φ

l
,

T2 = l
1− UV
1 + UV

cosh
r+φ

l
,

X1 = l
V − U
1 + UV

cosh
r−φ

l
− l V + U

1 + UV
sinh

r−φ

l
,

X2 = l
1− UV
1 + UV

sinh
r+φ

l
,

(2.3.19)

with these relationships holding in all four regions.

We first consider a geodesic from a point at t = 0, φ = 0 on one boundary to the
point t = 0, φ = 0 on the other. As before, we must join geodesics from the two
boundary points at a general point on the shock and then extremize the geodesic
length. The complication relative to the discussion of Shenker and Stanford [72] is
that the geodesic may not meet the shock at φ = 0. We must therefore extremize
the geodesic length with respect to both the V and the φ coordinates of the meeting
point.

To the left of the shock, we need the distance from (t, r, φ) = (0, r, 0) (in region
IV) to (U ′, V ′, φ′) = (0, V + α, φ). The embedding coordinates of the first point are

T1 = 0,

T2 = l

√
r2 − r2

−

r2
+ − r2

−
,

X1 = −l

√
r2 − r2

+

r2
+ − r2

−
,

X2 = 0.

(2.3.20)
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while for the second point we get

T ′1 = l(V + α) cosh
r−φ

l
− l(V + α) sinh

r−φ

l
= l(V + α)e−r−φ/l,

T ′2 = l cosh
r+φ

l
,

X ′1 = l(V + α) cosh
r−φ

l
− l(V + α) sinh

r−φ

l
= l(V + α)e−r−φ/l,

X ′2 = l sinh
r+φ

l

(2.3.21)

If we let d1 be the length of the geodesic to the left of the shock, then

cosh
d1

l
=

1

l2
(T2T

′
2 −X1X

′
1)

=

√
r2 − r2

−

r2
+ − r2

−
cosh

r+φ

l
+ (V + α)

√
r2 − r2

+

r2
+ − r2

−
e−r−φ/l

' r√
r2

+ − r2
−

(
cosh

r+φ

l
+ (V + α)e−r−φ/l

)
.

(2.3.22)

For the geodesic to the right of the shock, the calculation proceeds as above, but
with the sign of X1 reversed for the boundary point and V +α replaced by V at the
shock. Hence

cosh
d2

l
' r√

r2
+ − r2

−

(
cosh

r+φ

l
− V e−r−φ/l

)
. (2.3.23)

To find the value of V that extremizes d = d1 + d2, we differentiate to get

1

l
sinh

(
d1

l

)
∂d1

∂V
=

r√
r2

+ − r2
−
e−r−φ/l, (2.3.24)

1

l
sinh

(
d2

l

)
∂d2

∂V
= − r√

r2
+ − r2

−
e−r−φ/l (2.3.25)

so that
∂d

∂V
=

lr√
r2

+ − r2
−
e−r−φ/l

(
1

sinh(d1/l)
− 1

sinh(d2/l)

)
. (2.3.26)

This vanishes if d1 = d2, which gives V = −α/2, as we might again have expected
from symmetry. Equation (2.3.23) now gives us

d

2l
= log

2r√
r2

+ − r2
−

+ log

(
cosh

r+φ

l
+
α

2
e−r−φ/l

)
, (2.3.27)

where we have used cosh−1 x ' ± log(2x) for large x. Note that since α > 0, the
perturbation must increase the length of the geodesic.

Extremizing (2.3.27) with respect to φ gives us

r+ sinh
r+φ

l
=
αr−

2
e−r−φ/l. (2.3.28)
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We define φ∗ to be the value of φ satisfying this equation and we let p(α) be the
contribution of the perturbation to the geodesic length d/l, i.e.

p(α) = 2 log

(
cosh

r+φ
∗

l
+
α

2
e−r−φ

∗/l

)
, (2.3.29)

so that
d

l
= 2 log

2r√
r2

+ − r2
−

+ p(α). (2.3.30)

Unfortunately, it appears that we cannot solve (2.3.28) analytically, except in
the special cases of non-rotating and extremal black holes. In the first case, we saw
earlier that φ∗ = 0 and

p(α) = 2 log
(

1 +
α

2

)
, (2.3.31)

while for extremal black holes when r+ = r− we get

φ∗ =
l

2r+

log (1 + α) (2.3.32)

and
p(α) = log(1 + α). (2.3.33)

In the general case, it is straightforward to show that both φ∗ and p(α) (and hence
the geodesic length) increase with α. Given the expressions for p(α) for the two
special cases, one would expect similar logarithmic increases in p(α) with respect to
α in the general case. The results of numerical calculations, displayed in figure 2.4,
would appear to confirm this.

Given the non-trivial behaviour of the angular coordinate for these geodesics,
there is the concern that it might be possible to find a shorter geodesic between
the boundary points, by allowing φ to go from zero on one boundary to φ = 2π

on the other. Applying the numerical calculations to general values of φ on the
boundaries is straightforward, resulting in figure 2.5. The monotonic increase in
geodesic length with the difference in angular coordinate confirms that the shortest
geodesic between matching boundary points is that calculated between matching
values of φ, not values differing by some multiple of 2π.

As in the non-rotating case, this increase in the length of the geodesics can be
interpreted as a decrease in the correlation functions of operators in the state |W 〉
created by acting with the perturbationW (tw). In the rotating black hole, the initial
value of the correlators before the perturbation is smaller, as the presence of the
denominator

√
r2

+ − r2
− in (2.3.30), rather than simply r+ as in (2.2.11), increases the

length of the geodesics. However, the dynamical evolution is as in the non-rotating
case, and the change in the length of the geodesics becomes appreciable when α is
of order one, at the scrambling time ts = κ−1 ln(κ/∆r+). As in the non-rotating
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Figure 2.4: Increase in the length of the geodesic, as a function of
the size of the jump in V coordinate at the shock. Here r+ = 1,
so the plot shows graphs for the non-rotating and extremal black
holes and four intermediate cases.

case, this scales logarithmically with the ratio of the energy of the black hole to
the energy of the perturbation. If we approach the extremal limit, ∆r+ could be
small compared with r+ but large compared to κ, but for this to change the scaling
form of ts, we would need to go to temperatures T of order of the energy of the
perturbation.

We can also consider the implications of the geodesic calculation for the entan-
glement entropy (as in Leichenauer [47]), which is also similar to the non-rotating
case. Consider the mutual information of two matching regions, one on each bound-
ary, with arc length φ and centred on the same angular coordinate. Firstly, the
entanglement entropy of one of the regions is, assuming φ < π,

SA =
l

4GN

(
2 log

2r√
r2

+ − r2
−

+ log sinh
(r+ + r−)φ

2l
+ log sinh

(r+ − r−)φ

2l

)
.

(2.3.34)
Meanwhile, the entanglement entropy of A ∪B is the smallest of

S
(1)
A∪B = SA + SB, (2.3.35)

S
(2)
A∪B =

l

2GN

(
2 log

2r√
r2

+ − r2
−

+ p(α)

)
. (2.3.36)

Now

S
(1)
A∪B −S

(2)
A∪B =

l

2GN

(
log sinh

(r+ + r−)φ

2l
+ log sinh

(r+ − r−)φ

2l
− p(α)

)
(2.3.37)
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Figure 2.5: Overall geodesic distance plotted against the value of
φ on the right hand boundary, for a range of different r−. Again,
r+ = 1, while φ is set to zero on the left hand boundary.

and if this is positive, then it gives the mutual information, I(A;B). Otherwise, the
mutual information is zero and there is no entanglement between the two regions.
Near extremality, we need to have large regions to have non-zero mutual information.
But our interest here is in the effect of the perturbation, and again the effect becomes
significant, decreasing the local entanglement, just when α becomes of order one.
Local entanglement is therefore reduced by the perturbation at a rate controlled by
the scrambling time.

2.4 The butterfly effect for charged BTZ

The calculation for rotating BTZ is interesting, but as the solution is still locally
AdS3, this is a rather special case. We would like to extend the above calculation to
further examples. As we will discuss in the next section, considering the correlators
for black holes in higher dimensions (charged or uncharged) is challenging. Therefore,
we consider here the calculation for a charged black hole in 2 + 1 dimensions. We
consider Einstein-Hilbert gravity coupled to an ordinary Maxwell field. (It is perhaps
more common to consider a Chern-Simons gauge field in this context, but then the
solution would remain locally AdS.)

The metric is
ds2 = −f(r) dt2 +

dr2

f(r)
+ r2 dφ2 (2.4.1)

where
f(r) =

r2

l2
−M − Q2

2
log

r

l
. (2.4.2)
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This is supported by a gauge field

A = Q log
r

r+

dt. (2.4.3)

We can introduce Kruskal coordinates where

U = −e−κu, (2.4.4)
V = eκv, (2.4.5)

where u, v = t∓ r∗ with a tortoise coordinate

r∗ = −
∫ ∞

r

dr

f(r)
, (2.4.6)

and κ = f ′(r+)/2 is the surface gravity. The metric in these coordinates is

ds2 =
f(r)

κ2UV
dU dV + r2 dφ2, (2.4.7)

where r is a function of U and V . In this case one cannot evaluate the integral in
(2.4.6) for the tortoise coordinate, so we cannot give a simple expression for r in
terms of U and V . Near the horizon r = r+,

lim
r→r+

r∗ =
1

2κ
ln

(
r − r+

r+

)
+

1

2κ
lnC (2.4.8)

for some finite constant C. This gives UV ≈ −C(r− r+)/r+, so the metric (2.4.7) is
regular there. The constant C can be determined numerically for generic parameter
values; in the extremal limit r+ → r−, it diverges as C ∼ 1/(r+ − r−) ∼ 1/κ, as in
the rotating case.

We consider perturbing this solution by throwing in a charged spherically sym-
metric shell from the left boundary at some early time tw. The shell will then
approximately follow the null trajectory U = e−κtw . The step change in the V
coordinate in the shock is determined by the same matching conditions, which give,
as before

Ṽ = V + α, (2.4.9)

where
α = C

∆r+

r+

eκtw . (2.4.10)

Here the relation between ∆r+ and the parameters of the shell would need to be
determined numerically for finite ∆r+ — for small perturbations adding m to the
black hole mass M and q to the charge Q we have

∆r+ ≈
1

2κ

(
m+Qq log

r+

l

)
. (2.4.11)
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However, we can see that positivity of the shift α continues to be related to the
second law.

2.4.1 Geodesic lengths

For this case, we cannot find the lengths of geodesics by using the embedding
coordinates, so we need to simply solve the geodesic equations numerically. Using the
symmetry of the solution we can reduce the problem to an effective one-dimensional
problem, for spacelike geodesics

ṙ2 = f(r)

(
1− L2

r2

)
+ E2, (2.4.12)

where E = f(r)ṫ and L = r2φ̇ are the constants of motion.
In the unperturbed spacetime, we are interested in geodesics in a constant-time

slice (at t = 0), so we take E = 0. Since ṙ2 = 0 only at r = r−, r = r+ or r = L and
since our geodesics will start at the boundary, they can only have turning points at
either r = r+ or r = L, whichever is the larger. For L > r+ we obtain geodesics that
return to the boundary from which they started. These will be used in calculations
of mutual information. Smaller values of L pass through the wormhole. In either
case, half the geodesic length is given by

d

2
= λturn =

∫ rturn

∞

dr

ṙ
=

∫ ∞

rturn

dr√
(1− L2/r2) f(r)

, (2.4.13)

where we have assumed that the affine parameter λ starts at zero on the boundary
and that ṙ is negative up to the half way point at λ = λturn. This integral is clearly
divergent. To find the convergent part, we calculate the integral up to some large
value R and subtract the divergent part, given by l logR. We also need to determine
the change in the angular coordinate,

∆φ

2
=

∫ λturn

0

L

r2
dλ. (2.4.14)

For the perturbed spacetime, we consider the geodesics connecting two points at
t = 0, φ = 0 on the two boundaries. The symmetry implies the minimal geodesic
connecting these points will have L = 0. It will run from the first boundary to some
point on the shock with arbitrary V coordinate and then to the second boundary; we
need to consider general points on the shock and extremise over the position. These
geodesics will then have E 6= 0. The turning points are solutions to f(r)+E2 = 0. If
E2 is large enough then there are no solutions, and the geodesic hits the singularity.
Alternatively, there will be two (possibly coincident) solutions to ṙ2 = 0, with values



30 Chapter 2. The Butterfly Effect...

of r between r− and r+. The geodesic will turn (or rather, start heading out again,
with ṙ > 0) at the larger of these solutions.

The simplest case is when E > 0. Then ṫ > 0 and so the geodesic reaches the
shock at r = r+ before reaching a turning point. After solving for r, we use

v̇ =
E −

√
(1− L2/r2) f(r) + E2

f(r)
, (2.4.15)

valid for ṙ < 0, and integrate to obtain v at the intersection with the shock. The
geodesic for E = 1, up to the shock, is shown in figure 2.6.7

Figure 2.6: Geodesic for L = 0, E = 1, up to the shock. Note that
r remains greater than r+ until the geodesic reaches the shock.

The more important case is when E < 0, as it is this case that will produce (half
of) the minimal length geodesic through the wormhole. We find that the geodesic
passes through the past horizon at r = r+, before reaching a turning point where ṙ
becomes positive and then finally reaching the shock. The geodesic length must be
calculated in two halves, before and after the turn. Up to the turn, with ṙ < 0, we
solve for r and u in terms of λ as before, but using

u̇ =
E +

√
(1− L2/r2) f(r) + E2

f(r)
(2.4.16)

7Creating this plot requires only a little more calculation than that needed for the calculation
of geodesic lengths — we must also determine values of the u coordinate along the geodesic and
then convert to U and V .
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to calculate u rather than v, since v behaves poorly upon crossing the past horizon.
We then convert u to v at the turn by adding 2r∗ using the region III formula for r∗.

To handle the second half, we integrate dr/ṙ from rturn to r+ to get λ at the
shock, and hence the length of the geodesic up to this point. We numerically solve
the differential equation for r back from the shock to the turning point and use the
result to solve for v. Geodesics for a range of negative values of E are shown in
figure 2.7.

Figure 2.7: Geodesics for L = 0 and E = −0.05,−0.1, . . . ,−0.45.
The red, topmost geodesic is for E = −0.05, with the hue changing
gradually as −E increases. Note that the geodesics all pass through
the past horizon and reach a turning point before hitting the shock.

If we now calculate geodesics for a sufficient number of values of E then we can
estimate the value of E required to hit any particular point on the shock. This allows
us to calculate the length of full geodesics across the shock. If the perturbation gives
a step change of α in the V coordinate upon crossing the shock, then for each value of
Vshock we sum the length of geodesics from the right boundary to (U, V ) = (0, Vshock)

and from the left boundary to (U, V ) = (0, Vshock +α). If we do this for, for example,
α = 4, then we obtain the results in figure 2.8. The lack of any extrema except
for the one expected by symmetry, at Vshock = −α/2, repeated for other values of
α, indicates that the geodesics joining matching points on the two boundaries cross
the shock at the centre of the conformal diagram. This allows us to easily plot the
geodesic length against α, as in figure 2.9.
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Figure 2.8: The sum of geodesic lengths from (U, V, φ) = (−1, 1, 0)
to (U, V, φ) = (0, Vshock, 0) to the right of the shock and (U, V, φ) =
(1,−1, 0) to (U, V, φ) = (0, Vshock + α, 0) to the left, plotted against
Vshock for α = 4. Geodesic length is extremal only at the centre of
the perturbed conformal diagram at Vshock = −α/2.

We see that the geodesic length increases monotonically with α, becoming sig-
nificant only for α of order one. Thus, as in the rotating case, the effect of the
perturbation on correlation functions and mutual information at t = 0 is determined
by the scrambling time at which α becomes of order one, ts ∼ κ−1 ln(r+/∆r+).

2.5 The butterfly effect in higher dimensions

Our investigations, and the original work on the butterfly effect by Shenker and
Stanford [72], have focused on black holes in three bulk dimensions, corresponding to
two-dimensional field theories. It would seem useful to extend the discussion to higher
dimensions, as in the study of mutual information by Leichenauer [47]. However,
there is a significant obstacle to doing so for correlation function calculations. In
more than three bulk dimensions, the correlation functions in the unperturbed
thermofield double state for t 6= 0 are not correctly reproduced by considering real
geodesics in the real Lorentzian geometry; one needs to take complexified geodesics
into account. This is shown by Fidkowski et al. [29], where it is revealed that, when
considering equal-time correlation functions, the geodesics in the real Lorentzian
geometry become null at some boundary time t = −t∗. This would correspond to a
singular correlation function.

The correlations we have been considering in the perturbed black hole are at
t = 0, but the calculation involves a geodesic on the right which goes from t = 0

on the boundary to a point on the shock at V = −α/2 (and on the left, from t = 0
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Figure 2.9: Geodesic length across the shock, plotted against the
strength of the shock as given by α.

on the boundary to a point on the shock at V = α/2). If we considered extending
this geodesic to the other boundary in the unperturbed geometry, it would meet the
other boundary at some t = −t0. Thus, this is just a time-translated version of the
geodesic that Fidkowski et al. [29] concluded was not relevant to the calculation of
the correlator on the real sheet.

The problem with using geodesics in the uncomplexified spacetime is further
signalled by the fact that when we consider the geodesic from the boundary to the
shock as a function of α, there is a critical value of α beyond which there is no longer
a spacelike geodesic which connects t = 0 on the boundary to V = −α/2 on the
shock. This is illustrated in figure 2.10. This critical value of α should correspond
to the critical time t∗ in the work of Fidkowski et al. [29].

Thus, in higher dimensions, to calculate correlators in the perturbed geometry in
the geodesic approximation, we would need to use complexified geodesics. However,
the shock wave spacetime is not an analytic solution, so it does not have a unique
complex extension allowing us to calculate the lengths of these complex geodesics.
This problem could perhaps be addressed by moving away from the shock wave
approximation and modelling the effects of the perturbation as some smooth deform-
ation, but this will lead to considerable technical complication, so we leave this for
future work.
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Figure 2.10: Geodesics for L = 0 and E = −0.5,−1, . . . ,−4.5 for
the simple 3+1 dimensional black hole. The black hole mass, M ,
and the AdS length, l, are both set to 1. The red geodesic is for
E = −0.5, with the hue changing gradually as −E increases. As
−E increases, the intersection with the shock moves away from
V = 0, reaches a critical point and then moves back towards, but
does not reach, V = 0.



Chapter 3

Divergences in Holographic
Complexity

3.1 Introduction
As mentioned in chapter 1, it was found that certain geometric features in the bulk
could not be described simply in terms of correlation functions or entanglement
entropy in the boundary theory. In particular, the continued expansion of the
Einstein-Rosen bridge long after the boundary theory thermalizes, led Susskind [81]
to propose a new relation between the bulk geometry and the quantum computational
complexity of the boundary state. This proposal was later refined into the CV
[79, 83, 82] and CA [18, 17] conjectures.

Evidence supporting these conjectures came from the study of black hole space-
times, with a focus on the rate of change of the complexity. Both conjectures produce
results for the complexity that grow linearly in time with

dC
dt
∝M. (3.1.1)

This is consistent with general expectations for the behaviour for excited states in
the field theory. Moreover, the results saturated a proposed bound on the growth of
complexity [17, 48], as predicted by a conjecture that black holes are not only the
fastest scramblers in nature but also the fastest information processors. However,
this emphasis on the rate of change of complexity meant that the divergences in
complexity were effectively ignored — they cancelled in the calculation of the rate
of change, given the static boundary spacetime.

In this chapter, prior to considering complexity for field theories on de Sitter
boundaries, we look in more detail at the divergence structure of the two forms
of holographic complexity. In both the CV and CA conjectures there are UV
divergences, as the volume or action of the spacetime region in the bulk is divergent
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near the boundary. We expect that, as for the holographic entanglement entropy
[70, 69], these divergences are physical, signalling divergent contributions to the
complexity associated with the UV degrees of freedom in the field theory. For
the entanglement entropy, the leading divergence is proportional to the area of
the entangling surface, and this can be understood as reflecting entanglement of
UV modes across this boundary [15, 77]. While a detailed understanding of the
divergences of the complexity from the field theory perspective does not yet exist,
we can study the divergences in the holographic calculation, and see if they have a
reasonable form. It is also interesting to compare the divergences between the CV
and CA prescriptions, and see to what extent they compute different versions of
complexity.

As our work on the divergence structure of the holographic complexity was com-
pleted, a preprint [20] of a paper appeared that also studied these divergences. Our
research into these divergences, presented in this chapter, adds a simple observation
to that work. There is a counterterm identified by Lehner et al. [46] that, when
added to the action, cancels a coordinate-dependence in that prescription for the
action. We find that adding this contribution also cancels the leading divergence in
the CA prescription, so that the divergence structure of this action is the same as
in the CV case. The leading divergence in both cases is then proportional to the
volume of the boundary time slice, which appears reasonable from a field theory
perspective. Considering subleading contributions, we find that in both cases they
can be expressed in terms of the geometry of the boundary slice, but the CV and
CA prescriptions differ.

Having already reviewed the CV and CA conjectures and the prescription for
calculating the action [46] in chapter 1, we start by considering the divergences in
the CV and CA calculations for AdS in Poincaré coordinates in section 3.2, showing
how including the counterterm cancels the leading divergence in the CA calcula-
tion. Section 3.3 considers subleading contributions, showing that they have similar
structures, depending on local geometric invariants of the boundary geometry, but
noting that the two prescriptions will differ in general. This difference is illustrated
in section 3.4 where we study the computation on global AdS.

3.2 UV divergences for AdS in Poincaré
coordinates

The simplest case to consider is AdSd+1 in Poincaré coordinates,

ds2 =
`2

z2
(dz2 − dt2 + d~x2), (3.2.1)
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which is dual to the field theory in flat space. We consider a d + 1 dimensional
AdS space, with a d dimensional boundary. If we ask for the complexity of the
field theory on the t = 0 surface, cut off at z = ε, the Wheeler-DeWitt patch lies
between t = z − ε and t = −(z − ε), as shown in figure 3.1. Note that although

z = 0

t = 0

F

P

z = ϵ

Σ

t = z - ϵ 

t = -(z - ϵ)

t

z

W

Figure 3.1: The Wheeler-DeWitt patch,W , in Poincaré coordinates,
showing future and past boundaries F and P and the surface Σ at
t = 0, z = ε.

these coordinates do not cover the full spacetime, the Wheeler-DeWitt patch lies
inside the region covered by this coordinate patch, as shown in figure 3.2, so we can
calculate its action in these coordinates.

For the CV conjecture, the maximal volume slice with boundary at t = 0 is
simply the t = 0 surface in the bulk, whose volume is

V (B) =

∫
dz dd−1x

√
h = `dV~x

∫ ∞

ε

dz

zd
=

`dV~x
(d− 1)εd−1

, (3.2.2)

where V~x is the IR divergent coordinate volume in the ~x directions. Thus, the
complexity calculated according to the CV prescription is, up to an overall constant,

CV =
`d−1V~x

(d− 1)GNεd−1
. (3.2.3)

This is proportional to the volume of the space the field theory lives in, in units of the
cutoff. This has both an IR and a UV divergence, which is physically reasonable if we
think of the complexity as defined using some product lattice state as the reference
state. A Hadamard state in the field theory will not have such a product structure;
the absence of high energy excitations implies short range entanglement/correlation
in the state. Setting up this entangled state from the reference product state would
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Figure 3.2: AdS, showing the region covered by Poincaré coordinates
and the Wheeler-DeWitt patch of the t = 0 surface.

require a number of elementary operations that is expected to grow proportional to
the number of lattice sites.

Turning to the CA conjecture, consider the Wheeler-DeWitt patch of this cutoff
surface.1 Referring back to (1.3.3), the action of the Wheeler-DeWitt patch with
the prescription of Lehner et al. [46] is

SW =

∫
W

(R− 2Λ)
√
−g dV − 2

∫
F

κ dS dλ+ 2

∫
P

κ dS dλ− 2

∮
Σ

a dS, (3.2.4)

where F (P ) is the future (past) null boundary of the Wheeler-DeWitt patch, and Σ

is the surface at t = 0, z = ε, as shown in figure 3.1. The light cones of the boundary
surface are at t = ±(z − ε), and R− 2Λ = −2d/`2, so the volume integral is

SVol = −2
d

`2

∫ ∞

ε

dz

∫ z−ε

−(z−ε)
dt
`d+1

zd+1
V~x = −4

`d−1V~x
(d− 1)εd−1

. (3.2.5)

This has a very similar structure to the volume in (3.2.2), but this term is negative,
so it is clearly important to include the boundary contributions identified by Lehner
et al. [46] to obtain a sensible result for the complexity.

In calculating (3.2.4), it is convenient to adopt an affine parametrization of

1We could alternatively take the original Wheeler-DeWitt patch of the surface at t = 0, z = 0
and cut off the corner at z = ε, producing a small timelike boundary component. This would
produce a different set of coefficients for subleading divergences [20].
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the null surfaces, so that the integrals over the future and past boundaries do not
contribute. Let us take the affine parameters along the null surfaces to be

λ = − `
2

αz
on F, λ =

`2

βz
on P, (3.2.6)

where we introduce the arbitrary constants α, β to exhibit explicitly the remaining
coordinate dependence. The future directed tangents to surfaces F and P are then

k =
αz2

`2
(∂t + ∂z), k̄ =

βz2

`2
(∂t − ∂z). (3.2.7)

Using (1.3.4), i.e. a = ln
∣∣k.k̄/2∣∣, we find that the boundary corner term is

SΣ = −2
`d−1V~x
εd−1

ln(αβε2/`2). (3.2.8)

Thus, the action calculated according to (3.2.4) is

SW =
`d−1V~x
εd−1

[
−4 ln(ε/`)− 2 ln(αβ)− 4

d− 1

]
. (3.2.9)

This has two undesirable features: it depends on the normalization α, β of the affine
parameters on the two null surfaces, and it diverges like ε−(d−1) ln ε, which is faster
than the volume of the space the field theory lives in. These effects drop out if
we consider the rate of change of the complexity as in (3.1.1), but they are both
problematic if we want to consider the action as dual to the actual complexity of the
state. The first implies that the identification will require some choice of normaliza-
tion for the affine parameters, which seems strange; these are just coordinates and
should have no physical content. The second implies the complexity would have a
stronger than volume divergence, which seems not so easy to understand in terms
of a simple lattice model.

Fortunately, both these problems are removed once we include the additional
contribution (1.3.5). The metric on F has √γ = `d−1/zd−1, so the expansion is

Θ =
1
√
γ

∂
√
γ

∂λ
= − 1
√
γ
α
z2

`2

∂
√
γ

∂z
= (d− 1)α

z

`2
, (3.2.10)

with the result that, setting c = ` in (1.3.5), the surface counterterms are given by

SF = −2(d− 1)`d−1V~x

∫
z−(d−2) ln (α(d− 1)z/`)αdλ

= 2(d− 1)`d−1V~x

∫ ∞
ε

z−d ln (α(d− 1)z/`) dz

= 2
`d−1

εd−1
V~x

(
ln (α(d− 1)ε/`) +

1

d− 1

)
,

(3.2.11)
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and
SP = 2

`d−1

εd−1
V~x

(
ln (β(d− 1)ε/`) +

1

d− 1

)
. (3.2.12)

We therefore get

S = SW + ∆S = SVol + SΣ + SF + SP = 4
`d−1

εd−1
V~x ln(d− 1). (3.2.13)

The dependence on α and β cancels out by construction, as the additional terms were
introduced to eliminate the coordinate dependence in the unadjusted action (1.3.3).
The surprise is that this also leads to the cancellation of the logarithmic divergence.2

This provides a strong additional support for the idea that the counterterm (1.3.5)
should be included in the calculation of the action. The result now has the same
structure as that obtained in the CV calculation (3.2.3); since we do not understand
the relation between the complexity and spacetime very precisely, the difference in
the overall coefficient is not particularly significant.

3.3 Subleading divergences

If we consider asymptotically AdS spacetimes, there will also be subleading diver-
gences. It is interesting to consider these contributions and investigate whether the
cancellation of the leading logarithmic divergence, through the addition of the surface
counterterms, also extends to subleading logarithmic terms. It is also interesting to
compare the structure of divergences in the CV and CA prescriptions.

We consider an asymptotically AdSd+1 solution of the vacuum Einstein equations.
The metric in the asymptotic region can then be written in the Fefferman-Graham
gauge [28, 30]

ds2 =
`2

z2
(dz2 + gµν(x

µ, z) dxµ dxν), (3.3.1)

where the metric along the boundary directions has a power series expansion in z,

gµν(x
µ, z) = g(0)

µν (xµ) + z2g(1)
µν (xµ) + . . . . (3.3.2)

We can give a simple general argument which shows that the cancellation of the
leading logarithmic term extends to all the terms of the form ε−n log ε. Logarithmic

2For the case d = 1, that is AdS2, the null surfaces are one-dimensional, and there is no
expansion, so we cannot define a term analogous to (1.3.5) to cancel the logarithmic divergence. In
this case the CV calculation is also logarithmically divergent. It would be interesting to understand
this better, as this case will emerge if we want to apply these complexity ideas to near-horizon
geometries of near-extremal black holes.
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divergences come from the corner contribution,

SΣ = −2

∮
Σ

ln
∣∣k · k̄/2∣∣√γ dd−1σ, (3.3.3)

and from the counterterm contributions on the two null surfaces. Considering the
future surface, setting c = ` in (1.3.5), we get

SF = −2

∫
Θ ln |`Θ| √γ dd−1x dλ. (3.3.4)

Now using the fact that the expansion is Θ = 1√
γ

∂
√
γ

∂λ
, we can rewrite this as

SF = −2

∫
∂λ
√
γ ln |`Θ| dd−1x dλ, (3.3.5)

and integrate by parts on λ. Since Σ is a past endpoint of the future surface, we
obtain

SF = 2

∮
Σ

√
γ ln |`Θ| dd−1σ + 2

∫
√
γ
∂λΘ

Θ
dd−1x dλ, (3.3.6)

dropping a boundary term at the other boundary of the null surface which is irrelevant
to the asymptotic calculation. The second term will only contribute power-law
divergences, so the logarithmic divergences will come solely from the integral over Σ.
Note also that it is this integral over Σ which cancels the coordinate-dependence in
(1.3.3); the second term is coordinate-independent.3 There is a similar contribution
from the past surface;

SP = 2

∫
∂λ
√
γ ln |`Θ| dd−1x dλ, (3.3.7)

and the boundary term has the opposite sign because Σ is a future boundary of the
past surface, so

SP = 2

∮
Σ

√
γ ln |`Θ| dd−1σ − 2

∫
√
γ
∂λΘ

Θ
dd−1x dλ. (3.3.8)

The logarithmic divergences in the full action are then contained in the terms
involving integrals on Σ,

S = . . .+ 2

∮
Σ

(
ln |`ΘF |+ ln |`ΘP | − ln

∣∣k · k̄/2∣∣)√γ dd−1σ. (3.3.9)

We know from the previous calculation that the leading order logarithmic term
cancels. Subleading terms coming from the expansion of √γ will then also cancel.
Subleading terms in the argument of the logarithm will give power law divergences,

3In fact, one could take an alternative prescription for resolving the issues in (1.3.3) where one
just added the first term in (3.3.6), rather than the whole expression (1.3.5).
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once we expand ln(ε+Bε2 + . . .) = ln ε+ln(1+Bε+ . . .) ≈ ln ε+Bε+ . . .. Thus, there
are no subleading terms of the form ε−n ln ε; once we include (1.3.5) the divergences
are a power series expansion in ε.4

We will now extend the explicit calculation of the first subleading corrections to
the action of Carmi et al. [20] to include the additional contribution along the null
surfaces. We will see explicitly that the logarithmic terms cancel, as predicted by
the general argument above. We assume we are in d > 2 where the term of order z2

is determined locally by the boundary metric g(0)
µν , [23, 76]

g(1)
µν (xµ) = − `2

(d− 2)

(
Rµν

[
g(0)
]
− g

(0)
µν

2(d− 1)
R
[
g(0)
])

, (3.3.10)

where Rµν and R are the Ricci tensor and Ricci scalar for the boundary metric. It
should be straightforward to extend the analysis to further subleading orders, but
we will see interesting differences already at the first subleading order.

We consider a boundary slice at t = 0, in the cutoff surface at z = ε, and
calculate subleading divergences in the complexity. As in Carmi et al. [20], we
restrict consideration to cases where the boundary metric is

g(0)
µν dx

µ dxν = −dt2 + hab(t, σ
a) dσa dσb. (3.3.11)

This is general enough to include many cases of interest, and considerably simplifies
the determination of the Wheeler-DeWitt patch.

Carmi et al. [20] determined the subleading contributions to the volume of the
maximal slice, finding them to be

CV =
`d−1

(d− 1)GNεd−1

∫
dd−1σ

√
h

[
1

− d− 1

2(d− 2)(d− 3)
ε2
(
Ra
a −

1

2
R− (d− 2)2

(d− 1)2
K2

)
+ . . .

]
, (3.3.12)

where h is the determinant of the metric hab in (3.3.11) at t = 0, Ra
a = habRab is the

trace of the projection of the boundary Ricci tensor into the t = 0 surface, and K
is the trace of the extrinsic curvature of the t = 0 surface in the boundary metric
(3.3.11). Thus, the first subleading divergence can be expressed in terms of local
geometric features of the boundary metric. Carmi et al. [20] also evaluated the first

4This argument is valid for all the terms of the form ε−n log ε for n > 0; once we reach the order
in the Fefferman-Graham expansion where we encounter the free data in the asymptotic expansion,
there may be contributions to either CV or CA calculations at order log ε.
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subleading contributions to the action (1.3.3), obtaining

CA(SW ) = − `d−1

4π2GN(d− 1)εd−1

∫
dd−1σ

√
h

[
1

+
ε2

4(d− 2)(d− 3)

(
4K2 + 4KabK

ab + (d− 7)R− 2(d− 3)Ra
a

)]
+

`d−1

4π2GNεd−1
log

(
`√
αβε

)∫
dd−1σ

√
h

[
1− ε2 1

2(d− 2)

(
Ra
a −

1

2
R

)]
+ . . .

(3.3.13)

We want to consider the effect of adding the counterterm (1.3.5).

A key feature of the calculation of Carmi et al. [20] is that the assumption that
the boundary metric has the form (3.3.11) implies that at first subleading order, the
tangents to the null generators take the form

k =
α

`2
(z2∂z + kt∂t), k̄ =

β

`2
(−z2∂z + kt∂t), (3.3.14)

where kt is determined by requiring these to be null vectors, kµkµ = 0, which
gives kt = z2g

−1/2
tt . This implies that the form of the affine parameter in (3.2.6) is

unchanged to first subleading order.

Near the boundary, the induced metric on the surfaces of constant λ in the null
surfaces is thus γab = z−2hab + g

(1)
ab + . . .. Following Carmi et al. [20], we write

√
γ =

`d−1

zd−1

√
h
([

1 + q
(2)
0 z2 + . . .

]
+
[
q

(0)
1 + . . .

]
t+
[
q

(0)
2 + . . .

]
t2 + . . .

)
, (3.3.15)

keeping the first terms in an expansion for small z and t, where h is the determinant
of hab(σa, t = 0). Along the null surface t = (z − ε) +O(z3),

√
γ =

`d−1

zd−1

√
h
(

1 + q
(0)
1 (z − ε) + q

(2)
0 z2 + q

(0)
2 (z − ε)2 + . . .

)
, (3.3.16)

∂z
√
γ = − `d−1

zd

√
h
(

(d− 1) + q
(0)
1 ((d− 2)z − (d− 1)ε) + q

(2)
0 (d− 3)z2

+ q
(0)
2

(
(d− 3)z2 − 2(d− 2)zε+ (d− 1)ε2

)
+ . . .

)
,

(3.3.17)

so the expansion is

Θ =
αz

`2

[
(d− 1)− q(0)

1 z − 2q
(2)
0 z2 − 2q

(0)
2 z(z − ε) + q

(0)2
1 z(z − ε) + . . .

]
(3.3.18)



44 Chapter 3. Divergences in Holographic Complexity

Performing the integral over z, one finds

SF = 2
`d−1

εd−1

∫
Σ

dd−1σ
√
h

[
ln(α(d− 1)ε/`)(1 + q

(2)
0 ε2)

+
1

(d− 1)

(
1− q(0)

1 ε− q(2)
0

d− 1

d− 3
ε2 − 2

q
(0)
2

d− 3
ε2 + q

(0)2
1

1

2(d− 3)
ε2

)]
.

(3.3.19)

SP will have the same form, but with the sign of q(0)
1 reversed, as the past surface is

t = −(z − ε) +O(z3). Thus, the correction to the action is

SF + SP = 4
`d−1

εd−1

∫
Σ

dd−1σ
√
h

[
ln
(√

αβ(d− 1)ε/`
)(

1 + q
(2)
0 ε2

)
+

1

(d− 1)

(
1− q(2)

0

d− 1

d− 3
ε2 − 2

q
(0)
2

d− 3
ε2 + q

(0)2
1

1

2(d− 3)
ε2

)]
.

(3.3.20)

Using the geometric expressions obtained by Carmi et al. [20],

q
(0)
1 = K,

q
(0)
2 =

1

2
(K2 +KabK

ab +Ra
a −R),

q
(2)
0 = − 1

2(d− 2)

(
Ra
a −

1

2
R

)
,

(3.3.21)

we can see that the logarithmic term will cancel with the contribution in (3.3.13),
as expected, including the subleading correction. The power law terms will combine
with those in (3.3.13) to give us a result for the complexity

CA(S) =
`d−1

4π2GNεd−1

∫
dd−1σ

√
h

[
ln(d− 1)

(
1− ε2

2(d− 2)

(
Ra
a −

1

2
R

))
− ε2d

2(d− 1)(d− 2)(d− 3)
K2 − ε2

(d− 2)(d− 3)
KabK

ab

+
ε2d

2(d− 1)(d− 2)(d− 3)
R

]
.

(3.3.22)

We see that this has a similar structure to the CV result (3.3.12), but with different
coefficients for the subleading terms.
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Figure 3.3: The Wheeler-DeWitt patch in global AdS.

3.4 Global AdS

A simple example which illustrates the difference between CV and CA is to consider
pure AdS in global coordinates,

ds2 =
`2

cos2 θ
(−dt2 + dθ2 + sin2 θ dΩ2

d−1). (3.4.1)

We consider a slice of the boundary at t = 0, cutoff at θ = θcut = π/2 − ε. The
maximal volume slice is again t = 0 in the bulk, and the volume is simply

V (B) =

∫
dθ dΩ

√
h = `dΩd−1

∫ θcut

0

dθ

cos θ
tand−1 θ, (3.4.2)

where Ωd−1 is the volume of a unit Sd−1.

We again calculate the action of the Wheeler-DeWitt patch of the cutoff boundary
at θ = θcut, as depicted in figure 3.3. The future boundary is at t = θcut − θ, while
the past boundary is at t = θ − θcut. The volume term in (3.2.4) is

SVol = −4d

`2

∫ θcut

0

dt′
∫ t′

0

dθ

∫
dΩd−1

√
−g

= −4dΩd−1`
d−1

∫ θcut

0

dt′
∫ t′

0

dθ
sind−1 θ

cosd+1 θ

= −4Ωd−1`
d−1

∫ θcut

0

dt′ tand t′.

(3.4.3)

In the first step, we wrote the volume term as twice the integral over the future
half of the Wheeler-DeWitt patch. We choose an affine parameter λ, so that the
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integrals over the future and past boundaries in the unadjusted action (1.3.3) do not
contribute. An appropriate parameter is λ = −α−1` tan θ on F and λ = β−1` tan θ

on P , where we have introduced the arbitrary parameters α, β purely so that we
can see that they will cancel out once we add the counterterm. The future-pointing
tangent is then

k =
α

`
cos2 θ(∂t − ∂θ) (3.4.4)

on F and
k̄ =

β

`
cos2 θ(∂t + ∂θ) (3.4.5)

on P , so the corner contribution to the action is

SΣ = −2Ωd−1`
d−1 tand−1 θcut ln

(
αβ cos2 θcut

)
. (3.4.6)

Adding the counterterm, the expansion on F is

Θ =
1
√
γ

∂
√
γ

∂λ
= − 1
√
γ

α

`
cos2 θ

∂
√
γ

∂θ
= −α

`
cos2 θ cotd−1 θ∂θ(tand−1 θ)

= −α
`

(d− 1) cot θ,

(3.4.7)

and similarly on P ,
Θ =

β

`
(d− 1) cot θ. (3.4.8)

Thus the surface terms are

SF = −2Ωd−1`
d−1

∫
Θ ln |Θ| tand−1 θ dλ

= 2(d− 1)Ωd−1`
d−1

∫ θcut

0

tand−2 θ

cos2 θ
ln (α(d− 1) cot θ) dθ,

= 2Ωd−1`
d−1

[
tand−1 θcut ln (α(d− 1) cot θcut) +

1

(d− 1)
tand−1 θcut

] (3.4.9)

and

SP = 2Ωd−1`
d−1

∫
Θ ln |Θ| tand−1 θ dλ

= 2Ωd−1`
d−1

[
tand−1 θcut ln (β(d− 1) cot θcut) +

1

(d− 1)
tand−1 θcut

] (3.4.10)

so in total

S = SV + ∆S = SVol + SΣ + SF + SP

= −4Ωd−1`
d−1

∫ θcut

0

dt′ tand t′ + 4Ωd−1`
d−1 tand−1 θcut

(
ln(d− 1) +

1

d− 1

)
.

(3.4.11)

We see that while the leading UV divergence is the same as for the volume (3.4.2),
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the integrals are different, so the functional dependence on θcut is different for CV
and CA. The two conjectures for the complexity are inequivalent. However, as noted
by Carmi et al. [20] (appendix C), the form of the subleading contributions in the
CA calculation here depends on how we choose to cut off the Wheeler-DeWitt patch,
so it is not clear how much physical meaning it carries.





Chapter 4

Complexity in de Sitter Space

4.1 Introduction

In initial studies, evidence for the CV and CA conjectures came from the study
of AdS black holes, with the boundary spacetime taken to be simple Minkowski
space. However, it is clearly of interest to consider holographic complexity in other
settings, if only to provide additional tests for the conjectures. In this chapter, we
consider solutions with are asymptotically AdS, but in a de Sitter slicing, dual to
field theories in de Sitter space. This is an appealing test case, firstly because it
provides a simple example where the field theory is in a time-dependent background,
so we can study how the time-dependence of the complexity of the state is affected
by time-dependent sources, and secondly because simple bulk duals are known.

This situation also has some features in common with the black hole case. In the
field theory, we consider some de Sitter-invariant state on a de Sitter background.
This is a globally pure state, but the state seen by a given observer will appear
thermal. This thermal structure comes from entanglement between degrees of free-
dom at antipodal points in the de Sitter space, whose structure is similar to that
between the two copies in a thermofield double state. In the bulk, the geometries
dual to some such states have horizons, while other cases do not, so they provide
another example where one can study the relation of bulk horizons and the behind
the horizon geometry to the complexity. The entanglement structure in this case was
investigated by Maldacena and Pimentel [52], providing important inspiration for
our work. Complexity of these solutions was also previously considered by Barbón
and Rabinovici [11].

In section 4.2, we discuss the general features we would expect in the complexity
in de Sitter space from the field theory point of view and set up the holographic
calculation, discussing general features of the asymptotically AdS spaces we consider
and introducing a particular set of de Sitter×S1 examples that we will focus on. We
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find that if we work in flat coordinates on the de Sitter space, the time dependence
of the complexity is fixed by the de Sitter symmetry. This is a surprisingly simple
behaviour, and qualitatively different from the time dependence of the entanglement
entropy found by Maldacena and Pimentel [52]. For the de Sitter × S1 examples,
there are explicitly known bulk geometries, which either end in a ‘bubble of nothing’,
or have a bulk horizon, with a crunching FRW region beyond it.

In section 4.3, we discuss the calculation using the CV conjecture. We find that
the growth rate of the complexity for the bubbles is smaller than for the black holes,
as the spatial slice ends on the bubble. This is consistent with the proposed relation
of growth rate to energy, as the bubbles have smaller energy than the black hole,
although the bound is not saturated; for large bubbles the difference in complexity
grows more slowly than the difference in energy.

In section 4.4, we perform calculations using the CA conjecture. We find that
the growth rate for the complexity for the bubbles in this case is larger than for the
black holes: this is due to a negative spacetime volume contribution to the action.
This is contrary to the general expectations for the behaviour of the complexity.
Furthermore, for small bubbles, there is a logarithmic growth in the complexity as
the bubble shrinks, whereas the volume calculation approaches a finite limit. We note
that the prescription we use for calculating the action is not unique, and consider
options for modifying it. We give concluding remarks in section 4.5.

4.2 de Sitter complexity
In this section we set up the calculation of complexity for field theories in de Sitter.
We first consider the expectations from the field theory side, and then describe the
bulk geometries dual to field theories in de Sitter, which will be used in the following
sections to evaluate the complexity using the CV and CA conjectures.

4.2.1 Field theory considerations

We will find it convenient to analyse the complexity in conformally flat coordinates
on the de Sitter space,

ds2 =
1

H2η2
(−dη2 + d~x2), (4.2.1)

as there is a symmetry relating surfaces of different η. The surfaces of η = constant
are Cauchy surfaces for de Sitter, so we are measuring the complexity of the global
pure state on the full de Sitter space. This is however a different physical question
from asking about the τ = constant slices in global coordinates,

ds2 = H−2(−dτ 2 + cosh2 τ dΩ2
d−2), (4.2.2)
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as they are different spacelike surfaces in the de Sitter space. It would be interesting
to also study the situation in global coordinates, but we will not explore this here.
We will consider the flat patch including the future boundary of de Sitter space, so
in (4.2.1), η ∈ (−∞, 0), with the future conformal boundary at η = 0. We will write
formulas for a d− 1 dimensional de Sitter space, as in our most prominent examples,
we take the d-dimensional boundary to be de Sitterd−1 × S1.

We have argued above that a volume law divergence for complexity in field
theory is a generic expectation. In the context of de Sitter, this contribution to
the complexity will grow with time, as the proper volume of the spatial slices of
the universe grows. Relative to a fixed cutoff, the number of lattice sites will grow
with the volume, and we would expect the UV divergent part of the complexity to
be proportional to the proper volume. In the flat coordinates (4.2.1), this proper
volume is infinite, due to the infinite volume in the spatial ~x directions. This is an
IR divergence in addition to the UV divergence, as in the Poincaré-AdS calculation
of the previous chapter.

In the holographic calculations, the volume of the bulk surface or action of the
Wheeler-DeWitt patch will involve an integral over these spatial directions, so the
IR divergence is simply the volume V~x in these directions, multiplied by some overall
factor. It is plausible that this is true more generally, i.e. that C ∝ V~x. Whenever this
holds, we can use this simple relation to fix the time dependence of the complexity
by symmetry. In the flat coordinates (4.2.1), there is a symmetry under η → λη,
~x → λ~x. The complexity of a de-Sitter invariant state should be invariant under
this symmetry, which implies that if it is proportional to the spatial volume, the
complexity of the state measured on a slice of fixed η must be

C =
V~x

|η|d−2
c(|Ψ〉), (4.2.3)

where c(|Ψ〉) is independent of time.

More generally, the holographic results for homogeneous boundary spaces will
always be of the form

C = VΣc (4.2.4)

where VΣ is the proper volume of the boundary spatial slice, and c is a “complexity
density”. In the black hole case this was a non-trivial function of time, which becomes
linear at late times. For a de Sitter-invariant state the complexity density is constant
by virtue of the symmetries.

This behaviour is qualitatively different to that seen in the study of the entan-
glement entropy in de Sitter by Maldacena and Pimentel [52]. There, the authors
found that the entanglement entropy of a finite region in the ~x coordinates in the
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spatial slice at constant η generically has a finite part with time dependence

SUV−finite = c5
Ax
ηd−3

+ c6 log η + (indep of η), (4.2.5)

where Ax is the coordinate area, in the spatial ~x coordinates, of the boundary of the
region considered. The first term is analogous to our result, while the second provided
a signal of the existence of horizons in the bulk. The complexity is simpler because
the holographic calculations always give us a complexity simply proportional to the
volume V~x. The complexity associated with subregions [1, 12, 6] could have a more
complicated behaviour, but since we have less understanding of the expectations of
the behaviour of subregion complexity, we will not consider it here.

This simplicity of the time dependence does not mean that everything is fixed by
symmetry. As we will review below, in the holographic context there are multiple
solutions with the same de Sitter asymptotics, corresponding to different de Sitter-
invariant states on the same background. We would expect the difference between
these states to be reflected in the complexity. Prompted by the bound (1.3.2), we
will compare the difference in complexity to the difference in energy between the
states.

4.2.2 Bulk solutions

We study the field theory holographically by considering asymptotically anti-de Sitter
spacetimes with a de Sitter boundary. The simplest example is a pure conformal
field theory, which is simply dual to AdSd in the de Sitter slicing,

ds2 = `2

(
dρ2 +

sinh2 ρ

η2
(−dη2 + d~x2)

)
. (4.2.6)

This is related to AdS in Poincaré coordinates (3.2.1) via

z = − η

sinh ρ
, t = η coth ρ. (4.2.7)

On the boundary, the η and t coordinates coincide, and the de Sitter and Poincaré
coordinates are related simply by a conformal transformation that turns the t = 0

slice in Poincaré coordinates into the future boundary of the de Sitter space, with
the flat patch lying in the t < 0 half of the Poincaré coordinates on the boundary.
The de Sitter slices of constant ρ in the coordinates (4.2.6) are surfaces of constant
t/z in the Poincaré coordinates, and there is a horizon at ρ = 0, as shown in figure
4.1.

More generally, for asymptotically AdS solutions, the de Sitter symmetry implies
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ρ = 1

ρ = 0

t = 0

Figure 4.1: The region of AdS covered by the de Sitter slicing
(4.2.6). The coordinates cover the right triangle, where surfaces of
constant ρ are plotted. The lower diagonal is the Poincaré horizon
z →∞, t→ −∞; the shaded region is the past half of the Poincaré
patch. The de Sitter coordinates have an additional horizon at ρ = 0.
The region beyond this can be described by an FRW geometry of
the form (4.2.9). In pure AdS the horizontal line at the top is just
t = 0 in Poincaré coordinates. In the de Sitter × S1 examples we
consider later, this is a ‘singularity’ where the identification becomes
null.

that we can write the bulk geometry as

ds2 = `2

(
dρ2 +

a2(ρ)

η2

(
−dη2 + d~x2

))
, (4.2.8)

for some function a(ρ) such that a→ sinh ρ as ρ→∞.

There are two qualitatively different possibilities for the bulk geometry [52]: it
could end at some ρ with a(ρ) > 0; this is referred to as a ‘gapped’ phase, as it
has the structure expected for a FT with an IR cutoff on de Sitter. Alternatively,
the geometry could continue to a horizon, where a(ρ) = 0. This is referred to as
an ‘ungapped’ phase. The pure AdS solution (4.2.6) is an example of an ungapped
phase, but while pure AdS is smooth, generically for an ungapped phase we will
have an FRW geometry beyond the horizon,

ds2 = `2

(
−dτ 2 +

a2(τ)

η2

(
dη2 + d~x2

))
, (4.2.9)
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with a(τ) rising from zero at the horizon to some maximum value, and then returning
to zero at a ‘big crunch’ singularity.

We will focus our analysis on some states where bulk geometries are known
analytically, which are obtained by considering the field theory on de Sitterd−1 × S1.
A geometry with this boundary can be obtained by double analytic continuation
of the Schwarzschild-AdS black hole. This gives the ‘bubble of nothing’ spacetime
[14, 7]

ds2 = f(r) dχ2 + f(r)−1 dr2 +
r2

η2
(−dη2 + d~x2), (4.2.10)

with
f(r) = 1 +

r2

`2
− rd−2

0

rd−2
. (4.2.11)

If we do a Kaluza-Klein reduction over the χ circle, this provides an example of a
geometry in the gapped phase. The reduced geometry is, however, singular, so it is
simpler to analyse this case in the higher-dimensional geometry, where the geometry
is smooth. The geometry ends at r = r+, where f(r+) = 0. The circle direction
closes off smoothly at this radius if we identify χ with period

∆χ =
4π`2r+

r2
+d+ `2(d− 2)

. (4.2.12)

This coordinate system is valid at all r ≥ r+, so there is no horizon in the bulk. The
quadratic relation between ∆χ and r+ implies that there is a maximum value of ∆χ

for which a bubble solution exists, ∆χmax = 4π`/
√
d(d− 2). For all smaller values

of ∆χ, there are two bubble solutions, one with small r+ and one with large r+. The
relationship between r0 and r+ is rd−2

0 = rd−2
+ (1 + r2

+/`
2).

An alternative geometry with the same asymptotics is obtained by setting r0 = 0

in the above solution. This solution is simply AdS with a periodic identification (it
is the analytic continuation of thermal AdS, where the time circle becomes the χ
circle in our spacetime). This could be rewritten as

ds2 = cosh2 ρdχ2 + `2

[
dρ2 +

sinh2 ρ

η2
(−dη2 + d~x2)

]
(4.2.13)

by setting r = ` sinh ρ. In this case we can choose the period of χ freely. The
fact that the geometry is locally AdSd+1 makes the analysis of this case particularly
straightforward.

This is an example of an ‘ungapped’ phase, with a horizon in the bulk spacetime.
There is a coordinate singularity at r = ρ = 0, but this is a horizon, and the
geometry can be smoothly extended beyond it. This is clear if we consider the
metric on surfaces of constant χ: this is simply AdS in one lower dimension, in
the de Sitter slicing (4.2.6). A good coordinate system which extends beyond this
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horizon is thus obtained by passing to Poincaré coordinates on this lower-dimensional
AdS space, making the coordinate transformation (4.2.7). The metric is then

ds2 =
t2

z2
dχ2 +

`2

z2
(−dt2 + dz2 + d~x2). (4.2.14)

We see that the identification along χ becomes null at t = 0. As for a BTZ black hole,
we cut off the spacetime at the ‘singularity’ where the circle identification becomes
null, so the Penrose diagram for this spacetime is as shown in figure 4.1. In both
solutions, it is the χ circle which is determining where we terminate the geometry,
along a surface which would appear as a singularity from a dimensionally-reduced
perspective.

The boundary stress tensor for these solutions was calculated by Balasubramanian
and Ross [7] for d = 4. We work in a conformal frame where ∆χ is the proper size
of the χ circle, so the boundary metric is

ds2
∂ = dχ2 +

`2

η2

(
−dη2 + d~x2

)
. (4.2.15)

The stress tensor is (recalling that we work in units where 16πGN = 1)

T χχ = − 3

`3

(
r2

0 + `2/4
)
, T ηη = T xixi =

1

`3

(
r2

0 + `2/4
)
. (4.2.16)

The positive T ηη component corresponds to a negative energy density. For the values
of ∆χ where bubble solutions exist, we see that the bubbles have lower energy
density than the locally AdS solution. The bubble with large r+ is the lowest energy
solution for a given ∆χ. This is analogous to the situation for a flat boundary with
a circle direction, where the horizonless AdS soliton, to be seen in chapter 5, has
a negative energy density, giving it lower energy than the identified Poincaré-AdS
solution [38]. The difference in energy density between a bubble solution and the
locally AdS solution is, for d = 4,

∆ρ = −r
2
0

`3
= −

r2
+

(
1 + r2

+/`
2
)

`3
. (4.2.17)

We will compare the energy differences between these solutions to the complexity
differences we calculate below. In the conformal frame adopted above, the energy of
the state is simply

E =
V~x ∆χ `d−2

|η|d−2
ρ. (4.2.18)

It is then convenient to write the complexity as in (4.2.4), in terms of a complexity
density c:

C =
V~x ∆χ `d−2

|η|d−2
c. (4.2.19)
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The first factor is the proper volume of a given slice of the boundary in the conformal
frame above, and c is the complexity density, which carries the state-dependent in-
formation, and is a constant independent of the boundary coordinates. The derivative
with respect to proper time gives

dC
dt

= −η
`

dC
dη

= (d− 2)
V~x ∆χ `d−3

|η|d−2
c, (4.2.20)

so (1.3.2) becomes a relation between the complexity density and the energy density,

c ≤ 2`

(d− 2)π~
ρ. (4.2.21)

In the next sections, we test whether this bound can be satisfied and saturated in
the different cases.

4.3 Holographic volume calculations

We now turn to the holographic calculation of the complexity for the spacetimes with
de Sitter boundary introduced above. In this section, we calculate the complexity
from the volume of the maximal spatial slice in the bulk, following the CV conjecture.

For the case of pure AdSd, we can use the coordinate transformation (4.2.7) to
identify the slice of a cutoff boundary at some de Sitter time with a slice in Poincaré
coordinates at fixed time, so the maximal volume surface is simply the constant-time
surface in Poincaré coordinates. We take a boundary slice at η = −η0 (so η0 > 0) and
ρ = ρ0 in the flat de Sitter coordinates. This corresponds to t = −t0 = −η0 coth ρ0

and z0 = η0/ sinh ρ0 in Poincaré coordinates. The maximal volume slice is the surface
of constant t (this surface is described by η = −η0 tanh ρ/ tanh ρ0 in the de Sitter
coordinates), whose volume is

V =

∫
t=t0

√
h dz d~x = `d−1V~x

∫ ∞

z0

dz

zd−1
=

`d−1V~x

(d− 2)zd−2
0

= `
V~x

(d− 2)(Hη0)d−2
, (4.3.1)

where H−1 = ` sinh ρ0 is the scale of the de Sitter space at the UV cutoff. This
exhibits the expected UV divergence of the complexity.

Turning to theories where the conformal symmetry is broken, we consider the
explicit examples of asymptotically locally AdSd+1 spaces with de Sitterd−1 × S1

boundaries. The simpler case is the ungapped solution, as the bulk is locally AdS.
We want to consider the maximal volume slice with boundary at η = −η0 at large
ρ in the metric (4.2.13). This coordinate system does not cover the whole maximal
volume slice; it will enter the region inside the ‘horizon’ at ρ = 0. Therefore to
analyse this we use the coordinate transformation (4.2.7) to pass to the Poincaré
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coordinates on the slices of constant χ, so

ds2 =
t2

z2
dχ2 +

`2

z2
(dz2 − dt2 + d~x2). (4.3.2)

We are looking for a maximal volume surface ending at t = t0 = −η0 as z → 0. This
will now not lie at fixed t. Let us take t = t(z). Then

V = `d−1∆χV~x

∫ ∞

z0

dz
|t|
√

1− ṫ2
zd

, (4.3.3)

where again z0 = η0/ sinh ρ0. Let us redefine the variables in this integration by
z = η0z̄, t = η0t̄(z̄). Then

V =
`d−1∆χV~x

ηd−2
0

∫ ∞

z̄0

dz̄
|t̄|
√

1− ˙̄t2

z̄d
. (4.3.4)

We see the time dependence required by the general symmetry argument. The
remaining integral factor is a function only of the UV cutoff scale. In particular
it will also be independent of the scale ∆χ, which enters here just as an overall
multiplicative factor. Thus the complexity density in this case,

c =
8(d− 1)

π

∫ ∞

z̄0

dz̄
|t̄|
√

1− ˙̄t2

z̄d
, (4.3.5)

is a pure numerical factor, depending only on the UV cutoff z̄0 = 1/ sinh ρ0. Unlike
the pure AdS case, however, this will have a finite contribution in addition to the
UV divergent part.

We can solve the equations of motion arising from (4.3.5) with appropriate
boundary conditions. We want t̄→ −1 as z̄ → 0. The minimal surface will approach
this as t̄ = −1 − 1

2(d−1)
z̄2 + O(z̄4). There is a maximal volume slice behind the

horizon; in the FRW patch coordinates,

ds2 = `2

(
cos2 ρ dχ2 − dρ2 +

sin2 ρ

η2
(dη2 + d~x2)

)
, (4.3.6)

this is at cos ρ∗ = 1/
√
d. This corresponds to t = −z/

√
d in the Poincaré coordinates.

Requiring that the slice approaches this surface at large z, we find numerically that
for d = 4

c =
24

π

[
1

3z3
0

+
1

9z0

− 0.03384

]
. (4.3.7)

The divergent terms are determined in terms of the boundary geometry by the
calculations of Carmi et al. [20].

It is interesting to note that in more general ungapped geometries, there is non-
trivial time dependence encoded in the scale factor a(τ) in the FRW region beyond
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the horizon, but the complexity calculation is not hugely sensitive to this; as in this
example, the maximal volume slice approaches a limiting surface where the scale
factor is maximised, and the behaviour of the complexity will be mainly determined
by this maximal value of the scale factor, and not its full time dependence.

Let us now consider the bubble of nothing, which provides an example of a
gapped geometry. The metric is

ds2 = f(r) dχ2 +
dr2

f(r)
+
r2

η2

(
−dη2 + d~x2

)
. (4.3.8)

We can describe the bulk maximal volume surface by η = η0e
s(r) for some function

s(r), with s(r)→ 0 as r →∞. This surface closes off at r = r+ where the S1 shrinks
to zero size. The induced metric on the surface is

ds2 = f(r) dχ2 +
dr2

f(r)

(
1− r2f(r)s′

2
)

+
r2

η2
0

e−2s d~x2. (4.3.9)

To analyse smoothness at r = r+, it is convenient to introduce a radial coordinate r̄
with

r̄ =

∫ r

r+

dr

r
√
f

; (4.3.10)

then the induced metric is

ds2 = f(r) dχ2 + r2 dr̄2

(
1−

(
ds

dr̄

)2
)

+
r2

η2
0

e−2s d~x2, (4.3.11)

and this will be smooth at r = r+ for a suitable choice of period of χ if

ds(r+)

dr̄
= 0. (4.3.12)

The volume of this surface is

V = ∆χV~x

∫
rmax

r+

dr

√
1− f(r)

r2

η2
η′2
(
r

η

)d−2

=
∆χV~x

ηd−2
0

∫ rmax

r+

dr rd−2
√

1− f(r)r2s′2e−(d−2)s

=
∆χV~x

ηd−2
0

∫
dr̄ rd−1

√
f

√
1−

(
ds

dr̄

)2

e−(d−2)s,

(4.3.13)

showing again that we get the time dependence required by symmetry. The integral
is independent of η0, but will now depend on ∆χ through the dependence on r+ in
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small r+

large r+

bound for

large r+

1 2 3 4 5

l

Δχ

-10000

-8000

-6000

-4000

-2000

complexity

Figure 4.2: The difference in complexity between the two bubble of
nothing solutions and the ungapped locally AdS solution, for d = 4.
We plot the complexity density c as a function of `/∆χ (working
with the inverse period makes the graph clearer). The upper branch
is the small r+ solutions, and the lower is the large r+ solution.
The dashed curve at the bottom is the bound on the difference in
complexity from the difference in energy for the large r+ solution.

f(r). Thus, the complexity density

c =
8(d− 1)

π

∫
dr̄
(r
`

)d−1√
f

√
1−

(
ds

dr̄

)2

e−(d−2)s (4.3.14)

is a function of r+, and the result for the two bubbles for a given ∆χ will be
different. The UV divergent contributions are identical to the ungapped case; the
r+ dependence enters only in the finite term. Thus, the difference in complexity
between different solutions with the same boundary is finite.

We can formulate the problem of extremising the integral in (4.3.13) by writing
it as a first-order system, in terms of s(r) and q(r) = ds

dr̄
. The system to solve is then

ds

dr
=

q

r
√
f

dq

dr
=

[
d− 2

r
√
f
− q

(
d− 1

r
+

1

2

f ′

f

)]
(1− q2)

(4.3.15)

with the boundary conditions q(r+) = 0, s→ 0 as r →∞.

We plot numerical results for the two families of bubble solutions as a function of
1/∆χ in figure 4.2. We see that the solution with larger r+ has a smaller volume slice
for a given value of ∆χ, since the surface of the bubble lies closer to the boundary.
This leads to a smaller complexity, so lowering the energy of the state has lowered the
complexity growth rate, as we would expect. The difference in complexity is, however,
smaller than that expected from the difference in energy. The solid curve in figure
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4.2 plots the difference in the calculated complexity between the ungapped solution
and the large r+ bubble, while the dashed curve gives what would be expected if
the bound, (4.2.21), were satisfied for both solutions. We see that the difference
in complexity is smaller; hence if we assumed that the bubble solution satisfies the
bound, the ungapped solution cannot saturate it. That is, the ungapped solution
does not increase the complexity as fast as possible, given the energy difference from
the large r+ bubble, despite the presence of a horizon in the bulk.

This can be confirmed with an analytic argument. At large r+, the function f(r)

is approximately

f(r) ≈ r2

`2
−

rd+
`2rd−2

=
r2

+

`2
r̃2

(
1− 1

r̃d

)
, (4.3.16)

where we have set r = r+r̃ in the second step to make the scaling clear. If we also
define s = s̃/r+, the volume integral becomes

V =
∆χV~x

ηd−2
0

rd−1
+

∫
r̃max

1

dr̃ r̃d−2

[
1− r̃4

(
1− 1

r̃d

)(
ds̃

dr̃

)2
]1/2

e−(d−2)s̃/r+ , (4.3.17)

where r̃max = rmax/r+. For large r+, the exponential factor in the integral can be
ignored. The function s̃ determined by extremising the integral then has no direct
dependence on r+. So dependence on r+ enters only through the overall factor of rd−1

+

and the cutoff r̃max = rmax/r+. The integral will have a UV divergence proportional
to r̃d−1

max, which together with the rd−1
+ prefactor gives the same rd−1

max factor as before,
so the UV divergent terms are independent of r+, as they should be. The subleading
divergences are absent in this approximation as our approximation for f(r) neglects
the curvature of the boundary. The finite contribution to the integral is independent
of r+, so the finite part of the volume will go as rd−1

+ in this limit.
Thus, the difference in complexity between the ungapped solution and the large

bubble will scale as rd−1
+ . This grows more slowly with r+ than the difference in

energy, which goes as rd+, confirming the numerical results shown in figure 4.2, and
extending them to general d. A possible heuristic explanation of this behaviour of
the complexity is that in a gapped theory, there is no structure on scales larger than
1/r+, so increasing r+ is reducing the complexity by cutting out contributions at this
scale, producing a reduction that scales like the volume in units of 1/r+. It would
be interesting to understand the difference from the black hole case in more detail.

The volume of the slice in the bubble of small r+ approaches a constant value
for small r+, that is, in the limit as ∆χ→∞. This is shown in figure 4.3. However,
there is a small finite difference between it and the ungapped solution in this limit,
even though the difference in energy goes to zero. Geometrically this is unsurprising;
the ungapped solution has an additional region of spacetime behind the horizon, so
it is not surprising that the volume of the slice is larger. This is also consistent with
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Figure 4.3: The difference in complexity between the bubble of noth-
ing solution with small r+ and the ungapped locally AdS solution,
for d = 4. We plot the complexity density c, as a function of `/∆χ.
This is the same data as in figure 4.2, but plotted without the large
r+ data to zoom in on the difference in this case. We see that the
difference does not approach zero for small r+ (as we move to the
right on the graph).

expectations from the black hole examples, that geometries with horizons will have
more complexity for a given energy than those without.

4.4 Holographic action calculations
We now turn to the calculation of the complexity using the CA conjecture, calcu-
lating the action of the Wheeler-DeWitt patch for these examples. Unlike in the
black hole cases, where the action calculation agreed with the volume calculation up
to coefficients, the action calculation for these examples gives qualitatively different
results to the volume calculation. We will find that the action of the bubble solu-
tions increases at large r+, where the volume decreased, and exhibits a logarithmic
divergence at small r+.

If we consider first pure AdS in de Sitter coordinates, the boundary slice at
ρ = ρ0, η = η0 corresponds to t = t0 = −η0 coth ρ0 and z0 = η0/ sinh ρ0 in Poincaré
coordinates, and the Wheeler-DeWitt patch and the calculation of the action are
just as in chapter 3. The total action is as given in (3.2.13), i.e.1

S = 4
`d−2

εd−2
V~x ln(d− 2) = 4 ln(d− 2)

V~x
(Hη0)d−2

, (4.4.1)

where, as before, H−1 = ` sinh ρ0 is the scale of the de Sitter space at the UV cutoff.

1The difference in the power here is because previously we were discussing AdSd+1, whereas
here we have chosen to consider dSd−1 slices in AdSd.
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This has the same form as (4.3.1), up to the overall coefficient.
Let us turn now to the solutions with de Sitterd−1 × S1 boundaries. As before,

the simpler case is the ungapped solution, which is locally AdSd+1. To calculate
the action of the Wheeler-DeWitt patch, it is again convenient to use the Poincaré
coordinates, where the metric is

ds2 =
t2

z2
dχ2 +

`2

z2
(dz2 − dt2 + d~x2). (4.4.2)

We want the action of the Wheeler-DeWitt patch for the boundary slice at ρ = ρ0,
η = −η0, which corresponds to t = −t0 = −η0 coth ρ0 and z0 = η0/ sinh ρ0. Near
the boundary the Wheeler-DeWitt patch looks just like in the case of pure AdS in
Poincaré coordinates, with null surfaces at dz = ±dt, but it is also cut off at t = 0

as seen in the conformal diagram of figure 4.1 and in figure 4.4.

z = 0

t = 0

F

P

z = z0

Σ

t = -t0 + z - z0

t = -(t0 + z - z0) 

t

z

z = t0 + z0

t = t0

Figure 4.4: The Wheeler-DeWitt patch for the ungapped solution
in Poincaré-like coordinates

The volume integral is

SVol = −2d`d−2V~x ∆χ

(∫ t0+z0

z0

dz

zd+1

∫ −t0+z−z0

−(t0+z−z0)

|t| dt+

∫ ∞

t0+z0

dz

zd+1

∫ 0

−(t0+z−z0)

|t| dt

)
.

(4.4.3)
Taking the affine parametrization

λ = − `
2

αz
on F, λ =

`2

βz
on P, (4.4.4)

as before, we find the tangent vectors

k =
αz2

`2
(∂t + ∂z), k̄ =

βz2

`2
(∂t − ∂z). (4.4.5)
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The corner contribution to the action is thus

SΣ = −2
`d−2V~x ∆χ t0

zd−1
0

ln(αβz2
0/`

2). (4.4.6)

There is a contribution from the spacelike surface along t = 0, from z = t0 + z0 to
z =∞,

Ssing = −2

∫ ∞
t0+z0

dz
√
hK = 2`d−2V~x ∆χ

∫ ∞

z0+t0

dz

zd−1
. (4.4.7)

Along the null boundaries, we include the additional contribution (1.3.5), setting
c = ` as before. The metric on F has

√
γ =

`d−2

zd−1
|t| = `d−2

zd−1
(t0 − (z − z0)), (4.4.8)

so the expansion is

ΘF =
1
√
γ

∂
√
γ

∂λ
= − 1
√
γ
α
z2

`2

∂
√
γ

∂z
=

1
√
γ
α
z2

`2
`d−2

(
(d− 1)

t0 + z0

zd
− (d− 2)

1

zd−1

)
,

(4.4.9)
and hence the surface term is

SF = 2`d−2V~x ∆χ

∫ t0+z0

z0

(
(d− 1)

t0 + z0

zd
− (d− 2)

1

zd−1

)
ln(`ΘF ) dz, (4.4.10)

whereas on the past surface the expansion is

ΘP =
1
√
γ
α
z2

`2
`d−2

(
(d− 1)

t0 − z0

zd
+ (d− 2)

1

zd−1

)
, (4.4.11)

and the integral runs to infinity, i.e.

SP = 2(d− 2)`d−2V~x ∆χ

∫ ∞

z0

(
(d− 1)

t0 − z0

zd
+ (d− 2)

1

zd−1

)
ln(`ΘP ) dz. (4.4.12)

Putting it all together, and setting z0 = η0/ sinh ρ0, t0 = z0 cosh ρ0, the action for
the Wheeler-DeWitt patch is

S = 2
V~x ∆χ

(Hη0)d−2
I(ρ0), (4.4.13)

where, as before, H−1 = ` sinh ρ0, and the integral function I is

I =
1

(d− 2)(1 + cosh ρ0)d−2
+

∫ 1+cosh ρ0

1

((d− 1)(1 + cosh ρ0)− (d− 2)z̄) ln(θF )
dz̄

z̄d

+

∫ ∞

1

((d− 1)(cosh ρ0 − 1) + (d− 2)z̄) ln(θP )
dz̄

z̄d
. (4.4.14)
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Here we have introduced new coordinates t̄ = t/z0 and z̄ = z/z0, and

θF = z̄
(d− 1)(cosh ρ0 + 1)− (d− 2)z̄

cosh ρ0 + 1− z̄
,

θP = z̄
(d− 1)(cosh ρ0 − 1) + (d− 2)z̄

cosh ρ0 − 1 + z̄
.

(4.4.15)

We see that, as for the volume calculation, the time dependence is as determined by
the symmetry, and the period ∆χ appears only as an overall factor.

The complexity density is

c =
2

π
sinhd−2 ρ0 I(ρ0), (4.4.16)

depending only on the UV cutoff as in the volume calculation (4.3.7). For d = 3,

I = 2 ln 2 cosh ρ0 +
1 + 2 ln(2 cosh ρ0)

4 cosh ρ0

+O
(
cosh−2 ρ0

)
. (4.4.17)

For d = 4,

I = 2 ln 3 cosh ρ0 +
1

3 cosh ρ0

+
3 + ln 16

27 cosh2 ρ0

+O
(
cosh−3 ρ0

)
. (4.4.18)

It is interesting to note that for more general solutions with some arbitrary
function a(ρ), the complexity density in the action calculation will depend non-
trivially on a(ρ), and not just on the value at the limiting surface, as in the volume
calculation. The action of the Wheeler-DeWitt patch is a more sensitive probe of
the bulk geometry than the volume of the maximal slice.

Consider now the action of the Wheeler-DeWitt patch in the bubble of nothing
solutions. The main complication is in the position of the null boundaries. In the
bubble metric (4.2.10), if we take a slice of the boundary at η = −η0, the null
boundaries are given by

ln |ηF,P/η0| = ∓
∫ rmax

r

dr′

r′
√
f(r′)

, (4.4.19)

where along the future boundary, |ηF | < η0, while along the past boundary, |ηP | > η0,
with |ηF,P | → η0 as r → rmax. The volume integral is

SVol = −2d V~x ∆χ

`2

∫ rmax

r+

rd−1 dr

∫ ηF

ηP

dη

|η|d−1

= −2d V~x ∆χ

`2(d− 2)

∫ rmax

r+

rd−1 dr
(
|ηF |−(d−2) − |ηP |−(d−2)

)
.

(4.4.20)
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If we write2

F (r) =

∫ rmax

r

dr′

r′
√
f(r′)

, (4.4.21)

we can write this as

SVol = − 4d V~x ∆χ

`2(d− 2)ηd−2
0

∫ rmax

r+

rd−1 sinh ((d− 2)F (r)) dr. (4.4.22)

The tangent to the null surface is

k = α

(
− η

r2
∂η −

√
f(r)

r
∂r

)
(4.4.23)

on F and

k̄ = β

(
− η

r2
∂η +

√
f(r)

r
∂r

)
(4.4.24)

on P . As before, α, β are some arbitrary positive constants. Note that η < 0, so
the first terms are positive: these are future-pointing tangent vectors. The corner
term in the action is then

SΣ = −2V~x ∆χ
√
f(rmax)

rd−2
max

ηd−2
0

ln

(
αβ

r2
max

)
. (4.4.25)

The expansions are

ΘF = −α
√
f(r)

r

1
√
γ

∂
√
γ

∂r
= −α

√
f(r)

r

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
, (4.4.26)

ΘP = β

√
f(r)

r

1
√
γ

∂
√
γ

∂r
= β

√
f(r)

r

(
f ′(r)

2f(r)
+
d− 2

r
+

d− 2

r
√
f(r)

)
, (4.4.27)

so the surface integrals are

SF =
2V~x ∆χ

ηd−2
0

∫ rmax

r+

√
f(r)rd−2e(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘF | dr

(4.4.28)
and

SP =
2V~x ∆χ

ηd−2
0

∫ rmax

r+

√
f(r)rd−2e−(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘP | dr

(4.4.29)

2For d = 4, this can be written in terms of an elliptic integral,

F (r) =
`

r+
F

(
i sinh−1

(
r/
√
`2 + r2+

)∣∣∣∣−1− `2

r2+

)
.
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So the total integral is

S =
2V~x ∆χ

ηd−2
0

[
− 2d

`2(d− 2)

∫ rmax

r+

rd−1 sinh ((d− 2)F (r)) dr

−
√
f(rmax)r

d−2
max ln

(
αβ

r2
max

)
+

∫ rmax

r+

√
f(r)rd−2e(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘF | dr

+

∫ rmax

r+

√
f(r)rd−2e−(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘP | dr

]
.

(4.4.30)

The complexity density is

c =
2

π

[
− 2d

(d− 2)

∫ rmax

r+

(r
`

)d−1

sinh ((d− 2)F (r))
dr

`

−
√
f(rmax)

(rmax

`

)d−2

ln

(
αβ

r2
max

)
+

∫ rmax

r+

√
f(r)

(r
`

)d−2

e(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘF | dr

+

∫ rmax

r+

√
f(r)

(r
`

)d−2

e−(d−2)F (r)

(
f ′(r)

2f(r)
+
d− 2

r
− d− 2

r
√
f(r)

)
ln |`ΘP | dr

]
.

(4.4.31)

As in the CV case, we want to compare the difference in complexity between the
two bubble solutions and the ungapped solution to the difference in energy. The
action is calculated numerically and plotted in figure 4.5, as a function of r+. We see
that the action increases relative to the ungapped solution, for both large and small
bubbles. For large bubbles, the increase comes basically from the negative volume
contribution; the smaller spacetime volume makes the negative contribution from
(4.4.20) less significant, increasing the action. The surface contributions (4.4.28),
(4.4.29) are numerically less important. Numerically, the bubble solutions always
have a larger complexity than the ungapped solution. This is a surprising result;
these solutions have lower energy, but larger complexity. For small bubbles, the
increase comes from the additional surface terms we added on the null boundaries.

As in the volume calculation, we can obtain the scaling for large r+ from an
analytic argument. Taking the approximation for f(r) in (4.3.16), we have F (r) ≈
F̃ (r̃)/r+, where

F̃ (r̃) =

∫ r̃max

r̃

dr′

r′2
√

1− r′−d
. (4.4.32)
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Figure 4.5: The complexity density of the gapped solutions relative
to the ungapped solution, plotted as a function of r+/`, for d =
4. The dotted curves indicate the asymptotics expected from the
analytic discussion, with a fit to a function of the form −a ln r+ for
small r+ and br3

+ + cr+ for large r+. We see that the action of the
bubbles is always greater than the ungapped solution, and increases
for both large and small bubbles at small ∆χ.

The volume integral is

SVol = rd−1
+

∫ r̃max

1

r̃d−1(d−2)F̃ (r̃) dr̃ ∼ rd−1
+ (r̃d−1

max+finite) ∼ rd−1
max+O(rd−1

+ ), (4.4.33)

so the finite term is of order rd−1
+ . The corner term never makes a finite contribution.

The contributions from SF and SP are a little more subtle; the expansions ΘF,P ∼
1/r+, so in an expansion in r+, SF,P have terms of order rd−1

+ ln r+, but these are
total derivatives:

SF,P = rd−1
+ ln r+

∫
ΘF,P

√
γ dλ dd−2x+O(rd−1

+ )

= rd−1
+ ln r+

∫
∂λ
√
γ dλ dd−2x+O(rd−1

+ )

= rd−1
max ln r+ +O(rd−1

+ ).

(4.4.34)

Crucially, there is no finite term in evaluating the total derivative integral, as √γ = 0

on the bubble. The divergent term combines with a rd−1
max ln r̃max divergence from the

rd−1
+ contribution to give the expected rd−1

max ln rmax divergences in these integrals. So
we have the leading UV divergences, which we know are independent of r+ in general,
and a finite term which comes just from the rd−1

+ part. Thus the contributions from
these surface integrals go as

SF,P ∼ rd−1
max ln rmax + rd−1

max +O(rd−1
+ ). (4.4.35)
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The finite contributions to the action at large r+ will scale like rd−1
+ , just as in the

volume calculation.

The crucial difference which we learn from the numerical analysis is that the sign
is different. While in the volume calculation the finite contribution was reducing the
volume as r+ increased, here it is increasing the action. We can’t fix this sign from
the analytic scaling argument; it comes from the numerics.

We can also use a similar argument to show that the action of the small bubbles
has a divergence at small r+. To carefully analyse the integration in the limit of
small r+, we will use two different approximations to f(r): for r � `, we can write

f(r) ≈ 1− rd−2
+

rd−2
= 1− 1

r̃d−2
, (4.4.36)

where we again introduce a rescaled coordinate r = r+r̃, while for r � r+, we can
approximate

f(r) ≈ 1 +
r2

`2
. (4.4.37)

For small r+, these two approximations have an overlapping region of validity. In
calculating the action, we can therefore divide the integration over r into two regions,
r+ ≤ r < a, and a ≤ r ≤ rmax, for some a such that r+ � a � `, and we use the
first approximation in the small r regime and the second in the large r regime. The
overlap of the two approximations implies that the result will be independent of
the particular value of a where we choose to make the division. At the end of the
calculation we want to take r+ → 0 at fixed, large a/r+. The leading contribution
from the second regime will be independent of r+, so it is the contribution from the
first regime that concerns us.

For r in the first region, r+ ≤ r < a, the approximation for f(r) implies

F (r) ≈
∫ a/r+

r̃

dr̃′

r̃′
√

1− 1/r̃′d−2
+

∫ rmax

a

dr′

r′
√

1 + r′2/`2
= − ln r+ + F̃ (r̃), (4.4.38)

where F̃ is finite as r+ → 0. Thus the volume integral from the first region is

SVol ∝
∫ a

r+

rd−1 sinh ((d− 2)F (r)) dr ≈ r2
+

∫ a/r+

1

r̃d−1e(d−2)F̃ (r̃) dr̃, (4.4.39)

so the contribution from this integral vanishes as r+, a→ 0. The expansions in this
region are

ΘF,P =
θ̃F,P
r2

+

, (4.4.40)

where θ̃F,P is finite as r+ → 0. In the integral on the past surface, the exponential
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in F (r) makes the integrand small, so the contribution from the first region is finite:

SP ∝
∫ a

r+

rd−1e−(d−2)F (r)ΘP ln |`ΘP | dr = r2d−5
+

∫ a/r+

1

r̃d−1e−(d−2)F̃ (r̃)θ̃P ln
∣∣∣`θ̃P/r2

+

∣∣∣ dr̃.
(4.4.41)

The overall factor of r+ ensures that this has no divergent contributions. However,
in the integral on the future surface, the exponential in F (r) cancels factors of r+,
giving

SF ∝
∫ a

r+

rd−1e(d−2)F (r)ΘF ln |`ΘF | dr =

∫ a/r+

1

r̃d−1e(d−2)F̃ (r̃)θ̃F ln
∣∣∣`θ̃F/r2

+

∣∣∣ dr̃.
(4.4.42)

There is a logarithmic divergence in r+ here. The coefficient is a total derivative, as

ΘF = −α
√
f

r

1
√
γ
∂r
√
γ = − 1

rd−1ηd−2
∂r
√
γ, (4.4.43)

so

SF ∝ −2 ln r+

∫ a

r+

∂r
√
γ dr + . . .

= −2 ln r+
√
γ(a) + . . .

= −2 ln r+
1

ηd−2
0

+ . . . ,

(4.4.44)

where in the first step we used the vanishing of the volume in the χ direction at
r = r+, and in the second step it is useful to note that the determinant of γ is
approximately constant in the region r+ � r � `, so the result is independent of the
particular value of a chosen. Thus, the complexity for small r+ grows like − ln r+.
This is confirmed by the numerical results, which show a growth at small r+.

Thus, for small values of the period ∆χ, the CA calculation with our current
prescription for the action gives that:

• For the ungapped solution, the complexity density is a constant, independent
of ∆χ.

• For the small bubble, the complexity density has a finite contribution on top
of the ungapped result which grows as − ln ∆χ at small ∆χ. In this regime
the energy density for the small bubble approaches the same value as for
the ungapped solution. This divergence comes from the additional term on
the future null surface we added to restore reparametrization invariance and
eliminate undesirable log divergences in the UV.

• For the large bubble, the complexity density has a finite contribution on top
of the ungapped result which grows as 1/∆χd−1 at small ∆χ. The energy
density for the large bubble is less than that of the ungapped solution by a
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factor which grows as 1/∆χd. The action grows for larger bubbles because
the volume integral makes a negative contribution to the action, and this
dominates over the surface terms.

These results are unexpected, and qualitatively different from what we obtained
in the CV calculation. This might lead us to question whether the calculation we
are applying is correct. The action we have considered is the one constructed by
Lehner et al. [46], with the additional surface term. This is the minimal action whose
variation vanishes for arbitrary variations of the metric holding the intrinsic geometry
of the boundary fixed, and which is reparametrization invariant. However, we are
free to add boundary terms to the action which are functions only of the intrinsic
geometry of the boundary, obtaining alternative actions whose variations also vanish.
This includes reparametrization-invariant integrals along the null boundaries like the
ones given in (1.3.5). If we add such a term along the null boundaries, it will only
add a time-independent correction to the action in the Schwarzschild-AdS case, so
it would not modify the success of Lehner et al. [46] in reproducing the expected
behaviour (1.3.2). But it could modify the value of the r+ dependent part in our
calculation. The challenge is to find an appropriate well-motivated correction.

Note that although the ambiguity in the action we are considering here is the
same one exploited in holographic renormalization, our case is different in that we
are considering adding boundary terms on the boundary of the Wheeler-DeWitt
patch, which extends into the interior of the spacetime. Thus, these modifications
can affect the finite, state-dependent part of the action.

For our application to de Sitter in flat coordinates, the metric γab on the spatial
slices of the null surface is flat, so it is challenging to find natural corrections which
will change the answer. Integrals of the form (1.3.5) which involve the curvature of
γ will vanish in our case. If we take (1.3.5) with f(γ) just a constant, this is a total
derivative. We then have

SN = f

∫
Θ
√
γ dλ dχ dd−2x = f

∫
∂λ
√
γ dλ dχ dd−2x = f

∫
Σ

√
γ dχ dd−2x, (4.4.45)

so this term amounts to adding a counterterm at the corner. In the last step we used
again the fact that the volume element on the χ circle vanishes at the bubble. Adding
such counterterms at the corner does not change the finite part of the action. The
only non-trivial structure on the null surface in our case is the expansion. We can
construct new reparametrization-invariant integrands by considering non-polynomial
combinations of the expansion and its derivative with respect to λ: for example, we
could add a term like

SN =

∫
∂λΘ

Θ

√
γ dλ dχ dd−2x, (4.4.46)
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but such terms seem fairly contrived; it is difficult to see how such an action prescrip-
tion would arise from a simple underlying principle. Thus, it appears challenging
to give a satisfactory prescription for the action which would give results for the
complexity that are qualitatively similar to those from the volume calculation in
these bubble solutions.

4.5 Discussion

We have considered the holographic calculation of the complexity for a field theory on
de Sitter space in a de Sitter-invariant state. The holographic dual can have different
bulk solutions satisfying these boundary conditions, corresponding to different de
Sitter-invariant states in the boundary field theory.

We find that the holographic complexity of these de Sitter-invariant states on
a given spatial slice is a multiple of the proper volume of the slice. The de Sitter
invariance fixes the multiplicative factor to be a state-dependent constant, independ-
ent of de Sitter time. Holographically, the states can have dual bulk solutions which
have a horizon, corresponding to ungapped field theory states, or with no horizon,
corresponding to gapped states. We have considered the particular case of field
theory on de Sitterd−1 × S1, where explicit solutions of both kinds are known: the
ungapped solution is locally AdS, and has a horizon in the bulk analogous to the
one in the BTZ black hole. The gapped solutions are ‘bubbles of nothing’ obtained
by double analytic continuation from Schwarzschild-AdS.

We found that in the CV calculation, the gapped solutions have lower complexity
than the ungapped case, but the difference in complexity is smaller than the difference
in energy, so the bound (1.3.2) on the growth of the complexity can be satisfied, but
not saturated in both geometries. For the large bubbles, the difference in complexity
scales as rd−1

+ , while the difference in energy scales as rd+. It would be interesting to
understand why this bound is saturated for the field theory on flat space but not on
these de Sitter spaces.

In the CA calculation, we found a surprising sign difference: the action grows
for both larger bubbles (like rd−1

+ ) and for smaller bubbles (like − ln r+), so the
complexity of the bubbles is larger than that for the ungapped solution. This is not
what we expected to find, and suggests that the prescription for the action we have
used should be modified. The log divergence for smaller bubbles came from the new
term which we argued in our previous work should be introduced to make the action
reparametrization-independent. It could be cured by removing this term, although
that would leave the problem of reparametrization-dependence and a different UV
divergence in the action calculations compared to the volume calculations. The
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growth of the action for large bubbles seems to come mainly from the volume term
in the action. There is, in principle, freedom to modify the action prescription by
adding boundary terms which depend just on the intrinsic geometry of the boundary
of the Wheeler-DeWitt patch. But it is challenging to find natural modifications
which will make a difference in our case. In the next chapter we will look at a simpler
example that exhibits the same pathologies, with the aim of taking some initial steps
in resolving the differences between the CV and CA results.



Chapter 5

Complexity of the AdS Soliton

Given the striking differences between the CV and CA calculations obtained for
the ‘bubble of nothing’ solutions discussed in the previous chapter, it made sense to
attempt to discover a simpler context in which similar discrepancies still exist. This
chapter examines such a context. We consider field theory on a (flat) torus with anti-
periodic boundary conditions for fermions on (at least) one cycle. The ground state
for such boundary conditions is then dual to the AdS soliton [38], where the cycle
with antiperiodic boundary conditions closes off smoothly in the bulk at a ‘bubble’,
at a radius r+ which is inversely proportional to the size of this cycle. In this chapter,
we consider the CV and CA calculations of the complexity of this ground state. This
is a simple adaptation of the calculations of the previous chapter — indeed, this
geometry arises as a limit of the de Sitter geometries considered previously. Due to
the flat (rather than de Sitter) boundary, we obtain a time-independent result in
both cases. However, the result depends non-trivially on the size of the cycle with
antiperiodic boundary conditions, through the dependence on the position of the
‘bubble’ in the bulk.

As in the previous chapter, we find striking differences between the CV and CA
calculations. We will see that the straightforward CV calculation gives a smaller
complexity for antiperiodic than for periodic boundary conditions (which correspond
to plain AdS). The complexity for antiperiodic boundary conditions decreases mono-
tonically as the circle radius decreases, bringing the bubble closer to the boundary.
In contrast, the CA calculation results in larger complexity for the antiperiodic
boundary conditions than for periodic, and this complexity initially increases with
decreasing circle radius (while that radius is large compared with the UV cutoff
scale). It eventually turns around and decreases, going to zero as the bubble ap-
proaches the boundary, as one would expect. While the complexity goes to zero in
this limit in both CV and CA cases, we find that this involves different powers of
the separation in the two cases.
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The two proposals for holographic complexity thus give very different answers
already in this simple context. It was therefore desirable to attempt to compare these
holographic calculations with a more direct calculation of complexity in the boundary
field theory. We extend the calculations of Jefferson and Myers [42] and Chapman
et al. [21], who considered the free boson on a toroidal lattice, to the consideration
of free fermions. This allows us to consider the change in complexity resulting from
changing the fermion boundary conditions from periodic to antiperiodic. We find
that in our simple lattice calculations, a larger result for complexity is found for
antiperiodic boundary conditions than for periodic in (a limited) agreement with
the CA calculation. It is worth emphasizing that the calculation we carry out has
strong limitations and an important direction for future work is to refine the field
theory calculation and see what effect this has on the behaviour we find.

We discuss the AdS soliton solution in section 5.1 and carry out the CV cal-
culation, while the CA calculation is described in section 5.2. In section 5.3, we
switch to working in the boundary theory, considering free fermions on a lattice
and calculating the difference in complexity for the two boundary conditions on the
fermions. Section 5.4 concludes this chapter with a brief summary of the results and
a discussion of future directions.

5.1 The AdS soliton

If we consider a field theory defined on a flat torus, with periodic boundary con-
ditions for the fermions (preserving supersymmetry), the holographic dual of the
ground state is the pure AdS solution in Poincaré coordinates. Calculations of holo-
graphic complexity for this case were considered in chapter 3. If, however, we take
antiperiodic boundary conditions for the fermions in one or more directions, then
while the pure AdS solution is still a solution, it no longer corresponds to the ground
state in the field theory. The holographic dual of the ground state is instead the
AdS soliton [38],

ds2 =
r2

`2

[
−dt2 +

(
1−

rd+
rd

)
dχ2 + d~x2

]
+

(
1−

rd+
rd

)−1
`2

r2
dr2, (5.1.1)

where χ is the circle with antiperiodic boundary conditions (or if there is more
than one such circle, the one with the smallest period). We take a d-dimensional
boundary, so there are d− 2 coordinates ~x. Imposing smoothness at r = r+ relates
the parameter r+ to the periodicity of χ,

∆χ =
4π`2

r+d
. (5.1.2)
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This solution has a negative boundary energy,

E = −
rd+ ∆χV~x
`d+1

= −V~x`
d−1(4π)d

dd ∆χd−1
. (5.1.3)

This can be understood as a Casimir energy for the ground state due to the periodicity
of χ. Because of the antiperiodic boundary conditions for the fermions, the Casimir
energies of bosons and fermions fail to cancel.

Note that the dependence on r+ can be converted into an overall scale by a
change of coordinates: if we set

r = r+r̃, t =
t̃

r+

, χ =
χ̃

r+

, xi =
x̃i

r+

, (5.1.4)

the metric becomes

ds2 =
r̃2

`2

[
−dt̃2 +

(
1− 1

r̃d

)
dχ̃2 + d~̃x2

]
+

(
1− 1

r̃d

)−1
`2

r̃2
dr̃2. (5.1.5)

It is interesting to consider the complexity of the ground state for the field theory
with these boundary conditions, and specifically its dependence on the size of the
χ circle. For the CV conjecture, the maximum volume calculation is easily carried
out. Because of the time-independence of the metric (5.1.1), the maximum volume
slice will lie at constant t, so the volume is simply

V (B) =

∫
dr dd−2x dχ

√
h = V~x ∆χ

∫ rmax

r+

dr
rd−2

`d−2
=
V~x ∆χ

d− 1

rd−1
max − rd−1

+

`d−2
, (5.1.6)

where we introduce a UV cutoff at r = rmax. This gives us a complexity

CV =
8V~x ∆χ

π

rd−1
max − rd−1

+

`d−1
. (5.1.7)

The first term is the same UV divergence we saw in the pure AdS solution in (3.2.3).
If we take the difference, defining a ‘complexity of formation’ [22], we find a finite
negative difference; changing the boundary conditions has lowered the complexity.
Put another way, the pure AdS solution, which corresponds to some excited state
with these boundary conditions, has higher complexity than the ground state. This
seems a plausible result; adding excitations might be expected to generically increase
the complexity of the state.

If we were to take r+ → rmax, the complexity would go to zero. As this limit
corresponds to the proper size of the χ circle at the UV cutoff scale vanishing, this
seems physically reasonable. Note that the complexity vanishes linearly in rmax− r+

in this case.
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5.2 Holographic action calculations

We now turn to the calculation of the complexity using the CA conjecture, calculating
the action of the Wheeler-DeWitt patch for the AdS soliton. We will find that the
action of the Wheeler-DeWitt patch initially increases with r+, although it does
ultimately go to zero as r+ → rmax as well.

The calculation of the action is quite similar to the calculation in the bubbles with
de Sitter boundaries of the previous chapter, although somewhat simpler. Indeed, in
the limit of large r+, the Wheeler-DeWitt patch in those bubble solutions approaches
the Wheeler-DeWitt patch in the AdS soliton.

The action will have an overall scaling as rd−1
+ , which is evident if we perform the

calculation in the rescaled coordinates of (5.1.5). If the original coordinates have a
UV cutoff at r = rmax, then in the tilded coordinates r̃ ∈ (1, rmax/r+), so the result
of the action integrals will be some function of rmax/r+, times the coordinate volume
in the spatial directions

S = Ṽx∆χ̃I(rmax/r+). (5.2.1)

If we rewrite the spatial volume in terms of the original coordinates, we get an overall
factor of rd−1

+ . Thus
S = V~x ∆χ rd−1

+ I(rmax/r+). (5.2.2)

If we take the UV cutoff large at fixed r+, there will be a power series expansion
in powers of rmax/r+. From the results of Carmi et al. [20], we know the divergent
terms in this expansion will be determined by the local geometric invariants of the
boundary. For the flat boundary we are considering, the only non-zero term is the
leading divergence, proportional to the volume, which agrees with the result in the
pure AdS case. Thus, in the large rmax limit, the action looks like

S = 4V~x ∆χ ln(d− 1)
rd−1

+

`d−1

[(
rmax

r+

)d−1

+ I0 + . . .

]
=

4V~x ∆χ

`d−1
ln(d− 1)(rd−1

max + I0r
d−1
+ + . . .),

(5.2.3)

where the dots denote terms which vanish in the limit of large rmax. Thus, as in
the volume calculation above, there is a finite difference between the complexity
with antiperiodic and periodic boundary conditions, determined by the numerical
parameter I0. We will calculate the action in detail to determine I0; from our work
in chapter 4, we expect it to be positive, in contrast to the CV calculation.

In our numerical calculation of the action, we choose to set c = `/(d− 1), rather
than simply using c = ` as in the previous calculations. This is equivalent to using
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c = ` but then adding a local integral over Σ,

Sct = −4 ln(d− 1)

∫
Σ

√
h dS = −4V~x ∆χ

`d−1
ln(d− 1)rd−1

max

√
1− rd+

rdmax
, (5.2.4)

so that S ′ = S + Sct. In either case, the change has the effect of simplifying the
calculation by cancelling the leading divergence; in plain AdS, the result of the
complexity calculation becomes zero, while in the case of the AdS soliton, the new
action has I0 as its leading contribution at large rmax/r+. This change in the action
is part of the remaining ambiguity unfixed by the prescription of Lehner et al. [46].
The interpretation of this kind of renormalization in terms of the complexity is
unclear, but it is convenient for the numerics, and since the additional contribution
to the action is a known function, one can remove it at the end of the calculation if
desired. Note that the subleading contribution in Sct is of order rd+/rmax, so adding
this term does not affect the finite contribution I0.

We now turn to the details of the calculation of the action, which we will perform
in the tilded coordinates with the metric (5.1.5). We will also drop the tildes to
reduce clutter, with the exception that V~x and ∆χ will keep their original values.
So, our r coordinate will range from 1 to rmax/r+. For convenience, we write

f(r) = 1− 1

rd
. (5.2.5)

In the metric (5.1.5), if we take a slice of the boundary at t = 0, the null
boundaries of the Wheeler-DeWitt patch are given by

t(r) = ±`2

∫ rmax/r+

r

dr′

r′2
√
f(r′)

. (5.2.6)

The volume integral is

SVol = −2d V~x ∆χ rd−1
+

`d+1

∫ rmax/r

1

dr rd−12t(r), (5.2.7)

where the factor of rd−1
+ comes from noting that Ṽ~x∆χ̃ = rd−1

+ V~x ∆χ. If we write

F (r) =

∫ rmax/r+

r

dr′

r′2

(
1− 1

r′d

)−1/2

, (5.2.8)

then this becomes

SVol = −4d V~x ∆χ rd−1
+

`d−1

∫ rmax/r+

1

rd−1F (r) dr. (5.2.9)
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The tangent to the null surface is

k = α

(
`

r2
∂t −

√
f(r)

`
∂r

)
(5.2.10)

on F and

k̄ = β

(
`

r2
∂t +

√
f(r)

`
∂r

)
(5.2.11)

on P , where α, β are some arbitrary positive constants. The corner term in the
action is

SΣ = −2V~x ∆χ

ld−1
rd−1
max

√
f(rmax/r+) ln

(
αβr2

+

r2
max

)
. (5.2.12)

The expansions are

ΘF = −α
√
f(r)

`

1
√
γ

∂
√
γ

∂r
= −α

√
f(r)

`

(
f ′(r)

2f(r)
+
d− 1

r

)
, (5.2.13)

ΘP = β

√
f(r)

`

1
√
γ

∂
√
γ

∂r
= β

√
f(r)

`

(
f ′(r)

2f(r)
+
d− 1

r

)
, (5.2.14)

so the surface integrals are

SF = 2V~x ∆χ
rd−1

+

`d−1

∫ rmax/r+

1

√
f(r)rd−1

(
f ′(r)

2f(r)
+
d− 1

r

)
ln

∣∣∣∣ `ΘF

d− 1

∣∣∣∣ dr (5.2.15)

and

SP = 2V~x ∆χ
rd−1

+

`d−1

∫ rmax/r+

1

√
f(r)rd−1

(
f ′(r)

2f(r)
+
d− 1

r

)
ln

∣∣∣∣ `ΘP

d− 1

∣∣∣∣ dr (5.2.16)

So the total integral is

S ′ =
2V~x ∆χ

`d−1

[
− 2rd−1

+ d

∫ rmax/r+

1

rd−1F (r) dr

−
√
f(rmax/r+)rd−1

max ln

(
αβr2

+

r2
max

)
+ rd−1

+

∫ rmax/r+

1

√
f(r)rd−1

(
f ′(r)

2f(r)
+
d− 1

r

)
ln

∣∣∣∣ `ΘF

d− 1

∣∣∣∣ dr
+ rd−1

+

∫ rmax/r+

1

√
f(r)rd−1

(
f ′(r)

2f(r)
+
d− 1

r

)
ln

∣∣∣∣ `ΘP

d− 1

∣∣∣∣ dr
]
.

(5.2.17)

This integral is a function of rmax and r+, which is homogeneous of degree d− 1.
It is straightforward to evaluate these expressions numerically for fixed values of the
parameters. In figure 5.1, we plot the action as a function of r+ at fixed rmax; in
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Figure 5.1: The action, omitting the overall factor of 2V~x ∆χ/`d−1,
as a function of r+ at fixed rmax = 10000. We see that it initially
increases with r+, but eventually decreases to zero as r+ → rmax.
The initial increase scales as rd−1

+ , as indicated by the general scaling
argument, with I0 found to be approximately 1.27.

figure 5.2, we plot the action as a function of rmax at fixed r+.
We see that the action initially increases at small r+, indicating that I0 is positive.

This is qualitatively different from the behaviour of the volume (5.1.6). As before,
the increase comes from the negative volume contribution; increasing r+ decreases
the volume of the Wheeler-DeWitt patch, while the volume contribution to the
action is negative.

In the CA calculation, the complexity for antiperiodic boundary conditions is
higher than for periodic boundary conditions. Equally, the complexity for the excited
state represented by the pure AdS solution with antiperiodic boundary conditions is
lower than that of the ground state.

We see that numerically the action goes to zero as r+ → rmax. It is interesting
to compare the approach to zero in this regime to the volume calculation (5.1.6).
Suppose rmax−r+ � r+, and define ε = rmax/r+−1. Set r = r+(1+εz), so z ∈ (0, 1).
Then

f(r) ≈ (r − r+)f ′(r+) ≈ εzd, (5.2.18)

and F (r) ∼
∫
dr/
√
f(r) scales as

√
ε, so that the volume contribution to the action

scales as ε3/2. The contributions from Σ scale as
√
f , that is as

√
ε, but the slowest

falloff comes from the expansion contributions on the null surfaces:

ΘF,P ∼
f ′√
f
∼ 1√

ε
, (5.2.19)

so
SF,P ∼

∫
f ′√
f

ln

∣∣∣∣`ΘF,P

d− 1

∣∣∣∣ dr ∼ √ε ln ε. (5.2.20)
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Figure 5.2: The action, omitting the overall factor of 2V~x ∆χ/`d−1,
as a function of rmax at fixed r+ = 1. We see that it is a monotonic-
ally increasing function of rmax, which seems physically reasonable
behaviour for the complexity.

Thus, the action goes to zero more slowly than the volume, as

√
rmax − r+ ln(rmax − r+). (5.2.21)

5.3 Lattice calculations
We have found that, as for the ‘bubble of nothing’ case of chapter 4, the holographic
complexity calculations for the AdS soliton give qualitatively different results for the
two calculation methods. It is interesting to understand what notions of complexity
we can identify in the field theory that could reproduce these behaviours. Since the
AdS soliton is distinguished by the boundary conditions for fermions, we want to
consider a fermionic theory. We do so on a rectangular lattice, considering both the
case where the fermions have conventional periodic boundary conditions on all the
spatial directions, and the case with antiperiodic boundary conditions on one spatial
direction and periodic boundary conditions in the remaining directions. We study
the difference between the complexity with the antiperiodic boundary conditions
and the complexity with the periodic boundary conditions as a function of the size
of the spatial direction with the changing boundary conditions. These results can
then be compared with the results of the holographic complexity calculations.

Complexity for fermionic field theories was previously considered by Jordan
et al. [43]. Our analysis will also draw inspiration from the recent study of scalar
field theories by Jefferson and Myers [42], in which connections to the holographic
calculation were also considered.
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5.3.1 Free fermion theory

We will first review the details that we need of the lattice fermion theory. We
consider a theory of a single free fermion ψ(~x) on a spatial lattice. We will discuss
explicitly lattices in two and three dimensional spacetimes. The generalisation to
higher dimensions has some additional technical complications, so we leave it to an
appendix.

The simplest case is two dimensions. Then the lattice has a single spatial direction;
we can take either periodic or antiperiodic boundary conditions on this direction. The
absence of additional spatial directions with periodic boundary conditions makes this
case rather special.1 We have N lattice sites, xi = ia, i = 0, . . . , N , with xN = x0,
and the boundary condition is ψ(xN) = ±ψ(x0) for the periodic and antiperiodic
cases respectively. The Hamiltonian of the free fermion theory is

H = a

N−1∑
i=0

[
mψ̄(xi)ψ(xi)− iψ̄(xi)γ

1ψ(xi + a)− ψ(xi − a)

2a

− rψ̄(xi)
ψ(xi + a)− 2ψ(xi) + ψ(xi − a)

2a

]
, (5.3.1)

where the last term is the Wilson term, used to prevent fermion doubling [84], and
r > 0 is the Wilson parameter2. The fermion ψ has two components, we define
ψ̄ = ψ†γ0, and we work with the gamma matrix representation3

γ0 =

(
0 −i
i 0

)
, γ1 =

(
0 −i
−i 0

)
. (5.3.2)

We will primarily work in momentum space, writing

ψ(xj) =
1√
N

N−1∑
i=0

e−ipixjψ(pi), (5.3.3)

where the momentum lives in the dual lattice or Brillouin zone; for periodic boundary
conditions,

pi =
2π

Na
i, i ∈ ZN , (5.3.4)

1From the holographic perspective, with a two-dimensional boundary the AdS soliton is actually
global AdS3, and the geometry in the bulk does not change as we vary ∆χ.

2The addition of the Wilson term — an irrelevant operator — to the action does not change
the continuum limit. It does, however, impose a mass proportional to r/a to the spurious fermion
species that arise in the lattice theory due to fermion doubling [32].

3Note that our Clifford algebra conventions correspond to taking the lattice theory’s spacetime
metric to be ds2 = dt2 − dx2, the opposite sign convention to our holographic discussion. We have
adopted this convention for consistency with standard references.
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while for antiperiodic boundary conditions

pi =
2π

Na

(
i+

1

2

)
. (5.3.5)

The Hilbert space can be written as a tensor product of the Hilbert spaceHp acted on
by the fermionic operators ψ(p) at each momentum. The Hamiltonian in momentum
space is

H = a
∑
p∈Ω

[
mψ̄(p)ψ(p) +

sin(pa)

a
¯ψ(p)γ1ψ(p) +

2r

a
sin2

(pa
2

)
ψ̄(p)ψ(p)

]
, (5.3.6)

where Ω is the lattice of momentum values in (5.3.4) or (5.3.5) depending on the
boundary conditions. The term in the Hamiltonian at a given momentum has
eigenspinors4

u =
1√
2E

(√
E − P

i
√
E + P

)
, v =

1√
2E

( √
E + P

−i
√
E − P

)
, (5.3.7)

with eigenvalues ±E, where

P =
sin(pa)

a
, M = m+

2r

a
sin2

(pa
2

)
, E =

√
M2 + P 2. (5.3.8)

Thus, the fermion can be written in terms of ladder operators as

ψ(p) = u(p)a(p) + v(p)b†(p), (5.3.9)

and the ground state is the state annihilated by a(pi), b(pi) for all pi; it is the tensor
product of the ground state in each Hp.

For the three dimensional case, we can find a representation of the Clifford algebra
by enlarging that used in two dimensions by adding

γ2 =

(
i 0

0 −i

)
. (5.3.10)

The fermions still have two components. We will take the direction with variable
boundary conditions to be the x direction. The spatial lattice has Nx sites in the x
direction with lattice spacing ax, and Ny sites in the y direction with lattice spacing
ay. The momentum vector then lives in a lattice

~p =

(
2π

Nxax
i,

2π

Nyay
j

)
(5.3.11)

4Usually the convention for negative energy states associates them with momentum −p (see,
e.g. Peskin and Schroeder [60]); the convention here will be more convenient for our calculations.
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for periodic boundary conditions, and

~p =

(
2π

Nxax

(
i+

1

2

)
,

2π

Nyay
j

)
(5.3.12)

for antiperiodic boundary conditions, where in both cases i ∈ ZNx , j ∈ ZNy . The
Hilbert space is a tensor product of spaces H~p associated with each lattice site. The
Hamiltonian is

H = axay

∑
~p∈Ω

[
mψ̄(~p)ψ(~p) +

sin(pxax)

ax
ψ̄(~p)γ1ψ(~p) +

sin(pyay)

ay
ψ̄(~p)γ2ψ(~p)

+ 2r
[
a−1
x sin2

(pxax
2

)
+ a−1

y sin2
(pyay

2

)]
ψ̄(~p)ψ(~p)

]
, (5.3.13)

where Ω is the relevant momentum lattice. The eigenspinors at a given momentum
are

u =
1√
2E

( √
E − Px

ieiβy
√
E + Px

)
, v =

1√
2E

( √
E + Px

−ieiβy
√
E − Px

)
, (5.3.14)

with eigenvalues ±E, where

Pi =
sin(piai)

ai
, M = m+ 2r

∑
i

a−1
i sin2

(piai
2

)
, E =

√
M2 + ~P 2 (5.3.15)

and
eiβy =

M + iPy√
M2 + P 2

y

. (5.3.16)

Thus, the fermion can again be written as

ψ(~p) = u(~p)a(~p) + v(~p)b†(~p), (5.3.17)

and the ground state is the state annihilated by a(~p), b(~p) for all ~p; it is the tensor
product of the ground state in each H~p.

5.3.2 Complexity

We wish to evaluate the complexity of the ground state in the free fermionic theories
reviewed in the previous subsection. There are two key choices we need to make: we
need to choose a reference state, and we need to define a measure of the complexity
of the transformation from the reference state to the physical ground state.
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Jordan et al. [43] take the reference state to be the ground state of the fiducial
Hamiltonian

H0 = axay
∑
~x

m0ψ̄(~x)ψ(~x) = axay
∑
~p∈Ω

m0ψ̄(~p)ψ(~p), (5.3.18)

where the kinetic and Wilson terms are removed from the physical Hamiltonian. This
Hamiltonian could also be viewed as a high-mass limit of our original Hamiltonian,
where the momentum dependence becomes negligible. This is a useful choice as the
resulting reference state is a tensor product state in the position space representation
and in the momentum space representation, so both the reference and target states
are tensor products in the momentum space representation. A similar choice was
made in the scalar case by Jefferson and Myers [42], where the reference state was
taken to be a fixed Gaussian at each spatial lattice site; the tensor product of these
Gaussian states in the spatial basis is also a tensor product of Gaussian states in
the momentum basis.

For the two and three-dimensional cases, the eigenspinors of this Hamiltonian
are simply

u0 =
1√
2

(
1

i

)
, v0 =

1√
2

(
1

−i

)
. (5.3.19)

We can easily see that these are the high mass or low-momentum limit of the
eigenspinors of the physical Hamiltonian found in the previous subsection. We write
the spinor operator as

ψ(~p) = u0a0(~p) + v0b
†
0(~p), (5.3.20)

and we take the reference state to be the state annihilated by all the a0(~p), b0(~p) for
all ~p.

The physical creation and annihilation operators can be related to a0 and b0 by
making use of the orthonormality of our eigenspinors, taking inner products in the
spinor indices. In the two and three-dimensional cases,

a(p) = u†(~p)ψ(~p) = u†u0a0(~p) + u†v0b
†
0(~p), (5.3.21)

b†(p) = v†(~p)ψ(~p) = v†u0a0(~p) + v†v0b
†
0(~p). (5.3.22)

The key point is that this is a Bogoliubov-style transformation, mixing creation
and annihilation operators, so the vacuum state with respect to a(p), b(p) will be a
mixture of particle states with respect to a0(p), b0(p). For a given momentum,

|00〉phys = u†u0 |00〉0 − u
†v0 |11〉0 . (5.3.23)

We note that this is a mixture of states with even numbers of fermions in the reference
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basis, so the transformation between the reference ground state and the physical
ground state involves only fermion bilinears, so we do not need to worry about the
difficulties of simulating fermionic gates reviewed for example by Jordan et al. [43].

The relationship between the different creation and annihilation operators then
allows us to determine how the physical vacuum can be written in terms of reference
basis states. For two dimensions, this gives

|00〉phys =
1

2
√
E

[(√
E + P +

√
E − P

)
|00〉0 −

(√
E + P −

√
E − P

)
|11〉0

]
=

√
E +M

2E
|00〉0 −

√
E −M

2E
|11〉0 .

(5.3.24)

For three dimensions, we have

|00〉phys =
1

2
√
E

[(
e−iβy

√
E + Px +

√
E − Px

)
|00〉0

−
(
e−iβy

√
E + Px −

√
E − Px

)
|11〉0

]
. (5.3.25)

By changing the phase of the physical ground state, we can simplify this to

|00〉phys =

√
E +M

2E
|00〉0 − e

iφ2

√
E −M

2E
|11〉0 , (5.3.26)

where
eiφ2 =

Px − iPy
Px + iPy

. (5.3.27)

Note that unlike the scalar case in [42], there is no dependence on the mass scale m0

in the fiducial Hamiltonian. The reference ground state is the same, independent of
which H0 we choose.

Having fixed the reference state, we now wish to compute the complexity of the
least complex unitary operator U such that the physical ground state |ψ〉 = U |ψ〉0,
where |ψ〉0 is the reference state. Ideally, to respect the locality of the field theory, we
would like to do this calculation taking as an elementary gate set some set of unitary
operators which act on nearest neighbour sites in the spatial lattice. However, this
calculation is extremely difficult, so following Jefferson and Myers [42], we will make
the simplifying assumption that we can take the elementary gate set to include
unitary operators acting on the individual momentum sites in the momentum lattice.
(Such operators can be built from a linear combination of operators acting on pairs
of lattice sites in the spatial lattice, but we need to include arbitrary pairs of sites.)

Making this assumption allows us to exploit the special structure of our states:
our ground state is the product of the ground state |~0〉phys in Hp at each momentum,
and our reference state is the product of |~0〉0 in Hp at each momentum, so it is plaus-
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ible that the least complex unitary will also have a tensor product decomposition,
U = ⊗pUp. That is, we expect, as in the work of Jefferson and Myers [42], that the
path of least complexity with such an elementary gate set will not involve introdu-
cing entanglement between different momenta at intermediate scales. Identifying
the appropriate unitary U then reduces to identifying an appropriate Up at each
momentum.

In the two and three-dimensional cases, the transformations (5.3.24), (5.3.25)
from the reference state to the physical ground state at a given momentum can
be implemented by a unitary transformation on the two-dimensional subspace of
the Hilbert space spanned by |00〉0, |11〉0. (We assume that considering more gen-
eral transformations in Hp that take us out of this subspace will not reduce the
complexity.) Such unitary transformations can be parametrized as

Up = eiα

(
eiφ1 cos θ eiφ2 sin θ

−e−iφ2 sin θ e−iφ1 cos θ

)
. (5.3.28)

Requiring that the unitary maps |00〉0 to |00〉phys fixes the first column of Up, giving
three constraints on the parameters (since the target state is normalized, its form
in terms of |00〉0 and |11〉0 involves three free parameters); that leaves one free
parameter in Up, which we need to minimize over.

As for Jefferson and Myers [42], we will be inspired by the geometric view of
quantum computation of Nielsen et al. [58, 59, 25] to take a geodesic distance in a
suitable metric in the space of unitaries as a proxy for the complexity. In the space
at a given momentum, we will take the usual metric on U(2),

ds2 = −1

2
tr(dU U−1 dU U−1) = dα2 + dθ2 + cos2 θ dφ2

1 + sin2 θ dφ2
2. (5.3.29)

The remaining parameter in Up is determined by minimizing the distance from the
identity in this metric.5

To calculate the overall complexity, we need to combine the complexities of the
individual Up to obtain a complexity for U . We will simply sum up the complexities
of each of the Up:

C(U) =
∑
p∈Ω

C(Up); (5.3.30)

in the geometrical language of [58], this corresponds to taking an F1 or ‘Manhattan’
metric, where the total distance is the sum of the distances along each of the basis
directions. This is a natural choice for the calculation of complexity; it can be
thought of as adding contributions from the different elementary gates acting on

5This minimization to determine an appropriate Up becomes more difficult in higher dimensions;
see the discussion for four dimensions in the appendix.
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each Hp.
It is worth noting however that working in the Manhattan metric makes geometric

analysis more challenging, which is why Nielsen et al. [59, 25] sought to replace it
with a Riemannian metric with suitable cost factors on directions not corresponding
to the elementary gate set. Notably, the Manhattan metric, unlike a Riemannian
metric, depends on the choice of basis, so our choice to use gates acting on momentum
subspaces in the Hilbert space rather than gates acting on pairs of position subspaces
becomes significant. Even though the unitaries acting on a momentum subspace can
be written as a linear combination of unitaries acting on position subspaces, taking
one rather than the other as the basis in a Manhattan metric leads to a different
formula for the complexity.

The choice of a Manhattan metric is supported by the results of Jefferson and
Myers [42], who found that it reproduces the UV divergence structure of the holo-
graphic calculation. The same will be true in our fermionic calculation; the complex-
ity defined by (5.3.30) is roughly proportional to the number of lattice sites, which
we can interpret as the volume in units of the UV cutoff, reproducing the divergence
in the holographic calculation. A Riemannian metric built by combining the metrics
(5.3.29) would by contrast give a result scaling roughly as the square root of the
number of sites. We will, however, not consider these divergent contributions further;
our focus is on evaluating the finite difference between the complexities with periodic
and antiperiodic boundary conditions,

∆C = Canti − Cper. (5.3.31)

We now implement this programme for the two- and three-dimensional cases.
In the two-dimensional case, the unitary of minimum distance which realises the
transformation (5.3.24) is simply a rotation,

Up =

(
cos θ sin θ

− sin θ cos θ

)
(5.3.32)

with
cos θ =

√
E +M

2E
. (5.3.33)

The distance from the identity in the standard metric is simply θ, so we take
C(Up) = θ(p). This amounts to taking an infinitesimal rotation in this direction as
an element of the elementary gate set.

We sum over the contributions from the individual momenta, and take the
difference between antiperiodic and periodic boundary conditions to calculate ∆C
in (5.3.31). We plot this difference as a function of L = aN in figure 5.3. We see
that the difference is positive, as for the holographic CA calculation, but unlike the
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Figure 5.3: The difference, ∆C, between the complexity of the
ground states for a fermion with antiperiodic boundary condi-
tions and a fermion with periodic boundary conditions on a one-
dimensional spatial lattice, as a function of the size of the circle.
We see that the difference is positive, and decreases as we increase
the size of the circle. (Lattice spacing is fixed at 0.002, so that the
number of sites increases with the size of the circle. Parameter r
associated with the Wilson term is set to 0.1, while m = 1.0.)

holographic CV calculation.

We find that the difference decreases as the size of the circle increases. This
is unlike the holographic calculation; there, the difference in complexity went as
∆χ rd−1

+ ∝ rd−2
+ (see (5.2.2)), so in d = 2, the difference in the holographic calculation

is independent of the size of the circle. This is because in d = 2 the AdS soliton
is actually global AdS3, and the finite part is the difference in volume or action
between the M = 0 BTZ black hole and global AdS3, which is some finite constant.

In the three-dimensional case, the simplest unitary realising the transformation
(5.3.26) has α = 0, φ1 = 0,

cos θ =

√
E +M

2E
, eiφ2 =

Px − iPy
Px + iPy

, (5.3.34)

and the complexity is again C(Up) = θ(p). We add up these contributions for each
site in the momentum lattice, and take the difference between antiperiodic and
periodic boundary conditions to calculate ∆C in (5.3.31). We plot this difference
as a function of Lx in figure 5.4. We see that the difference is again positive, and
decreases as a function of the size of the circle. In this case this is also the behaviour
expected holographically. Holographically, the complexity would fall off as 1/Lx.
The numerical results for the lattice computation exhibit a faster falloff than in the
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Figure 5.4: The difference ∆C between the complexity of the ground
states for a fermion with antiperiodic boundary conditions in one
direction and a fermion with periodic boundary conditions in both
directions on a two-dimensional spatial lattice, as a function of the
size of the circle with the varying boundary conditions. (Lattice
spacing is set to 0.0004 in both directions, while r = 0.1 and m =
1.0.)

2D case, but they are not well fit by a simple power law.

We have found that, with our definition of the complexity, the complexity for
antiperiodic boundary conditions is higher than for periodic boundary conditions. It
seems surprising that the generic expectation that raising the energy increases the
complexity is not borne out in this case. It is possible that the key ingredient in the
increase in complexity in the antiperiodic case is the difference in the momentum
lattices: in the antiperiodic case, the lowest momentum value is non-zero. Since the
reference Hamiltonian is the zero-momentum limit of the physical Hamiltonian, this
increase in the minimum momentum value may be responsible for the increase in
complexity of the ground state relative to the reference state.

In our calculation, we decomposed the unitary in terms of operators acting on
different momentum subspaces of the Hilbert space. An important problem for
the future is to study the decomposition in terms of operators acting on position
subspaces and see if this modifies the results. Our use of the Manhattan metric
makes this choice of basis particularly salient, and ultimately one would like to
include appropriate penalty factors for non-local transformations in the position
space decomposition.
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5.4 Discussion
We have studied, for a field theory on a torus, the dependence of the complexity of the
ground state on the boundary conditions for fermions, both holographically and in a
simple lattice model. We compared the results for antiperiodic and periodic boundary
conditions for the fermions. In the holographic calculation, the former corresponds
to the AdS soliton, where the spacetime closes off at a radius r+ determined by
the size ∆χ of the circle with antiperiodic boundary conditions, while the latter
corresponds to a simple Poincaré-AdS geometry.

Without doing any calculations, we can argue that the holographic complexity
for antiperiodic boundary conditions in the regime where r+ is small compared to
the UV cutoff rmax will have the form

Canti ∝ V~x ∆χ(rd−1
max + I0r

d−1
+ + . . .), (5.4.1)

where V~x is the volume in the remaining spatial dimensions, d is the spacetime dimen-
sion of the field theory, I0 is a purely numerical coefficient, and the suppressed terms
vanish in the limit as rmax →∞. Since the result for periodic boundary conditions is
simply Cper ∝ V~x ∆χ rd−1

max, the difference between periodic and antiperiodic boundary
conditions is finite.

By explicit calculation, we find that the result in the complexity volume (CV)
calculation is I0 = −1, while for the complexity action (CA) calculation I0 is roughly
1.27. This provides a qualitative distinction between these two bulk calculations.
In the CV calculation, the change in boundary conditions reduces the complexity,
while in the CA calculation it increases it. We initially thought a decrease was the
more intuitive result, as the ground state with antiperiodic boundary conditions has
lower energy than the one with periodic boundary conditions. However, the ground
state is far from maximum complexity, so it is important to understand the overall
effect of the change in boundary conditions.

We investigated this in a simple lattice calculation for a free fermion, extending
the work of Jefferson and Myers [42] for bosons. The complexity of the fermion
ground state is divergent, as for bosons, but the difference between the complexity
for antiperiodic and periodic boundary conditions is finite. We find that this is
positive, as in the holographic CA calculation.

These results thus seem to support the holographic action calculations over the
volume calculations. However, in the lattice calculation, there are a number of choices
and approximations that we needed to make to render the calculation feasible, and
improving this calculation is an important goal for future work. In particular, we
would like to move from considering a basis of elementary operations that acts on
the factors in a momentum space decomposition of the Hilbert space to one that acts
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in a position space decomposition, and ultimately to incorporate spatial locality into
the calculation by penalizing operations that are not acting on nearest neighbour
sites in position space.

It would also be interesting to study the dependence of the complexity on other
changes in the ground state, for example if we deform the field theory by relevant
or marginal operators.





Chapter 6

Conclusions

This thesis summarizes work on two projects, on the related areas of quantum chaos
in gauge/gravity duality and holographic complexity. The first of these projects,
described in detail in chapter 2 extended the research of Shenker and Stanford [72]
by considering both rotating and charged black holes. Emphasis was placed on the
holographic analysis of how perturbations to the boundary field theory result in
changes to the two-point correlation functions between the two boundaries. The
results obtained were not unexpected. Similar shock wave geometries were obtained
to that seen by Shenker and Stanford [72], with associated elongation of the geodesics
passing through the wormhole and the resultant effect on the dual theory of a
reduction of the correlation (and local entanglement) between points on the two
copies of the CFT. A brief look at generalizing the geodesic calculations to higher
dimensional cases revealed added difficulties — geodesics would need to calculated
in complexified spacetime — so this was left to future research, though one suspects
that the results would be similar, qualitatively at least, to the 2 + 1 dimensional
case.

In contrast, our work on holographic complexity produced some surprises and
hence this makes up the bulk of the thesis. We started, in chapter 3, by looking
at the divergence structure of both the CV and the CA forms of the holographic
complexity. Part of the aim was to prepare for the analysis of holographic complexity
with de Sitter boundaries (chapter 4), where such divergences are not expected to
simply cancel when analysing the rate of change of the complexity. However, a bigger
motivation for this analysis was the expectation that these divergent contributions
correspond to an integral, physical part of the field theory complexity, in much the
same way as the divergent part of the holographic entanglement entropy correspond
to contributions from UV modes across the boundary being considered.

Calculations of the divergences in the CV case were straightforward. In contrast,
as previously noted by Lehner et al. [46], calculating the action of the Wheeler-



94 Chapter 6. Conclusions

DeWitt patch is not as simple as was initially supposed, requiring a prescription for
the contributions of null boundaries and corners between such surfaces, and includ-
ing an ambiguity in the result. Now, while this ambiguity is not necessarily a bad
thing, given the ambiguities in the field theory definition of complexity, coordinate-
dependence of the prescription is undesired. We therefore emphasized the need for
a counterterm, mentioned by Lehner et al. [46] in appendix B, to eliminate the
coordinate dependence. A welcome bonus was that use of this counterterm also elim-
inated the unphysical-looking leading divergence and other subleading logarithmic
divergences.

Examination of the divergences of the two prescriptions revealed similar overall
structure, but with different coefficients for subleading terms. However, given that
the subleading contributions to the action depend on how we cut off the Wheeler-
DeWitt patch, it was not clear how much weight to assign to this finding. However,
subsequent work analysing complexity in de Sitter space, summarized in chapter
4, led to a bigger surprise. Most notably, the CV and CA prescriptions produced
qualitatively different results when comparing gapped solutions (dual to ‘bubble of
nothing’ spacetimes) with ungapped (dual to a spacetime with a horizon). The CV
prescription, suggested lower complexity for the gapped solutions, which might be
expected given their lower energy. The CA prescription suggested higher complexity.

The unexpected results for de Sitter boundaries led us to consider a simpler
case in chapter 5: the AdS soliton. The quantitative differences found in chapter
4 were shown to extend to this simpler situation, with the comparison in this case
being between the AdS soliton and plain AdS in the bulk, or, on the boundary,
between a fermionic theory on a torus with antiperiodic boundary conditions in
one direction, and a similar fermionic theory with periodic boundary conditions
in all directions. Given the simpler setting, we could investigate the discrepancy
further by attempting a direct calculation of complexity in the boundary field theory,
extending the lattice-based approach developed by Jefferson and Myers [42]. While
there must be some caveats, due to choices and approximations required to make
the lattice calculation feasible, the results provide some tentative support for the
CA prescription, agreeing with the assessment that the complexity is greater for
antiperiodic boundary conditions.

One naturally wonders what these results imply for the two holographic com-
plexity conjectures. Initially, one is inclined to believe that one (or both) of the
conjectures are wrong in some way, though one wonders whether to believe in the
CV conjecture that produced what, at first, seemed the more intuitive results, or
the CA conjecture that is supported by our rudimentary lattice calculations. How-
ever, there are (at least) two reasons for delaying judgement. Firstly, the definition
of the quantum computational complexity of a state depends on the selection of



95

some fiduciary reference state (or states). As a result, given states |A〉 and |B〉, it
is entirely possible for a state |A〉 to have the higher complexity according to one
definition of complexity, but to have lower complexity than state |B〉 according to a
second definition. Secondly, there remains the possibility that some modification to
the prescription for the calculation of the action might eliminate these qualitative
differences. These questions will be the subject of future research.





Appendix A

Lattice fermions in higher
dimensions

Here we discuss the lattice fermion theory in the four dimensional case in some detail,
and comment on the extension to higher dimensions. In these cases the dimension
of Hp is larger, and as a consequence the transformation between the reference state
and the physical ground state is more involved. In four dimensions, we take the
Dirac representation of the Clifford algebra, with

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.1)

where each entry represents a 2 × 2 matrix, and σi are the Pauli matrices. The
fermions then have four components. We will take the direction with variable
boundary conditions to be the x direction again. The spatial lattice has Nx sites
in the x direction with lattice spacing ax, Ny sites in the y direction with lattice
spacing ay, and Nz sites in the z direction with lattice spacing az. The momentum
vector then lives in a lattice

~p =

(
2π

Nxax
i,

2π

Nyay
j,

2π

Nzaz
k

)
(A.2)

for periodic boundary conditions, and

~p =

(
2π

Nxax

(
i+

1

2

)
,

2π

Nyay
j,

2π

Nzaz
k

)
(A.3)

for antiperiodic boundary conditions, where in both cases i ∈ ZNx , j ∈ ZNy , k ∈ ZNz .
The Hilbert space is a tensor product of spaces H~p associated with each lattice site.
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The Hamiltonian is

H = axayaz

∑
~p∈Ω

[
mψ̄(~p)ψ(~p) +

∑
i

sin(piai)

ai
ψ̄(~p)γiψ(~p)

+ 2r
∑
i

a−1
i sin2

(pia
2

)
ψ̄(~p)ψ(~p)

]
, (A.4)

where Ω is the relevant lattice. A convenient choice of eigenstates are

u1 =
1√

2E(E +M)


M + E

0

Pz
Px + iPy

 , u2 =
1√

2E(E +M)


0

M + E

Px − iPy
−Pz

 , (A.5)

with eigenvalue E, and

v1 =
1√

2E(E +M)


−Pz

−Px − iPy
M + E

0

 , v2 =
1√

2E(E +M)


−Px + iPy

Pz
0

M + E

 ,

(A.6)
with eigenvalue −E, where

Pi =
sin(piai)

ai
, M2 = m2 + 2r

∑
i

a−1
i sin2

(piai
2

)
, E =

√
M2 + ~P 2. (A.7)

Writing the fermion as

ψ(~p) = uα(~p)aα(~p) + vα(~p)bα†(~p), (A.8)

α = 1, 2, the ground state is the state annihilated by aα(~p), bα(~p) for all ~p; it is the
tensor product of the ground state in each H~p.

Taking the reference Hamiltonian H0 = axayaz
∑

~p∈Ω m0ψ̄(~p)ψ(~p), the diagonal
structure of γ0 makes the eigenspinors even simpler; they are just

u1
0 =


1

0

0

0

 , u2
0 =


0

1

0

0

 , v1
0 =


0

0

1

0

 , v2
0 =


0

0

0

1

 . (A.9)

The positive frequency eigenspinors for the physical Hamiltonian overlap with both
of the negative frequency eigenspinors of the reference Hamiltonian. Thus

aα(p) = uα†(~p)ψ(~p) = uα†uβ0a
β
0 (~p) + uα†vβ0 b

β†
0 (~p), (A.10)
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bα†(p) = vα†(~p)ψ(~p) = vα†uβ0a
β
0 (~p) + vα†vβ0 b

β†
0 (~p), (A.11)

where
uα†uβ0 =

√
E +M

2E
δαβ, vα†vβ0 =

√
E +M

2E
δαβ,

u1†v1
0 =

Pz√
2E(E +M)

, u1†v2
0 =

Px − iPy√
2E(E +M)

,

u2†v1
0 =

Px + iPy√
2E(E +M)

, u1†v2
0 = − Pz√

2E(E +M)
,

v1†u1
0 = − Pz√

2E(E +M)
, v1†u2

0 =
−Px + iPy√
2E(E +M)

,

v2†u1
0 = − Px + iPy√

2E(E +M)
, v1†u2

0 =
Pz√

2E(E +M)
.

(A.12)

Using these relations, we find that the physical ground state is1

|0000〉phys =
1

2E

[
(E +M) |0000〉0 + Pz |0011〉0 + (Px + iPy) |0110〉

− (Px − iPy) |1001〉0 − Pz |1100〉0 − (E −M) |1111〉0
]
. (A.13)

We want a unitary realising the transformation (A.13). This is in a six-dimensional
subspace of the Hilbert space Hp, so we’re looking for a U(6) transformation Up.
The ambiguity in the choice of Up corresponds to left multiplication by a U(5)

transformation which fixes |~0〉phys. Minimizing over this U(5) ambiguity to find the
Up closest to the origin in the standard metric on U(6) is non-trivial; we have not
carried out the calculation explicitly.

However, we can simplify the problem considerably by noting that the momentum
space Hamiltonian (A.4) is

H = axayaz
∑
~p∈Ω

[
Mψ̄(~p)ψ(~p) +

∑
i

Piψ̄(~p)γiψ(~p)

]
, (A.14)

which looks just like the continuum Hamiltonian for a fermion of mass M and
momentum ~P . As a result, we would expect the distance between the physical
vacuum and the reference state in Hp to be invariant under the symmetries of a
continuum theory, and depend only on P 2. If we make this assumption, we can
determine the dependence on P 2 by considering a case with a single momentum
component.

1Each bit in, e.g. |0011〉0, is associated with an annihilation operator, with the order of the bits
corresponding with the order a10, b10, a20, b20. So |0011〉0 is created from the reference state |0000〉0
by first applying b2†0 and then a2†0 .
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For example, take just Pz. Then

u1 =
1√

2E(E +M)


M + E

0

Pz
0

 , u2 =
1√

2E(E +M)


0

M + E

0

−Pz

 , (A.15)

with eigenvalue E, and

v1 =
1√

2E(E +M)


−Pz

0

M + E

0

 v2 =
1√

2E(E +M)


0

Pz
0

M + E

 , (A.16)

and u1, v1 are a mixture of u1
0, v

1
0, while u2, v2 are a mixture of u2

0, v
2
0. As a result,

we can decompose the Hilbert space Hp as a tensor product of the space acted on
by a1, b1 and the space acted on by a2, b2, and the physical ground state in H1

p is

|00〉phys,1 =

√
E +M

2E
|00〉0 −

√
E −M

2E
|11〉0 , (A.17)

while the physical ground state in H2
p is

|00〉phys,2 =

√
E +M

2E
|00〉0 +

√
E −M

2E
|11〉0 . (A.18)

Thus, the transformation from the reference state to the physical ground state is a
product of a rotation in H1

p and a rotation in H2
p. These individually are the same

as the two-dimensional case. The complexity is then just the combination of the
contributions from H1

p and H2
p. Thinking of this as calculated in the Riemannian

metric on the unitaries on Hp, the minimum distance would be obtained by rotating
in the two factors simultaneously, giving C(Up) =

√
2θ, where2

cos θ =

√
E +M

2E
. (A.19)

We obtained this result by considering a momentum where only Pz was non-zero,
but if we assume the complexity is a function only of P 2, we can apply this result to
all the momenta in the lattice. We can check that we get the same answer by taking
a different component, that is taking only Px or Py nonzero.

We add up these contributions for each site in the momentum lattice, and take

2If we combined the contributions from H1
p and H2

p in a Manhattan metric, we would have
C(~p) = 2θ. This seems less appropriate as the way Hp splits up into a tensor product depends
on which component of the momentum we consider; for example taking Px decomposes Hp into a
subspace acted on by a1, b2 and a subspace acted on by a2, b1. But this overall numerical difference
is in any case unimportant for our considerations.
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Figure A.1: The difference ∆C between the complexity of the ground
states for a fermion with antiperiodic boundary conditions in one
direction and a fermion with periodic boundary conditions in all
directions on a three-dimensional spatial lattice, as a function of
the size of the circle with the varying boundary conditions.

the difference between antiperiodic and periodic boundary conditions to calculate
∆C in (5.3.31). We plot this difference as a function of Lx in figure A.1. We see that
the difference is again positive, and decreases as a function of the size of the circle.
In this case this is also the behaviour expected holographically. Holographically, the
complexity would fall off as 1/L2

x. The numerical results for the lattice computation
are closer to 1/Lx.

We can calculate the complexity in higher dimensions along similar lines. As
we increase the spacetime dimension, the dimension of the spinor representation
increases, so the calculation for generic momentum values gets more complicated,
but we can proceed by doing the calculation in the case where the momentum has
only one non-zero component, assuming the complexity at a given momentum is a
function only of P 2. In the general case, will will take P to be parallel to the x1

axis.

The key, in the 4d case, was that u1, v1 were found to be a mixture of u1
0, v1

0 only,
while u2, v2 were a mixture of u2

0, v2
0, allowing us to decompose the Hilbert space

into two 2-bit factors. Since the final result should not depend on the representation
of the gamma matrices, we select a representation that continues to allow this type
of decomposition for higher dimensional cases, e.g. a representation where

γ0 =

(
1n×n 0

0 −1n×n

)
, γ1 =

(
0 1n×n

−1n×n 0

)
. (A.20)
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Note that (γ0)2 = 1, (γ1)2 = −1 and {γ0, γ1} = 0 as required of gamma matrices3.

We now follow the approach of Peskin and Schroeder [60, p46] — that is, we find
eigenspinors ui(p), vi(p) by applying a boost to ui0, vi0 in the spinor representation.
The generator of the boost in the x1 direction is given by (3.26) of [60],

S01 =
i

4

[
γ0, γ1

]
=
i

2

(
0 1

1 0

)
, (A.21)

and we get (see (3.49) of [60])

ui(p) = exp

[
η

2

(
0 1

1 0

)]
ui0, (A.22)

where η is the rapidity, satisfying

M sinh η = P 1,

M cosh η = E.
(A.23)

Calculating how the boost applies to vi(p) requires some care. Recall that our
vi(p) corresponds to vi(−p) in [60], so we must apply the boost in the opposite
direction. We get

vi(p) = exp

[
−η

2

(
0 1

1 0

)]
vi0. (A.24)

Note that, given the form of γ0, the basis vectors ui0 and vi0 can simply be the

3In order to create a complete set of matrices, with γ0 and γ1 as given in (A.20), we start with
d = 2, defining

γ0(2) =

(
1 0
0 −1

)
, γ1(2) =

(
0 1
−1 0

)
, γ∗(2) = γ0(2)γ

1
(2) =

(
0 1
1 0

)
,

where γ∗ plays the role of γ5 for d = 4. For even dimensions, we define the gamma matrices
recursively.

γa(d+2) = γa(d) ⊗ 12×2, (a < d),

γd(d+2) = γ∗(d) ⊗ iσ
1,

γd+1
(d+2) = γ∗(d) ⊗ iσ

2,

γ∗(d+2) = id/2γ0(d+2)γ
1
(d+2) . . . γ

d+1
(d+2).

One can then easily check that these gamma matrices satisfy the Clifford algebra.
In an odd number, d+ 1, of dimensions, we simply define

γa(d+1) = γa(d), (a < d),

γd(d+1) = iγ∗(d).
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standard unit vectors, i.e.

u1
0 =



1

0

0
...
0

. . .

0

0
...
0



, u2
0 =



0

1

0
...
0

. . .

0

0
...
0



, . . . v1
0 =



0

0

0
...
0

. . .

1

0
...
0



, etc. (A.25)

Expanding the exponential, we have

ui(p) = cosh
η

2

(
1 0

0 1

)
ui0 + sinh

η

2

(
0 1

1 0

)
ui0 (A.26)

and similar for vi(p). But note that this is just4

ui(p) = cosh
(η

2

)
ui0 + sinh

(η
2

)
vi0,

vi(p) = cosh
(η

2

)
vi0 − sinh

(η
2

)
ui0,

(A.27)

So, as in the calculations for d = 4, we find that

ui†(p)uj0 = ui†(p)vj0 = vi†(p)uj0 = vi†(p)vj0 = 0 (A.28)

whenever i 6= j. As a result, the problem of writing the vacuum state |00 . . . 0〉 in
terms of the disconnected lattice states |· · . . . ·〉0 can be decomposed into a collection
of n 2-bit subproblems as before. Continuing the calculation reveals that each sub-
problem is the same as the subproblems of the 4d case. As before, if the subproblem
complexities are combined using a Riemannian metric, we get C(Up) =

√
nθ where

cos θ =

√
E +M

2E
, (A.29)

by rotating in all of the factors of the Hilbert space simultaneously.

4Note the different normalization.
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