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Abstract

The work presented in this thesis is a contribution towards the understanding of holo-

graphic entanglement from an operational perspective. Following the interpretation which

is most natural for quantum information theory, entanglement is viewed as a resource that

can be produced, stored, transferred and used for practical purposes.

The first chapter introduces the main concepts which are necessary throughout the

discussion. Quantum entanglement, as opposed to merely classical correlation, is presented

in detail within the framework of quantum mechanics. This is followed by a brief overview

on the current state of knowledge about entanglement in quantum field theory and more

specifically in gauge/gravity duality.

The second chapter investigates a particular measure of entanglement, known as nega-

tivity, in the context of holographic field theories. This is further explored in the following

(third) chapter, where an interesting dependence of the entanglement between a region

and its complement on the topology of their interface is presented.

The forth chapter investigates qubits systems and compares equivalence classes of

entanglement structures to known properties of holographic states.

The fifth chapter focuses on the behaviour of the tripartite information for highly en-

tangled states, both in a bipartite and multipartite sense, in relation to the sign definiteness

imposed by holography.

A final chapter comments on future directions of investigation within this program.
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Chapter 1

Introduction

In 1975 Hawking proposed that information might be lost as a consequence of black holes

evaporation. While black holes are one of the most important windows onto quantum

phenomena in gravity, unitary evolution of closed systems, and hence conservation of

information, is the cornerstone of quantum mechanics. The tension between these two

paradigms of gravitational and quantum theory, dubbed the black hole information para-

dox, has been at the center of many discussions for the last forty years but a satisfactory

resolution still seems out of reach and will probably require a full theory of quantum

gravity. Despite these difficulties, the paradox is one of the first indications that quantum

information is a physically meaningful concept and might be a fundamental element of a

quantum theory of gravity.

While the theory of classical information has a long history which goes back to the sem-

inal paper by Shannon in 1948, its quantum version has eluded physicists for many decades.

Besides practical reasons, such as the difficulty of protecting quantum systems from de-

coherence, this is probably a consequence of the counterintuitive character of quantum

behaviour as opposed to the classical. Indeed, for long time the fundamental ingredient of

the future theory of quantum information, namely quantum entanglement, was considered

to be merely a curiosity.

After the seminal work in the 80’s and 90’s by a relatively small group of people, quan-

tum information theory is now a well developed and quickly growing subject. Similarly

to its classical counterpart, the new theory describes how quantum systems can be ma-

nipulated and constitutes the theoretical foundation of countless applications. It is this

operational perspective that will be central in the discussion presented in this work.

Besides practical applications, the development of quantum information theory is also

sharpening our understanding of quantum behaviour, providing new powerful tools of

investigation. It is striking how after almost a century quantum mechanics is still able

to surprise us with unexpected predictions. Indeed, part of the research in quantum

information theory is intimately related to investigations on the foundations of quantum

theory. While it is conceivable that a fully satisfactory theory of quantum gravity will

require some modifications of quantum mechanics, for the purposes of this work the theory

of quantum information might be considered as the theory of manipulations of systems

1



1.1. The concept of quantum entanglement 2

governed by the laws of conventional quantum mechanics.

To make progress towards a deeper understanding of the role played by quantum

information in gravity we need to extend the theory to the relativistic framework of field

theory. From an operational perspective this is a highly non trivial problem because the

language of field theory is much more unnatural than the one of quantum mechanics for

the description of manipulations of quantum systems. Nevertheless we now have new

tools to start tackling the problem. On the one hand there are in field theory computable

measures of quantum entanglement for which we can look for an operational interpretation

starting from their counterparts in quantum mechanics. On the other hand investigations

of entanglement structures in quantum mechanics might be a guidance for further progress

in field theory.

If one could develop an operational understanding of quantum entanglement in field

theory, one can then make contact with quantum gravity using the gauge/gravity duality,

or AdS/CFT correspondence. The duality is a concrete realization of the holographic

principle, asserting that quantum gravity in a region of spacetime can be fully described

by the information contained on its boundary. In 2006 Ryu and Takayanagi showed that

entanglement entropy of a boundary region, perhaps the most important of all entangle-

ment measures, is associated holographically to a geometric object in the gravity dual. Its

value is given by the famous Bekenstein-Hawking formula associating entropies to areas

in gravity. The discovery opened a new area of investigations where quantum information

principles are used for investigations in quantum gravity. The work presented in this thesis

is a modest step towards the understanding of this correspondence from the operational

perspective, the one which is more natural in quantum information theory.

1.1 The concept of quantum entanglement

The origin of the notion of quantum entanglement goes back to Schrödinger and his reply

to the famous argument by Einstein, Podolsky and Rosen advocating the incompleteness

of quantum theory. Several attempts to “complete” quantum mechanics made used of local

hidden variables, an important example being Bohm formulation. It was only in 1964 that

Bell proved a no-go theorem against this approach [1]. He showed that any attempt to

reproduce correlations of quantum theory with local variables would inevitably conflict

with special relativity. This subtle interplay between causality and locality is the essence

of Bell’s theorem and can be used to define quantum entanglement.

1.1.1 Spooky action at a distance

Causality and locality can be nicely defined in an abstract fashion using only probability

theory. Consider two experimentalists, Alice and Bob, that are space-like separated and

hence cannot communicate. Suppose they share a physical system composed of two sub-

systems A and B that have been prepared in advance and may in general contain some sort

of correlations. A pictorial representation of the set-up is shown if Fig. 1. The nature of
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A B

i j

a b

Alice Bob

Figure 1: A pictorial representation of PR boxes. The boxes A and B represent a physical system made of two

space-like separated subsystems, the random variables i and j label the possible choices of experiments and the

variables a and b the possible outcomes. The vertical line reminds of the fact that we are assuming A and B

to be space-like separated.

these correlations is what we want to study. The two observers have the freedom to chose

randomly the experiment they want to perform to probe the subsystems (the observable

to be measured for example). This is encoded in the random variables i and j. For a

particular choice of experiments the subsystems will respond producing the outcomes a

and b respectively. The correlations are encoded in the joint probability distribution Pab|ij
of getting the results (a, b) for the choice (i, j). For consistency with probability theory

we must have ∑
a,b

Pab|ij = 1 ∀i, j

Pab|ij ≥ 0 ∀a, b, i, j (1.1.1)

At this stage a generic realization of the joint probability distribution might allow commu-

nication between the observers because there might be an observable dependence of the

outcome a on the choice of the experiment j (and similarly of b on i). To prevent this,

consistently with the assumption of space-like separation, one has to impose the following

no-signaling condition on the marginal probabilities

Pa|ij ≡
∑
b

Pab|ij =
∑
b

Pab|ij′ ≡ Pa|ij′ ∀a, i, j, j′

Pb|ij ≡
∑
a

Pab|ij =
∑
a

Pab|i′j ≡ Pb|i′j ∀b, j, i, i′ (1.1.2)

In other words, the marginal probabilities of a and b are independent on j and i respec-

tively. We can then write

Pa|ij ≡ Pa|i Pb|ij ≡ Pb|j (1.1.3)

Note that the no-signaling condition does not imply for example

Pab|ij = Pab|ij′ (1.1.4)

because the two observers can learn about joint probabilities only when they are in causal

contact.
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If the correlations between subsystems are a consequence of a “hidden variable”, i.e.

some random variable shared by the observers, the joint probability distribution can be

written as

Pab|ij =

∫
dλ p(λ)χa|i(λ)χb|j(λ) (1.1.5)

where the functions χ are “response functions” of the subsystems A and B, λ is the random

variable that determines the response and P is its probability distribution. The assumption

of locality of correlation is encoded in the requirement that the response functions do

not depend on the choices j and i respectively. By excluding this dependence we are

restricting the possible values of Pab|ij . One can then call entangled all states which

contain correlations that violate this locality constraint. In specific cases, one can follow

this procedure to derive inequalities that are violated by entangled states, these are the

Bell inequalities.

1.1.2 A constructive definition of entanglement

The previous formulation is not optimal for practical purposes. Bell inequalities are in

general difficult to derive and the definition does not make direct contact to our ability

of manipulating the system. With the development of quantum information theory, it

has become clear that entanglement is the key resource for the implementation of all

interesting protocols. It is then important to have a definition of entanglement based on

a preparation procedure.

Imagine a situation similar to the one presented in the previous section, where now

the two agents Alice and Bob are not causally separated any more and instead can com-

municate classical information. By this we mean that they can for example send messages

describing measurement outcomes but they are still not allowed to send quantum sys-

tems. Under these assumptions the class of operations that they are able to perform on

their subsystems is the set of all local quantum operations, such as unitary evolution and

measurements, where the operations they decide to apply can depend on shared classical

information. These operations are called LOCC, which stands for local operations and

classical communication.

Suppose now that Alice and Bob have two subsystems which initially are in a product,

and hence uncorrelated, state. We consider the most general scenario where these states

are both mixed. The initial state is then ρ
(i)
AB = ρ

(i)
A ⊗ ρ

(i)
B . Clearly, since the choice of

operations that Alice can perform can depend on the outcome of Bob’s operations (and

vice versa), they can implement a protocol that produces a new state ρ
(f)
AB which contains

some kind of correlation between A and B. What is the most general form of a state that

Alice and Bob can build in this way?

Let us reformulate the set-up slightly differently. Since quantum measurements are

stochastic, the effect of sharing the outcomes using classical communication is equivalent

to the case where Alice and Bob have access to a shared random variable λ, similarly as in

our previous discussion for Bell inequalities. According to the value of λ they then extract
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states from the ensembles {ρiA} and {ρiB} according to a probability distribution p(λ). In

this way they can build any state with the following form∑
i

piρ
i
A ⊗ ρiB ,

∑
i

pi = 1 , pi ≥ 0 (1.1.6)

States that can be written in this way are called separable states. Since the correlations

contained in separable states can be build by a procedure that makes use of only LOCC, it

is natural to assume that these are local correlations. We then define non-local correlations

as the one that cannot be realized by LOCC operations. For these reason, in quantum

information theory, it is customary to define entangled states as the one that are not

separable.

1.1.3 Non-locality and the physical principle of quantum mechanics

The two definitions given above are not fully equivalent. For pure states they agree, since

the only pure states which are separable are the product states, while any state which

cannot be written as a product violates some Bell inequality. On the other hand the

situation for mixed states is much less clear. Indeed, there are states that are explicitly

non-separable but nevertheless do not violate any Bell inequality. We will further discuss

the discrepancy between the two definitions of entanglement in chapter 2.

Even if the two definitions do not completely match, it is quite clear that non-locality

is one of the key elements which distinguish quantum behaviour from the classical and it is

interesting to ask whether this is the essential physical principle of quantum theory. Indeed

quantum mechanics is defined by a set of postulates which are justified “a posteriori”, by

their ability to make predictions that reproduce results of experiments with remarkable

accuracy. But the physical principles behind the theory that could justify the postulates

“a priori“ are still rather obscure.

In 1994 Popescu and Rohrlich asked if the non-signaling condition together with the

assumption of violation of locality could be enough to define quantum mechanics [2].

Interestingly, the answer turned out to be negative. It is important to note that the

definition of entanglement based on probability theory is completely independent from

any detail of the language of quantum mechanics. We can imagine the two subsystems A

and B to be two “black boxes”, called PR-boxes, containing systems governed by some

physics which in principle could be more general than quantum mechanics. The power

of the formalism is the fact that it can be used to investigate the nature of correlations

in a theory independent way, using only probability theory. In the simplest possible set-

up where the random variables i, j, a, b ∈ {0, 1}, one can define a correlator 〈B〉, often

called the Bell observable, which satisfies 〈B〉 ≤ 2. This is a Bell inequality known as the

CHSH inequality [3] and of course can be violated by quantum correlations. Popescu and

Rohrlich found that by allowing non-locality, with the only constraints of consistency of

probability and no-signalings the bound is 〈B〉 ≤ 4. On the other hand, it was proved

by Tsirelson [4] that quantum mechanics allows for a strength of correlations only up to
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〈B〉 ≤ 2
√

2. What is the physical principles that produces this bound and does not allow

for correlations with 2
√

2 < 〈B〉 ≤ 4? The question is still open, see [5] for a nice review.

1.2 Quantum information theory

Quantum information theory encompasses a broad range of subjects in the area of quan-

tum mechanics and its applications. Sometimes the term is used more specifically to refer

to the generalization of Shannon’s classical theory of communication to the realm of quan-

tum systems. Throughout this work instead we will use it in a broader sense, including

other areas of investigations and applications of quantum mechanics such as the theory of

quantum computation, protocols like teleportation, or the research on the foundations of

quantum theory.

It is perhaps this desire of better understanding quantum phenomena that leaded to

the development of the new theory although its origins are difficult to track in a clear way.

Rather, the field emerged in the 80’s and 90’s from investigations regarding entanglement

and from the desire of acquiring practical control over quantum systems.

Quantum information theory is now a very wide field which continues to grow very

quickly and a detailed presentation is beyond the scope of this work. In the next section

we will limit ourselves to the presentation of some important elements of the theory and

briefly comment on each of them. What really is remarkable is the fact that in the last few

years nearly all of them have at some level entered the discussion about quantum gravity

and holography.

1.2.1 Quantum wonders

The no-cloning theorem this is one of the first results that started the field of quan-

tum information theory. The theorem asserts that it is not possible to build a machine

which, given an unknown quantum state |ψ〉 together with an additional system in some

reference state | 0〉, produces as outputs two copies of | ψ〉. The impossibility of cloning

quantum information has played a role in several recent discussion regarding the black

hole information paradox and the firewall argument [6].

Quantum computation: a quantum version of the Universal Turing Machine was first

proposed by Deutsch in 1985. A set of simple unitary operations acting on single qubits

or pairs of qubits, called quantum gates, was shown to be universal, in the sense that any

unitary evolution can be realized using an appropriate circuit of these quantum gates. The

interest in quantum computers largely increased after the proof by Shor of the possibility

of factorizing numbers in polynomial time, showing the power of quantum computers over

their classical version. In recent years other schemes for quantum computation have been

developed, including one based on measurements known as one way quantum computa-

tion [7]. In this case entanglement is the resource contained in the initial state which is

consumed to run the computation. The ability of black holes to process information very
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efficiently, in particular the conjecture that they are fast scramblers, suggests an analogy

between black holes and quantum computers [8].

Teleportation: this is perhaps the most striking application of quantum information

theory. Using entanglement, it allows to transfer a quantum state from one agent to

another using only measurements and classical communication. Suppose Alice and Bob

share a Bell pair AB, one particle each. Furthermore, Alice has a qubit C in a state |ψ〉C
and she wants to transfer the state to Bob. She just needs to do a Bell measurements

on the two qubits AC and communicate the result to Bob. The measurement creates a

new Bell pair on AC and Bob can use the received classical information to perform a

local unitary transformation on B that produces |ψ〉B. Quantum teleportation can also

be used to build an alternative scheme for quantum computation [9]. In quantum gravity,

a modified version of teleportation where Bob can produce | ψ〉B without receiving any

information from Alice, known as post-selected teleportation, has been used to propose a

solution to the black hole information paradox, the black hole final state proposal [10].

Quantum noiseless coding theorem: this is the first of various theorems proved in

the context of quantum communication along the lines of its classical counterpart. It was

proved by Schumacher in 1995 and is the direct generalization of Shannon’s theorem to

the quantum world, where the role of Shannon entropy is now played by the von Neumann

entropy. Consider a message composed of “letters” where each letter is a pure quantum

state drawn from an ensemble {|ψ1〉, ..., |ψn〉} with probabilities {p1, ..., pn}. The theorem

says that there exists a code that compresses the message to S(ρ) qubits per letter, where

ρ =
∑n

i=1 pi |ψi〉〈ψi | and S(ρ) is the von Neumann entropy.

Quantum error correction: the ability to correct errors is crucial for all practical

applications of quantum information theory, both in quantum communication and quan-

tum computation. Suppose that we want to send a state | ψ〉 of some physical system

associated to a Hilbert space H. To protect the message we can encode the same state

on some larger system with Hilbert space H̃. To do this, a subspace of this new enlarged

Hilbert space Hcode ⊂ H̃ is sufficient, this is called the “code subspace”. The details

of how this should be done depend on the kind of noise one want to protect the state

from. Essentially, the mechanism works because the information contained in the original

message is encoded in a redundant manner in the enlarged system. Again, entanglement

plays a crucial role, tailor made entanglement structures should be used to define the code

subspace and guarantee the ability of the receiver to correct the error. In the context

of AdS/CFT, recent work suggested that a similar mechanism is the way the boundary

reproduces the bulk [11].

Entanglement distillation: is a procedure that can be used to extract Bell pairs from

a quantum state using LOCC. Distillability of entanglement is used to define distillable



1.2. Quantum information theory 8

entanglement, an important measure of entanglement which will be introduced in the next

section.

Quantum state merging: conditional entropy is an important quantity in classical

information theory and its quantum counterpart is the conditional von Neumann entropy

S(A|B) = S(AB) − S(A). Interestingly, this quantity can be negative, this happens for

example any time AB is in a pure state and there are correlations between A and B.

Quantum state merging is a protocol that gives an interpretation to this quantity, even

when negative. Consider a situation where, using entanglement and classical communica-

tion, a sender wants to send a state to a receiver who already has some information about

the full state. The conditional entropy is a measure of the minimal amount of entangle-

ment which is necessary to implement this protocol. When this quantity is negative, the

sender can transfer the state without entanglement, while some amount of entanglement

is instead produced. In holography, a version of this protocol has been proposed to give

an operational interpretation to the length of certain curves in the bulk [12].

1.2.2 Measuring entanglement

Given a generic state of a (for simplicity) bipartite system, one can in principle use the

definition of entanglement based on separability to determine if the state is entangled

or not. Nevertheless the problem is known to be computationally hard. Tools like Bell

inequalities, called in general entanglement witnesses, can be used to determine whether a

state contains some entanglement, but they are not always conclusive and do not provide

a full characterization of the entanglement in the state. The discussion in the previous

section should have made clear that quantum correlations are now viewed as a resource

that should be produced, stored, transformed and used in desired applications. It is then

crucial to develop measures which have a clear operational interpretation and are able to

quantify the amount of entanglement that pertains to the state.

The first measure to be introduced, and certainly one of the most important, is en-

tanglement entropy. For a given pure state |ψ〉AB ∈ HA ⊗HB of a bipartite system, the

entropy of entanglement between A and B is given by the von Neumann entropy of the

reduced density matrix ρA (or ρB)

SA = −TrAρA log ρA , ρA = TrB |ψ〉〈ψ | (1.2.7)

As a consequence of purity, the result is independent on which one of the subsystem we

choose, i.e. SA = SB. This is not true any more if the original global state was mixed. In

this case the von Neumann entropy is not a good measure of entanglement.

In general the von Neumann entropy satisfies a set of inequalities which are of particular

importance not only in quantum information theory but also for later discussions in field

theory and holography:
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• subadditivity: SAB ≤ SA + SB ∀A,B

• strong subadditivity: SABC + SB ≤ SAB + SBC ∀A,B,C

• Araki-Lieb: |SA − SB| ≤ SAB ∀A,B

Even for pure states, the von Neumann entropy is just a single number and is not able

to completely characterize the full entanglement structure of a state, to this end we need

additional measures. Furthermore, one would like to have measures of entanglement with

a nice operational interpretation which can be used also for mixed states. An axiomatic

theory of entanglement measures is not fully developed yet, nevertheless there are several

properties that are usually required to be satisfied by good candidates for measures of

entanglement:

• An entanglement measure E(ρ) is a mapping: ρ→ E(ρ) ∈ R+

• E(ρ) = 0 for separable states

• On average, E(ρ) does not increase under LOCC, it is an entanglement monotone

• For pure state, i.e. ρ =|ψ〉〈ψ |, the measure reduces to entanglement entropy

• Convexity: E (
∑

i piρi) ≤
∑

i piE (ρi) Intuitively, the motivation behind this require-

ment is the fact that in going from a selection of identifiable states ρi to a mixture

ρ =
∑
piρi some information is lost

• Additivity: E (ρ⊗n) = nE(ρ) is the weaker form of additivity. A much stronger

requirement, which is not satisfied by most measures is instead E(ρ⊗ σ) = E(ρ) +

E(σ)

• Continuity

Over the years several measures have been proposed satisfying all or part of these proper-

ties, see [13] for a review. Here we briefly mention two of them which, at least conceptually,

are perhaps the most satisfactory.

Entanglement cost EC(ρ): is the minimal number of maximally entangled states, i.e.

Bell pairs, which are required to create copies of a state ρ using only LOCC operations.

More precisely, for a given state ρ, this measure quantifies the maximal possible rate at

which one can convert blocks of Bell pairs into output states that approximate many copies

of ρ, such that the approximation becomes vanishingly small in the limit where the size

of the block is large. The maximization is over all possible protocols that can be used to

implement the procedure, for this reason this measure is an extremely difficult quantity

to evaluate.



1.3. Entanglement in Quantum Field Theory 10

Distillable entanglement ED(ρ): intuitively, this is the opposite of entanglement cost.

It is the maximal rate at which one can convert copies of a state ρ into copies of approxi-

mately maximally entangled pairs. Again, as for entanglement cost, the maximization is

over all possible protocols and makes this measure very hard to compute.

For pure states these two measure match and are equal to entanglement entropy, which

also serves for their calculation. Quite interestingly, this is not always true for mixed

states where in general one has EC(ρ) ≥ ED(ρ). This irreversibility in manipulations of

entanglement suggests that one could hope to develop a “thermodynamics” of entangle-

ment [14]. States for which the inequality is strict are called bound entangled, stressing

that the entanglement of the state is in some form that cannot be distilled. An important

example of a measure that is sensible to this kind of entanglement is the negativity. This

quantity is important for practical purposes because at least in quantum mechanics can

be easily computed. We will define it rigorously and discuss its properties extensively in

the following chapters, which will focus on the role that negativity plays in field theory

and holography.

1.3 Entanglement in Quantum Field Theory

In quantum field theory entanglement is much less understood than in quantum mechan-

ics, even more so from an operational perspective. One could argue that quantum field

theory is just the continuous limit of quantum mechanics and that the same definitions

we presented above should apply. Nevertheless there are several complications. To be-

gin with, the notions of causality and locality introduced with the PR-boxes formalism

are not fully equivalent to the concept of microcausality which is instead natural in field

theory. Further technical issues arise as a consequence of the infinite dimensionality of

Hilbert spaces and the fact that, for gauge theories, the Hilbert space does not factorize

for a given bipartition. A definition of entanglement based on LOCC seems unnatural for

field theories, where operations such as measurements are much less understood than in

quantum mechanics. In this regard one could appeal to the algebraic formulation of the

theory, but this is notoriously difficult to deal with for practical purposes. Finally there is

the problem of defining information theoretical quantities in a relativistic covariant fash-

ion. Relativistic quantum information theory is a new area of research which is still at its

infancy.

1.3.1 Towards a notion of entanglement for field theory

Although much work still has to be done, we briefly review here some known facts which

will potentially play a crucial role in defining entanglement along the same lines as in

quantum mechanics.
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Violation of Bell inequalities: in the algebraic formulation, it was proved in 1987 by

Summers and Werner [15] that the violation of Bell inequalities is a generic fact in the

vacuum of an arbitrary field theory.

Reeh-Schlieder theorem: the theorem is derived in the axiomatic framework of quan-

tum field theory. It asserts that in the vacuum of a field theory, the space of states

generated by operators acting on an arbitrary subregion is dense in the Hilbert space of

the theory. This means that by acting locally with an appropriate operator, although in

principle it can be very complicated, we can produce a state which is arbitrarily closed to

any possible desired state. Naively, one is tempted to interpret this result as suggesting

that the vacuum of an arbitrary field theory contains a large amount of entanglement

which can be used for practical applications. Quite differently from the result concerning

Bell inequalities, this theorem seems to be more in line with an operational interpretation

of field theory entanglement.

Tsirelson problem: in the previous section we discussed how the formalism of PR-

boxes can be used to investigate, using only probability theory, the interplay between

non-locality and causality that characterises quantum correlations. Using the formalism

of quantum mechanics, the set Q of correlations that can be produced corresponds to joint

probability distributions that can be written as

Pab|ij = 〈ψ |Ma|i ⊗Mb|j |ψ〉 (1.3.8)

where |ψ〉 is the state of the system AB in a Hilbert space that factorizes HA⊗HB. Note

that in general the state of AB can be mixed, but we can always enlarge the system to

purify the state and write the probability distribution in this form. For quantum field

theory on the other hand, probability distributions are given by expressions like

Pab|ij = 〈ψ |Ma|iMb|j |ψ〉 (1.3.9)

where we instead of requiring factorization of the Hilbert space, we impose the micro-

causality condition between local operators
[
Ma|i,Mb|j

]
= 0. We call the set obtained in

this way Q′. Since
[
Ma|i ⊗ 1B, 1A ⊗Mb|j

]
= 0 it immediately follows Q ⊆ Q′. It is an

open question [16] whether the inclusion is strict and Q 6= Q′.

1.3.2 Entanglement measures in field theory

At present, an axiomatic approach to entanglement measures in field theory along the

lines of the quantum mechanical case still has to be developed. Most of our understanding

of entanglement comes from the calculation in field theory of some of the measures defined

for quantum mechanics, but an operational interpretation of these quantities is far from

clear. Furthermore, already in quantum mechanics most measure are very difficult to

compute and the situation gets even more complicated in field theory.
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In practice, the measures that can be computed in field theory are generalization of the

von Neumann entropy known as Renyi entropies, which are defined as follows. Consider

a field theory state at some instant in time. Pick a subregion of interest A and build the

reduced density matrix ρA by integrating out the degrees of freedom of its complement

Ac. The Renyi entropies of ρA are defined as

Sq(ρA) =
1

1− q
Tr(ρqA) (1.3.10)

While it is natural to expect that the full set of Renyi entropies, usually called the en-

tanglement spectrum, carries complete information about the pattern of correlations of a

state, unfortunately they do not have an operational interpretation. This is one of the

reasons that motivated us to look at other quantities for the investigations presented in

the following chapters.

From Renyi entropies one can derive the von Neumann entropy by differentiation with

respect to q

S(ρA) = − ∂

∂q
TrAρ

q
A

∣∣∣∣
q=1

=
∂

∂q
log TrAρ

q
A

∣∣∣∣
q=1

(1.3.11)

This is the technique which can be used to derive entanglement entropy in field theory,

where the direct computation of the logarithm of a density matrix is not possible. If the

original state of the field theory from which ρA was derived is a pure state, and if the

Hilbert space factorizes HA ⊗ HAc , it is natural to interpret this quantity as the field

theory generalization of quantum mechanical entanglement entropy.

To compute Renyi entropies in field theory we can use the “replica trick” [17] to

evaluate TrAρ
q
A. We start with a path integral representation of the reduced density

matrix ρA. For the ground state of a field Φ(x) the wave functional is given by path

integration in Euclidean time on the interval tE ∈ (−∞, 0)

Ψ(φ(x)) =

∫ Φ(tE=0)=φ

tE=−∞
DΦ e−S(Φ) (1.3.12)

where φ(x) is the filed configuration of Φ(x) at tE = 0. To build the total density matrix

we need the complex conjugate Ψ(φ′(x)), which is given by integration on tE ∈ (0,+∞).

The density matrix is then given by a Euclidean integral on tE ∈ R with a cut along tE = 0

ρ(φ, φ′) = Ψ(φ(x))Ψ(φ′(x)) =

∫
Φ(tE=0−)=φ
Φ(tE=0+)=φ′

DΦ e−S(Φ) (1.3.13)

To derive the reduced density matrix ρA we need to trace over the degrees of freedom in

Ac. We impose then the condition φ(x) = φ′(x) for x ∈ Ac and integrate over x. This

is equivalent to “gluing” Ψ(φ(x)) and Ψ(φ′(x)) on Ac leaving boundary conditions to be

specified only in A

ρA(φ, φ′) =

∫
Φ(tE=0−,x∈A)=φ
Φ(tE=0+,x∈A)=φ′

DΦ e−S(Φ) (1.3.14)
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Now to compute ρqA we take multiple copies of ρA and glue each sheet to the following one

by matching boundary conditions along the cuts which correspond to the copies of region

A: φi(x) = φ′i+1(x) with i = 1, 2, ..., q. Finally, we get TrAρ
q
A by gluing the q-th copy to

the first one. The result is a path integral on an q-sheeted Riemann surface Rq

TrAρ
q
A =

∫
(tE ,x)∈Rq

DΦ e−S(Φ) (1.3.15)

Following this procedure one can derive the analogous result for a field theory in a

thermal state at temperature T = 1/β. The path integral representation of the density

matrix is obtained by integrating for an interval in Euclidean time of length β. The reduced

density matrix obtained by gluing along Ac becomes a cylinder with a cut along A and the

Riemann surface Rq is obtained as before by gluing multiple copies of the cylinder along

the cuts.

For an arbitrary region A, which in particular could be disconnected, in an arbitrary

quantum field theory of dimension d, the calculation of these path integrals is intractable.

Nevertheless for some specific cases, (1.3.15) can be evaluated. This happens for example

when the field theory is a two dimensional conformal field theory. In this case the Riemann

surface Rq can be mapped to a sphere with the insertion of operators at the endpoint of

the intervals corresponding to the region A. These operators, called twist operators, are

primary operators of dimension c
12(q− 1

q ) and encode the gluing conditions that definedRq.
The partition function is then given by a 2q-point correlation function of twist operators.

For q > 1 the result is not universal and depends on the details of the theory. On the

other hand, when A is a single interval, the result is universal. For the ground state one

gets

SA =
c

3
log

l

ε
+ cons (1.3.16)

and for the thermal state

SA =
c

3
log

(
β

πε
sinh

πl

β

)
+ cons (1.3.17)

where ε is a UV cut-off and the constant term is not universal.

For more complicated choices of A or in higher dimensions few results are known,

although this is a very active area of research. Nevertheless, for the simplest situation

where A is a ball region, entanglement entropy can be computed and it is known to satisfy

an area law . This means that the entropy is not proportional to the volume of the ball

but rather to the area of the spherical surface which constitutes its boundary

SA ∼
A(∂A)

εd−2
+ subleading terms (1.3.18)

where ε is a UV cut-off in the field theory and d > 2. This was first proved in free

field theory in [18] and later shown to be true in several situations also with numerical

techniques. Indeed, in the context of condensed matter theory, several tools have been

introduced specifically to approximate this particular entanglement structure that charac-

terizes ground states of local Hamiltonians. Tensors networks are an important example

which is currently of very much interest also for holography.
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1.4 Holographic entanglement

The famous result due to Bekenstein and Hawking associates an entropy to a black hole

given by

SBH =
A

4GN
(1.4.19)

where A is the area of the event horizon. This suggests that gravity might be holographic

and that all information about a region of spacetime is somehow encoded on its boundary.

A concrete realization of this holographic principle, and certainly the most important so

far, is the AdS/CFT correspondence, or gauge/gravity duality, proposed by Maldacena in

1997 [19].

1.4.1 Gauge/gravity duality

In essence the duality asserts that string theory on an asymptotically Anti de Sitter back-

ground is dual, and hence equivalent, to a certain field theory which lives on the boundary

of that spacetime. The most important example of the correspondence relates type IIB

superstring theory on AdS5 × S5 to N = 4 super Yang-Mills theory in 3 + 1 dimensions

with gauge group SU(N). On the string theory side, both Anti de Sitter space and the

sphere have radius of curvature L, the free parameters are the string coupling gs and the

ratio L2/α′, where α′ = l2s and ls is the length of the string. On the other hand on the

field theory side the free parameters are the rank of the gauge group N and the coupling

constant g2
YM . The correspondence is established by the following identifications

g2
YM = 2πgs , 2g2

YMN =
L4

α′2
(1.4.20)

For the purposes of the discussion presented in this work, we will need a particular

regime of the parameters where the AdS side is not dominated by stringy effects but

rather reduces to classical gravity. We then make the assumption gs � 1 while keeping

L/
√
α′ fixed, such that the strings are weakly coupled and tree level diagrams dominate in

perturbation theory. On the field theory side it follows from (1.4.20) that gYM � 1 while

g2
YMN remains finite. This is equivalent to taking the ’t Hooft limit N → ∞ for fixed

λ = g2
YMN . Finally, if we take the limit λ → ∞ in the field theory, this is equivalent to√

α′/L→ 0 for the strings. In this regime the string is very small compared to the radius of

curvature of AdS and this side of the duality reduces to type IIB supergravity on AdS5×S5.

This particular example can be generalized to motivate a duality AdSd+1/CFTd.

Once the correspondence is established, it is important to clarify the dictionary that

maps between objects on the two sides. An important feature of the correspondence is the

fact that the symmetry groups on the two sides match. This allows to map operators O on

the field theory side to supergravity fields φ in the AdS background. More specifically, the

boundary value φ0 of the supergravity fields are interpreted as a source for the operators O.

This allows to formulate the correspondence as an equivalence between partition functions
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on the two sides. In its strongest form, the duality equates the partition function of the

field theory to that of string theory on the AdS background

ZQFT[φ0] =

〈
exp

∫
ddxφ0O

〉
QFT

= Zstring (1.4.21)

where Zstring is not known explicitly. On the other hand in the regime we are interested

in, a saddle point approximation to the string action is given by the on-shell action of

supergravity. The correspondence is then

ZQFT[φ0] =

〈
exp

∫
ddxφ0O

〉
QFT

= eSsugra [φ→ φ0] (1.4.22)

The supergravity action is evaluated on the solution of the equations of motion of super-

gravity with boundary condition

lim
z→0

φ(z, x)z∆−d = φ0(x) (1.4.23)

where ∆ is the scaling dimension of the operator O and z is the radial coordinate in the

bulk of AdS. Once this relation is established, one can then compute correlation functions

as usual by taking functional derivatives.

The great advantage that derives from the correspondence is the fact that it can be

used as a tool to investigate one side working with the other. In the regime we are focusing

onto, the field theory is strongly couple and perturbation theory is useless. But on the

other side the string dual reduces to classical gravity which can then be used as a tool

to investigate strongly coupled field theories. While this is certainly the property that

makes the AdS/CFT correspondence useful in countless applications, we are interested in

a slightly different aspect of the duality. Understanding how the correspondence works and

what are its physical foundations, would probably represent an important step towards

the development of a theory of quantum gravity.

1.4.2 Holographic entanglement entropy

In the regime where the bulk dual is just classical gravity, one can ask if the correspon-

dence is able to tell us anything about information theoretic quantities in the boundary

field theory. Remarkably, in 2006 Ryu and Takayanagi proposed that when a classical

holographic dual is available for a given state of a field theory, the von Neumann entropy

of a boundary subregion is given by a nice geometric quantity [20].

More precisely, for a static situation, consider a time-slice of the asymptotically AdS

geometry. On the boundary pick a subregion of interest A, with boundary ∂A, for which

we want to compute the von Neumann entropy. The holographic prescription tells us

to look for the bulk surface Σmin with boundary ∂A that minimizes the area. The von

Neumann entropy is then given by

SA =
A (Σmin)

4GN
(1.4.24)
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where GN is the Newton constant in the bulk. The formula is of crucial importance for

practical application, as it gives a tool to easily compute the von Neumann entropy in

many situations where it would be inaccessible with other techniques such as the replica

trick. The analogy to the Bekenstein-Hawking formula is striking and once more suggests

that there is some deep connection between gravity and information theory.

When the field theory is in a pure state, we know that SA = SAc . This is straight-

forward to see in the holographic picture, where the bulk minimal surface anchored to

∂A is the same for A and Ac. On the other hand, when the state of the field theory is

mixed, we known that the entropies o a subregion and its complement are different. A

typical example is the thermal state of the field theory that corresponds holographically

to the geometry of an eternal black hole in AdS. In this case the prescription for the

computation of holographic entanglement entropy should be modified by introducing an

additional requirement. The bulk minimal surface should not only be anchored to ∂A, it

should also be homologous to A.

With such a prescription at hand, one should then check that it satisfies all the prop-

erties of the von Neumann entropy. This in particular means that all the inequalities

presented in (1.2.2) should be satisfied. Strong subadditivity was checked in [21] while the

Araki-Lieb inequality is guaranteed to be satisfied by the homology constraint. Remark-

ably, for this static situation, the Ryu-Takayanagi prescription has now been proved [22].

The results obtained from this holographic prescription are divergent, this is the con-

sequence of the fact that the boundary of AdS is at infinite proper distance from any point

in the bulk. The correct regularization procedure consists in truncating the geometry at

some finite large distance, this corresponds to the UV cut-off on the field theory side.

Taking the limit where the truncation of the geometry is at infinity is dual in field theory

to the limit where ε goes to zero.

Unfortunately, the Ryu-Takayanagi prescription we just reviewed applies only to sta-

tionary scenarios. One would like instead a prescription that can be used in any dynamical

situation. Such generalizations was found by Hubeny-Rangamani-Takayanagi in [23]. For

a field theory state on some Cauchy slice one can define the von Neumann entropy as

before, but now the bulk geometry has Lorentzian signature. In this case one cannot min-

imize the area of bulk surfaces as the area is not bounded from below any more. The new

prescription then requires to find all extremal surfaces homologous to A with boundary

∂A and among them the one that minimizes the area. The entropy is then again given by

(1.4.24).

1.4.3 Holographic entanglement structures

One of the interesting consequences of the holographic entanglement entropy prescription

is that under some conditions the Araki-Lieb inequality is saturated, this phenomenon

is called entanglement plateaux. For a field theory in a thermal state, when the region

of interest A is large enough, the minimal surface splits into two terms, one being the

minimal surface which computes the entropy of Ac and the other the black hole horizon.
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For arbitrary states the Araki-Lieb inequality is known to be very difficult to saturate,

suggesting that the entanglement structure of the field theory in this holographic setting

could be quite special. We will explore this behaviour for qubits systems in chapter 4.

Another interesting consequence of the Ryu-Takayanagi prescription is a further con-

straint independent on (1.2.2). For any three subregions A,B,C holographic states satisfy

the following inequality

SA + SB + SC − SAB − SAC − SBC + SABC ≤ 0 (1.4.25)

The quantity on the left hand side is called tripartite information. This inequality will be

investigated for qubits systems in chapter 4 and for some special highly entangled states

in 5.

The results reviewed above suggest that there is a deep connection between bulk ge-

ometric quantities and quantum information on the boundary. More generally, it has

been argued by various recent works that the bulk geometry somehow “emerges” from

the pattern of entanglement of the boundary theory. This entanglement structure, and in

particular its operational interpretation, are the main subjects of this work.

A promising approach to investigations of entanglement structures in holography are

tensor network constructions, see for a general review [24]. An arbitrary quantum state

of N qu-d-its (the higher dimensional generalization of a qubit) can be written as

|ψ〉 =
∑

i1,i2,...,iN

Ti1,i2,...,iN | i1, i2, ..., iN 〉 (1.4.26)

with i1, i2, ..., iN ∈ {0, 1, ..., d− 1}. The state is specified by the coefficient of the tensor

T . Since the dimension of the Hilbert space of such a system grows exponentially with

N (dimH = dN ), both analytical and numerical investigations become infeasible even

for relatively small N . Depending on the situations one can then focus attention on

particular structures of T . An appropriate choice of the tensors used to build the network

leads to states which satisfy an area law for entanglement, making them good ansatz to

approximate ground states of local Hamiltonian. An important example in the context of

holography is the MERA (multi-scale entanglement renormalization ansatz) [25], which

was first related to holography in [26]. Other tensor networks have also been used to

suggest a form of the exact holographic mapping between Hilbert spaces of boundary and

bulk theories [27], and to analyse the connection between holography and quantum error

correction [28]. Tensor networks will not enter directly into the discussion presented in the

main body of this work, but they constitute the natural prosecution of our investigations.

We will comment more on this in the final outlook.

The connection between entanglement and geometry is so deep that it has even be

suggested that it could be upgraded to a full equivalence in quantum gravity. The pro-

posal goes under the name ER=EPR [29], where ER stands for Eistein-Rosen bridge,

referring to geometric connectedness, and EPR for Einstein-Podolski-Rosed, referring to

entanglement. This conjecture as originally formulated is a general statement about quan-

tum gravity which in principle could be independent from holography. Nevertheless it is
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quite natural to imagine an holographic version, where entanglement refers to quantum

correlations in the boundary theory and geometric connectedness to the bulk. If this is

true to some extent, it would be interesting to understand the operational interpretation

of the equivalence. Is there an holographic dual to protocols performed by agents acting

on the boundary? Understanding this potentially striking and fascinating phenomenon is

perhaps the final goal of the kind of investigations presented in this work.



Chapter 2

Entanglement Negativity in Field

Theory

This chapter is a reproduction of the paper Comments on Entanglement Negativity in

Holographic Field Theories [30], written in collaboration with Mukund Rangamani.

This work initiated the investigation of a measure of quantum entanglement called

negativity in the context of holographic field theories. Negativity is a measure of bipartite

quantum entanglement that can be used even for global mixed states, where other measures

based on the von Neumann entropy, such as the mutual information, are not able to

distinguish classical from quantum correlations.

In quantum mechanics negativity can be easily computed and has an operational in-

terpretation. It is an upper bound to the amount of quantum entanglement that can

be distilled from a system. In the context of field theory, negativity was first explored

in [31], which for the case of global pure states established an important relation to Renyi

entropies.

Here we look at holography and after a thorough introduction to negativity and its

properties, we compute the entanglement negativity for the thermofield double state, the

state dual to the eternal black hole geometry in AdS. The answer is a function of the free

energy of the field theory at different temperatures which matches entanglement entropy,

and hence the entropy of the black hole, in the limit of infinite temperature.

We then use this result to compute the negativity for spherical regions in the vacuum

of different field theories, both free and strongly coupled. Interestingly, a comparison of

these results shows that the negativity seems to be smaller at strong coupling. Naively it

is tempting to interpret this result as suggesting that when the fields are strongly coupled

fewer Bell pairs can be distilled from the vacuum. Unfortunately, a rigorous interpretation

along this lines will require a much deeper understanding of the operational perspective

on entanglement in field theory.

For pure states entanglement entropy coincides with the amount of entanglement that

can be distilled from the system, while negativity, which is just an upper bound, is a larger

quantity. In four dimensions the leading contribution to both entropy and negativity is

19
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proportional to the area of the entangling surface, but this term is unphysical as it depends

on the regularization scheme. The logarithmic terms instead are scheme independent

and their coefficients carry important physical information. We conjecture that the ratio

between the coefficients of the universal terms for the negativity and entanglement entropy

is always greater than one, in accordance with the operational interpretation of these

quantities. The conjecture is supported by some explicit examples, but will be falsified

by a counterexample in the next chapter. We will see that under some conditions the

ratio depends non trivially on the topology of the entangling surface and for complicated

topologies can be less than one.

Finally, we comment on a possible connection between negativity and the entanglement

plateaux phenomenon of [32]. This behaviour will be further explored in the chapter 4 in

the case of simple qubits systems.

2.1 Introduction

Quantum mechanics, as is well appreciated, is characterized by an important feature, en-

tanglement. While the colloquial usage of the word “entanglement” often simply refers to

presence of correlations which could simply be of classical nature, nature of quantum en-

tanglement transcends this interpretation. A natural question is to segregate and quantify

in a given quantum state the genuinely quantum parts of entanglement from those that

are inherited from underlying classical correlations.

One way to proceed would be to use the intuition garnered from Einstein-Podolsky-

Rosen (EPR) like entangled states, which are non-product (pure) states in the quantum

Hilbert space. One of the characteristic hallmarks of these states as elucidated by Bell [1]

is that they fail to satisfy the Bell inequality (and hence its generalization, the CHSH

inequalities). We now understand quite well that this means that the entanglement inher-

ent in the EPR state is a genuine quantum aspect and relatedly that one cannot invoke

some local hidden variable (LHV) to describe the quantum state. A-priori one might have

thought that the Bell/CHSH inequalities provide a complete characterization of the nature

of entanglement.

While for pure states this is true, the state of affairs is much less clear in case of mixed

states. Consider a bipartite system in a state ρ with two Hilbert spaces which we will

refer to as the left and right Hilbert space, HL and HR respectively. Such a state is called

separable if it can be written as

ρ =
∑
i

pi ρ
R
i ⊗ ρLi ,

∑
i

pi = 1 , pi ≥ 0 , (2.1.1)

otherwise it is called entangled. Physically this definition attempts to encode the fact

that separable states are classically correlated as they can be produced using only local

operations and classical communication (LOCC).1 In particular, it introduces a distinction

1 LOCC for two parties consists of steps in each of which any party is allowed to perform local mea-



2.1. Introduction 21

between the correlations that are classical and those that ought to be considered quantum.

In analogy with pure states above, one would then be inclined to think that even in

the case of mixed states any entangled state violates some Bell inequality. Surprisingly

this is not true, as demonstrated by Werner in [33], where mixed entangled states that

can nevertheless be described by a LHV model were constructed. In some sense, despite

manifesting some quantum correlation, these states ought to be viewed as local as they are

not in tension with the notion of local realism.2 Furthermore, if we have access to several

copies of the state then it is sometimes possible using only LOCC to distill a new state that

violates some Bell inequality [35] (see [36] for details on distillation). One might then be

led to the intuition that this process should be achievable starting from any mixed state;

therefore the only states that always satisfy all Bell inequalities are the separable ones.

Unfortunately, even this intuition fails; to put it mildly the boundary between classicality

and quantumness is rather fuzzy with no clear demarcation. The main lesson we wish to

emphasize is one ought to distinguish different notions of entanglement in the quantum

realm.

Because of the intricate nature of entanglement for mixed states, several measures of

entanglement have been proposed. The concept of distillation for example can be used

to define the distillable entanglement as a measure of how much pure entanglement it is

possible to extract from some state using only LOCC. On the other hand the entanglement

of formation quantifies the amount of pure entanglement required to create a given state.3

In case of pure states these measures are equal and agree with entanglement entropy (for a

comprehensive review on entanglement measures see [13]). Unfortunately the drawback is

that these measures cannot be computed because they are given by variational expressions

over possible LOCC protocols. A more pragmatic approach is to therefore consider a

quantity that is computable [37] – this leads us to the consideration of entanglement

negativity which will form the focus of the present investigation. Heuristically, the concept

uses the spectral data of the density matrix4 (sometimes called entanglement spectrum)

to ascertain the amount of entanglement inherent in the mixed state (cf., §2.2 for a precise

definition) .

While the above discussion has been firmly rooted in the realm of quantum mechanics,

one expects that many of these issues generalize to relativistic quantum field theories, see

e.g., [38]. Understanding the nature of entanglement in different quantum states in this

context is not only interesting in its own right, but also from the potential connections

with holographic dualities. Indeed, the geometrization of the notions of entanglement

entropy in the gauge/gravity context for holographic field theories as originally proposed

surements and communicate the outcome to the other using classical channels.
2 For a discussion on the properties of Werner states in the context of teleportation see e.g., [34].
3 These measures must be interpreted in an asymptotic sense. They give extremal rates achievable

when one has many copies of the state ρ.
4 We actually need the spectral data of an auxiliary matrix constructed from the density matrix; we

will be more precise below.
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in [20,39] (and made geometrically covariant in [23]) makes one wonder if there are further

lessons one can learn by understanding the distinct notions of entanglement in the context

holographic field theories.

Moreover, the connections between geometry and entanglement as we now are starting

to understand are perhaps much more intimate. The original arguments espoused in [26]

and [40,41] suggest a close association between entanglement inherent in a quantum state

and the realization of the holographic dual in terms of classical geometry. The relation

between entanglement and the emergence of a macroscopic spacetime, is further bolstered

by the arguments of [29] who suggest an intimate connection between EPR like states

and Einstein-Rosen bridges, succinctly summarized by the catchphrases “ER =EPR” or

“entanglement builds bridges”.5

While these fascinating developments hint at an underlying structure wherein entangle-

ment of quantum states plays an important role in emergence of macroscopic geometry and

gravitational physics from the microscopic quantum dynamics, it is fair to ask whether the

different notions of entanglement as described above have any useful intuition to impart

in explicating the general structure. Does the spacetime geometry care if the entangle-

ment is EPR like, or if it undistillable, or if the quantum entanglement is contaminated

by classical correlations? These are, we believe, interesting questions whose answers may

potentially shed some light into the geometrization of quantum entanglement.

In this chapter, we undertake a modest step in this direction by studying the properties

of entanglement negativity, which as previously mentioned is a computable measure of

entanglement, in relativistic field theories. We begin in §2.2 by reviewing the necessary

definitions in quantum mechanics and use these to guide our intuition for negativity in

simple examples. We first show quite generally that the entanglement negativity of a

thermofield double state (the pure entangled state in a tensor product Hilbert space) has

a very simple expression in terms of the difference of free energies.

While this result is a corollary of a more general result known already in [37] relating

the entanglement negativity of pure states in a bipartite system to a particular Renyi

entropy (at index 1
2) of the reduced density matrix for one of the components, it casts the

general result in simple terms, which in turn allows us to extract some lessons. We argue

for instance in §2.3 that it allows us to recover the negativity of the vacuum state of a CFTs

for a spherical partitioning of the spatial geometry. In particular, employing the conformal

mapping developed in [48], we give results for the entanglement negativity for spherical

regions for d-dimensional CFTs. In this context it bears mentioning that the results

for entanglement negativity have been obtained in 2-dimensional CFTs by employing

the replica trick in [31, 49]. These results are of course more powerful and express the

computation of the entanglement negativity in terms of twist operator correlation functions

for cyclic orbifolds. In §2.4 we make some general comments on extracting the negativity

5 See also [42] for suggestions relating growth of entanglement with that of spacetime volume created

thus using analogies with tensor networks and [43–47] for attempts to recover gravitational dynamics from

quantum information.
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in holographic field theories using the generalized gravitational entropy prescription of [22]

and comment on some general lessons one can learn from these analysis. We conclude with

a discussion of open questions in §4.6.

2.2 Entanglement negativity

While our ultimate aim is to explore quantum information theoretic ideas in the holo-

graphic realm, we first however need to explain the basic concepts. We therefore begin

our discussion with a review of the salient issues relevant for discussing entanglement neg-

ativity in quantum mechanics, and postpone generalizations to relativistic quantum field

theories to a later stage.

As discussed in §4.1, given a density matrix describing a mixed state of some bipartite

system it is natural to ask whether there is any way we can reveal if it is separable or

entangled. More generally one could hope to find a criterion to distinguish different kinds

of entanglement in general, which could prove useful in various contexts as discussed

hitherto.

A powerful tool in this direction is the so called positive partial transpose criterion

(PPT). Consider the set-up described in §4.1 where we have a bipartite system6 in a

tensor product Hilbert space HL ⊗ HR. We pick a basis in the space of each subsystem

| ra〉 and | lα〉 with a ∈ {1, 2, · · · ,dim(HR)} and α ∈ {1, 2, · · · ,dim(HL)}, making clear

left-right distinction in our notation. A general density matrix ρ (or indeed any operator

O) in the tensor product HL ⊗HR has matrix elements in our chosen basis

ρaα,bβ = 〈 ra lα |ρ |rb lβ〉 . (2.2.2)

On occasion we will need to also talk about the reduced density matrix of one of the

components HR,L. We define then ρR = TrL(ρ) as the reduced density matrix inherited

for the right subsystem from ρ (similarly ρL). Given such a density matrix, one defines

the partial transpose with respect to the one of the systems, which w.l.o.g. we take to be

the left system.7 Denoting this partial transposed density matrix as ρΓ we have its matrix

elements in the aforementioned basis to be

ρΓ
aα,bβ = ρaβ,bα = 〈 ra lβ |ρ |rb lα〉 . (2.2.3)

If ρΓ has non-negative eigenvalues then ρ is said to have positive partial transpose (PPT).

With these definitions one has the following criterion due to Peres [52]

ρ is separable =⇒ ρ is PPT

6 We focus exclusively on bipartite entanglement. Attempts to understand multipartite entanglement

in the holographic context can be found in [50] (see also [51]).
7 With this understanding we denote the partial transpose of ρ by ρΓ, economizing notation by dis-

pensing with indicating that the left subsystem was transposed.
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The converse is true only for two-qubit (and qubit-trit) systems but not for higher dimen-

sional Hilbert spaces [53].

As discussed earlier all distillable states are in direct conflict with local realism, so one

could think that only separable states are undistillable. Here the PPT criterion comes

strongly into play showing that this intuition is wrong. In fact it was proved in [54] that

ρ is PPT =⇒ ρ is undistillable

For this reason these states are called bound entangled in contrast to free entanglement

that can be distilled. In other words if a state is bound entangled it is not possible

to extract pure entanglement from it using only LOCC. The authors of [54] proposed

an interesting analogy with thermodynamics. To prepare a bound entangled state some

amount of entanglement is necessary, but the process is irreversible, as after the state is

produced it is not possible to distill the initial entanglement back.

It is then reasonable to ask whether a PPT state, which is undistillable, is local in the

sense of Werner. Indeed Peres conjectured in [55] that this is the case, i.e., if a state is

PPT it cannot violate any Bell inequality. The question remained open for fifteen years

even if strong evidence has been found in its support (cf., results in [56,57] and references

therein). Very recently the conjecture has finally been disproved in [58] where a small

violation of a Bell inequality has been found for a particular PPT state. This shows that

local Werner states cannot be exactly identified with undistillable states.

As we see above, while the PPT criterion per se is not conclusive in identifying local

entanglement, it can be used to define a measure of the amount of distillable entanglement

contained in a state. This measure, called negativity, was introduced first in [37] and will

form the focus of our investigation.

Given a density matrix ρ one defines the negativity as measure of entanglement based

on the amount of violation of the PPT criterion8 [37]

Negativity: N (ρ) =
||ρΓ||1 − 1

2
, (2.2.4)

Logarithmic Negativity: E (ρ) = log ||ρΓ||1 , (2.2.5)

where ||O||1 denotes the trace-norm of an operator

||O||1 = Tr
(√
O†O

)
. (2.2.6)

Recall that operationally the trace norm computes the sum of the absolute values of the

eignevalues of an operator ||O||1 =
∑

i |λO,i|, i.e., ||O||1 = Tr|O|. As a result one is effec-

tively computing a “signed trace” with non-trivial weighting for the negative eigenvalues

of the partial transposed matrix ρΓ.

8 A comment about the notation: the negativities depend not only on the state ρ but also the biparti-

tioning. We refrain from explicitly indicating the latter to keep the notation clean.



2.2. Entanglement negativity 25

For completeness we also recall the notions of entanglement entropy and entanglement

Renyi entropies:

S(ρ) = −Tr (ρ log ρ) = lim
q→1

S(q)(ρ) ,

S(q)(ρ) =
1

1− q
log Tr (ρq) , q ∈ Z+ (2.2.7)

From the definition of the trace norm it then follows that the negativity provides a

measure of the number of negative eigenvalues of the density matrix ρΓ. Indeed, passing to

a Schmidt basis, with eigenvalues of ρΓ being {λ(+)
i , λ

(−)
j , 0k}, with the non-zero eigenvalues

separated by their parity, we see that

Tr(ρΓ) =
∑
i

λ
(+)
i +

∑
j

λ
(−)
j ≡ 1 = Tr(ρ) . (2.2.8)

Here and in the following we will assume that the density matrix to be normalized as

indicated. Note that while the eigenvalues of ρΓ are different from those of ρ generically,

the trace is invariant under partial transposition. On the other hand

N (ρ) =
1

2

∑
i

|λ(+)
i |+

∑
j

|λ(−)
j | − 1

 =
∑
j

|λ(−)
j | , (2.2.9)

is the sum of the absolute values of the negative eigenvalues of ρΓ, explaining the termi-

nology. At the risk of being pedantic, let us note that the negativity is a property of the

original density matrix ρ (the partial transpose ρΓ is just a computational aid).

Properties of negativities have been discussed in the literature on quantum information,

cf., [37,59–62]. By construction both the negativity and the logarithmic negativity fail to

detect bound entangled states and for this reason they do not quantify the total amount

of entanglement inherent in a mixed state of the system. Furthermore it is important

to note that even in case of pure states these quantities do not in general agree with

entanglement entropy. Specifically, the logarithmic negativity gives in general a larger

measure of entanglement, as we will see explicitly below, while the negativity reduces to

one half of the entanglement robustness9. Agreement with entanglement entropy on pure

states is a property commonly required in the construction of an axiomatic entanglement

measure10, but the case of negativities is different. This fact distinguishes negativities from

most entanglement measures, such as entanglement of formation and distillation, which

instead reduce to entanglement entropy for pure states. Nevertheless negativities can be

used to quantify entanglement provided that they do not increase under any LOCC, i.e.,

they are entanglement monotones. This is indeed the case, as proved in [60]11.

9The robustness of entanglement can be understood as a measure of the amount of noise required to

disrupt the entanglement of the system. See [63] for more details.
10For more details on the axioms that have to be satisfied by entanglement measures see [13] .
11It was actually shown that negativities are entanglement monotones under a larger class of operations

called PPT-operations. This is the class of all operations that map the set of PPT states to itself. For

further properties of negativities relatively to PPT-operations see [59].
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The previous properties are shared by both negativities, but each of them has peculiar

properties of interest by itself. The logarithmic negativity for example has been shown

to give an upper bound to the distillable entanglement of ρ and to satisfy an additivity

relation. For a separable state of a bipartite system of two parties A and B one indeed

has

E (ρA ⊗ ρB) = E (ρA) + E (ρB) . (2.2.10)

On the other hand the negativity can be related to the maximal fidelity that can be

achieved in a teleportation protocol that uses ρ as a resource.

It is interesting to note that the negativity satisfies an interesting disentangling theo-

rem. Consider a tripartite system ABC in a pure state |ΨABC〉 and denote the negativity

between A and BC as NA|BC and the negativity between A and B as NA|B. It was re-

cently proved in [61] that if and only if NA|BC = NA|B then there exists a partitioning of

B into B1 and B2 such that the state of the whole system factorizes

|ΨABC〉 =|ΨAB1〉⊗ |ΨB2C〉 (2.2.11)

It is an immediate consequence that under the hypothesis of the theorem the negativity

between A and C (denoted as NA|C) is zero, equivalently the reduced density matrix

obtained from |ΨABC〉 by tracing out B factorizes: ρAC = ρA ⊗ ρC . Furthermore, in this

particular case, one has the saturation of a monogamy inequality for the square of the

negativity previously proved by [62] for systems of three qubits

N 2
A|BC ≥ N 2

A|B + N 2
A|C (2.2.12)

The authors of [61] conjectured that this inequality should be true in general giving nu-

merical results in its support. Finally it interesting to mention that contrary to what one

could expect, the previous inequality does not hold for the negativity itself.

To build some intuition for the negativity, we would like to understand its properties

in simple situations. It should be no surprise to the reader that negativity can be non-

vanishing even in pure states. After all the simple Bell state for a 2-qubit system we can

have an EPR state 1√
2

(|↑↑〉+ |↓↓〉) which is pure, but entangled. It is easy to verify that

for this state the negativity is 1
2 . Perhaps more usefully, the logarithmic negativity is

log 2 which is also the von Neumann entropy for the reduced density matrix for one of the

qubits. It is easy to see that this result is not restricted to two-qubit systems. One has

the following general result:

Logarithmic entaglement negativity of a maximally entangled state ψmax in a bipartite

system equals the Entanglement entropy of the reduced density matrix ρL,Rmax for one of the

subsystems.

E (ψmax) = S(ρR,Lmax) . (2.2.13)

While this statement illustrates the basic feature of this particular measure of entanglement

it is useful to look at a simple generalization that will allow us to build some intuition for

the negativity.12

12 We find it convenient to notationally distinguish pure and mixed states and therefore denote a pure



2.2. Entanglement negativity 27

2.2.1 Negativity in thermofield state

Let us consider the thermofield double state |Ψ〉β in with HL,R being two copies of the

same physical system. Working in an energy eigenbasis with spectrum {Ei} we have13

|Ψ〉β =
1√
Z(β)

N∑
a=1

e−
β
2
Ea |ra la〉 (2.2.14)

The state in the tensor product is of course pure, but entangled. We want to take a

measure of this entanglement, using the logarithmic negativity E (ψβ) with

ψβ = |Ψ〉β 〈Ψ |β =
1

Z(β)

N∑
a,b=1

e−
β
2

(Ea+Eb) |ra la〉 〈 rb lb | (2.2.15)

It is then trivial to see that

ψΓ
β =

1

Z(β)

N∑
a,b=1

e−
β
2

(Ea+Eb) |ra lb〉 〈 rb la | (2.2.16)

and

ψΓ†
β ψ

Γ
β =

1

Z(β)2

N∑
a,b=1

e−β(Ea+Eb) |rb la〉 〈 rb la | (2.2.17)

whence it follows that

E (ψβ) = log
Z(β2 )2

Z(β)
= β (F (β)− F (β/2)) (2.2.18)

with the final result written in terms of the free energy F (β) = − 1
β logZ(β).

The logarithmic negativity of the thermofield state ψβ is proportional to the difference

of free energies of the system at temperature T and 2T respectively.14 This is main

observation which we will exploit in the sequel to obtain some insight into the nature of

entanglement in quantum field theories. On the other hand the reduced density matrix

ρR,Lβ for the right or left systems has a von Neumann entropy S(ρA) which is obtained

directly from Z(β) itself. In the limit β → 0 we recover the previous assertion (2.2.13) for

maximally entangled states.

2.2.2 Renyi Negativities

For the thermofield state there is a simple relation between the negativity of the total

density matrix and that of the reduced matrix of one component. This in fact generalizes

state density matrix as ψ =|Ψ〉〈Ψ |.
13 We have for simplicity assumed that we are dealing with a finite system where dim(HL) = dim(HR) =

N .
14 The simplicity of the final result in terms of the free energy difference is the reason for preferring

the logarithmic negativity over the negativity itself. We henceforth will focus on E and refer to it as the

negativity in the rest of our discussion for convenience.
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to pure states of the bipartite system quite simply. To get further intuition for the neg-

ativity, it is worthwhile to follow the line of thought that led to the replica analysis for

entanglement entropy. Just as we consider the moments of the density matrix in order to

compute its von Neumann entropy, we now examine the moments of the partial transpose

ρΓ.

Consider following [31] the notion of Renyi negativity for a density matrix ρ:

exp
(
E (q)(ρ)

)
= Tr (ρΓ) q =


∑

i

(
λ

(+)
i

)qe
+
∑

j

(
λ

(−)
j

)qe
, qe ∈ 2 Z+∑

i

(
λ

(+)
i

)qo
−
∑

j

(
λ

(−)
j

)qo
, qo ∈ 2 Z+ + 1

(2.2.19)

As is clear from the above definition the parity of the integer q plays a crucial role.

Should we wish to employ the replica construction and recover the logarithmic negativity

from these Renyi entropies then we will need to exclusively use the even sequence. The

logarithmic negativity is obtained by an analytic continuation of even Renyi negativities

to qe → 1, i.e.,

E (ρ) = lim
qe→1

E (qe) , qe ∈ 2Z+ (2.2.20)

Using the definition (2.2.19) we can immediately generalize our considerations for the

thermal state to any pure state ψ =|Ψ〉〈Ψ | of a bipartite system. We have [49]

E (qe)(ψ) = 2 (1− qe
2

) S(qe/2)(ρR,L) ,

E (qo)(ψ) = (1− q0) S(qo)(ρR,L) . (2.2.21)

In particular note that

E (ψ) = S(1/2)(ρR,L) , (2.2.22)

as the generalization of our previous assertions (2.2.13) and (2.2.18). We note that the

Renyi negativities have been used to extract the negativities in two dimensional conformal

field theories (CFTs) in [31, 49]. The technical tool involved is to appropriately map the

computation as in the case of entanglement entropy to that of computing twist operator

correlation functions. We will have occasion to comment on some of their results in due

course.

2.3 Negativity of a CFT vacuum

Having defined the basic quantity of interest let us now turn to its computation in rela-

tivistic field theories. To our knowledge the only study of negativity in such as context

are the aforementioned works [31,49] who examine its behaviour in 2d CFTs. Our interest

is in understanding properties of negativity more generally. In what follows we explain

how one can exploit (2.2.18) to find explicit results for a certain choice of bipartitioning

of the vacuum state of a CFT. Subsequently we describe how to tackle the problem more

generally.

Consider a relativistic QFT in d-dimensions on some background geometry B. As

remarked earlier in §4.1 we want to ask how to quantify the entanglement of the vacuum
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state in this theory. For the present we are going to use the concept of logarithmic

negativity introduced in §2.2 to serve as the measure of interest.

A natural way to proceed is to consider a spatial Cauchy slice Σ and consider some

region A ⊂ Σ. One can ask how degrees of freedom in A are entangled with those in

Ac = Σ\A. By now we have a good idea about the entanglement entropy associated with

the reduced density matrix ρA = TrAc(| 0〉〈 0 |) either by direct field theory computation

in d = 2 using the replica trick or using holography in all d.

To be be specific let us examine two situations which are particularly simple, where

the field theory calculation boils down effectively to a spectral computation. Consider a

conformally invariant field theory which we will place on one of two background geometries

for the present:

(i). Bd = Rd−1,1 (Mink): | 0p 〉 is the Minkowski or Poincaré vacuum and A is a ball

shaped region centered w.l.o.g. at the origin

A ⊂ Rd−1 : r ≤ R , ds2
B = −dt2 + dr2 + r2 dΩ2

d−2 . (2.3.23)

(ii). Bd = Sd−1 × R (ESU). | 0g 〉 is the global or vacuum and A is a polar-cap region

about the north pole of Sd−1

A ⊂ Sd−1 : θ ≤ θA , ds2
B = −dt2 +R2

(
dθ2 + sin2 θ dΩ2

d−2

)
. (2.3.24)

The reasons for using R to denote the size of the ball as well as the curvature radius of the

sphere in the two distinct cases will become clear momentarily. For these two cases we will

exploit a well known fact about the reduced density matrix ρA to make some inferences

about the negativity.

Let us begin by recalling some salient features elucidated in [48]. For our two regions

the domain of dependence D is conformally equivalent to the hyperbolic cylinder Hd =

Hd−1 × R, with the curvature radius of the hyperbolic space Hd−1 being R. Since the

entanglement structure is a property of an entire causal domain, not just a spatial region,

we can as well think of E (ρA) as a function defined on D.15

With this understanding the conformal mapping of [48] implies that the reduced den-

sity matrix ρA is unitarily equivalent to the thermal density matrix for the CFT on the

hyperbolic cylinder16 Hd

ρA = U ρβ U† , β = 2π R . (2.3.25)

We note that the temperature is set by R and in particular it is independent of θA for

the theory on ESU. This is intuitive on dimensional grounds, though we should note that

the angular dependence is implicit in ρA. For e.g., in computing entanglement entropy a

15 In the language of [64] we should think of the negativity also as a wedge observable. Thus it is also

subject to the constraints of causality as described therein for entanglement entropy.
16 We refer the reader to [48] for explicit expressions of the unitary map.
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θA dependence will arise by relating the UV cut-off on ESU with the IR cut-off for the

CFT on the hyperbolic cylinder. It is perhaps more instructive to note that the modular

Hamiltonian defined via ρA = e−HA has an explicit dependence on the angular extent of

the polar-cap (see e.g., [65]).

We interpret this result as follows. The vacuum state of the tensor product HA⊗HAc
for the aforementioned choice of regions is expressible in terms of the thermal state on the

hyperbolic cylinder. Schematically, we can write

ψ0

∣∣
Mink, ESU

= ψβ
∣∣
H , (2.3.26)

From this observation using (2.2.18) we infer that (for either |0p〉 or |0g〉)

E (ψ0) = 2π R (FH(2πR)− FH(πR)) , (2.3.27)

where FH is the free energy of the CFT on the hyperbolic cylinder.

So the problem of computing negativity in the vacuum state of a CFT can thus be

mapped to computing the spectrum on the hyperbolic space. As long as we have this

spectral data we can then immediately infer the negativity of the vacuum. It will turn out

that the negativity has an inherent UV divergence and necessitates a UV regulator for its

computation.

To ascertain the divergence structure we note that a UV regulator on Bd maps to an

IR regulator on Hd by virtue of the conformal mapping. We have from the analysis of [48]

the relations

LH = log

(
2R

εMink

)
, LH = log

(
2R

εESU
sin θA

)
, (2.3.28)

in the two cases of interest. Here LH is the IR regulator of the length scale in the hyperbolic

cylinder and εB is the UV cut-off in the background indicated. This mapping between

the cut-offs can be used to express the volume of the hyperbolic cylinder in terms of field

theory data on Bd. Denoting by Vol(Hd−1) the spatial volume of a unit radius of curvature

hyperbolic space,using the explicit expression mapping the cut-offs (2.3.28), one obtains

the desired expression for Bd = Minkd,

Vol(Hd−1) = ωd−2

∫ R
ε

1
dx (x2 − 1)

d−3
2 , ωd−2 =

2π
d−1

2

Γ
(
d−1

2

)
' ωd−2

d− 2

[(
R

ε

)d−2

− (d− 2)(d− 3)

2 (d− 4)

(
R

ε

)d−4

+ · · ·+ Vuniv

]
(2.3.29)

where

Vuniv =

√
π

2

Γ(d−1
2 )

Γ(d2)

 (−1)
d
2
−1 2

π
log

(
2R

ε

)
, d ∈ 2Z+

(−1)
d−1

2 , d ∈ 2Z+ + 1

(2.3.30)

Similar expressions can be derived for Bd = ESUd; all we would need to do is replace

the upper limit of the integral in (2.3.29) by the appropriate cut-off expression given in

(2.3.28). Armed with this information we now present some expressions for the negativity

using various results already present in the literature.
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CFTs in 2 dimensions: In d = 2 we have a simplifying feature that H1 is flat. Indeed

using the result F (T ) = − π
12 (cL+cR)T 2 L for a thermal CFT at temperature T in spatial

volume L we find

E (ψ0) =
c

2
logX , X =

 2R
ε , B = Mink

2R
ε sin θA , B = ESU

(2.3.31)

One may alternatively have derived this answer by using (2.2.22) and the familiar result

S(q) = c
6

(
1 + 1

q

)
logX for CFT2.

Free CFTs in various dimensions: The second example where we can explicitly

compute the negativity is to use the results for the free energy FH of free fields in various

dimensions. Results for free scalars in all dimensions were derived initially in [66] and

analogous results for various theories in d = 3 were obtained in [67]. From here we can

immediately read off the answer for the Renyi entropy at q = 1
2 and thence the negativity

using (2.2.22).

For a free field of mass m in R2,1 one has the free energy on H at temperature β

explicitly in closed form [67] in terms of the function

Iη,q(m) =

∫ ∞
0

dλλ tanhη(π λ) log
(

1− η e−2π q
√
λ2+m2

)
. (2.3.32)

Here η = ±1 encode the statistics (η = +1 for bosons and η = −1 for fermions respec-

tively). One then finds that the negativity for free massless fields are given as

E (ψηp) =
Vol(H2)

π

(
Iη,1(0)− 2 Iη, 1

2
(0)
)

=
Vol(H2)

π

∫ ∞
0

dλλ tanhη(π λ) log

(
1− η e−2π λ

(1− η e−π λ)
2

)
. (2.3.33)

Note that the integral is convergent and all the divergences are encoded in the pre-factor

Vol(H2), which we have already expressed in terms of the relevant variables in Eq. (2.3.29).

The expression for E (ψg) would be similar with an appropriate replacement of the volume

of the hyperbolic space.

Let us also record the expression for the entanglement entropy for the reduced density

matrix ρA for comparison. One has from [67]

S(ρηA) =
Vol(H2)

2π

[
Iη,1(0)− (7− η) ζ(3)

8π2

]
. (2.3.34)

We see from (2.3.33) and (2.3.34) that the divergent terms in the negativity are (struc-

turally) the same as in the entanglement entropy; the numerical coefficient however is

rather different. Let us define the ratio

Xd =

∣∣∣∣Cuniv

[
E (ψp)

]
Cuniv [S(ρA)]

∣∣∣∣ (2.3.35)
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where Cuniv[x] denotes the coefficient of the universal term Vuniv occurring in the expression

x. We claim that this quantity gives a precise measure of the negativity for |0〉 in terms

of the entanglement entropy of the reduced density matrix ρA.

For a free massless scalar in d = 3 we find X free
3 ≈ 2.716, while for a massless fermion

X free
3 ≈ 1.888. We note that X3(m) defined formally for massive fields is a monotonically

increasing function of m. We will return to this ratio below once we also obtain analogous

results from holography for strongly coupled CFTs.

Results for Renyi entropies for spherical entangling regions are also known for free

SU(N) N = 4 Super-Yang Mills theory in d = 4 [68]. From these results we find

E (ψp) ' N2

[
R2

ε2
− 41

24
log

(
R

ε

)]
S(ρA) ' N2

[
1

2

R2

ε2
− log

(
R

ε

)]
(2.3.36)

This is a peculiar example where the structure of divergent terms in the negativity for

the ground state differs from that in the entanglement entropy of the reduced density

matrix induced in the spherical region A.17 From the expressions above we find that

X4 = 41
24 ' 1.708 for free N = 4 SYM.

Holographic CFTs in diverse dimensions: Our final example is the class of holo-

graphic field theories in various dimensions. While the computation of the spectrum of

an interacting CFT on H is in general unfeasible, holography provides us with a simple

answer when the CFTs in question have (a) large central charge and (b) a sufficient gap

in the spectrum. The reason is that the computation of the free energy at temperature

β amounts to finding an asymptotically locally AdSd+1 geometry whose boundary is Hd,

with the Euclidean time direction having a period β. The relevant geometry is well known,

it is the so called hyperbolic black hole in AdSd+1 [69]. The bulk metric is given as

ds2 = −
`2AdS

R2
f(r) dt2 +

dr2

f(r)
+ r2 dΣ2

Hd−1
, f(r) =

r2

`2AdS

−
(r+

r

)d−2
(
r2

+

`2AdS

− 1

)
− 1

(2.3.37)

whose conformal boundary is indeed H with the desired spatial curvature R. r+ is the

location of the horizon and we have explicitly kept the AdS length scale `AdS. We note

that the combination of this length scale and the (d+ 1)−dimensional Newton’s constant

G
(d+1)
N gives the effective central charge ceff of the dual CFT: ceff =

`d−1
AdS

16πG
(d+1)
N

.

This geometry has in fact been used before to compute the Renyi entropies for holo-

graphic field theories in [70] and we can in fact use their results to infer the behaviour of

17 We find this rather peculiar in light of the conformal mapping described above. Given the free

scalar/fermion and holographic results one might have been tempted to consider the ratio of the negativity

to the entanglement entropy en masse, without isolating the universal part (assuming both computations

be regulated in a similar fashion). We thank Horacio Casini and Tadashi Takayanagi for useful discussions

on this point.
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the negativity directly. We first note that the black hole thermodynamic data are given

in terms of the geometric parameters as

T =
d r2

+ − (d− 2) `2AdS

4π R `AdS r+
, S =

1

4Gd+1
N

rd−1
+ Vol(Hd−1) . (2.3.38)

Given that we know the free energy and the entropy, we can invoke standard thermody-

namic relation S(T ) = −∂F
∂T to obtain the final result [70]

E (ψp) = π ceff Vol(Hd−1)X hol
d = S(ρA)X hol

d , (2.3.39)

where the dimension dependent coefficient X hol
d for holographic CFTs is a simple function

of the spacetime dimension

X hol
d =

(
1

2
xd−2
d (1 + x2

d)− 1

)
, xd =

2

d

(
1 +

√
1− d

2
+
d2

4

)
. (2.3.40)

This function interpolates rather mildly between X hol
2 = 3

2 and limd→∞X hol
d = (e − 1) ≈

1.718, hinting that up to an overall multiplicative renormalization much of the information

is already contained in the entanglement entropy.

It is also curious to note that in d = 3 one can compare the free field answers to the

strong coupling results obtained above.18 For a free scalar field we find X hol
3 ≈ 0.601X free

3 ,

while for a free Dirac field the proportionality is larger X hol
3 ≈ 0.864X free

3 .

It would be interesting to understand this ratio which suggests a decrease in (distill-

able?) entanglement in the strong coupling regime from first principles. The ratio of our

measure at weak and strong couplings X
hol

X free can decrease either by the total entanglement

being reduced at strong coupling or more simply by just the negativity decreasing. In the

latter case one would only find a decrease in the amount of distillable entanglement at

strong coupling. Ascertaining which of these scenarios is realized might provide new clues

in the relation between geometry and entanglement.

A similar comparison for N = 4 SYM gives a much more intriguing result X hol
4 ≈

0.98X free
4 , where we switched to using the ratio of the coefficient of the universal logarith-

mic terms (2.3.35) owing to the non-trivial behaviour of the free theory answer (2.3.36).

In this case it is rather curious that the free field result undergoes a very mild reduction

as we crank up the coupling. Similar comparisons for the Renyi entropies of N = 4 SYM

at different q are described in some detail in [71].

2.4 Holographic negativity: general expectations

Having understood the basic features of entanglement negativity in the vacuum state of a

CFT for bipartitioning by spherical regions, we now turn to more general situations. Most

18 Since we are considering ratios of the negativity to the entanglement, the precise normalization of

central charge ceff is immaterial, unlike the case when we compare the entanglement entropy at weak and

strong coupling.
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of the discussion below will be of a qualitative nature, devoted to explaining some of the

general features.

2.4.1 Arbitrary bipartitions of pure states

Let us start with pure states |Ψ〉. Once again we can focus on bipartitioning a Cauchy

slice of the background geometry for the field theory as Σ = A ∪ Ac. We can then relate

the negativity E (ψ) to the Renyi entropy S(1/2)(ρA) (for the bipartition HA∪HAc). Hence

as long as we are in a position to compute the Renyi entropies for non-integral values, we

would be able to ascertain the negativity.

To obtain the Renyi entropy at index half, we follow the the holographic computation

of [22].19 For an arbitrary region A we therefore consider replicating the background

geometry B to Bq on which we place our field theory. Bq would as usual be characterized

by having branch points inside A (and its images under the replica construction). Having

obtained the answers for integral q which involves finding bulk saddle points with boundary

Bq we then analytically continue to q = 1
2 . A-priori it is not clear that this last step can

be carried out for all choices of A.

One can infer the following about the negativity in pure states of a CFT from the basic

definition even in the absence of an explicit computation:

• The negativity in a pure state is divergent with the leading divergent term scaling

like the area of the entangling surface ∂A.

• The structure of the sub-leading divergent terms is identical to that encountered

in the computation of the entanglement entropy for the reduced density matrix

ρA in holographic field theories. This follows from the fact that the divergent terms

encountered in the evaluation of the on-shell action in gravity during the computation

of the Renyi entropies is independent of q.

• Perhaps more importantly the value of the negativity E (ψ) is in general larger than

the entanglement entropy S(ρA). The difference we conjecture should be in a geo-

metric factor. To wit, the ratio XA defined analogously to (2.3.35) should depend

just on the geometry of the entangling surface ∂A.

2.4.2 Mixed state negativity

In principle in the holographic discussion we do not need to restrict attention to pure

states. In fact, given that the negativity is naturally intended to test mixed states, one

ought to be considering density matrices ρ and attempt to compute their negativity. This

as far as we know has been only achieved in d = 2 CFTs in [49]. While we have no concrete

19 At this stage we have to restrict states |Ψ〉 to have a moment of time reflection symmetry and at

this preferred instant of time. A general prescription for computing holographic Renyi entropies (even for

integer q) in time-dependent states is not available at present.
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computation to report in this context, it is worth recording various cases of interest for

future exploration.

The general situation which one can consider can be motivated in the following manner.

Given a state in some quantum field theory, we focus on some regionA lying on a particular

Cauchy slice. By integrating out the degrees of freedom in Ac = Σ\A we obtain the

reduced density matrix ρA as usual. Now we further bipartition A itself, i.e., divide

A = AL ∪AR. With this decomposition at hand we define the negativity E (ρA) as before

by partial transposing the part of the density matrix associated with AL. As concrete

examples consider:

(a). Take A to be the spherical region of size R in Rd−1 considered in §2.3 in our previous

construction and pick any two mutually adjoining regions forAL andAR respectively.

(b). A itself could be the composed of two disconnected regions which we can associate

with the bipartitioning of interest.

(c). A ⊂ ΣR in the thermofield double state | Ψ〉β ∈ HL ⊗ HR. One can attempt to

quantify the negativity of ρRβ for the bipartition defined by ΣR = A ∪Ac.

For these situations it no longer suffices to compute a particular Renyi entropy for

some reduced density matrix. Instead one computes the Renyi negativities for the density

matrix ρA, and analytically continues the even sequence of these down to qe → 1 as

explained earlier. The state of the art is the computations of [49] in d = 2 CFTs for certain

specific configurations. For instance, for A ⊂ R being a segment of length ` bipartitioned

into two segments of length ` α and ` (1− α) respectively the negativity was found to be

E (ρA) = c
4 log

[
α (1− α) `ε

]
. The computation was made possible by explicit computation

of twist operator correlation functions in d = 2. We refer the reader to [49] for a discussion

of other configurations and corresponding results for finite systems, disjoint regions, etc..

It should be possible to carry out in some specific holographic situations a direct

computation of the relevant quantities. We postpone this to the future, concentrating at

present on the general lessons to be learnt from holography.

Bipartitioning of A and phase transitions?: Let us start with cases (a) and (b)

described above where A is partitioned into AL∪AR (case (c) is elaborated upon in §4.6).

In such cases one commonly considers the mutual information I(AR,AL). This is defined

in terms of the entanglement entropy for the reduced density matrices induced on the two

components:

I(AL,AR) = S(ρAL) + S(ρAR)− S(ρA) . (2.4.41)

If ∂AL ∩ ∂AR 6= ∅ as in case (a), then both the mutual information and the negativity

diverge as the area of this common boundary owing to the UV degrees of freedom in its

vicinity.
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There is an interesting phenomenon that occurs for holographic theories20 in case (b)

where A is composed of two disjoint regions. The mutual information vanishes to leading

order in ceff when the regions are widely separated [39]. In the holographic construction

this occurs because one has to pick the globally minimal area surface (subject to boundary

conditions and the topological homology constraint), which allows for phase transitions.

Moreover, this behaviour is well understood in d = 2 in large ceff = c CFTs in terms of

a phase transition in Renyi entropies for widely separated intervals [72,73]. To understand

this let us describe the region by its end-points as A = [u1, v1]∪ [u2, v2] ⊂ R. The compu-

tation of the Renyi entropy S(q) involves computing the four-point correlation function of

Zq twist operators Tq

S(q) : 〈 Tq(u1) T̄q(v1) Tq(u2) T̄q(v2) 〉 (2.4.42)

which depends only on the cross-ratio x = (v1−u1) (v2−u2)
(u2−u1) (v2−v1) ∈ [0, 1] (up to some universal

scale invariant factor). At large central charge c this correlation function undergoes a phase

transition at x = 1
2 . This is seen by decomposing the above using the OPE expansion

and evaluating the contributions of the conformal block in a saddle point approximation

(valid for large c). For small x the result is dominated by the s-channel factorization but

for x > 1
2 the t-channel factorization takes over. In the bulk the transition is between a

single connected surface and two disconnected surfaces computing S(A).

One might anticipate that a similar behaviour will pertain in the negativity as well

since to compute the negativity one instead evaluates [49]

E : 〈 Tqe(u1) T̄qe(v1) T̄qe(u2) Tqe(v2) 〉 (2.4.43)

Up to a switch of the insertions u2 ↔ v2 the computation is very similar to the one required

for Renyi (2.4.42). The correlator (2.4.43) has a non-trivial dependence on the cross-ratio

x, in addition to some universal contribution arising from scale invariance. This seems to

suggest that there ought be a similar phase transition in the negativity at x = 1
2 for large

central charge theories.

The argument however appears to be a bit more subtle than suggested above.21 To

see the issue first consider the four-point functions relevant for the Renyi computation

(2.4.42). By a suitable conformal transformation we map this to

〈 Tq(0) T̄q(x) Tq(1) T̄q(∞) 〉 ≡ Fq(x) (2.4.44)

and we recall that Tq is a twist or anti-twist operator with dimensions

hq = h̄q =
c

24

(
q − 1

q

)
. (2.4.45)

20 A necessary condition in field theory terms is that the field theories have large central charge c � 1

(so as to admit a planar limit) and a low density of states for energies below a gap set by c.
21 We thank Tom Hartman and Alex Maloney for discussions on this issue.
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It is sufficient to understand the behaviour of this function, since one can by utilizing the

swap u2 ↔ v2 map the four-point function required for the negativity (2.4.43) to above.

Tracking through the conformal transformations one finds [49]

〈 Tq(u1) T̄q(v1) T̄q(u2) Tq(v2) 〉
〈 Tq(u1) T̄q(v1) Tq(u2) T̄q(v2) 〉

= (1− x)8hq
Fq

(
x
x−1

)
Fq(x)

(2.4.46)

We thus have a direct link between the two computations and all we need is the

behaviour of the function Fq(x). One has control on this function for x ∈ [0, 1] from the

analysis of [73] in the large c limit (cf., footnote 20), which can be used to argue that

the Renyi entropies undergo a phase transition. To make an argument for the negativity

however requires that we also control the function outside this domain. It is tempting to

conjecture that the phase transition does indeed happen and moreover one encounters a

similar behaviour in higher dimensions. We leave a more detailed analysis for the future.

2.5 Discussion

In this chapter we have focussed on properties of entanglement negativity, defined as a

measure of distillable entanglement in a given state of a quantum system. The rationale

for its definition lies in understanding the entanglement structure of mixed states. To gain

some intuition for this quantity we explored its properties in simple states such as the

vacuum of a CFT in various dimensions. While we laid out some general expectations for

the behaviour of negativity in holographic field theories more generally, we did not offer

any concrete computations in supporting evidence. We hope to remedy this in the near

future. It is nevertheless useful to take stock and examine some of the questions posed by

the analysis we have undertaken.

First of all, it is interesting to ask if there is some intrinsic meaning to the geometric

pre-factor XA. Since E provides only an upper bound on the distillable entanglement,

what physical interpretation, if any, should be ascribed to its being greater than the

entanglement entropy? Can one think of XA ceff as a measure of the effective number of

Bell pairs that can be distilled out of a pure state in a CFT?

We have also seen earlier that this function renormalizes and for spherically symmetric

regions XA it was smaller (in magnitude) at strong coupling. Does this reduced amount

in distillable entanglement have a fundamental significance in how spacetime geometry is

related to the presence of entanglement? It would be instructive to know whether one can

formalize some statement along these lines in a quantitative fashion. At a more prosaic

level it would be interesting to understand this function both as a function of the state ψ

as well as the geometry of the region A.

Secondly, all of our discussion has been restricted to density matrices at a moment

of time symmetry (or in special cases static density matrices). This allowed us in the

general context to make use of the generalized gravitational entropy construction of [22]

to compute the Renyi entropies and negativities for integer values of the index q. These are

clearly special situations and one would like to be able to make statement for time-evolving
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states. As in the case of entanglement entropy extending the construction to dynamical

situations could perhaps teach us some new lessons about spacetime and entanglement.

As a final comment, we turn to the situation where A is a single connected region,

but one has a mixed state on the entire Cauchy slice Σ (denoted ρΣ) (case (c) in §2.4.2).

As remarked earlier one of the main reasons to focus on negativity is to understand the

precise nature of entanglement in mixed states. In the holographic context one encounters

an interesting feature for the entanglement entropy of reduced density matrices ρA induced

from a parent thermal state. When A is a sufficiently large region of the Cauchy slice one

finds an interesting phenomena dubbed entanglement plateaux [32]: S(ρA) = S(ρAc)+SρΣ ,

i.e., Araki-Lieb inequality [74] is saturated. This behaviour has been argued to be robust

in holographic field theories for finite systems at large ceff.

One can interpret this to mean that the entanglement inherent in ρA has two distinct

contributions: (i) the quantum entanglement between the region and its complement

encapsulated in S(ρAc) and (ii) correlations built into the thermal density matrix SρΣ .

This distinction seems to suggest that in this regime there is a clear demarcation in the

degrees of freedom inside A in terms of their entanglement properties [75] (see also [76]

for related considerations). Indeed this interpretation is natural from the perspective of

the disentangling theorem for tripartite systems described in §2.2. The thermofield double

state which purifies the density matrix ρΣ factorizes as in (2.2.11) with B = HA. It would

be fascinating to see this arise directly by computing the negativities in the holographic

context.



Chapter 3

Topology and the sign of

entanglement in field theory

This chapter is a reproduction of the paper Central Charges and the Sign of Entanglement

in 4D Conformal Field Theories [77], written in collaboration with Eric Perlmutter and

Mukund Rangamani.

In the previous chapter we introduced the ratio between the coefficients of the universal

terms of respectively, the logarithmic nagativity and entanglement entropy, for spherical

regions in the vacuum of a field theory. Motivated by quantum information arguments

we conjectured that for any field theory this quantity should be larger than one. Further

evidence was derived in [78] [79] that considered, in perturbation theory, deformation of

the entangling surface.

For arbitrary regions, the general structure of the universal term of Renyi entropies in

four dimensional CFTs was derived in [68]. It is the sum of three integrals of geometric

data, specifically the intrinsic curvature, extrinsic curvature and Weyl tensor, each of

which is multiplied by a function of the anomalies of the theory. Various properties of these

functions were derived in [78] [79], which also provided evidence for further constrains.

Drawing on their analysis, this work shows that in the quite unusual case where the

anomalies satisfy the condition a > c, and if the genus of the entangling surface is large

enough, the ratio defined above can be smaller than one.

Note: the results presented in this chapter rely on some assumptions about the coeffi-

cients of the formula derived in [68]. It has recently be argued in [80] that the relation

fb(q) = fc(q) might not be correct.

3.1 Introduction

States of a quantum mechanical system are distinguished by the presence of entanglement.

Oftentimes one characterizes this by bipartitioning the system and computing the entan-

glement entropy, S. In continuum quantum systems, the natural subdivision is geometric:

39
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we partition the state across a fiducial entangling surface. While (for pure states) S is

the best measure of the total amount of quantum entanglement between a region and its

complement, other measures provide additional information about the pattern of entan-

glement for the same bipartition. A natural question is: given a fixed state of the system,

how does entanglement depend on the geometry and topology of the entangling surface?

While S is plagued with UV divergences in a continuum QFT, its universal piece

contains non-trivial physical information, including central charges and RG monotones

[48, 81–83]. In many respects, these universal terms are the natural counterparts of

quantum-mechanical entropies, which are positive. Another interesting measure is the

logarithmic negativity E [37, 59, 60], which gives an upper bound on distillable entangle-

ment in quantum mechanics, and is thus strictly greater than the entanglement entropy.

These intuitive analogies with quantum mechanics suggest that, in QFT, the universal,

cutoff-independent terms of S and of E −S are also positive-definite. Indeed, this appears

to be true for spherical entangling surfaces in vacuum states of CFTs in flat spacetime

[30,48,82,83]. As we will prove, however, these signs depend non-trivially on the topology

of the entangling surface and, in particular, can be negative.

We focus on connected entangling surfaces in 4d CFTs, which are Riemann surfaces.

While for simple topologies the universal terms are positive-definite, we show that one

can always pick complex enough entangling surfaces to violate this bound. Curiously, the

violation hinges on the difference of the central charges a and c. Specifying to entanglement

entropy, the universal part of S becomes negative for a suitable choice of surface if and only

if a > c; the effect is linear in the product of a− c and the genus of the surface, exhibiting

a novel interplay between central charges and topological sensitivity of entanglement.

3.2 Entanglement measures

Consider a (relativistic) QFT on a d-dimensional spacetime B; the state ρ (=| ψ〉〈ψ | if

pure) is defined on a spatial Cauchy slice Σ at fixed time. The biparitioning is provided by

geometrically dividing Σ = A ∪ Ac across a smooth spacetime codimension-2 entangling

surface ∂A. Defining the reduced density matrix ρA = TrAc (ρ), the entanglement and

Rényi entropies are:

S(ρA) = −Tr (ρA log ρA) = lim
q→1

S(q)(ρA) ,

S(q)(ρA) =
1

1− q
log Tr (ρA

q) .
(3.2.1)

Another quantity of interest to us will be the negativity which is defined in terms of

an auxiliary partial transposed density matrix ρΓ. Picking a basis, |ri〉 for A and | ln〉 for

Ac, one defines the map ρ→ ρΓ as:

〈 ri ln | ρΓ |rj lm〉 = 〈 ri lm | ρ |rj ln〉 . (3.2.2)

Thence, the logarithmic negativity is given in terms of the trace norm, ‖O‖, viz.,

E (ρ) = log ‖ρΓ‖ = log

[
Tr

(√
(ρΓ)† ρΓ

)]
(3.2.3)
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It is important to note that the negativity provides an upper bound on entanglement

inherent in the state and as such satisfies E ≥ SA. For mixed states the negativity is

notoriously hard to compute (see [31, 49, 84, 85] for results in 2d CFTs). For pure states

one can relate it to the Rényi entropy [31], viz., E (ρ =| ψ〉〈ψ |) = S( 1
2

)(ρA). This was

exploited in [30] to explore negativity for ball-shaped regions with ∂A = Sd−2 in a CFT

vacuum.

Local dynamics of a QFT implies that the measures, collectively denoted as E =

{S, S(q),E } are UV divergent. Given a UV cut-off ε one finds [39]

E =

d−4∑
k=0

Ek
εd−2−2k

−

 Cuniv[E] log `A
ε + C0 , d = even

(−1)d−1Cuniv[E] , d = odd
(3.2.4)

The leading UV-divergence obeys an area law, E0 ∝ Area(∂A), followed by scheme-

dependent (but state independent) subleading pieces Ek. Cuniv[E] depends on the state

and captures important universal physical information; for ∂A = Sd−2 in the vacuum, for

instance, Cuniv[S(ρA)] is a measure of degrees of freedom.

3.3 Entangling geometries

Our specific interest will be in d = 4, where ∂A can be taken to be a Riemann surface

of arbitrary topology; we will explore how topology imprints itself on the entanglement.

Two particular issues will be of concern to us:

• Is Cuniv[S(ρA)] ≡ Su sign-definite?

• Consider the ratio

X =
Cuniv[E (ρ)]

Cuniv[S(ρA)]
(3.3.5)

defined originally in [30]. Is X − 1 ≡ X̂ positive definite?

Recently, variants of this question have been addressed by several authors: [86] and

[87] examined the shape dependence of entanglement entropy for entangling surfaces of

spherical topology in d dimensions. The latter conjectured that ∂A = Sd−2 minimizes

the universal term in that topological class. In [88], the authors searched for surfaces

that maximize entanglement entropy keeping the area of ∂A fixed. They related the

construction to a well-known geometric problem called the Willmore conjecture [89]. Their

conclusion was that in d = 4, the maximizer over all topological classes is ∂A = S2. We

will make use of their techniques to show that this is, in fact, not true for general CFTs,

and appears to rely on the tacit assumption that a = c.

3.3.1 Universal Rényi entropy of 4d CFTs

To make progress we will make use of a result for Cuniv[S(q)] ≡ Su(q) in 4d CFTs [68] (nb

Su = Su(1)):

Su(q) =
fa(q)

2π
R∂A +

fb(q)

2π
K∂A −

fc(q)

2π
C∂A (3.3.6)
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The geometric quantities depend on intrinsic and extrinsic geometry of ∂A ⊂ B. For an

embedded 2-surface X,

RX =

∫
X
d2x
√
γ γR ,

KX =

∫
X
d2x
√
γ

[
Kα
ijK

αij − 1

2
(Kα i

i )2

]
CX = 2

∫
X
d2x
√
γ Cµνρσt

µsνtρsσ

(3.3.7)

Here γij is the intrinsic metric on X, gµν that of the full spacetime B, Kα
ij is the extrinsic

curvature of X with α = {t, s} indexing the two normal directions (one timelike tµ and

the other spacelike sµ) and CX is the pullback of the Weyl tensor Cµνρσ onto X.

We see here a clean separation between the geometric data and the intrinsic field

theory features captured by the coefficient functions fa,b,c(q). In the q → 1 entanglement

limit [81],

fa(1) = a , fb(1) = fc(1) = c . (3.3.8)

For generic q, these functions are known not to obey a universal form.

We now have some ammunition to tackle the questions we raised. For simplicity we will

take B = R3,1 (or equivalently B = S3 × R as appropriate for radial quantization). These

backgrounds being conformally flat, one finds no contribution from fc(q), for C∂A = 0. If

we further restrict attention to regions A which lie on constant time slices, Kt
µν = 0. We

can then focus on the purely spatial geometry of 2-surfaces ∂A embedded in either R3 or

S3. This allows us to use some useful results in Riemannian geometry to make precise

statements.

With this understanding let us focus attention on Su(q) and X̂ , and ask if they obey

any sign-definiteness properties.

3.3.2 Of central charges and Rényi coefficients

Let us start by noting some basic results that hold for unitary CFTs. The central charges

a, c are positive definite and their ratio is bounded as [90]

1

3
≤ a

c
≤ 31

18
. (3.3.9)

The bounds are tighter in superconformal field theories. Recently it has been argued that

the Rényi coefficient functions are not independent and satisfy

fb(q) = fc(q) =
q

q − 1

[
a− fa(q)− (q − 1) f ′a(q)

]
(3.3.10)

The first of these equalities has not been shown in full generality but holds in both free

and holographic CFTs [91]. We will however assume this in what follows. The second has

been proved directly in Rényi index perturbation theory [78]. One can further prove

fa(q) > 0 , f ′a(q) < 0 =⇒ fc(q) > 0 , ∀ q (3.3.11)
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where we used (3.3.10) in obtaining the implication. The inequalities on fa(q) follow from

the fact that S(ρA) obeys general inequalities for any A [92], and that S(ρA) ∝ fa(q) for

∂A = S2.

3.3.3 Geometry of entangling surfaces

To make progress we need to examine the geometry of the Riemann surface ∂A. The

intrinsic curvature contribution in (3.3.6) is topological; for compact X the Gauss-Bonnet

theorem relates it to the Euler number

RX = 8π(1− g) . (3.3.12)

The extrinsic contribution can be noted to be positive definite (using Kt
ij = 0, Ks

ij = Kij)

KX =

∫
X
d2x
√
γ

(
Kij −

1

2
γij γ

klKkl

)2

(3.3.13)

This by itself is not sufficient, but we can invoke some geometry, see [88]. Introduce the

Willmore energy functional [89]1

WX⊂S3 =
1

4

∫
X
d2x
√
γ

(
1 +

1

4
(γijKij)

2

)
. (3.3.14)

This functional was introduced by Willmore, who explored surfaces which minimize their

mean curvature. It obeysWX ≥ 4π for all X, and is minimized by the equatorial S2 ⊂ S3.

Willmore conjectured that at g = 1, the Willmore functional obeysWX ≥ 2π2. This result

was proven recently [93]; the unique minimizer is the Clifford torus, whose stereographic

projection onto R3 yields a torus with τ = i/
√

2. This conjecture was generalized to higher

genus, where there exist so-called Lawson surfaces [94] Lg for g ≥ 2 satisfying

4π ≤ WLg ≤ 8π , (3.3.15)

which are conjectured to be the unique minimizers ofWX [95]. The precise value ofWLg is

unknown, but at every genus it has been proven that there is a surface that obeys (3.3.15),

irrespective of being the minimizer [95, 96]. These results will suffice for our purposes.2

See [99] for further details.

To make use of the bounds on the Willmore functional, we exploit the Gauss-Codazzi

equations, which are geometric identities which relate intrinsic and extrinsic curvatures.

The relation we need is simple (cf., [88]):

WX =
1

2
(RX +KX) (3.3.16)

For compact X we are immediately in business, since we can use the topological constraint

on the Euler number and the geometric constraint (3.3.15) of Lawson surfaces to examine

1For surfaces embedded in R3 we can drop the contribution from the area of the surface.
2Lawson surfaces tend to be bulgy with small handles, especially as g increases. We encourage the

reader to peruse the numerically-constructed surfaces in Table 1 of [97] or Figure 1 of [98].
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bounds on Su and X̂ . In particular, plugging (3.3.16) into (3.3.6), we dial up the genus,

driving R∂A negative, while restricting to Lawson surfaces ∂A = Lg which have WLg

bounded from above.

3.4 Entanglement bounds

Let us begin by studying the bounds on the universal part of entanglement entropy. It

is useful to treat the genus g = 0 cases first and then consider g ≥ 1. For a spherical

entangling surface, it is known from [48] that the Rényi entropies are related to thermal

entropies on the hyperbolic cylinder H3 × R. The geometry is such that the extrinsic

curvature term K∂A vanishes and so Su(q) = 4fa(q), which we have shown is positive

definite, cf., (3.3.11). It then follows as described in [30] that X̂ = 1
a fa(

1
2) − 1 is also

positive definite. Assuming the sphere is the minimizer of X̂ at g = 0, this establishes

positivity for all g = 0 entangling surfaces. Alternatively, positivity follows from (3.4.19)

if one assumes that αW > 0 for all CFTs. As we will discuss, this is true in all known

examples.

Let us turn to entangling surfaces with non-trivial topology. Simplifying (3.3.6) using

(3.3.16),

Su =
c

2π

(
2W∂A +

(a
c
− 1
)
R∂A

)
=

c

2π

(
2a

c
W∂A +

(
1− a

c

)
K∂A

)
.

(3.4.17)

These equations make it clear that there is a curious interplay between the sign of the

central charge difference c − a, the topology and geometry of ∂A, and the sign of Su.

While there is no constraint from toroidal topology (as c > 0,W > 0), we can infer that

for g ≥ 2:

• a ≤ c =⇒ Su > 0, ∀ ∂A owing to the lower bound on the Willmore functional and

positivity of K.

• a > c =⇒ Su ≷ 0. The indefinite sign owes its origin to the fact that there are

Lawson surfaces which have genus-independent boundedW (3.3.15), but R that can

be made arbitrarily negative by ramping up the genus. The sign flip of Su across

such surfaces occurs at a critical genus

gc = 1 +
WLgc

4π

c

a− c
. (3.4.18)

We note in passing that it is strongly believed that WLg monotonically increases

with g [100].

In [88] it has been conjectured that ∂A = S2 minimizes Su (assuming a = c). We now see

that when a > c, there is no minimizer: Su is unbounded from below.

Note that not all higher genus surfaces will render Su < 0. However, this is guaranteed

to occur above some critical genus for all surfaces whose Willmore energy grows slower
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than linearly in g. There are likely other families of surfaces besides the Lawson surfaces,

as well as isolated surfaces that exist for particular values of g, that satisfy this criterion.

For example, one can smoothly deform Lawson surfaces with fixed topology.3

Strictly speaking, the results above pertain to bounded regions A so that ∂A is com-

pact. For non-compact entangling surfaces we are not aware of any obvious upper bound

on W.

Let us now turn to the negativity and consider the quantity X̂ which was conjectured

in [30] to be positive definite. Using the definition in terms of the Willmore functional

and the expressions (3.3.10) we can write:

X̂ =
αRR∂A + 2αWW∂A

2c W∂A + (a− c)R∂A

αR =
1

2
f ′a(

1

2
) + c , αW = fc(

1

2
)− c

(3.4.19)

We can infer that the sign of X̂ depends on the coefficients αR and αW in a non-trivial

fashion.

• For a toroidal entangling surface, X̂ ∝ αW and so positivity requires fc(
1
2) > c. This

is seen to be true in all known examples.

• At higher genus, if a ≤ c we require that αR ≤ 0 to ensure X̂ ≥ 0.

• On the other hand if a > c, we can easily end up with negative values of X̂ : even if

αR ≤ 0 there is some genus g for which X̂ ≤ 0. This is because whilst the numerator

is ensured to be positive, the denominator can be made arbitrarily negative by pick-

ing an appropriate Lawson surface. The situation cannot be remedied by changing

the sign of αR in any obvious manner.

3.5 Examples

We have derived above some general conditions for the positivity of Su and X̂ in terms

of the central charges. In Table 3.1 we provide explicit results for a class of free and

holographic CFTs [68,70,78].

Several comments are in order. First, all known examples obey the inequalities αW > 0

and αR < 0. We believe that these are likely to be true for all CFTs.

Second, X̂ is shape-independent for the free scalar. It follows from [78] that X̂ is

shape-independent only for theories whose fa(q) equals that of a free scalar; besides the

scalar itself, there are no known examples of such theories.

3See [98] for such a construction at g = 2, especially Figures 2 and 5 therein.
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Theory a
c fa(q) fc(q) αR αW Su X̂

Scalar 1
3

(1+q)(1+q2)
4 q3 a 3 fa(q) −11

2 a
33
4 a

(3W−R)
π a 11

4

Fermion 11
18

(1+q)(7+37q2)
88 q3 a 3(1+q)(7+17q2)

88 q3 a −7
4 a

261
88 a

(36W−7R)
22π a 77R−261W

28R−144W

Vector 31
18

1+q+31q2+91q3

124 q3 a 3(1+q)(1+11q2)
124 q3 a −11

62 a
63
124 a

(13R+36W)
62π a −11R+63W

26R+72W

Free N = 4 1 1+q+7q2+15q3

24q3 a (1+q)(1+3q2)
8q3 a −11

12a
13
8 a

W
π a

−11R+39W
24W

Einstein 1 q
2(q−1)(2− x2

q − x4
q)a

3q
2(q−1)(x2

q − x4
q)a −3

4a
1+6
√

3
8 a W

π a
−3R+(1+6

√
3)W

8W

Table 3.1: Results for the universal terms in Rényi entropy and their implications for Su and X̂ in a class of

CFTs. We have chosen to write the answers in terms of the a central charge. In the last line, we have defined

xq ≡ 1
4q

(1 +
√

1 + 8q2).

Finally, the free vector field is the only theory in this table with a > c, and indeed, we

see that both Su and X̂ become negative for sufficiently negative R and upper-bounded

W, as happens for Lawson surfaces. Assuming monotonicity of WLg as a function of g,

the critical genus is gc = 4. In arriving at this conclusion, we are assuming that the

modular Hamiltonian that defines fa(q) includes the effects of the edge modes described

in [101] and [102]. This is necessary for Su to be determined by the a central charge for

spherical entangling regions. Curiously, ignoring these modes leads to Su being determined

by â = 16
31 a [103] which satisfies â < c. Exploring the dependence of Su on the entangling

surface should reveal whether it is controlled by â as opposed to the physical central charge

a; our diagnostic would simply involve a sign check for a g = 5 Lawson entangling surface.

3.6 Discussion

We have found that in CFTs with a > c, the universal term in entanglement entropy, Su,

necessarily becomes negative for certain higher genus entangling surfaces. The negativity

ratio X̂ also generically becomes negative for a > c; if αR ≤ 0 for all CFTs, this can only

happen for a > c. It would be nice to establish whether αR ≤ 0 and αW > 0 identically,

as suggested by all examples.

Aside from the free vector, theories with a > c include the IR fixed point of the

SU(2) model of [104], as well as the non-Lagrangian Gaiotto-type TN theories [105]. The

latter are IR limits of worldvolume theories of N M5-branes wrapping genus-ĝ Riemann

surfaces. A characteristic example is the AN−1 theory preserving N = 2 SUSY, which has

24(a− c) = (N − 1)(ĝ− 1) for ĝ > 1. Central charges for a larger family of related N = 1

theories with a > c are given in [106]. At large N [107], where a, c ∝ N3, there is an

interesting relation between N and the entangling surface topology: namely, the critical

genus gc in (3.4.18) scales like N2. The growth of gc with large N will be true of any

holographic theory with a sensible derivative expansion in the bulk [108].

It is worth noting that a − c controls and relates to many phenomena in CFT and

holography. These include the mixed current-gravitational anomaly [109] in SCFTs; su-

perconformal indices and their high temperature asymptotics [110–112]; violations of the

KSS bound on η/s in holographic CFTs [113,114]; and the size of the single-trace higher

spin gap in large N SCFTs [115].
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Finally, it is a remarkable and still mysterious fact that nearly all “traditional” CFTs

have a ≤ c rather than a > c. Our result may be regarded as suggesting a naturalness of

such asymmetry, along the lines of [110]. It would be very interesting to make this more

concrete.



Chapter 4

Qubits systems and holographic

entanglement structures

This chapter is a reproduction of the paper Entanglement structures in qubit systems [116],

written in collaboration with Mukund Rangamani.

In the previous two chapters the discussion pertained mainly measures of entanglement,

and in particular logarithmic negativity, in quantum field theory. The main reason to

consider such a quantity, instead of other measures like Renyi entropies, is the fact that

negativities have an operational interpretation in terms of entanglement manipulations

and are sensible to different kinds of entanglement. Unfortunately, at present it is not

known how to calculate the logarithmic negativity for a single subregion in a mixed state

of a field theory or between two subregions. Furthermore, no measure of multipartite

quantum entanglement have even been defined for field theories.

The lack of tools to explore patterns of entanglement directly in field theory forces

us to look at simpler systems, where other entanglement measures can be computed and

have an operational interpretation. In this chapter we look at quantum mechanics and in

particular we focus our attention on systems made of few qubits. We compute negativities

between subsystems and explore the ratio between negativity and entropy that was at

the centre of the discussion in the previous two chapters. In field theory it was more

natural to use the logarithmic version of the negativity, here instead we will prefer the

negativity. This is motivated by the fact that for Hilbert spaces of finite dimensions, and

for pure states, there is a nice operational interpretation of this quantity called robustness

of entanglement. Intuitively, this is a measure of the amount of noise that has to be

injected into the system to completely erase its quantum entanglement. We explore how

the ratio depends on the pattern of entanglement of the entire state.

Furthermore, when the size of the system is small, all the possible states can be clas-

sified into equivalence classes of entanglement structures defined by certain operations.

Given a state one can use different measures of entanglement to determine the corre-

sponding class and further explore the entanglement structure. In this way we learn what

pattern of entanglement produces properties which are known to characterize holographic

48
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states, such as the saturation of the Araki-Lieb inequality or the sign definiteness of tri-

partite information. Although simple systems of few qubits are very different from field

theories, these investigations represent a starting point towards a deeper understanding of

entanglement structures in field theory with particular focus on the operational perspective

and its meaning for holography.

4.1 Introduction

One of the key features distinguishing quantum mechanics is the presence of entanglement

which is a natural consequence of the superposition principle. Usually this is characterized

simply by the inability to separate a composite system into its constituent parts without

losing some information about the whole. The lack of knowledge of how the individual

parts comprise the entire system is encoded by entanglement.

While the presence or absence of entanglement elicits a binary response, one often

would like to know more and in particular be able to quantify the precise nature of entan-

glement in a quantum system. In simple bipartite systems, e.g., two qubits, this is easily

done using the von Neumann entropy of the reduced density matrix for one of the compo-

nents. This quantity which is referred to as the entanglement entropy provides a complete

characterization of the entanglement inherent in the state.1 However, this ceases to be the

case in more general scenarios: density matrices of bipartite systems or equivalently pure

states of multipartite systems.

To quantify the amount of entanglement in more general cases various measures of

entanglement have been proposed in the quantum information literature. Some of these

which we shall review in the sequel are easy to compute, while others have restricted

applicability. Nevertheless, given that the structure of entanglement in multi-component

systems can get rather intricate (if only due to the rapid growth of potential permutations

involved), it is interesting to contrast the different observables against each other.

While this is an interesting exercise in its own right in quantum mechanics, part of our

motivation in attempting to understand such detailed structure of entanglement stems

from potential insights it can offer in the context of holography. One of the amazing

facts about the holographic AdS/CFT correspondence is the observation that the entan-

glement in a class of strongly coupled planar field theories is geometrized in terms of a

gravitational background in higher dimensions. This statement is manifest in the holo-

graphic entanglement entropy proposals of Ryu and Takayanagi [20, 39] and its covariant

generalization [23]. A more intricate and intriguing picture arises when we ask whether

the structure of entanglement in the field theory is itself responsible for the emergence

of geometry as was first suggested a few years ago in [26, 40, 41]. These ideas have been

central to the recent thesis that “entanglement builds geometry” codified succinctly in the

1 To be sure this only captures the entanglement under the obvious bipartitioning; we will later be

careful to distinguish this from the entanglement contained in further subdivisions of the each system.



4.1. Introduction 50

statement ER = EPR [29].

One obvious question in this context is the following: is the emergence of geometry

simply reliant on the presence or absence of entanglement, or does it depend more crucially

on the structure of entanglement? Most discussions in the holographic context presuppose

a pure state of a bipartite system whence entanglement entropy suffices. However, we

should be able to ask for the emergence of geometry in situations where the configuration

in question is more complicated and admits no simple bipartite description. Typical

scenarios we have in mind are multipartite systems exemplified by the multi-boundary

wormhole geometries of [117–119] in three dimensions. Here the precise manner in which

the individual parts are entangled does play a role in the emergence of some sort of semi-

classical geometry and indeed previous investigations [50,51] indicate this to be the case.

The prototype scenario for this discussion is a N -partite system wherein integrating

out (N − 3) components leads to a density matrix for the residual three components. In

this case, it is known following an interesting analysis of [120] that the density matrix

of the resulting tripartite system has to have non-positive definite tripartite information

(see below) in order to admit a semi-classical geometry as a holographic dual.2 On the

other hand for simple quantum systems the tripartite information can have either sign,

so not all states of a tripartite system can a-priori admit a semi-classical gravity dual.

This point was already made in [51], cautioning that the ER=EPR statement should be

accompanied by some riders. We will take this as sufficient motivation to examine the

nature of entanglement in simple systems.

To set the stage for our discussion, let us recall that in the holographic context we are

interested in studying continuum quantum field theories in the large central charge limit.

While the central charges can be formally defined in terms of conformal anomalies, it is

operationally useful to think them as measuring the curvature scale of the holographic

dual geometry `AdS in units of the Planck constant `P , viz., ceff ∼ `AdS/`P . Thus ceff � 1

corresponds to the regime where semi-classical geometry is trustworthy.3 Heuristically

this means that we are interested in considering systems with a large number of degrees

of freedom. Given such a theory we want to understand what structures of entanglement

are possible.

The canonical route of exploration is to consider various measures of entanglement in

continuum QFTs, such as entanglement entropy, Renyi entropies, negativity etc.. However,

these quantities are rather difficult to compute generically in interacting systems. If we

2 As far as we know this condition is necessary but not sufficient to guarantee a semi-classical geometric

dual. The constraint was derived in [120] by examining the properties of holographic entanglement entropy,

essentially adapting the arguments leading to the proof of strong-subadditivity of holographic entanglement

entropy. It appears not to follow simply from strong subadditivity, making it in an independent statement

about systems with large numbers of degrees of freedom as is relevant for holography. We thank Matthew

Headrick and Veronika Hubeny for an extremely illuminating discussion on this point.
3 Strictly speaking we also need `AdS � `s where `s is the string scale, which requires the field theory

coupling being large. If not we end up with a classical theory, but one which involves stringy excitations

as well.
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start with a pure state in the QFT and demarcate various (disjoint) regions Ai i =

1, · · · ,M , then while it is possible to compute the entanglement entropy for ∪iAi in

holographic systems,4 it is harder to compute the Rényi entropies and negativities.5

Entanglement negativity, introduced in [37], is a clean measure of the quantum entan-

glement even for mixed states, while the usual von Neumann entropy is contaminated by

classical correlations. This is particularly pertinent, if we are interested in understanding

the entanglement between two of our regions, say Aj and Ak, after tracing out the state.

Entanglement properties of the density matrix ρAj∪Ak are more cleanly encoded in the

negativity, which bounds the amount of distillable entanglement, so it tells us directly how

many Bell pairs are common to this disjoint region. It is however quite hard to compute

it in continuum systems.6

In a previous work [30], we examined the (logarithmic) negativity in the vacuum state

of a CFT (for bipartitionings given by connected regions of spherical topology). We

conjectured that the ratio of the universal part of the logarithmic negativity of a pure

state with respect to a given bipartitioning was bounded from below by the entanglement

entropy of the reduced density matrix obtained by integrating out one of the components.7

Further analysis of this result for more complicated regions (building on the analysis of [78])

reveals a rather interesting interplay between the central charges of the CFT and the

geometry and topology of the entangling surface [77]. Motivated by these observations in

the continuum, we introduce a new measure involving negativity, called specific robustness,

which is sensitive to the pattern of internal entanglement in simple systems (see below).

To get further insight into features of quantum entanglement we look at a toy problem

of non-interacting qubits.8 Our motivation here is to understand how the measures of

entanglement that have been proposed in the quantum information literature serve to help

us delineate the entanglement structure of the state. The advantage of working with qubit

systems is that we can explicitly compute (at least for small numbers of qubits) various

measures of entanglement. Starting with a pure state of N -qubits, we can consider tracing

out k < N qubits and examining the entanglement inherent in the remainder (N − k)-

qubits. Furthermore we can consider different bipartitions (or multi-partitions) of the

4 Given a collection of boundary regions as above, the [23,39] require one to solve a classical gravitational

problem to find an extremal surface in the geometry dual to the state in question. Even in complicated

geometries, this is a problem of solving classical partial differential equations, which whilst involved, is

nevertheless a lot simpler than the quantum problem (the simplification is made possible by the ceff � 1

limit).
5 Similar statements apply for entangled states in tensor product of CFTs, e.g., [50,121].
6 In recent years negativity has been explored quite extensively in pure and thermal states of two

dimensional CFTs in a series of works, cf., [31, 49,84,85,122–124]. We should also note that negativity in

spin chains has been studied in [125–128].
7 The universal part here refers to the renormalization scheme independent term; in even dimensional

CFTs it is the coefficient of the logarithmically divergent term, while in odd dimensional CFTs it corre-

sponds to the finite part.
8 Strictly speaking we pick random pure states of a few qubits and are agnostic about the actual

Hamiltonian (which may well be the identity operator); hopefully our terminology does not cause confusion.
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remaining qubits and investigate how entanglement is distributed among them and what

are its properties. We perform some simple numerical experiments starting with randomly

chosen pure states of N -qubits (with N ≤ 8 for computational reasons) and argue that in

general the combination of information emerging from different measures of entanglement

can give useful insights about the properties of the state. Even for a fixed bipartition of

a pure state, where entanglement entropy determines the amount of entanglement, other

measures give additional information about the nature of this entanglement. While the

holographic systems we are really after are not as simple as non-interacting qubits, it is

useful to use this toy model to build some intuition about the nature of entanglement

inherent in many-body wavefunctions.9

Following our interest for the ratio between the logarithmic negativity and entangle-

ment entropy motivated by field theory arguments [30, 77], we consider a similar (and

strictly related) quantity for qubit system, i.e., the ratio R between the negativity (not

logarithmic) and the entropy. Using a known operational interpretation for the negativity

in terms of robustness of entanglement against noise, we introduce the concept of specific

robustness which is measured by the ratio and investigate how this property is related to

the pattern of entanglement inside the state. In the case of 4 qubits, where a classification

of the possible states under a particular class of operations (called stochastic LOCC, aka,

SLOCC) exists, we show how this additional information allows a partial resolution of

the classes and investigate the detailed structure of entanglement within this classification

scheme.

We also undertake an analysis of mutual information and the monogamy constraint,

both for generic states and also for the different classes of 4 qubits. We find that generically

the monogamy constraint is not particularly restrictive. However, if we restrict attention

to SLOCC classes of states, we find a unique class that respects monogamy.

In [30] part of the motivation for considering negativities as a measure of entanglement

in holographic systems was its ability to provide clear distinction between classicality and

quantumness. For bipartitions of mixed states the von Neumann entropy mixes classical

and quantum correlations, while negativities can distinguish between them. In a multi-

partite setting the same problem arises for the tripartite information. We use a measure

of multipartite entanglement known as tangle in the quantum information literature, as a

witness of intrinsically quantum multipartite correlations. Even though its interpretation

is somewhat murky and its definition restricted to qubit systems alone, we show that it

provides useful information when compared against the tripartite information (and flesh

out some connections to the monogamy of mutual information). Armed with these result

for qubit systems, we attempt to draw some general lessons for continuum field theories.

The outline of the chapter is as follows: in §4.2 we introduce the measures of bi-

partite and multipartite entanglement as well as the notation that we will use for our

9 The entanglement we explore is more closely related to the notion of particle partition entanglement

used in certain contexts to gain information complementary to that contained in spatial cuts of the systems,

cf., [129–132].
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investigations. We then start in §4.3 with the simplest case of 3 qubits, which serves as an

introduction to the kind of investigations that we will later conduct on larger systems. §4.4

is the core of the chapter, we first investigate generic states of 4 qubits and then present a

detailed analysis of the structure of entanglement for the known equivalence classes. We

extend the analysis to generic states of larger systems (6 and 8 qubits) in §4.5 and discuss

the main results and potential implication for holography in §4.6. Appendix 4.A, contains

additional plots that complete the main results presented in the other sections.

4.2 Measures of entanglement

The problem of quantifying entanglement has been at the center of research in quantum

information theory for the last 15 years, nevertheless no conclusive measure has been found

so far that enables us to fully capture the structure of entanglement of generic states. Sev-

eral measures have been proposed in the literature but they are usually strongly dependent

on the specificities of the application for which they have been developed, and often very

difficult to compute. Alternatively, quantities with the correct mathematical properties

to be good candidates for entanglement witness, often lack a clear physical interpretation.

In this section we review some properties of entanglement and some measures that can be

efficiently used to investigate its structure. In the following we will be careful in distin-

guishing classical from quantum correlations and reserve the term entanglement for the

latter.

4.2.1 Bipartite entanglement

In its original formulation entanglement is a form of correlation that is not compatible with

local physics. Bell’s inequalities impose a bound on the strength of correlations achievable

by local physics, the violation of these constraints is a witness of entanglement, which

actually serves as its definition. For pure states this is well understood – states which are

not products are entangled and always violate some (generalized) Bell’s inequality.

This is not always the case for mixed states. A mixed state ρ in a Hilbert space

HA ⊗HB is said to be separable if it is a convex combination of product states

ρ =
∑
i

pi ρ
A
i ⊗ ρBi ,

∑
i

pi = 1 , pi ≥ 0 , (4.2.1)

and entangled otherwise. Product states contain no correlation, separable states have only

classical correlation (i.e., correlations that can be produced by LOCC10) and entangled

states contain some sort of quantum correlation.11 It is important to realize that the

bipartition of the system is a crucial part of the definition.

10 LOCC stands for local operations and classical communication, which includes action by unitaries,

measurement and information exchange on classical channels.
11 The question of whether these correlations may or may not be compatible with local physics is still

open, see [30] for additional comments and further references.
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From a more recent perspective entanglement, can also be interpreted as a powerful

resource for specific protocols that are not possible when only classical resources are avail-

able. In this context one often would like to be able to manipulate entanglement, convert

it into different forms, extract it from a system and transfer it to another and so on.

In this context entanglement can be quantified depending on a specific task such as the

preparation of a state (entanglement of formation), or the extraction of Bell’s pairs from

a given state (entanglement of distillation) (see [133]).

For pure states of a system where a bipartition is specified, it is well known that

entanglement entropy is a measure of the amount of entanglement between the subsystems.

In a practical situation where two parties only have limited access to the subsystems this

is the best measure known so far, as it quantifies both non-locality and the value of

entanglement as a resource for specific tasks such as teleportation.12 Näıvely it is the

number of Bell pairs available.13

We want instead to investigate how different subsystems are correlated among each

other in a state of a given global system, being particularly careful in distinguishing

classical from quantum correlations. One natural way to proceed is to consider different

bipartitions of the entire system: this would certainly give additional information about

the distribution of correlations. If we restrict this analysis to pure states, entanglement

entropy is a reasonable way to capture the quantum entanglement inherent in the state.

The problem becomes much more intricate for mixed states, where the relation between

non-locality and the “task dependent” formulation of entanglement is in general not clear

at present.14 In this case the von Neumann entropy is not a good measure of entanglement

any more.

This is also a problem one faces in the attempt to completely characterize the internal

pattern of entanglement in a given state, even if the state is pure. One can use entangle-

ment entropy as long as only bipartitions of the entire state are considered, but this is not

enough to describe the state entirely. Given a pure state of a system ABC, if we want to

study the entanglement among internal subsystems, for example A and B alone, we first

need to trace out the degrees of freedom in C, but the result of this operation is a mixed

state. In order to characterize the entanglement between A and B we need some other

measure.

In a previous chapter 2 we focused on negativities [37] as the measures of interest. Let

us recall their definitions and salient properties for convenience. Given a density matrix

12 In this case entanglement entropy is known to be equal to both entanglement of formation and

distillable entanglement [133].
13 This is precisely the meaning of distillable entanglement, but it is important to realize that the

definition is an asymptotic statement in the limit where an infinite number of copies of the original state

is available. In the context of holography one would prefer an interpretation in terms of a single system.
14 There exist bound entangled states which are entangled (i.e., not separable), but at the same time

they are of very limited value as resource for typical quantum information (QI) protocols; specifically Bell

pairs cannot be distilled from them.
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ρ and a bipartition HA ⊗HB one defines the partial transpose ρΓ as

〈 r(A)

i l(B)
n | ρΓ |r(A)

j l(B)
m 〉 = 〈 r(A)

i l(B)
m | ρ |r

(A)

j l(B)
n 〉 (4.2.2)

The logarithmic negativity then is defined as

E = log ‖ρΓ‖ , (4.2.3)

where ‖...‖ denotes the trace norm.15 This is known to be an upper bound to distillable

entanglement. It is in general greater or equal to entanglement entropy (for pure bipartite

states), with the equality holding for maximally entangled states. It is somewhat natural

in continuum systems as one can give a suitable path integral representation [31]. One

can also define the negativity as

N =
‖ρΓ‖ − 1

2
. (4.2.4)

While simply related to the logarithmic negativity, it is more convenient to consider in

simple discrete systems; hence we will focus for the most part on the negativity itself.

Armed with the tools of entanglement entropy for bipartition of pure states and nega-

tivity for bipartition of pure or mixed states, one can ask how much information about the

structure of entanglement of a given state can be extracted considering different partition-

ings and comparing the two measures. More specifically [30, 77, 78] considered the ratio

between negativity and entanglement entropy for bipartitions of pure states. One of the

motivations of the present work is to flesh out a possible interpretation of this quantity.

To this end it turns out it will be useful to interpret the negativity in terms of another

measure of entanglement called robustness [63]. Given a state ρ and a separable state

ρs, one can consider mixtures of the two states and ask how much of ρs is necessary to

completely disentangle ρ. Formally

ρ̃ =
1

1 + s
(ρ+ sρs) . (4.2.5)

The minimal value of s such that ρ̃ is separable is called the robustness of ρ relative to

ρs. One can then ask what is the minimal value of s for all possible choices of ρs, this is

the robustness of ρ. Intuitively this corresponds to the robustness of ρ against “intelligent

jamming”; it is the minimal amount of noise needed to disrupt the entanglement when we

have full knowledge about the structure of the state.

For finite dimensional systems the negativity is known to be equal to a half of the

robustness

N =
1

2
min
∀ρs

s . (4.2.6)

This then provides a potential interpretation of negativity. Note however that this way

to quantify entanglement is operational and is quite different from the intuition we have

15 The trace norm is defined as ‖O‖ = Tr
(√
O†O

)
for any Hermitian operator O.
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for the entropy in terms of non-locality and separability. It is interesting to ask if and

how the robustness is related to the internal structure of entanglement, namely to the way

entanglement is distributed among subsystems.

Inspired by this concept, to get a quantitative handle, we introduce a measure, which

we call specific robustness R. It is defined as the ratio of the negativity of a given state

(and bipartitioning), to the entanglement entropy of the reduced density matrix under the

same bipartitioning. Schematically we can write16

R =
N

S
(4.2.7)

Heuristically we want to think of it as a measure of the minimal amount of noise sufficient

to disentangle Bell pairs in a given state. More specifically, given two states with the

same entropy but different negativity, we will then interpret the entanglement as more

or less robust, depending on the ratio R; higher values of R would correspond to greater

robustness of the entanglement pattern. It is worth reiterating that such a notion of

robustness captures the operational sense of the concept, as it relies on a procedure that

mixes the state with some noise. We want to ask whether (and how) this quantity depends

on the internal pattern of entanglement of the state. In particular, given an entangling

surface corresponding to a fixed bipartition, one can distinguish entanglement inside the

two subsystems or entanglement “across” the entangling surface. In the rest of the chapter

we will examine this quantity in simple qubit systems.

Finally, as a measure of bipartite correlations we recall the definition of mutual infor-

mation

I(A|B) = S(A) + S(B)− S(AB) (4.2.8)

This has been argued to capture the total amount of correlations, both classical and

quantum [134].

In the theory of quantum information it is often useful to consider inequalities that

constrain the values of the measure of interest among different subsystems. One such ex-

ample is a relation called monogamy, which is defined for a quantum information theoretic

function f as

f(A|B) + f(A|C) ≤ f(A|BC) (4.2.9)

Monogamy is known to be a general feature of quantum entanglement. One can interpret

Eq. (4.2.9) as follows: if f is some entanglement measure, and subsystem A is almost

maximally entangled both with subsystem B and a larger one BC, then there is almost

no entanglement between A and C, i.e., f(A|C) = 0. This corresponds to the common

intuition for the concept of monogamy. Alternatively, the monogamy relation is the precise

statement of the fact that the “union is more than the sum of its parts”. Specifically, there

is some subtle correlation between A and the pair BC which is lost if one only looks at

16 In [30, 77] we considered the ratio X = E /S which was convenient in continuum systems. For qubit

systems the ratio R seems more appropriate, and one can anyway translate to X if necessary.
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the correlations A|B and A|C. The latter interpretation of monogamy will be crucial in

the definition of some measures of multipartite entanglement in the following.

We will be interested in exploring monogamy relations as a potential way to constrain

the allowed entanglement structures. Specifically, we will have occasion to explore the

monogamy relation for the square of the negativity that was proved in [61]. Another

monogamy relation involves the mutual information. While I(A|B) is not monogamous

in general, it happens to be so for holographic theories, as proved in [120] (this holds

asymptotically at large ceff). We note that recently [135–137] used a similar philosophy to

derive a set of (inequality) constraints on holographic theories, using strong-subadditivity

and relative entropy.

4.2.2 Multipartite entanglement

The definition of entangled and separable states introduced previously can be extended to

a multipartite setting. For a system of N parties a state is said to be fully separable if it

can be written as17

ρ =
∑
i

pi ρ
A1
i ⊗ ρ

A2
i ...⊗ ρANi ,

∑
i

pi = 1 , pi ≥ 0 , (4.2.10)

where the states ρi contain no entanglement. If some of the parties contain some entangle-

ment the state is called m-separable if it can be similarly decomposed into a convex linear

combination of products of m parts only. A state is said to contain genuine N -partite

entanglement if it is neither fully separable nor m-separable for any m > 1.

We will focus on pure states as in the mixed case the properties of multipartite entan-

glement are much less understood. The prototype of multipartite entangled states is the

well known GHZ state (a.k.a. cat state), whose general expression for N qubits is given

by

|GHZN 〉 =
1√
2

(|0 · · · 0︸ ︷︷ ︸
N

〉+ |1 · · · 1︸ ︷︷ ︸
N

〉) (4.2.11)

This is sometimes called a maximally entangled state (in an N -partite sense) as it is the

state that violates a N -partite generalization of Bell’s inequality maximally [139].

The interpretation and quantification of multipartite entanglement is in general diffi-

cult and much less understood than in the bipartite case. Some measures exist but their

physical meaning is usually not known. In the following our measure of interest for mul-

tipartite entanglement of pure states will be the N -tangle (τN ), which was introduced

for three qubits by [140]. In the three qubits case τ3 is known to quantify the residual

multipartite entanglement in the state, which is not captured by its bipartite counterpart18

τ2(A|B) + τ2(A|C) + τ3(ABC) = τ2(A|BC) (4.2.12)

17 For more details about multipartite entanglement see [133] and [138].
18 For pure states the 2-tangle is simply τ2 = 4 det ρA, where ρA is the usual reduced density matrix of

the qubit A.
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This equation precisely corresponds to the intuition we have from the previous discus-

sion about monogamy and actually serves as the definition of the tripartite entanglement

measure τ3.

A formal generalization of τ3 to any even number N of qubits was given in [141]

τN =2
∣∣∣∑ aα1...αNaβ1...βNaγ1...γNaδ1...δN×

εα1β1εα2β2 ...εαN−1βN−1
εγ1δ1εγ2δ2 ...εγN−1δN−1

εαNγN εβN δN
∣∣ (4.2.13)

where the coefficients correspond to the components of the state vector |ψ〉 in the con-

ventional computational basis (|0 · · · 00〉,|0 · · · 01〉, . . . ). This quantity is known to be an

entanglement monotone19 and invariant under qubits permutation, nevertheless its inter-

pretation for generic N is not fully understood. For N = 4 an interpretation in terms of

residual entanglement analogous to the three qubits case was given in [142]. Nevertheless

it is worth noting that this interpretation has some peculiarities [142]: for example, τ4 = 1

for a product state of two Bell pairs suggesting that it cannot be interpreted as a measure

of genuine 4-partite entanglement. We emphasize that these measures are only defined for

qubits – there is no generalization to a continuous setting.

Another measure of mutipartite correlation that we will use is the so called tripartite

or interaction information (I3). This is measure of tripartite correlation which is defined

as:

I3(A|B|C) = S(A) + S(B) + S(C)

− S(AB)− S(BC)− S(AC) + S(ABC) (4.2.14)

It is important to notice that this is a combination of mutual informations and hence

it mixes classical and quantum correlation. For generic quantum states the tripartite

information can be either negative or positive, but one can rephrase the condition for the

monogamy of mutual information in terms of I3 simply as [120]:

I3(A|B|C) ≤ 0 (4.2.15)

In the following we will investigate the relation between monogamy of mutual information

and the structure of internal entanglement for simple qubits systems.

4.2.3 Notation

For the convenience of the reader we summarize here the notation that we will use in the

sequel. Given a system of N qubits we employ the following notation to denote various

partitionings of interest:

• single qubits will be labeled by small letters: a, b, c, . . ..

19 A measure of entanglement is called an entanglement monotone if its value on a given state cannot

increase under the effect of LOCC operations performed on the state.
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Σ

(a)

Σ

(b)

Figure 1: Example of our notation for 6 qubits, the horizontal line represents the entangling surface Σ. (a)

Local entanglement, N loc
1|1 . (b) Entanglement across the entangling surface, N Σ

1|2

• capital letters will identify subsets of qubits: A,B,C, . . ..

• partitioning of N -qubits in groups of m,n, k, . . . etc., with m+ n+ k+ · · · ≤ N will

be denoted simply as m|n|k| · · · when we don’t need to specify the particularities of

the grouping.

For example Na|bc denotes the negativity between qubits a and bc, NA|BC is the negativity

between a subset A and a subset BC (further decomposed into B and C), N1|2 is the

negativity between a generic single qubit and two other qubits in the system. Fig. 1 shows

an example for 6 qubits.

We will often consider averages of different quantities and use an overline to identify

them. For example N1|2 is the negativity between a single qubit and two qubits, averaged

over all the possible choices of three qubits from the original set. In the following we

will mostly focus on systems made of an even number of qubits. For this systems it is

obviously possible to consider bipartitions into two subsets with N/2 qubits each, we will

refer to this particular bipartition as the maximal one.

Using natural terminology from the context of holography we will call the fiducial

surface that specifies a bipartition of a system the entangling surface (Σ). We will be

interested in the entanglement among qubits that could lie in the two subsystems across

the entangling surface Σ, or in the same one, see Fig. 1. Expressions such as N Σ
1|1 refer

to negativity between one qubit in a subset and one qubit in the other subsystem. In this

case we use the expression entanglement across Σ. We call instead local entanglement the

correlation between qubits in the same subsystem, and use expressions like N loc
1|1 .

In the following sections we investigate the structure of entanglement for pure states

of systems composed by few qubits. These are simple toy models where the structure

of entanglement can be studied numerically, nevertheless the pattern of entanglement is

highly non-trivial. Our goal is twofold, on the one hand we use qubits systems as simple

laboratories to investigate the properties of different measures of entanglement and their

interpretation. On the other hand we will look for entanglement structures that might be

relevant for bulk reconstruction in holography. We start with the simplest case of three

qubits, this serves as an introduction to the kinds of investigations which we will later

apply to larger and more interesting systems.
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4.3 Warm up: Three qubits

We start by recalling the definition of two particular states, the GHZ and the W states of

three qubits:20

|GHZ3〉 =
1√
2

(|000〉+ |111〉) |W3〉 =
1√
3

(|100〉+ |010〉+ |001〉) (4.3.16)

These states are well known in the literature. The GHZ state only carries genuine tripartite

entanglement, this is captured by the fact that the value of the 3-tangle is maximal,

τ3 = 1. In particular after tracing out one of the qubits one is left with a system of

two qubits in a separable (mixed) state, i.e., not entangled. On the other hand the W

state contains the maximal possible amount of bipartite entanglement, i.e., the correlation

between any pair of qubits is maximal. It does not contain any tripartite entanglement

and τ3 = 0. This distribution of internal bipartite entanglement corresponds to the known

fragility and robustness against qubits removal of the GHZ and W states respectively. An

alternative motivation for considering the GHZ state as the maximally entangled state

of three qubits (cf., the definition in terms of Bell inequalities in §4.2.2) is precisely this

notion of fragility [139].

General pure states of three qubits were classified in [143]. The classification relies

on an equivalence relation under a class of operations called SLOCC (stochastic local

operation and classical communication). Two states are considered equivalent when there

is a non vanishing probability to convert one state into the other using LOCC and a single

copy of the state.21 There is a total number of six classes: the class of product states,

three classes of entangled pairs where the third qubit is not entangled, and two classes of

states which contain entanglement involving all three qubits. These are the classes we will

focus on, they are called GHZ and W classes from the names of their representatives.

Given any pure state it is possible to decide with certainty which class it belongs to

using τ3. When τ3 = 0 there is no truly 3-partite entanglement in the state, which is then

in the W class. We will reverse the process and use instead τ3 to generate random states

in the two classes for which we study the pattern of bipartite entanglement. It should

be noted however that the W class has measure zero with respect to the generic class

(GHZ), this means that our numerical investigation will not respect the statistics of the

two classes.

We label the qubits by abc. There are three possible bipartitions of the entire sys-

tem which are generally inequivalent, we will denote them by: a|bc, b|ac, c|ab. For such

bipartitions one could in principle consider both entanglement entropy and negativity.

20 The definition of the W state here is given for the case of 3 qubits, but similarly to the GHZ case the

generalization to a higher number of qubits is straightforward.
21 Equivalence under LOCC instead would require the ability to convert one state into the other with

certainty. It is known that when only a single copy of a state is available two states are equivalent under

LOCC if and only if they are related by local unitaries (LU) [144]. In this case a classification under LOCC

would result in an infinite number of inequivalent classes even for a system of only three qubits.
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W
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Figure 2: 50000 random states in the W (light violet) and the GHZ (color map) classes. The color map

corresponds to the value of τ3 in the range (0, 1) as shown in panel (a). The GHZ and W states correspond to

the orange and purple large dots respectively. Left and right panels show the same plots with different overlay.

(a)-(b): Monogamy of the square of the negativity for a specific bipartition of the global system. (c)-(d):

Average of the squared negativity over all possible bipartitions. (e)-(f): Average negativity between single

qubits compared to the average negativity for bipartitions of the entire system.
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Nevertheless since one of the parties only contains a single qubit, its entanglement is com-

pletely determined by a single number.22 This means that if we only look at bipartitions

of the entire system there is no additional information carried by a second measure and we

can choose to equivalently use either the entropy or the negativity. The negativity being

a well defined measure of entanglement, which works well for mixed states, we will prefer

it to the entropy and use it to quantify the entanglement between single qubits.

We start by choosing a specific bipartition (a|bc) and computing the following nega-

tivities: Na|bc, Na|b, Na|c. As a first exercise we can check the monogamy relation for the

square of the negativity which was proved in [61]

N 2
a|b + N 2

a|c ≤ N 2
a|bc (4.3.17)

this is shown in Fig. 2a-2b. We notice that monogamy seems to be saturated more easily

by W states. More interestingly we find that there is a lower bound on the internal

negativity for W states. Some non-vanishing amount of tripartite correlation is necessary

to disentangle pair of qubits while at the same time strongly entangling each qubit with the

other pair. An analogous result holds for the average over the three possible bipartitions

of the global state, Fig. 2c-2d.

2N 2
1|1 ≡

2

3

(
N 2
a|b + N 2

a|c + N 2
b|c

)
≤ 1

3

(
N 2
a|bc + N 2

b|ac + N 2
c|ab

)
≡ N 2

1|2 (4.3.18)

One can notice how the distribution of the states in the W class is reproduced by the states

in the GHZ class with small value of τ3 (dark blue). It is useful to contrast this behaviour

with the saturation of the Arkai-Lieb inequality, but we postpone that discussion till we

discuss the situation with more qubits.

As a measure of the strength of correlations in the state it is also interesting to look

at the average of the internal negativity between single qubits

N 1|1 ≡
1

3

(
Na|b + Na|c + Nb|c

)
(4.3.19)

and compare it to the average negativity for bipartitions of the entire state N 1|2. One

clearly sees that the internal negativity is always close to the maximum for states in the

W class, Fig. 2e-2f. This corresponds to the common intuition for W-like entanglement as

being more robust when a qubit is removed from the system.

Note however that this concept of robustness is different from the definition we gave

in the previous section. In that case the robustness is proportional to the negativity for

a bipartition of the global state (N1|2), which on average is actually maximized by the

GHZ state, and not the W state. The relation between this last concept of robustness

and the pattern of internal entanglement will be discussed extensively in the next sections

for larger systems. In order to keep this distinction clear we will reserve the expression

22 Formally a single qubit density matrix has only one non-trivial eigenvalue, the other being determined

by the trace normalization.
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robustness to the noise-related quantity and refer to the robustness against qubits removal

simply as internal entanglement.

Finally one can ask for the monogamy of mutual information. It is straightforward

to check that for pure states of only three qubits I3 is identically zero; consequently the

mutual information is always monogamous.

4.4 Four qubits

In this section we consider the more interesting case of four qubits, we will see that the

addition of a single qubits introduces much more structure and correspondingly several

new investigations are possible.

For a four qubits system two kinds of bipartitions of the global state are possible, using

the notation of the previous section we will refer to them as (1|3) and (2|2). As before, the

first case is less interesting as the entropy essentially carries the same information as the

negativity. The second case instead is more interesting, for such bipartition we can now

compute both the negativity and entanglement entropy and ask what kind of information

about the state one can gain by comparing them. More specifically we will consider the

specific robustness (4.2.7) and show that it conforms to the interpretation we wish to give

it.

A second novelty of a four qubits system is the possibility to investigate the properties

of different states with respect to the disentangling theorem for the negativity. In partic-

ular, we explore the relation to the saturation of Araki-Lieb inequality for entanglement

entropy. This is again inspired from holography owing the occurrence of the entanglement

plateaux phenomena [32] there.

Finally, it is now possible to obtain a mixed state of three qubits by simply tracing out

a single qubit, the value of I3 is then non-trivial and one can investigate the monogamy of

mutual information in relation to the structure of entanglement of the state.

In §4.4.1 we will start these investigation for random generic states. Following this

in §4.4.2 we will introduce a SLOCC classification for four qubits systems and apply the

extend the consideration to the different classes.

4.4.1 Generic states of 4 qubits

We begin our discussion here by picking out random pure states of 4-qubits. We will

subject these to various examinations, testing for the saturation of the AL inequality, the

disentangling theorem, and finally explain how the specific robustness can play a useful

role in delineating internal entanglement structure.

Monogamy of the negativity and disentangling theorem

Similarly to the three qubits case, it is interesting to ask how the saturation of the

monogamy is related to the four-partite entanglement measured by τ4. There are now
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Figure 3: Monogamy of the squared negativity for 100000 random states. (a), (b), (c) show inequalities

(4.4.20a), (4.4.20b), (4.4.20c) respectively. (d) Contrasting Araki-Lieb saturation with the disentangling theo-

rem for negativities.

three different kinds of monogamy relations (up to permutation of the qubits), depending

on different ways to partition into subsystems:

N 2
ab|c + N 2

ab|d ≤ N 2
ab|cd (4.4.20a)

N 2
a|b + N 2

a|c ≤ N 2
a|bc (4.4.20b)

N 2
a|bc + N 2

a|d ≤ N 2
a|bcd (4.4.20c)

The results are plotted in Fig. 3a-3b-3c; note that the Hilbert space is now much larger and

by random sampling one only covers a small portion of the space. Curiously, in the second

case (4.4.20b), Fig. 3b, the monogamy relation seems to be saturated more by states with

a higher content of multipartite entanglement while in the third case (4.4.20c), Fig. 3c,

the states with low tangle saturate monogamy inequality. It is tempting to interpret this

result in terms of residual multipartite entanglement (cf., three qubit discussion in §4.3).

Rewriting the saturation of (4.4.20b) as

N 2
a|b + N 2

a|c + f
(3)
abc = N 2

a|bc (4.4.21)

where f (3) is some measure of mixed residual tripartite correlation, it is natural to con-

jecture that high values of τ4 correspond to small values of bipartite (N 2) and tripartite



4.4. Four qubits 65

(f (3)) correlation. τ4 ∼ 1 then implies f (3) ∼ 0 and the saturation of (4.4.20b). Similarly

one could rewrite the saturation of (4.4.20c) as

N 2
a|bc + N 2

a|d + f
(4)
abcd = N 2

a|bcd (4.4.22)

where now f (4) is some measure of 4-partite correlation related to τ4. The saturation of

(4.4.20c) then corresponds to τ4 ∼ 0.

Let us now turn to the connection between the monogamy of the negativity and the

saturation of Araki-Lieb inequality (AL) [74] for entanglement entropy [76]. Recall that

the AL inequality reads:

|S(A)− S(B)| ≤ S(AB) (4.4.23)

For a joint system A ∪ B in a mixed state, for reasons explained hitherto, it is difficult

to interpret AL in terms of quantum correlations. In order to understand what kind

of constraint AL implies for the internal structure of entanglement of the state, it is

convenient to introduce the purification C of the state AB. Thus for a system U of N

qubits we then consider only tripartitions such that A ∪ B ∪ C ≡ U and the global state

is pure. With this choice one can then rewrite (4.4.23) as

|SA|BC − SB|AC | ≤ SC|AB (4.4.24)

where by expressions like SA|BC we mean the entropy of entanglement between A and

BC (which of course is S(A) = S(BC)), stressing the interpretation of the von Neumann

entropy as a measure of entanglement between a subsystem and its complement.

In the case of four qubits then there is only one possible kind of tripartition, up to

qubits permutation, i.e., 1|1|2. We consider the set-up A = {a}, B = {bc}, C = {d},
(4.4.24) then reads

|Sa|bcd − Sbc|ad| ≤ Sd|abc (4.4.25)

Permuting the qubits one obtains a set of constraints on the internal pattern of entangle-

ment of the global state. We want to ask how this set of constraints is related to the one

obtained from the monogamy of the negativity. In particular it is known that AL is in

general difficult to saturate and it is certainly not saturated by generic states.23 We want

to investigate when this saturation actually happens and for which distribution of internal

negativities.

More specifically, we invoke the disentangling theorem for the negativity of [61] for

this purpose. For a pure state of U ≡ A ∪ B ∪ C, if NA|BC = NA|B then it is possible

to partition B = B1 ∪ B2 such that the state factorizes |Ψ〉 =|ψAB1〉⊗ |ψB2C〉. For our

specific set-up the condition for the disentangling theorem is: Na|bcd = Na|bc. Eq.(4.4.20c)

23 For further discussion we refer the reader to [76] for general analysis of AL saturation, [32] for

explicit examples where the saturation occurs in holographic systems, and [75] for a general analysis of AL

saturation of holographic entanglement entropy. We should note that the saturation of AL in holography

is not generic, but does happen in a large class of examples involving bulk spacetimes with horizons.
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then implies N 2
a|d ≤ 0, which is absurd; the only possible solution is saturation of the

monogamy relation and in particular Na|d = 0. The consequence of the disentangling

theorem is even stronger, not only there is no distillable entanglement between a|d, but

there is no entanglement at all and the global state factorizes either as |ψab〉⊗ |ψcd〉 or as

|ψac〉⊗ |ψbd〉.
The disentangling theorem implies saturation of AL in the following way: because of

the factorization of the state one has S(B) = S(B1) + S(B2), but since the individual

states in the product are pure S(B) = S(A) + S(C). Note that C now is the purification

of AB, hence S(B) = S(A) + S(AB) i.e., AL is saturated. We measure the saturation for

random states by ∆SAB = S(AB)− |S(A)− S(B)| ≥ 0 and correspondingly the amount

by which the states match the hypothesis of the disentangling theorem by ∆NABC =

NA|BC −NA|B ≥ 0. With our specific choice these quantities are

∆SAB = Sd|abc − |Sa|bcd − Sbc|ad| , ∆NABC = Na|bcd −Na|bc (4.4.26)

The results are shown in Fig. 3d. Note that as expected there are no states that saturate

AL, while the states that get closer to the saturation correspond to the states that almost

satisfy the conditions of the disentangling theorem. This in itself is not particularly sur-

prising, as we discussed AL inequalities are statistically difficult to saturate. Furthermore

the result shows that matching the hypothesis of the disentangling theorem is a sufficient

conditions for a state to saturate AL. On the other hand it is interesting to ask if these

conditions are necessary and what is the meaning of states that saturate AL without fac-

torization. We will comment more on this issue as we investigate further aspects of the

relation in greater detail in the following.

Negativity to entanglement ratio

We can now initiate the study of the ratio between entanglement entropy and negativity,

which is one of the main motivations of the present work. In order for the entropy to be

a sensible measure of quantum entanglement we only consider global bipartition of pure

states. Furthermore, for the same reason discussed in the case of three qubits, in the

case of a 1—3 bipartition both the entanglement entropy and negativity carry the same

information. We will therefore focus on the 2|2 bipartition only, where we can distinguish

the negativity and entanglement.

Let us start with a particular partition (ab|cd) and refer to the fiducial separation of

the two subsystems (i.e., the symbol “|”) as the entangling surface (Σ). One can then

compute both negativity and entropy for this particular bipartition. Since the state is

pure the entropy is a measure of the amount of entanglement between the subsystems,

intuitively the number of Bell’s pairs that can be distilled.24 On the other hand we

interpret the negativity as the robustness of the entanglement between the subsystems.

24 Note however that more precisely this would be an asymptotic statement.
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Figure 4: Average negativities across the entangling surface Σ and inside the subsystems for a fixed bipartition

(100000 states). The left panels show the results for random states with entropy in the range (0.27292, 1.32195),

the large red dots show the maximally entangled state (Ξ). The right panels show states with a constrained

value of the entropy 0.799 ≤ S(ab) ≤ 0.8.
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Figure 5: Average negativities across the entangling surface Σ and inside the subsystems for a fixed bipartition

(2000 states). The left panels show the results for random states with entropy constrained in the range

0.39 ≤ S(ab) ≤ 0.4. The right panels show states with a constrained value of the entropy in 1.19 ≤ S(ab) ≤ 1.2.
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We stress again that this notion captures the robustness against “intelligent jamming”,

which is in principle different from the common intuition about the robustness of the W

states. In the latter case one actually refers to the amount of internal entanglement. As

described in §4.2 we want to interpret the ratio R as capturing the specific robustness in

a given state. We explore the dependence of R on the entanglement structure of the state

focusing on the internal pattern of entanglement.

For the bipartition ab|cd we have N loc
a|b and N loc

c|d for local entanglement, while for

entanglement across Σ we consider all the possible negativities of the kind N Σ
1|1 and N Σ

1|2
where the sets of qubits are subsets of the original subsets of the bipartition. Finally we

take the average of all the negativities of a particular kind, keeping the original bipartition

fixed. The results are shown in Fig. 4a-4c-4e and show the dependence of the ratio on

the internal entanglement with unconstrained value of the entropy across Σ. For states

which are almost maximally entangled25 the spread between possible values of entropy and

negativity is very restricted. Interestingly the spread grows considerably for small values

of the entropy, which also correspond to a higher value of the ratio. These are states that

are less entangled but whose entanglement is particularly robust. In some sense it seems

that if a state is highly entangled, its entanglement is more fragile against noise. Larger

R corresponds to greater specific robustness, justifying our terminology.

One can also look for the distribution of the states when the entropy is almost fixed,

the results are shown in Fig. 4b-4d-4f. The fixed value is picked to be somewhere in the

middle-range of the entanglement spread for our sampling; other choices outside the edge

regions lead to similar results. Note that the dependence on the entropy now is completely

random. Furthermore the ratio seems to be increasing when the (1|2) entanglement across

the entangling surface is higher. On the other hand it seems not to depend on the average

(1|1) entanglement. It will be useful to contrast this result against those for larger systems.

For now we tentatively interpret the results as suggesting that states with a higher amount

of (1|2) entanglement across the entangling surface, but the same value of the entropy, are

more robust.

Finally, we look at the average entanglement inside the subsystems specified by Σ. We

find that high values of local negativity correspond to high value of the ratio although

the converse is not always true. Fig. 5 shows two other slices for different constraints

on the entropy. For states which are almost maximally entangled (Fig. 5b-5d-5f) the

results agree with the previous analysis. On the other hand when the entropy is fixed

but small (Fig. 5a-5c-5e) the dependence of the ratio on 1|2 entanglement becomes less

evident. Furthermore a larger amount of local 1|1 entanglement is not sufficient any more

to produce higher values of the ratio.

25 By maximally entangled state here we mean the usual state that maximizes entanglement for a given

bipartition. For four qubits this is the state which achieves this between two pairs, i.e., 1
2

∑4
i=1 | i〉⊗ | i〉

where | i〉 is the computational basis for a two-qubits system. We will reserve the symbol |ΞN 〉 for such

states.
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N2|2τ4

(a)
I3

R2|2

(b)

Figure 6: 100000 random generic states to test monogamy of mutual information. (a) Average ratio between

negativity and entropy compared to the values of I3 and τ4 (color map), (b) Average 2|2 negativity compared

to I3 and τ4 for the same states.

Monogamy of mutual information

For a system of four qubits there are in principle two different kinds of tripartite infor-

mation one can look at, viz., either I3(1|1|2), or I3(1|1|1) after tracing out a single qubit.

Since we are only working with pure states, in the first case we have I3 = 0, we will instead

focus on the second case. There are in principle four different values of I3 depending on

which qubit we choose to trace out. Nevertheless it is straightforward to check that they

are all equal, there is actually a unique value of I3.

We compare this value to the amount of quantum multipartite entanglement measured

by the tangle and the internal entanglement structure. As a measure of the robustness of

the state we use the average negativity N2|2, the result is shown in Fig. 6a. An evident

result is the observation that statistically the monogamy of mutual information is not a

very restrictive condition. States with low robustness and high values of τ4 seem to violate

the monogamy of mutual information (positive I3) more easily.

In Fig. 6b we show instead a similar plot for the average ratio R. Now we note that

the states that violate monogamy and have high value of τ4, also have quite a small value

of the ratio. This correlation is rather suggestive, and if true, implies that the specific

robustness measured by R could be a useful diagnostic vis a vis monogamy of mutual

information. However, before we arrive at this conclusion, we should do some more sanity

checks, which we now turn to, by considering a classification of four qubit states.

4.4.2 SLOCC classification of 4 qubit states

For four or more qubits it is known that the number of inequivalent SLOCC classes is

infinite [143]. Nevertheless, motivated by the result for three qubits, one can still look for

special states that maximize mixed internal correlations. These are a higher dimensional

generalization of the W states of three qubits. For states of four qubits [145] gave an

SLOCC classification into eight special classes of this kind, plus an additional class ([Q1]
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in the following) which contains infinitely many SLOCC classes and is related to generic

states (see below). Using the standard computational basis for 4-qubits we can write down

the classes explicitly as26

| [Q1]〉 =
a+ d

2
(|0000〉+ |1111〉) +

a− d
2

(|0011〉+ |1100〉) +
b+ c

2
(|0101〉+ |1010〉)

+
b− c

2
(|0110〉+ |1001〉)

| [Q2]〉 =
a+ b

2
(|0000〉+ |1111〉) +

a− b
2

(|0011〉+ |1100〉) + c(|0101〉+ |1010〉)+ |0110〉

| [Q3]〉 = a(|0000〉+ |1111〉) + b(|0101〉+ |1010〉)+ |0110〉+ |0011〉

| [Q4]〉 = a(|0000〉+ |1111〉) +
a+ b

2
(|0101〉+ |1010〉) +

a− b
2

(|0110〉+ |1001〉)

+
i√
2

(|0001〉+ |0010〉+ |0111〉+ |1011〉)

| [Q5]〉 = a(|0000〉+ |0101〉+ |1010〉+ |1111〉) + i |0001〉+ |0110〉 − i |1011〉

| [Q6]〉 = a(|0000〉+ |1111〉)+ |0011〉+ |0101〉+ |0110〉

| [Q7]〉 = |0000〉+ |0101〉+ |1000〉+ |1110〉

| [Q8]〉 = |0000〉+ |1011〉+ |1101〉+ |1110〉

| [Q9]〉 = |0000〉+ |0111〉 (4.4.27)

Here a, b, c, d are complex numbers which appear as eigenvalues of an operator used in

constructing the classification scheme. The classification only includes states where all

the qubits are entangled.27 The first class is the “generic class” in the sense that any

generic state of four qubits can be mapped to a state in [Q1] by SLOCC. This class is

not unique under SLOCC; as clarified in [142] it is dense in the space of generic states,

but it actually contains an infinite number of classes. The remaining classes are thus of

measure zero, but contain the maximal amount of internal mixed bipartite or tripartite

entanglement (there are some exceptions which we note below). In the following we will

focus in particular on the classes [Q1]-[Q6] – the last three only contain exceptional states.

The W state of four qubits belongs to [Q4], while the GHZ 4-qubit state is in [Q1] (a = d,

b = c = 0), as expected.

Distinguishing the classes: Given a single state one could ask how it is possible to

identify the corresponding class using different measures of entanglement. In principle one

could compute the negativity for each bipartiton of the entire system and all bipartitions

of each possible subsystem. It is natural to expect that the collection of this data allows

some resolution of the classes.

We want instead to ask a different question. As advertised earlier, we are concerned

with knowing to what extent it is possible to distinguish states in different classes if one

26 For simplicity we drop the normalization factor in the definition of the classes.
27 The class [Q9] is an exception as it can be written as | 0〉⊗ | GHZ3〉. This was indeed one of the

motivation for [146] to consider an alternative classification of the four qubits states into eight classes.
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Figure 7: Comparison of the averaged entropy and negativity for the maximal bipartition (50000 random states

per class). The four panels show the same plot with different overlap. The color-class correspondence is as

follows: � = [Q1], � = [Q2], � = [Q3], � = [Q4], � = [Q5], � = [Q6]. Note that while generic states can be

mapped into class [Q1] by a SLOCC, picking states in [Q1] according to the ansatz in (4.4.27) does not sample

this genericity. Hence the region covered by � = [Q1] is not the entire domain of the plot above, but only a

subregion thereof.

is restricted to use measures of entanglement for pure states. Our motivation comes from

holography, where at present we only know how to compute the negativity for pure states.

We can then combine information one extracts from both negativity and entropy, and see

how much we can learn about the entanglement structure.

For simplicity, we focus on the maximal bipartitions, i.e., 2|2. One can easily compute

the average negativity and average entropy for random states in the various classes, and

average over the three possible inequivalent bipartitions. The results are shown in Fig. 7.

One can see that even if the combined information extracted from negativity and entropy

is not enough to completely resolve the classes, one can still discriminate them in some

ranges of the values of the two measures.

Disentangling theorem and Araki-Lieb: We repeat the analysis of the previous sub-

section for the disentangling theorem of the negativity and the saturation of AL. In the

previous discussion §4.3 the states were generic and all the possible qubits permutations
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Figure 8: Disentangling theorem and saturation of Araki-Lieb (see Eq. (4.4.26)) for the SLOCC classified 4-qubit

states (50000 random states per class). The large dots show the GHZ (orange), |Φ〉 (turquoise), |Ψ〉 (pink), W

(purple) and maximally entangled |Ξ〉 (red) states.
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gave the same result. Here we expect the behaviour to be different depending on the spe-

cific set-up that we choose – this is manifest in the fact that the classes are not completely

symmetric under qubits permutations. In principle there are 12 different situations to

consider, but many choices give equivalent results. For each class we report the result for

the most interesting partition in Fig. 8. The full list of possible results for each class and

the corresponding plots can be found in Appendix 4.A. In each class there are states that

get arbitrarily close to saturating AL and respect the conditions for the disentangling the-

orem, with the only exception of [Q5]. This is the class that will be of particular interest

for us in the sequel.

Interestingly, it is worth pointing out that in two classes there are states that saturate

AL even without satisfying the conditions for the disentangling theorem. These states

have (a) high values of multipartite entanglement in [Q1] and (b) a low value in [Q3] (the

color map in the various plots shows the values of τ4). The specific states (indicated by

colored dots in Fig. 8) are respectively a product of two Bell pairs |Φ〉, and the product

between a Bell pair and two disentangled qubits |Ψ〉.28 This means that the hypothesis of

the disentangling theorem would be satisfied for a different permutation of qubits. Indeed

the tangle is sensitive to the factorization inherent in one of the two subsystems.

AL saturation without factorization ought to be a very restrictive condition on the

pattern of internal entanglement. This may exaplain why it hard see the saturation for

generic states. Looking at the results one might be tempted to conjecture that such a state

could exist in [Q2]. A numerical search for such a state showed that states with ∆N > 0

and ∆S ∼ 0 approach to the product |0110〉. The reason why these states may be highly

shifted to the right of the origin is that their entanglement is particularly robust. An

extremely small but non vanishing value of the entropy can produce much higher values

of the negativity. We conclude then that in the case of four qubits the saturation of AL

only happens if there exists a permutation such that the conditions for disentanglement

are matched and factorization actually happens.

Specific robustness R: For generic states we have seen that the most sensible quantity

to the internal structure of entanglement is the negativity across Σ between a qubit in a

subsystem and the other pair, viz., N Σ
1|2. We now repeat the same analysis for the classes

and compare specific robustness (4.2.7) to the negativity N Σ
1|2. The results are shown in

Fig. 9; we keep track of the values of the entropy (color map).

States in [Q1] reproduce the behaviour of generic states; similar patterns are visible

in [Q2]-[Q4] – see Fig. 9a-9d. On the other hand, for a different choice of Σ, a different

pattern manifests itself in classes [Q3] and [Q4], see Appendix 4.A, Figs. 20a and 21a. In

this case the highest values of the ratio in the class correspond to states with the highest

entropy and negativity. There are no states with small negativity and high value of the

28 The explicit expressions of these states are: |Φ〉 =| φ+〉ab⊗ | φ+〉cd and |Ψ〉 =| 01〉ac⊗ | φ+〉bd where

|φ+〉 is the maximally entangled two qubits state |φ+〉 =|01〉+ |10〉, i.e., a Bell pair.
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Figure 9: The ratio for a given Σ compared to the average N1|2 across Σ. 50000 random states per class.

Panels (a-b) are truncated, few states (not shown) approach the vertical axes with high values of the ratio and

small values of the entropy. The large dots show the GHZ (orange), W (purple) and maximally entangled |Ξ〉
(red) states. (a)(b)(c) are truncated, few states with small values of N and ratio up to R ∼ 7.4 (a), R ∼ 16

(b) and R ∼ 32 (c), are not shown.
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ratio (and small entropy). [Q6] has a similar behaviour as evidenced in Fig. 9f. In contrast,

[Q5] instead is quite peculiar, states with high negativity and entropy correspond both to

the highest and smallest values of the ratio, cf., Fig. 9e. Highly entangled states in [Q5]

are divided in two branches, one with fragile entanglement, the other whose entanglement

is more robust. Note however that the three quantities that characterize the state are

constrained in a small range of values.

While the behaviour of the various classes is more or less similar to the generic class,

the curious feature is the exceptional behaviour in [Q5]. We have previously also seen

that this class of 4-qubit states is also peculiar when we analyzed the consequences of the

disentangling theorem, vis a vis, saturation of the AL inequality. We shall now compare the

ratio to the value of multipartite entanglement and the monogamy of mutual information

and find yet another distinguishing feature of this class.

Monogamy of mutual information: Finally, we compare the value of I3, to the tangle,

and the average ratio over the three maximal bipartitions. The results for the different

classes are shown in Fig. 10. Surprisingly, there is only a single class [Q5] shown in Fig. 10e,

whose states always have a negative value of I3.

This the most interesting aspect of our analysis of the SLOCC classified 4-qubit states.

What it suggests is the following: in all the other classes [Qk] with k 6= 5, a given state

with a particular value of I3 can always be turned into a state with positive I3 by SLOCC.

Even more strongly, since every generic state of four qubits can be mapped to the first class

by SLOCC, the states in [Q5] are the only one that can never violate the monogamy of

mutual information. In effect, what this suggests is that the subset of 4-qubit states lying

in Class [Q5] are likely to be most holographic. Of course, this statement should be taken

with a large grain of salt, for we are discussing here the structure of entanglement in qubit

systems with no interactions. Furthermore, it is unclear to us that the holographic map

respects the SLOCC operations used to classify states herein.29 Nevertheless we think the

presence of a distinguished class of states suggests that certain patterns of entanglement

are more likely than others to play a role in holographic systems (at least for the purposes

of building semi-classical geometry).30

It is also interesting to look at the result for the generic class [Q1], cf., Fig. 10a. As

expected from previous results for generic states the value of I3 is generally negative, in

particular for small values of τ4. Nevertheless states which are strongly entangled in a

multipartite sense are divided into two branches. One branch minimizes the average ratio

and violates monogamy of mutual information, the other seems to respect monogamy and

maximizes the ratio. The states in the latter case asymptotically approach the state Φ

29 We thank Veronika Hubeny for a discussion on this issue.
30 For completeness let us also record the values of I3 for the exceptional states [Q7], [Q8], [Q9]:

I3([Q7]) = −0.356135 , I3([Q8]) = −0.477386 , I3([Q9]) = 0 .
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Figure 10: Monogamy of mutual information compared to the average ratio for the maximal bipartitions and

mutipartite entanglement τ4 (color map). The large dots show the GHZ (orange), |M〉 (gray), W (purple) and

maximally entangled |Ξ〉 (red) states. 50000 states per class. (b)(c) are truncated, few states with I3 ∼ 0 and

values of the average ratio up to R ∼ 8.5 (b) and R ∼ 11 (c) are not shown.
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Figure 11: Entanglement across Σ for a system of 6 qubits (100000 random states). The entangling surface Σ

is fixed and divides the states into two subsystems of three qubits each. The panels show the dependence of the

ratio on the internal negativity. The color map shows the values of the entropy in the range (1.26147, 1.84577).

discussed before in the context of AL inequalities.31 A numerical search for the states that

minimizes the value of I3 gives instead the following state

|M〉 =|0011〉+ e−
π
3
i |0101〉 − e

π
3
i |0110〉 − e

π
3
i |1001〉+ e−

π
3
i |1010〉+ |1100〉 (4.4.28)

This state is interesting in its own right; it appears to be a highly scrambled state. It

has maximal entanglement under all partitionings of the qubits [142]. Preliminary inves-

tigations indicate a similar pattern for higher qubit systems; it would be interesting to

explore this class of states further. A behaviour similar to that of [Q1] is manifest for [Q4]

(Fig. 10d). On the other hand this should be contrasted with the behaviour of [Q2] and

[Q3] (see Fig. 10b and 10c respectively), where the states that maximize the average ratio

contain a small amount of multipartite entanglement and can violate monogamy.

4.5 Large N qubit systems

At present no classification is known for pure states of five or more qubits. As a result any

analysis of larger number of qubits must necessarily be restricted to generic states. We

31 This was checked numerically over 1000000 states that maximize the ratio.
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Figure 12: A slice of Fig. 11, for 50000 states, now with a constraint on the entropy which takes values in the

interval (1.49, 1.5) and is shown by the color map.

now explore specific robustness characterized by the ratio R, focusing on its dependence

on internal entanglement. We also look to examining the relations amongst the ratio,

multipartite entanglement and the monogamy of mutual information. We will specifically

focus on states of 6 and 8 qubits, primarily because the tangle is only defined for an even

number of qubits (for N > 3). Much of the other results we derive ought not to change

considerably for an odd number of qubits.

4.5.1 Negativity versus entanglement

As in the case of four qubits we want to investigate the dependence of the specific robust-

ness on the internal pattern of entanglement of the system. As before we are interested

both in the entanglement between qubits inside a single subsystem and entanglement

across the entangling surface Σ. We will choose Σ such that the size of the subsystems

is maximal, i.e., commit a 3—3 split for the 6 qubits case, which we keep fixed in what

follows.

Let us start by listing all the possible internal negativities we can consider for a pure
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Figure 13: Dependence of the ratio on the average negativity between qubits inside the subsystems specified

by Σ for pure states of 6-qubits. (a) no constraint on the entropy (color map), for 100000 states, (b) entropy

constrained in the range (1.49, 1.5), for 50000 states.

state of 6-qubits.

across Σ: N Σ
2|3 N Σ

1|3 N Σ
2|2 N Σ

1|2 N Σ
1|1

local: N loc
1|2 N loc

1|1 (4.5.29)

In the above, averages are computed by considering all possible permutations of qubits

(with Σ held fixed).

Of the set of possibilities listed in (4.5.29), N Σ
1|1 is uninteresting, and so we will ignore

it from now on. In Fig. 11 we show the results for the other cases. The color map indicates

values of the entropy across Σ for the entire system.

We see that the ratio R clearly increases when N Σ
2|3 or N Σ

1|3 increase. Some dependence

is also manifest for N Σ
2|2 while there is no clear dependence on N Σ

1|2. In addition, note

that the average negativity is well correlated with the entanglement entropy (they both

increase in concert). This should be compared to Fig. 4c for the four qubits case. We

just have to bear in mind the obvious fact that random sampling actually covers a larger

portion of the space in the 4-qubit case. For system of six qubits the Hilbert space is much

larger and random generation only gives access to a small portion of it. We are probably

exploring only a region analogous to the one near the tip of Fig. 4c. This is consistent

with the fact that statistically we get high values of the entropy.32 It is entirely possible

that as in the four qubits case, R is maximized by states in another region, again with a

much smaller value of the entropy.

Bearing this caveat in mind we can still investigate how the specific robustness depends

on internal entanglement for states in this region of the space. In order to understand

whether R increases with the negativity independently of the entropy, we look for random

states with the entropy constrained in some small range of values. The results for the

32 A maximally entangled state of six qubits, in a bipartite 3—3 sense, has entropy S = 2.079, specific

robustness R = 1.683.
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Figure 14: Entanglement across Σ for a system of 8-qubits (20000 random states). The entangling surface Σ

is fixed and divides the states into two subsystems of four qubits each. The panels show the dependence of the

ratio on the internal negativity. The color map shows the values of the entropy in the range (2.14035, 2.38651).

(a)-(b) entanglement across Σ, (c)-(d) entanglement inside subsystems.

same bipartitions as above are shown in Fig. 12. One can see that the weak dependence

noticed above in the case N Σ
2|2 actually disappears. On the other hand our suspicions are

vindicated for N Σ
1|3 and in particular for N Σ

2|3. In the last case we also notice that for

states with a fixed value of the N , the ratio R seems to be statistically maximized by

states with a lower value of the entropy.

We can also look at the local entanglement (again ignoring N loc
1|1 ).The results for N loc

1|2
are shown in Fig. 13. Quite curiously the ratio seems to slightly decrease as the internal

negativity increases. At the same time the entropy seems to decrease as well. If we look

instead at states with a constrained value of the entropy, the ratio seems to increase as

the negativity increases.

One lesson that we learn is that the specific robustness R is particularly sensible if one

of subsystems coincides with one of the subsystems of the original bipartition. When we

start to trace out qubits, the sensitivity of the ratio progressively fades. Similarly, for the

internal entanglement the sensibility of the ratio seems to be higher when do not trace

out any qubit.
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Figure 15: A slice of Fig. 14, now with a constraint on the entropy which takes values in the interval (2.26, 2.27)

and is shown by the color map. Plot is for 5000 random states.

We can check this result for an even larger system. For a system of eight qubits the

list of all possible negativities we could look at is the following:

across Σ: N Σ
3|4 N Σ

2|4 N Σ
1|4 N Σ

3|3 N Σ
2|3 N Σ

1|3 N Σ
2|2 N Σ

1|2

local: N loc
1|3 N loc

2|2 N loc
1|2 N loc

1|1 (4.5.30)

Fig. 14 shows the results without a constraint on the entropy, the results for states with

constrained entropy are shown in Fig. 15. Similar comments as for the 6-qubit case hold.33

4.5.2 Exploring multipartite entanglement

We now move to the analysis of multipartite correlations. Consider a pure state of a

system U of N -qubits. We can choose subsystems A, B, C such that A ∪ B ∪ C ≡ U .

Since the state of U is pure we have I3 = 0. We want instead to look at all the possible

values of I3, for all the possible inequivalent choices of A, B, C where the total number of

qubits k in A∪B∪C takes value in {3, 4, · · · , N −1}, i.e., subsystems obtained by tracing

out at least one and at most N − 3 qubits of the entire system.

33 A maximally entangled state of eight qubits, in a bipartite 4—4 sense, has entropy S = 2.773, specific

robustness R = 2.705.
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Figure 16: a) Maximal value of I3 for the two inequivalent kinds of partitionings of 4.5.33, from right to left.

The values of I3 are compared to the tangle, 100000 states per class, b) Max value of I3(1|1|1) compared to

tangle and the average ratio (color map), 100000 states.

We follow the following canonical algorithm for computing the tripartite mutual infor-

mation. For a given value of k we consider all the possible ways to partition the qubits

into three subsystems (up to qubit permutations), this is given by the list of possible

decompositions of k into three integers. Fixing k and the type of tripartition chosen, we

compute all the possible values of I3 considering the full set of qubits permutations, and

retain the maximal value. The choice is inspired by the fact that its sign clearly tells

us whether there is a violation of the monogamy of mutual information for at least one

permutation of the qubits. To wit,

I3(k1|k2|k3) = max
perms

I3
(
aα1 · · · aαk1

|bβ1 · · · bβk2
|cγ1 · · · aγk3

)
for A = {aαi}, B = {bβi}, C = {cγi} ,

k1 + k2 + k3 = k ∈ {3, 4, · · · , N − 3} .

(4.5.31)

Since the global state is pure, we will find certain equivalences among values of I3 for

different kinds of partitions {k1, k2, k3} and different values of k.

We start with a system of six qubits, where k takes values in {3, 4, 5}. The possible

kinds of partitions for different values of k are easily listed:

k = 3 I3(1|1|1)

k = 4 I3(1|1|2)

k = 5 I3(1|1|3) , I3(1|2|2)

(4.5.32)

Moreover, as promised it is simple to check the following equivalence relations:

I3(1|1|1) ≡ I3(1|1|3)

I3(1|1|2) ≡ I3(1|2|2)
(4.5.33)

We remind the reader that expressions like I3(1|1|1) here represent the set of values of I3

for a particular tripartition and all the possible choices of the qubits.
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Figure 17: a) Maximal value of I3 for the five inequivalent kinds of partitionings of 4.5.34, from right to left.

The values of I3 are compared to the tangle, 1000 states per class, b) Max value of I3(1|1|1) compared to

tangle and the average ratio (color map), 10000 states.

Fig. 16a shows the maximal value of I3 for these two classes of equivalent partition-

inings, one can notice that I3(1|1|1) is the quantity that get closer to the violation of

monogamy. For such a partitioning we then compare the maximal value of I3 to the value

of the averaged specific robustness and the tangle, see Fig. 16b.

We can repeat this analysis for the eight qubits case. The list of all the equivalence

classes of I3 for different values of k is:

I3(1|1|1) ≡ I3(1|1|5)

I3(1|1|2) ≡ I3(1|1|4) ≡ I3(1|2|4)

I3(1|1|3) ≡ I3(1|3|3)

I3(1|2|2) ≡ I3(1|2|3) ≡ I3(2|2|3)

I3(2|2|2)

(4.5.34)

Fig. 17a shows the results for the five inequivalent values of I3. As for the six qubit case,

we also report the relation with the average ratio and the tangle, see Fig. 17b.

As expected from the results for four qubits, the monogamy of mutual information

appears to be generically satisfied. Thus the monogamy of mutual information in these

systems is not particularly restrictive vis a vis applications to holographic considerations.

We expect the result to be true for larger systems as well.

From the eight qubits case another suggestive pattern appears to emerge. The values

of I3 that get closer to zero correspond to the case where single qubits are involved, eg.,

I3(1|1|1). On the other hand tripartitions into larger subsystems seem to produce the

lowest values of I3, eg., I3(2|2|2). The result seems to suggest that mutual information is

essentially monogamous for large regions and that in search of a violation one should look

at regions of the smallest possible size.
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4.6 Discussion: Lessons for holography

The main message of our discussion has been to demonstrate how several measures of

quantum entanglement (more generally correlations) can be used to investigate the struc-

ture of entanglement of pure states of non-interacting qubits. Specifically, we examined

the properties of this entanglement that are captured by (a) the monogamy of negativity,

(b) the specific robustness, (c) tripartite mutual information, and (d) the tangles. Our

primary interest was to use these measures to delineate the distribution of entanglement

inside a given pure state of N -qubits. For the most part we resorted to random sampling

from the space of states, though in specific circumstances (e.g., 3 and 4 qubit systems) we

did make use of available classification schemes.

Even if the systems under consideration were a vast oversimplification of continuum

QFTs, we believe that they have rather useful message to impart in the context of hologra-

phy. This should in part be attributed to the non-trivial structure entanglement inherent

in them, coupled with their eminent tractability. Let us therefore try to abstract some

general lessons for holographic systems.

Consider a state of a holographic QFT (assuming ceff � 1) which is dual to a classical

bulk geometry. This state can be pure or mixed (eg., the thermal density matrix which

is dual to a black hole). We pick a spatial region A on the background geometry where

the QFT resides, to make up our subsystem. The holographic entanglement entropy

prescriptions of [20, 23, 39] associate the area of an extremal surface to the von Neumann

entropy SA.

There are two interpretation of SA, which are sometimes called objective and subjective

in the literature. The objective interpretation, which is perhaps more physical, relies on

the intuition of entropy as measure of disorder of the system. The subjective point of view,

on the other hand, is typical of information theory. If the entropy of A is thermal there is

still no correlation among degrees of freedom inside A, but the system contains complete

information about some other system, i.e., its purification. It is in this second case that

the von Neumann entropy can be interpreted as a measure of entanglement between the

two parties, namely entanglement entropy. From the point of view of understanding the

structure of quantum entanglement, the subjective viewpoint is more appropriate. We

will therefore focus on pure states of some extended system; e.g., instead of the thermal

density matrix we pick the thermofield double state [121]. Given a subregion A, it should

therefore be borne in mind that the complement Ac could include the purifying degrees

of freedom.

Given this configuration, lets say that we are handed an algorithm for reconstructing

the bulk geometry from the information theoretic content of the field theory. To be sure,

such an algorithm does not exist to date, but it has been speculated that the picture

is somewhat akin to tensor networks which encapsulate the entanglement pattern of the

state [26, 42]. The closest one gets is the error correction model discussed recently in [28]

(see [11] for the genesis of this set of ideas). In this context, the extremal surface and

spacetime regions associated with it, such as the entanglement wedge are distinguished, in
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that they capture the long range correlations of the degrees of freedom contained in the

subregion A of interest and its complement.

Per se tensor networks or other models are but a tool to characterize the structure of

correlations of a state. We want to analyse the entanglement pattern from a more opera-

tional perspective. Given a global pure state of a system U consider N -parties Oi, each of

which has access only to some subregion Ai of U (in general ∪Ni=1Ai ⊆ U) and suppose that

all the parties are allowed to perform operations on their subsystems and are also allowed

to communicate through classical channels.34 The entanglement amongst these subregions

is the resource that Oi’s can use to implement typical tasks that would not be achievable

if they were restricted to classical correlations. A common intuitive procedure for example

would be the distillation of Bell pairs (for two parties) or GHZN states (for N > 2) which

can be stored and later used for other purposes. Entanglement measures, both bipartite

and multipartite, are designed to quantify this resource and characterize its properties. As

mentioned earlier, in the case of two parties the logarithmic negativity provides an upper

bound to distillable entanglement.35 Unfortunately this being hard to compute in all but

the simplest cases, we resorted to qubit experiments to gain some intuition; likewise to our

knowledge there is no clean measure of multipartite entanglement defined for continuous

systems. Effectively, we are making the approximation Ai = span{| 0〉, | 1〉}, which is

dramatic but useful truncation.36

Alternatively, imagine an external agent that knowns the detailed properties of the

state and wants to disrupt the entanglement for a particular bipartition. As far as only

bipartitions of the entire state are concerned, the minimal amount of noise that she has

to inject into the system is captured by the negativity. A question we want to ask is to

what extent is the dual geometry stable against these operations. Similarly one may also

ask what is the consequence of the distillation procedure on the state. It would be nice

to have a model where one could test the effect of different protocols explicitly. In its

absence, we limited our analysis to the minimal sufficient condition for the disruption of

the state, namely the violation of monogamy of mutual information.

The first lesson one learns from our study of I3 in qubit systems is that the monogamy

constraint for mutual information, which is known to be satisfied by holographic states

[120], is not a particularly restrictive condition. Statistically, random states of four qubits

tend in general to satisfy monogamy; this only strengthens as the number of qubits in-

creases. We discussed how for a given number of qubits, the possible values of I3 for

34 This is a cartoon of the typical quantum information set-up where different parties are allowed to

perform LOCC. We ignore any causal constraint (note that actually these regions live on a time-slice of the

theory). This is somewhat akin to the discussions of [147] who attempt to give an operational definition

to the concept of differential entropy.
35 As explained hitherto we used instead the negativity because of its interpretation for pure states, but

one can map from one quantity to the other.
36 It would be interesting to upgrade our explorations where we replace a single qubit by a composite

system of many qubits; ramping up the internal dimension could allow exploration of free vector or matrix

like models. We thank Don Marolf for a discussion on this issue.
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different choices of the three subregions are related. When large regions are involved,

I3 becomes more and more negative and, statistically, the matching of the monogamy

restriction becomes even more favoured. This in particular suggests that in search of a

violation of monogamy one should look at the smallest possible regions. This would for

instance suggest that in multiboundary wormhole spacetimes of [117,119], which was an-

alyzed in [50], one should retain the domain of outer communication of the smallest set of

black holes.

Being a linear combination of mutual informations, I3 mixes quantum and classical

correlations. We compared its behaviour to the multipartite entanglement captured by

the tangle. Our results suggest that states with high values of quantum multipartite en-

tanglement have a higher probability to violate monogamy of mutual information. For

the GHZ4 state this is a known result, which was used in [51] to argue that a 4-boundary

state built from many copies of GHZ4 cannot be dual to a smooth classical geometry (see

also [50,148]). Our result extends this argument to generic states with a high multipartite

entanglement. We discussed a possible interpretation of multipartite entanglement that re-

lies on the residual entanglement which is left after one takes into account all the (mixed)

bipartite and tripartite entanglement in the state. A small value of 4-partite entangle-

ment then corresponds to strong correlation among internal parties. This may suggest

that special states with high internal correlation are then more suitable for holography.

Nevertheless it is immediate to check that even the W4 state violates monogamy. More

generally, the states of 4-qubits with the strongest internal correlations are precisely those

belonging to the special classes [Q2]-[Q6]. Under the effect of SLOCC operations a state

in a class can evolve to a new state that violates monogamy. The one exception are states

in class [Q5] which always respect I3 < 0. This class of 4-qubit states is in a natural sense

most suitable to be “holographic”. In any event it is tempting to conjecture that states

with geometric duals in holography have strong bipartite (or tripartite) correlations.

For larger qubit systems, there isn’t a statistically significant correlation between the

N -partite entanglement and the tripartite mutual information. In fact, in our analysis

it appears that increasing the number of qubits is sufficient to ensure that the I3 < 0.

However, absent a classification, we have been forced to examine generic states in these

systems, so it would be interesting to further analyze if there is a special sub-class of states

with a specific pattern that mimics the class [Q5] of 4-qubits.

We then argued that for pure states with a given bipartitioning, even if the amount of

entanglement is measured by the entropy, other measures can provide further resolution

of the entanglement structure. Negativity is good measure of quantum entanglement

(which can be computed in the continuum) – it allows for some resolution of the pattern

of entanglement inherent in the state. We showed that for 4-qubits states the internal

pattern of negativity allows for a partial resolution of the classes.

In particular, we looked at the ratio between these two quantities for bipartitions of

a pure state, which we called specific robustness. We proposed that this captures the

minimal amount of noise necessary to disentangle Bell pairs in the bipartition. We further
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demonstrated how it is related to the distribution of internal entanglement. When a state

is highly entangled (vis a vis S), the specific robustness is highly constrained. On the

other hand when S is small the behaviour depends on the specific details of the state.

In general one could say that large values of specific robustness correspond to nematic

type order: the local entanglement for the bipartitioning across some entangling surface is

large, but the entanglement entropy for the reduced density matrices themselves is small.

On a slightly different note, holographic states are known to satisfy other interesting

constraints on the distribution of internal correlations. There are situations where the

Araki-Lieb inequality (AL) can be saturated to leading order in ceff, leading to the entan-

glement plateaux phenomena [32]. The prototypical example is a thermofield double state

(a pure state in H ⊗H), where for a subsystem A ∈ H one finds SA = SH\A + Sthermal.

As described there (and further explained in [30,75]), one can visualize this as saying that

the degrees of freedom in A can be decomposed in two groups; one that carries entan-

glement across the entangling surface in H and the other carries the thermal correlations

built into the thermofield state.37 This implies a factorization of the global state into two

components.

We explained how the AL can be interpreted as a constraint on the internal pattern

of entanglement of the state and related its saturation to the disentangling theorem for

the negativity (cf., [30]). When the conditions for the disentangling theorem are matched

then the degrees of freedom satisfy the factorization mentioned above. Curiously, it was

possible to see such behaviour in special states of even small numbers of qubits. Our

analysis demonstrates conclusively that the conditions for the disentangling theorem are

not only sufficient, but also necessary for the saturation of Araki-Lieb, strengthening thus

the entropic results of [76].

All in all, qubit systems appear to provide an excellent playground for understanding

the general properties of entanglement that one might hope to understand in holographic

contexts. While our analysis has been restricted to the simplest of possible scenarios, the

rich structure seen in the qubit states, leads us to believe that one could extract general

lessons from examining them closely. It would be interesting to build in minimal dynamics

and or consider networks of qubits as in graph states or tensor type networks [28], to gain

more insight into the interplay of entanglement and geometry.

37 Geometrically this is realized when the extremal surface associated with a region A splits up into a

disjoint union of a small surface that is anchored on Ac = H\A and the bifurcation surface of a black hole,

see [32] for illustrative examples.
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4.A Four qubit states: Detailed analysis of SLOCC classes

In this appendix we collect the results for the SLOCC classes of 4-qubit states. These

complement the discussion of §4.4.2 in that they encompass the partitions of qubits we

did not consider in the main text.
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(a) The result for the cut Rad|bc is equivalent.
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Figure 18: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permutation

of qubits, see Tab. 4.1 for the full list of possible cases.

A = {b} , B = {cd} , C = {a} A = {a} , B = {bc} , C = {d}
A = {a} , B = {cd} , C = {b} A = {a} , B = {bd} , C = {c}
A = {d} , B = {ab} , C = {c} A = {b} , B = {ac} , C = {d}
A = {c} , B = {ab} , C = {d} A = {b} , B = {ad} , C = {c}

A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 4.1: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text, the right

column corresponds to Fig. 18b.
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(a) The result for the cut Rad|bc is equivalent. The

plot is truncated, few states with small values of N

and ratio up to R ∼ 7.2 are not shown (R ∼ 4.8 for

the other cut).
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Figure 19: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permutation

of qubits, see Tab. 4.2 for the full list of possible cases.

A = {a} , B = {cd} , C = {b} A = {a} , B = {bc} , C = {d}
A = {b} , B = {cd} , C = {a} A = {a} , B = {bd} , C = {c}
A = {d} , B = {ab} , C = {c} A = {b} , B = {ac} , C = {d}
A = {c} , B = {ab} , C = {d} A = {b} , B = {ad} , C = {c}

A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 4.2: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text, the right

column corresponds to Fig. 19b.
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[Q3]

Rab|cd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent.
∆NABC

∆SAB
τ4

(b) A = {a}, B = {bc}, C = {d}

∆NABC

∆SAB

(c) A = {a}, B = {bd}, C = {c}
∆NABC

∆SAB

(d) A = {b}, B = {ad}, C = {c}

Figure 20: (a) Specific robustness for different choices of Σ. (b)(c)(d) Saturation of AL for alternative permu-

tations of qubits, see Tab. 4.3 for the full list of possible cases.

A = {b} , B = {ac} , C = {d} A = {a} , B = {bc} , C = {d}
A = {d} , B = {ac} , C = {b} A = {a} , B = {cd} , C = {b}

A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

A = {a} , B = {bd} , C = {c} A = {b} , B = {ad} , C = {c}
A = {c} , B = {bd} , C = {a} A = {b} , B = {cd} , C = {a}

A = {d} , B = {ab} , C = {c}
A = {d} , B = {bc} , C = {a}

Table 4.3: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The top left cases give the result shown in the main text. Top right, Fig. 20b. Bottom left,

Fig. 20c. Bottom right, Fig. 20d.



4.A. Four qubit states: Detailed analysis of SLOCC classes 92

[Q4]

Rab|cd

N Σ
1|2

S

W

(a) The result for the cut Rad|bc is equivalent to the

one shown in the main text.

∆NABC

∆SAB τ4
W

(b) A = {a}, B = {cd}, C = {b}

Figure 21: (a) Specific robustness for different choices of Σ. (b) Saturation of AL for alternative permutation

of qubits, see Tab. 4.4 for the full list of possible cases.

A = {a} , B = {bc} , C = {d} A = {a} , B = {cd} , C = {b}
A = {a} , B = {bd} , C = {c} A = {b} , B = {cd} , C = {a}
A = {b} , B = {ac} , C = {d} A = {d} , B = {ab} , C = {c}
A = {b} , B = {ad} , C = {c} A = {c} , B = {ab} , C = {d}
A = {d} , B = {ac} , C = {b}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ad} , C = {b}
A = {c} , B = {bd} , C = {a}

Table 4.4: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text, the right

column corresponds to Fig. 21b.
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[Q5]

Rac|bd

N Σ
1|2

S

(a) The result for the cut Rad|bc is equivalent to the

one shown in the main text.

∆NABC

∆SAB τ4

(b) A = {a}, B = {bd}, C = {c}
∆NABC

∆SAB

(c) A = {b}, B = {ac}, C = {d}

Figure 22: (a) Specific robustness for different choices of Σ. (b)(c) Saturation of AL for alternative permutations

of qubits, see Tab. 4.5 for the full list of possible cases.

A = {a} , B = {bc} , C = {d} A = {a} , B = {bd} , C = {c} A = {b} , B = {ac} , C = {d}
A = {a} , B = {cd} , C = {b} A = {c} , B = {bd} , C = {a} A = {d} , B = {ac} , C = {b}
A = {b} , B = {ad} , C = {c}
A = {b} , B = {cd} , C = {a}
A = {d} , B = {ab} , C = {c}
A = {d} , B = {bc} , C = {a}
A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

Table 4.5: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text. The center

column corresponds to Fig. 22b, the right one to Fig. 22c.
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[Q6]

∆NABC

∆SAB

τ4

(a) A = {b}, B = {ac}, C = {d}
∆NABC

∆SAB

(b) A = {b}, B = {cd}, C = {a}

Figure 23: Saturation of AL for alternative permutations of qubits, see Tab. 4.6 for the full list of possible cases.

A = {a} , B = {bc} , C = {d} A = {b} , B = {ac} , C = {d} A = {b} , B = {cd} , C = {a}
A = {a} , B = {bd} , C = {c} A = {b} , B = {ad} , C = {c} A = {d} , B = {bc} , C = {a}
A = {a} , B = {cd} , C = {b} A = {d} , B = {ab} , C = {c} A = {c} , B = {bd} , C = {a}

A = {d} , B = {ac} , C = {b}
A = {c} , B = {ab} , C = {d}
A = {c} , B = {ad} , C = {b}

Table 4.6: Possible permutations of qubits for the disentangling theorem of the negativity and the saturation

of AL inequality. The left column shows the choices which give the result shown in the main text. The center

column corresponds to Fig. 23a, the right one to Fig. 23b.



Chapter 5

Tripartite information of highly

entangled states

This chapter is a reproduction of the paper Tripartite information of highly entangled

states [149].

The Ryu-Takayanagi prescription for the computation of holographic entanglement en-

tropy implies that for states which have a classical geometric dual the sign of the tripartite

information is non-positive. In the previous chapter the behaviour of the tripartite infor-

mation was analysed for states of systems containing up to eight qubits. In this chapter

this investigation is extended to larger systems for some particular states.

We first look at states with a large amount of multipartite entanglement. We explore

the behaviour of the tripartite information for states obtained in various ways starting

from GHZ states and propose a particular construction that we conjecture generates

global maxima of the tripartite information. The result of this analysis suggests that

4-partite quantum entanglement is an essential ingredient for states with positive value of

the tripartite information.

Next, we look at states with a large amount of bipartite entanglement. States which are

exactly maximally entangled for each possible bipartitions of the system where introduced

recently in the literature and are known as perfect states. They can be built using a

particular kind of tensors, the perfect tensors, as building blocks of a tensor network.

States realized by these networks have been used in [28] as a toy model to sharpen the

connection between AdS/CFT and quantum error correction. We compute the tripartite

information for perfect states of an arbitrary number of qubits and all possible partitionings

of the system.

The results of the previous chapter suggest that from an operational perspective, one

should ask how stable the sign of the tripartite information is under different operations

performed on the constituents of the system. This is particularly interesting in the case

of perfect states, as for some partitionings the tripartite information vanishes exactly. We

can hence look for small perturbations which are able to produce a positive value. Here

we comment on the case of N = 6 qubits, the only possible perfect state for qubits.

95
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Finally, recent work suggested that the tripartite information can be used as a parame-

ter to detect scrambling of information. Indeed, perfect states are by definition scrambled

states, and they are minimizers of the tripartite information. We comment on this proposal

building some counterexamples explicitly and showing that for the purpose of detecting

scrambling, the tripartite information is a sensible quantity only for states which are sym-

metric under all possible qubits permutations. We argue that the average of the tripartite

information over qubits permutations could be a more sensible quantity.

Notation: throughout this chapter we slightly change the notation for the tripartite

information that we used previously, and keep instead the notation used in the original

paper. While in the previous chapter we wrote I3(A|B|C) we now use the expression

I3(A : B : C) instead.

5.1 Introduction

The tripartite information (I3) was introduced in [150], under the name topological en-

tropy, as a quantity to characterize entanglement in states of many-body systems with

topological order. Given three subsystems A, B, C it is defined by the following expres-

sion: I3(A : B : C) = SA + SB + SC − SAB − SAC − SBC + SABC , where S is the von

Neumann entropy.

For arbitrary states of many-body systems I3 has no definite sign. This is true also in

field theory, cf., [151]. On the contrary, within the context of the gauge gravity duality,

it was shown in [120] that for states of CFTs with a classical holographic dual, I3 is

always non-positive. This sign definiteness is a direct consequence of the Ryu-Takayanagi

prescription [20] for the computation of the von Neumann entropy in holography, and it

implies that the holographic mutual information is monogamous.

As consequence of this constraint imposed by holography, the sign of I3 has been used

in various works to explore what states might be good candidates to encode the properties

of classical geometries. In the framework of the ER=EPR1 proposal [29] for example, it

was argued in [51] that black holes obtained by “collapsing” multiple copies of GHZ states

of 4 qubits (for which I3 = +1) cannot be connected by classical Einstein-Rosen bridges.2

The sign of I3 was an important consistency check also in the work of [28], which within

the context of the quantum-error-correction interpretation of AdS/CFT of [11], built a

toy model of holographic states and codes using tensor network constructions.

For qubits systems, the behaviour of I3 was explored in [116], where it was shown

that random states typically have negative value of I3, suggesting that the holographic

1A conjectured equivalence between entanglement (EPR for Einstein-Podolsky-Rosen) and geometric

connectedness (ER for Einstein-Rosen bridges).
2Strictly speaking this was not an holographic argument, as ER=EPR is a general proposal about

quantum gravity, nevertheless one can imagine an analogue version of this argument where the geometry

is dual to the mentioned qubits state.
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constraint is not particularly restrictive. Results also indicated that one has to be careful

about the particular choices of subsystems for which I3 is computed, as some partitionings

might be more suitable than others to detect violation of monogamy. Furthermore having

holography in mind, the authors proposed that we should look not only at the values of

I3 for a specific state, but also at how stable this sign is against small deformations or

operations performed on it. This proposal was motivated by the finding that for states of

4 qubits, there is only one class of states with definite sign of I3.3

Another interesting property of I3 which was found in [116] is the fact that its absolute

value seems to be minimized by states which are highly entangled for all bipartitions. In

the case of 4 qubits, a numerical search for the minimum of I3 approaches a state, known

as M-state in the quantum information literature [152], which is the maximally entangled

state of 4 qubits. Indeed it was recently shown in [153] that the “perfect states” of [28]

are the minimizers of I3 and that due to this property I3 can be used as a measure of

information scrambling [8] [154] [155] and quantum chaos [156].

In this chapter we explore the behaviour of I3 for some highly entangled states in a

bipartite or multipartite sense. In §5.2 we review the definition of I3 and discuss some

of its general properties. In §5.3 we focus on qubits systems with maximal multipartite

entanglement. We explore products of GHZ states and their perturbations in arbitrary

directions in Hilbert space, for all possible partitionings of the systems. We move then to

the case of states with maximal bipartite entanglement in §5.4, where we extend the result

of [153] to different partitioning of perfect states and comment about their deformations.

We conclude in §5.5 with a summary and interpretation of the results, together with a

discussion about open questions and future directions.

5.2 General properties

Definitions and notation

To simplify the discussion in the following we will focus on generic pure states for systems

of an arbitrary number of qu-b-its, nevertheless most of the results naturally extend to

systems of qu-d-its. The fact that we are only looking at pure states will not be a restric-

tion, because for any mixed state one can always consider some purification by enlarging

the system.

Pure states of a system U of N qubits live in a 2N dimensional Hilbert space H(2N )

with structure H⊗N(2) , where H(2) is the two-dimensional Hilbert space of each individual

qubit. We will consider subsets of U such that A ∪ B ∪ C ⊆ U and A ∩ B ∩ C = ∅. The

Hilbert space corresponding to this partitioning then is HA⊗HB⊗HC , and the tripartite

3States of 4 qubits can be classified into 9 equivalence classes. States within a class are equivalent

in the sense that they can be mapped to each other using operations known as SLOCC (stochastic local

operations and classical communication). We refer the reader to the original paper for further details.
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information is defined as

I3(A : B : C) ≡ SA + SB + SC − SAB − SAC − SBC + SABC (5.2.1)

Since we are only considering pure states of U , in the case A ∪ B ∪ C = U one trivially

has I3 ≡ 0, so in the following we will restrict to A∪B ∪C ⊂ U . We will use the notation

P = (A : B : C) for a particular partitioning and I3(P) for the tripartite information,

stressing that the latter is not only a function of a state but also of a specific partitioning.

Oftentimes the specific choice of the qubits belonging to the subsets A, B, C will not

be important and we will only need to consider the cardinality of the subsystems. In

this case we will write P = (a : b : c) where a, b, c refer to the cardinalities of A, B,

C respectively. Ignoring the case a + b + c = N (for which I3 = 0) we then have the

conditions

1 ≤ a ≤ N − 3, 1 ≤ b ≤ N − 3, 1 ≤ c ≤ N − 3,

3 ≤ a+ b+ c ≤ N − 1 (5.2.2)

We will use the expression I3(a : b : c) to denote the set of all values of I3(P), with

P = (A : B : C), that can be obtained by permuting the specific choice of the qubits in

each subset, while keeping a, b and c fixed.

For a given state, or class of states, we want to explore the behaviour of I3(P) for all

possible partitionings P.

Equivalences among partitionings

For each partitioning P = (A : B : C) we will call D the complement of A ∪ B ∪ C in

U . As a consequence of the purity of the state of U , the entropy of each subsystem is

equal to the entropy of the corresponding complementary subsystem. This implies that

the tripartite information has the following symmetry [153]

I3(A : B : C) = I3(A : B : D) = I3(A : C : D) = I3(B : C : D) (5.2.3)

As a consequence of Eq. (5.2.3) then, some of the sets introduced before are actually

equivalent. For example, I3(a : b : c) = I3(N − (a+ b+ c) : b : c), see also [116]. Notice in

particular that for the case where N is a multiple of 4, the set I3(N4 : N4 : N4 ) is unique.

Product states

We now explore the behaviour of the tripartite information for states that are obtained

by taking products of states of smaller systems. Consider two Hilbert spaces H1,H2

associated to systems U1, U2 of respectively N1 and N2 qubits. Starting from the states

| ψ〉1 ∈ H1 and | φ〉2 ∈ H2 we build the state | χ〉12 =| ψ〉1⊗ | φ〉2. We choose then a

partitioning P1 = (A1 : B1 : C1) of U1 and ask how the values of I3(P) for partitionings

of the joint system depend on I3(P1) and how the subsets of U1 in P1 are “contaminated”
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by qubits of U2. This means that we will not change the partitioning of the system U1

but only add qubits of U2 into one or more subsystems of P1.

Due to the additivity of the entropy for product states, one can check that the following

cases are possible

P = (A1X : B1 : C1) ⇒ I3(P) = I3(P1) for X ⊆ U2

P = (A1X : B1Y : C1) ⇒ I3(P) = I3(P1) for X ∪ Y ⊆ U2

P = (A1X : B1Y : C1Z) ⇒ I3(P) = I3(P1) + I3(P2) for X ∪ Y ∪ Z ⊂ U2

P = (A1X : B1Y : C1Z) ⇒ I3(P) = I3(P1) for X ∪ Y ∪ Z = U2

(5.2.4)

where P2 = (X : Y : Z). In this set-up then, I3(P) is either invariant or additive. We will

come back to this property and some of its consequences in the following sections.

General bounds

We first look at general bounds for I3(P) that are satisfied by all states and partitionings.

In the next sections we will explore further bounds that apply to specific partitionings

for different classes of states. The fact that I3(P) is in general bounded is an obvious

consequence of the bound of the entropy.

A lower bound for the tripartite information was given in [153] and can be found by

rewriting I3(P) as4

I3(A : B : C) = I(A : B) + I(A : C)− I(A : BC) (5.2.5)

where I(X : Y ) = SX + SY − SXY is the mutual information. From the non-negativity

of mutual information it follows then that I3(A : B : C) ≥ −I(A : BC). Furthermore

I(A : BC) ≤ 2 min(SA, SBC) which implies I3(A : B : C) ≥ 2 min(SA, SBC). One can

then repeat the same argument using the symmetry Eq. (5.2.3), getting

I3(A : B : C) ≥ −2 min(SA, SB, SC , SD, SAB, SAC , SAD, SBC , SBD, SCD) (5.2.6)

Note that the minimal value of I3(P) is attained for states such that SXY ≥ SX ∀X,Y .

In this case the bound is the one reported in [153].

I3(A : B : C) ≥ −2 min(SA, SB, SC , SD) (5.2.7)

When N is a multiple of 4, I3(P) is minimized by states such that all the entropies SX are

maximal and P = (N4 : N4 : N4 ); in this case I3(P) = −N
2 . We will analyse the behaviour

of I3(P) for these states in more detail in §5.4. For N = 1, 2, 3 (mod 4) instead, the bound

would be tighter.

4We thank Beni Yoshida for a clarification about this point.
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To derive an upper bound one could start again from Eq. (5.2.5), but using strong

subadditivity (SSA)5 the bound is more restrictive. We can simply rewrite the tripartite

information as

I3(A : B : C) ≡1

2
(SA + SB − SAC − SBC) +

1

2
(SA + SB − SAC − SBC)

+
1

2
(SA + SB − SAC − SBC) + SABC ≡ ΣABC + SABC (5.2.8)

SSA implies then ΣABC ≤ 0. Using purity of the global state (which implies SABC = SD)

and the symmetry Eq. (5.2.3) one gets

I3(A : B : C) ≤ min(SA, SB, SC , SD) (5.2.9)

Similarly to before, when N is a multiple of 4, I3(N4 : N4 : N4 ) is maximal for states with

maximal entropies SX . In this case I3(P) ≤ N
4 .

5.3 States with maximal multipartite entanglement

The GHZ state of N qubits is defined as

|GHZN 〉 =
1√
2

(|0...0〉+ |1...1〉) (5.3.10)

and it is a well known example of a state for which I3(P) ≥ 0. Ignoring the trivial case

N = 3 for which I3(P) = 0, an immediate calculation shows that for any subsystem X of

the N qubits, the entropy is SX = 1. This implies that for any partitioning P, one has

I3(P) = 1 for any N . For the case N = 4 this immediately implies that the state GHZ4

is the global maximum of I3(P), because it saturates the bound Eq. (5.2.9).

Consider now the state |GHZ4〉⊗k, obtained by taking a tensor product of k copies of

the state GHZ4. For this state of the new N = 4k qubits system we look at the partitioning

defined as follows: take one qubit for each copy of the GHZ4 state and put it into the

subsystem A of the larger system, then repeat the same procedure for subsystems B and

C. For this particular partitioning it follows from Eq. (5.2.4) that I3(P) = k = N
4 . As

before, this value saturates the bound Eq. (5.2.9), implying that these product states are

the global maxima of I3(N4 : N4 : N4 ) for 4k qubits.

In this section we discuss how the values of I3(P) depend on the different partitionings

P for deformations of GHZN states. In particular we present an algorithmic construction

that we conjecture can be used to build local maxima of I3(P) for arbitrary N and any

given P. In the particular case N = 4k this construction recovers the previous result for

the state |GHZ4〉⊗k and generates an entire new family of states that saturate the bound.

5For the convenience of the reader we report here the definition of strong subadditivity SA + SB ≤
SAC + SBC .
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S1(ε) both IX and IXc are Hom in η λ1 = (1+2Reε+|ε|2)
1+|1+ε|2 , λ2 = 1

1+|1+ε|2

S2(ε) IX is Hom in η and IXc in η̄ λ12 =
(2+|ε|2±|ε|

√
4+|ε|2)

2(2+|ε|2)

S3(ε) either IX or IXc is Hom λ1 = 1
2+|ε|2 , λ2 = 1+|ε|2

2+|ε|2

S4(ε) both IX and IXc are not Hom λ1 = 1
2+|ε|2 , λ2 = 1

2+|ε|2 , λ3 = |ε|2
2+|ε|2

Table 5.1: The table shows the four possible configurations of the strings of digits IX and IXc and the set

of eigenvalues of the corresponding expression for the reduced density matrix ρX . The functions Si(ε) are the

entropies, for the various cases labelled by i. The parameters η, η̄ are mutually exclusive variables, when η = 0,

η̄ = 1, and vice versa.

Deformations of GHZN states

We start by considering the following deformation of the GHZN state

|GHZN 〉 →|ψεI〉 =


1√

1+|1+ε|2
(|0...0〉+ |1...1〉+ ε |I〉) if |I〉 ∈ {|0...0〉, |1...1〉}

1√
2+|ε|2

(|0...0〉+ |1...1〉+ ε |I〉) otherwise

(5.3.11)

where | I〉 is an element of the computational basis {| 0...0〉, | 0...1〉, ... | 1...1〉}. Consider

then a generic bipartition of the system into a subsystem X of size x and its complement

Xc of size N − x. The reduced density matrix ρX associated to the subsystem X is given

by (up to the normalization factor)

ρX(ε, I) ≡ TrXcρεI = |0...0〉〈 0...0 | + |1...1〉〈 1...1 | +|ε|2 |IX〉〈 IX |

+


ε∗ |0...0〉〈 IX | +ε |IX〉〈 0...0 | if |IXc〉 is Homogeneous in 0’s

ε∗ |1...1〉〈 IX | +ε |IX〉〈 1...1 | if |IXc〉 is Homogeneous in 1’s

0 if |IXc〉 is not Homogeneous

(5.3.12)

where | IX〉 and | IXc〉 are the states of subsystems X and Xc when the global system is

in the state |I〉. By the expression “Homogeneous in 0’s” we mean |IXc〉 =|0〉⊗N−x (and

similarly for 1’s). | IXc〉 instead is not Homogeneous if | IXc〉 =| 0〉⊗γ⊗ | 1〉⊗δ for any γ, δ

such that γ+ δ = N − x. In the following we will use short expressions like “IXc is Hom”

to indicate these cases (eventually dropping also the “ket”, as we think about IXc simply

as a string of digits).

Depending on the homogeneity properties of | IX〉 we then have four possibilities for

the final expression of the reduced density matrix. We list the possible cases, together

with the corresponding eigenvalues of ρX(ε, I), in Tab. 5.1. This is an exact result, not

only perturbative in ε.

The functions Si(ε) that give the entropy of ρX(ε, I) depending on its possible struc-

tures, all have vanishing first derivative at ε = 0. This shows that in the Hilbert space of
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φ Details of IA, IB, IC , ID I3(P)

0 X is not Hom, ∀X S4(ε)

1 ∃!X that is Hom S3(ε)

2
X,Y are Hom in λ S3(ε)

X is Hom in η and Y is Hom in η̄ 2S3(ε)− S4(ε)

3
X is not Hom and Xc is Hom S3(ε)

X is not Hom and Xc is not Hom 2S3(ε)− S4(ε)

4

IA ∪ IB ∪ IC ∪ ID ≡ I is Hom S1(ε)

X is Hom in η and Xc is Hom in η̄ S2(ε)

X ∪ Y is Hom in η and (X ∪ Y )c is Hom in η̄ 4S3(ε)− 2S4(ε)− S2(ε)

Table 5.2: The table lists the possible behaviour of I3(P) for different P and a fixed direction of deformation

|I〉. The parameter φ is the number of strings among IA, IB , IC , ID which are Hom in 1’s or 0’s. Again η and

η̄ are mutually exclusive variables, when η = 0, η̄ = 1, and vice versa.

N qubits, and for any N , the state GHZN is a saddle point of I3(P) for all P.6 Further-

more, the functions S1(ε), S2(ε) and S3(ε) are all decreasing, while S4(ε) is increasing. In

particular S3(ε) decreases only at order ε4.

With the set of possible entropies at hand, we now want to classify the possible be-

haviours of the tripartite information of | ψεI〉, depending on the partitioning and the

direction of the deformation | I〉. A natural classification would proceed by first fixing a

partitioning P, and then looking at the behaviour of I3(P) in all possible directions | I〉.
Nevertheless, due to the nature of the problem, it is more natural to proceed in the oppo-

site way. We first fix a direction |I〉 of deformation and then derive the behaviour of I3(P)

for all possible P. This is more natural because the behaviour of I3(P) will just depend

on the homogeneity properties of the strings IA, IB, IC , ID derived from |I〉 under P, and

the analogous properties for their unions.7 The possible cases are shown in Tab. 5.2 and

are classified using a parameter φ that counts the number of strings X ∈ {IA, IB, IC , ID}
which are Hom.

The results of Tab. 5.2 show that for a given direction |I〉, I3(P) of GHZN can increase

only for those P such that all the strings IA, IB, IC , ID are not Hom. Since a string made

of a single digit is always Hom, the following lemma follows

Lemma: For any N , the GHZN state is a local maximum of I3(P) for any P such that

at least one of the subsystems contains only a single qubit.

Since for N ≤ 7 this always happens, in this case the GHZN state is a local maximum

of I3(P) for all P.

6This result immediately follows from the fact that for any P the tripartite information is just a linear

combination of entropies.
7Recall that for two Hom strings X,Y the union is not Hom if X is Hom in 1’s (or 0’s) and Y in 0’s

(1’s).
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For arbitrary N and P instead, the GHZN states are not local maxima. Nevertheless,

since we know exactly how the value of I3(P) behaves along each direction (not only

perturbatively), for fixed P we can choose a direction | I1〉 along which I3(P) grows and

follow it until we reach a maximum in that direction. One can check that the function

S4(ε) reaches a maximum along |I1〉 for |ε| = 1. We can then build the new state

|GHZN 〉 →|ψ1〉 =
1√
3

(
|0...0〉+ |1...1〉+ eiθ1 |I1〉

)
(5.3.13)

This new state of course is not guaranteed to be a local maximum of I3(P). To investigate

whether this is the case or not, we can again look at deformations along all possible

directions. We then build the new state

|ψ1〉 →|ψε2〉 =
1√
N

(
|0...0〉+ |1...1〉+ eiθ1 |I1〉+ ε |I2〉

)
(5.3.14)

For an arbitrary bipartition of the system into X and Xc, the reduced density matrix

ρX(ε, I1, I2) will have the following structure (up to normalization factors)

ρX(ε, I1, I2) = ρX(eiθ1 , I1) + ρX(ε, I2) + eiθ1ε∗ |I1
X〉〈 I2

X | +e−iθ1ε |I2
X〉〈 I1

X | (5.3.15)

In Eq. (5.3.15) the expressions ρX(eiθ1 , I1) and ρX(ε, I2) correspond to matrices of the

form Eq. (5.3.12), with deformations along |I1〉, |I2〉 and coefficients respectively eiθ1 and

ε. The last two terms are “interference” terms that survive only when |I1
X〉, |I2

X〉 (defined

as in Eq. (5.3.12)) are not orthogonal.

We check numerically for many examples that the interference terms reduce the en-

tropy, while the entropy increases if these terms disappear. This observation motivates

the following construction. Given a partitioning P = (A : B : C : D) for a system of

N qubits, start with the GHZN state. Then pick a direction | I1〉 with the property that

all the strings I1
A, I

1
B, I

1
C , I

1
D are not Hom, such that I3(P) will grow, and build the new

state Eq. (5.3.13). Then look for a second possible direction |I2〉 such that I2
A, I

2
B, I

2
C , I

2
D

are again not Hom and
〈
I1
A|I2

A

〉
=
〈
I1
B|I2

B

〉
=
〈
I1
C |I2

C

〉
=
〈
I1
D|I2

D

〉
= 0, and build the new

state Eq. (5.3.14) with ε = eiθ2 . Finally iterate this construction for all possible directions

that satisfy these conditions. This procedure is limited by the subset X ∈ {A,B,C,D}
which has minimal size x, and will stop at some point. We then conjecture the following

Conjecture: All the states that can be built following this algorithmic construction are

local maxima of I3(A : B : C : D).

On can check for example that in the case N = 4k, for specific permutation of the

qubits in the partitioning P = (N4 : N4 : N4 : N4 ), and picking all the phases to be eiθi = 1,

the procedure starts with the state |GHZN 〉 and ends with the state |GHZ〉⊗k4 , recovering

the result stated before. We leave the general proof of this conjecture as an open problem

for future work.
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∃X, |X| ≥ N
2 I3(P) = 0, ∀P

|X| < N
2 , ∀X

χ I3 Pmin I3min Pmax I3max

0 −2α a = b = c = N
4 −N

2 α = 1 −2

1 −2c a = b− 1 = c+ 1 = N
4 −N

2 + 2 c = 1 −2

2 −N + 2a a− 1 = b = c = N
4 −N

2 + 2 a = N
2 − 1 −2

3 2α−N a− 1 = b− 1 = c = N
4 −N

2 + 4 α = N
2 − 1 −2

Table 5.3: The table shows the classification of the values of I3(P) for perfect states, for all possible partitionings

of the system. When a subsystem X (possibly also X = D) contains at least half of the qubits, I3(P) vanishes.

The other cases are classified according to the parameter χ. For each case the value of I3(P) is given as a

function of (a, b, c). Maximal and minimal values of I3(P) and the corresponding partitionings are also shown

for each case. The parameter α is defined as α = a+ b+ c− N
2

.

.

5.4 States with maximal bipartite entanglement

In this section we focus on bipartite entanglement and investigate the behaviour of the

tripartite information for states that are highly entangled for all possible bipartitions of

the system. The search for this kind of states, usually called MMES (maximal multi-qubit

entangled states),8 is an important problem in quantum information theory [157], where

entanglement is a resource for the implementation of many protocols.

A particularly interesting subclass of MMES are the perfect MMES, for which the

entropy of each subsystem is exactly maximal; these are indeed the perfect states of [28]

and [153]. In the case of qubits it is known that they do not exist for N ≥ 8 [158]. For

qudits, examples can be found using stabilizer code [159] techniques [153] [160].

We want to explore the behaviour of I3(P) for different partitionings of these states.

We start with perfect states, for which a classification of the possible values of I3(P) is

possible even without knowing an explicit expression. Next we investigate some examples

of MMES for N = 2, 4, 6, 8 and some other states that can be built from them.

Perfect states

Perfect states are defined as those states for which each subsystem X ⊆ U (with |X| = x)

has exactly maximal entropy

Sx =

x for x ≤ N
2

N − x for x > N
2

(5.4.16)

Since perfect states are symmetric under permutations of the qubits, we can classify the

behaviour of I3(P) looking at the sets I3(a : b : c) with constraints Eq. (5.2.2) on a, b and

8They are sometimes called maximal multipartite entangled states, but this denomination might be

misleading, suggesting some connection to multipartite entanglement. Instead, “multipartite” here refers

to the fact that we are looking not only at entanglement for one particular bipartition of the system, but

for all bipartitions.



5.4. States with maximal bipartite entanglement 105

c. Once the sizes of subsystems are specified, the entropies are given by Eq. (5.4.16) and

we can immediately compute the value of I3(P). For simplicity, in the following we will

assume that N is a multiple of 4.

When a + b + c < N
2 , or when any of the subsystems contains N

2 qubits or more,

one has I3(P) = 0. The two cases are equivalent because of Eq. (5.2.3), indeed when

a + b + c < N
2 , it follows that d ≥ N

2 . To classify all other possible cases we will use

a parameter χ, defined as the number of unions of two subsystems X,Y that contain at

least N
2 qubits, i.e. |X ∪Y | ≥ N

2 . To simplify the notation, and without loss of generality,

we assume that a ≥ b ≥ c, such that

χ =



0 for |X ∪ Y | < N
2 , ∀X,Y

1 for |A ∪B| ≥ N
2 but |A ∪ C|, |B ∪ C| < N

2

2 for |A ∪B|, |A ∪ C| ≥ N
2 but |B ∪ C| < N

2

3 for |X ∪ Y | ≥ N
2 , ∀X,Y

(5.4.17)

The classification of the possible values of I3(P) is summarized in Tab. 5.3, where we also

indicate the specific partionings that maximize or minimize the value of I3(P) in each

case.

Note that the partitioning P = (N4 : N
4 : N

4 ) is the minimizer of I3(P) for perfect

states. Furthermore, since in this case I3(P) = −N
2 , perfect states saturate the bound

Eq. (5.2.7) and are absolute minima of I3(P). Indeed, this motivated the proposal of [153]

that I3(P) can be used as a parameter for scrambling.

Suppose now that for some value of N (again multiple of 4), a perfect state | PN 〉
exists. Then we can take two copies of this state and build a new state of a system of

size 2N taking the product | PN 〉⊗ | PN 〉. This new state would not be a perfect state

any more, nevertheless according to the additivity of I3(P) shown in Eq. (5.2.4), there

is some partitioning that gives I3(P2N ) = 2 × I3(PN ) = − (2N)
2 . This simple fact shows

that although it is true that a scrambled state would minimize I3(P) of a partitioning

P = (N4 : N4 : N4 ), the converse is not true. Only if we know that the state we are dealing

with is completely symmetric under all permutations, the value of I3(P) is sufficient to

imply scrambling.

Finally, we comment on another interesting property that emerges from the results of

Tab. 5.3. Note that while the lower bound of I3(P) for different partitionings scales with

N , the upper bound does not. In particular there are partitionings for which I3(P) = 0.

In the holographic perspective, these are the ones we should be more careful about, as they

get closer to the violation of monogamy for mutual information. It would be interesting

to study the behaviour of perfect states for such partitionings under the effect of arbitrary

operations performed on the constituents of the system. We leave the general question

for future work, while in the next section we explore the example of N = 6, for which a

perfect state of qubits exists and is known explicitly.
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Some examples of MMES states

We now explore the behaviour of the tripartite information for systems of N = 2, 4, 6, 8

qubits, focusing on highly entangled states and some deformations of them. We also

compare the value of I3(P) to the value obtained for particular product states, suggesting

that the average I3(P) over permutation of the qubits could be a more sensible measure

to evaluate scrambling.

N=2 Obviously I3(P) for states of just 2 qubits is nonsense. Starting with maximally

entangled states |M2〉 of 2 qubits (Bell pairs), we can build maximally entangled states of

an arbitrary even number of qubits by simply taking the product |M2〉⊗k. These states

are indeed maximally entangled but only for certain bipartitions. In particular there is

only one subsystem containing N
2 qubits which has maximal entropy. For the case k = 2

one gets a maximally entangled state of 4 qubits for which I3(P) = 0. As a consequence

of Eq. (5.2.4) when we take a product with a new copy of |M2〉, I3(P) is invariant. By

induction one has I3(P) = 0 for arbitrary k. In other words, any “distilled” state9 has

I3(P) = 0 for all P. The converse is obviously not true, a product state for all qubits

contains no entanglement and would equally have I3 ≡ 0.

N=4 The MMES of 4 qubits was found in [152] and is known as M state. It has the

form

|M4〉 =|0011〉+ e−
π
3
i |0101〉 − e

π
3
i |0110〉 − e

π
3
i |1001〉+ e−

π
3
i |1010〉+ |1100〉 (5.4.18)

Although this is the maximally entangled state of 4 qubits, it is not a perfect state as the

entropies of one and two qubits are respectively S{1} = 1, S{2} = 1
2 log2 12 ≈ 1.79248 < 2.

The tripartite information for this state has value I3(P) = 4− 3
2 log2 12 ≈ −1.37744. By

deforming the state with a small pertubation in any direction in Hilbert space, one can

check numerically that this state is a local minimum for I3(P).

N=6 In the particular case of 6 qubits the perfect state | P6〉 is known explicitly,10 it

was found in [161]. We can then investigate the effect of deformations of the state on the

sign of I3(P). Following the classification of Tab. 5.3, we can look for the partitionings for

which I3(P) = 0. We have the possible cases P = (1 : 1 : 1) or P = (3 : 1 : 1), but they

are equivalent according to Eq. (5.2.3). Starting with the state |P6〉 we can deform it in

the directions labelled by the computational basis: |ψεI〉 =|P6〉+ ε |I〉. A numerical check

shows that I3(1 : 1 : 1) decreases in all directions; small perturbations cannot change its

sign. We can also explore the effect of measurements performed on some of the qubits of

the system. We can for example measure a single qubit with any of σx, σy, σz or we can

do a Bell measurement and project two qubits onto a maximally entangled state. In both

9Distillation is the process of extraction of Bell pairs from a given state using LOCC operations.
10We refer the reader to the original paper for its expression.
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these cases one can check that for the states obtained under these operations it is still true

that I3(P) ≤ 0 for all P.

N=8 An 8 qubits MMES was found in [162], we will refer to it as the |M8〉 state. As

for N = 4, a numerical check shows that this state is a local minimum of I3(2 : 2 : 2)

in Hilbert space. In particular I3(2 : 2 : 2)[M8] ≈ −1.35458, while for a perfect state

of 8 qubits (| P8〉 which does not exist) it would have been I3(2 : 2 : 2)[P8] = −4. We

can now compare this result with the value of I3(2 : 2 : 2) for the state |M4〉⊗ |M4〉,
where |M4〉 is the MMES of 4 qubits introduced before. In this case one has I3(2 : 2 :

2)[M4 ⊗M4] ≈ −2.75489 < −1.35458. This simple observation suggests again11 that one

should be careful in using I3(P) as a parameter of scrambling. On the other hand, since

this value of I3(2 : 2 : 2)[M4 ⊗M4] is only attained for some permutations of the qubits,

one can ask whether the average value I3(2 : 2 : 2) over all permutation is a more sensible

measure. The state |M8〉 is completely symmetric under permutations of the qubits, so

that the average tripartite information has the same value obtained before. This is not

true for the state |M4〉⊗ |M4〉 in which case, taking into account the combinatorics,12 one

gets I3(2 : 2 : 2)[M4 ⊗M4] ≈ −0.62969 > −1.35458. For N = 8 a perfect state does not

exist and it is natural to consider the MMES as the scrambled state in this Hilbert space.

This example then shows that the MMES is not the absolute minimizer for a single value

of I3(P) corresponding to a specific permutation of the qubits . On the other hand the

average I3(P) seems to be minimized by the MMES.

5.5 Discussion

In this chapter we explored the behaviour of the tripartite information for different parti-

tionings of systems in highly entangled states. For simplicity we focused in particular on

systems of qubits, but most of the result can be generalized to constituents that live in a

higher dimensional Hilbert space, i.e. qudits.

After a discussion about general properties of I3(P), we started by looking at states

that maximize multipartite entanglement, namely GHZN states. We showed how I3(P)

changes for deformations of the states in various directions in Hilbert space, depending on

the different partitionings of the system. Then we proposed an algorithmic construction

that we conjectured can be used to build local maxima of I3(P) for arbitrary N and P. We

leave the proof of this conjecture and the extension to higher dimensional generalizations

of GHZN states for future work.

Next we moved to states that manifest a high amount of bipartite entanglement for

all possible bipartitions of the system. We explored the general behaviour of the perfect

11See also the discussion about perfect states.
12For the state |M4〉⊗ |M4〉, the tripartite information is either −2.75489 or 0. There are in general 420

possible qubits permutations corresponding to the partitioning P = (2 : 2 : 2) of the system, 96 of which

give the non vanishing value.
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states of [28] for all possible partitionings and then looked at some examples of qubits

states which although not perfect, are known to be highly entangled for all bipartitions.

Our main motivation for studying the tripartite information came from holography,

where I3(P) has definite non-positive sign and captures the monogamy of mutual infor-

mation [120]. Drawing from the results of the previous sections, we conclude with some

observations which are relevant in the holographic context, posing some open questions

that we leave to future investigations.

The sign of the tripartite information The work of [116] asked the question of

how generic is monogamy of mutual information, and consequently how restrictive is the

constraint imposed by holography. It was found numerically that for random states of

6 and 8 qubits it is extremely difficult to obtain states with positive value of I3(P).

Furthermore, it was observed that when P = (1 : 1 : 1), the values of I3(P) for random

states, although still negative, approach I3(P) = 0. This matches with the behaviour of

perfect states shown in Tab. 5.3, which under the same assumptions for P, have precisely

I3(P) = 0.

This similarity between the distribution of random states for different choices of P and

the values of I3(P) for perfect states, extends to all cases where the size of subsystems in

P is much smaller (or much larger) than half of the size of the entire system. This can

be interpreted as a consequence of Page theorem [163], which precisely under the same

assumptions for the size of subsystems, implies that random states are almost maximally

entangled. It would be interesting to explore further the relation between random and

perfect states. In particular, since as far as entropies are concerned, they generically have

a similar behaviour, one could try to make this connection quantitative by introducing a

notion of “typicality”13 for perfect states.

Next, since for certain partitionings of perfect states one gets I3(P) = 0, it is natural

to ask how stable is the sign definiteness of I3(P) for these particular partitionings when

we deform the states either by some perturbation or by some operation performed on the

constituents. Without a general expression at hand for perfect states, we focused on the

example of the 6 qubits systems, for which the perfect state is known explicitly. We checked

numerically that any deformation in any direction in Hilbert space can only decrease the

value of I3(P), suggesting that in general perfect states are local maxima of I3(P) for

these partitionings. Furthermore we explored the effect of different measurements on one

and two of the qubits of the system, but even in this case we did not get any new state with

positive value of I3(P). It would be interesting to explore these results for larger systems,

higher dimensional generalizations of the constituents and different classes of operations.

Finally, considering also the results from investigations of GHZN states, it seems nat-

ural to expect that some amount of 4-partite quantum entanglement is really crucial for

the violation of monogamy of mutual information. Unfortunately, no measure of 4-partite

13Typicality here has to be interpreted in the sense of [164]. According to some measure, the distance

between the behaviour of random and perfect states would be exponentially suppressed for large N .
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quantum entanglement for mixed state is available to investigate this expectation quanti-

tatively.

The tripartite information as a parameter for scrambling Since perfect states

might be thought as the result of scrambling, and they correspond to global minima of

I3(P), it was proposed in [153] that the tripartite information can be used as a parameter

for scrambling. In our analysis of perfect states, we showed that for some permutation of

the constituents of the system, the same value of I3(P) can in principle be attained by

products of perfect states of smaller systems. Since these product states are not perfect

states of the larger system, one can conclude that the value of I3(P) can be an appropriate

measure of scrambling only under the assumption that the state under consideration is

completely symmetric under permutations of the qubits. We propose that in general, as

a measure of scrambling, one should use instead the average of the tripartite information

(I3(P)) over all possible permutations of the qubits.

Furthermore, since perfect states do not always exist, one can ask if for a given value

of N , the state which contain the maximal possible amount of entanglement for all bipar-

titions (MMES) is the minimizer of I3(P). A counterexample to this expectation seems

to derive from the highly entangled state of 8 qubits found in [162], which is conjectured

to be a MMES state. We showed that the value of I3(P) obtained for this state is smaller

than the one obtained from the product of two copies of MMES of 4 qubits. On the con-

trary, when we take the average of I3(P) over all permutations of the qubits, the situation

is reversed. This is a further argument in support of our proposal that I3(P) is a more

appropriate parameter for scrambling.



Chapter 6

Outlook

We conclude this work with some comments about open questions and future possible

directions of investigation towards a deeper understanding of operational aspects of en-

tanglement in holography.

An information theory for quantum fields: as we discussed in the introduction, a

satisfactory operational interpretation of entanglement measures together with a theory of

quantum information along the lines of quantum mechanics still have to be developed for

quantum fields. While field theory is usually viewed as the continuous limit of quantum

mechanics, the Tsirelson problem suggests that the difference in the two formalisms might

have radical implications. Similarly, it is not clear whether the notion of causality in field

theory is fully equivalent to the no-signaling condition defined by PR-boxes and we do

not know if there is a field theory version of the Tsirelson bound, i.e. if the strength of

correlations in field theory is bounded as in quantum mechanics. The situation is even

worst in the case of gauge fields, where even for theories which are regularized on a lattice

one could not expect factorization of the Hilbert space. While a deeper understanding of

these problems in field theory is of great interest on its own right, it could also sharpen

what would be the most appropriate definition of entanglement in that context. This is

crucial for developing an operational interpretation of computable measures. The alge-

braic formulation is perhaps the most natural framework for this kind of investigations,

but it would be desirable to translate to a more practical language, such as that of cor-

relation functions. As in the quantum mechanical case, it would also be interesting to

explore the possibility of manipulating quantum fields for practical purposes. Perhaps the

entanglement of ground states which is evident from the Reeh-Schlieder theorem can be

used to implement teleportation or to run some form of quantum computation. To answer

all these questions, a deeper understanding of the effect of measurements in field theory

will probably be vital.

New measures of entanglement: in our investigations involving qubits systems, we

used negativity to explore in detail all possible entanglement structures and the depen-

dence of the ratio between negativity and entropy on the pattern of entanglement. Next,
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we looked for an interpretation of this ratio in terms of robustness of the entanglement and

explored the relation between the disentangling theorem and the entanglement plateaux

phenomenon. It would be very interesting to extend this analysis to quantum field the-

ory, but new tools are necessary, in particular techniques to compute negativity for mixed

states. Recently there have been some progress in this direction, but only for few special

cases. For mixed states, negativity has been computed for a thermal state, but only for a

single interval in 1+1 dimensions [85]. Some progress has also been made towards the cal-

culation of negativity between two intervals, but so far there is no conclusive answer [165].

A particularly interesting situation where such tools could be useful are geometries

with multiple boundaries, such as the eternal black hole geometry. For this geometry the

field theory on a single boundary is in the thermal state and quantum correlations are

expected to decay very quickly when the temperature increases. On the other hand there

are geometries with a different topology behind the horizon that can purify the state on

one boundary. An example is Wheeler’s Bag of Gold, where the geometry behind the

horizon is that of a Friedmann-Robertson-Walker universe. In this case, since the state on

one boundary is excited, but pure, one could expect larger quantum correlations between

subregions. It is then interesting to ask whether a quantity like negativity, measured

between two “small” subregions, would be able to detect some feature of the topology

behind the horizon. In principle this could be difficult, since for highly entangled states

like perfect states, quantum correlations between subregions are very small. Nevertheless

it would be interesting to quantify what is the minimal size of regions which are sensible to

topology behind the horizon and compare the result to what we expect from the entropy.

Finally the state of affairs for measures in field theory is even worst for multipartite

entanglement. As we have seen this is difficult to measure and characterise even in quan-

tum mechanics and so far there is no proposal which could be applied to field theory. On

the other hand investigations presented in chapters 4 and 5 seem for example to suggest

that some form of 4-partite entanglement is crucial for violation of monogamy of mutual

information. It would be interesting to check whether this is true also in field theory and

understand why this pattern of entanglement is not allowed by holographic field theories.

Discrete toy models for holography: given the difficulties described above, one can

follow the strategy of chapter 4 and focus on quantum mechanics. If one could extend

investigations to systems where the number N of qubits is large, it is natural to expect

that the analysis would become sensible to field theory properties. For some special states

this can be done, as in chapter 5, but in general the treatment becomes infeasible for

arbitrary states because the dimension of the Hilbert space grows exponentially with N .

Nevertheless, only a small portion of this huge Hilbert space is of physical interest. Indeed

it was shown in [166] that systems governed by k-body Hamiltonians, if evolved for an

amount of time which scales polynomially with N , can only explore an exponentially small

region of the Hilbert space. One can then restrict attention to special states of interest.

For a generic state in H the entropy of a subsystem scales with the number of constituents,
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on the other hand for ground states of local field theory entanglement usually satisfies an

area law. This fact justifies the use of tensor networks to investigate the entanglement

structure of holographic states [26] [27] [28] [160]. We explored the behaviour of the

tripartite information for the tensor networks of [28] in chapter 5.

The program of modelling the holographic mapping using tensor networks is still at its

infancy. One limitation is the fact that it is not fully understood which tensor networks

describe “good” candidates for holographic states. In this respect the Ryu-Takayanagi

prescription and in particular the sign definiteness of the tripartite information are an

important consistency check. Interestingly, it has been shown recently [167] that this

constraint is not the only one imposed by holographic entanglement entropy. As the

number of subsystems grows it is known that the von Neumann entropy satisfies additional

inequalities that define what is called an entropy cone. The results of [167] show that

holographic entanglement entropy has to satisfy more restrictive inequalities and that the

holographic entropy cone is contained in the previous one. The investigations of chapter

5 could then in principle be extended to all the inequalities that define this region of

Hilbert space which is of interest for holography. In particular, we could ask what kind of

entanglement structures are typical of states within this cone, and for states on the faces

of the cone, investigate the stability under different classes of operations.

Another limitation of current proposals for “holographic” tensor networks is the inabil-

ity to do time evolution. To this end other special states might be useful and in particular

graph states are particularly appealing. As the name suggests, these are states which

can be identified by a graph structure. The graph can be viewed as a preparation proce-

dure that starting from a product state builds a particular entangled state according to an

Ising-like interaction. Graph states can be evolved more naturally, even under the effect of

measurements, and are a resource for one way quantum computation. Their entanglement

structures have been classified under SLOCC operations as presented in chapter 4 even for

larger systems. Furthermore, graph state are also important for quantum error correction,

which make them interesting for holography also in the perspective of [28]. Finally, the

structure of graph states have been combined to that of tensor networks in [168] to build

a particular variational ansatz that can be used for time evolution.

It would be very interesting to build a discrete toy model of holography using these

quantum mechanical structures. This would be of paramount importance for example

to investigate questions about locality and causality, and in particular to compare the

definitions which are natural in quantum mechanics and gravitational physics. Finally, it

would be interesting to see some feature of geometry emerging from such models. This

would be perhaps a concrete realization of a discrete version of ER=EPR, in particular

one that could be analysed more naturally from an operational perspective.

Foundations of quantum mechanics: as mentioned in the introduction, it is con-

ceivable that the formulation of a theory of quantum gravity will require at some level a

departure from conventional quantum mechanics. This has been noticed in [169], which
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discussed what could be the most general postulates of such a theory. Unitary evolution

of closed systems is a fundamental axiom of the Copenhagen formulation, nevertheless

deformations of quantum theory exist where this fundamental assumption is relaxed to

some extent (see for example the discussion in [170]). Long standing questions of quan-

tum theory have recently entered into discussions concerning quantum gravity. The role

played by measurements for example is discussed in [148]. A possible violation of the Born

rule in the proposal of [171] to reconstruct the black hole interior is presented in [172].

Post-selection, another interesting feature of quantum theory is the mechanism behind the

black hole final state proposal of [10]. It is also in this respect that quantum information

theory could shed new light on important features of quantum gravity.
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