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Abstract: In 2002, Fomin and Zelevinsky introduced a cluster algebra; a dynamical

system that has already proved to be ubiquitous within mathematics. In particu-

lar, it was shown by Fomin, Shapiro and Thurston [12] that some cluster algebras

arise from orientable surfaces. Subsequently, Dupont and Palesi [6] extended this

construction to non-orientable surfaces, giving birth to quasi-cluster algebras. The

finite type cluster algebras possess the remarkable property of their exchanges graphs

being polytopal [16]. We discover that the finite type quasi-cluster algebras enjoy

a closely related property, namely, their exchange graphs are spherical. Revealing

yet more connections we unify these two frameworks via Lam and Pylyavskyy’s

Laurent phenomenon algebras [26], showing that both orientable and non-orientable

marked surfaces have an associated LP-algebra. The integration of these structures

is attempted in two ways. Firstly we show that the quasi-cluster algebras of unpunc-

tured surfaces have LP structures. Secondly, to obtain a connection for all marked

surfaces, we consider laminations, forging the notion of the laminated quasi-cluster

algebra. We show that each marked surface exhibits a lamination which supplies the

laminated quasi-cluster algebra with an LP structure.
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Chapter 1

Introduction

Cluster algebras were introduced by Fomin and Zelevinsky with the intention of

understanding a construction of canonical bases by Lusztig and Kashiwara. Sub-

sequently it has found deep roots in diverse areas of mathematics including Poisson

geometry, integrable systems, string theory, quiver representations, polytopes and

the theory of surfaces.

The cluster algebra itself is a commutative ring defined by a set of generators called

cluster variables. These cluster variables are grouped into overlapping finite subsets

of the same cardinality. Given a cluster, there is an idea of mutation; this broadly

consists of obtaining a new cluster by substituting one of the cluster variables. The

cluster structure is the combinatorics describing how the clusters are connected via

the process of mutation. In the theory of cluster algebras the main focus is usually

not the underlying ring, but rather the cluster structure. In practice the set of cluster

variables and clusters are not known from the outset. Instead one specifies an initial

cluster together with an additional piece of combinatorial data to establish the rules

of mutation – in the case of cluster algebras this data is a skew-symmetrizable matrix.

The rest of the clusters are then obtained by repeated employment of mutation.

One of the most beautiful and visually comprehensible appearance of cluster algebras
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comes from the study of orientable surfaces [10],[12],[13]. Given an orientable marked

surface we may triangulate it. For each triangulation T of the surface we may assign

a seed in which the cluster variables correspond to arcs in T , and the skew symmetric

matrix is obtained via the process of inscribing cycles in each triangle, with respect

to the surface’s orientation. These seeds form a cluster algebra structure where muta-

tions correspond to flipping arcs in triangulations. The underlying reason for this

behaviour is explained by recognising that each cluster variable actually represents

the (lambda) length of their corresponding arc, and the matrices encode how these

lengths are related.

Dupont and Palesi aimed at extending the construction to non-orientable surfaces. In

this setting it is immediately apparent that the existing method of allocating a seed

to a triangulation fails; for a triangulation T of an orientable surface the assignment

of a seed crucially relies on the orientability of the surface. However, to avoid this

hurdle, Dupont and Palesi aimed at imitating the construction for non-orientable

surfaces on a purely geometrical level. Deciding upon a notion of quasi-triangulation

that guarantees the flippability of every constituent quasi-arc they eliminated the

requirement of combinatorial machinery by, in essence, directly defining seeds to cor-

respond to these quasi-triangulations. To conjure a cluster structure they endowed

the surface with a hyperbolic metric and discovered the various relationships between

the (lambda) lengths of quasi-arcs. Akin to the orientable case, these relationships

are invariant under change of metric, and the lengths of quasi-arcs in any given quasi-

triangulation are independent. With this done, their quasi-cluster algebras were born.

The cluster structure is initiated by fixing a quasi-triangulation T and a set of algeb-

raically independent cluster variables corresponding to the quasi-arcs in T . Mutation

then consists of performing flips of quasi-arcs and exchanging cluster variables under

the relationship governed by how lengths of their corresponding quasi-arcs transform.

It was shown by Fomin and Zelevinsky, almost at the birth of cluster algebras, that
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the cluster complex of a cluster algebra has a polytopal realisation when the complex

is finite. These polytopes coming from finite type cluster algebras are known as

the generalised associahedra. A natural question is to ask what kind of structure

the quasi-arc complex has. In an attempt to shed some light on this we prove the

following theorem.

Theorem A (Corollary 4.51). Let X be a finite quasi-arc complex. Then X is

spherical.

Fomin and Zelevinsky [15] proved the remarkable property that every cluster variable

in a cluster algebra can be written as a Laurent polynomial in the initial cluster

variables. In turn, they settled Gale and Robinson’s conjecture on the integrability

of generalised Somos sequences, as well as several other like-minded conjectures

made by Elkies, Kleber and Propp. It is the unification of cluster algebras with the

caterpillar lemma that resolve these conjectures, but cluster algebras certainly do not

capture the generality which the lemma provides. In fact, Dupont and Palesi showed

their quasi-cluster algebras escape the province of cluster algebras, yet still boast

this surprising phenomenon. Aimed at extracting the full potential out of the lemma,

Lam and Pylyavskyy concocted their own much broader cluster structure, which,

by design, produces the Laurent phenomenon. As such, they befittingly named this

structure the Laurent phenomenon algebra, or LP algebra for short.

Lam and Pylyavskyy discovered in [26] that these LP algebras encompass cluster

algebras, and also appear naturally as coordinate rings of Lie groups. Subsequently,

Gallagher and Stevens [17] demonstrated that their broken Ptolemy algebra exhibits

an LP structure. Revealing yet more connections, in this thesis, we link Dupont and

Palesi’s quasi-cluster algebras to LP algebras. Namely, after making a minor tweak

to their definition of a quasi-triangulation, see Definitions 6.6 and 6.7, we prove the

following:
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Theorem B (Theorem 7.12). Let (S,M) be an unpunctured (orientable or non-

orientable) marked surface. Then the LP cluster complex ∆LP (S,M) is isomorphic to

the quasi-arc complex ∆⊗(S,M), and the exchange graph of ALP (S,M) is isomorphic

to E⊗(S,M).

More explicitly, let T be a quasi-triangulation of (S,M) and ΣT its associated LP seed.

Then in the LP algebra ALP (ΣT ) generated by this seed the following correspondence

holds:

ALP(ΣT) (S,M)

Cluster variables ←→ Lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

The truth of the above theorem crucially depends on the absence of punctures. Em-

bedded within the LP mutation process there is a requirement to normalise the

exchange polynomials. The obstacle preventing punctured surfaces possessing an LP

structure revolves around normalisation occurring when it shouldn’t. In particular

this instance of undesired normalisation materialises when the exchange polynomials

of a quasi-triangulation are not distinct – punctured surfaces are unfortunate enough

to possess this trait. To bypass this complication we consider laminated surfaces

with the intention of altering the exchange polynomials. Embodying the notion

of principal coefficients for orientable surfaces, we introduce principal laminations.

Crucially, this class of laminations guarantee the uniqueness of exchange polynomials

in every quasi-triangulation, allowing us to prove the following:

Theorem C (Theorem 8.50). Let (S,M) be an orientable or non-orientable marked

surface and L a principal lamination. Then the LP cluster complex ∆LP (S,M,L) is
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isomorphic to the laminated quasi-arc complex ∆⊗(S,M,L), and the exchange graph

of ALP (S,M,L) is isomorphic to E⊗(S,M,L).

More explicitly, if (S,M) is not a once-punctured closed surface, the isomorphisms

may be rephrased as follows. Let T be a quasi-triangulation of (S,M) and ΣT its

associated LP seed. Then in the LP algebra ALP (ΣT ) generated by this seed the

following correspondence holds:

ALP(ΣT) (S,M,L)

Cluster variables ←→ Laminated lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

The thesis is organised as follows. Chapter 2 presents the basics of cluster algebras

including their relationship with orientable surfaces.

Chapter 3 enters the realm of non-orientable surfaces by introducing Dupont and

Palesi’s quasi-cluster algebras. In Chapter 4 we turn our attention to the quasi-

cluster algebras of finite type. Using shellings as our tool, we show the finite type

exchange graphs are spherical.

Chapter 5 consists solely of the work of Lam and Pylyavskyy, and describes the

construction of their Laurent phenomenon algebras.

In Chapter 6 we embark on our main goal of linking quasi-cluster algebras to LP

algebras. To initiate proceedings, in addition to generalising Dupont and Palesi’s

construction to include punctured surfaces, we make a small alteration to the com-

patibility relations – as suggested by Pylyavskyy in private communication. This

change is in keeping with the flavour of cluster algebras and only affects the com-

patibility relations; the underlying ring is unaffected by this. By considering the

orientable double cover we introduce anti-symmetric quivers; a key object that will,

in essence, act as our book keeper. We round off the chapter by unearthing a con-
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nection between LP mutation and double mutation of anti-symmetric quivers.

In Chapter 7, for reasons explained later on, we consider only unpunctured surfaces.

For this class of surface, to verify the quasi-cluster algebras exhibit an LP structure,

we first restrict our attention to the quasi-triangulations that lift to triangulations,

and we consider their adjacency quivers. By using the anti-symmetric property of

these quivers we show that, when mutating amongst this type of quasi-triangulation,

LP mutation agrees with quasi-cluster mutation. From here, through a case by case

check, we show LP and quasi-cluster mutation agree everywhere.

In Chapter 8 we incorporate punctured surfaces into the world of LP algebras by

considering laminations on the surface, with the view of defining the laminated

quasi-cluster algebra. To achieve this we imitate the approach taken by Fomin and

Thurston, and define laminated lambda lengths; a notion of length that takes into

account the lamination as well as the underlying geometry. We call upon anti-

symmetric quivers to help us compactly store the exchange relations between these

lengths, and furthermore, describe how these quivers change under flips. As an in-

termediary step, assuming certain reasonable conditions are satisfied, we guarantee

that LP mutation agrees with mutation in the laminated quasi-cluster algebra. We

conclude the chapter by creating laminations resembling principal coefficients; a class

of lamination which guarantees the corresponding laminated quasi-cluster algebra

has an LP structure.



Chapter 2

Cluster algebras

In 2002, Fomin and Zelevinsky introduced the notion of a cluster algebra [14]. This

section provides a brief description of cluster algebras of geometric type.

Let m,n be positive integers with m ≥ n. Furthermore, let F be the field of rational

functions in m independent variables. Fix a collection xn+1, . . . , xm of algebraically

independent variables in F . We define the coefficient ring to be ZP := Z[xn+1 . . . xm].

Definition 2.1 (Cluster algebra seed). A (cluster algebra) seed consists of a

pair, (x, B), where

• x = {x1, . . . xn} is a collection of variables in F which are algebraically inde-

pendent over ZP.

• B = (bjk) is an m × n integer matrix whose top n × n matrix is skew-

symmetrizable.

The variables in any seed are called cluster variables. The variables xn+1, . . . , xm

are called frozen variables.

Remark 1. What we have defined here is actually a cluster algebra seed of geo-

metric type. There is a more general notion of a cluster algebra seed involving an

extra consideration called coefficient variables - however, for our purposes, it is not

necessary to give the definition in full generality.
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Definition 2.2 (Mutation). Let i ∈ {1, . . . , n}. We define a new seed µi(x, B) :=

(x′, B′), where

• x′ = {x′1, . . . x′n} is defined by:

x′j =


x′j, if j 6= i,∏
bki>0

xbkik +
∏
bki<0

x−bkik

xi
, if j = i,

• B′ = (b′jk) is defined by:

b′jk =


−bjk, if j = i or k = i,

bjk + max(0,−bji)bik + max(0, bik)bji, otherwise.

Definition 2.3 (Cluster algebra). Fix an initial seed (x, B). If we label the initial

cluster variables of x from 1, . . . , n then we can consider the labelled n-regular tree Tn

generated by this seed through mutations. Each vertex in Tn has n incident vertices

labelled 1, . . . , n. Vertices represent seeds and the edges correspond to mutation. In

particular, the label of the edge indicates which direction the seed is being mutated

in.

Let X be the set of all cluster variables appearing in the seeds of Tn. A(x,B) := ZP[X ]

is the cluster algebra of the seed (x, B).

Theorem 2.4 (The Laurent phenomenon, [14]). Let A(x,B) be a cluster algebra.

Every element of A(x,B) is a Laurent polynomial, over ZP, in the initial cluster

variables of x.

2.1 Cluster algebras from surfaces

An important class of cluster algebras arises from the study of surfaces. This

connection to surfaces was established by Fomin, Shapiro and Thurston in [12],[13],

inspired by the earlier work of Fock and Goncharov in [10].
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Definition 2.5 (Bordered surface, Definition 2.1, [12]). Let S be a compact orient-

able 2-dimensional manifold. Fix a finite set M of marked points of S such that

each boundary component contains at least one marked point – marked points in

the interior of S are referred to as punctures. The tuple (S,M) is called an (ori-

entable) bordered surface. For technical reasons, regarding both existence of

triangulations, and uniqueness of flips of arcs in triangulations, we do not allow

(S,M) to be an unpunctured or once-punctured monogon; digon; triangle; once,

twice or thrice punctured sphere.

Definition 2.6. An ordinary arc of (S,M) is a simple curve in S connecting two

(not necessarily distinct) marked points of M , which is not homotopic to a boundary

arc or a marked point.

Definition 2.7 (Definition 7.1, [12]). A (tagged) arc γ is obtained from decorating

(’tagging’) an ordinary arc at each of its endpoints in one of two ways; plain or

notched. This tagging is required to satisfy the following conditions:

• An endpoint of γ lying on the boundary ∂S must receive a plain tagging.

• If the endpoints of γ coincide they must receive the same tagging.

Definition 2.8 (Definition 7.4, [12]). Let α and β be two arcs of (S,M). We say α

and β are compatible if and only if the following conditions are satisfied:

• There exist isotopic representatives of α and β that do not intersect in the

interior of S.

• Suppose the untagged versions of α and β do not coincide. If α and β share

an endpoint a then the ends of α and β at a must be tagged in the same way.

• Suppose the untagged versions of α and β do coincide. Then precisely one end

of α must be tagged in the same way as the corresponding end of β.
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Definition 2.9 (Definition 7.7, [12]). A (tagged) triangulation of (S,M) is a

maximal collection of pairwise compatible arcs of (S,M) containing no arcs that cut

out a once-punctured monogon.

Proposition 2.10 (Theorem 7.9, [12]). Let T be a triangulation of (S,M). Then

for any arc γ ∈ T there exists a unique arc γ′ of (S,M) such that γ′ 6= γ and

µγ(T ) := T \ {γ} ∪ γ′ is a triangulation. We call γ′ the flip of γ with respect to T .

We wish to assign a seed to each triangulation of (S,M). To do this it will be helpful

to introduce a different, but closely related, notion of a triangulation.

Definition 2.11 (Definition 2.6, [12]). An ideal triangulation of (S,M) is a

maximal collection of pairwise non-intersecting ordinary arcs of (S,M).

Remark 2. An ideal triangulation cuts (S,M) into triangles. However, the sides of

these triangles may not all be distinct; two sides of the same triangle may be glued

together, resulting in a self-folded triangle.

Remark 3. To each triangulation T of (S,M) we can associate an ideal triangulation

T ◦ by performing the following operations at each puncture p:

• if there are two or more endpoints of arcs in T receiving a notch at p, then

replace all these notches with plain taggings;

• if there is precisely one endpoint of an arc γ in T receiving a notch at p,

then replace γ with the (unique) arc enclosing γ and p in a once-punctured

monogon.

Definition 2.12 (Adjacency matrix, Definition 4.1, [12]). Let T be a triangulation,

and consider its associated ideal triangulation T ◦. We may label the arcs of T from

1, . . . , n – note this will also give us a canonical labelling of the arcs in T ◦. We define

a function, πT : {1, . . . , n} → {1, . . . , n}, on the labelling of the arcs in T as follows:

πT (i) =


j if i is the glued side of a self-folded triangle in T ◦, and j is the remaining side;

i otherwise.
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For each non-self-folded triangle ∆ in T ◦, as an intermediary step, define the matrix

B(T )∆ = (b∆
jk) by setting

b∆
jk =



1 if ∆ has sides πT (j) and πT (k),

and πT (k) follows πT (j) in a clockwise order;

−1 if ∆ has sides πT (j) and πT (k),

and πT (k) follows πT (j) in an anti-clockwise order;

0 otherwise

The (signed) adjacency matrix B(T ) = (bij) is then defined to be the following

summation, taken over all non-self-folded triangles ∆ in T ◦:

B(T ) :=
∑
∆
B(T )∆

Definition 2.13 (Surface cluster algebra, [12]). Let T be a triangulation of a

bordered surface (S,M). Consider the initial seed (x, B(T )), where x contains

a cluster variable for each arc in T , and B(T ) is the adjacency matrix defined in

Definition 2.12. From this seed, in view of Definition 2.3, we may define the cluster

algebra A(x,B(T )).

Proposition 2.14 (Proposition 4.10, [12]). Let T1 and T2 be two triangulations of a

bordered surface (S,M). Then A(x,B(T1)) ∼= A(x,B(T2)). We may therefore talk about

the cluster algebra A(S,M) of a bordered surface (S,M).

Theorem 2.15 (Theorem 6.1, [13]). Let (S,M) be a bordered surface. If (S,M) is

not a once punctured closed surface, then in the cluster algebra A(S,M), the following

correspondence holds:

A(S,M) (S,M)

Cluster variables ←→ Arcs

Clusters ←→ Triangulations

Mutation ←→ Flips of arcs
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Remark 4. A similar statement of Theorem 2.15 can be formulated for once punc-

tured closed surfaces. Namely, in this case, cluster variables will correspond to

plain arcs (or equivalently notched arcs), and clusters will therefore correspond to

triangulations consisting of only plain arcs (notched arcs).

In [13] they actually discovered a deeper connection than we have stated in Theorem

2.15. When endowing the surface with a hyperbolic metric, the cluster variables

can be seen to represent the lambda lengths of arcs. We provide a more detailed

description of this connection in Chapter 6.



Chapter 3

Dupont and Palesi’s quasi-cluster

algebras

This chapter recalls the work of Dupont and Palesi in [6].

Let S be a compact 2-dimensional manifold with boundary ∂S. Fix a set M of

marked points in ∂S, ensuring every boundary component is allocated at least one

marked point. The tuple (S,M) is called an (unpunctured) bordered surface. We

wish to exclude the cases where (S,M) does not admit any triangulation. As such,

we do not allow (S,M) to be a monogon, digon or triangle.

Definition 3.1. An arc is a simple curve in (S,M) connecting two (not necessarily

distinct) marked points.

Definition 3.2. A closed curve in S is said to be two-sided if it admits a regular

neighbourhood which is orientable. Otherwise, it is said to be one-sided.

Definition 3.3. A quasi-arc is either an arc or a simple one-sided closed curve in

the interior of S. Let A⊗(S,M) denote the set of quasi-arcs in (S,M) considered up

to isotopy.

It is well-known that a closed non-orientable surface is homeomorphic to the connec-

ted sum of k projective planes RP 2. Such a surface is said to have (non-orientable)
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genus k. Recall that the projective plane is homeomorphic to a hemisphere where

antipodal points on the boundary are identified. A cross-cap is a cylinder where

antipodal points on one of the boundary components are identified. We represent a

cross cap as shown in Figure 3.1.

Hence, a closed non-orientable surface of genus k is homeomorphic to a sphere where

k open disks are removed, and have been replaced with cross-caps. More generally,

a compact non-orientable surface of genus k, with boundary, is homeomorphic to a

sphere where more than k open disks are removed, and k of those open disks have

been replaced with cross-caps.

Figure 3.1: A picture of a cross-cap together with a one-sided closed
curve.

Definition 3.4. Two elements in A⊗(S,M) are called compatible if there exist

representatives in their respective isotopy classes that do not intersect in the interior

of S.

Definition 3.5. A quasi-triangulation of (S,M) is a maximal collection of mutu-

ally compatible arcs in A⊗(S,M). A quasi-triangulation is called a triangulation

if it consists only of arcs, i.e, there are no one-sided closed curves.

Proposition 3.6 (Proposition 3.4, [6]). Let T be a quasi-triangulation of (S,M).

Then for any γ ∈ T there exists a unique γ′ ∈ A⊗(S,M) such that γ 6= γ′ and

µγ(T ) := T \ {γ} ∪ {γ′} is a quasi-triangulation of (S,M).

Definition 3.7. µγ(T ) is called the quasi-mutation of T in the direction γ, and

γ′ is called the flip of γ with respect to T .

The flip graph of a bordered surface (S,M) is the graph with vertices corresponding

to (quasi) triangulations and edges corresponding to flips. It is well known that
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the flip graph of triangulations of (S,M) is connected. Moreover, it can be seen

that every one-sided closed curve, in a quasi-triangulation T , is bounded by an arc

enclosing a Möbius strip with one marked point on the boundary. Therefore, if we

perform a quasi-flip at each one-sided closed curve in T we arrive at a triangulation.

As such, we get the following proposition.

Proposition 3.8 (Proposition 3.12, [6]). The flip graph of quasi-triangulations of

(S,M) is connected.

Corollary 3.9 (Proposition 3.12, [6]). The number of quasi-arcs in a quasi-triangulation

of (S,M) is an invariant of (S,M).

Definition 3.10. The quasi-arc complex Arc(S,M) is the simplicial complex

on the ground set A⊗(S,M) such that k-simplices correspond to sets of k mutually

compatible quasi-arcs. In particular, the vertices in Arc(S,M) are the elements of

A⊗(S,M) and the maximum simplices are the quasi-triangulations.

Together, Corollary 3.9 and Proposition 3.6 prove the following proposition.

Proposition 3.11. Arc(S,M) is a pseudo-manifold. That is, each maximal sim-

plex in Arc(S,M) has the same cardinality, and each simplex of co-dimension 1 is

contained in precisely two maximal simplices.

Theorem 3.12 (Theorem 7.2, [6]). Given a non-orientable bordered surface (S,M)

then Arc(S,M) is finite if and only if (S,M) is Mn, the Möbius strip with n marked

points on the boundary.

Moreover, Arc(Mn) has some seemingly nice properties. Figure 3.2 shows that for

n ∈ {1, 2, 3}, Arc(Mn) is polytopal.
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Figure 3.2: The quasi-arc complexes of M1,M2 and M3.



Chapter 4

Sphericity of finite type quasi-arc

complexes

This chapter contains the material of the author’s article [35].

4.1 Shellability

In this section we recall some basic facts about shellability, and introduce the fun-

damental ideas used throughout this chapter. These well known concepts can be

found in [1], [5], [31].

4.1.1 Definition of shellability and basic facts.

Definition 4.1. An n-dimensional simplicial complex is called pure if its maximal

simplices all have dimension n.

Definition 4.2. Let ∆ be a finite (or countably infinite) simplicial complex. An

ordering C1, C2 . . . of the maximal simplices of ∆ is a shelling if the complex

Bk :=
(⋃k−1

i=1 Ci
)
∩ Ck is pure and (dim(Ck)− 1)-dimensional for all k ≥ 2.
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Definition 4.3. The simplicial join ∆1 ∗∆2 of two simplicial complexes ∆1 and

∆2 on disjoint ground sets has its faces being sets of the form σ1 ∪ σ2 where σ1 ∈ ∆1

and σ2 ∈ ∆2.

The following proposition is a simple and well-known result. For instance, see [31].

Proposition 4.4. The simplicial join ∆1∗∆2 is shellable if and only if the simplicial

complexes ∆1,∆2 are both shellable.

In particular, Proposition 4.4 tells us that the cone over a shellable complex is itself

shellable.

Proposition 4.5. If ∆ = Arc(S,M) then finding a shelling for ∆ is equivalent to

ordering the set of triangulations Ti of (S,M) so that ∀k and ∀j < k ∃i < k such

that Ti is related to Tk by a mutation and Tj ∩ Tk ⊆ Ti ∩ Tk.

Proof. Note that triangulations Ti of S correspond to maximal simplices in Arc(S,M)

and that partial triangulations Ti ∩ Tj correspond to simplices of Arc(S). Note that

Ti ∩ Tk is a (dim(Tk)− 1)-simplex iff Ti is a mutation away from Tk. Furthermore,

since Bk :=
(⋃k−1

i=1 Ti
)
∩Tk must be pure and (dim(Tk)−1)-dimensional for all k ≥ 2,

it follows that Bk is the union of (dim(Tk) − 1)-simplices. So we must have that

∀j < k ∃i < k such that Ti is a mutation away from Tk and the partial triangulation

Tj ∩ Tk is a face of Ti ∩ Tk (i.e Tj ∩ Tk ⊆ Ti ∩ Tk).

Proposition 4.5 motivates Definition 4.6.

Definition 4.6. Given a subcollection of triangulations Γ of a surface S call Γ

shellable if it admits an ordering of Γ such that ∀k and ∀j < k ∃i < k such that Ti

is related to Tk by a mutation and Tj ∩ Tk ⊆ Ti ∩ Tk.

Definition 4.7. We say two sets of triangulations A, B are equivalent if their

induced simplicial complexes are isomorphic, up to taking cones. If A and B are

equivalent we write A ≡ B.
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Remark 5. Let ∆A denote the induced simplicial complex of a set of triangulations

A. Note that taking a cone over ∆A can be thought of as disjointly adding one

particular arc to every triangulation in A.

The following proposition is just a special case of Proposition 4.4.

Proposition 4.8. If A ≡ B then A is shellable if and only if B is shellable.

Notation:

•
n

list
i=1

xi is the ordering x1, x2, . . . , xn of the set {xi|1 ≤ i ≤ n}.

• list
i∈I

xi is any ordering of the set {xi|i ∈ I}.

• Let Cn,0 denote the cylinder with n marked points on one boundary component

and no marked points on the other. Fix an orientation on the boundary

component containing marked points and cyclically label them 1, . . . , n. Let

[i, j] denote the boundary segment i→ j.

Note that Cn,0 arises as the partial triangulation of Mn consisting of a one-sided

closed curve. We choose the canonical way of defining arcs on Cn,0.

• Let γ be an arc of Cn,0 with endpoints i, j. If γ encloses a cylinder with

boundary [j, i] ∪ γ then γ :=< i, j >. If γ encloses a cylinder with boundary

[i, j] ∪ γ then γ :=< j, i >, see Figure 4.1.

γ =< i, j > γ =< j, i >

γ

γ
i

j

orientation

i

j

orientation

Figure 4.1: Notation for an arc γ of Cn,0
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The following theorem provides a very useful application of shellability.

Theorem 4.9 (Danaraj and Klee,[5]). Let ∆ be a simplicial complex of dimension

n. If ∆ is a shellable pseudo-manifold without boundary, then it is a PL n-sphere.

4.1.2 Shellability of Arc(Cn,0).

The following proposition will help to prove the shellability of Arc(Mn), and is

introduced now to cement key ideas.

Proposition 4.10. Arc(Cn,0) is shellable for n ≥ 1.

Proof. Consider the collection of triangulations T (C1
n,0) ⊆ T (Cn,0) containing a loop

at vertex 1. Note that by cutting along the loop we get the (n+ 1)-gon (and a copy

of C1,0) for n ≥ 2. We will prove by induction on n that T (C1
n,0) is shellable. For

n = 1 the set T (C1
1,0) = T (C1,0) is trivially shellable. For n = 2 if we cut along the

loop we get the triangle and C1,0 which are both trivially shellable, so indeed T (C1
2,0)

is shellable by Proposition 4.4.

Let Block(i) be the set consisting of all triangulations in T (C1
n,0) containing the

triangle with vertices (1, 1, i) for some i ∈ [2, n], see Figure 4.2.

Note that Block(i) can be equivalently viewed as the disjoint union of triangulations

of the i-gon and the (n− i+ 2)-gon. Since T (C1
k,0) can be viewed as triangulations

of the (k + 1)-gon, then if we assume T (C1
k,0) is shellable for all k < n, Proposition

4.4 tells us that Block(i) is shellable ∀i ∈ [2, n]. Let S(Block(i)) denote a shelling of

Block(i).

1

i

Figure 4.2: Block(i) consists of all triangulations of this partial tri-
angulation.
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Claim 1. The ordering S(C1
n,0) :=

2
list
i=n

S(Block(i)) is a shelling for T (C1
n,0).

S(Block(2)), . . . . . . ,,S(Block(n)) S(Block(n− 1))

Proof of Claim 1. Let S precede T in the ordering S(C1
n,0). Then T ∈ Block(k)

and S ∈ Block(j) for j ≥ k. If j = k then, because S(Block(k)) is a shelling

for Block(k), there exists γ ∈ T such that µγ(T ) precedes T in the ordering, and

T ∩ S ⊆ T ∩ µγ(T ). We may therefore assume j > k. In this case, the arc

γ =< k, 1 >∈ T is not compatible with the arc < 1, j >∈ S, so γ /∈ S. Hence

T ∩S ⊆ T ∩µγ(T ). By Proposition 4.5 all that remains to show is that µγ(T ) occurs

before T in the ordering.

Note that we will have a triangle in T with vertices (1, k, x) where x ∈ [n, k + 1].

And so µγ(T ) ∈ Block(x). Since x > k, µγ(T ) does precede T in the ordering. See

Figure 4.3. Hence T (C1
n,0) is shellable.

j

1

k

1

k

1

k

x xγ µγ

T ∈ Block(k) S ∈ Block(j) µγ(T ) ∈ Block(x)

Figure 4.3

End of proof of Claim 1.

Similarly we can shell T (Ci
n,0) in the same way ∀i ∈ [1, n]. Denote a shelling by

S(Ci
n,0). Combining these S(Ci

n,0), as described in Claim 2 below, we get a shelling

for Arc(Cn,0), which completes the proof of the lemma.

Claim 2. S(Arc(Cn,0)) :=
n

list
i=1

S(Ci
n,0) is a shelling for Arc(Cn,0)
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Proof. Let S precede T in the ordering S(Arc(Cn,0)). Then T ∈ S(Ck
n,0) and

S ∈ S(Cj
n,0) for 1 ≤ j ≤ k. Since S(Ck

n,0) is a shelling we may assume j < k.

There will be a triangle in T with vertices (k, k, x) for some x ∈ [1, n]\{k}.

If x ∈ [j, k − 1] then mutate the loop at k to give T ′ ∈ S(Cx
n,0). T ′ occurs before T

in the ordering because x ∈ [j, k − 1]. Moreover since the loop at k cannot occur in

S then T ∩ S ⊆ T ∩ T ′. See Figure 4.4.

S ∈ T (Cjn,0) µγ(T ) ∈ T (Cxn,0)T ∈ T (Ckn,0)
k

x
γ

1

j
1

j

k

x

1

j

Figure 4.4: Case when x ∈ [j, k − 1]

If x ∈ [k + 1, j − 1] then the arc γ =< x, k > in T is not compatible with the loop

at j in S. So T ∩ S ⊆ T ∩ µγ(T ). Moreover the way we constructed the shelling

S(Ck
n,0) in Claim 1 means that µγ(T ) precedes T in the ordering. See Figure 4.5.

T ∈ T (Ckn,0) S ∈ T (Cjn,0)
k

x

y
µγ

µγ(T ) ∈ T (Ckn,0)
k

x

y
γ

j

k

x

Figure 4.5: Case when x ∈ [k + 1, j − 1]

Corollary 4.11. Arc(n-gon) is shellable for n ≥ 3

Proof. Follows immediately from Claim 1.
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Applying Theorem 4.9 we rediscover the classical result of Harer, [21].

Corollary 4.12. Arc(Cn,0) and Arc(n-gon) are PL-spheres of dimension n− 2 and

n− 4, respectively.

4.2 Shellability of Arc(Mn)

In Section 4.1 we achieved shellability of a complex by grouping facets into blocks

and finding a ‘shelling order’ in terms of these blocks. The task was then simplified

to finding a shelling of the blocks themselves. Here we essentially follow the same

strategy twice. However, on the second iteration of the process we require a specific

shelling of the blocks since in general an arbitrary shelling would not suffice.

Definition 4.13. Let T (M◦n) ⊆ T (Mn) consist of all triangulations of Mn (i.e, no

quasi-triangulations containing a one-sided curve).

Definition 4.14. Let γ be an arc in T ∈ T (M◦n). Call γ a cross-cap arc (c-arc) if

Mn \ {γ} is orientable. (Informally, a c-arc is an arc that necessarily passes through

the cross-cap). Let (i, j) denote a c-arc with endpoints i and j.

.

Definition 4.15. Call a triangulation T ∈ T (M◦n) a cross-cap triangulation

(c-triangulation) if every arc in T is a c-arc. Let T (M⊗n ) ⊆ T (M◦n) consist of all

c-triangulations.

Definition 4.16. Let γ be an arc in T ∈ T (M◦n) that is not a c-arc. Call γ a

bounding arc (b-arc) if it mutates to a c-arc.
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The c-arc (i, j) A c-triangulation
ofM4

γ

γ is a b-arc

i

j

Figure 4.6

4.2.1 Reducing the problem to c-triangulations.

Lemma 4.17. If T (M⊗n ) is shellable then so is T (M◦n).

Proof. Consider I := {i1, . . . , ik} ⊆ [1, n]. Let Γ(k)
I consist of all triangulations

T ∈ T (M◦n) such that there is a c-arc in T with endpoint j if and only if j ∈ I. Note

that this condition implies the existence of an arc or boundary segment < im, im+1 >

(where ik+1 := i1) in every triangulation T ∈ Γ(k)
I ∀m ∈ [1, k].

Shaded area
≡ T (M⊗

k )

i1

i2

ik

ik−1

≡ T (m− gon)
for varying m

Figure 4.7: Γ(k)
I

By assumption T (M⊗n ) is shellable, and by Corollary 4.11 T (m-gon) is also shellable.

Hence Γ(k)
I is the product of shellable collections of triangulations, and so is shellable

by Proposition 4.4. Denote this shelling by S(Γ(k)
I ). Below, Claim 3 shows how a

combination of these S(Γ(k)
I ) produce a shelling for T (M◦n). This then completes the

proof of the lemma.

Claim 3. Let Block(k) := list
I∈[1,n](k)

S(Γ(k)
I ). Then

1
list
k=n

Block(k) is a shelling for T (M◦n).
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Proof. Let S precede T in the ordering. Then S ∈ Block(j) and T ∈ Block(k) where

j ≥ k. In particular, T ∈ S(Γ(k)
I1 ) and S ∈ S(Γ(j)

I2 ) for some I1, I2 ∈ P([1, n]) where

|I1| ≤ |I2|. Since S(Γ(k)
I ) is a shelling we may assume I1 6= I2.

Suppose that every b-arc in T is also an arc in S. Then I2 ⊆ I1, and since |I1| ≤ |I2|

this implies I1 = I2. So we may assume there is at least one b-arc γ ∈ T that is

not an arc in S. Since γ /∈ S, T ∩ S ⊆ T ∩ µγ(T ). Moreover, since γ is a b-arc,

µγ(T ) ∈ Block(k + 1). Hence µγ(T ) precedes T in the ordering, see Figure 4.8.

i′1
i′2i′j

i′j−1

T ∈ Γ
(k)
I1 S ∈ Γ

(j)
I2

µγ(T ) ∈ Γ
(k+1)
I1∪{x}

γ

i1

i2

ik
ik−1

x

µγ

i1

i2

ik
ik−1

x

Figure 4.8

The idea behind Lemma 4.17 is that we are decomposing T (M◦n) into blocks, and

ordering these blocks. The ordering is chosen in such a way that if we manage to

individually shell the blocks themselves, we will have a shelling of T (M◦n). Figure

4.9 shows the block structure of T (M◦3).

In particular, we realise that to shell a block it is sufficient to find a shelling of

T (M⊗n ). We will split this into two cases: n even and n odd.
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Block(3) = Γ3
{1,2,3} Block(2) = Γ2

{1,2} ∪ Γ2
{2,3} ∪ Γ2

{1,3} Block(1) = Γ1
{1} ∪ Γ1

{2} ∪ Γ1
{3}

Figure 4.9: Block structure of T (M◦3)

4.2.2 Shellability of T (M⊗n ) for even n.

Let Dn
{(1,n2 +1)} consist of all triangulations of T (M⊗n ) containing the c-arc (1, n2 + 1)

but containing no other c-arcs (i, n2 + i) ∀i ∈ [2, n]. See Figure 4.10.

1

2

3

4

1

2

3

4

Example of a triangulation
in D4

{(1,3)}

Example of a triangulation
not in D4

{(1,3)}

Figure 4.10

Definition 4.18. Let T ∈ Dn
{(1,n2 +1)} and γ a c-arc in T . γ = (i, j) for some

i ∈ [1, 1 + n
2 ] and j ∈ [1 + n

2 , 1]. Define the length of γ as follows:

• If i = j = 1, l(γ) := n+ 1.

• Otherwise, l(γ) := |[i, j]|.
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i

j

1

n
2 + 1

γ

Figure 4.11: If i 6= 1 and j 6= 1 then the number of marked
points in the shaded tube equals l(γ).

Definition 4.19. Let X n
1 be the partial triangulation of Mn consisting of the c-arcs

(1, n2 + 1), (2, n2 + 1), (n, n2 + 1). Additionally, let T (X n
1 ) denote the triangulations in

Dn
{(1,n2 +1)} containing the c-arcs (1, n2 + 1), (2, n2 + 1), (n, n2 + 1).

Similarly, let X n
2 be the partial triangulation of Mn consisting of the c-arcs (1, n2 +

1), (1, n2 ), (n, n2 + 2). Let T (X n
1 ) denote the triangulations in Dn

{(1,n2 +1)} containing

the c-arcs (1, n2 + 1), (2, n2 + 1), (n, n2 + 1). See Figure 4.12.

1 2

n
2 + 1

n 1

n
2n

2 + 1
n
2 + 2

Xn
1 Xn

2

Figure 4.12

Lemma 4.20. Dn
{(1,n2 +1)} = T (X n

1 )⊔T (X n
2 ). Moreover, for any c-arc γ 6= (1, n2 + 1)

in T we have the following:

• l(γ) ≤ n
2 if T ∈ T (X n

1 ).

• l(γ) ≥ n
2 + 2 if T ∈ T (X n

2 ).

Proof. A triangulation T in Dn
{(1,n2 +1)} will contain either the c-arc (2, n2 + 1) or the
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c-arc (1, n2 + 2).

Assume the c-arc (2, n2 + 1) is in T . We will show, by induction on i, the c-arc of

maximal length in T with endpoint i ∈ [2, n2 + 1] must be the c-arc (i, x) where

x ∈ [n2 + 1, n2 + i− 1].

Let γ be the c-arc in T of maximal length with endpoint 2. Let j be the other end-

point of γ and suppose for a contradiction j ∈ [n2 + 2, n]. Since (2, n2 + 1) ∈ T then,

as T is a c-triangulation, (2, x) ∈ T ∀x ∈ [n2 + 1, j]. In particular β := (2, n2 + 2) ∈ T

- which contradicts T ∈ Dn
{(1,n2 +1)}. See Figure 4.13.

1 2

n
2 + 1

n

j

β

γ

n
2 + 2

Figure 4.13

By induction, the c-arc α of maximal length in T with endpoint i − 1 is the c-arc

(i − 1, x) where x ∈ [n2 + 1, n2 + i − 2]. Let γ be the c-arc in T of maximal length

with endpoint i. Let j be the other endpoint of γ and suppose j ∈ [n2 + i, n]. But by

the maximality of α there will be a c-arc (i, y) ∀y ∈ [x, j]. In particular there will

be a c-arc β := (i, n2 + i). See Figure 4.14.



4.2. Shellability of Arc(Mn) 29

1

n
2 + 1

j

γ

x

α

n
2 + i

β i− 1

i

Figure 4.14

If we supposed (1, n2 + 2) was an arc in T , then an analogous argument shows that

T ∈ T (X2).

Corollary 4.21. Let S ∈ T (X n
1 ) and T ∈ T (X n

2 ) then S ∩ T = {(1, n2 + 1)}

Proof. It follows from the fact that, excluding the c-arc (1, n2 + 1), the maximal

length of any c-arc in X n
1 is less than or equal to n

2 , and the minimal length of any

c-arc in X n
2 is greater than or equal to n

2 + 2.

Corollary 4.22. The triangulation Tmax in Figure 4.15 is the unique triangulation

in T (X n
1 ) such that ∑

γ∈Tmax
l(γ) is maximal. The triangulation Tmin is the unique

triangulation in T (X n
2 ) such that ∑

γ∈Tmax
l(γ) is minimal. More explicitly,

Tmax := {(1, n2 + 1)} ∪ {(i, n2 + i− 1)|i ∈ [2, n2 + 1]} ∪ {(i, n2 + i− 2)|i ∈ [3, n2 + 1]}.

Tmin := {(1, n2 + 1)} ∪ {(i, n2 + i+ 1)|i ∈ [1, n2 ]} ∪ {(i, n2 + i+ 2)|i ∈ [1, n2 − 1]}.

Proof. Consider the partial triangulation P of X n
1 consisting of all the c-arcs of max-

imal length. Namely the c-arcs (i, n2 +i−1) ∀i ∈ [2, n2 +1]. P cuts Mn into (2 triangles

and) quadrilaterals bounded by the two boundary segments [i, i+ 1], [n2 + i−1, n2 + i]

and the two c-arcs (i, n2 + i− 1), (i+ 1, n2 + i) ∀i ∈ [3, n2 ]. Let T be a triangulation

of P such that T ∈ T (X n
1 ). Notice that (i, n2 + i) /∈ T by definition of Dn

{(1,n2 +1)},

hence (i + 1, n2 + i − 1) ∈ T ∀i ∈ [3, n2 + 1]} and so T = Tmax. Moreover, since
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l(i+ 1, n2 + i− 1) = l(i, n2 + i− 1)− 1 then T is the unique triangulation in T (X n
1 )

such that ∑
γ∈T

l(γ) is maximal.

Analogously we get the result regarding unique minimality of Tmin.

1 2

n
2 + 1

n

Tmax Tmin

n
2 + 1

n
2 + 2 n

2

n
2 − 1

n
2 + 3

n
2 + 2 n

2

3n− 1

n 1
2

Figure 4.15

Definition 4.23. Call a c-arc (i, n2 + i) of Mn a diagonal arc.

Definition 4.24. Consider a c-arc γ in a triangulation of X n
1 . If l(γ) = n

2 then call

γ a max arc.

Definition 4.25. Consider a c-arc γ in a triangulation of X n
2 . If l(γ) = n

2 + 2 then

call γ a min arc.

Consider a partial triangulation of X n
1 containing two max arcs. Cutting along

these max arcs we will be left with two regions. Let R be the region that does not

contain the diagonal arc (1, n2 + 1). Note R will contain 2k marked points for some

k ∈ {2, . . . , n2}.

Lemma 4.26. The set of triangulations of R such that no max arcs occur in R is

equivalent to T (X 2(k−1)
1 ).

Proof. Collapse the quadrilateral (1, 2, n2 + 1, n) to a c-arc and relabel marked points

as shown in Figure 4.16.
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R
i

j

n
2 + i− 1

n
2 + j − 1

i− 1

j − 1

(n2 − 1) + (j − 1)

(n2 − 1) + (i− 1)

1 2

n
2 + 1

n 1

(n2 − 1) + 1

R′Collapse quadrilateral
and relabel marked

points.

Figure 4.16

Max arcs in R correspond to diagonal arcs in R′. Furthermore, up to a relabelling

of vertices, triangulating R′ so that no diagonal arcs occur in the triangulation is

precisely triangulating X 2(k−1)
1 so that no diagonal arcs occur.

Remark 6. Using induction we realise that Lemma 4.26 tells us that Dn
{(1,n2 +1)} has

the same flip structure as the set of all Dyck paths of length n − 2. In particular,

triangulations in Dn
{(1,n2 +1)} correspond to Dyck paths, and arcs appearing in those

triangulations correspond to nodes in the Dyck lattice. This correspondence is

indicated in Figure 4.17 and is best viewed in colour.

Definition 4.27. Let i ∈ {1, 2}. Call an arc γ in T ∈ T (X n
i ) X -mutable if

µγ(T ) ∈ T (X n
i ).

Definition 4.28. Let γ be an X -mutable arc in a triangulation T ∈ Dn
{(1,n2 +1)},

and let γ′ be the arc γ mutates to. Call γ upper-mutable if l(γ′) > l(γ) and

lower-mutable if l(γ′) < l(γ).

Definition 4.29. Call a shelling S of T (X n
1 ) (T (X n

2 )) an upper (lower) shelling

if for any triangulation T ∈ S and any upper (lower) mutable arc γ in T , µγ(T )

precedes T in the ordering.

Definition 4.30. Let I be the set of all max arcs of Dn
{(1,n2 +1)}, excluding the max

arcs α1 := (1, n2 + 1), α2 := (n2 + 1, n).

Lemma 4.31. If T ∈ T (X n
1 ) does not contain a max arc m ∈ I then there exists an

upper mutable arc γ strictly contained between the endpoints of m, see Figure 4.18.
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1

n
2 + 1

i

n
2 + i− 1

m γ

Figure 4.18

Proof. If n ∈ {2, 4} then I = ∅ and there is nothing to prove. So assume n ≥ 6.

Suppose m = (i, n2 + i − 1) ∈ I is not in the triangulation T . We will show there

exists a c-arc strictly contained between the endpoints of m.

Let (i, x) be the c-arc of maximum length in T connected to i. Since m 6= (i, x) then

x ∈ [n2 + 1, n2 + i− 2]. Moreover, by maximality of (i, x), (i + 1, x) ∈ T . So indeed

there is a c-arc in T strictly contained between the endpoints of m, see Figure 4.19.

1

n
2 + 1

i

i+ 1

x

n
2 + i− 1

α

β

Figure 4.19

Of the c-arcs that are strictly contained between the endpoints of m, let γ = (j1, j2)

be an arc of minimum length. We will show that γ is upper mutable.

By minimality of γ the c-arc (j1, j2− 1) is not in T . Hence the c-arc (j1− 1, j2) must

be in T . Likewise the c-arc (j1, j2 + 1) ∈ T . So γ is contained in the quadrilateral

(j1, j1 − 1, j2, j2 + 1). Hence mutating γ gives γ′ = (j1 − 1, j2 + 1). l(γ) < l(γ′) so γ

is indeed upper mutable, see Figure 4.20.
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Figure 4.20

Lemma 4.32. There exists an upper shelling for T (X n
1 ). Denote this by S(X n

1 ).

Proof. Let Ψ{γ1,...,γk} be the collection of triangulations in T (X n
1 ) containing the

max arcs γ1, . . . , γk, α1, α2 and no other max arcs. By Lemma 4.26 we know that

Ψ{γ1,...,γk} ≡
∏j
i=1 T(Xmi

1 ).

Moreover, by induction on the trivial base case when n = 2, and using Proposition

4.4, we get that there is an upper shelling for Ψ{γ1,...,γk}. Denote this shelling by

S(Ψ{γ1,...,γk}). Merging these S(Ψ{γ1,...,γk}) together, as shown in Claim 4 below, we

get a shelling for T (X n
1 ), and hence completes the proof of the lemma.

Claim 4. Let Block(k) := list
J∈I(k)

S(ΨJ). Then
0

list
k=n

2−2
Block(k) is an upper shelling

for T (X n
1 ).

Proof. Let T, S ∈ T (X n
1 ) and suppose S precedes T in the proposed ordering. Then

T ∈ ΨJ1 and S ∈ ΨJ2 where J1, J2 ∈ P([1, n]) and |J1| ≤ |J2|. W.l.o.g. we may

assume J1 6= J2 since by induction S(ΨJ1) is an upper shelling.

As |J1| ≤ |J2| and J1 6= J2 there is a max arc m in S that is not in T . By Lemma

4.31 there is an upper mutable arc γ in T strictly contained between the endpoints
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of m. Moreover γ and m are not compatible so S ∩ T ⊆ µγ(T ) ∩ T . And µγ(T )

precedes T in the ordering because of the upper shelling S(ΨJ1).

An analogous argument proves the following lemma.

Lemma 4.33. There exists a lower shelling for T (X n
2 ). Denote this by S(X n

2 ).

Definition 4.34. Call a c-arc γ in a triangulation T ∈ Dn
{(1,n2 +1)} special mutable

if any of the following is true:

• T ∈ T (X n
1 ) and γ is upper mutable.

• T ∈ T (X n
2 ) and γ is lower mutable.

• γ mutates to a diagonal c-arc.

Lemma 4.35. For any T ∈ T (X n
1 ) \ {Tmax}, Tmax is connected to T by a sequence

of lower mutations.

Proof. By Lemma 4.31 we can keep performing mutations on upper mutable arcs

until we reach a triangulation containing every max arc. By Corollary 4.22 the only

triangulation in T (X n
1 ) that contains every max arc is Tmax. Hence T is connected

to Tmax by a sequence of upper mutations. Equivalently, Tmax is connected to T by

a sequence of lower mutations.

Lemma 4.36. Let T ∈ Dn
{(1,n2 +1)} and let PT be the partial triangulation of Mn

consisting of all the special mutable arcs in T . Then any triangulation of PT cannot

contain the diagonal c-arc (i, n2 + i) ∀i ∈ {2, . . . , n2}.

Proof. Assume T ∈ T (X n
1 ). An analogous argument works if T ∈ T (X n

2 ). We prove

the lemma via induction on the upper shelling order of T (X n
1 ).
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The first triangulation in the upper shelling ordering is Tmax. The special mutable

arcs in Tmax are (i, n2 + i − 2) ∀i ∈ [3, n2 + 1]. However, the c-arc (i, n2 + i − 2) is

not compatible with the diagonal c-arc (i − 1, n2 + i − 1). And so ranging i over

3, . . . , n2 + 1 proves the base inductive case.

Let γ be a lower mutable arc in a triangulation T ∈ T (X n
1 ). By Lemma 4.35, to

prove the lemma it suffices to show that the special mutable arcs in µγ(T ) prevent

the same diagonal c-arcs as the special mutable arcs in T . Let β1, β2 be the c-arcs

containing γ in a quadrilateral. See Figure 4.21.

γ

β1
β2

1

n
2
+ 1

Figure 4.21

The arcs β1 and β2 may be special mutable in T but in µγ(T ) they definitely won’t

be. The implication of this is that β1 and β2 may be c-arcs in PT , and prevent certain

diagonal arcs, but β1, β2 /∈ Pµγ(T ) so µγ needs to make up this difference. Indeed, it

does make up the difference as the diagonal arcs not compatible with either β1 or

β2 are precisely the diagonal arcs not compatible with µγ.

Lemma 4.37. In each c-triangulation T of Mn there is at least one diagonal arc.

Proof. Let us assume, for a contradiction, that there is no diagonal arc in T . Without

loss of generality, we may assume that the c-arc connected to 1, of maximum length,

is γ = (1, j1) for some j1 ∈ [1, n2 ]. (Otherwise just flip the picture.)
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Let γ2 = (2, j2) be the c-arc of maximum length in T that is connected to 2. If j2 >
n
2

then by maximality of γ1 there is a c-arc (2, n2 ). Hence, j2 ∈ [j1,
n
2 + 1]. Inductive

reasoning shows that the c-arc connected to j1 − 1 in T , of maximum length, is

γj−1 = (j − 1, x) for some x ∈ [j, n2 + j1 − 2]. However, then by the maximality of

γj−1 we must have (j1,
n
2 + j1) ∈ T . This gives a contradiction, and so the lemma is

proved.

Lemma 4.38. T (M⊗n ) is shellable for even n.

Proof. Let K be the collection of diagonal c-arcs of Mn. Consider I = {γ1, . . . , γk} ⊆

K and let Dn
I consist of all triangulations of T (M⊗n ) containing every diagonal c-arcs

in I, and no diagonal c-arcs in K \ I. The set of c-triangulations T (R) of a region R

cut out by two diagonal c-arcs, so that no other diagonal c-arcs occur in the region,

is equivalent to Dm
{(1,m2 +1)} for some m ∈ [2, n− 2]. See Figure 4.22.

i

i+ kn
2 + i

n
2 + i+ k

R R′

1

k + 1

2k

Collapse and
relabel.

Figure 4.22: T (R) ≡ T (R′) = D2k
{(1,k+1)}

Choose
2

list
i=1

S(Xm
i ) to be the ordering of Dm

{(1,m2 +1)}. Take the disjoint union of these

orderings, over all the regions cut out by diagonal c-arcs in I, to get an ordering

of Dn
I . Denote this ordering by O(Dn

I ). Below, Claim 5 shows that unifying these

orderings produces a shelling of T (M⊗n ), and this completes the proof of the lemma.

Claim 5. Let Block(k) := list
I∈K(k)

O(Dn
I ). Then

1
list
k=n

2

Block(k) is a shelling for T (M⊗n ).
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Proof. Let T, S ∈ T (M⊗n ) and suppose S precedes T in the ordering. Then T ∈

O(Dn
I1) and S ∈ O(Dn

I2) for some I1, I2 ∈ P(K) where |I1| ≤ |I2|.

If there is a region R in T that contains a special mutable arc γ, such that γ is not

an arc in S, then µγ(T ) precedes T in the ordering and S ∩ T ⊆ µγ(T ) ∩ T .

So suppose that for every region R of T all special mutable arcs in that region are

also arcs in S. Then by Lemma 4.36 I2 ⊆ I1. Since |I1| ≤ |I2| we must have I1 = I2.

If O(Dn
I ) was a shelling for Dn

I then the proof would be finished. However, in general,

it is not. To understand how we should proceed let us consider Dn
{(1,n2 +1)}.

By definition, O(Dn
{(1,n2 +1)}) =

2
list
i=1

S(X n
i ). Let T be the first triangulation of S(X2)

and let S ∈ S(X1). Corollary 4.21 tells us that the only arc T and S share in

common is the diagonal c-arc (1, n2 +1). If n = 2 then O(D2
{(1,2)}) = S, T is a shelling

for Dn
{(1,2)}. However, if n ≥ 4 then there are at least 4 arcs in S and T . Hence,

µγ(T ) /∈ S(X n
1 ) for any arc γ in T , since µγ(T ) and S can share at most two arcs in

common.

However, as n ≥ 4 the first triangulation of S(X n
2 ) contains (at least one) arc γ that

mutates to a diagonal c-arc. And so µγ(T ) contains more diagonal c-arcs than T .

Hence µγ(T ) precedes T in the overall ordering for T (M⊗n ).

4.2.3 Shellability of T (M⊗n ) for odd n.

In the even case diagonal arcs were a key ingredient in the shelling of T (M⊗n ). We

will see ’diagonal triangles’ play the same role in the odd case. For the duration of

this section we fix n = 2k + 1.
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Definition 4.39. A triangle in Mn comprising of two c-arcs (i, i+ k), (i, i+ k + 1)

and the boundary segment (i+ k, i+ k + 1) for some i ∈ [1, n] is called a diagonal

triangle (d-triangle). Additionally, call i the special vertex of the d-triangle.

Definition 4.40. Let Yn be the partial triangulation of Mn containing the d-triangle

(k + 1, 2k + 1, 1). And let T (Yn) ⊆ T (M⊗n ) consist of all c-triangulations of Mn

containing the d-triangle (k+ 1, 2k+ 1, 1), and no other d-triangles. See Figure 4.23.

1

k + 1

n = 2k + 1

Yn

Figure 4.23

Definition 4.41. Let T ∈ T (Yn) and γ a c-arc in T . γ = (i, j) for some i ∈ [1, k+1]

and j ∈ [k + 1, n]. Define the length of γ as l(γ) := j − i+ 1, see Figure 4.24.

i

j

γ

1

k + 1

n = 2k + 1

Figure 4.24: ’Number of marked points in shaded tube’ = l(γ).

Lemma 4.42. The max length of any c-arc in T ∈ Yn is k + 1.

Proof. Given T ∈ T (Yn) we will prove by induction on i ∈ [1, k+ 1] that there is no

c-arc in T , with endpoint k + i, of length greater than k + 1. For i = 1 this trivially

holds. Now assume the statement is true for i. Then there is a c-arc γ = (x, k + i)

in T where x ∈ [i, k+ 1]. But the c-arc of maximum length, with endpoint k+ i+ 1,

that is compatible with γ is β = (x, k + i + 1). If x ∈ [i + 1, k + 1] then indeed
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l(β) ≤ k+ 1. If x = i then we have a d-triangle (i, k+ i, k+ i+ 1) with special vertex

i, which is forbidden. So indeed l(β) ≤ k + 1.

Lemma 4.43. T (Yn) ≡ T (X n+1
1 ). As such, T (X n+1

1 ) induces an upper shelling of

T (Yn). Denote this upper shelling by S(Yn).

Proof. Add a marked point to the d-triangle (k + 1, 2k + 1, 1) in Yn and relabel the

marked points. Adding the c-arc (1, k + 2) we get X n+1
1 . Lemma 4.42 tells us the

maximum length of an arc in T ∈ T (Yn) is k+ 1. And since the length of a max arc

in T (X n+1
1 ) is also k + 1 then T (Yn) ≡ T (X n+1

1 ). See Figure 4.25.

1

k + 1

n = 2k + 1 2

(k + 1) + 1

2k + 2
1

Add marked point,
diagonal arc and

relabel.

Yn Xn+1

Figure 4.25

Lemma 4.44. For any T ∈ T (Yn) there are an odd number of d-triangles in T .

Moreover, the collection of triangulations of any region cut out inbetween d-triangles,

such that no other d-triangles occur, is equivalent to T (Ym) for some m < n.

Proof. We will show that if there are two d-triangles there must in fact be a third.

Additionally we’ll show the collection of (legitimate) triangulations in any region cut

out inbetween the three d-triangles is equivalent to T (Ym) for some m < n. And

applying induction on this we will have proved the lemma.

Suppose there are at least two d-triangles in a c-triangulation T . Without loss of

generality we may assume the two d-triangles (k+ 1, 2k+ 1, 1) and (i, i+k, i+k+ 1)

are in T , for some i ∈ [1, k]. See Figure 4.26.
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1

i

k + 1

k + i

2k + 1

k+ i+1

Figure 4.26

We will show there is a third d-triangle with special vertex z ∈ [i + k + 1, 2k + 1].

Note that if (i+1, i+k+1) ∈ T then the d-triangle (i+k+1, i, i+1) ∈ T . Similarly,

if (k, 2k + 1) ∈ T then the d-triangle (2k + 1, k + 1, k) ∈ T .

So suppose (i + 1, i + k + 1), (k, 2k + 1) /∈ T . This then implies (i + 1, x) ∈ T for

some x ∈ [i + k + 2, 2k], and (k, y) ∈ T for some y ∈ [i + k + 2, 2k]. In turn, by

induction, there is a d-triangle with special vertex z ∈ [x, y]. See Figure 4.27.

1

i

k + 1

k + i

2k + 1

k+ i+1

i+ 1

k

2k

k+ i+2

x
y

Figure 4.27: By induction there is a d-triangle with its special vertex
in the shaded region.

What remains to prove is that each region cut out by these three d-triangles is

equivalent to T (Ym) for some m < n.

Consider the d-triangles (k+ 1, 2k+ 1, 1) and (i, i+ k, i+ k+ 1) with special vertices

k + 1 and i, respectively. Let R be the region bounded by the c-arcs (1, k + 1),

(i, i + k) and the boundary segments [1, i],[k + 1, k + i]. Collapsing the boundary

segment [i, k+ 1] to a point and collapsing [k+ i, 1] to a boundary segment preserves

the notion of length in R. After collapsing we see that triangulating R (so that no

d-triangles occur) is equivalent to triangulating Y2i−1. See Figure 4.28.
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Similarly the collection of triangulations of either of the other two regions cut out

by the three d-triangles is equivalent to T (Ym) for some m < n. This completes the

proof.

Definition 4.45. Let T ∈ T (Yn) and let γ be a c-arc in T . Call γ special mutable

if it is upper mutable or µγ(T ) contains more d-triangles than T .

Lemma 4.46. Let T ∈ T (Yn) and let PT be the partial triangulation of Mn con-

sisting of all special mutable arcs in T . Then for any triangulation of PT there is no

d-triangle with special vertex i ∀i ∈ [1, . . . , n] \ k + 1.

Proof. We follow the same idea used in Lemma 4.36. Namely, we will prove the

lemma by induction on the shelling order of S(Yn).

Let T1 be the first triangulation in the shelling. Note γi = (i, k + i− 1) is a special

mutable c-arc in T1 ∀i ∈ [2, k + 1]. Moreover γi is not compatible with the c-arc

(i−1, k+i). Hence there is no d-triangle with special vertex i−1 or k+i ∀i ∈ [2, k+1].

This proves the base inductive case.

Let T ∈ T (Yn). To prove the lemma by induction it suffices to show that for any

lower mutable arc γ ∈ T , the d-triangles incompatible with PT are precisely the

d-triangles incompatible with Pµγ(T ).

So let γ be a lower mutable arc in T . Let β1, β2 be the c-arcs of the quadrilateral

containing γ. See Figure 4.29.
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1
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β1
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Figure 4.29

Note that β1 and β2 could be upper mutable in T , but they will definitely not be

upper mutable in µγ(T ). Analogous to the proof of Lemma 4.36, to prove the lemma

it suffices to show µγ is incompatible with all the d-triangles incompatible with either

β1 or β2.

This follows from the fact that a c-arc α = (x, k + y) of length less than k is

incompatible with d-triangles with special vertex z ∈ [y, x− 1] ∪ [k + y + 1, k + x].

See Figure 4.30.
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Figure 4.30: α is incompatible with d-triangles whose special vertex
lies in one of the shaded regions.

An analogous argument to Lemma 4.37 proves the following lemma.

Lemma 4.47. In each c-triangulation T of Mn there is at least one d-triangle.

Lemma 4.48. T (M⊗n ) is shellable for odd n.

Proof. Let K be the collection of d-triangles of Mn that can occur in a triangulation

without containing any other d-triangles. Consider I = {∆1, . . . ,∆k} ⊆ K and let
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Dn
I consist of all triangulations of T (M⊗n ) containing every d-triangle in I, and no

d-triangles in K \ I.

By Lemma 4.44, each region cut out inbetween the d-triangles in I is shellable. Tak-

ing the product of these shellings over all regions gives us a shelling for Dn
I . Denote

this shelling by S(Dn
I ). Combining these S(Dn

I ) produces a shelling for T (M⊗n ), and

thus completes the proof of the lemma. See Claim 6 below.

Claim 6. Let Block(k) := list
I∈K(k)

S(Dn
I ). Then

1
list
k=n

2

Block(k) is a shelling for T (M⊗n ).

Proof. Let T, S ∈ T (M⊗n ) and suppose S precedes T in the ordering. Then T ∈

S(Dn
I1) and S ∈ S(Dn

I2) for some I1, I2 ∈ P(K) where |I1| ≤ |I2|.

If there is a region R in T that contains a special arc γ, such that γ is not an arc in

S, then µγ(T ) precedes T in the ordering and S ∩ T ⊆ µγ(T ) ∩ T .

So suppose that for every region R of T all special arcs in that region are also arcs

in S. Then by Lemma 4.46 I2 ⊆ I1. Since |I1| ≤ |I2| we must have I1 = I2. And

since S(Dn
I1) is a shelling for Dn

I the claim is proved.

Lemma 4.49. T (M◦n) is shellable for n ≥ 1.

Proof. Lemma 4.38 and Lemma 4.48 prove T (M⊗n ) is shellable for all n ≥ 1. T (M◦n)

is therefore shellable by 4.17.

Returning to our example of M3, Figure 4.31 shows a shelling of T (M◦3) that we can

obtain through our construction.
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Figure 4.31: Shelling of T (M◦3)

4.2.4 Proof of Theorem A.

Theorem 4.50 (Theorem A). Arc(Mn) is shellable for n ≥ 1.

Proof. Let C consist of all quasi-triangulations of Mn containing the one-sided closed

curve. Cutting along the one-sided curve in Mn we are left with the marked surface

Cn,0. Therefore the induced simplicial complex of C is the cone over Arc(Cn,0).

Arc(Cn,0) is shellable by Proposition 4.10 so Proposition 4.4 tells us C is also shellable.

Let S(C) denote a shelling for C. Let S(M◦n) be a shelling of T (M◦n) guaranteed by

Lemma 4.49. Coupling these two shellings, as described in Claim 7 below, provides

us with a shelling of Arc(Mn), and this completes the proof of the theorem.

Claim 7. Let S(Mn) := S(M◦n), S(C). Then S(Mn) is a shelling for Arc(Mn).
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Proof. Suppose S, T ∈ S(Mn) and S precedes T in the ordering. Without loss of

generality we may assume S ∈ S(M◦n) and T ∈ S(C). Since T contains the one-sided

closed curve γ, and γ /∈ S then S ∩ T ⊆ µγ(T ) ∩ T . Moreover, µγ(T ) ∈ S(M◦n) so

precedes T in the ordering.

Remark 7. Recall that ∆A denotes the induced simplicial complex of a set of

(quasi) triangulations A. Since ∂∆T (M◦n) ∼= Arc(Cn,0) and ∆C ∼= Cone(Arc(Cn,0))

then Arc(Mn) is the cone over the boundary of ∆T (M◦n).

Corollary 4.51. Let X be a finite quasi-arc complex. Then X is spherical.

Proof. Follows immediately from Theorem 3.12, Theorem 4.9 and Theorem 4.50.



Chapter 5

Laurent phenomenon algebras

This chapter follows the work of Lam and Pylyavskyy [26]. We will first introduce

the notion of a Laurent phenomenon algebra and then conclude the section with the

idea of a specialised Laurent phenomenon algebra.

Let R be a unique factorisation domain over Z and let F be the rational field of

functions in n ≥ 1 independent variables over the field of fractions Frac(R).

A Laurent phenomenon (LP) seed in F is a pair (x,F) satisfying the following

conditions:

• x = {x1, . . . , xn} is a transcendence basis for F over Frac(R).

• F = {F1, . . . , Fn} is a collection of irreducible polynomials in R[x1, . . . , xn]

such that for each i ∈ {1, . . . , n}, Fi /∈ {x1, . . . , xn}; and Fi does not depend

on xi .

Just as in cluster algebras, x is called the cluster and x1, . . . , xn the cluster vari-

ables. F1, . . . , Fn are called the exchange polynomials.
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Recall that a cluster algebra seed of geometric type (x, B) consists of a cluster

x = {x1, . . . , xn} and an m× n integer matrix B = (bij) whose top n× n submatrix

is skew-symmetrizable. We can recode this matrix into binomials defined by FB
j :=∏

bij>0 x
bij
i + ∏

bij<0 x
−bij
i , so there is a strong similarity between the definition of

cluster algebra and LP seeds. The key difference being that for LP our exchange

relations can be polynomial, not just binomial. However, unlike in cluster algebras,

these polynomials are required to be irreducible.

To obtain an LP algebra from our seed we imitate the construction of cluster algebras.

Namely, we introduce a notion of mutation of seeds. Our LP algebra will then be

defined as the ring generated by all the cluster variables we obtain throughout the

mutation process. Before we present the rules of mutation we first need to introduce

the idea of normalising exchange polynomials and clarify notation.

Notation:

• Let F,G be Laurent polynomials in the variables x1, . . . xn. We denote by

F |xj←G the expression obtained by substituting xj in F by the Laurent poly-

nomial G.

• If F is a Laurent polynomial involving a variable x then we write x ∈ F .

Likewise, x /∈ F indicates that F does not involve x.

Definition 5.1. Given F = {F1, . . . , Fn} then for each j ∈ {1, . . . , n} we define

F̂j := Fj

x
a1
1 ...x

aj−1
j−1 x

aj+1
j+1 ...xann

where ak ∈ Z≥0 is maximal such that F ak
k divides Fj|xk←Fk

x

,

as an element of R[x1, . . . , xk−1, x
−1, xk+1, . . . , xn]. The Laurent polynomials of

F̂ := {F̂1, . . . , F̂n} are called the normalised exchange polynomials.

Example 5.2. Consider the following exchange polynomials in Z[a, b, c]

Fa = b+ 1, Fb = a+ c, Fc = (b+ 1)2 + a2b.

Since a appears in both Fb and Fc then F̂a = Fa (see Lemma 5.4). Similarly, F̂b = Fb.

As c ∈ Fb then b /∈ Fc
F̂c
. However, 2 is the maximal power of Fa that divides Fc|a←Fa

x
,

so F̂c = Fc
a2 .
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Definition 5.3. Let (x,F) be a seed and i ∈ {1, . . . , n}. We define a new seed

µi(x,F) := ({x′1, . . . , x′n}, {F ′1, . . . , F ′n}). Here x′j = xj for j 6= i and x′i = F̂i/xi. The

exchange polynomials change as follows:

• If xi /∈ Fj then F ′j := Fj.

• If xi ∈ Fj then F ′j is obtained by following the 3 step process outlined below.

(Step 1) Define Gj := Fj|
xi←

F̂i|xj←0
x′
i

(Step 2) Define Hj := (Gj with all common factors with F̂i|xj←0 divided out).

I.e. we have gcd(Hj, F̂i|xj←0) = 1.

(Step 3) Let M be the unique monic Laurent monomial in R[x′±1
1 , . . . , x′±1

n ]

such that F ′j := HjM ∈ R[x′1, . . . , x′n] and is not divisible by any of the

variables x′1, . . . , x′n.

The new seed µi(x,F) is called the mutation of (x,F) in direction i. It is

important to note that because of Step 2 the new exchange polynomials are only

defined up to a unit in R.

It is certainly not clear a priori that µi(x,F) will be a valid LP seed due to the

irreducibility requirement of the new exchange polynomials. Furthermore, due to

the expression F̂i|xj←0 appearing in Step 1 it may not be apparent that the process

is even well defined. These issues are resolved by the following two lemmas.

Lemma 5.4 (Proposition 2.7, [26]). xi ∈ Fj =⇒ xj /∈ Fi
F̂i
. In particular, xi ∈ Fj

implies that F̂i|xj←0 is well defined.

Lemma 5.5 (Proposition 2.15, [26]). F ′j is irreducible in R[x′1, . . . , x′n] for all j ∈

{1, . . . , n}. In particular, µi(x,F) is a valid LP seed.

Example 5.6. We will perform mutation µa at a on the LP seed

({a, b, c}, {Fa = b+ 1, Fb = a+ c, Fc = (b+ 1)2 + a2b}).
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Recall from Example 5.2 that F̂a = Fa. Both Fb and Fc depend on a so we are

required to apply the 3 step process on each of them. We shall denote the new

variable a′ := F̂a
a

by d.

Gb = Fb|
a← F̂a|b←0

d

= Fb|a← 1
d

= 1
d

+ c.

Nothing happens at Step 2 since F̂a|b←0 = 1. Multiplying by the monomial d gives

us our new exchange polynomial F ′b = 1 + cd.

Gc = Fc|
a← F̂a|c←0

d

= Fc|a← b+1
d

= (b+ 1)2 + (b+ 1)2b

d2 .

Following Step 2 we divide Gc by any of its common factors with F̂a|c←0 = b + 1.

This leaves us with Hc = 1 + b
d2 . Finally, multiplying by the monomial d2 gives us

our new exchange polynomial F ′c = d2 + b.

Hence, our new LP seed is

({d, b, c}, {Fd = b+ 1, Fb = 1 + cd, Fc = d2 + b}).

Recall that mutation in cluster algebras is an involution. In the LP setting, because

mutation of exchange polynomials is only defined up to a unit in R, it is clear we

can’t say precisely the same thing for LP mutation. Nevertheless, we do have the

following analogue.

Proposition 5.7 (Proposition 2.16, [26]). If (x′,F′) is obtained from (x,F) by

mutation at i, then (x,F) can be obtained from (x′,F′) by mutation at i. It is in

this sense that LP mutation is an involution.

Definition 5.8. A Laurent phenomenon algebra (A,S) consists of a collection

of seeds S, and a subring A ⊂ F that is generated by all the cluster variables

appearing in the seeds of S. The collection of seeds must be connected and closed

under mutation. More formally, S is required to satisfy the following conditions:

• Any two seeds in S are connected by a sequence of LP mutations.



51

• ∀ (x,F) ∈ S ∀i ∈ {1, . . . , n} there is a seed (x′,F′) ∈ S that can be obtained

by mutating (x,F) at i.

Definition 5.9 (Subsection 3.6, [26]). The cluster complex ∆LP (A) of an LP

algebra A is the simplicial complex with the ground set being the cluster variables

of A, and the maximal simplices being the clusters.

Definition 5.10 (Subsection 3.6, [26]). The exchange graph of an LP algebra

A is the graph whose vertices correspond to the clusters of A. Two vertices are

connected by an edge if their corresponding clusters differ by a single mutation.

Definition 5.11. A specialised Laurent phenomenon algebra (A′,S ′) is the

structure obtained from an LP algebra (A,S) when evaluating elements in the

coefficient ring R at 1.

Remark 8. It is worth noting that, unlike in cluster algebras, this specialisation

process does not generally produce another LP algebra. We provide a discussion on

how this can happen in Section 7.2.





Chapter 6

Revised definition of a

quasi-cluster algebra

This chapter continues the work of Dupont and Palesi [6]. Namely, we extend their

construction to include punctured surfaces. Sections 6.1 and 6.2 contain results from

the author’s published work [36].

Let S be a compact 2-dimensional manifold. Fix a finite set M of marked points

of S such that each boundary component contains at least one marked point – we

will refer to marked points in the interior of S as punctures. The tuple (S,M) is

called a bordered surface. We wish to exclude cases where (S,M) does not admit

a triangulation. As such, we do not allow (S,M) to be an unpunctured or once-

punctured monogon; digon; triangle; once or twice punctured sphere; Möbius strip

with one marked point on the boundary; or the once-punctured projective space.

For technical reasons we also exclude the cases where (S,M) is the thrice-punctured

sphere, the twice-punctured projective space, or the once-punctured Klein bottle.

To imitate the construction of cluster algebras arising from orientable surfaces we

must first agree on which curves will form our notion of ’triangulation’. Our defin-

itions will be based on the theory developed by Fomin, Shapiro and Thurston on

orientable surfaces [12], [13], and Dupont and Palesi on non-orientable surfaces
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[6]. As suggested by Pylyavskyy [32], we also make an adjustment to Dupont and

Palesi’s compatibility relations; this alteration facilitates the eventual connecting of

quasi-cluster algebras to Laurent phenomenon algebras.

Definition 6.1. An ordinary arc of (S,M) is a simple curve in S connecting two

(not necessarily distinct) marked points of M , which is not homotopic to a boundary

arc or a marked point.

Definition 6.2. An arc γ is obtained from decorating (’tagging’) an ordinary arc

at each of its endpoints in one of two ways; plain or notched. This tagging is

required to satisfy the following conditions:

• An endpoint of γ lying on the boundary ∂S must receive a plain tagging.

• If the endpoints of γ coincide they must receive the same tagging.

Definition 6.3. A simple closed curve in S is said to be two-sided if it emits a

regular neighbourhood which is orientable. Otherwise, it is said to be one-sided.

Definition 6.4. A quasi-arc is either an arc or a one-sided closed curve. Through-

out this chapter we shall always consider quasi-arcs up to isotopy. Let A⊗(S,M)

denote the set of all quasi-arcs (considered up to isotopy).

Definition 6.5 (Compatibility of arcs). Let α and β be two arcs of (S,M). We say

α and β are compatible if and only if the following conditions are satisfied:

• There exist isotopic representatives of α and β that do not intersect in the

interior of S.

• Suppose the untagged versions of α and β do not coincide. If α and β share

an endpoint a then the ends of α and β at a must be tagged in the same way.

• Suppose the untagged versions of α and β do coincide. Then precisely one end

of α must be tagged in the same way as the corresponding end of β.
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To each arc γ bounding a Möbius strip with one marked point, Mγ
1 , we associate

the two quasi-arcs of Mγ
1 . Namely, we associate the one-sided closed curve αγ and

the arc βγ enclosed in Mγ
1 , see Figure 6.1.

γ

βγ

αγ

Figure 6.1: The two quasi-arcs αγ and βγ enclosed in the Möbius
strip, Mγ

1 , cut out by an arc γ.

Definition 6.6 (Compatibility of quasi-arcs). We say that two quasi-arcs α and β

are compatible if either:

• α and β are compatible arcs;

• α and β are not both arcs and either: α and β do not intersect, or {α, β} =

{αγ, βγ} for some arc γ bounding a Möbius strip Mγ
1 - see Figure 6.1.

Definition 6.7. A quasi-triangulation of (S,M) is a maximal collection of pair-

wise compatible quasi-arcs of (S,M) containing no arcs that cut out a once-punctured

monogon or a Möbius strip with one marked point on the boundary. A quasi trian-

gulation is referred to as a triangulation if it contains no one-sided closed curves.

Definition 6.8. A ideal quasi-triangulation of (S,M) is a maximal collection

of pairwise non-intersecting ordinary arcs and one-sided closed curves of (S,M).

We shall refer to the curves comprising a ideal quasi-triangulation as ordinary

quasi-arcs.

Remark 9. After putting a hyperbolic metric on (S,M) we need only ever con-

sider the geodesic representatives of ordinary quasi-arcs to decide which collections

form ideal quasi-triangulations. This is due to the fact that ordinary quasi-arcs

are non-intersecting if and only if their geodesic representatives do not intersect.



56 Chapter 6. Revised definition of a quasi-cluster algebra

An analogous statement can be made when deciding which quasi-arcs form quasi-

triangulations.

Let T be a quasi-triangulation of (S,M). We may associate T ◦, an ideal quasi-

triangulation, to T as follows:

• If p is a puncture with more than one incident notch, then replace all these

notches with plain taggings.

• If p is a puncture with precisely one incident notch, and this notch belongs to

β, then replace β with the unique arc γ which encloses β and p in a monogon.

• If α is a one-sided closed curve in T then (by maximality of a quasi-triangulation)

there exists a unique arc β in T which intersects α. Replace β with the unique

arc γ enclosing α and β in a Möbius strip with one marked point.

T T ◦

Figure 6.2: Transforming a quasi-triangulation T into an ideal tri-
angulation T ◦.

Lemma 6.9. Let T be a quasi-triangulation of (S,M). Then T ◦ cuts (S,M) into

triangles and annuli.

Proof. Firstly, cut along all arcs in T ◦ (i.e do not cut along any one-sided closed

curves) to obtain a collection of connected components. Let K be one of these

connected components. Note that because we have cut along arcs, K will have

boundary with at least one marked point on each boundary component. Furthermore,

we may assume K has only one boundary component and no punctures as otherwise

this contradicts the maximality of our quasi-triangulation.



57

If K is non-orientable then it contains a pre-existing one-sided closed curve α ∈ T .

Let γ be a curve that encloses α in a Möbius strip with one marked point. By the

maximality of the quasi-triangulation, γ is either isotopic to the boundary of K,

forcing K to be the Möbius strip with one marked point, or γ is contractible resulting

in (S,M) being the once-punctured projective space. Since we have forbidden the

latter case then, if K is non-orientable, it is the Möbius strip with one marked point

and a one-sided closed curve. Cutting along the one-sided closed curve yields the

annulus with a marked point on one boundary component and the other empty of

marked points.

What remains is to consider the case when K is orientable. K cannot be a monogon

as then either (S,M) itself is a monogon, or the boundary ofK is a contractible curve

in (S,M) and is therefore not a valid arc. Similarly, K cannot be a digon as then one

of the following situations occur: (S,M) is itself a digon; the two boundary segments

of K are isotopic; or (S,M) is obtained from glueing together the boundary of K

with the result being the twice punctured sphere or the once-punctured projective

space. K cannot have more than four marked points as this would contradict the

maximality of the quasi-triangulation. Hence, if K is orientable, it must be a triangle.

Proposition 6.10. Let T be a quasi-triangulation of (S,M). Then for any γ ∈ T

there exists a unique γ′ ∈ A⊗(S,M) such that γ′ 6= γ and µγ(T ) := T \ {γ} ∪ γ′ is a

quasi-triangulation. We call γ′ the flip of γ with respect to T .

Proof. For a quasi-triangulation T of (S,M) note that performing tag changing

transformations at punctures has no effect on the flippability of quasi arcs in T .

Therefore, without loss of generality, we may assume that the only instance when a

notched arc appears in T is when it is accompanied by its plain counterpart.

To decide the flippability of an arc in T we shall consider its local configuration.

We achieve this by first considering the local configurations of quasi-arcs in the

associated ideal quasi-triangulation T ◦, and from here we will then discover the
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possible local pictures in T .

By Lemma 6.9 we know that T ◦ cuts (S,M) into triangles and annuli - for convenience

we shall refer to them as puzzle pieces. Therefore any quasi arc of T ◦ is the glued

side of two puzzle pieces. We list these glueings in Figure 6.3 to obtain all possible

neighbourhoods of a quasi-arc in T ◦. When the configurations in Figure 6.3 are

pulled back to T the only valid local configurations, shown in Figure 6.4, are the

quadrilateral, the punctured digon and the Möbius strip with two marked points - as

by definition of a bordered surface we have forbidden the instance when (S,M) is the

thrice punctured sphere, the twice-punctured projective space, or the once-punctured

Klein bottle. Each quasi-arc in the interior of the configurations in Figure 6.4 is

uniquely flippable. An important point to add is that the boundary segments of

these configurations may in fact be a substituted arc bounding a punctured monogon,

or a Möbius strip with one marked point. However, since this substituted arc, and

the two quasi-arcs it bounds are compatible with precisely the same quasi-arcs, then

this does not affect the existence or uniqueness of the flip in question.

Remark 10. The reason we have forbidden (S,M) to be the thrice punctured

sphere, the twice-punctured projective space, or the once-punctured Klein bottle

should now be clear - the glued side of their corresponding configuration in Figure

6.3 is pulled back to two arcs.
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++ =++ =

+ =+ =

++ = + =+

Figure 6.3: The possible glueings of puzzle pieces.

Figure 6.4: The valid pullbacks obtained from glueings of puzzle
pieces.

Definition 6.11. We shall refer to a configuration in Figure 6.4 as a flip region.

Note that in the proof of Proposition 6.10, as an intermediary step, we saw that

every quasi-arc in a quasi-triangulation belongs to the interior of a flip region, up to

tag changing transformations at punctures.

Definition 6.12. The flip graph of a bordered surface (S,M) is the graph with

vertices corresponding to quasi-triangulations and edges corresponding to flips.

Harer [20] proved that two ideal triangulations on an orientable surface are connected

via a sequence of flips. This result applies equally well to non-orientable surfaces;

for a simple proof of this see Mosher [27]. The following proposition concerning the

connectivity of the flip graph follows from the result of Harer, and arguments of

Fomin, Shapiro and Thurston [12] regarding the ability to flip between plain and

notched arcs in triangulations.
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Proposition 6.13. If (S,M) is not a closed once-punctured surface then the flip

graph of (S,M) is connected. In the closed once-punctured case the flip graph has

two isomorphic connected components: one containing only plain quasi-arcs, and

the other containing only notched ones.

Propositions 6.10 and 6.13 tell us that the number of quasi-arcs in a quasi-triangulation

is an invariant of (S,M) - this number is called the rank of (S,M).

We now introduce the notion of a seed of a bordered surface (S,M).

Quasi-seeds and mutation.

Suppose (S,M) is a bordered surface of rank n and let b1, . . . , bm consist of all the

boundary segments of (S,M). Denote F as the field of rational functions in n+m

independent variables over Q.

A quasi-seed of a bordered surface (S,M) in F is a pair (x, T ) such that:

• T is a quasi-triangulation of (S,M).

• x := {xγ ∈ F|γ ∈ T} is an algebraically independent set in F over ZP :=

Z[xb1 , . . . , xbm ].

We call x the cluster of (x, T ) and the variables themselves are called cluster

variables.

To define a (quasi)-cluster structure on (S,M) we shall consider the decorated Teich-

müller space, T̃ (S,M), as introduced by Penner [30]. An element of T̃ (S,M) consists

of a complete finite-area hyperbolic structure of constant curvature −1 on S \M

together with a collection of horocycles, one around each marked point.

Fixing a decorated hyperbolic structure σ ∈ T̃ (S,M) we may define the notion of

lambda length, λσ(γ), for each quasi-arc γ in (S,M). More explicitly,
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λσ(γ) =


e
lσ(γ)

2 , if γ is an arc,

2sinh( lσ(γ)
2 ), if γ is a one-sided closed curve,

where lσ(γ) is defined as follows. If γ is a one-sided closed curve then lσ(γ) simply

denotes the length of γ in σ. If γ is an arc then its endpoints are at cusps in σ,

and so γ will have infinite length. However, we define lσ(γ) to be the length of γ

between certain horocycles at its endpoints; the horocycle chosen at an endpoint

will depend on how γ is tagged. Recall that σ comes equipped with a horocycle hk

at each marked point k. If γ has a plain tag at k then we consider precisely the

horocycle hk. If γ is notched at k then we instead consider the conjugate horocycle

h̃k, of hk. (If hk has length x then the conjugate horocycle h̃k is defined to be the

unique horocycle at k with length 1
x
.

The lambda length, λ(γ), of a quasi-arc γ is the evaluation map on T̃ (S,M) sending

decorated hyperbolic structures σ to λσ(γ).

The following theorem follows from [Theorem 7.4, [13]] and [Remark 8.8, [13]].

Theorem 6.14. For any quasi-triangulation T , with quasi-arcs and boundary arcs

γ1, . . . , γn+b, there exists a homeomorphism

ΛT : T̃ (S,M) −→ Rn+b
>0

σ 7→ (λσ(γ1), . . . , λσ(γn+b))

As a consequence the lambda lengths of quasi-arcs and boundary arcs in a quasi-

triangulation can be viewed as algebraically independent variables and we have a

canonical isomorphism

Q({λ(γ)|γ ∈ T ∪B(S,M)}) ∼= F .

We may define a (quasi)-cluster structure by calculating how these lambda lengths

are related under flips. We provide these precise relations below in Definition 6.15.
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Note that instead of working with lambda lengths we shall instead always consider

their corresponding elements in F .

Definition 6.15. Given γ ∈ T we define quasi-mutation of (x, T ) in direction

γ to be the pair µγ(x, T ) := (x′, T ′) where T ′ := µγ(T ) and x′ := x \ {xγ} ∪ {xγ′}.

The new variable xγ′ depends on the combinatorial type of flip being performed.

We list below the possible flips and their corresponding variable exchange relations,

which may be obtained using the combined results of [6] and [13].

(1). γ is the diagonal of a quadrilateral in which no two consecutive edges are

identified.

γ γ′

b

c

d

a

b

c

d

a

xγxγ′ = xaxc + xbxd

(2). γ is an interior arc of a punctured digon.

xγxγ′ = xa + xb

a b a b

γ

c c γ′

(3). γ is an arc that flips to a one-sided closed curve, or vice verca.
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xγxγ′ = xa + xb

a b a b

γ

c

γ′

c

(4). γ is an arc intersecting a one-sided close curve c.

xγxγ′ =
(xa+xb)

2+xaxbx
2
c

x2c

a b a b

c

γ′
c

γ

Figure 6.5: Combinatorial types of flips together with their corres-
ponding exchange relations.

Let (x, T ) be a seed of (S,M). If we label the cluster variables of x 1, . . . , n then we

can consider the labelled n-regular tree Tn generated by this seed through mutations.

Each vertex in Tn has n incident vertices labelled 1, . . . , n. Vertices represent seeds

and the edges correspond to mutation. In particular, the label of the edge indicates

which direction the seed is being mutated in.

Let X be the set of all cluster variables appearing in the seeds of Tn. A(x,T )(S,M) :=

ZP[X ] is the quasi-cluster algebra of the seed (x, T ).

The definition of a quasi-cluster algebra depends on the choice of the initial seed.

However, if we choose a different initial seed the resulting quasi-cluster algebra will be

isomorphic to A(x,T )(S,M). As such, it makes sense to talk about the quasi-cluster

algebra of (S,M).
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Definition 6.16. The quasi-arc complex ∆⊗(S,M) of the quasi-cluster algebra

A(S,M) is the simplicial complex with the ground set being the cluster variables of

A(S,M), and the maximal simplices being the clusters.

Definition 6.17. The exchange graph E⊗(S,M) of the quasi-cluster algebra

A(S,M) is the graph whose vertices correspond to the clusters of A(S,M). Two

vertices are connected by an edge if their corresponding clusters differ by a single

mutation.

6.1 The double cover and anti-symmetric quivers

Let (S,M) be a bordered surface. We construct an orientable double cover of

(S,M) as follows. First consider the orientable surface S̃ obtained by replacing each

cross-cap with a cylinder, see Figure 6.6.

. . . . . .

. . . . . .

S S̃

. . . . . .

. . . . . .

Figure 6.6: An illustration of the non-orientable surface S and the
surface S̃ obtained by replacing each cross-cap with a
cylinder. The small circles represent boundary compon-
ents.

We obtain the orientable double cover (S,M) of (S,M) by taking two copies of S̃

and glueing each newly ajoined cylinder in the first copy, with a half twist, to the

corresponding cylinder in the second copy. To clarify, we are glueing each cylinder

in the first copy along their antipodal points in the second copy, see Figure 6.7. If

S is orientable then the double cover is two disjoint copies of (S,M). In this case
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we endow the two disjoint copies with alternate orientations - this is to ensure its

adjacency quiver is anti-symmetric, see Definition 6.18.

. . . . . .

. . . . . .

Glue along half
twist to obtain
double cover

(S,M)

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Figure 6.7: We obtain the double cover by glueing two copies of S̃
along the boundaries of the newly adjoined cylinders.

If T is a triangulation of (S,M) then T lifts to a triangulation T of the orientable

double cover (S,M). Moreover, let i be an arc in T and, by abuse of notation, denote

by i and ĩ the two arcs i lifts to in T . Note that if i and j are arcs of a triangle

∆ in T , and j follows i in ∆ under the agreed orientation of (S,M), then ĩ follows

j̃ in the twin triangle ∆̃. Hence in the quiver QT associated to T we have that

i → j ⇐⇒ j̃ → ĩ. Here we adopt the notation that ˜̃i = i for any i ∈ {1, . . . , n},

and we shall use it throughout this thesis.

Finally, note that there is no arrow i→ ĩ inQT as this would imply the existence of an

anti-self-folded triangle in T , which is forbidden under our definition of triangulation,

see Figure 6.8.

i

ĩ

ĩ

ĩi

Figure 6.8: An anti-self-folded triangle; which is forbidden under
our definition of triangulation.

These two observations motivate the following definition.
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Definition 6.18. A quiverQ on vertices 1, . . . , n, 1̃, . . . , ñ is called anti-symmetric

if:

• For any i, j ∈ {1, . . . , n, 1̃, . . . , ñ} we have i→ j ⇐⇒ j̃ → ĩ.

• For any i ∈ {1, . . . , n, 1̃, . . . , ñ} there are no arrows i→ ĩ.

Proposition 6.19. Let γ be an arc in a triangulation T , and by abuse of notation,

denote its lifts in T by γ and γ̃. If µγ(T ) is a triangulation then µγ ◦ µγ̃(T ) =

µγ̃ ◦ µγ(T ) = µγ(T ).

Proof. Consider the flip region of γ in T . The interiors of the lifted flip regions will

disjoint; otherwise there would be arrows between the corresponding vertices of γ and

γ̃ in QT , and Figure 6.8 would then contradict the fact there are no anti-self-folded

triangles in T . Finally, since µγ(T ) is a triangulation, then for such triangulations,

the definition of a flipping an arc will coincide on both non-orientable and orientable

surfaces.

6.2 Mutation of anti-symmetric quivers via LP

mutation

We shall now briefly leave the environment of triangulations and move to the more

general setting of anti-symmetric quivers. In particular, we shall establish a connec-

tion between mutation of these quivers and LP-mutation. Recall that a quiver Q

can be equivalently encoded as a skew-symmetric matrix B = (bij). In what follows

we shall interchange between the two viewpoints.

Given an anti-symmetric quiver Q = (bij) we may assign an exchange polynomial to

each pair of vertices (j, j̃) of Q.
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FQ
j :=

∏
bij+bĩj>0

x
bij+bĩj
i +

∏
bij+bĩj<0

x
−(bij+bĩj)
i

As a result we arrive at the seed ΣQ := ({x1, . . . , xn}, {FQ
1 , . . . , F

Q
n }) associated to Q.

Of course, this may not be a valid LP seed due to the requirement of irreducibility.

We won’t always get irreducibility, but, as the proposition below demonstrates, there

are plenty of cases where Q does provide a valid LP seed.

Proposition 6.20. If gcd(b1j + b1̃j, . . . , bnj + bñj) = 1 then Fj is irreducible in

Z[x1, . . . , xn].

Proof. The proof is identical to that of Lemma 4.1 in [26].

Note that if we want double mutation of our quiver to correspond to LP mutation

then it is necessary for us to have F̂i = Fi ∀i ∈ {1, . . . , n}. This is because the

exchange polynomials of the arcs in the triangulations are polynomials (not strictly

Laurent polynomials), so the normalisation process needs to be vacuous.

Proposition 6.21. Suppose ΣQ is a valid LP seed and F̂i = Fi ∀i ∈ {1, . . . , n}.

Let i be a vertex in Q such that there is no path a → i → ã for any vertex a ∈

{1, . . . , n, 1̃, . . . , ñ}. Then mutation at i and ĩ in Q corresponds to LP mutation of ΣQ

at i. I.e, ({x1, . . . ,
FQi
xi
, . . . , xn}, {F

µi◦µĩ(Q)
1 , . . . , F

µi◦µĩ(Q)
n }) = µi({x1, . . . , xn}, {FQ

1 , . . . , F
Q
n }).

Proof. Let j ∈ {1, . . . , n}. We will split the proof into two parts depending on

whether xi /∈ FQ
j or xi ∈ FQ

j .

Case 1: xi /∈ FQ
j .

If xi /∈ FQ
j then LP mutation at i does not alter the exchange polynomial FQ

j . I.e,

(FQ
j )′ = FQ

j . Therefore for quiver mutation to coincide with LP mutation we require

that F µi◦µĩ(Q)
j = FQ

j . It suffices to show that

b′kj + b′k̃j := (µi ◦ µĩ(Q))kj + (µi ◦ µĩ(Q))k̃j = bkj + bk̃j ∀k ∈ {1, . . . , n}.
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Below we check this holds when k = i and k 6= i. Note that xi /∈ FQ
j =⇒ bij+bĩj = 0.

• (k = i) b′ij + b′
ĩj

= −bij − bĩj = 0 = bij + bĩj.

• (k 6= i) Firstly note that because mutation at i and ĩ are independent of one

another we have

b′kj := (µi ◦ µĩ(Q))kj = (µi(Q))kj + (µĩ(Q))kj − bkj =

bkj + [−bki]+bij + bki[bij]+ + [−bkĩ]+bĩj + bkĩ[bĩj]+.

Now, by applying the fact that bij = −bĩj we obtain the following.

b′kj + b′k̃j = bkj + bk̃j + bij([−bki]+ − [−bkĩ]+ + [−bk̃i]+ − [−bk̃ĩ]+)+

[−bij]+(bkĩ + bk̃ĩ) + [bij]+(bki + bk̃i)
by anti-symmetry=

bkj + bk̃j + bij([−bki]+ − [bk̃i]+ + [−bk̃i]+ − [bki]+)+

[−bij]+(−bk̃i − bki) + [bij]+(bki + bk̃i).

Using the fact that [a]+ − [−a]+ = a we see that

b′kj + b′k̃j = bkj + bk̃j.

So indeed, F µi◦µĩ(Q)
j = FQ

j = (FQ
j )′ in the case xi /∈ FQ

j .

Case 2: xi ∈ FQ
j .

If xi ∈ FQ
j then w.l.o.g we shall assume bij + bĩj > 0 and bij > 0. By skew symmetry

we have bji < 0. Also, bj̃i ≤ 0 follows from bij > 0 and the assumption that there is

no path a→ i→ ã. From this we get the following:

FQ
i |xj←0 =

∏
bki+bk̃i>0

x
bki+bk̃i
k

From here we see (Step 1) of LP mutation gives us:
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GQ
j =

 ∏
bkj+b

k̃j
>0

k 6=i

x
bkj+bk̃j
k

∏bki+bk̃i>0 x
bki+bk̃i
k

x′i

bij+bĩj +
∏

bkj+bk̃j<0
x
−(bkj+bk̃j)
k

We make the observation that since FQ
i |xj←0 is a monomial then (Step 2) of LP

mutation can be incorporated into (Step 3). Therefore to obtain (FQ
j )′ we are left

with the task of finding a monic Laurent monomial M such that (FQ
j )′ := MGQ

j ∈

Z[x′1, . . . , x′n] and is not divisible by any x′k. We shall determine the exponents of

the variables xk (k 6= i) and x′i in (FQ
j )′ by splitting the task into four subcases. For

each case we check the exponent agrees with the one in the exchange polynomial

F
µĩ◦µi(Q)
j obtained via quiver mutation.

Subcase 1: bki + bk̃i ≤ 0.

This means there is no xk term in FQ
i |xj←0. So the xk exponent remains unchanged

from LP mutation. That being so, for LP mutation to agree with double quiver

mutation we require that b′kj +b′
k̃j

= bkj +bk̃j. Since bki+bk̃i ≤ 0 and there is no path

a→ i→ ã then bki, bk̃i ≤ 0. So b′kj = bkj, b′k̃j = bk̃j, and we therefore have agreement.

Subcase 2: bki + bk̃i > 0 and bkj + bk̃j ≥ 0.

This means we get an xk term in the first monomial of GQ
j , and it has exponent

bkj + bk̃j + (bki + bk̃i)(bij + bĩj). To determine what happens with quiver mutation

recall our assumption that bij > 0. Since there is no path a→ i→ ã for any vertex

a of Q, then bij, bij̃ ≥ 0. Likewise, because bki + bk̃i > 0, we get bki, bk̃i ≥ 0. Hence

for quiver mutation we obtain

b′kj = bkj + bkibij − bjĩbĩk

b′k̃j = bk̃j + bk̃ibij − bjĩbĩk̃.
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Using anti-symmetry and skew-symmetry we see

b′kj + b′k̃j = bkj + bk̃j + (bki + bk̃i)(bij + bĩj) > 0

.

Consequently, LP and quiver mutation coincide for subcase 2.

Subcase 3: bki + bk̃i > 0 and bkj + bk̃j ≤ 0.

This means there will be an xk term in both monomials of GQ
j and after dividing

out by an appropriate power of xk, we are left with xk having exponent bkj +

bk̃j + (bki + bk̃i)(bij + bĩj) in (FQ
j )′. The variable xk appears in the left or right

monomial of (FQ
j )′ depending on whether (bki + bk̃i)(bij + bĩj) ≥ −(bkj + bk̃j) or

(bki + bk̃i)(bij + bĩj) ≤ −(bkj + bk̃j), respectively. Just as in case 2 we observe that

double mutating the quiver Q yields

b′kj + b′k̃j = bkj + bk̃j + (bki + bk̃i)(bij + bĩj).

Thus showing LP mutation agrees with double quiver mutation for subcase 3.

Subcase 4: The variable x′i.

In (FQ
j )′ the variable x′i appears in the right monomial with exponent bij + bĩj. This

agrees with quiver mutation since b′ij + b′
ĩj

= −(bij + bĩj) < 0.

Therefore F µi◦µĩ(Q)
j = (FQ

j )′ in the case xi ∈ FQ
j . This concludes the proof of the

proposition.



Chapter 7

Laurent phenomenon algebras

arising from unpunctured surfaces

This chapter contains the material of the author’s published work [36].

Having delved into the domain of anti-symmetric quivers, we now turn our attention

back to bordered surfaces. In particular, we restrict ourselves to unpunctured

surfaces with the aim of showing their corresponding quasi-cluster algebra has an

LP structure.

To achieve this we first consider triangulations of (S,M), and show they slot into

an LP structure. We accomplish this by proving the adjacency quiver QT satisfies

the conditions demanded in Proposition 6.21, for each triangulation T of (S,M).

Of course, we must also show that the exchange polynomials FQ
T

1 , . . . , F
Q
T

n are the

exchange polynomials of their corresponding arcs in T ; this is settled by Lemma 7.2.

Note that, for triangulations of (S,M) to slot into an LP structure, Proposition 6.21

requires that for each triangulation T of our bordered surface we have:

• If i is a t-mutable arc in T then there is no path k → i → k̃ in QT for any

vertex k.

• The exchange polynomials FQ
T

1 , . . . , F
Q
T

n associated to T are irreducible.
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• F
Q
T

i = F̂
Q
T

i for each exchange polynomial associated to T .

The first two conditions are verified by Lemma 7.1 and Lemma 7.3, respectively.

The majority of this chapter is spent proving the third condition. We achieve this

by first showing the property is equivalent to the exchange polynomials of T being

distinct, see Lemma 7.4. From here, via Lemmas 7.5, 7.7, 7.8, 7.9, 7.10, we discover

all bordered surfaces that emit triangulations producing non-distinct exchange poly-

nomials. In the interest of maximal generality we allow the possibility that boundary

segments do not receive variables; in which case the boundary segment is instead

allocated the constant value 1, and the corresponding vertex in the adjacency quiver

is deleted.

Lemma 7.1. For a triangulation T of (S,M) there are vertices i, k of QT with

k → i→ k̃ if and only if T contains the Möbius strip with two marked points, M2,

with i being the non t-mutable arc of M2. See Figure 7.2 below.

Proof. To prove this lemma we reconstruct (part of) the surface (S,M) using blocks.

Namely, we use the quiver Q to determine the adjacency of triangles in T . By

anti-symmetry note that k → i → k̃ implies there is the path i ← k → ĩ. As a

consequence there must be the quadrilateral (i, a, ĩ, b̃) with diagonal k for some a

and b̃ not equal to {i, ĩ, k, k̃}, see Figure 8.4. By antisymmetry we also have the

quadrilateral (b, i, ã, ĩ) with diagonal k̃.

↔i k ĩ

k

ĩ

i

a

b̃

Figure 7.1: If i← k → ĩ is a sub quiver of an adjacency quiver then
the surface must have the local configuration shown on
the right.

Glueing these two quadrilaterals together, according to their labels, yields the cylin-

der shown in Figure 7.2. Taking the Z2-quotient of this leaves us with the Möbius

strip M2 which is also depicted in Figure 7.2.
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←→ ←→

a b

ã b̃

i

ĩ

k

k̃

ba

i

k̃ k

ĩ

b̃ ã

i

k
a b

Figure 7.2: A triangulation of the Möbius strip M2; its lifted trian-
gulation; and the adjacency quiver of its lifted triangu-
lation.

Lemma 7.2. Let T be a triangulation of (S,M) and QT the corresponding anti-

symmetric quiver arising from the lifted triangulation T . Then the exchange polyno-

mials {FQ
T

1 , . . . , F
Q
T

n } coincide with the exchange polynomials of the arcs in T they

are associated with.

Proof. Let (i, ĩ) be a twin pair of vertices in QT and consider the associated exchange

polynomial FQ
T

i . If there is no path k → i → k̃ for any vertex k in QT then, by

Lemma 7.1, all arcs will flip to arcs. Moreover, FQ
T

i := ∏
bki>0 x

bki
k + ∏

bki<0 x
−bki
k

(with the identification xk = xk̃) so from the standard theory of cluster algebras

from surfaces we see FQ
T

i describes how the length of the arc i changes under a flip.

If there is a path k → i→ k̃ then, by Lemma 7.1, locally the arc i will be contained

in the triangulation of M2 shown in Figure 7.2. In particular, it has the exchange

polynomial FQ
T

i = xa + xb which does indeed describe how the length of the arc i

changes under a flip.

For a seed coming from an anti-symmetric quiver Q we noted that the seed may

not be a valid LP seed due to potential reducibility of the exchange polynomials.

However, as shown by the following lemma, for an anti-symmetric quiver arising

from a triangulation of (S,M) we always get irreducibility.
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Lemma 7.3. Let T be a triangulation of (S,M). Then F
Q
T

j is irreducible in

ZP[x1, . . . , xn] for any j. In particular, ΣQ
T

:= ({x1, . . . , xn}, {F
Q
T

1 , . . . , F
Q
T

n }) is a

valid LP seed.

Proof. The quiver QT coming from the lifted triangulation T can have at most 2

ingoing and 2 outgoing arrows at any one vertex. Hence, gcd(b1j+b1̃j, . . . , bmj+bm̃j) ∈

{1, 2,∞}.

If gcd is 1 then Proposition 6.20 yields the irreducibility of FQ
T

j .

If gcd is ∞ then bij + bĩj = 0 for all i. So FQ
T

j = 2, which is irreducible.

If gcd is 2 then due to there being at most 2 ingoing and 2 outgoing arrows at j the

only possibilities for FQ
T

j are x2
i + 1 and x2

i + x2
k, which are both irreducible.

Recall that the goal of this chapter has been to show triangulations fit into an LP

structure by invoking Proposition 6.21. To accomplish this we are left to prove that

F̂i = Fi for each Fi in ΣQ
T
. By the following lemma we may equivalently prove that

the exchange polynomials in each seed ΣQ
T
are distinct.

Lemma 7.4. Let T be a triangulation, ΣQ
T

its associated LP seed, and i ∈

{1, . . . , n}. Then F̂i = Fi if and only if Fi 6= Fj for any j 6= i.

Proof. If F̂i = Fi then, by definition of normalisation, for any j 6= i we have Fj does

not divide Fi|xj←Fj
x

. Hence Fj does not divide Fi and so, in particular, Fi 6= Fj.

Conversely, if F̂i 6= Fi then there exists j 6= i such that Fj divides Fi|xj←Fj
x

, which

forces xi /∈ Fj. Suppose for a contradiction that xj ∈ Fi. This implies the existence

of a path i → j → ĩ. By Proposition 7.1 and Figure 7.2 we see Fj = xa + xb and

Fi = x2
j + xaxb. However, this contradicts Fj dividing Fi|xj←Fj

x

= F 2
j

x2 + xaxb. Hence

xj /∈ Fi and Fj divides Fi|xj←Fj
x

= Fi. Moreover, since Fi is irreducible then Fi = Fj.

We now list several lemmas to help discover the heterogeneity of the exchange

polynomials in ΣQ
T
.
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Lemma 7.5. If Fi = Fj then there are no arrows between i and j in Q.

Proof. Since xi /∈ Fi then xi /∈ Fj. As such, bij + bĩj = 0. Likewise, bji + bj̃i = 0.

Finally, since bij = −bji and bĩj = bj̃i, then, as required, bij = 0.

Definition 7.6. Let Q be a quiver and V a set of vertices of Q. We say R is the

V -restriction of Q if R consists of all arrows of Q with a head or tail in V .

Lemma 7.7. Suppose R is the {i, j}-restriction of Q with FQ
i = FQ

j . Then the {i, j}-

restriction of µĩ◦µi(R) is the {i, j}-restriction of µĩ◦µi(Q) where F µĩ◦µi(Q)
i = F

µĩ◦µi(Q)
j .

In particular, if R is the {i, j}-restriction of a quiver arising from (S,M) with

exchange polynomials Fi = Fj, then so is the {i,j}-restriction of µĩ ◦ µi(R).

Proof. By Lemma 7.5 there are no arrows between i and j so performing mutation

at i and ĩ in R and taking the {i, j}-restriction is the same as reversing all arrows

at i and ĩ in R. Hence the {i, j}-restriction of µĩ ◦ µi(R) is the {i, j}-restriction of

µĩ ◦ µi(Q). Moreover, the new ith and jth exchange polynomials remain unchanged,

so are still equal.

Lemma 7.8. Suppose Fi = Fj for some i 6= j; xk /∈ Fi for some k; and i and k are

adjacent arcs in T . Then (S,M) is either the Möbius strip M4 or the Klein bottle

with one boundary component and two marked points, where neither surface has

been allocated boundary variables.

Proof. Under the conditions of the lemma, before cancelling 2-cycles, we must have

one of the following subquivers in our adjacency quiver Q:

i k

(1)

ik k̃

(2)

If the subquiver (1) is in Q then we must have one of the configurations shown

in Figure 7.3. In either situation, after glueing, we obtain a punctured surface.
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Since we have forbidden punctures then this subquiver cannot arise from any of our

triangulations.

i

k

i

i

k

ior k

i

kor

Figure 7.3: The three configurations which produce the subquiver
(1).

If the subquiver (2) is in Q then by Lemma 7.1 we must have the following local

picture shown on the left of Figure 7.4. Note that b cannot equal a or ã because this

would give rise to a punctured surface - the twice punctured projective space RP 2

or the once punctured Klein bottle, respectively.

Moreover, a and b cannot both be boundary segments as then there is no label j in

the triangulation. Without loss of generality, suppose a is not a boundary component.

As a consequence, there is an arrow a→ i. Since Fi = Fj, using Lemma 7.7, we may

assume the existence of an arrow a → j. Hence we arrive at the picture shown on

the right of Figure 7.4.

ba

i

k̃ k

ĩ

b̃ ã

j

ba

i

k̃ k

ĩ

b̃ ã

Figure 7.4: On the right we illustrate the effect on the local config-
uration of the surface when there is an arrow a→ j in
Q.

If b does not receive a variable then there is no arrow i → b, and we are in one of

two possible scenarios: There is a path m̃→ j → m for some m, or j is connected to

only a. If there is a path m̃→ j → m then by Lemma 7.1 our surface must have the
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configuration shown on the left of Figure 7.5. Taking the Z2-quotient of this yields

the Klein bottle with one boundary component and 2 marked points. Alternatively,

if j is connected to only a then the arc j is the diagonal of a square with three

unlabelled boundary segments and fourth side a. And we obtain the surface shown

on the right of Figure 7.5. Taking the Z2-quotient of this yields the Möbius strip

with 4 marked points.

ba

i

k̃ k

ĩ

b̃ ã

j

j̃m̃ m

ã

ba

i

k̃ k

ĩ

b̃ ã

j

Figure 7.5: We depict the resulting surfaces when there is either: a
path m̃→ j → m; or j is connected only to the vertex
a.

If b does receive a variable then there is an arrow i→ b in Q. As such, since Fi = Fj,

there is either an arrow j → b or an arrow j → b̃. However, an arrow j → b gives

rise to a punctured surface, which is forbidden. An arrow j → b̃ gives rise to the

configurations shown in Figure 7.6. In both cases, taking the Z2-quotient again

yields the Klein bottle with one boundary component and two marked points.

ba

i

k̃ k

ĩ

b̃ ã

j

b̃

ba

i

k̃ k

ĩ

b̃ ã

j

b̃

Figure 7.6: The two possibilities of the surface when there is an
arrow j → b̃.
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Lemma 7.9. If Fi = Fj then the quiver Q cannot contain either of the subquivers

k̃ ← i→ k or i 2−→ k, for any vertex k of Q.

Proof. If k̃ ← i→ k is a subquiver of Q then antisymmetry implies the existence of

the path i→ k → ĩ. Therefore, by Lemma 7.1, we have the sub triangulation shown

in Figure 7.7. Since Fi = Fj then there must be an arrow j → k or j → k̃. However,

any triangle with side k or k̃ also has a side i or ĩ. This forces an arrow between i

and j or i and j̃, contradicting Lemma 7.5. If i 2−→ k is a subquiver of Q then since

Fi = Fj, without loss of generality, i 2−→ k
2←− j is a subquiver of Q. However, this

contradicts the fact that any vertex in Q can have at most 2 incoming arrows.

k

ĩ i

k̃

b̃ ã

Figure 7.7: The local configuration of the surface when there is a
path k̃ ← i→ k.

Lemma 7.10. Let T be a triangulation and ΣQ
T
its associated LP seed. Then

F̂i = Fi for any i ∈ {1, . . . , n}.

Proof. By Lemma 7.4 it suffices to show that Fj 6= Fi for any j 6= i. Now, if

Fi = Fj for some j, by Lemma 7.5 we know there are no arrows between i and

j. Due to Lemma 7.9 we also know there are no arrows of weight greater than 1

in the {i, j}-restriction of Q. Furthermore, by Lemma 7.8 and Lemma 7.9 if i (or

j) is connected to both k and k̃ for some vertex k in Q, then the corresponding

surface must be either the Möbius strip M4 or the Klein bottle with one bound-

ary component and two marked points, where neither surface has been allocated

boundary variables. Having dealt with these cases, from here on we may therefore
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assume i and j are connected to at most one of k and k̃ for any vertex k in Q.

After reversing all arrows at i if needed, i and j will locally have the same quiver up

to exchanging a and ã. I.e. If i← k (or i→ k) then j ← k (j → k) or j ← k̃ (j → k̃).

To determine the remaining surfaces which emit triangulations with Fi = Fj we

will split our task into four cases depending on whether i and j are connected to

precisely 1, 2, 3 or 4 vertices. After exchanging the roles of j and j̃ if necessary, we

may assume there are arrows i← a and j ← a for some fixed vertex a. Furthermore,

note that in the quivers we draw we only include arrows between i and j. For each

of these quivers R we are asking which triangulations T of (S,M) have the property

that the {i, j}-restriction of QT is R.

Case 1: i and j are connected to precisely one vertex.

The only such quiver for this case is i ← a → j. Since i and j are not connected

to any other vertex, the arcs i and j are the diagonals of quadrilaterals with three

boundary segments and fourth side a. This yields the 6-gon shown in Figure 7.8.

i a j

Figure 7.8: The 6-gon without boundary variables - the only surface
emitting a triangulation whose adjacency quiver has the
{i, j}-restriction i← a→ j.

Case 2: i and j are connected to precisely two vertices.

The possible subquivers for this case are listed in Figure 7.9.
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1 2 3 4

i

a b

j

i

a b

b̃

j

i

a b

j

i

a b

b̃

j

Figure 7.9: The list of the possible {i, j}-restriction quivers when
i and j are connected to precisely two vertices, and
Fi = Fj.

For each of the subquivers listed in Figure 7.9 we present below the possible trian-

gulations/surfaces that produce them. To elaborate, we use the quiver to determine

the conceivable adjacencies of triangles in the triangulation, and this is how the

surface is reconstructed.

1

or or or

i

a b

j

b
i

a

j
b

b

b
j

a

i i
b

a

j
b

i
b

a

b
j

or or or

b
i

a

j
b̃

b

b̃
j

a

i i
b

a

j
b̃

i
b

a

b̃
j

2

i

a b

b̃

j

3

I

a

i

j

b

b
i

a b

j
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4

I

a

i

j

b̃

b
i

a b

b̃

j

Figure 7.10: Upon glueing and taking Z2-quotients, the (unpunc-
tured) surfaces we obtain in Case 2 are: The cylinder
with 2 marked points on each boundary component,
and the Möbius strip M4.

For each of these Case 2 quivers we list the surfaces obtained after glueing and taking

the Z2-quotient.

~k1 The first and fourth give the cylinder with two marked points on each boundary

component; the second and third give the once punctured square.

~k2 All produce the Möbius strip with four marked points.

~k3 The cylinder with two marked points on each boundary component.

~k4 The Möbius strip with four marked points.

Case 3: i and j are connected to precisely three vertices.

The possible subquivers for this case are listed in Figure 7.11. Here we are using

the fact that there cannot be more than two incoming/outgoing arrows at any given

vertex.
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1 2 3 4

i

j

a b c

i

j

a b c

c̃

i

j

a b c

b̃

i

j

a b c

c̃b̃

Figure 7.11: The list of the possible {i, j}-restriction quivers when
i and j are connected to precisely three vertices, and
Fi = Fj.

Note that it suffices to check only subquivers 1, 2 and 3 since 4 is equivalent to 3

after swapping the roles of a and b and using anti-symmetry. Below we present the

possible surfaces producing the subquivers 1, 2 and 3.

b

or or or

c
i

a

j
c

c

c
j

a

i i
c

a

j
c

i
c

a

c
j

b b

bb b

b b

b

i

j

a b c

1

2

i

j

a b c

c̃
or or or

c
i

a

j
c̃

c

c̃
j

a

i i
c

a

j
c̃

i
c

a

c̃
j

b b

bb b

b b

b
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or or or

c
i

a

j
c

c

c
j

a

i i
c

a

j
c

i
c

a

c
j

b b

b̃b̃ b̃

b b

b̃

3

i

j

a b c

b̃

Figure 7.12: Upon glueing and taking Z2-quotients, the (unpunc-
tured) surfaces we obtain in Case 3 are: The torus and
Klein bottle, both with 1 boundary component and 2
marked points.

For each of these Case 3 quivers we list the surfaces obtained after glueing and taking

the Z2-quotient.

~k1 The first and fourth give the torus with one boundary component and two

marked points; the second and third produce the twice punctured digon.

~k2 The first and fourth give the Klein bottle with one boundary component and

two marked points; the second and third produce the once punctured Möbius

strip with two marked points.

~k3 The first and fourth both produce the Klein bottle with one boundary com-

ponent and two marked points; the second and third give rise to the once

punctured Möbius strip with two marked points.

Case 4: i and j are connected to precisely four vertices.

Being connected to four vertices the arc i will be the diagonal of a square with

sides a, b, c and d. The arc j will therefore be the diagonal of a square with sides

possessing labels from the set {a, ã, b, b̃, c, c̃, d, d̃}. After glueing and taking the Z2-

quotient then, if this procedure creates a surface, it will be a closed surface. However,

we have forbidden punctured surfaces so none of our permitted surfaces satisfy Case 4.
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In summary, the only unpunctured surfaces emitting triangulations producing non-

distinct exchange polynomials are: the 6-gon; the Möbius strip with four marked

points; the cylinder with two marked points on each boundary component; and the

torus and the Klein bottle, both with one boundary component and two marked

points. It is important to note that these surfaces only produce non-distinct exchange

polynomials when their boundary segments receive no variables. In this chapter we

only consider unpunctured surfaces receiving boundary variables, therefore, any

triangulation of our surfaces will yield a distinct collection of exchange polynomials.

Proposition 7.11. Let i be a t-mutable arc in a triangulation T of (S,M). Then

flipping i in T corresponds to LP mutation at i of the associated seed ΣQ
T

:=

({x1, . . . , xn}, {F
Q
T

1 , . . . , F
Q
T

n }).

Proof. By Lemmas 7.2 and 7.10 we obtain that LP and quasi-cluster mutation agree

on the level of variable change. Moreover, Lemma 7.1 tells us that if i is a t-mutable

arc in T then there is no path a→ i→ ã in QT for any vertex a. Lemmas 7.3 and

7.10 confirm that ΣQ
T
is a valid seed and FQ

T
j = F̂

Q
T

j for each exchange polynomial

of ΣQ
T
. Therefore we may invoke Proposition 6.19 to verify that double mutation

at i and ĩ in QT coincides with LP mutation at i, for each t-mutable arc i in T .

Finally, since Proposition 6.19 tells us that double mutation at i and ĩ corresponds

to flipping the arc i in T , then the proof is complete.

Remark 11. Note that the LP seed {(a, 1 + b), (b, a+ c), (c, 1 + b)} in [Example 4.7,

[26]] fails to agree with cluster algebra mutation because it arises from the 6-gon

without any boundary variables. We present more of a discussion about this in

Section 7.2.
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7.1 Proof of Theorem B.

Theorem 7.12. Let (S,M) be an unpunctured (orientable or non-orientable) marked

surface. Then the LP cluster complex ∆LP (S,M) is isomorphic to the quasi-arc com-

plex ∆⊗(S,M), and the exchange graph of ALP (S,M) is isomorphic to E⊗(S,M).

More explicitly, let T be a quasi-triangulation of (S,M) and ΣT its associated

LP seed. Then in the LP algebra ALP (ΣT ) generated by this seed the following

correspondence holds:

ALP(ΣT) (S,M)

Cluster variables ←→ Lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

Proof. By Proposition 7.11 all that is left to show is that LP mutation coincides

with quasi-cluster mutation when:

(a) we flip an arc in a triangulation to a one-sided closed curve.

(b) we flip quasi-arcs in quasi-triangulations containing a one-sided closed curve.

Case (a).

To resolve case (a) it suffices to show that flipping the arc a in Figure 7.13 agrees

with LP mutation at a of the associated seed.

LP mutation at a produces the exchange polynomials:

F ′a = Fa F ′b = (c+ d)2 + a′2cd F ′c = dy + a′bw F ′d = cz + a′bx.
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A simple computation produces the associated normalised exchange polynomials,

which are recorded below. These normalised polynomials do indeed describe how

lengths of quasi-arcs in the flipped quasi-triangulation exchange, so case (a) has been

verified.

F̂ ′a = Fa F̂ ′b = (c+d)2+a′2cd
a′2

F̂ ′c = dy + a′bw F̂ ′d = cz + a′bx

Fa = c + d

Fb = a2 + cd

Fc = ay + bw

Fd = az + bx

w x

y z

c d

a

b

Figure 7.13: A triangulation together with the associated exchange
polynomials.

Case (b).

We split the task of verifying case (b) into four subcases:

1. Flipping a quasi-arc that is not enclosed in a region containing a one-sided

closed curve.

2. Flipping b, c or d in the triangulation on the left of Figure 7.14.

3. Flipping a in the middle triangulation of Figure 7.14.

4. Flipping b, d or y in the triangulation on the right of Figure 7.14.

w x

y z

c d

a

b

w x

y

c

d

a

b

w x

y

c

d

a

b

Figure 7.14: The three types of (local) configurations that contain
a one-sided closed curve.
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Subcase 1: Here LP mutation and surface flips coincide due to Proposition 7.11 and

Case (a).

Subcase 2: To verify that LP mutation and surface flips coincide for this case, it

suffices to check mutation at b and c.

The exchange polynomials corresponding to the left triangulation in Figure 7.14 are:

Fa = c+ d Fb = (c+ d)2 + a2cd Fc = dy + abw Fd = cz + abx.

Mutating at b produces the following exchange polynomials:

F ′a = Fa F ′b = Fb F ′c = ab′y + dw F ′d = ab′z + cx.

If instead we mutate at c we obtain the following exchange polynomials:

F ′a = y + c′ F ′b = (y + c′)2 + a2yc′ F ′c = Fc F ′d = wz + xc′.

The normalised versions of both of these sets of polynomials describe how lengths

of quasi-arcs transform in their respective quasi-triangulations, so this completes

subcase 2.

Subcases 3 and 4 hold analogous to case (a) and subcase 2(b), respectively.

7.2 Punctured surfaces

We confess now that we have omitted punctured surfaces throughout this chapter

on account of their failure to emit an LP structure that encompasses the cluster

structure already established (on orientable surfaces) in [12]. The reason why the
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flip/length structure of a punctured surface cannot be imitated by an LP structure is

simple; if a surface is punctured then it emits a tagged triangulation containing two

(distinct) arcs whose plain versions coincide. These two arcs have identical exchange

polynomials, so by Lemma 7.4 the normalised exchange polynomials differ from the

exchange polynomials. This ensures the LP structure and the quasi-cluster structure

will not coincide.

Recall that when the boundary segments receive no variables the 6-gon and the

cylinder C2,2 have the same cluster structure as the punctured triangle and the twice

punctured monogon, respectively - see Figure 7.15. From the comments made above

we instantly get confirmation of the fact obtained in the proof of Lemma 7.10, that

in the absence of boundary variables, there is no LP algebra producing the cluster

structure of the 6-gon or the cylinder C2,2. One might be tempted to believe the

torus with one boundary component and two marked points follows suit, and shares

its cluster structure with a punctured surface, however, the work of Bucher, Yakimov

[3] and Gu [19] tells us that this is not the case.
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6-gon Once punctured triangle.

Cylinder with two

marked points on each

boundary component.

Twice punctured

monogon.

Figure 7.15: Here we list all orientable bordered surfaces which
share their cluster algebra structure with a punctured
surface. For each of these bordered surfaces we provide
the punctured surface possessing the same cluster
structure. In each case we present triangulations emit-
ting matching adjacency quivers.





Chapter 8

Laurent phenomenon algebras

arising from laminated surfaces

We just saw in Section 7.2 that the quasi-cluster algebra of a punctured surface has no

LP structure. The incompatibility arises from the existence of non-distinct exchange

polynomials in certain quasi-triangulations, causing undesired normalisation to take

place. The goal of this chapter is to add laminations to the surface, with the intention

of inserting extra variables into the exchange polynomials, ensuring normalisation

only occurs when needed. We shall do this in such a way that the specialisation is

precisely the underlying quasi-cluster algebra.

8.1 Laminations and shear coordinates

Definition 8.1. A lamination on a bordered surface (S, M) is a finite collection

of non-self-intersecting and pairwise non-intersecting curves in (S,M), considered

up to isotopy, and subject to the conditions outlined below. Each curve must be one

of the following:

• A curve connecting two unmarked points in ∂S. Though we do not allow the

scenario when this curve is isotopic to a piece of boundary containing one or

zero marked points;
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• A curve with one end being an unmarked point in ∂S, and whose other end

spirals into a puncture;

• A curve with both ends spiralling into (not necessarily distinct) punctures. We

forbid the case when the curve has both ends spiralling into the same puncture,

and does not enclose anything else;

• A two-sided closed curve which does not bound a disk, a once-punctured disk,

or a Möbius strip.

Figure 8.1: None of the curves on the left are considered laminations.
All curves on the right are legitimate laminations.

We now describe W. Thurston’s shear coordinates [33] with respect to a lamination

of an ideal-triangulated orientable surface.

Definition 8.2 (S-shape and Z-shape intersections). Let Qγ be a triangulated

quadrilateral with diagonal γ. Suppose C is a curve intersecting opposite sides of Qγ

(and does not intersect the boundary of Qγ anywhere else). Denote these sides by α

and β. If α, β and γ form an ′S ′ (resp. ′Z ′), then call the intersection of C with Qγ

an S-shape intersection (resp. Z-shape intersection). See Figure 8.2.

Definition 8.3 (Shear coordinates for ideal triangulations). Let T be an ideal trian-

gulation of an orientable bordered surface (S,M), and L a lamination. Furthermore,

let γ be an arc of T which is not the folded side of a self-folded triangle, and denote

by Qγ the quadrilateral of T whose diagonal is γ. The shear coordinate, bT (L, γ),

of L and γ, with respect to T , is defined as:

bT (L, γ) := #
{S-shape intersections

of L with Qγ

}
−#

{Z-shape intersections
of L with Qγ

}
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BT (L, γ) = 2
S-shape intersection

BT (L, γ) = 1

Z-shape intersection

BT (L, γ) = −1
Figure 8.2: S-shape and Z-shape intersections.

Remark 12. Note that even though a lamination spiralling into a puncture p will

intersect any arc incident to p infinitely many times, bT (L, γ) will always be finite.

We explain below how Fomin and Thurston [13] extended the notion of shear co-

ordinates to (tagged) triangulations of orientable bordered surfaces.

Definition 8.4 (Shear coordinates for triangulations). Let T be a triangulation and

L a lamination. If L spins into a puncture p, containing only arcs with notches at

p, then reverse the direction of spinning of L at p, and replace all these notched

taggings with plain ones.

Using the rule above we may convert the lamination L of T into a lamination L1 of

a triangulation T1, with the property that any notched arc in T1 appears with its

plain counterpart. As per usual, denote by T ◦ the ideal triangulation associated to

T1 - as hinted by the notation, this is also the ideal triangulation associated to T .

Let γ be an arc of T , and denote by γ◦ the corresponding arc in T ◦. We define

bT (L, γ) as follows:

• If γ◦ is not the self-folded side of a triangle in T ◦, then define bT (L, γ) :=

bT ◦(L1, γ
◦).

• If γ◦ is the self-folded side of a triangle in T ◦, with puncture p, then reverse

the direction of spinning of L1 at p, and denote this new lamination by L2.

Furthermore, let β denote the remaining side of the triangle in T ◦ that is folded

along γ◦. We define bT (L, γ) := bT ◦(L2, β).
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Remark 13. For a lamination L of an ideal triangulation T , note that if γ is the

enclosing arc of a puncture p, then bT (L, γ) does not depend on the direction L is

spinning at any other puncture enclosed in any other monogon.

Definition 8.5. A multi-lamination, L, of a bordered surface (S,M) consists of

a finite collection of laminations of (S,M).

Let T be a triangulation of an orientable bordered surface (S,M). For a multi-

lamination L, of (S,M), we extend the adjacency quiver, QT , to a quiver QT,L as

follows:

• For each lamination Li in L add a corresponding vertex to QT . Abusing

notation, we shall also denote this vertex by Li.

• Let γ denote a vertex in QT and its corresponding arc in T . If bT (Li, γ) is

positive (resp. negative) add |bT (Li, γ)| arrows Li → γ (resp. Li ← γ).

Proposition 8.6 (Theorem 13.5, [13]). Let L be a multi-lamination of an orientable

bordered surface (S,M). Then for any arc γ in a triangulation T , µγ(QT,L) =

Qµγ(T ),L.

Proposition 8.7. For each triangulation T of a multi-laminated bordered surface

(S,M,L), QT ,L is an anti-symmetric quiver.

Proof. We have already verified anti-symmetry between vertices corresponding to

lifted arcs. It remains to check anti-symmetry for the rest of the quiver.

For each lamination Li of L we have two vertices in QT ,L corresponding to the lifted

versions of Li. Abusing notation, we shall denote these vertices by Li and L̃i. If

the lift Li cuts through a triangulated quadrilateral in an ′S ′ (resp. ′Z ′) shape, the

other lift L̃i cuts through the twin quadrilateral in a ′Z ′ (resp. ′S ′) shape. Hence

we get an arrow Li → γ (resp. Li ← γ) if and only if there is an arrow L̃i ← γ̃

(resp. L̃i → γ̃). Furthermore, by definition of this quiver, there are no arrows
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between vertices corresponding to lifted laminations. In particular, there are no

arrows Li → L̃i for any i.

To utilise anti-symmetric quivers as much as possible, in certain triangulations, it

will be helpful to contemplate an alternative choice of flip that our definitions had

previously forbidden. This will involve considering traditional triangulations, which

are defined below. We follow up this definition with a discussion on how this notion

of triangulation arises.

Definition 8.8. A traditional triangulation consists of a maximal collection of

pairwise compatible arcs, containing no arcs that cut out a once punctured monogon.

Let T be a triangulation of (S,M) and α an arc in T . Proposition 6.10 tells us

there exists a unique quasi-arc α′ such that T ∪ {α′} \ {α} is a quasi-triangulation.

However, when α′ is a one-sided closed curve there is an alternative flip of α we

can consider (which is forbidden under our current set-up). We shall describe this

alternative flip and explain how it fits in with mutation of anti-symmetric quivers.

Firstly, note that by Definition 6.6, if α′ is a one-sided closed curve then it intersects

precisely one arc β ∈ T . There exists a unique arc α∗ /∈ T enclosing α′ and β in

M1. If we choose to flip α to α∗ (instead of α′) then we will arise at a traditional

triangulation.

In fact, analogous to the proof of Proposition 6.10, for any triangulation T and any

arc γ of T , there exists a unique arc γ′ 6= γ such that T ∪ {γ′} \ {γ} is a traditional

triangulation. Turning our attention back to this alternative flip, consider the lift T ,

of T , in the double cover (S,M). If we flip both of the lifts α, α̃ in (S,M) and take

the Z2-quotient we will obtain precisely T ′ := T ∪{α∗} \ {α}. Therefore the existing

theory of cluster algebras from surfaces, Proposition 8.6 to be precise, tells us that

µα ◦ µα̃(QT ,L) = Q
T
′
,L.

We conclude this short discussion with the following proposition.
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Proposition 8.9. Fix a multi-lamination L of a bordered surface (S,M). Let T

be a triangulation of (S,M). Then for any arc γ in T , flipping γ (with respect to

traditional triangulations) corresponds to double mutation of the anti-symmetric

quiver QT ,L, at the vertices corresponding to the two lifts of γ.

Proof. By Definition 6.7, since γ is not bounded by an arc enclosing a Möbius

strip, M1, then the interiors of the flip regions containing the lifts of γ are disjoint.

Therefore, flipping γ in (S,M) corresponds to simultaneously flipping both of the

lifts in (S,M). Finally, by the theory of orientable surfaces, flipping an arc in the

double cover corresponds to mutating the vertex in QT ,L representing that arc.

Remark 14. In general, when considering traditional triangulations, mutation does

not preserve the anti-symmetric property of a quiver. In particular, after performing

the flip of α to α∗ discussed above, the corresponding quiver will contain (two)

arrows between β and β̃, depriving it of anti-symmetry. (Flips that result in another

triangulation will of course preserve the anti-symmetric property.)

1 1

2
2

1 2

1̃ 2̃

1 2

1̃ 2̃

2↔ ↔

Figure 8.3: Performing a flip to an arc bounding M1 breaks anti-
symmetry.

We have already seen that the lambda length of a quasi-arc can be viewed as a

formal variable. Our goal now will be to introduce new variables, called laminated

lambda lengths, that take into account the multi-lamination L on the surface, not

just the geometry. The procedure we shall use follows the approach taken by Fomin

and Thurston [13]; it will involve rescaling the lambda length of each quasi-arc γ

with respect to the intersection numbers of γ with L. As it stands, this notion is
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currently ill-defined. Namely, when L spirals into a puncture p, it will intersect any

arc incident to p infinitely many times. To bypass this problem we shall open up

the punctures.

8.2 Opening the surface

Definition 8.10. Let (S,M) be bordered surface and P ⊆ M \ ∂S be a set of

punctures. The (partially) opened bordered surface, (SP ,MP ) is defined as

follows. SP is obtained from S by removing a small open neighbourhood around

each p ∈ P . Furthermore, to each newly created boundary component, Cp, we add

a marked point mp. We then set MP := (M \ P ) ∪ {mp}p∈P .

It is crucial to note that our treatment of a partially opened bordered surface

(SP ,MP ) throughout this chapter will differ from that of a bordered surface. I.e. we

will care whether a boundary segment was the consequence of opening a puncture.

In particular, the set of quasi-arcs of A⊗(SP ,MP ) is defined as before, except now:

• We allow arcs to be notched at mp for p ∈ P .

• We do not allow an arc to cut out a monogon containing Cp for p ∈ P .

With this in mind there is a canonical projection map

κP : A⊗(SP ,MP ) −→ A⊗(S,M)

that amounts to collapsing each boundary component Cp in (SP ,MP ). Any quasi-arc

γ ∈ A⊗(SP ,MP ) that projects to a quasi-arc γ ∈ A⊗(S,M) will be referred to as a

lift of γ.

Definition 8.11. The opened bordered surface, (S∗,M∗), is the result of opening

up all the punctures. Note that κM\∂S := κ∗ factors through every other map κP .
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We now describe what will be the overarching notion of a Teichmüller space with

regards to opening surfaces.

Definition 8.12. A decorated set of punctures, P̃ , is a subset P ⊆ M \ ∂S

together with a choice of ’orientation’ on Cp for each p ∈ P .

Remark 15. To clarify, our usage of ’orientation’ means that we are choosing a

direction of flow on each boundary component Cp. Being on a non-orientable surface

just means that we cannot globally speak about whether this flow is clockwise or

counter-clockwise.

Definition 8.13. For a decorated set of punctures P̃ we define the partially

opened Teichmüller space, TP̃ (SP ,MP ), to be the space of all finite volume,

complete hyperbolic metrics on SP \ (M \P ) with geodesic boundary, up to isotopy.

The decorated partially opened Teichmüller space, T̃P̃ (SP ,MP ), consists of

the same metric as in TP̃ (SP ,MP ), except now they are considered up to isotopy

relative to {mp}p∈P . Additionally, there is a choice of horocycle around each point

in M \ P .

Given a decorated set of punctures P̃ and σ ∈ TP̃ (SP ,MP ), then for any quasi-arc

γ ∈ A⊗(SP ,MP ) we can associate a unique non-intersecting geodesic γσ on SP . If

γ is a one-sided closed curve then γσ is just the usual geodesic representative of γ

with respect to σ. If γ is an arc we define γσ as follows:

• For an endpoint of γ not in P , γσ runs out to the corresponding cusp.

• For an endpoint of γ in P that is tagged plain γσ should spiral (infinitely)

around Cp in the chosen direction. Otherwise the endpoint is notched, and it

should spiral against the chosen direction.

More generally, for a quasi-arc γ ∈ A⊗(SP ,MP ) we set γσ = γσ, where γ = κP (γ).

Definition 8.14. Let P̃ be a decorated set of punctures and σ ∈ T̃P̃ (SP ,MP ). For

each p ∈ P consider a small segment of the horocycle originating from mp which
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is both perpendicular to Cp and all geodesics γσ that spiral into Cp in the chosen

direction. Such a segment is called the perpendicular horocycle segment, and

is denoted hp.

Definition 8.15 (Length of plain arcs on opened surface). Let σ ∈ T̃P̃ (SP ,MP ). We

will eventually define the lengths of all plain arcs γ in (SP ,MP ), however, for now

we shall only concentrate on those whose ends twist sufficiently far around opened

punctures Cp in the direction consistent with the chosen orientation of each Cp.

At the ends of γσ that spiral around an opened puncture Cp there will be infinitely

many intersections with the horocyclic segment hp at mp. We describe how we pick

one of these intersections:

For γ with endpoints mp and mq (that twist sufficiently far around the corresponding

boundaries) choose the unique intersections between γσ and each horocyclic segment,

hp and hq, such that the path running from

• mp to an intersection of hp with γσ, then from

• γσ to an intersection of γσ with hq, then from

• hq to mq

is homotopic to the original arc γ. In the less complicated case of γ not having both

endpoints in P , we leave γσ unmodified at the ends not in P , and, as usual, choose

the unique intersection between γσ and the corresponding horocycle. The length

of γ, lσ(γ), is defined to be the signed distance of γσ between the horocycles at its

endpoints (with respect to the intersections described above).

This definition is extended to all plain arcs (not just those twisting sufficiently far

around open punctures) by defining,

lσ(ψ±1
p (γ)) := ±np(γ)lσ(p) + lσ(γ) (8.2.1)
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Here ψp(γ) denotes the twist of γ around Cp in the direction consistent with Cp’s

orientation (ψ−1
p (γ) being the twist against Cp’s orientation). np(γ) is the number of

endpoints γ has at mp. Finally, lσ(p) is the length of Cp if p ∈ P , and 0 otherwise.

Remark 16. The extended definition (8.2.1) is well defined as the distance between

successive intersections of γσ with hp is lσ(p). A proof of this can be found in [Lemma

10.7, [13]].

Definition 8.16. Let P̃ be a decorated set of punctures and σ ∈ T̃P̃ (SP ,MP ).

For each p ∈ P consider the point mp on Cp that is a (signed) distance v(p) :=

2 ln |λ(p) − λ(p)−1| from mp in the direction against the orientation of Cp. The

conjugate perpendicular horocycle segment, hp, is the segment of the horocycle

originating from mp which is both perpendicular to Cp and all geodesics γσ that

spiral into CP against the chosen direction.

Definition 8.17 (Length of arcs on opened surface). Let σ ∈ T̃P̃ (SP ,MP ). For an

arc γ whose endpoints twist sufficiently far around opened punctures, lσ(γ) is defined

as in the previous definition, except now, when there is a notched end at mp, we

consider the intersection of γσ with the conjugate perpendicular, h̃p, instead. The

definition is again extended to all arcs by using:

lσ(ψ±1
p (γ)) := ±np(γ)lσ(p) + lσ(γ) (8.2.2)

Here ψp and lσ(p) are as in (8.2.1). However, we extend np(γ) to all arcs by setting

it as minus (resp. plus) the number of notched (resp. plain) ends of γ at mp.

Definition 8.18 (Length of one-sided closed curves). Let σ ∈ T̃P̃ (SP ,MP ). If γ is a

one-sided closed curve then we denote by lσ(γ) the hyperbolic length of the geodesic

representation of γ in σ.

Definition 8.19. Let σ ∈ T̃P̃ (SP ,MP ). We define the lambda length of a quasi arc

γ in (SP ,MP ) as:



8.3. Transverse measure and tropical lambda lengths 101

λσ(γ) =


e
lσ(γ)

2 , if γ is an arc,

2sinh( lσ(γ)
2 ), if γ is a one-sided closed curve,

In addition to this, for each puncture p of (S,M), we define λσ(p) := e
lσ(p)

2 .

Remark 17. Let us fix a lift γ ∈ (S∗,M∗) for each arc γ in (S,M). [Corollary 10.16,

[13]] tells us that for each triangulation T of (S,M), the cluster x(T ) := {λ(γ)|γ ∈

T} may be viewed as a set of algebraically independent variables. Furthermore,

[Theorem 11.1, [13]] reveals that the exchange relations between these clusters are

the relations of the corresponding flips on the pre-opened surface (S,M), that have

been rescaled at the situations where a flip region in (S,M) has not lifted to a flip

region in (S∗,M∗). In the terminology of [13], this collection of clusters, together

with the corresponding rescaled exchange relations, form a non-normalised exchange

pattern on E◦(S,M).

8.3 Transverse measure and tropical lambda

lengths

Definition 8.20. A lifted lamination, L, of (S∗,M∗) consists of a choice of

orientation on each opened puncture Cp, together with a finite number of non-

intersecting curves with endpoints in ∂S∗ \M∗, considered up to isotopy relative to

M∗. We forbid the following types of curves:

• one-sided closed curves;

• two-sided closed curves that bound a disk, a Möbius strip, or a disk containing

a single opened puncture;

• curves with endpoints in ∂S∗ which are isotopic to a piece of boundary con-

taining one or zero marked points.
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Remark 18. Observe that we can construct a canonical projection map taking lifted

laminations, L, of (S∗,M∗) to laminations, L, of (S,M). Namely, L is obtained

from L by closing the opened punctures, and demanding endpoints in L that end

on opened punctures, Cp, will now spiral around p in the direction opposite to

the orientation chosen on Cp (with respect to L). The reason why we demand

the spiralling to oppose the orientation on Cp is to produce equation 8.3.1 - if the

orientation agreed we would have to replace ’±’ with ’∓’.

Definition 8.21 (Transverse measures for plain arcs). Let L be a lifted lamination

of a bordered surface (S,M). Let γ be a plain arc of the opened surface (S∗,M∗),

or a boundary segment. The transverse measure of γ with respect to L is the

integer lL(γ) defined as follows:

• If γ does not have ends at any mp then lL(γ) is the minimal number of

intersection points between L and any arcs homotopic to γ.

• If γ has one or two ends at opened punctures, and γ twists sufficiently far in

the direction L spirals around those opened punctures (if it even does), then

lL(γ) is again defined to be the minimal number of intersection points between

L and any arcs homotopic to γ.

We extend this definition to all plain arcs, not just to those twisting sufficiently

far, by setting:

lL(ψ±1
p (γ)) := ±np(γ)lL(p) + lL(γ) (8.3.1)

Here ψp and np are as in Definition 8.17, although it is key to note ψp is now

defined with respect to the orientation on each Cp coming from L. lL(p) is the

number of intersections of L with Cp.

Definition 8.22 (Transverse measures for all arcs). For plain arcs γ, lL(γ) is defined

as in Definition 8.21. For an arc γ which is notched at an endpoint mp, and that

twists sufficiently far against the direction L spirals around Cp, define lL(γ) to be
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the minimal number of intersection points between L and (any arcs homotopic to)

γ, plus lL(p). The additional term lL(p) accounts for the asymptotics of v(p).

We extend the definition to all arcs using equation (8.3.1), defined in Definition 8.21.

Definition 8.23 (Tropical semi-field associated with a multi lamination). Let L be

a multi lamination of a bordered surface (S,M). For each lamination Li in L we

introduce a variable qi. We consider the tropical semifield PL over these variables.

More specifically, PL = Trop(qi : i ∈ I). Note that I is just the indexing set for the

laminations Li in L.

Definition 8.24 (Tropical lambda lengths). Let L = {Li}i∈I be a lifted multi-

lamination on an opened surface (S∗,M∗). Let γ be an arc or boundary component

of (S∗,M∗). We define the tropical lambda length, cL(γ), of γ as follows:

cL(γ) =
∏
i∈I
q
−
l
Li

(γ)

2
i (8.3.2)

Note that by (8.3.1) these tropical lambda lengths satisfy

cL(ψ±1
p (γ)) = cL(p)±np(γ)cL(γ) (8.3.3)

8.4 Laminated lambda lengths and the

laminated quasi-cluster algebra

Recall that we began to consider the opened surface with the intention of rescaling

lambda lengths of quasi-arcs using transverse measures. (Transverse measure is

generally ill-defined on un-opened surfaces due to possible infinite intersections of

arcs with the multi-lamination.) Our approach so far requires us to fix a lift γ in

(S∗,M∗) for each quasi-arc γ in (S,M). As we already noted in Remark 17, the

clusters x(T ) := {l(γ) : γ ∈ T} arising from triangulations form a non-normalised

exchange pattern on E◦(S,M). If the arcs of a flip region in (S,M) lift to another
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flip region in (S∗,M∗) then the exchange relations coincide. However, if they do

not lift to a flip region, the exchange relations will differ. In particular, when they

do not, the exchange relation on the opened surface will be a rescaled version of

the original. This rescaled relation is obtained by finding a new collection of lifts

such that, with respect to these new lifts, the flip region does lift to a flip region.

Since the new lifts only differ from the old via spiralling at opened punctures, this

rewriting is obtained using (8.2.2). The issue with the current standings is that it

is quite hard to keep track of these particular rescalings. The following definition

shows that by putting boundary conditions on the opened punctures, we may both

achieve our goal of defining laminated lambda lengths that take into account the

lamination on the surface, and eliminate the nasty rescaling process required when

flip regions do not lift to flip regions.

Definition 8.25. The complete decorated Teichmüller space, T (S,M), is the

disjoint union of the TP̃ (SP ,MP ) over all 3|∂S\M | partially decorated sets P̃ .

Definition 8.26. Let L = {Li}i∈I be a multi-lamination of (S,M). Fix a lift L, of

L, on the opened surface (S∗,M∗). A point (σ, q) of the laminated Teichmüller

space, T (S,M,L), consists of a decorated hyperbolic structure σ ∈ T (S,M) and a

collection of positive real numbers q := (q1, . . . q|I|) subject to the following condition

on all punctures p ∈ ∂S \M :

λ(p) = cL(p).

Definition 8.27. Let (S,M) be a bordered surface, and L a multi-lamination. Fix a

lift L of L. For each quasi-arc γ of (S,M) choose a lift γ. We define the laminated

lambda length, xL(γ), of γ to be:

xL(γ) := λ(γ)
cL(γ) (8.4.1)

Due to the enforced ’boundary’ condition λ(p) = cL(p) for each puncture p, from

equations (8.2.2) and (8.3.3) we realise that xL(γ), as the notation suggests, is
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independent of the choice of lift γ. It is worth noting that this definition does

depend on the choice of lift L.

The following theorem follows from [Corollary 15.5, [13]].

Theorem 8.28. Let L = {Li}i∈I be a multi-lamination of (S,M) and L a lift. For

any quasi-triangulation T with quasi-arcs and boundary arcs γ1, . . . , γn+b there exists

a homeomorphism

ΛT : T (S,M,L) −→ Rn+b+|I|
>0

(σ, q) 7→ (xL(γ1), . . . , xL(γ1), q1, . . . q|I|)

Theorem 8.28 allows us to simultaneously view the laminations in a multi-lamination,

and the laminated lambda lengths of any quasi-triangulation, as algebraically inde-

pendent variables. With this in mind, given a laminated bordered surface (S,M,L),

we can consider a seed, (x, T ), consisting of a quasi triangulation T and a collec-

tion of algebraically independent cluster variables x := {xγ|γ ∈ T}. Furthermore,

consider the coefficient ring ZP generated (over Z) by the algebraically independent

frozen variables xb and xLi corresponding to each boundary segment b of (S,M) and

each lamination Li of L.

Performing flips of quasi-arcs, and using the exchange relations in Definition 6.15

coupled with the equation (8.4.1) of a laminated lambda length, we can generate all

other seeds with respect to our initial seed (x, T ).

Let X be the set of all cluster variables appearing in all of these seeds. A(x,T )(S,M,L) :=

ZP[X ] is the laminated quasi-cluster algebra of the seed (x, T ).

The definition of a quasi-cluster algebra depends on the choice of the initial seed and

of the lift L. However, [Definition 15.3, [13]] reassures us that if we choose a different

initial seed, or a different lift, the resulting laminated quasi-cluster algebra will be

isomorphic to A(x,T )(S,M,L). As such, it makes sense to talk about the laminated

quasi-cluster algebra, A(S,M,L), of (S,M,L).

Definition 8.29. The laminated quasi-arc complex ∆⊗(S,M,L) of the lam-
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inated quasi-cluster algebra A(S,M,L) is the simplicial complex with the ground

set being the cluster variables of A(S,M,L), and the maximal simplices being the

clusters.

Definition 8.30. The exchange graph E⊗(S,M) of the laminated quasi-cluster al-

gebraA(S,M,L) is the graph whose vertices correspond to the clusters ofA(S,M,L).

Two vertices are connected by an edge if their corresponding clusters differ by a

single mutation.

8.5 Connecting laminated quasi-cluster algebras

to LP algebras

8.5.1 Finding exchange relations of quasi-arcs via quivers

The following proposition, which is a subcase of [Theorem 15.6, [13]], tells us that

when we are looking at flips between traditional triangulations, then the exchange

polynomials of arcs can be obtained by looking at the ingoing and outgoing arrows

of the associated quiver.

Proposition 8.31. Let T be a triangulation of (S,M), L a multi-lamination and

L a lift. Label the arcs, boundary segments and laminations 1, . . . ,m and consider

the associated quiver QT ,L.

Let γ be an arc in T and consider the unique arc γ′ 6= γ such that T ∪ {γ′} \ {γ} is

a traditional triangulation. Suppose the lifts of γ receives the labels j and j̃. Then

the exchange polynomial of γ with respect to this flip is:

Fj =
∏
bij>0

i∈{1,...,m,1̃...,m̃}

x
bij
i +

∏
bij<0

i∈{1,...,m,1̃...,m̃}

x
−bij
i

Proof. Follows from [Theorem 15.6, [13]].
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We are now at the stage where we know that for a laminated surface (S,M,L),

flipping arcs in a triangulation T corresponds to double-mutation of the associated

anti-symmetric quiver QT ,L. Moreover, we know that the associated exchange re-

lations of each vertex of QT ,L describe how the laminated lambda lengths change

under flip. It is crucial to note that to get the correspondence above we have been

allowing flips to arcs bounding M1 instead of to one-sided closed curves. It turns

out that if we make an adjustment to how we ’read off’ polynomials from QT ,L then

we can obtain the exchange relations regarding the flip to a one-sided closed curve

instead of the arc bounding M1.

Definition 8.32. Let Q be an anti-symmetric quiver with 2m vertices, of which

m − n pairs are frozen. The shortened exchange matrix of Q is the matrix

B = (bij)1≤i≤m
1≤j≤n

, where bij := bij + bĩj. Each column 1 ≤ j ≤ n of B is naturally

associated to the polynomial

F
Q

j :=
∏
bij>0

i∈{1,...,m}

x
bij
i +

∏
bij<0

i∈{1,...,m}

x
−bij
i .

We wish to show that these exchange relations from B describe how laminated

lambda lengths change when flipping arcs. To achieve this we require the following

two lemmas.

Lemma 8.33. Let T be a triangulation of (S,M,L) and QT ,L its associated quiver.

Furthermore, let i be a vertex of QT ,L corresponding to an arc. Then there is a path

k → i→ k̃ in QT ,L for some vertex k if and only if i flips to a one-sided closed curve

and k is an arc.

Proof. If there is a path k → i → k̃ in QT ,L, then, by sign coherence, k must be

an arc and not a lamination Furthermore, by anti-symmetry there is also the path

i← k → ĩ. This implies the existence of the quadrilateral (a, ĩ, b̃, i) shown in Figure

8.4, where a and b̃ may not be arcs in T , but the associated arc bounding an arc

and its notched counterpart. We see that a, b̃ /∈ {i, ĩ} as this would then imply T
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contains either a punctured monogon or M1, both of which are forbidden. Applying

anti-symmetry again we find the existence of the quadrilateral (ã, i, b, ĩ). Glueing

these two quadrilaterals together and taking the Z2-quotient yields the picture in

Figure 8.5, confirming that i flips to a one-sided closed curve.

The proof of the other direction is trivial.

↔i k ĩ

k

ĩ

i

a

b̃

Figure 8.4: The local configuration of the surface if i← k → ĩ is a
path in QT ,L.

−→
Z2-quotient

ba

i

k̃ k

ĩ

b̃ ã

i

k
a b

Figure 8.5: The quasi-triangulation induced by the path k → i→ k̃
in QT ,L.

Lemma 8.34. Let α∗ be an arc bounding a Möbius strip with one marked point,

M1, and β the unique arc in M1. Consider the flip of β to the one-sided closed curve

α. Then xL(α)xL(β) = xL(α∗).

Proof. There are two elementary laminations of M1 - these are shown in Figure 8.6.

For the lamination on the left in Figure 8.6: cL(β) = cL(α) = X
1
2 , cL(α∗) = X.

For the lamination on the right in Figure 8.6: cL(β) = cL(α∗) = X, cL(α) = 1.
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Recall that by Definition 6.15 the lambda lengths of α, β, α∗ are related by λ(α)λ(β) =

λ(α∗). Therefore, employing equation (8.4.1), for any lamination L, we obtain

xL(α)xL(β) = xL(α∗)cL(α∗)
cL(α)cL(β) = xL(α∗).

Remark 19. Note that the truth of Lemma 8.34 crucially depends on our exclusion,

in Definition 8.1, of closed curves that are one-sided, or bound a Möbius strip. If L is

one of these forbidden curves contained in M1, then cL(α)cL(β) = X 6= 1 = cL(α∗).

Consequently, xL(α)xL(β) 6= xL(α∗).

Figure 8.6: The two elementary laminations ofM1. (Meaning every
lamination of M1 will be some union of these lamina-
tions.)

Notation: From here onwards, by abuse of notation, for each quasi-arc γ of a

laminated bordered surface (S,M,L), we shall denote the laminated lambda length

xL(γ) by γ itself.

Proposition 8.35. Let QT ,L be an anti-symmetric quiver of a triangulation T of

(S,M,L). Then the polynomials F from Definition 8.32 are the exchange relations

describing how laminated lambda lengths change under flips of arcs in T .

Proof. Currently by Proposition 8.31 we know that the polynomial

F
Q
T,L

j =
∏
bij>0

i∈{1,...,m,1̃...,m̃}

x
bij
i +

∏
bij<0

i∈{1,...,m,1̃...,m̃}

x
−bij
i
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describes how the laminated lambda length of an arc γj in T changes under flip when

we allow flips to arcs bounding M1 instead of one-sided closed curves. By Lemma

8.33, if γj does not flip to a one-sided closed curve then F
Q
T,L

j = F
Q
T,L

j .

If γj does flip to a one-sided closed curve α, then by Lemma 8.33 we know bkj :=

bkj+bk̃j = 0 for some k (where bkj = −bk̃j = ±1), and bij, bĩj are both simultaneously

non-positive or non-negative for all i ∈ [m] \ {k}. Hence F
Q
T,L

j = F
Q
T,L

j

β
, where β

is the arc corresponding to k. Proposition 8.31 tells us that when γj flips instead

to the arc α∗ enclosing M1, then γjα∗ = F
Q
T,L

j . Moreover, by Lemma 8.34 we know

that αβ = α∗. This gives us the desired relation γjα = F
Q
T,L

j

β
= F

Q
T,L

j .

Proposition 8.35 tells us that for a triangulation T of a laminated bordered surface

(S,M,L), for any arc γ ∈ T , the exchange polynomial F γ is obtained from considering

(sums of) the ingoing and outgoing arrows of the vertex γ (or equivalently γ̃) in QT ,L.

However, currently we have no such combinatorial method that provides us with

the exchange polynomials of quasi-arcs in quasi-triangulations containing one-sided

closed curves. The following lemma addresses this.

Before we state the lemma let us fix some notation. Recall that a one-sided closed

curve α in a quasi-triangulation T will intersect precisely one arc β ∈ T . As it

always will throughout this chapter, α∗ denotes the unique arc enclosing α and β in

M1. For each quasi-triangulation T we can therefore uniquely associate a traditional

triangulation T ∗ by replacing each one-sided closed curve α ∈ T with α∗.

For the rest of this chapter, by an abusive of notation, for each quasi-arc γ we shall

also denote its laminated lambda length by γ – previously written as xL(γ). Similarly,

for a lamination Li of a multi-lamination L, we also denote its corresponding variable

by Li – previously written as qi.

Lemma 8.36. Let T be a quasi-triangulation containing a one-sided closed curve

α, and let β denote the unique arc in T intersecting α. Consider the associated

traditional triangulation T ∗ and its corresponding quiver QT
∗ , shown in Figure



8.5. Connecting laminated quasi-cluster algebras to LP algebras 111

8.7. Furthermore, denote by bij and b′ij the coefficients of QT
∗ and µα∗ ◦ µα̃∗(QT

∗),

respectively. Then the exchange polynomials of the quasi arcs α and β in T are

given by:

αα′ =
( ∏
bLiα∗>0

L
bLiα∗

i

)
y +

( ∏
bLiα∗<0

L
−bLiα∗
i

)
x

ββ′ =

( ∏
b
′
Liβ

>0

L
b
′
Liβ

i

)(( ∏
bLiα∗>0

L
bLiα∗

i

)
y +

( ∏
bLiα∗<0

L
−bLiα∗
i

)
x

)2

+
( ∏
b
′
Liβ

<0

L
−b′Liβ
i

)
xyα2

α2 .

Proof. The exchange relation of α follows from Proposition 8.9 and Proposition 8.35.

To obtain the exchange polynomial of β we (first) need to consider µα∗ ◦ µα̃∗(QT
∗)

instead of QT
∗ – this is because β flips to β′ in µα∗(T ∗), but not in T ∗. By Proposition

8.35 we get that:

ββ′ =
( ∏
b
′
Liβ

>0

L
b
′
Liβ

i

)
α′2 +

( ∏
b
′
Liβ

<0

L
−b′Liβ
i

)
xy.

Rewriting α′ using the exchange relation already obtained for α yields

ββ′ =

( ∏
b
′
Liβ

>0

L
b
′
Liβ

i

)(( ∏
bLiα∗>0

L
bLiα∗

i

)
y +

( ∏
bLiα∗<0

L
−bLiα∗
i

)
x

)2

+
( ∏
b
′
Liβ

<0

L
−b′Liβ
i

)
xyα2

α2 .

Remark 20. More generally, for any quasi-arc γ in a quasi-triangulation T , the

exchange polynomial for γ is still obtained by the formulae of Propositions 8.35

and 8.36 – we just have to remember that if a variable α∗ appears in the exchange

relation we must replace it with αβ.
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↔x y

α∗

β

α∗ β

α̃∗
β̃

2

x

x̃

ỹ

y

Figure 8.7: The traditional triangulation T ∗ together with its asso-
ciated quiver QT

∗ .

8.5.2 Laminated quasi-cluster algebras via LP mutation

Let γ be a quasi-arc in a quasi-triangulation T . We have seen in Propositions 8.35

and 8.36 that the exchange relation of γ is a Laurent polynomial; we denote by Fγ

the numerator of this polynomial. To each quasi-triangulation T we assign the ’LP’

seed (x,FT ) where x := {xL(γ)|γ ∈ T} and FT := {Fγ|γ ∈ T}. Of course, due

to the irreducibility conditions, (x,FT ) may not be a valid LP seed - this will be

addressed later.

The following lemma assures us that, if the polynomials in FT are distinct, then the

normalisations of these polynomials are the exchange relations of their corresponding

quasi-arcs.

Lemma 8.37. Let T be a quasi-triangulation and suppose Fγi 6= Fγj for any quasi-

arcs γi and γj in T (i 6= j). If γ ∈ T intersects a one-sided closed curve α ∈ T then

F̂γ = Fγ
α2 , otherwise F̂γ = Fγ.

Proof. Let γ1, . . . , γn be the quasi-arcs in T . Recall that F̂γj := Fγj

γ
a1
1 ...γ

aj−1
j−1 γ

aj+1
j+1 ...γann

where ak ∈ Z≥0 is maximal such that F ak
γk

divides Fγj |γk←Fγk
x

.

Hence, ak > 0 if and only if Fγk divides the constant term of Fγj when viewed as a

polynomial in γk.

If γj does not intersect a one-sided closed curve in T then Fγj is a binomial. As

a consequence, when viewed as a polynomial in γk, the constant term is either a
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monomial (γk ∈ Fγj), or the whole binomial Fγj (γk /∈ Fγj). If it is a monomial

then it is not divisible by Fγk . From our assumptions in the lemma we know that

Fγj is irreducible and Fγj 6= Fγk . So if the constant term is Fγj , this also cannot be

divisible by Fγk . Hence F̂γj = Fγj .

If γj intersects a one-sided closed curve α ∈ T , then γj has the flip region shown in

Figure 8.8. Moreover, by Lemma 8.36, it has the exchange polynomial

Fγj =
( ∏
biγj>0

L
biγj
i

)
F 2
α +

( ∏
biγj<0

L
−biγj
i

)
xyα2

where

Fα =
( ∏
biα>0

Lbiαi
)
y +

( ∏
biα<0

L−biαi

)
x

.

Accordingly, for any quasi-arc γk ∈ T \{α}, the constant term of Fγj , when viewed as

a polynomial in γk, is a monomial or Fγj . Just as before, this implies γk /∈
F̂γj
Fγj

. How-

ever, when Fγj is viewed as a polynomial in α the constant term is
( ∏
biγj>0

L
biγj
i

)
F 2
α,

and the degree 1 term is 0. Thus, F̂γj = Fγj
α2 .

γj

α

x y

Figure 8.8: The flip region of γj if it intersects a one-sided closed
curve.

Lemma 8.38. Let T be the traditional triangulation of M2 obtained from glueing

together a triangle and an anti self-folded triangle. If we label the lifted arcs as in
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Figure 8.9, then for any lamination L of M2, in the quiver QT ,L we have bLβ ≥ 0

and either:

bLα∗ ≥ bL̃β and bL̃α∗ ≥ bLβ or bLα∗ ≤ bL̃β and bL̃α∗ ≤ bLβ.

−→

α∗

β

α∗

β β̃

α̃∗

Double Cover

T T

Figure 8.9: The traditional triangulation T obtained from glueing
a triangle with an anti-self triangle, and its lift T .

Proof. Let us consider the lifted triangulation T of T , and suppose we have labelled

the arcs as shown in Figure 8.9. We shall first determine when L adds weight to β

or α∗.

Recall that for a lamination L to add positive (resp. negative) weight to β it needs

to cut the quadrilateral in T containing β in an ′S ′ (resp. ′Z ′) shape. In Figure 8.10,

for each shape type, we show the local configuration of the lamination within the

quadrilateral containing β, and we denote its accompanying twin lamination with a

dotted line.

S-shape
crossing

Z-shape
crossing

Figure 8.10: The instances where the lamination cuts β in an ’S’ or
’Z’ shape.
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For the case when L cuts β in an ′S ′ shape the partial lamination shown in Figure

8.10 can be extended (without self-intersections) in three ways. The Z2-quotients of

these extensions are shown in Figure 8.11. However, note that when L cuts β in a ′Z ′

shape the partial ’lamination’ shown in Figure 8.10 is self intersecting, and therefore

will not form a legitimate lamination. As a consequence, for any lamination L, when

we label the arcs as in Figure 8.9, then we can only ever have bLβ ≥ 0. (If we labelled

β and β̃ the other way around we would only ever have bLβ ≤ 0.)

(1) (2) (3)

Figure 8.11: The possible (elementary) laminations adding weight
to β.

Now suppose L adds weight to α∗. Locally within the quadrilateral containing α∗,

depending on which shape L cuts α∗, L will have one of the configurations shown in

Figure 8.12.

S-shape
crossing

Z-shape
crossing

Figure 8.12: The instances where the lamination cuts α∗ in an ’S’
or ’Z’ shape.

We can see that each configuration can be extended to a (non-intersecting) lamination

in precisely two ways. Taking the Z2-quotient leaves us with the laminations shown

in Figure 8.13.
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(4) (5) (6) (7)

Figure 8.13: The possible (elementary) laminations adding weight
to α∗.

If bLα∗ > bL̃β = −bLβ̃ then L must contain the curve (5).

If −bLα̃∗ = bL̃α∗ < bLβ then L must contain (at least) one of the curves (2), (3) = (7)

or (6).

Since (5) intersects each of (2), (3) = (7) and (6), these inequalities cannot be

simultaneously satisfied. Consequently, bLα∗ > bL̃β implies bL̃α∗ ≥ bLβ. An analogous

argument shows that bLα∗ < bL̃β implies bL̃α∗ ≤ bLβ.

Remark 21. Note that if bγL = 0 for some arc γ ∈ T , then since the lamination L

is not self-intersecting, this implies bγL = bγ̃L = 0.

Having realised how to obtain lamination coefficients of exchange polynomials of

any quasi-triangulation T we will now describe how these change under flips. If T

is a triangulation then these coefficients will change in accordance to usual quiver

mutation formulae. We are therefore left with the task of describing how coefficients

change when we perform flips in regions containing a one-sided closed curve. For

a quiver QT arising from a traditional triangulation T containing anti self-folded

triangles, Lemma 8.38 puts a restriction on the possible extended quivers, QT ,L, that

can arise from a multi lamination L on the surface. We shall use this lemma to sift

out these ’obvious’ impossible extended quivers. After this sifting, on the surviving

extended quivers, we will describe in the following lemma how the quiver changes

with respect to flips of arcs in T .
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Lemma 8.39. Let (S,M,L) be a laminated bordered surface. Consider the quasi-

triangulation T and its associated lift T ∗, both shown in Figure 8.14. Let us denote

the coefficients of QT
∗
,L by bij. Then:

(a) the lamination coefficients, b′ij, corresponding to α∗, β and x in Q
µα∗ (T )

∗
,L can

be written as:

b
′
Lix

= bLix + max(0, bLiα∗) , b
′
Liα∗

= −bLiα∗ , b
′
Liβ

= bLiβ − |bLiα∗|

(b) The lamination coefficients, b′′′ij , of α∗, β and x in Q
µβ(T )

∗
,L can be written as:

b
′′′
Liα∗

= bLiα∗ , b
′′′
Liβ

= −bLiβ,

b
′′′
Lix

= bLix + max(0, bLiα∗ + bLiβ) + max(0, bLiα∗ − bLiβ)

Proof. To validate these formulae we must:

• perform mutation, µα∗ , at α∗ and α̃∗ in QT
∗
,L to obtain Q

µα(T )
∗
,L

• perform the sequence of mutations µα∗ ◦ µβ ◦ µα∗ on QT
∗
,L to obtain Q

µβ(T )
∗
,L.

By Lemma 8.38, we can divide our task into four natural cases:

1. bLα, bLα̃ ≥ 0, bLα∗ ≥ bL̃β, bL̃α∗ ≥ bLβ

2. bLα, bLα̃ ≥ 0, bLα∗ ≤ bL̃β, bL̃α∗ ≤ bLβ

3. bLα, bLα̃ ≤ 0, bLα∗ ≥ bL̃β, bL̃α∗ ≥ bLβ

4. bLα, bLα̃ ≤ 0, bLα∗ ≤ bL̃β, bL̃α∗ ≤ bLβ

Using the matrix mutation exchange relation, b′kj = sgn(bij)[bkibij]+, it is easily

verified that, in each of the four cases, the resulting coefficients agree with the

claimed formulae.
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α

β

T

α∗

β β̃

α̃∗

T
∗

x yỹ x̃x yyx

α∗

β

T ∗

Figure 8.14: A quasi-triangulation T together with its associated
traditional triangulation T ∗ and lift T ∗.

Having discovered how exchange polynomials of any quasi-triangulation change via

the consideration of quivers, we are now ready to show that (under certain conditions)

LP mutation is also describing how these polynomials change under flips.

Theorem 8.40. Suppose (S,M,L) is a laminated bordered surface such that for

each quasi-triangulation T , (x,FT ) is a valid seed, and Fγi 6= Fγj for any quasi-arcs

γi and γj in T (i 6= j). Then LP mutation amongst seeds corresponds to flipping

quasi-arcs. Specifically, for any seed, (x,FT ), and quasi-arc γ ∈ T we have that

µγ(x,FT ) = (µγ(x),Fµγ(T )). Here µγ(x) := x \ {xL(γ)} ∪ {xL(γ′)} where γ′ is the

flip of γ with respect to T .

Proof. In Proposition 6.10 we classified the type of flip regions of quasi-triangulations

T - these are shown in Figure 6.4. It is crucial to note that the sides of these flip

regions may not be arcs (or boundary segments) in T , but rather an arc bounding

M1 or a punctured digon. In which case this arc is representing the two quasi-

arcs it bounds. Propositions 6.21, 8.35 and Lemma 8.37 tells us that LP mutation

describes how the exchange polynomials of arcs change when flipping amongst tri-

angulations. It remains to check this is the case when mutating to, and amongst,

quasi-triangulations containing one-sided closed curves. For now we shall only con-

sider flip regions whose sides are arcs in T . Note that when we perform a flip only the

exchange polynomials of the interior and boundary quasi-arcs of the flip region can

change. Therefore, for each flip, we just need to show that LP mutation describes
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how these polynomials change (as LP mutation will also leave all other exchange

polynomials unchanged).

β y

ỹβ̃α̃∗

α∗x

x̃

QT

f

e
ẽ

f̃

T

x y

α

β

f

ee

f

yx
β

α′

T ′

Figure 8.15: A triangulation T , in which α flips to a one-sided closed
curve α′, and the corresponding quiver QT .

Case 1: The flip of an arc, α, to a one-sided closed curve.

Suppose an arc α in a triangulation of (S,M) flips to a one-sided closed curve α′. Let

x and y be the boundaries of this region, and β the other interior arc. Without loss

of generality it suffices to show that LP mutation describes how Fx and Fβ change

under this flip. Furthermore we may assume that x is not a boundary segment of

(S,M), as otherwise it has no exchange polynomial, and there would be nothing to

check. We will therefore have the local picture shown in Figure 8.15, moreover, for

our chosen labelling of QT , by Proposition 8.35, we will get:

Fα =
( ∏
bLiα>0

L
bLiα
i

)
x+

( ∏
bLiα<0

L
−bLiα
i

)
y

Fβ =
( ∏
bLiβ>0

L
bLiβ
i

)
α2 +

( ∏
bLiβ<0

L
−bLiβ
i

)
xy

Fx =
( ∏
bLix>0

L
bLix
i

)
βe+

( ∏
bLix<0

L
−bLix
i

)
αf.

Let us consider the quasi-triangulation T ′ := µα(T ) and denote the coefficients in

Q
T
′ by b′ij. By Propositions 8.35 and 8.36, we are required to show that LP mutation

changes Fβ and Fx to the following polynomials:
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F ′β =
( ∏
bLiβ>0

L
bLiβ
i

)
F 2
α +

( ∏
bLiβ<0

L
−bLiβ
i

)
xyα′2

F ′x =
( ∏
b
′
Lix

>0

L
b
′
Lix

i

)
βeα′ +

( ∏
b
′
Lix

<0

L
−b′Lix
i

)
yf.

Since Fα|β←0 = Fα then,

Gβ = Fβ|α←Fα
α′

=

( ∏
bLiβ>0

L
bLiβ
i

)
F 2
α +

( ∏
bLiβ<0

L
−bLiβ
i

)
xyα′2

α′2

Hence MGβ = F ′β, as required.

Since F̂α|x←0 =
(∏

bLiα<0 L
−bLiα
i

)
y we obtain:

Gx = Fx|
α← F̂α|x←0

α′
=

( ∏
bLix>0

L
bLix
i

)
βeα′ +

( ∏
bLix<0

L
−bLix
i

)( ∏
bLiα<0

L
−bLiα
i

)
yf

α′

From here we see that the exponent of Li in MGx will be |bLix − max(0,−bLiα)|.

Moreover, Li will appear in the left or right monomial of MGx respective of

whether bLix − max(0,−bLiα) is positive or negative. Lemma 8.39 tells us that

bLix = b
′
Lix

+ max(0, bLiα) and bLiα = −b′Liα. So b
′
Liβ

= bLix −max(0,−bLiα) and LP

mutation indeed describes how the exchange polynomials change for this flip.

f

e
ẽ

f̃f

ee

f

x y
β′

T ′

α

T

x y

α

β

β
y

ỹβ̃
α̃∗

α∗x

x̃

QT
∗

2

Figure 8.16: A triangulation T , in which β intersects a one-sided
closed curve α, and the corresponding quiver QT

∗ .

Case 2: The flip of an arc, β, intersecting a one-sided closed curve.
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Suppose an arc β in a quasi-triangulation of (S,M) intersects a one-sided closed

curve α. Let x and y be the boundary segments of the flip region, and denote by β′

the arc β flips to. As before, it is enough to show that LP mutation describes how

Fα and Fx change under this flip, and we may assume x is not a boundary segment

of (S,M). We therefore arrive at the sub quasi-triangulation, T , and sub quiver,

QT
∗ , shown in Figure 8.16. For our chosen labelling of QT

∗ , by Propositions 8.35

and 8.36, we obtain:

Fα =
( ∏
bLiα∗>0

L
bLiα∗

i

)
y +

( ∏
bLiα∗<0

L
−bLiα∗
i

)
x

Fβ =
( ∏
b
′
Liβ

>0

L
b
′
Liβ

i

)
F 2
α +

( ∏
b
′
Liβ

<0

L
−b′Liβ
i

)
xyα2.

Fx =
( ∏
bLix>0

L
bLix
i

)
αβe+

( ∏
bLix<0

L
−bLix
i

)
fy

Note that here we represent the coefficients of Qµα(T ) = µα∗ ◦ µα̃∗(QT
∗) by b

′
Liβ

.

Furthermore, for T ′ := µβ(T ), if we denote the coefficients of QT ′
∗ by b′′′ij then, by

Propositions 8.35 and 8.36, we are required to show that LP mutation changes Fα

and Fx to the following polynomials:

F ′α =
( ∏
b
′′′
Liα
∗>0

L
b
′′′
Liα
∗

i

)
y +

( ∏
b
′′′
Liα
∗<0

L
−b′′′Liα∗
i

)
x

F ′x =
( ∏
b
′′′
Lix

>0

L
b
′′′
Lix

i

)
ey +

( ∏
b
′′′
Lix

<0

L
−b′′′Lix
i

)
fαβ′

Since β /∈ Fα then we need Fα = F ′α. This is the case since Lemma 8.39 tells us that

b
′′′
Liα∗

= bLiα∗ . It remains to check how Fβ changes under LP mutation.

F̂β|x←0 =

( ∏
b
′
Liβ

>0

L
b
′
Liβ

i

)( ∏
bLiα∗>0

L
2bLiα∗
i

)
y2

α2
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=

( ∏
max(0,bLiα∗+bLiβ)+max(0,bLiα∗−bLiβ)>0

L
max(0,bLiα∗+bLiβ)+max(0,bLiα∗−bLiβ)
i

)
y2

α2

The last equality follows from Lemma 8.39 which tells us that b′Liβ = bLiβ−|bLiα∗|, and

the inequalities of Lemma 8.38. For convenience, let us define Ki := max(0, bLiα∗ +

bLiβ) + max(0, bLiα∗ − bLiβ). As a consequence we obtain:

Gx = Fx|
β←

F̂β |x←0
β′

=

( ∏
bLix>0

L
bLix
i

)( ∏
Ki>0

LKii

)
ey +

( ∏
bLix<0

L
−bLix
i

)
fαβ′

αβ′

y

From here we see Li will have exponent |bLix+Ki| inMGx. Moreover, Li will appear

in the left or right monomial of MGx respective of whether bLix +Ki is positive or

negative. From Lemma 8.39 we saw b
′′′
Liβ

= bLix +Ki, so LP mutation does indeed

describe how the exchange polynomials change for this flip.

For the cases when the boundaries of flip regions are not all arcs, analogous cal-

culations show that LP mutation still describes how the exchange polynomials

change.

8.5.3 Principal laminations

Theorem 8.40 asserts that for a laminated quasi-cluster algebra A(S,M,L), if the

exchange polynomials in each seed are irreducible and distinct then flips coincide with

LP mutations. Therefore, to establish an LP structure on a bordered surface (S,M)

we must concoct a multi-lamination which guarantees irreducibility and uniqueness

of the exchange polynomials in any quasi-triangulation. This multi-lamination will

follow the flavour of principal coefficients, but to introduce it we will first need some

preliminaries.

Definition 8.41. An arc γ of (S,M) is called orientable if it has an orientable

neighbourhood. Otherwise γ is said to be non-orientable.
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Remark 22. Note that an arc γ will be non-orientable if and only if it has a unique

endpoint and crosses through an odd number of cross-caps.

non-orientable
arcs orientable arcs

Figure 8.17: Examples of orientable and non-orientable arcs.

Definition 8.42. Define the parity, p(γ), of an arc γ of (S,M) to be +1 or −1

respective of whether γ passes through an even or odd number of cross-caps.

Lemma 8.43. Let ∆ = (α, β, γ) be a triangle in (S,M). Then p(α)p(β)p(γ) = 1.

Proof. Consider the slightly smaller triangle ∆′ = (α′, β′, γ′) lying in the interior of ∆.

The parity of the arcs in ∆′ remain the same since they are only slight perturbations

of their original versions. Moreover, although two sides of ∆ may be glued together

in (S,M), all arcs in ∆′ will be distinct. As a consequence, the neighbourhood of

∆′ is orientable, implying that p(α)p(β)p(γ) = p(α′)p(β′)p(γ′) = 1

Lemma 8.44. Let T be a triangulation of (S,M) and γ be a non-orientable arc in

T with unique endpoint m ∈M . Then there exists an orientable arc β ∈ T with (at

least one) endpoint m.

Proof. The non-orientable arc γ belongs to a triangle ∆ in T ◦ (see Figure 6.2 re-

garding definition of T ◦). Lemma 8.43 ensures there exists an orientable arc β ∈ ∆.

If β ∈ T then we are done, so consider the other possibility of β enclosing two arcs

β1, β2 ∈ T which only differ by a tagging at one puncture. β1 and β2 have distinct

endpoints which ensures they are orientable, and this concludes the proof.
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Definition 8.45 (Principal lamination). Let T be a triangulation of (S,M). We

define a principal (multi) lamination, LT := {Lγ|γ ∈ T}, as follows:

• If γ is an orientable plain arc then Lγ is taken to be the lamination that runs

along γ in a small neighbourhood thereof, which consistently spirals around

the endpoints of γ both clockwise (or anti-clockwise). For endpoints of γ which

are not punctures, the spiralling of Lγ ends when it reaches the boundary.

• If γ is an orientable arc with some notched endpoints, Lγ is defined as above,

except now, at notched endpoints the direction of spinning is reversed.

• If γ is a non-orientable arc with (unique) endpoint m situated on the boundary,

then consider two points on the boundary, m1 and m2, that lie either side of m

in a small neighbourhood thereof. Lγ is the lamination with endpoints m1 and

m2, which runs along a small neighbourhood of γ - note that Lγ will intersect

γ once.

• If γ is a non-orientable arc situated at a puncture, p, then, by Lemma 8.44, γ

has an incident orientable arc β ∈ T . Let Lγ be a lamination which:

– spirals out of the puncture p, then

– runs parallel to γ after intersecting γ and then β, (After Lγ intersects γ

it is allowed to intersect both endpoints of β before running parallel to γ,

it is just not allowed to intersect one endpoint of γ and then run parallel

to the other endpoint of γ, without intersecting β inbetween.) then,

– intersects γ and continues to run parallel to it, then

– when it arrives back to a neighbourhood of p, it should run against the

orientation of spiralling at p until it reaches an endpoint of β, then

– runs along a small neighbourhood of β, and at the endpoint spirals de-

pending on the type of tagging of β: if the endpoints of β receive the

same tagging then the direction of spiralling should be consistent with
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the spiralling of γ at p; if the endpoints of β receive different taggings

then the direction of spiralling should oppose the spiralling of γ at p.

Figure 8.18: Examples of various types of laminations occurring in
a principal lamination.

γ

β

γ

β

γ

β

Figure 8.19: The types of laminations, Lγ, when γ is a non-
orientable arc situated at a puncture, and β is the
chosen incident orientable arc.

Remark 23. In Definition 8.45, β is required to be orientable so that if it has unique

endpoint p, when Lγ runs parallel to it (and intersects it) and arrives back at p, it

is able to spiral back around p. If β was non-orientable it wouldn’t be able to spiral

back around p without self-intersections. Likewise, the conditions that Lγ must

(a) intersect γ and then β before running parallel to Lγ;

(b) (when moving against the orientation of spiralling at p) run parallel to β as

soon as it meets an endpoint β;

are required, otherwise self-intersections would occur if β also has unique endpoint

p.
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Remark 24. In general, for a given arc γ ∈ T the choice of Lγ is not unique. We are

just concerned about choosing some lamination Lγ that satisfies the rules demanded

in Definition 8.45. The motivation behind the definition is to ensure the shortened

exchange matrix associated to T and Lγ is of full rank.

Proposition 8.46. Let (S,M) be a bordered surface and T a triangulation. If LT

is a principal lamination of T then the shortened exchange matrix B is of full rank,

and the gcd of each column is 1.

Proof. By the bigon criterion [7], since Li does not form a bigon with any arc in T ,

then it is in minimal position (regarding intersections). Therefore, Li will add weight

±1 to γi, and to βi if γi is non-orientable and situated at a puncture. Moreover,

Li will not add weight to any other arcs. Consequently, after rearranging columns

of B, the bottom n × n submatrix will be upper triangular with ±1 entries on its

diagonals. This confirms B has full rank, and that the gcd of each column is 1.

In Proposition 8.48 we will show that the rank of the shortened exchange matrix is

preserved under mutation. For this we need the following technical Lemma 8.47.

Lemma 8.47. Let i ∈ {1, . . . , n} be a vertex in an anti-symmetric quiver Q, and

suppose there is no path k → i→ k̃ for any vertex k in Q.

If bij ≥ 0 ≥ bji or bij ≤ 0 ≤ bji for every j ∈ {1, . . . , n}, then, for any j, k ∈

{1, . . . , n} \ {i}, mutation at i and ĩ in Q gives:

b
′
jk = bjk + max(0,−bji)bik + max(0, bik)bji. (8.5.1)

Proof. Without loss of generality we may assume bji := bji + bj̃i ≥ 0 (otherwise we

could just reverse all the arrows, as this has no effect on the truth of the proposed

equation 8.5.1). Since there are no paths k → i → k̃ for any k, then bji, bj̃i ≥ 0.

Moreover, by using this path condition again, and anti-symmetry, we realise either
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(a) bik ≤ 0 and bĩk ≥ 0, or

(b) bik ≥ 0 and bĩk ≤ 0.

The respective local configurations of the quiver for cases (a) and (b) are shown in

Figure 8.20. In case (a) we see that mutating the quiver (at i and ĩ) adds no new

arrows between j, k, j̃, k̃, so

b
′
jk = bjk (8.5.2)

.

In case (b) we see mutation produces

b
′
jk := b′jk + b′j̃k = (bjk + bjibik − bjĩbĩk) + (bj̃k + bj̃ibik − bj̃ĩbĩk) = bjk + bjibik. (8.5.3)

With this knowledge at hand, we will now check agreement of the proposed equation

8.5.1 and quiver mutation. We shall achieve this by splitting the task into two parts,

depending on whether

1. sgn(bji) = sgn(bik) = ±1, or

2. sgn(−bji) = sgn(bik), or at least one of bji, bik is zero.

For case 1(a), bki := bki + bk̃i > 0. Since bik = 1 > 0, this contradicts the conditions

of the lemma, meaning case 1(a) is redundant.

For cases 1(b) and 2(a) our proposed equation 8.5.1 produces exactly what is written

in (8.5.3) and (8.5.2), respectively.

For case 2(b) we have bki := bki + bk̃i ≤ 0. However, since 0 ≤ sgn(−bji) = sgn(bik),

then bik ≤ 0, so by the conditions of the lemma we deduce that bik = 0. In turn,

this implies bki = bĩk, and equation (8.5.3) reduces to b′jk = bjk. This is exactly what

our proposed equation 8.5.1 produces.
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bki bji

bj̃ ĩ bk̃ĩ

bĩkbk̃i

bĩjbj̃i

k i j

j̃ĩk̃

k i j

k̃ ĩ j̃

bik̃ bkĩ

bĩj

bĩk̃

bik bji

bj̃i

bj̃ ĩ

(a) (b)

Figure 8.20: The two possible (local) configurations of Q with re-
spect to i, j, k. (Here all coefficients present are ≥ 0.)

Proposition 8.48. Let i ∈ {1, . . . , n} be a vertex in an anti-symmetric quiver Q,

and suppose there is no path k → i→ k̃ for any vertex k in Q. Then mutation at i

and ĩ in Q preserves the rank of the shortened exchange matrix B.

Proof. We would like to apply Lemma 8.47 to understand how the coefficients in B

change under mutation. However, it may be that B does not satisfy the conditions

demanded in the lemma. Explicitly, there may exist j ∈ {1, . . . , n} such that

bij, bji > 0 or bij, bji < 0. However, swapping the labels j ↔ j̃ in Q gives us a

different shortened exchange matrix B∗; for any k ∈ {1, . . . , n} we get:

b
∗
jk = b∗jk + b∗j̃k = bj̃k + bjk = bjk

b
∗
kj = b∗kj + b∗k̃j = bkj̃ + bk̃j̃ = −(bk̃j + bkj) = −bkj

.

In particular, we obtain b∗ji = bji > 0 > −bij = b
∗
ij. This means that we can perform

a relabelling, j ↔ j̃, of the quiver for any j which fails the condition demanded

in Lemma 8.47. The new corresponding shortened exchange matrix B∗ will then

satisfy the desired conditions. Note that this relabelling process only multiplies the

jth column by −1, so it preserves the rank of the matrix, and the corresponding

exchange polynomials remain unchanged.

Therefore, without loss of generality, we may assume B satisfies the conditions of

Lemma 8.47. As a consequence of Lemma 8.47 the following equations holds.
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-1 0 · · · 0

max(0,−b21)

Im−1
...

max(0,−bm1)


B



-1 max(0, b12) · · ·max(0, b1n)

0
In−1

...

0


=



0 −b12 · · · − b1n

−b21 (
b
′
jk

)
j,k≥2

...

−bm1



The matrix on the right is, B′, the shortened exchange matrix of the mutated quiver

Q′ = µ1 ◦µ1̃(Q). Moreover, since the matrices we are multiplying B by are invertible,

B and B′ have the same rank.

Lemma 8.49. Let L be a principal lamination of (S,M) and T a quasi-triangulation.

Then the exchange polynomials of the quasi-arcs in T are distinct.

Proof. Let TL be the triangulation that L is constructed from. By construction we

know that the shortened exchange matrix of TL will have full rank. As a direct

consequence, the exchange polynomials of TL will be distinct. Moreover, by Lemma

8.33 and Proposition 8.48 we know that the shortened exchange matrix of any trian-

gulation will have full rank, in turn implying the desired uniqueness of the exchange

polynomials. It remains to show the exchange polynomials of quasi-triangulations

containing one-sided closed curves are distinct. Since any quasi-triangulation can be

mutated into a triangulation by successive mutations at one-sided closed curves, it

suffices to show that mutating to a one-sided closed curve in a quasi-triangulation

preserves the uniqueness of the exchange polynomials.

Let α′ be an arc in a quasi-triangulation T that flips to a one-sided closed curve α.

Denote by β the unique arc intersecting α, and let x and y denote the boundary

segments of the flip region. Assuming uniqueness of the exchange polynomials of T ,

we will argue why all exchange polynomials in the quasi-triangulation T ′ := µα′(T )

are also distinct. Suppose for now that x and y are not arcs enclosing M1 or a

punctured monogon.

Since Fα′ = F ′α and α′ ∈ Fx, Fy, then as all other exchange polynomials remain
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unchanged, we have F ′α 6= Fγ for any quasi-arc γ ∈ T ′ \ {α}. The only exchange

polynomials of T ′ depending on α are F ′x, F ′y and F ′β. Furthermore, when viewed as

a polynomial in α, Fβ is the only degree 2 polynomial in T ′, so our task is reduced

to showing that F ′x 6= F ′y.

Consider the sub quiver Q of QT ′
∗ obtained from looking solely at the flip region in

question. We see that there is an arrow between x (or x̃) and y (or ỹ) in Q, however,

for F ′x and F ′y to be equal there cannot be any arrows between them in the global

quiver QT ′
∗ . It must therefore be the case that the arrow in Q gets cancelled, and

our quasi-triangulation must contain the configuration shown in Figure 8.21.

yx

α∗

α

β

y

z

z α∗

x

y

Figure 8.21: On the left we illustrate the (local) configuration of T ′
required to ensure bxy = byx = 0 in QT

∗ . The digon
embodying this configuration is shown on the right.

However, from here we realise that x and y are the interior arcs of a punctured digon

(with boundary segments z and α∗). By construction of our principal lamination

L there is a lamination spiralling into every puncture of (S,M), so there will be a

lamination spiralling into the puncture of this digon. In turn this implies F ′x 6= F ′y.

Finally, we need to turn our attention back to the possibility that x or y is an arc

enclosing M1 or a punctured monogon. Without loss of generality, suppose that x

is such an arc, and let x1 and x2 be the quasi-arcs it bounds. Analogous to the

reasoning employed in our proof thus far, we may deduce that the only possibility

for non-uniqueness of the polynomials in T ′ is if Fx1 = Fx2 . However, if x bounds

M1 then Fx1 and Fx2 have different degrees. If x bounds a punctured monogon then

x1 and x2 are the interior arcs of a punctured digon, and since there is a lamination

spinning into this puncture we obtain Fx1 6= Fx2 .
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8.5.4 Proof of Theorem C

Theorem 8.50. Let (S,M) be an orientable or non-orientable marked surface

and L a principal lamination. Then the LP cluster complex ∆LP (S,M,L) is iso-

morphic to the laminated quasi-arc complex ∆⊗(S,M,L), and the exchange graph

of ALP (S,M,L) is isomorphic to E⊗(S,M,L).

More explicitly, if (S,M) is not a once-punctured closed surface, the isomorphisms

may be rephrased as follows. Let T be a quasi-triangulation of (S,M) and ΣT its

associated LP seed. Then in the LP algebra ALP (ΣT ) generated by this seed the

following correspondence holds:

ALP(ΣT) (S,M,L)

Cluster variables ←→ Laminated lambda lengths of quasi-arcs

Clusters ←→ Quasi-triangulations

LP mutation ←→ Flips

Proof. This is a consequence of Proposition 6.20, Theorem 8.40 and Lemma 8.49.

Remark 25. If (S,M) is a closed once-punctured bordered surface then Proposition

6.13 tells us that E⊗(S,M,L) has two connected components. In this case, Theorem

8.50 reveals the cluster variables correspond to the laminated lambda lengths of one-

sided closed curves and plain arcs (or equivalently notched arcs), and the clusters

will therefore correspond to quasi-triangulations consisting of one-sided closed curves

and plain arcs (notched arcs).

Corollary 8.51. Let (S,M) be a bordered surface. Then the quasi-cluster algebra

A(S,M) is a specialised LP algebra.

Proof. Let L be a principal lamination of (S,M). Theorem 8.50 yields thatA(S,M,L)

is an LP algebra. Specialising the lamination coefficients yields the desired result.
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