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Abstract

We prove several discreteness and non-discreteness results about complex hyperbolic

triangle groups and discover two new lattices. These results use geometric (explicit

construction of a fundamental domain), group theoretic and arithmetic methods.
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4.4.1 Statement of Poincaré’s polyhedron theorem . . . . . . . . . . 129

4.4.2 List of 3-faces and side pairings . . . . . . . . . . . . . . . . . 130

4.4.3 Cycles of 2-faces . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Tessellations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 A presentation for Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



Contents vii

4.7 Gauss-Bonnet formula and lattice covolume . . . . . . . . . . . . . . 143

5 Miscellaneous results 147

5.1 List of discrete deformed triangle groups . . . . . . . . . . . . . . . . 147

5.1.1 List of discrete deformed triangle groups without short parabolic

words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1.2 List of discrete deformed triangle groups with short parabolic

words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.1.3 List of possible discrete deformed triangle groups . . . . . . . 151

5.2 Deformed triangle subgroups of PU (2, 1;O7) . . . . . . . . . . . . . . 152

5.3 Higher order reflection groups . . . . . . . . . . . . . . . . . . . . . . 154

5.3.1 Higher order analogues of Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) . . . . . 155

5.3.2 More general higher order reflection groups . . . . . . . . . . . 156

5.4 Order 3 reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 Order 5 reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.6 Other order reflections . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendix 161

A Projection figures 161



List of Figures

1.1 Schematic for the proof of lemma 1.2.22 . . . . . . . . . . . . . . . . 12

2.1 Graph of generating sets . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Graph of identifications for Γ(4, 4, 4; 5) . . . . . . . . . . . . . . . . . 32

2.3 Graph of identifications for Γ(3, 3, 4;n) . . . . . . . . . . . . . . . . . 33

2.4 Evaluation of polynomials at α = 2.6 and α = 4. . . . . . . . . . . . . 55

3.1 Core faces for Γ(3, 3, 5; 5) . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Core faces for Γ(3, 3, 4; 7) . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Cone faces for Γ(3, 3, 5; 5) . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Cone faces for Γ(3, 3, 4; 7) . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1 The core faces A, B and C . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 A, P−1 (A), and P (A). . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 Outside of the torus of octahedra. . . . . . . . . . . . . . . . . . . . . 107

4.4 Schematic figure of the gluing of B . . . . . . . . . . . . . . . . . . . 108

4.5 Left hand side: Simplified schematic view of ∆. Right hand side

:Schematic of a possible bad intersection . . . . . . . . . . . . . . . . 117

4.6 Projection of the 1-skeleton of ∆ onto ΣA . . . . . . . . . . . . . . . . 120

4.7 Projection of the 1-skeleton of ∆ onto ΣB . . . . . . . . . . . . . . . 121

4.8 Projection of the 1-skeleton of ∆ onto ΣC . . . . . . . . . . . . . . . 122

4.9 Orthogonal projection of a Giraud convex region . . . . . . . . . . . . 123

4.10 Projection of the 1-skeleton of ∆ onto ΣA with extra curves . . . . . 125

4.11 Close up of the projection of the 1-skeleton of ∆ onto ΣA . . . . . . . 126

4.12 Projection of the 1-skeleton of ∆ onto ΣB with extra curves . . . . . 127

viii



List of Figures ix

4.13 Close up of the projection of the 1-skeleton of ∆ onto ΣB . . . . . . . 128

4.14 New 3-faces of ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.15 Schematic of tessellation about (13, 12, 23) . . . . . . . . . . . . . . . 134

4.16 Schematic of tessellation about (12, 23, 1232) . . . . . . . . . . . . . . 136

4.17 Schematic of tessellation about (23, 1323, 1232) . . . . . . . . . . . . . 137

4.18 Schematic of tessellation about (1232, 232121, 2321232121) . . . . . . 139

4.19 Schematic of tessellation about (1232, 232121, 2321232121) . . . . . . 140

4.20 Schematic of tessellation about (23, 1323, ∗) . . . . . . . . . . . . . . 141

4.21 Three triangles surrounding [23, 1323] . . . . . . . . . . . . . . . . . . 142

4.22 Schematic of tessellation about (232121, 2321232121, ∗) . . . . . . . . 142

A.1 Projection of the 1-skeleton of P−1(∆) onto ΣA . . . . . . . . . . . . 162

A.2 Projection of the 1-skeleton of P−1(∆) onto ΣB . . . . . . . . . . . . 163

A.3 Projection of the 1-skeleton of P−1(∆) onto ΣC . . . . . . . . . . . . 163

A.4 Projection of the 1-skeleton of P−2(∆) onto ΣA . . . . . . . . . . . . 164

A.5 Projection of the 1-skeleton of P−2(∆) onto ΣB . . . . . . . . . . . . 164

A.6 Projection of the 1-skeleton of P−2(∆) onto ΣC . . . . . . . . . . . . 165

A.7 Projection of the 1-skeleton of P−3(∆) onto ΣA . . . . . . . . . . . . 165

A.8 Projection of the 1-skeleton of P−3(∆) onto ΣB . . . . . . . . . . . . 166

A.9 Projection of the 1-skeleton of P−3(∆) onto ΣC . . . . . . . . . . . . 166

A.10 Projection of the 1-skeleton of P−5(∆) onto ΣA . . . . . . . . . . . . 167

A.11 Projection of the 1-skeleton of P−5(∆) onto ΣB . . . . . . . . . . . . 167

A.12 Projection of the 1-skeleton of P−5(∆) onto ΣC . . . . . . . . . . . . 168

A.13 Projection of the 1-skeleton of P 1(∆) onto ΣA . . . . . . . . . . . . . 168

A.14 Projection of the 1-skeleton of P 1(∆) onto ΣB . . . . . . . . . . . . . 169

A.15 Projection of the 1-skeleton of P 1(∆) onto ΣC . . . . . . . . . . . . . 169

A.16 Projection of the 1-skeleton of P 2(∆) onto ΣA . . . . . . . . . . . . . 170

A.17 Projection of the 1-skeleton of P 2(∆) onto ΣB . . . . . . . . . . . . . 170

A.18 Projection of the 1-skeleton of P 2(∆) onto ΣC . . . . . . . . . . . . . 171

A.19 Projection of the 1-skeleton of P 3(∆) onto ΣA . . . . . . . . . . . . . 171

A.20 Projection of the 1-skeleton of P 3(∆) onto ΣB . . . . . . . . . . . . . 172

A.21 Projection of the 1-skeleton of P 3(∆) onto ΣC . . . . . . . . . . . . . 172



List of Figures x

A.22 Projection of the 1-skeleton of P 5(∆) onto ΣA . . . . . . . . . . . . . 173

A.23 Projection of the 1-skeleton of P 5(∆) onto ΣB . . . . . . . . . . . . . 173

A.24 Projection of the 1-skeleton of P 5(∆) onto ΣC . . . . . . . . . . . . . 174

A.25 Projection of the 1-skeleton of P 7(∆) onto ΣA . . . . . . . . . . . . . 174

A.26 Projection of the 1-skeleton of P 7(∆) onto ΣB . . . . . . . . . . . . . 175

A.27 Projection of the 1-skeleton of P 7(∆) onto ΣC . . . . . . . . . . . . . 175



Chapter 1

Introduction

1.1 Summary of Results

There are three main topics in this thesis, they make up chapters 2, 3 and 4. Chapter

1 contains background material and chapter 5 collects several miscellaneous results

and various ideas for future work.

In chapter 2 we examine deformed triangle groups and prove several discreteness

and non-discreteness results. We first describe a method for identifying deformed

triangle groups; it turns out that, after relabelling generators, many of these groups

are the same. Then we prove results based on a version of Jørgensen’s inequality

which allows us to immediately show that many deformed triangle groups are non-

discrete. Then we describe a computer programme that preforms a brute force

search using these non-discreteness tests, this yields a number of interesting groups

for which we then determine whether or not they are discrete. In particular, we

discover two new deformed triangle groups that are also lattices, in the language of

this thesis they are Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5).

In chapter 3 we prove that these groups are lattices by showing that they are

commensurable to Mostow-Deligne lattices. Using the information from the coset

decomposition, we produce presentations for these groups and calculate their co-

volume. Finally we describe a fundamental domain for the groups which has the

same covolume and gives the same presentation for the group after using Poincaré’s

polyhedron theorem. We do not go through all the necessary steps to ensure that

1



1.2. Preliminaries 2

these fundamental domains are geometrically correct, however in the next chapter

we do this for another group and same methods could in principle be used for these

groups.

In chapter 4 we analyse Deraux’s lattice [6] (Γ(4, 4, 4; 5) in our notation). In

particular we construct a fundamental domain for the group and perform all the

necessary checks and calculations to ensure that the domain satisfies the hypotheses

of Poincaré’s polyhedron theorem. Then we use the theorem to produce a presen-

tation and calculate the covolume of the group.

In chapter 5 we collect some unrelated results, namely a list of, to the best of

our knowledge, all known discrete deformed triangle groups and a possible approach

for groups generated by higher order reflections.

1.2 Preliminaries

Most of the material in this section is completely standard, see [10] for additional

details. Consider Cn,1, a copy of Cn+1 equipped with an Hermitian form of signature

(n, 1). Complex hyperbolic n-space, denoted Hn
C, is the complex projectivisation of

the negative vectors in Cn,1 with respect to the Hermitian product. Explicitly, let H

be an Hermitian matrix with signature (n, 1) and define 〈v,w〉 = w∗Hv to be the

Hermitian product. We call a vector v, positive, (respectively null, negative)

if its Hermitian norm, 〈v,v〉, is positive (respectively zero, negative). Then Hn
C

is

the the projectivisation of the set of negative vectors. The boundary of Hn
C, denoted

∂Hn
C
, is the projectivisation of the set of null vectors. Throughout this thesis, we

assume n = 2.

Definition 1.2.1 A general point z ∈ H2
C = H2

C∪∂H2
C is an ordered pair of complex

numbers (z1, z2). We say the standard lift of z is the vector z = (z1, z2, 1)t. If

z and w are two points, then we can define their Hermitian product as 〈z,w〉 =

w∗Hz, where ∗ denotes complex transpose. Since we are only interested in Cn,1 up

to projectivisation, we may multiply the standard lift of a point by a non-zero complex

number without changing the corresponding point in H2
C. If z is the standard lift of

a point z in H2
C
, then we say λz is a generic lift of z, for λ ∈ C \ {0}.
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There are two common choices for the Hermitian form,

H =




1 0 0

0 1 0

0 0 −1


 , Ĥ =




0 0 1

0 1 0

1 0 0


 . (1.1)

It is a straightforward calculation to show that when we choose H as our Her-

mitian form, the standard lift of a point in complex hyperbolic plane H2
C

is of the

form (z1, z2, 1)t where |z1|2+|z2|2< 1. In other words H2
C is the unit 4-ball in C2 and

∂H2
C

is its 3-sphere boundary.

If we had started with C1,1 and taken H = diag(1,−1), this construction would

lead to the Poincaré disc model of the real hyperbolic plane. This is a consequence

of the isometry between PU(1, 1) and SL2(R), from which it follows that H1
C

= H2
R
.

We call this model of H2
C the ball model.

When we chose the second Hermitian form, Ĥ , the standard lift of a point in

H2
C satisfies 2Re (z1) + |z2|2< 0. The two dimensional analogue of this construction

leads to the Poincaré upper half model of the real hyperbolic plane. We call this

model of H2
C the paraboloid model.

Definition 1.2.2 The metric on H2
C

is the Bergman metric, it depends only on

the Hermitian form and can be expressed explicitly as follows,

cosh2

(
d(z, w)

2

)
=

〈z,w〉〈w, z〉
〈z, z〉〈w,w〉 .

The group of holomorphic isometries of H2
C

is PU(2, 1), that is, unitary matrices

that preserve a signature (2, 1) Hermitian formH . As with real hyperbolic geometry,

we can partition these isometries into the standard triptych. Elliptic isometries

have at least one fixed point in H2
C, parabolic isometries have exactly on fixed

point which lies in in the boundary ∂H2
C

and loxodromic isometries have exactly

two fixed points both of which lie ∂H2
C
.

Definition 1.2.3 Let z and w be two points in H2
C
, we denote the geodesic contain-

ing these two points, with respect to the Bergmann metric defined above, as γ(z, w).

The geodesic segment with endpoints z and w we denote [z, w].
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Since H2
C

is a Riemannian manifold with everywhere negative curvature γ(z, w) is

unique. By taking H = diag(1, 1,−1), we normalise so that the sectional curvatures,

κ lie in the interval, 1 ≤ κ ≤ −1/4.

Proposition 1.2.4 Let z and w be two points in H2
C
, we can rescale their standard

lifts to get, z and w, where 〈z, z〉 = 〈w,w〉 = −1 and 〈z,w〉 ∈ R<0. Then the

geodesic between z and w is given by the projectivisation of the vectors

γ(z, w) = {sinh((t− s)/2)z + sinh((r − t)/2)w | t ∈ R}, (1.2)

where s and r are two distinct real numbers such that |s − r|= d(z, w) and t is the

variable parametrising the geodesic.

Definition 1.2.5 Let z and w be two points in H2
C, we define C(z, w) to be the

complex geodesic or C-line containing these two points. Let z and w be the lifts

of z and w. Take C to be the complex span of z and w in the vector space C2,1.

Then we define C(z, w) be the complex projectivisation of C. It is clear that C(z, w)

is a 2 dimensional subspace of H2
C

and that it is well defined. Furthermore, any

complex line C is the image of C((1, 0), (0, 0)) = {(z1, 0) | z1 ∈ C, |z1| < 1} under

some element of PU(2, 1).

Lemma 1.2.6 When we restrict the Bergmann metric to any C-line, C, we see

that C is a simply connected, 2-dimensional manifold with constant Riemannian

curvature κ = −1. In other words a C-line is a copy of H2
R embedded in H2

C. When

H = diag(1, 1,−1) the restricted metric is exactly the usual Poincaré disc metric.

Given two points z and w, the geodesic γ(z, w) is a one real dimensional subspace

of C(z, w), i.e. C-lines are totally geodesic.

Definition 1.2.7 The polar vector to a C-line C is the unique vector (up to scalar

multiplication) perpendicular to C in C2,1 with respect to the Hermitian form. A

polar vector is always a positive vector and every positive vector corresponds to a

complex geodesic.

Definition 1.2.8 Let γ be a geodesic contained in a C-line C. A hypercycle, δ,

is a curve in C such that the orthogonal distance between every point on δ and the

geodesic γ is constant.
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Definition 1.2.9 Given a C-line C with polar vector n, there is a unique involution

I ∈ PU(2, 1), that fixes every point in C. We call I the complex involution (or

order 2 complex reflection) in C. Explicitly I is given by

I(z) = −z + 2
〈z,n〉
〈n,n〉n. (1.3)

Definition 1.2.10 There are also higher order reflections in C. Let ζ be a complex

number of absolute value one. Consider the isometry,

I(z, ζ) = −z + (1 − ζ)
〈z,n〉
〈n,n〉n. (1.4)

This map fixes C and rotates the orthogonal direction by θ where ζ = eiθ. When θ

is a rational multiple of π, the reflection I will have finite order. If we set ζ = −1,

we recover the formula for the order two complex reflection (1.3).

Definition 1.2.11 As with the isometries of the Poincaré disc, we can divide the

isometries of H2
C into three catagories depending on their fixed point sets. We say an

isometry g is loxodromic if it fixes a unique pair of points on ∂H2
C
, parabolic if has

a unique fixed point on ∂H2
C and elliptic if it has a fixed point in H2

C. Furthermore

we say an elliptic isometry is regular elliptic if and only if all its eigenvalues

are distinct. If a parabolic isometry is not unipotent, then there is a unique C-line

on which the isometry acts as a parabolic isometry of H1
C
, we call such isometries

ellipto-parabolic.

Theorem 1.2.12 (Goldman trace formula) (Theorem 6.2.4 of [10])

Let ω = (−1 +
√
−3)/2, define f : C → R as

f(z) = |z|4 − 8Re (z3) + 18|z|2−27. (1.5)

Let A be a matrix in SU(2, 1) with trace τ . Then,

1. A is regular elliptic if and only if f(τ) < 0;

2. A is loxodromic if and only if f(τ) > 0;

3. A is ellipto-parabolic if and only if A is not elliptic (i.e. no fixed point in H2
C
),

f(τ) = 0 and τ /∈ {3, 3ω, 3ω};
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4. A is a complex reflection, about either a point or a complex geodesic, if and

only if A is elliptic, f(τ) = 0 and τ /∈ {3, 3ω, 3ω}.

5. A is a nilpotent automorphism of H2
C

if and only if τ ∈ {3, 3ω, 3ω}

Definition 1.2.13 In addition to points, geodesics and C-lines there is one more

type of totally geodesic submanifold, Lagrangians or R-planes. Lagrangians are

totally real subspaces. Let R be a Lagrangian, then for all z, w ∈ R, the Hermitian

product of their standard lifts is real i.e. 〈z,w〉 ∈ R. Any Lagrangian R is the

image of {(z1, z2) | z1, z2 ∈ R} under some element of PU(2, 1). In the ball model

the Bergmann metric restricted to any Lagrangian R is, up to a scalar multiple, the

Klein-Beltrami metric for the unit disc model of H2
R
.

Proposition 1.2.14 These four classes of subspaces (points, geodesics, C-lines and

R-planes) are the only totally geodesic subspaces of H2
C
. In particular there are no

3 dimensional totally geodesic hypersurfaces in H2
C.

Proposition 1.2.15 Two distinct C-lines with non empty intersection, intersect in

exactly one point.

Two distinct Lagrangians with non empty intersection, intersect in a point or a

geodesic.

A Lagrangian and a C-line with non empty intersection, intersect in a point or a

geodesic.

We now prove a few technical lemmas about the orthogonal projection onto a

C-line that we shall use in later chapters.

Lemma 1.2.16 (page 101 of [10]) Let C1 and C2 be two C-lines in H2
C

and Π1 :

H2
C → C1 be the orthogonal projection map. Then there are three cases

1. C1 and C2 intersect in a point x contained in the interior of H2
C
; then Π1 maps

C2 diffeomorphically onto the geometric ball with centre x = C1 ∩C2 and radius

2 tanh−1 cos(∠(C1, C2)).

2. C1 and C2 intersect in a point x contained in ∂H2
C
; then Π1 maps C2 diffeo-

morphically onto a horoball centred at x = C1 ∩ C2.
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3. C1 and C2 do not intersect in H2
C; let x be the unique closest point on C1 to

C2, then Π1 maps C2 diffeomorphically onto the geodesic ball with centre x and

radius

2 tanh−1 sech

(
d(C1, C2)

2

)
.

Lemma 1.2.17 Assume that we are using the ball model of H2
C (i.e. H = diag(1, 1,−1)).

Let γ be a geodesic, C a C-line, and ΠC : H2
C
→ C the orthogonal projection map

onto C. Then ΠC(γ) is the arc of a geometric circle in C or a single point.

Proof: We may assume that C = {(ζ, 0, 1)t|ζ ∈ C} and the geodesic γ passes

through the points p and q with standard lifts p = (0, k, 1)t and q = (z1, z2, 1)t

with k ∈ R≥0 and z1, z2 ∈ C. We also assume z1 6= 0 otherwise the geodesic will be

contained in the C-line (0, ζ, 1)t, so γ will be projected to a single point. We need to

rescale q by a factor of λ = 2(1 − kz2)/|1 − kz2|2 in order to use (1.2). After doing

this the geodesic between these two points is

γ(p, q) = {sinh(t− s)p + sinh(r − t)λq | t ∈ R}.

Recall, s and r are constants dependent on p, q that ensure the curve is parametrised

correctly and t is the parameter.

When we orthogonally project onto C, we throw away the second coordinate in

the vector and leave the other entries unchanged.

ΠC(γ(p, q)) =




sinh(r − t)λz1

0

sinh(t− s) + sinh(r − t)λ


 ∼




sinh(r − t)λx

sinh(t− s) + sinh(r − t)λ

0

1



.

The term in the first entry of the normalised vector defines a circle. To see this let

sinh(t− s) = A and sinh(r− t)λ = B, then the expression we need to understand is

Bx/(A +B). We invert this expression in the unit circle in the complex plane, i.e.

we apply the map f : z 7→ z−1.

(
Bz1
A+B

)−1

=
1

z1

(
1 +

A

B

)

=
1

z1

(
1 +

sinh(t− s)

sinh(r − t)

1

λ

)
. (1.6)
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This is the equation of a straight line in the complex plane. The inversion of

Bz1/(A + B) is a straight line, so Bz1/(A + B) is a circle passing through the

origin (or a straight line through the origin). We can explicitly write down the

equation of the circle,

S0 =

{−iz1
2k

(1 − z2k)

Im (z2)
(1 + eiθ) | θ ∈ [0, 2π)

}
,

then

ΠC(γ(p, q)) =




S0

0

1


 .

To see this is true for general points p, q and a general C-line C, recall that a C-line

is an embedded copy of H2
R

= H1
C
, so an isometry of H2

C
that preserves a C-line,

acts isometrically on that C-line. Isometries of H2
R

are Möbius transformations, in

particular they send circles to circles.

When k = 0 or Im (z2) = 0 the circle is a straight line. In the former case, this

means that γ(p, q) ∩ C 6= ∅, in the latter p, q, ΠC(p) and ΠC(q) are all contained in

an R-plane. 2

Corollary 1.2.18 Let C be a C-line, γ be a geodesic and ΠC be the orthogonal

projection onto C. If γ ∩ C 6= ∅, then ΠC(γ) is a geodesic in C.

Proof: The image of the geodesic under ΠC will be a straight line segment in C
that passes through the origin. Since C is a copy of the Poincaré disc, it follows that

ΠC(γ) is a geodesic in C. 2

Lemma 1.2.19 Using the normalisation from lemma 1.2.17, i.e. a C-line C =

{(ζ, 0, 1)t|ζ ∈ C}, points p and q with standard lifts p = (0, k, 1)t and q = (z1, z2, 1)t

with k ∈ R≥0 and z1, z2 ∈ C, the geodesic segment [p, q] projects to the shorter arc

of S0 (as defined in lemma 1.2.17) between ΠC(p) = 0 and ΠC(q) = z1.

Proof: To see that ΠC(γ) projects onto the shortest arc of S0 we make the following

observation: sinh(t − s)/ sinh(r − t) is always positive for t ∈ (r, s), furthermore
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sinh(t − s)/ sinh(r − t) is a bijective function (r, s) → (0,∞). Let t′ = sinh(t −
s)/ sinh(r − t) > 0, then the line (1.6) becomes (1 + t′/λ)/z1 for t′ > 0. The image

of this half line under the reciprocal conjugate map is the relevant arc of S0.

When t′ = −1 (respectively t′ = 0, t′ = ∞) the corresponding point on the recip-

rocal conjugate of the line is the point diametrically opposite the origin (−iz1(1 −
z2k))/(2kIm (z2)), (respectively z1, 0). So the relevant circle arc is contained entirely

in half the circle and so must be the shortest arc. 2

Lemma 1.2.20 Let z1, z2 and k be as in lemma 1.2.17, then,
∣∣∣∣
(1 − z2k)

Im (z2)

∣∣∣∣ ≥ 1. (1.7)

More usefully,
∣∣∣∣
−iz1
2k

(1 − z2k)

Im (z2)

∣∣∣∣ ≥
|z1|
2k

. (1.8)

Proof: Let z2 = a + ib then after squaring (1.7) we get

|1 − k(a− ib)|2
b2

=
(1 − ka)2 + k2b2

b2

=
(1 − ka)2

b2
+ k2.

Since |z2|2≤ 1, b2 ≤ 1 − a2, so.

|1 − k(a− ib)|2
b2

≥ (1 − ka)2

1 − a2
+ k2

After differentiating with respect to a we find that the expression on the right attains

its minimum on the interval [0, 1] at a = k, so

|1 − k(a− ib)|2
b2

≥ (1 − k2)2

1 − k2
+ k2

= 1.

2

In some sense this lemma measures how close the image of a projected geodesic

onto a C-line is to a geodesic. If k is very small (p is very close to C) then the radius

of the circle passing through the origin will have to be very large, and the projected

geodesic will be very close to a straight line through the origin, i.e. a geodesic.
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Corollary 1.2.21 In the ball model of H2
C
, let C1 and C2 be C-lines, δ ⊂ C2 a

hypercycle in C2 and Π1 : H2
C
→ C1 be the orthogonal projection map onto C1. Then

Π1(δ) is an arc of a geometric circle in C1, or a point if C1 and C2 are orthogonal.

Proof: Assume without loss of generality that C1 is {(z, 0, 1)t|z ∈ C} and C2 is a

C-line with polar vector n = (X, Y, 1)t. Assume Y 6= 0 then we can parametrise C2

as

C2 =









ζ

1 − ζX

Y

1




| ζ ∈ C






.

In the Poincaré disc model of H2
R

a hypercycle is the arc of a geometric circle that

intersects the boundary, so any hypercycle in C an arc of

δ =









r0e
iθ + z0

1 − (r0e
iθ + z0)X

Y

1




| θ ∈ [0, 2π)






.

for some r0 ∈ R>0 and z0 ∈ C. The image under orthogonal projection onto C1 of δ

is (r0e
iθ + z0, 0, 1)t which is clearly a geometric circle in C1. 2

Lemma 1.2.22 Consider the Poincaré disc model of H2
R as a subset of the complex

plane. Let γ be a geodesic that does not pass through the origin. We normalise so

that the end points of γ are eiθ and −e−iθ. Let z0 a point in the disc other than the

origin and S be a circle that contains both z0 and the origin. Let S ′ be shortest arc

of the S between z0 and the origin. Let

Tθ := {z ∈ C | cos(θ)2 = (Im (z) sin(θ) − 1)2 − Re (z)2 cos2(θ)}. (1.9)

The curve T divides H2
R into two regions. If z0 lies in the same half as the origin,

then S ′ ∩ γ = ∅.

Proof: For the sake of clarity we use the coordinate system (x, y) = (Re (z), Im (z))

for C. Then the Poincaré disc is {(x, y) | x2 + y2 < 1} and the geodesic γ is part
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of the circle defined by the equation x2 + (y − sin(θ))2 = (1 + cos(θ))2/ sin2(θ), the

radius of this circle is cos(θ)/ sin(θ).

Let (x0, y0) be the point z0 and Ŝ be the circle whose diameter is the line between

(x0, y0) and (0, 0). The centre of Ŝ is (x0/2, y0/2). Let L =
√

(x0/2)2 + (y0/2)2,M =

cos(θ)/ sin(θ) and N =
√

(x0/2)2 + ((y0/2) − 1/ sin(θ))2, the circle Ŝ is tangent to

γ when L + M = N . When L + M < N (respectively L + M > N), Ŝ does not

intersect γ (respectively intersects γ twice), see figure 1.1.

L+M = N

√(x0

2

)2

+
(y0

2

)2

+
cos(θ)

sin(θ)
=

√
(x0

2

)2

+

((y0

2

)
− 1

sin(θ)

)2

(y0

2

)2

+ 2
cos(θ)

sin(θ)

√(x0

2

)2

+
(y0

2

)2

+
cos2(θ)

sin2(θ)
=

((y0

2

)
− 1

sin(θ)

)2

2
cos(θ)

sin(θ)

√(x0

2

)2

+
(y0

2

)2

+
cos2(θ)

sin2(θ)
= − y0

sin(θ)
+

1

sin2(θ)

2
cos(θ)

sin(θ)

√(x0

2

)2

+
(y0

2

)2

= 1 − y0

sin(θ)

2
cos2(θ)

sin2(θ)

((x0

2

)2

+
(y0

2

)2
)

= 1 − 2
y0

sin(θ)
+

y2
0

sin2(θ)

cos2(θ)(x2
0 + y2

0) = sin2(θ) − 2y0 sin(θ) + y2
0

cos2(θ) = (y0 sin(θ) − 1)2 − x2
0 cos2(θ).

Substituting Re (z0) = x0 and Im (z0) = y0, gives the required result. 2

1.2.1 Bisectors

There are no totally geodesic submanifolds of H2
C

other than the four subspaces men-

tioned in Proposition 1.2.14. The lack of totally geodesic 3-dimensional subspaces

complicates matters when constructing fundamental domains, since we cannot con-

struct the boundary of such a region from pieces of totally geodesic submanifolds.

However there is a three dimensional submanifold that is foliated by totally geodesic

subspaces in two different ways.

Definition 1.2.23 Given two points z, w ∈ H2
C
, the bisector B(z, w) is defined as
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(cos(θ), sin(θ))(− cos(θ), sin(θ))

(0,
1−cos(θ)

sin(θ)
)

(0, 0)

(0, 1
sin(θ)

)

θ

cos(θ)
sin(θ)

Figure 1.1: Schematic for the proof of lemma 1.2.22

the set of points equidistant from z and w,

B(z, w) = {x ∈ H2
C
| d(x, z) = d(x, w)}.

The complex spine of B(z, w), denoted Σ, is the complex geodesic C(z, w). The

real spine of B(z, w), denoted σ, is the real geodesic contained in Σ that is equidis-

tant from z and w. Alternatively σ = B(z, w) ∩ Σ.

Proposition 1.2.24 In H2
C a bisector is a smooth 3 dimensional hypersurface dif-

feomorphic to R3.

Theorem 1.2.25 (Mostow, Goldman) ( [20], [10])

1. Let ΠΣ : H2
C
→ Σ, be the orthogonal projection map onto Σ. Then B is foliated

by complex geodesics of the form Π−1
Σ (z) for z ∈ σ. These complex geodesics

are called complex slices of B.
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2. The bisector B is the union of all Lagrangians that contain σ. These La-

grangians are called meridians of B.

Corollary 1.2.26 • A bisector is uniquely determined by its real spine.

• The bisector B is fixed under a complex involution in any of its slices.

• The bisector B is fixed under an anti-holomorphic involution in any of its

meridians.

Intersection of bisectors

The intersection of two or more bisectors can be very complicated, in general it is

not connected or contained in a totally geodesic subspace. We now collect several

results which allow us to understand bisector intersections. Many of these results

are taken from [7] or [10].

Proposition 1.2.27 (2.4 of [7]) Let B be a bisector and C be a C-line such that

B ∩ C 6= ∅, then C ⊂ B (in which case C is a slice of B) or C ∩ B is a hypercycle δ

in C. In the ball model a hypercycle is an arc of a Euclidean circle intersecting the

boundary.

Proposition 1.2.28 Let B be a bisector and γ a geodesic, then either γ is entirely

contained in a slice or meridian of B or γ ∩ B consists of at most two points.

Moreover the number of intersection points between γ and B is equal to the number

of intersection points between σB (the real spine of B) with ΠΣ(γ) (the image of γ

under orthogonal projection onto the complex spine of B).

Proposition 1.2.29 Let B be a bisector, with complex spine Σ and γ a geodesic. If

γ ∩ Σ 6= ∅ and γ is not contained in B, then γ intersects B in at most one point.

Definition 1.2.30 We can categorise pairs of bisectors into the following classes.

Let B1 and B2 be bisectors with complex (respectively real) spines Σ1 and Σ2 (re-

spectively σ1 and σ2)

• If Σ1 = Σ2 we say B1 and B2 are cospinal
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• If Σ1 and Σ2 intersect outside the real spines, we say B1 and B2 are coequidis-

tant

• If B1 and B2 share a common meridian, we say B1 and B2 are comeridanal

• If B1 and B2 share a common slice, we say B1 and B2 are cotranchal

Proposition 1.2.31 The intersection of a pair of coequidistant bisectors is a smooth

disc, in particular it is connected.

Theorem 1.2.32 (Giraud’s theorem) Suppose that B1 and B2 are two bisectors

with respective complex spines Σ1 and Σ2, such that

• Σ1 and Σ1 are distinct

• Σ1 ∩B2=Σ2 ∩ B1 = ∅

Then their intersection is smooth disc, moreover there is at most one other bisector

containing B1 ∩B2 other than B1 and B2. We call such an intersection of bisectors

a Giraud disc.

Proposition 1.2.33 Let B1 and B2 be a pair of coequidistant bisectors. Their in-

tersection is a Giraud disc G and there exists a third bisector B0 containing G. Let

p0 = Σ1 ∩ Σ2, p1 = Σ0 ∩ Σ1 and p2 = Σ0 ∩ Σ2. Then

B1 = E(p0, p1) = {x ∈ H2
C
| d(x, p0) = d(x, p1)},

B2 = E(p0, p2) = {x ∈ H2
C | d(x, p0) = d(x, p2)},

B0 = E(p1, p2) = {x ∈ H2
C
| d(x, p1) = d(x, p2)},

and

G = {x ∈ H2
C | d(x, p1) = d(x, p2) = d(x, p0)}.

1.2.2 Arithmetic discreteness criterion

We state a useful theorem which allows us to quickly show that certain subgroups

of SU(2, 1) are arithmetic.
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Theorem 1.2.34 (Arithmeticity criterion (12.2.6 of [5])) Let E be an alge-

braic number field obtained by taking a totally imaginary quadratic extension E/F

of a totally real number field F over Q, i.e. E is an algebraic number field with totally

real subfield F such that [E : F ] = 2. By construction the extension E/F is Galois.

If σ : F → R and τ : E → C are compatible embeddings (i.e. τ(E)∩R = σ(F )) then

the non-trivial involution of the Galois group Gal(E/F ) is simply the restriction of

complex conjugation in C to E.

We denote the ring of integers of E by OE. Let H be an Hermitian form all of

whose entries lie in OE and SU(H) the special unitary matrix group with respect to

this Hermitian form. When H has signature (2, 1), SU(H) = SU(2, 1), in particular

SU(H) is non-compact. Consider the group SU(H,OE) ⊂ SU(H), i.e the matrix

subgroup of SU(H) where the entries of every matrix lie in the ring of integers of

E.

There are a finite number of embeddings σi : F → R. For each of these embed-

dings there is, up to complex conjugation, a unique compatible embedding τi : E → C,

from which we obtain a new Hermitian matrix τjH by applying τj to the entries of

H and the new associated group SU(τjH) by τjSU(H).

The group SU(H,OE) is an arithmetic lattice in SU(H) if and only if τjSU(H)

is compact for all non-trivial τj. This is equivalent to τjH being an Hermitian form

of signature (3, 0) or (0, 3).

More generally any subgroup G ⊂ SU(H,OE) will be a subgroup of a lattice and

therefore discrete.

This formulation of the theorem was taken from chapter 5 of Ben McReynolds

excellent notes [19]. We refer any readers to these notes for further details about

the background and proof of this theorem and arithmetic lattices of SU(n, 1) in

general.



Chapter 2

Deformed R-Fuchsian triangle

groups

2.1 Triangle groups

In this chapter we introduce the topic of this thesis, deformed R-Fuchsian triangle

groups. We then collect some known results about these groups and prove some new

discreteness results. We perform a computer search which yields two new lattices,

several interesting discrete deformed triangle groups and two infinite families where

we believe every group is discrete. Finally we show that most groups of the form

Γ(4, q, r;n), where I1323 is elliptic, are non-discrete.

Definition 2.1.1 Let (p, q, r) be a triple of natural numbers. The (p, q, r) triangle

group is the Coxeter group with presentation,

〈I1, I2, I3 | I2
1 , I

2
2 , I

2
3 , (I2I3)

p, (I3I1)
q, (I1I2)

r〉.

These groups are called triangle groups since there is an obvious representation of

(p, q, r) into Isom(S2), Isom(E2) or Isom(H2
R
), where we identify the generators with

reflections in the sides of a geodesic triangle with vertex angles π/p, π/q and π/r.

When 1/p + 1/q + 1/r < 1, we call the corresponding group a hyperbolic tri-

angle group since the corresponding representation, which we denote ρπ, is into

Isom(H2
R) = PO(2, 1). In H2

R any two triangles with the same vertex angles are

16
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isometric, so for any hyperbolic triangle group, (p, q, r), the corresponding represen-

tation, ρπ, is unique up to conjugation in PO(2, 1).

Proposition 2.1.2 ρπ : (p, q, r) → PO(2, 1) described above is faithful. Moreover

ρπ(p, q, r) ⊂ PO(2, 1) is discrete and cocompact.

We also allow p, q or r = ∞, then the corresponding triangle will have an ideal

vertex and the related word in the Coxeter group will be sent by ρπ to a parabolic

element in PO(2, 1), although this extra piece of information will not be visible

from the presentation. More detail on hyperbolic triangle groups and the geometry

of the real hyperbolic plane in general can be found in most introductory books on

hyperbolic geometry e.g. [1] or [13].

2.1.1 The deformation problem

Let (p, q, r) be a hyperbolic triangle group, i.e. 1/p+1/q+1/r < 1, then we may also

consider representations of (p, q, r) into larger Lie groups G ⊃ PO(2, 1) and ask if

ρπ : (p, q, r) → PO(2, 1) fits into a larger family of representations ρt : (p, q, r) → G.

In this thesis we consider the extra representations into G = PU(2, 1), the group of

holomorphic isometries of H2
C
.

The construction of representations of (p, q, r) into PU(2, 1) is analogous to the

real hyperbolic case. We take a triangle in H2
C with the required vertex angles

and identify the generators of the group with the complex involutions in the C-

lines spanned by the vertices of the triangle. Up to conjugation in PU(2, 1), the

space of non-isomorphic (p, q, r) triangles in H2
C

is one real dimensional. This leads

naturally to a one real parameter family of non-conjugate representations of (p, q, r).

We denote this parameter by t and the corresponding representation ρt. In section

2.3 we describe a parametrisation for these representations. At the moment it is

sufficient to say that we define our parametrisation so that the image of (p, q, r)

under ρπ stabilises an R-plane and the map ρπ is essentially a representation into

PO(2, 1) embedded into PU(2, 1) by inclusion. When t 6= π, the representation

is not conjugate to a representation into PO(2, 1) and we call it a deformed (R-

Fuchsian) triangle group. More precisely a deformed triangle group is the image
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of an abstract Coxeter group under a specified representation into PU(2, 1).

From this point on, unless stated otherwise, we assume that p ≤ q ≤ r.

Definition 2.1.3 Let G ⊂ PU(2, 1),

• If G stabilises an R-plane, R, and acts discretely on R, we say G is R-

Fuchsian.

• If G stabilises an C-line, C, and acts discretely on C, we say G is C-Fuchsian.

2.1.2 Groups of type A and type B

Given a (p, q, r) triangle group (with p ≤ q ≤ r), define the words

WA = I1I3I2I3, WB = I1I2I3.

Theorem 2.1.4 ( [30], [12]) Let I ⊂ R be the set of values of t in the parameter

space such that ρt(WA) and ρt(WB) are both non-elliptic. Then the set I is a closed

interval. We call I the critical interval.

This theorem was conjectured in [30]. It was proved in [12]. Although it is not

explicitly stated in that paper it follows from the arguments used to prove the main

result (which we restate as theorem 2.1.6 below).

Definition 2.1.5 A group (p, q, r) is type A if the end points of I correspond to a

representation where WA is parabolic. Otherwise we say (p, q, r) are type B.

Theorem 2.1.6 [12] The group (p, q, r) is of type A if p < 10 and type B if p > 13.

Definition 2.1.7 A word in ρt(p, q, r) has genuine length n if it is not conjugate

in ρt(p, q, r) to any shorter word or a power of a shorter word. For example I1I3I2I3

has genuine length 4 and I1I3I2I3I2I1 has genuine length 2, since it is conjugate to

(I3I2)
2.

Then we can reformulate the definition of the critical interval as follows.

Definition 2.1.8 The critical interval I can be defined as the set of values of t such

that all words of genuine length 3 and 4 are non-elliptic.
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2.1.3 History and background of deformed triangle groups

The study of deformed (R-Fuchsian) triangle groups began with Goldman and

Parker in [11], where they analysed deformed (∞,∞,∞) groups. They showed

that there is an interval I contained in I for which ρt(∞,∞,∞) is discrete and

faithful for all t ∈ I. They conjectured that ρt(∞,∞,∞) is discrete and faithful

if and only if t ∈ I. In [32] Schwartz proved a stronger version of this conjecture

namely ρt(∞,∞,∞) is discrete and faithful if and only if t ∈ I. Moreover if t /∈ I
then ρt(∞,∞,∞) is not discrete. Schwartz’s proof can be applied to all triples

(p, q, r) with sufficiently large p, although Schwartz does not calculate a specific

bound. Schwartz then made the more general conjecture.

Conjecture 2.1.9 For any triple (p, q, r), the representation ρt(p, q, r) is faithful

and discrete (as a subgroup of PU(2, 1)) for all t ∈ I.

The next deformed triangle groups to be studied in depth were ρt(4, 4,∞) by

Justin Wyss-Galifent in his thesis [36]. He made the surprising discovery of ‘ex-

tra’ discrete, but non-faithful, representations outside of I. These representations

correspond to values of t where ρt(I1I3I2I3) is elliptic and of finite order.

Definition 2.1.10 We define Γ(p, q, r;n) to be the image of a representation with

t /∈ I where ρt(I1I3I2I3) is an elliptic word of order n.

Remark: The 4-tuple Γ(p, q, r;n) does not denote an abstract group, it denotes

a matrix subgroup of PU(2, 1). The matrix subgroup is the image of a specific

representation of (p, q, r) into PU(2, 1). Obviously we can write down an abstract

presentation for the group, but it is important to keep in mind that the presentation

corresponds to a specific matrix group up to conjugation in PU(2, 1).

There is an ambiguity in this notation since it may be possible that there are

two or more values of t such that ρt(I1I3I2I3) has order n. We briefly discuss this

in the section on non-standard deformed triangle groups.

We could consider values of t for which ρt(I1I3I2I3) is elliptic of infinite order.

These groups are necessarily non-discrete and therefore not particularly interesting.

There is also the question of groups of type B, i.e. groups where ρt(I1I2I3) is
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elliptic whilst ρt(I1I3I2I3) is still loxodromic, these groups are more difficult to deal

with since it is a lot more difficult to determine the behaviour of ρt(I1I2I3) than

ρt(I1I3I2I3) and we don’t consider them in this thesis.

In this language, the extra discrete deformed triangle groups studied by Wyss-

Galifent are Γ(4, 4,∞; 3), Γ(4, 4,∞; 4) and Γ(4, 4,∞;∞). Influenced by this discov-

ery, Schwartz conjectured that complex hyperbolic hyperbolic triangle groups fall

into two categories, depending on whether they are type A or type B.

Conjecture 2.1.11 If (p, q, r) is of type A, then ρt(p, q, r) is discrete and faithful

for t inside the critical interval. In addition there is a countable (possibly infinite

or zero) collection of points, tm, outside the critical interval, such that the group

Γ(p, q, r;n) = ρtm(p, q, r) is discrete but non-faithful. If (p, q, r) is of type B, then

ρt(p, q, r) is discrete if and only if t lies inside the critical interval.

The next case to be studied were the deformed (4, 4, 4) groups, In 2006, De-

raux proved that Γ(4, 4, 4; 5) was a lattice by demonstrating that a Dirichlet do-

main for the group is bounded [6]. In 2003, Schwartz showed that the groups

Γ(4, 4, 4;n) for n = 5, 6, 7, 8, 12, 18 are arithmetic [31]. In the same paper, the

group Γ(4, 4, 4; 7) was studied in great depth. In [21] Parker analysed all discrete

groups of the form Γ(p, p, p;n) using a result of Conway and Jones [3] and found

two counterexamples to conjecture 2.1.11, namely a deformed (14, 14, 14) group and

the group Γ(18, 18, 18; 18).

Recent results by Pratoussevitch [27] and Kamiya, Parker & Thompson [18] have

shown that a large number of deformed (m,m,∞) groups are non-discrete.

The study of deformed triangle groups is strongly related to work done by

Mostow, Deligne, Sauter and others in the 1980s. In 1980 Mostow discovered a

number of lattices in PU(2, 1) arising from monodromy groups of hypergeometric

functions. Many of these lattices had surprising geometric properties, in the case

of triangle groups, there is a family of these lattices that contain Γ(p, p, p; p) groups

as infinite index subgroups (or index 60 in the case p = 5). These groups were

also studied by Livné’s in his thesis [15] where they arise in the context of algebraic

geometry. For an overview of this area and how it relates to complex hyperbolic
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geometry, see Parker’s survey paper [23].

2.2 Notation

Deformed triangle groups are generated by three complex involutions I1, I2 and I3.

These involutions fix C-lines which we denote C1, C2 and C3 respectively. We write

compositions of reflections, for example I1I2I1 as I121 or simply 121. We call this

word notation and such a string of numbers is called a word.

When a word is palindromic, the corresponding isometry is a complex involution,

since it can be thought of as conjugate to one of the generating involutions. For

example the line I1(C2) = C121 is the C-line fixed by the complex involution I121 =

I1I2I
−1
1 . The composition of two word isometries is simply the composition of the

words, e.g.

I121I131 = I121131.

Since complex involution are of order two, i.e. IjIj = Id, in word notation we can

use this condition to delete (or introduce) double letters in a word, so the above

example would become,

I121I131 = I1231.

The other group relations, e.g (I23)
p and (I1323)

n = Id, may be also used to simplify

words.

We also use word notation to denote points lying in the intersection of two lines

defined by words, we compose the two words and delete any repeated digits. For

example, the point of intersection between the lines C2321232 and C121 is denoted

p2321232121 (or 2321232121 if there is no risk of confusion). Alternatively we can

interpret this convention so that the point pw is the unique fixed point of a regular

elliptic isometry Iw. In this notation the vertices of the generating triangle are

p12, p23, p31 (or 12, 23, 31).

A word and its reverse therefore denote the same line or point, however in general

this will not be true for words denoting isometries e.g. I12 = (I21)
−1 6= I21. Clearly

the fixed points of I12 and I21 are the same, so p12 = p21.
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It is easy to write down the action of any word in our group (i.e an isometry

generated by I1, I2, I3) on a point of H2
C

denoted by a word. We simply conjugate

the word corresponding to the point by the word corresponding to the isometry and

use the group relations to simplify, for instance,

I1232 (p232121) = (1232)(232121)(2321) = 12322321212321 = 212321 = p212321

This notation introduces some ambiguity between isometries, C-lines fixed by

these isometries and points lying in the intersection of two C-lines since all three

may be denoted by words. However it will generally be clear from the context which

of the three is being discussed and where further clarity is required we shall revert

to I, C, p notation for isometries, lines and points respectively.

2.3 The parameter space of ρt(p, q, r)

We now construct a representation for a general Γ(p, q, r;n) triangle group and

describe the deformation space for (p, q, r) triangle groups. We can choose a basis

of C2,1 so that the polar vectors, ni to the fixed complex lines of Ii are

n1 =




1

0

0


 , n2 =




0

1

0


 , n3 =




0

0

1




satisfying

〈n1,n1〉 = 〈n2,n2〉 = 〈n3,n3〉 = 2, 〈n2,n1〉 = ρ, 〈n3,n2〉 = σ, 〈n1,n3〉 = τ.

Then the Hermitian form is given by

H =




2 ρ τ

ρ 2 σ

τ σ 2


 .

In order to have signature (2, 1) we must have det(H) < 0. That is

ρστ + ρστ − 2|ρ|2 − 2|σ|2 − 2|τ |2 + 8 < 0. (2.1)
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Let Ij be the complex involution in the C-line orthogonal to nj . Then using formula

(1.3) from chapter 1,

Ij(z) = −z + 2
〈z,nj〉
〈nj,nj〉

nj

we have

I1 =




1 ρ τ

0 −1 0

0 0 −1


 , I2 =




−1 0 0

ρ 1 σ

0 0 −1


 , I3 =




−1 0 0

0 −1 0

τ σ 1


 .

We can calculate 1-eigenvectors for IiIj , which we denote vij ,

v12 =




ρσ − 2τ

ρτ − 2σ

4 − |ρ|2


 , v23 =




4 − |σ|2

στ − 2ρ

ρσ − 2τ


 , v31 =




στ − 2ρ

4 − |τ |2

τρ− 2σ


 . (2.2)

These vectors are lifts of the fixed points of I12, I23, I31 in H2
C
. The corresponding

points p12, p23, p31 are the vertices of the triangle which defines the C-lines that are

fixed by the generating reflections.

The traces of Iij are

tr(I1I2) = |ρ|2 − 1, tr(I2I3) = |σ|2 − 1, tr(I3I1) = |τ |2 − 1.

By fixing

|σ| = 2 cos(π/p), |τ | = 2 cos(π/q), |ρ| = 2 cos(π/r),

we ensure that I12, I23 and I31 have the required order.

The trace of the triple product I123 is

tr(I1I2I3) = ρστ − |ρ|2 − |σ|2 − |τ |2 + 3. (2.3)

Combining this with (2.1) we see that

Re
(
tr(I1I2I3)

)
< −1.
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Definition 2.3.1 After fixing |σ|, |τ |, |ρ|, there is, up to conjugation in PU(2, 1),

a one parameter family of deformed (p, q, r)-triangle groups. The parameter, t, is

the argument of ρστ .

We can always normalise so that the imaginary part of ρστ is positive (applying an

anti-holomorphic involution if necessary) so that the argument of ρστ always lies in

the interval [0, π].

The angular invariant

We can also understand the deformation parameter of a triangle group in terms of

the generalised angular invariant

Definition 2.3.2 Let n1, n2 and n3 be three polar vectors defining a complex hy-

perbolic triangle, then the generalised angular invariant of n1, n2, n3 is

A(n1,n2,n3) = arg(−〈n3,n2〉 〈n2,n1〉 〈n1,n3〉) (2.4)

Remark: It follows from a quick calculation that the angular invariant for a de-

formed triangle is π − arg(ρστ). When the angular invariant A(n1,n2,n3) is equal

to 0, ρστ is real and the corresponding deformed triangle group is R-Fuchsian.

This is equivalent to the three vertices of the corresponding triangle, p12, p23 and

p31, all lying in the same R-plane and the corresponding presentation being into

PO(2, 1) ⊂ PU(2, 1).

Alternative notations

There are a variety of different notations used to describe deformed triangle groups,

we have followed the notation from [21]. We have also followed Schwartz’s convention

that ord(I2I3) = p, ord(I3I1) = q, ord(I1I2) = r, ord(I1I3I2I3) = n and p ≤ q ≤ r.

This leads to the slightly awkward situation where |σ|≤ |τ |≤ |ρ|.
We can convert our ρ, σ, τ notation into the notation used by Pratoussevitch

in [26] as follows

|σ|= 2r1, |τ |= 2r2, |ρ|= 2r3 and arg(ρστ) = α.
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In [32] Schwartz uses similar notation, however the indices are offset by one i.e

Schwartz’s ri is the same as Pratoussevitch’s ri+1.

After fixing |ρ|, |σ|, |τ |, the deformed (p, q, r)-triangle group corresponding to

t = π, fixes an R-plane. As we decrease t the word I1323 becomes ‘more elliptic’. At

the point

t0 = arccos

( |ρ|2 + |στ |2 − 4

2|ρστ |

)

the word I1323 becomes parabolic. For all t < t0 (respectively t > t0), I1323 is

loxodromic (respectively elliptic). At the point

t1 = arccos

( |ρ|2 + |σ|2 + |τ |2 − 4

|ρστ |

)

the group becomes degenerate. These values are essentially the same as cA and c∞

from Section 11 of [26] (and lemma 4.2 of [32]).

We split the parameter space into three sub-intervals [0, t1], (t1, t0) and [t0, π].

For t ∈ [0, t1] all the deformed triangle groups are degenerate. If (p, q, r) is of type

A, then t ∈ [t0, π] is precisely the critical interval I. We are interested in deformed

triangle groups corresponding to values of t in the middle interval (t1, t0). If t lies

in this interval, the group ρt(p, q, r) is non-degenerate and I1323 is elliptic.

We now show how to choose a value for t = arg(ρστ) to ensure that I1323 has

order n.

tr(I1I2I1I3) = |ρτ−σ|2−1, tr(I2I3I2I1) = |ρσ−τ |2−1, tr(I3I1I3I2) = |στ−ρ|2−1.

Suppose that

|ρτ − σ| = 2 cos(π/l), |ρσ − τ | = 2 cos(π/m), |στ − ρ| = 2 cos(π/n).

Squaring both sides we obtain,

ρστ + ρστ = 16 cos2(π/p) cos2(π/r) + 4 cos2(π/q) − 4 cos2(π/l)

= 16 cos2(π/p) cos2(π/q) + 4 cos2(π/r) − 4 cos2(π/m) (2.5)

= 16 cos2(π/q) cos2(π/r) + 4 cos2(π/p) − 4 cos2(π/n).
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Corollary 2.3.3 Let Γ(p, q, r;n) be a complex hyperbolic triangle group and define

ρ, σ, τ as above. Then,

2Re (ρστ) = −2 cos(2π/n) − 2 + |ρ|2+|στ |2 (2.6)

Alternatively, the corresponding value of t is

t = arccos

(−2 cos(2π/n) − 2 + |ρ|2+|στ |2
2|ρστ |

)
. (2.7)

Lemma 2.3.4 Let A ∈ PU(2, 1), if tr(A) is real and contained in (−1, 3), then A

is regular elliptic, tr(A) = 1 + 2 cos(ψ) and A has finite order if and only if ψ is a

rational multiple of π.

Proof: Since tr(A) ∈ (−1, 3), it follows from Goldman’s trace formula 1.2.12 that

A is regular elliptic. As A is regular elliptic it has three eigenvalues of unit modulus.

The product of these eigenvalues is 1 and the sum is real. We can therefore write

these eigenvalues as eiθ, eiφ and e−iθ−iφ. Considering the imaginary part of tr(A) we

get,

0 = Im(tr(A)) = sin(θ) + sin(φ) − sin(θ + φ)

= 4 sin(θ/2) sin(φ/2) sin(θ/2 + φ/2).

At least one of θ, φ or θ + φ is equal to an integer multiple of π. So at least one of

the eigenvalues is equal to 1. Then it follows that the other eigenvalues are eiψ and

e−iψ and A has trace 1 + 2 cos(ψ). If ψ is a rational multiple of π, then A has finite

order, otherwise A has infinite order. 2

Non-standard deformed triangle groups

We have defined Γ(p, q, r;n) as the group corresponding to the value of t that has

tr(I1323) = 1 + cos(2π/n), this forces I1323 to have order n. In general there will be

more than one value of t for which, in the corresponding deformed triangle group,

I1323 has order n. These are the groups where tr(I1323) = 1 + cos(2mπ/n), where m

and n are co-prime and t ∈ (t1, t0). For example the group Γ(4, 4, 4; 70) corresponds

to t = 1.2079 . . ., but there are 5 other values of t in the interval (t1, t0) that will

also produce a deformed (4, 4, 4) group with ord(I1323) = 70. They are
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t tr(I1323)

1.2079 . . . 1 + 2 cos(2π/70)

1.1957 . . . 1 + 2 cos(6π/70)

1.0896 . . . 1 + 2 cos(18π/70)

1.0328 . . . 1 + 2 cos(22π/70)

0.9665 . . . 1 + 2 cos(26π/70)

0.8075 . . . 1 + 2 cos(34π/70)

Note that for (4, 4, 4) the interval (t1, t0) = (0.7859 . . . , 1.2094 . . .).

For the moment we ignore groups where tr(I1323) 6= 1 + 2 cos(2π/n), since there

are reasonably convincing arguments that, unless n is large and m small, these

groups will not be discrete (see section 2.5.1). We refer to these groups as non-

standard deformed triangle groups and we denote them by Γ(p, q, r;n/m) where

tr(I1323) = 1 + 2 cos(2mπ/n).

2.4 Identifications between Γ(p, q, r;n)

In this section, we describe a family of identifications between different deformed

triangle groups. In this context, the identification consists of choosing a different

generating set of matrices for a deformed triangle group and rewriting the group

relations in terms of these new generators to change one deformed triangle group

into another one.

The group (p, q, r;n) is generated by three order two complex reflections I1, I2

and I3. We define ι1 to be the involution of groups that acts on the generating set

(I1, I2, I3) as follows,

ι1(I1) = I1, ι1(I2) = I121, ι1(I3) = I3.

i.e. we conjugate the second generator by the first. The map ι1 extends to the rest

of the group the obvious way. Since I1 has order two it is clear that ι21 acts trivially.

There are two analogous group involutions ι2 and ι3, which we define as follows

ι2(I1, I2, I3) = (I1, I2, I232) and ι3(I1, I2, I3) = (I313, I2, I3).
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Recall, we apply these group involutions to the matrix group ρt(p, q, r) rather

than to the abstract group (p, q, r). We are relabelling the matrices that gener-

ate ρt(p, q, r) ⊂ PU(2, 1) rather than generators of an abstract group.

Let A1 = ιi(I1), A2 = ιi(I2) and A3 = ιi(I3) for some ιi. Then ιi produces a

representation for another triangle group presentation of Γ in terms of Aj, namely

〈A1, A2, A3 | A2
i , A

p′

23, A
q′

31, A
r′

12, A
n′

1323〉.

This is the same matrix subgroup of PU(2, 1) that we started with. All the ι do is

change the generating set and then we must find the required relations in terms of

these new generators. This produces an identification Γ(p, q, r;n) ∼ Γ(p′, q′, r′;n′).

In general there is no reason to expect A23, A31, A12 or A1323 to be finite order elliptic

or parabolic. When one or more of the Aij is loxodromic we have a generalised

deformed triangle group, that is a group generated by three order two reflections

in C-lines that do not pairwise intersect in H2
C to form a triangle.

It is also possible that the new group is a non-standard deformed triangle group,

to determine this we have to check the trace of the words Aij and Aijkj and not

just their order. For small values of n′ is is very unlikely that the group will be

non-standard, recall from the Γ(4, 4, 4; 70) example there were only 5 possible non-

standard groups and for n < 11 there are no non-standard Γ(4, 4, 4;n) groups.

These trace calculations are straightforward and we omit them unless they lead to

a deformed triangle group.

Lemma 2.4.1 The involution ι3 identifies the deformed triangle groups Γ(p, q, r;n)

and Γ(p, q, n; r).

Proof: Let (I1, I2, I3) be a triple of reflections that generate Γ(p, q, r;n) with the

necessary relations, Ip23, I
q
31, I

r
12 and In1323. Then the involution ι3 sends this set to

(A1 = I313, A2 = I2, A3 = I3). In these generators, the words we use to specify a
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unique deformed triangle group are,

A23 = A2A3 = I2I3 = I23,

A31 = A3A1 = I3I3I1I3 = I1I3 = I−1
31 ,

A12 = A1A2 = I3I1I3I2 = I3(I1323)I3,

A1323 = A1A3A2A3 = I3I1I3I3I2I3 = I3(I12)I3.

Then the group generated by the Ai has the following partial presentation,

〈A1, A2, A3 | A2
i , A

p
23, A

q
31, A

n
12, A

r
1323〉.

We now have to check the trace of A1323 to ensure that group is not non-standard,

once this is done we have uniquely determined the representation in to PU(2, 1).

There may other group relations not shown in the partial presentation, but these

do not change the specific deformed triangle group. 2

The involution ι3 has this special property due to the appearance of I1323 in the

relations that we chose to classify triangle groups. For ι1 and ι2 the situation is

more complicated (see the tables in chapter 5 for details).

We can think of these maps as order 2 identifications between deformed tri-

angle groups. Applying ιi repeatedly will produce new generating sets and new

presentations for the group. There is no reason to expect two different sequences

of involutions to produce the same generating set so, in general, the graph of all

possible generating sets is the valency three tree, part of which is shown in figure

2.1.

Each vertex of the tree corresponds to a triple of words in the generating set

which give a presentation of the triangle group, so this could instead be thought of

as a tree of isomorphisms between triangle groups. Closer analysis shows that the

relations of the original group will cause many vertices to collapse to the same point

so this graph is no longer a tree.

For the sake of clarity we work though some concrete examples.
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Figure 2.1: Graph of generating sets

Γ(4, 4, 4; 5)

Γ(4, 4, 4; 5) = 〈I1, I2, I3|I2
i , I

4
ij , I

5
1323〉. Under ι1 this group is sent to

〈ι1(I1), ι1(I2), ι1(I3)|(ι1(Ii))2, (ι1(I23))
5, (ι1(I31))

4, (ι1(I12))
4, (ι1(I1323))

5〉.

So we conclude that ι1 : Γ(4, 4, 4; 5) ↔ Γ(5, 4, 4; 5) is an identification between these

two deformed triangle groups. Since ι1 is an involution, ι21 acts trivially and preserves

the original presentation. The other involutions give the following identifications

ι2 : Γ(4, 4, 4; 5) ↔ Γ(4, 5, 4; 5),

ι3 : Γ(4, 4, 4; 5) ↔ Γ(4, 4, 5; 4).

Although these groups have different Γ(p, q, r;n) presentations, when we permute

the generating reflections to put them into the standard form (i.e. p ≤ q ≤ r) we

see that they are the same group, namely Γ(4, 4, 5; 4).

The group relations for Γ(4, 4, 4; 5) cause the corresponding tree to reduce to a finite

graph. To see this, notice that ι3ι1(I1, I2, I3) = (I313, I121, I3) and ι1ι3(I1, I2, I3) =
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(I1, I323, I131), conjugating the second triple by I13 produces (I13131, I121, I1313131). In

Γ(4, 4, 4; 5), I31313 = I131, so the vertices corresponding to ι13 and ι31 collapse to a

single vertex. There are similar relations related to I4
12 and I4

23. This has only used

the fact that we’re in a Γ(4, 4, 4;n) group, so the same collapsing will occur for all

n. Now we list the groups produced by ι12, ι23 and ι31.

ι12 : Γ(4, 4, 4; 5) ↔ Γ(5, 5, 4; 6),

ι23 : Γ(4, 4, 4; 5) ↔ Γ(4, 5, 5; 4),

ι31 : Γ(4, 4, 4; 5) ↔ Γ(5, 4, 5; 4).

The next level of the graph will only consist of 3 points corresponding to ι312 =

ι321, ι123 = ι132 and ι231 = ι213. These involutions send (I1, I2, I3) to the following

generating sets

ι312(I1, I2, I3) = (I212, I31213, I3),

ι123(I1, I2, I3) = (I1, I323, I12321),

ι231(I1, I2, I3) = (I23132, I2, I131)

and from this we can work out the new group presentations from these generators,

namely

ι312 : Γ(4, 4, 4; 5) ↔ Γ(5, 5, 6; 4),

ι123 : Γ(4, 4, 4; 5) ↔ Γ(6, 5, 5; 5),

ι231 : Γ(4, 4, 4; 5) ↔ Γ(5, 6, 5; 5).

After permuting indices to put the group in the standard form, we see that all

these groups are isomorphic to Γ(5, 5, 6; 4). At this point, the graph terminates,

in the sense that any longer word in ιi takes us to a generating set which can be

reduced (using the group relations) to another generating set arising from a shorter

ι word. In particular this uses the I5
ijik = Id relation from the original group, for

general Γ(4, 4, 4;n) groups the graph will be larger. The graph of presentations for

Γ(4, 4, 4; 5) after collapsing is shown in figure 2.2. After putting the groups in the

standard form, they all have one of the following presentations

Γ(4, 4, 4; 5), Γ(4, 4, 5; 4), Γ(4, 5, 5; 4), Γ(5, 5, 6; 4).
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(4,4,4;5)

(5,4,4;5)

(4,5,4;5)(4,4,5;4)

(5,5,4;6)(5,4,5;4)

(4,5,5;4)

(5,5,6;4)

(6,5,5;5)

1

23

2

3

1

2

23

1

32

1

3

2

1

3

(5,6,5;5)

1

Figure 2.2: Graph of identifications for Γ(4, 4, 4; 5)

This is a rather special case, in that no sequence of ι maps send the group to a

generalised triangle group. The only triangle groups with this property appear to

be lattices (and degenerate, finite groups).

Corollary 2.4.2 These are the only triangle groups isomorphic, under some ιw, to

Γ(4, 4, 4; 5).

Γ(3, 3, 4;n) (with n > 7)

We now work through a non-lattice example to show how generalised triangle groups

occur. Following the process as before, we produce the graph of isometries shown

in figure 2.3. The generalised triangle groups are the groups contained in boxes, we

terminate the graph at these groups since there is no obvious way of extending the

notation and we believe the graph will be infinite. If the group were a lattice, at

these points the edges of the graphs would form loops, i.e. two of the ι isomorphisms

would send the group to itself (as in the Γ(4, 4, 4; 5) graph, figure 2.2) This suggests

an approach to find deformed triangle groups that are lattices, namely find groups

where ord(23) = ord(2131) and ord(31) = ord(3212), see the tables in chapter 5.

After putting the groups in the standard form, these deformed triangle groups all

have one of the following presentations.

Γ(3, 3, 4;n), Γ(3, 3, n; 4), Γ(3, 4, n; 3), Γ(4, n, n; 3).
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(3,3,4;n)

(3,n,4;3)

(3,3,n;4)

(n,n,4;Lox)

(n,n,Lox;*)

(3,n,3;4)

(3,4,n;3)

(3,4,3;n)

(n,3,4;3)

(n,4,n;3)

(n,4,3;n)

(n,3,3;4)

(4,3,3;n)

(4,3,n;3)(4,n,3;n)

(4,n,n;3)

(Lox,n,n;*) (n,Lox,n;*)

31 2

3

1 2

1

12

2

3 2 1 3

2 3 1 2 3 1

3 1 2 3

2 1

Figure 2.3: Graph of identifications for Γ(3, 3, 4;n)

Γ(4, p, p;n)

Proposition 2.4.3 If p < n (respectively p > n), then the deformed triangle groups

Γ(4, p, p;n), Γ(4, p, n; p) (respectively Γ(4, n, p;n)) and Γ(4, n, n; p) are identified.

Remark: With sufficient care and decent notation, it should be possible to keep

track of these groups as ι maps them between generalised triangle groups, and

potentially use discreteness results from chapter 2 of [36].

Definition 2.4.4

K := Re (ρστ) − |σ|2 − |τ |2 − |ρ|2,

L := |στρ|2 − (Re (ρστ))2 = Im (ρστ)2.

Remark: The determinant of the Hermitian form H is K + 4, so H has signature

(2, 1), and Γ(p, r, q;n) corresponds to a complex hyperbolic triangle group, if and

only if K < −4. If K = −4 we say the group is degenerate.
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Lemma 2.4.5 The quantities K and L are fixed under the identifications ιi.

Proof: We only show this for ι1, the other cases are essentially the same. Assume

we have a Γ(p, q, r;n) group with associated ρ, σ, τ . Let Γ(p′, q′, r′;n′) be the image

of (p, q, r;n) under ι1 with the associated parameters ρ′, σ′, τ ′. Under ι1 there is

the following identification of words (I23, I31, I12, I1213) ↔ (I1213, I31, I21, I23). Using

the trace formulae we see that |σ′|= |ρτ − σ|, |τ ′|= |τ |, |ρ′|= |ρ| and |ρ′τ ′ − σ′|= |σ|.
These relations imply that Re (ρ′σ′τ ′) = −Re (ρστ) + |ρτ |2. Then

2K − 2K′ =2Re (ρστ) − 2|σ|2 − 2|τ |2 − 2|ρ|2 − 2Re (ρ′σ′τ ′) + 2|σ′|2 + 2|τ ′|2 + 2|ρ′|2

=|ρτ |2+|σ|2−|σ′|2−2|σ|2 − 2|τ |2 − 2|ρ|2 − |ρ′τ ′|2−|σ′|2+|σ|2+2|σ′|2

+ 2|τ ′|2 + 2|ρ′|2

=|ρτ |2−2|τ |2 − 2|ρ|2 − |ρ′τ ′|2+2|τ ′|2 + 2|ρ′|2

=0.

Hence K = K′. Then

L − L′ = |στρ|2 − (Re (ρστ))2 − |σ′τ ′ρ′|2 − (Re (ρ′σ′τ ′))2

= |τρ|2(|σ|2 − |σ′|2) − (Re (ρστ))2 + (Re (ρστ))2 − 2|τρ|2Re (ρστ) + |τρ|4

= |τρ|2(|σ|2 − |σ′|2 − 2Re (ρστ) + |τρ|2)

= |τρ|2(|σ|2 − |σ′|2 − |σ|2 − |τρ|2 + |σ′|2 + |τρ|2)

= 0.

Hence L = L′. 2

Remark: The terms K and L individually are not enough to distinguish deformed

triangle groups. For example Γ(4, 4, 4; 6) and Γ(4, 4,∞; 3) both have K = −4.5, but

since they have different values for L they a not identified via ι.

Conjecture 2.4.6 Two deformed triangle groups can be identified if and only if

they have the same K and L.



2.5. Discrete groups 35

2.5 Discrete groups

In this section we describe some technical results which allow us to quickly determine

the discreteness of some groups, then we use these results to prove our main result,

theorem 2.5.6.

Theorem 2.5.1 Let G = Γ(p, q, r;n) be a non-degenerate group with p, q, r, n ∈
{3, 4, 6,∞}. Then G is discrete.

Proof: Converting theorem 9 of [26] into ρ, σ, τ notation, the trace of each element

of the group is an integer polynomial in the following variables

|σ|2, |τ |2, |ρ|2, ρστ, ρστ . (2.8)

Using the presentation described above and lemma 2.6, it is clear, for {p, q, r, n} ⊂
{3, 4, 6,∞}, that |ρ|2, |σ|2, |τ |2 and 2Re (ρστ) are integers. There are two possibili-

ties, either Re (ρστ) = m ∈ Z or Re (ρστ) = m/2 for some odd m ∈ Z.

If Re (ρστ) = m ∈ Z, then L = Im 2(ρστ) = |ρστ |2−Re 2(ρστ) is also an integer.

So ρστ = m + i
√

L and ρστ = m − i
√

L. By Pratoussevitch’s result, the trace of

any word in the group can be written as an integer polynomial in m+ i
√

L, so the

trace of every word in Γ(p, q, r;n) lies in the ring Z[i
√

L]. This is a discrete ring, so

the group is not dense in PU(2, 1). In addition there is no point in H2
C invariant

under the action of the group, then by corollary 4.51 of [2], the group is discrete.

If Re (ρστ) = m/2 for m odd, then L = Im 2(ρστ) = l/4. We can express l

in terms of |ρ|2, |σ|2, |τ |2 and m as follows, l = 4|ρστ |2 − m2, in particular, l is

congruent to 3 modulo 4. Then ρστ = m
2

+ i
√
l

2
and the trace of any word can be

written as some element of Z[(1 + i
√
l)/2]. By the same argument as the previous

case, the group is not dense in PU(2, 1) and therefore discrete. 2

Corollary 2.5.2 Identifying groups via ι, the following (non-degenerate) deformed

triangle groups are discrete Γ(3, 3, 4;∞), Γ(3, 3, 6; 6), Γ(3, 3, 6;∞), Γ(3, 3,∞;∞),

Γ(3, 4, 4; 6), Γ(3, 4, 4;∞), Γ(3, 4, 6; 6), Γ(3, 4, 6;∞), Γ(3, 4,∞;∞), Γ(3, 6, 6; 6),

Γ(3, 6, 6;∞), Γ(3,∞,∞;∞), Γ(4, 4, 4; 6), Γ(4, 4, 4;∞), Γ(4, 4, 6; 6), Γ(4, 4, 6;∞),
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Γ(4, 4,∞;∞), Γ(4, 6, 6; 6), Γ(4, 6, 6;∞), Γ(3,∞,∞;∞), Γ(6, 6, 6; 6), Γ(6, 6, 6;∞),

Γ(6, 6,∞;∞), (6,∞,∞;∞).

Lemma 2.5.3 (Jørgensen’s inequality [14]) Let A ∈ SU(2, 1) be a regular el-

liptic isometry of order n ≥ 7 that preserves a Lagrangian plane (i.e. tr(A) is

real). Suppose that A fixes a point z ∈ H2
C
. Let B be any element of PU(2, 1) with

B(z) 6= z. If

cosh

(
d(B(z), z)

2

)
sin

(π
n

)
<

1

2
, (2.9)

then 〈A,B〉 is not discrete and consequently any group containing A and B is not

discrete.

Corollary 2.5.4 Let G = Γ(p, q, r;n) with p ≤ q ≤ r. Let ρ, σ, τ be defined as in

section 2.3. If ord(I12) = r ≥ 7 and

(
ρστ + ρστ − 2|σ|2−2|τ |2−|ρ|2+4

)2
< 4 − |ρ|2 (2.10)

then Γ is not discrete.

If ord(I23) = p ≥ 7 and

(
ρστ + ρστ − |σ|2−2|τ |2−2|ρ|2+4

)2
< 4 − |σ|2 (2.11)

then Γ is not discrete.

If ord(I31) = q ≥ 7 and

(
ρστ + ρστ − 2|σ|2−|τ |2−2|ρ|2+4

)2
< 4 − |τ |2 (2.12)

then G is not discrete.

Proof: Set I12 = A, I3 = B and z = v12 (fixed point of I12) in lemma 2.5.3. Then

(2.9) becomes ∣∣∣∣
〈I3(v12),v12〉
〈v12,v12〉

∣∣∣∣ sin
(π
r

)
<

1

2
.

Squaring both sides we obtain
∣∣∣∣
〈I3(v12),v12〉
〈v12,v12〉

∣∣∣∣
2

(3 − tr(I12)) < 1

which is equivalent to

(
ρστ + ρστ − 2|σ|2−2|τ |2−|ρ|2+4

)2
< 4 − |ρ|2
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as required. The other inequalities arise from identical arguments. 2

Corollary 2.5.5 We can rewrite these inequalities respectively as

(2Re (tr (I123)) + tr (I12) − 1)2 < 3 − tr (I12),

(2Re (tr (I123)) + tr (I23) − 1)2 < 3 − tr (I23),

(2Re (tr (I123)) + tr (I31) − 1)2 < 3 − tr (I31).

If a group Γ(p, q, r;n) with p > 7 satisfies any of these inequalities the group is

non-discrete.

Remark: These inequalities are the best possible, in the sense that there are discrete

groups where we get equality, for example Γ(18, 18, 18; 18) and Γ(7, 7, 14; 4).

Theorem 2.5.6 Let p ≤ q ≤ r < ∞. If p > 31 then the group Γ(p, q, r;n) is not

discrete.

The structure for this proof is as follows, we first prove a technical inequality

(lemma 2.5.8). We then use this lemma to prove lemma 2.5.10 which states that if

Γ(p, q, r;N) satisfies one of the Jørgensen inequalities (2.10), (2.11) or (2.12), then

so will Γ(p, q, r;n) for any n ≤ N . Finally, we show that if p > 31, the group

Γ(p, q, r;∞) satisfies one of the Jørgensen inequalities for any q and r. Then, by

lemma 2.5.10, Γ(p, q, r;n) is non-discrete for all q, r and n. For the rest of this

section we assume 7 ≤ p.

Lemma 2.5.7 If 7 ≤ p ≤ q ≤ r <∞, then 2 cos(π/7) ≤ |σ|≤ |τ |≤ |ρ|< 2.

Lemma 2.5.8 Let ρ, σ, τ be defined in terms of a 4-tuple Γ(p, q, r;n) as in 2.3.

Then

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ 0

Proof: In section 1.5 it was shown that for a group where I1323 is regular elliptic

of order n, we have the following equality.

Re (ρστ) = −2 cos(2π/n) + 2 − |ρ|2−|στ |2
2
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Then we can rewrite the inequality −1 ≤ Re (ρστ)/|ρστ |≤ 1 as

−1 ≤ 2 cos(2π/n) + 2 − |ρ|2−|στ |2
2|ρστ | ≤ 1

Rearranging this gives us

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ 2|ρστ |−|ρ|2−2|τ |2−2|σ|2+4 (2.13)

We can rearrange the right hand side to get

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ −2(|τ |−|σ|)2 − 2|σ||τ |(2 − |ρ|) − |ρ|2+4

(2.14)

Since (|τ |−|σ|)2 is always non-negative, we have

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ −2|σ||τ |(2 − |ρ|) − |ρ|2+4 (2.15)

The right hand side of this inequality is a quadratic in |ρ|

−|ρ|2+2|στ ||ρ|+4(1 − |στ |).

This quadratic has roots 2 and 2|στ |−2. Since p ≥ 7, we have |στ |≥ 4 cos2(π/7) and

(2|στ |−2) ≥ 2. So on the interval 0 ≤ |ρ|≤ 2 the quadratic is always non-positive.

Since these are the only values that |ρ| can take, the right hand side of (2.15) is

always non-positive, which proves the lemma. 2

Corollary 2.5.9 Let ρ, σ, τ be defined in terms of a 4-tuple (p, q, r;n) as in section

2. Then we have the following inequalities

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2) ≤ 0,

(−2 cos(2π/n) + 2 + |στ |2−|τ |2−2|σ|2−|ρ|2) ≤ 0.

Proof: For the first inequality notice that

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2) − (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)

= |σ|2−|ρ|2.

By lemma 2.5.7 |σ|2−|ρ|2≤ 0, so using lemma 2.5.8,

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2)

≤(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ 0
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as required. The second inequality follows by essentially the same argument but

using |τ |2−|ρ|2≤ 0. 2

Lemma 2.5.10 If the group Γ(p, q, r;N) satisfies any of the Jørgensen inequalities

(2.10), (2.11) and (2.12) for some N ∈ N∪ {∞} , then Γ(p, q, r;n) will also satisfy

them for n < N .

Proof: First recall that ρστ + ρστ = −2 cos(2π/n) − 2 + |ρ|2+|στ |2. Substituting

this into (2.10) gives

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)2 < 4 − |ρ|2. (2.16)

For n < N , 2 cos(2π/n) < 2 cos(2π/N), so we have following inequality

0 ≥ (−2 cos(2π/n)+2+|στ |2−2|τ |2−2|σ|2) > (−2 cos(2π/N)+2+|στ |2−2|τ |2−2|σ|2)

The less than zero inequality comes from lemma 2.5.8. Squaring both sides and

combining with (2.16) gives

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)2

<(−2 cos(2π/N) + 2 + |στ |2−2|τ |2−2|σ|2)2 < 4 − |ρ|2.

Therefore, if Γ(p, q, r;N) satisfies (2.10), then so does Γ(p, q, r;n) for all n < N .

For (2.11) and (2.12) we can use the inequalities from corollary 2.5.9. 2

Proof:[of proposition 2.5.6] Using lemma 2.5.10, we only need to find conditions

on Γ(p, q, r;∞) groups. We know that if a Γ(p, q, r;∞) group satisfies inequalities

(2.10), (2.11) and (2.12), then the group is non-discrete and then the lemma tells us

that Γ(p, q, r;n) also satisfy the inequalities and are also non-discrete. So let n = ∞.

Then ρστ + ρστ = −4 + |ρ|2+|στ |2. Substituting this into inequality (2.11) gives

(|στ |2−|ρ|2−|σ|2−2|τ |2)2 < 4 − |σ|2. (2.17)

By lemma 2.5.8 the term inside the brackets on the left hand side is always negative

and bounded from below by |σ|4−3|σ|2−4, to see this we use lemma 2.5.7 to obtain
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the following inequality (in particular we use the facts (|σ|2−2) > 0 and |ρ|2≤ 4).

|στ |2−|ρ|2−|σ|2−2|τ |2=(|σ|2−2)|τ |2−|σ|2−|ρ|2

≥(|σ|2−2)|σ|2−|σ|2−4

=|σ|4−3|σ|2−4.

By lemma 2.5.8, |στ |2−|ρ|2−|σ|2−2|τ |2 is negative so squaring both sides will give,

(|σ|4−3|σ|2−4)2 ≥ (|στ |2−|ρ|2−|σ|2−2|τ |2)2. (2.18)

Combining (2.17) with (2.18), it is clear that if |σ| satisfies

(|σ|4−3|σ|2−4)2 < 4 − |σ|2. (2.19)

then then |σ|, |τ | and |ρ| will satisfy (2.17) for any permitted |τ | and |ρ|, so the

corresponding group Γ(p, q, r;∞) group is non-discrete. Then using lemma 2.5.10,

all Γ(p, q, r;n) will also be non-discrete. Expanding out the brackets and collecting

terms in (2.19) gives

(|σ|2−4)(|σ|6−2|σ|4−7|σ|2−3) > 0. (2.20)

By hypothesis, ord(I23) ≥ 7, so 4 cos2(π/7) ≤ |σ|2≤ 4. As a polynomial in |σ|2,
the left hand side of (2.20) has two roots in the interval [4 cos2(2π/7), 4], namely

3.9593 . . . and 4. When |σ|2 lies between these roots the polynomial is negative, so

(2.20) is not satisfied and the group is not discrete. So any Γ(p, q, r;∞) group with

3.9593 . . . ≤ |σ|2≤ 4, fails a Jørgensen discreteness test. Since |σ|= 2 cos(π/p), and

4 cos2(π/31) < 3.9593 . . . < 4 cos2(π/32), then for all p > 31, the group Γ(p, q, r;∞)

satisfies the inequality (2.11) and is not discrete. Then applying lemma 2.5.10, it

follows for p > 31, Γ(p, q, r;n) will satisfy (2.11) for all q, r, n. Therefore Γ(p, q, r;n)

is not discrete if p > 31. 2

Conjecture 2.5.11 Computer calculations (similar to those from the computer pro-

gramme in section 2.6) strongly suggest that for p > 22 the group Γ(p, q, r;n) will

always fail at least one of the Jørgensen discreteness tests described in corollary

2.5.4. The largest known value of p for which there is a discrete Γ(p, q, r;n) group
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is 18 (the group is Γ(18, 18, 18; 18)). We conjecture that if p > 18 then Γ(p, q, r;n)

is not discrete.

Remark: It is unlikely that there are similar bounds on q or r. It was conjectured

in [31] that Γ(4, 4, 4;n) is discrete for all n > 4. This group is identified with

Γ(4, 4, n; 4) and Γ(4, n, n; 4) via the ι maps described in 2.4. If the conjecture is

correct, we can always find a discrete group Γ(p, q, r;n) with arbitrarily large values

for q or r. In [18] it is shown, using Shimizu’s lemma, that for p > 28, the group

Γ(p, p,∞;n) is non-discrete.

Proposition 2.5.12 We can modify lemma 2.5.10 to obtain the following results.

For any permitted q ≤ r < ∞ and n < ∞, the group Γ(p, q, r;n) is not discrete for

n < n0(p) shown in the table below

p n0(p) p n0(p)

31 240 30 73

29 51 28 41

27 34 26 30

25 26 24 23

23 21 22 19

21 17 20 16

19 14 18 13

17 12 16 11

15 10 14 9

13 8 12 8

11 7 10 6

9 5 8 5

This result tells us that for the groups close to a deformed (∞,∞,∞) group, the

parameter t corresponding to an extra discrete group outside the critical interval

must be very close to the end point of the critical interval, t1.

Proof: We will only prove the result for Γ(31, q, r;n), all the other cases are iden-

tical. Lemma 2.5.10 tells us that if Γ(p, q, r;N) satisfies one of the Jørgensen in-
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equalities, then so does Γ(p, q, r;n) for all n ≤ N . For a fixed value of p, we find the

largest n such that Γ(p, q, r;n) satisfies one of the Jørgensen inequalities for all q, r

(recall if p, q, r, n satisfy any of the inequalities then Γ(p, q, r;n) is non-discrete).

By 2.6,

(ρστ + ρστ ) = −2 cos(2π/n) − 2 + |ρ|2+|στ |2.

Substituting this into 2.11 gives

(
−2 cos(2π/n) + 2 + |στ |2−|σ|2−2|τ |2−|ρ|2

)2
< 4 − |σ|2

By 2.5.8 the term inside the brackets on the left hand side is non-positive. In the

proof of 2.5.6, we used the following fact

|στ |2−|ρ|2−|σ|2−2|τ |2≥ |σ|4−3|σ|2−4.

Combining these we get the following inequality for all τ , ρ and n (equivalently all

q, r and n),

(
−2 cos(2π/n) − 2 + |σ|4−3|σ|2

)
≤

(
−2 cos(2π/n) + 2 + |στ |2−|σ|2−2|τ |2−|ρ|2

)
≤ 0

Squaring this inequality gives

(
−2 cos(2π/n) + 2 + |στ |2−|σ|2−2|τ |2−|ρ|2

)
≤

(
−2 cos(2π/n) − 2 + |σ|4−3|σ|2

)2

If we fix p (and hence |σ|) it is a simple matter to find the largest n such that

(
−2 cos(2π/n) − 2 + |σ|4−3|σ|2

)2 ≤ 4 − |σ|2 (2.21)

is satisfied. For example let p = 31 then |σ|= 2 cos(π/31) = 1.989738 . . . and (2.21)

becomes

(−2 cos(2π/n) + 1.796975506 . . .)2 ≤ 0.0409401175 . . .

This is satisfied (and the group is non-discrete) when,

1.59463882 . . . ≤ 2 cos(2π/n) ≤ 1.99931215 . . . ,

which lead to

9 < n < 240.
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The groups with n ≤ 9 are degenerate, so we ignore them. This gives the required

result. 2

Corollary 2.5.13 We have the following non-discreteness results.

• The group Γ(31, q, r;n) is not discrete if q ≤ min{r, n} < 240.

• The group Γ(30, q, r;n) is not discrete if q ≤ min{r, n} < 73.

• The group Γ(29, q, r;n) is not discrete if q ≤ min{r, n} < 51.

• The group Γ(28, q, r;n) is not discrete if q ≤ min{r, n} < 41.

• The group Γ(27, q, r;n) is not discrete if q ≤ min{r, n} < 34.

• The group Γ(26, q, r;n) is not discrete if q ≤ min{r, n} < 30.

• The group Γ(25, q, r;n) is not discrete if q ≤ min{r, n} < 26.

Proof: When q ≤ min{r, n} we can use the identification ι3 described in section

2.4 to identify Γ(p, q, r;n) to Γ(p, q, n; r), then we apply proposition 2.5.12. (Note,

the proofs of 2.5.6 and 2.5.12 required that p ≤ q ≤ r, so we require the restrictions

q ≤ min{r, n}). 2

2.5.1 Non-standard deformed triangle groups

Recall a non-standard deformed triangle group Γ(p, q, r;n/m) is a deformed (p, q, r)

triangle group where tr(I1323) = 1 + 2 cos(2mπ/n), m 6= 1 and gcd(m,n) = 1.

Corollary 2.5.14 If p > 31 then a non-standard deformed triangle group

Γ(p, q, r;n/m) is non-discrete.

Proof: We can rewrite the arguments used in proof of theorem 2.5.6 in terms of

the parameter t and the values t0 and t1 from section 2.3. In this notation lemma

2.5.10 says that for t < t′, if the deformers triangle group ρt′(p, q, r) satisfies any

of the Jørgensen inequalities, then so will ρt(p, q, r). The proof of theorem 2.5.6

tells us that if p > 31, then the deformed triangle group ρt1(p, q, r) is non-discrete.
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Since non-standard deformed triangle groups correspond to values of t in the interval

(t0, t1), it follows all non-standard deformed triangle groups with p > 31 are non-

discrete. 2

There is still the question of non-standard deformed triangle group with p ≤ 31.

We can use lemma 2.5.3 to rule out many of these groups. Let Γ(p, q, r;n/m) be a

non-standard deformed triangle group and set A = I1323, B = I23 and z = p1323 in

2.5.3. Returning to the Γ(4, 4, 4; 70/m) example, a quick calculation using Maple

shows that in the only non-standard deformed triangle group that does not satisfy

the Jørgensen inequality is Γ(4, 4, 4; 70/3). We do not know whether this group is

discrete, in fact we do not know if the standard deformed triangle group Γ(4, 4, 4; 70)

is discrete either.

2.6 Computer aided searches for discrete groups

We can often use the Jørgensen inequalities (2.10), (2.11) and (2.12) to quickly show

that a specific Γ(p, q, r;n) group is non-discrete. We can also quickly determine

whether words of short length are elliptic or non-elliptic using theorem 1.2.12 and

since I1323, I2131 and I3212 have real trace we can use proposition 2.3.4 to determine

if they have finite order. Combining these results we wrote a computer programme

in C++ that searches for potential non-discrete Γ(p, q, r;n) groups where all the

short words are elliptic.

We make no claims about the accuracy of the programme, it is theoretically

possible that we have missed some groups due to rounding errors. Although we have

erred on the side caution with the rounding so we would expect to get additional

‘false positives’ rather than miss any groups. When checking the groups suggested

by the programme we use traditional geometric and arithmetic methods to check

for discreteness.

See [33], for example, for details on the C++ programming language.

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif
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#include <iostream>

#include <cstdlib>

#include <stdio.h>

#include <math.h>

#include <complex>

#include <sstream>

// operating with variables

using namespace std;

#define PI 3.14159265358979323846

int main ()

{

cout << "Starting group.\n";

int p;

cout << "p=";

cin >> p;

int q;

cout << "q=";

cin >> q;

int r;

cout << "r=";

cin >> r;

int n;

cout << "n=";

cin >> n;

int Q;

cout << "Q=";

cin >> Q;

int c1,c2,c3,c4,cr,cs,crj,csj,ctj;

do{

if(n == Q)

++r,n = 3;
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else

++n;

if(r > Q)

++q,r = q;

if(q > Q)

++p,q = p;

if(r > Q)

r=q;

long double rp; long double rq; long double rr;

rp=2*cos (PI/p);rq=2*cos (PI/q);rr=2*cos (PI/r);

long double t;

t= (PI- acos((2*cos((2*PI)/n)+2-rr*rr-rq*rq*rp*rp)/(2*rp*rq*rr)))/3 ;

complex<long double> phi(cos(t),sin(t));

long double K;long double L;long double M;

K=-1+rr*rr+rp*rp*rq*rq-2*rp*rq*rr*cos(3*t);

L=-1+rq*rq+rr*rr*rp*rp-2*rp*rq*rr*cos(3*t);

M=-1+rp*rp+rq*rq*rr*rr-2*rp*rq*rr*cos(3*t);

long double x;

x=K*K*K*K-8*K*K*K+18*K*K-27;

if (x < 0.001)

c1=1; // is 1323 elliptic

x=L*L*L*L-8*L*L*L+18*L*L-27;

if (x < 0.001)

c2=1; //is 2131 elliptic

x=M*M*M*M-8*M*M*M+18*M*M-27;

if (x < 0.001)

c3=1; //is 3212 elliptic

long double R;long double S;

complex <long double> T;
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if (c1 == 1)

{R = 2*PI/(acos(0.5*(L-1)));}

else

{R=1000;}

if (c3 == 1)

{S = 2*PI/(acos(0.5*(M-1)));}

else

{S=1000;}

T=3-(rr*rr+rp*rp+rq*rq)+rp*rq*rr*phi*phi*phi;

x=abs(T*T*T*T)-8*real(T*T*T)+18*abs(T*T)-27;

if (x < 0.001)

c4=1;

if (r>6 && (2*rp*rq*rr*real(phi*phi*phi)-2*rp*rp-2*rq*rq-rr*rr+4)*

(2*rp*rq*rr*real(phi*phi*phi)-2*rp*rp-2*rq*rq-rr*rr+4) < (4-rr*rr)-0.001 )

crj=1; // first jorg inequailty

if (p>6 && (2*rp*rq*rr*real(phi*phi*phi)-rp*rp-2*rq*rq-2*rr*rr+4)*

(2*rp*rq*rr*real(phi*phi*phi)-rp*rp-2*rq*rq-2*rr*rr+4) < (4-rp*rp)-0.001 )

csj=1; // second jorg inequailty

if (q>6 && (2*rp*rq*rr*real(phi*phi*phi)-2*rp*rp-rq*rq-2*rr*rr+4)*

(2*rp*rq*rr*real(phi*phi*phi)-2*rp*rp-rq*rq-2*rr*rr+4) < (4-rq*rq)-0.001 )

ctj=1; // third jorg inequailty

if(c1+c2+c3+c4 == 4 && // All Elliptic

(abs((R)-floor(R+0.5))<0.0001) && // 2131 has finite order

(abs((S)-floor(S+0.5))<0.0001) && // 3212 has finite order

(rp*rq*rr*real(phi*phi*phi)-rp*rp-rq*rq-rr*rr)<-4-0.0001 && //non-degenerate

(p!=q || q!=r || r!=p) && // not (p,p,p;n)

crj == 0 && csj==0 && ctj==0 //Jorgensen

)

cout << "(" << p << "," << q << "," << r << ";"

<< n << "," << R << "," << S <<")" << "\n";

c1=0;c2=0;c3=0;c4=0;crj=0;csj=0;ctj=0;

}while (p<31);

return 0;

}
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2.6.1 Some results from the programme

The programme does a brute force search on all 4-tuples with p < 31 and q, r, n < Q,

for some arbitrary value Q. It discards any 4-tuple (p, q, r, n) where I1323, I2131, I3212

and I123 are not all elliptic words in the group Γ(p, q, r;n) (using Goldman’s trace

formula). Then it checks that I2131, I3212 are finite order, this can easily be done

since these words have real trace (lemma 2.3.4). Then it checks the group is not

degenerate. Then it discards all groups of the form Γ(p, p, p;n) since they were

completely analysed by Parker in [21]. Finally it checks that the group does not

satisfy any of the Jørgensen non-discreteness inequalities (2.10), (2.11) and (2.12).

In the Jørgensen test we required that the relevant regular elliptic word had order

at least 7. When the order is less than 7 the Jørgensen inequality is never satisfied,

so is does not affect the functioning of the programme, other than making it slightly

inefficient.

For initial values p = 3, q = 3, r = 3, n = 3, Q = 2000, the programme

outputs the following (3, 3, 4; 7, 7, 7), (3, 3, 5; 5, 5, 5), (3, 3, 7; 4, 4, 4), (3, 4, 7; 3, 3, 7),

(3, 5, 5; 3, 3, 10), (4, 4, 5; 4, 5, 5), (4, 5, 5; 4, 4, 6), (4, 7, 7; 3, 3, 14), (5, 5, 6; 4, 5, 5),

(5, 5, 10; 3, 5, 5) and (7, 7, 14; 4, 7, 7). The first four numbers in each 6-tuple are

exactly the 4-tuple Γ(p, q, r;n), the fifth and sixth numbers are the order of I2131

and I3212 respectively. Some of these 4-tuples correspond to different presentations

for the same group, after removing repeated groups we are left with the following

groups,

Γ(3, 3, 4; 7), Γ(3, 3, 5; 5), Γ(4, 4, 4; 5).

Note that we have replaced Γ(4, 4, 5; 4) with Γ(4, 4, 4; 5). In addition to these three

groups, Γ(5, 5, 5; 5) also satisfies the criteria, we missed it since it is of the form

Γ(p, p, p;n), but we pick it up from Parker’s paper (along with Γ(4, 4, 4; 5)).

Conjecture 2.6.1 A deformed triangle group is a (cocompact) lattice if and only if

all words of genuine length 3 and 4 are finite order regular elliptic.

Conjecture 2.6.2 The only deformed triangle groups with the property described in

conjecture 2.6.1 are, up to the identifications ι, Γ(3, 3, 4; 7), Γ(3, 3, 5; 5), Γ(4, 4, 4; 5)
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and Γ(5, 5, 5; 5).

Combining these conjectures we get the following

Conjecture 2.6.3 [Main Conjecture] The only deformed triangle group lattices are

Γ(3, 3, 4; 7),

Γ(3, 3, 5; 5), Γ(4, 4, 4; 5) and Γ(5, 5, 5; 5) (again, up to the identifications ι).

Conjecture 2.6.3 follows immediately from 2.6.1 and 2.6.2. Conjecture 2.6.2 has

been verified for all values of p, q, r, n < 2000 using the programme. For very large

values of p, q, r or n the group Γ(p, q, r;n) tends to behave like triangle groups with

ideal vertices and in these groups short words tend to be loxodromic, so conjecture

2.6.2 seems reasonable.

It is less obvious why we should believe conjecture 2.6.1. In [30] Schwartz de-

scribed a construction of a fundamental domain for the group Γ(4, 4, 4; 7) which

can, in principle, be applied to any Γ(p, q, r;n) group. If I123, I1323, I2131 or I3212

are non-elliptic, this construction necessarily leads to a fundamental domain with

infinite volume (or at the very least cusps, hence the caveat about the lattice being

cocompact). Schwartz’s construction will not produce a fundamental domain for all

Γ(p, q, r;n) groups, but it suggests that if a group has short, non-elliptic words, then

the group is probably not a lattice. If we have an infinite order elliptic word then

the group is obviously non-discrete and not a lattice.

The groups Γ(5, 5, 5; 5) and Γ(4, 4, 4; 5) have already been studied (see [22] and

[6]) and are known to be lattices; Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) are new and we analyse

them in the next chapter.

In the programme, if we replace the following line of code

c1+c2+c3+c4 == 4 && // All Elliptic

with

c1+c2+c3 == 3 && // All Elliptic

then we drop the requirement that I123 is elliptic. The programme then outputs the

following deformed triangle groups for p, q, r, n < 1000,
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Γ(3, 3, r;n), Γ(3, 4, 4; 5), Γ(3, 5, 5; 3), Γ(4, 4, r; 4), Γ(4, 4, 5; 6), Γ(4, 4, 6; 5),

Γ(4, 4, 10; 3), Γ(4, 5, 5; 4), Γ(4, 5, 5; 5), Γ(4, 5, 10; 3), Γ(4, 7, 7; 3), Γ(5, 5, 6; 4),

Γ(5, 5, 6; 6), Γ(5, 5, 10; 3), Γ(5, 5, 10; 4), Γ(5, 5, 15; 4), Γ(6, 7, 7; 7), Γ(6, 8, 8; 5),

Γ(7, 7, 14; 4) and Γ(9, 9, 18; 6).

These groups are good candidates for interesting discrete groups; all words of

the form Iijkj are finite order elliptic and they do not satisfy any of the Jørgensen

non-discreteness inequalities. As before the programme ignores groups of the form

Γ(p, p, p;n). Some of these groups we already know about, for example Γ(5, 5, 6; 4)

is an alternative presentation for Γ(4, 4, 4; 5), which is known to be discrete. After

removing repeated groups and putting the remaining groups into nicer forms we are

left with the following list,

Γ(3, 3, r;n), Γ(3, 4, 4; 5), Γ(4, 4, 4;n), Γ(4, 4, 5; 6), Γ(4, 5, 5; 5), Γ(5, 5, 6; 6),

Γ(5, 5, 15; 4), Γ(6, 7, 7; 7), Γ(6, 8, 8; 5) and Γ(9, 9, 18; 6).

We briefly discuss whether or not these some of these groups are discrete.

Γ(4, 4, 4;n)

Proposition 2.6.4 The group Γ(4, 4, 4;n) is discrete for n = 5, 6, 7, 8, 10, 12, 18.

Proof: In corollary 1.4 of [31] it is shown that Γ(4, 4, 4;n) is arithmetic, and

therefore discrete, for n = 5, 6, 7, 8, 10, 12, 18. 2

Corollary 2.6.5 Using the identifications ι, Γ(4, 4, n; 4) and Γ(4, n, n; 4) are dis-

crete for n = 5, 6, 7, 8, 10, 12, 18.

Conjecture 2.6.6 The deformed triangle group Γ(4, 4, 4;n) is discrete for all n.

Γ(3, 3, 4;n)

Lemma 2.6.7 Let g ∈ Γ(3, 3, 4;n). Then 2Re (tr(γ)) and |tr(g)|2 both belong to the

ring Z[2 cos(2π/n)].

Proof: From corollary 18 of [26], we know the trace of any element of in Γ(3, 3, 4;n)
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can be written as an integer polynomial in

|ρ|2, |σ|2, |τ |2, ρστ, ρστ .

For a Γ(3, 3, 4;n) group |ρ|2, |σ|2, |τ |2 are equal to 2, 1, 1 respectively and 2Re (ρστ) =

ρστ + ρστ = 1 − 2 cos(2π/n). Therefore 2Re (tr(g)) and |tr(g)|2 lie in the ring

Z[2 cos(2π/n)] for any g ∈ Γ(3, 3, 4;n). 2

Theorem 2.6.8 The group Γ(3, 3, 4;n) is discrete for n = 7, 8, 9, 10, 11, 12, 14,

16, 18, 24, 30.

Proof: We use the arithmeticity criterion from chapter 1 (theorem 1.2.34). In the

standard presentation the Hermitian form H for the group has determinant

ρστ + ρστ − 2(|ρ|2+|σ|2+|τ |2) + 8

For (3, 3, 4;n) this becomes

1 − 2 cos(2π/n).

For H to have signature (2,1), the determinate must be negative.

First observe that every element in Z[2 cos(2π/n)] is an algebraic integer in

Q[2 cos(2π/n)]. Let c0 = 2 cos(2π/n) and c1, c2 . . . , cp be the non-trivial Galois

conjugates of c. Let Hi be the Hermitian form obtained by applying the Galois con-

jugation c0 7→ ci to H and SU(Hi,Z[ci]) be the special unitary group with respect

to this new Hermitian form. If Hi has positive determinant it has signature (3,0)

and SU(Hi,Z[ci]) is compact.

Let x0 ∈ Z[2 cos(2π/n)] consider the map Z[2 cos(2π/n)] → Cp+1 defined by

x0 7→ (x0, x1, . . . , xp), where xi are the Galois conjugates of x0. The image of this

map is a discrete set in Cp+1. Hence

SU(H0,Z[c0]) × SU(H1,Z[c1]) × . . .× SU(Hp,Z[cp])

is also discrete. If SU(Hi,Z[2 cos(ci)]) is compact for all i > 0, then the image of

the projection onto the first coordinate is also discrete, i.e. SU(H0,Z[2 cos(c0)]) is

discrete
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In this situation, the condition that SU(Hi,Z[ci]) is compact for all i > 0, is

equivalent to Hi having positive determinant. Det(Hi) = 1 − ci, so we need to find

values of n ≥ 7, such that c0 = 1 − 2 cos(2π/n) is positive for all non-trivial Galois

conjugates of 2 cos(2π/n). The values n = 7, 8, 9, 10, 11, 12, 14, 16, 18, 24, 30 satisfy

this condition (we believe these to be the only such values). 2

Corollary 2.6.9 Using the identifications ι, Γ(3, 3, n; 4), Γ(3, 4, n; 3) and Γ(4, n, n; 3)

are discrete for n = 7, 8, 9, 10, 11, 12, 14, 16, 18, 24, 30.

Remark: Interestingly, these values for n also appear in [35], in which Takeuchi lists

all arithmetic Fuchsian triangle groups. In particular a compact (2, 3, n) hyperbolic

triangle group is arithmetic if and only if n =7, 8, 9, 10, 11, 12, 14, 16, 18, 24, 30.

Lemma 2.6.11 highlights another link between (2, 3, n) Fuchsian triangle groups and

(3, 3, 4;n) deformed triangle groups.

Lemma 2.6.10 [Lemma 3.2 of [31]] Let H be a group generated by complex reflec-

tions A1, A2 and A3 such that Aij has finite order pij for all i 6= j. If p12 = 2, then

H preserves an R-plane R and H|R is the (p12, p23, p31) triangle group.

Lemma 2.6.11 A Γ(3, 3, 4;n) group contains a subgroup that stabilises an R-plane,

R, and acts as the R-Fuchsian (2, 3, n)-reflection group on R.

Proof: Let H ⊂ Γ(3, 3, 4;n) be the subgroup generated by the following reflec-

tions

A1 = I1I2I1, A2 = I2, A3 = I3. (2.22)

Then A1A2 = I1I2I1I2, has order 2, A2A3 = I2I3, has order 3 and A3A1 = I3I1I2I1,

has order n. By lemma 2.6.10, H stabilises an R-plane, R, and H|R acts as the

(2, 3, n)-reflection group. 2

Γ(3, 3, 6;n)

Proposition 2.6.12 The deformed triangle group Γ(3, 3, 6;n) is discrete for n =5,

6, 7, 8, 10, 12, 18.
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Proof: This follows from an essentially identical argument to the Γ(3, 3, 4;n) case

above. 2

Corollary 2.6.13 Using the identifications ι, Γ(3, 3, n; 6) and Γ(3, 6, n; 3) are dis-

crete for n =6, 7, 8, 10, 12, 18. When n = 5 we need to reorder the generators to

ensure that p ≤ q ≤ r, and we see that Γ(3, 3, 5; 6), and Γ(3, 5, 6; 3) are discrete.

Γ(3, 3, p;n)

Lemma 2.6.14 In a Γ(3, 3, r;n) group, all words of the form Iijkj have order n.

Proof: By definition ord(I1323) = n. Since I323 = I232, it follows that I1232 has

order n. Conjugating I1323 and I1232 by I3 and I2 respectively we get I3212 and

I2313. So ord(I3212) = ord(I2313) = n. Using the relation I313 = I131, we get the

ord(I2131) = n. Finally conjugating I2131 by I1, gives us ord(I3121) = n. 2

Proposition 2.6.15 The word I123 is loxodromic in all non-degenerate Γ(3, 3, p;n)

groups except for (p, n) = (4, 7), (5, 5) and (7, 4).

Proof: By equation (2.3) the trace of I123 is

tr(I123) = ρστ − |ρ|2−|σ|2−|τ |2+3

= ρστ − |ρ|2+1, (2.23)

where

|ρ|2= (2 cos(π/p))2. (2.24)

Define α to be,

α := 2Re (ρστ) = −4 cos2(π/n) + |ρ|2+1. (2.25)

When we plug this into Goldman’s trace formula we get

f(tr(I123)) = − 4α3 +
(
−11 + |ρ|4 + 10|ρ|2

)
α2 +

(
−8|ρ|4 + 14|ρ|2−2|ρ|6 + 8

)
α

+
(
|ρ|8 + 28|ρ|2+6|ρ|6 − 27|ρ|4 − 16

)
. (2.26)
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First we show that for any value of p > 3 this cubic in α has one real root. We can

ignore the case when p = 3 since all Γ(3, 3, 3;n) groups are degenerate. Let p = 4

then the cubic becomes −4α3 + 13α2 − 12α− 4, it is straightforward to check that

this equation only has one real root.

Assume p ≥ 5. We differentiate (2.26) to get

−12α2 + 2
(
−11 + |ρ|4+10|ρ|2

)
α− 8|ρ|4+14|ρ|2−2|ρ|6+8.

This is a quadratic in α with discriminant 868− 72|ρ|4−208|ρ|2−16|ρ|6+4|ρ|8. This

discriminant is negative for (2 cos(π/5))2 ≤ |ρ|2≤ 4 (we can readily confirm this on

Maple). So for p ≥ 5 the derivative of the cubic 2.26 is never zero. It follows that

the cubic (2.26) is monotonic and has only one real root.

We now show that if p ≥ 8, this root lies in the interval [2.6, 4]. To show this

we evaluate the cubic at the end points, α = 2.6, 4. This leads to two polynomial in

|ρ|2

−139.864 − 41.04|ρ|4+132.00|ρ|2+.8|ρ|6+|ρ|8 = 2.6

−416 − 43|ρ|4+244|ρ|2−2|ρ|6+|ρ|8 = 4.

On the interval [(2 cos(π/8))2, 4] the first of these polynomial is always positive and

the second always negative (see figure 2.4). Therefore for any value of |ρ|2 between

(2 cos(π/8))2 and 4 (or values of p between 8 and ∞) the only root of the cubic (2.26)

lies in the interval [2.6, 4]. Recall that (2.26) is value of Goldman’s trace formula

applied to the word I123. When the cubic is negative (respective positive) the word

is elliptic (respectively loxodromic). Since the cubic has negative leading coefficient

and one real root, it is positive if and only if α is less than the real root. We know
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the real root is greater than 2.6, so if α is less than 2.6, then I123 is loxodromic.

α < 2.6

−(cos(π/n))2 + |ρ|2+1 < 2.6

−(cos(π/n))2 < 1.6 − (2 cos(π/8))2

cos(π/n) < 0.5
√

(2 cos(π/8))2 − 1.6

n >
π

arccos(0.5
√

(2 cos(π/8))2 − 1.6)

n > 3.77635289 . . .

So for all n > 3 and p ≥ 8 the word I123 is loxodromic in the group Γ(3, 3, p;n).

When n = 3 the group will be degenerate, to see the observe we can use the map ι3

turn the group into a Γ(3, 3, 3; p) group which is always degenerate. We now deal

Figure 2.4: Evaluation of polynomials at α = 2.6 and α = 4.

with remaining cases p =4, 5, 6, 7. When p = 4 the real root of cubic (2.26) is

−0.2564587782 . . . so by the same inequality argument as above, I123 is loxodromic

for all n > 7.047714468 . . .. We need to check the remaining values of n, A quick
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check shows that Γ(3, 3, 4; 4), Γ(3, 3, 4; 5) and Γ(3, 3, 4; 6) are degenerate. That leaves

Γ(3, 3, 4; 7), in this group I123 is regular elliptic and has order 42. When p = 5

the real root of (2.26) is 0.9225789220 . . . and we need to check all values of n <

5.168580709 . . .. The group Γ(3, 3, 5; 4) is degenerate. In the group Γ(3, 3, 5; 5),

I123 is regular elliptic and has order 15. When p = 6 the real root of (2.26) is

1.704402251 . . . and we need to check all values of n < 4.... There is only one group

to check, namely Γ(3, 3, 6; 4). It is degenerate. When p = 7 the real root of (2.26)

is 2.235635507 . . . and we need to check all values of n < 4.014496177 . . .. There is

only one group to check, namely Γ(3, 3, 7; 4). In this group I123 is regular elliptic

and has order 42. This concludes the proof. 2

Conjecture 2.6.16 The deformed triangle group Γ(3, 3, r;n) is discrete for all r

and n.

Γ(4, 5, 5; 5)

Proposition 2.6.17 The deformed triangle group Γ(4, 5, 5; 5) is discrete.

Let φ = 2 cos(π/5) = (1 +
√

5)/2.

ord(23) = 4, ord(31) = 5, ord(12) = 5. We have

|ρ|2 = φ2, |σ|2 = 2, |τ |2 = φ2, Re (ρστ) = φ2.

From this we deduce that

Im 2(ρστ) = |ρ|2|σ|2|τ |2 − Re 2(ρστ) = φ4.

Therefore ρστ = (1 + i)φ2, then a solution is

ρ = φ, σ = (1 + i), τ = φ.

Using the standard representation we get,

I1 =




1 φ φ

0 −1 0

0 0 −1


 , I2 =




−1 0 0

φ 1 1 + i

0 0 −1


 , I3 =




−1 0 0

0 −1 0

φ 1 − i 1


 . (2.27)



2.6. Computer aided searches for discrete groups 57

preserving the Hermitian form

H =




2 φ φ

φ 2 1 + i

φ 1 − i 2


 . (2.28)

The Hermitian form has signature (2, 1). When we apply the Galois conjugation
√

5 7→ −
√

5, the Hermitian form becomes signature (3, 0) so by arithmeticity crite-

rion 1.2.34 the group is arithmetic and discrete.

Corollary 2.6.18 Using the identifications ι, the following deformed triangle groups

are also discrete Γ(5, 5, 10; 4) and Γ(5, 10, 10; 5).

Γ(5, 5, 15; 4)

Proposition 2.6.19 The deformed triangle group Γ(5, 5, 15; 4) is non-discrete.

Proof: The word I132323 has trace −1 + |τ |2−2|στ |2+|ρσ|2+|τ |2|σ|4+2Re (ρστ) −
|σ|2(2Re (ρστ)). For Γ(5, 5, 15; 4) this becomes

−1 − 2 cos(2π/5) − 2 cos(4π/5) + 2 cos(2π/15) = 1.82709...

In particular this word is elliptic with real trace, so by lemma 2.3.4, the word has

finite order if there is a rational multiple of π satisfying

−1 − 2 cos(2π/5) − 2 cos(4π/5) + 2 cos(2π/15) =1 + 2 cos(ψ)

− cos(2π/5) − cos(4π/5) + cos(2π/15) − cos(ψ) =1 (2.29)

A theorem of Conway and Jones [3] lists all possible trigonometric Diophantine

equations with up to four terms. We use this result to conclude that there is no

rational multiple of π for ψ satisfying equation (2.29). So I132323 has infinite order

and therefore Γ(5, 5, 15; 4) is non-discrete. 2

Γ(6, 7, 7; 7)

Let χ = 2 cos(π/7) and ω = (1 +
√
−3)/2.

ord(23) = 6, ord(31) = 7, ord(12) = 7. We have

|ρ|2 = χ2, |σ|2 = 3, |τ |2 = χ2, Re (ρστ) = 3χ2/2.
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From this we deduce that

Im 2(ρστ) = |ρ|2|σ|2|τ |2 − Re 2(ρστ) =
√

3χ2/2.

Therefore ρστ = χ2(1 + ω), then a solution is

ρ = χ, σ = (1 − ω), τ = χ.

Using the standard representation we get,

I1 =




1 χ χ

0 −1 0

0 0 −1


 , I2 =




−1 0 0

χ 1 (1 − ω)

0 0 −1


 , I3 =




−1 0 0

0 −1 0

χ (1 − ω) 1


 . (2.30)

preserving the Hermitian form

H =




2 χ χ

χ 2 (1 − ω)

χ (1 − ω) 1


 . (2.31)

Notice that χ and ω are algebraic integers. The determinant of H is 2 − χ2 =

−2 cos(2π/7) < 0 and the matrix has signature (2, 1). For both Galois conjugates of

2 cos(π/7), (2 cos(3π/7) and 2 cos(5π/7)), H becomes positive definite and the cor-

responding unitary group is compact. By the same argument as 1.2.34 we conclude

that the group generated by these matrices is arithmetic and therefore discrete.

Corollary 2.6.20 Using the identifications ι, the group Γ(7, 7, 14; 6) is discrete.

Γ(6, 8, 8; 5)

Proposition 2.6.21 The deformed triangle group Γ(6, 8, 8; 5) is non-discrete.

Proof: We argue as in the Γ(5, 5, 15; 4) case. The word I132323 has trace 1 −
cos(2π/8) + 4 cos(2π/5) = 0.821854422 . . ., so the word is elliptic and has finite

order if there is a rational multiple of π satisfying.

1 − 2 cos(2π/8) + 4 cos(2π/5) = 1 + 2 cos(ψ)

cos(2π/8) + 2 cos(2π/5) − cos(ψ) = 0. (2.32)

As before [3] tells us there are no rational solutions to (2.32), so I3212 has infinite

order and Γ(6, 8, 8; 5) is non-discrete. 2
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Γ(9, 9, 18; 6)

Proposition 2.6.22 The deformed triangle group Γ(9, 9, 18; 6) is non-discrete.

Proof: The word I132323 has trace 2 cos(2π/18)−2 cos(4π/9) = 1.532088886 . . ., so

the word is elliptic and has finite order if there is a rational multiple of π satisfying.

2 cos(2π/18) − 2 cos(4π/9) = 1 + 2 cos(ψ)

cos(2π/18) − cos(4π/9) − cos(ψ) = 1/2. (2.33)

As before [3] tells us there are no rational solutions to (2.33), so I3212 has infinite

order and Γ(9, 9, 18; 6) is non-discrete. 2

This leaves the groups Γ(3, 4, 4; 5), Γ(4, 4, 5; 6) and Γ(5, 5, 6; 6). Unfortunately

we cannot determine whether or not they are discrete. These groups merit further

investigation.

2.7 Non-discrete groups

Theorem 2.7.1 For q, r 6= ∞, the following groups are non-discrete

Γ(4, q, r; 3) where (q, r) 6=(q, q), (4, 10), (6, r), (5, 10), (7, 14) or (5, 15).

Γ(4, q, r; 4) where (q, r) 6=(q, q), (4, r), (5, 10), (5, 30) (6, 10), (7, 42), (8, 24),

(9, 18), or (10, 15).

We don’t claim the excepted groups are discrete, only that they are not necessarily

non-discrete.

Proof: The trace of I3212 is

tr(I3212) = |ρσ − τ |2−1

= |ρσ|2+|τ |2−2Re (ρστ) − 1

Substituting equation (2.6) into this we get

tr(I3212) = |ρσ|2+|τ |2+2 cos(2π/n) + 1 − |ρ|2−|στ |2.
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In the group Γ(4, q, r; 3), |σ|2= 2 and 2 cos(2π/n) = −1, so this becomes

tr(I3212) = |ρ|2−|τ |2.

Since 2 ≤ |τ |2≤ |ρ|2≤ 4, the trace is always a real number between −1 and 3, so

the word I3212 is elliptic. Now we employ an argument from the proof of lemma

2.3.4, namely if an elliptic word has real trace then the trace is exactly 1 + 2 cos(ψ)

for some angle ψ. Moreover the word has finite order if and only if ψ is a rational

multiple of π. So I3212 has finite order if and only ψ is a rational multiple of π

satisfying

cos

(
2π

r

)
− cos

(
2π

q

)
− cos (ψ) =

1

2
.

We use Conway and Jones [3] to find all the rational solutions to this Diophantine

trigonometric equation. These solutions are

• cos

(
2π

q

)
− cos

(
2π

q

)
− cos

(
2π

3

)
=

1

2
,

• cos

(
2π

4

)
− cos

(
2π

6

)
− cos

(
2π

4

)
=

1

2
,

• cos

(
2π

4

)
− cos

(
2π

10

)
− cos

(
2π

5

)
=

1

2
,

• cos

(
2π

r

)
− cos

(
2π

3

)
− cos

(
2π

r

)
=

1

2
,

• cos

(
2π

10

)
− cos

(
2π

5

)
− cos

(
2π

2

)
=

1

2
,

• cos

(
2π

14

)
− cos

(
2π

7

)
− cos

(
4π

7

)
=

1

2
,

• cos

(
2π

15

)
− cos

(
2π

5

)
− cos

(
7π

15

)
=

1

2
.

These correspond to the groups Γ(4, q, q; 3), Γ(4, 4, 6; 3), Γ(4, 4, 10; 3), Γ(4, 6, r; 3)

Γ(4, 5, 10; 3), Γ(4, 7, 14; 3) and Γ(4, 5, 15; 3). In all other Γ(4, p, r; 3) groups, I3212

is an infinite order elliptic word and therefore the group is non-discrete. We also

disregard Γ(4, 4, 6; 3) since it is degenerate.
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For groups of the form Γ(4, q, r; 4), |σ|2= 2 and 2 cos(2π/n) = 0, so the trace of

I3212 becomes

tr(I3212) = |ρ|2−|τ |2+1.

As before this is always real and between −1 and 3, so I3212 is elliptic. We set this

equal to 2 cos (ψ) + 1 to get

cos

(
2π

r

)
− cos

(
2π

q

)
− cos (ψ) = 0.

Using Conway and Jones we get the following solutions to this equation. These are

the only rational solutions.

• cos

(
2π

q

)
− cos

(
2π

q

)
− cos

(π
2

)
= 0,

• cos

(
2π

4

)
− cos

(
2π

r

)
− cos

(
(r − 2)π

2

)
= 0,

• cos

(
2π

10

)
− cos

(
2π

5

)
− cos

(π
3

)
= 0,

• cos

(
2π

10

)
− cos

(
2π

6

)
− cos

(
2π

5

)
= 0,

• cos

(
2π

30

)
− cos

(
2π

5

)
− cos

(
4π

15

)
= 0,

• cos

(
2π

42

)
− cos

(
2π

7

)
− cos

(
8π

21

)
= 0,

• cos

(
2π

24

)
− cos

(
2π

8

)
− cos

(
5π

12

)
= 0,

• cos

(
2π

18

)
− cos

(
2π

9

)
− cos

(
4π

9

)
= 0,

• cos

(
2π

15

)
− cos

(
2π

10

)
− cos

(
7π

15

)
= 0.

These correspond to the groups Γ(4, q, q; 4), Γ(4, 4, r; 4), Γ(4, 5, 10; 4) Γ(4, 6, 10; 4),

Γ(4, 5, 30; 4), Γ(4, 7, 42; 4), Γ(4, 8, 24; 4), Γ(4, 9, 18; 4), Γ(4, 10, 15; 4). All other groups

of the form Γ(4, q, r; 4) are non-discrete. 2

This theorem is conceptually similar to theorem 3.2.0.13 of [36], where it is shown

by a similar argument that Γ(4,∞,∞;n) is non-discrete for n 6= 3, 4.
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We can generalise this argument to more general Γ(p, q, r;n) groups. But unless

2 cos(π/p) is an integer, the Diophantine trigonometric equation becomes too large

to effectively tackle. We can, however, obtain some partial results for Γ(4, q, r;n).

Theorem 2.7.2 Let Γ(4, q, r;n) be a deformed triangle group with I3212 elliptic.

Then Γ(4, q, r;n) is non-discrete unless it is one of the following groups.

Γ(4, 4, 4;n), Γ(4, 4, 5; 6), Γ(4, 4, 6; 5), Γ(4, 10, 30; 6), Γ(4, 4, 10; 3), Γ(4, 4, r; 4),

Γ(4, 5, 10; 3), Γ(4, 5, 10; 4), Γ(4, 5, 15; 3), Γ(4, 5, 30; 4), Γ(4, 6, 6;n), Γ(4, 6, 10; 4),

Γ(4, 6, r; 3), Γ(4, 6, r; 4), Γ(4, 6, r; 6), Γ(4, 7, 14; 3), Γ(4, 7, 42; 4), Γ(4, 8, 24; 4),

Γ(4, 9, 18; 4), Γ(4, 10, 15; 4), Γ(4, q, q;n), Γ(4, q, r; q).

Again, we don’t claim all these groups are discrete, only that they are not necessary

non-discrete. Also we say nothing about groups where I3212 is non-elliptic.

Proof: In a Γ(4, q, r;n) group the trace of I3212 is

tr(I3212) = 2 cos(2π/r) − 2 cos(2π/q) + 2 cos(2π/n) + 1. (2.34)

Unlike the previous theorem, this does not always lie between −1 and 3, so we need

put bounds on q, r and n to ensure the word is elliptic before we employ the same

arguments. In order for the word to be elliptic we need cos(2π/r) + cos(2π/n) <

1 + cos(2π/q). We also assume n > 4, since all group of the form Γ(4, q, r; 4) and

Γ(4, q, r; 3) were dealt with in the previous theorem. We prove the result by finding

all solutions to the trigonometric Diophantine equation when q = 4, q = 5 or q = 6

and then showing that if q 6= 4, 5, 6 there are no solutions.

Let q = 4, then 4 ≤ r and I3212 is elliptic when cos(2π/r)+cos(2π/n) < 1. Since

we have already ruled out n = 3, 4, the only values of (r, n) for which I3212 is elliptic

are (4, n), (5, 5), (5, 6), (5, 7), (6, 5), (6, 6), (7, 5). Recall that we require p ≤ q ≤ r.

Then setting

tr(I3212) = 2 cos(2π/r) + 2 cos(2π/n) + 1

equal to 2 cosψ + 1, we get the following equation,

cos(2π/r) + cos(2π/n) − cos(ψ) = 0.
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Substituting the values of (r, n) into this equation we get the following,

a) cos(2π/n) − cos(ψ) = 0 (4, n)

b) cos(2π/5) + cos(2π/5) − cos(ψ) = 0 (5, 5)

c) − cos(2π/5) + cos(ψ) = 1/2 (5, 6)

d) cos(2π/5) + cos(2π/7) − cos(ψ) = 0 (5, 7)

e) − cos(2π/5) + cos(ψ) = 1/2 (6, 5)

f) cos(2π/7) + cos(2π/5) − cos(ψ) = 0 (7, 5)

Notice that the equations c) and e) (also d) and f)) are the same, this is related

to the map ι3 identifying the groups Γ(p, q, r;n) and Γ(p, q, n; r). As before we are

searching for ψ a rational multiple of π that satisfies these equations. Clearly a)

has a solution for all n so we can’t say anything about the non-discreteness of the

groups Γ(4, 4, 4;n). However we can use Conway and Jones to see that b), d) and f)

do not have solutions, so Γ(4, 4, 5; 5), Γ(4, 4, 5; 7) and Γ(4, 4, 7; 5) are non-discrete.

Finally, equation c) does have a solution namely

− cos(2π/5) + cos(π/5) = 1/2

so Γ(4, 4, 5; 6) and Γ(4, 4, 6; 5) may be discrete.

Let q = 5 then 4 ≤ r and I3212 is elliptic when cos(2π/r) + cos(2π/n) < 1. Since

we have already ruled out n = 3, 4, the only values of (r, n) for which I3212 is elliptic

are (5, n), (6, 6), (6, 7), (6, 8), (6, 9), (7, 6), (7, 7), (8, 6), (9, 6), (r, 5). Then setting

tr(I3212) = 2 cos(2π/r) − 2 cos(2π/5) + 2 cos(2π/n) + 1. (2.35)

equal to 2 cosψ + 1, we get the following equation,

cos(2π/r) − cos(2π/5) + cos(2π/n) − cosψ = 0.
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Substituting the values of (r, n) into this equation we get the following,

a) cos(2π/n) − cosψ = 0 (5, n)

b) cos(2π/5) + cosψ = 1 (6, 6)

c) cos(2π/5) − cos(2π/7) + cosψ = 1/2 (6, 7)

d) cos(2π/5) − cos(2π/8) + cosψ = 1/2 (6, 8)

e) cos(2π/5) − cos(2π/9) + cosψ = 1/2 (6, 9)

f) cos(2π/5) − cos(2π/7) + cosψ = 1/2 (7, 6)

g) cos(2π/7) − cos(2π/5) + cos(2π/7) − cosψ = 0 (7, 7)

h) cos(2π/5) − cos(2π/8) + cosψ = 1/2 (8, 6)

i) cos(2π/5) − cos(2π/9) + cosψ = 1/2 (9, 8)

j) cos(2π/q) − cosψ = 0 (r, 5)

Using [3], the only equations in this list with rational solutions are a) and j), so we

conclude Γ(4, 5, 5;n) and Γ(4, 5, r; 5) may be discrete while Γ(4, 5, 6; 6), Γ(4, 5, 6; 7),

Γ(4, 5, 6; 8), Γ(4, 5, 6; 9), Γ(4, 5, 7; 6), Γ(4, 5, 7; 7), Γ(4, 5, 8; 6) and Γ(4, 5, 9; 8) are

non-discrete.

Let q = 6, note that using the map ι3, when q ≤ r, n we can swap r and n

without changing the group, this is reflected in the fact r and n are symmetric in

the trace equation. We use this to reduce the number cases we need to test.

The word I3212 is elliptic when cos(2π/r) + cos(2π/n) < 1.5 for 6 ≤ r. As before

we have already ruled out n = 3, 4, so the only values of (r, n) for which I3212 is

elliptic are (r, 5), (r, 6), (7, 7), (7, 8), (7, 9), (7, 10), (7, 11), (7, 12), (8, 8), (8, 9). Then

setting tr(I3212) equal to 2 cosψ + 1 and substituting the listed values of (r, n) into
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the equation, we get the following,

a) cos(2π/r) + cos(2π/5) − cos(ψ) = 1/2 (r, 5)

b) cos(2π/r) − cos(ψ) = 0 (r, 6)

c) cos(2π/7) + cos(2π/7) − cos(ψ) = 1/2 (7, 7)

d) cos(2π/7) + cos(2π/8) − cos(ψ) = 1/2 (7, 8)

e) cos(2 − pi/7) + cos(2π/9) − cos(ψ) = 1/2 (7, 9)

f) cos(2π/7) + cos(2π/10) − cos(ψ) = 1/2 (7, 10)

g) cos(2π/7) + cos(2π/11) − cos(ψ) = 1/2 (7, 11)

h) cos(2π/7) + cos(2π/12) − cos(ψ) = 1/2 (7, 12)

g) cos(2π/8) + cos(2π/8) − cos(ψ) = 1/2 (8, 8)

i) cos(2π/8) + cos(2π/9) − cos(ψ) = 1/2 (8, 9)

Using Conway and Jones we quickly establish that there are no solutions to equa-

tions a, c)−i). Equation b) has a trivial solution for all r. So the groups Γ(4, 6, r; 5),

Γ(4, 6, 7; 7), Γ(4, 6, 7; 8), Γ(4, 6, 7; 9), Γ(4, 6, 7; 10), Γ(4, 6, 7; 11), Γ(4, 6, 7; 12),

Γ(4, 6, 8; 8) and Γ(4, 6, 8; 9) are non-discrete. The groups Γ(4, 6, r; 6) (and Γ(4, 6, 6;n))

may be discrete for all r (and n).

In principle we could continue this procedure indefinitely for increasingly large

values of q, however this is not necessary. Notice that when 2 cos(2π/q) is not an

integer the trigonometric Diophantine equation we get when I3212 is elliptic is

cos(2π/r) − cos(2π/q) + cos(2π/n) − cos(ψ) = 0.

This equation has very few solutions, in particular if n 6= q 6= r and at least one of

q, r, n is not equal to 4 or 6, there are no solutions. When either n = q or r = q

there is an obvious solution, so we can’t say anything about the non-discreteness of

Γ(4, q, q;n) or Γ(4, q, r; q).

We have already dealt with the cases q = 4, 5, 6 above and n = 4 was done in

theorem 2.7.1. Since q ≤ r we don’t have to treat the case r = 4 since r = 4 =⇒ q =

4. Therefore the only possible remaining discrete groups Γ(4, q, r;n) with elliptic

I3212, occur when r = 6 or n = 6.

Let r = 6, then the trace of I3212 is

tr(I3212) = −2 cos(2π/q) + 2 cos(2π/n) + 2. (2.36)
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So I3212 is elliptic if (q, n) is one of the following (4, 5), (5, 6), (5, 7), (5, 8), (5, 9),

(6, n), we exclude the case where 4 ≤ q ≤ 6, q 6= n and n = 3 or 4 since they have

either already been dealt with or. Setting the trace equal to 1 + 2 cos(ψ) we get the

equation

cos(2π/q) − cos(2π/n) + cos(ψ) = 1/2. (2.37)

Substituting the values for (q, n) above we get the following equations

a) − cos(2π/5) + cos(ψ) = 1/2 (4, 5)

b) cos(2π/5) + cos(ψ) = 1 (5, 6)

c) cos(2π/5) − cos(2π/7) + cos(ψ) = 1/2 (5, 7)

d) cos(2π/5) − cos(2π/8) + cos(ψ) = 1/2 (5, 8)

e) cos(2π/5) − cos(2π/9) + cos(ψ) = 1/2 (5, 9)

f) − cos(2π/n) + cos(ψ) = 0 (6, n)

The only equations with rational solutions are a and f) so we conclude Γ(4, 4, 6; 5)

and Γ(4, 6, 6;n) may be discrete and Γ(4, 5, 6; 6), Γ(4, 5, 6; 7), Γ(4, 5, 6; 8) and Γ(4, 5, 6; 9)

are non-discrete.

Let n = 6, then the trace of I3212 is

tr(I3212) = −2 cos(2π/q) + 2 cos(2π/r) + 2. (2.38)

This is the same equation as in the previous case but we obtain slightly different

values for pairs (q, r) reflecting the fact the we have more freedom varying q and r

since neither is bounded from above by n. These pairs are (4, 5), (5, 6), (5, 7), (5, 8),

(5, 9), (6, r) and (q0, r0), where 6 < q0 ≤ r0. These lead to the equations

a) − cos(2π/5) + cos(ψ) = 1/2 (4, 5)

b) cos(2π/5) + cos(ψ) = 1 (5, 6)

c) cos(2π/5) − cos(2π/7) + cos(ψ) = 1/2 (5, 7)

d) cos(2π/5) − cos(2π/8) + cos(ψ) = 1/2 (5, 8)

e) cos(2π/5) − cos(2π/9) + cos(ψ) = 1/2 (5, 9)

f) − cos(2π/r) + cos(ψ) = 0 (6, r)

g) cos(2π/q) − cos(2π/r) + cos(ψ) = 1/2 (q, r) q > 6
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Equations a) − f) are exactly the same as in the previous case so a and f) have

rational solutions while b), c), d), e) do not. This only leaves g), which by Conway

and Jones has one solution q = 10, r = 30 ψ = 4π/15. So we conclude the only pos-

sible discrete groups of the form Γ(4, q, r; 6) are Γ(4, 4, 4; 5), Γ(4, 5, 6; 6), Γ(4, 6, r; 6)

and Γ(4, 10, 30; 6). 2

This theorem is similar to the main result of [27], where Pratoussevitch shows

that if the word I123 is regular elliptic in a deformed (m,m,∞) group, then it is

necessarily infinite order and the group is non-discrete. Here we show that if I3212 is

regular elliptic in a deformed (4, q, r) group then, apart from the exceptional groups

listed, I3212 is infinite order.

In principle we could go through a similar procedure for Γ(3, q, r;n) and Γ(6, q, r;n)

groups. If there were a list of trigonometric Diophantine equations analogous to [3]

but with up to eight cosine terms rather than four, we could apply the procedure

to all Γ(p, q, r;n) groups with I3212 elliptic. This style of argument may yield some

results for groups of the form (p, q, q) or (p, p, q) since the repeated variable simplifies

the resulting equation somewhat.

We could also go through a similar procedure using the trace of I2131. However

this word becomes loxodromic before I3212, i.e. if I2131 is elliptic then I3212 also

elliptic.

2.7.1 Non-standard deformed triangle groups revisited

In the above analysis if ψ is of the form 2mπ/l for m 6= 1 then the trace of I3212 is

1+ 2 cos(2mπ/l) and we can rewrite the group as a non-standard deformed triangle

group. We can apply the ι2 map from section 2.4 and relabel the resulting generators
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to change these standard groups into non-standard groups as follows

Standard Non − standard

Γ(4, 5, 15; 3) Γ(3, 4, 5; 30/7)

Γ(4, 7, 14; 3) Γ(3, 4, 7; 7/2)

Γ(4, 5, 30; 4) Γ(4, 4, 5; 15/2)

Γ(4, 7, 42; 4) Γ(4, 4, 7; 21/4)

Γ(4, 8, 24; 4) Γ(4, 4, 8; 24/5)

Γ(4, 9, 18; 4) Γ(4, 4, 9; 9/2)

Γ(4, 10, 15; 4) Γ(4, 4, 10; 30/7)

Γ(4, 10, 30; 6) Γ(4, 6, 10; 15/2)

We can apply the Jørgensen test from section 2.5.1 to these groups. This shows that

the non-standard deformed triangle groups Γ(3, 4, 5; 30/7), Γ(4, 4, 7; 21/4), Γ(4, 4, 8; 24/5)

and Γ(4, 4, 10; 30/7) are non-discrete. Consequently, the standard deformed triangle

groups Γ(4, 5, 15; 3), Γ(4, 7, 14; 3), Γ(4, 8, 24; 4) and Γ(4, 10, 15; 4) are non-discrete.

Question

Are the deformed triangle groups

Γ(4, 7, 14; 3), Γ(4, 5, 30; 4), Γ(4, 9, 18; 4), Γ(4, 10, 30; 6) discrete?

equivalently,

Are the non-standard deformed triangle groups

Γ(3, 4, 7; 7/2), Γ(4, 4, 5; 15/2), Γ(4, 4, 9; 9/2), Γ(4, 6, 10; 15/2) discrete?



Chapter 3

Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5)

In the previous chapter, the computer programme suggested two new candidates

for deformed triangle group lattices, Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5). In this chapter we

prove that they are lattices, give commensurability results, calculate their covolume

and give presentations for the groups. Then we construct conjectural fundamental

domains which agrees with the given covolumes and presentations.

3.1 Representations of Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) in

PU(2, 1)

3.1.1 A representation of Γ(3, 3, 4; 7) in PU(2, 1)

Let u = e2iπ/7. To fix the orders of I23, I31 and I12, we require that

|σ|2= 1, |τ |2= 1, |ρ|2= 2.

For I1323 to have order 7 we require that

|στ − ρ| = 2 cos(π/7).

A solution to these equation is given by

σ = u5, τ = u5, ρ = u+ u2 + u4.

69
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Then we have the following representation for Γ(3, 3, 4; 7),

I1 =




1 u+ u2 + u4 u2

0 −1 0

0 0 −1


 , I2 =




−1 0 0

u6 + u5 + u3 1 u5

0 0 −1


 ,

I3 =




−1 0 0

0 −1 0

u5 u2 1


 .

The Hermitian form preserved by the group is

H =




2 u+ u2 + u4 u2

u6 + u5 + u3 2 u5

u5 u2 2


 .

3.1.2 A representation of Γ(3, 3, 5; 5) in PU(2, 1)

Let u = e2iπ/5. To fix the orders of I23, I31 and I12, we require that

|σ|2= 1, |τ |2= 1, |ρ|2= (3 +
√

5)/2.

For I1323 to have order 5 we require that

|στ − ρ| = 2 cos(π/5).

A solution to these equation is given by

σ = u2, τ = u2, ρ = −1 − u4.

Then we have the following representation for Γ(3, 3, 5; 5),

I1 =




1 −1 − u4 u3

0 −1 0

0 0 −1


 , I2 =




−1 0 0

−1 − u 1 u2

0 0 −1


 ,

I3 =




−1 0 0

0 −1 0

u2 u3 1


 .
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The Hermitian form preserved by the group is

H =




2 −1 − u4 u3

−1 − u 2 u2

u2 u3 2


 .

Corollary 3.1.1 The word I123 has order 42 (respectively 15) in the group Γ(3, 3, 4; 7)

(respectively Γ(3, 3, 5; 5)).

Proof: This follows from analysis of eigenvalues or straightforward multiplication

of the matrices using computer software e.g. Maple. 2

3.2 Commensurability

In his thesis, [15], Livné discovered a number of lattices in PU(2, 1) that are re-

lated to Γ(n, n, n;n) triangle groups for n =5, 6, 7, 8, 9, 10, 12 and 18. In the

language of Mostow [4], these lattices are Γ(5, 1
2
), Γ(6, 1

3
), Γ(7, 3

14
), Γ(8, 1

8
), Γ(9, 1

18
),

Γ(10, 0), Γ(12, 1
12

) and Γ(18, 2
9
). The Livné lattice Γ(n, ∗) contains the corresponding

Γ(n, n, n;n) groups as an infinite index subgroup (except for p = 5 where the group

is an index 60 subgroup). The lattices have a presentation of the form

〈A1, P, R1 | A2
1 = P d = Rp

1 = (PA1)
3 = Id, R1A1 = A1R1, R1PR1 = P 2〉. (3.1)

(section 5.2 of [23]). The values of d and p depend on the groups. In particular, for

Γ(10, 0), d = 15 and p = 10. For Γ(7, 3
14

), d = 42 and p = 7.

Proposition 3.2.1 The group Γ(3, 3, 5; 5) contains Γ(10, 10, 10; 10) as a subgroup

and the group Γ(3, 3, 4; 7) contains Γ(7, 7, 7; 7) as a subgroup.

Proof: In both cases the subgroup in question is generated by the reflections

A1 = I1, A2 = I32123 and A3 = I23132, then using the presentations given above

we check the traces of the relevant words to confirm that the following relations

hold in the group: A2
i , A

p
ij, A

p
ijkj, where p = 10 resp. 7. There are extra relations

in these groups, but determining the traces (and therefore the order) of the words
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Aij and A1323 is enough to uniquely determine the group. Therefore 〈A1, A2, A3〉 =

Γ(7, 7, 7; 7) resp. Γ(10, 10, 10; 10). 2

Theorem 3.2.2 The groups Γ(3, 3, 4; 7) and Γ(7, 3
14

) are commensurable and the

groups Γ(3, 3, 5; 5) and Γ(10, 0) are commensurable.

We will give a longer proof of theorem 3.2.2 than is strictly necessary, in par-

ticular we calculate the coset decompositions and precise indices for the subgroups,

rather than just demonstrating that they are finite index. This allows us to calcu-

late the covolumes of Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) in section 3.2.15. An immediate

consequence of this commensurability relation is that the groups Γ(3, 3, 4; 7) and

Γ(3, 3, 5; 5) are arithmetic lattices.

We begin by showing that Γ(3, 3, 4; 7) and Γ(7, 3
14

) are commensurable.

Lemma 3.2.3 Consider the subgroups

G := 〈I1, I321, I1232123212I321I2123212321〉 ⊂ Γ(3, 3, 4; 7)

and

G′ := 〈A1, P, R
2
1PR

−2
1 〉 ⊂ Γ(7, 3

14
)

There is matrix C such that

• C−1A1C = I1,

• C−1PC = I321,

• C−1(R2
1PR

−2
1 )C = I1232123212I321I2123212321 and

• C∗HLC = H.

In other words Γ(3, 3, 4; 7) and C−1
(
Γ(7, 3

14
)
)
C share a common subgroup namely

〈I1, I321, I1232123212I321I2123212321〉.

Proof: Let u = e2iπ/7. In [22] Parker gives the following representation for Γ(7, 3
14

).

R1 =




1 0 0

0 u 0

0 0 1


 , A1 =




−1 0 0

0 1 0

0 0 1


 ,
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P =
−u5

2(1 − u)




u− u6 −2 + u+ u6 2 − u− u6

−2u −2 2u

−u− u6 −u − u6 2 + u− u6


 ,

preserving the Hermitian form

HL = (u− u6)




−1/(2 − u− u6) 0 0

0 1 0

0 0 1/(u+ u6)


 .

Then the required conjugation matrix is

C = α




2(1 − u)(u3 − u6) (1 − u)(u3 − u6)(u6 + u5 + u3) (1 − u)(u − u4)

0 2(1 + u + u6) 2(u2 + u3 − u6)

0 u6 − u5 − u3 u + u2 + u4 − u5


 ,

where α = 1
2(1−u)(u3−u6)

. In the representation of Γ(3, 3, 4; 7) given in 3.1, con-

jugation by C acts as follows: C−1A1C = I1, C
−1PC = I321, C

−1R2
1PR

−2
1 C =

I1232123212I321I2123212321 (up to projective rescaling) and C∗HLC = H . This calcula-

tion can be checked quickly using Maple. 2

Lemma 3.2.4 The word I21231231213212 is contained in

G = 〈I1, I321, I1232123212I321I2123212321〉.

Proof: This follows from a straightforward word manipulation

I21231231213212 = I1I123I123I1I1232123212I321I2123212321I123.

2

Lemma 3.2.5 G=〈I1, I321, I1232123212I321I2123212321〉 is an index 8 subgroup of

Γ(3, 3, 4; 7).

Proof: We show this by producing a left coset decomposition of the group Γ(3, 3, 4; 7).

We will that prove every word in Γ(3, 3, 4; 7) lies in exactly one of the following left

cosets,

G, I2G, I12G, I212G, I3212G, I13212G, I213212G, I1213212G.
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Consider the words of length 1, that is I1, I2 and I3. Clearly I1 lies in G and I2 is

contained in I2G, so we only need to check I3. Since I3 = I2 ·I23 and I23 ∈ G, it

follows that I3 ∈ I2G.

Length 2 words. We don’t need to consider words that end with I1 as we can

reduce these to length one words by multiplying by I1 on the right. This leaves I12,

I13, I23 and I32. The words I23 and I32 are contained in G and I12 is contained in

I12G. The only remaining word is I13 = I12 ·I23, so I13 ∈ I12G.

Length 3 words. Again we don’t need to consider words that end in I1, I32 or

I23, this only leaves I212, I213, I312, I313. Since I213 = I212·I23, the words I212 and I213

both lie in I212G. Similarly since I313 = I12 ·I23 ·I1 and I312 = I313 ·I32, both I312 and

I313 lie in I12G.

Length 4 words. From the arguments above it is clear that the only length four

words not already contained in one of the previously described cosets are I1I212 and

I3I212, since any other word can be immediately shortened to a word of length three

or less by right multiplication by some g ∈ G. Since I1212 ·I1 = I212, the word I1212

lies in I212G and clearly I3212 ∈ I3212G.

Length 5 words. We only need to consider the words I1·I3212 and I2·I3212. We use

the relation I23212·I23·I1·I32 = I3212 to show I23212 ∈ I3212G and clearly I13212 ∈ I13212G.

Length 6 words. We only need to consider the words I213212 and I313212. We use

the relation I313212·I1 = I13212 to show I313212 ∈ I13212G and clearly I213212 ∈ I213212G.

Length 7 words. We only need to consider the words I1213212 and I3213212. We use

the relation I3213212·I21231231213212 = I1213212 (lemma 3.2.4) so both I1213212, I3213212 ∈
I1213212G.

Length 8 words. We only need to consider the words I21213212 and

I31213212. Using the word from lemma 3.2.4 we can simplify these words to I1213212

and I213212 respectively, so we do not need to introduce any additional cosets. Fur-

thermore this means that all words of length eight or longer can be reduced to one

of the eight coset representative words via right multiplication by some g ∈ G.

We must now show that a word lies in exactly one coset. This can be done by

checking that the product g−1
i gj , of any two coset representatives gi and gj is not in
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G. For example I−1
1213212I213212 = I2123121213212 and

I2 = I123 ·I132 ·I123 ·I132 ·I2123121213212 ·I231 ·I321 ·I231 ·I321.

A similar process of left and right multiplication by words in G can be carried out

for all pairs of coset representatives, gi and gj, to reduce the product, g−1
i gj, to I2.

There are two possibilities, if I2 ∈ G, then G is the whole group and all the cosets

are the same. Alternatively, if I2 /∈ G then all the cosets are disjoint. 2

Rather than show that I2 /∈ G, we show that CI2C
−1 /∈ Γ(7, 3

14
) which implies

the equivalent condition, that CI2C
−1 /∈ G′ = 〈A1, P, R

2
1PR

−2
1 〉.

Lemma 3.2.6 CI2C
−1 /∈ Γ(7, 3

14
).

Proof: First observe that

CI2C
−1 =




0
−u− u3 − u4

2
−u− u2

u5 + 1 + u4

(u− 1)2

u− u2 − 1

(u− 1)2

u5 − u4 − 1

(u− 1)2

u5 + 1 + u3

(u− 1)2

−u− u4 + u5 − u6

2(u− 1)2

u

(u− 1)2



. (3.2)

We cannot simplify these fractions any further, in particular the denominator

of the terms in the bottom two rows cannot be reduced to (u − 1). To see this let

Fu be a polynomial in u, then (u − 1) is a factor of F (u) iff Fu = 0 when we let

u = 1, furthermore Fu = Fu + 1 + u + u2 + u3 + u4 + u5 + u6. Using these two

results we observe that (u − 1) is a factor of Fu iff Σ6
i=0ai ≡ 0 mod 7, where ai are

the coefficients of ui un Fu. For a polynomial in u, Fu, we denote Σ6
i=0ai by SF .

Examining the polynomials in the numerators in the entries of CI2C
−1, we see

that they have SF not equal to 0 in the bottom two rows, so we cannot remove a

factor of (u − 1) from these entries. Note that we have used the fact that Z[u] is a

unique factorisation domain.

Claim: In the presentation given above, the entries of any matrix in Γ(7, 3
14

) are

rational polynomials in u divided by, at worst, a factor of (u− 1).

Since some the entries of CI2C
−1 cannot be written as a polynomial in u divided

by (u− 1), it follows CI2C
−1 is not in Γ(7, 3

14
) and therefore I2 is not in H . 2
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Proof:[of claim] First we observe that P n has this property for all n. In principle

we could check this for all values of n but it suffices only to check that

P 2 =
1

2




u+ u2 u3 − u2 u− u2

−2u4/(u− 1) −2u4/(u− 1) 2u4/(u− 1)

−(u+ u3)/(u− 1) −(u2 + u4)/(u− 1) (−u+ u3 + 2u2)/(u− 1)




and

P 3 =
1

2




1 − u+ u5 + u6 0 −1 + u+ u5 − u6

0 −2u 0

1 + u+ u5 + u6 0 −1 − u− u6 + u5




When checking these matrices, there are a number of somewhat suprising relations

that help us to clear the denominator e.g (u4 + u2 + 1)−1 = −(u + u2) and (u5 +

u2 + 1)−1 = −(u3 + u4).

Since P 3 has nothing in the numerator and P and P 2 both have at worst 1/2(u−
1), we can write out P n as P 3m ·P or P 3m ·P 2 to see that the claim holds for all

powers of P . Recall that since PR1P = P 3R−1
1 = R−1

1 P 3 and Rn
1 and P 3 both have

nothing in the denominator it follows PR1P will also have this property. We can

extend this argument to all words in the group. 2

Lemma 3.2.7 〈A1, P, R
2
1PR

−2
1 〉 is an index 8 subgroup of Γ(7, 3

14
).

Proof: Let G′ = 〈A1, P, R
2
1PR

−2
1 〉, we can partition Γ(7, 3

14
) into the following left

cosets G′, R1G
′, R2

1G
′, R3

1G
′, R4

1G
′, R5

1G
′, R6

1G
′, PR3

1G
′.

We want show that given any word in Γ(7, 3
14

) we can, by right multiplication by

G′, send it to one of the eight coset words. If a word ends with either A1 or P , we

can immediately shorten those words, since A1 and P are in G′. So we may assume

our word ends in a non-trivial power of R1. Furthermore since A1 commutes with

R1 we can assume the word ends in PRn
1 . These words can be further simplified by
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left multiplication by a word in G′ as follows

PR1 ·(P−2) =R6
1,

PR2
1 ·(P−2)·(R2

1P
−2R−2

1 ) =R3
1,

PR4
1 ·(R2

1P
2R−2

1 )·(P−1) =R1,

PR5
1 ·(R2

1P
−1R−2

1 ) =R5
1,

PR6
1 ·(R2

1P
−2R−2

1 ) =R4
1.

Whenever a word ends in PRn
1 , n 6= 3, we can change it into a word that ends in

Rm
1 by right multiplication by some word in G′. When a word ends in Rn

1PR
3
1 we

can use the following relations to simplify the word,

Rn
1PR

3
1 ·(R2

1P
2R−2

1 P 2) = Rn+1
1 PR3

1, (3.3)

since R1 has finite order, we can repeatedly use this relation to remove any power

of R1 on the left of PR3
1. When a word ends in P nPR3

1 we can use the following

relations to simplify the word,

P nPR3
1 ·(R2

1P
2R−2

1 )·(P−1) = P n−1R2
1, (3.4)

then using the relation PR2
1 → R3

1 above, this becomes

P n−2PR2
1 ·(P−2)·(R2

1P
−2R−2

1 ) = P n−2 ·R3
1 = P n−3 ·PR3

1. (3.5)

Since P has finite order, we can repeatedly use this relation to remove any power of

P on the left of PR3
1. Finally we have

A1PR
3
1 ·(A1)·(R2

1P
2R−2

1 )·(A1)·(P−3)·(R2
1PR

−2
1 )·(A1) = PR3

1. (3.6)

Combining these relations, any word in Γ(7, 3
14

) can be sent to one of the eight coset

words by right multiplication by some h′ ∈ G′. We also have to check that any word

in Γ(7, 3
14

) lies in exactly one coset, as before checking the product g−1
i gj, of any

two coset representatives gi and gj does not lie in G′ is sufficient. By left and right

multiplication by words in G′ we can always send this product to Rn
1 for 1 ≤ n ≤ 6,

using relation (3.3) above where necessary.
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To see that non-trivial powers of R1 are not contained in G′ we argue as fol-

lows, the images of the generators of G′ under conjugation by C are C−1A1C = I1,

C−1PC = I321, C
−1R2

1PR
−2
1 C = I1232123212I321I2123212321. These three matrices all

have entries in Z[e2iπ/7], so the image of any word in G′, under conjugation by C,

will also have entries in Z[e2iπ/7]. However for any non-trivial power of R1, the ma-

trix C−1Rn
1C, does not have all its entries in this ring. In particular the entries of

bottom-right two-by-two sub-matrix are of the form F/(1−e2iπ/7), where is F some

polynomial in Z[e2iπ/7] not divisible by (1 − e2iπ/7). Therefore non-trivial powers of

R1 are not contained in G′ an the 8 cosets are distinct. 2

From lemmas 3.2.3, 3.2.5 and 3.2.7 it follows that Γ(3, 3, 4; 7) and Γ(7, 3
14

) are com-

mensurable, moreover the groups have the same covolume.

We now show Γ(3, 3, 5; 5) and Γ(10, 0) are commensurable.

Lemma 3.2.8 Consider the subgroups

〈I1, I321, I1232123212I321I2123212321〉 ⊂ Γ(3, 3, 4; 7)

and

〈A1, P, R
2
1PR

−2
1 〉 ⊂ Γ(7, 3

14
)

There is matrix C such that C−1A1C = I1, C
−1PC = I321, C

−1R2
1PR

−2
1 C =

I32131213I321I31213123 (up to projective rescaling), and C∗HLC = H. So Γ(3, 3, 5; 5)

and C−1 (Γ(10, 0))C share a common subgroup namely 〈I1, I321, I32131213I321I31213123〉.

Proof: Let u = e2iπ/5. In [22], Parker gives the following representation for Γ(10, 0)

(recall e2iπ/10 = −(e2iπ/5)3)

R1 =




1 0 0

0 −u3 0

0 0 1


 , A1 =




−1 0 0

0 1 0

0 0 1




P =
1

2(1 + u2)




−u3 + u2 −u3 − u2 − 2 2 + u3 + u2

2u3 −2 −2u3

u3 + u2 u3 + u2 2 − u3 + u2
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preserving the Hermitian form

HL = (−u3 + u2)




−1/(2 + u3 + u2) 0 0

0 1 0

0 0 1/(−u3 − u2)




The matrix that, by conjugation, maps the representation of the first group to the

second is

C =




1 u4 + u3 u− u4 − u3 + u2

0 −u+ u4 2u+ 2u2

0 u4 −2u4




In the representation for (3, 3, 5; 5) described in section 3.1, conjugation by C acts

as follows, C−1A1C = I1, C
−1PC = I321, C

−1R2
1PR

−2
1 C = I32131213I321I31213123, and

C∗HLC = H . Therefore the subgroups are the same. 2

Lemma 3.2.9 The word I21231212 is contained in the subgroup

G := 〈I1, I321, I32131213I321I31213123〉 ⊂ Γ(3, 3, 5; 5). (3.7)

Proof: This follows from a straightforward word manipulation,

I21231212 = I123I123I32131213I321I31213123I321I321I1.

2

Lemma 3.2.10 〈I1, I321, I32131213I321I31213123〉 is an index 5 subgroup of Γ(3, 3, 5; 5).

Proof: This follows along exactly the same lines as the proof of lemma 3.2.5.

Let G = 〈I1, I321, I32131213I321I31213123〉, the left cosets are

G, I2G, I12G, I212G, I3212G.

Proceeding as in the proof of lemma 3.2.5 once we reach length 5 words we can use

the word I21231212 from lemma 3.2.9 to terminate the procedure. 2
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Lemma 3.2.11 The word R2
1 is contained in the subgroup 〈A1, P, R1PR

−1
1 〉 ⊂ Γ(10, 0).

Proof: This follows from a straightforward word manipulation,

R2
1 = (R1PR

−1
1 )(R1PR

−1
1 )P−1.

2

Lemma 3.2.12 〈A1, P, R1PR
−1
1 〉 is an index two subgroup of Γ(10, 0).

Proof: Let G′ = 〈A1, P, R1PR
−1
1 〉, then we can partition Γ(10, 0) into the following

cosets.

G′, R1G
′.

Proceeding as in the proof of lemma 3.2.7, we show that any word can be sent to

either the identity or R1, by right multiplication by h ∈ G′. As before we can assume

the word ends with some power of R1 since A1 and P are contained in G′. By lemma

3.2.11 R2
1 is contained in G′ so we may assume our word ends with R1 (recall R1 has

order 10 in Γ(10, 0)). Since A1 commutes with R1, we can always shorten a word

that ends with A1R1 to word ending with R1. That only leaves words ending with

P nR1. We have the following relation,

P nR1 ·P−2 ·R2
1 = P n−1 ·R1

Since P has finite order, repeated use of this relation allows us to remove any power

of P . Therefore any word in Γ(10, 0) can be reduced to either Id or R1 by right

multiplication by some h ∈ G′. 2

Lemmas 3.2.8, 3.2.10 and 3.2.12 together prove that Γ(3, 3, 5; 5) and Γ(10, 0) are

commensurable and that the common subgroup is index 5 in Γ(3, 3, 5; 5) and index

2 in Γ(10, 0).

Lemma 3.2.13 ( [29] or section 5.2 of [23]) The covolume of a Livné group is

given by
(
p− 5

2p2

) (
8π2

3

)

where p is the order of R1 in the group.
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Corollary 3.2.14 The lattices Γ(7, 3
14

) and Γ(10, 0) have covolumes 8π2/147 and

8π2/120 respectively.

Proposition 3.2.15 The lattice Γ(3, 3, 4; 7) has covolume 8π2/147 and the lattice

Γ(3, 3, 5; 5) has covolume 8π2/300.

Proof: The lattices Γ(7, 3
14

) and Γ(3, 3, 4; 7) share a common subgroup of index

8 in both groups. Therefore

vol(Γ(3, 3, 4; 7)) = vol(Γ(7, 3
14

)) =
8π2

147
.

The lattices Γ(10, 0) and Γ(3, 3, 5; 5) share a common subgroup of index 2 and index

5 respectively. Therefore

vol(Γ(3, 3, 5; 5)) = 2
5
vol(Γ(10, 0)) =

8π2

300
.

2

Corollary 3.2.16 Using the identifications described in chapter 2, the following tri-

angle groups are lattices Γ(3, 4, 7; 3), Γ(3, 3, 7; 7), Γ(3, 4, 7; 3) and Γ(7, 7, 14; 4) since

all these groups are identified with Γ(3, 3, 4; 7) as subgroups in PU(2, 1). Also the

groups Γ(3, 5, 5; 5) and Γ(5, 5, 10; 3) are lattices since they are both are identified with

Γ(3, 3, 5; 5) as subgroups in PU(2, 1).

3.2.1 Presentations

Since we have presentations for the Livné groups and know the coset permutation

table for the common subgroup, we can use the Reidemeister-Schreier method to

obtain presentations for Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5). Further details about the tech-

niques used in this section can be found in most books on combinatorial group

theory, for example [16]. We will only go through the details for Γ(3, 3, 4; 7) since

the procedure is the same for both groups. Let K = Γ(7, 3
14

), using the left coset

decomposition, we get a Shreier transversal for the subgroup G′

U =
{
Id, R1, R

2
1, R

3
1, R

4
1, R

5
1, R

6
1, PR

3
1

}
.
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Then the Reidemeister-Schreier method produces a presentation for G′. After sim-

plifying by Tietze transformations, we get the following presentation:

〈
A1, P, R

2
1PR

−2
1 |

A2
1, P

42, (R2
1PR

−2
1 )42, (PA1)

3, (R2
1PR

−2
1 A1)

3,

(R2
1PR

−2
1 )2A1P

2A1P (R2
1PR

−2
1 )−2A1, P

3(R2
1PR

−2
1 )−3

〉
.

Using the conjugation between the subgroups, we obtain the following relations for

G = 〈I1, I321, I1232123212I321I2123212321〉,

I2
1 , I42

321, (I1232123212I321I2123212321)
42, I3

23, (I1232123212I321I2123212321I1)
3,

(I1232123212I321I2123212321)
2I1(I321)

2I1I321(I1232123212I321I2123212321)
−2I1, (3.8)

I3
321(I1232123212I321I2123212321)

−3

Since we know the coset permutations for G in K = Γ(3, 3, 4; 7) and that K is

generated by I1, I2 and I3, we can use a ‘reverse’ Reidemeister-Schreier method to

obtain a presentation for Γ(3, 3, 4; 7). This formulation is taken from a correspon-

dence with Professor Derek Holt, but it follows from a close reading of the standard

Reidemeister-Schreier method.

‘Reverse’ Reidemeister-Schreier

Proposition 3.2.17 Let 〈Y |S〉 be a presentation for G ⊂ K = 〈X|R〉. Assume we

know Y, S and X, i.e. we have a presentation for G and we know the generators for

K but not the relations. In addition assume we know a (left) transversal U = {ui}
for G in K and the permutation relations for the ui.

For each x ∈ X and ui ∈ U , there is a relation of the form x · ui = uj · hi,x,
where uj is another word in U and hi,x is a word in 〈Y 〉. Then we can obtain a new

presentation for K, with generating set X ∪ Y and relations

1. For each y ∈ Y , a relation of the form y = w where w ∈ 〈X〉,

2. All the xui = ujhi,x relations described above and

3. The defining relations for G (i.e. the set S).

Applying this process to the generators I1, I2, I3 and Schreier transversal

U = {Id, I2, I12, I212, I3212, I13212, I213212, I1213212} ,
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we obtain the extra relations I2
2 = I2

3 = I4
12 = I3

13 = Id as follows: let x = I2

and ui = I2 as above, then uj = Id and hi,x = Id, from which we obtain I2
2 =

Id. If x = I3 and ui = I3212, then uj = I212 and hi,x = Id, which gives the

relation I2
3 = Id. There are similar relations for the other two relations. We

can use these new relations to simplify the group relations of (3.8) for example,

Id = (I1232123212I321I2123212321)
2I1(I321)

2I1I321(I1232123212I321I2123212321)
−2I1, simplifies

as follows

Id = 1232123212321321212321232113213211321123212321212312321232123211

= 12321232123213212123212323213232232123212123123212321232

= 1232123212321321212321313123212123123212321232

= 123212321232132121232323212123123212321232

= 123212321232132121212123123212321232

= 1232123212321323123212321232

= 1232123212321232123212321232

= 12327

By similar calculations the other relations listed in (3.8) simplify to give I7
1323, I

2
1

or I42
123. Clearly the group is generated by I1, I2 and I3, thus we have the following

presentation for Γ(3, 3, 4; 7).

A presentation for Γ(3, 3, 4; 7)

〈I1, I2, I3 | I2
i , I

3
23, I

3
31, I

4
12, I

7
1323, I

42
123〉. (3.9)

Exactly the same process can be carried out to obtain a group presentation for

Γ(3, 3, 5; 5).

A presentation for Γ(3, 3, 5; 5)

〈I1, I2, I3 | I2
i , I

3
23, I

3
31, I

5
12, I

5
1323, I

15
123〉. (3.10)

3.3 Fundamental Domains

Having shown that Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) are lattices, is this section we describe

conjectural fundamental domains, ∆, for the groups. The fundamental domains are
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essentially the same, the same construction could be carried out for any Γ(p, q, r;n)

group with I123 finite order regular elliptic. Obviously if the group is non-discrete

this will not lead to a fundamental domain. The fundamental domain consists of a

simply connected bounded 3-dimensional region of H2
C
, over which we then take the

four dimensional cone to the fixed point of I123.

These fundamental domains are conjectural since we only define them combina-

torially and we assume that they satisfy all the conditions of Poincaré’s polyhedron

theorem. These domains have the correct covolume and produce the same group

presentations, so we believe they could be modified to be true fundamental domains

via the same method used in the next chapter for Γ(4, 4, 4; 5).

The core faces

We begin the construction of our fundamental domain by defining core faces, these

are three dimensional polyhedra. The first core face depends only on p = ord(I23).

Consider the p-gon with the following vertices 12, 12.23 = 13, 12.2323 = 1323,. . .,

12.(23p−1). Note that (23) has order p, so 12.(23)p = 12. All these points lie in the

complex geodesic fixed by I1, we denote this line C1. Then we take the suspension of

this p-gon to the points 23 and 1231. Since I1(23) = 1231 and the p-gon lies entirely

in C1, it is clear, at least combinatorially, that this polyhedron is preserved by I1.

The second core face depends on q = ord(I13). Consider the q-gon with vertices

32.(13)i, again this polygon lies entirely in a complex geodesic, C323. We then take

the suspension of the q-gon to the points 13 and I323(13) = 323123. This face is

preserved under I323. The third core face is constructed the same way, a suspension

of the r-gon 31.(13)i to the points 12 and I3(12) = 3123. This face is preserved

under I3. These are the polyhedra denoted A, B and C in figures 1 and 2.

The fourth core face is constructed by taking suspension of the ord(3212) sided

polygon with vertices 23.3212i to the points 3212 and 1232. This face is preserved

under I2. For Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) only one core piece is needed at this point

in the construction, (this reflects the fact that in a Γ(3, 3, r;n) group we can pass

between all words of the form Iijkj by conjugation and taking inverses), for other

groups we would need more faces. These are polyhedra D in figures 1 and 2.
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The combinatorics of the final pieces depends on the group, for Γ(3, 3, 4; 7) it is

the tetrahedron with vertices 1232123212, 123212, 3212 and 31213212. This piece

is preserved under I2123212. For Γ(3, 3, 5; 5) it is a six faced polyhedron with vertices

123212, 2123212123, 12, 3212 and 312121. This piece is preserved under I212. These

are polyhedra E in figures 1 and 2.

Whenever two of these faces share a common triangle in their boundary, we say

that they are glued along that triangle. In this way we can glue the five core faces

to form a 3-dimension subset of H2
C

that is homeomorphic to the 3-dimensional ball

with a triangulated boundary. Then we take the affine cone over this region to the

fixed point of I123, denoted ∗. This gives us a 4-dimensional region, whose 3 di-

mensional boundary consists of the core pieces and the cones over their triangulated

boundary.

323123

312323

13

1232

1213

1232

23

1231

23

31223121

13

3123

12

312121

(1232) 12

123212

12

323123

1232

2

23

3212

312121

12

3212

3123212132

123212A

D E

CB

Figure 3.1: Core faces for Γ(3, 3, 5; 5)

We denote this 4-dimensional polytope by ∆. This is a combinatorial fundamen-

tal domain for the group.
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323123

312323

13

1232

1213

1232

23

123112

3123

32123121

13 23

12(3121)

31213212

3212123212

1232

3212

2312 323123123212

12(3212) 23(2123)

12(3212)

2

2

2

2

A B C

ED

Figure 3.2: Core faces for Γ(3, 3, 4; 7)

We will simplify the construction by combining any cone faces that have the

same side pairing transformation when we use Poincaré’s polyhedron theorem.
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Combined cone faces

Combined cone faces for Γ(3, 3, 5; 5).

F1 =Cone(12, 1232, 123212) ∪ Cone(12, 1232, 1231) ∪ Cone(12, 1231, 13)

∪ Cone(12, 13, 3121) ∪ Cone(13, 3121, 3123) ∪ Cone(13, 3123, 1232)

∪ Cone(13, 1232, 1231),

F2 =Cone(3123, 3212, 312121) ∪ Cone(3123, 3212, 23) ∪ Cone(3123, 23, 323123)

∪ Cone(3123, 323123, 1232) ∪ Cone(323123, 1232, 1232123212)

∪ Cone(323123, 1232123212, 3212) ∪ Cone(323123, 3212, 23),

G1 =Cone(12, 3121, 312121) ∪ Cone(3121, 312121, 3123),

G2 =Cone(1232123212, 3212, 123212) ∪ Cone(3212, 123212, 2123212123),

H1 =Cone(1232123212, 123212, 1232),

H2 =Cone(2123212123, 312121, 3212),

I1 =Cone(12, 123212, 312121),

I2 =Cone(2123212123, 123212, 123212).

Note I321(F1) = F2, (I321)
2 (G1) = G2, I321(H1) = H2 and (I321)

3 (I1) = I2.
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Combined cone faces for Γ(3, 3, 4; 7).

F1 =Cone(13, 1232, 3123) ∪ Cone(13, 3123, 3121) ∪ Cone(13, 3121, 12)

∪ Cone(13, 12, 1231) ∪ Cone(13, 1231, 1232) ∪ Cone(1232, 1231, 12)

∪ Cone(12, 1232, 123212),

F2 =Cone(323123, 3212, 23(2123)2 ) ∪ Cone(323123, 23(2123)2 , 1232)

∪ Cone(323123, 1232, 3123) ∪ Cone(23123, 3123, 23) ∪ Cone(323123, 23, 3212)

∪ Cone(3212, 23, 3123) ∪ Cone(3123, 3212, 3121),

G1 =Cone(3121, 12, 3212) ∪ Cone(12, 3212, 123212) ∪ Cone(123212, 3212, 31213212),

G2 =Cone(3212, 23(2123)2 , 12(3212)3) ∪ Cone(23(2123)2 , 12(3212)3 , 1232)

∪ Cone(1232, 12(3212)3 , 12(3212)2),

H1 =Cone(12(3212)2 , 1232, 212321) ∪ Cone(12(3212)2 , 212321, 31213212),

H2 =Cone(12(3212)2 , 12(3212)3 , 3212) ∪ Cone(12(3212)2 , 3212, 31213212).

Note, I321(F1) = F2, (I321)
2 (G1) = G2, and (I321)

3 (H1) = H2.

These faces for Γ(3, 3, 5; 5) and Γ(3, 3, 4; 7) are shown in figures 3 and 4 respectively.

31233121

12 1232

123212

*

(1232) 122

*

1232

32123123

312121

* *

(1232) 122
12

312121 3123

3121 3212

2123212123123212

(1232) 122

*

123212

1232

*

3212

2123212123 312121

*

12312121 312121

123212

2123212123

123212

F F G

HH I I

1

1 1

G12

2 2

2

*

Figure 3.3: Cone faces for Γ(3, 3, 5; 5)
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* *

* * * *

3212

3121 1232

23(2123)

12

3121

1232 3123

123212

3123

1232

12(3212)3212

23(2123) 12

2

2

21231213

123212

3121

12(3212)

212312133212

12(3212)

21231213123212

12(3212) 1232

12(3212)

23

3

2

F F G G
3212

HH

1 1

1

2 2

2

Figure 3.4: Cone faces for Γ(3, 3, 4; 7)

3.3.1 Poincaré’s polyhedron theorem and group presenta-

tions

In this section we use Poincaré’s polyhedron theorem to obtain a presentation for

the group, we assume all the necessary conditions are met. Rather than list the

entire orbit for each cycle, we will list a representative 2-face, the length of the cycle

and the word given by the cycle relation. We state Poincaré’s polyhedron theorem

fully in chapter 4, section 4.4.

3.3.2 Side pairing relations

Side pairing relations for Γ(3, 3, 5; 5)

I232 : A → A, I3 : B → B, I1 : C → C,

I2 : D → D, I212 : E → E, I321F1 → F2,

I2
321G1 → G2, I321H1 → H2, I3

321I1 → I2.
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Side pairing relations for Γ(3, 3, 4; 7)

I232 : A → A, I3 : B → B, I1 : C → C,

I2 : D → D, I2123212 : E → E, I321F1 → F2,

I2
321G1 → G2, I3

321H1 → H2.

3.3.3 Cycle relations and group presentations

Cycle relations for Γ(3, 3, 5; 5)

We already have the reflection relations 11 = 22 = 33 = Id, this allows to remove

double letters in the cycle words to get the cycle relations shown in the table below

Face Cycle length Cycle relation

(13, 1232, 23) 4 Id

(13, 23, 3123) 4 232323 = Id

(13, 1232, 3123) 6 23232131232321 = Id

(12, 23, 3212) 4 Id

(12, 3212, 312121) 4 Id

(12, 3121, 312121) 6 31231(2321)3321 = Id

(123212, 12, 312121) 4 212(123)3212(321)3 = Id

(3121, 3123, ∗) 4 Id

(3121, 12, ∗) 4 Id

(3121, 312121, ∗) 4 Id

(123212, 1232, ∗) 2 Id

(12, 312121, ∗) 3 Id

(312121, 123212, ∗) 1 (321)15 = Id

There are 5 non-trivial cycle relations, after some manipulation of the words it can

be seen that these correspond to the relations I3
23, I

3
13, I

5
1232, I

5
12 and I15

123. Then by

taking inverses or conjugates of these words we obtain all the relations shown in

presentation (3.11) below.
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Cycle relations for Γ(3, 3, 4; 7)

We already have the reflection relations 11 = 22 = 33 = Id, this allows to remove

double letters in the cycle words to get the cycle relations shown in the table below

Face Cycle length Cycle relation

(13, 23, 1232) 4 Id

(13, 3123, 23) 4 232323 = Id

(13, 1232, 3123) 6 23232131232321 = Id

(1231, 1232, 12) 4 Id

(12, 3212, 3121) 6 2121231232321321 = Id

(1232, 12(3212)2, 123212) 5 123212(123)22(321)3 = Id

(12(3212)2, 3212, 21231213) 4 (2123212)(321)3(2123212)(123)3 = Id

(3121, 3212, ∗) 3 Id

(3212, 23(2123)2, ∗) 3 Id

(23(2123)2, 1232, ∗) 3 Id

(1232, 12(3212)2, ∗) 4 Id

(12(3212)2, 21231213, ∗) 1 (123)42 = Id

This time there are 6 non-trivial cycle relations, after some manipulation of the

words it can be seen that these correspond to the relations I3
23, I

3
13, I

7
1232, I

4
12 and

I42
123 (one of the relations is redundant, it can be derived from the other five). Then

by taking inverses or conjugates of these words we obtain all the relations shown in

presentation (3.12) below.

Group presentations

Using Poincaré’s polyhedron theorem we produce the following presentations for the

groups.

A presentation for Γ(3, 3, 5; 5)

〈I1, I2, I3 | I2
i , I

3
23, I

3
31, I

5
12, I

5
1323, I

15
123〉 (3.11)

A presentation for Γ(3, 3, 4; 7)

〈I1, I2, I3 | I2
i , I

3
23, I

3
31, I

4
12, I

7
1323, I

42
123〉 (3.12)
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These presentations agree with those obtained from the Reidemeister-Schreier

method in proposition 3.2.1

3.3.4 Euler orbifold characteristics

Euler orbifold characteristic for Γ(3, 3, 5; 5)

Contribution to Euler orbifold characteristic from 0-faces.

Orbit representative Stabiliser Order Euler

23 〈I2, I3〉 6 1/6

31 〈I3, I1〉 6 1/6

12 〈I1, I2〉 10 1/10

1232 〈I1, I232〉 10 1/10

312121 〈I3, I12121, (I123)3〉 100 1/100

∗ 〈I123〉 15 1/15

61/100
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Contribution to Euler orbifold characteristic from 1-faces.

Orbit representative Stabiliser Order Euler

(13, 23) 〈I3〉 2 −1/2

(13, 3123) 〈I313〉 2 −1/2

(13, 1232) 〈I1〉 2 −1/2

(23, 1232) 〈I232〉 2 −1/2

(23, 3123) 〈I232〉 2 −1/2

(1232, 3123) 〈I232〉 2 −1/2

(12, 3212) 〈I212〉 2 −1/2

(12, 312121) 〈I12121〉 2 −1/2

(1232, 123212) 〈I12321〉 2 −1/2

(123212, 312121) 〈I212, (I123)3〉 10 −1/10

(12, ∗) Id 1 −1

(1232, ∗) Id 1 −1

(312121, ∗) 〈(I123)3〉 5 −1/5

−34/5
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Contribution to Euler orbifold characteristic from 2-faces.

Orbit representative Stabiliser Order Euler

(13, 1232, 3123) Id 1 1

(13, 1232, 23) Id 1 1

(13, 23, 3123) Id 1 1

(12, 23, 3123) Id 1 1

(12, 3212, 312121) Id 1 1

(12, 3121, 312121) Id 1 1

(123212, 12, 312121) 〈I212〉 2 1/2

(3121, 3123, ∗) Id 1 1

(3121, 12, ∗) Id 1 1

(123212, 1232, ∗) Id 1 1

(12, 312121, ∗) Id 1 1

(3123, 312121, ∗) Id 1 1

(312121, 123212, ∗) 〈(I123)3〉 5 1/5

117/10

Contribution to Euler orbifold characteristic from 3-faces.

Orbit representative Stabiliser Order Euler

A 〈I232〉 2 −1/2

B 〈I3〉 2 −1/2

C 〈I1〉 2 −1/2

D 〈I2〉 2 −1/2

E 〈I212〉 2 −1/2

F1 Id 1 −1

G1 Id 1 −1

H1 Id 1 −1

I1 Id 1 −1

−13/2
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Contribution to Euler orbifold characteristic from 4-faces.

Orbit representative Stabiliser Order Euler

∆ Id 1 1

1

The Euler orbifold characteristic of (3, 3, 5; 5) is

61

100
− 34

5
+

117

10
− 13

2
+ 1 =

1

100
.

Euler orbifold characteristic for Γ(3, 3, 4; 7)

Contribution to Euler orbifold characteristic from 0-faces.

Orbit representative Stabiliser Order Euler

23 〈I2, I3〉 6 1/6

31 〈I3, I1〉 6 1/6

12 〈I1, I2〉 8 1/8

1232 〈I1, I232〉 14 1/14

1232123212 〈I2, I123212321, (I123)3〉 392 1/392

∗ 〈I123〉 42 1/42

109/196
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Contribution to Euler orbifold characteristic from 1-faces.

Orbit representative Stabiliser Order Euler

(13, 3123) 〈I3〉 2 −1/2

(13, 23) 〈I3〉 2 −1/2

(13, 1232) 〈I1〉 2 −1/2

(23, 3123) 〈I232〉 2 −1/2

(23, 1232) 〈I232〉 2 −1/2

(1232, 3123) 〈I232〉 2 −1/2

(12, 3212) 〈I212〉 2 −1/2

(3212, 3121) 〈I3〉 2 −1/2

(1232, 1232123212) 〈I123212321〉 2 −1/2

(1232123212, 2123121) 〈I2123212, (I123)3〉 28 −1/28

(∗, 12) 〈Id〉 1 −1

(∗, 1232) 〈Id〉 1 −1

(∗, 1232123212) 〈(I123)3〉 14 −1/14

−185/28

Contribution to Euler orbifold characteristic from 2-faces.

Orbit representative Stabiliser Order Euler

(13, 3123, 23) Id 1 1

(13, 23, 1232) Id 1 1

(13, 1232, 3123) Id 1 1

(1231, 1232, 12) Id 1 1

(12, 3212, 3121) Id 1 1

(1232, 1232123212, 123212) Id 1 1

(132123212, 3212, 21231213) 〈I2123212〉 2 1/2

(3121, 3212, ∗) Id 1 1

(3212, 2321232123, ∗) Id 1 1

(1232, 2321232123, ∗) Id 1 1

(1232, 1232123212, ∗) Id 1 1

(1232123212, 21231213, ∗) 〈(I123)3〉 14 1/14

74/7
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Contribution to Euler orbifold characteristic from 3-faces.

Orbit representative Stabiliser Order Euler

A 〈I232〉 2 −1/2

B 〈I3〉 2 −1/2

C 〈I1〉 2 −1/2

D 〈I2〉 2 −1/2

E 〈I2123212〉 2 −1/2

F1 Id 1 −1

G1 Id 1 −1

H1 Id 1 −1

−11/2

Contribution to Euler orbifold characteristic from 4-faces.

Orbit representative Stabiliser Order Euler

∆ Id 1 1

1

The Euler orbifold characteristic of Γ(3, 3, 4; 7) is

109

196
− 185

28
+

74

7
− 11

2
+ 1 =

1

49
.

The covolume of a lattice is equal to its Euler orbifold characteristic multiplied

by 8π2/3. Consequently the covolumes of Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) of the com-

binatorial fundamental domains are 8π2/147 and 8π2/300 respectively. This agrees

with covolumes calculated from the commensurability results in the previous sec-

tion. In the next chapter we construct a true fundamental domain of Deraux’s lattice

Γ(4, 4, 4; 5), in principle the same techniques could be applied to the combinatorial

domains in this section, however since Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) lack the triple

symmetry of Deraux’s lattice the calculations are far more involved.

Remark: There seems to be connection between Γ(3, 3, 4; 7) and the fake pro-

jective plane C31 described in [25], both groups are arithmetic over the same alge-

braic field and have the same covolume. There is a similar relationship between

Γ(4, 4, 4; 5) and C2 (see remark 4.7 for more details). This connection merits further

investigation.



Chapter 4

Γ(4, 4, 4; 5)

4.1 Deraux’s Lattice

In this chapter we analyse the deformed triangle group Γ(4, 4, 4; 5). As mentioned

in chapter 2 this is one of four known deformed triangle groups that are lattices.

The group was shown to be a lattice by Deraux in [6], his method involved

constructing a Dirichlet domain for the subset of words of length 1,2,3 and 4. Let

G be a group of isometries and g ∈ G, we define the half space centred a p with

respect g as

Hp(g) := {z ∈ H2
C
|d(z, p) < d(z, g(p))}. (4.1)

The Dirichlet domain centred at p for Γ(4, 4, 4; 5) is the intersection of all these half

spaces

∆p :=
⋂

g∈G

Hp(g). (4.2)

Using this notation, the domain constructed by Deraux is

∆p,W :=
⋂

g∈W
Hp(g). (4.3)

whereW is the subset of Γ(4, 4, 4; 5) consisting of words of length 1,2,3 and 4. Deraux

showed that ∆p,W is bounded. Since ∆p,W must contain a true Dirichlet domain for

all of Γ(4, 4, 4; 5) it follows that Γ(4, 4, 4; 5) was cocompact and combining this with

the fact that the group is arithmetic, Γ(4, 4, 4; 5) is a lattice. Then, using this

98
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domain, Deraux applied Poincaré’s polyhedron theorem to produce the following

presentation for the group

〈
I1, I2, I3 | I2

i , (IiIj)
4 , (IiIjIk)

10 , (IiIjIkIj)
5〉 (4.4)

This presentation is somewhat conjectural since it assumes that there are no extra

faces and cycle relations arising from longer words.

In this chapter we construct a fundamental domain for the whole group, produce

a presentation that agrees with Deraux and calculate the covolume of the lattice.

We try to argue synthetically wherever possible. The main result from this chapter

is as follows.

Theorem 4.1.1 (Main Theorem) The group Γ(4, 4, 4; 5) is a cocompact lattice,

with presentation

〈
I1, I2, I3 | I2

i , (IiIj)
4 , (IiIjIk)

10 , (IiIjIkIj)
5〉 (4.5)

for each choice of i, j, k ∈ {1, 2, 3}

There is an ‘extra’ relation implicit in this presentation

Proposition 4.1.2 (I2I3I1I3I2I3I1I3I2I3)
6 = Id

Proof: We have

(231)3231323 = (231)2(123212321)132

= (231)223(2123212)32(132)

= (231)32(1213121)2(132)2

= (231)32312(1312131)2132(132)2

= (231)4231(3132313)132(132)3

= (231)5(3132313)(132)4

= (231)52313231323(132)5.

Hence (2313231323) commutes with (231)5. Moreover, using the expressions above
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we have:

(2313231323)3 =
(
(231)5(3132313)(132)4

)(
(231)42(1312131)2(132)3

)(
2313231323

)

= (231)53(132)31(21312131)2(132)23231323

= (231)53(132)13(1312)3(13212321323

= (231)53(132)2131213113212321323

= (231)53(132)3121231132121(132)23

= (231)53(132)53.

Therefore

(2313231323)6 = (231)5(2313231323)3(132)5(2313231323)3

= (231)5(231)53(132)53(132)5(231)53(132)53

= (231)103(132)103 = Id.

2

4.1.1 A representation for Deraux’s lattice

Let ω = −1
2

+ i
√

3
2

and φ = 1
2

+
√

5
2

, recall ω2 = ω, ω + ω = −1 and φ2 = φ+ 1, then

we have a representation,

I1 =




0 ωφ w
√
φ

ωφ φ φ
√
φ

−ω√φ −φ√φ −φ2


 ,

I2 =




φ −φ2 φ
√
φ (ω + ωφ)

−φ2 φ −φ√φ (ω + ωφ)

−φ√φ (ω + ωφ) φ
√
φ (ω + ωφ) −φ3


 ,

I3 =




φ3 φω − 1 φ
√
φ (φω − 1)

φω − 1 0 φ
√
φ

−φ√φ (φω − 1) −φ√φ − (φ3 + 1)


 .



4.1. Deraux’s Lattice 101

These matrices preserve the Hermitian form

H =




1 0 0

0 1 0

0 0 −1


 .

From which we derive,

I131 =




0 ωφ −√
φ

ωφ φ −ωφ√φ
√
φ ωφ

√
φ −φ2


 ,

I121 =




0 1 0

1 0 0

0 0 −1


 ,

I212 =




φ ωφ −φ√φ
ωφ 0 −ω√φ
φ
√
φ ω

√
φ −φ2


 ,

I12321 =




φ ωφ ωφ
√
φ

ωφ 0
√
φ

−ωφ√φ −√
φ −φ2


 ,

I1232 =




0 ω 0

−ωφ 0 −√
φ

ω
√
φ 0 φ


 .

It can easily be checked that these matrices are indeed the generators of Γ (4, 4, 4; 5)

either multiplying them together and checking they satisfy the required group rela-

tions or by comparing the matrices to the generators Ii in either [6] or [21]. In these

coordinates the polar vectors for C1, C2, C3 and C121 are:

n1 =




−φω
−φ2

φ
√
φ


 , n2 =




φ(φ−ω)
2

−φ(φ−ω)
2

φ
√
φ


 , n3 =




1 − φω

−1

φ
√
φ


 , n121 =




1

1

0


 .
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Lemma 4.1.3 A(n1,n2,n3) = arg(−φ2(φ4ω − 1)/2) = 2.211616 . . .. So t = π −
A(n1,n2,n3) = 0.929976 . . ..

Proof: Recall A(n1,n2,n3) = arg (−〈n3,n2〉〈n2,n1〉〈n1,n3〉), then the result fol-

lows from a straightforward calculation. Notice that A(n1,n2,n3) agrees with Der-

aux’s t (equation (2.8) of [6]). 2

Using the formulae from chapter 2 we calculate the values of t0 and t1 for

deformed (4, 4, 4) groups, as t0 = 1.209429 . . . and t1 = 0.785398 . . .. Since the

value of t corresponding to Γ(4, 4, 4; 5) lies between t0 and t1, we confirm the group

Γ(4, 4, 4; 5) lies in the region of the parameter space corresponding to non-degenerate

triangle groups where I1323 is regular elliptic

We also define the following matrices

P =




e−πi/9 (ω − φ) 0 e−πi/9
(
φ
√
φ
)

0 e2πi/9ω 0

e−πi/9
(
ωφ

√
φ
)

0 e−πi/9 (1 − ωφ)


 ,

J =




−ωφ2 ωφ2 φ
√
φ (ω + 2)

−ωφ −ωφ −wφ√φ
ωφ

√
φ− ω

√
φ −φ√φ (1 + ωφ) ωφ3


 ,

P 5 =




eπi/9 0 0

0 e−2πi/9 0

0 0 eπi/9


 ,

J ′ = I1JI1 = e−πi/9




φ2 −φ (ω − φ)
√
φ

−φ −ωφ φ
√
φ

(1 − ωφ)
√
φ ωφ

√
φ ωφ− φ2


 .

The matrix J is an order 3 regular elliptic isometry that permutes n1, n2 and n3.

The matrix J ′ cyclically permutes n131, n1 and n121.
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Rather than show that Γ(4, 4, 4; 5) is a lattice we instead prove that 〈I1, J〉 is a

lattice and since Γ(4, 4, 4; 5) is an index three normal subgroup of 〈I1, J〉, it follows

that Γ(4, 4, 4; 5) is a lattice with three times the covolume of 〈I1, J〉.

Lemma 4.1.4 P has order 30 and P 5 is a complex reflection of order 6.

Proof: This can easily be checked via a computer calculation or calculating eigen-

values of the matrices above. 2

Lemma 4.1.5 P = JI1 and P 3 = I231.

Proof: The first relation can be quickly confirmed using Maple. For the second

relation we observe JIiJ
−1 = Ii+1 taking the indices modulo 3. We use this relation

to simplify P 3 = JI1JI1JI1 = I231. 2

Proposition 4.1.6 Deraux’s lattice is arithmetic, in particular, it is discrete.

Proof: Corollary 2.6 of [6]. 2

4.1.2 The action of P

Since P will play an important role in our construction, for convenience we now

include the relevant part of the P -orbit of words which will appear as either vertices

or C-lines in our fundamental domain. In word notation, P , like all isometries, acts

on a word by conjugation. The calculation can be easily checked e.g. P (1231) =

J112311J−1 = J23J−1 = 31.

Words corresponding to points

1231 → 13 → 12 → 23 → 2312,

12321231 → 132313 → 131212 → 1323 → 2131 → 1232 → 2313 → 232121,

2321232121→2313231323→231213121312→32312321→21312313→2321232121.

Words corresponding to C-lines

131 → 1 → 2 → 232,



4.2. A combinatorial fundamental polyhedron 104

313 → 121 → 3 → 212 → 323.

Remark: These orbits show a degree of symmetry with respect to the anti-holomorphic

involution that fixes 3 and swaps 1 and 2. On the first orbit this involution fixes 12

(also P 15(12)) and swaps P n(12) with P−n(12) for −15 < n < 15. On the second

orbit, the involution swaps P n(1232) with P−(n+1)(1232). Similar symmetries exist

on the other three orbits (compare with section 4.2 of [30]).

Proposition 4.1.7 The group 〈I132, I2321232121〉 stabilises a C-line and acts on that

C-line as an index 2 subgroup of a C-Fuchsian (2, 5, 6) triangle group.

The group 〈I121, I2, I3〉 stabilises an R-plane and acts on that R-plane as an R-

Fuchsian (2, 4, 5)-reflection group.

Proof: The matrices for I132 and I2321232121 are

I132 =




ωφ 0
√
φ

0 ω 0

−ω√φ 0 −φ


 I2321232121 =




−ω 0 0

0 −ω 0

0 0 1




Both words preserve the C-line {(ζ, 0, 1)t|ζ ∈ C)}. After checking eigenvalues, we

see that I132 acts on this C-line as an order 5 rotation about the point ∗ (see section

4.3.1) and I2321232121 acts as an order 6 rotation about (0, 0, 1)t and I132I2321232121 =

I121232121 is and order 2 isometry also fixing the same C-line. A C-line is a copy of

the H2
R
, so we conclude that 〈I132, I2321232121〉 is an index 2-subgroup of a (2, 5, 6)

triangle group.

The second part is essentially identical to lemma 3.2 from [31]. 2

4.2 A combinatorial fundamental polyhedron

In this section we give a combinatorial description of a polyhedron that will later

be modified to produce a fundamental domain for 〈I1, J〉.
Our fundamental domain for the group will consist of three ‘core’ polyhedra (all

contained in bisectors) over which we take a geodesic cone (a process described in

section 4.2.2). This process is strongly related to how we constructed the funda-

mental domains for Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5) described in chapter 3, however we
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are able to simplify the construction in this case by using the extra symmetry J to

reduce the number of core faces required.

4.2.1 The core faces

There are three core pieces, these are solid polyhedra homeomorphic to the 3 di-

mensional ball. We denote them A, B and C (as shown in figure 4.1 ).

The first core piece, A, is the octahedron with vertices 1231, 12, 13, 1323, 1232, 23.

Note that 12, 13, 1323, 1232 all lie in the C-plane C1 and I1(1232) = 23. The complex

reflection I1 in C1 sends A to itself. This is essentially the same as Schwartz’s Odd

B pieces in section 4.6 [30].

The second core piece, B, is the solid affine decahedron (or more accurately

pentagonal dipyramid) with vertices 1232, 232121, 12, 1231, 12321231, 2321232121,

131212. The points 232121, 12, 1231, 12321231, 2321232121 all lie in the C-plane C121

and I121 (1232) = 131212. This is equivalent to the five sided version of Schwartz’s

even A Pieces).

1323

1312

23

1231

1232

12321231

2321232121

232121 12 1231

131212

1232

1232 12321231

12321323

2321232121

A B C

Figure 4.1: The core faces A, B and C

The final core face C is a tetrahedron with vertices 2321232121, 1232, 12321231

and 12321323. Note that 2321232121 and 12321323 are fixed by P 5 and P 5(12321231) =

1232. Also I123212321 sends C to itself.
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By identifying any triangular faces that have the same vertices we glue our three

core pieces together as follows; we glue A and B along (1232, 12, 1231) and glue B

and C along

(2321232121, 123212321, 1232). A and C do not share any common faces.

Definition 4.2.1 We call the polyhedron A∪B∪C with the above gluing the core

polyhedron and A, B and C core faces.

Proposition 4.2.2 Images of the core polyhedra under 〈P 〉 tile a region homeomor-

phic to the 3-sphere, in particular all the 2-faces ‘close up’, by which we mean every

2-face is contained in exactly two polyhedra of the P -orbit (this is equivalent to the

P -orbit of the core polyhedra forming a 4-dimensional polytope).

Proof: We first consider the P -orbit of A, the core octahedron. A shares common

2-faces with the following elements of its P -orbit

A ∩ P (A) = (13, 12, 23),

A ∩ P−1(A) = (1231, 13, 13),

A ∩ P 2(A) = (12, 23, 1232),

A ∩ P−2(A) = (1231, 13, 1323).

This can be difficult to visualize, but is readily seen with the aid of a model.

We can continue with this process for the whole P -orbit gluing P i (A) to P i+k (A)

where k ∈ {−2,−1, 1, 2} for all 0 ≤ i ≤ 29.

O P(O)

1231

23

13 12
1232

13

2312

2312
23131323 2131

132131

2131
131231

131212

12

P  (O)
−1

Figure 4.2: A, P−1 (A), and P (A).
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Since P has order 30 this process will eventually terminate as the two ends of

the tower of octahedra will be identified forming a polyhedron homeomorphic to a

solid torus. The surface of this torus is triangulated by the faces of {P i (A)}29
i=0

that don’t glue to any other octahedron in the orbit. This configuration is shown

in figure 4.3, the numbers inside triangles denote the power of P to which that face

belongs. This is locally identical to figure 6.2 of [30] except, in that case, the ‘tower’

of octahedra does not close up to form a torus.

2
2 3

3
3

3
4

4
4

4

0
0

0
1

1
1

1
2

2
2

2

5

−2−2
−2 −1

−1
−1

−1
0

0
0

2312 232121

2131 12 1232 23 2313

131212 1231 1323 13 2131

12321231

P

P

2

−2

Figure 4.3: Outside of the torus of octahedra.

Onto the surface of the torus we glue the P -orbit of the decahedron B, (this is

analogous to adding the Z2 layer in Schwartz), the shaded regions on figures 4.3 and

4.4 are the attaching site of B and the whole surface is covered by translates of this

region under P , i.e. all the faces of the octahedra are glued to a face of another

polyhedron.

Now the faces of the decahedron are glued to the faces belonging to other deca-

hedra as follows,

P 2 (B) ∩B = (232121, 12, 13121),

P−2 (B) ∩B = (1232, 1231, 12321231),

P 5 (B) ∩B = (2321232121, 232121, 1232),

P−5 (B) ∩B = (2321232121, 131212, 12321231).

At this stage, all the faces of the octahedra P n(A) are closed and all except two

of the faces on each decahedron P n(B) are closed. The remaining sixty faces are
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2321232121

1232

131212

1231

12 12321231

232121

+2

−2 +5

−5

Figure 4.4: Schematic figure of the gluing of B

on P -orbit of B are (2321232121, 1232, 12321231) and (2321232121, 131212, 232121)

and their images under P . We glue onto these faces the P -orbit of C as follows.

B ∩ C = (2321232121, 1232, 12321231) ,

B ∩ P 2 (C) = (2321232121, 131212, 232121) .

This only leaves two faces of C not closed (and their images under P ). These faces

are

(2321232121, 12321323, 1232) and (2321232121, 12321323, 12321231). They are glued

to neighbouring copies of C as follows

C ∩ P 5 (C) = (2321232121, 12321323, 1232) ,

C ∩ P−5 (C) = (2321232121, 12321323, 12321231) .

Since every 2-dimensional face in the P -orbit of (A ∩ B ∩ C) is contained in

exactly two polyhedra we conclude that it is polytope and it is homeomorphic to a

3-sphere. 2

4.2.2 The cone faces

The full combinatorial fundamental domain which we denote ∆ is the geodesic cone

over the core polyhedron (A ∪ B ∪ C) to the fixed point of P , which we denote ∗.
Since we are only concerned with affine structure in this section, this is a purely
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combinatorial construction. In the next section we need to take more care ensuring

the cones have no self intersections. For a subset D ⊂ H2
C

and a point p ∈ H2
C

we

define Conep (D) as follows:

Conep (D) =
⋃

z∈D

[z, p] (4.6)

where [z, p] is the geodesic segment from z to p.

Definition 4.2.3 Let ∗ be the fixed point of P (equivalently the fixed point of P 3 =

I132). Our fundamental domain ∆ is defined as

∆ := (Cone∗ (A ∪B ∪C)) ∪ (A ∪B ∪C) . (4.7)

The interior of ∆ is the cone over the interior of the core polyhedron A ∪ B ∪ C

and the boundary of ∆ is the prism over the boundary of A ∪B ∪C (i.e. the cone

over the 2-faces in the boundary of the core pieces constructed above) together with

the core faces themselves.

The boundary of ∆, consists of twenty one 3-faces, namely A, B, C, and eighteen

cone faces, Pi, as listed below. Later, when we use Poincaré’s polyhedron theorem,

will simplify this configuration by combining several of the cone faces together and

reducing the total number of 3-faces to eleven.

List of cone faces

The cones that appear as faces in the fundamental domain are the cones over the

exposed faces in the triangulated surface of the core polyhedron A ∪ B ∪C,

Cone∗(13, 12, 23), Cone∗(13, 23, 1323), Cone∗(1231, 13, 12), Cone∗(1231, 12, 131212),

Cone∗(23, 1323, 1232), Cone∗(1231, 12321231, 131212), Cone∗(12, 23, 1232),

Cone∗(12, 131212, 232121), Cone∗(12, 1232, 232121), Cone∗(131212, 232121, 2321232121),

Cone∗(12321231, 1232, 12321323), Cone∗(1231, 12321231, 1232), Cone∗(1231, 1323, 1232),

Cone∗(1231, 13, 1323), Cone∗(1232, 232121, 2321232121), Cone∗(1232, 12321323, 2321232121),

Cone∗(12321231, 131212, 2321232121), Cone∗(12321231, 12321323, 2321232121).

4.3 A fundamental domain

We now construct a true fundamental domain for Deraux’s lattice by modifying the

combinatorial polyhedron described in the previous section (this process is similar
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to [9]). This is done by keeping the same 0-skeleton, replacing the 1-skeleton with

geodesic segments and the 2-skeleton with the regions of the 2-dimensional inter-

section of bisectors bounded by the 1-skeleton. The core faces in the 3-skeleton are

replaced with the regions of bisectors bounded by the 2-skeleton. The cone faces

are replaced with the geodesic cones over the 2-skeleton of the core faces. The cone

faces will not be contained in any bisectors. We call this modified polytope the ge-

ometric fundamental domain (to contrast with the combinatorial fundamental

domain) and the modified core and cone faces, geometric faces.

4.3.1 The vertices of ∆

Using the matrices described in section 4.1.1 we can explicitly calculate the coordi-

nates of the vertices that appear as the 0-skeleton of our fundamental domain. The

vector ∗ corresponds to the unique fixed point of P and

Υ := (1/2)φ2
(
1 − ω + ω

√
4φ− 7

)
.

1232 =




−ω
−1

φ
√
φ


 2321232121 =




0

0

φ
√
φ


 232121 =




1

−1

φ
√
φ




12 =




φ−ω
2

ω−φ
2

φ
√
φ


 1231 =




1−φω
2

φω−1
2

φ
√
φ


 12321231 =




−ω
ω

φ
√
φ




131212 =




1

ω

φ
√
φ


 13 =




1
3
φ2 (1 − ω)

1
3
φ (ω − 1)

φ
√
φ


 1323 =




1
2
(1 − ωφ2)

1
2
(ωφ+ ω)

φ
√
φ




23 =




ω + φ

−1

φ
√
φ


 32312321 =




−ωφ
0

φ
√
φ


 ∗ =




Υ

0

φ
√
φ


 .

Remark: We have chosen to renormalise the standard lift of a point by multiplying

by φ
√
φ, this is merely for convenience since the coordinates can be more naturally

expressed in this form.
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4.3.2 The core faces

We now construct three bisectors, that contain the vertices of each of the core faces

and then using the totally geodesic decompositions of bisectors (proposition 1.2.25)

we shall put geodesic structure on the 1-skeleton of the core faces. Recall that a

bisector can be uniquely determined by its real spine (a real geodesic). Let σB be the

real geodesic γ(131212, 1232) contained in the C-line Σ(131212, 1232). Then define

BB as the bisector determined by this geodesic.

Lemma 4.3.1 C121 is a slice of BB and any geodesic between a pair of points from

the following set lies entirely within BB

{p1232, p232121, p12, p1231, p12321231, p2321232121, p131212}

Proof: First observe that I121, the inversion in C121 interchanges 1232 and 131212

and hence σ121, the geodesic between these points, is fixed set-wise by I121. Since a

bisector is uniquely determined by its real spine BB = I121 (BB) then by 5.2.1 of [10]

C121 is a slice of BB. The second part follows from the observation that all the points

from the list lie in either the slice C121 or on the real spine and so any pair of points

lie in a totally geodesic subspace (either a slice or a meridian). 2

Corollary 4.3.2 By an essentially identical argument we can find bisectors BA and

BC containing our half-octahedron and tetrahedron faces A and C. For BA the

real spine σA is the real geodesic containing 23 and 1232 in the C-line Σ(23, 1231).

For BC the real spine σC is the real geodesic containing the points 2321232121 and

12321323 in the C-line Σ(2321232121, 12321323).

We put a geodesic structure on their respective 1-skeletons in exactly the same

manner.
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Bisectors containing core faces

BA = E







ωφ

−ω + ω

−ω√φ+ (ω − ω)φ
√
φ


 ,




1 − ω − φ

0

ω
√
φ







=









z1

z2

φ
√
φ


 :

∣∣∣ωφz1 + (ω − ω)z2 + ωφ2 + (ω − ω)φ3
∣∣∣ =

∣∣∣ωφz1 + (ω − ω)z1 + φ2
∣∣∣






=









z

(z + φ− eiθz − eiθωφ)(1 − ω)φ/3 − φ3 + eiθz

φ
√
φ


 : z ∈ C, θ ∈ [0, 2π)





,

BB = E







0

ω − 1

φ
√
φ


 ,




1 − ω

0

φ
√
φ







=









z1

z2

φ
√
φ


 : 3

(
|z2|2 − |z1|2

)
+ 2φ3Re ((1 − ω) (z1 + z2)) = 0






=









z

zeiθ − φ3(1 + eiθ)(1 − ω)/3

φ
√
φ


 : z ∈ C, θ ∈ [0, 2π)





,

BC = E







1 − ω

0

φ
√
φ


 ,




ω − 1

0

φ
√
φ







=









z1

z2

φ
√
φ


 : Re (z1 (1 − ω)) = 0






=









t ω

z

φ
√
φ


 : t ∈ R, z ∈ C





.
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The polar vectors to the complex spines are as follows,

nA =




φ2

2
(φ− ω)

ωφ−ω
2

φ
√
φ


 , nB =




φ3(1−ω)
3

−φ3(1−ω)
3

φ
√
φ


 , nC =




0

1

0


 .

The real spines are the intersections of the complex spines with the bisectors, ex-

plicitly

σA =




(φ2 − ω) sinh((t− s)/2) − (φω − 1) sinh((r − t)/2)

(ω − φ) sinh((t− s)/2) + (φω − 1) sinh((r − t)/2)

φ
√
φ ((φ− ω) sinh((t− s)/2) + 2 sinh((r − t)/2))


 ,

σB =




ωt− ω

ωt− 1

φ
√
φ


 , σC =




tω

0

φ
√
φ


 .

(unfortunately σA does not seem to have a nice form in these coordinates).

Bisector intersections containing 2-faces

This section contains a list of the pairs of bisectors whose intersections contain one of

the exposed 2-faces of the core pieces. For example the face (1232, 2321232121, 232121)

is contained in both B and P 5 (B) and so the geometric face is contained in the in-

tersection of BB (the bisector containing B) and P 5 (BB) (the bisector containing

P 5 (B)). These intersections are Giraud discs (see 1.2.32) so there is at most one

other bisector containing the intersection.

Using these bisectors and their images under various elements of our group we

can now explicitly write down the 2-dimensional submanifolds that will contain the

generic 2-faces of our core pieces, it will be a smooth disc containing three geodesic

segments. The 2-faces will be the regions of these discs bounded by the geodesic

1-skeleton. The core 3-faces will then simply be the regions of the bisector bounded

by the 2-faces.

2-faces of A

• (1231, 13, 12) ⊂ BA ∩ P−1BA,
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• (1231, 13, 1323) ⊂ BA ∩ P−2BA,

• (1231, 1323, 1232) ⊂ BA ∩ P−2BB,

• (12, 23, 1232) ⊂ BA ∩ P 2BA,

• (13, 12, 23) ⊂ BA ∩ PBA,

• (13, 23, 1323) ⊂ BA ∩ PBB,

• (23, 1323, 1232) ⊂ BA ∩ P 3BB.

2-faces of B

• (1232, 232121, 2321232121) ⊂ BB ∩ P 5BB,

• (12, 1232, 232121) ⊂ BB ∩ P 2BA,

• (1231, 12321231, 1232) ⊂ BB ∩ P−2BB,

• (131212, 232121, 2321232121) ⊂ BB ∩ P 2BC ,

• (12, 131212, 232121) ⊂ BB ∩ P 2BB,

• (1231, 12, 131212) ⊂ BB ∩ P−1BA,

• (1231, 12321231, 131212) ⊂ BB ∩ P−3BA,

• (12321231, 131212, 2321232121) ⊂ BB ∩ P−5BB.

2-faces of C

• (12321231, 1232, 12321323) ⊂ BC ∩ P−2BB,

• (12321231, 12321323, 2321232121) is contained in a meridian of BC ,

• (1232, 12321323, 2321232121) is contained in a meridian of BC .

We will take geodesic cones over these eighteen 2-faces. In addition there are also

the two 2-faces along which we glued the core pieces, we list these 2-faces for the

sake of completeness.

• (1231, 12, 1232) ⊂ BA ∩ BB,
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• (12321231, 1232, 2321232121) ⊂ BB ∩ BC .

Proposition 4.3.3 The intersection of any pair of bisectors in the above list will

be a smooth 2-dimensional disc.

Proof: This immediately follows from the fact that the complex spines of the

bisectors intersect outside their real spines. This is a straightforward calculation on

Maple using the polar vectors above and the observation that the complex spines

only meet at one point, so we need only ensure that this intersection point is not

contained in either real spine. All the above pairs of bisectors are coequidistant and

therefore by 1.2.32 the intersection is a smooth connected disc. 2

Definition 4.3.4 A bisector B partitions H2
C
\ B into two disjoint half-spaces, if ∗

is not contained in B, then we say the half-space containing ∗ is the good side of

B (with respect to ∗). The other half space we call the bad side of B.

Lemma 4.3.5 For n ∈ {0, 1, . . . 29}, ∗ does not lie in P n (BA), P n (BB) or P n (BC).

In other words all these bisectors have a well defined good side.

Proof: This follows from the observations that ∗ is not contained in BA, BB or BC
and ∗ is fixed under P . 2

Lemma 4.3.6 For n ∈ {0, 1, . . . 29} the points P n(12), P n(1232) and P n(232123212)

are either contained in BA or they are on the good side of BA (the same half space

as ∗).

Proof: Since we have already explicitly calculated the points 12, 1232 and 232123212

and the matrix P , this can be checked relatively quickly using Maple. The same is

true for BB and BC . 2

Lemma 4.3.7 For each of the bisectors BA, BB or BC , the P -orbit of the geodesic

segments that make up the 1-skeleton of the core faces is contained in the bisector

or on its good side.
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Proof: Again, this can be checked using Maple, although it is rather a lengthy and

tedious series of calculations. 2

Lemma 4.3.8 The geodesic segment [p, ∗], for p ∈ {P n(12), P n(1232), P n(232123212)

| n = 0, 1, . . . 29}, is contained in the good sides of BA, BB and BC .

The four lemmas above together show that the 0 and 1-skeletons of ∆ lie either in or

on the good side of P n(BA), P n(BB) and P n(BC) for n ∈ {0, 1, . . . 29}. Equivalently,

the 1-skeleton of P n(∆) lies on the good side of BA,BB and BC . Eventually we will

show that all of ∆ is contained on the good sides of these bisectors.

4.3.3 Intersection of faces

This section can be skipped over by a reader who is prepared to believe that the

geometric and combinatorial fundamental domains are homeomorphic, i.e. the geo-

metric faces do not intersect anywhere not prescribed by the combinatorial domain.

Theorem 4.3.9 The polyhedron ∆ is topologically a four dimensional ball and the

boundary ∂∆ is a three dimensional sphere.

To prove this we use the following theorem.

Theorem 4.3.10 Let p be a point on the boundary of the core polyhedron, then

[p, ∗] the geodesic line segment between p and ∗, does not intersect A, B or C except

where specified by the combinatorial model.

This is a technical result which leads to the following corollaries.

Corollary 4.3.11 Cone faces are homeomorphic to solid 3-balls.

Proof: The only way a cone face could fail to be homeomorphic to a solid 3-

ball is if there were two points, p and p′, in the triangle base with the property

that [p, ∗] ⊂ [p′, ∗]. In other words the point p lies on the geodesic between p′

and ∗. But since p is contained in one of the core faces, this would mean that the

geodesic segment [p′, ∗] passes through a core face at a point not prescribed by the

combinatorial model. By theorem 4.3.10 this does not occur. 2
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Corollary 4.3.12 Two cone faces intersect only where specified by the combinato-

rial model.

Proof: This is essentially the same argument as the proof of the previous corollary,

if the cone faces did intersect somewhere that the combinatorial model does not

specify, that would necessarily mean there are two geodesics one of which is a subset

of the other, which leads to the same contradiction as before, i.e. one of the cone

faces would have a bad intersection with a core face. 2

Corollary 4.3.13 A cone face and a core face only intersect as in the combinatorial

model.

Proof: This is literally what theorem 4.3.10 says. 2

Theorem 4.3.10 would be simple to prove if we could assume that if two points p

and q lie on the same side of a bisector, then the entire geodesic segment [p, q] also

lies on that side of the bisector. However this would imply that bisectors are totally

geodesic, which unfortunately is not the case.

There is also the possibility that the cones over the interior of the core pieces intersect

badly. Concretely there could, for example, be points p ∈ int(A) and q ∈ int(B)

such that [p, ∗] ⊂ [q, ∗], see the right hand configuration in figure 4.5 for a schematic

picture. This cannot happen since it would necessarily require part of the 1-skeleton

H2
C

A

B

∗ ∆

A

B

∗

q

p

Figure 4.5: Left hand side: Simplified schematic view of ∆. Right hand side

:Schematic of a possible bad intersection

of ∆ to lie on the bad side of the bisector containing one of the core faces. In the
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schematic picture the part of the one skeleton is on the bad side of BA, the bisector

containing A. Since we have established that the 1-skeleton is entirely contained in

the good sides of all three bisectors we conclude this sort of intersection is impossible.

We also need to ensure that no two core faces intersect outside of the prescribed

2-faces. This follows directly from the fact that we constructed our core faces to be

regions of coequidistant bisectors bounded by Giraud discs. So two core face can,

at worst, only meet in a two dimensional disc. We can then use the slice foliation of

the bisectors to show that the intersection is exactly a triangle, a geodesic, a point

or empty as in the combinatorial model.

We begin by proving several technical lemma that we will use to prove theorem

4.3.10.

Definition 4.3.14 We denote the orthogonal projection onto the complex spine of

A by ΠA : H2
C
→ ΣA. Similarly ΠB and ΠC.

Lemma 4.3.15 The image of A under orthogonal projection onto its complex spine

ΣA is the geodesic segment [p1231, p23]. More succinctly, ΠA(A) = [p1231, p23]. We

will refer to this geodesic segment as the relevant part of the real spine σA.

Corollary 4.3.16 The image of B (respectively C) under orthogonal projection

onto its complex spine ΣB (respectively ΣC) is the geodesic segment [p1232, p131212]

(respectively [p2321232121, p12321323]).

Lemma 4.3.17 Let γ be (an arc of) a geodesic, then either γ is contained in BA
or γ intersects A in fewer points than ΠA(γ) intersects [p1231, p23].

Proof: By proposition 1.2.27 in chapter 1, we know that the number of intersection

points between a bisector and a geodesic is equal to the number of intersection points

between the real spine of the bisector and the image of the geodesic under orthogonal

projection onto the complex spine of the bisector. By 4.3.15 A is contained in the

subset of the bisector BA corresponding to the geodesic segment [p1231, p23] ⊂ σA.

Assume that γ is not contained in a slice of BA, then γ intersects this subset of BA in

n points if the orthogonal projection of γ onto ΣA intersects [p1231, p23] in n points.

2
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Corollary 4.3.18 Let γ be (an arc of) a geodesic, then either γ is contained in

BB (respectively BC) or γ intersects B (respectively C) in fewer points than ΠB(γ)

(respectively ΠC(γ)) intersects [p1232, p131212] (respectively [p2321232121, p12321323]).

This lemma and corollary provide us with an intuitive and relatively pain free way

of proving that a geodesic cone face does not have any extra intersections with one

of the core faces. We just need to ensure that the image of the geodesic cone face

under orthogonal projection does not intersect badly with the relevant segment of

the real spine.

Figures 4.6, 4.7 and 4.8 show the projection of the geodesic 1-skeleton of ∆ onto

the complex spines of BA, BB and BC . The blue curves are the projections of the

1-skeleton of the core faces and the red curves are the projection of the geodesic

segments between vertices of the core faces and the image of ∗, the black circle arc

is the relevant part of the real spine. We have normalised so that the Πx(∗) is at

the origin. Recall that a C-line in the ball is a copy of Poincaré disc model of H2
R
,

so we can think of these pictures as curves and geodesics intersecting in the real

hyperbolic plane.

The blue and red curves are the images of geodesics under orthogonal projection,

so by 1.2.17, they are arcs of geometric circles (or geometric straight lines). It

appears clear from the figures that the blue and red curves only intersect the black

line in at most one end-point and careful analysis shows that these are exactly the

points prescribed by the combinatorial model. These figures are not intended as a

proof of 4.3.10 but they provide a good intuitive idea of what the proof involves-

we show that the orthogonal projection of each cone face does not have any non-

prescribed intersections with the real spine, so the cone face cannot have any non-

prescribed intersection points with the core faces.

Our proof is conceptually similar to that of proposition 4.2 of [7]. The proof

from that paper is somewhat lacking in detail; we go through the argument more

thoroughly. In [7] it was possible to use the fact that the cone point was contained

in the complex spines of the relevant bisectors to conclude that the orthogonal

projection of any geodesic segment containing the cone point was itself a geodesic

in the complex spine. This is not the case in our construction, however we can put
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precise bounds on how close the projected geodesic is to a geodesic and use these

bounds to prove analogous results.

Figure 4.6: Projection of the 1-skeleton of ∆ onto ΣA

The first thing we need to do is ensure that the image of the triangular bases

to the cone faces under orthogonal projection intersect the relevant part of the real

spine correctly. By lemma 4.3.7 we know all the geodesic segments bounding a

triangle base intersect with the core faces as expected, so we only need to check that

the interior of the triangle has no extra intersections.

4.3.4 Giraud discs

Lemma 4.3.19 Giraud discs admits three foliations by hypercycle segments.

Proof: A Giraud disc, G, is contained in the intersection of three bisectors B1, B2

and B3. Using the Mostow decomposition (theorem 1.2.25) each of these bisectors

is foliated by C-lines (the slices of Bi). Let C1,p be a slice of the bisector B1 cor-

responding to a point p ∈ σ1, then we consider the intersection C1,p with G. By
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Figure 4.7: Projection of the 1-skeleton of ∆ onto ΣB

lemma 1.2.27 the intersection of a C-line with a bisector is a hypercycle in C. Since

G = B1 ∩ B2 ∩ B3, the intersection C1,p ∩ G is a segment of a hypercycle in C1,p.

Varying p ∈ σ1 produces a family of hypercycle segments that foliates G, we denote

this foliation by F1. Using the Mostow decomposition of the other two bisectors

produces the other foliations, denoted F2 and F3. 2

Definition 4.3.20 Let G be a Giraud disc with hypercycle foliations F1, F2 and F3

and D a subset of G homeomorphic to a 2-ball. We say that D is Giraud convex

if, for all hypercycles δ ∈ Fi, the intersection δ ∩ ∂D consists of at most two points.

Alternatively for all hypercycles δ ∈ Fi, the intersection δ ∩ D is either empty, a

point or a connected subset of δ.

Lemma 4.3.21 A Giraud disc is always Giraud convex.

Proof: This follows from Deraux analysis of Giraud discs in section 4 of [6]. 2
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Figure 4.8: Projection of the 1-skeleton of ∆ onto ΣC

Definition 4.3.22 Let T be a region of a Giraud disc whose boundary consists of

three hypercycles from the foliations Fi. We call such a region a Giraud triangle.

Note that necessarily the three bounding geodesics must come from three different

foliations and T is Giraud convex.

Lemma 4.3.23 Except for the triangles (1232, 12321323, 2321232121) and

(12321231, 12321323, 2321232121) all the triangles in the boundary of the core faces

are Giraud triangles. The triangles (1232, 12321323, 2321232121) and

(12321231, 12321323, 2321232121) are contained in R-planes (meridians of BC).

Proposition 4.3.24 Let D be a Giraud convex region contained in G, the Giraud

disc that is the intersection of three equidistant bisectors B1, B2 and B3. Let C be

a C-line that is not the complex spine of B1, B2 or B3 and let ΠC : H2
C → C be the

orthogonal projection onto C. Assume the projection ΠC : ∂D → C is homeomorphic,

then ΠC : D → C is homeomorphic.

If C is the complex spine of one of the bisectors, by theorem 1.2.25, the Giraud disc
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δ2

δ1
p1

p2

q

∂D

ΠC

P

Q

D2

D1

Figure 4.9: Orthogonal projection of a Giraud convex region

is mapped into the real spine.

Proof: Let D be a Giraud convex region and C a C-line such that ΠC : ∂D →
C is homeomorphic. Let F1 and F2 be two foliations of a Giraud disc D. By

proposition 1.2.17, in the ball model a hypercycle is mapped to the arc of a circle

under orthogonal projection, so a hypercycle in F1 or F2 is sent to the arc of a circle

when we orthogonally project the disc onto C.

Assume that two points p1 and p2 in the interior of D are sent to the same point,

P, in ΠC(D). Then we can consider the third point, q, shown in figure 4.9. We

define this point as follows, let δ1 be the hypercycle in F1 containing p1 and δ2 be

the hypercycle in F2 containing py (if necessary swapping the indices on F1 and F2).

Let q be the point contained in the intersection of δ1 and δ2. This new point q is not

equal to p1 or p2 since that would imply that p1 and p2 lie in the same hypercycle

δ̂ in either F1 or F2. Then when we orthogonally project δ̂, the entire hypercycle

including its end points δ̂∩ ∂D will be sent to the same point (by lemma 1.2.16), so

ΠC is not injective on the boundary.

We now consider the image of q under orthogonal projection. Since q and p1

are contained in the same hypercycle, they cannot be mapped to the same point,

similarly q and p2. So the image of q under orthogonal projection, Q, must be

distinct from P. Now we consider the image of the geodesics δ1 and δ2 under

orthogonal projection, which we denote D1 and D2. By proposition 1.2.17, D1 and
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D2 are arcs of circles. We know they intersect at P and Q, so they cannot intersect

anywhere else. The end points of either of the circle arcs lie on opposite sides of the

other circle arc, so the circle arcs must intersect an odd number of times, but they

cannot intersect more than twice, so they must intersect only once, therefore P and

Q are the same point. This is a contradiction, therefore the images p1 and p2 under

orthonormal projection onto C are distinct and ΠC is injective. 2

Proof:[of theorem 4.3.10] We are now ready to prove theorem 4.3.10. We reduce

the problem to a lengthy, but elementary, argument about the intersection properties

of circles in the complex plane, using lemmas 1.2.17 to 1.2.22 from chapter 1.

We shall only go through the details for A in detail, the other cases are essentially

identical.

The core face A is contained in BA with complex spine ΣA, real spine σA and

we denote the relevant part of the real spine σ̂A. We normalise so that ΣA =

{(ζ, 0, 1)t|ζ ∈ C}, ΠA(∗) = (0, 0, 1)t and the ideal endpoints of σA are (eiθ, 0, 1)t and

(−e−iθ, 0, 1)t.

Let p be a point in H2
C
, in this normalisation ΠA([p, ∗]) = (Ŝp, 0, 1)t, where Ŝp is

the shorter arc of circle between ΠA(∗) and ΠA(p) = (Xp, 0, 1)t (see lemma 1.2.17).

Note that there are two constants corresponding to this configuration of ΣA, σa

and ∗. These are θ, the argument of on of the end points of σA and k =
√

(l − 1)/l

where

l =
〈∗,ΠA(∗)〉〈ΠA(∗), ∗〉
〈∗, ∗〉〈ΠA(∗),ΠA(∗)〉 .

Note that this k agrees with the k from lemma 1.2.17.

Explicitly in this normalisation, for ΣA, σA and ∗, θ = 1.052705 . . ., k = 0.158918 . . .

and σA ⊂ (1/ sin(θ))(cos(θ)eit + i).

Let F be a cone face, then F = Cone∗(T ) for some triangle T . By lemma 4.3.7,

ΠA(∂T ) lie on the same side of σA as ΠA(∗) in ΣA. Then we use lemma 4.3.24 to

conclude that ΠA(T ) does not intersect σA and lies entirely on the same side as

ΠA(∗) (see remark 4.3.4 below).

Now we have to show that for any point p ∈ T , the geodesic segment [p, ∗] does

not intersect A except where prescribed. We do this by showing that ΠA([p, ∗]) does
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not intersect σ̂A.

By lemma 1.2.17, ΠA([p, ∗]) is the arc of a circle passing through the origin. We

denote this circle Sp and the arc Ŝp. The arc Ŝp is always the shorter of the two arc

with end point ΠA(∗) and ΠA(p).

We now use lemma 1.2.22, this describes a curve Tθ that divides ΣA into two

parts. If ΠA(p) lies on the same side of Tθ as ΠA(∗), then (Ŝp, 0, 1)t = ΠA([p, ∗]) does

not intersect σA (except possibly at ΠA(p) if p ∈ BA). So [p, ∗] does not intersect

not intersect A (except at p if p ∈ A).

This curve is shown in figure 4.10 along with the projection of the 1-skeleton of

the core faces.

Figure 4.10: Projection of the 1-skeleton of ∆ onto ΣA with extra curves

By lemma 4.3.24 the 2-skeleton of the core faces (i.e. the union of the triangular

bases) project onto the interior of the projection of the 1-skeleton. So for most p ∈ T ,

the image ΠA(p) lie on the good side of Tθ and therefore the geodesic segment [p, ∗]
cannot intersect A.

There is a small region on the wrong side of Tθ see figure 4.11. Let p be a point

such that ΠA(p) = (Xp, 0, 1)t lies in this bad region. Then |Xp|> 0.581027 . . . =

(1 − cos(θ))/ sin(θ), this is the radius of the grey circle in figure 4.10

Then by lemma 1.2.20 the radius for the circle arc through this point would have

to be greater than (1/2k)|Xp|≥ 1.828074 . . .. In figures 4.10 and 4.11, the two larger

circles passing through the origin are the circles with radius 1.828074 . . . that are



4.3. A fundamental domain 126

Figure 4.11: Close up of the projection of the 1-skeleton of ∆ onto ΣA

tangent to σA.

Then it follows from straightforward trigonometry that Ŝp can only intersect σA

if ΠA(p) lies in the shaded region of figure 4.11. Since this does not happen, we

conclude ΠA([p, ∗]) does not intersect σA except where prescribed by the combina-

torial model so, by 4.3.17, [p, ∗] does not intersect A except where prescribed by the

combinatorial model.

An essentially identical argument shows that no cone faces intersect B except

where specified, the projection of the 1-skeleton and the relevant curves are shown in

figure. For C the situation is even simpler, since ∗ is contained in ΣC , so ΠC([p, ∗])
is a geodesic segment and the projection of the geodesic cone over T is the geodesic

cone over the projection of T . Since ΠC(T ) lies on the same side of σA and ΠC(∗),
it follows that Cone∗(T ) does not intersect C.

For ΣB the values of θ and k are 0.922850 . . . and 0.225277 . . . respectively. The

image of the projection are shown in figures 4.12 and 4.13.

For ΣC the values of θ and k are 0.824783 . . . and 0 respectively. Since k = 0, the

point ∗ is contained in ΣC , any geodesic containing ∗ is projected onto a geodesic
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Figure 4.12: Projection of the 1-skeleton of ∆ onto ΣB with extra curves

through ΠC(∗). So we don’t need to use the above argument. If ΠC(p) lies on

the same side of σC as ΠC(∗), then ΠC([p, ∗]) is a geodesic segment in ΣC , so it

cannot intersect σC (except possibly at the end point ΠC(p)), therefore [p, ∗] cannot

intersect BC (except possibly at the end point p). 2

Corollary 4.3.25 The interior of polyhedron ∆ lies entirely on the good sides of

BA, BB and BC .

Proof: This follows immediately from the proof of the previous theorem. In

that proof we actually proved a stronger condition, namely that the polyhedron

doesn’t intersect the entire bisector BA (respectively BB, BC) except where pre-

scribed, rather than just the relevant part. Since the prescribed intersections are

at most 3-dimensional it follows that the interior of ∆ does not intersect BA (re-

spectively BB, BC) at all an consequently is entirely contained in the good side.

2

Remark: As it stands this proof is somewhat dependant on the accuracy of the

pictures drawn by Maple. However it is possible to prove the result without relying
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Figure 4.13: Close up of the projection of the 1-skeleton of ∆ onto ΣB

on Maple. This could in principle be done by explicitly calculating the images under

orthogonal projection of each geodesic segment in the 1-skeleton of the core faces and

checking their intersections with σA, Tθ and the three other circles. This amounts

to checking that a large, but finite, number of esoteric inequalities hold.

Remark: In the proof of theorem 4.3.10, we assumed that the image of any of

the triangle bases was projected into the interior of the image of the boundary,

invoking proposition 4.3.24 to justify this assumption. There are two minor is-

sues with this assumption, firstly the triangles (1232, 12321323, 2321232121) and

(12321231, 12321323, 2321232121) are not Giraud triangles and we can’t use propo-

sition 4.3.24. However these triangles are contained in R-plane and the projection

of R-planer triangles is much more straightforward than Giraud triangles. The or-

thogonal projection of a polygon in an R-plane onto a C-line is either a geodesic or a

polygon or two polygons with a common vertex (Lemma 2.1 of [7]). So as before we

only need to understand the behaviour of projection on the boundary of the polygon

to extrapolate to the interior of the polygon.

The second issue is slightly more serious; what happens if Π : ∂T → C is not injective

(so Π : T → C is not injective). In the cases we have just dealt with either this does

occur or does so in way that is easily dealt with e.g on of the edges of a triangle is

contained is slice of the bisector onto whose spine we are projecting, this mean the

edge collapses to a single point but a similar argument to proof of proposition 4.3.24
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can be used to show that projection is still homeomorphic on the interior.

4.4 Poincaré’s polyhedron theorem

Having shown that our modified polyhedron ∆ is homeomorphic to the combina-

torial model we now use a form of Poincarés polyhedron Theorem (we follow the

formulation given in [7]), to show that ∆ is a fundamental domain for the group and

extract a presentation for the group.

4.4.1 Statement of Poincaré’s polyhedron theorem

Definition 4.4.1 A Polyhedron is a cellular complex homeomorphic to a (compact)

polytope, in particular we require that there is only one cell of highest dimension and

that each codimension-two cell is contained in exactly two codimension-one cells.

Then its realization as a cell complex in a space X is called a polyhedron.

Definition 4.4.2 A Poincaré polyhedron is a smooth polyhedron D ⊂ X, with the

following conditions on the codimension-one faces Ti

• There is a set Λ of homeomorphisms of X of the form Aij : Ti → Tj, which

pairs the codimension-one faces, moreover these maps preserve the cell struc-

ture on D. We call these maps side-pairing transformations. We assume that

if Aij ∈ Λ then A−1
ij = Aji ∈ Λ.

• For every Aij ∈ Λ such that Aij (Ti) = Tj, then Aij
(
D

)
∩D = Tj.

• If Ti = Tj (i.e. if Aij sends Ti to itself), then we impose that Aii : Ti → Ti is

of order two and we call it a reflection.

Let the pair (F1, T1) be a codimension-two face and a codimension-one face such

that F1 ⊂ T1. Then there exists exactly one other codimension-one face, T ′
1, that

also contains F1 and a side paring map g1 ∈ Λ associated to T ′
1. Let F2 = g1 (F1)

and T2 = g1(T
′
1). Again there exists exactly one other codimension-one face, T ′

2

containing F2 and we can continue to recursively define such gi and Fi so that

gi−1 ◦ · · · ◦ g1 (F1) = Fi



4.4. Poincaré’s polyhedron theorem 130

Definition 4.4.3 Cyclic

Given (F1, T1) as above Cyclic states that there exists an r ≥ 1 such that gr ◦ · · · ◦
g1 (T1) = T1 and gr◦· · ·◦g1 restricted to F1 is the identity. Also letting g = gr◦· · ·◦g1

then there exists a positive integer m such that

g−1
1 (D) ∪ (g2 ◦ g1)

−1 (D) ∪ · · · ∪ g−1 (D)∪

(g1 ◦ g)−1 (D) ∪ (g2 ◦ g1 ◦ g)−1 (D) ∪ · · · ∪ (g2)−1 (D)∪
...

(
g1 ◦ gm−1

)−1
(D) ∪

(
g2 ◦ g1 ◦ gm−1

)−1
(D) ∪ · · · ∪ (gm)−1 (D)

is a cover of a closed neighbourhood of the interior of F1.

The relation gm = (gr ◦ · · · ◦ g1)
m = Id is called a cycle relation.

Theorem 4.4.4 (Poincaré’s polyhedron theorem) Let D ⊂ H2
C be a compact

Poincaré polyhedron with side pairing transformations Λ ⊂ Isom
(
H2

C

)
satisfying

Cyclic. Let Γ be the group generated by Λ then,

• Γ is a discrete subgroup of H2
C
,

• D is a fundamental domain for Γ, and

• Γ has the presentation: Γ = 〈Λ | cycle relations, reflection relations〉.

4.4.2 List of 3-faces and side pairings

To reduce the number of conditions that need to be checked we now glue together

any 3-faces that have the same side pairing transformations

Core faces

These remain unchanged, i.e. A, B and C as in figure 4.1.

Prism faces

We combine the prism faces as follows,
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D1 =Cone∗(13, 12, 23) ∪ Cone∗(13, 23, 1323),

D2 =Cone∗(1231, 13, 12) ∪ Cone∗(1231, 12, 131212),

E1 =Cone∗(12, 23, 1232)∪ Cone∗(12, 1232, 232121)∪ Cone∗(12, 131212, 232121)∪

Cone∗(131212, 232121, 2321232121),

E2 =Cone∗(1231, 13, 1323)∪ Cone∗(1231, 1323, 1232)∪ Cone∗(1231, 1232, 12321231)∪

Cone∗(12321231, 1232, 12321323),

F1 =Cone∗(23, 1323, 1232),

F2 =Cone∗(1231, 12321231, 131212),

G1 =Cone∗(1232, 232121, 2321232121)∪ Cone∗(1232, 12321323, 2321232121),

G2 =Cone∗(12321231, 131212, 2321232121)∪ Cone∗(12321231, 12321323, 2321232121).

The side pairings of the Polyhedron ∆ are

* *

2321232121 12321323 2321232121 12321323

232121 1232 131212 12321231

*

1323 1232

23

*

1231

13121212321231

**

12 1223 13

123113 1312121323

* *

2321232121 232121

12 23

1232131212

13

1323

123212321323

12321231

1231
E EDD

F G

1 1

1
F G1

2 2

2 2

Figure 4.14: New 3-faces of ∆

A
1−→ A, B

121−→ B, C
123212321
−−−−−−→ C,

D1
P−1

−→ D2, E1
P−2

−→ E2, F1
P−3

−→ F2,

G1
P−5

−→ G2.
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4.4.3 Cycles of 2-faces

As noted above, for reasons of simplicity, we consider the index three supergroup

〈I1, J〉 rather than (4, 4, 4; 5). Consequently the reflection relations are (1)2 =

(121)2 = (123212321)2 = Id, conjugating by J we can recover (2)2 = (3)2 = Id.

This allows to remove double letters in the cycle words to get the cycle relations

shown in the table below

Face Cycle length Cycle relation

(13, 12, 23) 2 (6) J3 = Id

(12, 23, 1232) 5 Id

(23, 1323, 1232) 6 23232323 = Id

(1232, 232121, 2321232121) 5 21212121 = Id

(12321231, 2321232121, 12321323) 4 132(1323)312323212321 = Id

(23, 1323, ∗) 3 Id

(13, 1323, ∗) 3 Id

(12, 13, ∗) 3 Id

(1232, 232121, ∗) 3 Id

(232121, 2321232121, ∗) 4 Id

(2321232121, 12321323, ∗) 1 (6) (J1)30 = Id

Because of the cyclic symmetry J some of the above cycle relations are redundant,

for example conjugating I4
23 by J gives I4

31, and I4
12. We can obtain I5

1323 from

the relation in the fifth row and conjugation by J and Ii give the other relations

of the form Iijkj. Finally from a straightforward word manipulation we see that

(JI1)
30 = (I231)

10, Then taking inverses or conjugates of these words we obtain all

the relations shown in presentation (4.8).

4.5 Tessellations

We first ensure that the side pairings map the interior of ∆ off itself.

Theorem 4.5.1 Let g ∈ {I1, I121, I123212321, P−5, P−3, P−2, P−1}.
Then g (∆0) ∩ ∆0 = ∅.
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We use ∆0 to denote the interior of ∆.

Proof: If g = I1, (respectively I121, I123212321), then we can use the proof of 4.3.10.

We proved that ∆ does not intersect BA (respectively BB , BC) except in A itself

(respectively B, C), in particular ∆0 lies entirely in the good half of H2
C

with respect

to BA (respectively BB, BC). By construction I1 (respectively I121, I123212321) fixes

BA (respectively BB, BC) and swaps the two half-spaces separated by the bisector.

So I1(∆) ∩ ∆ ⊂ BA therefore I1 (∆0) ∩ ∆0 = ∅. Similarly for I121 and I123212321.

For g = P n the interior of P n(∆0) consists of the geodesic cone over the interior

of the core faces. The result follows from theorem 4.5.2 below. Assume ∆0 ∩
P n(∆0) 6= ∅, then there exists a point p ∈ P n(A∩B) and a point q ∈ (A∩B) such

that [p, ∗] ⊂ [q, ∗] or [q, ∗] ⊂ [p, ∗]. The former implies that the geodesic segment

[p, ∗] belonging to P n(∆0) crosses BA, BB or BC and hence P n(∆0) is not entirely

contained in the at least one of the good halves of H2
C

with respect to BA, BB or

BC . In the latter case the geodesic segment [q, ∗] belonging to ∆0 crosses P n(BA),

P n(BB) or P n(BC). Applying P−n, we get that P−n(∆0) is not entirely contained

in the at least one of the good halves of H2
C

with respect to BA, BB or BC . 2

Theorem 4.5.2 For n ∈ {0,±1,±2,±3,±5} P n(∆0) lies entirely on the good half

of H2
C

with respect to BA, BB and BC .

Proof: See appendix A. 2

In fact, this corollary is true for all n ∈ {0, . . . , 29}, but we only need these nine

values to confirm the tessellation conditions.

Our approach to checking the tessellation conditions follows that given in [7],

first we show that all the polyhedra in a cycle have disjoint interiors, this is done by

finding a separating bisector.

Once we have shown that all the polyhedra surrounding a 2-face have disjoint

interiors we need to ensure that polyhedra cover a neighbourhood of the 2-face. For

a general fundamental domain this can be very difficult to prove, however for ∆

all the 2-faces are Giraud triangles, triangles contained in R-planes or sides of cone

faces, so we can use arguments similar to those used by Parker for fundamental
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domains of the Livné lattices [22].

Recall from proposition 1.2.33 in chapter 1, that a Giraud disc is contained in

three bisectors and can be thought of as the locus of points equidistant from three

distinct non-C-linear points p0, p1 and p2. We can use these points to divide H2
C

into three regions

{x ∈ H2
C

: d(x, p0) ≤ d(x, p1) and d(x, p0) ≤ d(x, p2)},

{x ∈ H2
C

: d(x, p1) ≤ d(x, p0) and d(x, p1) ≤ d(x, p2)},

{x ∈ H2
C

: d(x, p2) ≤ d(x, p1) and d(x, p2) ≤ d(x, p0)}.

Clearly every point in H2
C

lies in at least of these regions. The intersection of two

of these regions is precisely one of the three bisectors and the intersection of all

three regions is the Giraud disc. We use this fact to confirm the tessellation satisfies

cyclic.

Tessellation about (13, 12, 23)
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A
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Id

P

PI1

PI1P

I1P
−1

I1

Figure 4.15: Schematic of tessellation about (13, 12, 23)

By 4.5.1, we know that P (∆0) and I1(∆
0) are disjoint with ∆0. We must now

compare all the ‘diagonal’ pairs. We can use the triple symmetry of J to reduce the

number things of pairs the need to be check to ∆0 ∩ PI1(∆0),∆0 ∩ PI1P (∆0) and

∆0 ∩ I1P−1(∆0).



4.5. Tessellations 135

For I1P
−1(∆0, recall that the bisector BA separates H2

C
into two half spaces one

of which contains ∗, which we called the good side of BA. The interior of P−1(∆) is

contained in this half space (by theorem 4.5.2). Since I1 fixes BA and swaps these

half spaces, the interior I1P
−1(∆) is contained in the other half space. In other

words the bisector BA separates ∆0 and I1P
−1(∆).

Since ∆0 and I1P
−1(∆0) are disjoint, their images under the isometry J = PI1

also have disjoint interiors, i.e. ∆0 and PI1(∆
0) are disjoint.

This only leaves PI1P . We know that P (∆0) and P−1(∆0) both lie on the good

side of BA, so P−1(∆0) and I1P (∆0) have disjoint interiors. Then applying the map

P we see that (∆0) ∩ PI1P (∆0) = ∅.
Applying J or J−1 to these relations shows that all the copies of ∆ surrounding

the 2-face (13, 12, 23) have disjoint interiors.

We now have to show these six polyhedra cover a neighbourhood of the Giraud

triangle (13, 12, 23). We know by construction the Giraud disc containing (13, 12, 23)

is the intersection of the bisectors BA and P (BA) so we can define the point p0 to be

ΣA∩P (ΣA). From this we can define the other points p1 = J(p0) and p2 = J−1(p0).

We can use the inequalities described above to divide H2
C into three regions

H0 = {x ∈ H2
C : d(x, p0) ≤ d(x, p1) and d(x, p0) ≤ d(x, p2)},

H1 = {x ∈ H2
C

: d(x, p1) ≤ d(x, p0) and d(x, p1) ≤ d(x, p2)},

H2 = {x ∈ H2
C : d(x, p2) ≤ d(x, p1) and d(x, p2) ≤ d(x, p0)}.

We combine the six polyhedra into the following three larger polyhedra ∆∪P (∆),

I1(∆) ∪ I1P
−1(∆) and PI1(∆) ∪ PI1P (∆). By construction H0 ∩ H2 = BA and

H0 ∩ H1 = P (BA). The other intersection is the third bisector and the triple

intersection is the Giraud disc containing the triangle (13, 12, 23).

If a point z is sufficiently close to (13, 12, 23) and also lies in the region H0 then

by the above argument about about separating bisectors it must be contained in

∆∪P (∆). Similarly if z is sufficiently close to (13, 12, 23) and also lies in the region

H1 (respectively H2) it is contained in I1(∆) ∪ I1P
−1(∆) (respectively PI1(∆) ∪

PI1P (∆))

From this we conclude the tessellation about (13, 12, 23) satisfies the condition
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cyclic.

Remark: When the 2-face about which we are tessellating is a triangle contained

in a Giraud disc we can always use the structure of the three bisectors to ensure

that neighbourhood of the 2-face is covered. The argument is essentially identical

to the (13, 12, 23) case outlined above.

Tessellation about (12, 23, 1232)
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Figure 4.16: Schematic of tessellation about (12, 23, 1232)

By 4.5.1, we know the interiors of adjacent polyhedra are disjoint since they

differ by a side pairing. We have to check the five diagonal pairs ∆0 ∩ I21(∆
0),

∆0 ∩ I21P−1(∆0), I1(∆
0) ∩ P 2(∆0), I1(∆

0) ∩ I21P−1(∆0) and I21(∆
0) ∩ P 2(∆0).

Claim: The interiors of I1(∆) and P 2(∆) are disjoint.

We know that P 2(∆) is contained in the good side of BA and I1(∆) is contained in

the bad side, so they can only intersect in BA itself hence I1(∆
0) ∩ P 2(∆0) = ∅.

Claim: The interiors of ∆ and I21(∆) are disjoint.

Note that the 2-face (12, 23, 1232) is a triangle contained in a Giraud disc, as such

it is contained in the intersection of exactly 3 bisectors. We know two of these

bisectors namely BA and P 2(BA). The bisector P 2(BA) separates ∆0 and I21(∆
0).

To see this we first observe that P−2(∆0) and I1P (∆0) lie on opposite sides of the

bisector BA. We can rewrite I1P = I1JI1 = JI3I1 = JI3I2I2I1 P
−2I2I1. S the

bisector BA separates P−2(∆0) and P−2I2I1(∆
0). Applying the map P 2 proves the
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claim.

Claim: The interiors of ∆ and I21P
−1(∆) are disjoint.

Again we show that P 2(BA) separates ∆0 and I21P
−1(∆0), this is more straight-

forward than the previous case. We know that BA separates I1(∆
0) and P−2(∆0),

so P 2(BA) separates P 2I1(∆
0) and (∆0). The result follows from the fact P 2I1 =

I21P
−1.

Claim: The interiors of I21(∆) and P 2(∆) are disjoint.

We know that P 2(BA) separates ∆0 and I21(∆
0), in particular, I21(∆

0) lies entirely

on one side of P 2(BA). We also know that ∆0 lies entirely on one side of BA and

hence P 2(∆0) lies entirely on one side of P 2(BA). Then checking the position of

P 2(∗) and I21(∗) we see that P 2(BA) separates P 2(∆0) and I21(∆
0) as required

Claim: The interiors of I1(∆) and I21P
−1(∆) are disjoint.

The image of this pair under I12 is I121(∆
0) ∩ P−1(∆0). The polyhedra ∆0 and

P−1(∆0) are contained entirely on the good side of the bisector of BB and I121 fixes

BB while swapping the two half spaces. Therefore I121(∆
0) and P−1(∆0) lie on

opposite sides of the bisector BB and I1(BB) separates the interiors of I1(∆) and

I21P
−1(∆).

Tessellation about (23, 1323, 1232)

�
�
�
�
�
�
�
�
��

A
A

A
A

A
A

A
A

AA

�
�

�
�

�
�

�
�

��

A
A
A
A
A
A
A
A
AA

Id

P 3

I1P
−2I121P

2

I1P
−2I121

I1P
−2

I1

Figure 4.17: Schematic of tessellation about (23, 1323, 1232)

For this cycle there are 9 pairs to check (in general an n-cycle will have △(n)−n
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pairs to check, where △(n) is the nth triangular number).

The nine pairs are

1. ∆0 ∩ I1P−2I121P
2(∆0)

2. ∆0 ∩ I1P−2I121(∆
0)

3. ∆0 ∩ I1P−2(∆0)

4. P 3(∆0) ∩ I1P−2I121(∆
0)

5. P 3(∆0) ∩ I1P−2(∆0)

6. P 3(∆0) ∩ I1(∆0)

7. I1(∆
0) ∩ I1P−2I121P

2(∆0)

8. I1(∆
0) ∩ I1P−2I121(∆

0)

9. I1P
−2(∆0) ∩ I1P−2I121P

2(∆0)

For most of these pairs we can immediately find a separating bisector.

Pair 3: ∆0 ∩ I1P
−2(∆0). This follows from the fact BA separates I1(∆

0) and

P−2(∆0) and I1 fixes BA and swaps the two half spaces. Therefore BA separates ∆

and I1P
−2(∆).

Pair 5: P 3(∆0) ∩ I1P−2(∆0). The polyhedra P 3(∆0) and P−2(∆0) both lie on the

same side of BA, so BA separates P 3(∆0) and I1P
−2(∆0).

Pair 6: P 3(∆0) ∩ I1(∆0). Again the separating bisector is obviously BA.

Pair 7: I1(∆
0)∩ I1P−2I121P

2(∆0). After applying the map P2I1 to this pair we get

P 2(∆0) ∩ I121P
2(∆0). We know P 2(∆0) lies on the good side of BB and I121 fixes

BB and swap the two corresponding half spaces. So P 2(∆0) and I121P
2(∆0) are

separated by BB. Then it follows I1P
−2BB separates I1(∆

0) and I1P
−2I121P

2(∆0).

Pair 8: I1(∆
0) ∩ I1P−2I121(∆

0). Again we apply the map P2I1 to this pair to get

P 2(∆0)∩I121(∆0). The separating bisector for this pair is BB . Therefore the bisector

I1P
−2BB separates I1(∆

0) and I1P
−2I121(∆

0).

Pair 9: I1P
−2(∆0)∩I1P−2I121P

2(∆0). Apply the map P2I1 to get I121P
2(∆0)∩(∆0).

As before the bisector I1P
−2BB separates I1P

−2(∆0) and I1P
−2I121P

2(∆0).
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This just leaves pairs 1, 2 and 4. Recall that the 2-face (23, 1323, 1232) is contained

in the Giraud disc BA ∩ P 3(BB).

Pair 1: ∆0 ∩ I1P
−2I121P

2(∆0). These polyhedra are separated by the bisector

P 3(BB).

Pair 2: ∆0∩I1P−2I121(∆
0). These polyhedra are separated by the bisector P 3(BB).

Pair 4: P 3∆0 ∩ I1P
−2I121(∆

0). These polyhedra are separated by the bisector

P 3(BB). This follows immediately from pair 2; ∆0 and P 3(∆0) lie on the same side

of P 3(BB), so if P 3(BB) separates ∆0 and I1P
−2I121(∆

0) it must also separate ∆0

and I1P
−2I121(∆

0).

Tessellation about (1232, 232121, 2321232121)
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Figure 4.18: Schematic of tessellation about (1232, 232121, 2321232121)

This cycle has length five, so there are five diagonal pairs to check ∆0∩P 5I121(∆
0),

∆0 ∩ I121P 2(∆0), I121(∆
0) ∩ P 5(∆0), I121(∆

0) ∩ I121P 2(∆0) and P 5(∆) ∩ I121(∆
0).

Four of these intersections are empty follows immediately from the fact that BB
separates I121(∆

0) from P n(∆0). The only remaining case is I121(∆
0) ∩ I121P 2(∆0),

applying I121 to both sides produces ∆0 ∩ P 2(∆0) and we know this intersection is

empty by 4.5.2.
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IdI123212321

P−5I123212321 P−5

Figure 4.19: Schematic of tessellation about (1232, 232121, 2321232121)

Tessellation about (12321231, 2321232121, 12321323)

First observe that P 5 and I123212321 commute. By 4.5.1, we know the interiors of

I123212321(∆) and P−5(∆) are disjoint with the interior of ∆. We have to check the

diagonal image P−5I123212321(∆). We know from 4.5.1 that P−5(∆0) lies entirely on

the good side of BC and I123212321 fixes BC , whole swapping the two half spaces. So

BC separates I123212321(∆
0) ∪ P−5I123212321(∆

0) from P−5(∆0) ∪ ∆0.

This 2-face is contained in a R-plane rather than a Giraud disc, the R-plane is a

meridian of BC . This makes the situation somewhat simpler than the Giraud disc

cases. We can use the bisector structure of BC to check the polyhedra cover a neigh-

bourhood of (12321231, 2321232121, 12321323). The bisector BC separates H2
C into

two half spaces, any point in a neighbourhood of (12321231, 2321232121, 12321323)

is contained in exactly one these half spaces or the triangle itself. If the point

is sufficiently close to the triangle and in the good half of BC then it is con-

tained in ∆ ∪ P−5(∆). If it is in the other half space then it is contained in

I123212321(∆) ∪ P−5I123212321(∆).

Tessellations about (23, 1323, ∗), (13, 1323, ∗), (12, 13, ∗) and (1232, 232121, ∗)

These cycle all have total length 3 so, by 4.5.1, there is nothing to check.

We now check that the three polyhedra cover a neighbourhood of the 2-faces.

Note that the 2-faces are not contained in a Giraud disc or a totally geodesic sub-
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spaces. We will only go through the details for (23, 1323, ∗) since the other cases are

essentially identical.

A
A

A
A

A
A

A
A

AA

�
�

�
�

�
�

�
�

��

Id

P 3

P

Figure 4.20: Schematic of tessellation about (23, 1323, ∗)

The cycle for this two face is

(23, 1323, ∗) → (131212, 12, ∗) → (1231, 12321231, ∗) → (23, 1323, ∗)
F1 ∩D1 D2 ∩E1 E2 ∩ F2 F1 ∩ D1

.

The geodesics segment [23, 1323] is contained in three Giraud triangle that are 2-

faces of the surrounding polyhedra. These three triangles are (13, 23, 1323) contained

in BA ∩ P (BB), (23, 1323, 1232) contained in BA ∩ P 3(BB) and (23, 1323, 323123)

contained in P (BB) and P 3(BB). To confirm the tessellation condition we only

need to observe that core pieces A, P (B) and P 3(BB) cover a three dimensional

neighbourhood of (23, 1323). This is clear, A fills in the region between the triangles

(23, 1323, 1232) and (13, 23, 1323), the other two regions are similarly filled by the

other core pieces. Then since ∗ is not contained in any of the three bisectors, the

geodesic cones to ∗ over the core pieces A, P (B) and P 3(BB) cover a neighbourhood

of the geodesic cone to ∗ over the geodesic segment [23, 1323].

The other two cycle relations are the essentially the same.

Tessellation about (232121, 2321232121, ∗)

In order to check this tessellation we need to show that P 7(∆0)∩∆0 = ∅. We check

this the same way checked the P 1, P 2, P 3 and P 5 cases for theorem 4.5.2. The
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1323

23

13

323123 1232

Figure 4.21: Three triangles surrounding [23, 1323]

IdP 5

P 7 P 2

Figure 4.22: Schematic of tessellation about (232121, 2321232121, ∗)

relevant figures are included in appendix A.

Tessellation about (2321232121, 12321323, ∗)

This cycle relation is slightly different from all the others, since the cycle consists

of the same side pairing (P 5) applied six times. The side pairing P 5 is an order

6 complex reflection and we chose coordinates so that its fixed line is {(ζ, 0, 1)t :

ζ ∈ C}, this is also ΣC , the complex spine of BC . The side pairing P 5 acts on

H2
C by sending (z1, z2, 1)t to (z1, (−ω)z2, 1)t, where ω = (−1 +

√
3)/2. So we can

partition H2
C

into six segments defined as the regions where the argument of z2
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lies in one of the intervals [0, π/6], [π/6, 2π/3], . . ., [5π/6, 0]. The polyhedron ∆

completely covers a neighbourhood of (2321232121, 12321323, ∗) inside the segment

corresponding to [π, 4π/6] and therefore P 5n(∆) completely cover a neighbour of

(2321232121, 12321323, ∗) and this tessellation satisfies cyclic.

4.6 A presentation for Γ

Theorem 4.6.1 ∆ is a fundamental domain for the group generated by I1 and J ,

furthermore the group has presentation

〈
I1, J | JIiJ−1Ii+1, J

3, I2
i , (IiIj)

4 , (IiIjIk)
10 , (IiIjIkIj)

5〉 (4.8)

Proof: By Poincaré’s polyhedron theorem the group is generated by words

I1, I121, I123212321, P , P 2, P 3, P 5. We can immediately reduce this generating set

to I1 and P using the reflection relations. Using the cycle relations we have the

group relation I4
12 = Id, conjugating this word by J and taking inverses gives us all

relations of the form I4
ij = Id. The relation I13213231323132312323212321 = Id gives us all

relations of the form I5
ijkj = Id (taking inverses and conjugating by J as necessary).

The relation I10
ijk = Id is equivalent to (JI1)

30 = Id. 2

Corollary 4.6.2 Deraux’s lattice has the presentation

〈
I1, I2, I3 : I2

i , (IiIj)
4 , (IiIjIk)

10 , (IiIjIkIj)
5〉 (4.9)

Proof: Deraux’s lattice is an index three normal subgroup of 〈I1, J〉, the presen-

tation follows by Reidemeister-Schreier. 2

4.7 Gauss-Bonnet formula and lattice covolume

Let Γ = 〈I1, J〉. Now that we have constructed a fundamental domain we can use

a form of Gauss-Bonnet theorem to calculate the volume of the orbifold H2
C
/Γ. In

order to do this we have to consider the stabilizers and orbits of all n-faces of ∆.
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Lemma 4.7.1 The group generated by P 5 and I121 has order 72.

Proof: First notice that P 5 and I121P
5I121 commute and both have order 6 (this

can be easily be checked using word notation or from their matrices). So the group

G = 〈P 5, I121P
5I121〉 has order 36.

Let H = 〈P 5〉, K = 〈I121P 5I121〉 and α : H → K be the natural homomorphism,

i.e. α(g) = I121gI121. Then the HNN extension of G relative to α, with stable letter

I121, is the group generated by P 5 and I121. The order of this group is 2 × 36 = 72.

2

Euler orbifold characteristic for 〈I1, J〉

Contribution to Euler orbifold characteristic from 0-faces.

Orbit representative Stabiliser Order Euler

23 〈I2, I3〉 8 1/8

1232 〈I1, I232〉 10 1/10

2321232121 〈I121, P 5〉 72 1/72

∗ 〈P 〉 30 1/30

Total 49/180

Contribution to Euler orbifold characteristic from 1-faces.

Orbit representative Stabiliser Order Euler

(13, 12) 〈I1〉 2 −1/2

(13, 1323) 〈I1〉 2 −1/2

(12, 1232) 〈I1〉 2 −1/2

(1323, 1232) 〈I1〉 2 −1/2

(232121, 2321232121) 〈I121〉 2 −1/2

(2321232121, 12321323) 〈I2321232, P 5〉 12 −1/12

(∗, 12) Id 1 −1

(∗, 1232) Id 1 −1

(∗, 2321232121) 〈J5〉 6 −1/6

Total −19/4



4.7. Gauss-Bonnet formula and lattice covolume 145

Contribution to Euler orbifold characteristic from 2-faces.

Orbit representative Stabiliser Order Euler

(13, 12, 23) 〈J〉 3 1/3

(12, 23, 1232) Id 1 1

(23, 1323, 1232) Id 1 1

(1232, 232121, 2321232121) Id 1 1

(12321231, 2321232121, 12321323) 〈I123212321〉 2 1/2

(23, 1323, ∗) Id 1 1

(13, 1323, ∗) Id 1 1

(13, 12, ∗) Id 1 1

(1232, 232121, ∗) Id 1 1

(232121, 2321232121, ∗) Id 1 1

(2321232121, 12321323, ∗) 〈P 5〉 6 1/6

Total 9

Contribution to Euler orbifold characteristic from 3-faces.

Orbit representative Stabiliser Order Euler

A 〈I1〉 2 −1/2

B 〈I121〉 2 −1/2

C 〈I123212321〉 2 −1/2

D1 Id 1 −1

E1 Id 1 −1

F1 Id 1 −1

G1 Id 1 −1

Total −11/2

Contribution to Euler orbifold characteristic from 4-faces.

Orbit representative Stabiliser Order Euler

∆ Id 1 1

Total 1

The Euler orbifold characteristic is

49

180
− 19

4
+ 9 − 11

2
+ 1 =

1

45
.
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Proposition 4.7.2 The orbifold H2
C
/Γ has Euler orbifold characteristic χ

(
H2

C
/Γ

)
=

1/45 and hence

Vol (〈I1, J〉) = 8π2/135.

Proof: We look at the orbit of an n-face and calculate the orbit of its stabilizer.

These are listed in the tables above. The first column lists a representative of the

orbit. The second column records the stabilizer of the orbit representative in the

first column; the order of this group is clear in most cases, either the group is a

cyclic or a dihedral group. The only exception is 〈P 5, I121〉 which has order 72 by

lemma 4.7.1. In the right hand column we record the contribution to the orbifold

Euler characteristic. The covolume is (8π2/3) × χ(H2
C/Γ) 2

Corollary 4.7.3 Deraux’s lattice has covolume 8π2/45.

Proof: Deraux’s lattice is an index three subgroup of 〈I1, J〉. 2

Remark: In [25], Prasad and Yeung study fake projective planes and list all torsion-

free cocompact arithmetic subgroups Γ ⊂ PU(2, 1) with Euler-Poincaré character-

istic χ (Γ) ≤ 1 and calculate the covolumes of the lattices. Remarkably, in section

9 of that paper, there is a lattice denoted C2 that is defined over the same number

field as Deraux’s lattice and has the same Euler-Poincaré characteristic. However

the two lattices cannot be isomorphic since fake projective planes are defined over

arithmetic lattices of the second type and Deraux’s lattice is first type arithmetic.

Corollary 4.7.4 The deformed triangle groups Γ(4, 4, 5; 4), Γ(4, 5, 5; 4) and Γ(5, 5, 6; 4)

are lattices with the same presentations and covolume as Γ(4, 4, 4; 5).

Proof: In chapter 2 we use the map ι to show that all these groups are identified

with Deraux’s lattice. 2



Chapter 5

Miscellaneous results

This final chapter contains a list of many discrete deformed triangle groups and a

number of partial results that may merit further investigation.

5.1 List of discrete deformed triangle groups

The following lists contain many the groups that we know to be discrete, either due

to results from the previous chapter or earlier papers. Some of the rows are grouped

together by horizontal lines, this indicates that these groups can be identified by the

ι maps from chapter 2. The first column records the value K, introduced in chapter

2. Recall from remark 2.4, for the group to be non-degenerate we require that

K + 4 < 0. For Γ(18, 18, 18; 18), K + 4 = −0.113340801 . . ., it would be interesting

to know if this group has the smallest value of K+ 4 for a discrete group. Similarly

K + 4 is relatively small for the four known deformed triangle group lattices. The

other columns records the order of the respective word, with parabolic words denoted

be an ∞ and loxodromic words by lox.

Definition 5.1.1 In the tables below we denote a triple (p, q, r) (P) if

4 + |ρστ | − |ρ|2 − |σ|2 − |τ |2 = 0.

This is equivalent to the condition r2
1 + r2

2 + r2
3 = 1 + 2r1r2r3 which was introduced

in section 12 of [26]. Whether or not a group satisfies (P) is not invariant under ιi.

147
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5.1.1 List of discrete deformed triangle groups without short

parabolic words

K + 4 23 31 12 1323 3212 2131 123 notes

−0.113340801 18 18 18 18 18 18 9 Livné group

−0.118033989 3 3 5 5 5 5 15 Lattice

−0.118033989 3 5 5 3 3 10 15 Lattice

−0.118033989 5 5 10 3 5 5 15 Lattice

−0.123489801 3 3 4 7 7 7 42 Lattice

−0.123489801 3 4 7 3 3 7 42 Lattice

−0.123489801 3 3 7 4 4 4 42 Lattice

−0.123489801 4 7 7 3 3 14 42 Lattice

−0.123489801 7 7 14 4 7 7 42 Lattice

−0.232050809 12 12 12 12 12 12 12 Livné group

−0.309016995 4 4 4 5 5 5 10 Lattice

−0.309016995 4 4 5 4 5 5 10 Lattice

−0.309016995 4 5 5 4 4 6 10 Lattice

−0.309016995 5 5 6 4 5 5 10 Lattice

−0.309016991 10 10 10 10 10 10 5 Livné group

−0.358440714 9 9 9 9 9 9 18 Livné group

−0.414213562 8 8 8 8 8 8 8 Livné group

−0.427050985 5 5 5 5 5 5 10 Lattice+Livné

−0.427050985 3 4 6 6 6 lox lox

−0.427050985 3 6 6 4 4 lox lox (P)

−0.469500539 7 7 7 7 7 7 14 Livné group

−0.618033989 4 5 5 5 5 10 lox

−0.618033989 5 5 10 4 10 10 lox

−0.618033989 5 10 10 5 5 lox lox (P)

−0.618033989 6 7 7 7 7 14 lox

−0.618033989 7 7 14 6 lox lox lox

1/2 − cos(2π/n) 3 3 4 n n n lox
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1/2 − cos(2π/n) 3 3 n 4 4 3 lox n =7,8,9,10,11,

1/2 − cos(2π/n) 3 4 n 3 3 n lox 12,14,16,18,24,30

1/2 − cos(2π/n) 4 n n 3 3 lox lox

−cos(2π/n) 3 3 6 n n n lox

−cos(2π/n) 3 3 n 6 6 6 lox n =5,6,7,8,10,12,18

−cos(2π/n) 3 6 n 3 3 lox lox

−cos(2π/n) 4 4 4 n n n lox

−cos(2π/n) 4 4 n 4 n n lox n = 5,6,7,8,10,12,18

−cos(2π/n) 4 n n 4 4 lox lox

−1 4 6 6 6 6 lox lox

−1.5 3 6 6 6 6 lox lox (P)
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5.1.2 List of discrete deformed triangle groups with short

parabolic words

K + 4 23 31 12 1323 3212 2131 123 notes

−0.5 4 4 4 6 6 6 lox

−0.5 4 4 6 4 6 6 lox

−0.5 4 6 6 4 4 ∞ lox

−0.5 6 6 ∞ 4 ∞ ∞ lox (P)

−0.5 6 ∞ ∞ 6 6 lox lox

−0.5 4 4 ∞ 3 6 6 lox (P)

−0.5 4 6 ∞ 3 4 lox lox

−0.5 3 4 6 4 4 ∞ lox

−0.5 3 4 4 6 6 ∞ lox

−0.5 6 6 6 6 6 6 ∞ Livné Group

−0.809016995 4 5 5 6 6 ∞ lox

−0.809016995 5 5 ∞ 4 lox lox lox (P)

−0.809016995 4 6 6 5 5 lox lox

−0.809016995 4 5 6 5 6 lox lox

−1 4 4 6 6 ∞ ∞ lox

−1 4 6 ∞ 4 6 lox lox

−1 3 3 ∞ 6 6 6 lox (P)

−1 3 6 ∞ 3 3 3 lox

−1 3 3 6 ∞ ∞ ∞ lox

−1 4 4 4 ∞ ∞ ∞ lox

−1 6 6 6 ∞ ∞ ∞ lox

−1 6 6 ∞ 6 lox lox lox (P)

−2 4 4 ∞ ∞ lox lox lox (P)
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5.1.3 List of possible discrete deformed triangle groups

We now list a few groups that we have not been able to determine whether or

not they are discrete, obviously this list is not exhaustive; we restrict ourselves to

interesting groups (e.g. groups where all words of length 4 are finite order regular

elliptic or non-standard groups).

K + 4 23 31 12 1323 3212 2131 123 notes

−0.309016992 3 4 4 5 5 10 lox

−0.309016992 3 4 5 4 4 10 lox

−0.309016992 4 4 10 3 5 5 lox

−0.309016992 4 5 10 3 4 10 lox

−0.309016992 5 10 10 4 4 lox lox (P)

−0.400968868 4 7 14 3 7/2 lox lox

−0.400968868 3 4 7 7/2 7/2 14 lox Non-standard

−0.809016995 4 4 5 6 10 10 lox

−0.809016995 4 4 6 5 10 10 lox

−0.809016995 4 5 10 4 6 lox lox

−0.809016995 4 6 10 4 5 lox lox

−0.809016995 5 5 6 6 10 10 lox

−0.809016995 5 6 10 5 10 lox lox

−0.809016995 5 5 6 6 10 10 lox

−0.939692620 4 9 18 4 9/2 lox lox

−0.939692620 4 4 9 9/2 18 18 lox Non-standard

−0.978147601 4 5 30 4 15/2 lox lox

−0.978147601 4 4 5 15/2 30 30 lox Non-standard

−1.478147601 4 10 30 6 15/2 lox lox

−1.478147601 4 6 10 15/2 30 lox lox Non-standard
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5.2 Deformed triangle subgroups of PU (2, 1;O7)

The following is the result of an unsuccessful attempt to produce a presentation

of Γ = PU (2, 1;O7) (where O7 = Z
[(

1 +
√
−7

)
/2

]
) by looking at some of its

subgroups that are deformed triangle groups. We began by trying to construct

a fundamental domain for Γ following the method used by Falbel and Parker for

PU
(
2, 1; Z

[(
1 +

√
−3

)
/2

])
[9]. This lead to a domain that was much to compli-

cated to understand.

Γ(3, 3, 4;∞)

Let k = (1 +
√
−7)/2, then we have the following representation for (3, 3, 4;∞),

I1 =




−1 −k 1

0 1 −k
0 0 −1


 , I2 =




−1 0 0

−k 1 0

1 −k −1


 ,

I3 =




0 0 1

0 −1 0

1 0 0


 .

Γ(3, 4,∞;∞)

Let k = (1 +
√
−7)/2, then we have the following representation for (3, 4,∞;∞),

I1 =




−1 2 2

0 1 2

0 0 −1


 , I2 =




−1 0 0

−k 1 0

1 −k −1


 ,

I3 =




0 0 1

0 −1 0

1 0 0


 .
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Γ(4, 4, 4;∞)

Let k = (1 +
√
−7)/2, then we have the following representation for (4, 4, 4;∞),

I1 =




−1 −1 − k 2

0 1 −1 − k

0 −1


 , I2 =




−1 0 0

2 1 0

2 2 −1


 ,

I3 =




0 0 1

0 −1 0

1 0 0


 .

Each of the above representation preserve the hermitian form

H =




0 0 1

0 1 0

1 0 0




and the fixed point of the parabolic isometry I1323 is (1, 0, 0), the point at infinity.

PU
(
2, 1; Z

[(
1 +

√
−7

)
/2

])

Following Swan’s convention for Bianchi groups in [34] we define the following ma-

trices in PU
(
2, 1; Z

[(
1 +

√
−7

)
/2

])
.

J =




−1 0 0

0 1 0

0 0 −1


 , T =




1 −1 −k
0 1 1

0 0 1


 , U =




1 −k −1

0 1 k

0 0 1


 ,

A =




0 0 1

0 −1 0

1 0 0


 , Z =




1 0 k − k

0 1 0

0 0 1


 .

Notice that Z = U−1T−1UT and J = AUAU−1AUA. We can express the above

groups in terms of these matrices as follows,

(3, 3, 4;∞) = 〈JT−1U, JAUA, A〉,

(3, 4,∞;∞) = 〈T−1JT, T−1AUJAT, A〉,

(4, 4, 4;∞) = 〈TUJ, ATJT−1A, A〉.
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We believe that U , T and A are a generating set for PU
(
2, 1; Z

[(
1 +

√
−7

)
/2

])
,

unfortunately the method used in [9] leads to insurmountable difficulties when we

attempt to construct a fundamental domain for the group.

5.3 Higher order reflection groups

Recall from chapter 1 that a reflection in a C-line need not necessarily have order

2. Given a triangle of C-lines we can also consider the group generated by higher

order complex reflections. We will follow Parker and Paupert’s convention in [24].

We define higher order deformed triangle groups as a representation of the ab-

stract group

〈R1, R2, R3 | Rk
i ,

(
R2R

−1
3

)p
,
(
R3R

−1
1

)q
,
(
R1R

−1
2

)r〉

into PU(2, 1). Let k be the order of the reflection then ψ = 2π/k is the angle of

rotation.

Now we define the matrices R1, R2, R3,

R1 = e−iψ/3




eiψ ρ −τ
0 1 0

0 0 1


 , R2 = e−iψ/3




1 0 0

−eiψρ eiψ σ

0 0 1


 ,

R3 = e−iψ/3




1 0 0

0 1 0

eiψτ −eiψσ eiψ


 .

preserving the Hermitian form

H =




2 − 2Re (eiψ) ρ(e−iψ − 1) τ(1 − e−iψ)

ρ(eiψ − 1) 2 − 2Re (eiψ) σ(e−iψ − 1)

τ(1 − eiψ) σ(eiψ − 1) 2 − 2Re (eiψ)




In order for the group generated by R1, R2 and R3 to be a complex hyperbolic

triangle group, we need to ensure that this Hermitian form has signature (2, 1).

It follows from a straightforward calculation that tr(R1R2) = eiψ/3(2 − |ρ|2) +

e−2iψ/3. There are equivalent expressions for the traces of R2R3 and R3R1. We can
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also calculate the trace of R1R
−1
2 as 1 + |ρ|2+2 cos(ψ), again there are equivalent

expressions for the traces of R2R
−1
3 and R3R

−1
1 .

We now consider the triple product R1R2R3.

R123 =




1 − |ρ|2+ρστ − |τ |2 ρ(1 − |σ|2) + στ ρσ − τ

στ − ρ 1 − |σ|2 σ

τ −σ 1




Remarkably the factor of eiψ/3 vanishes.

In the case of order 2 reflections we were particularly interested in the cases

where I123 was regular elliptic. Since the factor of eiψ/3 vanishes from the triple

product and we have R123 = I123 for any value of ψ. Then it follows that if we can

find values for ρ, σ and τ where the order 2 triple product I123 is regular elliptic

then when we increase the order R123 remains regular elliptic.

5.3.1 Higher order analogues of Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5)

Recall from section 3.1 if we set

σ = u5, τ = u5, ρ = u+ u2 + u4.

where u = e2iπ/7, then the resulting presentation for the group generated by order

two reflections was Γ(3, 3, 4; 7), and in particular I123 has order 42. Then in the

above presentation R123 will also be regular elliptic and have order 42. Now we

check to see in there are any rational values of ψ such that RiR
−1
j will be regular

elliptic. Clearly ψ = π will be such a value since this corresponds to the order 2

reflection group. We use the trace formula described above, namely:

tr(R1R
−1
2 ) = 1 + |ρ|2+2 cos(ψ),

tr(R2R
−1
3 ) = 1 + |σ|2+2 cos(ψ),

tr(R3R
−1
1 ) = 1 + |τ |2+2 cos(ψ).

Then using lemma 2.3.4 we can check values of ψ where these words are regular

elliptic and have finite order. Since |ρ|2= 2 and |σ|2= |τ |2= 1 these equations
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become

tr(R1R
−1
2 ) = 3 + 2 cos(ψ),

tr(R2R
−1
3 ) = 2 + 2 cos(ψ),

tr(R3R
−1
1 ) = 2 + 2 cos(ψ).

For the words to be elliptic, the trace has to lie in the interval (−1, 3), so clearly

the only permitted values of ψ are 2π/2 and 2π/3, corresponding to the groups

generated by order 2 and order 3 reflections respectively. It follows from a straight

forward calculation that in the order 3 reflection group R1R2 have order 12, R2R3

and R3R1 has order 6. Similarly R1R
−1
2 has order 6, R2R

−1
3 and R3R

−1
1 have order 4.

There is clearly a question as to whether we refer this group as a deformed (6, 6, 12)

group or a (4, 4, 6) group. We sidestep this issue for the moment by using the dual

notation Γ+(6, 6, 12) and Γ−(4, 4, 6) to describe deformed triangle groups relative to

RiRj or RiR
−1
j respectively.

The word R1R3R
−1
2 R−1

3 has trace 3+2Re (ρστω) = 0.683356440 . . ., in particular

it is regular elliptic. Using lemma 2.3.4 this word does not appear to be finite order,

if this is the case then the group is not discrete.

Let u = e2iπ/5, if we set

σ = u2, τ = u2, ρ = −1 − u4.

then the resulting presentation for the group generated by order two reflections was

Γ(3, 3, 5; 5), and in particular I123 has order 15. Following the same approach as

above, we only get a group for order 3 reflections, namely a deformed Γ+(6, 6, 30) /

Γ−(4, 4, 10) group.

5.3.2 More general higher order reflection groups

For more general triangle groups, we use the Γ−(p, q, r), convention, i.e. we use

RiR
−1
j to fix three of the four variables parametrising the space of hyperbolic trian-

gles, rather than RiRj . We use this convention because the trace of RiR
−1
j is real, so

it easier to ensure that the corresponding word is regular elliptic with finite order.
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If we choose three real numbers |ρ|, |σ|, |τ | such that

|σ|2= 2 cos(2π/p) − 2 cos(ψ),

|τ |2= 2 cos(2π/q) − 2 cos(ψ),

|ρ|2= 2 cos(2π/r) − 2 cos(ψ).

this forces R2R
−1
3 , R3R

−1
1 and R1R

−1
2 to have order p, q, r respectively. Note that in

this convention RiR
−1
i+1 cannot have order less than the generating complex reflection.

Then if we set

t = arccos

(
2 cos(2π/n) − 2 cos(ψ) − |ρ|2−|σ|2|τ |2

2|ρστ |

)
. (5.1)

and let ρ = |ρ|eit/3, σ = |σ|eit/3 and τ = |τ |eit/3, this forces R2R3R
−1
1 R−1

3 to have

order n. We denote the group generated by these matrices as Γ−(pk, qk, rk;n). As

before, the superscript minus sign records the fact we are using the order of RiR
−1
i+1

to determine |ρ|, |σ| and |τ | and the subscript k records the order of the complex

reflections. When we use the order of RiRj to determine the group we will denote

it by Γ+(pk, qk, rk;n).

Lemma 5.3.1 In the presentation given above the following words all have real trace

R1R
−1
2 , R2R

−1
3 , R3R

−1
1 ,

R1R2R
−1
3 R−1

2 , R2R3R
−1
1 R−1

3 , R3R1R
−1
2 R−1

1 , (5.2)

R1R2R
−1
1 R−1

2 , R2R3R
−1
2 R−1

3 , R3R1R
−1
3 R−1

1 .

Proof: Follows from straightforward multiplication of the matrices. 2

Since these words have real trace, we can use a computer program similar to the

one from section 2.6.

The computer program checks the traces to find groups where these words are

finite order elliptic and the word R1R2R3 is also elliptic. The trace of R1R2R3 is

not real, so it is not straightforward to determine whether it is finite order of not.

As in the order 2 case, we discard any groups of the form (px, px, px;n) since these

are currently in the process of being analysed by Paupert and Parker in [24]. In

addition we can’t use the Jørgensen test from the chapter 2 case since all higher
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order reflection groups seem to never satisfy these inequalities so they are of no use

in determining discreteness. However we can use the fact that the above words have

real trace to check if they are finite order elliptic.

5.4 Order 3 reflections

If we limit to groups with p3, q3, r3, n < 100, then the program produces the following

list of groups where all the words (5.2) are finite order elliptic and R1R2R3 elliptic

(since k = 3 for all these groups we omit the subscript). Γ−(4, 4, 6;n) for all 4 ≤
n < 100, Γ−(4, 4, 10; 4), Γ−(4, 4, 10; 5), Γ−(4, 4, 10; 6), Γ−(4, 4, 10; 7), Γ−(4, 4, 10; 8),

Γ−(4, 4, 10; 9), Γ−(4, 4, 10; 10), Γ−(4, 4, 10; 11), Γ−(4, 6, 6; 4), Γ−(4, 6, 6; 5), Γ−(4, 6, 10; 4),

Γ−(4, 10, 10; 3), Γ−(6, 6, 10; 4), Γ−(6, 6, 10; 6), Γ−(6, 10, 10; 4), Γ−(6, 10, 10; 5). These

groups are somehow the order 3 reflection analogue of the lattice candidates from

chapter 2.

We now check by hand the eigenvalues of R1R2R3 for these groups to determine

when the word has finite order and we get the following list of lattice candidates.

• In Γ−(4, 4, 6; 4), R1R2R3 has order 8 and ρστ = 1 + i.

• In Γ−(4, 4, 6; 6), R1R2R3 has order 7 and ρστ = (1 +
√
−7)/2.

• In Γ−(4, 4, 6; 10), R1R2R3 has order 5 and ρστ = 1 + ωφ.

• In Γ−(4, 4, 10; 4), R1R2R3 has order 10 and ρστ = (φ2 + i
√
φ2 + 1)/2.

• In Γ−(4, 4, 10; 6), R1R2R3 has order 5 and ρστ = −ωφ.

• In Γ−(4, 4, 10; 10), R1R2R3 has order 15 and ρστ = 1/2 + iφ
√
φ2 + 1.

• In Γ−(4, 6, 6; 4), R1R2R3 has order 7 and ρστ = 1 + (1 +
√
−7)/2.

• In Γ−(4, 6, 10; 4), R1R2R3 has order 5 and ρστ = 1 − ωφ.

• In Γ−(6, 6, 10; 6), R1R2R3 has order 10 and ρστ = 1 − ωφ2.

• In Γ−(6, 10, 10; 4), R1R2R3 has order 5 and ρστ = φ2 − ωφ.

We also check the order of the words RiRi+1 for these groups, somewhat surprisingly

all these words are regular elliptic of finite order.
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ord(R2R3) ord(R3R1) ord(R1R3)

Γ−(4, 4, 6; 4) 6 6 12

Γ−(4, 4, 6; 6) 6 6 12

Γ−(4, 4, 6; 10) 6 6 12

Γ−(4, 4, 10; 4) 6 6 30

Γ−(4, 4, 10; 6) 6 6 30

Γ−(4, 4, 10; 10) 6 6 30

Γ−(4, 6, 6; 4) 6 12 12

Γ−(4, 6, 10; 4) 6 12 30

Γ−(6, 6, 10; 6) 12 12 30

Γ−(6, 10, 10; 4) 12 30 30

This allows us to translate a deformed Γ−(p, q, r) group into a deformed Γ+(p, q, r)

group.

5.5 Order 5 reflections

As with the order 3 reflections, we restrict to p, q, r, n < 100 then the program

produces the following list of groups with satisfying criteria. We omit the subscript

5.

• Γ−(6, 6, 10; 6),

• Γ−(6, 10, 10;n) for all 6 ≤ n < 100.

As in section 5.4 we check the eigenvalues of R1R2R3 to find those groups where

is has finite order. The group Γ−(6, 6, 10; 6) is degenerate, but appeared due to a

rounding error, after removing it, we get the following list,

• Γ−(6, 10, 10; 6), R1R2R3 has order 15 and ρστ = 1 + i
√

3 − φ/2φ.

• Γ−(6, 10, 10; 10), R1R2R3 has order 10 and ρστ = (1 + i
√

4φ2 − 1)/2φ2.

Again checking the order of RiRi+1 in these groups we get
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ord(R2R3) ord(R3R1) ord(R1R3)

Γ−(6, 10, 10; 6) 10 30 30

Γ−(6, 10, 10; 10) 10 30 30

5.6 Other order reflections

Using the computer program we checked for reflections of up to order 50 and 3 ≤
p, q, r, n ≤ 100. There seems to be no other groups that satisfy the conditions of

criteria of the programme. These 12 groups seem to be good candidates for lattices

amongst higher order reflection triangle groups.



Appendix A

Projection figures

Theorem 4.5.2 For n ∈ {0,±1,±2,±3,±5} P n(∆0) lies entirely on the good half

of H2
C

with respect to BA, BB and BC .

Proof:[or theorem 4.5.2] By lemmas 4.3.5 to 4.3.8, we know that the 0 and 1-

skeletons on P n(∆) lie in the good half of H2
C

with respect to BA, BB and BC (or in

the bisectors themselves). The figures below show, via the same argument that we

used to prove theorem 4.5.2 that the 2-skeleton of the core faces and the cone faces

lie on the good side H2
C

(or, again in the bisectors).

Now we show that the core faces of P n(∆) (i.e. P n(A), P n(B) and P n(C)) lie

entirely on the good side of H2
C

with respect to BA, BB and BC . These core faces

are themselves contained bisectors and a quick analysis of complex spines shows

that these bisectors are coequidistant with BA, BB and BC . This means that the

intersection of the bisectors containing the core faces and BA, BB and BC is a smooth

2-dimensional disc. We already know that the 2-dimensional boundary of the core

faces lies on the good side of the bisectors, from which it follows the entire core face

must be contained in the good side of H2
C

with respect to BA, BB and BC (or in the

bisectors themselves).

Since the core faces lie on the good side of the bisectors BA (BB and BC), the

projection of the core faces onto the complex spines ΣA, (ΣB and ΣC) lie on the

same side of σA (σB and σC) as the projection of ∗. Let p be a point in the interior

of a core face then since the core faces lie on the good side of the bisector the

projection of p lies on the good side of the real spine. In order to ensure that the

161
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geodesic segment [p, ∗] does not intersect the bisector, we only need to check that

the projection of the point does not lie in either of the bad regions of the complex

plane as described in the proof of theorem 4.5.2. Naively, it is obvious from the

figures that this is the case however we make the argument rigorous as follows. The

core faces are contained in bisectors which are foliated by C-lines, we can restrict

this foliation to the core face to produce a foliation of the core faces by polygons

bounded by hypercycles contained in C-lines. Since these polygons are contained

in C-lines, they are mapped diffeomorphically onto polygons bounded by arcs of

circles whose vertices are contained in the projection of the 1-skeleton of the core

face. Such a polygon cannot intersect either of the bad regions as this would require

one of the boundary circles to be so large that it would pass outside the C-line.

So the projection of the geodesic segment [p, ∗] cannot intersect the real spine,

therefore the geodesic segment itself cannot intersect the bisector and the interior

of ∆ must lie entirely on the good side of H2
C

with respect to BA, BB and BC . 2

Figure A.1: Projection of the 1-skeleton of P−1(∆) onto ΣA
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Figure A.2: Projection of the 1-skeleton of P−1(∆) onto ΣB

Figure A.3: Projection of the 1-skeleton of P−1(∆) onto ΣC
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Figure A.4: Projection of the 1-skeleton of P−2(∆) onto ΣA

Figure A.5: Projection of the 1-skeleton of P−2(∆) onto ΣB
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Figure A.6: Projection of the 1-skeleton of P−2(∆) onto ΣC

Figure A.7: Projection of the 1-skeleton of P−3(∆) onto ΣA
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Figure A.8: Projection of the 1-skeleton of P−3(∆) onto ΣB

Figure A.9: Projection of the 1-skeleton of P−3(∆) onto ΣC
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Figure A.10: Projection of the 1-skeleton of P−5(∆) onto ΣA

Figure A.11: Projection of the 1-skeleton of P−5(∆) onto ΣB
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Figure A.12: Projection of the 1-skeleton of P−5(∆) onto ΣC

Figure A.13: Projection of the 1-skeleton of P 1(∆) onto ΣA
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Figure A.14: Projection of the 1-skeleton of P 1(∆) onto ΣB

Figure A.15: Projection of the 1-skeleton of P 1(∆) onto ΣC
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Figure A.16: Projection of the 1-skeleton of P 2(∆) onto ΣA

Figure A.17: Projection of the 1-skeleton of P 2(∆) onto ΣB
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Figure A.18: Projection of the 1-skeleton of P 2(∆) onto ΣC

Figure A.19: Projection of the 1-skeleton of P 3(∆) onto ΣA
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Figure A.20: Projection of the 1-skeleton of P 3(∆) onto ΣB

Figure A.21: Projection of the 1-skeleton of P 3(∆) onto ΣC
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Figure A.22: Projection of the 1-skeleton of P 5(∆) onto ΣA

Figure A.23: Projection of the 1-skeleton of P 5(∆) onto ΣB
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Figure A.24: Projection of the 1-skeleton of P 5(∆) onto ΣC

Figure A.25: Projection of the 1-skeleton of P 7(∆) onto ΣA
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Figure A.26: Projection of the 1-skeleton of P 7(∆) onto ΣB

Figure A.27: Projection of the 1-skeleton of P 7(∆) onto ΣC
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