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Abstract

Currently, the primary biomarker for radiation biodosimetry is the dicentric chromosome.

However, the γ-H2AX histone is an alternative assay that is less labour-intensive. Blood

samples can be taken more quickly than for the dicentric biomarker, and a larger number

of samples can be handled within a given time frame. In this thesis, we discuss sev-

eral statistical techniques for how to handle scored γ-H2AX foci data. We then apply

these techniques to two datasets from Public Health England, using one to demonstrate

techniques, and the second to check that the dose-response curve calculation and dose

estimation techniques work. Throughout we choose to fit quasi-Poisson models instead

of Poisson ones to account for overdispersion present within the foci count data. After

fitting both linear and quadratic dose-response curves we create controls to validate the

curves, using a reference sampling ratio to scale them if necessary. By calculating the un-

certainty we show why linear fits are preferable to quadratic ones. We finally compare our

linear dose-response curves from both datasets for multiple timepoints with pre-existing

ones from the literature to see how they compare and what conclusions can be drawn about

dose-response curves for this assay in general.
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Chapter 1

Introduction

In this day and age, the use of nuclear power and radioactive materials means that there is

a risk to the public of accidental irradiation, should something go wrong. In a radiation

incident, scientists need to be able to rapidly and reliably determine each individual

victim’s level of exposure and thus the dose that they have contracted. However, we have

an issue, namely that we cannot guarantee that an exposed individual will be wearing

a radiation dosimeter (members of the public typically do not) [1]. According to their

review, 37% (27) of the cases investigated by Public Health England (PHE) between 2006

and 2015 were listed as “Suspected overexposure of people not wearing a dosimeter” [2].

The majority (59%, or 43 cases) of the 73 investigations during that decade were due to

possible non-uniform exposure, specifically “that in which the relationship between dose

to the physical dosimeter and to the body is uncertain”. This sort of situation is one

where an unexpectedly high dosimeter reading is recorded, and samples are taken as a

precaution.

Biological dosimetry is useful because it can be used to initially split victims into two

groups: those deemed to be “critically exposed”, who should be prioritised, and the “wor-

ried well”, people who have (comparatively) been minimally exposed thus are unlikely

to need urgent treatment [3]. As well as this, it can provide us with useful information

regarding the probable future health consequences, both stochastic and deterministic, for

victims of radiation incidents [4].

1.1 Radiation Dose Modelling

The most commonly used type of biomarker is chromosomal aberrations, wrapped-up

DNA that has been damaged or otherwise altered by ionising radiation.
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1.2 The Dicentric Biomarker

Currently, the main aberration used in biological dosimetry is the dicentric chromosome.

This is a chromosome with two centromeres (“crossings”) instead of the usual one. It is

formed by an exchange between the centromeric pieces of two broken chromosomes, and

in the complete form the resultant dicentric chromosome is accompanied by an acentric

fragment which is composed of the remaining pieces of the broken chromosomes and does

not contain a centromere [5].

The dicentric chromosome is a cytogenetic biomarker, a type of biomarker that counts

chromosomal aberrations in blood lymphocytes. Cytogenetic biomarkers have been con-

sidered to be the “gold standard” for radiation biodosimetry for three decades, mostly

due to a comparative lack of inter-individual variation [6].

Due to the amount of research that’s been done into it and the widespread utilisation

of this method, the dicentric chromosome should be considered to be a “best possible”

albeit imperfect choice of biomarker, as it has a few primary limitations. Firstly, reli-

able samples cannot be taken immediately after exposure as it takes at least 2 days to

obtain suitable metaphase spreads following irradiation and subsequent stimulation of

lymphocytes [7]. The analysis itself is both time-consuming and requires experienced cy-

togeneticists in order to produce an accurate assessment of the level of radiation damage.

As a result, the total number of cases that can be assessed globally in any given week is

approximately 3000 [7]. This figure is as high as it is due to well developed international

mutual assistance networks such as the EU funded project RENEB (Realising the Euro-

pean NEtwork of Biodosimetry) [8]. This presents us with a clear issue: should there be

a large-scale radiation incident, triage of casualties may well be dangerously slow, poten-

tially posing long-term harm to victims’ health. Therefore, other biomarkers should be

investigated that can be assessed sooner and more quickly.

1.3 The Public Health England Factsheet

In this project we will analyse an unpublished internal factsheet (2.5 pages) from Public

Health England [9] entitled “Dose and uncertainty estimation with the gamma-H2AX

assay”. This factsheet briefly and succinctly discusses suggested procedures to estimate

doses from blood or lymphocyte samples using the γ-H2AX assay biomarker. We will

discuss and explore the techniques detailed on it with reference to the field of biodosimetry

as a whole then apply them to two PHE datasets. The first dataset, henceforth referred

to as PHE (2017), is our primary dataset, as it contains a greater number of design doses
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for each time point (as well as a larger number of usable measurements) and was fully

available when this thesis was started. The second dataset is known as PHE (2018) and is

used to check that the methods described work for scenarios other than the first dataset.

Some of the material in this thesis fed into a paper that has been accepted for pub-

lication. (The author of this thesis is listed as a co-author of the paper.) This paper,

entitled “A statistical framework for radiation dose estimation with uncertainty quantifi-

cation from the γ-H2AX assay”, has been published by the journal PLoS One, and any

figures used from it will be suitably cited [10]. The aim of the paper is to establish a

combined statistical methodology for calibration curve estimation, dose estimation, and

uncertainty quantification for the γ-H2AX assay, as currently practical use of the assay

is limited by a lack of agreement on which strategies to use. This contrasts with the

dicentric assay, which has standardised procedures, as given in the IAEA manual (2011)

[5].

1.4 Introducing the First Dataset

Our initial dataset contains 339 foci/cell measurements (also known as “yields”). 32

individual PHE staff volunteers provided blood samples, which were then irradiated ex-

vivo with 250 kVp X-rays. For this dataset 7 design dose points were used: 0Gy, 0.05Gy,

0.1Gy, 0.25Gy, 0.5Gy, 1Gy, and 4Gy. Yields were recorded at only two time points after

exposure, 1h and 24h, for groups of n = 500 cells.

Figure 1.1 is an initial scatterplot of the raw data, colour coded by timepoint. Here

we have that the spread of data increases with dose, and that the 24h data has a smaller

spread than the 1h data at every dose marker where comparison is possible. Excluding

one potential (large) outlier, the 4Gy 24h data has a smaller spread than the 1Gy 1h data.

There are clear positive trends within the data, although it is clear that the foci/cell count

is higher overall and increases at a larger rate for the 1h data.

The number of measurements used per individual varies from 1 (person H62) to 32

(person H9), as shown in Figure 1.2. All of the models we fitted utilised data from multiple

samples, choosing not to consider the sampling individual. This implies an assumption

of inter-individual variation between foci counts that is not larger than intra-individual

variation, something that is taken to be standard with regards to this area of biodosimetry

and will be discussed further in Chapter 2. That being said, should an individual’s sample

results later be found to be compromised for some reason the label can be used to suitably

remove those readings only from the dataset. Labelling the individuals (anonymously)

6
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Figure 1.1: A scatterplot showing the raw data from the PHE (2017) dataset, colour

coded by timepoint. The 1h data is shown in black, whilst the 24h data is shown in red.

also allows us to double check levels of inter-individual variation if we choose to do so,

although we must be mindful of the wildly varying number of samples per person.

Of the 339 measurements in this dataset, 78 of them (just over 23% of the total) were

control measurements, those taken at a dose point of 0Gy. Aside from those, the most

common dose for samples to be exposed to was 0.5Gy (74 measurements, or approximately

21.8%). The three lowest exposed doses (0.05Gy, 0.1Gy, and 0.25Gy) tied with the least

numbers of measurements at 32 each. For the highest three doses (0.5Gy, 1Gy, 4Gy) used

in this dataset the number of readings decreases with dose by 19 each time (74, 55, 36).

It must be noted, however, that the 4Gy data is all from a single timepoint (24h), whilst

every other dose records at least one measurement from each of the two timepoints.

Figure 1.3 shows the number of readings per design dose for each timepoint, and it

should be noted that the only dose where we have more 24h measurements than 1h ones is

4Gy, where we have no data for the 1h timepoint. We have equal numbers of readings per

timepoint (16 per timepoint per dose) for three out of the seven stated doses (0.05Gy,

0.1Gy, 0.25Gy). It is noticeable that these are the three lowest doses that cells were

irradiated with, and that (excluding the 0 recorded for the 1Gy and 4h combination) this

7
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Figure 1.2: A bar chart showing the number of measurements (foci counts per 500 cells)

taken per individual, sorted in order of anonymous user code. From [10].

number of measurements recorded for each dose and time pair is the joint lowest. This

could potentially be due to difficulties working with very small doses. For the 1Gy data

we almost have an equal number of readings per timepoint, with 28 for 1h and 27 for

24h. This suggests that there may have initially been an equal number of readings taken

per timepoint, although if so clearly at least one was unusable. For the other two doses

where we have readings for both timepoints (0Gy and 0.5Gy) we have over twice as many

readings for the 1h data than for the 24h data. Of the 78 control measurements, only 22

of them were taken 24h after exposure. Nearly three-quarters of the 74 readings taken

at 0.5Gy were taken 1h after exposure (55 were taken after 1h, the other 19 after 24h).

The dose with the largest number of 24h readings is 4Gy, which has 36 of them.

8



Figure 1.3: A bar chart showing the number of measurements recorded for each of the

seven doses in the dataset, sorted by timepoint.
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Chapter 2

The γ-H2AX Histone Biomarker

In this thesis we will focus on the γ-H2AX biomarker.

Figure 2.1: A trio of cells (blue) containing γ-H2AX foci (green), that have been stained

using immunofluorescence microscopy. The two white arrows show the heterogeneity of

foci sizes found in a single cell. The red arrow shows a group of foci close together that

may easily be incorrectly scored as a single large focus, an example of a common scoring

error [11].

2.1 Biological Background

Chromosomes in an organism are made of a substance called chromatin, which itself

consists of nucleosomes in more complex, higher order structures [13]. These nucleosomes

are composed of both DNA and octamers of histones, groups of eight proteins that are
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Figure 2.2: A set of four images showing the effect of increased dose on the generation

of γ-H2AX foci. All samples were scored the same amount of time after irradiation. It is

clear that the greater the amount of radiation exposed to, the greater the number of foci

generated [12].

used to package the DNA double helix. Specifically, DNA is wrapped around the eight

protein structure. Each octamer is made from four types of histone, H2A, H2B, H3, and

H4, and each type of histone is represented twice [14]. The H2A histone has four subtypes,

which are grouped into three subfamilies: H2A1-H2A2, H2AZ, and H2AX [13]. We are

focussing on H2AX, which can account for anything from 2% to 20% of the H2A histones

found in human cells. Our data refers specifically to lymphocytes, which typically only

contain 2% H2AX [15].

The H2AX subtype has a specific role, namely that it is able to repair double strand

breaks (DSBs) in DNA following a nucleosome’s exposure to low doses of ionising ra-

diation [14]. When said DSBs occur, the H2AX histone phosphorylates, a process that

results in the formation of γ-H2AX foci, which can be observed as fluorescent dots [6].

The background rate of γ-H2AX foci is very low (0.1 per cell or less in unirradiated

peripheral blood mononuclear cells and normal human fibroblasts in stationary phase)

[15]. The phosphorylation is only visible for up to approximately 24 hours after radiation

exposure [6]. DSBs are spontaneously induced at a very low rate, and very few other

biologically relevant processes induce them, so the presence of a significant amount of

DSBs implies that an organism has been exposed to ionising radiation [15].

11



2.2 Foci Scoring

Although the initial research on this biomarker was done using animal tissue samples,

primarily mouse livers [13], this is massively impractical when dealing with irradiated

humans, so blood samples are used instead.

According to Rothkamm & Horn in 2009, γ-H2AX analysis should take place between

30 minutes and 1 hour after a full body exposure, as at this point the vast majority of

the induced foci are both present and at a size and intensity where they can be scored

reliably [15]. However, this is unrealistic when considering a radiation incident, especially

a triage situation with a large number of potential casualties. Therefore, samples should

be taken as soon as possible, ideally within 24 hours, with a potential upper limit for

feasibility of approximately 3 days [16].

These blood samples are then scored, either manually in a process called immunoflu-

orescence microscopy, or automatically through flow cytometry using machinery such as

MetaCyte [17]. However, automated scoring can have consistency issues [18], so the data

we are looking at has been manually scored. The main control issues to consider when

scoring samples are the point at which dim foci are classified as background noise, due to

their low intensity or small size, and the potential for groups of foci in close proximity to

each other that can easily be perceived as fewer in number than they actually are. Both

of these may be affected by differences in the optical resolution and light efficiency of the

microscope and camera used for the imaging of the foci [15], as well as the discretion of

the individual scorer. Indeed, this is an issue we later came across when analysing the

newer of our two datasets: there were two researchers scoring the data, and one recorded

consistently higher foci counts than the other. This can be accounted for by including

mathematical methods to “normalise” the data and thus allow for comparison across a

full dataset.

2.3 Comparison with Dicentric Biomarker

When comparing the γ-H2AX histone biomarker with its dicentric counterpart, we must

first be aware that they are two different types of biomarker. The dicentric biomarker is a

cytogenetic biomarker, one that counts chromosomal aberrations in blood lymphocytes,

whilst the γ-H2AX histone is a protein-based biomarker that relies on the phosphory-

lation of proteins for analysis [6]. The dicentric biomarker is very well established in

the literature, with clear and comprehensive statistical methods, whilst the γ-H2AX hi-

stone is not (the aim of our aforementioned paper [10] is to establish a unified statistical
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methodology for this biomarker). A key strength of the dicentric biomarker is that it has

very little inter-individual variation. This is not true for the γ-H2AX biomarker, which

has, as well as potential inter-individual variation, far stronger inter-laboratory varia-

tion [14]. However, the time required between sampling and analysis is far shorter for

γ-H2AX foci (a few hours) than for the dicentric biomarker (2-3 days) [18]. The dicentric

biomarker also has a lower throughput than the γ-H2AX histone and is more labour

intensive, requiring experienced and skilled cytogeneticists. As a result of this the global

weekly capacity for analysis of the dicentric biomarker in “triage mode” (scoring only 50

cells per sample and with a detection limit of 0.5Gy) is approximately 3000 samples [7],

clearly not practical for a situation with a high number of potential casualties. There

is no currently stated upper limit for the number of γ-H2AX histone samples scored

per week, but it is reasonable to assume that any such limit would be far larger than

3000. The γ-H2AX histone biomarker operates within comparatively strict time limits:

the phosphorylated foci initially form within minutes of exposure [18], but are typically

only visible until approximately 24 hours after [6]. In comparison, while a blood sample

can be taken within a few hours of a whole body exposure for the dicentric biomarker,

delaying taking a sample until over 24h later is “advisable” if a non-uniform or partial

body exposure is suspected [5]. Otherwise, IAEA guidelines suggest that blood samples

for analysis of this biomarker be obtained “promptly” but give no strict upper limit,

suggesting that aberration yields will drop after four weeks, increasing uncertainty [5].
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Chapter 3

Constructing Dose-Response

Calibration Curves

The process of dose estimation can be broken down into two steps. Firstly, a dose-

response curve is fitted, which may be either linear or quadratic. The equation for this

dose-response curve comes from fitting a generalised linear model (GLM) to the chosen

subset of calibration data. Data is typically subsetted by time of exposure. In this

chapter we will discuss the underlying statistical techniques and methodology utilised

when fitting these models and thus the resulting calibration curves. The dose estimation

process and the subsequent estimation of uncertainty will be discussed in Chapter 4.

3.1 Exponential Family

The exponential dispersion family (EDF) of probability distributions can be written in

the following form:

P (z|θ, φ) = exp

[
zθ − b(θ)

φ
+ c(z, θ)

]
(3.1)

where:

• θ ∈ R is the so-called ‘natural parameter’;

• φ > 0 is the ‘dispersion parameter’, the one that we are focussing on here;

• b : R→ R and c : R× R>0 → R are both functions. We know that

η = b′(θ) (3.2)

is the linear predictor (see Section 3.2) and slope parameter, and

V(η) = b′′(θ) (3.3)
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is the variance function of η.

The Poisson distribution is an EDF with z ∈ N. It can be expressed as

P (z) =
e−λλz

z!
= exp [z lnλ− λ− ln z!] (3.4)

for integer z [19].

In this case we have that

• θ = lnλ;

• φ = 1;

• b(θ) = eθ = λ;

• c(z, φ) = − ln z!.

3.1.1 Dispersion

The dispersion parameter φ is a parameter of the exponential family that denotes the

ratio of the variance to the mean. In the Poisson case it can be calculated by dividing

the variance by the mean. As the Poisson model has equidispersion, the value of φ

for a Poisson fit is always 1. Therefore one can think of φ as the dispersion relative

to the Poisson dispersion. If φ > 1 we have overdispersion, whilst φ < 1 represents

(hypothetical) underdispersion.

Overall, the dispersion parameter exists to account for “extra variation” within data

and is often referred to as a “nuisance” parameter, but is actually of critical importance

when constructing a quasi-Linear model of any type. The size of the dispersion parameter

does not affect the value of the mean, but it does affect the spread of the data, acting to

scale the variance and thus the standard error.

3.2 Generalised Linear Models

Generalised Linear Models (GLMs) are a class of models that generalise linear regression

where the response variable is expected to follow an EDF distribution with mean µ. They

are specified by three components, namely:

• η = ωTx, the linear predictor [20], where ω is a p-dimensional vector of unknown pa-

rameters and x is a p-dimensional design vector of predictors that is an appropriate

function of the actual covariates;
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• h, an injective response function. We have that

µ = E[z|x] = h(η) = h(ωTx).

Its inverse g = h−1, also written as

g(µ) = η = ωTx,

is the link function. This and the linear predictor form the structural assumption;

• The type of the exponential family that categorises the response function, which

is the distributional assumption. In a GLM our knowledge of z given x and ω is

described by an EDF whose parameters depend on x and ω:

P (z|x, ω) = P (z|θ(x, ω), φ) = exp

(
zθ − b(θ)

φ
+ c(z, θ)

)
.

The responses Z are conditionally independent given x. Therefore:

P ({zi}|{xi}) =
∏
i

P (zi|xi, ω) (3.5)

3.2.1 Poisson Models

Typically a Poisson distribution is used to model cytogenetic biodosimetry data [5]. The

Poisson distribution is a count based statistical distribution with probability density

function P (z) = e−λλz

z!
(see Equation 3.4). The single parameter λ is the mean number

of times an event occurs in an interval. The Poisson distribution is notable in that both

the expectation and the variance are also λ. The equality of the mean and the variance

in particular is known as equidispersion [20]. However, real life data frequently violates

equidispersion. With biomarker data the type of violation that we are most likely to

encounter is overdispersion, where the variance exceeds the mean. (Underdispersion,

where the mean exceeds the variance, can occur but is typically far rarer.)

For the aforementioned dicentric biomarker, a Poisson distribution has been shown to

be sufficient for a homogeneously irradiated population of blood lymphocytes by Hilali et

al in 1991 [21]. As the data we are using includes lymphocytes that have been irradiated

in laboratory conditions, we assume homogeneity of irradiation. Thus, we are testing

initially how well the Poisson distribution fits this γ-H2AX data, to see if the goodness

of fit is dicentric biomarker specific or not, an assumption that has been made previously

[22]. We are then utilising a second fitting model as a comparison, specifically the quasi-

Poisson model, which will be discussed in Section 3.2.5.
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Throughout this thesis, we will only be using data from whole body irradiation scenar-

ios, i.e. ones where we assume that the entire body has been irradiated an equal amount.

This is done for ease of modelling and calculation. Partial body models do exist, and

they will be briefly discussed in Chapter 6.

Another issue to consider is the potential for zero inflation, which occurs when the

number of zeros in a sample significantly exceeds the expected amount. This is commonly

observed with count data, where the number of zeros generated by a Poisson distribution

is less than the number observed [23], and is a phenomenon closely related to overdisper-

sion. Again, this issue and potential solutions to it will be discussed further in Chapter

6.

When fitting a generalised linear model in R, a link function must be stated. The link

function is a response function that relates the linear predictor to the mean function of the

chosen exponential family distribution. Typically the preferred link to use statistically

is the canonical link function, one that is derived from the exponential of the density

function. For the Poisson distribution this is the log link g(µ) = exp(ωTx). For this

biomarker data, however, we have chosen to deviate from the canonical link for biological

reasons, instead using the identity link g(µ) = ωTx, as this relationship has both been

empirically observed [24] and can be physically justified [15]. This guarantee is needed

for feasibility, as the mean/expected Poisson count can never go below 0 for count data.

The identity link gives a fitted model of the form µ =
∑

i θiD
i for a vector of coeffi-

cients θ and powers of the dose, D, from which fitting equations can be constructed. We

chose to use the coefficients A,α, and β and set y = µ = E(z), to give

y = A+ αD (3.6)

and

y = A+ αD + βD2 (3.7)

These equations will later be used for dose estimation with a known yield y.

3.2.2 The Score Function (General Case)

A maximum likelihood estimate (MLE) with log-likelihood L satisfies the score equation

S(ω̂) = ∂L
∂ωT

(ω̂) = 0, which comes from the score function S(ω) = ∂L
∂ωT

.

In the general form we have

S(ω) =
∂L

∂ωT
=
∑
i

∂Li
∂ωT

=
∑
i

∂Li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂ωT

,
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with

∂Li
∂θi

=
zi − b′(θi)

φ
=
zi − µi
φ

.

Using Equations 3.2 and 3.3, we know that:

∂θi
∂µi

=
∂(b′)−1

∂µi
=

1

b′′((b′)−1(µi)
=

1

b′′(θi)
=

1

V(µi)

∂µi
∂ηi

= h′(ηi)

∂ηi
∂ωT

= xi

3.2.3 The Score Function (Poisson Case)

For this dataset, the initial type of model that we are fitting is the Poisson model with

identity link λ(x) = µ(x) = ωTx. The likelihood function is given by

L = exp

(∑
i

(−µi) + zi ln(µi)− ln(zi!)

)
= exp

(∑
i

(−ωTxi) + zi ln(ωTxi)− ln(zi!)

)
We have that

∂Li
∂θi

= zi − µi = zi − ωTxi

∂θi
∂µi

=
1

µi
=

1

ωTxi
∂µi
∂ηi

= 1

∂ηi
∂ωT

= xi

ηi is explicitly linked to the shape of the constructed curve, as it is calculated using the

curve coefficients.

Therefore in this scenario, the full score equation can be written as

S(ω) =
∑
i

(zi − µi)
1

µi
xi

=
∑
i

(
zi − ωTxi

) 1

ωTxi
xi

=
∑
i

(
zi

ωTxi
− 1

)
xi

Here we have that φ = 1 (as this is a Poisson model).

S(ω) =
∑
i

(
zi

ωTxi
− 1

)
xi
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3.2.4 Removing the Dispersion

S(ω) =
∑
i

(
zi − µi
φ

)(
1

V(µi)

)
h′(ηi)xi

S(ω) =
1

φ

∑
i

(zi − µi)
1

V(µi)
h′(ηi)xi

The MLE ω̂ must satisfy S(ω̂) = 0. However, the dispersion parameter φ cancels from

the score equation. This implies that ω̂ does not depend on φ.

3.2.5 Quasi-Poisson Models

As the value of ω̂ does not depend on φ, we can construct a so-called “quasi-Poisson”

model that utilises the majority of Poisson assumptions but allows for dispersion values

other than 1.

In general, quasi-likelihood models drop the exponential family assumption of likeli-

hood models. They also separate the mean and variance structure of the model, which is

especially relevant in the Poisson case when the equidispersion assumption is also being

removed.

Fitting a GLM using a quasi-Poisson model gives the same estimate values for coef-

ficients as a Poisson fit, and thus the values of the residuals are the same. The null and

residual deviance values are also the same. Obviously, the dispersion values differ between

Poisson and quasi-Poisson fits with the same link for identical data, but so too do the

standard errors on the coefficients. Quasi-Poisson models may not have distributional

forms; they are only characterised by mean and variance. Thus they do not have Akaike

information criteria (AIC) values. In 2002 Burnham and Anderson developed quasi-AIC,

but they only used it to compare various quasi-linear models instead of comparing quasi

class models to those with a distributional form (i.e. comparing quasi-Poisson to Poisson)

[25].

A quasi-Poisson model is preferable to a Poisson one for our γ-H2AX data due to the

amount of overdispersion present. In the examples below (Section 3.4), it can clearly be

seen that the dispersion parameter for our PHE (2017) data has a value of approximately

60. This indicates a large difference in size between the mean and variance values (the

variances are about 60 times larger than the means), and consequently a significant

violation of the Poisson model’s equidispersion principle.
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3.3 Variability

3.3.1 Moments

For a GLM, the mean and variance structure are correctly specified by

E(z|x) = µ = h(ωTx),

Var(z|x) = σ2(µ) = φV(µ),

where V(µ) is a variance function [26]. It holds that the “updated” variance for the quasi-

Poisson fit can be calculated using the quasi-Poisson dispersion: that is, for parameter

estimates θ̂,

VarQ(θ̂) = φVarP (θ̂). (3.8)

3.3.2 Standard Error

The standard error on a measurement is the square root of the variance. Thus it follows

that when moving from a Poisson model to a quasi-Poisson one we multiply the Poisson

standard error SEP by the square root of the dispersion φ. Therefore, for parameter

estimates θ̂, we have that:

SEQ(θ̂) =
√
φSEP (θ̂) (3.9)

3.4 Examples

3.4.1 Checking Fit Type

A quick and easy way to test for equidispersion is to simply plot the means and variances

of the yields against each other, with a aggregated data point for each dose. Should

we have equidispersion, the resulting line of best fit will be a straight line of the form

x = y with the same scale on both axes. We do this in Figure 3.1, and it is immediately

obvious that we have overdispersion instead of equidispersion. For starters, the means and

variances are not even plotted on the same scale, with the means’ scale in the thousands

and the variances’ scale in the hundreds of thousands. The variances are shown to be

roughly 60 times larger than the means, suggesting that a fitted quasi-Poisson GLM

would have an estimated dispersion of φ ≈ 60.

If we were to introduce a line of best fit here, it would clearly be nothing near x = y,

and the 24h data may even be best served by fitting a curve to deal with the extremely
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large value outlier on the right hand side, should it not be an outlier, although further

measurements would be needed to clarify either way.
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24h

Figure 3.1: A plot showing the relationship between the means and variances of the cells

in the PHE (2017) dataset. Clear differences in scale are visible, as is an obvious lack of

equidispersion. From [10].

3.4.2 Model Fitting & Calibration Curves

We have a large number of data points, so we chose to fit the time points separately

from each other. Initially we fitted eight different models, four Poisson and four quasi-

Poisson. However, the coefficients are mathematically identical, as discussed in Section

3.2.5, thus Table 3.1 records the quasi-Poisson (rounded) coefficients, along with the

dispersion values of each fit. Standard error values have been recorded separately in

Table 3.2 for later discussion/analysis. These four fits have been plotted in Figure 3.2

(and colour coded appropriately) on a graph of dose against foci/cell. For quadratic fits,

we expected to have that β < 0 due to the saturation effect, and indeed this is what we

found.
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All four of our final fits have similar intercept values of between 0.11 and 0.18, sug-

gesting that a so-called “true” background rate lies between those values. In both the

linear and the quadratic cases, the slope value decreases with time, whilst the intercept

increases slightly (by about 0.03 each time), although the latter observation may not

actually be notable. There is a large difference between 1h and 24h, time wise (especially

compared to a gap between time points like 1h and 4h), so the large decrease (by over 10

each time) in the slope value is understandable. Both of the β coefficients are negative,

as expected, with the 1h quadratic fit having a much larger curve than the 24h one. The

24h model has a very small negative curve coefficient, at only -0.094352. In fact, both

quadratic fits are very close to the linear ones, according to Figure 3.2. Therefore it

is especially worth looking at the uncertainty values in this case to determine whether

or not the amount of uncertainty introduced by each quadratic (or β) term justifies its

inclusion. It remains to be seen whether the relative sizes of the β terms appear to be

“typical” for their time points, although there is a dearth of fit values to compare in this

case, as linear fits are typically preferred for γ-H2AX data.

From our initial plot of means against variances, we estimated that any fitted quasi-

Poisson GLMs from the data would have dispersion values of approximately 60. In the

end this turned out to be a slight overestimate, but it’s close enough to be sensible,

especially for the linear models. The model with the largest dispersion (59.5617, just

below the initial estimate) is the linear 1h fit, whilst the quadratic 1h fit has the smallest

dispersion, only 43.42941. Notably, the linear fits have close together dispersion values

(the difference between them is 2.01567), whilst the quadratic fits very much do not (the

difference between them is 9.11545). Thus we could suggest that estimating the dispersion

using a plot of means against variances is more likely to give sensible estimates for linear

fits than quadratic ones. However, the introduction of the extra quadratic term does

appear to reduce overdispersion, sometimes by a large amount (16.13229 in the 1h case).

3.4.3 Standard Errors of Fitted Models

Table 3.2 displays the standard errors for each fitted variable of our eight original fits,

both Poisson and quasi-Poisson. These standard errors have been taken from R summary

outputs for the fitted models. This allows us to use the dispersion values stated in Table

3.1 to verify the relationship between the Poisson and quasi-Poisson standard error values

and thus Equation 3.9. Upon initial inspection, the Poisson standard error values are

each one degree of magnitude smaller than their quasi-Poisson equivalents, which does

fit.
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Figure 3.2: A plot showing the fitted dose-response curves for the PHE (2017) dataset,

superimposed on the full dataset as shown in Figure 1.1. The linear fits are denoted by

straight lines, whilst the quadratic fits are denoted by dashed ones. From [10].

Fit type Time A α β Dispersion, φ

Linear
1h 0.1308 12.5589 - 59.5617

24h 0.1794 1.9373 - 57.5460

Quadratic
1h 0.1124 15.5075 -4.1693 43.4294

24h 0.1414 2.2756 -0.0944 52.5449

Table 3.1: A table of fitted models for the PHE (2017) dataset, showing fit type, time-

point, coefficient values, and the corresponding dispersion values for the quasi-Poisson

models. The model equations being fitted here are Equation 4.9 (linear) and Equation

4.10 (quadratic). Values are rounded to 4 decimal places where necessary.

Using the information given in Table 3.2, we can use Equation 3.9 to validate the

dispersion values from Table 3.1, and thus verify both that our quasi-Poisson fit actually

works and that Equation 3.9 is indeed what is used in R to transform a Poisson model

into a quasi-Poisson model. We chose to test this using the linear and quadratic fits for
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Fit type Time Model SE(A) SE(α) SE(β)

Linear

1h
Poisson 0.0021 0.0208 -

Quasi-Poisson 0.0162 0.1606 -

24h
Poisson 0.0028 0.0049 -

Quasi-Poisson 0.0214 0.0375 -

Quadratic

1h
Poisson 0.0020 0.0558 0.0708

Quasi-Poisson 0.0130 0.3675 0.4664

24h
Poisson 0.0029 0.0151 0.0040

Quasi-Poisson 0.0208 0.1095 0.0292

Table 3.2: A table containing the standard errors for each fitted model for the PHE

(2017) dataset, sorted by fit type, timepoint, and model type, taken as they are from our

R code output. Values are rounded to 4 decimal places where necessary.

the 1h data, due to them having the largest and smallest dispersion values respectively.

Linear:

SEQ(A) =
√

59.5617× 0.0209 = 0.0162

SEQ(α) =
√

59.5617× 0.0208 = 0.1606

Quadratic:

SEQ(A) =
√

43.4294× 0.0020 = 0.0130

SEQ(α) =
√

43.4294× 0.0558 = 0.3675

SEQ(β) =
√

43.4294× 0.0708 = 0.4664

We can clearly see from these calculations that the relationship SEQ(θ̂) =
√
φSEP (θ̂)

(Equation 3.9) holds, thus confirming that the quasi-Poisson functionality in R works as

we would theoretically expect.
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Chapter 4

Dose Estimation

4.1 Yield

In order to estimate the dose, the yield of foci from the sample must first be known. The

yield, y, is found by scoring groups of cells, as discussed in Section 2.2. The number of

cells scored in each sample is referred to as n. (For the PHE (2017) dataset, we have a

constant n throughout. This is not the case in the PHE (2018) dataset.)

The following derivation works for the Poisson case [27]. For a single count Yi, the

Poisson distribution can be written as:

Yi ∼ f(λ, Yi) =
e−λλYi
Yi!

for i = (1, 2, ..., n). We also have that Var(Yi) = λ and SD(Yi) =
√
λ. Therefore the

Poisson likelihood function is given by:

L =
n∏
i

e−λλYi
Yi!

=
e−λλY1

Y1!
× ...× e−λλYn

Yn!

=
e−nλλ

n∑
i=1

Yi

n∏
i=1

Yi!
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and thus the log-likelihood function is:

ln(L) =
n∑
i=1

ln

e−nλλ
n∑
i=1

Yi

n∏
i=1

Yi!


= −nλ+

n∑
i=1

Yiln(λ)−
n∑
i=1

ln(Yi!).

We can thus find the maximum likelihood estimate (MLE) λ̂ by taking the derivative

of the log-likelihood with respect to λ then setting the resultant equation to 0 and solving

for λ:

∂ln(L)

∂λ
= −n+

n∑
i=1

Yi

λ

⇒ −n+

n∑
i=1

Yi

λ̂
= 0

λ̂ =

n∑
i=1

Yi

n
= Ȳ = y.

Thus the MLE of the count is the yield.

Knowing the MLE allows us to define the standard error (SE) of the count:

SE(Yi) =
√
λ̂ =

1√
n

√√√√ n∑
i=1

Yi,

thus we have:

SE(
n∑
i=1

Yi) =

√√√√ n∑
i=1

SE2(Yi) =

√√√√ n∑
i=1

1

n

n∑
i=1

Yi =

√√√√ n∑
i=1

Yi.

Therefore we can define the sampling variance on the yield of foci per cell for the

Poisson case as:

σ2
y = SE2(y) = SE2(Ȳ ) = SE2

(
1

n

n∑
i=1

Yi

)
=

(
1

n
SE

(∑
Yi

))2

=

(
1

n

√∑
Yi

)2

=

(
1√
n

√∑
Yi√
n

)2

=

(
1√
n

√∑
Yi
n

)2

=

(
1√
n

√
Ȳ

)2

=
Ȳ

n
=
y

n

∴ σ2
y =

y

n
(4.1)
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However, for the quasi-Poisson case we use a GLM property to transform the sampling

variance. From Section 3.2.2 we know that the variance of a GLM is stated by the equation

Var(y|x) = σ2(µ) = φV(µ),

and thus we have that, for an quasi-Poisson fit with our yield y:

Var(y) = φVarP (y).

Therefore, the standard error on the yield for the quasi-Poisson case can be estimated

using

σ2
y =

yφ

n
,

where φ is the dispersion parameter.

For our first dataset (PHE (2017)), the results recorded are counts, foci/cell readings

for groups of n = 500 cells. For the second dataset, we were unable to do this due to

multiple scorers (see Chapter 5) and ended up with aggregated data instead.

4.2 Dose Estimation

Now that we have a value for the yield, as well as fitted calibration curves, we can estimate

the dose based on whether we have fitted a linear or quadratic model, using equations that

are based on the fit of the calibration curve. For the datasets we have, linear models are

preferred in the literature, but we have chosen also to give the dose estimation equation

for the quadratic case to test why this is. For the linear case, we have the equation

D =
(y − A)

α
, (4.2)

a rearrangement of Equation 3.6 with D as the subject, whilst for the quadratic case the

dose estimation equation is

D =
−α +

√
α2 + 4β (y − A)

2β
. (4.3)

This is a rearrangement of Equation 3.7 with D as the subject.

4.3 Reference Sample Ratio

In Ainsbury et al. (2016) [28], a so-called reference sample ratio, whose value is referred

to as r, is included in analysis to scale the data and thus produce a suitable calibration
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curve. This reference sample ratio is created by comparing yields from points on pre-

existing calibration curves with “reference yields” created as controls in a lab situation.

If a reference yield is slightly smaller than the yield on the curve for the same dose, we

adjust by scaling the estimated doses (and thus the curve) up correspondingly. However,

if the reference yield is slightly larger than the yield on the curve, no action is taken.

This is because it is sensible to assume that reference yields are slightly larger as they

are not subject to foci loss (such as through shipping).

The Public Health England factsheet [9] recommends that for best practice “at least

one negative and one positive control” should be created for each time point in the sample.

Here the phrase “negative control” refers to a non-irradiated sample, one that can be said

to have been irradiated to 0Gy. We label this y0Gy. The suggested dose for the “positive

control” sample is 1.5Gy, so this is labelled y1.5Gy. Creating these controls also accounts

for systematic errors between laboratories. These controls should then be scored to yield

pairs of control reference samples, y0Gy ± σy,0Gy and y1.5Gy ± σy,1.5Gy. The standard error

on these samples is calculated the same way as for the yield. Therefore overall, for a

dataset with two time points (say 1h and 24h), one would assume that a minimum of

four reference samples are needed: one irradiated to 0Gy for 1h, one irradiated to 1.5Gy

for 1h, one irradiated to 0Gy for 24h, and one irradiated to 1.5Gy for 24h. However, if

efficiency is required, we do not need two 0Gy control samples - a 0Gy sample serves more

as a measure of background levels of foci counts and thus radiation therefore theoretically

the two 0Gy samples should yield an identical foci count.

When the reference samples have been created, the 0Gy negative control values should

then be compared to the corresponding fitted values of the coefficient A for the dose-

response curve with the matching time point. The 1.5Gy positive control values should

be compared to the 1.5Gy point on said dose-response curve. According to Public Health

England [9], a discrepancy of more than 30% between the reference samples and the points

on the curve is indicative of experimental conditions in the current experiment that do

not “sufficiently match” the experimental conditions at the time that the calibration

curves were created. An alternative method of curve validation can be done by checking

whether the reference samples lie within 95% prediction intervals around our estimated

calibration curves [10]. For this method, our estimated curves are validated if this is

indeed the case. This method does not use the reference sampling ratio and will not be

focussed on otherwise.

When we have curves validated using the first method, i.e. those where the discrep-

ancy between the 1.5Gy points on the predefined calibration curves and the reference
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samples is less than 30%, then we can use the curves to estimate dose. However, we still

account for this discrepancy using a reference sample ratio for scaling.

Our next step is to create the reference sample ratio, r, using the reference sample at

1.5Gy, y1.5Gy, and the yield on the calibration curve that corresponds to a dose of 1.5Gy,

the curve point yC . If y1.5Gy > yC , then r = 1. If y1.5Gy < yC , then r = yC
y1.5Gy

> 1.

Obviously, if y1.5Gy = yC , then r = 1. Due to the 30% discrepancy upper limit for using

this method, we have that 1 ≤ r ≤ 1.3. Therefore r cannot decrease the value of the

estimated dose, instead keeping it the same or making it slightly larger. Ainsbury et al.

(2016) [28] use a reference sample standard deviation of
√
r, a value that comes from

Poisson assumptions. This can then be used to calculate a corresponding variance, which

is needed later on when calculating the uncertainty on a dose estimate. According to [28],

the standard errors on the reference samples should be estimated in the same manner as

the uncertainty on the sample yield.

Now that we have this ratio r, we can incorporate it into Equations 4.2 and 4.3 as a

scaling factor, giving us two further equations:

1.

D =
(y − A)

α
r (4.4)

(linear, comes from Equation 4.2)

2.

D =
−α +

√
α2 + 4β (y − A)

2β
r (4.5)

(quadratic, comes from Equation 4.3)

4.4 Uncertainty Analysis

With measurements comes uncertainty, and so naturally a fitted calibration curve itself

has uncertainty. According to the International Atomic Energy Association (IAEA) the

uncertainties associated with a dose-response calibration curve are approximately nor-

mally distributed [5].

4.4.1 Merkle’s Method

When dealing with data that’s been fitted to a Poisson distribution, the subsequent

(Poisson) nature of the yield provides a second component to the uncertainty. It is

still possible to calculate a 95% confidence interval (CI) for the “true” dose, however,
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due to Merkle’s method. This method is detailed in the IAEA’s Dosimetry (Emergency

Preparedness and Response) Manual from 2011 [5], and is well-established for use with the

dicentric biomarker. It uses the confidence limits on the yield and a graph of a calibration

curve. The calibration curve should have uncertainty curves plotted (preferably as dotted

lines) on either side of the dose-response curve. Merkle’s method includes the following

steps:

1. Calculate the yields that correspond to the lower and upper 95% confidence limits

on the observed yield, known as yL and yU respectively.

2. Calculate the dose at which yL crosses the upper uncertainty curve. This is the

lower confidence limit or DL.

3. Calculate the dose at which yU crosses the lower uncertainty curve. This is the

upper confidence limit or DU .

This gives you the widest possible 95% CI for this curve and yield combination.

A proposed refinement to this method to reduce possible overestimation of uncertainty

is to instead use an 83% confidence interval. However, there is little point in attempting

to shrink the interval size without first checking whether this method actually works for

the γ-H2AX histone as well as the dicentric biomarker. Merkle’s method works well for

dicentric data because the distribution of dicentric cells can be said to be equidispersed

with the Poisson distribution [29]. That is, the ratio of the sample variance to the sample

mean is very close to 1:1 and, as Poisson fits are used, each model fitted with dicentric data

has dispersion 1. This is not true for our γ-H2AX data, which has a far larger dispersion

(around 60). Gao (2017) [29] attempted to apply Merkle’s method of generating 95%

confidence intervals to γ-H2AX data with known real doses. In order for the method

to be successful, the expectation was that nearly 95% of the intervals produced should

contain the real doses. For the 1h data, only 10 of the 131 measured yields ultimately

produced intervals that encompassed the real dose (a further 4 yields gave NA as an

answer). This is a success rate of 7.63%. The 24h data fared even worse with only 9

of the 130 yields producing intervals containing the real dose, a success rate of 6.92%.

This is far from satisfactory and suggests that Merkle’s method is insufficient for γ-H2AX

data. Instead, other approaches such as the Delta Method should be considered.

4.4.2 The Delta Method

Assume we have a vector of parameter estimates θ, for which we can fully specify the

variance matrix, V ar(θ̂). Now, assume that we are interested in a real-valued function
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h(θ), and would like to find the variance of this. (This h(θ) will later correspond to the

dose estimator.) From the multivariate Taylor Expansion we have that h(θ) : Rp → R

for a vector θ =


θ1

...

θp

. The MLE of θ is found at the point θ̂.

We know that

Var(θ̂) = Σ,

and can thus use Taylor’s theorem to linearise h(θ̂):

h(θ̂) = h(θ) +∇h(θ)T (θ̂ − θ) + c

⇒ Var(h(θ̂)) = ∇h(θ)TVar(θ̂ − θ)∇h(θ) + c

= ∇h(θ)TVar(θ̂)∇h(θ)

= ∇h(θ)TΣ∇h(θ)

where Σ is the variance matrix.

Approximating the gradients by their estimates, we have:

Var(h(θ̂)) = ∇h(θ̂)TΣ∇h(θ̂)

=
(
∂h
∂θ1

. . . ∂h
∂θp

)
|θ=θ̂


Σ11 ∗

. . .

∗ Σpp




∂h
∂θ1
...
∂h
∂θp

 |θ=θ̂

.

The non-diagonal terms of the variance matrix Σ correspond to covariances, written as

Σij where i 6= j. If Σij = 0 for i 6= j then the resulting output equation is the initial

MULTIBIODOSE simplification that does not contain covariance terms:

Var(h(θ̂)) =
(
∂h
∂θ1

. . . ∂h
∂θp

)
|θ=θ̂


Σ11

∂h
∂θ1

...

Σpp
∂h
∂θp

 |θ=θ̂ =

p∑
j=1

(
∂h

∂θj

)2

|θ=θ̂Σjj

Therefore the variance of the function is equal to the sum of the squares of the associated

partial derivatives where each squared partial derivative is multiplied by the variance of

the variable used to form the partial when all of the covariances are taken to be 0. We

chose to do this due to the high relative uncertainty of fast biodosimetry. The covariance

components have very small relative magnitude and their contributions have very little

effect [28]. This choice results in a far easier equation to deal with.
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The Delta Method is derived from the ISO standard (2014) and here gives a general

case for estimating the uncertainty on the dose in a quadratic situation where reference

samples are used. It is an immediate consequence of the derivation of the Taylor method

given above.

In the case where

θ̂ =


A

α

y

β

 and h(θ̂) = D, we have that

Var(D) =
4∑
j=1

(
∂D

∂θj

)2

|θ=θ̂Σjj =

(
∂D

∂A

)2

ΣAA +

(
∂D

∂α

)2

Σαα +

(
∂D

∂y

)2

Σyy +

(
∂D

∂β

)2

Σββ

Var(j) = Σjj = σ2
j

⇒ σ2
D =

(
∂D

∂A

)2

σ2
A +

(
∂D

∂α

)2

σ2
α +

(
∂D

∂y

)2

σ2
y +

(
∂D

∂β

)2

σ2
β (4.6)

The following equation is an immediate consequence of the general form of the Delta

Method (see Equation 4.8) as derived above, in the special case θ̂ =



A

α

β

y

r


:

σ2
D =

(
∂D

∂A

)2

σ2
A +

(
∂D

∂α

)2

σ2
α +

(
∂D

∂y

)2

σ2
y +

(
∂D

∂β

)2

σ2
β +

(
∂D

∂r

)2

σ2
r (4.7)

This equation is referred to by Ainsbury et al. (2016) as the MULTIBIODOSE simplifi-

cation (specifically the case where r is included) [28]. Obviously, if reference samples are

not being used we remove the corresponding variance term, resulting in Equation 4.6.

This is the general form of the Delta Method:

σ2
D =

(
∂D

∂A

)2

σ2
A +

(
∂D

∂α

)2

σ2
α +

(
∂D

∂y

)2

σ2
y +

(
∂D

∂β

)2

σ2
β +

(
∂D

∂r

)2

σ2
r

+ 2

(
∂D

∂α

)(
∂D

∂β

)
cov(α, β) + 2

(
∂D

∂α

)(
∂D

∂A

)
cov(α,A)

+ 2

(
∂D

∂α

)(
∂D

∂r

)
cov(α, r) + 2

(
∂D

∂A

)(
∂D

∂β

)
cov(A, β)

+ 2

(
∂D

∂A

)(
∂D

∂r

)
cov(A, r) + 2

(
∂D

∂β

)(
∂D

∂r

)
cov(β, r)

(4.8)
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We prefer the MULTIBIODOSE simplification to the general form of the Delta Method

due to the potential availability of the covariance values. These covariance terms would

need to be derived from a previously fitted calibration curve, and may not be reported in

some scenarios where we are given curves and do not fit them ourselves. We do have these

values for our fitted models, but they are very small relative to the individual variances

and have little impact on the uncertainty on the dose. (This may be true for all models,

but requires further research.) Uncertainty analysis using the Delta Method may also be

referred to as the GUM method, due to research by the Joint Committee for Guides in

Metrology [30].

4.4.3 Application of the Delta Method

The uncertainty on the dose, σ2
D, can be calculated using the variances, covariances, and

partial derivatives of the variables in the dose estimation equations (A,α, y, r, as well as

β for the quadratic equation).

For scenarios where a reference sample ratio is not used, the two dose equations:

1. D = (y−A)
α

(linear, also Equation 4.2)

2. D =
−α+
√
α2+4β(y−A)

2β
(quadratic, also Equation 4.3)

have partial derivatives taken then are substituted as appropriate into the Delta Method

(also Equation 4.6)

σ2
D =

(
∂D

∂A

)2

σ2
A +

(
∂D

∂α

)2

σ2
α +

(
∂D

∂y

)2

σ2
y +

(
∂D

∂β

)2

σ2
β

to give:

1.

σ2
D =

1

α2
σ2
A +

1

α2
σ2
y +

(
A− y
α2

)2

σ2
α (4.9)

(linear)
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2.

σ2
D =

1

α2 + 4β(y − A)
σ2
A

+
1

α2 + 4β(y − A)
σ2
y

+
1

4β2

(
α√

α2 + 4β(y − A)
− 1

)2

σ2
α

+
1

β2

(
(y − A)2

α2 + 4β(y − A)
+

α(y − A)

β
√
α2 + 4β(y − A)

+
y − A
β

+
α2

4β2
+
α
√
α2 + 4β(y − A)

2β2
+
α2 + 4β(y − A)

4β2

)2

σ2
β

(4.10)

(quadratic)

When a reference sample ratio is included, the two dose equations:

1. D = (y−A)
α

r (linear, also Equation 4.4)

2. D =
−α+
√
α2+4β(y−A)

2β
r (quadratic, also Equation 4.5)

have partial derivatives taken then are substituted as appropriate into the Delta Method

(also Equation 4.7)

σ2
D =

(
∂D

∂A

)2

σ2
A +

(
∂D

∂α

)2

σ2
α +

(
∂D

∂y

)2

σ2
y +

(
∂D

∂β

)2

σ2
β +

(
∂D

∂r

)2

σ2
r

to give:

1.

σ2
D =

r2

α2
σ2
A +

r2

α2
σ2
y +

r2(A− y)2

α4
σ2
α +

(y − A)2

α2
σ2
r (4.11)

(linear)
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2.

σ2
D =

1

2β2
(α2 + 2β(y − A)− α

√
α2 + 4β(y − A))σ2

r

+
r2

α2 + 4β(y − A)
σ2
A

+
r2

α2 + 4β(y − A)
σ2
y

+
r2

4β2

(
α√

α2 + 4β(y − A)
− 1

)2

σ2
α

+
r2

β2

(
(y − A)2

α2 + 4β(y − A)
+

α(y − A)

β
√
α2 + 4β(y − A)

+
y − A
β

+
α2

4β2
+
α
√
α2 + 4β(y − A)

2β2
+
α2 + 4β(y − A)

4β2

)2

σ2
β

(4.12)

(quadratic)

In order to calculate these uncertainty values (for a given input dose, model, foci

count, and number of cells scored at that dose), we used R code. This is the code for

the simplest scenario, the linear situation without a reference sample ratio/where the

reference sample ratio is taken to be 1:

s2D.li<- function(y,fit,n,count){

A1<- fit$coefficients[[1]]

a1<- fit$coefficients[[2]]

d1li<-summary(fit)$dispersion

s2A1<- vcov(fit)[1,1]

s2a1<- vcov(fit)[2,2]

s2y1<- d1li*y/n

q1<-s2A1/a1^2

q2<-s2y1/a1^2

q3<-(A1-y)^2*s2a1*a1^-4

q=c(q1,q2,q3)

names(q)=c("A","y","alpha")

barplot(q, xlab=expression(paste("Coefficients of ", sigma^2)),

ylab="Value",main="Linear")

sigma2D1<- q1+q2+q3

print(q)

return(sigma2D1)
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}

Here A1 is the intercept coefficient A and s2A1 its variance σ2
A, whilst a1 is the slope

coefficient α with variance σ2
α inputted as s2a1. s2y1 is the variance σ2

y of the yield. We

are implementing Equation 4.11 here.

The full R scripts for the other scenarios can be found in Appendix C.

We decided to split the calculations up into what we chose to refer to as “terms”:

the coefficients of each variable’s variance σ2 multiplied by the variance itself, which

allows for easier error checking (and reduces the amount of calculations done at a time

in R). The A, α, and β terms are referred to as “coefficient” terms, as the value of the

labelling coefficient is generated by the fitted GLM. For instance, 1
α2+4β(y−A)

σ2
A is the A

term from the quadratic Delta Method equation that doesn’t include a reference sample

ratio (Equation 4.10). In this case, σ2
A is the variance of A, the intercept variable, and

1
α2+4β(y−A)

is its associated coefficient. Our R formula then sums the term values to get

an output variance value.

We also realised that the linear expression without reference sample ratio could be

reformulated into a quadratic equation with terms of y:

σ2
D =

σ2
A

α4
y2 − 2Aσ2

α

α4
y +

1

α2

(
σ2
A + σ2

y +
A2

α2
σ2
α

)
(4.13)

then coded this separately in a similar manner. We chose to label this the “y reformula-

tion”.

Upon seeing (and subsequently being surprised by) the (unexpectedly large) uncer-

tainty values that the code produced for our original dataset, we chose to graph the

terms, plotting each one separately on a bar chart. This allowed us to see which ones

contributed most or least to the overall uncertainty for each dose. If one coefficient term

contributes significantly more to the uncertainty than all of the others, this implies that

the preferable fitted model is one that does not contain that term. As shown later in

Figure 4.1, the β (or quadratic) term gives a significantly larger uncertainty than the

other terms, so we should prefer a linear fitted GLM over a quadratic one.

4.5 Examples

4.5.1 Dose Estimation

Now that we have the coefficients of our fitted model, we can use Equations 4.2 and

4.3, as specified earlier to estimate the dose of exposure for a chosen yield. We initially
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choose to do this four times (linear and quadratic scenarios for both timepoints) to give

us four comparative doses. We can then double check our calculated doses against the

calibration curves. Our four dose equations are as follows:

1h:

Linear:

D =
(y − 0.1308)

12.5589

Quadratic:

D =
−15.5075 +

√
15.50752 + 4×−4.1693 (y − 0.1124)

2×−4.1693

=
−15.5075 +

√
15.50752 − 16.6773 (y − 0.1124)

−8.3386

24h:

Linear:

D =
(y − 0.1794)

1.9373

Quadratic:

D =
−2.2756 +

√
2.27562 + 4×−0.0943 (y − 0.1414)

2×−0.0944

=
−2.2756 +

√
2.27562 − 0.3774 (y − 0.1414)

−0.1887

For an arbitrarily chosen yield of 5 foci/cell, y = 5, we can thus estimate the doses

for all four scenarios. This yield was chosen as it is large enough to give very different

dose estimates for the two different timepoints, as well as hopefully providing differing

dose estimates between the pairs of linear and quadratic fits. All doses stated here are

rounded to four decimal places.

1h:

Linear:

D =
5− 0.1308

12.5589
= 0.3877Gy

Quadratic:

D =
−15.5075 +

√
15.50752 − 16.6773 (5− 0.1124)

−8.3386

=
−15.5075 +

√
158.9705

−8.3386
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D = 0.3477Gy

24h:

Linear:

D =
5− 0.1794

1.9373
= 2.4884Gy

Quadratic:

D =
−2.2756 +

√
2.27562 + 4×−0.0944 (5− 0.1414)

2×−0.0944

=
−2.2756 +

√
3.3445

−0.1887

D = 2.3675Gy

As expected, the estimated doses for the 24h scenarios are significantly larger than

those for the 1h scenarios, with a difference of over 2Gy between timepoints for each

model type.

4.5.2 Uncertainty Quantification

Initially we had twelve scenarios, six Poisson and six quasi-Poisson. The scenarios we

used were for both timepoints and were the standard linear and quadratic fits (Equations

4.9 and 4.10 respectively), as well as the aforementioned “y reformulation” (Equation

4.13) above. We chose not to include the reference sampling ratio at this time, but did

test these scenarios with two different yields (5 foci/cell and 1 foci/cell). To decide which

scenarios were most beneficial, we chose to code and plot all of them (Figures D.1 and

D.3 in the Appendices respectively) and then analyse those plots. Unsurprisingly, the y

reformulation had far more uncertainty attached to the “constant” term than either the

y2 or y coefficients, which is to be expected due to the greater number of terms involved

(three, compared to one each in the other two cases). Upon further inspection of those

twelve initial plots, we decided to prioritise a set of four plots and their corresponding

uncertainty equation scenarios. These four scenarios are the standard linear and quadratic

quasi-Poisson fits for both the 1h and 24h timepoints, and are shown later in Figures

4.1 (yield of 5 foci/cell) and D.2 (yield of 1 foci/cell). Ultimately, we decided that

although interesting, the y reformulation is of less immediate interest compared to the

more “conventional” way of splitting up the uncertainty equations. The quasi-Poisson fits

are of more interest to us than the Poisson ones as the total variance for a quasi-Poisson
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fit will be significantly larger than the Poisson total variance due to Equation 3.8. This

equation can also be applied to each parameter in the model separately, therefore the

relative size of the bars on a corresponding pair of plots (one Poisson and one quasi-

Poisson) will be the same. Using the plots with larger values allows us to see just how

big the variances for a certain yield (and thus dose estimate) could get.

As in Section 4.5.1, we use a sample yield of 5 foci/cell to begin with. (A second yield

of 1 foci/cell is shown in Appendix D, along with the full set of plots for all 12 scenarios

for the yield of 5 foci/cell.) We used the R code given in Section 4.4.3 and Appendix

C to calculate the values for each “coefficient” and ultimately create the plots shown in

Figure 4.1.

Fit type Time
Coefficients of σ2 Total Standard

A y α β uncertainty error

Linear
1h 1.6565×10−6 3.7763×10−3 2.4581×10−5 - 3.8025×10−3 6.1665×10−2

24h 1.2197×10−4 1.5334×101 2.3196×10−3 - 1.5578×10−1 3.9469×10−1

Quadratic
1h 1.0646×10−6 2.7319×10−3 1.0270×10−4 1.1143×10−1 1.1427×10−1 3.3803×10−1

24h 1.2947×10−4 1.5711×10−1 2.0101×10−2 3.4800×101 3.5077×101 5.9226×100

Table 4.1: The individual “term” values for Figure 4.1, as well as their sum, the total

uncertainty for the estimated dose. All values given in standard form, to five significant

figures.

It is clear from Table 4.1 that overall the quadratic fits have significantly larger total

uncertainties than the linear ones, typically by two orders of magnitude. The uncertainty

associated with the β term provides the bulk of these larger uncertainty values, and,

in the case of the 24h quadratic fit, has a value of over 30. If we construct confidence

intervals of ±2 standard errors for the doses estimated from our quadratic fits, we end

up with 0.3476761 ± 0.6760696 for the 1h fit, and 2.367536 ± 11.84517 for the 24h fit.

Clearly, these are not possible given that the minimum possible dose for exposure is 0Gy.

As well as this, the width of the 24h quadratic fit interval is so large as to be effectively

useless, considering that the maximum dose used in the dataset is 4Gy, due to how hard

it is to count foci beyond that point. The size of the uncertainties associated with the β

terms provides evidence to reject quadratic fits in favour of linear ones for this biomarker.

4.5.3 Reference Sample Ratio

We already know that if y1.5Gy > yC , then r = 1. If y1.5Gy < yC , then r = yC
y1.5Gy

> 1.

Obviously, if y1.5Gy = yC , then r = 1.
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For this example, we are using raw data from our second γ-H2AX histone dataset

(PHE (2018)) as reference samples. This dataset is the focus of Chapter 5, but little

knowledge of it is required here as we are only using the four pieces of sample data listed

in Table 4.2. One quirk that must be noted is that since we are only using two reference

samples per time point any quadratic curves that are rejected will be replaced with linear

ones.

Dose (Gy) Time (h) Yield (foci/cell) 30% Discrepancy Interval

0
1 0.34 (0.238, 0.442)

24 0.585 (0.4095, 0.7605)

1.5
1 5.02 (3.514, 6.526)

24 2.915 (2.0405, 3.7895)

Table 4.2: A table of the raw data from the PHE (2018) dataset used as reference samples

(y0Gy for the 0Gy yields and y1.5Gy for the 1.5Gy yields) in Section 4.5.3, along with the

interval that gives a 30% discrepancy limit on each side.

Dose (Gy) Time (h) Fit type Yield (foci/cell)

0

1
Linear 0.1308

Quadratic 0.1124

24
Linear 0.1794

Quadratic 0.1414

1.5

1
Linear 18.9691

Quadratic 13.9927

24
Linear 3.0853

Quadratic 3.3424

Table 4.3: A table of the calculated calibration yield values (yC) used in the reference

sampling ratio examples in Section 4.5.3, rounded to 4 decimal places where necessary.

Initially we used all four of our calibration curves to calculate yield values at the

chosen control dose points of 0Gy and 1.5Gy, as shown in Table 4.3. These are our

calibration yields. We then cross-referenced these with the discrepancy intervals given in

Table 4.2, and it is apparent from doing so that only the two 24h, 1.5Gy fitted values

are less than 30% above or below (in both cases, above) the reference yield values. This

means that none of the curves can be validated fully overall. However, one can argue that

the positive control sample is of greater importance than the negative (0Gy) one. Both
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the value of A and its 30% discrepancy interval are comparatively small, and it would be

undesirable to throw a curve away due to that mismatch [10]. Therefore we ultimately

chose to calculate a pair of reference sampling ratios for our two “validated” yields. In

both of these cases our sample yield is greater than the reference yield, so

r =
yC

y1.5Gy

.

For the 24h linear fit at a dose of 1.5Gy:

r24L =
3.0853

2.915
= 1.0584.

For the 24h quadratic fit at a dose of 1.5Gy:

r24Q =
3.3424

2.915
= 1.1466.

Using these values we would then be able to adjust the dose equations and calculate

dose estimates (rounded to 4 decimal places) for a yield of 5 foci/cell:

Linear:

D24L =
(y − 0.1794)

1.9373
r24L

=
(y − 0.1794)

1.9373
1.0584

= 0.5463 (y − 0.1794)

D24L = 2.6337Gy

Quadratic:

D24Q =
−2.2756 +

√
2.27562 + 4×−0.0944 (y − 0.1414)

−0.1887
r24Q

=
−2.2756 +

√
2.27562 + 4×−0.0944 (y − 0.1414)

−0.1887
1.1466

= −6.0764
(
−2.2756 +

√
2.27562 + 4×−0.0944 (y − 0.1414)

)

D24Q = 2.7147Gy

Both of these estimates are larger than those from the other 24h equations in Section 4.5.1,

with a larger difference between the original quadratic dose estimate and the adjusted

one. This can be explained by the larger reference sampling ratio value, and shows that

greater upward scaling is needed for the quadratic fit than for the linear one.
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Due to the negative control mismatch, we could alternatively construct replacement

calibration curves using the reference yields. These curves, constructed from 2 points,

are y = 3.12D+ 0.34 for the 1h data and y = 1.553333D+ 0.585 for the 24h data. With

regards to the uncertainty, the relative proportions of the existing terms would remain

the same, as each one is multiplied through by r2.
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Figure 4.1: A series of four plots showing the contribution to the overall uncertainty for

each “term” in a given scenario with a yield of 5 foci/cell, accompanying the code given in

Section 4.5.2 and Appendix C. The four scenarios included are all quasi-Poisson models.

The top row shows term by term uncertainty for linear scenarios at both timepoints (1h

and 24h), whilst the bottom row shows the pair of corresponding quadratic fits.
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Chapter 5

Introducing a Second Dataset

5.1 Background

The second dataset that we have worked with was also provided by Public Health England

and uses blood lymphocytes from a single donor, whose blood was taken at three different

times. It will henceforth be referred to as the PHE (2018) dataset. Irradiation was

performed in vitro, with 250kVp X-rays as the radioactive source, and the slides were

then manually scored. This dataset contains measured foci counts for four design doses:

0.75Gy, 1.5Gy, 3Gy, and 4Gy, as well as a control dose, 0Gy. All of these doses had

samples scored at three different time points: 1h, 4h, and 24h. The initial dataset

consists of both full body and simulated partial body scored samples, at 10% intervals,

but as we are focussing on full body irradiation we chose to separate out the 0% and

100% irradiation data for use in model fitting. We later decided to code this in R using

an indicator variable whose value is 0 if the sample hasn’t been exposed to radiation or

1 if it has been. The amount of 0Gy data is significantly larger than the amount of data

for any other dose, because the experiment was set up so that every dose & time point

combination has two sets of data, one irradiated and one not.

The intended number of cells scored for each dose & time point combination was 200.

However, there is some data missing due to equipment (specifically slide) issues when

scoring. The 4Gy data is especially affected by this, with no irradiated 1h or 24h data

remaining. One reading is missing for the control data at the 24h time point within

the 1.5Gy sample. There are also issues with the 3Gy data: 4 readings are missing

for the irradiated 4h data, whilst 147 readings are missing for the irradiated 1h data,

nearly three-quarters of the scored cells for that dose & time point combination. We

thus have potential issues with the usefulness of the 0.75Gy irradiated 1h data due to the
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significantly reduced sample size, and the 4Gy irradiated data overall only exists for one

of the 3 timepoints, reducing the availability of comparison.

5.2 Work Done

5.2.1 Scorers

From initial information given, we know that there are two scorers, one of whom routinely

recorded higher foci counts than the other at a dose of 0Gy. The raw data labels these

“Scorer 1” and “Scorer 2”. Scorer 1 was responsible for 16 of the 22 sets of readings, whilst

Scorer 2 was responsible for the other 6 sets. We chose to plot each scorer’s measured

foci counts for a dose of 0Gy, and from these plots (Figure 5.1) we can see that there is a

clear difference between the counts (and thus the yields) that they recorded. Scorer 2’s

maximum count is only 3 foci, recorded 3 times, whilst Scorer 1 not only records a count

of 3 foci many more than 3 times - they also have a maximum recorded count of 7 foci.

Knowing which scorer records higher foci counts makes it easier for us to normalise the

data to account for the differences between the two of them.

After observing in Figure 5.1 that there appeared to be a difference between scorers,

we then wanted to determine whether or not this was large enough to be statistically

significant. To do this we performed a Welch’s two sample t test (which does not assume

equal variances) using the 0Gy data. Our null hypothesis is that the population means for

the two groups are equal, or µ1−µ2 = 0. This gave us a t value of 16.123 on 2245.2 degrees

of freedom, with a stated p value of p < 2.2 × 10−16. As this p value is less than 0.05,

we reject this null hypothesis. A 95% confidence interval for the difference between the

group means µ1−µ2 was given as (0.3994089, 0.5100251), and the difference between the

sample estimates was 0.547217− 0.092500 = 0.454717. Therefore we have a statistically

significant difference between the two sets of data, which needs to be accounted for in

order to successfully fit models for the whole dataset.

5.2.2 Data Cleaning

To correct for the differences between the scorers, PHE scientists applied some initial

normalisation to the data, relative to the 0Gy readings and accounting for differences

between scorers. A screenshot of some of this data is given in Appendix A, specifically

in Figure A.2. When analysing the data we initially calculated the mean value of the

normalised 0Gy data. However, this turned out to be −0.0001709045, which is less than
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Figure 5.1: A pair of plots with equal scales showing the foci counts obtained by each

scorer at a dose of 0Gy, sorted by index number in the PHE (2018) dataset. The data

that will be used for model fitting is an aggregated form of this.

0. This presents an issue for fitting both Poisson and quasi-Poisson models, as mean

values below zero violate the modelling assumptions.

To correct for the many negative values in the normalised original data, especially

the 0Gy data, we calculated the mean of all the original scored counts for the 0Gy

values (note: not the normalised values) and summed it with each normalised value.

The resulting set of (hundreds of) values are known as the “corrected” ones. We then

aggregated the data by taking the mean of the corrected values for each cell, resulting

in 22 data points. However, 12 of those data points correspond to a dose of 0Gy, and it

turned out that all 12 had the same corrected value of 0.3955815, meaning that only 11

distinct data points will be visible on any plotted graph.
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5.3 Examples

5.3.1 Model Fitting

There are some potential issues when fitting a GLM to this data. For a given dose, we have

at most 8 data points, 4 of which have the same value. Thus we only have a maximum of

5 distinct values to fit dose-response curves with, which is very low. Our initial attempts

to fit models suffered as a result of this, and the presence of underdispersion was a useful

indicator of our errors.

Instead we ultimately decided to try and jointly fit the time points together. In this

model we took 1h as the “default” exposure time and used terms containing indicator

functions to produce variables that also applied only when the time points were 4h or 24h

for both the intercept and the slope coefficients. We also changed the response variable

from the “corrected” values to their product with n, the total number of readings in each

cell. We labelled this new variable “ncorr”.

The R code from our fitted model is as follows:

fit.ndt.li.quasi<-glm(ncorr~-1 + n + ndose.actual + ntime4+ntime24

+ntime4dose.actual+ntime24dose.actual,

family="quasipoisson"(link="identity"), data=pheh2axc)

fit.ndt.li.quasi

fit.ndt.li.quasi$coefficients

#n ndose.actual ntime4 ntime24

#0.43288416 2.53297659 0.07983618 -0.03947914

#ntime4dose.actual ntime24dose.actual

#-1.26913989 -1.49237194

summary(fit.ndt.li.quasi)$dispersion

#[1] 49.73107

This new dispersion value is far closer to the expected 60 and shows evidence of overdis-

persion, as expected.

We can split our new fitted model into three linear models, one for each timepoint,

by summing the relevant terms, as shown in Table 5.1. These fits are also plotted below

as fit lines on a graph of the aggregated data.

To verify that fitting the time points together was a suitable idea, we also tested

it with our earlier dataset. The resultant linear fits produced were very similar to our

established ones, suggesting that this method is worth using for another dataset with

fewer aggregated data points.
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Time Intercept, A Slope, α

1h 0.43288416 2.53297659

4h 0.5127203 1.263837

24h 0.393405 1.040605

Table 5.1: A table of the coefficient values for the three linear dose-response curves

calculated from the joint quasi-Poisson model fitted using the PHE (2018) dataset.

Of our 3 fits, the 4h one has the highest intercept value, whilst the 1h fit has the

greatest slope. These slope values follow the general established pattern: the greater the

amount of time since the sample’s exposure to radiation, the lower the value of the slope

coefficient. Notably, the difference between the 1h and the 4h slope coefficient values is

far larger than the difference between the 4h and the 24h values.
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Figure 5.2: A plot showing the fitted dose response curves for the aggregated data from

the PHE (2018) dataset, along with the aggregated data itself. The 1h line and data

points are shown in black, the 4h in green, and the 24h in red.
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Data Time Intercept, A Slope, α Notes

Public Health England (2018)

1h 0.4329±0.1633 2.5330±0.3884

4h 0.5127±0.1734 1.2638±0.2111

24h 0.3934±0.1533 1.0406±0.2572

Public Health England (2017)
1h 0.1308±0.0162 12.5589±0.1606

24h 0.1794±0.0214 1.9372±0.0375

Rothkamm et al. (2013)

4h

0.10±0.09 1.47±0.22 1L

0.12±0.07 3.10±0.21 2L

0.71±0.19 1.08±0.17 5L

0.35±0.26 1.48±0.26 5B

24h

0.08±0.02 0.54±0.04 1L

0.09±0.02 0.78±0.03 2L

0.46±0.09 0.94±0.09 5L

0.13±0.03 0.70±0.05 5B

Ainsbury et al. (2016)
4h 0.6454±0.0822 2.4686±0.0676 HDR

24h 0.1060±0.0379 0.8227±0.0455 HDR

Table 5.2: Table of linear fits for comparison purposes including the standard errors for

each term. For the Rothkamm et al. (2013) data the number given in the notes refers to

the number of the lab that the curve was calibrated at. The letter refers to the sample

type, either B for a (full) blood sample or L for lymphocytes. The Ainsbury et al. (2016)

data in the bottom two rows of the table is the data for the γ-H2AX sample recorded in

that paper, which is itself cited as being from Rothkamm et al. (2013).

5.3.2 Comparing Fitted Models

When selecting which fits to use from the data presented by Rothkamm et al. (2013)

[7] we chose only to use those where the cells had been scored manually, to match the

manual scoring performed for the PHE datasets. We are also only comparing linear fits

here, due to the greater number available for comparison.

Aside from our new fitted dataset, we only have one other 1h dataset for comparison

(our other PHE dataset), and the old dataset has an intercept roughly a third of the

height of the new. The slope of the old is approximately 5 times greater than that of

the new. Overall, there is very little to compare here. This lack of samples may be due

to the relative impracticality of a 1h time point, as in a real life situation it would be

unrealistic to collect and score a sample from a patient within this time frame.

At first glance, the coefficients for our new 4h fit seem to make sense compared to
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the pre-existing ones. The intercept of our new fit is high compared to labs 1 and 2, but

it is sufficiently close in value to the other data (within 0.2 either side) to not feel out

of place. It is within 1 standard error for 3 out of the 6 models it is being compared

to. However, the 4h slope for our new dataset is the second smallest slope value for that

timepoint, although it is within 1 standard error for the lab 1 model and the lab 5 blood

sample model, so there isn’t too much cause for concern.

When it comes to our new 24h fit, the intercept value is unexpectedly high. It is

closer to the lab 5 lymphocyte data, which some may suspect to be anomalous, than any

of the other 5 intercept values. Our intercept value is similar to the one we fitted for 1h

data though, which could suggest a relatively constant background rate throughout. It

is still over twice the size of the smaller 5 intercept values. On the other hand, our new

slope value is just over half that of the old 24h PHE data and just over the upper interval

limit for lab 5 lymphocytes. Compared to all other fits our new slope value is large but

not significantly so.

We know that γ-H2AX dose-response curves are strongly time dependent, and have

now seen these trends across datasets, so how would we deal with data where the time

since exposure is unknown? Yield can be used to calculate a dose and the uncertainty on

that dose, but here we run into a practical issue: we don’t know if a low foci yield comes

from a low dose or a high dose but with a long period of time between radiation and

sampling. Horn, Barnard, and Rothkamm (2011) address modelling foci decay over time

[22], and equations like those they suggest could be of use, but further research is needed

to estimate decay time. Here again for unknown time and dose the primary complication

remains that their effects are interlinked and difficult to separate.
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Chapter 6

Further Topics & Conclusions

6.1 Further Topics

In this section we will address other radiation dose modelling topics that did not form

part of our earlier modelling and analysis but are still of interest.

6.1.1 Partial Body Exposure

It is easiest statistically to assume that an entire body has been homogeneously ex-

posed to ionising radiation. However, this does not reflect real life: according to Horn,

Barnard, and Rothkamm (2011) [22], “most human radiation exposures are partial body

exposures”. Partial body exposure occurs when a dose of ionising radiation is received

inhomogeneously across a person. Not all of the person may have been exposed. Using a

whole body dose estimate for these partial body exposures can prove dangerous, due to

both the underestimation of the peak dose delivered to a body part and the potential for

this resulting in incorrect triage or treatment for the patient [22]. For instance, highly

localised exposure to large doses of ionising radiation may result in severe tissue damage.

Early clinical intervention could potentially reduce or even prevent this, so knowing the

magnitude of the peak dose delivered could have a significant impact on patient health.

Typically, partial body estimation is simulated in lab conditions by mixing two blood

samples, one irradiated and one not, in stated and easily controlled proportions (e.g.

40% irradiated and 60% not). These two blood samples do not have to be from the same

donor - Hilali et al. (1991) irradiated a blood sample from a male donor and mixed it

with a not irradiated blood sample from a female one, later using the Y chromosome

from the male donor as an indicator [21].

For the dicentric assay, which is typically modelled using a Poisson distribution for
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whole body exposure, overdispersion is a hallmark of partial body exposure. Whole body

exposure to sparsely ionising radiation leads to aberrations being induced randomly in

all cells, whilst a partial body exposure results in both a high number of cells without

aberrations and those with multiple dicentrics [22]. This results in overdispersion for

scored cells, which can be used to estimate the extent of the irradiation [4]. We assume

that a given blood sample consists of two portions, or fractions: a fraction of Poisson

distributed dicentrics from the irradiated part, and a fraction of dicentric-free cells from

the remaining unirradiated part of the body. (Note: this assumes that the irradiation of

the exposed section is homogeneous.) An iterative maximum likelihood method can then

be used to approximate the fraction, f , of the scored cells that were irradiated and the

corresponding mean yield, y (Hilali et al. refer to this y as the “aberration frequency in

[the] population” [21]):

y

1− e−y
=

X

N −N0

(6.1)

f =
X

Ny
,

where N is the total number of cells scored, X is the number of dicentrics observed, and

N0 is the number of cells without dicentrics. We can only solve Equation 6.1 iteratively.

Standard dose-response curves can then be used to estimate the mean dose to the irradi-

ated fraction of the body [4]. However, we cannot derive the actual fraction of the body

exposed to radiation without correcting for the effects of mitotic delay and apoptosis

(interphase death), the factors which can reduce cells’ ability to reach metaphase in a

48h culture. This reduction of the observable irradiated fraction is dose-dependent and

can be calculated using:

P = e
−D
D0 ,

where P is the surviving fraction, D is the absorbed dose, and D0 is the dose required

to reduce the number of irradiated cells to 37% of the original due to the factors men-

tioned above, assuming an exponential dose-effect relationship. The corrected fraction of

irradiated cells, F , can thus be calculated using:

F =
f/P

1− f + f/P
.

This is known as the contaminated Poisson method.

An alternative available method for dose estimation in a partial body exposure situ-

ation is the Qdr method. It uses the yield of aberrations (dicentrics and rings) in just
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the damaged cells to approximate the dose delivered in the exposure, assuming that

these aberrations are indeed caused by the exposure to ionising radiation and thus were

present when it took place. The expected yield, labelled Qdr, of aberrations amongst the

damaged cells, Nd, is given by:

Qdr =
X

N − d
=

y1

1− e−y1−y2
,

where y1 and y2 are yields of dicentrics plus rings and excess acentric aberrations, respec-

tively [4]. The limitations of this method include the lack of information on the size of the

irradiated fraction, as well as two incorrect assumptions: that the background frequency

of dicentrics and rings is 0, and that excess acentrics fit a Poisson distribution. However,

the two methods detailed above still have a good level of agreement with each other.

The γ-H2AX histone assay has been shown to be able to identify a recent partial

body exposure of any dose, as well as any remaining foci several days after a high dose

partial body exposure. Both the contaminated Poisson and Qdr methods have been used

with this assay, although according to Horn, Barnard, and Rothkamm, the contaminated

Poisson method was generally more accurate (judged by p values from Pearson’s chi-

square goodness of fit tests).

6.1.2 Full Count Distributions

Zero inflation is a phenomenon that is frequently related to overdispersion, and like

overdispersion it can reduce the suitability of a Poisson fit. As discussed in Section

3.2.1, zero inflation occurs when the number of zeros in a sample significantly exceeds the

expected amount. For count data, this amount is the expected number of zeros generated

by a Poisson distribution with the same mean as the sample. Due to the relationship

between them, distributions that account for overdispersion (e.g. compound Poisson

and mixed Poisson distributions) will, to some extent, account for zero inflation too.

This still generates an insufficient amount of zeros for many real life scenarios though,

including agricultural, medical, and manufacturing ones. To account for this, we can use

models that have been specifically designed to deal with zero-inflated count regression.

Zero-inflated count models aim to account for the excess zeros by modelling data as a

combination of two distributions: one that takes a single value at zero, then a count

distribution for all non-zero values [27]. The two most commonly used regression models

of this type are the zero-inflated Poisson (ZIP) model and the zero-inflated negative

binomial (ZINB) model. Although not discussed earlier, these models can also be used

for partial body irradiation scenarios.
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To define a ZIP model, we take d blood samples from a healthy donor and irradiate

them with several doses Di, i = 1, . . . , d. For each irradiated sample of n cells, let Yij,

i = 1, . . . , d, j = 1, . . . , ni be our response variable which represents the observed number

of dicentrics at dose level i for cell j. We can then define the ZIP regression model as:

P (Yij = yij) =

pi + (1− pi)e−λi , yi = 0

(1−pi)e−λiλ
yij
i

yij !
yij > 0

where 0 ≤ pi ≤ 1 and λi > 0. The ZIP model’s expectation and variance are defined by

E(Yij) = (1− pi)λi = µi and V ar(Yij) = (1− pi)λi(1 + piλi), where λi refers to the mean

of the underlying Poisson distribution and pi is the mixture parameter (also referred to

as the “zero-inflation parameter”). Both λi and pi can depend on vectors of covariates

[23]. As V ar(Yij) = µi(1 + piλi) ≥ µi, zero inflation can be considered to be a special

form of overdispersion.

A ZIP model may provide a better fit for overdispersion that is linked to a large

number of zeros with regards to the Poisson model. This type of zero-inflated regression

model assumes that the observed zeros have two different origins: one group of zeros is

produced at random by the Poisson distribution, whilst the other group are considered to

be “structural”. These so-called “structural” zeros, with proportion pi, must be justified

by the nature of the data, such as non-irradiated lymphocytes following a partial body

exposure [23]. However, ZIP models may not be suitable for scenarios with multiple

sources of excess zeros, such as densely ionising radiation. Here the ZINB regression

model may be more appropriate. Introduced by Greene in 1994, the ZINB model is an

extended version of the negative binomial model for excess zero count data. For situations

where overdispersion is due to both an excess of zeros and heterogeneity of data, the ZINB

regression model is often more suitable than the ZIP one.

The ZINB model with response variable Yij (i = 1, . . . , d; j = 1, . . . , ni) has probability

mass function:

P (Yij = yij) =

pi + (1− pi)(1 + αλci)
−λ1−ci /α, yij = 0

(1− pi)Γ(yij+λ
1−c
i /α)

yij !Γ(λ1−ci /α)
(1 + αλci)

−λ1−ci /α(1 + λ−ci /α)−yij , yij > 0

where α > 0 is an overdispersion parameter, and the index c ∈ 0, 1 gives the form of the

underlying distribution. Oliveira et al. (2015) denote these two models as ZINB1 and

ZINB2 respectively [23]. In general, the ZINB model has mean E(Yij) = (1− pi)λi = µi

and variance V ar(Yij) = (1− pi)λi(1 + piλi + αλci). The ZINB model reduces to the ZIP

model as α → 0. This is analogous to the relationship between the negative binomial

and Poisson distributions.
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Zero-inflated models are not the only ones that have been considered to deal with

overdispersed data. Aside from the Poisson and negative binomial distributions, Oliveira

et al. (2015) consider four other types of distributions: the Neyman type A distribution,

the univariate rth-order Hermite distributions, Poisson-inverse Gaussian distributions,

and Pólya-Aeppli distributions.

6.2 Conclusions

In this thesis we have successfully analysed an unpublished internal factsheet from Public

Health England [9] entitled “Dose and uncertainty estimation with the gamma-H2AX as-

say”, which briefly and succinctly discusses suggested procedures to estimate doses from

blood or lymphocyte samples using the γ-H2AX assay biomarker. We explored the tech-

niques detailed on it with reference to the field of biodosimetry as a whole then applied

them to two datasets from Public Health England. The first dataset, PHE (2017), our

primary dataset, was used to demonstrate and illustrate the techniques and procedures

described in the factsheet. The second dataset, PHE (2018), was then used to check

that the methods described work for scenarios other than the first dataset. The meth-

ods described guide the user through calibration curve construction, dose estimation,

and uncertainty estimation for a given dataset, including the introduction of a reference

sampling ratio to validate the fitted calibration curves.

Overall the methods included on this factsheet not only work, but are of use when

constructing and validating dose-response curves, as well as estimating exposed doses and

the uncertainty on them. The linear dose-response curves fitted using both PHE datasets

follow the general trend established in the literature (as shown in Section 5.3.2), namely

that the value of the slope (α) coefficient decreases with increased time. The intercept

(A) coefficient appears to remain fairly similar throughout for models fitted using the

same data with little obvious consistent time-based effect. However, these values differ

between datasets to an extent where we would not feel comfortable using them to assess

the corresponding coefficients from other datasets. We only fitted quadratic models

using the PHE (2017) dataset, but we did see a negative value quadratic (β) coefficient

as expected, due to the saturation effect.

Using the summary statistics from the PHE (2017) fitted models, we were able to

verify the relationship between Poisson and quasi-Poisson standard errors (and thus vari-

ances) in R. Quasi-Poisson standard errors can be calculated by multiplying the corre-

sponding Poisson standard errors by the square root of the dispersion. Thus, for pa-
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rameter estimates θ̂, SEQ(θ̂) =
√
φSEP (θ̂) (Equation 3.9). Knowing this we can also

calculate quasi-Poisson variances from Poisson ones with VarQ(θ̂) = φVarP (θ̂) (Equation

3.8). Our PHE (2017) fitted linear models had comparatively small standard errors asso-

ciated with their coefficients, whilst the PHE (2018) standard errors were larger overall.

This was expected though, and can be easily explained by our choice to fit a joint model

to the data, as combining multiple fitted coefficients for the 4h and 24h slopes and inter-

cepts also meant combining their standard errors. As well as this, there were a greater

number of observed yields available for the 2017 data.

Calculating the variances associated with our fitted models’ coefficients led us to

successfully use the Delta Method to work out the uncertainty associated with a given

dose. We realised that this equation could be rewritten as a quadratic with the yield y

as the subject, but in the end this proved to be of little use. At first, we did consider the

uncertainty on all eight of the Poisson and quasi-Poisson fits for the PHE (2017) dataset,

although ultimately we decided to focus on the quasi-Poisson fits as they have larger

variances (both for each coefficient and overall). We split the uncertainty equation up

into “terms”, the coefficients of each variable’s variance σ2 multiplied by the variance itself

(see Section 4.4.3 for more details) to determine how much each coefficient contributed

to the total uncertainty. From doing this with the quasi-Poisson fits at yields of 1 and 5

foci/cell (Figures D.2 and 4.1 respectively) we can clearly see that introducing a quadratic

(or β) term vastly increases the uncertainty on the dose, potentially to levels where the

uncertainty is so large as to be effectively useless. The total uncertainty is far lower

for linear fits, and thus they are preferable to quadratic ones when fitting dose-response

curves. This new plotting technique thus justifies the existing literature’s preference for

linear fits (and their lack of use of quadratic fits). The factsheet explicitly states that

they do not consider the effects of the sampling time, but, at least with our PHE (2017)

data, it is noticeable that the 24h fits (with their smaller slope coefficients) have greater

uncertainty attached to them than the 1h ones, by roughly two orders of magnitude. This

would need checking with other datasets before any firm conclusions are drawn, though.

We were ultimately able to use reference samples to validate some fitted curves, calcu-

late reference sampling ratios, and use those ratios to adjust our previously fitted models.

Upon calculating yields for our existing models at the two control dose points, 0Gy and

1.5Gy, we discovered that only the two 1.5Gy yields for the 24h fits (linear and quadratic)

were within the required 30% discrepancy interval for curve validation. However, as the

1.5Gy is a more important control dose than 0Gy, we could still technically validate the

two 24h curves. We were then successfully able to calculate the reference sampling ratio
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and adjust the dose equations accordingly.

However, understandably, the work done for this thesis was not without some issues,

especially when it came to introducing the second dataset (PHE (2018)). This dataset,

unlike our original one, contained data that was scored by two different scientists, and we

performed a two sample t test that showed a significant difference between their scored

counts. This presented an issue as we then had to normalise and correct the data. As

well as this, we had to ensure that the data points we chose to use as reference samples

were scored by the same person to avoid scorer issues affecting the calculations. Our

individual corrected data points cannot be directly compared to the integer counts from

the other dataset as they are not actually scored cells. The correction part of this process

(detailed in Section 5.2.2) was followed by aggregating the data to give 22 data points to

fit models with. We faced some issues with fitting the models, as the twelve 0Gy data

points had the same corrected value, but did end up successfully fitting joint models for

this data which did prove to be useful. If we were to try and fit this data using GLMs

again it may be worth trying to use the full corrected data without aggregation, to see

if it would be possible to do so, then compare any dose-response curves fitted to those

fitted using the aggregated data.

It is notable that our PHE (2017) linear calibration curves could not be fully validated

using the method as written in the factsheet due to none of the 0Gy yields being within

the 30% discrepancy interval. The factsheet requires a discrepancy of less than 30% for

both control points in order for a curve to be validated. However, we were able to validate

two of the curves (24h linear and quadratic) on a technicality, by arguing that the 1.5Gy

control point is of greater importance. (We did also construct alternative curves instead

if needed.) Some of our issues with the reference samples may have been due to using

readings from the PHE (2018) dataset as control samples. These may not have been

scored by the same person and in identical conditions, and there were noted issues with

multiple scorers in this dataset.

Although we were able to draw interesting and useful conclusions from our Delta

Method/uncertainty graphs for the PHE (2017) dataset, it should be noted that this

particular type of graph is a new technique that requires testing further to see if it

is of use in general for this method, rather than just for this dataset. Theoretically

it is applicable to other datasets with dose-response calibration curves, but there is a

significant difference between theory and practice.

We also had a slight issue with the formulas listed on the factsheet. PHE suggested

estimating the standard error on the yield, σy, with the equation σy =
√
y

n
in the Poisson
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case.

From a practical perspective, there are some obvious issues with the sample timepoints

used in this thesis. A 1h timepoint (as seen in the PHE (2017) dataset) may be useful

statistically, but in a real life situation it is very unlikely that a blood sample would be

successfully taken an hour after a suspected radiation exposure. The factsheet suggests

using 4h and 24h as default timepoints, but flags up another potential issue: that the

calibration curves and estimates calculated will only work well for samples taken near

these timepoints. If this is not the case, further calibration curves should be constructed

if possible, or a different assay should be used.

Radiation biodosimetry as a research area is primarily concerned with working out

how much radiation a person has been exposed to as accurately as possible. Methods that

can process a large number of samples relatively quickly are preferable for potential triage

situations, although many real life radiation exposures affect smaller numbers of people.

Within that context, our aim was to see if proposed standard procedure by PHE, a UK

Government agency of the Department of Health and Social Care, would be feasible for

dose estimation and thus how useful the factsheet detailing it is. Overall we discovered

that yes, the methods did work, and the factsheet is of use to people wishing to analyse

γ-H2AX assay data. The standard error equation stated only works for Poisson fits, and

applying the 30% discrepancy interval validation benchmark to intercept coefficients as

well as slope and quadratic ones can be problematic. Despite these (relatively minor)

issues, the factsheet is a good framework overall for analysing foci data. Analysing this

factsheet and testing its methods also led us to learn that linear fits are preferable to

quadratic ones for dose-response curves, and that quasi-Poisson models are of more use

than Poisson ones for fitting dose-response models. This work also helped construct

a unified statistical methodology for calibration curve estimation, dose estimation, and

uncertainty quantification with the γ-H2AX assay, and this fed into a published paper

[10].

If we were to potentially extend this project, applying the techniques to more datasets

for verifications would be useful, especially to verify the effectiveness of the new uncer-

tainty graphs that we created. We could also look more at various validation criteria for

dose-response curves using reference samples, including applying different ones to each

coefficient, to see if 30% is truly the best option possible.
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Appendix A

Dataset Summaries

A.1 First Dataset - PHE (2017)

Figure A.1: A screenshot of part of our first dataset, showing the raw data.
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A.2 Second Dataset - PHE (2018)

Figure A.2: A screenshot of part of our second dataset, showing the raw data being

inputted. The scenario shown in part here is actually 0Gy data, due to the 0% stated

exposure.
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Figure A.3: A screenshot of part of our second dataset. The yellow column shows the

percentage of the sample that was exposed to the stated dose. In this case this is 0, so

we actually have 0Gy data here. The “Result” column gives the scored foci count per

cell. The right hand column shows initial normalisation by PHE scientists.
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Appendix B

List of Partial Derivatives

B.1 Dose Equations

1. D = (y−A)
α

(linear, not including reference sampling ratio)

2. D =
−α+
√
α2+4β(y−A)

2β
(quadratic, not including reference sampling ratio)

3. D = (y−A)
α

r (linear, including reference sampling ratio)

4. D =
−α+
√
α2+4β(y−A)

2β
r (quadratic, including reference sampling ratio)

B.2 Not Including Reference Sampling Ratio

B.2.1 Linear

Dose equation:

DL =
(y − A)

α

Partial derivatives:

∂DL

∂A
=
−1

α

∂DL

∂y
=

1

α

∂DL

∂α
=
A− y
α2
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B.2.2 Quadratic

Dose equation:

DQ =
−α +

√
α2 + 4β (y − A)

2β

Partial derivatives:

∂DQ

∂A
=

1√
α2 + 4β(y − A)

∂DQ

∂y
=

−1√
α2 + 4β(y − A)

∂DQ

∂α
=

1

2β

(
α√

α2 + 4β(y − A)
− 1

)

∂DQ

∂β
=

1

β

(
y − A√

α2 + 4β(y − A)
+

α

2β
−
√
α2 + 4β(y − A)

2β

)

B.3 Including Reference Sampling Ratio

B.3.1 Linear

Dose equation:

DLr =
(y − A)

α
r

Partial derivatives:

∂DLr

∂A
=
−r
α

∂DLr

∂y
=
r

α

∂DLr

∂α
=
r(A− y)

α2

∂DLr

∂r
=
y − A
α

= DL
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B.3.2 Quadratic

Dose equation:

DQr =
−α +

√
α2 + 4β (y − A)

2β
r

Partial derivatives:

∂DQr

∂A
=

r√
α2 + 4β(y − A)

∂DQr

∂y
=

−r√
α2 + 4β(y − A)

∂DQr

∂α
=

r

2β

(
α√

α2 + 4β(y − A)
− 1

)

∂DQr

∂β
=
r

β

(
y − A√

α2 + 4β(y − A)
+

α

2β
−
√
α2 + 4β(y − A)

2β

)

∂DQr

∂r
=
−α +

√
α2 + 4β(y − A)

2β
= DQ
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Appendix C

Code

C.1 General Case

#linear y reformulation

s2D.liy<- function(y,fit,n,count){

A1<- fit$coefficients[[1]]

a1<- fit$coefficients[[2]]

d1li<-summary(fit)$dispersion

s2A1<- vcov(fit)[1,1]

s2a1<- vcov(fit)[2,2]

s2y1<- d1li*y/n

k1<- s2a1/a1^4

k2<- (-2*A1*s2a1)/a1^4

k3<- a1^-2*(s2A1+s2y1+A1^2*s2a1/a1^2)

k=c(k1,-k2,k3)

names(k)=c("y^2","y","constant")

barplot(k, xlab="Coefficients, listed by order of y",ylab="Value",

main="Linear,y")

sigma2D1q<- k1*y^2+k2*y+k3

print(k)

return(sigma2D1q)

}

#linear

s2D.li<- function(y,fit,n,count){
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A1<- fit$coefficients[[1]]

a1<- fit$coefficients[[2]]

d1li<-summary(fit)$dispersion

s2A1<- vcov(fit)[1,1]

s2a1<- vcov(fit)[2,2]

s2y1<- d1li*y/n

q1<-s2A1/a1^2

q2<-s2y1/a1^2

q3<-(A1-y)^2*s2a1*a1^-4

q=c(q1,q2,q3)

names(q)=c("A","y","alpha")

barplot(q, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Linear")

sigma2D1<- q1+q2+q3

print(q)

return(sigma2D1)

}

#quadratic

s2D.qu<- function(y,fit,n,count){

A3<- fit$coefficients[[1]]

a3<- fit$coefficients[[2]]

b3<- fit$coefficients[[3]]

d1qu<-summary(fit)$dispersion

s2A3<- vcov(fit)[1,1]

s2a3<- vcov(fit)[2,2]

s2b3<- vcov(fit)[3,3]

s2y3<- d1qu*y/n

z3<- a3^2+4*b3*(y-A3)

m1<- s2A3/z3

m2<- s2y3/z3

m3<- (-1+a3/z3^0.5)^2*s2a3*0.25*b3^-2

m4<- ((y-A3)^2/z3+a3*(y-A3)*b3^-1*z3^-0.5+(y-A3)/b3+a3*z3^0.5*b3^-2*0.5+

a3^2*b3^-2*0.25+z3*b3^-2*0.25)*s2b3*b3^-2

m=c(m1,m2,m3,m4)
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names(m)=c("A","y","alpha","beta")

barplot(m, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Quadratic")

sigma2D3q<- m1+m2+m3+m4

print(m)

return(sigma2D3q)

}

C.2 Supplementary Code For Section 4.5.2

#values for a yield of 5 foci/cell (with code)

n=500

Y=5

#linear, 1h

s2D1qdx<- function(y){

A1<- fit1q.li$coefficients[[1]]

a1<- fit1q.li$coefficients[[2]]

d1li<-summary(fit1q.li)$dispersion

s2A1<- c1q.li$cov[1,1]

s2a1<- c1q.li$cov[2,2]

s2y1<- d1li*y/n

q1<-s2A1/a1^2

q2<-s2y1/a1^2

q3<-(A1-y)^2*s2a1*a1^-4

q=c(q1,q2,q3)

names(q)=c("A","y","alpha")

barplot(q, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Quasi-poisson, linear, 1h")

sigma2D1<- q1+q2+q3

print(q)

return(sigma2D1)

}

#linear, 24h
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s2D2qdx<- function(y){

A2<- fit24q.li$coefficients[[1]]

a2<- fit24q.li$coefficients[[2]]

d24li<-summary(fit24q.li)$dispersion

s2A2<- c24q.li$cov[1,1]

s2a2<- c24q.li$cov[2,2]

s2y2<- d24li*y/n

q1<-s2A2/a2^2

q2<-s2y2/a2^2

q3<-(A2-y)^2*s2a2*a2^-4

q=c(q1,q2,q3)

names(q)=c("A","y","alpha")

barplot(q, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Quasi-poisson, linear, 24h")

sigma2D2<- q1+q2+q3

print(q)

return(sigma2D2)

}

#quadratic, 1h

s2D3qd<- function(y){

A3<- fit1q.qu$coefficients[[1]]

a3<- fit1q.qu$coefficients[[2]]

b3<- fit1q.qu$coefficients[[3]]

d1qu<-summary(fit1q.qu)$dispersion

s2A3<- c1q.qu$cov[1,1]

s2a3<- c1q.qu$cov[2,2]

s2b3<- c1q.qu$cov[3,3]

s2y3<- d1qu*y/n

z3<- a3^2+4*b3*(y-A3)

m1<- s2A3/z3

m2<- s2y3/z3

m3<- (-1+a3/z3^0.5)^2*s2a3*0.25*b3^-2

m4<- ((y-A3)^2/z3+a3*(y-A3)*b3^-1*z3^-0.5+(y-A3)/b3+a3*z3^0.5*b3^-2*0.5+

a3^2*b3^-2*0.25+z3*b3^-2*0.25)*s2b3*b3^-2
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m=c(m1,m2,m3,m4)

names(m)=c("A","y","alpha","beta")

barplot(m, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Quasi-poisson, quadratic, 1h")

sigma2D3q<- m1+m2+m3+m4

print(m)

return(sigma2D3q)

}

#quadratic, 24h

s2D4qd<- function(y){

A4<- fit24q.qu$coefficients[[1]]

a4<- fit24q.qu$coefficients[[2]]

b4<- fit24q.qu$coefficients[[3]]

d24qu<-summary(fit24q.qu)$dispersion

s2A4<- c24q.qu$cov[1,1]

s2a4<- c24q.qu$cov[2,2]

s2b4<- c24q.qu$cov[3,3]

s2y4<- d24qu*y/n

z4<- a4^2+4*b4*(y-A4)

m1<- s2A4/z4

m2<- s2y4/z4

m3<- (-1+a4/z4^0.5)^2*s2a4*0.25*b4^-2

m4<- ((y-A4)^2/z4+a4*(y-A4)*b4^-1*z4^-0.5+(y-A4)/b4+a4*z4^0.5*b4^-2*0.5+

a4^2*b4^-2*0.25+z4*b4^-2*0.25)*s2b4*b4^-2

m=c(m1,m2,m3,m4)

names(m)=c("A","y","alpha","beta")

barplot(m, xlab=expression(paste("Coefficients of ", sigma^2)),ylab="Value",

main="Quasi-poisson, quadratic, 24h")

sigma2D4q<- m1+m2+m3+m4

print(m)

return(sigma2D4q)

}

par(mfrow=c(2,2))
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Appendix D

Plots

All dose estimates in this appendix are given to four decimal places.

D.1 Yield of 5 foci/cell, Continued From Section 4.5.2

Fit type Time Dose Estimate (Gy)

Linear
1h 0.3877

24h 2.4884

Quadratic
1h 0.3477

24h 2.3675

Table D.1: Dose estimates for a yield of 5 foci/cell in Gray, to four decimal places.

D.2 Yield of 1 foci/cell

Fit type Time Dose Estimate (Gy)

Linear
1h 0.0692

24h 0.4236

Quadratic
1h 0.0581

24h 0.3834

Table D.2: Dose estimates for a yield of 1 foci/cell in Gray, to four decimal places.

1h:
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Figure D.1: A series of twelve plots showing the contribution to the overall uncertainty

for each “term” in a given scenario with a yield of 1 foci/cell.

Linear:

D =
1− 0.130838

12.558857
= 0.0692Gy

Quadratic:

D =
−15.507491 +

√
15.5074912 + 4×−4.169313 (1− 0.112397)

2×−4.169313
=
−15.507491 +

√
225.6795

−8.338626

D = 0.0581Gy

24h:

Linear:

D =
1− 0.179394

1.937251
= 0.4236Gy

Quadratic:

D =
−2.275551 +

√
2.2755512 + 4×−0.094352 (1− 0.141415)

2×−0.094352
=
−2.275551 +

√
4.854096

−0.188704

D = 0.3834Gy
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Figure D.2: A series of four plots showing the contribution to the overall uncertainty for

each “term” in a given scenario, accompanying the code given in Appendix C for a yield

of 1 foci/cell. This figure is the 1 foci/cell equivalent of Figure 4.1
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Figure D.3: A series of twelve plots showing the contribution to the overall uncertainty

for each “term” in a given scenario with a yield of 1 foci/cell.
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