
Durham E-Theses

Evaluation of Correlation Functions in Integrable

Quantum Field Theories

SILK, JAMES,BRIAN

How to cite:

SILK, JAMES,BRIAN (2012) Evaluation of Correlation Functions in Integrable Quantum Field Theories ,
Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4447/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4447/
 http://etheses.dur.ac.uk/4447/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Evaluation of Correlation
Functions in Integrable Quantum

Field Theories

James Silk

A Thesis presented for the degree of

Doctor of Philosophy

Centre for Particle Theory

Department of Mathematical Sciences

University of Durham

England

April 2012



Dedicated to
My parents, brothers and Sylvie.



Evaluation of Correlation Functions in Integrable

Quantum Field Theories

James Silk

Submitted for the degree of Doctor of Philosophy

April 2012

Abstract

The aim of this thesis is to explore correlation functions in two dimensional quan-

tum field theories in two distinct ways. In part I a new method for calculating the

differential equations parametrising the correlation functions of twist fields associ-

ated with the U(1) symmetry of the Dirac model is presented. While developing

this method a new family of descendent twist fields are identified and their form

factors calculated. This provides a novel way of calculating the vacuum expectation

values of the primary twist fields and is shown to be entirely consistent with known

results. The method of calculating the correlation functions of twist fields provides

a parametrisation of several other correlation functions for various quantum states.

Since this method relies on the Ward identities found in a double copy model it is

hoped to have wider applications in other free fermion models. Part II concerns the

truncated conformal space approach which has been developed to approximate per-

turbed conformal field theories. In this part the theory underpinning the approach

is discussed and a working algorithm is developed for both bulk and boundary per-

turbed minimal models. The energy levels, mass gaps and one point functions of

various models are computed using the truncated conformal space approach and are

shown to be in good agreement with previous calculations. A possible method for

using this approach to approximate two point functions in perturbed conformal field

theories is discussed.
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Chapter 1

General Introduction

Quantum field theory is one of the most widely used and studied tools in modern

theoretical physics. This popularity is, in part, due to the number of applications

it has found, being used to describe fundamental particles, electronic excitations

in materials and thermal fluctuations in statistical systems to name three. Despite

all this interest it is often very difficult to obtain accurate numerical results from

quantum field theories, with many relativistic quantum field theories not being well-

defined.

There are, however, classes of quantum field theories that are well-defined and

provide accurate numerical results. Two such classes are free relativistic quantum

field theories and two dimensional quantum field theories with conformal invariance.

Indeed it is often the case that properties of more complicated models are obtained

by treating them as perturbations of free or conformal quantum field theories. The

general structure of quantum field theory is inferred from the properties of free and

conformal quantum field theories.

Alongside free and conformal models there is a special class of models, two

dimensional integrable quantum field theories, in which it is possible to evaluate

certain quantities exactly. These models all contain an infinite number of symmetries

and it is this property that allows objects, like the scattering matrix or correlation

functions of local fields, to be evaluated exactly. While some integrable models have

direct applications they are worthy of study in their own right as they can be used

to verify expected qualities of quantum field theory and find new properties and

1



1.1. Twist Fields 2

techniques for dealing with interacting theories.

The correlation functions of local fields of quantum field theories contain all

the physical information of the model as all other quantities can, in principle, be

obtained from the correlation functions. It is these useful objects that are the focus

of this thesis. A new method for the calculation of correlation functions of twist

fields in the massive Dirac model is described in part I, while the important principles

of integrable models and twist fields are introduced in section 1.1 below. Part II

of this thesis describes an attempt to use the truncated conformal space approach

(TCSA) to approximate correlation functions in perturbed conformal field theories,

this is introduced in section 1.2. This thesis concludes in chapter 8 with a general

discussion of what has been achieved and some open problems. Note that this thesis

will only deal with (1 + 1) dimensional quantum field theories.

1.1 Twist Fields

1.1.1 Integrable Models

It is well know that integrable models of quantum field theory often allow their

spectrum of particles and scattering matrices to be calculated exactly [19, 62]. In

general it is a non-trivial task to obtain the correlation functions of local fields from

this on-shell description but there are methods, applicable to integrable quantum

field theories, that allow the calculation of correlation functions. One such method

is based on the asymptotic states and the form factors of local fields [44, 75].

The asymptotic states form a basis of the Hilbert space of our theory. These

states describe the particles of the model in the infinite past or infinite future,

where they are assumed to be infinitely separated. As all the interactions in our

models are local these asymptotic states propagate freely and so represent a set

of non-interacting particles with well-defined momenta. As we wish to examine

the interactions of the particles in our model we define an in-state as an asymptotic

state in the infinite past, with the particles ordered from left to right with decreasing

rapidities. Similarly an out-state has particles its particles ordered from left to right

with increasing rapidities. Thus the in (out) asymptotic states represent particle
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configurations in which no more interactions occur in the past (future).

Asymptotic states are constructed from creation and annihilation operators in

the infinite past or future acting on a vacuum state. These operators create and

destroy particles of fixed rapidity and are eigenoperators of the Hamiltonian and

momentum operator, so the states they create are eigenstates of these operators.

Thus the Hilbert space of our model is just the Fock space over the algebra of all

the in creation and annihilation operators, which is isomorphic to the Fock space

over all out operators.

Alongside energy and momentum, integrable models possess an infinite number

of local conserved quantities, all in involution. When applied to asymptotic states

these conservation laws relate to the free propagation of the particles and so are

referred to as deformations of the free laws [51]. The free conservation laws that

are deformed are those whose action on a state is given by an integral power of the

momentum multiplied by an integral power of the energy for each particle, note the

powers of the energy and momentum may be different but must be the same for

each particle. The infinite set of integer spins, i.e. the power of the momentum

mentioned above, for which there is a conserved charge is a characterising feature

of an integrable model. All these conserved charges impose the stringent condition

that the number of particles and the final set of rapidities in the out-state is the

same as that of the corresponding in-state. This tells us that the scattering in these

models is purely elastic [51, 65].

The arguments of [71] tell us that the conserved charges of higher spins generate

changes in the impact parameters of a scattering process. As the action of these

charges is independent of time, final states with different impact parameters are

proportional. In this way we may shift the impact parameters so as to separate a

scattering process into several well defined sub processes involving only two particles.

This renders the scattering process factorisable [71, 81, 86] so that the multi-particle

scattering matrix, or S-matrix, can be written in terms of two particle S-matrix

elements:

|Aa1(θ1)Aa2(θ2)〉 = Sb1b2a1a2
(θ1 − θ2)|Ab1(θ2)Ab2(θ1)〉 (1.1.1)

where Sb1b2a1a2
(θ1 − θ2) is the two particle S-matrix and Ai(θ) represents a particle of
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type i with rapidity θ.

In one space dimension the particles propagate on a line so all the necessary scat-

tering required to convert an in-state to an out-state must occur. As the conserved

charges of an integrable model allow us to alter the impact parameters it is possible

to move from an in-state to an out-state in more than one way, i.e. by shifting the

particles so that different combinations collide first. This constrains the two particle

S-matrix to satisfy the Yang-Baxter equations:

Sb1b2a1a2
(θ1 − θ2)Sc1b3b1a3

(θ1 − θ3)Sc2c3b2b3
(θ2 − θ3) = Sb2b3a2a3

(θ2 − θ3)Sb1c3a1b3
(θ1 − θ3)Sc1c2b1b2

(θ1 − θ2)

(1.1.2)

where repeated indices are summed over.

This factorisation of the S-matrix can be implemented by identification of the in

and out bases of the Hilbert space with two bases of Zamolodchikov’s algebra [86]

whose generating elements have the exchange relations

Aa1(θ1)Aa2(θ2) = Sb1b2a1a2
Ab2(θ2)Ab1(θ1). (1.1.3)

The in basis is identified with products of As in descending order from left to right

and the out basis increasing from left to right and the associativity of this algebra

gives the Yang-Baxter equations.

When considering models invariant under charge conjugation there are additional

constraints on the two particle S-matrix [29, 86]:

Real analyticity:
(
Sb1b2a1a2

(θ)
)∗

= Sb1b2a1a2
(−θ)

Unitarity: Sb1b2a1a2
(θ)Sc1c2b1b2

(−θ) = δc1a1
δc2a2

Crossing symmetry: Sb1b2a1a2
(iπ − θ) = Ca1cS

cb2
da2

(θ)Cdb1

Analytic structure: Sb1b2a1a2
(θ) is analytic in the strip 0 < =(θ) < π except for poles

at θ and iπ − θ, where θ = i arccos
(
M2−M2

1−M2
2

2M1M2

)
, corresponding to particles

of mass M formed by bound states of particles of masses M1 and M2 in the

s- and t-channel respectively and poles corresponding to Feynman diagrams

with all the internal momenta on-shell.
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The presence of bound states already in the spectrum of the model leads to a set

of constraints called the bootstrap equations. These constraints affect the S-matrix,

the masses of particles in the model, the set of spins of the conserved charges and

the eigenvalues of the conserved charges. These constraints will not be discussed

further here but are treated in the review [62].

The S-matrices and particles involved in several integrable models have been

found using internal symmetries and bootstrap equations, see e.g. [14, 82]. We

also note that properties of integrable models can sometimes be found using semi-

classical techniques which are exact in this case. The spectrum of particles may be

found in this way [18, 58]. The spectrum and S-matrix may also be computed via

Bethe ansatz [2, 49] or the quantum inverse scattering method, for details see the

book [50].

When dealing with integrable models, one way of connecting the on-shell descrip-

tion with knowledge of local fields is to consider matrix elements of local operators

in the asymptotic basis. Matrix elements of an operator O of the form

Fa1···an(θ1, · · · , θn) = 〈0|O(x, y)|Aa1(θ1) · · ·Aan(θn)〉in (1.1.4)

are known as the form factors of O. Crossing symmetry and knowledge of the

scattering matrix allows all matrix elements to be written in terms of these form

factors and so they give a complete description of an operator once they are known.

The form factors of local fields in integrable models can be constructed from

their expected properties, which are a consequence of the factorised scattering. In

[44] the consequences of factorised scattering were considered alongside the general

principles of quantum field theory in order to develop a set of axioms for form factors.

These axioms were then used to calculate form factors in the sine-Gordon model,

but this method only gave access to form factors with three or fewer particles. It was

not until the quantum version of the Gelfand-Levitan-Marchenko (GLM) equations

were found in [17] and used to calculate both soliton and breather form factors in

the sine-Gordon model [73, 74] that further progress was made. After an analysis

of this method and its applications it was realised that the GLM equations are not

essential to prove that an operator is local [46, 47], all that is required is that the
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form factors satisfy a set of axioms. The form factors of local fields are constructed

from these axioms [75]:

1. The function Fa1···an(θ1, · · · , θn) is analytic in θi − θj inside the strip 0 <

=(θi − θj) < 2π except for simple poles.

2. Relativistic invariance implies that the F satisfies

Fa1···an(θ1 + θ, · · · , θn + θ) = esθFa1···an(θ1, · · · , θn) (1.1.5)

where s is the spin of the operator O.

3. F has the symmetry property

Fa1···an(θ1, · · · , θn) =

Sbkbk+1
akak+1

(θk − θk+1)Fa1···bk+1bk···an(θ1, · · · , θk+1, θk, · · · , θn) (1.1.6)

which is a generalisation of Watson’s theorem.

4. F has the locality property

Fa1···an−1an(θ1, · · · , θn−1, θn) = e2πiω(O,Ψ)Fana1···an−1(θn, θ1, · · · , θn−1) (1.1.7)

where ω(O,Ψ) is the mutual locality index between the operator O and the

elementary field Ψ which is associated with the particle an. This index is

the phase factor acquired by correlation functions when Ψ is brought, anti-

clockwise, once around O.

5. As a function of θn, F has simple poles at θn = θj + iπ for j = 1, · · · , n − 1

and the residue of these poles is given by

iFa1···an(θ1, · · · , θn) ∼

( δb1a1
· · · δbj−1

aj−1
Sbj+1cj
aj+1aj

(θj+1 − θj)Sbj+2cj+1
aj+2cj

(θj+2 − θj) · · ·Sbn−1bj
an−1cn−3

(θn−1 − θj)−

e2πiω(O,Ψ)δbn−1
an−1
· · · δbj+1

aj+1
Scj−1bj−1
ajaj−1

(θj−θj−1)Scj−1bj−2
cjaj−2

(θj−θj−2) · · ·Sbjb1c3a1
(θj−θ1) )×

Canbj
Fb1···b̂j ···bn(θ1, · · · , θ̂j, · · · , θn)

θn − θj − iπ
(1.1.8)

where hats indicate that entry has been removed. These poles are known

as kinematic poles and the form factors also contain poles at θn − θj =

i arccos
M2−M2

n−M2
j

2MnMj
∈ i[0, π] corresponding to bound states of mass M .
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It is axiom 5 which allows all form factors to be constructed using a bootstrap

approach and the subsequent equations relate the residues at bound state poles

with other form factors. It is thought that the space of solutions to the form factor

axioms and bootstrap equations may be identified with the space of local fields in a

integrable model [15, 56].

Knowledge of the form factors of a model allows long-distance expansions of cor-

relation functions to be written down. This is accomplished by inserting a resolution

of the identity, in the in- or out-basis:

〈O(x, t)O(0, 0)〉 =
∞∑
n=0

∑
a1···an

∫
dθ1 · · · dθn
n!(2π)n

e−r
P
jMj cosh(θj)

× 〈0|O(0, 0)|Aa1(θ1) · · ·Aan(θn)〉〈Aa1(θ1) · · ·Aan(θn)|O(0, 0)|0〉 (1.1.9)

where r =
√
x2 − t2 and the factors of 2π are related to the normalisation of the

basis.

The form factor axioms have been solved for various models [62]. In the chapter 2

these axioms are used to construct form factors for a new family of twist fields which

are then used to verify relations obtained from conformal field theory in chapter 3.

1.1.2 Twist Fields in Free Fermion Models

Twist fields are present in any free fermion model which possesses an internal global

symmetry and there is one twist field for every element of the symmetry group.

These fields, sometimes referred to as disorder fields [43], are interacting fields which

are not local with respect to the fundamental free fermion fields, that is to say

that when a fermion field is brought smoothly once round a twist field the product

acquires an extra phase factor. This type of twist field first appeared as the Z2

monodromy field of the Majorana fermion corresponding to the spin field of the

Ising model [69].

The twist field σg, associated with symmetry group element g, is essentially

defined by the property that when any other local field is brought round it once,

anti-clockwise, inside a correlation function, it transforms according to the element

g of the symmetry group. As this transformation is necessarily a symmetry of the
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model the twist field is local with respect to the Hamiltonian and so is a field of the

theory.

In the path integral formulation twist fields have a simple definition. Any correla-

tion functions containing the twist field σg(x), at the point x, are defined as the path

integrals over field configurations with appropriate monodromy conditions. That is

to say that the path integral is over all field configurations with the fundamental

fields transformed according to g when they are taken once round x:

〈σg(x) · · ·〉 =

∫
Ψ→ĝΨaroundx

[DΨ] e−S[Ψ]··· (1.1.10)

which can easily be extended to correlation functions containing multiple twist fields.

A cut in the plane over which the integration is taken is required in order for the

fermion fields to be well defined there. This cut must start at x, and in massive

models may be taken to end at infinity otherwise must end at the position of a

conjugate twist field σg−1 , and across this cut fundamental fields are discontinuous.

The path integral definition above is independent of the shape of the cut and

altering this only requires fields which the cut crosses to be transformed by g or g−1

depending on which way they cross the cut. To see this let us consider two cuts C1

and C2 such that C = C1 ∪ C2 is a closed path. Now when moving the cut in the

path integral from C1 to C2 we simply transform all the fields inside C, that is all

fields inside the region bounded by C going from C2 to C1 anti-clockwise, according

to the symmetry group element g. The only effect of this procedure is to add a

contribution along C to the action:

〈σg(x) · · ·〉C1 = 〈e
R
C dsµjνεµνσg(x) · · ·〉C2 (1.1.11)

where dsµ is the line element along C and jν is the current associated with the charge

generated by g. This extra contribution to the action is equivalent to applying the

transformation g to all the fields inside C as promised.

Two twist fields are local with respect to each other if and only if their corre-

sponding symmetry group elements commute. The action of the transformation g1

on σg2 is to produce the twist field σg1g2g
−1
1

. So from (1.1.11) the two fields σg1 and

σg2 are local with respect to each other when g1g2g
−1
1 = g2, so we see that twist

fields are self local.
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For twist fields related to a U(1) symmetry in free fermion models it is sometimes

possible to calculate the one point functions of the associated twist fields [24, 57] and

also to re-sum the form factor expansion of correlation functions in terms of Fredholm

determinants [3, 7, 67, 68]. It is also known that in certain models it is possible

to express these non-trivial correlation functions as solutions of integrable partial

differential equations. This remarkable property was first observed in [79] for the two

point spin-spin correlation function in the thermally perturbed lattice Ising model.

It was later found that this result could also be obtained via alternate methods and

in different models; using Dirac operators for the Dirac theory in flat and curved

space-time with a magnetic field [55, 63], by considering a double model of the Ising

spin chain and Ising quantum field theory at zero and finite temperature and on

curved space times [27, 33, 64]. The existence of these differential equations allows

the corresponding correlation functions to be evaluated to a very high accuracy once

initial conditions have been fixed via conformal perturbation theory or form factor

analysis [25, 27, 55].

Part I of this thesis is devoted to examining twist fields corresponding to the

U(1) symmetry of the massive Dirac theory. The aim of this part is to reproduce

the differential equations satisfied by their two point functions, calculated previously

using Fredholm determinants [7, 8], using a more direct method inspired by [33]. In

[33] differential equations for the Ising spin-spin correlation functions are obtained

by considering the conserved charges in a model containing two non-interacting

copies of the Ising field theory. By using the Ward identities associated to conserved

charges in this double model, alongside properties of the Ising model, differential

equations for the spin-spin correlation functions are found.

Before deriving the differential equations we first develop the theory of Dirac

U(1) twist fields. The spinless, chargeless twist fields σα are constructed for all non-

integer α ∈ R. These fields are characterised by their U(1) monodromy e2πiα and

dimension α2, as well as their fermionic descendents defined via the operator product

expansion (OPE), σα+1,α ∼ Ψ†Rσα and σα−1,α ∼ ΨRσα (where ΨR is the right-moving

component of the Dirac spinor). The construction is done both using explicit form

factors, and using a CFT description that takes into account the constraints provided
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by the massive perturbation. We evaluate the action of the double-model conserved

charges using these two pictures.

After calculating the form factors of the descendent twist fields and examining

the OPEs, a recursion relation for the VEVs 〈vac|σα|vac〉 = mα2
cα is found:

cα =
Γ(α + 1)

Γ(−α)
cα+1. (1.1.12)

This relation is consistent with known results [4, 57] but can also be viewed as a

method for evaluating cα, given the normalisation c0 = 1 and the symmetry c−α = cα

The main results of this part are as follows. Consider correlation functions in a

quantum state whose density matrix is an exponential of a bilinear form in fermions,

and which is translation and parity invariant. Writing the following correlation

function as

〈σα(x, y)σα(0, 0)〉 = c2
αm

2α2

eΣα(x,y) (1.1.13)

we show that it is the solution of the differential equations:

∂∂̄ψ =
m2

2
sinh(2ψ) (1.1.14)

∂∂̄Σα =
m2

2
(1− cosh(2ψ)). (1.1.15)

This result was first found implicitly in [68], where solutions to the Dirac equation

satisfying the monodromy conditions of twist fields were studied, and in [7] the

same result was obtained explicitly using the method of Fredholm determinants.

Both methods, however, restricted the state where this result held and the fact

that these equations apply more generally is a new result. We further find that the

correlation function involving the descendent field σα+1 along with σα is obtained

from

〈vac|σα(x, y)σα+1(0, 0)|vac〉 = cαcα+1m
2α2+2α+1eΣ′α(x,y) (1.1.16)

via

∂∂̄Σ′α =
2 tanh2(ψ)

cosh(2ψ)− 1
∂ψ∂̄ψ. (1.1.17)

Note that this is different from the equation found for the correlation functions

〈vac|σα(x, y)σβ(0, 0)|vac〉 in [7], but there is no contradiction, as there there was the
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restriction 0 < α, β < 1. Finally for this quantum state, we find that the correlation

function of fermionic descendents,

〈σα+1,α(x, y)σα,α+1(0, 0)〉 = e−iπαcαcα+1m
2α2+2α+1Ω(x, y), (1.1.18)

is algebraically expressed in terms of the previous correlation functions:

Ω =
√
e2Σα − e2Σ′α . (1.1.19)

It is also possible to reproduce the full results of [7], that is after setting

〈σα(x, y)σβ(0, 0)〉 = cαcβm
α2+β2

eΣ(x,y) (1.1.20)

the function Σ is a solution of the equations(
∂2
r +

1

r
∂r

)
Σ =

m2

2
(1− cosh(2ψ)) (1.1.21)(

∂2
r +

1

r
∂r

)
ψ =

m2

2
sinh(2ψ) +

(α− β)2

r2
tanhψ(1− tanh2 ψ). (1.1.22)

This result, however, requires the quantum state under consideration to have rota-

tional symmetry, as without this extra symmetry the Ward identities we derive do

not provide enough constraints to solve the system. There is a discrepancy between

our result and the results of [7], namely a factor of 4 in the (α−β)2 term in (1.1.22).

This discrepancy is discussed in section 3.2.6 where strong evidence is presented

that equation (1.1.22) is indeed satisfied by the two-point correlation functions.

With rotational symmetry imposed we also find differential equations for corre-

lation functions of more general descendent twist fields:

〈σα,α+1(x, y)σβ+1,β(0, 0)〉 =peiθ(α−β)cαcβm
α2+α+β2+β+1eΣ′(r)

〈σα+1,α(x, y)σβ,β+1(0, 0)〉 =qeiθ(β−α)cαcβm
α2+α+β2+β+1eΣ′(r) (1.1.23)

involving the same auxiliary function ψ as (1.1.22). Both correlators are shown to

have the same r dependence and the constants p and q are discussed in more detail

in section 3.2.2, but essentially depend on the positions of the fields through their

braiding relations. It is shown the function Σ′ satisfies(
∂2
r +

1

r
∂r

)
Σ′ =

(∂rψ)2

sinh2 ψ
−m2 − (α− β)2

r2 cosh2 ψ
(1.1.24)
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which is a new result that appears naturally from the Ward identities.

Part I is set out as follows. In chapter 2 we set the conventions of this part and

the Dirac model is introduced and known results regarding primary twist fields are

reviewed in section 2.1.2. In section 2.2 the massless limit of the Dirac theory is

examined and through bosonisation techniques descendent twist fields are identified.

These descendent twist fields are the subject of section 2.3 where they are defined

and their form factors are calculated in the massive theory. It is these form factors

which lead to a recursion relation for the VEV constant cα. In chapter 3 we present

a derivation of the differential equations mentioned above. Firstly the double model

is introduced in section 3.1 and its conserved charges and their action are calculated

and verified using form factors. In section 3.2 the quantum states of interest are

first discussed and the consequences of space-time symmetries on the correlation

functions are examined. It is in section 3.2.3 that Ward identities relating to the

conserved charges in the double model are written down and in the following two

sections the differential equations described above are found. This chapter ends in

section 3.2.6 with a verification of the results presented here as there is a discrepancy

between these and previous results. Finally chapter 4 contains a discussion of the

outlook for this part.

1.2 Perturbed Conformal Field Theory

We now summarise some key aspects of perturbed conformal field theories and the

truncated conformal space approach as these are key topics in part II of this thesis.

Quantum field theories in two dimensions which possess conformal symmetry

have been a topic interest to mathematicians and physicists for some time. The

attraction of these theories is due to the infinite dimension of the conformal group

in two dimensions. This infinite symmetry group allows conformal field theories

to be solved exactly, unlike most other quantum field theories. This means that,

besides their direct applications to condensed matter and string theory, a study of

conformal field theories may lead to a better understanding of more general quantum

field theory.



1.2. Perturbed Conformal Field Theory 13

Since the birth of modern conformal field theory in the paper of Belavin, Polyakov

and Zamolodchikov [6] a lot of effort has gone into the study of conformal field

theories as the reviews [34, 36, 38] show. As we know so much about conformal

field theories in two dimensions it is natural to ask what happens when we break

conformal symmetry and move away from an exactly solvable model. This raises

several issues, the first of which is how conformal symmetry is broken, as there are

many quantum field theories without conformal symmetry. It is natural that we

want to break conformal symmetry in such a way that we may bring some of the

vast arsenal of conformal field theory techniques to bear on our new theory, so in

some sense we need our model to be ‘close’ to a conformal field theory. With this

in mind the perturbed conformal field theories considered in this thesis have actions

of the form

A = ACFT + λ

∫
d2xϕ(x) (1.2.1)

where ACFT is the action of the unperturbed conformal field theory, ϕ is a field of

the conformal field theory and λ is a constant with dimensions related to those of

ϕ. Perturbations of this kind do not introduce any new field into the model and

preserve the operator algebra and representation theory of the fields involved. In

general it is not known how to calculate correlation functions in models of this kind

and so developing a method to approximate these was what instigated the research

into the truncated conformal space approach (TCSA) presented in part II of this

thesis.

1.2.1 Truncated Conformal Space Approach

The truncated conformal space approach was first developed by Yurov and Zamolod-

chikov to explore the scaling Lee-Yang model [80] and results compared well with

those obtained through the thermodynamic Bethe Ansatz [83]; the TCSA was shown

to reproduce the expected energy level distribution and behaviour. Since this first in-

vestigation TCSA has provided good approximations of quantities such as one-point

functions, in other minimal models [41, 45, 53]. With the accuracy of the method

verified it has also been used to analyse the spread of energy levels in minimal mod-

els [9]. Alongside bulk models, TCSA has been applied to conformal field theories
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in the presence of boundaries and boundary perturbations [20, 21, 40], modelling

one point functions and renormalisation group flows between different conformal

boundary conditions.

After proving successful in the above areas attention has more recently focused

on improving the accuracy of TCSA approximations. In the papers [39, 78] the

renormalisation group for TCSA with and without boundaries is developed and

demonstrated to improve TCSA predictions but this is outside the scope of this

thesis.

As has been discussed correlation functions are important quantities in quantum

field theories but it is not known how to evaluate two point correlation functions

in many perturbed conformal field theories, in particular those with boundaries. It

was the author’s intention to develop a method for approximating these two point

functions using TCSA; part II summarises the author’s progress towards this goal

and is set out as follows.

Chapter 5 gives a brief review of the relevant areas of conformal field theory and

minimal models are introduced in section 5.1.2. In section 5.2 conformal field theory

in the presence of a boundary is discussed and some useful results are presented.

Chapter 6 introduces the truncated conformal space approach and it is then applied

to the scaling Lee-Yang model and the tri-critical Ising models in bulk and boundary

cases in sections 6.1 and 6.2. Section 6.2.3 describes a possible approach to use

TCSA to approximate two point functions and finally we conclude with a discussion

of what has been achieved and future outlook in chapter 7.
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Twist Fields
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Chapter 2

Twist Fields in the Dirac Model

We begin this part by introducing the Dirac model and its associated twist fields.

In this part, x ∈ R is a space coordinate and y ∈ R is a Euclidean time coordinate

(y = it, where t is real time). Space and Euclidean time will be put into complex

coordinates z := − i
2
(x+ iy) and z̄ := i

2
(x− iy), with derivatives ∂ := ∂z = i∂x + ∂y

and ∂̄ := ∂z̄ = −i∂x +∂y. Also, when only one coordinate is specified for a quantum

field, it is understood as the space coordinate, the Euclidean time coordinate being

set to 0.

2.1 The Dirac Model

2.1.1 Dirac Fermions

In two dimensions and in the quantisation on the line, the free Dirac Fermi field of

mass m is an operator solution ΨR(x, y), ΨL(x, y) to the equations of motion

∂̄ΨR = −imΨL, ∂̄Ψ†R = −imΨ†L

∂ΨL = imΨR, ∂Ψ†L = imΨ†R

(2.1.1)

and to the equal-time anti-commutation relations

{ΨR(x1),Ψ†R(x2)} = 4πδ(x1 − x2), {ΨL(x1),Ψ†L(x2)} = 4πδ(x1 − x2) (2.1.2)

16
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(other combinations of fields anti-commutating), subject to the condition that there

exists a state |vac〉, the vacuum state, such that

lim
y→−∞

ΨR,L(x, y)|vac〉 = lim
y→−∞

Ψ†R,L(x, y)|vac〉 = 0. (2.1.3)

The normalisation in (2.1.2) is chosen in such a way that the fields have the so-called

CFT normalisation, in terms of the z variables, as |z1 − z2| → 0,

〈vac|T
[
Ψ†R(x1, y1)ΨR(x2, y2)

]
|vac〉 ∼ 1

z1 − z2

,

〈vac|T
[
Ψ†L(x1, y1)ΨL(x2, y2)

]
|vac〉 ∼ 1

z̄1 − z̄2

.

Here, the symbol T is the time-ordering symbol: in its bracket, operators at later

Euclidean times are placed to the left of operators at earlier Euclidean times (getting

a sign, in general, if the operators exchanged have fermionic statistics).

As usual, the solution can be given in terms of creation and annihilation operators

(Fourier modes of the fields), whose time evolution is simple:

ΨR(x, y) =
√
m

∫
dθ eθ/2

(
D†+(θ)eyEθ−ixpθ − iD−(θ)e−yEθ+ixpθ

)
ΨL(x, y) =

√
m

∫
dθ e−θ/2

(
iD†+(θ)eyEθ−ixpθ −D−(θ)e−yEθ+ixpθ

)
(2.1.4)

where

Eθ = m cosh θ, pθ = m sinh θ. (2.1.5)

It is worth noting that since y is a Euclidean time the conjugate fields, Ψ†R,L(x, y), are

not just the Hermitian conjugates of ΨR,L(x, y), but in fact obtained by Hermitian

conjugation followed by a change in sign of y:

Ψ†R(x, y) =
√
m

∫
dθ eθ/2

(
iD†−(θ)eyEθ−ixpθ +D+(θ)e−yEθ+ixpθ

)
Ψ†L(x, y) =

√
m

∫
dθ e−θ/2

(
−D†−(θ)eyEθ−ixpθ − iD+(θ)e−yEθ+ixpθ

)
. (2.1.6)

From (2.1.2), the creation and annihilation operators satisfy

{D†+(θ1), D+(θ2)} = δ(θ1 − θ2), {D†−(θ1), D−(θ2)} = δ(θ1 − θ2) (2.1.7)

(with all other combinations anti-commuting), and from (2.1.3), the vacuum condi-

tion

D±(θ)|vac〉 = 0.
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The Hilbert space is simply the Fock space over (2.1.7), with a basis of multi-particle

states denoted by

|θ1 · · · θn〉ε1···εn := D†ε1(θ1) · · ·D†εn(θn)|vac〉 for θ1 > · · · > θn, εi ∈ {+,−}.

(2.1.8)

where θi > θi+1 when εi = εi+1 and θi > θi+1 when εi 6= εi+1. These states have

total energies
∑

j Eθj and total momenta
∑

j pθj . The dual vectors will be denoted

by ε1···εn〈θ1 · · · θn| := |θ1 · · · θn〉†ε1···εn , and clearly we have

ε′1···ε′n〈θ′1 · · · θ′n|θ1 · · · θn〉ε1···εn =
n∏
j=1

δ
ε′j
εj δ(θj − θ′j). (2.1.9)

Writing as in (2.1.8) vectors with different orderings of the creation operators, the

identity operator can be decomposed into

1 =
∞∑
N=0

1

N !

∑
ε1···εN

∫ ∞
−∞

dθ1 · · ·
∫ ∞
−∞

dθN |θ1 · · · θN〉 εN ···ε1
ε1···εN 〈θN · · · θ1|. (2.1.10)

The solution (2.1.4), (2.1.6), defining the mode operators from the fermion op-

erators, is chosen in such a way that it satisfies the equations of motion, and that

the resulting mode operators obey the canonical anti-commutation relations (2.1.7).

However, the choice of such mode operators is not unique: we may re-define the

mode operators via D±(θ) 7→ u±D±(θ) for some pure phases u±, |u±| = 1, and still

have a solution to the equations of motion and canonical anti-commutation relations.

This amounts to a phase-redefinition of the states in the Hilbert space. The mode

operators are partially fixed by requiring further the crossing symmetry condition

〈vac|ΨR,L(0)|θ + iπ〉ε = −ε〈θ|ΨR,L(0)|vac〉 (2.1.11)

where the form factor on the left hand side is obtained by analytic continuation in

θ. This condition leaves one phase ambiguity: there is still an invariance under the

change D±(θ) 7→ u±1D±(θ) for |u| = 1. This phase ambiguity will not play any role

in the following, hence we fix it arbitrarily by choosing the solution (2.1.4), (2.1.6).

2.1.2 Primary Twist Fields

The Dirac theory enjoys a U(1) internal symmetry: ΨR,L 7→ e2πiαΨR,L, α ∈ [0, 1).

The associated twist fields, σα(x, y), are local, spin-less, U(1) neutral quantum fields
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with bosonic statistics, and are known to have scaling dimensions α2 [68]. Their twist

property, characterised by a locality index e2πiα, can be expressed via a monodromy

property of correlation functions of time-ordered operators,

C(z) := 〈vac|T [· · ·ΨR,L(x, y)σα(0) · · ·] |vac〉.

Seeing C(z) as a function of the complex variable z smoothly continued through the

y = 0 line, its continuation along a loop γ surrounding once counter-clockwise the

origin is given by

C(e2πiz) = e−2πiαC(z). (2.1.12)

This is true for any loop γ that can be contracted to the origin without intersecting

the position of other twist fields possibly present in the correlation function. A

similar relation holds for the Hermitian conjugates Ψ†R,L, but with the factor e2πiα

on the right-hand side, instead of e−2πiα. This twist property can also be expressed

operatorially via equal-time exchange relations:

ΨR,L(x)σα(0) =


σα(0)ΨR,L(x) (x < 0)

e2πiασα(0)ΨR,L(x) (x > 0)

(2.1.13a)

Ψ†R,L(x)σα(0) =


σα(0)Ψ†R,L(x) (x < 0)

e−2πiασα(0)Ψ†R,L(x) (x > 0).

(2.1.13b)

These naturally lead us to define primary twist fields with negative index via Her-

mitian conjugates:

σ−α := σ†α, α ∈ [0, 1). (2.1.14)

These exchange relations along with the property of being primary immediately

gives the form factors of the U(1) twist fields [30, 44, 59]. The simplest derivation of

the form factors can be found in [7], where the braiding relations (2.1.13) are Fourier

transformed to show that the twist fields induce a Bogoliubov transform on the

creation and annihilation operators. The properties of Bogoliubov transformations

are then used to extract the two particle form factors of the twist fields, with higher

particle form factors being calculated via Wick’s theorem.
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As twist fields are U(1) neutral they only have non-vanishing form factors with

U(1) neutral states and from the method described above we have, for −1 < α < 1,

〈vac|σα(0)|θ1θ2 · · · θ2n〉+···+−···− = cαm
α2

(−1)n(n−1)/2

(
sin(πα)

πi

)n
×

(
n∏
i=1

(ui)
1
2

+α(ui+n)
1
2
−α

) ∏
i<j≤n(ui − uj)

∏
n+1≤i<j(ui − uj)∏n

r=1

∏2n
s=n+1(ur + us)

(2.1.15)

where there are n −’s and n +’s in the state, and ui := exp(θi). In particular, the

two-particle form factor is

〈vac|σα(0)|θ1θ2〉+− = cαm
α2 sin(πα)

2πi

eα(θ1−θ2)

cosh θ1−θ2
2

. (2.1.16)

Note that the form factors (2.1.15) may differ from those written in other publica-

tions in the choice of the sign of α and in the choice of the sign of the two-particle

form factor (the latter amounting to an overall sign (−1)n). These choices relate

to our choice of exchange relations (2.1.13) (defining the operator σα), and to our

choice of crossing symmetry relation (2.1.11) (defining the asymptotic states). Cal-

culations below, using the two-particle form factor, will show that the two-particle

form factor (2.1.16) leads to a behaviour of Ψ†R(x)σα(0) and ΨR(x)σα(0) as x → 0

exhibiting a branch point in accordance to the exchange relations (2.1.13). Further

calculations will show that the disconnected, delta-function term in a crossing sym-

metry relation similar to (2.1.11) is correct, this being true only with the sign chosen

for the two-particle form factor.

The constant cα is chosen, up to a phase, in order to guarantee the CFT nor-

malisation of the fields:

〈vac|σα(x1, y1)σ−α(x2, y2)|vac〉 ∼ 1

|z1 − z2|2α2 as |z1 − z2| → 0. (2.1.17)

The phase of cα is fixed by requiring that it be real and positive. The evaluation of

the constant cα was first explained in [57] (this constant was first obtained in an un-

published note by Al.B. Zamolodchikov). This constant, or rather its generalisation

to the Dirac Fermi field on the Poinaré disk, was identified with Barnes’ G-function

in [25]:

cα =
1

G(1− α)G(1 + α)
. (2.1.18)
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Recall that the main property of Barnes’ G-function is G(1 + z) = Γ(z)G(z), with

the normalisation G(1) = 1. In the next section we provide an alternative way of

evaluating cα.

Other matrix elements can be obtained by analytic continuation in the rapidities,

as is standard in the context of 1+1-dimensional QFT [75]. Note that the form

factors (2.1.15) and the Hermiticity relation (2.1.14) are in agreement with the

analytic-continuation formula

〈vac|σα(0)|(θ1 + iπ) · · · (θ2n + iπ)〉+···+−···− = +···+−···−〈θ2n · · · θ1|σα(0)|vac〉, (2.1.19)

where the analytic continuation is simultaneous on all rapidities.

2.2 The Massless Limit

If the mass of the model is set to zero in equations (2.1.1) then the fields Ψ
(†)
R become

holomorphic, Ψ
(†)
L become anti-holomorphic and the model is reduced to a conformal

field theory. In this limit the non-vanishing two point functions of the Dirac fields

become

〈vac|T
[
Ψ†R(x1, y1)ΨR(x2, y2)

]
|vac〉m=0 =

1

z1 − z2

〈vac|T
[
Ψ†L(x1, y1)ΨL(x2, y2)

]
|vac〉m=0 =

1

z̄1 − z̄2

(2.2.1)

with multi-point functions evaluated via Wick’s theorem. It is known that repro-

ducing these correlation functions using bosonisation can prove insightful and this

is indeed the case here.

2.2.1 Bosonisation

We introduce holomorphic and anti-holomorphic operators eα(x, y) and ēα(x, y),

α ∈ R. They have bosonic statistics and the following correlation functions:

〈vac|eα1(x1, y1) · · · eαn(xn, yn)|vac〉m=0 = δ0,
P
j αj

∏
j<k

(−i(zj − zk))αjαk ,

〈vac|ēα1(x1, y1) · · · ēαn(xn, yn)|vac〉m=0 = δ0,
P
j αj

∏
j<k

(i(z̄j − z̄k))αjαk (2.2.2)
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for y1 > y2 > · · · > yn, where the power functions are on their principal branches.

These correlation functions lead directly to the following operator product expansion

[34]:

T [eα(x, y)eα′(x
′, y′)] ∼(−i(z − z′))αα′

(
1 +

α

α + α′
(z − z′)∂′

)
eα+α′(x

′, y′)

T [ēα(x, y)ēα′(x
′, y′)] ∼(i(z̄ − z̄′))αα′

(
1 +

α

α + α′
(z̄ − z̄′)∂̄′

)
ēα+α′(x

′, y′), (2.2.3)

as well as the following equal-time exchange relations for the operators eα(x) and

ēα(x):

eα1(x1)eα2(x2) = eiπα1α2sgn(x2−x1)eα2(x2)eα1(x1),

ēα1(x1)ēα2(x2) = eiπα1α2sgn(x1−x2)ēα2(x2)ēα1(x1) (2.2.4)

in both cases for x1 6= x2.

The principle of bosonisation rests on there being appropriate choices of the αs

which provide an equivalence between these correlation functions and those of the

Dirac fields. If we identify

ΨR = e−iπ/4ω−1
R e−1, Ψ†R = e−iπ/4ωRe1

ΨL = eiπ/4ωLē1 Ψ†L = eiπ/4ω−1
L ē−1 (2.2.5)

where ωR,L are pure phases the correlation functions (2.2.1) are recovered. This is

not the whole story, however, since these operators do not have the correct exchange

relations between left and right movers. To remedy this situation we introduce

Klein factors to guarantee fermionic exchange relations. In the present case the

Klein factors will take the form of quaternionic elements ı̂ , ̂ and k̂ , with both ΨR

and Ψ†R proportional to ̂ , and both ΨL and Ψ†L proportional to ı̂ . In each sector

these elements can be seen as part of the pure phases and hence do not affect these

correlation functions and in mixed sectors the anti-commutation relation ı̂ ̂ = − ̂ ı̂

guarantees the correct statistics for the Dirac fields. As the only non-zero correlation

functions contain even numbers of both left and right moving fields the quaternionic

element k̂ is never present. The precise identification can then be written as follows:

ΨR = −e−iπ/4ω−1 ̂ e−1, Ψ†R = e−iπ/4ω ̂ e1,

ΨL = eiπ/4ω ı̂ ē1, Ψ†L = −eiπ/4ω−1 ı̂ ē−1. (2.2.6)
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Here, we have used the U(1) invariance of the Dirac theory in order to remain with

only one arbitrary phase ω.

Using this bosonisation procedure we can put the primary twist fields discussed

in section 2.1.2 into the same framework. The basis for this identification is the

comparison between the exchange relations (2.1.13) and (2.2.4). Letting Q be the

U(1) charge of the Dirac theory we see that [Q,Ψ†R,L] = −Ψ†R,L and [Q,ΨR,L] = ΨR,L

and we can simply make the identification:

σα = eαēαe
−iπαQ. (2.2.7)

The action of Q on the operators eα and ēα is given by

eicQeαe
−icQ = e−icαeα, eicQēαe

−icQ = eicαēα. (2.2.8)

Note that relation (2.2.7) along with the correlation functions (2.2.2) are in agree-

ment with the normalisation (2.1.17).

Correlation functions (2.2.2) can be realised using the Heisenberg algebra: one

usually writes eα(x, y) = eiαϕR(x,y) and ēα(x, y) = e−iαϕL(x,y) where ϕR,L are (appro-

priately normalised) holomorphic and anti-holomorphic free massless bosonic field,

respectively. The U(1) symmetry in terms of such fields corresponds to a shift of

both ϕR and ϕL by the same constant, and the arbitrariness of the phase ω in

(2.2.6) can be thought of as an arbitrariness under shifts of ϕR and ϕL by oppo-

site constants. Also, in terms of the bosonic fields, the U(1)-twist field is simply

σα = eiαϕe−iπαQ, with ϕ := ϕR − ϕL.

2.2.2 Operator Product Expansions

From the relation (2.2.7) and the correlation functions (2.2.2) the leading coefficients

of the operator product expansions (OPEs) of Dirac fields with twist fields can

be computed. Accounting for the exchange relations (2.1.13) and the correlation

functions (2.2.2) we observe that

T
[
Ψ†R(x, y)σα(0)

]
∼ (−iz)ασα+1,α(0),

T [ΨR(x, y)σα(0)] ∼ (−iz)−ασα−1,α(0), (2.2.9)
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where we have defined,

σα+1,α := e−iπ/4ω ̂ eα+1ēαe
−iπαQ,

σα−1,α := −e−iπ/4ω−1 ̂ eα−1ēαe
−iπαQ. (2.2.10)

for α ∈ R. The power functions on the right-hand sides in (2.2.9) are on their

principal branches which is in agreement with the phases occurring in the exchange

relations (2.1.13) and the phase differences occurring through the cuts of the prin-

cipal branches. Further, we also find

T
[
Ψ†L(x, y)σα(0)

]
∼ −iω−2 k̂ e−iπQ(iz̄)−ασα,α−1(0)

T [ΨL(x, y)σα(0)] ∼ −iω2 k̂ eiπQ(iz̄)ασα,α+1(0). (2.2.11)

In order to simplify the OPEs (2.2.11), we need to specify both k̂ and ω.

As the CFT has both a U(1) symmetry and a symmetry under constant shifts

in ϕ there is no way to determine the phase ω in the CFT context. But there are

non-zero correlation functions containing odd numbers of left and right movers if

twist fields are inserted and such functions will involve factors of k̂ and ω. While

fixing these correlation functions would remove these ambiguities there is no clear

principle to fix them by.

In the massive theory k̂ can be written as an (almost) unambiguous operator.

We already know that k̂ anti-commutes with all Dirac fields and squares to −1, so

we may write it as

k̂ = ε i eiπQ (2.2.12)

for some sign ε = ±. In particular we have 〈vac| k̂ |vac〉 = εi. Fixing k̂ is important

since there are unambiguous non-zero correlation functions containing left and right

movers. In the bosonised language these functions involve a remaining operator k̂

which needs to be well defined. For our purposes the sign ε can be left undetermined.

As well as fixing k̂ the massive theory also breaks the symmetry under shifts in

ϕ and this should allow us to evaluate ω. The mass term in the Hamiltonian is

im

4π

∫
dx
(

Ψ†R(x)ΨL(x)−Ψ†L(x)ΨR(x)
)

= −im k̂

2π

∫
dx cos(ϕ(x) + 2ν) (2.2.13)

with ω =: eiν and the symmetry breaking is clear to see. ω is fixed by defining ϕ such

that the twist field σα has a real and positive vacuum expectation value. The field
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eiϕ has a real and positive vacuum expectation value if and only if the integrand in

the mass term has a minimum at ϕ = 0 mod 2π. This ensures the main contributions

in the path integral formulation are at values of ϕ located symmetrically about 0,

and these values add to a positive real number. Hence the integrand in the mass

term must be cosϕ and the coefficient in front of the integral must be negative in

bosonic sectors. So finally we see that

ω2 = −ε. (2.2.14)

Combining (2.2.12), (2.2.14) with (2.2.11), we find, independently of ε, the OPEs

T
[
Ψ†L(x, y)σα(0)

]
∼ −(iz̄)−ασα,α−1(0)

T [ΨL(x, y)σα(0)] ∼ −(iz̄)ασα,α+1(0). (2.2.15)

In writing the twist fields in this form it is understood that

σα,α := σα. (2.2.16)

It is now simple to use these definitions to define other non-derivative descendent

twist fields of the Dirac theory and then determine the leading and next to leading

terms in their OPEs with fermion fields. We define recursively σα±n,α for integer

n ≥ 0 via

T
[
Ψ†R(x, y)σα+n,α(0)

]
∼ (−iz)α+nσα+n+1,α(0),

T [ΨR(x, y)σα−n,α(0)] ∼ (−iz)n−ασα−n−1,α(0). (2.2.17)

This gives the expressions, for α ∈ R and n ≥ 0 integer,

σα+n,α := (e−iπ/4ω ̂ )neα+nēαe
−iπαQ,

σα−n,α := (−e−iπ/4ω−1 ̂ )neα−nēαe
−iπαQ (2.2.18)

(these are in agreement with (2.2.7) and (2.2.10) in the cases n = 0 and n = 1

respectively). From these expressions along with the rules (2.2.6), (2.2.12), (2.2.14)
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and (2.2.8), and with the OPEs (2.2.3), we find the OPEs (for α− β ∈ Z):

T
[
Ψ†R(x, y)σα,β(0)

]
∼(−i)Θ(β−α−1/2)(−iz)α

(
1 +

1

1 + α
z∂

)
σα+1,β(0)

T [ΨR(x, y)σα,β(0)] ∼(−i)Θ(α−β−1/2)(−iz)−α
(

1 +
1

1− α
z∂

)
σα−1,β(0)

T
[
Ψ†L(x, y)σα,β(0)

]
∼(−i)Θ(β−α−1/2)(−1)α−β+1(iz̄)−β

(
1 +

1

1− β
z̄∂̄

)
σα,β−1(0)

T [ΨL(x, y)σα,β(0)] ∼(−i)Θ(α−β−1/2)(−1)α−β+1(iz̄)β
(

1 +
1

1 + β
z̄∂̄

)
σα,β+1(0)

(2.2.19)

where Θ is the Heaviside step-function, Θ(γ) = 1 (γ > 0), 0 (γ < 0), and the

derivatives on the right-hand side are with respect to the arguments of the twist

fields, which are afterwards put to 0. In these OPEs, the next correction term is

equivalent to a term of order z2 (for the first two) or z̄2 (for the last two) inside

the large parenthesis (but generally involve non-derivative descendents of the twist

fields written).

We may write these OPEs more generally by putting the twist fields at position

x′, y′ and by replacing z by z − z′ and z̄ by z̄ − z̄′ in the power functions on the

right-hand side. From this, taking derivatives with respect to z′ and z̄′, we obtain

OPEs with first-derivatives of twist fields:

T
[
Ψ†R(x, y)∂σα,β(0)

]
=(−i)Θ(β−α−1/2)(iα)(−iz)α−1σα+1,β(0) +O(zα+2)

T [ΨR(x, y)∂σα,β(0)] =(−i)Θ(α−β−1/2)(−iα)(−iz)−α−1σα−1,β(0) +O(z−α+2)

T
[
Ψ†L(x, y)∂̄σα,β(0)

]
=(−i)Θ(β−α−1/2)(−1)α−β+1(iβ)(iz̄)−β−1σα,β−1(0) +O(z̄−β+2)

T
[
ΨL(x, y)∂̄σα,β(0)

]
=(−i)Θ(α−β−1/2)(−1)α−β+1(−iβ)(iz̄)β−1σα,β+1(0) +O(z̄β+2).

(2.2.20)

Note that the first non-trivial corrections to the leading OPEs, corresponding to

pure derivatives of twist fields, are exactly zero.

2.3 Descendent Twist Fields

When deriving differential equations for the two point correlation functions of pri-

mary twist fields the intermediate steps involve descendent twist fields. So it is nec-
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essary to provide unambiguous definitions for these fields and evaluate their form

factors.

2.3.1 Definitions

Firstly we notice that (2.1.15) is an analytic function of α on C \ Z∗, for fixed

rapidities; the points Z∗ := Z \ {0} corresponding in general to poles. Hence, it

is natural to use the formula (2.1.15) to define the fields σα for all α ∈ R \ Z∗,

and by analytic continuation in the rapidities, all other matrix elements. Here we

are implicitly assuming that cα is also analytic in this region. Now the two-point

function of such twist fields is, for any fixed distance between the fields, an analytic

function of α on a neighbourhood of R\Z∗. In fact, we expect that the coefficients of

operator product expansions with the stress-energy tensor are “uniformly” analytic

in α at all distances. This means that the new field defined by analytic continuation

has dimension α2; we also expect the correct CFT normalisation (2.1.17).

The descendent twist fields with fermionic statistics, and in particular those

whose form factors with even numbers of particles vanish, are obtained through

regularised limits where the position of a Dirac field approaches that of a primary

twist field, or equivalently as coefficients of the operator product expansion. For α

in particular subsets of R \ Z∗, we define two one-parameter families of Fermionic

twist fields via the coefficients occurring in the leading short-distance asymptotics

associated to the Dirac fields ΨR and Ψ†R:

T [Ψ†R(x, y)σα(0)] ∼ (−iz)ασα+1,α(0) for α <
1

2

T [ΨR(x, y)σα(0)] ∼ (−iz)−ασα−1,α(0) for α > −1

2
. (2.3.1)

As before, T is the time-ordering operation. The power functions on the right-

hand sides are on their principal branches; note that there is agreement between the

phases occurring from exchange relations (2.1.13) and the phase differences occurring

through the cuts of the principal branches. The requirement of phase agreement is

not quite enough to fully determine the particular power functions occurring: these

are consequences of CFT considerations of section 2.2, or of form-factor calculations

(performed below). From (2.3.1), we see that the new fields σα±1,α have dimensions
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α2±α+1/2, spins ±α+ 1
2

and charges ∓1. They also satisfy the hermiticity relation

σ†α±1,α = σ−α∓1,−α. (2.3.2)

The range of α shown is a consequence of the equations of motion, as we explain

shortly. We define fields for all α ∈ R \ Z∗ again by analytic continuation beyond

the range of α shown.

The CFT considerations of section 2.2 also suggest that the same fermionic twist

field families can be defined using ΨL and Ψ†L:

T
[
Ψ†L(x, y)σα(0)

]
∼ −(iz̄)−ασα,α−1(0) for α > −1

2

T [ΨL(x, y)σα(0)] ∼ −(iz̄)ασα,α+1(0) for α <
1

2
. (2.3.3)

Together with the equations of motion (2.1.1), this suggests the form of the leading

OPE for all α ∈ R \ Z∗:

T
[
Ψ†R(x, y)σα(0)

]
∼ (−iz)ασα+1,α(0) +

m

1− α
(iz̄)1−ασα,α−1(0)

T [ΨR(x, y)σα(0)] ∼ (−iz)−ασα−1,α(0) +
m

1 + α
(iz̄)1+ασα,α+1(0) (2.3.4)

and

T
[
Ψ†L(x, y)σα(0)

]
∼ −(iz̄)−ασα,α−1(0)− m

1 + α
(−iz)1+ασα+1,α(0)

T [ΨL(x, y)σα(0)] ∼ −(iz̄)ασα,α+1(0)− m

1− α
(−iz)1−ασα−1,α(0), (2.3.5)

where the meaning of ∼ is that for any value of α, the term on the right-hand side

that is dominant gives the leading OPE. Note that according to these equations,

the leading term of the OPE occurring in the CFT is modified in certain ranges of

α by lower-dimensional “ghost fields”, like mσα,α−1, which make no contribution in

the massless limit. This expansion can be verified by using the techniques of the

next section. We also note that sub-leading terms in these OPEs will have poles

at other integer values of α. It is, in principle, possible to calculate these OPEs

from perturbation theory [84] but this has not been attempted here. There may

also be more singular terms in the OPEs above, however, we assume no such terms

are present.
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Moreover, we notice that further applications of Dirac fields may lead back to

the original family of twist fields, σα. For instance, for α < 0 we have

T
[
Ψ†R(x, y)σα,α+1(0)

]
∼ −i(−iz)ασα+1(0) (2.3.6)

which is a consequence of CFT considerations. Note in particular that the double

application of Dirac fields preserved the CFT normalisation, because the Dirac fields

themselves are CFT normalised.

The next subsection is devoted to computing the form factors of the Fermionic

twist fields defined in (2.3.1), and to showing the correctness of (2.3.4) and (2.3.5).

In combination with these form factors, the consistency of (2.3.1) and (2.3.3) leads to

the non-trivial recursion relation (2.3.22) for the normalisation constant cα. Equiv-

alently, relation (2.3.6) can be used (since (2.3.6) is a simpler consequence of CFT,

this is a slightly more direct way of obtaining the recursion relation (2.3.22)). We will

show that it is indeed satisfied by (2.1.18). Interestingly, such a recursion relation

can be seen as a novel way of evaluating this constant.

2.3.2 Form Factors

We start this subsection by giving details of the computation of 〈vac|σα+1,α(0)|θ〉+.

The form factor is evaluated by expanding 〈vac|Ψ†R(x)σα(0)|θ〉+ and finding the term

proportional to zα, using (2.3.1). The result for the form factor 〈vac|σα−1,α(0)|θ〉−
is obtained similarly, by expanding 〈vac|ΨR(x)σα(0)|θ〉− and so only one calculation

is presented here.

In order to obtain the leading short-distance behaviour of

〈vac|Ψ†R(x, y)σα(0)|θ〉+ (2.3.7)

we insert (2.1.10) between the two fields. For simplicity we consider x < 0, y = 0, as

this is sufficient to extract the one-particle form factors. The full z dependence of the

leading behaviour can be restored using rotation (or relativistic boost) covariance.

There is only one non-zero form factor of Ψ†R given by

〈vac|Ψ†R(x)|θ〉+ =
√
meθ/2eixpθ (2.3.8)
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This means that there is only one term involving σα to be evaluated, which can be

accomplished using the form factor rules of [75] and the two-particle form factor

(2.1.16):

+〈φ|σα(0)|θ〉+ = 〈vac|σα(0)|θ, φ+ iπ − i0+〉+− + 〈vac|σα(0)|vac〉δ(θ − φ)

= cαm
α2 sin(πα)

2π
e−iπα

eα(θ−φ)

sinh
(
θ−φ+i0+

2

) + cαm
α2

δ(θ − φ). (2.3.9)

The +i0+ prescription is to be understood in terms of distributions: it is a pre-

scription as to how an integral should avoid the pole of the function. Putting these

together we see that

〈vac|Ψ†R(x)σα(0)|θ〉+ = cαm
α2+1/2 sin(πα)

2π
e−iπα

∫
dφ eφ/2

eα(θ−φ)

sinh
(
θ−φ+i0+

2

)eixpφ
+ cαm

α2+1/2eθ/2eixpθ . (2.3.10)

The integral is conditionally convergent. In order to make it a convergent integral,

we make a change of contour, shifting φ 7→ φ− iπ/2. This shift of contour does not

give any pole contribution thanks to the i0+ prescription, and the result is indeed a

convergent integral for x < 0:

〈vac|Ψ†R(x, 0)σα(0)|θ〉+ = cαm
α2+1/2 sin(πα)

2π
e−iπα/2

∫
dφ e−iπ/4eφ/2 eα(θ−φ)

sinh( θ−φ
2

+ iπ
4

)
exEφ

+ cαm
α2+1/2eθ/2eixpθ

= cαm
α2+1/2 sin(πα)

π
e−iπα/2

∫
dφ e

αθ−(α−1/2)φ+xEφ

i e
θ−φ

2 −e
φ−θ

2

+ cαm
α2+1/2eθ/2eixpθ . (2.3.11)

In general, the leading behaviour at small x will be obtained from the large-φ

behaviour of the integrand. Let us analyse what happens at x = 0 in different

regions of α. In the regions α < 0 and α > 1, the resulting integral is divergent.

In these cases, the leading small-x behaviour is growing, and can be obtained from

the leading large-|φ| behaviour of the integrand only. On the other hand, in the

region 0 < α < 1, the integral converges, and the resulting constant is cancelled

by the term arising from the delta function as is discussed further in subsection

2.3.3. Note that this cancellation requires in particular the correct sign of the two-

particle form factor (2.1.16). Hence, in this case, the leading small-x behaviour is
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decaying, and can be extracted again from the leading large-|φ| behaviour by first

rendering the integral divergent by taking its first x-derivative. As explained before,

we expect the field σα+1,α to occur in the leading OPE for α < 1/2, and to have an

appropriate ghost field in the range α > 1/2, as per (2.3.4). We will see below that

the one-particle form factors agree with this. In order to evaluate the form factor,

it is sufficient to consider the region α < 0.

In order to extract the small-x behaviour in the region α < 0, we split the integral

into two regions, φ ∈ (−∞, 0) and φ ∈ (0,∞). In each region we pull a factor out

of the fraction to leave a denominator of the form 1 + η where |η| → 0 as |φ| → ∞,

and we then Taylor expand each fraction. This gives

〈vac|Ψ†R(x, 0)σα(0)|θ〉+ ∼ cαm
α2+1/2 sin(πα)

π
e−iπα/2×[∫ ∞

0

dφ
(
−e(α+1/2)θ−αφ+xEφ − ie(α+3/2)θ−(α+1)φ+xEφ + . . .

)
+∫ 0

−∞
dφ
(
−ie(α−1/2)θ−(α−1)φ+xEφ − e(α−3/2)θ−(α−2)φ+xEφ + . . .

)]
. (2.3.12)

The leading divergent term for α < 0 occurs in the region (0,∞). This term can be

rewritten using a modified Bessel function:∫ ∞
0

dφ (e−αφ+xEφ) =

∫ ∞
−∞

dφ (e−αφ+mx coshφ)−
∫ 0

−∞
dφ (e−αφ+mx coshφ)

= 2K|α|(−mx) +O(1) (2.3.13)

as x→ 0−. Hence, the integral diverges like

Γ(−α)

(
2

−mx

)−α
. (2.3.14)

The first equation in (2.3.1) allows us to identify the coefficient of the divergence

with the one-particle form factor we are seeking. We obtain:

〈vac|σα+1,α(0)|θ〉+ = cα
e−iπα/2

Γ(1 + α)
mα2+α+1/2e(α+1/2)θ. (2.3.15)

By analytic continuation, this provides the form factors for all α ∈ R \ Z∗.

In order to verify the full z-dependence of the leading behaviour (2.3.1), we may

use the spins of the operators involved and examine the effects of a relativistic boost
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of rapidity β about the origin. Acting with the boost operator Rβ, defined essentially

by R†β|θ〉 = |θ + β〉, we see that

RβΨ†R(x, y)R†β = eβ/2Ψ†R(xβ, yβ) and Rβσα(0)R†β = σα(0) (2.3.16)

as the fields have spins 1/2 and 0 respectively. Here, xβ and yβ are obtained using

zβ = eβz and z̄β = e−βz. Moreover, from the form factor (2.3.15), we find that

Rβσα+1,α(0)R†β = e(α+1/2)βσα(0). (2.3.17)

Hence, the field σα+1,α has spin α + 1/2 (as mentioned above). When acting with

the rotation operators on Ψ†R(x, y)σα,α(0), we can either perform the boost first and

then use the OPE:

RβΨ†R(x, y)σα(0)R†β = eβ/2Ψ†R(xβ, yβ)σα(0)

∼ eβ/2(−izeβ)ασα+1,α(0) (2.3.18)

or vice versa:

RβΨ†R(x, y)σα(0)R†β ∼ (−iz)αRβσα+1,α(0)R†β

= (−iz)αe(α+1/2)βσα+1,α(0). (2.3.19)

Agreement here is in line with the first equation of (2.3.1) and so gives us confidence

in our method.

The one particle form factor of the field σα−1,α(0) can be calculated in a similar

way, using the second relation of (2.3.1). The calculation, in the range α > 0, gives

〈vac|σα−1,α(0)|θ〉− = −icα
eiπα/2

Γ(1− α)
mα2−α+1/2e(−α+1/2)θ, (2.3.20)

which, by analytic continuation, holds for all α ∈ R \ Z∗. Note that

〈vac|σα−1,α(0)|θ〉− = −i〈vac|σ−α+1,−α(0)|θ〉+.

With the crossing symmetry relation 〈vac|σα−1,α(0)|θ + iπ〉− = +〈θ|σα−1,α(0)|vac〉

along with the hermiticity relation (2.3.2), this implies

−i〈vac|σα−1,α(0)|θ + iπ〉+ = (〈vac|σα−1,α(0)|θ〉+)∗
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which is indeed satisfied by (2.3.15).

All higher particle form factors are obtained using Wick’s theorem. The form

factor

〈vac|σα±1,α(0)|θ1, . . . , θ2n+1〉ε1,...,ε2n+1

is the sum over every term obtained by a product of n (normalised) two-particle form

factors of σα associated to n disjoint pairs of particles (contractions), multiplied by

the one-particle form factor of σα±1,α associated to the remaining unpaired particle,

with an appropriate sign depending on the number of crossings of the contractions:

〈vac|σα±1,α(0)|θ1, . . . , θ2n+1〉ε1,...,ε2n+1 =∑
partition {q ; (sj ,tj):j=1,...,n}

of {1,...,2n−1}

(−1)crossings

(
n∏
j=1

〈vac|σα(0)|θsj , θtj〉εsj ,εtj
cαmα2

)
〈vac|σα±1,α(0)|θq〉εq .

We now have a working definition of both primary and descendent twist fields

and have evaluated their form factors. These will be used in chapter 3 to verify

the action of conserved charges in a double model Dirac theory. This is a key step

towards our goal of deriving a set of differential equations for the two point functions

of twist fields. First however we use the methods applied in this section to further

verify the short-distance behaviour of twist fields and find ways of evaluating the

constant cα.

2.3.3 A Recursion Relation For cα

We now proceed to verify the relations (2.3.4) and (2.3.5), as well as (2.3.6) and

other similar relations. As we will show, these in fact provide a non-trivial recursion

relation for the constant cα. This recursion relation can in fact be used to evalu-

ate the constant cα, since, for instance, relations (2.3.4) were deduced solely from

CFT arguments. We note, in particular, that this way of evaluating cα implements

the CFT normalisation of the twist fields somewhat more clearly than in previous

methods [57].

First, we may verify the first relation of (2.3.4) in the range α > 1 by evaluating

the leading diverging term of 〈vac|Ψ†R(x)σα(0)|θ〉+ for α in that range. Starting

with (2.3.12), we need only to consider the region of integration (−∞, 0). We can
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re-write the integral of the first term displayed using a modified Bessel function, in

a similar fashion to what was done in the previous subsection. Comparing with the

mass term in the first relation of (2.3.4), we find the equation

〈vac|σα,α−1(0)|θ〉+ = icα
e−iπα/2

Γ(1− α)
mα2−α+1/2eθ(α−1/2) (2.3.21)

After a shift α 7→ α+ 1, comparison with the form factor (2.3.15) gives the relation

cα
cα+1

=
Γ(α + 1)

Γ(−α)
. (2.3.22)

It is a simple matter to verify that this relation is indeed satisfied by (2.1.18) using

the properties of the Gamma function and of Barnes’ G-function. We remark that

this provides a very non-trivial check of the validity of the definition of the fields

σα±1,α by analytic continuation.

The recursion relation (2.3.22) along with the symmetry property cα = c−α gives

a way of evaluating cα. Indeed, although these relations have many solutions, the

solution is made unique by imposing additionally the normalisation condition c0 = 1

and the conditions of monotonicity and convexity in the range α ∈ [0, 1). These extra

conditions are indeed satisfied by (2.1.18). The normalisation condition c0 = 1 is a

simple consequence of the fact that σα is the identity operator at α = 0. However,

we do not have clear arguments for monotonicity and convexity from quantum field

theory. We note that all calculations in later sections are unaffected by the explicit

choice of the solution cα, and only follow from the recursion relation (2.3.22) (along

with, implicitly, the symmetry property and the normalisation condition).

Second, we may complete the verification of the first relation of (2.3.4) by

analysing the region 0 < α < 1. We first note that the x = 0 value of the in-

tegral in the first line of (2.3.11) is∫
dφ e−iπ/4eφ/2

eα(θ−φ)

sinh( θ−φ
2

+ iπ
4

)
= −2πeiπα/2

sin(πα)
eθ/2. (2.3.23)

This can be obtained by first shifting φ 7→ φ+ θ in order to extract the θ-dependent

factor, then by shifting the contour φ 7→ φ − 2iπ, getting the pole at φ = −3iπ/2,

and noticing that the integral with a shifted contour is just the initial integral up

to a phase (solving the resulting equation gives the answer). Hence, we indeed
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find that the quantity (2.3.11) decays as x → 0. The power law of the decay can

be obtained simply by taking a derivative with respect to x: it is then a divergent

behaviour, hence can be obtained by the techniques illustrated above, using (2.3.12).

We then integrate over x in order to recover the leading OPE. The leading term is

different in the regions α < 1/2 and α > 1/2. For α < 1/2, we recover the first

equation of (2.3.1), with (2.3.15). For α > 1/2, taking into account the conditions

on the spin, the power law is (iz̄)1−α, and the coefficient is identified with a multiple

of the one-particle form factor of the field mσα,α−1. The proportionality constant

can be evaluated using (2.1.18), and this again only involves verifying the recursion

relation (2.3.22). The resulting leading OPE is in agreement with the first equation

of (2.3.4) in the range 1/2 < α < 1. The case α = 1/2 simply involves the two terms

calculated, again in agreement with (2.3.4).

Third, in a similar way, we may verify agreement of the form factor (2.3.20) with

the second relation of (2.3.4) by considering the ranges α < −1 and −1 < α < 0,

and by using similar arguments as those above. For the range α < −1, the mass

term of the second relation of (2.3.4) leads to the equation

〈vac|σα,α+1(0)|θ〉− = cα
eiπα/2

Γ(1 + α)
mα2+α+1/2eθ(−α−1/2). (2.3.24)

Again, comparing with (2.3.20), this leads to the recursion relation (2.3.22), hence

is satisfied by (2.1.18). Likewise, the relations (2.3.5) can be verified along entirely

similar lines.

An alternative way of deriving a recursion relation for the constant cα is to notice

that multiple applications of the Fermi fields can lead back to the family of primary

twist fields σα. By rearranging (2.3.6) we have that

σα+1(0) ∼ i(−iz)−αT [Ψ†R(x, y)σα,α+1(0)] (2.3.25)

as z → 0 (for α < 0). The vacuum expectation value of σα+1(0) can be calculated

from this relation in the same way as the one particle form factors were calculated
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in subsection 2.3.2. Firstly (2.1.10) is inserted between the fields to give

〈vac|Ψ†R(x, y)σα,α+1(0)|vac〉 =

∫
dθ 〈vac|Ψ†R(x, y)|θ〉 +

+ 〈θ|σα,α+1(0)|vac〉

=
√
m

∫
dθ eθ/2e−yEθ+ixpθ〈vac|σα,α+1(0)|θ + iπ〉−

=− icαmα2+α+1 e−iπα/2

Γ(1 + α)

∫
dθ e−αθ−yEθ+ixpθ . (2.3.26)

Doing as before, we set y = 0 and shift the integration contour, θ 7→ θ − iπ/2. We

then take the small x expansion to obtain:

〈vac|Ψ†R(x, 0)σα,α+1(0)|vac〉 =− icαmα2+α+1 1

Γ(1 + α)

∫
dθ e−αθ+xEθ

∼− icαmα2+α+1 Γ(−α)

Γ(1 + α)

(
2

−mx

)−α
, (2.3.27)

where on the second line we assumed α < 0. Hence (2.3.25) gives

〈vac|σα+1(0)|vac〉 = cα+1m
(α+1)2

= cαm
α2+2α+1 Γ(−α)

Γ(α + 1)
(2.3.28)

which gives again the recursion relation (2.3.22).

Finally, it is worth mentioning that the matrix elements 〈vac|σα(0)Ψ†R,L(x)|θ〉ε
and 〈vac|σα(0)ΨR,L(x)|θ〉ε can be evaluated by similar methods, but without the

need for using crossing symmetry. The result is in agreement with the exchange

relations: for instance, for x < 0, the same function of x and θ is obtained as for the

matrix elements 〈vac|Ψ†R,L(x)σα(0)|θ〉ε and 〈vac|ΨR,L(x)σα(0)|θ〉ε respectively.



Chapter 3

Correlation Functions of Twist

Fields

Our approach to deriving the differential equations satisfied by the twist field two

point function takes inspiration from [33] where two non-interacting copies of Ising

field theory are considered. Since the two copies are identical there is invariance

under rotations between them. This extra continuous symmetry leads to Ward

identities which allow differential equations for the two-point spin-spin function,

and other objects, to be written down. Here we apply the same approach to twist

fields in the Dirac theory.

3.1 The Double Model

Our double model consists of two copies of the Dirac theory defined in section 2.1 and

we denote the Fermi fields of each model as Ψ and Φ. The creation and annihilation

operators are D
(†)
± (θ) and E

(†)
± (θ) respectively and necessarily satisfy all the relations

of section 2.1 independently of each other. As the two copies do not interact they

satisfy the anti-commutation relations

{Ψ(†)
R,L(z),Φ

(†)
R,L(w)} = 0 and {D(†)

± (θ1), E
(†)
± (θ2)} = 0. (3.1.1)

There are also twist fields associated with the independent U(1) symmetries of

the two copies. Where relevant we use a superscript to denote the copy each field

37
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belongs to: σΨ
α and σΦ

α for example. The same notation will be used more generally

to denote which copy any other operator belongs to.

3.1.1 Conserved Charges

Both energy and momentum are conserved charges of the single-copy model. They

are associated to the dynamical invariance under space and time translation: the

equations of motion (2.1.1) possesses this invariance. In the double-copy model,

the energy and momentum conserved charges are the sums of the corresponding

charges of each copy, however, there are other conserved charges in the double-copy

model that can be constructed. As the two copies are non-interacting, the energy-

momentum operators for each are still independently conserved quantities, and can

be combined in various ways to give new conserved quantities. The two specific

conserved charges that are of interest to us are the differences of the momenta of

the single copies. We define P and P̄ via the following action (these conserved

charges are chosen to be anti-Hermitian):

[P,OΨOΦ] =i∂OΨOΦ − iOΨ∂OΦ

[P̄ ,OΨOΦ] =− i∂̄OΨOΦ + iOΨ∂̄OΦ. (3.1.2)

This holds for any local fields OΨ and OΦ interacting non-trivially with fields in copy

Ψ and Φ respectively. In particular, the actions on the creation and annihilation

operators are

[P,D±(θ)] = −imeθD±(θ), [P,E±(θ)] = imeθE±(θ),

[P̄ , D±(θ)] = ime−θD±(θ), [P̄ , E±(θ)] = −ime−θE±(θ)

from which it is simple to derive an explicit expression for P and P̄ through bilinears

in the creation and annihilation operators.

In the double-copy model, there is yet another conserved charge, Z, related to

the O(2) rotation symmetry amongst the copies. Written in terms of the Fermi

fields Ψ and Φ, the charge Z is (again, chosen to be anti-Hermitian):

Z =
1

4π

∫
dx(ΨRΦ†R + ΨLΦ†L + Ψ†RΦR + Ψ†LΦL). (3.1.3)
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The action of this charge on the creation and annihilation operators is

[Z,D†±(θ)] = −E†±(θ) [Z,E†±(θ)] = D†±(θ) (3.1.4)

and similarly for D±(θ) and E±(θ).

It is of course possible to obtain higher order conserved charges by commutations

amongst P , P̄ and Z. In the approach of [33], where the Ising model was studied, it

is assumed that P , P̄ and Z all preserve the quantum state where correlation func-

tions are evaluated, and the Ward identities corresponding to certain higher order

conserved charges are used to derive differential equations for spin-spin correlation

functions (it was also observed there that the higher order conserved charges form a

ŝl(2) algebra). However, it turns out that this is not necessary, as was noticed in [26].

Indeed, the Ward identities coming from the invariance under the Z-action alone are

sufficient to obtain non-trivial equations for correlation functions – we do not need

to assume that the dynamical space-time translation symmetry is a symmetry of

the quantum state under study. When the quantum state does possess this symme-

try, the space-time dependence of correlation functions simplifies, and the resulting

equations are the integrable differential equations describing the Ising correlation

functions. As we will see, the same structure occurs in the present case of the Dirac

theory, with additional conditions. It turns out that we need parity invariance in

order to further simplify the space-time dependence of correlation functions and in

the most general case considered rotation symmetry is also required. This is an

important remark, as it shows that the method may have applicability beyond the

cases where the quantum states are invariant under these space-time symmetries.

In the next section, we will derive the integrable differential equations from

the Ward identities associated to Z, and use the simpler space-time dependence of

correlation functions coming from translation, parity and rotation symmetries. In

appendix A the special case of 〈σα(x1, y1)σα(x2, y2)〉 is considered as it is possible to

write down the differential equations in the absence of these symmetries, however

we have not been successful in identifying a structure to these equations.

As was observed in [26] (in the generalised situation of a theory on the Poincaré
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disk), it is the relation

[P, [P̄ , Z]] = [P̄ , [P,Z]] = 4m2Z (3.1.5)

which provides the dependence on the mass in the differential equations. Relation

(3.1.5) corresponds essentially to the equations of motion of the theory, as expressed

using the charge Z. It can be derived from (3.1.2) and (3.1.3) using the equations

of motion (2.1.1). Relation (3.1.5) is the only one where the massive theory is

used: besides it, we only need the action of Z on products of twist fields and their

first derivatives in order to find the differential equations, and this action, as is

verified below, is solely a consequence of CFT calculations (i.e. calculations using

the massless limit of the theory).

3.1.2 The Action of Z

In order to determine the action of Z on products of twist fields we look to the

massless CFT description our model given in section 2.2. The OPEs (2.2.19) and

(2.2.20) combined with the integral expression for Z, (3.1.3), allow us to accomplish

this task.

Firstly we note that in the CFT Z decomposes into a sum of left and right

moving conserved charges, Z = ZR +ZL. We can then evaluate the commutators of

the local charges ZR and ZL with local fields as contour integrals:

[ZR,O(0)] 7→ 1

2π

∮
ds
(

ΨR(x, y)Φ†R(x, y) + Ψ†R(x, y)ΦR(x, y)
)
O(0)

[ZL,O(0)] 7→ − 1

2π

∮
ds
(

ΨL(x, y)Φ†L(x, y) + Ψ†L(x, y)ΦL(x, y)
)
O(0)

where we have set −iz 7→ s and iz̄ 7→ s respectively. By replacing O with a

product of twist fields of the form σΨ
α σ

Φ
α and using the OPEs (2.2.19) and (2.2.20),

as applicable, we can then evaluate these integrals using the residue theorem.

This method will only provide useful results when the pair of twist fields are at

the same space-time point, otherwise the result of the action of Z will be non-local

and the Ward identities arising from this will not be useful. As a result in the rest of

this section all the fields are evaluated at the same point, (0, 0) for instance, and we

neglect to write this location with the fields to make our equations easier to read.
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Putting all this together we see that the action of Z on pairs of twist fields

involving no derivatives is given by:

[Z, σΨ
α σ

Φ
α ] = 0 (3.1.6a)

[Z, σΨ
α σ

Φ
α−1] = i(σΨ

α−1,ασ
Φ
α,α−1 − σΨ

α,α−1σ
Φ
α−1,α) (3.1.6b)

[Z, σΨ
α σ

Φ
α+1] = i(σΨ

α+1,ασ
Φ
α,α+1 − σΨ

α,α+1σ
Φ
α+1,α) (3.1.6c)

[Z, σΨ
α+1,ασ

Φ
α,α+1] = i(σΨ

α σ
Φ
α+1 − σΨ

α+1σ
Φ
α ) (3.1.6d)

[Z, σΨ
α+1σ

Φ
α−1] =

1

α

(
(∂σΨ

α,α+1)σΦ
α,α−1 − σΨ

α,α+1(∂σΦ
α,α−1)+

(∂̄σΨ
α+1,α)σΦ

α−1,α − σΨ
α+1,α(∂̄σΦ

α−1,α)
)

(3.1.6e)

[Z, σΨ
α−1σ

Φ
α+1] =

1

α

(
σΨ
α,α−1(∂σΦ

α,α+1)− (∂σΨ
α,α−1)σΦ

α,α+1+

σΨ
α−1,α(∂̄σΦ

α+1,α)− (∂̄σΨ
α−1,α)σΦ

α+1,α

)
. (3.1.6f)

It should be noted that such relations can only be obtained when the twist fields in-

volved have the same monodromy factor, modulo 2π, otherwise the residue theorem

cannot be applied.

Similarly we find the action of Z on products of twist fields involving one deriva-

tive to be:

[Z, (∂σΨ
α )σΦ

α ] = α(σΨ
α−1,ασ

Φ
α+1,α − σΨ

α+1,ασ
Φ
α−1,α) (3.1.7a)

[Z, (∂̄σΨ
α )σΦ

α ] = α(σΨ
α,α−1σ

Φ
α,α+1 − σΨ

α,α+1σ
Φ
α,α−1) (3.1.7b)

[Z, (∂σΨ
α )σΦ

α+1] = i((∂σΨ
α,α+1)σΦ

α+1,α − σΨ
α+1,α(∂σΦ

α,α+1)) (3.1.7c)

[Z, (∂̄σΨ
α )σΦ

α+1] = i(σΨ
α,α+1(∂̄σΦ

α+1,α)− (∂̄σΨ
α+1,α)σΦ

α,α+1) (3.1.7d)

[Z, (∂σΨ
α )σΦ

α−1] = i((∂σΨ
α,α−1)σΦ

α−1,α − σΨ
α−1,α(∂σΦ

α,α−1)) (3.1.7e)

[Z, (∂̄σΨ
α )σΦ

α−1] = i(σΨ
α,α−1(∂̄σΦ

α−1,α)− (∂̄σΨ
α−1,α)σΦ

α,α−1) (3.1.7f)

[Z, (∂σΨ
α,α+1)σΦ

α+1,α] = i(σΨ
α+1(∂σΦ

α )− (∂σΨ
α )σΦ

α+1) (3.1.7g)

[Z, (∂σΨ
α+1,α)σΦ

α,α+1] = i(σΨ
α (∂σΦ

α+1)− (∂σΨ
α+1)σΦ

α ) (3.1.7h)

[Z, (∂̄σΨ
α,α+1)σΦ

α+1,α] = i((∂̄σΨ
α+1)σΦ

α − σΨ
α (∂̄σΦ

α+1)) (3.1.7i)

[Z, (∂̄σΨ
α+1,α)σΦ

α,α+1] = i((∂̄σΨ
α )σΦ

α+1 − σΨ
α+1(∂̄σΦ

α )). (3.1.7j)

The relations (3.1.6) and (3.1.7) were calculated in the CFT and we wish to

examine correlation functions in the massive Dirac theory, so we must be sure these
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relations also hold in this instance. To verify that these relations can be carried over

to the massive case we use the form factors presented in chapter 2 together with the

knowledge that Z|vac〉 = 0. Armed with this information we can place the vacuum

to the left and a multi-particle state to the right and evaluate both sides of each

relation. For example when verifying (3.1.6c) with two particles we may examine

〈vac|[Z, σΨ
α σ

Φ
α+1]|θΨ

1 θ
Φ
2 〉+− = 〈vac|i(σΨ

α+1,ασ
Φ
α,α+1 − σΨ

α,α+1σ
Φ
α+1,α)|θΨ

1 θ
Φ
2 〉+−. (3.1.8)

The left hand side can be evaluated using the action of Z on the creation operators

together with the form factors (2.1.16), while the right hand side is evaluated using

the form factors of section 2.3. These expressions are then found to be equal using

the recursion relation for cα (2.3.22).

This operation has been performed on all of the relations (3.1.6) and (3.1.7) with

up to four particles in the state and agreement is found for each. As this agreement

is very non-trivial it provides strong evidence that these relations do indeed hold for

all matrix elements in the massive theory.

The origins of equations (3.1.6) are not obvious without reference to the CFT.

Equation (3.1.6a), however, is easy to verify, and using this (3.1.6b) and (3.1.6c)

can be ‘derived’ from the relations of the type

Ψ†RΨLσα 7→ σα+1 and ΨRΨ†Lσα 7→ σα−1

(see (2.3.3) and (2.3.6) for the exact relations). The other equations do not appear

to have such simple origins but have all been verified by the method described above.

We also note that the left-hand sides of (3.1.6b) and (3.1.6c) are the same up to a

shift in indices and a relabelling of the fields and that the right-hand sides are also

consistent with these operations, indicating that our relations are consistent.

Finally, the action of Z on fields involving higher numbers of derivatives are not

in general expected, in the massive theory, to be in agreement with calculations from

CFT. However, the only relations required at present can be obtained by using those

above along with the equation of motion of the charge Z (3.1.5). Indeed, we only

need the action of Z on double-derivative fields of the form [P, [P̄ ,OΨOΦ]], which
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we can evaluate using

[Z, [P, [P̄ ,OΨOΦ]]]

= [[P, [P̄ , Z]],OΨOΦ]+[P̄ , [Z, [P,OΨOΦ]]]+[P, [Z, [P̄ ,OΨOΦ]]]−[P, [P̄ , [Z,OΨOΦ]]]

= 4m2[Z,OΨOΦ] + [P̄ , [Z, [P,OΨOΦ]]] + [P, [Z, [P̄ ,OΨOΦ]]]− [P, [P̄ , [Z,OΨOΦ]]]

(3.1.9)

This is how the mass dependence will appear in the equations for correlation func-

tions.

3.2 The Correlation Functions

The aim of this section is to derive differential equations for the two point correlation

function of twist fields. This is accomplished using the double model described in

section 3.1 via the action of the conserved charges P , P̄ and Z. We also endeavour

to keep the state where the correlation function is evaluated as general as possible.

3.2.1 Correlation Functions of Interest

Firstly, the states we consider must be invariant under the action of Z. The first

general form of a state we consider here is the mixed state where the average of an

operator A is given by
Tr
(
eVA

)
Tr (eV )

, (3.2.1)

where V is a bi-linear in the creation and annihilation operators, or equivalently

the Dirac operators. In the double copy model V Ψ + V Φ is invariant under O(2)

rotations between the copies and hence

Tr
(
eV

Ψ+V Φ
A
)

Tr
(
eV Ψ+V Φ

) (3.2.2)

vanishes when A is of the form [Z, · · · ], which is the form of the Ward identities

associated to Z. This type of state includes the finite temperature state V = −H/T ,

at temperature T as well as the zero temperature limit, that is to say the vacuum

state.
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Averages of quantum states can also be given by

〈B′|A|B〉 (3.2.3)

where |B〉 = eV |vac〉 and |B′〉 = eV
′ |vac〉 are boundary states with V and V ′ again

being bi-linear in the creation and annihilation operators. As before

〈(B′)Ψ(B′)Φ|A|BΨBΦ〉 (3.2.4)

vanishes when A = [Z, · · · ]. The integrable boundary states [37] of the Dirac theory

have this form.

As the action of Z on local fields is also local the exact space where the quan-

tisation holds is irrelevant and we may choose an alternate Hilbert space quantised

on a finite line segment, the circle of length L for example, while still considering

the states mentioned above.

In the rest of this section the notation 〈A〉 is used to represent (3.2.1), (3.2.2),

(3.2.3) or (3.2.4), it being clear when we are referring to the single or double models.

3.2.2 Symmetries

Before discussing the symmetries of correlation functions we first discuss some ob-

servations arising from the definitions of the twist fields.

Firstly we observe that correlators of the form

〈σα,α±1(x, y)σβ,β(0)〉, 〈σα,α+1(x, y)σα,α+1(0)〉 and 〈σα,α−1(x, y)σα,α−1(0)〉

vanish as a consequence of U(1) charge conservation.

Secondly, since primary twist fields commute we see that

〈σα(x1, y1)σβ(x2, y2)〉 = 〈σβ(x2, y2)σα(x1, y1)〉. (3.2.5)

To obtain a similar relation for descendent twist fields we must look to the braiding

relations (2.1.13), and recall that by definition

σα+1,α(x, y) = lim
z→w

(−i(z − w))−αΨ†R(x′, y′)σα(x, y)

σα,α+1(x, y) = lim
z→w

(i(z̄ − w̄))−αΨL(x′, y′)σα(x, y) (3.2.6)
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where z = − i
2
(x′+ iy′) and w = − i

2
(x+ iy) are appropriately time ordered (y′ > y).

The factors (−i(z − w))−α and (i(z̄ − w̄))−α are taken on the principal branch,

and so are continuous exactly where Ψ†R(x′, y′)σα(x, y) and ΨL(x′, y′)σα(x, y) are

continuous. Using these definitions and (2.1.13) we obtain

〈σβ,β+1(x2, y2)σα+1,α(x1, y1)〉 = −e2πiβ if x1 > x2

−e2πiα if x1 < x2

 〈σα+1,α(x1, y1)σβ,β+1(x2, y2)〉. (3.2.7)

We now discuss how space-time symmetries affect the form of our correlation

functions. Space and time translation invariance reduces the space-time dependence

of the correlators to their relative positions, effectively allowing us to place one of

the twist fields at the origin.

Space and time parity symmetry allow further simplification of certain correlation

functions. In two dimensions these symmetries can be combined to give invariance

under a rotation of π. Since this symmetry is Euclidean it cannot be expressed

solely through the action of a unitary operator but is instead a relation connecting

vacuum expectation values. This symmetry says that there is a unitary operator R

which performs a parity transformation on local fields such that

〈vac|O1(x1, y1) · · · On(xn, yn)|vac〉 = 〈vac|ROn(xn, yn) · · · O1(x1, y1)R†|vac〉 (3.2.8)

whenever the local fields Oj(xj, yj) are time-ordered: y1 > . . . > yn. R does not

act trivially on the vacuum, rather it transforms an in-vacuum to an out-vacuum

and vice-versa but it does act locally on local fields, multiplying time and space

coordinates by −1 so the correlation function on the right hand side is still time

ordered. Relation (3.2.8) originates from the Euclidean path integral picture which

is only connected to the operational picture when the operators are time ordered.

This relation represents the invariance of Euclidean correlation functions under a

rotation of the Euclidean plane by π.

The operator R can of course be seen as a shift of rapidities by iπ but in the

present circumstances there is a better way of representing it. We may view R as a

combination of two symmetries, space parity S and time parity T :

R = TS. (3.2.9)
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The space parity operator S is linear and satisfies

SΨR,L(x, y)S = ±iΨL,R(−x, y), S2 = 1, (3.2.10)

while the time parity operator T is also linear and satisfies

TΨR,L(x, y)T = ΨL,R(x,−y), T 2 = 1. (3.2.11)

Note that T is not an anti-linear operator because it inverts the Euclidean time

instead of the real time and so is akin to a parity operator. These symmetries

clearly preserve the equations of motion (2.1.1) and so are dynamical symmetries of

the model. From the relations above we see that the actions of S and T on D±(θ)

are

SD±(θ)S = ∓D±(−θ) and TD±(θ)T = −iD†∓(−θ) (3.2.12)

and the combined parity transformation has the action

TSΨR,L(x, y)ST = ±iΨR,L(−x,−y), TSD±(θ)ST = ±iD†∓(θ), (3.2.13)

with the following simple operator representation:

TS = exp

[
iπ

2

∫
dθ (D†−(θ)D†+(θ) +D+(θ)D−(θ))

]
. (3.2.14)

From (3.2.13) we see that creation operators are transformed into annihilation

operators of opposite charge and vice-versa. When combined with (3.2.8) the invari-

ance property can be extended to correlation functions involving arbitrary states.

Again with time ordering y1 > . . . > yn we have

〈B′|O1(x1, y1) · · · On(xn, yn)|B〉 = 〈B̄|ROn(xn, yn) · · · O1(x1, y1)R†|B̄′〉 (3.2.15)

where |B̄〉 and |B̄′〉 are the states obtained from |B〉 and |B′〉, respectively, by

inverting the charges of all particles, with extra factors −i and +i for each particle

if the new charge is − or + respectively. Thus a rotation by π in the Euclidean

picture takes particles coming from the past and rotates them to come from the

future, which can then be interpreted as going towards the future if there charge is

conjugated (a particle moving forward in time is the same as its anti-particle moving
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backward in time). Parity invariance can be generalised to mixed states using the

trace definition and (3.2.15) on the summand in the trace.

Next we want to examine how twist fields transform under the parity symmetry

R. Since σα is spinless, and since σα+1,α and σα,α+1 have opposite spins, it is clear

that σα(x, y)σα+1(0) and σα+1,α(x, y)σα,α+1(0) transform under rotation by rotating

the coordinates, without phase factors associated to the spin. There is an extra

subtlety, however, relating to the fact that we only ask for invariance of the state

under rotation by the unique angle π. As a consequence, the correlation functions

may depend on the direction of the cut emanating from the twist field, which we

have chosen to be towards the right according to (2.1.13). After a π rotation, the

cut goes in the opposite direction. This can be represented by the presence of an

extra U(1) transformation operator, so that we have

Rσα(x, y)R† = σα(−x,−y)e2πiαQ (3.2.16)

where Q is the Hermitian U(1) charge. The operator e2πiαQ is effectively a branch cut

along the whole x-axis, cancelling out the twist fields cut to the right and reinstating

the cut to the left. From (3.2.6), and remembering that relation (3.2.8) inverts the

positions of operators, this leads to

Rσα+1,α(x, y)R† = e−iπ(α+1/2)σα+1,α(−x,−y)e2πiαQ (3.2.17)

Rσα,α+1(x, y)R† = eiπ(α+1/2)σα,α+1(−x,−y)e2πiαQ. (3.2.18)

Hence, a parity transformation gives us, using translation invariance of the state,

〈σα+1,α(x, y)σα,α+1(0)〉 = −〈σα,α+1(0)e2πiαQσα+1,α(−x,−y)e2πiαQ〉c

= −e−2iπα〈σα,α+1(x, y)σα+1,α(0, 0)e4πiαQ〉c

where the superscript c means that the state is as in the right-hand side of (3.2.15)

(or its generalisation to mixed states). Likewise,

G(x, y) = 〈σα(x, y)σα+1(0)〉

= 〈σα+1(0)σα(−x,−y)e4πiαQ〉c

= 〈σα+1(x, y)σα(0)e4πiαQ〉c. (3.2.19)
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Hence, parity invariance for these twist field correlation functions requires the fol-

lowing condition on the state:

〈· · · e4πiαQ〉c = 〈· · ·〉. (3.2.20)

This condition is assumed to hold for all the states below.

This parity symmetry is enough to simplify correlation functions of certain pri-

mary twist fields and those involving certain descendents, as discussed below, but

in order to derive equations for more general correlation functions we will also re-

quire our states to be rotation invariant. This will allow the simplification of general

correlators of descendent twist fields.

From the definitions given in section 2.3 the spin properties of the descendent

twist fields are evident. Imposing rotation invariance on the states considered allows

us to use this knowledge to write

〈σα+1,α(w1)σβ,β+1(w2)〉 = (i(w1 − w2))β−αfβ,β+1
α+1,α(|w1 − w2|). (3.2.21)

The choice of factor (i(w1 − w2))β−α is in some sense arbitrary, but defined on the

principal branch, it is convenient as, from (3.2.7), we can also write

〈σβ,β+1(w2)σα+1,α(w1)〉 = −e2πiζ(i(w1 − w2))β−αfβ,β+1
α+1,α(|w1 − w2|) (3.2.22)

where the same function fβ,β+1
α+1,α(|w1 − w2|) is involved and ζ = α if x(w1) < x(w2)

or ζ = β if x(w1) > x(w2). This choice will not influence any future calculations as

we will always consider products of the form

〈σα,α+1(x, y)σβ+1,β(0, 0)〉〈σα+1,α(x, y)σβ,β+1(0, 0)〉, (3.2.23)

so the same constants will occur everywhere.

Now setting z = reiθ and z̄ = re−iθ it is possible to factorise the r and θ

dependence of these correlation functions:

〈σα,α+1(x, y)σβ+1,β(0, 0)〉 = peiθ(α−β)f1(r)

〈σα+1,α(x, y)σβ,β+1(0, 0)〉 = qeiθ(β−α)f2(r) (3.2.24)

where p and q are phases, as in (3.2.22), coming from (2.1.13), and the functions f1

and f2 will be discussed in section 3.2.5.



3.2. The Correlation Functions 49

Following the same arguments we also see that when rotational invariance is

imposed there is no θ dependence in correlation functions of primary twist fields, as

they are spin-less, so in this case

〈σα(x, y)σβ(0, 0)〉 = F (r). (3.2.25)

3.2.3 Ward Identities

We are now ready to write down the Ward identities coming from the actions of P ,

P̄ and Z and simplify the resulting equations. The Ward identities of interest here

are:

〈[Z, σΨ
α,α(z)σΦ

α+1,α+1(z)σΨ
β+1,β(0)σΦ

β,β+1(0)]〉 = 0 (3.2.26a)

〈[Z, [P, σΨ
α,α(z)σΦ

α+1,α+1(z)]σΨ
β+1,β(0)σΦ

β,β+1(0)]〉 = 0 (3.2.26b)

〈[Z, [P̄ , σΨ
α,α(z)σΦ

α+1,α+1(z)]σΨ
β+1,β(0)σΦ

β,β+1(0)]〉 = 0 (3.2.26c)

〈[Z, [P, [P̄ , σΨ
α,α(z)σΦ

α+1,α+1(z)]]σΨ
β+1,β(0)σΦ

β,β+1(0)]〉 = 0 (3.2.26d)

〈[Z, [P, σΨ
α,α(z)σΦ

α+1,α+1(z)][P̄ , σΨ
β+1,β(0)σΦ

β,β+1(0)]]〉 = 0. (3.2.26e)

At this point it is useful to introduce the notation

F γ,δ
α,β(x, y) = 〈σα,β(x, y)σγ,δ(0, 0)〉 (3.2.27)

to make the functional equations resulting from the Ward identities (3.2.26) easier

to write. Applying the actions of P , P̄ and Z we see that these equations become,

respectively:

F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z)− F β+1,β+1
α,α (z)F β,β

α+1,α+1(z) + F β,β
α,α (z)F β+1,β+1

α+1,α+1 (z) = 0 (3.2.28a)

∂F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z)− F β+1,β
α,α+1 (z)∂F β,β+1

α+1,α (z)+

∂F β+1,β+1
α,α (z)F β,β

α+1,α+1(z)− F β+1,β+1
α,α (z)∂F β,β

α+1,α+1(z) = 0 (3.2.28b)

∂̄F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z)− F β+1,β
α,α+1 (z)∂̄F β,β+1

α+1,α (z)

− ∂̄F β+1,β+1
α,α (z)F β,β

α+1,α+1(z) + F β+1,β+1
α,α (z)∂̄F β,β

α+1,α+1(z) = 0 (3.2.28c)
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∂∂̄F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z)− ∂F β+1,β
α,α+1 (z)∂̄F β,β+1

α+1,α (z)− ∂̄F β+1,β
α,α+1 (z)∂F β,β+1

α+1,α (z)

+ F β+1,β
α,α+1 (z)∂∂̄F β,β+1

α+1,α (z)− 4m2F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z) + ∂∂̄F β+1,β+1
α,α (z)F β,β

α+1,α+1(z)

−∂F β+1,β+1
α,α (z)∂̄F β,β

α+1,α+1(z)−∂̄F β+1,β+1
α,α (z)∂F β,β

α+1,α+1(z)+F β+1,β+1
α,α (z)∂∂̄F β,β

α+1,α+1(z)

− ∂∂̄F β,β
α,α (z)F β+1,β+1

α+1,α+1 (z) + ∂F β,β
α,α (z)∂̄F β+1,β+1

α+1,α+1 (z) + ∂̄F β,β
α,α (z)∂F β+1,β+1

α+1,α+1 (z)

− F β,β
α,α (z)∂∂̄F β+1,β+1

α+1,α+1 (z) = 0 (3.2.28d)

∂∂̄F β+1,β
α,α+1 (z)F β,β+1

α+1,α (z)− ∂F β+1,β
α,α+1 (z)∂̄F β,β+1

α+1,α (z)− ∂̄F β+1,β
α,α+1 (z)∂F β,β+1

α+1,α (z)

+ F β+1,β
α,α+1 (z)∂∂̄F β,β+1

α+1,α (z) + ∂∂̄F β,β
α,α (z)F β+1,β+1

α+1,α+1 (z)− ∂F β,β
α,α (z)∂̄F β+1,β+1

α+1,α+1 (z)

− ∂̄F β,β
α,α (z)∂F β+1,β+1

α+1,α+1 (z) + F β,β
α,α (z)∂∂̄F β+1,β+1

α+1,α+1 (z) + ∂∂̄F β+1,β+1
α,α (z)F β,β

α+1,α+1(z)

− ∂F β+1,β+1
α,α (z)∂̄F β,β

α+1,α+1(z)− ∂̄F β+1,β+1
α,α (z)∂F β,β

α+1,α+1(z)

+ F β+1,β+1
α,α (z)∂∂̄F β,β

α+1,α+1(z) = 0. (3.2.28e)

We now have a choice to make. By setting α = β we can proceed to calculate

differential equations for specific correlation functions of primary and descendent

twist fields requiring only translation and parity symmetric states. Alternatively

we can consider states with rotation symmetry and find equations for more general

correlation functions of primary twist fields. The former case will be considered

first.

3.2.4 Correlation Functions Without Rotational Symmetry

To make progress in the absence of rotational symmetry we must set α = β. This

reduces the correlation functions we must consider to:

F (x, y) = 〈σα(x, y)σα(0)〉,

G(x, y) = 〈σα(x, y)σα+1(0)〉,

H(x, y) = 〈σα+1,α(x, y)σα,α+1(0)〉. (3.2.29)

Where the dependence on α is implicit, in order not to clutter the equations. In the

same spirit, we will also use the notation

F̃ (x, y) = 〈σα+1(x, y)σα+1(0))〉. (3.2.30)
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Parity symmetry, as discussed in section 3.2.2, tells us that

F (−x,−y) = F (x, y), F̃ (−x,−y) = F̃ (x, y),

G(−x,−y) = G(x, y), H(−x,−y) = H(x, y). (3.2.31)

The commutation properties of the twist fields also simplify the Ward identities,

they tell us that

〈σα+1(x, y)σα(0)〉 = G(−x,−y), 〈σα,α+1(x, y)σα+1,α(0)〉 = −e2πiαH(−x,−y).

(3.2.32)

In order to further ease our notation it is useful to introduce the operator

D(f, g) :=
1

2

(
f∂∂̄g + g∂∂̄f − ∂f∂̄g − ∂g∂̄f

)
(3.2.33)

and also write D(f) := D(f, f), noting that

D(ef ) = e2f∂∂̄f. (3.2.34)

We can rewrite equations (3.2.28) in terms of our new functions (3.2.29):

e2πiαH2 +G2 − FF̃ = 0 (3.2.35a)

F∂F̃ − (∂F )F̃ = 0 (3.2.35b)

(∂̄F )F̃ − F ∂̄F̃ = 0 (3.2.35c)

e2πiα
(
D(H)− 2m2H2

)
−D(G) +D(F, F̃ ) = 0 (3.2.35d)

e2πiαD(H)−D(G)−D(F, F̃ ) = 0. (3.2.35e)

The above equations are similar in structure to those of [33], for the Ising spin-spin

correlator but here we have four functions to solve for. We begin this process by

noting that (3.2.35b) and (3.2.35c) only involve F and F̃ and so these relations can

be solved, giving

F̃ = k2F (3.2.36)

where k is the constant of integration. This relation is somewhat surprising as it

tells us the two correlation functions behave in the same way, at both short and

long distances, despite the fields having different dimensions. Using the twist field’s

form factors k can be calculated exactly. Inserting (2.1.10) between the fields in
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the correlation functions allows us to compare terms involving equal numbers of

particles. Clearly the zero particle terms differ by the constant k2 where

k =
cα+1

cα
m2α+1 (3.2.37)

and it is a simple exercise to show that the same is true for all subsequent terms.

We do not have yet a convincing intuitive explanation of the relation (3.2.36); it

simply follows from our analytic-continuation definition of descendent twist fields.

Our next step is to change variables, defining the functions χ and ϕ by

kF +G = eχ cosh(ϕ)

kF −G = eχ sinh(ϕ) (3.2.38)

noting that (3.2.35a) becomes

e2πiαH2 =
1

2
e2χ sinh(2ϕ). (3.2.39)

Using this relation to eliminate H we find that (3.2.35d) and (3.2.35e) become

sinh(2ϕ)
(
∂∂̄χ+ ∂ϕ∂̄ϕ

)
+ cosh(2ϕ)

(
∂∂̄ϕ− coth(2ϕ)∂ϕ∂̄ϕ

)
−m2 sinh(2ϕ) = 0 (3.2.40a)

sinh(2ϕ)
(
∂∂̄χ+ 2∂ϕ∂̄ϕ− ∂∂̄ϕ

)
+ cosh(2ϕ)

(
∂∂̄ϕ− 2 coth(2ϕ)∂ϕ∂̄ϕ− ∂∂̄χ

)
= 0. (3.2.40b)

We next use (3.2.40a) to eliminate χ from (3.2.40b), leaving

∂∂̄ϕ− (1 + coth(2ϕ))∂ϕ∂̄ϕ+m2 sinh2(2ϕ)(1− coth(2ϕ)) = 0. (3.2.41)

In order to retrieve (1.1.22) from (3.2.41) the ∂ϕ∂̄ϕ term must be eliminated.

This is done using by noting that

f ′′(ϕ)

f ′(ϕ)
= 1 + coth(2ϕ) (3.2.42)

admits the solution

f(ϕ) = iπ + log

(√
1− e4ϕ − 1√
1− e4ϕ + 1

)
≡ 2ψ. (3.2.43)
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It is then straightforward to show that ψ satisfies

∂∂̄ψ =
m2

2
sinh(2ψ), (3.2.44)

giving (1.1.22) when α = β. To obtain (1.1.21) we set

eΣα = 2kF (x, y) = eχ(cosh(ϕ) + sinh(ϕ)) (3.2.45)

so that

∂∂̄Σα = ∂∂̄χ+ ∂∂̄ϕ. (3.2.46)

Using (3.2.40a) and (3.2.41) it is possible to show that

∂∂̄Σα =
m2

2
(1− cosh(2ψ)) (3.2.47)

and so we have derived the known formula for the correlation functions (up to a

constant factor which can be absorbed into the definitions of either the twist fields

or the co-ordinates z and z̄).

Following this method we notice that G(x, y) the solution of a differential equa-

tion involving the same function ψ. Setting

eΣ′α = 2G(x, y) = eχ(cosh(ϕ)− sinh(ϕ)) (3.2.48)

gives

∂∂̄Σ′α =− 2∂ϕ∂̄ϕ(1 + coth(2ϕ))

=
2 tanh2(ψ)

cosh(2ψ)− 1
∂ψ∂̄ψ. (3.2.49)

It is also worth noting that H(x, y) can be written, algebraically, in terms of Σα and

Σ′α, via (3.2.35a), and so it is also given by ψ.

3.2.5 Correlation Functions With Rotational Symmetry

By insisting that the states we consider have rotational invariance we may keep α

and β arbitrary in (3.2.28) and use (3.2.24) to simplify these equations. As we are

imposing rotational invariance it is sensible to change coordinates, using r and θ

defined by

z = reiθ and z̄ = re−iθ. (3.2.50)
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After this change of coordinates we can use (3.2.28b) and (3.2.28c) together with

(3.2.25) to find f1 = f2, up to an irrelevant constant, in (3.2.24) thus we let

f(r) := f1(r) = f2(r). (3.2.51)

As we have this equality but no relation between F β+1,β+1
α,α and F β,β

α+1,α+1 we must

employ a different approach to that of subsection 3.2.4, eliminating F β+1,β+1
α,α and

F β,β
α+1,α+1 instead of F β+1,β

α,α+1 and F β,β+1
α+1,α . In doing this it will be useful to reduce our

notation by defining the differential operator

Dr = ∂2
r +

1

r
∂r. (3.2.52)

and the function

F (r) := F β,β
α,α (r). (3.2.53)

Note that the α and β dependence of F is assumed, so F 6= F β+1,β+1
α,α and F 6=

F β,β
α+1,α+1.

Now using (3.2.28a,3.2.28b,3.2.28c) to eliminate F β+1,β+1
α,α and F β,β

α+1,α+1 from

(3.2.28d) and (3.2.28e) leaves

− pqfDrf + pq
(α− β)2

r2
f 2 + pqm2f 2 + (∂rF )2

− 1

F 2 − pqf 2
( F 2(∂rF )2 − 2pqFf∂rF∂rf

+ (pq)2f 2(∂rf)2 − (pq)2(α− β)2f 4/r2 ) = 0. (3.2.54a)

and similarly (3.2.28e) becomes

− pqfDrf + pq
(α− β)2

r2
f 2 + FDrF

− 1

F 2 − pqf 2
( F 2(∂rF )2 − 2pqFf∂rF∂rf

+ (pq)2f 2(∂rf)2 − (pq)2(α− β)2f 4/r2 ) = 0. (3.2.54b)

As in the case for α = β further progress is made by setting

F +
√
pqf = eχ cosh(ϕ) F −√pqf = eχ sinh(ϕ) (3.2.55)
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which reduces (3.2.54a) and (3.2.54b), respectively, to:

(Drχ−Drϕ)(sinh(2ϕ)− cosh(2ϕ))

+ (∂rϕ)2(2 sinh(2ϕ)− (cosh2 ϕ+ sinh2 ϕ)2

coshϕ sinhϕ
)

+m2(cosh(2ϕ)− sinh(2ϕ))

+
(α− β)2

r2
(cosh(2ϕ)− sinh(2ϕ))(1 +

1

4
(cothϕ− 1)(1− tanhϕ)) = 0 (3.2.56a)

sinh(2ϕ)Drχ+ cosh(2ϕ)Drϕ

+ (∂rϕ)2(sinh(2ϕ)− cosh(2ϕ) coth(2ϕ))

+
(α− β)2

4r2
(cosh(2ϕ)− sinh(2ϕ))(coth(2ϕ) + 1) = 0. (3.2.56b)

Again we eliminate χ from these equations, leaving

Drϕ− (∂rϕ)2(1 + coth(2ϕ))−m2 sinh(2ϕ)(sinh(2ϕ)− cosh(2ϕ))

+
(α− β)2

4r2
(1 + coth(2ϕ)) = 0 (3.2.57)

which is to become (1.1.22). In analogy with the previous case this is accomplished

by noticing that
h′′

h′
= −1− coth(2ϕ) (3.2.58)

is solved by

2ψ = h(ϕ) = ln

(√
1− e4ϕ − 1√
1− e4ϕ + 1

)
(3.2.59)

and it is then easy to show that

Drψ =
m2

2
sinh(2ψ) +

(α− β)2

r2
tanh(ψ)

(
1− tanh2(ψ)

)
. (3.2.60)

It is also straight forward to show that by setting

eΣ = 2F (r) = eχ+ϕ (3.2.61)

we find

DrΣ = Drχ+Drϕ

=
m2

2
(1− cosh(2ψ)) (3.2.62)
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completing our derivation of known results. As with the previous derivation we can

also write a new result. By setting

eΣ′ = 2
√
pqf(r) = eχ−ϕ (3.2.63)

we find that f is also given by the same function, ψ, via the equation

DrΣ′ =
(∂rψ)2

sinh2 ψ
−m2 − (α− β)2

r2 cosh2 ψ
. (3.2.64)

In the present situation, however, we cannot write down any equations for the

functions F β+1,β+1
α,α and F β,β

α+1,α+1 as these functions always occur as a product and

we have no equation relating the two.

3.2.6 Verification of Results

It should be noted that the differential equations for the correlation functions differ

from those presented in [7] where, using a method of Fredholm determinants, it is

shown that

DrΣ =
m2

2
(1− cosh(2ψ))

Drψ =
m2

2
sinh(2ψ) +

4(α− β)2

r2
tanhψ(1− tanh2 ψ) (3.2.65)

with Σ as in (3.2.61). In order to be sure that our equations are correct we undertake

numerical and analytical approximations of the correlation function

〈σα(x, y)σβ(0, 0)〉 (3.2.66)

by examining its form factor expansion at large r and investigating how well the

differential equations (3.2.60) and (3.2.65) are satisfied. Strong evidence will be

found using up to only two particles in this expansion.

To begin we insert the resolution of the identity (2.1.10) in between the fields of
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(3.2.66) and then expand the two particle term:

〈σα(x, y)σβ(0, 0)〉 = 〈vac|σα(x, y)|vac〉〈vac|σβ(0, 0)|vac〉

+

∫
dθ1dθ2〈vac|σα(x, y)|θ1, θ2〉 −+

+− 〈θ2, θ1|σβ(0, 0)|vac〉+ · · ·

= 〈vac|σα(x, y)|vac〉〈vac|σβ(0)|vac〉

+

∫
dθ1dθ2e

y(Eθ1+Eθ2 )−ix(pθ1+pθ2 )

× ( 〈vac|σα(0, 0)|θ1, θ2〉+−〈vac|σβ(0, 0)|θ2 + iπ, θ1 + iπ〉+− ) + · · ·

= cαcβm
α2+β2

−cαcβm
α2+β2

sin(πα) sin(πβ)

4π2

×

(∫
dθ1dθ2e

my(Eθ1+Eθ2 )−ix(pθ1+pθ2 ) e
(θ1−θ2)(α−β)

cosh2( θ1−θ2
2

)

)
+ · · · (3.2.67)

Since the first term is constant it is the second term which will eventually provide

the leading large distance behaviour of ψ. It is useful to use boost invariance to

replace the (x, y) dependence in this term with r dependence, so that the second

term in (3.2.67) becomes

− cαcβm
α2+β2

sin(πα) sin(πβ)

4π2

∫
dθ1dθ2e

−r(Eθ1+Eθ2 ) e
(θ1−θ2)(α−β)

cosh2( θ1−θ2
2

)
. (3.2.68)

This expression can be further simplified using a change of variables inside the

integral. Setting

φ1 =
θ1 + θ2

2
and φ2 =

θ1 − θ2

2
(3.2.69)

we see that the integral in (3.2.68) becomes

1

2

∫
dφ1dφ2e

−rm(cosh(φ1+φ2)+cosh(φ1−φ2) e
2φ2(α−β)

cosh2 φ2

=
1

2

∫
dφ1dφ2e

−2rm cosh(φ1) cosh(φ2) e
2φ2(α−β)

cosh2 φ2

=

∫
dφ2

e2φ2(α−β)

cosh2 φ2

K0(2rm coshφ2) (3.2.70)

where Kn(x) is a modified Bessel function.

We wish to use (3.2.70) to examine Σ at large values of r. From the definition

(3.2.61) we can write

Σ = ln(1− sin(πα) sin(πβ)

4π2

∫
dθ

e2θ(α−β)

cosh2 θ
K0(2mr cosh θ)) + · · ·

= ln(1− g(r)) + · · · (3.2.71)
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where g(r) is defined implicitly. To ease our notation we introduce the constant

ξ =
sin(πα) sin(πβ)

4π2
. (3.2.72)

In order to approximate ψ, as this is where our equations differ from (3.2.65),

we need to calculate (
∂2
r +

1

r
∂r

)
Σ (3.2.73)

which quickly becomes very cumbersome when using (3.2.71). However when r is

large g(r) becomes small so we expect the Taylor series expansion of the log to still

provide a good approximation. Thus we define our approximate solution for Σ as

Σ̃ = −g(r) (3.2.74)

and thus (
∂2
r +

1

r
∂r

)
Σ̃ = −(g′′(r) +

1

r
g′(r))

= −4m2ξ

∫
dθ e2θ(α−β)K0(2mr cosh θ). (3.2.75)

This is a useful approximation to the left hand side of (3.2.62) so we must now

examine the right hand side to obtain a usable expression for ψ. As r →∞ (3.2.66)

is expected to tend to cαcβm
α2+β2

, a constant, and so in this limit it must be that

ψ → 0. With this in mind, at sufficiently large r we may Taylor expand the right

hand side of (3.2.62) and only keep the leading term:

m2

2
(1− cosh(2ψ)) = −m2ψ2 + · · · (3.2.76)

Letting our approximate solution be ψ̃ we see that

ψ̃2 = 4ξ

∫
dθ e2θ(α−β)K0(2mr cosh θ) = J(r) (3.2.77)

where the function J(r) is defined for later convenience. Our goal now is to see how

well this approximate solution solves the equations (3.2.60) and the corresponding

equation from (3.2.65).

As a first indicator as to which equation is correct we examine how well our

approximate solution (3.2.77) satisfies both (3.2.60) and (3.2.65) numerically. As
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the left hand sides of both equations are the same it is sufficient to examine the

three functions

(∂2
r +

1

r
∂r)ψ̃ (3.2.78)

m2

2
sinh(2ψ̃) +

4(α− β)2

r2
tanh ψ̃(1− tanh2 ψ̃) (3.2.79)

m2

2
sinh(2ψ̃) +

(α− β)2

r2
tanh ψ̃(1− tanh2 ψ̃). (3.2.80)

at large enough values of r.

These three functions can be calculated numerically for a fixed value or (α− β)

and plotted for a range of r. We note that we need (α − β) 6= 0 otherwise the two

equations coincide and our calculations tell us nothing. In figure 3.1 these curves

are plotted with (α − β) = 0.3 and r ∈ (7, 7.25). From this plot it is clear that

for modest values of r the expression presented in section 3.2.3, (3.2.80), is a better

approximation of (3.2.78) than (3.2.79). The same behaviour is observed for different

values of (α− β).

Figure 3.1: Plot of (3.2.78) (blue), (3.2.79) (yellow) and (3.2.80) (red).

From plots such as figure 3.1 we see that (3.2.80) provides a better approximate

solution for all values of r. At r = 10, for example (3.2.78) is 4.36163 × 10−6,

(3.2.80) is 4.34464× 10−6 while (3.2.79) is 4.30542× 10−6. So in this case and using

the equation presented in this thesis the approximate solution ψ̃ is out by 0.39%.



3.2. The Correlation Functions 60

When the equation (3.2.79) is used this difference jumps to 1.39%. Again the same

pattern appears when different values of (α− β) and r are used.

With the strong numerical evidence pointing to (3.2.60) being the correct equa-

tion for ψ we will now look for some analytic evidence to support this. The objective

is to expand both sides of (3.2.60) and test whether or not the leading r terms cancel

when the approximation ψ = ψ̃ is applied.

To begin with, as we know that ψ is small at large values of r we may expand

the right hand side of (3.2.60) and only keep the linear term:

m2

2
sinh(2ψ) +

(α− β)2

r2
tanhψ(1− tanh2 ψ) =

(
m2 +

(α− β)2

r2

)
ψ + · · · (3.2.81)

We now want to insert our approximation of ψ and examine the equation

(∂r +
1

r
∂r)ψ̃ =

(
m2 +

(α− β)2

r2

)
ψ̃ + · · · (3.2.82)

It is convenient at this point to use the function J(r) defined in (3.2.77) so that this

equation becomes, neglecting higher order terms,

J ′′J − 1
2
(J ′)2 + 1

r
J ′J

2J3/2
'
(
m2 +

(α− β)2

r2

)√
J (3.2.83)

and to further ease our calculations this expression can be rearranged to give

J ′′J − 1

2
(J ′)2 +

1

r
J ′J ' 2

(
m2 +

(α− β)2

r2

)
J2. (3.2.84)

In order to progress further we need:

J(r) = 4ξ

∫
dθ e2θ(α−β)K0(2mr cosh θ) (3.2.85)

J ′(r) = −8mξ

∫
dθ e2(α−β)θ cosh θK1(2mr cosh θ) (3.2.86)

J ′′(r) = 16m2ξ

∫
dθ e2(α−β)θ cosh2 θK0(2mr cosh θ)

+8mξ

∫
dθ e2(α−β)θ cosh θ

r
K1(2mr cosh θ). (3.2.87)

From this we see that the second term in the J ′′J term of (3.2.84) cancels with the

J ′J/r term so there are only two terms left to deal with.

Next we note that there are no (α− β)2 terms in these derivatives so we need to

eliminate these from (3.2.84). This is done by integrating J(r) by parts, integrating
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the exponential term to introduce factors of 1/(α− β):∫
dθ e2(α−β)θK0(2mr cosh θ) =− mr

α− β

∫
dθ e2(α−β)θK1(2mr cosh θ) sinh θ

=
mr

2(α− β)2

∫
dθ e2(α−β)θ

(
2mrK0(2mr cosh θ) sinh2 θ

+
sinh2 θ

cosh θ
K1(2mr cosh θ)−K1(2mr cosh θ) cosh θ

)
=

m2r2

(α− β)2

∫
dθ e2(α−β)θK0(2mr cosh θ)(cosh2 θ − 1)

− mr

2(α− β)2

∫
dθ e2(α−β)θ 1

cosh θ
K1(2mr cosh θ).

(3.2.88)

Now writing the right hand side of (3.2.84) as

m2J2 +
(α− β)2

r2
J2 (3.2.89)

and using the above integration by parts to rewrite one of the J ’s multiplying the

(α − β)2 term we see that the m2 term is cancelled by part of the first integral in

(3.2.88) and the other part of this integral cancels some of the integral from the J ′′J

term on the left hand side. So bringing all the remaining terms of (3.2.84) together

we have

32m2ξ2

(∫
dθ e2(α−β)θK0(2mr cosh θ)

)
×
(∫

dθ e2(α−β)θ(
1

2mr cosh θ
K1(2mr cosh θ) + cosh2 θK0(2mr cosh θ))

)
− 32m2ξ2

(∫
dθ e2(α−β)θ cosh θK1(2mr cosh θ)

)2

' 0 (3.2.90)

from which we want to extract the leading large r behaviour. Expanding the Bessel

functions for large r gives leading terms proportional to 1/
√
r:

32m2ξ2

(∫
dθ e2(α−β)θ

√
π

4mr cosh θ
e−2mr cosh θ

)
×
(∫

dθ e2(α−β)θ cosh2 θ

√
π

4mr cosh θ
e−2mr cosh θ

)
− 32m2ξ2

(∫
dθ e2(α−β)θ cosh θ

√
π

4mr cosh θ
e−2mr cosh θ

)2

. (3.2.91)
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While these terms do not cancel directly we observe that the main contribution from

each integrand is from the region around θ = 0 and so the first order saddle point

approximation of these integrals does indeed vanish, as we had hoped.

It is worth noting that if we had started from (3.2.65) there would be an extra

term proportional to m2J2 in (3.2.90) and this would lead to extra terms in (3.2.91)

which would have nothing to cancel against, either directly or in the saddle point

approximation.



Chapter 4

Discussion

As stated in the introduction, differential equations satisfied by the correlation func-

tions

〈σα(x, y)σβ(0, 0)〉 (4.0.1)

in the Dirac theory were derived. The method employed led us to consider a new

family of descendent twist fields, whose properties and form factors were discussed

in section 2.3 and first written down in [28]. By considering these fields a novel way

of evaluating the vacuum expectation values of primary twist fields was discovered,

namely through the recursion relation (2.3.22). While extra assumptions, for which

we have no clear arguments, are needed to fix cα it transpired that this relation was

sufficient for our purposes.

The techniques used to calculate the form factors of descendent twist fields may

be applicable to other free field models and so could give a method for calculating

the vacuum expectation values of general twist fields. As well as applying to twist

fields with a more general symmetry group this method could be used in conjunction

with finite temperature form factors to give vacuum expectation values of twist fields

at finite temperatures.

Taking inspiration from [33] meant that a double copy model of the Dirac theory

was considered and the action of conserved charges in this theory had to be found.

In order to do this the CFT limit of the Dirac theory, where the action of these

conserved charges could be calculated exactly, was examined. The relations calcu-

lated in this limit were then carried over to the massive case and verified using form
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factors with up to four particles.

The success of this approach was unexpected because it was thought that the

special form of the OPEs in the Ising model permitted the reduction of the Ward

identities to integrable equations. Despite having more complicated OPEs the differ-

ential equations for the correlators of twist fields in the Dirac model were calculated

and, as only standard techniques were used to obtain the result, that is knowledge of

symmetries of the states in question and the action of the conserved charges, there

is hope that this approach could have more general applications. It has already been

shown that in the Dirac model the quantum state under consideration only requires

the density matrix to be an exponential of a quadratic form to produce useful Ward

identities. However, only by imposing certain symmetries can the Ward identities

be reduced to an integrable form in the most general case presented in this thesis.

As the method presented above is very direct and very general it may prove

fruitful when applied to other free field models possessing non-trivial twist fields.

Applying this method to models with non-abelian symmetries would be an interest-

ing avenue of research.



Part II

Truncated Conformal Space

Approach
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Chapter 5

Perturbed Conformal Field

Theory

In this chapter we discuss the ingredients necessary to implement the Truncated

Conformal Space Approach. The key elements are all based in Conformal Field

Theory (CFT) and so we begin with a short review of the aspects of CFT relevant

to our investigations. This is by no means a full review of CFT as this is beyond

the scope of this thesis and many good reviews already exist: [34, 36, 38].

5.1 Conformal Field Theory

The power of Conformal Field Theory in two dimensions is due to its infinite dimen-

sional symmetry group. The two dimensional spaces where a CFT is defined may

be equipped with a Minkowski or Euclidean metric. In what follows we will only

consider flat Euclidean spaces unless otherwise stated.

Conformal Field Theory is easiest to construct after identifying our two dimen-

sional Euclidean space with the complex plane:

z = x+ iy z̄ = x− iy. (5.1.1)

In all that follows we will consider z and z̄ to be independent variables and so we

often consider only the z dependence of functions, keeping z̄ fixed and setting z̄ = z∗,

the complex conjugate, only at the end of calculations.
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The group of global conformal transformations on the Riemann sphere is just

the Möbius transformations

z 7→ f(z) =
az + b

cz + d
(5.1.2)

where a, b, c, d ∈ C and ad − bc = 1. These transformations form a finite group

but we also require our Conformal Field Theories to be invariant under infinitesimal

conformal transformations, which have an infinite algebra in two-dimensions.

A primary field of our theory, φ, with scaling dimension ∆, spin s has holomor-

phic dimension h and anti-holomorphic dimension h̄ given by

h =
1

2
(∆ + s) h̄ =

1

2
(∆− s) (5.1.3)

is defined to be a field which under any arbitrary conformal mapping z 7→ w(z), z̄ 7→

w̄(z̄) transforms as

φ′(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄). (5.1.4)

A quasi-primary field is one which transforms as (5.1.4) only for maps which are

Möbius transformations, (5.1.2). This transformation property fixes the two and

three point functions up to some overall structure constants. Two point functions

are given by

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 =
C12

(z1 − z2)2h(z̄1 − z̄2)2h̄
if

 h1 = h2 = h

h̄1 = h̄2 = h̄
(5.1.5)

and vanish otherwise, while three point functions become

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉 = C123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
13

× 1

z̄h̄1+h̄2−h̄3
12 z̄h̄2+h̄3−h̄1

23 z̄h̄3+h̄1−h̄2
13

(5.1.6)

where zij = zi − zj. In the cases which concern us, i.e. that of minimal models, the

constants Cij will be fixed through a choice of basis for the fields of the model and

the structure constants Cijk also occur in the OPEs of the relevant fields. This will

be discussed in more detail in section 5.1.2.
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5.1.1 The Operator Formalism

In the present work the operator formalism is the most convenient way to describe

the relevant conformal field theories so we give a brief review of the key points.

To construct our Hilbert space we use radial quantisation. After picking a point

z0 the vectors in the Hilbert space are states on concentric circles around z0 which

is usually set to the origin. We must assume the existence of a vacuum state |0〉

upon which the Hilbert space is constructed by the application of operators. For

free theories this means that the vacuum is the state annihilated by the positive

frequency part of the field and we assume that interacting theories are free in the

infinite past and future. This allows us to define ‘in’ states as

|φin〉 = lim
z,z̄→0

φ(z, z̄)|0〉 = |h, h̄〉 (5.1.7)

and then use Hermitian conjugation to define ‘out’ states as

〈φout| = |φin〉† (5.1.8)

where h and h̄ are the holomorphic and anti-holomorphic dimensions, respectively,

of φ. In the following chapters we will normalise these states such that

〈hi, h̄i|hj, h̄j〉 = δi,j. (5.1.9)

To build a full basis of states we need some knowledge of the conformal generators

which will act non-trivially on these highest weight states.

The conformal generators may be found by examining the components of the

energy-momentum tensor. In what follows we only consider the holomorphic part,

T , but all the following arguments also apply to the anti-holomorphic part, T̄ . Trans-

lation, rotation and scale invariance restrict the form of operator product expansion

(OPE) of the energy momentum tensor with itself. The most general form of this

OPE is

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(5.1.10)

where c is the central charge and is a fundamental constant which helps define a

model of conformal field theory. As the energy momentum tensor has dimension 2
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we may expand it in terms of its modes Ln:

T (z) =
∑
n∈Z

z−n−2Ln (5.1.11)

which may also be defined through the integral

Ln =
1

2πi

∮
dz zn+1T (z) (5.1.12)

where the integration is taken around a circle centred on the origin. The modes Ln

are the generators of local conformal transformations on the Hilbert space and their

commutation relations can be evaluated using the OPE (5.1.10):

[Ln, Lm] =
1

(2πi)2

∮
0

dw wm+1

∮
w

dz zn+1T (z)T (w)

=
1

(2πi)2

∮
0

dw wm+1

∮
w

dz zn+1

(
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ · · ·

)
=

1

2πi

∮
0

dw wm+1

(
cn(n2 − 1)

12
wn−2 + 2(n+ 1)wnT (w) + wn+1∂T (w)

)
=
cn(n2 − 1)

12
δn+m,0 + 2(n+ 1)Lm+n −

∮
0

dw (n+m+ 2)wn+m+1T (w)

=
cn(n2 − 1)

12
δn+m,0 + (n−m)Ln+m. (5.1.13)

When combined with their anti-holomorphic counterparts, L̄n, we see that these

generators satisfy the Virasoro algebra:

[Ln, Lm] =(n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] =0

[L̄n, L̄m] =(n−m)L̄n+m +
c

12
n(n2 − 1)δn+m,0. (5.1.14)

Hermitian conjugation of these operators is given by

(Ln)† = L−n (5.1.15)

and similarly for the anti-holomorphic operators. The operator L0 + L̄0 is the gen-

erator of dilations.

The generators Ln and L̄n are used to construct a basis of the Hilbert space. The

vacuum state, |0〉, must be invariant under the global conformal transformations and

so must be annihilated by the operators L−1, L0 and L1 and the anti-holomorphic
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counterparts. The well defined action of the stress energy momentum tensor on the

vacuum thus implies that

Ln|0〉 = 0

L̄n|0〉 = 0
for n ≥ −1. (5.1.16)

It can also be shown, using a method similar to that of (5.1.13), that in this operator

language a primary field φ of dimensions (h, h̄) satisfies the following relations:

[Ln, φ(w, w̄)] =h(n+ 1)wnφ(w, w̄) + wn+1∂φ(w, w̄)

[L̄n, φ(w, w̄)] =h̄(n+ 1)w̄nφ(w, w̄) + w̄n+1∂̄φ(w, w̄). (5.1.17)

Applying these to the asymptotic state (5.1.7) we see that

L0|h, h̄〉 = h|h, h̄〉 L̄0|h, h̄〉 = h̄|h, h̄〉 (5.1.18)

and thus |h, h̄〉 is an eigenstate of the Hamiltonian and is annihilated by Ln and

L̄n for n > 0. Excited states are obtained by acting on |h, h̄〉 with so called ladder

operators L−m and L̄−m with m > 0, each operator increasing the holomorphic or

anti-holomorphic dimensions, respectively, of the state by m. Considering only the

holomorphic part for simplicity, excited states of the form

L−k1L−k2 · · ·L−kn|h〉 (5.1.19)

are referred to as descendents of |h〉. This state has dimension

h′ = h+ k1 + k2 + · · ·+ kn ≡ h+N (5.1.20)

and the integer N is the level of the state. The full set of descendent states of

|h〉 form a subset of the full Hilbert space which is closed under the action of the

Virasoro generators and so forms a module of the Virasoro algebra called a Verma

module.

5.1.2 Minimal Models

Minimal models are some of the simplest conformal field theories as their Hilbert

space consists of a finite number of Verma modules. These models are considered
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in the original work of Belavin, Polyakov and Zamolodchikov [6] as well as the

reviews already mentioned where more details can be found. We simply present

some information which will be useful in later calculations.

Minimal models possess a finite number of primary fields and the operator alge-

bra is closed. This closing of the operator algebra only occurs for certain values of

the central charge, namely

c = 1− 6
(p− q)2

pq
(5.1.21)

where p > q > 1. The conformal weights of primary fields in this model are

hr,s =
(pr − qs)2 − (p− q)2

4pq
(5.1.22)

where 1 ≤ r < q and 1 ≤ s < p. This clearly implies the symmetry hr,s = hq−r,p−s

and so we may identify the corresponding fields:

φ(r,s) = φ(q−r,p−s) (5.1.23)

and we see that there are (p − 1)(q − 1)/2 distinct fields in the diagonal modular

invariant theory. Each of these fields corresponds to an irreducible representation

of the Virasoro algebra which is degenerate, that is to say it contains null vectors.

These null vectors are members of the Verma module which, other than the highest

weight vector, are annihilated by Lm for m > 0. The first null vector in the module

corresponding to φ(r,s) is at level rs and the number of linearly independent vectors

at each level, dim(h+n), is given by coefficients of the generating function χ(r,s)(x).

This generating function is also referred to as the character of the module and is

given by [34]:

χ(r,s)(x) =
∞∑
n=0

dim(h+ n)xn+hr,s−c/24

=Kp,q
r,s (x)−Kp,q

r,−s(x) (5.1.24)

where

Kp,q
r,s (x) =

x−1/24

ϕ(x)

∑
n∈Z

x(2pqn+pr−qs)2/4pq and

1

ϕ(x)
=
∞∏
n=1

1

1− xn
. (5.1.25)
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The operator product expansions for primary fields are given by

φi(z, z̄)φj(w, w̄) =
∑
k

Ck
ij(z − w)hk−hi−hj(z̄ − w̄)h̄k−h̄i−h̄jφk(w, w̄) + · · · (5.1.26)

where · · · represents the descendent fields. The sum is over all the fields of the

theory, of which there are infinitely many, and we note that if a primary field is not

present in the OPE then none of its descendents will appear either. Therefore in an

abuse of notation we may write express the OPE between primary fields through

the fusion rule

φi × φj =
∑
k

N k
ijφk (5.1.27)

where φi represents the family of vectors in the highest weight representation de-

scended from φi and N k
ij vanishes if φk does not occur in the OPE and 1 otherwise.

In the case of minimal models these values can be calculated using the Verlinde

formula [77]:

Nmn
ij;kl =

∑
(rs)

Sij;rsSkl;rsSrs;mn
S11;rs

(5.1.28)

where the sum is over all fields in the model and

Sij;kl = 2

√
2

pq
(−1)1+jk+il sin(π

p

q
ik) sin(π

q

p
jl). (5.1.29)

The structure constants Ck
ij in (5.1.26) are not fixed by the representation theory

of the Virasoro algebra and so must be computed another way. They were first

calculated in [23] but we will use the expression given in [66],

Ck
ij =

Fk1

i i

j j

−1

(5.1.30)

where i, j and k represent fields in the model given by their indices (r, s) and the

power −1 is interpreted as one over the matrix element, not the inverse matrix. If

we set j = (r, s) then define j ± (2, 1) = (r± 1, s) and j ± (1, 2) = (r, s± 1) we then

express the F-matrix entries involving the field (2, 1) as

F

j (2, 1)

i l

 =

Fl−(2,1),j−(2,1) Fl−(2,1),j+(2,1)

Fl+(2,1),j−(2,1) Fl+(2,1),j+(2,1)


=

 Γ(dj)Γ(1−dl)
Γ( 1

2
(1−di+dj−dl))Γ( 1

2
(1+di+dj−dl))

Γ(−dj)Γ(1−dl)
Γ( 1

2
(1−di−dj−dl))Γ( 1

2
(1+di−dj−dl))

Γ(dj)Γ(1+dl)

Γ( 1
2

(1−di+dj+dl))Γ( 1
2

(1+di+dj+dl))

Γ(−dj)Γ(1+dl)

Γ( 1
2

(1−di−dj+dl))Γ( 1
2

(1+di−dj+dl))

 (5.1.31)
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where dj = rt− s and t = p/q. Similarly the F-matrix entries involving (1, 2) are

F

j (1, 2)

i l

 =

Fl−(1,2),j−(1,2) Fl−(1,2),j+(1,2)

Fl+(1,2),j−(1,2) Fl+(1,2),j+(1,2)


=

 Γ(− 1
t
dj)Γ(1+ 1

t
dl)

Γ( 1
2t

(t+di−dj+dl))Γ( 1
2t

(t−di−dj+dl))
Γ( 1

t
dj)Γ(1+ 1

t
dl)

Γ( 1
2t

(t+di+dj+dl))Γ( 1
2t

(1−di+dj+dl))
Γ(− 1

t
dj)Γ(1− 1

t
dl)

Γ( 1
2t

(t+di−dj−dl))Γ( 1
2t

(t−di−dj−dl))
Γ( 1

t
dj)Γ(1− 1

t
dl)

Γ( 1
2t

(t+di+dj−dl))Γ( 1
2t

(t−di+dj−dl))

 . (5.1.32)

All other F-matrices can be calculated using the recursion relation

Fa,b

j k + ∆

i l

 =
∑
r,s

Fk+∆,r

 l ∆

a k

Fa,s

j k

i r

Fr,b

s ∆

i l

Fs,k+∆

∆ k

b j


(5.1.33)

where ∆ is (2, 1) or (1, 2), together with the symmetry relations

Fa,b

j k

i l

 = Fa,b

i l

j k

 = Fa,b

 l i

k j

 (5.1.34)

which can be found in [61] along with many other F-matrix relations.

5.2 Boundary Conformal Field Theory

Adding a boundary to a conformal field theory brings boundary conditions into play.

Boundary conformal field theory on the upper half plane was first studied by Cardy

and Lewellen in a series of articles, [10, 11, 13]. As in the previous section we only

discuss ideas and results relevant to TCSA applications and leave a full discussion

to the literature, [12, 34] and [5] for example.

5.2.1 The Upper Half Plane

Following the literature chronologically we begin with a discussion of conformal field

theories defined on the upper half plane. The boundary of these models runs along

the real axis and to ensure these models are physical energy must be conserved and

therefore an appropriate boundary condition must be applied. This condition is

most simply expressed in terms of the stress tensor:

T (z)|z=z̄ = T̄ (z̄)|z=z̄. (5.2.1)
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While this equation does not fix the boundary condition uniquely it does reduce the

symmetries allowed in the bulk theory. The upper half plane model can be mapped

to the unit disc and, recalling the definitions (5.1.12), in the radial quantisation

picture the symmetry (5.2.1) implies that Ln = L̄−n. This means that the boundary

state living on the unit circle must satisfy the condition

Ln|B〉 = L̄−n|B〉. (5.2.2)

This equation implies that the holomorphic representation of the Virasoro algebra

with highest weight i is equivalent to the anti-holomorphic representation with the

same highest weight. There is an independent boundary state, |j〉〉, corresponding

to each Virasoro representation, with highest weight j, in the model. These states

are known as the Ishibashi states [42].

There are subtleties associated to calculating inner products of the Ishibashi

states [11, 42] but these subtleties will not come into play in this thesis. It is enough

to know that the inner product can be defined and that any general boundary state

can be written as

|a〉 =
∑
j

ψja√
S1j

|j〉〉 (5.2.3)

where the sum runs over all the highest weights present in the model. These states,

however, are not yet the correct boundary states. While they satisfy the gluing

condition (5.2.2) there are constraints on the reflection factors ψja which can be

deduced from the nature of the Hilbert space.

5.2.2 The Cylinder

In order to relate the Hilbert space of a model with its general boundary conditions

it is easiest to consider the theory on a finite cylinder. There are two equivalent

quantisation schemes on the cylinder. The first has time flowing around the cylinder

so that the Hamiltonian Hab depends on the boundary conditions at each edge. The

second has time flowing along the cylinder so that the boundary conditions are

represented as initial and final states, |a〉 and |b〉, and the Hamiltonian is obtained

from the whole complex plane.
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For the rest of this section we will use a different normalisation of the fields in

order to be consistent with the literature. Thus we set

〈0|0〉 = S11 and 〈i|i〉 = C1
ii〈0|0〉 (5.2.4)

giving C1
ii = S1i/S11. In order to return to the normalisation of the rest of this part

we perform the transformation

φi 7→ αiφi and 〈0|0〉 7→ µ2〈0|0〉 (5.2.5)

where αi =
√
S11/S1i and µ = 1/

√
S11 before using these results in any TCSA

programme.

In the picture where time is periodic the partition function on the finite cylinder

may be written as

Zab(x) =
∑
i

niabχi(x) (5.2.6)

since the spectrum falls into irreducible representations of the Virasoro algebra. The

integers niab count the number of copies of the representation with highest weight i

in the model.

Using a modular transformation it is possible to map this picture to the alternate

picture where space is periodic. As we are only interested in minimal models we may

use their transformation properties together with our knowledge of the structure of

boundary conformal field theories to obtain the relation∑
i

Sijn
i
ab = 〈a|j〉〈j|b〉 (5.2.7)

or alternatively the Cardy relation

niab =
∑
j

Sij
S1j

(ψja)
∗ψjb . (5.2.8)

Bearing in mind that there is a boundary state corresponding to each irreducible

representation present in the bulk minimal model we may define a set of allowed

boundary states as

|̃i〉 =
∑
j

Sij
S1j

|j〉〉 (5.2.9)
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where i and j can be any highest weight in the minimal model. It is then easy to

show that ni
k̃l̃

satisfies the Verlinde formula:∑
i

Sijn
i
k̃l̃

=
SkjSlj
S1j

. (5.2.10)

So we conclude that

ni
k̃l̃

= N i
kl (5.2.11)

and thus the number of times representation i occurs in the Hilbert space Hk̃l̃ is

simply given by fusion coefficient N i
kl, an integer as required.

5.2.3 Boundary Fields

As we are now able to write down the Hilbert space for a conformal field theory with

boundary conditions k̃ and l̃, we may ask if it is possible for these boundary condi-

tions to change. The most natural setting for this in on a strip of finite width with

time running along the infinite length of the strip. In this picture the Hilbert space

contains N i
kl copies of the representation i. If the boundary condition l̃ is to change

it must change to another allowed boundary condition, m̃ say, instantaneously, at

t = t0. For t > t0 the Hilbert space contains N i
k̃m̃

copies of the representation i

which is generally different from N i
k̃l̃

. This discontinuity is achieved by the insertion

of a local operator φj
l̃m̃

on the boundary at t = t0. These fields transform in the

representation j of the Virasoro algebra where the fusion coefficient N j
lm is non-zero.

Fields living on a boundary can be treated in the same way as boundary changing

fields. While it may be more natural to consider the field φj
l̃l̃
(t) as a degree of freedom

on the boundary it is equally valid to consider it a field changing the l̃ boundary

condition into the l̃ boundary condition.

In the upper half plane, when a bulk field φ(x+ iy), with dimensions (h, h̄), gets

close to the boundary at y = 0, with boundary condition k̃, it may be expressed as

a sum of boundary fields φj
k̃k̃

:

φ(x+ iy) =
∑
j

k̃Bj
φ(2y)hk−h−h̄φj

k̃k̃
(x) + · · · (5.2.12)

where · · · represents descendent fields. Two boundary fields on the real axis φi
l̃m̃

(x)
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and φjm̃ñ(y) with x > y have an operator product expansion given by

φi
l̃m̃

(x)φjm̃ñ(y) =
∑
k

C
(lmn)k
ij (x− y)hk−hi−hjφk

l̃ñ
(y) + · · · (5.2.13)

These two expansions define the structure constants k̃Bj
φ and C

(lmn)k
ij . They have

been calculated for the minimal models considered here in [66]:

k̃Bj
i =ei

π
2
hj

Fk1

k k

j j

−1

Sik(j)

S1
k

(5.2.14)

C
(lmn)k
ij =Fmk

l n

i j

 (5.2.15)

where Sik(j) are the S-matrix elements on the torus with one operator insertion.

These structure constants are a necessary ingredient of the TCSA as on the cylinder

we have

〈i|φk(0)|j〉 = Ci
kj (5.2.16)

in the bulk and

〈i|φk
l̃l̃
(1)|j〉 = C

(lll)i
kj (5.2.17)

on the boundary for appropriately normalised states.



Chapter 6

Truncated Conformal Space

Approach

Before exploring the Truncated Conformal Space Approach we need a theory to

apply it to. This will be a minimal model defined on a cylinder or strip which is

perturbed by a diagonal, relevant field in the bulk or, in the case of the strip, on the

boundary.

6.1 Bulk Perturbations

We start by following the original paper of Yurov and Zamolodchikov [80] where

the authors considered the perturbed scaling Lee-Yang model on a cylinder. On a

cylinder with circumference R in the x direction the perturbed Hamiltonian is

H = HCFT + λHBulk. (6.1.1)

The CFT Hamiltonian on the cylinder is expressed in terms of the operators on the

plane, as in (5.1.11), as

HCFT =
2π

R
(L0 + L̄0 −

c

12
) (6.1.2)

and the bulk perturbation is

HBulk =

∫ R

0

φp(x, 0)dx. (6.1.3)

78
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The translation symmetry of the cylinder allows us to arbitrarily fix the y coordinate

of the perturbing field, so 0 is chosen for convenience. Also, only perturbations by

diagonal fields, that is fields φp which satisfy hp = h̄p, are considered.

Choosing a basis of the Hilbert space given by eigenstates of HCFT we now need

a method for calculating matrix elements of HCFT and HBulk. Since L0 + L̄0 simply

count the holomorphic and anti-holomorphic dimensions of states the eigenstates of

HCFT are simply

|ψi〉 = L−n1L−n2 · · ·L−nkL̄−m1 · · · L̄−ml |φi〉 (6.1.4)

and we define xi = n1 + · · · + nk and x̄ = m1 + · · · + ml with the spin of the state

given by s = x − x̄. The matrix element of HBulk with two states |ψi〉 and |ψj〉 is

given by

〈ψi|HBulk|ψj〉 = 2π

(
R

2π

)1−2hp

δsi,sj〈ψi|φp(0, 0)|ψj〉. (6.1.5)

The calculation of these matrix elements is left to appendix B.2 but is essentially

an application of the commutation rules (5.1.17).

The truncated conformal space approach can now be used to examine the theory

at finite R. This is done by truncating the space of conformal states (6.1.4) to only

include those states with x, x̄ ≤ N . With this restriction we may find the eigenvalues

of the Hamiltonian, H(N), restricted to these states, numerically. Finding the basis

of states to use is a non-trivial task which is covered in appendix B.1. Diagonalising

this matrix is simplified since states with different spins give a zero matrix element

and so different spin sectors decouple.

We expect the eigenvalues of H, Ei for i = 1, 2, 3 · · · , to have different scaling

behaviour for different values of R. The ultraviolet spectrum is dominated by the

unperturbed CFT Hamiltonian and so, letting ξ denote the scaling length of the

model,

Ei '
2π

R

(
xi −

c

12

)
for R� ξ (6.1.6)

where xi is the eigenvalue of L0 + L̄0. For larger values of R it should be that

Ei '
ε0
ξ2
R +mi for R� ξ (6.1.7)
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where mi is the mass gap for the ith level. The constant ε0 can be interpreted as the

universal contribution to the vacuum energy density. This dimensionless constant

can be calculated exactly for integrable massive systems. The interpretation of mi as

the mass of a particle of the model certainly holds for the lowest energy levels, which

represent one particle states with zero momentum. For higher energy eigenvalues

the same scaling behaviour will be observed but mi has a different meaning. Because

the theory is defined on a cylinder the allowed momenta are quantised and so for

higher energy levels the allowed values of mi will still be discrete and should be

interpreted as the total energy above the ground state.

By truncating the Hilbert space we are inserting a new length scale ρ into the

problem, as the truncation imposes an upper bound on the eigenvalues of H0. For

large values of R the matrix elements of H(N) will therefore be dominated by HBulk

and so we expect the eigenvalues of H(N), E
(N)
i , to scale like

E
(N)
i ' λR1−2∗hφ for R� ρ. (6.1.8)

We now see that in order to obtain useful approximations from the TCSA calculation

we must include enough states so that ρ� ξ. When this is the case the eigenstates

of H(N) will display three distinct regions characterised by their dependence on R,

namely (6.1.6), (6.1.7) and (6.1.8). These three regions will be discussed in more

detail in the case of the tri-critical Ising model in section 6.1.2.

6.1.1 The Lee-Yang Model

We begin with a check on our algorithms by following the original work of [80] and

applying the TCSA to the scaling Lee-Yang model. This model has p = 5, q = 2

and central charge c = −22/5. The negative central charge means that this model is

non-unitary but it is the simplest non-trivial minimal model as it contains only two

irreducible representations of the Virasoro algebra, corresponding to the identity, 1

with weight h = h̄ = 0, and only one relevant field φ with weight h = h̄ = −1/5.

The Hamiltonian on a cylinder of circumference R is

H =
2π

R
(L0 + L̄0 −

c

12
) + iλ

∫ R

0

φ(x, 0)dx (6.1.9)
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where the i is included to keep the eigenvalues of H real for real values of λ. The

spectrum of this Hamiltonian contains a mass gap which is the mass, M , of the single

massive particle in the model. This mass is linked to the perturbing parameter λ

through the equation [83, 85]

λ = (0.097048456 · · · )M12/5 (6.1.10)

so we may set M = 1 by setting λ = 0.09704845636 · · ·

As the ground state and first excited state are found in the spin 0 sector we will

only consider spin 0 states here. Truncating the space of states at level 5 gives 17

states and the 17 eigenvalues of the Hamiltonian (6.1.9) are plotted in figure 6.1.

This figure shows several expected phenomena.

Figure 6.1: The spin 0 energy levels plotted against R from states truncated at level

5.

Firstly the energy levels in the spin 0 sector diverge as R→ 0 as expected from

(6.1.6). As R increases we see that the lowest energy levels, which are expected to

be the best approximated, become parallel straight lines as expected from (6.1.7).

The slope of these lines has been calculated from the Thermodynamic Bethe Ansatz

to be −
√

3/12 [83] and this is the slope of the lowest energy levels shown in figure

6.1. The mass gap between the two lowest energy levels in this region gives m1 = 1
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as expected from (6.1.10).

The final characteristic of figure 6.1 we mention is the behaviour of crossing

energy levels. It is the integrability of the full Hamiltonian which allows energy

levels to cross but as this is lost with the truncation of the Hilbert space the energy

levels of the truncated, non-unitary, Hamiltonian form complex conjugate pairs at

the crossing points. The range of values of R for which the energy levels are complex

at each crossing point decreases as the truncation level is increased [80], indicating

that raising the truncation level is bringing us closer to the full theory.

6.1.2 The Tri-Critical Ising Model

We next turn our attention to the more complicated tri-critical Ising model which

we shall investigate in greater detail. This minimal model has p = 5 and q = 4,

central charge c = 7/10 and contains 6 representations of the Virasoro algebra,

given together with their highest weights in table 6.1. As this model is unitary the

Hamiltonian, given by

H =
2π

R
(L0 + L̄0 −

c

12
) + λ

∫ R

0

φi,j(x, 0)dx, (6.1.11)

has real eigenvalues. In order to be sure our algorithm is working correctly with

this model we will first reproduce some of the results of [53] and [41]. We also note

that as with the Lee-Yang model sectors of the Hilbert space with different spins

decouple and the states that are of interest to us at the moment are all in the spin

0 sector. It is sufficient for us to truncate the Hilbert space at level 6, giving 465

states.

Following [53] we start with the leading magnetic perturbation by setting λ = 1

and φi,j = φ2,2. The first 10 eigenvalues of H(6) are plotted in figure (6.2) where the

region given by (6.1.7) is clearly visible. The behaviour of the energy levels as R→ 0

is highlighted in figure 6.3 which clearly shows that as R → 0, REi → constant as

expected from (6.1.6). The three scaling regions are easiest to see in figure 6.4 where

the effective scaling exponent of the ground state

a =
d log10E0

d log10R
(6.1.12)
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Field Conformal Weight

φ1,1 0

φ2,1
7
16

φ2,2
3
80

φ3,1
3
2

φ3,2
3
5

φ3,3
1
10

Table 6.1: The primary fields of the tri-critical Ising model and their conformal

weights.

is plotted against log10R. From this plot it is easy to distinguish the UV region

where a = −1, the IR regime where a = 1 and the truncation dominated region

where a = 0.925.

Figure 6.2: The lowest 10 spin 0 energy levels of the leading magnetic perturbation

truncated at level 6.

Now that we have clearly identified the IR scaling region we may extract the

masses of stable particles in the model. Particles are stable if their mass is less than

twice the mass of the lightest particle, so it is impossible for them to decay. At
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Figure 6.3: REi against R for the lowest 10 spin 0 energy levels of the leading

magnetic perturbation.

R = 2.2, which is within the IR scaling region as shown in figure 6.4, we find

m1 = 1 m2 = 1.6316 m3 = 1.9683 (6.1.13)

where we have normalised the masses so that m1 = 1. These masses are very

close to those calculated in [53]. The same quantities can be calculated when the

perturbing field φi,j is any of the other relevant primary fields and in all these cases

good agreement is found between our calculations and those of [53].

As a final check of our algorithms we calculate vacuum expectation values in the

perturbed models as was done in [41]. It is known, [60], that the one point function

of a field φ∆ in the perturbed theory defined by the Hamiltonian (6.1.11) is given

by

〈φ∆〉 = A(∆, (i, j))|λ|
h∆

1−hi,j (6.1.14)

when h∆ +hi,j < 1, that is the field φ has no multiplicative renormalisation. It is the

constant A that we will calculate and in certain cases compare with TBA data. This

is possible as we may use the TCSA Hamiltonian H(N) to find an approximation of

the ground state of the model at finite a R inside the IR scaling region, we denote
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Figure 6.4: The effective scaling exponent of the ground state energy of the leading

magnetic perturbation.

this state by

|0〉N =
∑
i

ψ
(N)
i |i〉 (6.1.15)

where |i〉 are the conformal states at or below the truncation level.

We next note that the finite constant A is given by

A(∆, (i, j)) =
〈φ∆〉

|λ|
h∆

1−hi,j

= (
2π

R
)2h∆ lim

R,N→∞

N〈0|φ∆|0〉N

|λ|
h∆

1−hi,j

(6.1.16)

where the matrix elements in the final sum are evaluated on the cylinder of radius

R. These are calculated using (6.1.15)

N〈0|φ∆|0〉N =
ψ

(N)
i ψ

(N)
j 〈i|φ∆|j〉

ψ
(N)
i ψ

(N)
j 〈i|j〉

(6.1.17)

where the sums over i and j are implicit. As well as taking a value of R inside

the scaling region we also check the consistency of our results by verifying that

N〈0|φ∆|0〉N ∼ R2h∆ as must be the case when A is finite.

With the perturbing field φ2,2 and truncation level of 6, as with all previous

calculations, we plot

b =
1

2h2,2

d log10 N〈0|φ2,2|0〉N
d log10R

(6.1.18)
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against logR in figure 6.5. This plot clearly show the three scaling regions of the

truncated conformal space approach and it is easy to identify the region where the

scaling of the one point function is 2h2,2 = 6/80, that is where b = 1, and verify

that this coincides with the region where the effective scaling exponent of the ground

state is 1. A similar plot can be produced for all the fields whose vacuum expectation

value we wish to examine so we can be sure that our estimates of A are as accurate

as possible at the given truncation level. For the model perturbed by φ2,2, with

λ = 1, the values of A are

A((2, 1), (2, 2)) =− 1.55001 (6.1.19)

A((2, 2), (2, 2)) =− 1.53968 (6.1.20)

A((3, 2), (2, 2)) =1.90413 (6.1.21)

A((3, 3), (2, 2)) =1.33585 (6.1.22)

which are in good agreement with the same TCSA calculations performed in [41].

Figure 6.5: The effective scaling of the one point function of φ2,2 on the cylinder.

The vacuum expectation values of certain fields in the tri-critical Ising model

with a specific perturbation have been calculated using the thermodynamic Bethe

Ansatz and so we may use these results as an independent check on the validity of
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the TCSA method. For example in [31] it is shown that

A((3, 3), (3, 3)) = −1.4683954240276 · · · (6.1.23)

for λ > 0 and using the TCSA approximation described above we find that

A((3, 3), (3, 3)) =− 1.46524 with λ = 1, (6.1.24)

in good agreement with (6.1.23).

We are now confident that the TCSA method outlined in this chapter provides a

good approximation of perturbed minimal models in the bulk as our algorithms give

the expected results. However, we have not attempted to analyse the renormalisation

group flows initiated by these perturbations which smoothly transform the spectrum

of the initial minimal model into that of another with fewer relevant fields. This is

beyond the scope of this thesis but is discussed in [39].

6.2 Boundary Perturbations

We next consider the same minimal models defined on a strip but the edges of the

strip are no longer identified. As there are now boundaries in the system we must

impose conformal boundary conditions as discussed in section 5.2, which restricts

the representations of the Virasoro algebra occurring in the model. In this section

we will examine perturbations of the boundary conditions which was first explored

via TCSA in [21] where the Lee-Yang model is considered.

The Hamiltonian of a minimal model with boundary conditions a and b on the

left and right boundaries, perturbed by fields φL and φR respectively, is most simply

expressed when mapped to the unit semi-circle in the upper half plane:

H(a,b) =
π

R

(
L0 −

c

24
+ λL

(
R

π

)1−hL
φL(−1) + λR

(
R

π

)1−hR
φR(1)

)
. (6.2.1)

As all the perturbations considered here are on the boundaries the unperturbed

bulk Hilbert space, which is massless and obtained using the methods described in

section 5.2, must remain massless. Thus perturbing by a relevant boundary field

must produce a renormalisation group flow from one conformal boundary condition
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to another with fewer relevant operators. This effect means that massless boundary

flows can be observed using TCSA, with a modest truncation level, despite the

truncation errors. Bulk massless flows are less well modelled by bare TCSA, as

was observed in [53], and only provide accurate results at modest truncation levels

when the divergent ground state energy is subtracted [48] and the couplings are

renormalised [39].

6.2.1 The Lee-Yang Model

As in the previous section we start by examining the Lee-Yang model on a strip

of width R. As discussed in section 5.2 the choice of boundary conditions dictates

the representations of the Virasoro algebra occurring in the model as well as the

perturbing fields allowed.

The Lee-Yang model admits only two conformal boundary conditions which we

label 1 and Φ, following the notation of [21]. The 1 boundary has only one primary

field, which is the identity, while the Φ boundary has two, the identity and a field

φ with dimensions hφ = −1/5. As there are only two possible boundary conditions

there are only three independent combinations. Firstly, with boundary conditions

(1,1), the only irreducible representation in the model has highest weight 0 and

there are no relevant fields living on the boundaries, so there is nothing to examine

here.

The next case has boundary conditions (1,Φ) and so the only irreducible repre-

sentation present has highest weight −1/5. In this situation our model is described

by (6.2.1) with (a, b) = (1,Φ), λL = 0 and φR = φ. Here the Φ boundary is

perturbed by the field φ and we observed at the beginning of this section this per-

turbation must produce a massless boundary flow. As there is only one other allowed

conformal boundary condition this boundary must flow to the 1 boundary and this

is what we observe in figure 6.6 for λR > 0 where the spectrum of the model flows

smoothly from the character of the irreducible representation with highest weight

−1/5 at λR = 0 to that of the irreducible representation with highest weight 0 at

λR = 10.

For λR < 0 we see that some of the energy levels become complex, an effect also
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observed with a bulk perturbation of the Lee-Yang model [80] where some energy

levels also form complex conjugate pairs. The spectrum in this region may still be

identified with the character χ0 [21], but not in the same way as for λR > 0. In

the present case we can identify this character twice, once in the real energy levels,

shown in blue in figure 6.6, and again in the real part of the complex conjugate

pairs, as shown in red.

Figure 6.6: The spectrum of the Lee-Yang model with (1,Φ) boundary conditions

for different values of the perturbation parameter λR. Where two energy levels

combine and form a complex conjugate pair the real part is the plotted in red.

6.2.2 The Tri-Critical Ising Model

As in the case of the Lee-Yang model massless boundary flows can be observed in

the tri-critical Ising model using TCSA. The tri-critical Ising model contains more

representations of the Virasoro algebra and so there are more conformal boundary

conditions [11, 16], which are listed along with the fields living on each boundary in

table 6.2. The boundary flows between these conformal boundary conditions were

first given in [1] and explored in the context of renormalisation group flows in [78].

Figure 6.7 shows the re-scaled spectrum of the tri-critical Ising model with
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Virasoro Label Conformal Weight Representations of Boundary Fields

(1, 1) 0 (1, 1)

(2, 1) 7
16

(1, 1), (3, 1)

(2, 2) 3
80

(1, 1), (3, 2), (3, 3), (3, 1)

(3, 1) 3
2

(1, 1)

(3, 2) 3
5

(1, 1), (3, 2)

(3, 3) 1
10

(1, 1), (3, 2)

Table 6.2: The representations of conformal boundary conditions in the tri-critical

Ising model and the fields living on those boundaries.

boundary conditions (1, 1) on the left and (3, 2) on the right. The model is per-

turbed by the field φ3,2 on the right boundary and we plot the scaled spectrum

Fi =
Ei − E0

E1 − E0

(6.2.2)

for λR ∈ (−1, 1). This plot clearly shows the spectrum of the model given by the

character χ(3,2) at λR = 0 and flowing to the characters χ(3,1) for λR > 0 and χ(3,3)

for λR < 0. We note here that as observed in [32] and [76] the TCSA spectrum

extends beyond the IR fixed point in a sequence of flows that was first found in [54]

and also observed in [35] and [22].

Similar behaviour is observed when perturbing any of the boundary conditions

by any of the boundary fields listed in table 6.2.

6.2.3 Two Point Functions in Perturbed Minimal Models

Now that we are confident in our TCSA algorithms we will outline a method for

attempting to use TCSA to approximate two point functions in perturbed minimal

models with boundaries.

As we are able to accurately approximate the eigenvalues of the Hamiltonians

of these perturbed minimal models it may be possible to use the corresponding

eigenvectors to approximate the identity operator:

1 =
∑
n

|En〉〈En| (6.2.3)
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Figure 6.7: The re-scaled spectrum of the tri-critical Ising model with ((1, 1), (3, 2))

boundary conditions perturbed by (3, 2) for different values of the perturbation

parameter λR.

where |En〉 are the eigenstates of H, with eigenvalues En respectively, and are nor-

malised such that 〈Ei|Ej〉 = δij. As we have already shown that in certain cir-

cumstances TCSA does a good job of approximating the ground state, so it is not

unreasonable to suppose that the TCSA will provide a good approximation of sev-

eral other low energy eigenstates of the model. With these approximate eigenstates

we have an approximation of the identity,

1
(N) =

k∑
n=0

|En〉(N) (N)〈En| (6.2.4)

where |En〉(N) is the TCSA approximation, with truncation level N , of the eigen-

vector |En〉. Only the first k eigenvectors should be included, where k is less than

the total number of states used since it is not reasonable to expect the TCSA ap-

proximation of the highest energy eigenstates approximated to be accurate. This

approximation of the identity can be inserted between the fields in a two point
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correlation function to give

〈φi(x1, y1)φj(x2, y2)〉 =〈0|φi(x1, y1)1φj(x2, y2)|0〉

'(N)〈0|φi(x1, y1)1(N)φj(x2, y2)|0〉(N)

=
k∑

n=0

(N)〈0|φi(x1, y1)|En〉(N)(N)〈En|φj(x2, y2)|0〉(N)

(6.2.5)

Our task is now reduced to evaluating the matrix elements

N〈0|φi(x, y)|En〉 (6.2.6)

which can be reduced to calculating matrix elements of the form

〈0|φi(x, y)L−n1L−n2 · · ·L−nm|φj〉 (6.2.7)

which can in turn be evaluated using the commutation relations (5.1.14) and (5.1.17)

as shown in appendix B.2. Using this approach we may be able to approximate two

point functions in these perturbed conformal field theories.

No results are presented here as the author has not yet implemented this method

or compiled any results to compare the TCSA calculations to. There are also several

possible areas of complication and ways the TCSA method can be improved which

should be examined before any results are presented. This is discussed in the next

section.



Chapter 7

Discussion

So far in this part we have developed a TCSA algorithm, applied it to the scaling

Lee-Yang and the tri-critical Ising models and achieved results consistent with those

obtained by other works on TCSA and with results from different methods. This in-

cludes calculating one point functions in bulk models and observing renormalisation

group flows in perturbed boundary models.

The author has, however, not yet attempted to calculate two point correlation

functions using the TCSA method as outlined in section 6.2.3. The results of such

calculations could then be compared to the results of [70] where two point spin-spin

functions of the Ising model with a boundary were calculated using form factors. If

this consistency check were passed we could hope to use the TCSA method to obtain

information about spin-spin functions close to the boundary and also approximate

two point functions in other perturbed conformal field theories.

As mentioned in the previous section there are some recent advances in TCSA

and some possible areas of complication which need to be explored in greater detail

before we attempt to approximate two point functions in general perturbed minimal

models.

The first of these issues, as noted in [53], is that the Hilbert space may divide into

several sectors and the eigenvalues in each sector may differ by unphysical amounts.

This problem was addressed for bulk TCSA in [39] where formula to calculate the

rescaling of energy levels are derived and found to be different in these different

sectors. This rescaling must be taken into account when constructing the resolution
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of the identity (6.2.4) as it will contain states from many sectors of the theory.

It should also be noted that when the weight of the perturbing field is greater

than 1/2 the TCSA eigenvalues become divergent [48] and so TCSA results from

these perturbations are unreliable. An expression for this divergence was found in

[39] and would need to be accounted for in order to make our methods as widely

applicable as possible.

Improvements to the TCSA approximations for the energy levels can also be

obtained from an analysis of the renormalisation group flows in both the bulk [39]

and boundary [78] cases. This would allow us to calculate more accurate estimates of

quantities without increasing the truncation level, something which rapidly increases

the time needed to complete the calculations.



Chapter 8

General Conclusion

This thesis has explored correlation functions in two-dimensional conformal field

theories in two distinct ways. In part I two point functions of twist fields in the

Dirac theory were calculated directly from the Ward identities of a double copy

model. These Ward identities were first found in the conformal limit of the Dirac

theory and then carried over to the massive case where, in order to verify their

applicability we had to consider a new family of descendent twist fields. When

considering this family of fermionic twist fields a new method for evaluating the

vacuum expectation values of the primary twist fields was developed. It would be

interesting to investigate whether the techniques developed to calculate the form

factors of the descendent twist fields and vacuum expectation values of primary

twist fields have applications to twist fields with more general symmetry groups.

The generality of the quantum state considered also suggests that the method used

to calculated differential equations for the correlation functions of twist fields could

be applied at finite temperature. It may also be possible to apply the methods used

to calculate the constant cα in conjunction with finite temperature form factors to

calculate the vacuum expectation values of twist fields at finite temperature. All of

these open problems would provide interesting avenues of research.

In part II the truncated conformal space approach was introduced as a method

for approximating quantities in perturbed conformal field theories. After introduc-

ing the relevant concepts from conformal field theory a truncated conformal space

approach algorithm was developed and used to reproduce known results in both
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bulk and boundary conformal field theories. These results could be improved by

applying recent results regarding the renormalisation group flows of the coupling

constant and it would be best to impliment these changes before attempting any

further calculations. The aim of this part was to use the truncated conformal space

approach to approximate two point functions in perturbed conformal field theories

by constructing an approximation of the identity operator which could then be in-

serted between the fields in the two point function. By evaluating all the terms in

this sum we would obtain an approximation of the two point function which could

be compared with existing results. It would be interesting to see if this approach

does indeed provide a good approximation of two point functions in these perturbed

conformal field theories.
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Appendix A

Twist Fields in the Absence of

Space Time Symmetries

As mentioned in section 3.1 it is possible write down differential equations relating

correlation functions of certain twist fields in the absence of translation and parity

symmetry. These equations come from the Ward identities (3.2.26) but the lack

of symmetries requires different notation as we cannot apply the simplifications of

section 3.2.2. For this reason we introduce the notation

F γ,δ
α,β(x1, y1, x2, y2) := 〈σα,β(x1, y1)σγ,δ(x2, y2)〉 (A.0.1)

and first note that the lack of translation symmetry prevents us from always placing

the second field at (0, 0), so the correlation functions must remain functions of four

variables. It should also be noted that

F β,β
α,α (x1, y1, x2, y2) = 〈σα,α(x1, y1)σβ,β(x2, y2)〉 = 〈σβ,β(x2, y2)σα,α(x1, y1)〉

6= Fα,α
β,β (x1, y1, x2, y2) (A.0.2)

and so the Ward identities do not simplify as much as they did in chapter 3.

To ease our notation the dependence on (x1, y1, x2, y2) will be implicit in all F γ,δ
α,β,

as operators at (x1, y1) will always be placed to the left of those at (x2, y2). We also

introduce the symmetric, bilinear differential operator

Di,j(u, v) = u∂i∂̄jv + v∂i∂̄ju− ∂iu∂̄jv − ∂̄ju∂iv (A.0.3)

105



A.1. Equations for Correlation Functions Without Symmetries 106

where zj = −i
2

(xj + iyj) and

∂i =
∂

∂zi
and ∂̄i =

∂

∂z̄i
. (A.0.4)

A.1 Equations for Correlation Functions Without

Symmetries

Now starting from the Ward identities

〈[Z, σΨ
α,α(x1, y1)σΦ

α+1,α+1(x1, y1)σΨ
α+1,α(x2, y2)σΦ

α,α+1(x2, y2)]〉 = 0 (A.1.5a)

〈[Z, [P, σΨ
α,α(x1, y1)σΦ

α+1,α+1(x1, y1)]σΨ
α+1,α(x2, y2)σΦ

α,α+1(x2, y2)]〉 = 0 (A.1.5b)

〈[Z, [P̄ , σΨ
α,α(x1, y1)σΦ

α+1,α+1(x1, y1)]σΨ
α+1,α(x2, y2)σΦ

α,α+1(x2, y2)]〉 = 0 (A.1.5c)

〈[Z, [P, [P̄ , σΨ
α,α(x1, y1)σΦ

α+1,α+1(x1, y1)]]σΨ
α,α+1(x2, y2)σΦ

α+1,α(x2, y2)]〉 = 0 (A.1.5d)

〈[Z, [P, σΨ
α,α(x1, y1)σΦ

α+1,α+1(x1, y1)][P̄ , σΨ
α,α+1(x2, y2)σΦ

α+1,α(x2, y2)]]〉 = 0 (A.1.5e)

we find that

Fα+1,α
α,α+1F

α,α+1
α+1,α − Fα+1,α+1

α,α Fα,α
α+1,α+1 + Fα,α

α,αF
α+1,α+1
α+1,α+1 = 0 (A.1.6a)

∂z1F
α+1,α
α,α+1F

α,α+1
α+1,α − F

α+1,α
α,α+1 ∂z1F

α,α+1
α+1,α + ∂z1F

α+1,α+1
α,α Fα,α

α+1,α+1 − Fα+1,α+1
α,α ∂z1F

α,α
α+1,α+1

− ∂z1Fα,α
α,αF

α+1,α+1
α+1,α+1 + Fα,α

α,α ∂z1F
α+1,α+1
α+1,α+1 = 0 (A.1.6b)

∂̄z1F
α+1,α
α,α+1F

α,α+1
α+1,α − F

α+1,α
α,α+1 ∂̄z1F

α,α+1
α+1,α + ∂̄z1F

α,α
α+1,α+1F

α+1,α+1
α,α − Fα,α

α+1,α+1∂̄z1F
α+1,α+1
α,α

− ∂̄z1F
α+1,α+1
α+1,α+1F

α,α
α,α + Fα+1,α+1

α+1,α+1 ∂̄z1F
α,α
α,α = 0 (A.1.6c)

D1,1(Fα,α+1
α+1,α , F

α+1,α
α,α+1 )−m2Fα,α+1

α+1,αF
α+1,α
α,α+1

−D1,1(Fα,α
α,α , F

α+1,α+1
α+1,α+1 ) +D1,1(Fα+1,α+1

α,α , Fα,α
α+1,α+1) = 0 (A.1.6d)

D1,2(Fα+1,α
α,α+1 , F

α,α+1
α+1,α )−D1,2(Fα,α

α,α , F
α+1,α+1
α+1,α+1 )−D1,2(Fα+1,α+1

α,α , Fα,α
α+1,α+1) = 0. (A.1.6e)

It should be noted that this system is under defined as there are 6 independent

functions, each of two variables, and only 5 equations. It is possible to find more

Ward identities leading to non-trivial relations between the correlation functions
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but as no integrable structure has been identified in these equations we only include

the above equations for completeness. These equations can also be generalised to

relate correlation functions of twist operators with different twist indices but this

only introduces more functions and so this system is even more under determined.



Appendix B

TCSA Algorithm

All the TCSA calculations were performed with Mathematica and the algorithms fol-

low the general structure of [80] and [52]. The basic structure of all the programmes

is outlined in section 6.1 and can be roughly broken down into the following steps:

• The model is entered and all structure constants are calculated and relevant

fields found.

• A basis for the conformal holomorphic states is found.

• In the case of periodic boundary conditions a basis of full, holomorphic and

anti-holomorphic states is found.

• The Hamiltonian is calculated and any further calculations performed.

These steps hide some technical computations, the more involved of which are the

subject of this appendix.

After a model is chosen the necessary structure constants are calculated using

the formulae set out in sections 5.1.2 and 5.2.3. If boundary conditions are involved

the irreducible representations present in the model are found using the Verlinde

formula set out in section 5.2.2. Finding a basis of states for the model is the next

challenge and is discussed in section B.1. Calculating the matrix elements as in

(6.1.5),

Mij = 〈ψi|φp(0, 0)|ψj〉, (B.0.1)
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and their boundary equivalent, is the subject of section B.2. The final generic step

involves constructing the Hamiltonian and this is discussed in section B.3. The

output of this operation may then be manipulated and used to calculate various

quantities as seen throughout chapter 6.

B.1 Basis of States

Once the minimal model under consideration had been defined the irreducible rep-

resentations present can be easily identified using the methods of sections 5.1.2 and

5.2.2. Our task is to develop an algorithm to find a basis of states for each irreducible

representation up to the cutoff level.

For a generic module with highest weight hr,s we begin by calculating the gen-

erating function χ(r,s)(x), (5.1.24), as the coefficients of this polynomial give the

number of linearly independent states present at each level.

When calculating a basis of states at level N we first generate a list of all the

possible states at this level, which is simply all the positive integer partitions of N .

We first take the state

L−N |φ(r,s)〉 (B.1.2)

and calculate its norm. If this is non-zero we have the first state of our basis.

We next select another state from our list, L−m1L−m2|φ(r,s)〉 say, and calculate

the matrix of inner products of this state with the first, (B.1.2). If the states are

not linearly independent then this matrix will have determinant 0 and we discard

the state L−m1L−m2|φ(r,s)〉, otherwise, we add this state to our basis.

This process of selecting a state, calculating the matrix of inner products of

everything already in our basis plus the new state, calculating its determinant and

checking whether it vanishes is repeated until we have found the required number

of states.

The procedure outlined here is repeated for every level up to the cutoff N , for

every irreducible representation in the model to create a basis for all the holomorphic

states below level N . In the case of boundary theories these are all the states we

need to perform further calculations but in the periodic case we must combine
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the holomorphic and anti-holomorphic states to give full states with the required

spin. This is easily accomplished as the anti-holomorphic states are just copies of

the holomorphic ones so constructing full states is just a matter of ensuring that

holomorphic and anti-holomorphic components have appropriate levels.

B.2 Matrix Element Calculation

The subject of this section is the calculation of the matrix elements Mij. As in the

previous section only the holomorphic case will be discussed as the anti-holomorphic

case is identical. It is also worth noting that it does not matter whether the field φp

is a bulk field in the periodic model, as is the case in (B.0.1), or a boundary field,

as this will only alter the structure constant used in the final stage.

The evaluation of these matrix elements is simply a repeated application of the

commutation relation

[Ln − L0, φp(0, 0)] = nhpφ(0, 0) (B.2.3)

which follows simply from (5.1.14) and (5.1.17). Focusing on the holomorphic com-

ponents only we let

|ψi〉 = L−n1L−n2 · · ·L−nk |φi〉 and |ψj〉 = L−m1L−m2 · · ·L−ml |φj〉. (B.2.4)

We now see it is possible to use the commutation rule (B.2.3) to write:

〈φi|Lnk · · ·Ln2Ln1φp(0, 0)|ψj〉 = 〈φi|Lnk · · ·Ln2 ( nhpφp(0, 0) + φp(0, 0)Ln1

+ L0φp(0, 0)− φp(0, 0)L0 ) |ψj〉. (B.2.5)

The first term is already better as contains has one less Virasoro generator. The

final two terms can be similarly reduced as |ψj〉 and 〈φi|Lnk · · ·Ln2 are eigenvectors

of L0 and it is very easy to calculate their eigenvalues. This just leaves the term

〈φi|Lnk · · ·Ln2φp(0, 0)Ln1|ψj〉. (B.2.6)

The level of the state on the right hand side is lower than that of |ψj〉 and we may

commute Ln1 through all the Virasoro generators in |ψj〉 to leave states at a lower
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level. In this way all the Virasoro generators on the left hand side of (B.2.5) can be

commuted to the right, reducing the matrix element (B.0.1) to a sum over terms of

the form

〈φi|φp(0, 0)|ψh〉 = 〈φi|φp(0, 0)L−m′1L−m′2 · · ·L−m′l′ |φk〉. (B.2.7)

We can now use the same commutation relation (B.2.3) to further reduce this ex-

pression:

〈φi|φp(0, 0)L−m′1L−m′2 · · ·L−m′l′ |φk〉 = 〈φi| ( L−m′1φp(0, 0)− L0φp(0, 0)

+ φp(0, 0)L0 − nhpφp(0, 0) )L−m′2 · · ·L−m′l′ |φk〉. (B.2.8)

Here the first term vanishes as the Virasoro generator annihilates the out state.

As before the terms involving L0 are simply reduced as 〈φi| and L−m′2 · · ·L−m′l′ |φk〉

are again eigenvectors of this operator and the final term already contains one less

Virasoro generator. Thus with repeated application we may reduce (B.2.8) to a sum

of terms which only involve the matrix element

〈φi|φp(0, 0)|φj〉 (B.2.9)

and this constant can be evaluated using the formulae discussed in section 5.1.2

for the periodic case, or 5.2.2 for the boundary case. Using this method we can

construct the full matrix Mij.

We also note that the calculation of the CFT matrix elements is very straight

forward as all the states of our basis are eigenvectors of HCFT and so the calculation

of the matrix of the unperturbed part of the Hamiltonian, HCFT
ij , is simple.

B.3 Constructing the Hamiltonian

In this section we make some comments regarding the final construction and diago-

nalisation of the Hamiltonian. The Hamiltonian is constructed by adding together

the matrices HCFT
ij and Mij, both multiplied by the appropriate factors of R and

π depending on the model and perturbation under consideration, to give Hij. We

now note that the Hamiltonian we wish to examine has one covariant and one con-

travariant index, while Hij has two covariant indices. Thus we must multiply this
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matrix by the inverse metric gij, where gij is the matrix of inner products of the

basis vectors, to obtain the final TCSA approximation for the Hamiltonian:

H i
j = gikHkj. (B.3.10)

This operation is necessary as the basis vectors chosen in section B.1 are not or-

thonormal.

It is the eigenvalues of H i
j that give the TCSA approximation for the spectrum

of the model and these are then used in any subsequent calculations.


