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Abstract

Two main results are proved. The first is for the maximal graph system in semi-

Euclidean spaces. Existence of smooth solutions to the Dirichlet problem is proved,

under certain assumptions on the boundary data. These assumptions allow the

application of standard elliptic PDE methods by providing sufficiently strong a priori

gradient estimates. The second result is a version of Brian White’s local regularity

theorem, but now for the spacelike mean curvature flow system in semi-Euclidean

spaces. This is proved using a version of Huisken’s monotonicity formula. Under the

assumption of a suitable gradient bound, this theorem will give a priori estimates

that allow such flows to be smoothly extended locally.
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Chapter 1

Introduction

This chapter provides a quick introduction to minimal and maximal graphs, and

to mean curvature flows. To avoid wasting too much time on preliminary material,

some knowledge of partial differential equations (PDEs) and semi-Riemannian mani-

folds is assumed. The relevant definitions and facts (for PDEs and semi-Riemannian

geometry) are given in the appendix, where they will not be a distraction.

1.1 Minimal and Maximal Graphs

A semi-Riemannian manifold is a pair (M, g), where M is a smooth manifold and g

is a metric tensor defined on M . The most obvious examples are the semi-Euclidean

spaces R
m+n
n = (Rm+n, ḡ) with metric

ḡ =
m∑

i=1

dxi ⊗ dxi −
m+n∑

γ=m+1

dxγ ⊗ dxγ .

When n = 1 and m ≥ 2, these are just the well-known Minkowski spaces from Rel-

ativity. When n = 0, they are just the Euclidean spaces R
m with the usual metric.

If we have a submanifold M of some semi-Euclidean space R
m+n
n then we can

take the induced metric g on M in the usual way. If the induced metric is positive

definite then we say that M is spacelike, since all tangent vectors will be spacelike in

R
m+n
n . Taking the Levi-Civita connections ∇̄ and ∇ on R

m+n
n and M (respectively),

we define the second fundamental form by B(V,W ) = ∇̄V W −∇V W for any pair of

1



1.1. Minimal and Maximal Graphs 2

tangent vector fields V,W on M . Taking the trace of B with respect to the induced

metric gives a normal vector field, H = tracegB, on M called the mean curvature.

Definition 1.1.1. An m-dimensional, spacelike submanifold of a semi-Euclidean

space R
m+n
n (Euclidean space R

m+n) is called a maximal submanifold (minimal

submanifold) if it has mean curvature zero everywhere.

We will consider submanifolds that can be written as graphs,

M = {(x, u(x)) | x ∈ Ω}

for some smooth function u : Ω → R
n and some domain Ω in R

m. Since ∂/∂xi =

(ei, ∂u/∂xi), the induced metric on M will be given by the matrix g(Du) = I +

DuT Du in R
m+n or g(Du) = I −DuT Du in R

m+n
n , where I is the m ×m identity

matrix.1

Given a system of PDEs, a domain and a function defined on its boundary, a

Dirichlet problem is the question of whether there exists a solution to the system, in

this domain, with the given boundary values. For example, the problems of proving

existence of minimal or maximal graphs with a given boundary. These problems are

interesting for many reasons. For example, they are related to a variational problem

for the volume functional, Vol[u] =
∫

Ω

√

det g(Du)dx. Differentiating this functional

(to get its Euler system) shows that solutions of ∆Mu = 0 will be critical points,

where ∆M is the induced Laplace operator on the graph of u. But ∆M(x, u(x)) gives

the mean curvature vector (by Proposition A.1.1), and therefore mean curvature

zero graphs are critical points. By differentiating further (to check the Legendre-

Hadamard condition), we see that the minimal/maximal graph Dirichlet problem

is related to the problem of minimizing/maximizing the volume among all graphs

with the given boundary.2

1We consider R
m with the standard basis of unit vectors ei and with coordinates denoted by

xi. We denote by gij = δij± (∂uγ/∂xi)(∂uγ/∂xj) the components of g, and by gij the components

of its inverse. We always use the summation convention over repeated indices i, j, . . . ∈ {1, . . . ,m}
and γ, ν, . . . ∈ {m + 1, . . . ,m + n}.

2See [4] or [3] for more on variational problems, and in particular for an explanation of Euler

systems and the Legendre-Hadamard condition.
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Problem 1.1.1. Suppose that we are given a bounded domain Ω in R
m and a func-

tion φ : ∂Ω→ R
n on its boundary. Does there exist a function u : Ω̄→ R

n, smooth

in Ω and continuous on Ω̄, such that u = φ on ∂Ω and the graph of u over Ω is a

maximal submanifold of R
m+n
n (or minimal submanifold of R

m+n)?

This is just a Dirichlet problem for the mean curvature zero system. We will see

later (equation (2.1) and the comment that follows it) that the mean curvature zero

system for graphs is equivalent to

gij(Du)
∂2u

∂xi∂xj
= 0,

which is a second order system of PDEs. The system is elliptic since the coefficient

matrix gij is positive definite, and it is quasilinear since gij depends on Du. This

will be the system that we actually deal with.

In the case of minimal graphs with any dimension m ≥ 2 and codimension n = 1

in R
m+n, this problem involves a single equation. It is dealt with by standard el-

liptic methods (as seen in [10]). Jenkins and Serrin proved in [8] that if ∂Ω and φ

are smooth, and if ∂Ω has non-negative mean curvature, then the minimal graph

system has a unique smooth solution with the given domain and boundary data.

Roughly, the assumption on the boundary gives an a priori gradient estimate and

then higher order estimates come from the De Giorgi-Nash theorem. These allow

the application of Schauder fixed point theorem (see chapter 11 of [10], or Theorem

B.2.5 in the appendix here) to get existence of a solution.

Still considering the minimal graph problem, when n > 1 the problem becomes

more difficult since the standard estimates available for single equations do not hold

for systems. In [19], Lawson and Osserman give an example which shows that this

problem is sometimes not solvable when n ≥ 4, even for very ‘nice’ domains and

boundary data. Most importantly, this tells us that it will not be possible to get a

very general existence theorem as we have in the codimension 1 case.

Some examples of existence theorems for higher codimension minimal graphs can
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be seen in [19], [20] and [23]. Theorem 4.2 of [20] uses the inverse function theorem

to prove the existence of solutions to the Dirichlet problem whenever the C2,α norm

of the boundary data is less than some constant (but this method gives us no idea

of how small the constant actually is). The main result claimed in [23] is more

interesting. It roughly says that a solution exists if the domain is convex and if the

C2 norm of the boundary data is bounded by some known constant. This is proved

by showing that a solution to the mean curvature flow system, with boundary values

given by φ, exists on Ω× (0,∞) and converges to a minimal graph.

For maximal graphs with codimension 1 in Minkowski space R
m+1
1 , we again

only have a single equation. Therefore, if we can get an a priori gradient estimate

stronger than the spacelike condition, we can again use Schauder fixed point theo-

rem in the usual way by applying the standard higher order estimates. This problem

was first dealt with by Flaherty in [6], by using boundary conditions similar to those

used in the minimal graph case (as in [8]). A more general existence theorem was

then proved in [2] by Bartnik and Simon (in fact, they even consider the problem of

prescribed non-constant mean curvature).

For the maximal graph problem with higher codimension n ≥ 2 in R
m+n
n , very

little is known. This is the case that we will consider. Unlike the higher codimension

existence theorems mentioned above (in the Euclidean case), we will use standard

elliptic methods by proving a suitable gradient estimate. However, we will have to

deal with the fact that the higher order estimates that hold for single equations

do not necessarily hold for systems. For this reason, we will only prove existence

theorems either in the case of graphs with dimension m = 2, or for m ≥ 2 when the

gradient estimate is sufficiently strong. We can state our main results (Theorems

2.3.1 and 2.4.1) roughly as:

Claim 1.1.1. Suppose that we are given a smooth, bounded and convex domain in

R
m, and a smooth function φ from the closure of this domain into R

n. If the C2

norm of φ is small enough, then there will exist a smooth maximal graph in R
m+n
n ,

over the given domain, with boundary values given by φ.
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1.2 Mean Curvature Flow

Here we are interested in families of submanifolds that evolve with velocity equal

to their mean curvature vector at each point, in either Euclidean or semi-Euclidean

spaces. In the case of semi-Euclidean spaces, we will continue to assume that the

submanifolds are spacelike.

Definition 1.2.1. Let {Mt}t∈I be a family of smoothly embedded, spacelike, m-

dimensional submanifolds Mt of R
m+n
n (or R

m+n), for some interval I ⊂ R. For

each time t ∈ I, let H(x, t) be the mean curvature vector at each point x ∈Mt. Then

this family is called a mean curvature flow if it satisfies the system ∂x/∂t = H(x, t).

These flows are closely related to minimal and maximal submanifolds, which are

clearly stationary solutions of this system. If each manifold in the flow is a graph

over a domain Ω in R
m,

Mt = {(x, u(x, t)) | x ∈ Ω}

for some smooth u : Ω× I → R
n, then the mean curvature flow condition becomes a

more useful second order, parabolic (again since gij is positive definite), quasilinear

system of PDEs for u,
∂u

∂t
= gij(Du)

∂2u

∂xi∂xj

where g = I ±DuT Du. This is proved later in Theorem 3.3.1.

For mean curvature flow problems, the usual goal is to prove long time existence.

In other words, we want a solution on the full time interval (0,∞). For an example,

see the proof of the main theorem in [23]. The idea is to split the problem up into

shorter steps. The first is short time existence of a solution, on some small time

interval (0, T ). This is usually proved by using Schauder fixed point theorem and

standard methods for parabolic equations (see the proof of Theorem 8.2 of [18], or

Theorem B.3.4 here). The next step, and usually the most interesting, is to extend

the flow smoothly to the interval (0, T ]. This is done by obtaining certain a priori

estimates (we will explain in more detail soon). The last step is to extend the flow

past time T , by applying the short time existence result again but now starting from
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the solution at time T . If each of these steps can be successfully completed, then

they combine to tell us that the interval of existence of our solution is both open

and closed in (0,∞), and therefore we will have long time existence. (For example,

see [20] for a more detailed explanation of these steps.)

As mentioned above, the most interesting step is usually proving that the flow

can be extended. We will therefore concentrate on this problem.

Problem 1.2.1. Given a graphic mean curvature flow, in R
m+n or R

m+n
n , which

exists smoothly (and is spacelike in the semi-Euclidean case) on some time interval

(0, T ), can we extend the flow smoothly to (0, T ]?

To attempt to answer this question, we need certain estimates. For example,

Theorem 3.24 of [5] explains how local estimates (near some point in space) on the

second fundamental form of a mean curvature flow will allow a smooth extension of

the flow (in a neighbourhood of the point) to the time T . This theorem is proved for

flows in Euclidean spaces, but also applies in semi-Euclidean spaces. It would also

be enough to get certain Hölder estimates on the derivatives of the flow (compare

to Theorem 8.3 of [18]).

In the Euclidean case, White’s regularity theorem (see Theorem 3.5 of [24] or

Theorem 5.6 of [5]) answers this question whenever we can prove that a quantity

called the Gaussian density is close enough to 1 at time T . For spacetime points

(y, s) ∈ R
m+n × (0, T ], the Gaussian density of a mean curvature flow is given by

lim
t→s

∫

x∈Mt

1

(4π(s− t))m/2
exp

(

−|x− y|2
4(s− t)

)

dx,

where the integrals are taken with respect to the induced metric on each Mt for

times t < s. White’s theorem says that there exists ǫ > 0 such that the second

fundamental form (or C2,α norm) of the flow will be bounded in a neighbourhood of

any spacetime point where the limit above is less than 1+ ǫ. At such a point (y, T ),

we then have the estimates needed to extend to time T locally near y.
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Our goal will be to prove a semi-Euclidean version of White’s theorem, which

would allow us to deal with the problem of smoothly extending spacelike flows. Our

main result (Theorem 3.6.2) will be:

Claim 1.2.1. If we have a graphic mean curvature flow in a semi-Euclidean space,

smooth on (0, T ) and satisfying a uniform gradient bound stronger than the spacelike

condition, then we can extend the flow smoothly to time T .

The idea is to define a version of the Gaussian density for spacelike flows, prove

a version of White’s theorem, and then use the gradient bound to show that the

regularity theorem can be applied to extend the flow. We will also give an example

of boundary assumptions which give the required gradient estimate.



Chapter 2

The Maximal Graph Dirichlet

Problem

In this chapter, we will consider the maximal graph Dirichlet problem for higher

codimension in semi-Euclidean spaces R
m+n
n . We prove a gradient estimate for m-

dimensional maximal graphs in R
m+n
n (where m ≥ 2 and n > 1), under certain

assumptions on the domain and boundary data. We use this estimate to prove

existence theorems, first in the case of graphs with dimension m = 2, and then in

the case m ≥ 2 when the gradient estimate is strong enough.

2.1 Preliminaries

For integers m ≥ 2, n ≥ 1 we will, as usual, denote by R
m+n
n = (Rm+n, 〈·, ·〉) the

semi-Euclidean space with metric tensor 〈v, w〉 =
∑m

i=1 viwi −∑m+n
γ=m+1 vγwγ. We

will consider submanifolds that can be written as graphs over a domain Ω in R
m,

M = {(x, u(x)) ∈ R
m+n
n | x ∈ Ω}

for some smooth u : Ω→ R
n. The induced metric on the graph will be given by the

matrix g = I −DuT Du.

It will be convenient for us to use the following norms for the maps Du(x) :

8
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R
m → R

n and D2u(x) : R
m × R

m → R
n,

|||Du|||(x) = sup
|v|=1

|Du(x)(v)| and |||D2u|||(x) = sup
|v|=1

|D2u(x)(v, v)|,

where | · | denotes the usual Euclidean norm. It is possible to show that |||Du|||2

will be equal to the largest eigenvalue of DuT Du at each point, and that |||Du||| ≤
|Du| ≤ √m|||Du|||. Using the obvious relationship between |||Du||| and the eigen-

values of g, we see that the graph will be spacelike if and only if |||Du||| < 1, and

that (for any 0 < C < 1)1

√

det g ≥ C ⇒ |||Du|||2 ≤ 1− C2,

|||Du|||2 ≤ C ⇒
√

det g ≥ (1− C)m/2.

Using Proposition A.1.1, the mean curvature vector of a graph is

H =
1√

det g

∂

∂xi

(
√

det ggij ∂

∂xj
(x, u(x))

)

=
1√

det g

∂

∂xi

(√

det ggij
) ∂

∂xj
(x, u(x)) + gij ∂2

∂xi∂xj
(x, u(x))

=
1√

det g

∂

∂xi

(√

det ggij
)(

ej,
∂u

∂xj

)

+

(

0, gij ∂2u

∂xi∂xj

)

. (2.1)

Since the mean curvature vector is normal to the graph, and the first term on the

right hand side is tangential, it is clear from this that the mean curvature vector is

zero if and only if2 gij(Du)∂2u/∂xi∂xj = 0. This is a quasilinear elliptic system of n

equations for u. Given a bounded domain Ω in R
m and boundary data φ : ∂Ω→ R

n,

we would therefore like to prove the existence of a smooth solution to the following

Dirichlet problem:

gij(Du)
∂2u

∂xi∂xj
= 0 and |||Du||| < 1 in Ω, u = φ on ∂Ω,

1To prove these inequalities, let λ2
i be the eigenvalues of DuT Du (which are all < 1 by the

spacelike condition), then 1 − λ2
i are the eigenvalues of g. If

√
det g ≥ C then

∏

i(1 − λ2
i ) ≥ C2,

so each (1 − λ2
i ) ≥ C2 and therefore |||Du|||2 ≤ 1 − C2. If |||Du|||2 ≤ C then each λ2

i ≤ C, so
√

det g =
∏

i(1− λ2
i )

1/2 ≥ (1− C)m/2.
2Here the ‘if’ direction is obvious. For the ‘only if’ direction, if H = 0 then equation (2.1)

implies that the vector v = (0, gij∂2u/∂xi∂xj) is a tangent vector and hence can be written as

v = vk(ek, ∂u/∂xk), which obviously implies that each vk = 0 and hence v = 0.
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where u is at least C2 in Ω and C0 on Ω̄. Of course, we will only be able to do this

under certain assumptions on the domain and boundary data. In particular, we will

look for solutions in Hölder spaces. For α ∈ (0, 1) we say that a function u : Ω→ R
n

lies in the Hölder space Ck,α(Ω̄; Rn) if and only if it is in Ck(Ω̄; Rn)3 and

||u||k,α = ||u||k + sup
x,y∈Ω̄
x 6=y

|Dku(x)−Dku(y)|
|x− y|α = ||u||k + [Dku]α

is finite. Here ||u||k =
∑k

i=0 supΩ |Dku| is the usual Ck norm. Note that, with the

norm || · ||k,α, the space Ck,α(Ω̄; Rn) will be a Banach space. We will sometimes just

call functions in these spaces Ck,α functions. Functions that are Ck,α on compact

subsets of a domain will be called locally Ck,α on the domain.

We will need the following fact, which uses the Leray-Schauder fixed point the-

orem to get existence of solutions to the Dirichlet problem under the assumption of

suitable a priori estimates.

Lemma 2.1.1. For some α ∈ (0, 1), let Ω be a bounded C2,α domain in R
m and let

φ ∈ C2,α(Ω̄; Rn). Suppose that there exist constants κ ∈ (0, 1) and C > 0 such that

supΩ |||Dφ|||2 ≤ 1− κ, and such that estimates

sup
Ω
|||Du|||2 < 1− κ and ||u||1,α ≤ C

hold whenever u ∈ C2,α(Ω̄; Rn) satisfies supΩ |||Du|||2 ≤ 1−κ and is a solution of the

maximal graph Dirichlet problem with u|∂Ω = σφ|∂Ω for some σ ∈ [0, 1]. Then there

exists u ∈ C2,α(Ω̄; Rn) which is a solution to the maximal graph Dirichlet problem

in R
m+n
n with boundary values u|∂Ω = φ|∂Ω.

Most of the details can be seen in Theorem 11.4 of [10]. The proof is slightly

more complicated here since gij(Dw) is only positive definite when the graph of w

is spacelike. This is why we need to define the set R, to avoid the non-spacelike

functions for which the map T would not make sense. Also unlike Theorem 11.4

of [10], we are considering a system here. So, when we apply the Schauder estimates

3Ck(Ω̄; Rn) denotes the set of functions u : Ω̄→ R
n with components uγ ∈ Ck(Ω̄).
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in this proof, we think of gij(Dw)∂2u/∂xi∂xj = 0 as a system of decoupled linear

equations (with Dw fixed in the coefficients) for the components uγ of u. The

Schauder estimates then give C2,α bounds on each uγ, which combine to give a C2,α

bound on u.

Proof. We let R = {u ∈ C1,α(Ω̄; Rn) | |||Du|||2 ≤ 1 − κ}, and we define maps

f : C1,α(Ω̄; Rn)→ R and T : R→ C1,α(Ω̄; Rn).

f(v) =







v if supΩ |||Dv|||2 ≤ 1− κ

(1− κ)1/2v/ supΩ |||Dv||| if supΩ |||Dv|||2 > 1− κ.

For any w ∈ R, we define T (w) to be the unique solution u to the system of n linear

Dirichlet problems given by

gij(Dw)
∂2u

∂xi∂xj
= 0 in Ω, u = φ on ∂Ω.

Since w ∈ R implies that the system is elliptic and that the coefficients gij(Du)

are C0,α functions,4 we know that such a solution must exist in C2,α(Ω̄; Rn) by the

existence theorem for linear equations (see Theorem B.2.3 here, or 6.14 of [10]).

We claim that T̃ = T ◦ f : C1,α(Ω̄; Rn) → C1,α(Ω̄; Rn) will be continuous and

compact (i.e. the images of bounded sets are precompact). The map f is continu-

ous5 and clearly maps bounded sets to bounded sets (with respect to the C1,α norm).

By the Schauder estimates (see Theorem B.2.2 here, or 6.6 of [10]), sets in R with

bounded C1,α norm are mapped by T to sets with bounded C2,α norm.6 But, by the

Arzela-Ascoli theorem,7 bounded sets in C2,α(Ω̄; Rn) are precompact (have compact

closure) in C2(Ω̄; Rn) and C1,α(Ω̄; Rn).

4p 7→ gij(p) is smooth and hence Lipschitz on {|||p|||2 ≤ 1−κ}, so gij(Dw) is C0,α if w is C1,α.
5When vJ → v in C1,α as J →∞, obviously supΩ |||DvJ ||| → supΩ |||Dv|||.
6The bound on the image depends only on ||φ||2,α and the C1,α bound on the subset of R. This

is because |uγ | = |T (w)γ | ≤ sup |φγ | by the maximum principle, and eigenvalues of gij are ≥ 1.
7This says that any uniformly bounded and uniformly equicontinuous sequence of functions

on Ω̄ has a uniformly convergent subsequence. A uniform C2,α bound gives uniform bounds and

equicontinuity on a sequence, and on the sequences of all first and second order derivatives. Arzela-

Ascoli then gives a subsequence for which all derivatives up to second order converge uniformly.
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Now we just need continuity of T , which we will prove exactly as in the proof

of Theorem 11.4 of [10]. Let vJ be a sequence in R converging to v with respect

to the C1,α norm as J → ∞. The sequence obviously must be bounded with

respect to the C1,α norm, so the set {T (vJ)} is precompact in C2(Ω; Rn), and

therefore any subsequence has a convergent subsequence. Let T (ṽJ) be such a

convergent subsequence, converging to some w in C2(Ω; Rn). Then by definition

of T we have 0 = gij(DṽJ)∂2(T (ṽJ))/∂xi∂xj, where gij(DṽJ)∂2(T (ṽJ))/∂xi∂xj →
gij(Dv)∂2w/∂xi∂xj by the C2 convergence. So gij(Dv)∂2w/∂xi∂xj = 0, and the

only possible limit is w = T (v). Therefore the sequence T (vJ) must converge to

T (v).

Now we need to make use of the estimates that we have assumed to exist.

Suppose that, for σ ∈ [0, 1], we have a fixed point v ∈ C1,α(Ω̄; Rn) of the map

σT̃ . We have two possible cases. First, if supΩ |||Dv|||2 > 1 − κ then we have

σT (v
√

1− κ/ supΩ |||Dv|||) = v, so w = v
√

1− κ/ supΩ |||Dv||| solves the maximal

graph Dirichlet problem with w = (σ
√

1− κ/ supΩ |||Dv|||)φ on the boundary. But

(σ
√

1− κ/ supΩ |||Dv|||) ∈ [0, 1], so the assumptions that we make here imply that

supΩ |||Dw|||2 < 1−κ, which contradicts the fact that supΩ |||Dw|||2 = 1−κ. There-

fore we only need to consider the case supΩ |||Dv|||2 ≤ 1−κ, where v will be a fixed

point of σT and will be a solution of the maximal graph Dirichlet problem with

boundary values σφ. Our assumptions now imply that ||v||1,α ≤ C.

We conclude that T̃ is a compact map from the Banach space C1,α(Ω̄; Rn) into

itself and, for any σ ∈ [0, 1], any fixed point v of σT̃ satisfies ||v||1,α ≤ C. Then

Theorem 11.3 of [10]8 tells us that T̃ has a fixed point. As explained above, but

now just taking σ = 1, this fixed point must have |||Du|||2 < 1 − κ. So it will be

a spacelike solution of the maximal graph Dirichlet problem with boundary values

given by φ.

8This is a version of the Schauder fixed point theorem. It states that if F is a continuous

compact map of a Banach space B to itself, and if there exists a constant C such that |x|B < C

for all x in B and σ ∈ [0, 1] with x = σFx, then F has a fixed point.
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It is important to note that any C2,α solution to a maximal graph Dirichlet prob-

lem (as given by the lemma) will be smooth on Ω̄ if the domain and boundary data

are both smooth. This is proved by induction using Theorem 6.19 of [10] (also see

B.2.4 in the appendix here), which says that if u is a Ck,α solution then the coeffi-

cients gij(Du) are Ck−1,α and therefore u must be Ck+1,α.9 We also note that any

solution with boundary data φ will have |u| uniformly bounded in terms of supΩ |φ|.
This follows directly from the elliptic maximum principle (see Theorem B.2.1).

The assumption on the gradient in Lemma 2.1.1 looks ugly, but we can quickly

give some examples where it holds. One example is the codimension n = 1 case,

where the gradient estimate from section 3 of [2] can be applied. But we are really

only interested in systems, so we give a more relevant example for dimension m = 2

and codimension n ≥ 2. Let Ω be a bounded domain in R
2 and let φ : ∂Ω → R

n,

but now assume also that each component φγ satisfies a bounded slope condition10

on ∂Ω with constant Kγ such that

∑

γ

K2
γ < 1− κ,

for some κ ∈ (0, 1). Then Lemma 12.6 of [10] says that, since φγ satisfies a bounded

slope condition with constant Kγ, we will have supΩ |Duγ| ≤ Kγ whenever uγ is a

solution of some linear elliptic equation in Ω with uγ = φγ on the boundary (which

will be true for any solution to the maximal graph Dirichlet problem). Combining

these estimates11 gives us supΩ |||Du|||2 < 1− κ. Obviously the same estimate will

hold for all spacelike maximal graphs over Ω with boundary values σφ for σ ∈ [0, 1],

thus providing a gradient estimate that we could use to apply Lemma 2.1.1.

9Instead of 6.19, we could have used Theorem 6.17 of [10] which says that a locally Ck,α solution

will be locally Ck+1,α. This can be used even when the domain and data are not smooth, but only

gives smoothness of solutions on the interior. Almost everything we do here could be repeated,

with very little extra work, using 6.17 with non-smooth domain/data.
10We define the curve Γ = {(z, φ(z)) | z ∈ ∂Ω} and we say that φ satisfies a bounded slope

condition with constant K if, ∀P ∈ Γ, there exist planes z 7→ (z, π±

P (z)) through P such that

π−

P (z) ≤ φ(z) ≤ π+
P (z) and |Dπ±

P | ≤ K for all z ∈ ∂Ω. (See section 12.4 of [10], or [11].)
11|||Du|||2 ≤ |Du|2 =

∑

γ |Duγ |2 ≤∑γ K2
γ < 1− κ.
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We will prove a more useful gradient estimate in the next section for any dimension

m ≥ 2 and any codimension n ≥ 1.

2.2 A Gradient Estimate

In this section, we will prove a gradient estimate for maximal graphs, using methods

from [23] (also see chapter 14 of [10]). Although we follow [23], there are a few dif-

ferences that should be pointed out. First, we are using an elliptic system, while the

gradient estimate in [23] is for a parabolic system. Therefore the assumption of a

gradient bound of the form |||Du|||2 ≤ 1−κ here seems strange, but it actually does

make sense given the form of Lemma 2.1.1. Secondly, the inequalities that we get for

maximal graphs are slightly different to the corresponding inequalities for minimal

graphs. In particular, the constant κ will appear in our inequalities in a different

way, affecting the estimates that we get and the assumptions that we need to make.

We therefore need to explain the details of each step here, to make sure that we get

the correct inequalities, even though the structure of the proof is the same as in [23].

Given some κ ∈ (0, 1), we will find conditions on the bounded domain Ω ⊂ R
m

and boundary data φ : Ω̄ → R
n such that any smooth solution to the correspond-

ing maximal graph Dirichlet problem with supΩ |||Du|||2 ≤ 1 − κ must satisfy

supΩ |||Du|||2 < 1 − κ. First we assume that Ω and φ are both C2, and that Ω

is convex.

Given such a solution u, we define a linear elliptic operator

L = gij(Du)
∂2

∂xi∂xj
.

Fixing any γ ∈ {m+1, . . . ,m+n} and any p ∈ ∂Ω, we define a function S : Ω̄→ R

by

S = ν log(1 + ζd)− (uγ − φγ),

where d(x) is the distance from any point x ∈ Ω̄ to the (m− 1)-dimensional hyper-
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plane tangent to ∂Ω in R
m at the boundary point p.12 The positive constants ν and

ζ will be chosen later.

∂2

∂xi∂xj
ν log(1− ζd) =

νζ

1 + ζd

∂2d

∂xi∂xj
− νζ2

(1 + ζd)2

∂d

∂xi

∂d

∂xj

and we already know that Lu = 0, and Ld = 0 since d is linear, so

LS =
−νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
+ Lφγ.

The assumed bound on the gradient tells us that the eigenvalues of g−1 are bounded

between 1 and 1/κ.13 It is also easy to calculate that |Dd| = 1. These two facts,

along with d(x) ≤ |x− p| ≤ diamΩ, give

νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
≥ νζ2

(1 + ζdiamΩ)2
.

By our choice of norm for D2φ,

|Lφγ| ≤ m

κ
|||D2φ|||.

If we assume
νζ2

(1 + ζdiamΩ)2
κ ≥ m|||D2φ|||, (2.2)

then LS ≤ 0, so we can apply the elliptic maximum principle to see that the infimum

of S occurs on the boundary. But it is clear that S ≥ 0 on the boundary (by the

Dirichlet condition), so we have S ≥ 0 on all of Ω and therefore ν log(1 + ζd) ≥
uγ − φγ. If we also define S ′ = ν log(1 + ζd) + (uγ − φγ), then we can repeat this to

get −ν log(1+ζd) ≤ uγ−φγ. This means that, at the point p, the normal derivative

of uγ satisfies
∣
∣
∣
∣

∂(uγ − φγ)

∂n

∣
∣
∣
∣

= |(Duγ −Dφγ) · n|

= lim
t→0

|[uγ(p + tn)− φγ(p + tn)]− [uγ(p)− φγ(p)]|
t

= lim
x→p

|uγ(x)− φγ(x)|
|p− x|

≤ lim
d(x)→0

ν log(1 + ζd(x))

d(x)
= ζν,

12If we denote by n a unit normal to ∂Ω at p, then we have d(x) = |n · (x− p)|.
13Since |||Du|||2 ≤ 1− κ, the eigenvalues of g = I −DuT Du are between κ and 1.
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where we have used the substitution x = p + tn and the fact that φ(p) = u(p).

We can assume that ∂uγ/∂n = 0 at p for all γ except γ = m + 1. We do this

by rotating the coordinates of R
n.14 Then we have |∂u/∂n| < ζν + |∂φ/∂n|. We

define, at p ∈ ∂Ω, |||D∂Ωu|||(p) = supv |||Du(p)v||| where we take the supremum

over unit vectors tangent to the boundary of Ω at p. Since u = φ on the boundary,

|||D∂Ωu|||(p) = |||D∂Ωφ|||(p), so we get

|||Du||| ≤
∣
∣
∣
∣

∂u

∂n

∣
∣
∣
∣
+ |||Du∂Ω||| ≤ νζ +

∣
∣
∣
∣

∂φ

∂n

∣
∣
∣
∣
+ |||D∂Ωφ||| ≤ νζ + 2|||Dφ|||

at the point p (and hence at any boundary point). To minimize νζ in such a way that

inequality (2.2) holds, we take ζ = 1/diamΩ and νζ = 4mdiamΩ supΩ |||D2φ|||/κ.15

With this choice of constants, we have the boundary estimate

sup
∂Ω
|||Du||| ≤ 4mdiamΩ

κ
sup

Ω
|||D2φ|||+ 2 sup

∂Ω
|||Dφ|||.

We can use this to get a gradient estimate on the full domain.

Proposition 2.2.1. Let Ω be a bounded, convex, C2 domain in R
m and let φ : Ω̄→

R
n be a C2 function. Assume, for some κ ∈ (0, 1), that φ satisfies

4mdiamΩ

κ
sup

Ω
|||D2φ|||+ 2 sup

∂Ω
|||Dφ||| <

√

1− κ1/m. (2.3)

If u is a smooth solution of the corresponding maximal graph Dirichlet problem in

R
m+n
n , and if supΩ |||Du|||2 ≤ 1− κ, then supΩ |||Du|||2 < 1− κ.

Proof. To get a gradient estimate on all of Ω̄, we use an inequality which follows

from inequality 4.6 of [16] (also see inequality (A.3) in the appendix here, taking

14By the choice of norm on Dφ and D2φ the assumptions on φ are preserved by this rotation,

which we denote by R (since, for example, |||Dφ||| involves DφT Dφ = DφT RT RDφ). The mean

curvature zero system is also preserved (since g = I −DuT Du = I −DuT RT RDu), so everything

seen so far still holds after rotating. We can rotate back (for the same reasons) when we have the

final gradient estimate.
15Defining f(ν, ζ) = νζ, we see that Df = (ζ, ν), which is never zero since ν, ζ > 0. By defining

g(ν, ζ) = νζ2−(m/κ) supΩ |||D2φ|||(1+ζdiamΩ)2, we use the usual Lagrange multiplier method to

see that, under the condition g = 0, the minimum of f occurs when λDf = Dg for some constant

λ. Solving the resulting equations for λ, ζ and ν, we get λ = ζ and exactly the ν and ζ given here.
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the time derivative to be zero),16

∆M log
√

det g ≤ 0.

Applying the maximum principle to this tells us that
√

det g ≥ inf∂Ω

√
det g on Ω.

If |||Du|||2 < 1 − κ1/m on ∂Ω then
√

κ < inf∂Ω

√
det g ≤

√
det g. This implies

that |||Du|||2 < 1 − κ on Ω. Now, since our boundary gradient estimate gives

|||Du|||2 < 1−κ1/m on ∂Ω whenever inequality (2.3) holds, this proves our claim.

2.3 An Existence Theorem in R
2+n
n

The previous section gives us a gradient estimate as required in Lemma 2.1.1, under

certain assumptions on the domain and boundary data. Now we need a suitable a

priori C1,α estimate. Since we are only interested in codimension n > 1, we have

a system of equations, and therefore the C1,α estimates used for single equations

are not available. However, in the case of 2-dimensional graphs in R
2+n
n , we can

make use of the strong a priori estimates that hold for linear elliptic equations in

two variables. In particular, we use the fact below, which follows directly from a

comment on page 304 of [10].

Lemma 2.3.1. Let Ω be a smooth, bounded domain in R
2. Let L = aij(x)∂2/∂xi∂xj

be a linear elliptic operator, where aij(x) is smooth on Ω with eigenvalues λ(x) ≤
Λ(x) such that Λ/λ ≤ η for some constant η. Let φ : Ω̄ → R be smooth. Suppose

that u is a C2 solution of Lu = 0 in Ω, and is C0 on Ω̄ with u = φ on ∂Ω. Then

there exist constants α,C > 0 such that u is C1,α on Ω̄ with ||u||1,α ≤ C. Here C

depends on Ω, ||φ||2 and η, while α depends on η and Ω.17

This is useful to us because it applies to linear equations, rather than quasilinear

equations. So we can again think of our system as a system of decoupled linear

16Note that the Laplace operator can be thought of as an elliptic operator on Ω by equation

(A.1), which implies that ∆Mf = gij∂2f/∂xi∂xj + (1/
√

det g)(∂(
√

det ggij)/∂xj)∂f/∂xi, where

gij is positive definite.
17If Lu = 0 in Ω with u = σφ on the boundary, for any σ ∈ (0, 1), then the linearity of L allows

us to apply this lemma to u/σ to see that ||u||1,α ≤ σC.
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equations (thinking of Du as being fixed in the coefficients), and then apply the

lemma to get estimates on each component of u. These combine to give an estimate

on u. Unfortunately, it seems unlikely that an analogue of this lemma would exist for

more than two variables (see chapter 12 of [10] for the proof and related comments).

Theorem 2.3.1. Let Ω be a smooth, convex and bounded domain in R
2. Let φ : Ω̄→

R
n be a smooth function satisfying inequality (2.3) with m = 2 and supΩ |||Dφ|||2 ≤

1 − κ for some κ ∈ (0, 1). Then there exists a smooth solution u to the maximal

graph Dirichlet problem in R
2+n
n with |||Du|||2 < 1− κ on Ω̄ and u = φ on ∂Ω.

Proof. If u is a C2,α (for any α ∈ (0, 1)) maximal graph with boundary values σφ

(for some σ ∈ [0, 1]) and supΩ |||Du|||2 ≤ 1− κ, then the gradient estimate from the

previous section gives supΩ |||Du|||2 < 1 − κ. The eigenvalues of gij are between 1

and 1/κ, so we can take η = 1/κ in Lemma 2.3.1 to get an a priori C1,α estimate on

such maximal graphs (with α = α(η, Ω) as in the lemma). This allows us to apply

Lemma 2.1.1 to prove the theorem.

The result claimed in the introduction, in the case of dimension m = 2, now

follows directly from this since the assumptions on φ in the above theorem will be

satisfied whenever the C2 norm of φ is small enough.

Corollary 2.3.1. Given a convex, smooth, bounded domain Ω in R
2 and any κ ∈

(0, 1), there will exist a smooth solution u : Ω̄→ R
n to the maximal graph Dirichlet

problem in R
2+n
n , satisfying |||Du|||2 < 1 − κ and u|∂Ω = φ|∂Ω, for any smooth

φ : Ω̄→ R
n with sufficiently small C2 norm.

Also note that, if we use the bounded slope condition mentioned in the first

section of this chapter, we can prove the following theorem.

Theorem 2.3.2. Let Ω be a bounded, smooth domain in R
2 and let φ : Ω̄ → R

n

be smooth with |||Dφ|||2 ≤ 1 − κ on Ω̄ for some κ ∈ (0, 1). Suppose that each φγ

satisfies a bounded slope condition with constant Kγ such that
∑

γ K2
γ < 1−κ. Then

there exists a smooth solution u to the maximal graph Dirichlet problem in R
2+n
n with

|||Du|||2 < 1− κ on Ω̄ and u = φ on ∂Ω.

Proof. As in Theorem 2.3.1, but now using the bounded slope condition to get the

gradient estimate.
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2.4 An Existence Theorem in R
m+n
n

Here we will prove C1,α estimates in the case of maximal graphs in R
m+n
n , of dimen-

sion m > 2 and codimension n ≥ 1, whenever we have a sufficiently strong gradient

estimate. These will then be used to prove an existence theorem for the Dirichlet

problem. As in the case of single quasilinear equations, we get such estimates by

reducing to the problem of finding estimates for supersolutions of linear equations

in divergence form. Similar methods can be seen in chapter 13 of [10], but these

results do not apply to systems. Since we are dealing with a system here, we will

need the assumption of an estimate on the gradient strong enough that we can

ignore certain terms in our inequalities. This will be made more clear later. Obvi-

ously, if our domain is convex and our boundary data has small enough C2 norm,

then the required gradient bound will exist (by the gradient estimate proved earlier).

It is important to note here that we will aim for a fast proof, rather than being

careful to get the best possible estimates or the most general results. It would be

possible to follow through the proofs given here more carefully, to weaken the as-

sumptions used (or possibly even to apply them to more general quasilinear systems,

under some structure conditions). However, given the form of the main theorem that

we hope to prove, this does not seem to be worth the effort here. Instead we will

just aim to explain the methods used as quickly and clearly as possible.

Suppose that we have a maximal graph in R
m+n
n , given by a smooth function

u : Ω ⊂ R
m → R

n with |||Du|||2 ≤ 1 − κ for some κ ∈ (0, 1). For some γ ∈
{m + 1, . . . ,m + n} and r ∈ {1, . . . ,m} to be chosen later, we define a function

w = ζ
√

1− κ
∂uγ

∂xr
+ v,

where ζ is some constant depending on m and n to be chosen later, and where

v =
∑

j,ν

(
∂uν

∂xj

)2

.
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Then, writing g(p) = I − pT p for p = (pν
k),

∂

∂xi

(

gij(Du)
∂w

∂xj

)

=
∂

∂xi

(
gij(Du)

) ∂w

∂xj
+ gij(Du)

∂2w

∂xi∂xj

=
∂gij

∂pν
k

(Du)
∂2uν

∂xi∂xk

∂w

∂xj

+gij(Du)

(

ζ
√

1− κ
∂3uγ

∂xr∂xi∂xj
+

∂2v

∂xi∂xj

)

.

But
∂2v

∂xi∂xj
= 2

∂2uν

∂xi∂xk

∂2uν

∂xj∂xk
+ 2

∂3uν

∂xk∂xi∂xj

∂uν

∂xk

and

gij(Du)
∂3uν

∂xh∂xi∂xj
=

∂

∂xh

(

gij(Du)
∂2uν

∂xi∂xj

)

− ∂

∂xh

(
gij(Du)

) ∂2uν

∂xi∂xj

= 0− ∂gij

∂pδ
k

(Du)
∂2uδ

∂xk∂xh

∂2uν

∂xi∂xj
,

therefore

∂

∂xi

(

gij(Du)
∂w

∂xj

)

=
∂gij

∂pν
k

(Du)
∂2uν

∂xi∂xk

∂w

∂xj

−ζ
√

1− κ
∂gij

∂pδ
k

(Du)
∂2uδ

∂xk∂xr

∂2uγ

∂xi∂xj

+2gij(Du)
∂2uν

∂xi∂xh

∂2uν

∂xj∂xh

−2
∂uν

∂xh

∂gij

∂pδ
k

(Du)
∂2uδ

∂xk∂xh

∂2uν

∂xi∂xj
. (2.4)

We would like to remove the second derivatives of u in the right hand side, so that

we are left with a useful inequality for the left hand side. This is where we need to

use the gradient estimate. We want to show that the right hand side of the above

equation is dominated by the third term whenever 1− κ is small enough. First we

need to remember that the eigenvalues of gij will be between 1 and 1/κ, so in this

third term we have

2gij(Du)
∂2uν

∂xi∂xk

∂2uν

∂xj∂xk
≥ 2

∑

ν,k

√
√
√
√
∑

i

(
∂2uν

∂xi∂xk

)2
√
√
√
√
∑

j

(
∂2uν

∂xj∂xk

)2

= 2|D2u|2.

Also, g(p) = I − pT p implies that

∂gij

∂pν
k

(p) = 0− δkip
ν
j − δkjp

ν
i ,
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which, by differentiating gijg
jh = δih, gives

∂gfh

∂pν
k

(p) = gkfgjhpν
j + gkhgfjpν

j .

By the equivalence of matrix norms,18 the Schwarz inequality19 and the bound on

the eigenvalues of g, this then gives us the inequality
∣
∣
∣
∣

(
∂gfh

∂pν
k

)∣
∣
∣
∣
≤ 2|g−1|2|p| ≤ 2m2

κ2
|p|.

We also know that
∣
∣
∣
∣

∂w

∂xi

∣
∣
∣
∣

=

∣
∣
∣
∣
ζ
√

1− κ
∂2uγ

∂xi∂xr
+ 2

∂uν

∂xj

∂2uν

∂xi∂xj

∣
∣
∣
∣

≤ |ζ|
√

1− κ|D2u|+ 2|Du| · |D2u|

≤ (|ζ|+ 2
√

m)
√

1− κ|D2u|,

where we have used |Du| ≤ √m|||Du||| ≤ √m
√

1− κ. Now we can combine all of

the inequalities above and apply them to equation (2.4) to get

∂

∂xi

(

gij(Du)
∂w

∂xj

)

≥ −
∣
∣
∣
∣

(
∂gij

∂pν
k

)∣
∣
∣
∣
· |D2u| · |Dw| − |ζ|

√
1− κ

∣
∣
∣
∣

(
∂gij

∂pδ
k

)∣
∣
∣
∣
· |D2u|2

+2|D2u|2 − 2 · |Du| ·
∣
∣
∣
∣

(
∂gij

∂pδ
k

)∣
∣
∣
∣
· |D2u|2

≥ 2|D2u|2 − 1− κ

κ2
C|D2u|2,

where the constant C > 0 depends only on m and n (since ζ does). So for 1 − κ

small enough (how small depending on m and n) we will have

∂

∂xi

(

gij(Du)
∂w

∂xj

)

≥ 0,

and therefore w will be a subsolution20 of the linear divergence form equation

∂

∂xi

(

ḡij(x)
∂w

∂xj

)

= 0, (2.5)

where ḡij(x) = gij(Du(x)).

18Given any norms | · |1, | · |2 on the space of real m×m matrices, there exist constants C,K > 0

such that C|A|1 ≤ |A|2 ≤ K|A|1 for each A. We usually apply this when |A|1 =
√
∑

ij A2
ij and

|A|2 is the square root of the largest eigenvalue of AT A, taking C = 1/m and K = 1.
19|v · w| ≤ |v| · |w| for all v, w.
20A function u is a subsolution (supersolution) of an elliptic equation Lu = 0 if Lu ≥ 0 (≤ 0).
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Lemma 2.4.1. Let Ω be a domain in R
m. There exist constants κ, α ∈ (0, 1)

and K > 0 such that if a maximal graph in R
m+n
n is given by a smooth function

u : Ω→ R
n with |||Du|||2 ≤ 1− κ, then u will satisfy

[Du|Ω′ ]α ≤ Kdist(Ω′, ∂Ω)−α

on any subdomain Ω′ with closure contained in Ω. Here κ, α and K depend on m

and n.

Proof. First we take ζ > 0 and define w± = ±ζ
√

1− κ∂uγ/∂xr +v. Choosing a ball

Bm
R0

(y) with closure contained in Ω, we consider R ∈ (0, R0/4). Taking r and γ to

be such that21

oscBm
4R(y)

∂uγ

∂xr
≥ oscBm

4R(y)
∂uν

∂xi

for all i = 1, . . . ,m and ν = m + 1, . . . m + n. We easily check that22

√
1− κ(ζ − 2mn)oscBm

4R(y)
∂uγ

∂xr
≤ oscBm

4R(y)w
± ≤
√

1− κ(ζ + 2mn)oscBm
4R(y)

∂uγ

∂xr
.

(2.6)

Choosing ζ = 10mn and setting W± = supBm
4R(y) w±, we get (using (2.6) and the

footnote again)

inf
Bm

4R(y)

∑

+,−
(W± − w±) ≥ sup

Bm
4R(y)

(

ζ
√

1− κ
∂uγ

∂xr
+ inf

Bm
4R(y)

v

)

+ sup
Bm

4R(y)

(

−ζ
√

1− κ
∂uγ

∂xr
+ inf

Bm
4R(y)

v

)

− 2 sup
Bm

4R(y)

v

=
√

1− κζ

(

sup
Bm

4R(y)

∂uγ

∂xr
− inf

Bm
4R(y)

∂uγ

∂xr

)

− 2( sup
Bm

4R(y)

v − inf
Bm

4R(y)
v)

=
√

1− κζoscBm
4R(y)

∂uγ

∂xr
− 2oscBm

4R(y)v

≥
√

1− κ(ζ − 4mn)oscBm
4R(y)

∂uγ

∂xr

≥ ζ − 4mn

ζ + 2mn
oscBm

4R(y)w
±

=
oscBm

4R(y)w
±

2
. (2.7)

21oscBf = supx,y∈B |f(x)− f(y)|.
22Here we use v(x) − v(y) =

∑

ν,j [(∂uν/∂xj)2(x) − (∂uν/∂xj)2(y)] =
∑

ν,j [(∂uν/∂xj)(x) +

(∂uν/∂xj)(y)][(∂uν/∂xj)(x) − (∂uν/∂xj)(y)] ≤ ∑

ν,j(2 sup |||Du|||)osc(∂uν/∂xj) ≤ 2mn(1 −
κ)1/2osc(∂uγ/∂xr) by the choice of γ, r.
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The choice of ζ is the last real difference between the system case and the equation

case for this proof, but we will give the few remaining details just so that the steps

above make sense. From here we can apply the weak Harnack inequality23 (Theorem

8.18 of [10]), to the supersolution W± − w± of equation (2.5), to get

( inf
Bm

R (y)
(W± − w±) + 0) ≥ C

Rm

∫

Bm
2R(y)

(W± − w±) (2.8)

for some positive constant C depending on κ and m. By inequality (2.7), we have

infBm
4R(y)(W

± − w±) ≥ oscBm
4R(y)w

±/4 for either w+ or w−. Assume that it holds for

w+, then
C

Rm

∫

Bm
2R(y)

(W+ − w+) ≥ C ′oscBm
4R(y)w

+ (2.9)

for some constant C ′ depending on κ and m. If we define ω̄rγ(R) = oscBm
4R(y)w

+ and

ωiν(R) = oscBm
4R(y)(∂uν/∂xi). Then inequalities (2.8) and (2.9) give

C ′ω̄rγ(R) ≤ inf
Bm

R (y)
(W+ − w+)

≤ sup
Bm

4R(y)

w+ − inf
Bm

4R(y)
w+ + inf

Bm
R (y)

w+ − sup
Bm

R (y)

w+

= ω̄rγ(R)− ω̄rγ(R/4),

so ω̄rγ(R/4) ≤ ω̄rγ(R)(1−C ′). It also is easy to see that ω̄rγ(R0/4) ≤ supBm
R0

(y) w+ ≤
C ′′(1−κ) for some constant C ′′ depending on m and n, and by inequality (2.6) that

ωiν(R) ≤ oscBm
4R(y)

∂uγ

∂xr
≤

oscBm
4R(y)w

+

√
1− κ8mn

=
ω̄rγ(R)√
1− κ8mn

.

These facts allow us to apply Lemma 13.5 of [10]24 to get ωiν(R) ≤ C ′′′Rα/Rα
0 for

each i and ν, and for all R ∈ (0, R0/4), where the constant C ′′′ depends on m,n, κ.

23Let L be a linear elliptic operator, Lw = (∂/∂xi)(aij(x)∂w/∂xj) on Ω, with eigenvalues of aij

between two positive constants λ ≤ Λ. Let f ∈ Lm(Ω) and let w ∈ C2(Ω̄) be a supersolution of

Lw = f in Ω with w ≥ 0 in Bm
4R(y) ⊂ Ω. Then ||w||L1(Bm

2R
(y)) ≤ RmC(infBm

R
(y) w+λ−1R||f ||Lm(Ω)),

for some constant C depending on m and Λ/λ. Here Lp(Ω) is the set of functions with ||u||Lp(Ω) =

(
∫

Ω
|u|pdx)1/p <∞ (for p ≥ 1).

24Let {ωA} and {ω̄A} for A = 1, . . . , N be sequences of non-decreasing functions on an interval

(0, R0), such that for each R ≤ R0 there exists ω̄B ∈ {ω̄A} with ω̄B(R) ≥ every δ0ωA(R) (for some

constant δ0 > 0) and such that ω̄B(R/4) ≤ γω̄B(R) + σ(R) (for some non-decreasing σ and some

constant γ > 0). Then, for each R ≤ R0, we have ωA(R) ≤ C[(R/R0)
α maxA ω̄A(R0)+σ(

√
R0R)],

for some constants α,C depending on N, γ, δ0.
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We finally take 2R0 be the distance between Ω′ and ∂Ω (for example). If x, y ∈ Ω′

with |x − y| = R < R0/4 then |(∂uν/∂xi)(x) − (∂uν/∂xi)(y)| ≤ oscBm
4R(y)∂uν/∂xi,

which is less than (R/R0)
α = |x−y|α/Rα

0 multiplied by some constant depending on

m, n and κ. Obviously if |x−y| ≥ R0/4 then, by the gradient bound, |(∂uν/∂xi)(x)−
(∂uν/∂xi)(y)| is less than |x− y|α/Rα

0 multiplied by some constant depending on κ.

This gives the expected estimate.

This lemma is just an interior estimate, and we really need an estimate on the

full domain. Therefore we will need some kind of C1,α estimate at the boundary of

Ω. To do this, we need to adjust our problem in such a way that we only need to

consider a solution which is zero on a flat boundary portion. We will need to be

careful about where the gradient (of a solution) appears in our inequalities. We have

to make sure that, as before, a strong enough bound on the gradient will allow us to

assume that certain terms dominate. Unfortunately, the fact that we have to trans-

form our domain and boundary data means that the gradient bound needed will

depend on the transformation and therefore on the original domain Ω and boundary

data φ.

Given a smooth, bounded domain Ω in R
m, let B be some ball in R

m with centre

on ∂Ω. Taking B to be smaller if necessary, we can assume that there is a coordinate

change F : B → F (B) ⊂ R
m such that F and F−1 are smooth, with

F (B ∩ ∂Ω) ⊂ {y | ym = 0} and F (B ∩ Ω) ⊂ {y | ym > 0},

and such that the matrix DFDF T has eigenvalues bounded from above and below

by positive constants ΛF and λF respectively (since this matrix can be assumed to

be smooth and positive definite on the closure of B).

We assume that a smooth function u : Ω̄ → R
n gives a maximal graph with

|||Du|||2 ≤ 1 − κ. We also assume a Dirichlet boundary condition, u|∂Ω = φ|∂Ω

for some smooth φ : Ω̄ → R
n, where ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3 for some positive

constants Φ2 and Φ3. We define ũ by ũ(F (x)) = u(x). Then Du = DũDF and

gij(Du) = δij −
∂uν

∂xi

∂uν

∂xj
= δij −

(
∂ũν

∂yk

∂F k

∂xi

)(
∂ũν

∂yh

∂F h

∂xj

)

.
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If we define

Aij(y,Dũ(y)) = δij −
(

∂ũν

∂yk
(y)

∂F k

∂xi
(F−1(y))

)(
∂ũν

∂yh
(y)

∂F h

∂xj
(F−1(y))

)

,

then

0 = gij ∂2u

∂xi∂xj

=

(
∂F k

∂xi
Aij ∂F h

∂xj

)
∂2ũ

∂yk∂yh
+ Aij ∂2F k

∂xi∂xj

∂ũ

∂yk
.

We also define φ̃ by φ = φ̃(F ), and take û = ũ − φ̃ so that û = 0 at points on

F (∂Ω ∩B). Then û satisfies the system

0 =

(
∂F k

∂xi
Aij ∂F h

∂xj

)
∂2û

∂yk∂yh

+

(

Aij ∂2F k

∂xi∂xj

)(

∂û

∂yk
+

∂φ̃

∂yk

)

+

(
∂F k

∂xi
Aij ∂F h

∂xj

)
∂2φ̃

∂yk∂yh
,

where the coefficients Aij = Aij(y,Dũ) = Aij(y,Dû + Dφ̃), and where the matrix

A−1 = (Aij) has eigenvalues between 1 and 1/κ. If we define

Gkh(y,Dû) = Aij(y,Dû + Dφ̃)
∂F k

∂xi
(F−1)

∂F h

∂xj
(F−1),

B(y,Dû) = Aij(y,Dû + Dφ̃)
∂2F k

∂xi∂xj
(F−1)

(

∂û

∂yk
+

∂φ̃

∂yk

)

+ Gkh(y,Dû)
∂2φ̃

∂yh∂yk
,

where the matrix G−1 = (Gkh) has eigenvalues between λF and ΛF /κ, then we have

the elliptic system

0 = Gkh(y,Dû(y))
∂2û

∂yk∂yh
+ B(y,Dû(y)). (2.10)

Now we define a function

w = ζ
√

1− κ
∂ûγ

∂yr
+
∑

ν

m−1∑

ℓ=1

(
∂ûν

∂yℓ

)2

for some γ ∈ {m+1, . . . ,m+n} and r ∈ {1, . . . ,m−1}. It is important to remember

that we will apply the summation convention over the usual ranges for all indices

except ℓ, where we will only take sums over ℓ = 1, . . . ,m − 1. This means that w
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only involves the tangential derivatives at the flat boundary portion. We get

∂

∂yi

(

Gij ∂w

∂yj

)

=
∂

∂yi
(Gij)

∂w

∂yj

+Gij

(

ζ
√

1− κ
∂3ûγ

∂yi∂yj∂yr
+ 2

∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ
+ 2

∂ûν

∂yℓ

∂3ûν

∂yℓ∂yi∂yj

)

=
∂

∂yi
(Gij)

∂w

∂yj
+ ζ
√

1− κ
∂

∂yr

(

Gij ∂2ûγ

∂yi∂yj

)

−ζ
√

1− κ
∂

∂yr
(Gij)

∂2ûγ

∂yi∂yj
+ 2Gij ∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ

+2
∂ûν

∂yℓ

∂

∂yℓ

(

Gij ∂2ûν

∂yi∂yj

)

− 2
∂ûν

∂yℓ

∂

∂yℓ
(Gij)

∂2ûν

∂yi∂yj

=
∂

∂yi
(Gij)

∂w

∂yj
− ζ
√

1− κ
∂

∂yr
(Bγ)

−ζ
√

1− κ
∂

∂yr
(Gij)

∂2ûγ

∂yi∂yj
+ 2Gij ∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ

−2
∂ûν

∂yℓ

∂

∂yℓ
(Bν)− 2

∂ûν

∂yℓ

∂

∂yℓ
(Gij)

∂2ûν

∂yi∂yj
. (2.11)

We will use the obvious fact (where we will take z = yk or pν
k) that25

∂Aij

∂z
= −AihAjk ∂Akh

∂z
⇒

∣
∣
∣
∣

(
∂Aij

∂z

)∣
∣
∣
∣
≤ |A−1|2

∣
∣
∣
∣

(
∂Akh

∂z

)∣
∣
∣
∣
≤ C

κ2

∣
∣
∣
∣

(
∂Akh

∂z

)∣
∣
∣
∣
,

for some constant C depending on m. We will also stop labelling constants here and

will, for now, just denote all constants by C. First,

∣
∣
∣
∣

(
∂Aij

∂yk

)∣
∣
∣
∣
(y, p) ≤ |0|+ 2

∣
∣
∣
∣

(
∂

∂yk

(
∂F h

∂xi

)

pν
hp

ν
f

∂F f

∂xj

)∣
∣
∣
∣
≤ C|p|2

⇒
∣
∣
∣
∣

(
∂Aij

∂yk

)∣
∣
∣
∣
(y, p) ≤ |A−1|2

∣
∣
∣
∣

(
∂Aij

∂yk

)∣
∣
∣
∣
≤ C

κ2
|p|2,

where the constants depend only on F and m. Similarly,

∣
∣
∣
∣

(
∂Aij

∂pν
k

)∣
∣
∣
∣
≤ |A−1|2

∣
∣
∣
∣

(
∂Aij

∂pν
k

)∣
∣
∣
∣
≤ C

κ2

∣
∣
∣
∣

(
∂F h

∂xi
δνηδhkp

ν
f

∂F f

∂xj

)∣
∣
∣
∣
≤ C

κ2
|p|,

where the constants depend on F and m again. We can use these inequalities to get

∣
∣
∣
∣

∂

∂yk

(
Gij(y,Dû(y))

)
∣
∣
∣
∣

=

∣
∣
∣
∣

∂

∂yk

(

Afh(y,Dû + Dφ̃)
∂F i

∂xf

∂F j

∂xh

)∣
∣
∣
∣

≤ C

κ2

(

|Dû + Dφ̃|2 + |D2û + D2φ̃||Dû + Dφ̃|+ 1
)

,

25Here the notation |(·)| indicates that we are taking the norm of a matrix, not just a component.
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and similarly,

∣
∣
∣
∣

∂

∂yk
(Bν(y,Dû(y)))

∣
∣
∣
∣
≤ C

κ2

(

|Dû + Dφ̃|3 + |Dû + Dφ̃|2|D2û + D2φ̃|
)

+
C

κ2

(

|Dû + Dφ̃|+ |D2û + D2φ̃|
)

+
C

κ2

(

|Dû + Dφ̃|2 + |D2û + D2φ̃|+ 1
)

|D2φ̃|

+
C

κ
|D3φ̃|,

where all constants again depend on F and m. Applying the Schwarz, triangle and

Young26 inequalities, we get

|Dû + Dφ̃| = |Dũ| ≤ |Du| · |DF | ≤ C
√

1− κ ≤ C,

|Dw| ≤ C|D2û|
√

1− κ,

|D2û + D2φ̃| ≤ |D2û|+ |D2φ̃|,

|D2û| ≤ |D2û|2/2 + 1/2,

where the constants C depend on m, n and F . We apply all of the inequalities

above, along with the Schwarz inequality and 0 < κ < 1, to equation (2.11) to get

∂

∂yi

(

Gij ∂w

∂yj

)

≥ 2Gij ∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ
− C
√

1− κ

κ2

(

|D2û|2 + 1 + |D3φ̃|
)

(2.12)

for some constant C depending on m, n, F and Φ2 (by dependence on the second

derivatives of φ̃). We can take the coefficient of the second term on the right hand

side to be small by taking κ to be close to 1. We hope that the term

2Gij ∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ
≥ 2λF

∑

ν

∑

i

m−1∑

ℓ=1

(
∂2ûν

∂yi∂yℓ

)2

(2.13)

will dominate when κ is close enough to 1. Obviously this term contains all second

order derivatives of û except ∂2û/∂xm∂xm. By using the system satisfied by û,

and the obvious bounds on |B| and |G−1|, we can estimate this remaining second

26±ab ≤ ǫa2/2 + b2/2ǫ for a, b ∈ R and ǫ > 0.
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derivative

∣
∣
∣
∣

∂2ûν

∂ym∂ym

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

1

Gmm




∑

(i,j) 6=(m,m)

Gij ∂2ûν

∂yi∂yj
−Bν





∣
∣
∣
∣
∣
∣

≤ C



|G−1|

√
√
√
√

∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+ |B|





≤ C

κ





√
√
√
√

∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+ (|Dû + Dũ|+ |D2φ̃|)





≤ C

κ





√
√
√
√

∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+
√

1− κ + |D2φ̃|





≤ C

κ





√
√
√
√

∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+ 1



 , (2.14)

where C depends on m, n, F and Φ2 but not κ. This implies that

|D2û|2 =
∑

ν




∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+

(
∂2ûν

∂ym∂ym

)2




≤ C

κ2




∑

ν

∑

(i,j) 6=(m,m)

(
∂2ûν

∂yi∂yj

)2

+ 1



 , (2.15)

where we have used Young’s inequality and κ < 1, and where C depends on m, n, F

and Φ2. The right hand side of this inequality again contains all derivatives except

∂2û/∂xm∂xm. Combining this with (2.13) gives

2Gij ∂2ûν

∂yi∂yℓ

∂2ûν

∂yj∂yℓ
≥ C(κ2|D2û|2 − 1),

and then inequality (2.12) gives (for constants again depending on m,n, F, Φ2)

∂

∂yi

(

Gij ∂w

∂yj

)

≥ C
(
κ2|D2û|2 − 1

)
− C
√

1− κ

κ2

(

|D2û|2 + 1 + |D3φ̃|
)

,

which implies that if we choose κ close enough to 1 then the terms involving |D2û|2

will cancel. This leaves
∂

∂yi

(

Gij ∂w

∂yj

)

≥ C,

for some (not necessarily positive) constant C depending on m, n, F and Φ3. There-

fore w will be a subsolution of a linear divergence form equation

∂

∂yi

(

Ḡij(y)
∂w

∂yj

)

= C, (2.16)
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where Ḡij(y) = Gij(y,Dû(y)). We now have the inequality that we were hoping for.

It is important to note that our choice of κ is determined only by the dimension

m, the codimension n, the domain Ω (through dependence on F ) and the upper

bound Φ2 on the C2 norm of φ (since the term |D3φ̃| only appears on its own in our

inequalities, never multiplied by |D2û|).

Lemma 2.4.2. Let Ω be a smooth, bounded domain in R
m, and let φ : Ω̄ → R

n be

a smooth function with ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3 for some constants Φ2, Φ3 > 0.

There exist constants κ, α ∈ (0, 1) and K > 0 such that if a maximal graph in R
m+n
n

is given by a smooth function u : Ω̄ → R
n, with u|∂Ω = φ|∂Ω and |||Du|||2 ≤ 1 − κ,

then

[Du]α ≤ K.

Here κ depends on m, n, Φ2 and Ω, while α and K depend on m, n, Ω and Φ3.

This is proved by combining the interior estimates from Lemma 2.4.1 with bound-

ary estimates proved by applying a boundary Harnack inequality to supersolutions

of (2.16). This is done exactly as in section 13.4 of [10], and we have seen the most

important steps in the proof of Lemma 2.4.1. We will therefore only give a quick

outline of the proof.

Proof. Since we choose F such that F (B ∩ ∂Ω) lies in the plane ym = 0, and since

we defined û such that it is zero on this flat boundary portion, we know that the

tangential derivatives ∂û/∂yℓ will be zero there, and therefore so will w. Using this

fact, we apply the boundary weak Harnack inequality (Theorem 8.26 of [10])27 in

balls with centre on F (B ∩ ∂Ω). Using the same ideas as in the proof of Lemma

2.4.1, we get C0,α estimates on the tangential derivatives. Now we just need a

C0,α estimate on the normal derivative ∂û/∂ym, which we get from the estimates

27Let L be a linear elliptic operator, Lw = (∂/∂xi)(aij(x)∂w/∂xj) on Ω, with eigenvalues of aij

between two positive constants λ ≤ Λ. Let f ∈ Lm(Ω) and let w ∈ C2(Ω̄) be a supersolution of

Lw = f in Ω with w ≥ 0 in the intersection of Ω with Bm
4R(y) ⊂ R

m. Then ||w(−)||L1(Bm
2R

(y)) ≤
RmC(infBm

R
(y) w(−) + λ−1R||f ||Lm(Ω)), for some constant C depending on m and Λ/λ, where we

define w(−)(x) to be equal to min(w(x), inf∂Ω∩Bm
4R

(y) w) when x ∈ Ω and equal to inf∂Ω∩Bm
4R

(y) w

when x /∈ Ω.
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on the tangential derivatives by using inequality (2.14) (see section 13.4 of [10] for

details). Returning to the original domain and boundary data gives [Du]α estimates

(dependent on F ) in balls with centre on ∂Ω. Since the domain is bounded, we

only need to consider finitely balls (i.e. finitely many transformations F ). Then

we can take the maximum (over all of the balls and transformations needed) of the

constants involved, thus getting the required estimates in a neighbourhood of ∂Ω,

with finite constants depending on Ω, etc. Combining with the interior estimates

from Lemma 2.4.1 completes the proof.

Theorem 2.4.1. Given a convex, smooth, bounded domain Ω in R
m, there will exist

a constant C (depending on Ω,m, n) such that the maximal graph Dirichlet problem

in R
m+n
n will have a smooth solution, with u|∂Ω = φ|∂Ω, for any smooth φ : Ω̄→ R

n

with C2 norm less than C.

Proof. Let ||φ||2 ≤ Φ2 and ||φ||3 ≤ Φ3, for constants Φ2, Φ3 > 0. Let κ =

κ(m,n, Ω, Φ2) be as in Lemma 2.4.2. Assume further that ||φ||2 is small enough

that |||Dφ|||2 ≤ 1 − κ and that inequality (2.3) holds for this κ. This gives the

gradient estimate needed to apply Lemma 2.4.2. Then we have an a priori estimate

on the C1,α norm. These estimates clearly also hold for solutions with boundary

values σφ, for any σ ∈ [0, 1], allowing us to apply Lemma 2.1.1.

2.5 A Gradient Estimate for Mean Curvature Flow

Soon we will see a situation where we would like to have a gradient bound on

graphic solutions to the spacelike mean curvature flow system in R
m+n
n . Although

this system will be discussed in more detail later, it is convenient to prove a gradient

estimate now since the idea is roughly the same as in the proof of gradient estimates

for maximal graphs seen in this chapter (also, see [23] and [20] for a similar gradient

estimate in the Euclidean case). Another reason for proving this estimate now is

that it will give us some confidence that our assumptions in the next chapter are

reasonable. More precisely, it provides us with examples where an a priori gradient

bound stronger than the spacelike condition will hold (compare to Assumption 3 in



2.5. A Gradient Estimate for Mean Curvature Flow 31

the next chapter).

Our goal in this section will be to prove a gradient estimate for spacelike mean

curvature flows satisfying certain boundary/initial conditions. Suppose that we have

a graphic mean curvature flow in R
m+n
n , given by some function u : Ω× (0, T )→ R

n

for a bounded, convex, C2 domain Ω ⊂ R
m. We assume u is smooth on the interior

of its domain and C1 on the closure. We take the induced metric from R
m+n
n on

spatial slices Mt = {(x, u(x, t)) ∈ R
m+n
n | x ∈ Ω} for each t ∈ [0, T ], and we assume

that these are spacelike (i.e. that |||Du||| < 1, where D is taken with respect to the

space variables in R
m only). By the mean curvature flow condition, u satisfies the

parabolic system ∂u/∂t = gij(Du)∂2u/∂xi∂xj (we will see why in Theorem 3.3.1).

Proposition 2.5.1. Let φ : Ω̄ × [0, T ] → R
n be a C2 function and let κ ∈ (0, 1).

If the function u above satisfies the boundary/initial condition that u(x, t) = φ(x, t)

whenever x ∈ ∂Ω or t = 0, then the inequality supΩ |||Du|||2 < 1 − κ will hold for

all times in [0, T ] if the (parabolic) C2 norm of φ is small enough.

Proof. For φ small enough in C2, we can assume that at time t = 0 we have

supΩ |||Du(·, 0)|||2 = supΩ |||Dφ(·, 0)|||2 < 1 − κ1/m < 1 − κ. Suppose that there

exists some first time ǫ ∈ (0, T ] such that |||Du|||2 = 1 − κ for some point in Ω̄.

Then we have |||Du|||2 ≤ 1 − κ on Ω̄ × [0, ǫ]. Now we take the linear parabolic

operator L = ∂/∂t − gij(Du)∂2/∂xi∂xj, and we define S and S ′ exactly as we did

earlier (where d is still a function of the space variables on Ω̄ only, independent of

the time variable). We get

LS =
νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
− Lφγ and LS ′ =

νζ2

(1 + ζd)2
gij ∂d

∂xi

∂d

∂xj
+ Lφγ,

and we have

νζ2gij

(1 + ζd)2

∂d

∂xi

∂d

∂xj
≥ νζ2

(1 + ζdiamΩ)2
and |Lφγ| ≤

∣
∣
∣
∣

∂φ

∂t

∣
∣
∣
∣
+

m

κ
|||D2φ|||.

If we have
νζ2

(1 + ζdiamΩ)2
≥
∣
∣
∣
∣

∂φ

∂t

∣
∣
∣
∣
+

m

κ
|||D2φ||| (2.17)

then we can apply the parabolic maximum principle (see Theorem B.3.1) to the

inequalities LS ≥ 0 and LS ′ ≥ 0 to get S ≥ 0 and S ′ ≥ 0, and then a bound on
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the normal derivative of u at ∂Ω exactly as in the maximal graph case. This again

gives us a bound of the form |||Du||| ≤ νζ +2|||Dφ||| at ∂Ω, where we can minimize

νζ in such a way that inequality (2.17) holds by taking ζ = 1/diamΩ and νζ =

4diamΩ supΩ×[0,T ](|∂φ/∂t|+m|||D2φ|||/κ). Then, for φ with small enough parabolic

C2 norm, we will have |||Du|||2 < C on the parabolic boundary ∂Ω× [0, ǫ]∪Ω×{0}
for some constant C < 1−κ1/m. Since we already know (by the definition of ǫ) that

|||Du|||2 ≤ 1− κ on Ω̄× [0, ǫ], we can use

(
d

dt
−∆Mt

)

log
√

det g ≥ 0,

which follows from the proof of Proposition 5.2 in [17] (see inequality (A.3)) and

where ∆Mt is the induced Laplace operator on Mt.
28 We use this to extend our

boundary gradient estimate to all of Ω̄× [0, ǫ]. By applying the parabolic maximum

principle to this inequality, we see that |||Du|||2 < 1 − κ on Ω̄ × [0, ǫ]. This is a

contradiction to the definition of ǫ, so no such ǫ can exist. Therefore, if the C2 norm

of φ is as small as described, the gradient estimate |||Du|||2 < 1− κ will hold for all

times for which this mean curvature flow exists.

Paying closer attention to this proof gives a more general condition on φ which

guarantees the existence of such a gradient estimate (supΩ |||Dφ(·, 0)||| <
√

1− κ1/m

and 4diamΩ supΩ×[0,T ](|∂φ/∂t|+m|||D2φ|||/κ)+2 sup∂Ω×[0,T ] |||Dφ||| <
√

1− κ1/m).

It is also worth noting that, along with suitable regularity theorems (see the next

two chapters), this estimate could possibly help us to prove long time existence for

certain mean curvature flow problems. This would possibly lead to another existence

theorem for the maximal graph system Dirichlet problem.

28We think of d/dt − ∆Mt
a parabolic operator on Ω × (0, ǫ) since ∆Mt

f = gij∂2f/∂xi∂xj +

(1/
√

det g)(∂(
√

det ggij)/∂xj)∂f/∂xi and df/dt = ∂f/∂t+Df ·∂u/∂t, where gij is positive definite.



Chapter 3

Regularity for Spacelike Mean

Curvature Flows

Let M be a mean curvature flow in a Euclidean space. Let M(t) be the m-

dimensional submanifold of R
m+n given by the flow at each time t. For spacetime

points (y, s), the Gaussian density ratio of the flow is defined by taking the integral

of the backward heat kernel,

Φ(x) =
1

(4π(s− t))m/2
exp

(

−|x− y|2
4(s− t)

)

,

over each M(t) at times t < s. In [12], Huisken proved an important monotonicity

formula which roughly says that the Gaussian density ratio will be non-increasing

with respect to t on mean curvature flows. A local version of this formula is proved

by Ecker in Proposition 4.17 of [5]. One application of these monotonicity formulas

is the proof of Brian White’s local regularity theorem (see [24]) for mean curvature

flows in Euclidean spaces. This theorem says that such a flow will be smooth in

regions of spacetime where the Gaussian density ratios are close enough to 1.

Our goal in this chapter is to prove a similar regularity theorem, but now for

spacelike mean curvature flows in semi-Euclidean spaces. We will assume that these

flows are graphs and that they satisfy some uniform gradient bound stronger than

the spacelike condition. Roughly, we will prove that if such a flow is smooth on an

interval (0, T ), then it can be extended smoothly to time T . This should be com-

33
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pared to Theorem 3.5 of [24]. We prove this by defining a quantity that has similar

properties to the Gaussian density ratio. This quantity is chosen in such a way that

the evolution equations for spacelike mean curvature flows will allow us to prove

monotonicity formulas similar to Huisken’s and Ecker’s. The proof of the regular-

ity theorem itself is then similar to the proofs in [24] and [5], with some adjustments.

The main differences between this case and the Euclidean case are caused by the

semi-Euclidean metric. Obviously, the mean curvature flow system is only parabolic

when the spacelike condition is satisfied. Therefore any gradient estimates are only

useful if they are stronger than the spacelike condition (for example, the gradient

estimate that we proved earlier). This is why we will use Assumption 3. This

seems like a significant restriction, but it is not surprising that we need it since most

parabolic problems require a gradient estimate anyway. Assumption 3 is also useful

when defining our modified version of the Gaussian density ratio. For example, we

need a gradient bound to guarantee that this quantity is finite on a smooth flow

(since we need the eigenvalues of the induced metric to stay uniformly away from

zero). We will frequently need Assumption 3, used with inequality (3.12), to get the

uniform bounds needed to use the dominated convergence theorem (such arguments

here are more difficult than in the Euclidean case).

Other difficulties due to the semi-Euclidean metric appear in the proofs of the

monotonicity and regularity theorems. For example, Ecker’s local formula involves

a nice localisation function which is not useful in the semi-Euclidean case, thus

making our proof of local monotonicity slightly more awkward (see Theorem 3.5.1

and compare to Proposition 4.17 in [5]). We also get different signs in the evolution

equations for various quantities, meaning that the inequalities seen in the Euclidean

case are often reversed here. Finally, when proving regularity theorems, the metric

prevents us from using White’s local C2,α norm, since the definition of this norm

involves rotations in space. We need to use the spacelike condition, as well as a

slightly different version of the Schauder estimates, to avoid the need for rotations.
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3.1 Preliminaries

When N ≥ 2, R
N will be Euclidean space with elements denoted by x and the

usual norm |x|. BN
R (x) will be the ball of radius R and centre x. We will denote by

R
N,1 the spacetime R

N × R with elements X = (x, t) and parabolic norm ||X|| =
max{|x|, |t|1/2}. We write

BN,1
R (X) = BN

R (x)× (t−R2, t + R2) and UN,1
R (X) = BN

R (x)× (t−R2, t].

The function τ : R
N,1 → R will be the projection τ(x, t) = t onto the time axis. For

any λ > 0, we define the parabolic dilation Dλ : R
N,1 → R

N,1 by

Dλ(x, t) = (λx, λ2t).

It is important to notice that ||DλX|| = λ||X||. For subsets U of R
N,1 and functions

f from U into some Euclidean space, we define (as in [24]) the distance

d(X,U) = inf{||X − Y || | Y /∈ U},

and the parabolic Hölder norms (for non-negative integers p and 0 < α < 1)

||f ||p,α = ||f ||Cp,α(U) =
∑

k+2h≤p

||Dk(∂t)
hf ||0,α,

where ∂tf = ∂f/∂t, ∂Af = ∂f/∂xA, D = (∂1, . . . , ∂N),

[f ]α = sup
X 6=Y in U

|f(X)− f(Y )|
||X − Y ||α and ||f ||0,α = sup

X∈U
|f(X)|+ [f ]α.

In the obvious way, we also define the parabolic Cp norm by

||f ||p = ||f ||Cp(U) =
∑

k+2h≤p

sup
U
|Dk(∂t)

hf |.

If we say that a sequence of functions converges in Cp or Cp,α on some set, then we

just mean that it converges on that set with respect to the corresponding norm.

For integers m ≥ 2 and n ≥ 1, it will be convenient here for us to consider the

space R
m+n with elements denoted by x = (x̂, x̃), where x̂ ∈ R

m and x̃ ∈ R
n. With

this notation, we can write R
m+n
n = (Rm+n, 〈·, ·〉) with 〈x, y〉 = x̂ · ŷ− x̃ · ỹ. If we use

the summation convention with indices i, j = 1, . . . ,m and ν, γ = m + 1, . . . ,m + n,

then 〈x, y〉 = xiyi − xγyγ and we denote by ḡ the corresponding diagonal matrix

with ḡij = δij, ḡνγ = −δνγ.
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3.2 Mean Curvature Flows

We will consider subsetsM of the spacetime R
m+n
n × R, where τ(M) = I for some

interval I and τ has no critical points. We define the spatial slices M(s) = {x ∈
R

m+n
n | (x, s) ∈ M}, and assume that each M(s) is an m-dimensional spacelike

submanifold of R
m+n
n . We will assume, for each s ∈ I, that there exists some open

set U in R
m+n
n × I such thatM(s) ⊂ U and

M∩ U = {(F (x̂, t), t) | (x̂, t) ∈ E},

for some open set E in R
m × I and some smooth F : E → R

m+n
n , where each F (·, t)

is an embedding. We call M a flow. If we denote by H(x, t) the mean curvature

vector of M(t) in R
m+n
n at each point x, then we call M a mean curvature flow if

each of the functions F above can be chosen to satisfy ∂tF (x̂, t) = H(F (x̂, t), t).

Assumption 1: M is a mean curvature flow of the form above, where each spatial

slice is an m-dimensional spacelike submanifold of R
m+n
n .

It is not difficult to prove the following facts (note that we will repeatedly use

the fact that ∆M(t)F = H, as proved in Proposition A.1.1). The first is a version of

the divergence theorem on mean curvature flows,1

∫

M(t)

〈H,V 〉 =

∫

M(t)

〈
∆M(t)F, V

〉

=

∫

Ωt

〈
1√

det g
∂j(
√

det ggij∂jF ), V

〉
√

det gdx̂

=

∫

Ωt

∂i

〈√

det ggij∂jF, V
〉

dx̂

−
∫

Ωt

〈∂jF, ∂iV 〉 gij
√

det gdx̂

= −
∫

M(t)

divM(t)V

1We use the usual equations for the induced Laplace operator and divergence (see equations

(A.1)), and the usual divergence theorem on a domain in R
m:
∫

∂Ω
V · n =

∫

Ω
divRmV where n is

the outward unit normal to ∂Ω.
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for vector fields2 V with compact support on M(t), where the integrals are taken

over M(t) with respect to the induced metric g = (gij) = (〈∂iF, ∂jF 〉), and where

Ωt is the domain of F (·, t).3 If f(x, t) is a real valued function defined onM, then

df

dt
= ∂tf + Df · ∂tF

= ∂tf + 〈ḡDf, ∂tF 〉

= ∂tf + 〈ḡDf,H〉 , (3.1)

∆M(t)f =
1√

det g
∂i(
√

det ggij∂jf)

=
1√

det g
∂i(
√

det ggijDf · ∂jF )

=
1√

det g
∂i(
√

det ggij∂jF ) ·Df + gij∂i(Df) · ∂jF

=
〈
∆M(t)F, ḡDf

〉
+ gij 〈∂i(ḡDf), ∂jF 〉

=
〈
∆M(t)F, ḡDf

〉
+ divM(t) (ḡDf)

= 〈H, ḡDf〉+ divM(t) (ḡDf) , (3.2)

where ḡ is the matrix defined in the previous section. The second equation here,

along with the divergence theorem above, gives4

∫

M(t)

(
φ∆M(t)η − η∆M(t)φ

)
=

∫

M(t)

φdivM(t)gradM(t)η −
∫

M(t)

ηdivM(t)gradM(t)φ

=

∫

M(t)

(
divM(t)(φgradM(t)η)−

〈
gradM(t)η, gradM(t)φ

〉)

−
∫

M(t)

(
divM(t)(ηgradM(t)φ)−

〈
gradM(t)η, gradM(t)φ

〉)

= −
∫

M(t)

〈
H,φgradM(t)η

〉

+

∫

M(t)

〈
H, ηgradM(t)φ

〉

= 0 (3.3)

2These are not necessarily tangent, since we can still define the divergence by gij 〈∂jF, ∂iV 〉.
3Whenever it will not cause confusion, we will write integrals of the form

∫

x∈M(t)
f(x, t)dx as

∫

M(t)
f to save space. Such integrals are always taken with respect to the induced metric from

R
m+n
n . Similarly, we write ∆M(t)f(x, t) as ∆M(t)f when the meaning is clear.

4We use the facts that ∆M(t) = divM(t)gradM(t) and divM(t)(φV ) = gij
〈
∂iF,∇∂j

(φV )
〉

=
〈
gij∂jφ∂iF, V

〉
+ φgij

〈
∂iF,∇∂j

V
〉

=
〈

gradM(t)φ, V
〉

+ φdivM(t)V , as well as the fact that the

gradient is a tangent vector field, while H is a normal vector field.
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whenever φ and η are C2 on M(t) with φ having compact support. Finally, using

the usual formula for differentiating determinants, we have the following evolution

equation on mean curvature flows,

d

dt

√

det g =
1

2
√

det g
gij det g

d

dt
gij

=

√
det g

2
gij∂t 〈∂iF, ∂jF 〉

=
√

det ggij 〈∂t∂iF, ∂jF 〉

=
√

det ggij 〈∂iH, ∂jF 〉

=
√

det ggij∂i 〈H, ∂jF 〉 −
√

det ggij 〈H, ∂ijF 〉

= 0−
√

det g
〈
H, (gij∂ijF )⊥

〉

= −
√

det g 〈H,H〉 .

Definition 3.2.1. Let X0 = (x0, t0) ∈ R
m+n,1, then we define a function ΦX0 :

R
m+n × (−∞, t0)→ R by

ΦX0(x, t) =
1

(4π(t0 − t))m/2
exp

(

−〈x− x0, x− x0〉
4(t0 − t)

)

.

For a flow M we define

Θ(M, X0, t) =

∫

x∈M(t)

ΦX0(x, t),

when t < t0.

We see that

∂ΦX0

∂t
(x, t) =

mΦX0(x, t)

2(t0 − t)
− 〈x− x0, x− x0〉ΦX0(x, t)

4(t0 − t)2
, (3.4)

ḡDΦX0(x, t) = − ΦX0

4(t0 − t)
ḡ ·D 〈x− x0, x− x0〉

= − ΦX0

4(t0 − t)
ḡ · 2ḡ(x− x0)

= −(x− x0)ΦX0(x, t)

2(t0 − t)
. (3.5)
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These equations, combined with equations (3.1) and (3.2), give

(
d

dt
+ ∆M(t)

)

ΦX0 = ∂tΦX0 + 2 〈ḡDΦX0 , H〉+ divM(t)(ḡDΦX0)

= ∂tΦX0 + divM(t)(ḡDΦX0) +

〈
(ḡDΦX0)

⊥, (ḡDΦX0)
⊥〉

ΦX0

−
〈

H − (ḡDΦX0)
⊥

ΦX0

, H − (ḡDΦX0)
⊥

ΦX0

〉

ΦX0 + 〈H,H〉ΦX0 .

(3.6)

But the first three terms on the right hand side of this equation add up to 0 since

(using equations (3.4) and (3.5))

divM(t)(ḡDΦX0) = gij 〈∂i(ḡDΦX0), ∂jF 〉

= gij 〈D(ḡDΦX0) · ∂iF, ∂jF 〉

=
−gij

2(t0 − t)
〈D[(x− x0)ΦX0 ] · ∂iF, ∂jF 〉

=
−ΦX0g

ij

2(t0 − t)
〈∂iF, ∂jF 〉+

gijΦX0

4(t0 − t)2
〈(x− x0), ∂iF 〉 〈(x− x0), ∂jF 〉

=
−mΦX0

2(t0 − t)
+

ΦX0

4(t0 − t)2

〈
(x− x0)

⊤, (x− x0)
⊤〉

and

〈
(ḡDΦX0)

⊥, (ḡDΦX0)
⊥〉

ΦX0

=
ΦX0

4(t0 − t)2

〈
(x− x0)

⊥, (x− x0)
⊥〉 .

We now use this, and the evolution equation for
√

det g, to differentiate

∫

x∈M(t)

ΦX0(x, t)φ(x, t)

when φ is some non-negative C2 function with each φ(·, t) having compact support

onM(t). First we see that

d

dt

∫

M(t)

ΦX0(x, t)φ(x, t) =
d

dt

∫

Ωt

ΦX0(F (x̂, t), t)φ(F (x̂, t), t)
√

det gdx̂

=

∫

Ωt

∂t(ΦX0(F (x̂, t), t)φ(F (x̂, t), t)
√

det g)dx̂

=

∫

Ωt

(

φ
d

dt
ΦX0 + ΦX0

d

dt
φ− ΦX0φ 〈H,H〉

)
√

det gdx̂

=

∫

M(t)

(
dΦX0

dt
φ + ΦX0

dφ

dt
− ΦX0φ 〈H,H〉

)

,
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and then

d

dt

∫

M(t)

ΦX0φ =

∫

M(t)

(

φ
dΦX0

dt
+ ΦX0

dφ

dt
− 〈H,H〉φΦX0

)

=

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

φ +

((
d

dt
+ ∆M(t)

)

ΦX0 − 〈H,H〉ΦX0

)

φ

=

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

φ−
〈

H − (ḡDΦX0)
⊥

ΦX0

, H − (ḡDΦX0)
⊥

ΦX0

〉

φΦX0 ,

where in the second step we used equation (3.3) and the last step uses equation

(3.6). By (3.5) this gives:

d

dt

∫

M(t)

ΦX0φ =

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

φ

−
∫

M(t)

〈

H − (x− x0)
⊥

2(t0 − t)
, H − (x− x0)

⊥

2(t0 − t)

〉

φΦX0 . (3.7)

This will be very useful later, and it is our first step towards the proof of monotonicity

formulas. It is important to remember that the second term on the right hand side

is non-negative (since the flow is spacelike, which means that normal vectors will be

timelike or zero).

Proposition 3.2.1. Let X,Y ∈ R
m+n,1, s < τ(Y ) and λ > 0, then

Θ(Dλ(M−X), Y, s) = Θ(M, X + D1/λY, τ(X) + s/λ2). (3.8)

Proof. LetM be given by F near the time t+s/λ2, where F (·, t+s/λ2) has domain

Ω. If X = (x, t) = (x̂, x̃, t), then the flow Dλ(M− X) is given by the function

Fλ,X(·, ·) = λ(F (·/λ + x̂, ·/λ2 + t) − x) near the time s. Obviously DFλ,X(·, ·) =

DF (·/λ+x̂, ·/λ2+t). Now, for Y = (y, r) = (ŷ, ỹ, r), we see that Θ(Dλ(M−X), Y, s)

is equal to

∫

λ(Ω−x̂)

exp

(
−〈Fλ,X(ẑ,s)−y,Fλ,X(ẑ,s)−y〉

4(r−s)

)

(4π(r − s))m/2

√

det DF T
λ,X ḡDFλ,X |(ẑ,s)dẑ

=

∫

λ(Ω−x̂)




exp

(
−〈λF−λx−y,λF−λx−y〉

4(r−s)

)

(4π(r − s))m/2

√

det DF T ḡDF



 |(ẑ/λ+x̂,s/λ2+t)dẑ

=

∫

Ω



λm
exp

(
−λ2〈F−x−y/λ,F−x−y/λ〉

4(r−s)

)

(4π(r − s))m/2

√

det DF T ḡDF



 |(ẑ,s/λ2+t)dẑ
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=

∫

z∈M(s/λ2+t)

exp
(

−〈z−(x+y/λ),z−(x+y/λ)〉
4(r−s)/λ2

)

(4π(r − s)/λ2)m/2

= Θ(M, X + D1/λY, t + s/λ2),

where we have applied the transformation formula for integrals,5 using a transfor-

mation ζ : Ω→ λ(Ω− x̂) with ζ(ẑ) = λ(ẑ − x̂).

Proposition 3.2.2. Let M be a spacelike mean curvature flow, as in Assumption

1, with I = (−∞, 0] and such that each spatial slice M(t) is a graph over Ω = R
m.

If we have

H(x, t) =
x⊥

2t
(3.9)

for every point (x, t) on the flow, then M is invariant under parabolic dilations.

Proof. The idea (as for a similar result in [13]) is to assume that there is some point

Y = (y, t) onM but not on DλM for some λ. We then take a compactly supported

C2 function φ with φ(y) = 1 and φ = 0 on DλM(t). LetM be given by a function

F (·, ·) near t, as usual, then

∫

DλM(t)

φ =

∫

Rm

φ(λF (x̂/λ, t/λ2))
√

det g|(x̂/λ,t/λ2)dx̂

= λm

∫

Rm

φ(λF (x̂, t/λ2))
√

det g|(x̂,t/λ2)dx̂

= λm

∫

M(t/λ2)

φ(λx),

where we have again used the transformation formula for integrals, taking a trans-

formation x̂ 7→ λx̂. But our evolution equation for
√

det g gives

∂λ(
√

det g|(x̂,t/λ2)) =

(
2t

λ3
〈H,H〉

√

det g

)

|(x̂,t/λ2)

and we easily see that

∂λ(φ(λF (x̂, t/λ2))λm) = mλm−1φ(λF (x̂, t/λ2)) + λmDφ(λF ) ·
(

F − 2t

λ2
∂tF

)

|(x̂,t/λ2).

5If ζ : U → V is a diffeomorphism between open subsets of R
m and f : V → R is integrable,

then
∫

ζ(U)
f(y)dy =

∫

U
f(ζ(x))|det Dζ(x)|dx. See Theorem 18.2 in [9].
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These give us

d

dλ

∫

DλM(t)

φ = λm

∫

M(t/λ2)

[
2t

λ3
φ(λx) 〈H,H〉+ m

λ
φ(λx)

+Dφ(λx) · x− 2t

λ2
Dφ(λx) ·H]

= λm

∫

M(t/λ2)

[
2t

λ3
φ(λx)

〈

H,
x⊥

2t/λ2

〉

+Dφ(λx) · x− 2t

λ2
Dφ(λx) ·H +

m

λ
φ(λx)],

where we have used equation (3.9) to get H = x⊥/(2t/λ2) onM(t/λ2), and the fact

that ∂tF = H. Now we can deal with the first term of the right hand side of this

equation by using the divergence theorem,

∫

M(t/λ2)

〈
H,φ(λx)x⊥〉 =

∫

M(t/λ2)

〈H,φ(λx)x〉 = −
∫

M(t/λ2)

divM(t/λ2)(φ(λx)x),

where we have used the fact that H is a normal vector. So

d

dλ

∫

M(t/λ2)

φ = λm

∫

M(t/λ2)

[−1

λ
divM(t/λ2)(φ(λx)x) + Dφ(λx) · x

− 2t

λ2
Dφ(λx) ·H +

m

λ
φ(λx)]

= λm

∫

M(t/λ2)

[−1

λ
divM(t/λ2)(φ(λx)x) + Dφ(λx) · x⊤ +

m

λ
φ(λx)],

(3.10)

where we have again substituted H = x⊥/(2t/λ2) in the last step. Finally we note

that, in terms of F , the function divM(t/λ2)(φ(λx)x) is given by

gij 〈∂i(φ(λF )F ), ∂jF 〉 |(x̂,t/λ2) = gij 〈φ(λF )∂iF + (λDφ(λF ) · ∂iF )F, ∂jF 〉 |(x̂,t/λ2)

= (φ(λF )gijgij + λDφ(λF ) · (∂iF )gij 〈F, ∂jF 〉
︸ ︷︷ ︸

F⊤

)|(x̂,t/λ2)

=
(
mφ(λF ) + λDφ(λF ) · F⊤) |(x̂,t/λ2).

We substitute divM(t/λ2)(φ(λx)x) = mφ(λx) + λDφ(λx) · x⊤ into equation (3.10) to

get
d

dλ

∫

DλM(t)

φ = 0.

So
∫

DλM φ remains constant as λ varies, which is a contradiction and proves our

claim.
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3.3 Graphs

We continue to consider flowsM satisfying Assumption 1, but now we add:

Assumption 2: M is a graph over Ω× I,

M = {(x̂, u(x̂, t), t) | (x̂, t) ∈ Ω× I},

for a domain Ω in R
m, interval I in R, and smooth function u : Ω× I → R

n.

When we say that such a flowM is smooth (or locally C2,α, etc.), we mean that

the function u is smooth (or locally C2,α, etc.). We will also discuss sequences MJ

of such flows (where J = 1, 2, . . .). When we talk about convergence ofMJ in some

space of functions, we actually mean convergence of the corresponding uJ .

Proposition 3.3.1. If M satisfies Assumptions 1 and 2, then the function u will

be a solution to the quasilinear parabolic system of equations

∂tu = ĝij(Du)∂iju

on Ω× I, where ĝij = δij − ∂iu
ν∂ju

ν.

Remember that the system here will be parabolic because the spacelike condition

implies that ĝ = I −DuT Du will be positive definite.

Proof. With F as in Assumption 1, we write F = (F̂ , F̃ ) such that F (x̂, t) =

(F̂ (x̂, t), u(F̂ (x̂, t), t)). Differentiating with respect to t, using the chain rule,

∂tF (x̂, t) = (I,Du(F̂ (x̂, t), t)) · ∂tF̂ (x̂, t) + (0, ∂tu(F̂ (x̂, t), t)),

where the first term on the right hand side is a tangent vector. Therefore (since we

know that the left hand side is equal to H, which is normal) we have ∂tF (x̂, t) =

(0, ∂tu)⊥|(F̂ (x̂,t),t). We already know that ∂tF (x̂, t) = H(F (x̂, t), t), but the mean

curvature at F (x̂, t) is given by (0, ĝij∂iju)⊥|(F̂ (x̂,t),t) (see the proof of Proposition

A.1.1). Hence (0, ∂tu)⊥ = (0, ĝij∂iju)⊥. Since (0, ∂tu − ĝij∂iju)⊥ = 0 implies that

(0, ∂tu− ĝij∂iju) is a tangent vector, we can write (0, ∂tu− ĝij∂iju) = vk∂k(x̂, u) =

vk(ek, ∂ku). Clearly then each vk = 0, which implies that (0, ∂tu− ĝij∂iju) = 0.
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Proposition 3.3.2. Let Ω be a domain in R
m and let I be an open interval in R.

If u : Ω × I → R
n is a smooth solution to the system from Proposition 3.3.1, and

if the graphM of u (as in Assumption 2) gives a spacelike flow (with respect to the

induced metric from R
m+n
n on spatial slices), thenM is a mean curvature flow (i.e.

Assumption 1 is satisfied).

Proof. For each s ∈ I, we would like to find an open set E ⊂ Ω × I containing

Ω×{s}, and a function φ : E → Ω such that F (x̂, t) = (φ(x̂, t), u(φ(x̂, t), t)) satisfies

∂tF (x̂, t) = H(F (x̂, t), t). But we know that the mean curvature of our graph is

(0, ĝij∂iju)⊥ and that ∂tu = ĝij∂iju. These facts and the chain rule applied to F

imply that we need ∂tF = (∂tφ,Du∂tφ) + (0, ∂tu) to be equal to (0, ∂tu)⊥. This is

equivalent to (∂tφ,Du∂tφ) = −〈(0, ∂tu), (ei, ∂iu)〉 ĝij(ej, ∂ju) = ∂tu · ∂iuĝij(ej, ∂ju),

which means that we want a solution to the system ∂tφ
j = ∂tu · ∂juĝij(Du)|(φ(x̂,t),t)

for j = 1, . . . ,m. Denoting the right hand side of this system by G, we can write this

as ∂tφ(x̂, t) = G(φ(x̂, t), t), where G is smooth (since u is). We prove the existence

of a solution to this system by considering the nonautonomous (time dependent)

system of ordinary differential equations given by

dφ

dt
(t) = G(φ(t), t),

with initial condition φ(s) = x̂ for any x̂ ∈ Ω. By the usual existence and uniqueness

theorems for such systems,6 solutions φx̂,s(t) will exist for each x̂ ∈ Ω and s ∈ I.

Writing φx̂,s(t) = φs(x̂, t), we see that φs(·, s) is the identity map, φs is defined on

some open set E containing Ω × {s}, and each φs(·, t) will be a diffeomorphism.

Therefore φs is the required function, so Assumption 1 is satisfied.

It will be convenient for us to again use the norm |||Du||| = sup|v|=1 |Du · v| for

the differential map Du(x̂, t) : R
m → R

n.

6See Theorem 17.15 and Problem 17-15 of [15]. Suppose that Ω is a domain in R
m, J is an

open interval in R and V : J × Ω → R
m is a smooth vector field. Then there exists an open

set E and a smooth map θ : E → Ω such that γ(t) = θ(t, s, p) is the unique maximal solution

of the initial value problem dγ/dt = V (t, γ(t)) with γ(s) = p. Let (t, s) ∈ J × J and define

Ωt,s = {p ∈ Ω | (t, s, p) ∈ E}, then θ(t, s, ·) : Ωt,s → Ωs,t is a diffeomorphism with inverse θ(s, t, ·).
Also, see [1] for similar results.
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Assumption 3: WithM as in Assumption 2, the function u satisfies |||Du|||2 ≤
1− κ for some κ > 0 and the domain Ω is smooth and convex.

Of course, the assumption on |||Du||| would follow from any suitable a priori

gradient estimate for such flows. When this assumption is satisfied, the eigenvalues

of the matrix ĝ will always be between κ and 1. It is also worth remembering that

this gradient bound is preserved under parabolic dilations of the flow.7

With this assumption, we get the following inequality for any t ∈ I,8

|u(x̂, t)− u(ŷ, t)| ≤ sup
Ω
|||Du(·, t)|||.|x̂− ŷ| ≤ (1− κ)1/2|x̂− ŷ|, (3.11)

and then

|u(x̂, t)− u(ŷ, s)| ≤ |u(x̂, t)− u(ŷ, t)|+ |u(ŷ, t)− u(ŷ, s)|

≤ (1− κ)1/2|x̂− ŷ|+ (s− t) sup
(t,s)

|∂tu(ŷ, ·)| (3.12)

whenever s ≥ t are both in I.

Proposition 3.3.3. Suppose that u : Ω × [a, b) → R
n is smooth with |||Du|||2 ≤

1− κ and satisfies the system from Proposition 3.3.1. Then u can be extended to a

continuous function on Ω× [a, b].

Proof. Take the linear operator P = ∂t − ĝij(Du)∂ij (where we have positive upper

and lower bounds on the eigenvalues of gij, by the bound on Du). Using Pu = 0,

Theorem 2.14 of [18] (in particular, the comment that follows it)9 on cylinders in

Ω × (a, b) tells us that, for any x̂ ∈ Ω, the function u(x̂, ·) is uniformly continuous

7This is obviously true since, if uλ is the function corresponding to the dilation (by λ > 0) of

the graph of u, then Duλ(·, ·) = D(λu(·/λ, ·/λ2)) = Du(·/λ, ·/λ2).
8To prove this, let Ω be open in R

m, let u : Ω → R
n and let x̂ ∈ Ω and h ∈ R

m be such that

x̂+δh ∈ Ω for all δ ∈ [0, 1]. Then |u(x̂+h)−u(x̂)| = |(
∫ 1

0
Du(x̂+δh)dδ)·h| ≤

∫ 1

0
|Du(x̂+δh)·h|dδ =

|h|
∫ 1

0
|Du(x̂ + δh) · h|/|h|dδ ≤ |h| supΩ |||Du|||.

9This comment says that, if u satisfies a linear parabolic equation where the coefficient matrix

has positive upper and lower bounds on its eigenvalues, and if Du is bounded in some cylinder

{|x̂− x̂0| < ρ}×(t1, t1+ρ2), then u(x̂0, ·) will be uniformly C0,1/2 with respect to the time variable.
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on some interval with supremum b. It can therefore be extended continuously to

[a, b]. On Ω × [a, b) we know that |u(x̂, t) − u(ŷ, t)| ≤ (1 − κ)1/2|x̂ − ŷ|. Take the

limit of this inequality as t → b to see that it holds on all [a, b], so the extension

is continuous with respect to x̂ ∈ Ω since |u(x̂, t) − u(ŷ, t)| ≤ (1 − κ)1/2|x̂ − ŷ| < ǫ

whenever |x̂− ŷ| < δ = ǫ/(1− κ)1/2.

3.4 Monotonicity for Entire Flows

In this section our flows will satisfy Assumptions 1, 2 and 3, but will also be entire

flows (in other words, the spatial slices will be graphs defined over all of R
m).

Assumption 4: WithM as in Assumption 2, Ω = R
m and I = (−∞, T ] for some

T ∈ (−∞,∞].

IfM is such an entire flow, it is easy to check that Θ(M, X0, t) is finite at points

X0 = (x̂0, u(x̂0, t0), t0) on M for times t < t0. We know that
√

det ĝ < 1. We also

have inequality (3.12) which gives us a bound on the exponent in ΦX0 on the flow

in terms of |x̂− x̂0| and finite constants,

−〈x− x0, x− x0〉
4(t0 − t)

= −〈(x̂, u(x̂, t))− (x̂0, u(x̂0, t0)), (x̂, u(x̂, t))− (x̂0, u(x̂0, t0))〉
4(t0 − t)

=
−|x̂− x̂0|2 + |u(x̂, t)− u(x̂0, t0)|2

4(t0 − t)

≤
−|x̂− x̂0|2 +

(
(1− κ)1/2|x̂− x̂0|+ (t0 − t) sup(t,t0) |∂tu(x̂0, ·)|

)2

4(t0 − t)

=
−κ|x̂− x̂0|2 + 2(1− κ)1/2(t0 − t) sup(t,t0) |∂tu(x̂0, ·)||x̂− x̂0|

4(t0 − t)

+
(t0 − t)2 sup(t,t0) |∂tu(x̂0, ·)|2

4(t0 − t)
. (3.13)

Here we can use the fact that the flow is smooth, so the time derivative in this in-

equality will be bounded on (t, t0) by some constant, and the fact that t < t0 being

fixed means that 4(t0− t) will be just a positive constant. This means that, for large

|x̂ − x̂0|, the first term in the right hand side of equation (3.13) will dominate. So
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we have a bound on Θ(M, X0, t) by some integral which is clearly finite.10

The simplest example of the kind of flow that we consider in this chapter is a

non-moving plane, where each spatial slice is equal to a spacelike plane (independent

of time). Then Du is constant and ∂tu = 0. Obviously this implies that

|u(x̂, t)− u(x̂0, t0)|2 = |Du · x̂−Du · x̂0|2

= |Du · (x̂− x̂0)|2

= (x̂− x̂0)
T DuT Du(x̂− x̂0),

where we know that ĝ = I −DuT Du. For any point X0 = (x̂0, u(x̂0, t0), t0) on the

flow, we therefore see that the exponent of ΦX0 on the flow will involve

−|x̂− x̂0|2 + |u(x̂, t)− u(x̂0, t)|2 = −(x̂− x̂0)
T (I −DuT Du)(x̂− x̂0)

= −(x̂− x̂0)
T ĝ(x̂− x̂0),

which gives

Θ(M, X0, t) =

∫

Rm

1

(4π(t0 − t))m/2
exp

(

−(x̂− x̂0)
T ĝ(x̂− x̂0)

4(t0 − t)

)
√

det ĝdx̂

=

√
det ĝ

(4π(t0 − t))m/2

√

(2π)m

det(ĝ/2(t0 − t))

= 1,

where we again use the usual Gaussian integral formula.

Proposition 3.4.1. Θ is equal to 1 on non-moving planes.

Proof. As above.

The following theorem gives us a monotonicity formula, similar to Huisken’s,

for entire spacelike mean curvature flows. Roughly, it tells us that Θ will be non-

decreasing with respect to the time variable on such flows.11

10It is clear that this integral is finite from the usual formula for Gaussian integrals,
∫

Rm exp(−Aijy
iyj/2)dy =

√

(2π)m/det(Aij), where the matrix Aij is constant, symmetric and

positive definite. Almost all of the bounds on integrals that we use in the future will follow from

this formula.
11This is different to the Euclidean case, where the Gaussian density ratio would be non-

increasing.
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Theorem 3.4.1. Let M be a mean curvature flow satisfying Assumptions 1, 2, 3,

4, and let the mean curvature H be bounded on M. Then

d

dt
Θ(M, X0, t) = −

∫

x∈M(t)

〈

H(x, t) +
(x− x0)

⊥

2(t0 − t)
, H(x, t) +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0(x, t),

when X0 = (x0, t0) ∈M and t < t0.

Proof. For each R > 0 we can choose12 functions χm
R : R

m → R such that13

χBm
R (0) ≤ χm

R ≤ χBm
2R(0) and R|Dχm

R |+ R2|D2χm
R | ≤ C

for some constant C. Using these functions, we define χR : R
m+n
n → R by taking

χR(x) = χR(x̂, x̃) = χm
R (x̂)

for any x = (x̂, x̃). We now apply equation (3.7) with φ = χR to get

d

dt

∫

M(t)

ΦX0χR =

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

χR

−
∫

M(t)

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0χR.

(3.14)

Using equations (3.1) and (3.2), the Schwarz inequality and the bounds on the

eigenvalues of ĝ (from the assumed bound on the gradient), we have14

∣
∣
∣
∣

(
d

dt
−∆M(t)

)

χR

∣
∣
∣
∣

= |∂tχR − divM(t)(ḡDχR)|

= |0− ĝij 〈∂i(ḡDχR), ∂j(x̂, u)〉 |

= |ĝij∂i(x̂, u) ·D2χR · ∂j(x̂, u)T |

= |ĝij(Du)∂ijχ
m
R |

≤
√
∑

ij

ĝij(Du)2

√
∑

ij

(∂ijχm
R )2

= |ĝ−1(Du)| · |D2χm
R |

≤ C0(κ)
C

R2
χBm

2R(0)−Bm
R (0), (3.15)

12See the proof of Theorem 4.13 in [5], for example.
13For a set K, we denote by χK the characteristic function of K.
14Note that, from now on, C(·, . . . , ·) will always denote a positive constant depending on the

quantities in parentheses.
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where we have also used the facts that |ĝ−1(Du)| ≤ C0(κ), that 〈ḡv, w〉 = v ·w, and

that χm
R is constant outside Bm

2R(0)−Bm
R (0).

Now we will restrict to any fixed bounded time interval I ′ = [a, b] ⊂ (−∞, t0),

considering only times t ∈ I ′. The first thing to note here is that

a ≤ t ≤ b ⇒ t0 − b ≤ t0 − t ≤ t0 − a ⇒ 1

t0 − a
≤ 1

t0 − t
≤ 1

t0 − b
,

so we have uniform upper and lower bounds, independent of t, on t0−t and 1/(t0−t).

Next we note that the flow is smooth on (−∞, t0] (by our assumptions in the

statement of the theorem) and X0 = (x̂0, u(x̂0, t0), t0) lies on the flow, so we have

sup
[t,t0]

|∂tu(x̂0, ·)| ≤ sup
[a,t0]

|∂tu(x̂0, ·)|,

where sup[a,t0] |∂tu(x̂0, ·)| is a finite constant independent of t ∈ I ′ (but dependent

on I ′ and x̂0, which are fixed). We can use this to apply inequality (3.12) to bound

the exponent of ΦX0 on our flow, getting

−〈x− x0, x− x0〉
4(t0 − t)

≤
−κ|x̂− x̂0|2 + 2(1− κ)1/2(t0 − t) sup[t,t0] |∂tu(x̂0, ·)||x̂− x̂0|

4(t0 − t)

+
(t0 − t)2 sup[t,t0] |∂tu(x̂0, ·)|2

4(t0 − t)

≤ − κ

4(t0 − a)
|x̂− x̂0|2 +

2(1− κ)1/2 sup[a,t0] |∂tu(x̂0, ·)|
4

|x̂− x̂0|

+
(t0 − a) sup[a,t0] |∂tu(x̂0, ·)|2

4
.

We denote the right hand side of this inequality by Q(|x̂−x̂0|), where the coefficients

of the polynomial Q depend on I ′ and x̂0 but are independent of t ∈ I ′.

We would now like an upper bound on the (non-negative) term15

−
〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

= −〈H,H〉 − 1

t0 − t
〈H, x− x0〉 −

1

4(t0 − t)2

〈
(x− x0)

⊥, (x− x0)
⊥〉

≤ |H|2 +
1

t0 − b
| 〈H, x− x0〉 |+

1

4(t0 − b)2
|
〈
(x− x0)

⊥, (x− x0)
⊥〉 |

15We use the fact that | 〈v, w〉 | = |vḡw| ≤ |v|.|w|.
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≤ |H|2 +
1

t0 − b
|H||x− x0|

+
1

4(t0 − b)2
| 〈(x− x0), (x− x0)〉 −

〈
(x− x0)

⊤, (x− x0)
⊤〉 |

≤ |H|2 +
1

t0 − b
|H||x− x0|

+
1

4(t0 − b)2
|x− x0|2 +

1

4(t0 − b)2

〈
(x− x0)

⊤, (x− x0)
⊤〉 .

We know |H| is uniformly bounded (by our assumptions here), and inequality (3.12)

gives

|x− x0|2 = |x̂− x̂0|2 + |u(x̂, t)− u(x̂0, t0)|2

≤ |x̂− x̂0|2 +

(

(1− κ)1/2|x̂− x̂0|+ (t0 − a) sup
[a,t0]

|∂tu(x̂0, ·)|
)2

.

So we just need a bound on

|
〈
(x− x0)

⊤, (x− x0)
⊤〉 | = 〈(x− x0), ∂i(x̂, u(x̂, t))〉 ĝij(Du) 〈(x− x0), ∂j(x̂, u(x̂, t))〉

≤ 1

κ

∑

i

〈x− x0, (ei, ∂iu)〉2

≤ 1

κ
|x− x0|2

∑

i

|(ei, ∂iu)|2,

where we have already obtained a bound on |x − x0| and |(ei, ∂iu)| is obviously

bounded since |||Du|||2 ≤ 1− κ. Combining these inequalities gives

−
〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

≤ P (|x̂− x̂0|),

where P is some polynomial with coefficients again independent of t ∈ I ′.

Now we recall equation (3.14) and use it to get

∣
∣
∣
∣

d

dt

∫

M(t)

ΦX0χR −−
∫

M(t)

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

χR +

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0(1− χR)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

χR

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

M(t)

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0(1− χR)

∣
∣
∣
∣
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≤
∫

Rm

C0C

R2

χBm
2R(0)−Bm

R (0)

(4π(t0 − b))m/2
exp[Q(|x̂− x̂0|)]dx̂

+

∫

Rm

P (|x̂− x̂0|)
(1− χBm

R (0))

(4π(t0 − b))m/2
exp[Q(|x̂− x̂0|)]dx̂,

where we have used all of the inequalities above, as well as
√

det ĝ ≤ 1. Both

integrands in the right hand side are bounded by an integrable function (by the

usual Gaussian integral formula, since Q is dominated by the −|x̂− x̂0|2 term and P

is just a polynomial) which is independent of R. Both integrands converge pointwise

to zero on R
m as R → ∞, which allows us to apply the dominated convergence

theorem16 to see that the right hand side of this inequality converges to zero. Since

the right hand side is independent of t ∈ I ′, this convergence is uniform. So we have

lim
R→∞

d

dt

∫

M(t)

ΦX0χR = −
∫

M(t)

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0 .

The uniform convergence allows us to swap the order of the limit and the derivative

on the left hand side to get

−
∫

M(t)

〈

H +
(x− x0)

⊥

2(t0 − t)
, H +

(x− x0)
⊥

2(t0 − t)

〉

ΦX0 =
d

dt
lim

R→∞

∫

M(t)

ΦX0χR

=
d

dt

∫

M(t)

ΦX0 ,

where we have again used a dominated convergence argument (involving Q, etc.) and

the fact that χm
R converges to 1 pointwise. Since we can do this for any such interval

I ′, the equation above holds for all t < t0. This finally proves the theorem.

The proof of this theorem should be compared to the proof on page 55 of [5]. Note

that the choice of χR also gives the possibility of a kind of weighted monotonicity

formula (see [5]). We could even weaken the assumption on H, but for now it is

enough to assume that it is bounded.

Corollary 3.4.1. Let M be as in Theorem 3.4.1, then Θ(M, X, t) ≤ 1 for all

X ∈ M and all t < τ(X). Also, Θ(M, X, t) = 1 for all X ∈ M and all t < τ(X)

if and only if M is a non-moving plane.

16Suppose we are given a sequence of integrable functions on R
m, converging pointwise almost

everywhere to some limit function. Suppose that the absolute value of each function in the sequence

is bounded by some fixed integrable function. Then the limit of the sequence of integrals of these

functions is equal to the integral of the limit function. See Theorem 16.5 of [9].
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Proof. Let Y = (y, s) ∈ M, then we claim that limt→s Θ(M, Y, t) = 1. We prove

this by considering dilations of the flow, using Proposition 3.2.1.

Θ(M, Y, t) = Θ(D1/(s−t)1/2(M− Y ), 0,−1) (3.16)

and, since the flow is smooth at Y , the flows D1/(s−t)1/2(M− Y ) converge to a non-

moving plane as t→ s. To understand why, write λ =
√

s− t (which converges to 0

as t→ s) and let each of the flows D1/λ(M−Y ) be given by the graph of a function

uλ. If the flow (M− Y ) is the graph of a function u, then uλ(ẑ, r) = u(λẑ, λ2r)/λ

and the definition of the derivative of this function with respect to λ gives us

lim
λ→0

uλ(ẑ, r) = lim
λ→0

u(λẑ, λ2r)

λ
= ∂λu(λẑ, λ2r)|λ=0 = Du(0, 0) · ẑ + 0 · 2r∂tu(0, 0),

and therefore our sequence of flows D1/λ(M− Y ) converges pointwise to a non-

moving plane as λ→ 0. We can easily see that Duλ(ẑ, r) = Du(λẑ, λ2r)→ Du(0, 0),

so that det ĝ(Duλ) converges pointwise to det ĝ(Du(0, 0)). Also,

sup
[−1,0]

|∂tuλ(0, ·)| = λ sup
[−λ2,0]

|∂tu(0, ·)| → 0

as λ → 0 (since u is smooth). We can use these facts now to apply the dominated

convergence theorem to Θ(D1/λ(M− Y ), 0,−1), by again using inequality (3.12) in

the usual way to get an upper bound on the exponent of Φ0(·,−1) on each of the

flows D1/λ(M− Y ),

−|x̂− 0|2 + |uλ(x̂,−1)− uλ(0, 0)|2
4(0−−1)

≤
−|x̂|2 + ((1− κ)1/2|x̂|+ (0−−1) sup[−1,0] |∂tuλ(0, ·)|)2

4

≤ −κ|x̂|2 + 2(1− κ)1/2|x̂|+ 1

4
,

whenever λ is small enough such that sup[−1,0] |∂tuλ(0, ·)| ≤ 1. Now we have a bound

(for all small λ) on the integrands of each Θ(D1/λ(M− Y ), 0,−1) by some function

(integrable over R
m), and we know that D1/λ(M−Y ) converges pointwise to a non-

moving plane. We can therefore apply the dominated convergence theorem to get

Θ(D1/λ(M− Y ), 0,−1)→ 1 as λ→ 0, since Θ is always equal to 1 on non-moving

planes. Obviously, this fact and equation (3.16) give

Θ(M, Y, t)→ 1
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as t→ s. The monotonicity theorem tells us that Θ(M, Y, t) is non-decreasing with

respect to t < s and therefore must be ≤ 1.

For the second part of the corollary, if Θ(M, Y, t) ≡ 1 then the monotonicity

formula gives

0 =
d

dt
Θ(M, Y, t) = −

∫

M(t)

〈

H +
(x− y)⊥

2(s− t)
, H +

(x− y)⊥

2(s− t)

〉

ΦY ,

and therefore (since normal vectors are timelike or zero)

H(x, t) = −(x− y)⊥/2(s− t).

This means that the flow

M′ = (M− Y ) ∩ {X | τ(X) ≤ 0}

satisfies equation (3.9) and must be invariant under parabolic dilations. As λ→∞,

the flows DλM′ again converge to a non-moving plane, which must be equal toM′

itself. This is true for all Y ∈M, soM must be a non-moving plane.

3.5 Local Monotonicity

In this section we prove a kind of local monotonicity theorem which will be used to

prove a local regularity theorem later. We continue to make Assumptions 1, 2 and

3, but we add:

Assumption 5: With M as in Assumption 2, Ω× I is bounded and u is contin-

uous on its closure.

Note that if our flow (satisfying Assumptions 1, 2, 3) is smooth on an interval

I = [a, b), then Proposition 3.3.3 tells us that it can be extended continuously to

time b. By taking a subset of Ω if necessary (remember that we are interested in

local theorems here), Assumption 5 will hold. We also note that inequality (3.11)

will continue to hold on the closure of Ω× I when Assumption 5 holds.
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We can choose a C2 function φ : R
m → R which satisfies

χBm
1/2

(0) ≤ φ ≤ χBm
1 (0) and |D2φ| ≤ C1,

where C1 is some positive constant depending only on m. Then, for any spacetime

point X0 = (x̂0, x̃0, t0) and any ρ > 0, we define a function on R
m+n by

φρ,X0(x) = φρ,X0(x̂, x̃) = φ

(
x̂− x̂0

ρ

)

,

which will have χBm
ρ/2

(x̂0)×Rn ≤ φρ,X0 ≤ χBm
ρ (x̂0)×Rn and |D2φρ,X0 | ≤ C1/ρ

2.

It will also be convenient now for us to define the sets Qm,n,1
ρ (X) = Bm

ρ (x̂) ×
R

n × (t − ρ2, t) and Pm,n,1
ρ (X) = Bm

ρ (x̂) × R
n × (t − ρ2, t + ρ2) for any spacetime

point X = (x̂, x̃, t).

Definition 3.5.1. Let M be a flow satisfying Assumption 2. If X0 ∈ R
m+n,1 and

ρ > 0 are such that Qm,n,1
ρ (X0) ⊂ Ω× R

n × I, then we define

Θ(M, X0, t, ρ) =

∫

x∈M(t)

ΦX0(x, t)φρ,X0(x)

for t < τ(X0) in I.

With Θ as in this definition, we have the following two simple but useful facts.

Proposition 3.5.1. Θ(Dλ(M−X), Y, t, ρ) = Θ(M, X + D1/λY, τ(X) + t/λ2, ρ/λ).

Proof. This is proved exactly as in the proof of Proposition 3.2.1 by using the trans-

formation formula for integrals.

Proposition 3.5.2. Θ(M, X, s, ρ) is continuous with respect to X ∈M.

Proof. Remember that we are considering smooth flows satisfying Assumption 2, so

take a sequence XJ = (x̂J , u(x̂J , tJ), tJ) onM which converges to X = (x̂, u(x̂, t), t)

as J →∞. Then Θ(M, XJ , s, ρ) is the integral of

exp
(

−|ẑ−x̂J |2+|u(ẑ,s)−u(x̂J ,tJ )|2
4(tJ−s)

)

(4π(tJ − s))m/2
φ

(
ẑ − x̂J

ρ

)
√

det ĝ(Du(ẑ, s)) (3.17)
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over ẑ ∈ Ω, and this function obviously converges pointwise to the integrand in

Θ(M, X, s, ρ). But XJ → X and t > s imply that we can take some small

R > 0 such that x̂J ∈ Bm
R (x̂) and 0 < t − s − R2 < tJ − s < t − s + R2 for

large enough J . Then, by smoothness of u, we have a bound sup(s,tJ ) |∂tu(x̂J , ·)| ≤
supBm

R (x̂) sup(s,t+R2) |∂tu| independent of J . Using this with inequality (3.12) in the

usual way, along with φ ≤ 1 and
√

det ĝ ≤ 1, we get a bound on (3.17) by some in-

tegrable function independent of J . This allows us to apply dominated convergence

theorem to get Θ(M, XJ , s, ρ)→ Θ(M, X, s, ρ).

Now we prove a kind of local monotonicity theorem.

Theorem 3.5.1. Let M satisfy Assumptions 1, 2, 3, 5, and let ρ > 0. Then there

exist positive constants C2(M, ρ) and δ(M, ρ) < ρ2 such that, whenever X0 ∈ M̄ is

such that Qm,n,1
ρ (X0) is contained in Ω× R

n × I, the function

t 7→ Θ(M, X0, t, ρ) + C2t

will be non-decreasing with respect to t ∈ (τ(X0)− δ, τ(X0)).

Note that C2 and δ will be independent of such points X0.

Proof. We know from equation (3.7) that (since our assumptions here imply that

φρ,X0 has compact support on eachM(t))

d

dt
Θ(M, X0, t, ρ) ≥

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

φρ,X0 . (3.18)

As before (see the proof of Theorem 3.4.1), it is easy enough to show that

∣
∣
∣
∣

(
d

dt
−∆M(t)

)

φρ,X0

∣
∣
∣
∣
≤ C3χBm

ρ (x̂0)×Rn−Bm
ρ/2

(x̂0)×Rn ,

where C3 = C3(κ, ρ) is constant. Let x̂, ŷ ∈ Ω̄ and t < s in Ī be such that ρ/2 <

|x̂− ŷ| < ρ. Then, by (3.11) and the triangle inequality, we have

−|x̂− ŷ|2 + |u(x̂, s)− u(ŷ, t)|2 ≤ −|x̂− ŷ|2

+(|u(x̂, s)− u(x̂, t)|+ |u(x̂, t)− u(ŷ, t)|)2
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≤ −|x̂− ŷ|2

+(|u(x̂, s)− u(x̂, t)|+ (1− κ)1/2|x̂− ŷ|)2

≤ −κ|x̂− ŷ|2

+2(1− κ)1/2|x̂− ŷ||u(x̂, s)− u(x̂, t)|

+|u(x̂, s)− u(x̂, t)|2

≤ −κρ2/4

+2(1− κ)1/2ρ|u(x̂, s)− u(x̂, t)|

+|u(x̂, s)− u(x̂, t)|2. (3.19)

But, by uniform continuity of u (since it is continuous on the closure of Ω × I),

we can take δ(M, ρ) (not depending on x̂, ŷ, s, t) such that |u(x̂, t) − u(x̂, s)| will

be small enough that the right hand side of the inequality above will be ≤ −κρ2/8

whenever |t−s| < δ.17 Taking s = τ(X0) and combining the above inequalities with

the fact that
√

det ĝ ≤ 1 gives

∣
∣
∣
∣

∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

φρ,X0

∣
∣
∣
∣
≤
∫

Ω

C3χBm
ρ (x̂0)−Bm

ρ/2
(x̂0)

(4π(τ(X0)− t))m/2
exp

( −ρ2κ/8

4(τ(X0)− t)

)

,

for 0 < τ(X0) − t < δ. Taking t → τ(X0) in the right hand side shows that

it is bounded by some finite constant C4(M, ρ) for these values of t. Therefore

d
dt

Θ(M, X0, t, ρ) ≥ −C4 for t ∈ (τ(X0)− δ, τ(X0)) and this proves the theorem.

Corollary 3.5.1. Let M be as in Theorem 3.5.1. If X0 lies in the closure M̄ and

ρ0 > 0 is such that Qm,n,1
ρ0

(Y ) ⊂ Ω× R
n × I for all Y ∈ Qm,n,1

ρ0
(X0), and if

lim
t→τ(X0)

Θ(M, X0, t, ρ0) > 1− ǫ

for some ǫ > 0, then there exists ρ ∈ (0, ρ0) such that

Θ(M, Y, t, ρ0) ≥ 1− ǫ

for all Y ∈ Qm,n,1
ρ (X0) ∩M and all t ∈ (τ(Y )− ρ2, τ(Y )).

17Uniform continuity implies that for any ǫ > 0 there exists δ > 0 such that ||(x̂, s)− (ŷ, t)|| < δ

implies |u(x̂, s)− u(ŷ, t)| < ǫ. Taking x̂ = ŷ and a small enough ǫ here proves our claim.
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Proof. Let limt→τ(X0) Θ(M, X0, t, ρ0) ≥ 1 − ǫ + η for some η > 0 (note that this

limit exists in R ∪ {∞} by the local monotonicity theorem). Then there must exist

ρ1 ∈ (0, ρ0] such that

Θ(M, X0, τ(X0)− ρ2
1, ρ0) > 1− ǫ + η/2.

We can choose ρ1 to be as small as we like, so we take ρ2
1 < min{δ(M, ρ0), η/4C2(M, ρ0)}

(with δ and C2 as in the Theorem 3.5.1). By continuity, there will exist ρ ∈ (0, ρ1)

such that, for all Y ∈ Qm,n,1
ρ (X0) ∩M,

Θ(M, Y, τ(X0)− ρ2
1, ρ0) > 1− ǫ + η/4

and (τ(Y )− ρ2, τ(Y )) ⊂ (τ(X0)− ρ2
1, τ(X0)) ⊂ (τ(X0)− δ, τ(X0)). So we can apply

Theorem 3.5.1 to Θ(M, Y, t, ρ0) for t ∈ (τ(Y )− ρ2, τ(Y )) to get

Θ(M, Y, τ(X0)− ρ2
1, ρ0) + C2(τ(X0)− ρ2

1) ≤ Θ(M, Y, t, ρ0) + C2t,

which implies

Θ(M, Y, t, ρ0) ≥ C2(τ(X0)− t− ρ2
1) + 1− ǫ + η/4

≥ 1− ǫ + (η/4− ρ2
1C2),

for all such Y and t, where the last term is non-negative by our choice of ρ1.

Proposition 3.5.3. LetM satisfy Assumptions 2, 3 and 5, and let X0 and ρ be as

in Theorem 3.5.1, then

lim
t→τ(X0)

Θ(M, X0, t, ρ) = lim
t→τ(X0)

Θ(M, X0, t).

In particular, the limit on the left hand side is independent of ρ.

Proof. It is easy to see that, if we write X0 = (x̂0, u(x̂0, t0), t0),

0 ≤ Θ(M, X0, t)−Θ(M, X0, t, ρ)

=

∫

M(t)

ΦX0(1− φρ,X0)

=

∫

Ω

exp
(

−|x̂−x̂0|2+|u(x̂,t)−u(x̂0,t0)|2
4(t0−t)

)

(4π(t0 − t))m/2

(

1− φ

(
x̂− x̂0

ρ

))
√

det ĝdx̂. (3.20)
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But
√

det ĝ < 1 and 1 − φ
(

x̂−x̂0

ρ

)

≤ 1 is zero for x̂ ∈ Bm
ρ/2(x̂0). Therefore we only

need to consider |x̂− x̂0| ≥ ρ/2 and, as in inequality (3.19), we get

−|x̂− x̂0|2 + |u(x̂, t)− u(x̂0, t0)|2

≤ −κ|x̂− x̂0|+ 2(1− κ)1/2|x̂− x̂0||u(x̂0, t)− u(x̂0, t0)|+ |u(x̂0, t)− u(x̂0, t0)|2

≤ −κρ2/4 + 2(1− κ)1/2diamΩ|u(x̂0, t)− u(x̂0, t0)|+ |u(x̂0, t)− u(x̂0, t0)|2

≤ −κρ2/8,

where the last step again involves choosing |u(x̂0, t) − u(x̂0, t0)| small enough (by

continuity) by taking t close enough to t0. Therefore, for such t, the right hand side

of inequality (3.20) is less than or equal to

∫

Ω

exp ((−κρ2/8)/4(t0 − t))

(4π(t0 − t))m/2
dx̂,

which converges to 0 as t→ t0.

3.6 Local Regularity

In [24], a regularity theorem for mean curvature flows in Euclidean spaces is proved.

To do this, a kind of local C2,α norm is used (defined at each point of a flow and

denoted by K2,α). If, for a sequence of C2,α flows MJ , this norm is uniformly

bounded on compact subsets as J →∞, then a version of the Arzela-Ascoli theorem

(Theorem 2.6 of [24]) gives local parabolic C2 convergence of a subsequence to

some locally C2,α flow. However, the definition of this norm involves rotations,

which would cause problems in the semi-Euclidean case (for example, because of

the spacelike condition). It is convenient for us to define a slightly different quantity

with similar properties. The idea will be to use the gradient bound (from the

spacelike assumption) to ignore the first few terms in the C2,α norm, thus removing

the need to translate and rotate in the definition of K2,α.

Definition 3.6.1. Suppose that we have a spacelike flow M satisfying Assumption

2 (not necessarily a mean curvature flow) and that X ∈ Ω×R
n × I. Then, for any

constant α ∈ (0, 1), we define G2,α(M, X) to be the infimum of the numbers λ > 0
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such that

uλ,X |Um,1 satisfies [Duλ,X ]α + ||D2uλ,X ||0,α + ||∂tuλ,X ||0,α ≤ 1, (3.21)

where uλ,X is the function whose graph gives the flow Dλ(M−X), and uλ,X |Um,1 is

the restriction to the intersection of its domain with Um,1 = Bm
1 (0)× (−1, 0].

This quantity will be finite when the flow is smooth (to understand why, see

how each term in (3.21) is affected by dilations18). It is important to note that, for

any X = (x̂, x̃, t), G2,α(M, X) is independent of x̃ (since the definition only involves

derivatives of u). We will also need the obvious facts that this quantity will be zero

on non-moving planes and that we have G2,α(Dλ(M−X), 0) = G2,α(M, X)/λ.

The most important property of G2,α is a version of the Arzela-Ascoli theorem.

Roughly, if we have a sequence of smooth spacelike flows MJ , each containing the

origin and with G2,α(MJ , ·) uniformly bounded on compact subsets of spacetime

as J → ∞, then we have local parabolic C2 convergence of some subsequence to a

locally C2,α limit flow. Comparing G2,α to K2,α and applying Theorem 2.6 of [24]

gives us this fact, but we will still explain in detail in Proposition 3.7.1 in a special

case. Furthermore, if each of the flows satisfies the system in Proposition 3.3.1 then

so will the limit (by the C2 convergence), which must then be smooth (again see the

proof of Proposition 3.7.1).

The next theorem is the most important result of this chapter. It is a version of

White’s local regularity theorem. The proof should be compared to a combination

of the proofs of Theorem 3.1 of [24] and Theorem 5.6 of [5]. As in [5], we will use

the local version of Θ so that we can avoid the boundary of spatial slices the flow.

As in [24], we aim for bounds on the C2,α norm and use the Schauder estimates,

rather than aiming for bounds on the second fundamental form and using related

interior estimates as in [5].

18For example, |D2uλ,X(·, ·)| = |D2u(·/λ + x̂, ·/λ2 + τ(X))|/λ which, for large enough λ, will be

less than any ǫ > 0 on Um,1 (since u is C∞). Similar reasoning applies to all other terms in the

definition of G2,α, allowing us to take λ large enough such that the sum of these will be ≤ 1.
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Theorem 3.6.1. Let α, κ ∈ (0, 1) be given. Then there exist positive constants ǫ

and C5 such that if

(a) M is any mean curvature flow satisfying Assumptions 1, 2 and 3, with sup I =

0 ∈ I and with u(0, 0) = 0,

(b) ρ0 > 1 is such that Qm,n,1
ρ0

(Y ) is contained in Ω× R
n × I and

Θ(M, Y, t, ρ0) ≥ 1− ǫ

for all Y ∈ Qm,n,1
1 (0) ∩M and all t ∈ (τ(Y )− 1, τ(Y )),

then

sup
X∈Qm,n,1

1 (0)

G2,α(M, X)d(X,Pm,n,1
1 (0)) ≤ C5.

It is important to notice that the constants ǫ and C5 will depend on κ, α,m, n,

but will be independent of M. It is also worth noting that, since G2,α scales like

the reciprocal of parabolic distance, the inequality in the conclusion of the theorem

is invariant under parabolic dilations.

Proof. Let ǭ be the infimum of numbers ǫ > 0 for which the theorem fails (i.e. for

which no such C5 exists). We need ǭ > 0, so we assume ǭ = 0 to get a contradiction.

We take a sequence ǫJ → ǭ with ǫJ > ǭ. Then there exist sequencesMJ and ρJ > 1,

satisfying all of the assumptions of the theorem (with the same α and κ), but with

ǫJ ,MJ , ρJ in place of ǫ,M, ρ0 (respectively), and with

γJ = sup
X∈Qm,n,1

1 (0)

d(X,Pm,n,1
1 (0))G2,α(MJ , X)→∞

as J → ∞. Each γJ is finite, since MJ is smooth and the closure of the projec-

tion of Qm,n,1
1 (0) onto the spacetime R

m,1 is a compact subset of the set ΩJ × IJ

corresponding toMJ . For each J we can choose YJ ∈ Qm,n,1
1 (0) such that

G2,α(MJ , YJ)d(YJ , Pm,n,1
1 (0)) ≥ γJ

2
,

and we can assume that YJ ∈ MJ .19 We define λJ = G2,α(MJ , YJ) and consider

19Remember that G2,α(M, (x̂, x̃, t)) is independent of x̃, and so is d((x̂, x̃, t), Pm,n,1
1 (0)).
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the flows20

M̃J = DλJ
(MJ − YJ),

which all contain the origin (in spacetime). Then G2,α(M̃J , 0) = 1 for all J , and

DλJ
(Pm,n,1

1 (0)− YJ) = Pm,n,1
λJ

(−DλJ
YJ). But now

γJ

2
≤ G2,α(MJ , YJ)d(YJ , Pm,n,1

1 (0))

= G2,α(M̃J , 0)d(0, Pm,n,1
λJ

(−DλJ
YJ))

= d(0, Pm,n,1
λJ

(−DλJ
YJ)),

so d(0, Pm,n,1
λJ

(−DλJ
YJ)) → ∞ since γJ → ∞ as J → ∞. Let X be a point in

Qm,n,1
λJ

(−DλJ
YJ), then

d(X,Pm,n,1
λJ

(−DλJ
YJ))G2,α(M̃J , X) ≤ γJ ≤ 2d(0, Pm,n,1

λJ
(−DλJ

YJ)),

and therefore

G2,α(M̃J , X) ≤
2d(0, Pm,n,1

λJ
(−DλJ

YJ))

d(X,Pm,n,1
λJ

(−DλJ
YJ))

.

The triangle inequality gives ||0 − Y || ≤ ||0 − X|| + ||Y − X||, and taking the

supremum over all Y /∈ Pm,n,1
λJ

(−DλJ
YJ) gives

d(X,Pm,n,1
λJ

(−DλJ
YJ)) ≥ d(0, Pm,n,1

λJ
(−DλJ

YJ))− ||X||

⇒ G2,α(M̃J , X) ≤
2d(0, Pm,n,1

λJ
(−DλJ

YJ))

d(0, Pm,n,1
λJ

(−DλJ
YJ))− ||X||

=
2

1− ||X||/d(0, Pm,n,1
λJ

(−DλJ
YJ))

, (3.22)

whenever the right hand side is positive. Since d(0, Pm,n,1
λJ

(−DλJ
YJ)) → ∞, this

inequality tells us that G2,α(M̃J , X) is uniformly bounded (as J → ∞) on com-

pact subsets of spacetime with τ(X) ≤ 0.21 This allows us to apply Proposition

3.7.1 to the sequence M̃J ∩ {X | τ(X) ≤ 0} to get parabolic C2 convergence, on

compact subsets of R
m × (−∞, 0], of a subsequence to a limit flow M′. We can

20Note that the flows MJ and M̃J will be graphs of functions uJ and ũJ on sets ΩJ × IJ and

Ω̃J × ĨJ respectively, where sup IJ = 0⇒ sup ĨJ = τ(−DλJ
YJ) > 0.

21For example, for any such compact set we can assume G2,α(M̃J ,X) ≤ 4 for all X in this set by

assuming ||X|| ≤ R (by compactness) and taking J large such that d(0, Pm,n,1
λJ

(−DλJ
YJ)) ≥ 2R.
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assume that this subsequence is our original sequence, and will therefore continue

to use the notation M̃J . The limit M′ will be a smooth entire graph defined on

R
m × (−∞, 0] (since λJ → ∞). It will be the graph of a function u′ satisfying the

system in Proposition 3.3.1 (since the convergence is C2) and will therefore be a

mean curvature flow for times < 0. Also, since the gradient bound is unaffected

by parabolic dilations, sup |||Du′|||2 ≤ 1 − κ. Proposition 3.7.1 tells us that M′

has uniformly bounded mean curvature. This allows us to apply the monotonicity

theorem and related results to the flow.

Now we use the assumption that Θ(MJ , Y, s, ρJ) ≥ 1− ǫJ for all Y ∈ Qm,n,1
1 (0)∩

MJ , s ∈ (τ(Y )− 1, τ(Y )). By Proposition 3.5.1, this is equivalent to the inequality

Θ(M̃J , Y, s, λJρJ) ≥ 1−ǫJ for Y ∈ Qm,n,1
λJ

(−DλJ
YJ)∩M̃J and s ∈ (τ(Y )−λ2

J , τ(Y )).

Given any Z = (ẑ, u′(ẑ, t), t) ∈ M′ with s < t < 0, we can take a sequence

ZJ = (ẑ, ũJ(ẑ, t), t) ∈ M̃J with ZJ → Z. Then, for large enough J , the fact that

d(0, Pm,n,1
λJ

(−DλJ
YJ)) → ∞ implies that ZJ (which is bounded since it converges)

will be in Qm,n,1
λJ

(−DλJ
YJ). Obviously we will have s ∈ (τ(ZJ) − λ2

J , τ(ZJ)) for all

large J . This gives Θ(M̃J , ZJ , s, λJρJ) ≥ 1 − ǫJ , and we want to apply the domi-

nated convergence theorem to this inequality. We see easily that Θ(M̃J , ZJ , s, λJρJ)

is equal to

∫

Ω̃J

exp
(

−|x̂−ẑ|2+|ũJ (x̂,s)−ũJ (ẑ,t)|2
4(t−s)

)

(4π(t− s))m/2
φ

(
x̂− ẑ

λJρJ

)
√

det ĝ(DũJ(x̂, s))dx̂, (3.23)

where we can think of each of these integrals as an integral over R
m since φ is

compactly supported in Ω̃J . By the C2 convergence ũJ → u′ and the fact that

ρJλJ →∞ with φ ≡ 1 in some ball with centre 0, the integrands above will converge

pointwise to the integrand

exp
(

−|x̂−ẑ|2+|u′(x̂,s)−u′(ẑ,t)|2
4(t−s)

)

(4π(t− s))m/2
× 1×

√

det ĝ(Du′(x̂, s))

of the integral Θ(M′, Z, s). But we have φ ≤ 1,
√

det ĝ ≤ 1 and t−s > 0 independent
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of J , as well as

−|x̂− ẑ|2 + |ũJ(x̂, s)− ũJ(ẑ, t)|2 ≤ −κ|x̂− ẑ|2

+2(1− κ)1/2|x̂− ẑ|(t− s) sup
(s,t)

|∂tũJ(ẑ, ·)|

+(t− s)2 sup
(s,t)

|∂tũJ(ẑ, ·)|2,

by inequality (3.12). By the parabolic C2 convergence, we can assume for large

J that sup(s,t) |∂tũJ(ẑ, ·)| is arbitrarily close to sup(s,t) |∂tu
′(ẑ, ·)|, which is finite (by

smoothness of u′) and independent of J . These inequalities combine to give a bound

on the integrands of (3.23) by some function, independent of J and integrable over

R
m. This allows us to apply the dominated convergence theorem to get

Θ(M′, Z, s)← Θ(M̃J , ZJ , s, λJρJ) ≥ 1− ǫJ → 1− ǭ.

So, for all Z ∈M′ with s < τ(Z) < 0, we have Θ(M′, Z, s) ≥ 1− ǭ.

Now we assume that ǭ = 0. Since M′ is entire, the fact that Θ(M′, Z, s) ≥ 1

(whenever s < τ(Z) < 0) implies by Corollary 3.4.1 (since H is bounded) that

Θ(M′, Z, s) ≡ 1 and therefore M′ must be a non-moving plane for times < 0 (and

then for times ≤ 0 by smoothness).

Let u′ be as above and consider the constant coefficient linear parabolic operator

∂t − ĝij(Du′)∂ij applied to the functions ũJ . Proposition 3.3.1 then gives

(
∂t − ĝij(Du′)∂ij

)
ũJ =

(
ĝij(DũJ)− ĝij(Du′)

)
∂ijũJ .

Since u′ is linear and independent of time, ∂iju
′ = ∂tu

′ = 0 and therefore

(
∂t − ĝij(Du′)∂ij

)
(ũJ − u′) =

(
∂t − ĝij(Du′)∂ij

)
ũJ

= (ĝij(DũJ)− ĝij(Du′))∂ijũJ .

For the subset Um,1
2 (0) of R

m× (−∞, 0], the Schauder estimates for linear parabolic
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equations (see Theorem B.3.2) give us

||(ũJ − u′)|Um,1
2 (0)||2,α ≤ C6||

(
∂t − ĝij(Du′)∂ij

)
(ũJ − u′)|Um,1

4 (0)||0,α

+C6 sup
Um,1

4 (0)

|ũJ − u′|

= C6||
(
ĝij(DũJ)− ĝij(Du′)

)
∂ijũJ |Um,1

4 (0)||0,α

+C6 sup
Um,1

4 (0)

|ũJ − u′|,

whenever J is large enough that Um,1
6 (0) ⊂ Ω̃J × ĨJ , and where the constant C6

will depend on m,n, α, κ. But both terms on the right hand side converge to 0 as

J →∞ by the fact that ∂ijũJ is bounded in C0,α on compact subsets (by inequality

(3.22)) and the fact that

(
ĝij(DũJ)− ĝij(Du′)

)
→ 0

in C1 on compact sets (since ĝij(p) depends smoothly on p when |||p||| < 1 and

since convergence of ũJ to u′ is C2 on compact sets). This means that, on Um,1
2 (0),

the convergence ũJ → u′ is C2,α. In particular, the terms of the C2,α norm of ũJ

involved in the definition of G2,α(M̃J , 0) will converge to 0 (since these terms are

zero on u′). This finally gives a contradiction because we dilated in such a way

that G2,α(M̃J , 0) = 1 ≥ 1/2 for every J , which implies that [DũJ ]α + ||D2ũJ ||0,α +

||∂tũJ ||0,α is bounded from below, independently of J , on the set Um,1
1/(1/2)(0)∩Ω̃× Ĩ =

Um,1
2 (0) (see inequality (3.32)). This contradiction means that ǭ cannot be zero.

Corollary 3.6.1. Let ǫ and C5 be as in Theorem 3.6.1. Suppose that M is a

mean curvature flow satisfying Assumptions 1, 2 and 3, with X0 ∈M and τ(X0) =

sup I.22 Suppose that ρ0 > ρ > 0 are such that Qm,n,1
ρ0

(Y ) is contained in Ω×R
n× I

and

Θ(M, Y, s, ρ0) ≥ 1− ǫ

for all Y ∈ Qm,n,1
ρ (X0) ∩M and all s ∈ (τ(Y )− ρ2, τ(Y )). Then

sup
M∩Qm,n,1

ρ (X0)

G2,α(M, ·)d(·, Pm,n,1
ρ (X0)) ≤ C5.

22By these assumptions, the flow will be smooth at time τ(X0), since we are taking X0 to be a

point on the flow.
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Proof. We take the dilated and translated flow M′ = D1/ρ(M− X0). Then, by

Proposition 3.5.1 and our assumptions in this corollary, we have

Θ(M′, Z, r, ρ0/ρ) = Θ(M, X0 + DρZ, τ(X0) + ρ2r, ρ0) ≥ 1− ǫ

(where ρ0/ρ > 1) when DρZ + X0 ∈ Qm,n,1
ρ (X0) ∩M and ρ2r + τ(X0) ∈ (τ(X0 +

DρZ) − ρ2, τ(X0 + DρZ)), which is equivalent to Z ∈ Qm,n,1
1 (0) ∩ M′ and r ∈

(τ(Z)− 1, τ(Z)). Theorem 3.6.1 then gives

C5 ≥ sup
M′∩Qm,n,1

1 (0)

G2,α(M′, ·)d(·, Pm,n,1
1 (0)) = sup

M∩Qm,n,1
ρ (X0)

G2,α(M, ·)d(·, Pm,n,1
ρ (X0)).

The next corollary should be compared Theorem 3.5 of [24].

Corollary 3.6.2. Let M be a mean curvature flow satisfying Assumptions 1, 2,

3 and 5. Let X0 lie in the closure M̄ such that τ(X0) = sup I.23 Suppose that

ρ0 > ρ > 0 are such that Qm,n,1
ρ0

(Y ) is contained in Ω× R
n × I and

Θ(M, Y, s, ρ0) ≥ 1− ǫ

for all Y ∈ Qm,n,1
ρ (X0) ∩M and all s ∈ (τ(Y )− ρ2, τ(Y )). Then M̄ will be smooth

in some spacetime neighbourhood of X0.

Under the assumptions of this corollary, our flow is given by a function u, smooth

on Ω× I and continuous on the closure, so the point X0 is (x̂0, u(x̂0, τ(X0)), τ(X0))

for some x̂0 ∈ Ω. The corollary then says that, even if τ(X0) = sup I /∈ I, there

exists some R > 0 such that all of the derivatives of u have continuous extension to

Um,1
R (x̂0, τ(X0)) = Bm

R (x̂0)× (τ(X0)−R2, τ(X0)].

Proof. We take a sequence XJ → X0 (as J → ∞) in M with τ(XJ) < τ(X0) and

with x̂J = x̂0. For large J , ||XJ −X0|| < ρ/2 and we define

MJ = {Y ∈M | τ(Y ) ≤ τ(XJ)}.

23By these assumptions, M̄ is continuous at time τ(X0) but not necessarily smooth, since we

only assume X0 to be on the closure and not necessarily on the flow itself.
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Now Θ(MJ , Y, s, ρ0) ≥ 1 − ǫ for Y ∈ Qm,n,1
ρ/2 (XJ) ∩ MJ ⊂ Qm,n,1

ρ (X0) ∩ M and

s ∈ (τ(Y )− ρ2/4, τ(Y )) ⊂ (τ(Y )− ρ2, τ(Y )).24 Then, by Corollary 3.6.1,

sup
MJ∩Qm,n,1

ρ/2
(XJ )

G2,α(MJ , ·)d(·, Pm,n,1
ρ/2 (XJ)) ≤ C5 (3.24)

for sufficiently large J . Now we take some sequence YJ in MJ ∩ Qm,n,1
ρ/2 (XJ) with

ŷJ = x̂0 and YJ → X0. For large J we can obviously assume d(YJ , Pm,n,1
ρ/2 (XJ)) ≥

ρ/4, and then inequality (3.24) gives G2,α(MJ , YJ) ≤ 4C5/ρ. Therefore, on the sets

Um,1
ρ/4C5

(x̂0, τ(YJ)), we have ||u||2,α = ||uJ ||2,α uniformly bounded as J → ∞. This

implies a uniform bound on ||u||2,α on each of the sets Um,1
ρ/4C5

(x̂0, τ(X0))∩{(x̂, t) | t ≤
τ(YJ)}, and hence on Um,1

ρ/4C5
(x̂0, τ(X0)) since τ(YJ)→ τ(X0).

25 We get smoothness

from the usual parabolic differentiability theorem (Theorem B.3.3).

The following is the exact statement of the result described in the introduction.

We do not assume that the domain is convex or bounded here, only that the flow is

a smooth graph up to (but not including) time T with bounded gradient.

Theorem 3.6.2. Let M be a mean curvature flow satisfying Assumptions 1 and 2

with I = (0, T ) and |||Du|||2 ≤ 1− κ for some κ ∈ (0, 1). Then M can be extended

smoothly to time T .

Proof. We can extend the corresponding function u continuously to T by Proposition

3.3.3 and let X0 = (x̂0, u(x̂0, T ), T ) for any x̂0 ∈ Ω. We can take a convex, bounded

neighbourhood Ω0 ⊂ Ω of x̂0 and some t0 ∈ (0, T ). Then the flowM0 given by the

restriction of u to Ω0 × (t0, T ) will satisfy Assumptions 3 and 5. Choosing ρ0 > 0

to be sufficiently small, we first apply Theorem 3.7.1 and Proposition 3.5.3 to get

limt→T Θ(M0, X0, t, ρ0) > 1 − ǫ. Then we can apply Corollary 3.5.1, which allows

us to use Corollary 3.6.2 to get smoothness of M̄0 in a neighbourhood of X0. We

can do this at any x̂0 ∈ Ω, and thereforeM can be extended smoothly to T .

24We have used Y ∈ Qm,n,1
ρ/2 (XJ )⇒ ||XJ−Y || < ρ/2⇒ ||Y −X0|| ≤ ||Y −XJ ||+||XJ−X0|| < ρ.

25We have used the facts that Hölder continuity of a function on a domain implies uniform

continuity, and that uniform continuity implies that the function has a unique continuous extension

to the closure of its domain.
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3.7 Long Proofs

Here we prove some facts that were used in this chapter. These proofs were left

until now because they are fairly long and not particularly interesting, so it is likely

that they would have been a distraction from more important points.

3.7.1 Lower Bound on the Limit of Θ

To apply our main regularity theorem, we need a lower bound on limt→τ(X0) Θ(M, X0, t)

by 1−ǫ. As a quick example, suppose that we have a gradient bound |||Du|||2 ≤ 1−κ

strong enough that κm/2 > 1− ǫ, then we have

lim
t→τ(X0)

Θ(M, X0, t, ρ) = lim
t→τ(X0)

Θ

(

D
1/
√

τ(X0)−t
(M−X0), 0,−1,

ρ
√

τ(X0)− t

)

≥ lim
t→τ(X0)

∫

Bm

ρ/2
√

τ(X0)−t
(0)

1

(4π)m/2
e−|x̂|2/4κm/2dx̂

= κm/2

∫

Rm

1

(4π)m/2
e−|x̂|2/4dx̂

= κm/2

> 1− ǫ,

where we have used Proposition 3.5.1, the fact that φ = 1 in Bm
1/2(0), the inequality

det ĝ ≥ κm, and finally the usual formula for Gaussian integrals. But the assumption

on the gradient in this example is not very nice and involves an unknown constant.

We can do much better than this, as we will see in the next theorem.

Theorem 3.7.1. Let M satisfy Assumptions 1, 2, 3 and 5, with I = (0, T ). For

any X0 = (x̂0, u(x̂0, T ), T ) ∈ M̄ with x̂0 ∈ Ω, the limit limt→T Θ(M, X0, t) is greater

than or equal to 1.

It is important to remember that we are not assuming the flow to be smooth on

Ω × (0, T ], only continuous. The proof of this theorem is roughly the same as the

proofs of similar results in [22].

Proof. We will first define a function on the flow,

ζ = 1 + log(1/κm/2)− log (cosh θ) ,
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where θ is the hyperbolic angle defined on page 3 of [17].26 An evolution equation

in [17] (see inequality (A.3) in the appendix here) tells us that
(

d

dt
−∆M(t)

)

ζ ≥ κ|B|2,

where |B|2 is the norm of the second fundamental form on the spatial slices. We

note that there exist constants C7, C8 > 0 (depending on κ) such that C7|B|2 ≤
|D2u|2 ≤ C8|B|2.27 Another useful fact is that, by the assumption |||Du|||2 ≤ 1−κ,

there exists a constant C9 > 0 (again only depending on κ) such that if v ∈ R
m+n
n

is any tangent vector toM(t) then 〈v, v〉 ≤ |v|2 ≤ C9 〈v, v〉.28

We use φρ,X0 from Definition 3.5.1 for small enough ρ. Equation (3.7) gives

d

dt

∫

M(t)

ΦX0ζφρ,X0 ≥
∫

M(t)

ΦX0

(
d

dt
−∆M(t)

)

(ζφρ,X0).

It is easy to check (compare to Lemma 3.14 of [5]) that we have the product rule,29

(
d

dt
−∆M(t)

)

(φρ,X0ζ) = ∂t(φρ,X0ζ)− divM(t)ḡD(φρ,X0ζ)

= ζ∂tφρ,X0 + φρ,X0∂tζ

−divM(t)(ζḡDφρ,X0)− divM(t)(φρ,X0 ḡDζ)

= ζ
(
∂tφρ,X0 − divM(t)ḡD(φρ,X0)

)

+φρ,X0

(
∂tζ − divM(t)ḡD(ζ)

)

−2
〈
gradM(t)φρ,X0 , gradM(t)ζ

〉

= ζ

(
d

dt
−∆M(t)

)

φρ,X0 + φρ,X0

(
d

dt
−∆M(t)

)

ζ

−2
〈
gradM(t)φρ,X0 , gradM(t)ζ

〉
,

26At any point on the flow, cosh θ is equal to the value of 1/
√

det ĝ at the corresponding point

in Ω × I. Therefore we have the obvious bounds on cosh θ which follow from the bounds on Du.

In particular, ζ is bounded and positive.
27We can write |B|2 = | 〈Bij , Bkl〉 ĝikĝjl|, see [17] for details. |D2u| just denotes the Euclidean

norm of D2u, and to prove the inequality we need the fact that the eigenvalues of DuT Du are

bounded above and below thanks to the gradient bound. Compare to page 31 of [13].
28〈v, v〉 ≤ |v|2 is obvious. Let v = vi(ei, ∂iu) and then, since |||Du|||2 ≤ 1− κ, 〈v, v〉 = ĝijv

ivj ≥
κ
∑

i(v
i)2 and |v|2 = vT (I + DuT Du)v ≤ (2− κ)

∑

i(v
i)2.

29This is proved easily using equations (3.1) and (3.2), with the facts that (ḡDf)⊤ = gradM(t)f

and divM(t)(fV ) = fdivM(t)V +
〈

V, gradM(t)f
〉

.
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By Young’s inequality,30

〈
gradM(t)φρ,X0 , gradM(t)ζ

〉
=

〈

gradM(t)φρ,X0
√

φρ,X0

,
√

φρ,X0gradM(t)ζ

〉

≤ 1

2ǫ

|gradM(t)φρ,X0|2
φρ,X0

+
ǫ

2
φρ,X0|gradM(t)ζ|2

≤ 1

ǫ
C10
|Dφρ,X0 |2

φρ,X0

+
ǫ

2
C9φρ,X0

〈
gradM(t)ζ, gradM(t)ζ

〉
,

where C10(κ) > 0 and ǫ is any positive number. Since φρ,X0 is compactly supported

on the flow, Example 3.16 of [5]31 implies that |Dφρ,X0 |2/φρ,X0 ≤ 2 max |D2φρ,X0|,
where we remember that |D2φρ,X0| < C1/ρ

2. By inequality (A.4), we see that
〈
gradM(t)ζ, gradM(t)ζ

〉
≤ C11|B|2 for some constant C11(κ).32 So there exist con-

stants C12, C13, C14 > 0 (depending on κ, ρ) such that

2
〈
gradM(t)φρ,X0 , gradM(t)ζ

〉
≤ C12

ǫ
+ ǫC13φρ,X0 |B|2,

(
d

dt
−∆M(t)

)

φρ,X0 ≤ C14,

where we prove the second inequality as in Theorem 3.4.1. Combining all of the

inequalities above,

d

dt

∫

M(t)

ΦX0ζφρ,X0 ≥
∫

M(t)

ΦX0

(

κφρ,X0|B|2 − C15C14 −
C12

ǫ
− ǫC13φρ,X0 |B|2

)

,

where we use the fact that ζ is clearly less than or equal to some constant C15(κ).

Choosing ǫ = κ/2C13 and C16 = C15C14 + C12/ǫ, we have

d

dt

∫

M(t)

ΦX0ζφρ,X0 ≥
κ

2

∫

M(t)

ΦX0φρ,X0|B|2 − C16

∫

M(t)

ΦX0

=
κ

2

∫

M(t)

ΦX0φρ,X0|B|2 − C16Θ(M, X0, t).

We can now use this to prove the theorem. We assume that limt→T Θ(M, X0, t) < 1

and hope to get a contradiction. So for t close enough to τ(X0) = T (say t ∈
(T − δ, T ) for some δ > 0) we can assume that

d

dt

∫

M(t)

ΦX0ζφρ,X0 ≥
κ

2

∫

M(t)

ΦX0φρ,X0 |B|2 − C16. (3.25)

30This implies that 〈v, w〉 = viwi − vγwγ ≤ |vi||wi| + |vγ ||wγ | ≤
∑

i[ǫ(v
i)2/2 + (wi)2/2ǫ] +

∑

γ [ǫ(vγ)2/2 + (wγ)2/2ǫ] = ǫ|v|2/2 + |w|2/2ǫ.
31|Dφ|2/φ ≤ 2max |D2φ| for compactly supported C2 functions.
32We could even prove this directly, using the Schwarz inequality and |D2u|2 ≤ C8|B|2.
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We can see how this inequality is affected by parabolic dilations, Dλ for λ > 1, by

noting that ζ involves first derivatives and |B| involves second derivatives. To save

space here, it is convenient to define

f(M, X0, t, ρ) =

∫

M(t)

ΦX0ζφρ,X0 ,

k(M, X0, t, ρ) =

∫

M(t)

ΦX0φρ,X0 |B|2,

and the inequality above becomes

d

dt
f(M, X0, t, ρ) ≥ κ

2
k(M, X0, t, ρ)− C16. (3.26)

But, applying the transformation formula for integrals in the usual way, we have

f(Dλ(M−X0), 0, s, λρ) = f(DλM, DλX0, s + τ(DλX0), λρ)

= f(M, X0, s/λ
2 + τ(X0), ρ)

⇒ d

ds
f(Dλ(M−X0), 0, s, λρ) =

1

λ2

df(M, X0, t, ρ)

dt
|t=s/λ2+τ(X0)

≥ 1

λ2

(κ

2
k(M, X0, s/λ

2 + τ(X0), ρ)− C16

)

=
−C16

λ2
+

κ

2

∫

M(s/λ2+τ(X0))

ΦX0φρ,X0

(
1

λ2
|B|2

)

=
−C16

λ2
+

κ

2

∫

Dλ(M−X0)(s)

Φ0φλρ,0|B|2

=
−C16

λ2
+

κ

2
k(Dλ(M−X0)(s), 0, s, λρ).

So we have

d

ds

∫

Dλ(M−X0)(s)

Φ0ζφλρ,0 ≥ −C16

λ2
+

κ

2

∫

Dλ(M−X0)(s)

Φ0|B|2φλρ,0

for s ∈ (−λ2δ, 0), remembering that λ > 1. We now take τ < δ/2 and integrate

with respect to s over the interval (−δ/2− τ,−δ/2) to get

[∫

M(s/λ2+τ(X0))

ΦX0ζφρ,X0

]−δ/2

−δ/2−τ

=

[∫

Dλ(M−X0)(s)

Φ0ζφλρ,0

]−δ/2

−δ/2−τ

≥ −C16τ

λ2
+

κ

2

∫ −δ/2

−δ/2−τ

∫

Dλ(M−X0)(s)

Φ0|B|2φλρ,0.

The left hand side and the first term on the right hand side clearly have limit zero
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as λ→∞,33 therefore we must have

∫ −δ/2

−δ/2−τ

∫

Dλ(M−X0)(s)

Φ0|B|2φλρ,0 → 0. (3.27)

As on page 26 of [22], we can use the integral mean value theorem34 to choose

sequences λJ →∞, τJ → 0 and sJ ∈ [−δ/2− τJ ,−δ/2] such that

∫

DλJ
(M−X0)(sJ )

Φ0|B|2φλJρ,0 → 0 as J →∞.

To do this, we first choose a sequence τJ < δ/2 which converges to 0 and then let

CJ be such that CJ/τJ → 0. Since τJ < δ/2, the limit (3.27) tells us that

∫ −δ/2

−δ/2−τJ

∫

Dλ(M−X0)(s)

Φ0|B|2φλρ,0 → 0 as λ→∞,

and therefore is less than CJ for large enough λ. For each J we choose such large λ

and denote them by λJ (we also choose these such that λJ →∞). Then

∫ −δ/2

−δ/2−τJ

∫

DλJ
(M−X0)(s)

Φ0|B|2φλJρ,0 < CJ ,

but by the mean value theorem we have

∫ −δ/2

−δ/2−τJ

∫

DλJ
(M−X0)(s)

Φ0|B|2φλJρ,0 = (−δ/2 + δ/2 + τJ)

∫

DλJ
(M−X0)(sJ )

Φ0|B|2φλJρ,0

for some sJ ∈ [−δ/2− τJ ,−δ/2]. Therefore

∫

DλJ
(M−X0)(sJ )

Φ0|B|2φλJρ,0 < CJ/τJ → 0, (3.28)

as expected.

We have δ/2 ≤ |sJ | ≤ δ, so

Φ0(x̂, x̃, sJ) =
exp ((−|x̂|2 + |x̃|2)/4|sJ |)

(4π|sJ |)m/2
≥ exp (−|x̂|2/2δ)

(4πδ)m/2
.

33The limit on the left hand side involves limt→T f , which must exist since f ≤ C15Θ ≤ C15 for

t close to T and df/dt ≥ (κ/2)k − C16 (which implies that f + tC16 is monotone).
34
∫ b

a
f = f(x)(b− a) for some x ∈ [a, b].
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The function φλJρ,0 is zero outside Bm
λJρ(0)×R

n and is equal to 1 inside Bm
λJρ/2(0)×

R
n. For any R > 0 we can take J large enough such that Bm

R (0)×R
n ⊂ Bm

λJρ/2(0)×
R

n, and then we have (as J →∞)

exp(−R2/2δ)

(4πδ)m/2

∫

DλJ
(M−X0)(sJ )∩Bm

R (0)×Rn

|B|2 ≤
∫

DλJ
(M−X0)(sJ )

Φ0φρλJ ,0|B|2

→ 0.

Now consider the functions ũJ(x̂) whose graphs give the spatial slices DλJ
(M−

X0)(sJ). The fact that λJ → ∞ tells us that, for any R > 0, we can take J large

enough such that Bm
R (0) is contained in the domain of ũJ . Since we also have a

uniform bound on the gradients DũJ , the usual Arzela-Ascoli theorem argument

gives a subsequence (which we continue to denote by ũJ) converging pointwise on

R
m, and uniformly on each Bm

R (0), to some limit ũ. As explained earlier, we have

C7|B|2 ≤ |D2ũJ |2 ≤ C8|B|2, so the inequality above gives

∫

Bm
R (0)

|D2ũJ |2 → 0 as J →∞.

If we define vkγ
J = ∂kũ

γ
J and ckγ

J =
∫

Bm
R (0)

vkγ
J /vol(Bm

R (0)), then the limit above tells

us that

∫

Bm
R (0)

|Dvkγ
J |2 =

∫

Bm
R (0)

∑

i

(∂ikũ
γ
J)2 ≤

∫

Bm
R (0)

|D2ũJ |2 → 0

as J →∞. We can take a convergent subsequence ckγ
J → ckγ (since the sequence is

clearly bounded due to the gradient bound on ũJ) and apply the Poincaré inequal-

ity35 to get
∫

Bm
R (0)

|vkγ
J − ckγ

J |2 ≤ C17

∫

Bm
R (0)

|Dvkγ
J |2 → 0.

So vkγ
J − ckγ

J → 0 with respect to the L2 norm on Bm
R (0). Now we can assume36 that

the derivatives of our sequence converge pointwise almost everywhere to constants.

35If Ω is a bounded open subset of R
m with Lipschitz boundary, then there exists a con-

stant C(Ω, p) such that every function in the Sobolev space W 1,p(Ω) satisfies ||f − fΩ||Lp(Ω) ≤
C(Ω, p)||Df ||Lp(Ω), where uΩ =

∫

Ω
f/volΩ. Here W 1,p contains weakly differentiable functions

with finite Lp norm whose weak derivatives also have finite Lp norm.
36See Theorem 19.12 of [9], which says that Lp convergence implies pointwise convergence almost

everywhere.



3.7. Long Proofs 73

These constants will be the weak derivatives of ũ,37 which therefore must be linear.

Remember that we are assuming limt→T Θ(M, X0, t) < 1, so we can write

lim
J→∞

Θ(DλJ
(M−X0), 0, sJ) = lim

J→∞
Θ(M, X0, T + sJ/λ2

J)

= lim
t→T

Θ(M, X0, t)

= 1− η (3.29)

for some η > 0. Let M̃J,R be the graph of ũJ |Bm
R (0) and let M̃R be the graph of ũ|Bm

R (0).

Since we know that Θ is equal to 1 on non-moving planes, and since the graph of

ũ will be a spatial slice of a non-moving plane, we can choose
∫

M̃R
Φ0(·,−δ/2) to

be as close to 1 as we like by taking R large. We choose R such that 1 − η/2 <
∫

M̃R
Φ0(·,−δ/2). We also have

Θ(DλJ
(M−X0), 0, sJ) >

∫

M̃J,R

Φ0(·, sJ)

=

∫

Bm
R (0)

exp
(

−|x̂−0|2+|ũJ (x̂)−0|2
4(0−sJ )

)

(4π(0− sJ))m/2

√

det ĝ(DũJ)dx̂,

where the terms in the integrand all converge pointwise on the set Bm
R (0), with

ũJ converging uniformly. Then, by the dominated convergence theorem and since

sJ → −δ/2,

Θ(DλJ
(M−X0), 0, sJ) >

∫

M̃J,R

Φ0(·, sJ)→
∫

M̃R

Φ0(·,−δ/2) > 1− η/2.

This gives a contradiction by equation (3.29).

3.7.2 Properties of G2,α

Although the properties of G2,α can easily be understood by comparison with White’s

K2,α norm, we will explain in more detail here just so that everything is clear. First

we need to understand exactly what it means for G2,α to be bounded from above

or below. Let G2,α(M, Y ) < Λ for some fixed Y = (ŷ, ỹ, s) ∈ M and some positive

constant Λ. By the definition of G2,α, this implies that

[DuΛ,Y ]α + [D2uΛ,Y ]α + sup |D2uΛ,Y |+ [∂tuΛ,Y ]α + sup |∂tuΛ,Y | ≤ 1

37See Theorem 20.7 in [9], which says that if a sequence of smooth functions fJ converges in

Lp(Ω) to some f , and if ∂ifJ converges in Lp(Ω) to some v, then v is the weak derivative of f .
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on the set Um,1 ∩ DΛ(Ω × I − (ŷ, s)), where u : Ω × I → R
n is such that M is

the graph of u and uΛ,Y (·, ·) = Λ(u(·/Λ + ŷ, ·/Λ2 + s) − ỹ). But, for example,

we have ∂tuΛ,Y (·, ·) = (1/Λ)∂tu(·/Λ + ŷ, ·/Λ2 + s) and therefore supUm,1 |∂tuΛ,Y | =
(1/Λ) supBm

1/Λ
(ŷ)×(s−1/Λ2,s] |∂tu|. Similar reasoning applies to each of the other terms

in the inequality above, giving

Λ−α[Du]α + Λ−1−α[D2u]α + Λ−1 sup |D2u|+ Λ−1−α[∂tu]α + Λ−1 sup |∂tu| ≤ 1 (3.30)

on the set Bm
1/Λ(ŷ)× (s− 1/Λ2, s] ∩ Ω× I. In particular, we will have

[Du]α + [D2u]α + sup |D2u|+ [∂tu]α + sup |∂tu| ≤ C(Λ) (3.31)

on Bm
1/Λ(ŷ)× (s− 1/Λ2, s] ∩ Ω× I, for some constant C(Λ) dependent only on Λ.

Now suppose that G2,α(M, Y ) ≤ Λ for every Y in a compact subset K of space-

time, then inequality (3.31) gives a bound [Du]α + [D2u]α + sup |D2u| + [∂tu]α +

sup |∂tu| ≤ C(Λ, K) on the projection of K onto R
m,1, where C(Λ, K) is a constant

depending only on Λ and K. Assume further that the origin lies in bothM and K,

then inequality (3.12) and the spacelike assumption (that |||Du||| < 1) tell us that

|u(x̂, t)− 0| = |u(x̂, t)− u(0, 0)| ≤ 1.|x̂− 0|+ |t− 0|.C(Λ, K) ≤ C ′(Λ, K)

for some constant C ′(Λ, K) depending only on Λ and K. Combining all of these

inequalities gives a bound on ||u||2,α (on the projection of K onto R
m,1) which is

dependent only on K and Λ.

By similar reasoning, a lower bound G2,α(M, Y ) > Λ at a point Y corresponds

to a lower bound on the C2,α norm of u. In particular we have

[Du]α + [D2u]α + sup |D2u|+ [∂tu]α + sup |∂tu| ≥ C ′′(Λ) (3.32)

on the set Bm
1/Λ(ŷ)× (s− 1/Λ2, s]∩Ω× I, where C ′′(Λ) > 0 is a constant depending

only on Λ.

We only need the following fact in the proof of Theorem 3.6.1. Here we will go

through the details of the Arzela-Ascoli theorem for sequences of flows with G2,α

bounded on compact sets.
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Proposition 3.7.1. The sequence M̃J∩{X | τ(X) ≤ 0}, from the proof of Theorem

3.6.1, has a convergent subsequence (this is parabolic C2 convergence on compact

subsets). The limit is a smooth flow M′ satisfying Assumptions 2, 3 and 4 with

T = 0. Also, M′ has uniformly bounded mean curvature vector.

Proof. Let ũJ , M̃J , etc. be exactly as in the proof of Theorem 3.6.1. Then, since

λJ → ∞ and sup ĨJ ≥ 0, any compact subset of R
m × (−∞, 0] will be contained

in the domain of ũJ for large enough J . By inequality (3.22), G2,α(M̃J , ·) will be

uniformly bounded on compact subsets of spacetime with τ(X) ≤ 0 as J → ∞.

Therefore we get uniform bounds on ||ũJ ||2,α on compact subsets of R
m × (−∞, 0]

(i.e. bounds which are independent of J , for all large enough J , but do depend on

the subset itself and the G2,α bound). We can use this to prove convergence of a

subsequence by following the same steps as in the proof of the Arzela-Ascoli theorem.

We use the Cantor diagonalization process to choose a convergent subsequence

(compare to the proof of Theorem 5.20 of [9]). Take a countable dense sequence

{(x̂J , tJ)}J∈N of R
m × (−∞, 0] (we can do this since Euclidean spaces are second

countable). Take the point (x̂1, t1) and a subset D1 ⊂ R
m× (−∞, 0] containing this

point and the origin. By the reasoning above, we can choose J large enough such

that ||ũJ ||2,α is bounded independently of J on D1. In particular, the sequence ũJ

(and it derivatives up to second order) will be uniformly bounded on D1. Since the

sequence is bounded (independent of J) we can take a subsequence ũ1,J for which

ũ1,J(x̂1, t1) converges. Iteratively, we choose a subsequence ũK,J of ũK−1,J such that

ũK,J(x̂K , tK) converges. ũK,J is a subsequence of ũK−1,J , so inductively the sequences

ũK,J(x̂1, t1), . . . , ũK,J(x̂K−1, tK−1) converge as J →∞. Then ũK,J(x̂H , tH) converges

as J → ∞ for all H ≤ K, so the diagonal subsequence ũJ,J(x̂H , tH) converges as

J →∞ for every H.

Now we claim that, on any compact subset D of R
m × (−∞, 0], the sequence

ũK,K converges uniformly on D as K → ∞. Suppose that we are given ǫ > 0

and (ẑ, r) ∈ D. By the C2,α bound, we already know that the original sequence is

uniformly equicontinuous on D (for large K) and therefore so is the subsequence
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ũK,K . We use this to choose δ > 0 such that ||(x̂, t) − (ŷ, s)|| < δ in D implies

that |ũK,K(x̂, t) − ũK,K(ŷ, s)| < ǫ/3. Since {(x̂J , tJ)} is dense in R
m × (−∞, 0],

we can choose some (x̂J , tJ) such that ||(ẑ, r) − (x̂J , tJ)|| < δ. Then we have

|ũK,K(ẑ, r)− ũL,L(ẑ, r)| ≤ |ũK,K(z, r)− ũK,K(x̂J , tJ)|+ |ũK,K(x̂J , tJ)− ũL,L(x̂J , tJ)|+
|ũL,L(x̂J , tJ) − ũL,L(ẑ, r)|. The first and last term on the right hand side here are

clearly < ǫ/3, and the second term is < ǫ/3 (for large enough L and K) since we know

that ũL,L(x̂J , tJ) converges for every J as L→∞. Hence |ũK,K(ẑ, r)− ũL,L(ẑ, r)| < ǫ

for large K and L, so the sequence ũK,K(ẑ, r) is Cauchy and must converge. This

applies at any point (ẑ, r) of D and gives us pointwise convergence of the diagonal

subsequence on D. The uniform equicontinuity of the sequence and the fact that D

is compact imply that the convergence is also uniform on D.

Again by the C2,α bounds, we have uniform boundedness and equicontinuity of

all sequences of derivatives up to second order (in the parabolic sense). We can

therefore repeat this process, taking subsequences for which each of these deriva-

tives converge uniformly on compact subsets. The result is a subsequence which

converges in C2 (parabolically) on compact subsets to some function u′ defined on

R
m× (−∞, 0]. By the fact that the C2,α bounds are independent of all large enough

J on compact subsets, it is clear that this limit will also be locally C2,α and will

therefore be smooth by the standard differentiability theorems for parabolic equa-

tions (since the C2 convergence implies that the equation from Proposition 3.3.1 will

hold for u′). This smoothness follows from Theorem B.3.3 by, as in the elliptic case,

using induction (if u′ is Ck,α for k ≥ 2, it satisfies a strictly parabolic linear system

with Ck−1,α coefficients and must be Ck+1,α).

For any X = (x̂, x̃, t) with τ(X) ≤ 0 we use inequality (3.22) and take J large

enough such that d(0, Pm,n,1
λJ

(−DλJ
YJ)) > 2||X||. Then we have G2,α(M̃J , X) < 4.

Then inequality (3.30) implies that |D2ũJ |(x̂, t) + |∂tũJ |(x̂, t) < 4 as J → ∞, and

then the C2 convergence to u′ implies that |D2u′|+ |∂tu
′| ≤ 4. This applies at every

(x̂, t) ∈ R
m × (−∞, 0]. Obviously we also have |||Du′|||2 ≤ 1 − κ, and therefore

we must have a uniform bound on the mean curvature vector of the spatial slices
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of the graph of u′, since this vector is given by (0, gij(Du′)∂iju
′)⊥ (see the proof of

Proposition A.1.1).



Chapter 4

Final Comments

Our main theorems for the maximal graph system say that a solution to the Dirich-

let problem will exist for boundary data with C2 norm less than some constant. In

the case of 2 dimensions, we only need to choose the constant such that a gradient

estimate will hold. For arbitrary dimension and codimension, we need to choose

the constant to be even smaller, such that both the gradient estimate and the C1,α

estimate will hold. Obviously, it would be nice to improve our result in such a way

that, even for arbitrary dimension and codimension, we only need to choose the

constant small enough to get the gradient estimate. Since such a result (in the case

of the minimal graph system) is the goal of [23], it makes sense to attempt to follow

the same steps. The proof there uses two main tools. The first is a gradient estimate

and the second is White’s regularity theorem. We have already proved that we have

both of these in the case of spacelike mean curvature flows in semi-Euclidean spaces.

In the proof of the main theorem in [23], White’s theorem is used to get C2,α

estimates at time T on flows that exist on (0, T ). This allows a smooth extension

of the flow to T , and is used to prove long time existence. However, there is a

problem with this step, since White’s theorem only gives local estimates. These

estimates are enough to extend to T , but are not enough to allow the application

of short time existence at T to extend further by some fixed time. This would

require at least a uniform C1,α estimate over all of Ω. Therefore [23] fails to prove

its claim that the minimal graph Dirichlet problem is solvable when Ω is convex

78



Chapter 4. Final Comments 79

and 8mdiamΩ supΩ |||D2φ||| +
√

2 sup∂Ω |||Dφ||| < 1. After communicating with

Professor Wang, he eventually agreed that this gap in his proof exists. He also

suggested an alternative method to get a similar existence theorem. Our proofs of

the C1,α estimates used in Theorem 2.4.1 are based on this suggested method. These

proofs could easily be repeated in minimal graph case to prove:

Theorem 4.0.2. Let Ω be a bounded, smooth and convex domain in R
m. There is a

positive constant C (depending on Ω,m, n) such that there exists a smooth solution

to the Dirichlet problem, for the minimal graph system with boundary values φ|∂Ω,

whenever the function φ : Ω̄→ R
n is smooth with C2 norm less than C.

This would be proved by using the condition on φ to apply the gradient esti-

mate of [23], allowing us to assume that the gradient of any solution would be small

enough that a C1,α estimate holds (as in Lemma 2.4.2), giving existence of a solution

in the usual way. This assumption on φ is stronger than in Wang’s original claim, so

this theorem is weaker. To prove the original claim, we would probably need to ap-

ply the method used in [23] but with the help of some boundary regularity theorem

to get the estimates needed for long time existence. Examples of such regularity

theorems, using a modified Gaussian density at the boundary, can be seen in [24].

It is not clear exactly how we could apply these to this particular problem.

This leaves us with some obvious questions. Can White’s boundary regularity

theorems be applied to correct Wang’s proof? How would we get the required esti-

mates on the modified Gaussian density at the boundary? Would this need stronger

estimates on the gradient? Do we need extra assumptions on the boundary data

(e.g. a compatibility condition), weakening the result? If so, can the boundary regu-

larity theorems be improved in such a way that we will not need these assumptions?

These questions also apply to the semi-Euclidean case. In fact, it is not known if

such boundary regularity theorems even exist in the semi-Euclidean case. The an-

swers to these questions would provide applications for the local regularity theorem

proved here, and would possibly lead to stronger existence theorems for both the

minimal and maximal graph problems.



Appendix A

Semi-Riemannian Manifolds

A.1 Basic Definitions and Facts

When dealing with problems in semi-Euclidean spaces, it is useful to know some

basic definitions and facts related to semi-Riemannian manifolds. We will give some

here, and more can be seen in [21]. First, we note that a semi-Riemannian manifold

is defined to be a pair (M, g) where M is a smooth manifold and g is a metric tensor

(a symmetric nondegenerate (0, 2) tensor field of constant index) defined on M . The

most obvious examples are the semi-Euclidean spaces. We say that a tangent vector

v to a semi-Riemannian manifold is:

- spacelike if g(v, v) > 0 or v = 0,

- null if g(v, v) = 0 but v 6= 0,

- timelike if g(v, v) < 0.

If (N, ḡ) is a semi-Riemannian manifold, and M ⊂ N is a submanifold of N with

inclusion map f : M → N , then we can take the pullback g = f ∗ḡ in the usual way.

If g is a metric tensor on M , then we get a semi-Riemannian submanifold (M, g),

where g is called the induced metric on M . If we denote by ∇ and ∇̄ the Levi-Civita

connections (defined as for Riemannian manifolds) corresponding to the metrics g

and ḡ respectively, then we have ∇V W = (∇̄V W )⊤ for any pair of tangent vector
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fields V,W on M .1 We can define the second fundamental form B on M by taking

difference of the two Levi-Civita connections,

B(V,W ) = ∇̄V W −∇V W = (∇̄V W )⊥,

which is bilinear and symmetric in V and W . The mean curvature vector of M is

the normal vector field defined by taking the trace of B with respect to the induced

metric g,

H = tracegB = gijB

(
∂

∂xi
,

∂

∂xj

)

.

If M is a spacelike manifold (i.e. if the induced metric is positive definite, so that

every tangent vector is spacelike) and H = 0 at every point on M , then M is a

maximal submanifold of N .

On a spacelike submanifold M with coordinates xi, we can define the gradient,

divergence and Laplace operator on M in the usual way (see chapter 3 of [21]), and

we have the formulae

gradMf = gij ∂f

∂xi

∂

∂xj
,

divMV = gijg

(
∂

∂xi
,∇ ∂

∂xj
V

)

=
1√

det g

∂

∂xi

(√

det gV j
)

,

∆Mf = divMgradMf

=
1√

det g

∂

∂xj

(
√

det ggij ∂f

∂xi

)

, (A.1)

for any smooth function f : M → R and vector field V = V i∂/∂xi. We will

sometimes use the fact that, given a vector field W on M , the component tangential

to M is given by

W⊤ = ḡ
(
W,∂/∂xi

)
gij∂/∂xj.

With these formulae, we can prove the following useful fact. We will frequently need

some of the equations that appear in its proof.

1For a tangent vector V to N , we denote by V ⊤ the component tangential to M and by V ⊥

the component normal to M (with respect to the metric ḡ).
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Proposition A.1.1. Let Ω be a domain in R
m and let F : Ω→ R

m+n
n be a smooth

embedding such that M = F (Ω) is a spacelike submanifold. Then the mean curvature

at each p ∈ M is given by H(p) = ∆MF (p), where ∆M is the induced Laplace

operator on M .

Proof. We first prove that ∆MF is a normal vector. We already know that

∆MF =
1√

det g

∂

∂xi

(
√

det ggij ∂F

∂xj

)

=
1√

det g

∂

∂xi

(√

det ggij
) ∂F

∂xj
+ gij ∂2F

∂xi∂xj
, (A.2)

where the first term on the right hand side is a tangent vector. For each of the

tangent vector fields ∂F/∂xk,

〈

∆MF,
∂F

∂xk

〉

=
1√

det g

〈
∂

∂xi

(
√

det ggij ∂F

∂xj

)

,
∂F

∂xk

〉

=
1√

det g

∂

∂xi

〈
√

det ggij ∂F

∂xj
,
∂F

∂xk

〉

− gij

〈
∂F

∂xj
,

∂2F

∂xi∂xk

〉

,

and we can apply the usual formula for differentiating determinants2 to the first

term here, which will be

1√
det g

∂

∂xi
(
√

det gδik) =
1

2 det g
det ggij ∂

∂xk
gij = gij

〈
∂2F

∂xi∂xk
,
∂F

∂xj

〉

.

This cancels the second term in the equation above, giving
〈
∆MF, ∂F/∂xk

〉
= 0 for

all k, and therefore ∆MF is normal. By definition,

H = gij

(

∇̄ ∂F

∂xi

∂F

∂xj

)⊥
=

(

gij ∂2F

∂xi∂xj

)⊥
.

Combining this with equation (A.2), and the fact that ∆MF is a normal vector field,

gives

∆MF = (∆MF )⊥ =

(

gij ∂2F

∂xi∂xj

)⊥
= H,

at each point of M .

2∂(det g)/∂s = (det g)gij∂gij/∂s
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A.2 Spacelike Graphic Mean Curvature Flows

Since we make use of several facts from [17], it will be convenient to state them

here. In [17], graphic mean curvature flows in semi-Riemannian product manifolds

are considered. Given two Riemannian manifolds (Σ1, g1) and (Σ2, g2), we define

the product manifold N = Σ1 × Σ2 with semi-Riemannian metric ḡ = g1 − g2. For

the graph M = {(p, u(p)) | p ∈ Σ1} in N , of a smooth function u : Σ1 → Σ2, we can

take the induced metric g = g1 − u∗g2 on M and define the hyperbolic angle θ by

cosh θ =
1

√

det(g1 − u∗g2)
.

Obviously, if we take Σ1 = Ω and Σ2 = R
n with the Euclidean metrics, this includes

the case of graphs in the flat semi-Euclidean spaces that we are interested in, and

cosh θ corresponds to the quantity 1/
√

det(I −DuT Du). In section 4 of [17], an

evolution equation for log cosh θ on a mean curvature flow is proved which, in the

case of semi-Euclidean spaces, has the form

(
d

dt
−∆M(t)

)

log cosh θ = −|B|2 +
∑

k,i

λ2
i (h

m+i
ik )2 + 2

∑

k,i<j

λiλjh
m+j
ik hm+i

jk ,

where B is the second fundamental form, λ2
i are the eigenvalues of DuT Du, and

hγ
ij are the components of B with respect to some orthonormal frame. Under the

assumption that we have λ2
i ≤ 1− δ for each i, with δ ∈ (0, 1) constant, it is shown

in section 5 of [17] that this evolution equation implies

(
d

dt
−∆M(t)

)

log cosh θ ≤ −δ|B|2. (A.3)

We also use the following two facts from sections 3 and 5 (respectively) of [17],

〈
gradM(t) cosh θ, gradM(t) cosh θ

〉

cosh2 θ
=
∑

k

(
∑

i

(λih
m+i
ik )

)2

and |B|2 ≥
∑

i,j,k

(hm+j
ik )2,

to easily see that, when λ2
i < 1− δ,

〈
gradM(t) log cosh θ, gradM(t) log cosh θ

〉
≤ C|B|2, (A.4)

where C is some constant depending on δ.



Appendix B

Second Order Elliptic and

Parabolic PDEs

B.1 Notation

On any domain Ω in a Euclidean space, or its closure Ω̄, we define:

- Ck(Ω), the set of functions u : Ω → R with all derivatives of order ≤ k

continuous on Ω (for k = 0, 1, 2, . . ., or k =∞).

- Ck(Ω̄), the set of functions in Ck(Ω) whose derivatives of order ≤ k have

continuous extension to Ω̄.1

When u ∈ Ck(D) for some set D, we say that u is Ck on D (or smooth on D if

k =∞). For parabolic problems, time derivatives are considered to be second order.

1We will frequently use the fact that any uniformly continuous function u : Ω → R
n has

a unique continuous extension to Ω̄ (in particular, we will apply this to uniformly Lipschitz or

Hölder continuous functions).
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B.2 Elliptic Equations

All of the definitions and facts in this section come from [10]. We will consider

second order operators Q of the form

Qu(x) = aij(x, u,Du)
∂2u

∂xi∂xj
+ bi(x, u)

∂u

∂xi
,

where aij is symmetric and x = (x1, . . . , xm) lies in a domain Ω of R
m for m ≥ 2.

We say that the operator is elliptic if the matrix aij is positive definite everywhere.

We say that it is linear if aij and bi are independent of u and Du, and that it is

quasilinear otherwise. One of the most important tools when dealing with elliptic

operators is the maximum principle:

Theorem B.2.1. Let Q be a linear elliptic operator on a bounded domain Ω. Sup-

pose that Qu ≥ 0 (≤ 0) in Ω, with u ∈ C2(Ω)∩C0(Ω̄), then the maximum (minimum)

of u is achieved on the boundary ∂Ω.

To understand other useful facts, we need to define the (elliptic) Hölder spaces.

For α ∈ (0, 1), we say that u : Ω̄→ R is Hölder continuous with exponent α in Ω̄ if

[u]α = sup
x 6=y in Ω̄

|u(x)− u(y)|
|x− y|α <∞.

Ck,α(Ω̄) is the subset of Ck(Ω̄) containing functions whose derivatives up to k-th

order are Hölder continuous with exponent α. We take the norm2

||u||k,α = ||u||Ck,α(Ω̄) =
k∑

j=0

sup
Ω
|Dju|+ [Dku]α.

on this space. With this norm, the space Ck,α(Ω̄) is a Banach space (a complete

normed linear space). We say that a function is locally Ck,α on some set if it is Ck,α

on compact subsets. We say that a domain is Ck,α if, at each point of the boundary,

there is some neighbourhood in which the boundary is the graph of a Ck,α function

of m−1 coordinates. The next three theorems all come from chapter 6 of [10]. First

2Note that the definition of this norm varies in many of the textbooks that we will refer to

(see [10], [14], etc.), but these norms are all equivalent. Therefore a bound on one version of the

norm is equivalent to a bound on any other version.
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we note that an operator Q is called strictly elliptic if aijζiζj ≥ λ|ζ|2, for all ζ ∈ R
m,

for some positive constant λ.

Theorem B.2.2. Let Ω be a bounded C2,α domain in R
m and let u ∈ C2,α(Ω̄) be a

solution to Qu = 0 in Ω with u = φ on ∂Ω, for some linear strictly elliptic operator

Q. Then ||u||2,α ≤ C, where C is some constant depending on supΩ |u|, ||φ||2,α, m,

α, λ, Ω and the C0,α norm of the coefficients of Q.

This is called a Schauder estimate. The following is the standard existence theorem

for linear elliptic equations.

Theorem B.2.3. Let Q be a strictly elliptic linear operator defined on a bounded

C2,α domain Ω. Suppose that the coefficients of Q are in C0,α(Ω̄), and let φ ∈
C2,α(Ω̄). Then there is a unique solution u ∈ C2,α(Ω̄) to Qu = 0 in Ω with u = φ

on ∂Ω.

We will also need the following differentiability theorem for solutions.

Theorem B.2.4. Let Ω be a bounded Ck+2,α domain and let φ ∈ Ck+2,α(Ω̄). Let

Q be a strictly elliptic linear operator on Ω with coefficients in Ck,α(Ω̄). If u ∈
C2(Ω) ∩ C0(Ω̄) with Qu = 0 in Ω and u = φ on the boundary, then u ∈ Ck+2,α(Ω̄).

It is worth mentioning the following existence theorem for quasilinear problems

(even though we will not apply it directly) since it makes clear the usual method

used to solve Dirichlet problems for single equations. This is a reduced version of

Theorem 11.8 of [10], and it is proved by applying the Schauder fixed point theorem

to Hölder spaces.

Theorem B.2.5. Let Ω be a bounded C2,α domain. Let Q be a quasilinear elliptic

operator on Ω with bi = 0 and aij ∈ C∞(Ω × R × R
m). Let φ ∈ C2,α(Ω̄). Suppose

that, for some constant M , the estimate ||u||1,α < M holds for any u with Qu = 0

in Ω and u = σφ on ∂Ω for some σ ∈ [0, 1]. Then there exists u ∈ C2,α(Ω̄) with

Qu = 0 in Ω and u = φ on ∂Ω.

It is clear from this that we need a priori C1,α estimates to solve a quasilinear

Dirichlet problem. The usual method involves splitting this estimate into four parts.
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First we estimate supΩ |u| in terms of the boundary data using the maximum prin-

ciple. Then we use conditions on the domain and boundary data to get a boundary

gradient estimate of |Du| on ∂Ω. We then extend this to an estimate for |Du| on all

of Ω, before finally getting an a priori bound on the C1,α norm in terms of the esti-

mates that we already have. There are standard C1,α estimates for single equations,

but such estimates are much more difficult to get for systems.

B.3 Parabolic Equations

There are many similarities between elliptic and parabolic equations. For example,

we get parabolic versions of the maximum principle and the Schauder estimates.

We will avoid going into too much detail for quasilinear parabolic equations, but

we will state a very simple existence theorem that gives an example of short time

existence for a boundary value problem. We will consider second order operators Q

of the form

Qu(x, t) =
∂u

∂t
− aij (x, t, u,Du)

∂2u

∂xi∂xj
+ bi (x, t, u)

∂u

∂xi
,

where aij is symmetric, x = (x1, . . . , xm) lies in a domain Ω of R
m for m ≥ 2, and

t lies in an interval in R. We say that the operator is parabolic if the matrix aij is

positive definite everywhere. We say that it is linear if aij and bi are independent of

u and its derivatives, and that it is quasilinear otherwise. Now we have the parabolic

maximum principle (see Theorem 8.1.2 of [14], for example):

Theorem B.3.1. Let Ω × (0, T ) be bounded. Suppose that a real valued function

u is continuous on the closure of Ω × (0, T ) and C2 on the interior. If Q is a

linear parabolic operator on this domain and if Qu ≤ 0 (≥ 0), then the maximum

(minimum) of u is achieved on the parabolic boundary, ∂Ω× (0, T ) ∪ Ω̄× {0}.

It is important to note that, for parabolic problems, we treat the time (t) deriva-

tive in the same way as we treat the second order space (x) derivatives. So when

we say u is C2, as in the theorem above, we mean C1 with respect to t and C2

with respect to x. On a subset U of the spacetime R
m,1 = R

m × R, taking the
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parabolic distance ||(x, t)|| = max{|x|, |t|1/2}, we define the parabolic Hölder norms

(for non-negative integers k, and 0 < α < 1)

||f ||k,α = ||f ||Ck,α(U) =
∑

j+2h≤k

||Dj (∂/∂t)h f ||0,α,

where

[f ]α = sup
(x,t) 6=(y,s) in U

|f(x, t)− f(y, s)|
||(x, t)− (y, s)||α and ||f ||0,α = sup

(x,t)∈U

|f(x, t)|+ [f ]α.

The parabolic Hölder space Ck,α(U) of functions with finite ||f ||k,α norm on Ū will

be a Banach space with this norm. We say that a function is locally Ck,α on U if this

norm is finite on compact subsets of U (but this notation will not cause confusion

because it will always be clear whether we are dealing with elliptic or parabolic

problems). As in the elliptic case, we have Schauder estimates. We only use a local

version of these estimates for constant coefficient parabolic equations, which will

follow directly from Theorem 8.11.1 of [14].

Theorem B.3.2. Let Q = ∂/∂t−aij∂2/∂xi∂xj be a parabolic operator with constant

coefficients, with eigenvalues of aij between positive constants Λ ≥ λ. Let Um,1
R (0) =

Bm
R (0)× (−R2, 0], then

||u|Um,1
R (0)||2,α ≤ N

(

||Qu|Um,1
2R (0)||0,α + sup

Um,1
2R (0)

|u|
)

for any u ∈ C2,α(Um,1
3R (0)), where N is some constant depending λ, Λ, α, R and m.

We also have the standard differentiability theorems from chapter 3 of [7]. First

note that an operator Q is called strictly parabolic if aijζiζj ≥ λ|ζ|2, for all ζ ∈ R
m,

for some positive constant λ.

Theorem B.3.3. Let Q be a strictly parabolic linear operator on Ω× (S, T ] in R
m,1,

with coefficients locally Ck,α on Ω×(S, T ]. Then any solution of Qu = 0 on Ω×(S, T ]

will be locally Ck+2,α.

The following is an existence theorem for quasilinear parabolic equations. We

will not use it here, but it gives a nice example of the idea of short time existence,

and is roughly what we would use to prove the existence of short time solutions to

mean curvature flow problems.
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Theorem B.3.4. Let Ω be a smooth and bounded domain in R
m, and let φ :

Ω̄ × [0, T ] → R be smooth. Let Q be a strictly parabolic quasilinear operator with

coefficients smooth in all arguments. Then there exists ǫ > 0 such that there exists

a locally C2,α solution to Qu = 0 in Ω× (0, ǫ) with u = φ on Ω× {0} ∪ ∂Ω× [0, ǫ].

This is proved as in Theorem 8.2 of [18] for single equations, but (as in section

4 of [23] for example) the same ideas can be used to get short time existence for

systems. The proof again involves Schauder fixed point theorem.
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