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Abstract

A Singular Theta Lift in SU(1,1)

Following the work of Bruinier and Funke in the orthogonal setting, we consider a

regularised theta lift from weight 0 harmonic weak Maass forms on non-compact

quotients of SU(1, 1) to meromorphic modular forms of weight 2, and realise the

result of the lift as a generating series of modular traces of those Maass forms on

CM points. We also lift the non-holomorphic Eisenstein series of weight 0 and realise

the derivative of a suitably normalised weight 2 Eisenstein series as the lift of the

logarithm of the modular ∆ function.
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Introduction

Hirzebruch and Zagier in [HZ76] show that the intersection numbers of certain al-

gebraic cycles in Hilbert modular surfaces occur as Fourier coefficients of classical

modular forms of weight 2. This result gave rise to widespread interest in geodesic

cycles in other locally symmetric spaces and their relationship to modular forms,

e.g. [Shi75], [Oda78].

Throughout the 1980’s Kudla and Millson (see e.g., [KM86] and [KM87]) built a

framework to vastly generalise these results using the theta correspondence. They

consider the dual pairs (O(p, q), Sp(n,R)) and (U(p, q),U(n, n)) to realize generating

series of certain “special” cycles for the orthogonal group O(p, q) and the unitary

group U(p, q) as holomorphic Siegel modular forms and as Hermitian modular forms,

respectively. Their main tool is the explicit construction of certain theta series with

values in the closed differential forms on the locally symmetric spaces attached to

those orthogonal and unitary groups of signature (p, q). Furthermore, these forms

give rise to Poincaré dual forms for the special cycles in question.

However, their result was subject to certain restrictions, e.g. it is assumed that

the orthogonal or unitary locally symmetric space is compact. In the orthogonal

case, several papers considered the non-compact situation. In [Fun02], the non-

compact theta lift for SO(p, 2) was considered. Together with the recent work [FM14]

this properly recovers the orginal Hirzebruch-Zagier result (which is the Q-rank 1

case for SO(2, 2)). Also, in a long running collaboration, Funke and Millson have

been working on various aspects of the orthogonal case in this context, see [FM02],

[FM06], [FM11], [FM13]. Further generalisations have been made in the orthogonal

case in [BF04], [BF10] relating it to the Borcherds lifts, see [Bor95], [Bor98].

In [BF06], Bruinier and Funke considered in detail the non-compact case for

1
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SO(1, 2), when the locally symmetric spaces in question are modular curves and the

special cycles are the classical CM points on the upper half plane. In particular,

they extended the Kudla-Millson lift beyond its original cohomological setting to

allow for more general input, in particular for functions with exponential growth at

the cusps such as the classical j-invariant.

The goal of this thesis is to study the analogous situation for the dual pair

(G,G′) = (SU(1, 1), SL2(R)), where the relevant symmetric space for the unitary

group is the upper half plane H. (Note that we can identify the second factor with

SU(1, 1) to get to the setting described above). In this sense, this thesis can be

viewed as the unitary equivalent of [BF06].

Some of the modular forms which arise as a result of the lift are also related

to those appearing in [Hof11] and [Hof13], in which Hofmann constructs Borcherds

products for unitary groups. For SU(1, 1), the logarithmic derivative of these prod-

ucts are the same as the modular forms produced by the theta lift in this the-

sis. This is due to the inherent symmetry in the dual pair (SU(1, 1), SL2(R)) ∼

(SU(1, 1), SU(1, 1)).

In Chapter 1, we define most of the basic objects we will be working with.

Let F be an imaginary quadratic field of discriminant D and let V be a split 2-

dimensional F Hermitian space of signature (1, 1), with inner product 〈 , 〉 and an

isotropic basis {`, `′}. We let VR = V ⊗F C be the complexification of V . Then

SU(VR) = SU(1, 1) ∼= SL2(R). Using the map π(w` + w′`′) = [w : w′] ∈ P1(C),

we identify the space of positive definite one-dimensional subspaces with the usual

complex upper half plane H, and the space of isotropic lines with the boundary of

H in Ĉ. If X has positive length then we denote its image in H under π by DX .

We let L be an integral OF -lattice in V . For simplicity, we assume in this

introduction that L = OF `⊕OF `′. It is unimodular (i.e., equal to its dual lattice)

and its stabiliser is Γ = SL2(Z). In general, L will not be unimodular, and we treat

the general case in the main body of the thesis by working in a vector-valued setting.

We can take the set of length m vectors as Lm = {X ∈ L : 1
2
〈X,X〉 = m}, and
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then we can form the special cycle

T (m) = 2
∑

X∈Γ\Lm

1

|ΓX |
[DX ].

The 2 here comes from the fact that −I acts non-trivially in L, but trivially on H.

For L as above we have explicitly

T (m) = 2
∑
ad=m
0≤b<d

[
aζ + b

d

]
.

Here ζ = D+
√
D

2
, and the sum is taken as divisors in the modular curve Γ\H. Note

that in this case we have that the degree of the cycle T (m) is equal to the sum of

divisors 2σ1(m).

From this, we define the m-th modular trace (when m > 0) for a Γ-invariant

function H by

trf (m) =
∑

z∈T (m)

f(z),

and the 0-th modular trace as

trf (0) = − 1

4π

∫ reg

Γ\H
f(z)

dxdy

y2
,

where the integral is defined by an appropriate regularization process. This is highly

analogous to the SO(1, 2) case outlined in [BF06]. However, note that while for

SO(1, 2) the cycles are given by CM points of discriminant −m in the present situ-

ation they arise by Hecke correspondences. More precisely, we have that

trf (m) = 2m(T0(m)f)(ζ),

where T0(m)f defines the weight 0 Hecke operator.

The main result of this thesis is to realize the generating series of these traces

for various f as modular forms of weight 2 as the result of a theta lift.

In Chapter 2, we introduce the representation theoretic background needed for

the rest of the thesis. We consider a dual reductive pair of type II, (SU(VR), SL2(R)).

Then the Schrödinger model of the Weil representation with respect to a central

character ψ is the space of Schwartz functions S(VR) with the following actions of
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SU(VR) × SL2(R). The unitary group SU(VR) acts by its natural linear action on

S(VR):

M\[g]f(v) = f(g−1v).

On the other hand, SL2(R) acts by the following formulas:MSch

α 0

0 α−1

 f
 (x) = |α|1/2f(αx);

MSch

1 β

0 1

 f
 (x) = ψ(1

2
〈βx, x〉)f(x);

MSch

 0 1

−1 0

 f
 (x) = f̂(x).

Here f̂ is the Fourier transform with respect to ψ on VR. We define a theta function

for a lattice L in V and ϕ ∈ S(V ) by

θ((g, g′), ϕ, L) = θ((g, g′) · ϕ,L) =
∑
x∈L

M\[g]MSch[g
′]ϕ(x).

In Chapter 3, we construct a suitable Schwartz function ϕ for the theta kernel.

This follows the work of Kudla and Millson, and we refer to it as ϕKM , the Kudla-

Millson Schwartz function. We let e1, e2 be a standard Hermitian basis of VR (so

〈e1, e1〉 = −〈e2, e2〉 = 1), and for X = v1e1 + v2e2 we write

〈X,X〉0 = |v1|2 + |v2|2

for the standard majorant of the Hermitian form 〈X,X〉. We let

ϕS(X) = exp(−π〈X,X〉0)

be the standard Gaussian on S(VR). The definition of ϕKM comes from [KM86],

where it is the image of ϕS under the operation of a certain differential operator

which they attribute to Howe. We have

ϕKM(X) =
1

8

(
4|v1|2 −

2

π

)
exp(−π〈X,X〉0).

We let K = SO(2) ' U(1) be the standard maximal compact subgroup of SL2(R).

Then it is fairly easy to see that ϕKM is invariant under theM\-action ofK ⊂ SU(VR)

(i.e. has weight 0), while for the MSch-action of K ⊂ SL2(R) it has weight 2.
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For ease of use, we want concrete formulas in terms of variables in H rather than

elements of the groups SU(VR), SL2(R). We now construct M\[g]MSch[g
′]ϕKM(X)

as a function in variables z = x+ iy, τ = u+ iv in H. We let gz ∈ SU(VR) ' SL2(R)

and g′τ ∈ SL2(R) be any element which maps the base point i ∈ H to z and τ

respectively. We let dµ(z) = y−2dxdy be the invariant measure on H. Then we set

ϕKM(X, z, τ) = v−1M\[gz]MSch[g
′
τ ]ϕKM(X)dµ(z).

We can describe ϕKM(X, z, τ) a bit more explicitly. We first set

〈X,X〉z = 〈g−1
z X, g−1

z X〉0.

We also set

R(X, z) =
1

2
(〈X,X〉z − 〈X,X〉) .

This quantity is real and always greater than or equal to zero, with equality if and

only if z = DX . We then set

ϕKM(X, z) = M\[gz]ϕKM(X)dµ(z) = ϕKM(g−1
z x)dµ(z).

For convenience we also set

ϕ0
KM(X, z) = exp(π〈X,X〉)ϕKM(X, z).

Finally, we then have

ϕKM(X, z, τ) = ϕ0
KM(
√
vX, z) exp(πi〈X,X〉τ).

Writing θ directly as a function on H×H we get

θ(τ, z, L) =
∑
X∈L

ϕ0
KM(
√
vX, z) exp(πi〈X,X〉τ).

Note that as a function of z, the theta series θ(τ, z, L) defines a differential 2-form

on M = Γ\H, while in τ it is a non-holomorphic modular form of weight 2 for (in

general congruence subgroup of) Γ.

As mentioned earlier, we will realise the theta lift as the generating series of the

modular traces. The following theorem will be the tool we use to accomplish this.
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Theorem 3.2.9. Following Kudla for O(1, 2) in [Kud97], we set for X 6= 0

ξ0(X, z) = Ei(−2πR(X, z)),

where Ei(t) is the exponential integral. Then ξ0(X, z) is a Green function for the

cycle DX .

More precisely, we have that for any linear exponentially increasing function

f(z) = O(exp(2πny)) with n ∈ N, and for any non-isotropic vector X, the integral∫
D
f(z)ϕ0

KM(
√
vX, z)

converges for v > 2n=(DX)
m

and in this range we have

∫
D
f(z)ϕ0

KM(
√
vX, z) =

 π−1
∫
D ξ

0(
√
vX, z)∆0(f)dµ(z) if 〈X,X〉 < 0

π−1
∫
D ξ

0(
√
vX, z)∆0(f)dµ(z) + f(DX) if 〈X,X〉 ≥ 0

Here m = 1
2
〈X,X〉 and ∆0 = −y2

(
∂2

∂x2 + ∂2

∂y2

)
is the hyperbolic Laplace operator.

The method of proof essentially is the same as Kudla’s treatment of the anal-

ogous statement for O(1, 2) in [Kud97], see also [BF06], where test functions of

exponential growth are discussed. Note however, that in the present situation the

growth considerations lead to a much more delicate statement.

In Chapter 4, we introduce the theta lift of a harmonic weak Maass form f of

weight 0. The space of such forms was introduced by Bruinier and Funke in [BF04].

For simplicity we only describe in the introduction the lift for a weakly holomorphic

modular form

f(z) =
∑
n≥−N

c+
f (n) exp(2πinz) ∈M !

0(Γ).

We then define the theta lift I(τ, f) of f by

I(τ, f) =

∫
M

f(z)θ(τ, z, L).

However, this integral does not converge for all τ , since the linear exponential growth

f(z) is not (completely) offset by θ which has only linear exponential decay. We

have

Theorem 4.1.2. The theta integral I(τ, f) converges for Im(τ) = v > Nf

√
|D|
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This contrasts to the orthogonal case of signature (1, 2) considered in [BF06]

where the theta function has square exponential decay and hence the lift converges

for all τ . We therefore regularise the lift by setting

I(τ, f) = lim
T→∞

∫
MT

f(z)θ(τ, z, L),

which we also call the cut-off lift, as the domain of integration is cut off at height T

of the standard fundamental domain for Γ.

Theorem 4.2.1. Let f ∈ M !
0(Γ) be a weakly holomorphic form of weight 0 for Γ.

Then the regularised theta lift is defined for all τ ∈ H except a discrete set of points.

The singularities of I(τ, f) lie on the divisor

Z(f) =
∑
X∈L
〈X,X〉>0

c+
f (−1

2
〈X,X〉)[DX ].

Hence I(τ, f) defines a modular form of weight 2 with singularities.

These singularities are of linear type, as defined in [Bor98], in the sense that

for each point in the set described above there exists ρ such that I(τ, f) − ρ
τ−DX

is a smooth function in τ in a neighbourhood of DX , where ρ is given by ρ =

− c+f (−1
2
〈X,X〉)

2πi
√
|D|

. This theorem is proved by defining a more convenient domain of

integration to calculate over, and showing that the singularities of both integrals are

the same.

The next result characterises the behaviour of the lift under the Bruinier-Funke

ξk = 2ivk ∂
∂τ

operator.

Theorem 4.2.2. Let f ∈ M !
0(Γ) be a weakly holomorphic form of weight 0 for Γ.

Then image of I(τ, f) under the map ξ2 is

ξ2(I(τ, f)) = −
c+
f (0)

4π
.

In particular, if c+
f (0) = 0, then I(τ, f) is a meromorphic modular form of weight 2.

In Chapter 5 we explicitly calculate a formula for the Fourier expansion of the

lift, which is the generating function of the modular traces defined in Chapter 1.

The main theorem is
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Theorem 5.1.1. Let f(z) ∈M !
0(γ). Then the Fourier expansion of I(τ, f), valid in

the region Im(τ) = v > Nf

√
|D| of the theta integral, is given by

I(τ, f) =
c+
f (0)

4πv
+
∞∑
m=0

trf (m)qm.

In order to prove this, we split up the theta function into several sums, and

integrate over these separately. For the non-isotropic vectors, we can use the current

equation to obtain the modular traces, and for X = 0, we just get the 0-th trace.

However, for the sum over the non-zero isotropic vectors we cannot use the current

equation. We instead use an idea from [Fun02] in order to subdivide the summation

into something more manageable. After some careful manipulation of the sums,

this allows us to use the Rankin-Selberg unfolding technique, after which everything

becomes more manageable to compute. We still have to use a certain regularisation

technique of Borcherds’, after which we are left with the weighted sums of residues

of the Epstein Zeta function, an idea which reappears in Chapter 6.

We also examine two interesting cases of an input function f . Firstly, we take

f ≡ 1, the simplest of all possible examples; we then have

Theorem 5.1.3. Let f = 1. Then the theta integral I(τ, f) converges for all τ and

we have

I(τ, 1) = − 1

12
E2(τ).

Here

E2(τ) = − 3

πv
+ 1− 24

∞∑
m=1

σ1(m)qm

is the classical weight 2 Eisenstein series for Γ.

This result which we recover in a different way in Chapter 6 as well.

Let J(z) = J1(z) = j(z) − 744, where j(z) is the classical j-invariant, and set

Jm(z) = mT0(m)J1(z). By comparing principal parts we obtain

Theorem 5.2.1. Let J ′m(τ) = 1
2πi

d
dτ
Jm(τ), then

I(τ, Jm) =
2

m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)

Jm(γ · ζ)− Jm(τ)
.
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When m = 1, we can also use the Fourier expansion formula to recover from this

from the expression ∑
n∈Z

Jn(ζ)qn =
J ′(τ)

J(ζ)− J(τ)
,

which is a partial result of a theorem due to Faber.

In Chapter 6, we examine a couple of interesting examples of input function f

for the lift which are not harmonic weak Maass forms. Let ΓN,∞ ⊂ Γ0(N) be the

stabiliser of cusp at infinity. The weight 0 Eisenstein series with respect to the group

Γ0(N) at the cusp ∞ is defined by

E0,N(z, s) =
∑

γ∈ΓN,∞\Γ0(N)

(=(γz))s

and the modified Eisenstein series of weight 0 is

E0,N(z, s) = ζ∗(2s)E0,N(z, s)

where ζ∗(s) = π−s/2Γ(s/2)ζ(s) is the completed Riemann zeta function. We also

define a modified weight 2 Eisenstein series by

E2(τ, s) = − 1

4π
ζ∗(2s)svs−1

∑
(c,d)=1

|cτ + d|−2(s−1)(cτ + d)−2.

Theorem 6.2.1. For L = OF `⊕NOF `′ with N ∈ N

I(τ, E0,N(z, s)) = wF ζ
∗
F (s, [OF ])N1−sE2(Nτ, s),

where

ζ∗F (s, [OF ]) = Ds/2π−sΓ(s)
∑
I∈[OF ]

N(I)−s

is the extended partial Dedekind zeta function for the trivial ideal class [OF ].

By taking residues at s = 1 on both sides, we recover the lift of the constant

function.

From the weight 0 Eisenstein series for Γ0(N), we can form a Kronecker limit

formula, but we choose to do so in a slightly non-standard way. The formula we end

up with is

lim
s→1

(
E0,N(z, s)− 1

2
d−1
N wF ζ

∗
F (s, [OF ])

)
= − 1

dNkN
log

(
|∆N(z)|
|η(ζ)|2kN

(yDN)kN/2
)
.
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The quantities in this equation need some explanation. The constants dN , DN and

kN are all dependent only on N . They are defined by

dN = [SL2(Z) : Γ0(N)]

kN = lcm

(
4,

1

2
φ(N)

24

(24, dN)

)
DN = exp(DN(1))

where

DN(s) =
d

ds
log(J2s(N))

and

Jk(n) = nk
∏
p|n

(
1− 1

pk

)
is the Jordan totient function. By η, we mean the usual Dedekind eta function, and

the variation of the usual modular ∆ function, ∆N used here is essentially defined

by the above limit; it is a modular form for Γ0(N) of weight kN . We then prove

Theorem 6.3.1.

− 1

kNdN
I

(
τ, log

(
|∆N(z)|
|η(ζ)|2kN

(yDN)kN/2
))

= E ′2,N(τ, 1).

where the differentiation on the RHS is in the s variable.

This result should have an interpretation in Arakelov theory and the Kudla

Programme in the same way as the analogous result for the CM points. Note that

the unitary situation has been recently considered in [How15] and [BHY15]. It would

be interesting to compare the approach suggested by this thesis systematically.



Chapter 1

Lattices and Modular Traces

In this chapter we establish some of the basic notation and the geometric framework

we will be working in. We prove some simple results, showing that the specific

objects we are working with are isomorphic to some very familiar ones, i.e. the

groups SL2(R) and SL2(Z), and the complex upper half plane H as a symmetric

space.

Following a brief discussion of the kinds of lattices we will be using, we then

introduce the special cycles of Kudla and Millson. These are, in our case, divisors

on the modular curve ΓL\H which have a close association to the Hecke operators.

These are used to define the modular traces of weakly holomorphic modular forms

which are, in this setting, similar to the traces of singular moduli found in [Zag02],

for example.

1.1 Lattices and Symmetric Domains

This section establishes the fundamental notation used throughout this thesis. We

also recall some number theoretic concepts which will be useful to us, and define

most of the basic geometry of the setting we will be using. This includes realising

the usual upper half plane H as the symmetric space associated to the group SU(VR)

of invertible linear maps of determinant 1 of a vector space with respect to a split

signature (1, 1) Hermitian form.

There then follows some discussion of the types of lattice we will be considering.

11
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These are number theoretic in nature, with the prototypical example being defined

by the ring of integers of the underlying imaginary quadratic space. Finally, we

consider carefully the cusps of the modular domain, and define the cut-off domain,

which essentially chops off the usual fundamental domain at a height T away from

each cusp. This is necessary for a certain regularisation of integrals used in later

chapters.

1.1.1 Basic Definitions

Let F = Q[
√
−d], where d is a positive, squarefree integer. Let D denote the

discriminant of F , i.e.

D =

 −d d ≡ 1 (mod 4)

−4d d ≡ 2, 3 (mod 4)
,

We will be concerned with ideals of the ring of integers of the field F . It will be

useful to write the ring of integers of F by OF = Z⊕ Z[ζ], where

ζ =


1 +
√
−d

2
−d ≡ 1 (mod 4)

√
−d −d ≡ 2, 3 (mod 4)

.

Definition 1.1.1. The Z-dual of OF with respect to the bilinear form Tr(xy) is d−1,

the inverse different ideal. Let δ = iδ̂ =
√
D. Then d is generated by δ. We may

also write the ring of integers of F as OF = Z⊕ Z
[
D+δ

2

]
. We note that =(ζ) = δ̂

2
.

Let V be a 2-dimensional F -vector space with an Hermitian form of signature

(1, 1). By this, we mean that V splits over F into E+ ⊥ E−, with the Hermitian form

being positive definite on E+ and negative definite on E−, and dimE+ = dimE− =

1, as in [Lan02, Ch. XIV, §11]. We take the Hermitian form to be anti-linear in the

first variable and linear in the second variable.

Furthermore, we assume V to be split, i.e. we can define an isotropic basis {`, `′}

over F for V such that 〈`, `′〉 = 2δ−1. Let VR = V ⊗F C be the equivalent C-vector

space via the usual extension of scalars. We may write this explicitly for X, Y ∈ V

as 〈X, Y 〉 =
t
XHY where

H =

 0 2δ−1

−2δ−1 0

 .
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There is another basis {e1, e2} where 〈e1, e1〉 = −〈e2, e2〉 = 1 and 〈e1, e2〉 = 0.

Clearly then, E+ = span(e1) and E− = span(e2) represents a possible choice for E+

and E−. The coordinate transformations are given as follows:

e1 = 1
2

√
δ̂ (`+ i`′) e2 = 1

2

√
δ̂ (`− i`′)

` =
√
δ̂
−1

(e1 + e2) `′ = i
√
δ̂
−1

(e2 − e1) .

Hence, for example,

w`+ w′`′ = w

(√
δ̂
−1

(e1 + e2)

)
+ w′

(
i
√
δ̂
−1

(e2 − e1)

)
=
√
δ̂
−1

((w − iw′)e1 + (w + iw′)e2)

We also have the following expression for the length of X = w`+ w′`′:

〈X,X〉 = 4δ̂−1=(ww′).

which is a scaling of the canonical symplectic form on C2.

We note that, in terms of co-ordinates, the isotropic vectors are those where

either w′ = 0 or =(w/w′) = 0.

1.1.2 The group SU(V )

We may now say what we mean by SU(V ) (resp. SU(VR)).

Definition 1.1.2. Let SU(V ) (resp. SU(VR)) be the group invertible linear maps

of determinant 1 which preserve 〈·, ·〉, i.e.

SU(V ) = {A ∈ GL(V ) : 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ V det(A) = 1}

SU(VR) = {A ∈ GL(VC) : 〈Ax,Ay〉 = 〈x, y〉 ∀x, y ∈ VR det(A) = 1}

Proposition 1.1.3. The groups SU(VR) = SU(1, 1) and SL2(R) are isomorphic.

Proof. Is is well known, e.g. [Kud79], that SL2(R) ∼= SU(1, 1) and, by the coordinate

transformation from the basis {e1, e2} to {`, `′} it is easy to see that SU(VR) =

SU(1, 1) by definition, as the change of co-ordinates from X = v1e1 + v2e2 to X =

w`+ w′`′ is represented byv1

v2

 =
√
δ̂
−1

1 −i

1 +i

w
w′
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and hence we are done. However, we provide also a direct proof that SU(VR) ∼=

SL2(R) for completeness. This will partly illustrate the reason for choosing the

basis {`, `′}, namely, that in this basis the isomorphism to SL2(R) is given by the

identity map.

We write out the conditions for a matrix A to be in SU(VR). Let A =

a b

c d

.

Then we must have

tA

 0 2δ−1

−2δ−1 0

A =

 0 2δ−1

−2δ−1 0


⇐⇒

ca− ac cb− ad

da− bc db− bd

 =

 0 1

−1 0



which is equivalent to the following system of equations:

<(a)<(d)−<(b)<(c) + =(a)=(d)−=(b)=(c) = 1

=(a)<(d)−<(a)=(d)−<(b)=(c) + =(b)<(c) = 0

=(a)<(c)−<(a)=(c) = 0

=(b)<(d)−<(b)=(d) = 0.

At least one of a, b, c, d must be non-zero. For simplicity we assume it is a. Then

we may write a = reiθ, and let A′ = e−iθA. Since (A′x,A′y) = (Ax,Ay), we may

assume then that =(a) = 0. This clearly implies that =(c) = 0. Hence we are

reduced to

<(a)<(d)−<(b)<(c) = 1

−<(a)=(d) + =(b)<(c) = 0

=(b)<(d)−<(b)=(d) = 0

from which it is clear that we must have =(b) = =(d) = 0. Finally, since we

must have det(A) = 1, we must have e−iθ = ±1. Hence we have shown that

SU(VR) ⊆ SL2(R). That SL2(R) ⊆ SU(VR) is relatively straightforward; it follows

from noticing that if A ∈ SL2(R) then 〈Ax,Ay〉 = 〈x, y〉 by simple substitution into

the system of equations defining SU(VR).
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The Siegel Domain Model

Let P1(C) denote the complex projective line and let π : (VR−{0})→ P1(C) be the

natural projection, i.e.

π(w`+ w′`′) = [w : w′]

We let V +
R be the positive cone of VR, i.e. the set of all X ∈ VR such that 〈X,X〉 > 0.

Proposition 1.1.4. There is a bijection between the space of positive lines of VR and

the complex upper half plane H. By the former, we mean the set of one (complex)

dimensional subspaces generated by a vector in V +
R , which is the first Grassmannian

of V +
R , which we denote Gr1(V +

R ) = D. This bijection is made explicit by the map

π.

Proof. If X = w` + w′`′ then 〈X,X〉 > 0 is equivalent to =(ww′) > 0, which in

particular implies that w′ 6= 0. Hence π(V +
R ) = {z ∈ C : =(z) > 0} = H, whence

surjectivity. Injectivity comes from realising that the inverse image of any z ∈ H is

the line in V +
R generated by z`+ `′.

Proposition 1.1.5. The linear action of SU(VR) on VR preserves V +
R , and so it acts

on D. It does so as fractional linear transformations, i.e. any A ∈ SL2(R) just acts

as A · z = az+b
cz+d

for any z ∈ D.

Proof.

π

a b

c d

w
w′

 = π

aw + bw′

cw + dw′

 =
az + b

cz + d
= A · z

Definition 1.1.6. Let K be the stabiliser of the line z0 generated by i`+ `′ ∈ V +
R .

Clearly, π(z0) = i and we call X(z0) = i`+ `′ the basepoint. Hence K = SO(2).

We have realised D ∼= H ∼= SU(VR)/K as the symmetric space for SU(VR), where

the group action on D is inherited via the bijection. This is well defined, as we have

π(AX) = A · π(X) for any X ∈ V +
R and any A ∈ SU(VR). We note that −I acts

non-trivially on V , but acts trivially on D.

Let gz be any element in SU(VR) such that π(gzz0) = z. We then define X(z) =

gzz0. We note that gz is not unique; it is only defined up to multiplication on the



1.1. Lattices and Symmetric Domains 16

right by any element which stabilises z0, i.e. it is a left K coset. We also see that

this map behaves very nicely under the action of some γ ∈ SL2(R),

X(γz) = γX(z)

where the action on the LHS is by fractional linear transformation and on the RHS

by matrix multiplication from the left. Since we have that

π(X(z)) = z,

it is clear that X(z) actually provides a section of the projection map π.

We may make the map z 7→ gz explicit in the following way. Let SL2(R) = NAK

be the Iwasawa decomposition, as in [Iwa02] defined by

N =


1 x

0 1

 : x ∈ R

 , A =


a 0

0 a−1

 : a ∈ R+

 ,

K =


 cos(θ) sin(θ)

− sin(θ) cos(θ)

 : θ ∈ R

 .

Then, since D ∼= H ∼= SL2(R)/K, we have the identification of NA and D via the

normal matrix multiplication on the basepoint i`+`′, regarded as a the vector (i, 1)t.

We can take

gz =

1 x

0 1

√y 0

0
√
y−1

 =

√y √y−1x

0
√
y−1


as the matrix which takes the base point to z = x+iy. We note that 〈X(z), X(z)〉 =

4δ̂−1.

We now define the minimal majorant. Pick a positive definite (one complex

dimensional) subspace of V and call it z. Then define

〈X,X〉z =

 〈X,X〉 X ∈ z

−〈X,X〉 X ∈ z⊥

which is positive definite Hermitian form. However, as we saw before, the space of

positive lines is bijective to H, so by abuse of notation we actually regard z ∈ H

from now on.

We also note that

〈X,X〉z = 〈g−1
z X, g−1

z X〉z0 .
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The Poincaré Disk Model

Using the basis {e1, e2}, we see that the space of positive lines is

V +
R = {X = v1e1 + v2e2 ∈ VR : |v1|2 − |v2|2 > 0}.

Under the projection v1e1 + v2e2 7→ [v1 : v2] ∈ P1(C) this is equivalent to the

Poincaré disk - i.e. we must have |v2

v1
|2 < 1. We can also see this using the co-

ordinate transformations between the two bases. We recall thatv1

v2

 =
√
δ̂
−1

1 −i

1 +i

w
w′


and so, applying the projection on both sides, we obtain

z1 =

1 −i

1 +i

 · z2

which is exactly the Möbius transformation which takes the upper half to the

Poincaré disk.

SU(1, 1) and SO(2, 2)

Let ι : VR →M2(R) be the R-linear map defined by

ι ((ζx1 + x2)`+ (ζx3 + x4)`′) 7→

x1 x2

x3 x4

 (1.1)

Viewing M2(R) as a 4-dimensional vector space with the det map as a real split

(2, 2) quadratic form, we have that SO0(M2(R)) ∼= SO0(2, 2) ∼= SL2(R) × SL2(R).

In fact, this defines an isometry of VR with M2(R). If M ∈ M2(R) and (g, h) ∈

SL2(R)× SL2(R), then this action is explicitly matrix multiplication

(g, h)M = gMh−1.

Then the action of SU(VR) will transfer under ι to a subgroup of SO(2, 2), pro-

ducing a mapping ι∗ : SU(VR)→ SO(2, 2).

Lemma 1.1.7. In this realisation, this is just projection onto the first factor, i.e.

if g ∈ SU(VR)

ι∗(g) = (g, 1)
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and, for g ∈ SU(VR) and X ∈ VR,

ι(gX) = ι∗(g)ι(X).

Proof. Explicitly, we havea b

c d

x1 x2

x3 x4

1 0

0 1

 =

ax1 + bx3 ax2 + bx4

cx1 + dx3 cx2 + dx4


= ι

ζ(ax1 + bx3) + (ax2 + bx4)

cζ(x1 + dx3) + (cx2 + dx4)


= ι∗

a b

c d

 ι

ζx1 + x2

ζx3 + x4



We can see this using the following formulation from [vdG88]. To each z =

(z1, z2) ∈ H×H, we define the set

Vz =

v ∈M2(R) : (z2 1)v

z1

1

 = 0


which, under the determinant form, is a 2-dimensional positive definite linear sub-

space of M2(R). This gives a bijective map H×H→ Gr+
2 , the Grassmannian of all

2-dimensional linear subspaces of M2(R) on which the determinant form is positive

definite. This in turn can be identified with the symmetric space

SO0(2, 2)/(SO(2)× SO(2))

and hence we have an isomorphism of symmetric spaces H×H ∼= SO0(2, 2)/(SO(2)×

SO(2)).

1.1.3 Hermitian Lattices

Let L be any lattice in V . As in [Hof11], we say that L is integral if 〈X,X〉 ∈ d−1

for all X ∈ L and that L is even if 〈X,X〉 ∈ 2Z for all X ∈ L. The dual of a lattice,

denoted L′, is defined by

L′ = {X ∈ V : 〈X, Y 〉 ∈ d−1 ∀ Y ∈ L}.
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Clearly, if L is integral, then L ⊂ L′. If L ∼= L′ then we say L is unimodular.

The stabiliser of a lattice is Stab(L) = {γ ∈ SU(V ) : γL = L}, which for

an integral lattice is contained within Stab(L′), however, we are interested in the

subgroup ΓL of Stab(L′) which fixes all L-cosets of L′, i.e.

ΓL = {γ ∈ SU(V ) : γ(L+ h) = L+ h, for all h ∈ L′/L}

We also define ΓX , the stabiliser of a point as

ΓX = {γ ∈ ΓL : γX = X}.

Let p, q be prime, integral OF -ideals which are not fixed under conjugation. Let

N(p) = pp = p and N(q) = qq = q, with gcd(p, q) = 1. For N ∈ N, let

Γ0(N) =


a b

c d

 ∈ SL2(Z) : b ≡ 0 mod N


Γ0(N) =


a b

c d

 ∈ SL2(Z) : c ≡ 0 mod N


be the usual congruence subgroups.

Lemma 1.1.8. Let L = p` ⊕ q`′. Then L is even, L′ = q−1` ⊕ p−1`′, Stab(L) =

Γ0(q) ∩ Γ0(p) and ΓL = Γ(pq).

Proof. This follows directly from the relevant definitions. The lattice is even (and

therefore integral) because for any X ∈ L = p`⊕ q`′, we have

〈X,X〉 = 4δ̂−1=(ww′)

and, since w ∈ p ⊆ OF and w′ ∈ q ⊆ OF are all in OF , it is clear that =(ww′) ∈ 1
2
δ̂Z

and hence 〈X,X〉 ∈ 2Z. Since, if X = w1`+ w′1`
′ and Y = w2`+ w′2`

′

〈X, Y 〉 = −2δ−1(w′2w1 − w2w
′
1)

that q−1` ⊕ p−1`′ ⊂ L′ is fairly clear. To show that L′ ⊂ q−1` ⊕ p−1`′ ⊂ L′, we

note that for a vector X to be in L′, the above must be true for all Y ∈ L, in

particular, on each component individually, which shows that L′ splits; then for
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Y = p`, X is characterised by 2δ−1pw′1 ⊂ d−1 and for Y = q`′, X is characterised

by 2δ−1pw1 ⊂ d−1. Hence X ⊂ q−1`⊕ p−1`′.

To find Stab(L), we need to find conditions on a, b, c, d such thata b

c d

w
w′

 =

aw + bw′

cw + dw′

 ⊂ L

, which by the fact that p and q are prime and integral, means that we must have

q | c and p | d.

By a similar calculation, we see that the conditions on a, b, c, d to be in ΓL are

aw + bw′ ⊂ p + h

and

cw + dw′ ⊂ q + h′

for w ≡ h (mod p) and w′ ≡ h′ (mod q) for all h ∈ L′/L. Since gcd(p, q) = 1 and

p and q are both prime, the only possible solution which works for any h ∈ L′/L is

pq | c, pq | b and a ≡ 1 (mod pq) and d ≡ 1 (mod pq), where we have incorporated

that we must still have ad− bc = 1.

Remark 1.1.9. For any even OF -lattice L, it is possible to find some integer N such

that

N−1OF `⊕N−1OF `′ ⊃ L′ ⊃ L ⊃ NOF `⊕NOF `′.

In the case L = NOF `⊕NOF `′, then we have that L′ = N−1OF `⊕N−1OF `′ and

ΓL = Γ(N2).

Example 1.1.10. Let L = OF `⊕NOF `′. Then Stab(L) = Γ0(N), and this group

also stabilises the h = 0 coset. This example will play an important role in Chapter

6.

Consider the extension of the projection map π : ΓL\V+ → ΓL\H. This is well

defined, and commutes with the natural projections V → ΓL\V and H → ΓL\H.

We denote the locally symmetric space ΓL\H by M .
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1.1.4 Cusps

Since we have that the preimage of the real line and infinity under the projection π

is just the isotropic vectors, it is clear that we can identify the cusps of ΓL with the

isotropic lines in ΓL\V . We let Iso(V ) the space of isotropic lines in V.

We compactify ΓL\H = M by adding a point at each cusp. The compactified

Riemann surface M contains a one-parameter family of submanifolds with boundary,

which we call MT . They are defined by taking an open neighbourhood around each

cusp of height T and deleting it. We always assume that T is sufficiently large that

no two of these neighbourhoods intersect. For example, if M = SL2(Z)\H there is

only the cusp at infinity and this process amounts to literally cutting the standard

fundamental domain off at height T . For surfaces with more than one cusp, we can

imagine that we use the transformation which maps the cusp to the one at infinity,

performing the same procedure, then doing the inverse of this transformation.

More formally, as in [BF06], let κ ∈ ΓL\ Iso(V ), and let κ0 ∈ ΓL\ Iso(V ) be the

line generated by `, i.e. the line which corresponds to the cusp at infinity. Then

there exists σκ ∈ SL2(Z) such that σκκ0 = κ. If Γκ is the stabiliser of the line κ,

then

σ−1
κ Γκσκ =

±
1 kακ

0 1

 : k ∈ Z


where ακ is the width of the cusp κ. Around each cusp in M , we have an open neigh-

bourhood Uκ, and we can write the chart Qκ → C as Qκ(z) = exp(2πiσ−1
κ z/ακ).

For T > 0, let D1/T = {z ∈ C : |z| < 1
2πT
}. We now formally define

MT = M −
∐

κ∈ΓL\ Iso(V )

Q−1
` D1/T

as the cut-off domain.
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1.2 Modular traces

1.2.1 Harmonic Weak Maass Forms

We recall that the slash operator |k[γ] for k ∈ Z and γ ∈ SL2(Z) is defined, for a

function f : H→ C by

f |k[γ](z) = j(γ, z)−kf(γz)

for the cocycle j(γ, z), which if γ =

a b

c d

, then j(γ, z) = cz + d.

Definition 1.2.1. A congruence subgroup is a discrete subgroup of SL2(Z) contain-

ing a principal congruence subgroup of some level N , which is defined as

Γ(N) = {γ ∈ SL2(Z) : γ ≡ Id (mod N)}

We define harmonic weak Maass forms as in [BF04]. Let Γ be a congruence

subgroup, and k ∈ Z. Let f : H→ C such that

• f |k[γ](z) = f(z) for all γ ∈ Γ and z ∈ H

• for any cusp κ of Γ\H there is a σκ such that σκ∞ = κ and f(σκz) =

O(exp(Cy)) as y →∞ uniformly in x

• ∆kf(z) = 0 where

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
is the hyperbolic Laplacian in weight k.

We denote the space of harmonic weak Maass forms of weight k for Γ by Hk(Γ). If

f satisfies these conditions, then we have a Fourier expansion around each cusp κ

given by

f(σκz) =
∑
n∈Z

c+
f,κ(n) exp

(
2πinz

ακ

)
+ c−f,κ(0)y1−k

+
∑
n∈Z
n6=0

c−f,κ(n)Hk

(
2πny

ακ

)
exp

(
2πinx

ακ

)



1.2. Modular traces 23

where here we define Hk as

Hk(w) = exp(−w)

∫ ∞
−2w

exp(−t)t−kdt.

We sometimes use the notation

f+(σκz) =
∑
n∈Z

c+
f,κ(n) exp

(
2πinz

ακ

)
f−(σκz) = c−f,κ(0)y1−k +

∑
n∈Z
n6=0

c−f,κ(n)Hk

(
2πny

ακ

)
exp

(
2πinx

ακ

)

so that f(σκz) = f+(σκz) + f−(σκz). Given the growth condition on f in y, we

must have that all but finitely many of the c+
f (n) for n < 0 (respectively, c−f (n)

for n > 0) must vanish. In [BF04], they also define the ξk operator by (ξkf)(z) =

yk−2Lkf(z) = R−ky
kf(z) for the raising and lowering operators given by

Lk = −2iv2 ∂

∂z

Rk = 2i
∂

∂z
+ ky−1.

The image of Hk(Γ) under ξk lies in M !
2−k(Γ), the space of weakly holomorphic

modular forms of weight 2− k. Under this mapping, we let H+
k (Γ) be the preimage

of S2−k(Γ), the space of cusp forms. What this means for f is that all the c−f (n)

vanish for n ≥ 0.

The space of harmonic weak Maass forms contains the space of weakly holomor-

phic modular forms, which are simply the harmonic weak Maass forms for which f−

is identically zero for all cusps.

Example 1.2.2. Let q = e2πiz. The modular j-function

j(z) = q−1 + 744 + 196884q + 21493760q2 + · · ·

is a weakly holomorphic modular form of weight 0 for the full modular group. It

clearly has a pole of order 1 at the cusp at infinity.

We examine the weakly holomorphic modular forms of weight 0 for the full mod-

ular group. It is well known (see [Zag02] for example) that the space of automorphic

forms of weight 0 for SL2(Z) is C[j], and it is clear that we can form a basis for this
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space indexed by the order of the principal part, i.e. each function in the basis is

of the form q−m + O(q) for m ∈ N. For technical reasons, we prefer to work with

J(z) = j(z) − 744. We call this basis Jm. As suggested by the notation, J1 = J .

These functions will provide an important example later.

1.2.2 Hecke Operators

Though there are multiple ways to introduce Hecke operators, we take the point

of view of double coset operators. Following [DS05, §5.1], let Γ be a congruence

subgroup, and let α ∈ GL+
2 (Q). Then

ΓαΓ = {γ1αγ2 : γ1, γ2 ∈ Γ}

For any α ∈ GL+
2 (Q), we can define as usual, an action on the upper half plane

via fractional linear transformations, i.e. if α = ( a bc d ), then

ατ =
aτ + b

cτ + d

and the cocycle j(α, τ) = cτ + d.

We can extend the definition of the slash operator to matrices in GL+
2 (Q).

Definition 1.2.3. For any α ∈ GL+
2 (Q) and k ∈ Z, the weight k slash operator on

functions f : H→ C is defined by

(f |k[α])(τ) = (detα)k/2j(α, τ)−kf(ατ)

Now let {βj} be a set of orbit representatives for the double coset, i.e. Γ1αΓ2 =⋃
j Γ1βj is a disjoint union.

Definition 1.2.4. The weight k double coset operator ΓαΓ is defined by

f |k [ΓαΓ] =
∑
j

f |k[βj],

and is a linear map on the space of modular forms of weight k for the group Γ. This

definition is independent of the choice of coset representatives.
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Now let Γ be any congruence subgroup of level N , and define

〈n〉 =


Γ

∗ ∗
∗ n

Γ, where

∗ ∗
∗ n

 ∈ Γ0(N) if (n,N) = 1

0 if (n,N) > 1

and

Tm =
∑
ad=m
a|d

〈a〉Γ

a 0

0 d

Γ. (1.2)

Then Tm is the usual Hecke operator, realised as a double coset operator. For

more information, see [DS05, Ch. 5]. The following theorem is well known, see e.g.

[Zag02], [BKO04].

Lemma 1.2.5. Let Tm be the usual Hecke operator. Then we have that

Jm(z) = m(TmJ)(z),

where the Jm form a C-basis for the space of weight 0 weakly holomorphic modular

forms for SL2(Z).

Proof. We cite formula (5.13) from [DS05], which gives the formula

(Tmf)(z) =
∑
n∈Z

 ∑
d|(n,m)

dk−1amn
d2

(〈d〉f)

 qn

for the Fourier coefficients under the action of Tm, then we see that, for f = J , we

have that

(Tm)J(z) =
∑
n∈Z

 ∑
d|(n,m)

d−1amn
d2

(J)

 qn

and, since the principal part of J is just q−1, the coefficients of the principal part of

TmJ are zero, unless −mn = d2, which is only the case if m = −n = d and so the

principal part of TmJ is 1
m
q−m.

1.2.3 Special Cycles

Let L be any even, integral lattice, and let X ∈ L be such that 〈X,X〉 > 0.
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Definition 1.2.6. Let VX be the complex line in the direction of X in V , which is

given by

VX = {Y ∈ VR : Y = λX for some λ ∈ C}.

We denote by (VX)+ = {Y ∈ VX : 〈Y, Y 〉 > 0} the positive cone sitting inside

VX . In this case, we have that (VX)+ = VX − {0}, however, this would not be so

for the equivalent formulation in higher dimensions. We let DX = π((VX)+). Thus,

for any vector of positive length in the lattice L, we have associated to it a point

DX ∈ D ∼= H.

Let h ∈ L′/L. We can decompose the coset L + h of the lattice L′ into subsets

depending on the length m. It is clear that m takes values in Z+ 1
2
〈h,h〉. We define

Lm,h = {X ∈ L+ h : 1
2
〈X,X〉 = m}

to be set of vectors of a given length. For each such m > 0 we define the divisor

T (m,h) = ε
∑

X∈ΓL\Lm,h

1

|ΓX |
[DX ]

which naturally sits on ΓL\H. Here, ΓX is the projection of ΓX into PSL2(Z). We

define ε by

ε =

 2 −I ∈ ΓL

1 otherwise
.

For example, if ΓL = Γ(N), a principal congruence subgroup, then

ε =

 2 N = 1, 2

1 otherwise
.

This divisor is closely related to certain Hecke operators. By using the embedding

into SO(2, 2), i.e.

ι((ζx1 + x2)`+ (ζx3 + x4)`′) =

x1 x2

x3 x4


we may identify Lm,h with

∆m,h = {α ∈ GL+
2 (Q) : π1(α) ≡ h, det(α) = m}.
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For any orbit ΓLXj in Lm,h we have

ι(ΓLXj) = ι∗(ΓL)ι(Xj)

and clearly, if we have a set of coset representatives ∆m,h =
∐
ι∗(ΓL)βj, then we

have that

Lm,h =
∐

ΓLβj(ζ`+ `′)

We can relate these cosets to Hecke operators in certain cases. The divisor

T (m, 0) is equivalent to the Hecke operator∑
α∈ΓL\∆m,0/ΓL

ΓLαΓL (1.3)

acting on the point ζ, viewed on the modular curve ΓL\H. For these Hecke operators,

we have a finite set {βj} of orbit representatives for which (1.3) decomposes into

disjoint ΓL-cosets, i.e. ∑
α∈ΓL\∆m,0/ΓL

ΓLαΓL =
∑
j

ΓLβj.

We refer to [Shi71, Chap. 3] for more details. We can then write the divisor T (m, 0)

in terms of the {βj} decomposition using the formula

T (m, 0) =
ε

Γζ

∑
j

[βj · ζ]

where βj acts on ζ as a fractional linear transformation. Such a decomposition is

valid for any h, however, for nonzero h the set ∆m,h does not form a semi-group

due to it not being closed under addition and so we cannot call it a Hecke operator

in general. We give a simple example to make this clearer, using the case of a

unimodular lattice (where the only coset is the h = 0 one):

Example 1.2.7. Let L = OF `⊕OF `′, then ΓL = SL2(Z) and

{βj} =


a b

0 d

 : ad = m, 0 ≤ b < d


and so

T (m, 0) = 2
∑
ad=m
0≤b<d

[
aζ + b

d

]
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where, by a slight abuse of notation, we consider the RHS to sit on SL2(Z)\H.

We note that the degree of this divisor is 2σ1(m), and that these are the Fourier

coefficients of the holomorphic part of −1
12
E2(τ), the Eisenstein series of weight 2.

This is not a coincidence.

Example 1.2.8. Let L = OF `⊕NOF `′. We recall that the h = 0 coset is stablised

by Γ0(N). Therefore the T (m, 0) are characterised by the coset representatives of

Γ0(N)\


 x1 x2

Nx3 Nx4

 : xi ∈ Z, N(x1x4 − x2x3) = m

 .

In particular, we note that the length must always be divisible by N . We will see

in Chapter 6 that in this case the degree of the divisor is σ1(m/N).

1.2.4 Modular traces

We will now define something which we call modular traces. They are analogous to

the traces of singular moduli, however they are not equal to them - except in certain

special cases.

We will later construct a process for producing a meromorphic modular form of

weight 2 which has positive Fourier coefficients which are these modular traces.

Definition 1.2.9. For m 6= 0, the (m,h)-th trace of a modular function f is defined

to be

trf (m,h) =
∑

z∈T (m,h)

f(z)

This definition gives us two ways to think about the trace. On the one hand we

can think of taking a function and evaluating over a set of points T (m,h). On the

other hand, using that T (m,h) = ε
Γζ

∑
j [βj · ζ] where ∆m,h =

∐
ι∗(ΓL)βj, we can

(abusing the notation) let T (m,h) act on f via

T (m,h)f =
∑
βj

f |0 βj

and simply evaluate T (m,h)f at the point ζ. In other words, if we define a coho-

mological pairing by

〈f, [z]〉 = f(z),

then we have the following
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Lemma 1.2.10.

〈f, T (m,h)〉 =

〈
T (m,h)f,

ε

Γζ
[ζ]

〉
.

Definition 1.2.11. The (0,h)-th trace is defined by the regularised integral

trf (0,h) = −δh,0
4π

lim
T→∞

∫
MT

f(z)
dxdy

y2

This definition seems arbitrary, but falls quite naturally out of the definition of

the theta lift in Chapter 4.

Theorem 1.2.12. As in [BF06] and [Bor98], we calculate the (0,h)-th trace to be,

for a weakly holomorphic form with Fourier coefficients aκ(n) at the cusp κ,

trf (0,h) =
δh,0c(0)

4π

∑
κ∈ΓL\Iso(V )

ακ
∑

n∈ 1
ακ

Z≥0

aκ(−n)bκ(n)

where

E2,`(z) = j(σ`, z)
−2E2(σ`z) =

(
b`(0) +

c(0)

y

)
+
∞∑
n=1

b`(n/α`) exp(2πinz/α`)

is the weight 2 Eisenstein series at the cusp `.

Proof. See [BF06, Remark 4.9] and [Bor98, §9]

We now discuss a few properties of these modular traces, and a simple example,

to help get a feel for what they are like.

Proposition 1.2.13. The values of trJ(m,h) always lie in a real subfield of the

Hilbert class field of the field F .

Proof. This follows firstly from the fact that a general theorem of class field theory

tells us that the J function, evaluated at quadratic irrationalities, always takes values

in the Hilbert class field [Sil09, Appendix C, Thm. 11.2(c)]. Secondly, we observe

that J(z) = J(−z), and it is easy to see therefore that in the set of modular divisors,

all points occur in pairs of (z,−z), hence, the modular trace will be real.

Example 1.2.14. The case of L = OF `⊕OF `′ and f = J is the easiest to calculate.

Since L = L′, there is only the h = 0 coset to consider and so as discussed in Example

1.2.7, the cycles are just the usual Tm Hecke operators. Is therefore easy to calculate



1.2. Modular traces 30

these traces because TmJ = Jm, and so the traces are, in this case, Jm(ζ). If the

class number of F is 1, then J(ζ) obviously lies in Z.

Using the tables below, it is easy to calculate trJ(m, 0) for some low values of d

and m.

d J1(ζ)

-1 492

-2 7256

-3 -248

-5 631256+282880
√

5

-6 2416728+1707264
√

2

-7 -4119

-10 212845656+95178240
√

5

-11 -33512

-13 3448439256+956448000
√

13

m Polynomial in J1 generating Jm

1 x

2 x2 − 393768

3 x3 − 590652x− 64481280

4 x4 − 787536x2 − 85975040x+ 7406919032

These traces also are related to some of the traces defined in [DIT11], namely the

cases where the class number is 1. Then we only have one Hurwitz-Kronecker class,

and so the (minimum polynomial of the) quadratic irrationality ζ must therefore be

equivalent to (the bilinear form Q(x, 1), whose solution gives rise to) τQ under the

action of Γ = SL2(Z). This explains why, in the cases d = −1,−2,−3,−7,−11,−19,

−47,−163 we have that

trJ(m, 0) = Tr−D(Jm) (1.4)



1.2. Modular traces 31

where the left hand side comes from Definition 1.2.9 in this thesis, and the right

hand side from [DIT11, pp. 6].

Example 1.2.15. Using the same lattice as in the previous example, we can consider

the trace of the constant function, which is obviously the degree of the divisor

T (m, 0) = 2σ1(m). As noted before, these are the Fourier coefficients of − 1
12
E2(τ).



Chapter 2

The Weil Representation

We construct the Weil representation using the Schrödinger model, and discuss dual

reductive pairs and the theta series map on the space V . Using a construction

of Kudla we give formulas for the action of the Weil representation. The primary

references are [LV80], [Pra93] and [Kud79].

2.1 The Weil Representation

Let W be a finite dimensional vector space over R, equipped with a non-degenerating

alternating form 〈 , 〉. The pair (W , 〈 , 〉) form a symplectic space of even dimension

2n. We define the Heisenberg group H(W ) as the set of all pairs

{(w, t) : w ∈ W, t ∈ R}

with the group operation

(w1, t1)(w2, t2) = (w1 + w2, t1 + t2 + 1
2
〈w1, w2〉).

We have the following well-known theorem:

Theorem 2.1.1 (Stone, von Neumann [LV80]). The Heisenberg group H(W ) has

an irreducible smooth representation on which R operates via the non-trivial central

character ψ, which we call ρψ. This representation is unique up to isomorphism.

We now give a realisation of ρψ. For any such space W , we can decompose it

into maximal totally isotropic subspaces W = W1 ⊕W2. We call W1 (resp. W2)

32
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a Lagrangian subspace. Let us take some additive character on R, called ψ. Then

there exists a smooth representation ρψ of H(W ) on S(W1), the Schwarz space of

W1 being the space of rapidly-decreasing functions on W1. Formally, this is the set

S(W1) =

{
f ∈ C∞ : sup

x∈W1

|xα∂βf(x)| <∞ for all multi-indices α, β

}
,

which we can understand as the smooth functions on W1 all of whose derivatives

decay faster than any inverse power. The representation ρψ acts on f ∈ S(W1) as

follows:

ρψ(w1)f(x) = f(x+ w1)

ρψ(w2)f(x) = ψ(〈x,w2〉)f(x)

ρψ(t)f(x) = ψ(t)f(x).

This is known as the Schrödinger representation.

The Weil representation is a projective representation of the symplectic group

constructed from the Schrödinger representation. We observe that the symplectic

group Sp(W ) acts on H(W ) via g · (w, t) = (gw, t). This defines another irreducible

representation of H(W ) twisted by g, with the same central character; hence by

Stone-von Neumann there exists an operator ωψ(g) on S such that

ρψ(gw, t)ωψ(g) = ωψ(g)ρψ(w, t) (2.1)

for all (w, t) ∈ H(W ). By Schur’s Lemma ωψ(g) is unique up to a non-zero com-

plex scalar. This forms a group under pointwise multiplication,S̃pψ(W ), called the

metaplectic group, defined as the set of all pairs (g, ωψ(g)) such that (2.1) holds.

We have the following short exact sequence:

0 −→ C∗ −→ S̃pψ(W ) −→ Sp(W ) −→ 0.

The obvious projection onto the second factor (g, ωψ(g)) 7→ ωψ(g) gives a repre-

sentation of the metaplectic group, called the Schrödinger model of the Weil repre-

sentation.

We now give explicit formulas for the Schrödinger model MSch of the metaplectic

representation. Let {e1, . . . , en, f1, . . . , fn} be a symplectic basis for W = W1 ⊕W2
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where ei ∈ W1, fi ∈ W2 and 〈ei, fj〉 = δij. The Metaplectic group is generated by

g(α) =

α 0

0 tα−1

 for any α ∈ GL(W1)

t(β) =

1 β

0 1

 for any β =t β

σ =

 0 1

−1 0


Then, using the map g̃ → g from the metaplectic group to the symplectic group,

we have the following:(
MSch

[
g̃(α)

]
f
)

(x) = |detα|1/2f(tαx)(
MSch

[
t̃(β)

]
f
)

(x) = ψ(1
2
〈βx, x〉)f(x)

(MSch [σ̃] f) (x) = γf̂(x)

where f̂(x) is the Fourier transform defined by, using the convention x =
∑
xiei

and y =
∑
yiei,

f̂(x) =

∫
W1

f(y)ψ

(
n∑
i=1

xiyi

)
dy

and γ is an eighth root of unity.

Remark 2.1.2. The specific situation we will be considering later will be a dual pair

sitting inside Sp(8,R). In [KV78], they show that for W = Sp(8,R), the root of

unity is in/2, and so for our case this root of unity is 1.

It is important to note that the Schrödinger representation depends on the choice

of polarisation, i.e. on the choice of W1. However, by the Stone-von Neumann

theorem, there must exist some intertwining operator F : S(W1)→ S(W ′
1) (uniquely

defined up to a scalar) such that

F ◦MSch,W1 [g] = MSch,W ′1
[g] ◦ F

This operator is in fact the (partial) Fourier Transform [LV80], given by

(Ff)(y) =

∫
W1/W1∩W ′1

f(x)ψ(1
2
〈x, y〉)dx
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for dx a positive W1 invariant measure on the homogeneous space W1/W1 ∩W ′
1.

Let W = W1 ⊕W2 be a polarisation. We now define a linear functional Θ on

φ ∈ S(W1) by

Θ(φ,Λ) =
∑
x∈Λ

φ(x)

for some lattice Λ in W1. We now define a function on g ∈ S̃p(W ) by

Θ(g, φ,Λ) = Θ(g · φ,Λ).

For a dual reductive pair (G,G′), let G̃ and G̃′ be full inverse images of G and G′

in S̃p(W ). Then the function above restricted to G̃× G̃′ defines the theta kernel. If

the groups G and G′ lift to the metaplectic group (e.g. they are unitary groups, as

will be the case in the next section) then the Weil representation realises this as a

function on G×G′.

2.2 Dual Pairs and Theta Functions

Following [Pra93], a dual reductive pair is a pair of subgroups (G,G′) of a symplectic

group Sp(W ) such that

• they are mutual centralisers, i.e. G is the centraliser of G′ in Sp(W ) and G′ is

the centraliser of G

• the actions of G and G′ are completely reducible on W , i.e. the complement of

an invariant subspace of W under G or G′ is itself invariant under that group.

If we have two dual reductive pairs (G1, G
′
1) in Sp(W1) and (G2, G

′
2) in Sp(W2)

then (G1×G′1, G2×G′2) is a dual reductive pair in Sp(W1⊕W2). Any dual reductive

pair not constructible in this way is called irreducible.

Irreducible dual reductive pairs can be classified into one of two types, according

to how G ·G′ acts on W . If the action is irreducible, we say that it is of type I, and

if it is reducible then we say it is of type II.

In particular, for type II irreducible dual pairs, there exists a division algebra D

and a right D-vector space W1 and a left D-vector space W2 such that

W = (W1 ⊗D W2)⊕ (W1 ⊗D W2)∗
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and

(G,G′) = (AutD(W1), AutD(W2))

We now make this more explicit by describing this for a specific dual pair which

we will be concerned with for the rest of this thesis. Recall the vector space V and

Hermitian form 〈 , 〉 defined in Chapter 1. Kudla in [Kud79] gives a construction

which realises ((U)(VR), U(V2)) (for V2 described below) as a dual pair of type II,

which we reproduce here.

Let V2 be a 2 dimensional complex vector space with an Hermitian form given

by 〈 , 〉2. Then we can form a symplectic vector space W = V ⊗C V2 with the

symplectic form given as follows. There is a natural Hermitian form on W given by

〈v1 ⊗ v2, v
′
1 ⊗ v′2〉3 = 〈v1, v

′
1〉〈v2, v

′
2〉2

We then define a symplectic form by

〈〈 , 〉〉 = =〈 , 〉3.

and we have homomorphisms

U(V )× U(V2) −→ U(W ) −→ Sp(W, 〈〈 , 〉〉).

The space V2 has an isotropic basis {u2, u
′
2} such that 〈u2, u

′
2〉2 = i. This allows

the identification W ∼= V × V via

v1 ⊗ u2 + v2 ⊗ u′2 7−→ (v1, v2)

and identifies SU(V2) with SL2(R).

Kudla also calculates the action ω of the Weil representation on a Schwartz

function on V . We are particularly interested in the action of g ∈ SU(VR) and

g′ ∈ SL2(R). This action is implicitly for the character t 7→ e2πit and the polarisation

given by the isotropic basis on V2, i.e. we choose for our Langrangian V ⊗ u′2 ∼= V .

For g′ =

a b

0 d

 ∈ SL2(R)

ω(g′)f(v) = |a|2eπiad〈v,v〉f(av) = MSch[g
′]f(v).
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and

ω

 0 1

−1 0

 f(v) =

∫
V

exp(πi〈v, u〉)f(u)du = f̂(v)

Kudla does give a more general formula for the action (e.g. when c 6= 0), but we do

not need it.

We have then for g ∈ SU(VR) an alternative model which we call M\, induced

by the natural action of g on V , which is given by

ω(g)f(v) = f(g−1v) = M\[g]f(v).

Of course, these formulas are dependent on the choice of Langrangian, which

we took to be V ⊗ u′2. If we instead took the Langrangian to be `′ ⊗ V2 then the

operation of the Weil representation is given by the intertwining operator F , which

is the partial Fourier transform - as seen by the fact that

(W1\W1 ∩W ′
1)C = (VR ⊗ u2)\(VR ⊗ u2 ∩ `′ ⊗ V2,C)

= VR ⊗ u′2\(`′ ⊗ u′2) ∼= C`.

By symmetry, we can see that the action of g ∈ SU(VR) is now given by the

Schrödinger model, and hence we have the following formula

F(M\[g]MSch[g
′]f)(v) = MSch[g]M\[g

′](Ff)(v)

In the next chapter, we will be constructing a suitable test function ϕ. This

function will behave particularly nicely under the maximal compact subgroup K of

SU(VR)×SL2(R). This will allow us to realise Θ((g, g′), ϕ,Λ) as a function (actually

as a modular form) on H×H.

Let F : SL2(R)→ C be a function on SL2(R) which is semi-invariant with weight

k under right multiplication by rθ ∈ K the maximal compact subgroup, i.e.

F (grθ) = eikθF (g)

and is left-invariant under some congruence subgroup Γ, i.e.

F (γg) = F (g).
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We can define a new function f(z) : H→ C by

f(z) = F (gz)j(gz, i)
k

where the equation gzi = z defines the group element gz, up to a multiple of K =

Stab(i). First we establish that this is well defined, namely, if g′zi = z then clearly

g′z = gzrθ for

rθ =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ,

so we simply have

F (g′z)j(g
′
z, i)

k = F (gz)e
ikθj(gz, rθ · i)kj(rθ, i)k = F (gz)j(gz, i)

k

by the semi-invariance of F , the co-cycle relation and the fact that j(rθ, i)
k = e−ikθ.

This shows that f is a well defined function on G/K = H. We can also show that

f is a modular form for Γ of weight k, under the action of γ ∈ Γ we have

f(γz) = F (gγz)j(gγz, i)
k.

Clearly, by the definition of gz, we have that gγz = γgz, hence

f(γz) = F (γgz)j(γgz, i)
k

= F (gz)j(γ, gz · i)kj(gz, i)k

= j(γ, z)kf(z)

so we see that a function F on the group which is semi-invariant under K of weight

k and left invariant under Γ defines a modular form of weight k for Γ. In a similar

way, every modular form also defines a Γ invariant function on the group, by F (g) =

f(g · i)j(g, i)−k.

We can apply this to the functions Θ((g, g′), ϕ,Λ). Assume that

M\[grθ]ϕ(X) = eikθϕX

and

M\[g
′r′θ](Fϕ)(X) = eik

′θ(Fϕ)(X)
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We can then realise Θ((g, g′), ϕ,Λ) as

Θ(z, g′, ϕ,Λ) = y−k
∑
X∈Λ

M\[gz]MSch[g
′]ϕ(X)

and, using the mixed model

Θ(g, τ, ϕ,Λ) = v−k
∑
X∈Λ

F−1(M\[gτ ]MSch[g](Fϕ)(X))

hence it makes sense to think of Θ as being a function on H×H. If we assume that

g, g′ ∈ Stab(Λ), then the fact that Θ(g, g′) is invariant under the action g 7→ γg is

pretty obvious - it merely transfers to an inverse action on X ∈ Λ. If we also assume

that Λ contains its own dual under Fourier inversion in the first co-ordinate, then

we can, by using Poisson summation, conclude that Θ is invariant under g′ 7→ γg′

by the same argument. Hence, under all these assumptions, Θ will be a modular

form for Γ = Stab(Λ) with weight k in z and weight k′ in τ .

2.3 Vector Valued Modular Forms

The primary references used for this section are [Bru02] and [Kud79], both of which

rely on calculations in [Shi75]. We first make some general definitions necessary for

discussion of vector valued modular forms, before specialising to the case we need.

First, we recall that SL2(Z) is generated by

T =

1 1

0 1


S =

 0 1

−1 0

 .

Now let L ⊂ V be an even OF -lattice of full rank and let {eh}h∈L′/L be a basis of the

group algebra C[L′/L]. There is a unitary representation %L of SL2(Z) on C[L′/L],

defined for the generators of SL2(Z) given above by

%L(T )eh = exp(πi〈h,h〉)eh

%L(S)eh =
1√
|L′/L|

∑
k∈L′/L

exp(πi〈k,h〉)ek.
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These formulas follow from [Kud79, Prop. 2(i)], or from [BF04].

Since the signature of the lattice we are using is even, this representation in

fact factors through SL2(Z/NZ) where N is the smallest positive integer such that

N〈h,h〉 ∈ Z for all h ∈ L′ (see [Bru02]). In general (i.e. in odd dimension) one

needs to consider the Metaplectic group, the pre-image of SL2(Z) in topological

double cover of SL2(R).

We now define the slash operator on C[L′/L]-valued functions. Let k ∈ 1
2
Z,

M ∈ SL2(Z) and f : H→ C[L′/L]. Then the weight k slash operator is defined as

(f |k M)(τ) = j(M, τ)−k%L(M)−1f(Mτ)

We are now in a position to define a vector-valued modular form.

Definition 2.3.1. A vector valued modular form of weight k with respect to %L is

a function f : H→ C[L′/L] which satisfies:

• f |k M = f for all M ∈ SL2(Z)

• f is holomorphic on H

• f is holomorphic at the cusp ∞, i.e. has a Fourier expansion of the form

f(τ) =
∑

h∈L′/L

∑
n∈Z+

1
2
〈h,h〉

n≥0

c(h, n) exp(2πinτ)eh

We can extend this definition in several ways. For example, we can define vector

valued forms for a congruence subgroup Γ ⊂ SL2(Z) by requiring that the function

f need only be invariant under the |k operator for that subgroup, but must be

holomorphic at all cusps associated to Γ. We can also define the notion of a weak

vector valued form, by allowing poles of finite orders at cusps.



Chapter 3

Constructing the Theta function

We will begin this chapter by explicitly constructing some geometrical quantities

which are key to the construction of the theta kernel. This theta kernel is constructed

by summing over the lattice L a Schwartz function ϕKM which is from [KM86] and

[KM87]. It is essentially the normal Gaussian function under the image of a certain

differential operator.

The function ϕ0
KM depends on a vector X and point z ∈ H. We will construct a

function ξ0 for which, as currents, we have the relation

ddc[ξ0] + δDX = [ϕ0
KM ].

which is key in our calculation of the Fourier coefficients of the lift of harmonic weak

Maass forms in Chapter 5.

3.1 Construction of ϕKM

Analagous to the real signature (1, 2) case in [Kud97], we make the following defi-

nitions. Let X ∈ V , so that for any z ∈ H we may decompose X as

X = X⊥z +
〈X,X(z)〉
〈X(z), X(z)〉

X(z)

where X⊥z is the component of X orthogonal to X(z). Hence we have

〈X,X〉 = 〈X⊥z , X⊥z 〉+
δ̂

4
|〈X,X(z)〉|2.

41
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We then define

R(X, z) = −〈X⊥z , X⊥z 〉 =
δ̂

4
|〈X,X(z)〉|2 − 〈X,X〉. (3.1)

Lemma 3.1.1. R(X, z) is real and always greater than or equal to zero, with equality

when X = 0 or when z lies on DX , i.e. if we write X = w`+w′`′, then when z = w
w′

.

Proof. The case of X = 0 is obvious. For any X 6= 0, we must have that X⊥z

generates a negative definite subspace if it is not equal to 0, since 〈X(z), X(z)〉 > 0

and hence X(z) generates a positive definite one. If X⊥z = 0, then X lies in the

direction of X(z), which is equivalent to z = DX .

We can relate R(X, z) and |〈X,X(z)〉|2 to the minimal majorant by

〈X,X〉z =
δ̂

2
|〈X,X(z)〉|2 − 〈X,X〉 = 2R(X, z) + 〈X,X〉. (3.2)

We now give explicit formulas for each of these quantities.

Proposition 3.1.2. Let X = w` + w′`′ and z = x + iy. The quantities mentioned

above are given explicitly by

|〈X,X(z)〉|2 = 4δ̂−2y−1 |zw′ − w|2

R(X, z) = (yδ̂)−1 |zw′ − w|2

〈X,X〉z = 2(yδ̂)−1
(
|xw′ − w|2 + y2|w′|2

)
Proof. We recall that

X(z) =

1 x

0 1

√y 0

0
√
y−1

i
1

 =
1
√
y

z
1


and hence

〈X,X(z)〉 = (w,w′)

 0 2δ−1

−2δ−1 0

√y−1z
√
y−1


= − 2

δ
√
y

(zw′ − w)

and hence

|〈X,X(z)〉|2 = 4δ̂−2y−1 |zw′ − w|2 .
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We recall that

〈X,X〉 = 4δ̂−1=(ww′)

and using Equation (3.1),

R(X, z) =
δ̂

4
|〈X,X(z)〉|2 − 〈X,X〉

= δ̂−1y−1 |zw′ − w|2 − 4δ̂−1=(ww′)

= (yδ̂)−1 |zw′ − w|2 .

Finally, we can use these explicit formulas and Equation (3.2) to show that

〈X,X〉z = 2R(X, z) + 〈X,X〉

= 2(yδ̂)−1 |zw′ − w|2 + 4δ̂−1=(ww′)

= 2(yδ̂)−1
(
|xw′ − w|2 + y2|w′|2

)

We now construct the Schwartz function we will use to construct the theta func-

tion. This Schwartz function was originally defined (in much greater generality) by

Kudla and Millson in [KM86] and [KM87], where many properties of the lift in the

compact case were considered.

Recall that V has a basis {e1, e2} such that 〈e1, e1〉 = −〈e2, e2〉 = 1 and 〈e1, e2〉 =

0. Let X = v1e1 + v2e2, and define the Gaussian

ϕS(X) = exp(−π(|v1|2 + |v2|2))

noting that, in the notation established above,

ϕS(X) = exp(−π〈X,X〉i).

This is weight 0, in the sense that it is invariant under K-action on the vector X.

In [KM86], they define a certain differential operator

∇∇ =
1

8

(
v1 −

1

π

∂

∂v1

)(
v1 −

1

π

∂

∂v1

)
and a new Schwartz function, the Kudla-Millson Schwartz function by

ϕ̃KM(X) = ∇∇ϕS(X).
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Simply applying the operator in a straightforward manner gives

ϕ̃KM(X) =
1

8

(
4|v1|2 −

2

π

)
exp(−π(|v1|2 + |v2|2)).

We can rewrite this formula in the following useful way:

ϕ̃KM(X) =
1

16π

(
H2

(√
2π<(v1)

)
+H2

(√
2π=(v1)

))
ϕS(X).

Here, H2(x) = 4x2 − 2 is the second Hermite polynomial.

We now define

ϕ̃KM(X, g) = M\[g]ϕ̃KM(X) = ϕ̃KM(g−1X)

and we claim that this function is right K-invariant. Since the action of g is simply

the natural left action in the {`, `′} basis, it follows by the co-ordinate transforms

that  cos(θ) sin(θ)

− sin(θ) cos(θ)

 · (v1e1 + v2e2) = eiθv1e1 + e−iθv2e2

and therefore |v1|2 and |v2|2 are invariant under K and so is ϕ̃KM(X, g). Hence we

write ϕ̃KM(X, z) = ϕ̃KM(X, gz) with no ambiguity. Finally, we define

ϕKM(X, z) = ϕ̃KM(X, z)dµ(z)

where dµ(z) = y−2dxdy, and we have,

Definition 3.1.3. For X ∈ V ,

ϕKM(X, z) =
1

8

(
δ̂|〈X,X(z)〉|2 − 2

π

)
exp(−π〈X,X〉z)dµ(z)

where z ∈ H.

For notational convenience later, we also define

ϕ0
KM(X, z) = exp(π〈X,X〉)ϕKM(X, z)

=
1

8

(
δ̂|〈X,X(z)〉|2 − 2

π

)
exp(−2πR(X, z))dµ(z)

Let α =
√

δ̂
2
<(〈X,X(z)〉) and β =

√
δ̂
2
=(〈X,X(z)〉), then we have that

ϕ0
KM(X, z) =

1

16π
(H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2)) exp(2π〈X,X〉)dµ(z)

which will be useful later.

We now prove a few properties of ϕKM(X, z).
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Proposition 3.1.4. The functions ϕKM and ϕ0
KM are invariant under diagonal ac-

tion of γ ∈ SL2(R), i.e. ϕKM(γX, γz) = ϕKM(X, z) and ϕ0
KM(γX, γz) = ϕ0

KM(X, z)

Proof. Firstly, we note that the hyperbolic metric y−2dxdy is invariant under SL2(R).

Since, for any γ ∈ SL2(R), by definition, 〈γX, γY 〉 = 〈X, Y 〉, and X(γz) = γX(z),

it is clear that

R(γX, γz) =
δ̂

4
|〈γX,X(γz)〉|2 − 〈γX, γX〉 =

δ̂

4
|〈X,X(z)〉|2 − 〈X,X〉 = R(X, z)

hence,

ϕ0
KM(γX, γz) =

1

8

(
δ̂|〈γX,X(γz)〉|2 − 2

π

)
exp(−2πR(γX, γz))

dx ∧ dy
y2

=
1

8

(
δ̂|〈X,X(z)〉|2 − 2

π

)
exp(−2πR(X, z))

dx ∧ dy
y2

and ϕKM follows similarly.

Analogously to [BF06][Prop 3.2], we have

Theorem 3.1.5. Assume that 〈X,X〉 = 2m > 0. The form ϕ0
KM(X, z) has linear

exponential decay in y and square linear exponential decay in x in all directions, i.e.

O(exp(−Cx2)dµ(z)) as x→ ±∞

O(exp(−Cy)dµ(z)) as y →∞

O(exp(−C/y)dµ(z)) as y → 0

for some constant C > 0 in each case, uniformly in y in the first case and uniformly

in x in the other two. In particular, C = πm
=(DX)

in the case y →∞.

Proof. This is clear from the formula for R(X, z). In particular, for y → ∞ it is

clear that the y term dominates, and its coefficient is |w′|2δ̂−1. By the formula for

the length of a vector X, we see that |w′|2 = mδ̂
2=(DX)

, whence the result.

Theorem 3.1.6. The 2-form ϕ0
KM(X, z) is normalised to have a volume of 1 over

the upper half plane, i.e. ∫
H
ϕ0
KM(X, z) = 1.

for any X such that 〈X,X〉 > 0. Similarly, for X such that 〈X,X〉 < 0 we have∫
H
ϕ0
KM(X, z) = 0.
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Proof. The integral we are concerned with is∫
H

1

8

(
δ̂|〈X,X(z)〉|2 − 2

π

)
exp(−2πR(X, z))

dx ∧ dy
y2

.

The first step is to use the fact that 2R(X, z) + 2〈X,X〉 = δ̂
2
|〈X,X(z)〉|2,∫

H

1

8

(
δ̂|〈X,X(z)〉|2 − 2

π

)
exp(−π δ̂

2
|〈X,X(z)〉|2) exp(2π〈X,X〉)dxdy

y2
.

We now substitue in the formula for |〈X,X(z)〉|2∫
H

1

8

(
4(δ̂y)−1 |zw′ − w|2 − 2

π

)
exp(−π2(δ̂y)−1 |zw′ − w|2) exp(2π〈X,X〉)dxdy

y2
.

Since we are assuming that 〈X,X〉 6= 0, then we can assume that w′ 6= 0, and hence

the integral we are concerned with is∫
H

1

8

(
4(δ̂y)−1 |w′|2 ((x−<(w/w′))2 + (y + =(w/w′))2)− 2

π

)
exp(−2π(δ̂y)−1 |w′|2 ((x−<(w/w′))2 + (y + =(w/w′))2)) exp(2π〈X,X〉)dxdy

y2
,

but since we are integrating x between −∞ and ∞, this is equal to

1

4π

∫
H

(
2π(δ̂y)−1 |w′|2 (x2 + (y + =(w/w′))2)− 1

)
exp(−2π(δ̂y)−1 |w′|2 (x2 + (y + =(w/w′))2)) exp(2π〈X,X〉)dxdy

y2
.

From here it is relatively straightforward to calculate this integral using standard

results, and we see that the value depends on the sign of =(w/w′), i.e. the sign

〈X,X〉.

1

4π

∫
H

(
2π(δ̂y)−1 |w′|2 (x2 + (y + =(w/w′))2)− 1

)
exp(−2π(δ̂y)−1 |w′|2 (x2 + (y + =(w/w′))2)) exp(2π〈X,X〉)dxdy

y2

=

 exp(−8πδ̂−1=(ww′)) exp(2π〈X,X〉) = 1 〈X,X〉 > 0

0 〈X,X〉 < 0

This is actually a prerequisite for Theorem 3.2.7, but in order to state it we need

to introduce the notion of a current. In a loose sense, currents play a similar role to

forms as distributions do to functions.
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3.2 Currents and Greens Functions

Definition 3.2.1. [Lan88, Ch.1, §3] Let d be the usual exterior differential. For

any function f on a complex manifold, we define operators ∂, ∂ such that d = ∂+ ∂

∂f =
∂f

∂z
dz, ∂f =

∂f

∂z
dz.

where
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

We also define

dc =
1

4πi
(∂ − ∂)

so that

ddc = − 1

2πi
∂∂.

Definition 3.2.2. [Sou92, §II.1] A current is a linear functional on An(X), the space

of complex valued differential forms with compact support of degree n of a smooth

manifold X of complex dimension d, which is continuous in the sense that for any

sequence {ωr} ⊂ An(X) which are all supported in some fixed compact set K and

for any T a current, we have T (ωr)→ 0 if ωr → 0.

Example 3.2.3. Any differential form α of degree (p, q) defines a current on the

differential forms of codegree (d− p, d− q) via

[α](β) =

∫
X

α ∧ β

Proposition 3.2.4. [Sou92, §II.1,1.2] For any α, a form of degree n, we have

d[α](β) = (−1)n+1[α](dβ)

and similarly for ∂, ∂ and dc.

Example 3.2.5. The usual Dirac delta function defines a current on functions (i.e.

0-degree forms) in the obvious way, i.e.

[δz](f) = f(z)

for some z ∈ X.
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The standard definition of a current is too restrictive for our purposes. We wish

to allow our currents to act on differential forms which do not have compact support.

This necessitates a trade-off; consider Example 3.2.3 above, whatever we do, this

integral must converge. Clearly the worse the behaviour of β we want to be able to

deal with, the better behaved α must be. In distributions, this logic plays out with

the notion of a tempered distribution, whereby in exchange for restricting ourselves

to distributions with at most logarithmic growth, we are allowed test functions which

are Schwartz functions (i.e. rapidly decaying), rather than compactly supported.

We wish to take as our input differential forms with linear-exponential growth.

In order for this to be valid, we will take care that the (equivalent of the) integral

given by Example 3.2.3 always converges.

We quote now a definition and theorem about currents on compactly supported

forms.

Definition 3.2.6. A Greens current for a point P with respect to a Schwartz func-

tion ϕ is a function gP : M − P → R such that ddcgP = ϕ away from P and, for a

compactly-supported function f we have∫
M

gPd
cdf + f(P ) =

∫
M

fϕ (3.3)

Equivalently, we say

ddc[gP ] + δP = [ϕ]

as currents.

Theorem 3.2.7. [Lan88, Ch. II,§1, Thm 1.5]Let M be a Riemann surface over the

complex numbers. Let ϕ be a normalised (1, 1)-form, i.e.∫
M

ϕ = 1

Let D be a divisor on M , represented by f . Then there exists a Greens current for

P ∈M with respect to ϕ,

We do not prove this here, however we quote the following very useful Lemma

which the proof essentially reduces to, and which we need later.
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Lemma 3.2.8. [Lan88, Ch. II,§1, p.p. 23] Let C(P, a) be the anticlockwise oriented

circle around P of radius a. If β is a smooth function in a neighbourhood of P and

α = k log r +O(1) for some constant k, then

lim
ε→0

∫
C(P,ε)

αdcβ = 0.

If β = log r2 +O(1) and α is continuous, then

lim
ε→0

∫
C(P,ε)

αdcβ = α(P )

If we wish to extend Theorem 3.2.7 to f which do not have compact support,

we must be able to make sense of Equation 3.3. This will depend highly upon the

properties of gP and ϕ of course - the “badness” of growth allowed in f must be

balanced by well-behaved decay in gP and ϕ, so that the relevant integrals converge.

3.2.1 A Greens function for ϕ0
KM

We will construct a Green’s function for the point DX with respect to the function

ϕ0
KM(
√
vX, z) for v > 0, following a method used by Kudla in [Kud97]. In order

to do this, we now recall a few facts about the exponential integral function, Ei(z),

defined for z ∈ C by

Ei(z) =

∫ z

−∞

et

t
dt.

The path of integration stays away from the ray defined by {z ∈ C : <(z) ≤

0, =(z) = 0}. We may rewrite this as

Ei(z) = γ + log(−z) +

∫ z

0

et − 1

t
dt (3.4)

where γ is Euler’s constant. We note that the integral on the right hand side is an

entire function, which implies that Ei(z) has a logarithmic singularity at 0 [GR07,

Sec. 8.21]. Hence Ei(z) has logarithmic growth as z → 0 and linear exponential

decay as z → −∞.

Theorem 3.2.9 (Extended Current Equation). Let

ξ0(
√
vX, z) = −Ei(−2πR(

√
vX, z))
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be defined for all X ∈ VR and for v > 2n=(DX)
m

for some n ∈ N. Then, for each

X 6= 0, ξ0(
√
vX, z) is a Greens current for DX with respect to ϕ0

KM(
√
vX, z) and

for any function f(z) = O(exp(2πny)) as y →∞,

∫
D
f(z)ϕ0(

√
vX, z) =


∫
D ξ

0(
√
vX, z)dcdf if 〈X,X〉 < 0∫

D ξ
0(
√
vX, z)dcdf + f(DX) if 〈X,X〉 ≥ 0

and hence, as currents,

ddc[ξ0(
√
vX, z)] + δDX = [ϕ0

KM(
√
vX, z)].

Proof. We first show that

ddcξ0 = ϕ0
KM for all z 6= DX (3.5)

and then we examine the behaviour in a neighbourhood of DX .

We firstly deal with behaviour on the complement D− DX . This basically goes

as in [Kud97, Prop 11.1]. We have that

− ∂∂ξ0(X, z) = −2π
e−2πR

R
∂R ∧ ∂R +

e−2πR

R2
(−∂R ∧ ∂R +R∂∂R) (3.6)

and we may calculate from Proposition 3.1.2 that

∂R =

(
i

2y
R +

w′

δ̂y

(
w′z − w

))
dz (3.7)

∂R =

(
− i

2y
R +

w′

δ̂y
(w′z − w)

)
dz (3.8)

and hence,

∂R ∧ ∂R =
δ̂

16
R|〈X,X(z)〉|2dz ∧ dz

y2

∂∂R =
1

4

(
R +

δ̂

4
|〈X,X(z)〉|2

)
dz ∧ dz
y2

.

Substituting this into (3.6), and using that −∂∂ = 2πiddc and y−2dz ∧ dz =

−2iy−2dx ∧ dy, we obtain that for z away from Dx,

ddcξ0(
√
vX, z) =

1

8

(
δ̂|〈
√
vX,X(z)〉|2 − 2

π

)
e−2πRdx ∧ dy

y2
= ϕ0

KM(
√
vX, z)

We now prove the full result. Firstly, we deal with convergence issues. We know

that f(z) = O(exp(2πny)) and that ξ0(
√
vX, z) and ϕ0

KM(
√
vX, z) areO(exp(− πvmy

=(DX)
)).
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Hence, since v > 2n=(DX)
m

by assumption, ξ0(
√
vX, z)dcdf and f(z)ϕ0

KM(
√
vX, z) are

O(exp(−2πεy)) for some ε > 0. Therefore these integrals converge. We note that

the bound on v is essential, without it, the integrals diverge and none of what follows

makes any sense.

Now, we slightly restate the claim. We put the integration all on one side, and

break it up into two parts;

lim
ε→0

∫
X−C(DX ,ε)

ξ0dcdf − fϕ0
KM

and

lim
ε→0

∫
C(DX ,ε)

ξ0dcdf − fϕ0
KM .

Since

ξ0dcdf − fϕ0
KM = −ξ0ddcf − fddcξ0 = −d(ξ0dcf + fdcξ0)

on the complement of DX , we can now apply Stokes’ Theorem; clearly the second

part vanishes and so we now need to prove

lim
ε→0

∫
C(DX ,ε)

ξ0dcf + fdcξ0 = f(DX)

which is readily apparent from Lemma 3.2.8 and the logarithmic growth of ξ0.

3.2.2 The theta function

We define our theta function on the group SU(VR)× SL2(R) as

Θ(g, g′, L) =
∑
X∈L′

M\[g]MSch[g
′]ϕKM(X)eX

As discussed above, by the right K-invariance of Θ in the SL2(R) argument, it

makes sense to think of this as a function on G/K ∼= H. Since, as we showed in

Chapter 1, SU(VR) ∼= SL2(R), it is natural to ask whether we can do the same on

the g′ component and thus realise Θ as a function on H × H. The answer to this

question is yes, and furthermore, we have that Θ is left-invariant under StabL in

the g′ component as well. We refer to [KM86, Thm 3.1] for the K-invariance on g′,

and we will recover the transformation formula for τ later, which is equivalent to

left ΓL invariance on g′. Hence we make the following definitions:
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Definition 3.2.10. Let gτ ∈ SL2(R) be defined by gτ i = τ . It is only defined up to

a factor of K, one realisation of which is

gτ =

1 u

0 1

√v 0

0
√
v
−1

 .

The theta function associated to the lattice L is, for z, τ ∈ H

Θ(τ, z, L) =
∑
X∈L′

v−1MSch[gτ ]ϕ
0
KM(X, z)eX

We decompose the sum into L cosets to obtain theta functions for each h ∈ L′/L

so that

Θ(τ, z, L) =
∑

h∈L′/L

θh(τ, z, L)eh

where

θh(τ, z, L) =
∑
L+h

v−1MSch[gτ ]ϕ
0
KM(X, z).

The factor of v−1 appears because of the weight in the τ variable, or more

specifically, because of the way MSch[g
′]ϕKM(X, z) transforms under right K action,

i.e.

MSch[g
′rθ]ϕKM(X, z) = e2iθMSch[g

′]ϕKM(X, z).

Then, in order to make this a function on H rather than on the group, we need to

multiply by j(gτ , i)
2 = v−1. We note that when this was done previously to convert

from a function in g to a function in z no additional factor was necessary as the

weight is 0, i.e. the g variable is invariant under the right action of K.

By now we have established a number of different notations for expressing the

theta function throughout this chapter. We collect them together in the proposition

below for ease of reference.

Proposition 3.2.11. We have the following equivalent expressions for θh(τ, z, L)

θh(τ, z, L) =
∑

X∈L+h

ϕKM(X, τ, z)

=
∑

X∈L+h

ϕ0
KM(
√
vX, z) exp(πi〈X,X〉τ)

=
∑

X∈L+h

1

8

(
δ̂v|〈X,X(z)〉|2 − 2

π

)
exp

(
−πvδ̂

2
|〈X,X(z)〉|2

)
exp (πi〈X,X〉τ) dµ(z)
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Where we define ϕKM by the equality

ϕKM(X, τ, z) = v−1MSch[gτ ]M\[gz]ϕKM(X)dµ(z).

Additionally, if we make the following substitutions:

α =

√
vδ̂

2
<(〈X,X(z)〉) , β =

√
vδ̂

2
=(〈X,X(z)〉)

this allows us to write

ϕKM(X, τ, z) =
1

16π
(H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2)) exp(πi〈X,X〉τ)dµ(z)

where Hn(x) is the n-th Hermite polynomial, which is defined by

Hn = (−1)nex
2 dn

dxn
e−x

2

,

and, in particular,

H2(x) = 4x2 − 2.

For reference, we state the transformation laws for Θ in each argument.

Theorem 3.2.12. For any γ ∈ ΓL, we have that

θh(τ, γz, L) = θh(τ, z, L)

Proof. This is fairly immediate by Proposition 3.1.4 and the definition of ΓL. We

have that

θh(τ, γz, L) =
∑

X∈L+h

ϕ0
KM(
√
vX, γz) exp(πi〈X,X〉τ)

=
∑

X∈L+h

ϕ0
KM(
√
vγ−1X, z) exp(πi〈γ−1X, γ−1X〉τ)

=
∑

γ−1X∈L+h

ϕ0
KM(
√
vX, z) exp(πi〈X,X〉τ)

= θh(τ, z, L)

Theorem 3.2.13. For any γ ∈ ΓL, we have that Θ is invariant under |2[γ], i.e.

(Θ|2[γ])(τ, z, L) = Θ(τ, z, L).

Proof. This is implicit in [KM86], [KM87]. However, we will recover this result in

Section 3.4.
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3.3 Some commutativity relations

Definition 3.3.1. The lowering operator in τ is defined by

Lτ = −2iv2 ∂

∂τ

A small calculation yields

Lτξ
0 = −2iv2 ∂

∂τ

(
− Ei(−2πvR(X, z))

)
= −v2 ∂

∂v
Ei(−2πvR(X, z))

= −v2∂(−2πvR)

∂v

e−2πvR

−2πvR

= −v2 −2πR

−2πvR
e−2πvR

= −v2e−2πvR = −ϕS.

We now seek to establish the following commutative diagram:

ξ0 Lτ−−−→ −ϕS
ddc

y yddc
ϕ0
KM

Lτ−−−→ φ

Where φ is implicitly defined by the diagram.

It is clear that the operators must commute (hence φ is well defined), so really

it really only remains to show that Lτξ
0 = ϕS. However, we calculate φ directly in

both ways for completenesses sake.

We now calculate ddcϕ0 and LτϕKM and see that they are equal. We first

calculate

Lτϕ
0
KM = −2iv2 1

8

∂

∂τ

(
δ̂v|〈X,X(z)〉|2 − 2

π

)
e−2πvRdµ(z)

=
v2

8

((
δ̂v|〈X,X(z)〉|2 − 2

π

)
(−2πR) + δ̂|〈X,X(z)〉|2

)
e−2πvRdµ(z)

=
v2

4

(
2R + 1

2
δ̂|〈X,X(z)〉|2 − πδ̂vR|〈X,X(z)〉|2

)
e−2πvRdµ(z)

=
v2

4

(
2〈X,X〉z − πδ̂vR|〈X,X(z)〉|2

)
e−2πvRdµ(z).
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This last equality follows from Equation 3.2. Alternatively, we can easily calcu-

late that

ddcϕS =
−1

2πi
∂∂ϕS

= −iv2

(
∂2R

∂z∂z
− 2πv

∂R

∂z

∂R

∂z

)
e−2πvRdz ∧ dz.

From Equation 3.7 we can see that

∂R

∂z

∂R

∂z
=

δ̂R

16y2
|〈X,X(z)〉|2

and also that
∂2R

∂z∂z
=

1

4y2
〈X,X〉z

hence,

ddcϕS =
−iv2

8y2

(
2〈X,X〉z − πvδ̂R|〈X,X(z)〉|2

)
e−2πvRdz ∧ dz.

Finally, using that dz ∧ dz = −2idx ∧ dy, we have

ddcϕS =
v2

4

(
2〈X,X〉z − πδ̂vR|〈X,X(z)〉|2

)
e−2πvRdµ(z),

as expected.

3.4 Rewriting theta

The definition of Θ is essentially as a Fourier series in the τ variable. For the

purposes of our lift however, it would be much more useful to have Θ written as a

Fourier series in z. It turns out this is possible via a relatively simple (but detailed)

calculation, which is taking the Fourier transform on one component of the lattice.

The explanation for this comes from changing our point of view, and again viewing

Θ as a function on SU(VR)× SL2(R). Recall we have

Θ(g, g′, L) =
∑
X∈L′

M\[g]MSch[g
′]ϕKM(X)eX

and also recall that the definition of the Schrödinger model of the Weil representation

is implicitly dependent on a choice of polarisation of the underlying space. If we take

a different polarisation, then the actions of the two different Schrödinger models are
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related - they have an intertwiner - which is exactly the partial Fourier transform!

Initially, we chose a polarisation for W = V ⊗C V2 based on `2 ∈ V2, however, there

is another obvious polarisation based on ` ∈ V . Now the inherent symmetry of our

space comes into play, and what happens is that the two different models (natural

and Schrödinger) of the Weil representation swap places. This is all made explicit

in Theorem 3.4.2 below - if we rewite the formula below as a function on the group

we have

θh(g, g′, L) =
1

vol`(L)

∑
X∈L∗

exp
(

4πiδ̂−1=(wh)
)
MSch[g]M\[g

′]ϕ′KM(X)dg

This expression contains the new terms ϕ′KM(X), vol` and L∗ which we define below.

As we will show later,

ϕ′KM(X) = v1v2ϕS(X)

and by vol` we mean the volume of the lattice on the `-component, which, if Λ = Z2S

over the basis {1, ζ} for some integral matrix S, then vol`(Λ) = 4δ̂−1 det(S). Now

let (z1, z2) = 2δ̂−1=(z1z2) be a sesquilinear form on C and define

F(f)(z1) =

∫
C
f(z2) exp(−2πi(z1, z2))dx2dy2

then what we really have is that

θh(g, g′, L) =
∑

X∈L+h

F−1(MSch[g]M\[g
′]ϕ′KM)(X)dg

and

ϕ′KM(X) = F(ϕKM)(X),

and the relationship between L+ h and L∗ is that L∗ is Z-dual to L+ h under the

form ( , ) on the ` component.

This also makes the transformation formula for τ more transparent; it follows

from left ΓL invariance and right K-invariance (up to a character) by the usual

correspondence. As before, cos(θ) sin(θ)

− sin(θ) cos(θ)

 · (v1e1 + v2e2) = eiθv1e1 + e−iθv2e2

so we have that
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Lemma 3.4.1. Let rθ be defined as above and ϕ′KM = −v1v2 exp(−π(|v1|2 + |v2|2)),

then

M\[rθ]ϕ
′
KM(X) = e2iθϕ′KM(X)

Proof.

M\[rθ]ϕ
′
KM(X) = ϕ′KM(r−1

θ X) = −(eiθv1)(eiθv2) exp(−π(|v1|2+|v2|2)) = e2iθϕ′KM(X)

and left ΓL invariance simply follows from the fact that ΓL stabilises the lattice.

Since the calculation for the taking the partial Fourier transform of just ϕKM(X)

is not that much simpler than just doing it over the whole sum in one go, we present

below the partial Fourier transform calculation in full detail.

We wish to take the Fourier transform of θh(τ, z, L) in the w variable on the u

component. We recall that

θh(τ, z, L) =
∑

X∈L+h

ϕ0(
√
vX, z) exp(πi〈X,X〉τ)

=
∑

X∈L+h

1

8

(
δ̂v|〈X,X(z)〉|2 − 2

π

)
exp

(
−πvδ̂

2
|〈X,X(z)〉|2

)
exp (πi〈X,X〉τ) dµ(z)

We make the usual substitutions:

α =

√
vδ̂

2
<(〈X,X(z)〉) , β =

√
vδ̂

2
=(〈X,X(z)〉)

which allows us to write

θh(τ, z, L) =
1

16π

∑
X∈L+h

(H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2)) exp(πi〈X,X〉τ)

where Hn(x) is the n-th Hermite polynomial.

Theorem 3.4.2. Let L = Λ` + Λ′`′ and h ∈ L′/L. By taking the partial Fourier

transform of the summand in θh(τ, z, L), we obtain the following formula for the

theta function:

θh(τ, z, L) =
−y2

v2δ̂ vol`(Λ)

∑
X∈L∗

exp
(

4πiδ̂−1=(wh)
)

exp(πix〈X,X〉)

(τw′ − w) (τw′ − w) exp(−πy〈X,X〉τ )dµ(z)
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where

L∗ = {w`+ w′`′ : w ∈ Λ∗, w′ ∈ Λ′ + h′} .

and

Λ∗ = {w1 ∈ C : 2δ̂−1=(w1w2) ∈ Z, for all w2 ∈ Λ}

Proof. First, we prove a lemma concerning the partial Fourier transform of the sum.

We then use this, combined with Poisson summation to prove the theorem. First,

we recall that we may write the theta function in terms of the variables

α =

√
vδ̂

2
<(〈X,X(z)〉) , β =

√
vδ̂

2
=(〈X,X(z)〉)

as

θh(τ, z, L) =
1

16π
(H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2)) exp(πi〈X,X〉τ)dµ(z).

We may write the length of a vector in terms of α and β so that we have

〈X,X〉 = 2

√
2y

δ̂v
(β<(w′)− α=(w′))− 4δ̂−1y|w′|2

We now define

f(x1, x2) = (H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2))

exp

(
πiτ

(
2

√
2y

δ̂v
(β<(w′)− α=(w′))− 4δ̂−1y|w′|2

))
where

α =

√
2v

δ̂y
(x1 −<(zw′)) , β =

√
2v

δ̂y
(x2 + =(zw′))

so that

θh(τ, z, L) =
1

16π

∑
X∈L+h

f(<(w),=(w))dµ(z)

We now calculate the Fourier transform of f .

Lemma 3.4.3. Let Y = δ̂
2
(−y2 + iy1)`+w′`′. The Fourier transform of the function

f as defined above is given by

f̂(y1, y2) = −4πy2

v2

(
τw′ − δ̂

2
(−y2 − iy1)

)(
τw′ − δ̂

2
(−y2 + iy1)

)
exp(πix〈Y, Y 〉) exp(−πy〈Y, Y 〉τ )
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Proof. By definition

f̂(y1, y2) =

∫∫
R2

f(x1, x2) exp(−2πi(x1y1 + x2y2))dx1dx2.

Since we have that

x1 =

√
δ̂y

2v
α + <(zw′), x1 =

√
δ̂y

2v
β −=(zw′),

we now write the integral in terms of the variables α and β:

f̂(y1, y2) =

∫∫
R2

f(x1, x2) exp(−2πi(αy1 + βy2))

exp(−2πi(y1<(zw′)− y2=(zw′))))
δ̂y

2v
dαdβ.

Focussing on only the piece dependent on α and β, we will evaluate∫∫
R2

(H2(
√
πα) +H2(

√
πβ)) exp(−π(α2 + β2))

exp

−2πi

√
δ̂y

2v

(
α(y1 − 2δ̂−1=(w′)) + β(y2 + 2δ̂−1<(w′))

) dαdβ (3.9)

using the standard (see e.g. [GR07]) Fourier transforms

F1(y) =

∫
R

exp(−πx2) exp(−2πixy)dx = exp(−πy2)

F2(y) =

∫
R
H2(
√
πx) exp(−πx2) exp(−2πixy)dx = −4πy2 exp(−πy2).

Hence,

(3.9) = F1

√ δ̂y

2v
(y1 − 2δ̂−1=(w′))

F2

√ δ̂y

2v
(y2 + 2δ̂−1<(w′))


+ F1

√ δ̂y

2v
(y2 + 2δ̂−1<(w′))

F2

√ δ̂y

2v
(y1 − 2δ̂−1=(w′))


= − 2πδ̂y

v

(
(y1 − 2δ̂−1=(w′))2 + (y2 + 2δ̂−1<(w′))2

)
exp

(
−πδ̂y

2v

(
(y1 − 2δ̂−1=(w′))2 + (y2 + 2δ̂−1<(w′))2

))
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It is now useful to make the substitution

(y1 − 2δ̂−1=(w′))2 + (y2 + 2δ̂−1<(w′))2

= 4δ̂−2

(
τw′ − δ̂

2
(y2 + iy1)

)(
τw′ − δ̂

2
(y2 − iy1)

)
.

Putting everything together, we have now arrived at

f̂(y1, y2) = −4πy2

v2

(τw′ − δ̂

2
(y2 + iy1)

)2

+

(
τw′ − δ̂

2
(y2 − iy1)

)2


exp (−2πi(y1<(zw′)− y2=(zw′))) exp
(
−4πiτy|w′|2

)
exp

(
−2πy

δ̂v

(
τw′ − δ̂

2
(y2 + iy1)

)(
τw′ − δ̂

2
(y2 − iy1)

))

and by collecting x and y terms separately in the exponent, and using the explicit

formulas for 〈X,X〉 and 〈X,X〉z given in Proposition 3.1.2, we arrive at the result.

Now we assume that L = Λ`⊕ Λ′`′ and let S be the matrix such that

π∗(Z2S) = Λ

where, for OF = Z[ζ],

π∗(x1, x2) = x1 + ζx2.

Then we have the following, by Poisson summation

θh(τ, z, L) =
1

16π

∑
w′∈Λ′+h′

∑
w∈Λ+h

f(<(w),=(w))dµ(z)

=
1

16π

∑
w′∈Λ′+h′

∑
xi∈Z

f((x1, x2)S + h)dµ(z)

=
1

16π

∑
w′∈Λ′+h′

∑
xi∈Z

gh(x1, x2)dµ(z)

=
1

16π

∑
w′∈Λ′+h′

∑
xi∈Z

ĝh(x1, x2)dµ(z)

where we define

gh(x1, x2) = f((x1, x2)S + (h1, h2)).
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We have adopted the convention that f((x1, x2)) = f(x1, x2) for notational conve-

nience. Using the notation x = (x1, x2) and H = (h1, h2), a simple calculation shows

that

ĝh(x1, x2) =
1

detS
exp(2πiH t(xtS−1))f̂(xtS−1)

We substitute this in, and, noting that tS−1 = 1
detS

JSJ−1 where J =

 0 1

−1 0

, we

obtain∑
xi∈Z

ĝh(x1, x2) =
∑
xi∈Z

1

detS
exp(2πiH t(xtS−1))f̂(xtS−1)

=
∑
xi∈Z

1

detS
exp(2πiH t(xJSJ−1) detS−1)f̂(xJSJ−1 detS−1)

Since the sum over xJ (where x runs over all the integer pairs) is clearly just a

reordering of the sum, we may write∑
xi∈Z

ĝh(x1, x2) =
∑

x∈ 1
detS

Z2S

1

detS
exp(2πiH t(xSJ−1))f̂(xJ−1)

=
∑

w∈ 1
detS

π∗(Z2S)

1

detS
exp (2πi(=(w)h1 −<(w)h2)) f̂ (=(w),−<(w))

=
∑

w∈ δ̂
2 detS

π∗(Z2S)

1

detS
exp

(
4δ̂−1πi(=(w)h1 −<(w)h2)

)
f̂
(

2δ̂−1=(w),−2δ̂−1<(w)
)

=
∑
w∈Λ∗

4

δ̂ vol`(Λ)
exp

(
4πiδ̂−1=(wh)

)
f̂
(

2δ̂−1=(w),−2δ̂−1<(w)
)

We note here that the sesquilinear form =(z1z2) is, in some sense, equivalent to

the form on R2 defined by xJ ty. This explains the appearance of Λ∗, which, up to

scaling, is the Z-dual of J pulled back under the π∗ map.

Finally, substituting in with the formula for f̂ from Lemma 3.4.3 and simplifying,

we have that

θh(τ, z, L) =
−y2

v2δ̂ vol`(Λ)

∑
X∈L∗

exp
(

4πiδ̂−1=(wh)
)

exp(πix〈X,X〉)

(τw′ − w) (τw′ − w) exp(−πy〈X,X〉τ )dµ(z)

where

L∗ = {w`+ w′`′ : w ∈ Λ∗, w′ ∈ Λ + h′} .
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In order to link this back to our earlier discussion (and prove our formula for

F(ϕ0
KM)(X)), we observe that

M\[gτ ]MSch[gz](−v1v2)ϕS(X)dgz = −y
2

vδ̂
(τw′ − w)(τw′ − w) exp(πi〈X,X〉)

exp(−πy〈X,X〉τ )dµ(z)

and hence

θh(τ, z, L) =
1

v vol`(Λ)

∑
X∈L∗

M\[gτ ]MSch[gz](−v1v2)ϕS(X)dgz

which, by Poisson summation is

θh(τ, z, L) =
∑

X∈L+h

F−1
(
v−1M\[gτ ]MSch[gz](−v1v2)ϕS(X)

)
dgz.

Hence our formula for F(ϕ0
KM)(X) was correct, and since ΓL necessarily stabilises

L∗, we have also recovered the transformation formula in τ .



Chapter 4

The Theta Lift

4.1 Defining the lift

We shall now let f be a harmonic weak Maass form of weight 0 in the space H+
0 (ΓL).

This means in particular that there exists a polynomial Pf,κ ∈ C[exp(−2πiz/ακ)],

for each cusp ` such that

f(σκz)− Pf,κ(z) = O(exp(−Cy))

for some C > 0. This will turn out to mean that the convergence properties of

the lift (and hence the location of the singularities of the lift) depend only on the

principal parts Pf,κ. In particular, the degree of the polynomial will play a crucial

role.

Definition 4.1.1. We define the lift of f ∈ H+
0 (ΓL) of weight 0 by

I(τ, f) =

∫
M

f(z)Θ(τ, z, L) =
∑

h∈L′/L

Ih(τ, f)eh,

where

Ih(τ, f) =

∫
M

f(z)θh(τ, z, L).

There are serious questions to answer though, as to whether the definition as

given even makes sense. The growth of such a f(z) as Im(σκz) → κ is O(e2πNκy),

whereas θh has decay of O(e−2πδ̂−1vNΛ′y) for some constant NΛ′ depending on the

lattice L = Λ`⊕ Λ′`′ in this limit, as can be seen in Chapter 3. We then have

63
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Theorem 4.1.2. Let v > Nκδ̂
NΛ′

for all cusps κ, then I(τ, f) converges.

Proof. It is clear from 3.4.2 that θh(τ, z, L) = O(e−2πδ̂−1vNΛ′y) as y → ∞, as

〈X,X〉τ > 2δ̂−1v|w′|2, and since for non-zero w′ we have that |w′|2 > NΛ′ , hence the

integrand is O(−2πεy) for some ε > 0.

Of course, we would like to extend the lift beyond this boundary. We will show

that, outside a discrete set of points and for a certain regularisation (the so called

cut off integral) that the definition does indeed make sense for small v.

4.1.1 Regularisation

The regularisation used is the cut off integral, or capped lift. This is a more basic

version of the regularisation used in [Bor98], [BF06], but is good enough for our

purposes. We take

I(τ, f) = lim
T→∞

∫
MT

f(z)Θ(τ, z, L)

where MT is the canonical fundamental domain for ΓL\D, but cut off at height T

around each cusp. For example, if Γ = PSL2(Z), then

MT =

{
z = x+ iy ∈ H : |x| < 1

2
, |z|2 > 1, y < T

}
.

For more complicated fundamental domains, with more than one cusp, we recall

that, for each cusp κ ∈ Γ\P1(Q), we have the existence of a matrix σκ such that

σκ∞ = κ, and so when we consider σ−1
κ MT , this should be cut off at the height T

in the natural way. See the discussion in 1.1.4 for more detail on this.

4.2 Statement of Results

We will prove here that the regularised lift converges everywhere except a discrete

set of points (and, if considered on the modular curve, then actually only a finite

number of points).

Theorem 4.2.1. The lift of the harmonic weak Maass form f(z) ∈ H+
0 (ΓL), con-

verges everywhere except a discrete set of points. Furthermore, I(τ, f) = O(exp(−Cv))
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as =(σκτ)→ κ for κ ∈ ΓL\P1(Q), for some C > 0. The singularities of Ih(τ, f) lie

on the divisor

Zh(f) =
∑
X∈L∗h
〈X,X〉>0

∑
κ∈ΓL\P1(Q)

c+
f,κ(−1

2
〈X,X〉)[DX ]

These singularities are of linear type, as defined in [Bor98], in the sense that for

each point in the set described above there exists ρ such that

Ih(τ, f)− ρ

σκτ − DX

is a smooth function in u, v in a neighbourhood of DX , where ρ is given by

ρ = − 1

2πi

ακc
+
f,κ(−1

2
〈X,X〉)

δ̂ vol`(Λ)
exp(4πiδ̂−1=(wh)).

In fact we can make a stronger statement than this. Using the ξk operator defined

in [BF04], which for weight 2 is given by −2iv2 ∂
∂τ

, we have

Theorem 4.2.2. Let f(z) be a harmonic weak Maass form of weight 0 for the group

ΓL, with Fourier expansion

f(σκz) =
∑

n≥−Nκ

c+
f,κ(n) exp(2πinz/ακ) +

∑
n<0

c−f,κ(n)H0(2πny/ακ) exp(2πinx/ακ)

around each cusp κ ∈ ΓL\P1(Q). The image of I(τ, f) under the map

ξ2 = −2iv2 ∂

∂τ

is

ξ2(Ih(τ, f)) = −
∑

κ∈ΓL\P1(Q)

δh,0c
+
f,κ(0)

πδ̂ vol`(Λ)

and hence I(τ, f) is a harmonic Maass form of weight 2 with singularities, described

in Theorem 4.2.1.

This theorem clearly implies that the lift is harmonic; it also implies a simple

condition on the input function to ensure meromorphicity of the lift, namely the

vanishing of the constant terms at all the cusps.

Corollary 4.2.3. Assuming c+
f,κ(n) 6= 0 and c+(0, κ) = 0, I(τ, f) is a meromorphic

form of weight 2 for ΓL with poles where σκτ = DX , for X ∈ ΓL\L∗n,h for all n < 0

and κ ∈ ΓL\P1(Q).
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4.3 Proof of Theorem 4.2.1

Proof. We define the cut-off box region BT by

BT = {z ∈ H : 0 ≤ x ≤ α∞, 1 ≤ y ≤ T}.

where α∞ is the width of the cusp at infinity. We prove the theorem by comparing

the lift of f to the boxed cut-off lift

Ĩh(τ, f) = lim
T→∞

∑
κ∈ΓL\P1(Q)

∫
BT
f(σκz)θh(τ, σκz, L)

The convergence properties of Ĩ are the same as I, as the domains of integration

differ only by a compact region.

Any harmonic weak Maass form has a Fourier expansion around each cusp κ

given by

f(σκz) =
∑

n≥−Nκ

c+
f,κ(n) exp(2πinz/ακ) +

∑
n<0

c−f,κ(n)H0(2πny/ακ) exp(2πinx/ακ)

= f+(σκz) + f−(σκz)

where ακ is the width of the cusp, and Nκ is the order of the pole at κ.

Expanding the formula on the RHS, we get the equation

Ĩh(τ, f) = lim
T→∞

∑
κ∈ΓL\P1(Q)

∫ T

1

∫ ακ

0

f(σκz)θh(τ, σκz, L).

We now recall that θh(τ, z, L) is of order O(e−Cy), and at the cusp κ, the order of f is

O(e2πNκy/ακ), which is potentially problematic. However, for the non-holomorphic

part, we have rapid decay everywhere, since we assume that c−f,κ(n) = 0 for all

non-negative n. Hence we only have to that part of the integral which is over f+.

We recall that we have the following expression for the theta function associated

to the lattice L = Λ`⊕ Λ′`′ :

θh(τ, z, L) =
−y2

2v2δ̂ vol`(Λ)

∑
X∈L∗h

exp
(

4πiδ̂−1=(wh)
)

exp(πix〈X,X〉)

(τw′ − w) (τw′ − w) exp(−πy〈X,X〉τ )dµ(z)
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where X = w`+ w′`′ and

L∗h =
{
w`+ w′`′ : 2δ̂−1=(ww1) ∈ Z for all w1 ∈ Λ, w′ ∈ q + h′

}
.

We examine this expression for θh, and we note that the integral in the x variable

is, ∫ ακ

0

exp(πix〈X,X〉+ 2πixn/ακ)dx =

 ακ if 1
2
〈X,X〉 = − n

ακ

0 else

hence,

Ĩh(τ, f) = − lim
T→∞

∑
κ∈ΓL\P1(Q)

ακ

2v2δ̂ vol`(Λ) ∑
n≥−Nκ

∑
X∈(σ−1

κ L∗)−n

c+
f,κ(n)A(X, τ, h)B+(T,X, τ, z)


where

A(X, τ, h) = exp(4πiδ̂−1=(wh))(τw′ − w)(τw′ − w)

B+(T,X, τ, z) =

∫ T

1

exp(−πy〈X,X〉τ ) exp(−2πyn/ακ)dy.

We can now examine the integral B+. For the positive coefficients c+
f,κ(n), we have,

since 1
2
〈X,X〉 = −n/ακ, that

B+(T,X, τ, z) =

∫ T

1

exp(−2πyR(X, τ))dy

=
exp(−2πR(X, τ))− exp(−2πTR(X, τ))

2πR(X, τ)
.

If we have that R(X, τ) > 0, the second term goes to 0 in the limit, and the sum is

convergent in this case. In which case it is also clear that I(τ, f) = O(exp(−Cv))

as v → κ for some C > 0.

However, for R(X, τ) = 0 the sum does does not converge. This only happens

when σκτ = DX for X ∈ L∗h,−n, which necessarily means that n < 0. Hence there

are only a finite number of places on each copy on the modular curve embedded into

H where the series does not converge, and they are where

σκτ = DX
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for X ∈ ΓL\L∗h,n where κ ∈ ΓL\P1(Q), and n < 0 and c+
f,κ(n) 6= 0.

We now calculate the residues at each pole. Again, since the domain of inte-

gration of the integrals Ĩh(τ, f) and Ih(τ, f) differs only by a compact region, this

means that, as functions in τ , they differ only by a bounded function in τ . Since

they share poles, the residue at a pole of Ih(τ, f) is equal to the residue of the same

pole of Ĩh(τ, f).

Pick a pair κ and X from the set of singularities. Then, in the notation estab-

lished above, we have

lim
σκτ→DX

(σκτ − DX)Ĩh(τ, f) = lim
σκτ→DX

(σκτ − DX) lim
T→∞

∑
κ′∈ΓL\P1(Q)

−ακ′
2v2δ̂ vol`(Λ) ∑

n≥−Nκ′

∑
Y ∈(σ−1

κ′ L
∗)−n

c+
f,κ′(n)A(Y, τ, h)B+(T, Y, τ, z)


by definition; at this point all we have done is very fancily rewrite the inner limit.

We know that this limit converges except when σκτ = DX for a certain set of X

described above. In the outer limit, all the terms will vanish except for when we

have X = Y and κ = κ′, and so, writing explicitly, we are left only with the term

lim
σκτ→DX

(σκτ − DX)Ĩh(τ, f) = lim
σκτ→DX

(σκτ − DX)
−ακc+

f,κ(−n)

2v2δ̂ vol`(Λ)

exp(4πiδ̂−1=(wh))(τw′ − w)(τw′ − w)
exp(−2πR(X, τ))

2πR(X, τ)

and hence by the explicit formula for R, we have

lim
σκτ→DX

(σκτ − DX)Ĩh(τ, f) = lim
σκτ→DX

(σκτ − DX)
−ακc+

f,κ(−n)

4πvδ̂ vol`(Λ)

exp(4πiδ̂−1=(wh))
(σκτ − DX)(σκτ − DX)

|σκτ − DX |2

which simplifies to

lim
σκτ→DX

(σκτ −DX)Ĩh(τ, f) = lim
σκτ→DX

−ακc+
f,κ(−n)

4πvδ̂ vol`(Λ)
(σκτ −DX) exp(4πiδ̂−1=(wh))

and hence

lim
σκτ→DX

(σκτ − DX)Ĩh(τ, f) =
−ακc+

f,κ(−n)

2πiδ̂ vol`(Λ)
exp(4πiδ̂−1=(wh)).
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4.4 Proof of Theorem 4.2.2

Proof. First, we recall that

∂

∂τ
ξ0(
√
vX, z) =

1

2iv
exp(−2πvR(X, z)) =

−1

2iv2
ϕ0
S(
√
vX, z)

and we define a differential 1-form

ψ(X, τ, z) =
∂

∂τ
∂ξ(X, τ, z)

=
−πv
2δ̂y

(
δ̂R(X, z)− 2iw′(w′z − w)

)
exp(−2πvR(X, z)) exp(−π〈X,X〉τ)dz.

Lemma 4.4.1. Let f(z) be a harmonic function. Then

d

(
f(z)

∂

∂τ
∂ξ0 − ∂f(z)

∂

∂τ
ξ0

)
= f(z)∂∂

∂

∂τ
ξ0

Proof. By definition, d = ∂ + ∂, so

d

(
f(z)

∂

∂τ
∂ξ0 − ∂f(z)

∂

∂τ
ξ0

)
= ∂f(z)∂

∂

∂τ
ξ0 + f(z)∂2 ∂

∂τ
ξ0 + ∂f(z)∂

∂

∂τ
ξ0

+ f(z)∂∂
∂

∂τ
ξ0 − ∂∂f(z)

∂

∂τ
ξ0 − ∂f(z)

∂

∂τ
∂ξ0

− ∂2
f(z)

∂

∂τ
ξ0 − ∂f(z)∂

∂

∂τ
ξ0,

and by the fact that ∂2 = ∂
2

= dz ∧ dz = dz ∧ dz = 0, we have that virtually all the

terms above vanish. Using the fact that f(z) is harmonic, i.e. ∂∂f(z) = 0 we are

simply left with the result.

We have that

∂

∂τ
Ih(τ, f(z)) =

∂

∂τ
lim
T→∞

∫
MT

f(z)θ(z, τ, ϕ0
KM)

=
−1

2πi
lim
T→∞

∫
MT

f(z)
∂

∂τ
θ(z, τ, ∂∂ξ0)

=
−1

2πi
lim
T→∞

∫
MT

f(z)θ(z, τ, ∂ψ)

=
−1

2πi
lim
T→∞

∫
MT

d

(
f(z)θ(z, τ, ψ)− ∂f(z)θ

(
z, τ,

−1

2iv2
ϕS

))
=
−1

2πi
lim
T→∞

∫
∂MT

(
f(z)θ(z, τ, ψ)− ∂f(z)θ

(
z, τ,

−1

2iv2
ϕS

))
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by Stokes’ Theorem, and the Lemma above. Since ∂f(z) is a cusp form, as f+

vanishes under ∂ and f− has no constant term by assumption, the second integral

vanishes. Hence we are reduced to calculating the first integral,

−1

2πi
lim
T→∞

∫
∂MT

f(z)
∑

X∈L+h

ψ(X, τ, z).

This proves to be a longer and more challenging task. What follows is essentially the

calculation from Section 3.4 repeated for the kernel function ψ. Doing this calcu-

lation has similar results, in that it changes the sum from being written essentially

as a Fourier series in τ to being a Fourier series in z which allows us to perform the

integration explicitly. We do this by first explicitly calculating the differential one

form ∂
∂τ
∂ξ0(
√
vX, z), and then we will use partial Poisson summation.

We again recall that

ξ0(X, z) = −Ei(−2πR(X, z))

and hence

∂

∂τ
∂ξ0(
√
vX, z) =

∂

∂τ

(
− exp(−2πR(

√
vX, z))

∂R(
√
vX, z)

R(
√
vX, z)

)
.

Since the RHS has no dependence on u, and R(
√
vX, z) = vR(X, z), we have

∂

∂τ
∂ξ0(
√
vX, z) =

−i
2

(
2π exp(−2πvR(X, z))∂R(

√
vX, z)

)
.

Using the substitutions

α =

√
2v

δ̂y
(<(w)− x<(w′)− y=(w′))

β =

√
2v

δ̂y
(=(w)− x=(w′) + y<(w′))

we have that

2vR(
√
vX, z) = α2 + β2

∂R(X, z) =
i

2vy

((
α + iw′

√
2vy

δ̂

)2

+

(
β − w′

√
2vy

δ̂

)2
)
dz

and hence
∂

∂τ
Ih(τ, f(z)) = lim

T→∞

∫
∂MT

f(z)
∑
x∈L

F (w,w′, z, τ)dz,
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where

F (w,w′, z, τ) =
i

4vy

((
α + iw′

√
2vy

δ̂

)2

+

(
β − w′

√
2vy

δ̂

)2
)

· exp(−π(α2 + β2)) exp(−πi〈X,X〉τ).

We now want to do partial Poisson summation in the w variable. For this, we now

regard F as being a function only of w, holding all other variables constant, and by

abuse of notation write it as F (x1, x2), so that

∂

∂τ
I(τ, f(z)) = lim

T→∞

∫
∂MT

f(z)
∑

X∈L+h

F (<(w),=(w))dz

where the dependence on the variables w′, z and τ has been suppressed in the

notation.

Lemma 4.4.2. Let Y = δ̂
2
(y2 − iy1)`+w′`′. The Fourier transform of the function

F (x1, x2) defined above is

F̂ (y1, y2) = − iδ̂

8v2

(
2yR(Y, τ)− 1

π

)
exp(−2πyR(Y, τ)) exp(πi〈Y, Y 〉)

Proof. We can rewrite the length of a vector in terms of α and β:

〈X,X〉 = 4δ̂−1=(ww′)

= 4δ̂−1

√ δ̂y

2v
β + =(zw′)

<(w′)−

√ δ̂y

2v
α + <(zw′)

=(w′)


= 4δ̂−1

√
δ̂y

2v
(β<(w′)− α=(w′)) + 4δ̂−1y|w′|2.

Hence

F (<(w),=(w)) =
i

4vy
((α + iw′

√
2vy

δ̂
)2 + (β − w′

√
2vy

δ̂
)2) exp(−π(α2 + β2))

exp(4πiδ̂−1

√
δ̂y

2v
(β<(w′)− α=(w′))τ + 4πiδ̂−1y|w′|2τ)
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The Fourier transform of F is

F̂ (y1, y2) =

∫
R2

F (x1, x2) exp(−2πi(x1y1 + x2y2))dx1dx2

=
iδ̂

8v
exp(−2πi(y1<(zw′) + y2=(zw′))) exp(4πiy|w′|2τ)∫

R2

((α + iw′
√

2vy

δ̂
)2 + (β − w′

√
2vy

δ̂
)2) exp(−π(α2 + β2))

exp(4πiδ̂−1

√
δ̂y

2v
(β<(w′)− α=(w′))τ)) exp(−2πi

√
δ̂y

2v
(αy1 + βy2))dαdβ

We now calculate the integral above. We do this by using the standard result∫
R

exp(−2πxy) exp(−πx2)Hn(
√

2πx)dx = exp(−πy2)Hn(
√

2πy)in

from [GR07, Sec. 7.376]. For brevity, we now write

a =

√
δ̂y

2v
(y1 + 2δ̂−1=(w′)τ)

b =

√
δ̂y

2v
(y2 − 2δ̂−1<(w′)τ)

k =

√
2vy

δ̂
w′

so that the integral we are interested in calculating can be written more compactly

as ∫
R2

((α + ik)2 + (β − k)2) exp(−π(α2 + β2)) exp(−2πi(αa+ βb))dαdβ.

This is completely separable, so we write it as(∫
R
(α + ik)2 exp(−πα2) exp(−2παa)dα

)(∫
R

exp(−πβ2)) exp(−2πiβb)dβ

)
+

(∫
R
(β − k)2 exp(−πβ2) exp(−2πβb)dβ

)(∫
R

exp(−πα2)) exp(−2πiαa)dα

)
and solve each of these. Two of them are are very simple:∫

R
exp(−πα2)) exp(−2πiαa)dα = exp(−πa2)∫

R
exp(−πβ2)) exp(−2πiβb)dβ = exp(−πb2)
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are standard formulas, see e.g.[GR07]. We calculate the other two integrals by

rewriting the polynomials in front as sums of Hermite polynomials and using (4.4).

It is easy to see that

(α + ik)2 =
1

2π

(
1

4
H2(
√

2πα) + ik
√

2πH1(
√

2πα) +H0(
√

2πα)

(
k2 − 1

2

))
(β − k)2 =

1

2π

(
1

4
H2(
√

2πβ)− k
√

2πH1(
√

2πβ) +H0(
√

2πβ)

(
k2 − 1

2

))
so, by applying (4.4) and linearity, we obtain∫

R2

((α + ik)2 + (β − k)2) exp(−π(α2 + β2)) exp(−2πi(αa+ βb))dαdβ

= − exp(−π(a2 + b2))

(
(a+ k)2 + (b+ ik)2 − 1

π

)
We will now substitute a, b and k back out of the equation. First however, we note

that we have following tidy expression:

(a+ k)2 + (b+ ik)2 =
2y

δ̂v

∣∣∣∣∣ δ̂2(y2 − iy1)− w′τ

∣∣∣∣∣
2

.

Similarly, in the exponent, we have

− π(a2 + b2)− 2πi

√
δ̂

2v
(y1<(zw′) + y2=(zw′))− 4πiδ̂−1y|w′|2τ

= −2πy

δ̂v

∣∣∣∣∣ δ̂2(y2 − iy1)− w′τ

∣∣∣∣∣
2

+ πiz〈Y, Y 〉

where Y = δ̂
2
(y2 − iy1)` + w′`′. Using this, and the explicit formula for R, we see

that

F̂ (y1, y2) = − iδ̂

8v2

(
2yR(Y, τ)− 1

π

)
exp(−2πyR(Y, τ)) exp(πi〈Y, Y 〉)

The proof of the theorem now proceeds similarly to Theorem 3.4.2. As before,

we assume that L = Λ`⊕ Λ′`′ and we let S be the matrix such that

π∗(Z2S) = Λ

where

π∗(x1, x2) = x1 + ζx2.
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We recall that, in such an arrangement, we have that 4δ̂−1 detS = vol`(Λ). Now let

G(x1, x2) = F (xS +H)

so that

∂

∂τ
I(τ, f(z)) = lim

T→∞

∫
∂MT

f(z)
∑

w′∈Λ′+h′

∑
xi∈Z

G(x1, x2)dz

= lim
T→∞

∫
∂MT

f(z)
∑

w′∈Λ′+h′

∑
xi∈Z

Ĝ(x1, x2)dz

by Poisson summation. We may easily calculate the Fourier transform of G in terms

of the Fourier transform of F , in a calculation almost identical to that in Theorem

3.4.2:

Ĝh(x1, x2) =
1

detS
exp(2πiH t(xtS−1))F̂ (xtS−1)

We have adopted the convention that f((x1, x2)) = f(x1, x2) for notational conve-

nience. Using the notation x = (x1, x2) and H = (h1, h2), a simple calculation shows

that

Ĝh(x1, x2) =
1

detS
exp(2πiH t(xtS−1))F̂ (xtS−1)

We substitute this in, and, noting that tS−1 = 1
detS

JSJ−1 where J =

 0 1

−1 0

, we

obtain∑
xi∈Z

Ĝh(x1, x2) =
∑
xi∈Z

1

detS
exp(2πiH t(xtS−1))F̂ (xtS−1)

=
∑
xi∈Z

1

detS
exp(2πiH t(xJSJ−1) detS−1)F̂ (xJSJ−1 detS−1)

Since the sum over xJ (where x runs over all the integer pairs) is clearly just a
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reordering of the sum, we may write∑
xi∈Z

Ĝh(x1, x2) =
∑

x∈ 1
detS

Z2S

1

detS
exp(2πiH t(xSJ−1))F̂ (xJ−1)

=
∑

w∈ 1
detS

π∗(Z2S)

1

detS
exp (2πi(=(w)h1 −<(w)h2)) F̂ (=(w),−<(w))

=
∑

w∈ δ̂
2 detS

π∗(Z2S)

1

detS
exp

(
4δ̂−1πi(=(w)h1 −<(w)h2)

)
F̂
(

2δ̂−1=(w),−2δ̂−1<(w)
)

=
∑
w∈Λ∗

4

δ̂ vol`(Λ)
exp

(
4πiδ̂−1=(wh)

)
F̂
(

2δ̂−1=(w),−2δ̂−1<(w)
)

We now use the formula for F̂ from the lemma to obtain

∂

∂τ
Ih(τ, f(z)) =

1

2iv2δ̂ vol`(Λ)
lim
T→∞

∫
∂MT

f(z)
∑
X∈L∗h

(2yR(X, τ)− 1

π
) exp(−2πyR(X, τ))

exp
(

4πiδ̂−1=(wh)
)

exp(πiz〈X,X〉)dz

We recall that

f(σκz) =
∑

n≥−Nκ

c+
f,κ(n) exp(2πinz/ακ) +

∑
n<0

c−f,κ(n)H0(2πny) exp(2πinx/ακ)

so that

∂

∂τ
Ih(τ, f(z)) =

1

2iv2δ̂ vol`(Λ)
lim
T→∞

∑
κ∈ΓL\P1(Q)

∫ iT+ακ

iT

F (σκz)

∑
X∈σ−1

κ L∗h

(2yR(X, τ)− 1

π
) exp(−2πyR(X, τ)) exp(πiz〈X,X〉)

exp
(

4πiδ̂−1=(wσ−1
κ h)

)
dz

We can think of this as an integral in x, i.e. we just need to solve

∫ ακ

0

exp(2πinx/ακ) exp(πix〈X,X〉)dx =

 ακ
1
2
〈X,X〉 = −n/ακ

0 else
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Hence, we have

∂

∂τ
Ih(τ, f(z)) =

1

2iv2δ̂ vol`(Λ)
lim
T→∞

∑
κ∈ΓL\P1(Q)

∑
n∈Z

c+
f,κ(n)

∑
X∈σ−1

κ L∗h,−n

(
2TR(X, τ)− 1

π

)
exp(−2πTR(X, τ))

exp
(

4πiδ̂−1=(wσ−1
κ h)

)
It is clear that the limit converges to 0 if and only if R(X, τ) > 0. However, by

definition R(X, τ) ≥ 0, and we have R(X, τ) = 0 if and only if σκτ = DX for

X ∈ L∗h,−n or in the case of X = 0, which we deal with below.

Since σκτ = DX is only possible for X of positive length, and c+
f,κ(−n) is always

equal to 0 for n big enough, we only have a finite number of terms where we do

not have have convergence, coming from from the negative powers in the Fourier

expansion of F . More explicitly then, the finite set of points on the curve M where

the series diverges are the set of τ ∈ H such that

σκτ = DX

for all X ∈ ΓL\L∗h,n and all κ ∈ ΓL\P1(Q) provided c+
f,κ(n) 6= 0 and n < 0. This is

completely expected, as these are exactly the singularities from Theorem 4.2.1

It remains only to deal with the case of X = 0, in which we note that we must

have h = 0, so we get

∂

∂τ
Ih(τ, f(z)) =

∑
κ∈ΓL\P1(Q)

−δh,0c+
f,κ(0)

2πiv2δ̂ vol`(Λ)

hence

ξ2(Ih(τ, f)) = −2iv2 ∂

∂τ
Ih(τ, f(z)) =

∑
κ∈ΓL\P1(Q)

−δh,0c+
f,κ(0)

πδ̂ vol`(Λ)



Chapter 5

The Fourier Expansion

We can now calculate the Fourier expansion of the lift of a harmonic weak Maass

form. We do this by utilising the current equation which was proved in Chapter 3.

Since the current equation is only valid for v >> 0, the Fourier expansion we obtain

for the lift will also only be valid in this domain. The Fourier coefficients will turn

out to be the harmonic weak Maass form f evaluated on the divisor described in

Chapter 1.

5.1 The unfolding method

In this method we use an unfolding technique, similar to that of Rankin-Selberg

unfolding. This unfolding is only valid for the non-isotropic vectors of the lattice

however, and so we are forced to deal with the isotropic vectors separately.

Theorem 5.1.1. Let f(z) be a harmonic weak Maass form for ΓL, lying in H+
0 (ΓL),

with Fourier expansion

f(σκz) =
∑

n≥−Nf

c+
f,κ(n) exp(2πinz/ακ) +

∑
n<0

c−f,κ(n)H0(4πny/ακ) exp(2πinx/ακ)

around each cusp κ ∈ ΓL\P1(Q) with width ακ. Then, for v > NΛ′Nf δ̂, (with

NΛ′ ∈ Z+ defined below)

I(τ, f) =
∑

h∈L′/L

 ∑
κ∈ΓL\P1(Q)

δκ
ακc

+
f,κ(0)

4πv
+

∑
m∈Z+

1
2
〈h,h〉

 ∑
z∈T (m,h)

f(z)

 qm

 eh

77



5.1. The unfolding method 78

where δκ = 1 if the line corresponding to κ in V has non-empty intersection with

L+ h, and is 0 otherwise.

Proof. Recalling that

θh(z, τ, L) =
∑

X∈L+h

ϕ0
KM(
√
vX, z)q

1
2
〈X,X〉

we define

θ0
m(v) =

∑
X∈Lh,m

ϕ0
KM(
√
vX, z)

so that

Ih(τ, f) =
∑

m∈Z+
1
2
〈h,h〉

(∫
M

f(z)θ0
m(v)

)
qm

For m 6= 0, we can unfold the integral:∫
M

θ0
m(v)f(z) =

∫
ΓL\D

∑
X∈ΓL\Lh,m

∑
γ∈ΓL

f(z)ϕ0
KM(
√
vγX, z)

=
∑

X∈ΓL\Lh,m

∫
ΓL\D

∑
γ∈ΓL

f(γ−1z)ϕ0
KM(
√
vX, γ−1z)

=
∑

X∈ΓL\Lh,m

1

|ΓX |

∫
D
f(z)ϕ0

KM(
√
vX, z)

which follows by the invariance of the two form dxdy
y2 under any γ ∈ SL2(R) and

Proposition 3.1.4. It is important to note here that such unfolding will not work for

m = 0, as then interchanging summation and integration is not valid as it an infinite

sum in that case. We also need to be careful that the inner integral converges - this

is the reason for the condition on v. By our previous analysis, we know that this

integral will converge for all v >
2Nf=(DX)

m
, but we would like a more uniform bound

(not depending on X) on this. We note that 2=(DX)/m = δ̂|w′|2, and so if NΛ′ is

the smallest positive integer such that NΛ′ |w′|2 ∈ Z for all non-zero w′ ∈ Λ′ + h′,

then we can take v > NΛ′Nf δ̂. Since this bound will be attained by the definition

of NΛ′ , it is sharp.

We now recall the current equation

ddc[ξ0(X, z)] + δX = [ϕ0(X, z)]
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and apply it above (which is valid for our restriction on v), by Theorem 3.2.9 this

shows that ∫
M

f(z)θ0
m(v) = ε

∑
X∈ΓL\Lh,m

1

|ΓX |
f(DX)

since ddcf(z) = 0.

To deal with the case m = 0, first we look at the case of X = 0: this gives the

term

−δh,0
4π

∫
M

f(z)
dxdy

y2

which is exactly the constant term that we expect. For X 6= 0 things are more

tricky. We will show that the integral over the non-zero isotropic vectors must be a

multiple of the constant term in the Fourier expansion of f(σκz). This calculation

is very similar to the one in Section 4.3.2(C) of [Fun02].

Let κ1, . . . , κt be a set of ΓL-representatives of the isotropic lines in V . For each

κi we let δκi be equal to 1 if the intersection κi ∩ (L + h) is non-empty, and be 0

otherwise. Moreover, for each κi there exists σi ∈ SL2(Z) such that σi` = Xi, which

is clearly seen by the fact that under the projection map π, we can identify the κi

with the cusps of ΓL\H∗. We then have the usual formulation for the stabiliser of

Xi as for the stabiliser of the cusp, namely that

σ−1
i ΓXiσi =


1 nαi

0 1

 : n ∈ Z


where the width of the cusp κi is denoted αi. We now have∫

M

∑
X∈(L+h)0

X 6=0

ϕ0
KM(
√
vX, z)f(z) =

t∑
i=1

δ(κi)

∫
M

∑
X∈ΓL(κi∩(L+h))

X 6=0

f(z)ϕ0
KM(
√
vX, z).

Examining the integral we have∫
M

∑
X∈ΓL(κi∩(L+h))

X 6=0

f(z)ϕ0
KM(
√
vX, z) =

∫
M

∑
X∈κi∩(L+h)

X 6=0

∑
γ∈Γi\ΓL

f(γz)ϕ0
KM(
√
vX, γz).
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We identify M with ΓL\H, and for notational convenience we now write Γ′ =

σ−1
i ΓLσi, so that,∫

M

∑
X∈(L+h)0

X 6=0

f(z)ϕ0
KM(
√
vX, z) =

∫
Γ′\H

∑
γ∈Γi\ΓL

∑′

X∈κi∩(L+h)

f(γσiz)ϕ0
KM(σ−1

i

√
vX, σ−1

i γσiz).

where the ′ on the sum means we omit X = 0 if h = 0.

Now, we observe that since X ∈ κi, σ−1
i X must therefore be some multiple of

X0 = `, as this is the preimage of the cusp at ∞. Therefore, for some set of values,

which we call Ki we have that∫
M

∑
X∈(L+h)0

X 6=0

f(z)ϕ0
KM(
√
vX, z) =

∫
Γ′\H

∑
γ∈Γ′X0

\Γ′

∑′

k∈Ki

f(σiz)ϕ0
KM(
√
vkX0, z).

Now, we observe that we may unfold the integral, and that we have a nice

expression for ϕ0
KM at these values, namely,

ϕ0
KM(
√
vkX0, z) =

1

4π

(
2πv

δ̂y
|k|2 − 1

)
exp

(
−2πv

δ̂y
|k|2
)
dµ(z)

which we note has no dependence on x. Indeed, after unfolding, we have∫
Γ′X0
\H

∑′

k∈Ki

f(σiz)ϕ0
KM(
√
vkX0, z)

and the x part of the integral is simply∫ αi

0

f(σiz)dx = αic
+
f,κi

(0)

which picks out the constant term in the Fourier expansion. In order to then com-

plete the calculation and evaluate the integral in y, we need to employ a trick (also

used by Borcherds in [Bor98]) of multiplying inside the integral by y−s and then

taking the limit as s → ∞ after calculating the integral. Hence, we wish to calcu-

late
t∑
i=1

δκi

∫ ∞
0

αic
+
f,κi

(0)
1

4π

∑
k∈Ki

(
2πv

δ̂y
|k|2 − 1

)
exp

(
−2πv

δ̂y
|k|2
)

dy

y2+s
. (5.1)

To do this, we need
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Lemma 5.1.2. For A 6= 0,∫ ∞
0

(Ay−1 − 1) exp(−Ay−1)y−2−sdy = sΓ(s+ 1)A−1−s,

Proof. We make the substitution Ay−1 = t, to obtain∫ ∞
0

(Ay−1 − 1) exp(−Ay−1)y−2−sdy = A−1−s
∫ ∞

0

(t− 1) exp(−t)tsdt

which, using the integral representation

Γ(s) =

∫ ∞
0

exp(−t)ts−1dt

and the fact that Γ(s+ 1) = sΓ(s), we get

A−1−s
∫ ∞

0

(t− 1) exp(−t)tsdt = A−1−s
(∫ ∞

0

exp(−t)ts+1dt−
∫ ∞

0

exp(−t)tsdt
)

= A−1−s (Γ(s+ 2)− Γ(s+ 1))

= A−1−s ((s+ 1)Γ(s+ 1)− Γ(s+ 1))

= A−1−ssΓ(s+ 1)

So using the lemma above,5.1 is equal to

t∑
i=1

δκiαic
+
f,κi

(0)
1

4π
sΓ(1 + s)

∑
k∈Ki

(
2πv

δ̂
|k|2
)−1−s

.

So we need to characterise the set Ki. But it is clear that all we need to recognise

is that Ki is an OF ideal. Then we have that∑
k∈Ki

|k|−2−2s = wF ζF (1 + s, [Ki])

where wF is the number of roots of unity in F and ζF (s, [Ki]) is the partial Dedekind

zeta function for the class containing Ki in the ideal class group.

Now, in the limit s→ 0, this is equal to

t∑
i=1

δκiαic
+
f,κ(0)

δ̂wF
8π2v

Res
s=1

ζF (s, [Ki]).
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By the analytic class number formula, the value of this residue is 2πwF δ̂
−1, hence

the contribution for the non-zero isotropic vectors is

t∑
i=1

δκi
αic

+
f,κi

(0)

4πv
.

which is equivalent to the expression in the statement of the theorem by the identi-

fication of the ΓL equivalence classes of isotropic lines with the cusps of ΓL\H.

We examine a few different cases of input f , beginning with the most simple.

Theorem 5.1.3. Let L = OF `⊕OF `′, and so ΓL = SL2(Z). Then L = L′ = L∗, so

there is only the trivial coset h = 0 to consider (which we drop from the notation),

and only the one cusp at∞. If we lift the constant function 1, we obtain the following

formula, using Theorem 5.1.1

I(τ, 1) = − 1

12

(
− 3

πv
+ 1− 24

∑
n≥0

σ1(m)qm

)
= − 1

12
E2(τ)

using the formula for the traces of 1 we calculated in Chapter 1. We noted then

that the fact that the traces of 1 produced the Fourier coefficients of the weight 2

Eisenstein series for SL2(Z) was not a coincidence and we see now that it is not;

we obtain the constant term from the seemingly arbitrary (at the time) definition of

the 0-th trace, and we obtain the non-holomorphic part from the non-zero isotropic

vectors.

This gives us a general principle: non-holomorphic parts of the Fourier expansion

are due only to Eisenstein series. We can see why by examining the formula in the

statment of Theorem 5.1.1 - the non-holomorphic parts come from the constant term

(at each cusp) of the input function f . However, the lift of the constant term is an

Eisenstein series, and so it is possible (if messy) to subtract on the one hand, all

the constant terms at all the cusps from the input function, whilst on the other,

subtracting the Eisenstein series which are the images of these from the Fourier

expansion, to obtain the holomorphic (in a neighbourhood on infinity) function

which is the lift of the Maass cusp form we generated by this procedure.
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5.2 The case of the j function

In the following section, we use the notation

J ′(τ) =
1

2πi

d

dτ
J(τ).

We do this to follow convention; this is equivalent to taking the derivative in q.

Theorem 5.2.1. Let M2(m,Z) be the 2 × 2 matrices with integer entries and de-

terminant m. For τ > ζ

I(τ, Jm) =
2

m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)

Jm(γ · ζ)− Jm(τ)
(5.2)

Proof. From Theorem 4.2.1, we can see that the poles of both functions are the

same, namely, they lie on the divisor T (1, 0). Hence, their difference,

f(τ) = I(τ, Jm)− 2

m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)

Jm(γ · ζ)− Jm(τ)

is, a fortiori, a holomorphic modular function of weight 2 for the full modular group,

and hence much be equal to a constant. By examining the limit τ → ∞, we can

calculate what this constant is. This amounts to calculating the constant terms in

both I(τ, Jm) and 2
m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)
Jm(γ·ζ)−Jm(τ)

. The constant term of I(τ, Jm) is

given by Theorem 1.2.12, which says, if Jm(τ) =
∑

n∈Z a(n)qn,

trJm(0, 0) = 2
∑
n∈Z≥0

a(−n)σ1(n),

and we can calculate that trJm(0, 0) = 2σ1(m).

The constant term of 2
m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)
Jm(γ·ζ)−Jm(τ)

can be calculated by simply

adding up the constant term over each summand, so for each γ in the sum we have

lim
q→0

J ′m(τ)

Jm(γ · ζ)− Jm(τ)
= lim

q→0

(−mq−m +O(q))

Jm(γ · ζ)− q−m +O(q)

= lim
q→0

(−m+O(q))

qmJm(γ · ζ)− 1 +O(q)

= m

and so,

lim
q→0

2

m

∑
γ∈Γ\M2(m,Z)

J ′m(τ)

Jm(γ · ζ)− Jm(τ)
=

2

m

∑
γ∈Γ\M2(m,Z)

m

= 2σ1(m)
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hence f(τ) is identically 0, and the proof is complete.

As we recall from Example 1.2.14, for m = 1, we have

I(τ, J) = 2
∑
m∈Z

Jm(ζ)qm

hence, in combination with the previous theorem, we have (partially) recovered an

old result due to Faber, namely∑
m∈Z

Jm(ζ)qm =
J ′(τ)

J(ζ)− J(τ)
.

We have only shown that this is true when τ > ζ for ζ a quadratic irrationality.



Chapter 6

Lifting the Eisenstein series

We now calculate the lift of some functions which are not harmonic weak Maass

forms. First, we use the weight 0 Eisenstein series as input, and the result of this

is a modified version of the Eisenstein series of weight 2 with respect to the group

Γ0(N), which we call E2(τ, s). Using this result, we take residues in the s variable

to show that the lift of the constant function is the usual weight 2 Eisenstein series

with respect to ΓL, up to a certain multiplicative factor which we calculate.

We then use these results, combined with a Kronecker limit formula, to show

that the lift of the logarithm of a level N analogue of the modular ∆ function is the

derivative of the extended weight 2 Eisenstein series, which was carried out in the

SO(2, 1) case in [BF06].

For this chapter, we take a non-vector valued approach. Let L = OF `⊕NOF `′.

Then, by Theorem 3.2.13,

θ(z, τ, L) =
∑
X∈L

ϕKM(X, z, τ)

is a modular form in z for weight 0 and in τ for weight 2 for the congruence subgroup

Γ0(N).

6.1 Eisenstein Series

We define an Eisenstein series for Γ0(N) based at the cusp ∞.

Definition 6.1.1. Let ΓN,∞ ⊂ Γ0(N) be the stabiliser of cusp at infinity. The

85
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weight 0 Eisenstein series with respect to the group Γ0(N) at the cusp ∞ is defined

by

E0,N(z, s) =
∑

γ∈ΓN,∞\Γ0(N)

(=(γz))s

and the modified Eisenstein series of weight 0 is

E0,N(z, s) = ζ∗(2s)E0,N(z, s)

where ζ∗(s) = π−s/2Γ(s/2)ζ(s) is the completed Riemann zeta function. This has an

analytic continuation to the whole of the complex plane via the functional equation

[Miy89, Section 7.2]

E0,N(z, s) = E0,N(z, 1− s).

We note for later use that E0,N(z, s) has a simple pole at s = 1 with residue equal to

1
2
[SL2(Z) : Γ0(N)]−1. In order to save space in later formulae, we set dN = [SL2(Z) :

Γ0(N)].

We also define a modified weight 2 Eisenstein series.

Definition 6.1.2. Let ζ∗(2s) be as above, and τ = u + iv as usual. We define a

modified weight 2 Eisenstein series

E2(τ, s) = − 1

4π
ζ∗(2s)svs−1

∑
(c,d)=1

|cτ + d|−2(s−1)(cτ + d)−2.

Initially, it is not clear that this makes sense if <(s) ≤ 1, however, from [Miy89,

Ch. 7] we have the following

Proposition 6.1.3. The Eisenstein series

E2(z, s) =
∑

(c,d)=1

|cτ + d|−2s(cτ + d)−2

is analytically continued to a meromorphic function on the upper half plane. It is

a modular form of weight 2 for the full modular group. Miyake also calculates the

Fourier expansion of E2(z, s), but we only need that

lim
s→0

E2(z, s) = − 3

πy
+ 1− 24

∞∑
n=1

σ1(n) exp(2πinz).
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Later in this chapter, we will need the partial Dedekind zeta function for the

trivial ideal class, given by

ζF (s, [OF ]) =
∑
I∈[OF ]

N(I)−s.

This is related to the Epstein zeta function ζQ(s) for a positive definite quadratic

form Q(m,n) = am2 + 2bmn+ cn2 by

ζF (s, [OF ]) =
1

wF
ζQ(s),

where wF is the number of units in the imaginary quadratic field F . Presently, we

prefer to work with the Epstein zeta function using [Sie65] as our source, however

later in the chapter we will prefer to write formulae in terms of the partial Dedekind

zeta function.

We now state some properties of the Epstein zeta function. Let the Epstein

Zeta function for a positive definite quadratic form Q(m,n) = am2 + 2bmn+ cn2 be

defined as

ζQ(s) =
∑′

m,n∈Z

Q(m,n)−s,

and let b2 − ac = −d be the discriminant of the quadratic form in [Sie65]. Let the

completed Epstein Zeta function be defined as

ζ∗Q(s) = (b2 − ac)s/2π−sΓ(s)ζQ(s).

We also need a Kronecker Limit Formula for ζQ(s).

Proposition 6.1.4. We recall the definition of ζQ(s) as

ζQ(s) = wF
∑′

z∈OF

N(z)−s =
∑′

m,n∈Z

(Q(m,n))−s

=
π

d1/2(s− 1)
+ C +O(s− 1), (6.1)

where the ′ indicates we omit summands with vanishing denominator. Let ω = b+i
√
d

a
.

The value C in (6.1) is

C = 2πd−1/2
(
γ − log(2)− log(

√
=(ω)|η(ω)|2)

)
where η(z) is the Dedekind eta function and γ is the Euler-Mascheroni constant,

which can be defined by γ = −Γ′(1) and whose value is approximately 0.577.
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A proof for this result appears in [Sie65, Thm. 1, p.p. 13]. In particular, we will

want to use this result when Q represents the norm form on the field F . Then we

have

ζ∗Q(s) =
1

s− 1
+ γ − log(4π|η(ζ)|4) +O(s− 1)

where Q(m,n) = m2 + 2Dmn+ D(D−1)
2

n2, and OF = Z[ζ] as usual. We also write

wF ζ
∗
F (s, [OF ]) = ζ∗Q(s)

in order to make the connection with the underlying field F clearer.

Finally, we define a level N version of the modular ∆ function. This is motivated

quite naturally from a Kronecker limit type formula for E0,N(z, s). From [Vas96], we

have the following expansion for E0,N(z, s) at s = 1

E0,N(z, s) =
αNπ

s− 1
+ βNπ − 2παN log(2)− αN2π log

(
y1/2|ηN(z)|2

)
+O(s− 1)

where

αN =
3

π2
φ(N)

N2
∏
p|N

(1− p−2)

−1

and

βN = αN

(
2γ −DN(1)− 2

ζ ′(2)

ζ(2)

)
.

where

DN(s) =
d

ds
log (J2s(N))

where J2s(N) is the Jordan totient function, defined by

Jk(n) = nk
∏
p|n

(
1− 1

pk

)
.

Also from [Vas96] we have

ηN(z)φ(N) =
∏
ν|N

η(νz)µ(N/ν)ν

which clearly implies that, for γ ∈ Γ0(N)

ηN(γz)φ(N) = j(γ, z)φ(N)/2
∏
ν|N

εN(γ)µ(N/ν)νη(νz)µ(N/ν)ν
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In particular, there exists an integer lN such that εN(γ)lN = 1 for all γ ∈ Γ0(N).

We then define

∆N(z) = (ηN(z))φ(N)lN

which is a modular form of weight kN = 1
2
φ(N)lN for Γ0(N).

In order to find a formula for lN we use a theorem from [Raj06]

Theorem 6.1.5. Let

f1(z) =
∏
ν|N

η(νz)rν

where rν are integers such that∑
ν|N

rνν ≡ 0 (mod 24)

∑
ν|N

N

ν
rν ≡ 0 (mod 24)

then, f1 is a modular form for Γ0(N) of weight

kN =
1

2

∑
ν|N

rν

and character

χ(d) =

(
(−1)k

∏
ν|N ν

rν

d

)
.

Lemma 6.1.6. If we set

lN = 2φ(N)−1 lcm

(
4, 1

2
φ(N)

24

(24, dN)

)
then ∆N(z) satisfies the conditions for Theorem 6.1.5, and εN(γ)`N = χ(d)lN = 1

for all γ ∈ Γ0(N) and is thus a modular form for Γ0(N) of weight kN . The given

value for lN is the smallest for which this is the case.

Proof. Since we have that rν = µ(N/ν)νlN , the conditions in Theorem 6.1.5, and

the condition that forces εN(γ)lN = χ(d)lN = 1 for all γ ∈ Γ0(N) translate to

dNφ(N)lN ≡ 0 (mod 24)

l1 ≡ 0 (mod 24)

lN ≡ 0 (mod 4),



6.1. Eisenstein Series 90

which are all definitely satisfied by lN . That this is the smallest possible lN that

does the job is not too hard to see, indeed, for N = 1 this all reduces down to

the usual formulas for the definition of the ∆ function, and of course we have that

k1 = 12 and l1 = 24.

There is a Kronecker limit formula for E0,N(z, s), which is similar in spirit to the

one for the usual real analytic Eisenstein series for the full modular group.

Theorem 6.1.7. Let ζ be the generator over Z of the ring of integers of F , so that

OF = Z[ζ]. Let N be a positive integer and E0,N(z, s), ∆N(z), dN , and kN be defined

as above, and let DN = eDN (1). Then we have that

lim
s→1

(
E0,N(z, s)− 1

2
d−1
N wF ζ

∗
F (s, [OF ])

)
= − 1

dNkN
log

(
|∆N(z)|
|η(ζ)|2kN

(yDN)kN/2
)
.

Proof. This is mainly a matter of using the expansions already given and juggling

the terms. We note that

ζ∗(2s) =
π

6
+
π

6

(
−γ − log π + 2

ζ ′(2)

ζ(2)

)
(s− 1) +O((s− 1)2),

and hence

E0,N(z, s) =
αNπ

2

6(s− 1)
+
βNπ

2

6
− 2π2αN

6
log(2) +

αNπ
2

6

(
−γ − log(π) +

2ζ ′(2)

ζ(2)

)
− αN2π2

6
log
(
y1/2|ηN(z)|2

)
+O(s− 1)

We use that
αNπ

2

6
=

1

2
d−1
N

and

βN =
6

π2
d−1
N

(
γ − 1

2
DN(1)− ζ ′(2)

ζ(2)

)
,

to obtain the more compact

E0,N(z, s) =
1

2
d−1
N

(
1

s− 1
+ γ +DN(1)− log(4π)− 2 log

(
y1/2|ηN(z)|2

))
+O(s− 1)

and we compare this to the expansion

1
2
d−1
N wF ζ

∗
F (s, [OF ]) =

1

2
d−1
N

(
1

s− 1
+ γ − log(4π|η(ζ)|4)

)
+O(s− 1)



6.2. Lift of E0,N(z, s) 91

where now it should be obvious that the (s − 1)−1 terms cancel in the limit, so we

do indeed only get a constant. Moreover, we note that all the γ terms cancel as

well, and the 4π in the logarithm also cancels. Thus we have

lim
s→1

(
E0,N(z, s)− 1

2
d−1
N wF ζ

∗
F (s, [OF ])

)
=

1

2
d−1
N

(
−DN(1)− 2 log

(
y1/2 |ηN(z)|2

|η(ζ)|2

))
All that is left to do now is to collect all of the terms into the logarithm. When

we pull down the correct factor so that ∆N(z) appears, we obtain the result.

Corollary 6.1.8. For N = 1, we simply have

lim
s→1

(
E0,1(z, s)− 1

2
wF ζ

∗
F (s, [OF ])

)
=
−1

12
log

(
|∆(z)|
|∆(ζ)|

y6

)
.

It is worth pointing out some differences here between Theorem 6.1.7 and the

usual presentation of the Kronecker limit formula. In the normal Kronecker limit

formula one subtracts the (completed) Riemann zeta function, rather than the par-

tial Dedekind zeta function. Although it presently seems arbitrary to change the

zeta function in this way, it will turn out that this is the most natural choice in

the situation of Theorem 6.3.1. The effect of doing so is to make sense of the extra

terms in the logarithm, which now depend entirely on either F , the underlying field,

or on N .

6.2 Lift of E0,N(z, s)

Theorem 6.2.1. Let L = OF ` ⊕NOF `′ for N ∈ N. Then the lift of E0,N(z, s), as

defined above, is

I(τ, E0,N(z, s)) = wF ζ
∗
F (s, [OF ])N1−sE2(Nτ, s).

Proof.

I(τ, E0,N(z, s)) =

∫
Γ0(N)\H

θ(τ, z, L)E0,N(z, s)
dxdy

y2
,

which, by the Rankin-Selberg unfolding trick, is

I(τ, E0,N(z, s)) = ζ∗(2s)

∫ ∞
0

∫ 1

0

θ(τ, z, L)ys
dxdy

y2
.
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We now substitute in our expression for θ(z, τ, L) to obtain

I(τ, E0,N(z, s)) =
−ζ∗(2s)

2δ̂v2

∫ ∞
0

∫ 1

0

∑
X∈L

exp(πix〈X,X〉) (τw′ − w) (τw′ − w)

exp(−πy〈X,X〉τ )ysdxdy.

When we do the integration in the x variable, we obtain

I(τ, E0,N(z, s)) =
−ζ∗(2s)

2δ̂v2

∫ ∞
0

∑
X∈L0

(τw′ − w) (τw′ − w) exp(−πy〈X,X〉τ )ysdy,

where L0 = {X ∈ L : 〈X,X〉 = 0}. We now use the standard integral∫ ∞
0

exp(−Ay)ysdy = A−1−sΓ(s+ 1)

to complete the integration in the y variable, and we are left with

I(τ, E0,N(z, s)) =
−ζ∗(2s)

2δ̂v2

∑
X∈L0

(τw′ − w) (τw′ − w) (π〈X,X〉τ )−1−sΓ(1 + s).

We recall the following formulas for the minimal majorant

〈X,X〉τ = 2R(X, τ) + 〈X,X〉,

R(X, τ) = (vδ̂)−1|τw′ − w|2,

and substitute these into the sum, to now obtain

I(τ, E0,N(z, s)) =
−ζ∗(2s)

2δ̂v2

(
δ̂v

2π

)s+1

Γ(1+s)
∑
X∈L0

|τw′−w|−2(s−1)(τw′−w)−2 τw
′ − w

τw′ − w
.

We now examine the lattice L0. For any w` + Nw′`′ ∈ L0 we must have that

=(wNw
′
) = 0, indeed, this condition is equivalent to the statement that X ∈ L0.

However, since N ∈ N, this is again equivalent to =(ww′). Hence,

I(τ, E0,N(z, s)) =
−ζ∗(2s)

2δ̂v2

(
δ̂v

2π

)s+1

Γ(1 + s)

∑
w,w′∈OF
=(ww′)=0

|τNw′ − w|−2(s−1)(τNw′ − w)−2 τNw
′ − w

τNw′ − w

We can see that for any w,w′ ∈ OF such that =(ww′) we must have that

w

w′
=
d

c
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for some d/c ∈ Q∗. Assume now that this fraction is written in lowest terms, i.e.

(c, d) = 1. Then
w

w′
=
d

c
,

for which the only solutions are w = ck and w′ = dk for some (non-zero) k ∈ OF .

Hence the sum over L0 may be written,∑
k∈OF

∑
(c,d)=1

|τNck − dk|−2(s−1)(τNck − dk)−2 τNck −Ndk
τNck − dk

.

We can pull out all of the k dependence from the inner sum to obtain∑
k∈OF

|k|−2s
∑

(c,d)=1

|τNc− d|−2(s−1)(τNc− d)−2.

This is just ζQ(s) times the inner sum. Hence, using the definitions given above, we

clearly have

I(τ, E0,N(z, s)) = wF ζ
∗
F (s, [OF ])N1−sE2(Nτ, s).

Corollary 6.2.2. Taking residues at s = 1 on both sides in (6.2.1) gives the lift of

the constant function, i.e.

I(τ, 1) = 2dNE2(Nτ, 1)

We can use this formulation to say something about the Fourier coefficients of

the holomorphic part of E2(Nτ, 1). Since, by the same unfolding argument as in

Therorem 5.1.1, we have that the m-th Fourier coefficient for the lift of 1 must be

c(m) = 2
∑

X∈Γ0(N)\Lm

1

|ΓX |

which is essentially the degree of the divisor defined by the cosets of Γ0(N)\Lm. By

the isometry ι defined in (1.1) we know that a vector X in Lm is in bijection with

a matrix  x1 x2

Nx3 Nx4


with determinant m. This of course implies that N | m and so were we to form

the generating series of the number of such matrices modulo Γ0(N), with the action

being matrix multiplication from the left, we only get terms where the index is
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divisible by N . Examining E2(Nτ, 1) we see that this is so, in fact, the m-th Fourier

coefficient is

2σ1(m/N) =

 2σ1(m/N) if N | m

0 else
,

which gives an extraordinarily roundabout proof of

Corollary 6.2.3. The size of

Γ0(N)\


 x1 x2

Nx3 Nx4

 : N(x1x4 − x2x3) = m


is equal to σ1(m/N).

6.3 Lift of log|∆N(z)|

Theorem 6.3.1. Let N be a positive integer, L = OFu ⊕ NOFu′, where F =

Z + Z[ζ], and let kN , DN and ∆N(z) be defined as above. Then

− 1

kNdN
I

(
τ, log

(
|∆N(z)|
|η(ζ)|2kN

(yDN)kN/2
))

= E ′2,N(τ, 1).

where the ′ on the RHS indicates differentiation in the s variable.

Proof. We use Theorem 6.1, and lift both sides. Since we have shown that ∆N(z) is

a modular form of weight kN for Γ0(N), then we have that |∆N(z)|ykn/2 is a modular

function (i.e. is of weight 0) for Γ0(N). We can then calculate

I
(
τ, lim
s→1

(
E0,N(z, s)− 1

2
d−1
N wF ζ

∗
F (s, [OF ])

) )
= lim

s→1

(
I(τ, E0,N(z, s))− 1

2
d−1
N wF ζ

∗
F (s, [OF ])I(τ, 1)

)
= lim

s→1
(wF ζ

∗
F (s, [OF ])E2,N(z, s)− wF ζ∗F (s, [OF ])E2,N(τ, 1))

= lim
s→1

E2,N(z, s)− E2,N(τ, 1)

s− 1

using Corollary 6.2.2 and the expansion of ζ∗Q(s) at s = 1. The right hand side is

then obviously the definition of E ′2,N(τ, 1).

We compare the above Theorem to Theorem 7.3 in [BF06]. The choice made

in Theorem 6.1.7 to use the partial Dedekind zeta function now reveals its utility,
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namely, to exchange the need for the constant (4π)3e−3γ in favour of using functions

which depend on N and F and have some interpretation. In [BF06] they go on the

explain how to interpret the lift of log|∆| in terms of arithmetic geometry. This is

done by realising the Fourier expansion as the generating function of an arithmetic

intersection pairing, see [Yan04]. We hope that a similar interpretation exists here

in the unitary setting.
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