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Abstract

This thesis is based on the two papers by the author [1, 2] and consists of two

parts. In the first part we give an overview of the recent developments in the theory

of multiple M2-branes and 3-algebras leading to multiple D2-brane theories. The

inclusion of flux terms for the supersymmetric BLG and ABJM theories of closed

M2-branes is discussed and then generalised to the case of open M2-branes. Here

the boundary condition is derived and different BPS configurations are examined

where we find a mass deformed Basu-Harvey equation for the M2-M5 system. The

Lorentzian 3-algebra is then employed for obtaining a theory of D2-branes in a flux

background, we then obtain the new fuzzy funnel solution of the system of D2-D4

branes in a flux. We then review matrix theories and their compactifications as well

as noncommutative geometry and noncommutative gauge theories with a discussion

on their generalisations to three dimensions to be used to describe the M-theory

three form potential C3. A new feature of string theory is then obtained called

the quantum Nambu geometry [Xµ, Xν , Xλ] = iθµνλ, this is another attempt to

generalise noncommutative geometry to three dimensions but here we employ the

Nambu bracket. It begins with considering the action for D1-strings in a RR flux

background and show that there is a large flux double scaling limit where the action

is dominated by a Chern-Simons-Myers coupling term. A classical solution to this

is the quantised spacetime known as the quantum Nambu geometry (QNG). Matrix

models for the type IIB and type IIA theories are constructed as well as the matrix

model for M-theory. These are the large flux dominated terms of the full actions

for these matrix models. The QNG gives rise to an expansion of D1-strings to D4-



iv

branes in the IIA theory, and so we obtain an action for the large flux terms for this

action which is verified by a dimensional reduction of the PST action describing

M5-branes. Given the recent proposal of the multiple M5-brane theory on S1 being

described by 5D SYM and instantons, we make a generalisation of the D4-brane

action to describe M5-branes. We are describing the 3-form self-dual field strength

in a non-abelian generalisation of the PST action, the QNG parameter is identified

with a constant C3-field and is self-dual. The 3-form field strength is constructed

from 1-form gauge fields.

June 27, 2012
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Chapter 1

Introduction

In this chapter we will discuss the emergence of M-theory from string theory, in

particular we will discuss recent developments on the objects known as M2-branes

and M5-branes.

1.1 What is M-Theory?

In this section we will discuss briefly the motivations for studying String Theory and

M-Theory and what is known in the various theories that build up to M-Theory.

1.1.1 Strings, D-branes and M-Theory

This thesis explores and develops recent ideas in high energy physics known as String

Theory and M-Theory, but let us first discuss the motivations for obtaining such

theories in the first place. The Standard Model of Particle Physics gives a very

accurate description of three of the four fundamental forces in nature namely the

Strong, Weak, and Electromagnetic forces. It is a quantum field theory, known as a

gauge theory, with gauge group SU(3)×SU(2)×U(1) and at the time of writing this

thesis is one of the most celebrated successes of human achievement as it describes

three of the four forces and their interactions with great measurable accuracy. The

fourth force, gravity, is somewhat unreconcilable with the Standard Model. But

what we do have is General Relativity which provides us with a classical description

of gravity at large scales.

1



1.1. What is M-Theory? 2

Many people wish to seek out a theory of ‘everything’, i.e. a grand unified theory

of nature which not only quantises gravity, but unifies all the four forces of nature

and describes all of their interactions. String Theory and consequently M-Theory

provides us with a candidate for such a description of our universe. One of the

interesting features of string theory is that it has a critical dimension in which the

theory is mathematically consistent, this is 9 + 1 spacetime dimensions for string

theory and 10 + 1 spacetime dimensions for M-theory. This is a feature which is

found neither in the Standard Model nor General Relativity.

So what is String Theory? That question would take too long to describe here so

we refer the reader to [3, 4] for a comprehensive review, so let us explain schemati-

cally what the theory is and the emergence of M-theory. String theory was originally

formulated to describe strong interactions of QCD, however it turned out by exam-

ining the spectra of the theory that it in fact gave a massless spin 2 graviton as well

as vectors and scalars. Originally just the bosonic sector of the theory was found

and the critical dimension was D = 26. The theory was later supersymmetrised with

fermions and this gave a superstring theory in D = 10. There are two different types

of string; one is the open string which comes with a boundary condition at the two

end points of the string, the other is a closed string with no boundary. The types

of boundary condition one can have for the open string can be either Neumann or

Dirichlet. The latter of the two is an interesting condition and will lead to objects

known as branes which we will expand on later.

When constructing string theory, one has various choices to make in its for-

mulation, see [4] for a full description of the various Ramond and Neveu-Schwarz

periodicity conditions in the Ramond-Neveu-Schwarz (RNS) formalism as well as

mixed left and right movers in the 26 and 10 dimensional theories. It turns out that

there are five unique string theories in D = 10, these are Type I, Type IIA , Type

IIB , Heterotic SO(32) and Heterotic E8 × E8. In this thesis we will primarily be

concerned with the Type IIA and Type IIB theories. These are related by a sym-

metry known as T-duality, this is where Type IIA theory on a circle of radius R is

equivalent to Type IIB theory on a circle of radius R̃ with R = α′/R̃. We will make

this more concrete later in Chapter 5.

June 27, 2012



1.1. What is M-Theory? 3

Another advantage of string theory is the simplicity of its interactions. There is

precisely one diagram per order of the string coupling gs, this is in contrast to the

Standard Model where one has s, t, u channel diagrams per order of the coupling.

The string tension is given by

TString =
1

2πl2s
, (1.1)

where ls is the string scale or string length. When considering the boundary terms

of an open string, it was found that momentum is allowed to flow from the string

to an object called a D-brane, these are higher dimensional analogs of strings, such

as membranes etc. These so-called D-branes turn out to be fundamental objects

in string theory and will be discussed at length in this thesis. The fact that open

strings end on D-branes is due to the boundary conditions involved, so for a (p +

1)-dimensional object called a Dp-brane we have Neumann boundary conditions

along the brane in the σ0, ..., σp directions. The directions σp+1, ..., σ9 have Dirichlet

boundary conditions.

A Dp-brane has a tension in a similar way as a string but the mass dimension of

the tension depends on the type of Dp-brane, namely

Tp =
1

gs

2π

(2πls)
p+1 . (1.2)

These Dp-branes are stable BPS objects and have an action called the DBI action,

they are allowed to interact and so we can add an interaction term Sint to the

D-brane action

Sp = SDBI + Sint. (1.3)

The DBI action is given by

SDBI = −Tp
∫
dp+1σ

√
− det(Gµν + 2πα′Fµν +Bµν), (1.4)

here Gµν is the pullback of the spacetime metric onto the worldvolume of the brane,

similarly with Fµν and Bµν . The field strength Fµν is that of the abelian gauge field

Aµ that lives on the single brane.1 For a gauge invariant theory, we introduce the

1When considering a stack of branes, this becomes non-abelian.

June 27, 2012



1.1. What is M-Theory? 4

Kalb-Ramond or NS-NS 2-form field Bµν which is anti-symmetric. In chapter 5,

we will discuss how this field is connected to noncommutative geometry. We can

expand this DBI action to first order, this gives the low energy effective action of the

worldvolume theory in some large tension limit which decouples us from gravity and

makes the theory weakly coupled for fixed ls. The action has an abelian U(1) gauge

symmetry by the open string ending on the single D-brane. The more interesting

case is that of a stack of N coincident such D-branes where the U(1)N factor is

promoted to U(N) in the unbroken phase of the stack of branes, the U(N) gauge

symmetry associated with a stack of N Dp-branes is given by the low energy effective

action which is called Super Yang-Mills (SYM) theory in (p + 1)-dimensions. See

Chapter 5 for a further discussion of these theories.

A Dp-brane naturally couples to a RR potential2 which for a D0-brane would be

a gauge field Aµ, for a D1-brane would be a two-form Aµν etc. More explicitly this

is given by

Spot =
Tp

(p+ 1)!

∫
dp+1σεµ1...µp+1Aµ1...µp+1 , (1.5)

this potential term can be added to the brane action Sp = SDBI + Sint + Spot to

give the full action for the Dp-brane in question. These RR gauge potentials have a

field strength in which they are gauge invariant under transformations δAp+1 = dΛp,

where Λp is a p-form.

In 1995 a new type of relationship was found in string theory by Witten [5],

this was built upon previous works on obtaining a UV completion to 11-dimensional

supergravity as was obtained for the 10-dimensional superstring theories [6–8]. In

Witten’s proposal he considered the large string coupling limit of Type IIA theory,

gs →∞, and found that this corresponded to a large extra dimension

R11 = gsls. (1.6)

This lead to a mysterious 11-dimensional theory called M-Theory, it is an added

mystery as to what the ‘M’ stands for also. The existence of this extra dimen-

sion allows a unification of all five superstring theories via a web of dualities, see

Figure 1.1.

2For the origin of these terms we refer the reader to [3, 4]

June 27, 2012



1.1. What is M-Theory? 5

Figure 1.1: Diagram of the web of dualities between the various superstring theories

and M-theory.

From eleven dimensional supergravity theories [9], we know that a three-form

potential exists CMNP , where M,N,P = 0, ..., 10. So this lead to the discovery of

the M2-brane which couples to this three-form electrically and the M5-brane which

couples magnetically. The focus of this thesis is on these two branes, the first half

concentrates on recent developments in the M2-brane theory and the second half

describes a new quantum geometry on the M5-brane theory.

1.1.2 Outline

The focus of this thesis is to obtain a better understanding of M2-branes, M5-branes

and their interactions. In this Chapter we will review what is currently known in

M-theory, specifically the multiple M2-brane theory and the recent advancements to

obtain some understanding of the non-abelian M5-brane theory. For the M2-brane

theory we begin by looking at the motivation behind a particular structure called a

3-bracket before reviewing the BLG theory which uses a Lie 3-bracket valued in a

June 27, 2012



1.1. What is M-Theory? 6

3-algebra. The features of this theory are discussed as well as a Higgsing procedure

to obtain a D2-brane theory. We then turn to the ABJM description of M2-branes.

For the M5-brane, we will be discussing the issues with a worldvolume field theory

action for a self-dual 3-form field strength of a tensor field B2 in six dimensions

and some attempts to get around this at the cost of full six dimensional Lorentz

invariance. We then briefly discuss a duality between M5-branes on S1 and 5D SYM

theory.

This thesis is then comprised of two parts, we begin with an overview of Part I.

In Chapter 2 we review the main results of the paper [10], the authors constructed

the closed N = 8 M2-brane theory coupled to a flux term. The analysis was then

repeated for the N = 6 ABJM theory. In Chapter 3 we extend these results to

the open M2-branes picture and consider the various possible boundary conditions

corresponding to different M-theory objects. The results are then obtained for the

ABJM theory also. Finally, in Chapter 4 we review the Lorentzian 3-algebra in

three dimensions and its description of maximally supersymmetric D2-brane theory.

This allows us to apply the reduction to the flux terms of the M2-brane theory to

obtain the flux modified D2-brane theory. Once this is obtained, the D2-D4-brane

system is then considered where we find a new fuzzy funnel solution.

In Part II, we begin by reviewing some basic concepts of matrix models and

noncommutative geometry in Chapter 5. We discuss the motivations for generalis-

ing such a noncommutative geometry to 3-dimensions. In Chapter 6, we present a

proposal for a new type of quantum geometry called the quantum Nambu geometry

(QNG) before we describe its origins in the matrix model of D1-Strings in a RR

3-form flux. We demonstrate that there is a large flux double scaling limit which

admits the QNG as a solution. We then construct large flux matrix models for Type

IIA , Type IIB and M-theory. The D4-brane matrix model is then obtained as a re-

sult of the D1-Strings expanding over the QNG and then this is generalised to the

M5-brane theory by the recent proposal of M5-branes on S1 being equivalent to 5D

SYM. A key feature of the QNG is that the 3-form field strength of the M5-branes

is constructed from 1-forms instead of the 2-form B2. In Chapter 7, we construct

representations of the QNG. The first example is for finite N representations where

June 27, 2012



1.2. M2-branes 7

the Nambu bracket is just reduced to a statement about Lie algebras, these were

constructed by Nambu. In the large N limit we find two examples of an infinite

dimensional representation of the QNG. The first is a generalisation of the Heisen-

berg algebra, i.e. we have ‘raising and lowering’ operators which are constructed

out of Hermitian operators. The second representation is where the operators can

be complex but are unitarily related. In both cases the representations have three

degrees of freedom.

1.2 M2-branes

In the previous section we introduced the M2-brane, the worldvolume theory for

M2-branes was found recently by Bagger and Lambert [11–13] and independently

by Gustavsson [14]. For a general review of the recent developments in the subject

of membranes see [15,16], for a review on M-theory before this see [17]. The Bagger-

Lambert-Gustavsson model (BLG) admits maximal N = 8 supersymmetry but it

has been shown [18, 19] that the theory in fact only describes a pair of M2-branes

in a certain orbifold. One year later Aharony, Bergman, Jafferis and Maldacena

(ABJM) wrote down a theory of N M2-branes but the supersymmetry was reduced

to N = 6 [20]. The entropy scales like N3/2 for N M2-branes, this is quite different

to the usual N2 scaling we are used to from D-branes [21]. See Chapter 8 for further

discussions on this. We now explain how the BLG model was constructed and will

look at some applications.

1.2.1 BLG Theory

The motivation behind the BLG theory was to obtain the gauge symmetry and

supersymmetry of multiple M2-branes with maximal N = 8 supersymmetry. The

key to writing down the gauge theory of multiple M2-branes relies on the use of a

3-bracket structure. The idea of a 3-bracket came from a BPS equation proposed

by Basu and Harvey [22], the Basu-Harvey equation is an M-theory BPS equation

for multiple coincident M2-branes ending on a single M5-brane.

June 27, 2012



1.2. M2-branes 8

Basu-Harvey Equation

To understand what the Basu-Harvey equation describes we first go to the string

theory analogue known as a Nahm equation, see [23] for a review of it within string

theory. This is analogous with the M-theory Basu-Harvey equation as we can per-

form a reduction (via dimensional reduction and a T-duality) to obtain the Nahm

equation which describes multiple coincident D1-strings ending ending on a D3-brane

dX i

ds
=
i

2
εijk[Xj, Xk], (1.7)

where i, j, k = 2, 3, 4 are the transverse indices to the D1-strings along the world-

volume of the D3-branes. Here s = x1 is the distance along the spatial coordinate

of the D1-strings and so can be thought of as the distance between the D1’s and

the D3-brane in the fuzzy funnel setup which will become clear shortly. The Nahm

equation is used in the study of monopoles, the D1-strings can be thought of as

monopoles on the D3-brane. To see this let us consider the solution

X i =
1

2s
τ i, (1.8)

where τ i are the Lie algebra generators of SU(2) satisfying

[τ i, τ j] = 2iεijkτ k (1.9)

and we take τ i to be in the N -dimensional irreducible representation such that its

quadratic Casimir is given by

C =
∑
i=2,3,4

τ iτ i = N2 − 1. (1.10)

Now we can find the radius of the fuzzy funnel solution

R =

√∑
i

(X i)2 =

√
N2 − 1

2s
, (1.11)

as we can see in order for the radius to blow up we need to have a very small s.

So to summarise, what we have for the D1-D3 system is a set of D1-strings

blowing up into a D3-brane at infinity by a fuzzy funnel which can be thought of as

fuzzy spheres S2 giving a round sphere in the limit s→ 0.

June 27, 2012



1.2. M2-branes 9

Figure 1.2: Multiple coincident D1-strings blowing up into an Abelian D3-brane at

spatial infinity via a fuzzy S2.

We will now look at the M-theory generalisation of the Nahm equation and its

interpretation. The key to the generalisation is the use of a 3-bracket instead of a

Lie-algebra valued commutator due to the enhancement of the fuzzy S2 to a fuzzy S3

for a system with relative dimension 3. This became concrete when considering the

BLG theory of multiple coincident M2-branes, the construction by Basu and Harvey

was originally thought to be quite ad-hoc and it was not clear where the origin of

the 3-bracket structure came from. The Basu-Harvey equation describes a system

of multiple coincident M2-branes ending on an Abelian M5-brane as in Figure 1.3.

We shall see in this section that the idea of a 3-bracket was key to providing the

means to write down the BLG theory and therefore to provide us with an origin for
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the Basu-Harvey equation. It reads

dX i

ds
+
λ

4!
εijkl[G5, X

j, Xk, X l] = 0, (1.12)

where λ = M3/8π
√

2N is a constant, s = x2 and i, j, k, l = 3, 4, 5, 6. The matrix

Figure 1.3: Multiple coincident M2-branes blowing up into an Abelian M5-brane at

spatial infinity via a fuzzy S3.

G5 is determined from the representation of the spin(4) = SU(2)× SU(2)3 algebra

of the fuzzy S3 and satisfies G2
5 = 1. The bracket in (1.12) is multilinear and

antisymmetric, in particular it is trilinear in the scalar fields X i. The M2-branes

3The spin group Spin(n) is the double covering of the Special Orthogonal group SO(n) and

the Spin(n) group and spin(n) algebra share the same dimension as their Special Orthogonal

counterparts.
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1.2. M2-branes 11

have been shown to be equivalent to a higher dimensional analogue of the D1-string

monopole interpretation of the D1-D3 system known as the self-dual string solitons

on the M5-brane worldvolume [24,25].

Gauge theories and 3-algebras

Now we understand where the 3-bracket originated in the literature, we can study the

BLG theory and why it was so revolutionary to use such a structure. The M2-brane

is the strong coupling limit of the D2-brane from IIA theory, the Lagrangian for

such a D2-brane is given by a three dimensional N = 8 maximally supersymmetric

Yang-Mills theory with an SO(7) R-symmetry and a U(N) gauge symmetry. For the

M2-brane theory we expect a maximally supersymmetric theory in three dimensions

with an SO(8) R-symmetry. In [11–13], the authors proposed that one could use a

new type of algebra for the gauge symmetry for the multiple M2-brane theory, these

are named 3-algebras denoted by A with a Lie 3-bracket.

Now let us discuss the gauge symmetry of M2-branes using the 3-algebra, but

before we do this it is helpful to recall the ordinary Yang-Mills gauge symmetry from

D-branes and then build up to the concept of a 3-algebra, the global transformation

is given by

δX = [α,X] (1.13)

where α,X ∈ SU(N). A derivation on the commutator gives the Jacobi identity,

which can then be written in terms of structure constants fabc as defined by X =

XaT
a and [T a, T b] = fabcT

c. For the M2-branes, we find that the supersymmetric

closure4 on the fields gives a local symmetry proportional to the 3-bracket [11]. The

global version of this symmetry is given by

δX = [α, β,X] (1.14)

where α, β ∈ A. Imposing the derivation property on the 3-bracket then gives us

δ[X, Y, Z] = [δX, Y, Z] + [X, δY, Z] + [X, Y, δZ], (1.15)

4We shall make this clear when we examine the supersymmetry transformations for the BLG

theory, the motivation here is purely for historic reasons.
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this is known as the ‘fundamental identity’ in the literature and is a generalisation

of the Jacobi identity for 3-brackets. More explicitly the fundamental identity reads

[α, β, [X, Y, Z]] = [[α, β,X], Y, Z] + [X, [α, β, Y ], Z] + [X, Y, [α, β, Z]], (1.16)

where we will now try to find an analogous relation to the Jacobi identity for the

fundamental identity in terms of a structure constant.

We can expand the fields X in terms of a Hermitian basis T a of A as X = XaT
a,

where a = 1, ..., dimA. Now we can introduce the equivalent Lie algebra relation

for a 3-bracket known as the Lie 3-algebra

[T a, T b, T c] = fabcdT
d, (1.17)

also we introduce the natural metric from the trace Tr:

hab = Tr(T a, T b), (1.18)

here we assume that the metric is Euclidean5 in signature and positive definite

hab = δab. This metric can be used to raise and lower gauge indices. Now that we

have a trace, we can construct a property similar to the invariance of the trace for

YM gauge theories for a 3-algebra as

Tr([T a, T b, T c], T d) = −Tr(T a, [T b, T c, T d]), (1.19)

or equivalently

fabcd = −fdbca, (1.20)

note that the 3-algebra analogue of the invariance of the trace property has an

important sign. Using the invariance of the trace (1.19) and that the 3-bracket is

anti-symmetric gives us

fabcd = f [abcd], (1.21)

thus the fundamental identity (1.16) can be written as

f efgdf
abc

g = f efagf
bcg

d + f efbgf
cag

d + f efcgf
abg

d. (1.22)

5The signature could be taken to be Lorentzian, this will be explored further in detail in Chapter

4. It turns out that the negative modes correspond to a ghost contribution to the action which is

shown to un-couple from the D2-brane theory.
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We now wish to study the gauge symmetries of the BLG theory, to begin with

we note that the global symmetry (1.14) can be written in the form

δXd = fabcdαaβbXc, (1.23)

this can be generalised to the global transformation

δXd = fabcdΛabXc. (1.24)

We can now introduce a covariant derivative and gauge the symmetry (1.24), the

covariant derivative Dµ is defined such that δ(DµX) = Dµ(δX) + (δDµ)X. So then

by promoting the global symmetry (1.24) to a local gauge symmetry, we define

δXd = fabcdΛabXc = Λ̃c
dXc. (1.25)

So the covariant derivative is given explicitly by

(DµX)a = ∂µXa − ÃµbaXb, (1.26)

where Ãµ
b
a ≡ f cdbaAµcd is the BLG non-Abelian gauge field living in the generali-

sation of the adjoint representation for a 3-algebra A where

δÃµ
b
a = ∂µΛ̃b

a − Λ̃b
cÃµ

c
a + Ãµ

b
cΛ̃

c
a

≡ DµΛ̃b
a. (1.27)

This transforms the same way as a Lie algebra valued gauge field would, so we now

define the field strength of the gauge field by

([Dµ, Dν ]X)a = F̃µν
b
aXb. (1.28)

Using (1.26) we obtain

F̃µν
b
a = ∂νÃµ

b
a − ∂µÃνba − ÃµbcÃνca + Ãν

b
cÃµ

c
a, (1.29)

which satisfies the Bianchi identity

D[µF̃νλ]
b
a = 0. (1.30)

We have seen that the 3-algebra valued fields have similar gauge transformations

as their Lie algebra counterparts, however the gauge field Ãµ
b
a has two algebraic

indices.
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Supersymmetry

We now wish to supersymmetrise6 the gauged theory and construct an action; it

should have superconformal invariance in three dimensions with 16 supersymme-

tries and an SO(8) R-symmetry on the eight transverse scalar fields. The natural

supersymmetry transformations to use would be an uplift of the D2-brane super-

symmetry transformations:

δXI
a = iε̄ΓIΨa

δΨa = DµX
I
aΓµΓIε− 1

3!
XI
bX

J
c X

K
d f

bcd
aΓ

IJKε

δÃµ
b
a = iε̄ΓµΓIXI

cΨdf
cdb

a. (1.31)

Here µ = 0, 1, 2 and I = 3, ..., 10 and Ψ is a 16 component Majorana spinor that

satisfies

Γ012Ψ = −Ψ, (1.32)

also the supersymmetry parameter ε satisfies

Γ012ε = ε. (1.33)

We can make this algebra close on-shell after imposing certain equations of mo-

tion. These arise by considering the off-shell closure relations which are of the form

of translations and gauge transformations plus equations of motion. The scalars

close on-shell:

[δ1, δ2]XI
a = vµDµX

I
a + Λ̃b

aX
I
b , (1.34)

where

vµ = −2iε̄2Γµε1 (1.35)

Λ̃b
a = −iε̄2ΓJKε1X

J
c X

K
d f

cdb
a. (1.36)

6Originally in [11] the authors constructed supersymmetry transformations of only the scalars

and fermions for the ungauged theory. This lead to the concept of using a 3-bracket based on a

nonassociative 3-algebra being the analogy of a commutator for the uplift from a D2-brane theory

to the M2-brane.
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For the fermions we use the Fierz identity in (A.8) to obtain the off-shell closure:

[δ1, δ2]Ψa = vµDµΨa + Λ̃b
aΨb

+iε̄2Γνε1Γν
(

ΓµDµΨa +
1

2
ΓIJXI

cX
J
d Ψbf

cdb
a

)
+
i

4
ε̄2ΓKLε1ΓKL

(
ΓµDµΨa +

1

2
ΓIJXI

cX
J
d Ψbf

cdb
a

)
. (1.37)

We must impose the equations of motion

ΓµDµΨa +
1

2
ΓIJXI

cX
J
d Ψbf

cdb
a = 0, (1.38)

then the fermions close on-shell:

[δ1, δ2]Ψa = vµDµΨa + Λ̃b
aΨb (1.39)

We are left with the gauge field Ãµ. After using the fundamental identity to eliminate

the Γ(5) term, we obtain the off-shell closure:

[δ1, δ2]Ãµ
b
a = 2iε̄2Γνε1εµνλ(X

I
cD

λXI
d +

i

2
Ψ̄cΓ

λΨd)f
cdb

a

−2iε̄2ΓIJε1X
I
cDµX

I
df

cdb
a. (1.40)

This can be made to close on-shell by imposing the equation of motion

F̃µν
a
b + εµνλ(X

I
cD

λXI
d +

i

2
Ψ̄cΓ

λΨd)f
cdb

a = 0, (1.41)

then we have the closure:

[δ1, δ2]Ãµ
b
a = vνF̃µν

b
a +DµΛ̃b

a. (1.42)

The gauge field is non-dynamical as it has no propagating degrees of freedom.

Finally we derive the bosonic equation of motion, this can be found by taking the

supersymmetric variation of the fermionic equation of motion (1.38) and imposing

(1.41):

D2XI
a −

i

2
Ψ̄cΓ

IJXJ
d Ψbf

cdb
a − V ′(XI

a), (1.43)

where V (XI
a) is a sextic potential in the scalar fields XI

V =
1

2 · 3!
Tr([XI , XJ , XK ], [XI , XJ , XK ]). (1.44)
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Now that we have verified that the superalgebra closes on-shell and that the

equations of motion respect the supersymmetries (1.31), we can write down an action

which has scalar and fermionic kinetic terms and an interaction term for these fields.

Adding in a Chern-Simons term will allow us to have a non-propagating gauge field7,

the bosonic potential will be given by V . Understanding where the Tr products are,

we have the BLG action:

S =

∫
d3x

(
− 1

2
DµX

aIDµXI
a +

i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓ

IJXI
cX

J
d Ψaf

abcd

+
1

2
εµνλ(fabcdAµab∂νAλcd +

2

3
f cdagf

efgbAµabAνcdAλef )− V
)
. (1.45)

The equations of motion from the above action are precisely equations (1.38), (1.41)

and (1.43) and the action is invariant under the supersymmetry transformations

(1.31) up to a total derivative. The action contains no free parameters as expected

in a theory of M2-branes, the structure constants fabcd can be rescaled but they

must remain quantised due to the presence of the Chern-Simons term. The gauge

fields Aµ that appear in the Chern-Simons term are not the physical fields Ãµ, they

come as part of a twisted Chern-Simons term which remains invariant under shifts of

Aµ that leave Ãµ
b
a = Aµcdf

cdb
a invariant under the supersymmetry transformations

(1.31).

Quantisation and Vacuum Moduli Space

It was shown in [18, 19] that there is a solution8 to the fundamental identity with

four generators T a, a = 1, ..., 4 and the nonassociative algebra is denoted by A4

in the literature. The gauge algebra is given by SO(4) and we have the invariant

four-tensor:

fabcd ∝ εabcd, (1.46)

7In 2004 it was shown in [26] that supersymmetric Chern-Simons theories with non-propagating

degrees of freedom can be constructed with N = 1, 2 supersymmetry but not N = 8. The author

conjectured that there was no Lagrangian description for such an N = 8 theory and we shall see

that this is no longer the case.
8It was also shown that this solution is in fact unique.
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where generators are normalised as Tr(T a, T b) ∝ δab. This is a rather restrictive

solution as we would like the gauge theory to describe N M2-branes, what we have

is an SO(4) = SU(2)×SU(2) gauge algebra and when the fields are SU(2)×SU(2)

valued it is called a bifundamental gauge theory. It turns out that the BLG model

describes no more than two M2-branes [18, 19] when we consider the Euclidean

metric on the 3-algebra, this is a result of the fact that there is no way to recover

the U(N) gauge symmetry of D2-branes from the Lie 3-algebra of M2-branes for

N > 2.

The quantisation of the structure constant fabcd will now be considered. Classi-

cally, the action structure constants can be rescaled and we can preserve the equa-

tions of motion. In a quantum theory the Chern-Simons term must be a quantised

quantity, so we expect the fabcd to behave this way too. In [27] a path integral

quantisation of the Chern-Simons action was considered, it was shown that for a

well-defined path integral we require the coefficient of the Chern-Simons term to

be k/4π where k ∈ Z. The quantity k is known as the Chern-Simons level9 and is

quantised for a compact gauge group. The solution for the structure constant is

fabcd =
2π

k
εabcd, (1.47)

where a = 1, ..., 4 and k ∈ Z.

The vacuum moduli spaces for the BLG theory were first considered in [13] and

then in greater detail in the two overlapping papers [28] and [29]. The moduli are

found by requiring that all the BLG fields ∂µX
I = Ψ = Ãµ = 0 except for the

scalars XI vanish and

[XI , XJ , XK ] = 0 (1.48)

to satisfy the equations of motion. The moduli space for k = 1 was found to be

M1 ≡ (R8/Z2)× (R8/Z2), (1.49)

while the k = 2 moduli space is given by

M2 ≡
(R8/Z2)× (R8/Z2)

Z2

. (1.50)

9The BLG theory is only valid for k = 1, 2 if we want an M-theory interpretation, this will be

seen with a moduli space argument later.
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Higgsing the Theory

We now consider a reduction of the multiple10 M2-brane theory to give us a non-

abelian D2-brane theory. There are two approaches that we shall consider in this

thesis; the first is using a novel Higgs mechanism for the 3-algebra A4 by Mukhi and

Papageorgakis [30] and the second is by considering a Lorentzian 3-algebra [31–34],

the latter case will be discussed in Chapter 4 where we will collate the literature on

the subject and make it consistent. There has been work on more general 3-algebras

for the A-type in [30].

The first order D2-brane theory is a maximally supersymmetric Yang-Mills the-

ory in 2+1 dimensions, it should have seven scalar fields with an SO(7) R-symmetry

and a single gauge field contributing to the Yang-Mills piece of the action. The

M2-brane theory is expected to be the conformally invariant IR fixed point of the

D2-brane theory, this translates to taking the limit gYM →∞.

A Yang-Mills coupling constant can be obtained by Higgsing a scalar field, say

X4(10), along the M-theory direction. The 4 refers to the fourth gauge index of

A4, more generally we could denote this as φ ≡ dimA. Now the scalar fields have

dimension 1/2 while the M-theory radius R has dimension −1, therefore the VEV

must be

〈Xφ(10)〉 =
R

l
3/2
p

. (1.51)

Under the compactification to IIA theory we obtain

R

l
3/2
p

=

√
gs
ls
≡ gYM , (1.52)

where we have the string coupling and length gs and ls respectively. The coupling

constant for Yang-Mills theory in 2 + 1 dimensions is dimensionful. Giving this field

a VEV does not break any supersymmetry so we still have anN = 8 supersymmetric

gauge theory, we will now make some more definitions and then substitute into the

BLG theory to find out whether we do indeed obtain a super Yang-Mills theory.

The next thing to consider is the gauge field; in the BLG theory it has two gauge

10In the case of a single M2-brane one may apply an abelian dualisation on one of the eight

scalar fields to obtain a gauge field.
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indices Aµ
b
a, so we must reduce the gauge field in such a way that we will obtain a

single gauge index. It can be done in the following way involving two gauge fields

AAµ ≡ AAφµ (1.53)

BA
µ ≡ 1

2
εABCA

BC
µ , (1.54)

where A,B ∈ {1, 2, 3} and a, b = {1, 2, 3, φ}. It turns out that the Bµ gauge field will

obtain a mass term and be integrated out from the theory, so we define a covariant

derivative in terms of the gauge field AAµ only and its associated field strength

D′µX
A(I) = ∂µX

A(I) − 2εABCAµ
BXC(I), (1.55)

F ′µν
A = ∂µA

A
ν − ∂νAAµ − 2εABCA

B
µA

C
ν . (1.56)

If we examine the bosonic part of the action, using the above substitutions we obtain

L = −2g2
YMB

A
µB

µ
A − 2gYMB

A
µD

′µX
(10)
A + 2εµνλBA

µ F
′
νλA + higher order. (1.57)

The higher order terms are inversely proportional to the Yang-Mills coupling and so

vanish in the IR fixed point limit. We can integrate Bµ out by using the equation

of motion

BA
µ =

1

2g2
YM

εµ
νλF ′νλ

A − 1

2gYM
D′µX

A(10), (1.58)

then we see that the Lagrangian splits into a coupled SU(2) action of SYM in 2+1

dimensions and a decoupled U(1) abelian multiplet, the scalar X(10) is dualised into

a gauge field for this multiplet and so we indeed have an SO(7) R-symmetry for the

D2-brane theory. The Lagrangian for the Higgsed theory is given by

L = Ldecoupled + Lcoupled (1.59)

with

Ldecoupled = −1

2
∂µX

φ(I)∂µX
(I)
φ +

i

2
Ψ̄φΓµ∂µΨφ. (1.60)

The coupled action is allowed a field redefinition, namely a rescaling of 1/gYM , so

we obtain

Lcoupled =
1

g2
YM

L0 +
1

g3
YM

L1 +O(g−4
YM). (1.61)
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The action L0 is the N = 8 maximally supersymmetric Yang-Mills theory in 2 + 1

dimensions given by

L0 = −1

4
FµνAF

µνA − 1

2
DµX

A(i)DµX
(i)
A +

1

4

(
εABCX

A(i)XB(j)
)(
εDE

CXD(i)XE(j)
)

+
i

2
Ψ̄AΓµDµΨA +

i

2
εABCΨ̄AΓiXB(i)ΨC . (1.62)

We note that the action has higher order couplings, this will not be a feature of the

Lorentzian D2-brane theory.

Bifundamental gauge theory

Before we discuss the ABJM theory, it will be useful to review [35] where Van

Raamsdonk recast the BLG theory gauge group in terms of SO(4) = SU(2) ×

SU(2). This allows us to write the field content in a bifundamental representation

of SU(2)×SU(2) which is a special case of the ABJM theory where the gauge group

is U(N)× U(N).

Let us begin by noting that fundamental fields in the A4 3-algebra, for example11

XI , are in a vector 4 of SO(4).

XI =


xI1

xI2

xI3

xI4

 (1.63)

This can be decomposed into a (2,2) representation of SU(2)×SU(2), i.e. the field

is now in the bifundamental representation of SU(2) × SU(2). The fields obey a

reality condition

XI
αβ̇

= εαβεβ̇α̇(XI†)α̇β. (1.64)

Written in terms of a Pauli basis12 of SU(2), the fields have the form

XI =
1

2
(xI41 + ixIiσ

i) =
1

2

 xI4 + ixI3 xI2 + ixI1

−xI2 + ixI1 xI4 − ixI3

 . (1.65)

11We can repeat this for the spinor.
12The Pauli matrices σi are normalised such that Tr(σiσj) = 2δij .
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For the gauge field Aµab, we must decompose it into the sum of its self-dual and

anti-self-dual parts in order to get an adjoint gauge field for each gauge group SU(2)

Aµab = − k

2π
(A+

µab + A−µab) (1.66)

where

A±µab = ±1

2
εab

cdA±µcd. (1.67)

By defining

Aµ = A+
µ4iσi, (1.68)

Âµ = A−µ4iσi, (1.69)

we can write the bifundamental covariant derivative

DµX
I = ∂µX

I + iAµX
I − iXIÂµ. (1.70)

The BLG Lagrangian in terms of bifundamental matter and adjoint gauge fields is

given by

L = tr(−(DµX
I)†DµXI + iΨ̄†ΓµDµΨ)

+tr
(
− 4πi

3k
Ψ̄†ΓIJ(XIXJ †Ψ +XJΨ†XI + ΨXI†XJ)

− 32π2

3k2
X [IXJ †XK]XK†XJXI†

)
+
k

4π
εµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ)−

k

4π
εµνλtr(Âµ∂νÂλ +

2i

3
ÂµÂνÂλ).

(1.71)

The above action is invariant under a new set of supersymmetry rules which are

obtained by applying the decomposition rules above to the original BLG supersym-

metry transformations (1.31)

δXI = iε̄ΓIΨ, (1.72)

δΨ = DµX
IΓµΓIε+

4π

3
XIXJ †XKΓIJKε, (1.73)

δAµ =
2π

k
ε̄ΓµΓI(XIΨ† −ΨXI†), (1.74)

δÂµ =
2π

k
ε̄ΓµΓI(Ψ†XI −XI†Ψ). (1.75)
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The Chern-Simons terms in the Lagrangian (1.71) have opposite signs, so we say that

the gauge theory is of level (k,−k). Note that the single twisted Chern-Simons term

in the original BLG theory (1.45) decomposes into this nice form of two ordinary

Chern-Simons terms with opposite level for the gauge group SO(4).

1.2.2 ABJM Theory

In [20] the authors constructed a three dimensional superconformal Chern-Simons-

Matter theory with N = 6 supersymmetry13, the gauge group of the theory is given

by a quiver gauge group U(N)×U(N) and is argued to describe the low energy action

for N M2-branes probing an orbifold with a C4/Zk singularity. The supergravity

background dual to the three dimensional CFT was shown to be AdS4 × S7/Zk,

note that this geometry is different to that found in eleven dimensional supergravity

in the sense that the space has a Zk orbifold structure. In the ABJM theory the

parameters N and k ∈ Z are free and do not suffer the same restrictions as the BLG

theory, as such one is able to construct a ’t Hooft coupling λ ≡ N/k for a reduction

to the Type IIA theory on AdS4 × CP3. We will begin by constructing the BLG

theory in superspace without any mention of a 3-bracket structure. Then we will

show how we can modify the construction to generalise the gauge group. Finally we

will discuss how to write the ABJM theory in terms of a 3-bracket, this 3-bracket

structure is not exactly the same as in the BLG theory.

Superspace formalism of BLG theory

In the previous section we constructed a bifundamental formalism for the BLG

theory with SU(2) × SU(2) gauge group, this will allow us to write the CFT in

terms of N = 2 superspace and then solve constraints to show that we do indeed

13For Chern-Simons level k = 1, 2 and gauge group SU(2)× SU(2), the N = 6 theory becomes

enhanced to the full N = 8 theory. This is because the SU(2) R-symmetry and the global SU(4)

flavour symmetry can be combined to give an SO(8) R-symmetry. For higher rank gauge groups

U(N)× U(N) it was proposed in [36] that for Chern-Simons level k = 1, 2, the full N = 8 theory

can be obtained from the ABJM theory by introducing monopole operators. This is still unclear

in the literature and so we will not discuss it here.
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get back the bifundamental Lagrangian as in (1.71). We do this because it is more

natural to describe the ABJM theories in superspace, the component field actions

can then be easily derived from these and in the case of BLG theory be shown to

be exactly the same.

In [37] the scalar fields from the BLG theory were put into an SU(4) represen-

tation by setting

ZA = XA + iXA+4, A = 1, ..., 4. (1.76)

So only the subgroup U(1)R × SU(4) of the SO(8) R-symmetry is now manifest,

the SU(4) symmetry acts on the A index. In the bifundamental theory we have

scalars (and fermions) associated to the fundamental representation of each of the

SU(2)’s associated with gauge symmetry, so we promote the scalars to chiral su-

perfields ZA and anti-chiral superfields Z̄A which transform under the fundamental

and anti-fundamental representation respectively. Suppressing the SU(4) indices for

aesthetics, we have

Z = Z(y) +
√

2θζ(y) + θθF (y), (1.77)

Z̄ = Z̄(y)−
√

2θ̄ζ†(y)− θθF †(y), (1.78)

where we employ the (anti)-chiral coordinates as outlined in the Appendices. There

are two conjugations we can perform on the (anti)-chrial superfields, (we write the

example for the scalars but they hold for the fermions and auxiliary fields too), the

first acts on the SU(2) from the gauge group and the second is the SU(4) from the

R-symmetry

Z‡A ≡ X†A + iX†A+4, (1.79)

Z̄A ≡ XA − iXA+4. (1.80)

For the case of gauge group SU(2) × SU(2), we are able to identify two unique

conjugations due to the reality condition (1.64), in general this is not possible and

so the only conjugation one can write down is given by the hermitian conjugate

Z† = Z̄‡. Hence only for SU(2) × SU(2) can we invert back to the original real

scalars

XA =
1

2
(ZA + Z̄A), (1.81)
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and

XA+4 =
1

2i
(ZA − Z̄A). (1.82)

We now need to examine the vector supermultiplet in three dimensions as this

will contribute to the Chern-Simons action and the matter piece too. There are two

vector supermultiplets V , V̂ due to the quiver gauge group SU(2) × SU(2), with a

vector Aµ and Âµ respectively at each node. Let us write the vector supermultiplet

in the Wess-Zumino gauge

V = 2iθθ̄τ + 2θγµθ̄Aµ +
√

2iθθθλ−
√

2iθθθλ+ θθθθD, (1.83)

similarly with hatted components for V̂ . Note that λ, λ̄, τ,D are auxiliary fields

and will be integrated out later. The Chern-Simons-matter action can then be

constructed by the following terms

SBL = SCS + Smat + Spot, (1.84)

where

SCS = −iK
∫

d3x d4θ

∫ 1

0

dtTrVDα (
etVDαe

−tV)− V̂Dα
(
etV̂Dαe

−tV̂
)
,(1.85)

Smat = −
∫

d3x d4θTrZAe−VZAeV̂ , (1.86)

Spot = L

∫
d3x d2θW (Z) + L

∫
d3x d2θ̄ W (Z̄), (1.87)

where the superpotential is given by

W (Z) =
1

4!
εABCDTr(ZAZ‡BZCZ‡D), (1.88)

W (Z̄) =
1

4!
εABCDTr(Z̄AZ̄‡BZ̄CZ̄‡D). (1.89)

The original component field bifundamental action (1.71) can be obtained by in-

tegrating out all the auxiliary fields τ, λ, λ̄, D, ζ, F, ζ†, F † and making the following

relations

K =
1

L
, L = 4f =

8π

k
, k ∈ Z. (1.90)

So the manifest U(1)R×SU(4) R-symmetry of the superpotential becomes enhanced

to the full SO(8) R-symmetry that we want for the BLG theory.
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A U(N)× U(N) Gauge Theory

It is not clear how to generalise the BLG theory to an arbitrary unitary gauge theory

with gauge group U(N)×U(N) for example. The problem lies in the global SU(4)

invariance of the BLG superpotential (1.88) only being gauge invariant for the gauge

group SU(2) × SU(2). In 2008, Aharony, Bergman, Jafferis and Maldacena [20]

proposed to give up the manifest SU(4) global symmetry of the superpotential and

created the following superpotentials

W (Z,W) =
1

4!
εACε

BDTr(ZAWBZCWD), (1.91)

W (Z̄, W̄) =
1

4!
εACεBDTr(Z̄AW̄BZ̄CW̄D), (1.92)

with an SU(2) × SU(2) global symmetry14 and A,B,C,D = 1, 2. Here the chiral

superfields are given by

Z = Z(y) +
√

2θζ(y) + θθF (y), (1.93)

Z̄ = Z̄(y)−
√

2θ̄ζ†(y)− θθF †(y), (1.94)

W = W (y) +
√

2θω(y) + θθG(y), (1.95)

W̄ = W (y)−
√

2θ̄ω†(y)− θθG†(y). (1.96)

The fields have been organised into SU(2)× SU(2) multiplets as

Z1 = X1 + iX5, (1.97)

Z2 = X2 + iX6, (1.98)

W1 = X3† + iX7†, (1.99)

W2 = X4† + iX8†. (1.100)

The new potential is then given by

Spot = L

∫
d3x d2θW (Z,W) + L

∫
d3x d2θ̄ W (Z̄, W̄). (1.101)

The superpotential (1.91) is also invariant under an additional Baryonic U(1) sym-

metry given by

ZA → eiαZA, (1.102)

WB → e−iαWB, (1.103)

14Not to be confused with the BLG gauge symmetry.
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this symmetry will be gauged just as in the D3-brane case and will contribute to the

gauge symmetry, so it can be combined with the SU(N)×SU(N) gauge symmetry

of the superpotential to give a U(N) × U(N) gauge theory. The SU(N) × SU(N)

factor of the gauge symmetry comes from the fact that the superpotential is no

longer restricted by the ‡ conjugation of the BLG theory.

We now turn to the R-symmetry which is given by U(1)R×SU(2)×SU(2) thus

far, the ABJM theory is given in terms of a SU(4) = SO(6) R-symmetry and we

shall show this is indeed the symmetry we have. Under the global SU(2)×SU(2), the

fields Z,W transform as (2,1) and (1, 2̄) respectively while for the gauge symmetry

U(N) × U(N) they transform in the (N, N̄) and (N̄,N) respectively. We add a

matter part to the action which is similar to that of the BLG theory (1.84) but with

an addition W term which comes from the splitting of the chiral superfields

Smat = −
∫

d3x d4θTr
[
Z̄Ae−VZAeV̂ + W̄Ae−V̂WAe

V
]
, (1.104)

the Chern-Simons term is unaffected by the modification to the chiral superfields

and so is as given in (1.84). After integrating out all auxiliary fields and making the

identifications (1.90), we obtain the action

S =

∫
d3x

[ k

4π
εµνλTr(Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ)

−Tr(DµZ)†DµZ − Tr(DµW )†DµW − iTrζ†γµDµζ − iTrω†γµDµω

−V
]
. (1.105)

Here V = Vbos + Vferm is the potential which is quite complicated due to the SU(4)

R-symmetry not having a canonical form. However, we can arrange the field con-

tent into multiplets of the SU(4)R, namely the fundamental and anti-fundamental

representations respectively

Y A = {ZA,W †A}, (1.106)

Y †A = {Z†A,WA}, (1.107)

here the Y A runs from A = 1, ..., 4. In a similar fashion, we organise the fermions

into

ψA = {εABζBe−iπ/4,−εABω†Beiπ/4}, (1.108)

ψA† = {−εABζ†Be
iπ/4, εABωBe

−iπ/4}. (1.109)
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Now we may write the bosonic and fermionic potentials as

Vbos = − 4π

3k2
Tr( Y AY †AY

BY †BY
CY †C + Y †AY

AY †BY
BY †CY

C

+4Y AY †BY
CY †AY

BY †C − 6Y AY †BY
BY †AY

CY †C) (1.110)

and

Vferm =
2πi

k
Tr( Y †AY

AψB†ψB − Y AY †AψBψ
B† + 2Y AY †BψAψ

B† − 2Y †AY
BψA†ψB

−εABCDY †AψBY
†
CψD + εABCDY

AψB†Y CψD†). (1.111)

So we see that the R-symmetry group has been enhanced from U(1)R × SU(2) ×

SU(2) to SU(4)R, hence we have an N = 6 supersymmetric theory of multiple

M2-branes with 12 supercharges.

The moduli space of the ABJM theory can now be analysed, we do this for the

U(1)× U(1) abelian case first for simplicity and then generalise to the non-abelian

U(N) × U(N) case. For the abelian theory the potential and interaction terms

vanish and the action reduces to a free field action for the scalars and fermions Y I

and Ψ, with A = 1, ..., 4, here the Y I are organised into Y I ≡ (Z1, Z2,W1,W2) and

similarly for the fermions. Naively the moduli space is given by C4 but we need to be

careful as we have a Chern-Simons term which provides us with a slightly non-trivial

moduli space15. Under the gauge transformations A→ A−dΛ, Â→ Â−dΛ̂ we can

gauge fix A, Â to zero but we still have to consider the large gauge transformations

due to the Λ, Λ̂ terms. We may use the generalised Stokes’ theorem to obtain the

boundary action for an abelian Chern-Simons term (assuming a boundary here);

δSACS =
k

2π

∫
bdry

(Λ ∧ F − Λ̂ ∧ F̂ ). (1.112)

Recall that the field strength of a one-form over a 2-manifold satisfies

1

2π

∫
F ∈ Z, (1.113)

we may use this in (1.112) to find the form of Λ. Before we do so, let us now explain

why k ∈ Z.

15For an abelian Yang-Mills gauge theory with gauge transformations A → A − dΛ, the gauge

field can be gauged to zero. Hence the moduli space would be given by C4.
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The Chern-Simons action contains a level k as previously mentioned, this level

is an integer for compact gauge groups. Let us consider the simpler case of a single

gauge field Aµ in a gauge group SU(N) and then generalise to the case of ABJM

theory. The action is given by

S =
k

4π

∫
d3x εµνλTr

(
Aµ∂νAλ +

2

3
AµAνAλ

)
, (1.114)

this is a non-linear sigma model of the spacetime S3 (which is a compactification of

the Euclideanised spacetime R1,2), as a map from S3 → SU(N). The Chern-Simons

action transforms under large gauge transformations [38] as

S → S + 2πkw, (1.115)

where w ∈ Z is the winding number of the map S3 → SU(N). Since the winding

number is an integer, for a well defined quantum theory we require k ∈ Z for the

path integral

Z = eiS (1.116)

to remain invariant under such gauge transformations. The Chern-Simons terms in

the ABJM action are also quantised as sums of Chern-Simons terms are still gauge

invariant for the same reasons described above.

Gauge transformations of the Chern-Simons action must leave the path integral

invariant and we know k ∈ Z, so we require

Λ, Λ̂ =
2πn

k
, n ∈ Z. (1.117)

The scalar fields then transform as Y I → ei(Λ−Λ̂)Y I under the gauge transformations

where the transformations act on the Y I to the left and right respectively; so the

moduli space is not C4, but C4/Zk. This orbifold is understood as the scalar fields

obeying the Zk symmetry as

Y I → e
2πi
k Y I . (1.118)

So we interpret this CFT as a supersymmetric sigma model on the orbifold C4/Zk.

For the non-abelian U(N)×U(N) moduli space it is clear that the field configu-

ration that gives a vanishing potential is when all the matrices Y I are in a diagonal

form, indeed this is the full moduli space of the theory as any off-diagonal component
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will be massive. Thus the gauge symmetry is broken to U(1)N ×U(1)N ×SN , where

SN is the permutation group of order N that permutes the diagonal components of

the U(1)’s. So the moduli space for N M2-branes in the ABJM theory is given by

MABJM = (C4/Zk)
N/SN . (1.119)

We now motivate why this theory of multiple M2-branes has N = 6 supersym-

metry. The above moduli space is the same as the moduli space of N M2-branes

with a C4/Zk singularity. If we consider the original SO(8) R-symmetry from the

N = 8 theory, then the ABJM theory has an SU(4)× U(1) subgroup which is pre-

served under the orbifold action with N = 6 supersymmetry and 12 supercharges.

To see this we consider the decomposition of the fermion; the original fermions were

in the 8c of SO(8), so under the decomposition they become in the 60 + 12 + 1−2

representation16 of SU(4) × U(1). The orbifold projects out the singlets if k > 2

but are kept if k = 1, 2. This means that the case k = 1, 2 should have N = 8

supersymmetry with 16 supercharges while the arbitrary k ∈ Z theory should have

N = 6 supersymmetry with 12 supercharges.

An N = 6 Theory in the 3-bracket Formalism

Now we review the 3-bracket formalism of the ABJM theory [39] as it will be useful

for Chapters 2 and 3. The N = 6 theory can be written in terms of a 3-algebra

which is now complex and does not have a fully anti-symmetric 3-bracket as in the

BLG theory. In [39] the authors proposed a basis T a, a = 1, ..., N of a 3-algebra

which is a complex vector space equipped with a triple product

[T a, T b;T
c̄
] = fabc̄dT

d, (1.120)

which is anti-symmetric in only the first two indices. The fundamental identity is

given by

fabc̄ef
efg

d = fafgef
ebc̄

d + f bfgef
aec̄

d − fēfgc̄fabēd, (1.121)

with a positive definite inner product

hāb = Tr(T
ā
, T b). (1.122)

16Here the subscripts on the representations indicate the Chern-Simons level.
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The relaxation of the constraints on fabc̄d allows us to construct an action with 12

supercharges; i.e. N = 6 supersymmetry, which has SU(4)R R-symmetry which

agrees with the ABJM theory.

The scalar field content is given by four hermitian 3-algebra valued scalars ZA
a ,

where A = 1, ..., 4 are the SU(4) indices and their complex conjugates Z̄Aā. The

fermions are given by ψAa and their complex conjugates are ψAā . In terms of the

representations of the R-symmetry group SU(4)R, a raised index A means the field

is transforming in the 4 of SU(4)R, a lowered index means the field is in the 4̄ of

SU(4)R. This action of complex conjugation is realised by raising/lowering the R-

symmetry index A and swapping the gauge indices for barred if unbarred and vice

versa. The supersymmetry parameter εAB transforms in the 6 of SU(4)R.

The original SO(8) BLG scalar fields will be organised into a representation of

SU(4)R in the following way

Z1 =
1√
2

(X3 + iX4), Z2 =
1√
2

(X5 + iX6),

Z3 =
1√
2

(X7 − iX9), Z4 =
1√
2

(X8 − iX10). (1.123)

The Lagrangian for the N = 6 theory is given by

L = −Tr(DµZ̄A, DµZ
A)− iTr(ψ̄A, γµDµψA)− V + LCS

−iTr(ψ̄A, [ψA, Z
B; Z̄B]) + 2iTr(ψ̄A, [ψB, Z

B; Z̄A])

+
i

2
εABCDTr(ψ̄A, [ZC , ZD;ψB])− i

2
εABCDTr(Z̄D, [ψ̄A, ψB; Z̄C ]),(1.124)

where

V =
2

3
Tr(ΥCD

B ῩB
CD) (1.125)

and

ΥCD
B = [ZC , ZD; Z̄B]− 1

2
δCB [ZE, ZD; Z̄E] +

1

2
δDB [ZE, ZC ; Z̄E]. (1.126)

The γµ are the 3-dimensional gamma matrices given by the usual Pauli matrices as

in the Appendix. Also LCS is the twisted Chern-Simons term as in the BLG case

but with the new structure constants of the complex 3-algebra.

June 27, 2012



1.2. M2-branes 31

The supersymmetry transformations of the N = 6 theory are given by

δZA
d = iε̄ABψBd, (1.127)

δÃµ
c
d = −iε̄ABγµZA

a ψ
B
b̄ f

cab̄
d + iε̄ABγµZ̄Ab̄ψBaf

cab̄
d, (1.128)

δψBd = γµDµZ
AεAB + fabc̄dZ

C
a Z

A
b Z̄Cc̄εAB + fabc̄dZ

C
a Z

D
b Z̄Bc̄εCD. (1.129)

On examining the closure of the supersymmetry algebra we find that it can be made

to close on-shell and the gauge invariance property of the metric implies that gauge

transformations Λc
d are elements of u(N).

There are an infinite class of examples of the complex 3-algebras one could have,

so let us examine the general case. Take V1, V2 to be complex vector spaces of

dimension N1, N2 respectively, then we can construct a vector space A of linear

maps A : V1 → V2. One may then construct the triple product on this space;

[A,B;C] = λ(AC†B −BC†A) A,B,C ∈ A, (1.130)

where λ is a normalisation constant, this will be given by λ = 2π/k for the Chern-

Simons-Matter theories to ensure a well defined path integral. The † is the transpose

conjugate for matrices, so we can introduce the following product

Tr(A,B) = tr(A†B) (1.131)

which is the usual trace form for matrices.

We can take the complex vector spaces to be V1 = CN1 and V2 = CN2 , then we

can consider these spaces as the vector spaces of the fundamental representations of

U(N1) and U(N2). As such, the matrices A ∈ A such that A : CN1 → CN2 are in the

bifundamental representation (N1,N2). So we may write down the bifundamental

matter Lagrangian

L = −tr(DµZ†ADµZ
A)− itr(ψ̄A†γµDµψA)− V + LCS

−2πi

k
tr(ψ̄A†ψAZ

†
BZ

B − ψ̄A†ZBZ†BψA)

+
4πi

k
tr(ψ̄A†ψBZ

†
AZ

B − ψ̄A†ZBZ†AψB)

+
2πi

k
εABCDtr(ψ̄A†ZCψB†ZD)− 2πi

k
εABCDtr(Z†Dψ̄AZ

†
CψB). (1.132)
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For the choice N1 = N2 we obtain the ABJM theory [20] with gauge group U(N)×

U(N), for the choice N1 6= N2 with N1 > N2 we obtain the ABJ theory [40] with

gauge group U(N1)× U(N2).

The Lagrangian (1.132) for the choice N1 = N2, i.e. the ABJM model, is invari-

ant under the following set of supersymmetry transformations

δZA = iε̄ABψB, (1.133)

δAµ =
2π

k

[
ZBψ̄AγµεAB + εABγµψAZ̄B

]
, (1.134)

δψA = γµεABDµZ
B +NA, (1.135)

and their conjugates, where

NA =
2π

k

[
−εAB

(
ZCZ̄CZ

B − ZBZ̄CZ
C
)

+ 2εCDZ
cZ̄AZ

D
]
. (1.136)

1.3 M5-branes

1.3.1 Overview of M5-brane theory

The theory of multiple M5-branes has been an area of focus recently. The low

energy theory of multiple M5-branes is given by a chiral tensor-gauge theory in six

dimensions known as a (2, 0) superconformal field theory [41–44]. The abelian theory

has been known for some time [45,46] and a non-Lorentz invariant action in 6D has

been developed in [47–51], we shall expand on the reference [49] called the PST

action next. We will then discuss some other recent developments in understanding

the M5-brane theory better.

1.3.2 Non-Lorentz Manifest Action in 6D

The reason why the action cannot be written down in a manifestly Lorentz invariant

way in 6D is due to the 3-form field strength Hµνλ of the 2-form tensor-gauge field

Bµν being self-dual, so any attempt to write a tensor-gauge kinetic term is trivially

zero ∫
Σ6

H3 ∧ ∗H3 = 0. (1.137)
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In [47, 52] a non-Lorentz invariant action was constructed for the abelian M5-

brane by choosing a non-manifestly 6D Lorentz invariant action. In [48–51] PST

constructed an off-shell action for an abelian M5-brane in 6D which is coupled to

an auxiliary scalar. It turns out that a certain gauge will allow us to write this

theory in 6D but with only 5D manifest Lorentz invariance. The construction for

a covariant action for a self-dual 3-form field strength H = dB is now derived, the

action reads

SPST =

∫
d6σ

[√
−g 1

4(∂a)2
∂µaH

∗µνλHνλρ∂
ρa+Q(H̃)

]
. (1.138)

Here the Greek indices µ = 0, 1, · · · , 5 and

H̃µν :=
1√

(∂a)2
H∗µνλ∂

λa. (1.139)

The 3-form Hµνλ satisfies the self-duality condition, where

H∗µνλ :=
1

6
√
−g

εµνλραβHραβ (1.140)

is the Hodge dual of Hραβ. Our convention for the Hodge duality operation is

ε012345 = 1 = −gε012345. The action (1.138) is invariant under the following local

transformations:

δBµν = ∂[µΛν], δa = 0;

δBµν = ∂[µa ϕν] δa = 0;

δBµν =
ϕ

2(∂a)2
(Hµνρ∂

ρa− Vµν), δa = ϕ, (1.141)

where

Vµν := −2

√
(∂a)2

−g
δQ

δH̃µν

. (1.142)

The equation of motion of the 2-form potential Bµν is

εµνλραβ∂λ

(
∂ρa

(∂a)2
(Hαβγ∂

γa− Vαβ)

)
= 0. (1.143)

Using the local symmetry (1.141), one can then show that it is equivalent to the

self-duality condition

Hµνλ∂
λa− Vµν = 0. (1.144)

June 27, 2012



1.3. M5-branes 34

The scalar field a is introduced to allow six dimensional covariance and is completely

auxiliary due to the symmetry (1.141). If we choose a gauge a = x5 and consider

the linearised equation of motion with

Q = −1

4
H̃µνH̃

µν
√
−g, (1.145)

then

Vµν = H̃µν

√
(∂a)2 (1.146)

and (1.144) becomes the standard self-duality condition

Hµν5 = H∗µν5. (1.147)

In this case the gauge-fixed PST action reads

SPST = −1

4

∫
d6σ

(
1

6
εabcdeH

abcHde5 +H∗ab5H∗ab5
√
−g
)
, (1.148)

where a = 0, · · · , 4 etc. See [53] for a detailed discussion of the non-covariant and

covariant PST formulations of the M5-brane action.

1.3.3 A proposal for M5-branes as 5D SYM

We now discuss the recent proposal for a duality between M5-branes and 5D SYM,

this allows us to describe the M5-branes on a circle as a SYM theory. This result

is quite remarkable as all of the information of the M5-brane theory is conjectured

to be contained within the 5D SYM theory. We will make use of this in Part II of

the thesis when we discuss matrix models of D4-branes and their generalisations to

M5-branes. We save discussion of other recent advances in the theory of M5-branes

to the conclusions in Chapter 8.

It was proposed that M5-branes compactified along an S1 are equivalent to D4-

branes of type IIA string theory where the Kaluza-Klein modes of the M5-brane

along the S1 are identified with instantons in the D4-brane theory [54,55].

We know that the low energy action of D4-branes at weak coupling is given by

5D SYM with a U(N) gauge group. The M5-branes are the strong coupling limit

of the D4-branes and so we expect the UV fixed point of 5D SYM to be given by

the (2,0) 6D superconformal field theory. This is due to the duality between type
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IIA string theory and M-theory. The proposal is that the (2,0) theory compactified

on S1 gives 5D SYM and that the Kaluza-Klein modes in the M5-brane theory

match up precisely with the instantons in the SYM theory.

The action for the 5D SYM theory is given by

S = − 1

g2
YM

∫
d5x tr

(1

4
FµνF

µν +
1

2
DµX

IDµXI − i

2
Ψ̄ΓµDµΨ

+
1

2
Ψ̄Γ5ΓI [XI ,Ψ]− 1

4
[XI , XJ ]2

)
, (1.149)

where

DµX
I = ∂µX

I − i[Aµ, XI ] (1.150)

and

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (1.151)

The content of the non-abelian theory consists of a gauge field Aµ with µ = 0, ..., 4,

five SO(5)R invariant scalar fields XI with I = 6, ..., 10 and a fermion Ψ. We have

left the 5 direction as the M-theory direction here to match the literature. The

supersymmetry transformations of the 5D SYM theory are given by

δXI = iε̄ΓIΨ

δAµ = iε̄ΓµΓ5Ψ

δΨ =
1

2
FµνΓ

µνΓ5ε+DµX
IΓµΓIε− i

2
[XI , XJ ]ΓIJΓ5ε, (1.152)

where the supersymmetry parameter ε satisfies the projection condition

Γ012345ε = ε (1.153)

and similarly for the fermion

Γ012345Ψ = −Ψ. (1.154)

The claim is that the 5D SYM theory has all the information for the (2,0) theory

already encoded within it, to be more precise the instantons of the SYM theory can

be calculated and then matched with the states of the (2,0) theory. This can be done

by computing the superalgebras {Qα, Qβ} of both theories and then performing a

dimensional reduction, along x5, of the (2,0) superalgebra and then find the matching

quantities. Omitting the details, it was shown in [55–57] that one must identify the
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M5-brane momentum in the M-theory direction P5 with the central extension Z5 of

the D4-brane theory which is the instanton number

P5 = Z5 =
k

R5

= − 1

8g2
YM

∫
d4x tr(FijFklεijkl), k ∈ Z. (1.155)

Note that the KK momenta P5 and the instanton are quantised, so we set

R5 =
g2
YM

4π2
. (1.156)

Further analyses of the KK modes and the instantons were carried out in [54, 55]

but we will not consider them here.
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Chapter 2

Multiple M2-branes in a Flux

In this chapter we review the work of Lambert and Richmond [10] which is a con-

struction of closed multiple M2-branes in a certain flux background. We first look

at the N = 8 case as it is simpler than the N = 6 theory.

2.1 Closed N = 8 M2-branes with Flux

Recall that the bosonic part of the effective abelian M2-brane action is given by

SM2 = −TM2

∫
d3σ

√
− detP (gmn) +

TM2

3!

∫
d3σ P (Cmnp), (2.1)

where we pull-back the eleven-dimensional metric gmn to the M2-brane worldvolume,

m,n = 0, ..., 10. The tension of the M2-brane is given by

TM2 =
1

4π2l3p
. (2.2)

The 3-form potential Cmnp is the natural (electrical) coupling for the M2-brane.

When we pull-back the metric gmn to the worldvolume of the M2-brane, i.e.

gµν = ∂µx
m∂νx

ngmn, (2.3)

we can rescale the scalars so that they have mass dimension one half

xm√
TM2

= Xm. (2.4)

Then the metric and 3-form are dimensionless. In a static gauge σµ = xµ, µ = 0, 1, 2,

we have 8 transverse scalars XI , I = 3, ..., 8.
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2.1.1 Non-Abelian M2-branes in a Certain Flux

We may now generalise the action (2.1) to the full non-abelian case by replacing

the first term with the BLG model and the second term with the full Wess-Zumino

term obtained by the Myers effect [58]. It is interesting to note that while the Myers

terms are always linear in the RR gauge fields in the case of D-branes, here we

must allow for higher order RR gauge fields since the NS-NS fields come from a

dimensional reduction of the M-theory 3-form. For the reduction of an M2-brane to

a D2-brane, the 3-form potential of M-theory Cmnp decomposes into a 3-form RR

gauge field Cijk and an NS-NS 2-form B(10)ij, where the indices i, j, k = 0, ..., 9 and

x10 is the direction of compactification for M-theory. The 3-form potential has a

4-form field strength given by G4 = dC3, so under gauge transformations of C3, the

gauge invariant electromagnetic dual field strength is G7 = dC6 = ?G4 − 1
2
C3 ∧G4.

The general form of the non-abelian pull-back of the 3-form is given by

SC =
1

3!

∫
d3x εµνρ

(
aTM2Cµνρ + 3bCµIJTr(DνX

I , DρX
J)

+12cCµνIJKLTr(DρX
I , [XJ , XK , XL])

+12dC[µIJCνKL]Tr(DρX
I , [XJ , XK , XL]) +O(T−1

M2)
)
, (2.5)

here we ignore terms of order O(T−1
M2) as we later take a decoupling limit. The

constants a, b, c, d are real numbers. In the action above we only included terms

with even number of scalars XI due to gauge invariance, this is due to the fact that

the trace Tr is an inner-product on the 3-algebra and not a number; so quantities

like εµνρCµνITr(DρX
I) are not invariant. The BLG theory describes M2-branes in

an R8/Z2 orbifold, this means that scalars should always appear in pairs in the

Lagrangian is consistent with the orbifold.

In the action (2.5) we have 4 unknown constants, we can identify some of them

straight away. The first term is the usual coupling of an M2-brane to the 3-form, so

for N M2-branes we take a = N . The second term is similar to a CµIJ contribution

from (2.1), there the coefficient is one and so for the non-abelian case we will also

take this to be b = 1. It is useful to note that this term is a non-Lorentz invariant

quantity that would contribute towards the kinetic term of the BLG theory. The

constant c shall be determined by considering a back-reaction of the flux. The last
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term can be set to zero due to it being symmetric under I, J ↔ K,L.

Integrating by parts allows us to guarantee gauge invariance of the 3-form under

δC3 = dΛ2, this does not guarantee the gauge invariance of the action however as

we shall see. Ignoring any boundary terms when integrating by parts gives us

SC =
1

3!

∫
d3x εµνρ

(
NTM2Cµνρ +

3

2
GµνIJTr(XI , DρX

J)

−3

2
CµIJTr(XI , F̃νρX

J)− cGµνρIJKLTr(XI , [XJ , XK , XL])
)
, (2.6)

where GµνIJ = 2∂[µCν]IJ and GµνρIJKL = 3∂[µCνρ]IJKL. The term proportional to

the worldvolume field strength F̃2 is not invariant under the gauge transformation

δC3 = dΛ2, so we add in the same quantity with opposite sign to cancel this term

from the action

SF =
1

4

∫
d3x εµνρCµIJTr(XI , F̃νρX

J). (2.7)

Now we look at the final term in (2.6), it is proportional to G7 which is not

invariant under the gauge transformation δC3 = dΛ2. We therefore add in a term

proportional to C3 ∧G4 since G7 + 1
2
C3 ∧G4 is invariant under the gauge transfor-

mation δC3 = dΛ2,

SCG = − c

12

∫
d3x εµνρTr(XI , [XJ , XK , XL])(C3 ∧G4)µνρIJKL. (2.8)

Since we wish to consider the field theory and no gravitational effects, we employ

the decoupling limit TM2 → ∞ as there are no other parameters in our theory to

tune. The total flux action is given by

Sflux = SC + SF + SCG, (2.9)

but the Cµνρ term is just a constant if Lorentz invariant so we can ignore this. If

we only want terms that preserve 3-dimensional Lorentz invariance we must discard

the GµνIJ term. So we take

Sflux = c

∫
d3x G̃IJKLTr(XI , [XJ , XK , XL]), (2.10)

where we define

G̃IJKL = − 1

3!
εµνρ(G7 +

1

2
C3 ∧G4)µνρIJKL. (2.11)
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2.1.2 Supersymmetry

We now wish to supersymmetrise the theory so that we may consider the super-

symmetric boundary conditions in the next chapter. In the limit TM2 → ∞, the

Lagrangian for N closed M2-branes in the specific background field given by (2.11)

consists of a flux and a mass term modification to the BLG Lagrangian LN=8:

L = LN=8 + Lflux + Lmass, (2.12)

where

LN=8 = −1

2
Tr(DµXI , DµX

I) +
i

2
Tr(Ψ̄,ΓµDµΨ) +

i

4
Tr(Ψ̄,ΓIJ [XI , XJ ,Ψ])

− 1

12
Tr
(
[XI , XJ , XK ], [XI , XJ , XK ]

)
+ LCS, (2.13)

Lflux = cG̃IJKLTr(XI , [XJ , XK , XL]), (2.14)

Lmass = −1

2
m2δIJTr(XI , XJ) + βTr(Ψ̄ΓIJKL,Ψ)G̃IJKL. (2.15)

The background gauge field has transverse components GIJKL turned on and G̃IJKL

is defined by

G̃IJKL =
1

4!
εIJKLMNPQG

MNPQ, (2.16)

where I, J,K, L = 3, 4, · · · , 10.

The supersymmetry transformations for the deformed theory are given by

δ = δ0 + δ′ where δ0 are the supersymmetry transformations of the original BLG

theory,

δ0X
I
a = iε̄ΓIΨa, (2.17)

δ0Ãµ
b
a = iε̄ΓµΓIX

I
cΨdf

cdb
a, (2.18)

δ0Ψa = DµX
I
aΓµΓIε− 1

6
XI
bX

J
c X

K
d f

bcd
aΓ

IJKε, (2.19)

and δ′ are the additional contributions to the supersymmetry transformations due

to the flux

δ′XI
a = 0, (2.20)

δ′Ãµ
b
a = 0, (2.21)

δ′Ψa = ωΓIJKLΓMεXM
a G̃IJKL. (2.22)
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Here Ψ and ε are eleven dimensional spinors satisfying the projector conditions

Γ012Ψ = −Ψ, (2.23)

Γ012ε = ε. (2.24)

We shall examine the closure of the superalgebra after showing that the Lagrangian

is invariant under the supersymmetry transformations δ, we have the variation

δL = (iω + 2β)Tr(Ψ̄ΓµΓPQRSΓIε,DµX
I)G̃PQRS

+
iω

2
Tr(Ψ̄ΓIJΓPQRSΓKε, [XI , XJ , XK ])G̃PQRS

−2β

6
Tr(Ψ̄ΓPQRSΓIJKε , [XI , XJ , XK ])G̃PQRS

+4icTr(Ψ̄ΓIε, [XJ , XK , XL])G̃IJKL + im2δIJTr(Ψ̄ΓIε,XJ)

+2βωTr(Ψ̄ΓIJKLΓPQRSΓT ε,XT )G̃IJKLG̃PQRS. (2.25)

We may simplify this by setting β = − iω
2

so that the term linear in a derivative is

zero. Then by substituting this value for β and using identities in the Appendix, we

obtain

δL =
2iω

3
Tr(Ψ̄ΓIJKMNOP ε, [XI , XJ , XK ])G̃MNOP

+(4ic− 16iω)Tr(Ψ̄ΓIε, [XJ , XK , XL])G̃IJKL

+im2δIJTr(Ψ̄ΓIε,XJ)

−iω2Tr(Ψ̄ΓIJKLΓPQRSΓT ε,XT )G̃IJKLG̃PQRS. (2.26)

Using Hodge duality of the gamma matrices (A.7), also adopting Feynman slash

notation for clarity, yields

δL =
96iω

6

(
−1 +

c

4ω
− ?
)

Tr(Ψ̄ΓIε, [XJ , XK , XL])G̃IJKL

+iTr(Ψ̄(m2 − ω2 6G̃6G̃)ΓIε,XI). (2.27)

So we see that supersymmetry requires the coefficients ω and β to be determined

by the flux term

ω =
c

8
, β = −i c

16
, (2.28)

via the supersymmetric equations of motion:

0 =
(
−1 +

c

4ω
− ?
)
G̃IJKL, (2.29)

0 = (m2 − ω2 6G̃6G̃)ΓIε. (2.30)
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The value of ω is determined by considering the eigenvalue of ? where G̃ is the

eigenvector. The eigenvalues of ?? = 1 are ±1, therefore the eigenvalue −1 + c
4ω

must be equal to ±1,±i. The imaginary eigenvalues can be ruled out due to physical

reasons, so we have two choices ±1. The eigenvalue +1 gives ω = c/8 and G̃ = ?G̃,

the eigenvalue −1 gives ω = 0 and an anti self-dual flux.

Moreover, since the flux G̃IJKL has to be self-dual for a non-trivial extension to

the BLG theory, it implies

Γ012G̃/ = G̃/ . (2.31)

The flux also needs to satisfy the condition

G̃/ G̃/ =
32m2

c2
(1 + Γ3456789(10)), (2.32)

which implies immediately that

GMN [IJGKL]
MN = 0 and m2 =

c2

32 · 4!
G2. (2.33)

An analysis of the back reaction of the flux gives c = 2.

The self-duality condition is solved by G̃/ of the form G̃/ = d(1 + Γ012)R, where

d is a constant coefficient and R is a sum of products of four transverse ΓI ’s, I =

3, 4, · · · , 10. The condition (2.32) then implies that

G̃/ = 2µ
1 + Γ012

2
R, R2 = 1, (2.34)

for µ = ±2m, m ≥ 0. A simple solution is

R = Γ3456. (2.35)

This corresponds to the flux

G̃ = µ (dx3 ∧ dx4 ∧ dx5 ∧ dx6 + dx7 ∧ dx8 ∧ dx9 ∧ dx10), (2.36)

and the Lagrangian (2.12) reproduces precisely the deformed Bagger-Lambert La-

grangian of [59] and [60].

Closure of the Superalgebra

Under the supersymmetry transformations (2.17)-(2.22), we can compute the closure

relations of the gauge fields Ãµ
b
a, scalars XI and fermions Ψ. The closure relation

June 27, 2012



2.2. Closed N = 6 M2-branes with Flux 44

of gauge field remains the same as in (1.42), namely

[δ1, δ2]Ãµ
b
a = vνF̃µν

b
a +DµΛ̃b

a (2.37)

where vµ and Λ̃b
a are defined in (1.35),(1.36).

For the scalars XI , there is an additional term due to the modification to the su-

persymmetry transformation of the fermion δ′Ψ, namely 2iωε̄2ΓPQRSIJε1X
JG̃PQRS.

We can use the Hodge duality (A.7) of a Γ(6) term to give a Γ(2) term:

[δ1, δ2]XI
a = vµDµX

I
a + Λ̃b

aX
I
b + iRI

JX
J
a , (2.38)

where RIJ = 48ωε̄2ΓOP ε1G̃OPIJ is the closure of terms under the SO(8) R-symmetry.

Note this term in the closure relation is imaginary, it is consistent with the idea that

R-symmetry is given by the matrices that leave the superalgebra {QI
α, Q

J
β} invariant.

The closure of the fermions Ψa gives us the off-shell equation of motion

E ′ = ΓµDµΨa +
1

2
ΓIJX

I
cX

J
d Ψbf

cdb
a − ωΓPQRSΨaG̃PQRS. (2.39)

So on-shell, we have the closure relation

[δ1, δ2]Ψa = vµDµΨa + Λ̃b
aΨb +

i

4
RPQΓPQΨa. (2.40)

We see that the fermions also get a contribution from the SO(8) R-symmetry.

We shall now review the N = 6 theory coupled to flux in terms of the 3-bracket

construction [10].

2.2 Closed N = 6 M2-branes with Flux

We now turn to the N = 6 theory with mass and flux terms given by Lambert-

Richmond [10] and carry out a similar analysis to the previous section. The SC

action for the N = 6 theory is given by

SC =
1

3!
εµνλ

∫
d3x

(
NTM2Cµνλ +

3

2
Cµ

A
BTr(DνZ̄A, DλZ

B)

+
3

2
CµA

BTr(DνZ
A, DλZ̄B) +

3c

2
CµνAB

CDTr(DλZ̄D, [Z
A, ZB; Z̄C ])

+
3c

2
Cµν

AB
CDTr(DλZ

D, [Z̄A, Z̄B;ZC ])
)
. (2.41)
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The N = 6 theory has a 3-algebra given by a matrix representation of the 3-bracket

as stated in (1.130) and A,B,C,D = 1, .., 4 are the SU(4) R-symmetry indices.

Repeating the argument as in the N = 8 theory, we obtain the full Lagrangian of

the flux deformed N = 6 theory:

L = LN=6 + Lflux + Lmass. (2.42)

where

LN=6 = −Tr(DµZ̄A, DµZ
A)− iTr(ψ̄A, γµDµψA)− V + LCS

−iTr(ψ̄A, [ψA, Z
B; Z̄B]) + 2iTr(ψ̄A, [ψB, Z

B; Z̄A])

+
i

2
εABCDTr(ψ̄A, [ZC , ZD;ψB])− i

2
εABCDTr(Z̄D, [ψ̄A, ψB; Z̄C ]),(2.43)

LCS =
k

4π
εµνλ

(
Aµ∂νAλ +

2i

3
AµAνAλ − Âµ∂νÂλ −

2i

3
ÂµÂνÂλ

)
, (2.44)

Lflux =
c

4
Tr(Z̄D, [Z

A, ZB; Z̄C ])G̃AB
CD, (2.45)

Lmass = −m2Tr(Z̄A, Z
A) + βTr(ψ̄A, ψF )G̃AE

EF . (2.46)

Here V is defined in (1.125) and we also define

G̃AB
CD =

1

4
εABEF ε

CDGHGEF
GH . (2.47)

The supersymmetry transformations of the original N = 6 theory are given by

δ0Z
A = iε̄ABψB, (2.48)

δ0Aµ =
2π

k

[
ZBψ̄AγµεAB + εABγµψAZ̄B

]
, (2.49)

δ0ψA = γµεABDµZ
B +NA, (2.50)

and their conjugates, where

NA =
2π

k

[
−εAB

(
ZCZ̄CZ

B − ZBZ̄CZ
C
)

+ 2εCDZ
cZ̄AZ

D
]

(2.51)

and δ′ is the additional contribution to the supersymmetry transformations due to

the flux terms

δ′ZA = 0, (2.52)

δ′Aµ = 0, δ′Âµ = 0, (2.53)

δ′ψA = ωεDFZ
F G̃AE

ED. (2.54)
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The supersymmetry transformation parameter satisfies the reality condition

εFP =
1

2
εIJFP ε

IJ (2.55)

and is in the 6 representation of SU(4), recall that raising and lowering SU(4) indices

acts as complex conjugation. For the action to be supersymmetric, the flux needs

to take the form

G̃AB
CD =

1

2
δCBG̃AE

ED − 1

2
δCAG̃BE

ED − 1

2
δDB G̃AE

EC +
1

2
δDA G̃BE

EC , (2.56)

where the matrix G̃AE
EB is traceless G̃AE

EA = 0 and squares proportional to the

identity

G̃AE
EBG̃BF

FC =
m2

ω2
δCA . (2.57)

Supersymmetry also relates the coefficients ω, β,m to the flux term:

ω =
c

4
, β = −i c

4
, m2 =

c2

32 · 4!
G2, (2.58)

where G2 = 6GAB
CDGAB

CD. As before, one finds c = 2 by a backreaction analy-

sis [10].

Taking the flux

G̃AE
ED =


µ 0 0 0

0 µ 0 0

0 0 −µ 0

0 0 0 −µ

 , (2.59)

for µ = ±2m, m ≥ 0, one obtains immediately the deformed theory in [61,62] as in

the N = 8 case.
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Chapter 3

Open M2-branes with Flux and

Modified Basu-Harvey Equation

3.1 Boundary Condition for the BLG Theory Cou-

pled to Flux

3.1.1 Flux modified supersymmetric boundary condition

We now want to consider the open case of the flux modified BLG theory and derive

the boundary condition. In the previous chapter we ignored all boundary terms in

the derivation of the supersymmetric actions coupled to a flux and mass terms, this

was due to the closed boundary conditions of the M2-branes. In this chapter these

boundary terms have to be kept carefully. An analysis of open M2-branes without

the flux was carried out in [63].

Such boundary contributions arise from the fermion and scalar kinetic terms in

the Lagrangian LN=8 as these are the terms which are first and second order in

derivatives respectively and so can be written as total derivatives. When consider-

ing the boundary equations of motion we are only considering the supersymmetric

variations of the action (2.12), this is because we wish to study BPS configurations

of branes in M-theory and general variations of the action typically break all super-

symmetry. So we restrict to the supersymmetric cases which breaks some translation

invariance and then impose further boundary conditions and projectors to satisfy
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this breaking of Poincare symmetry. Any boundary conditions from the BLG theory

which are usually dropped are satisfied by such further boundary conditions, such

as the Dirichlet boundary conditions we will impose. Varying the Lagrangian (2.12)

with respect to the supersymmetry transformations (2.17)-(2.22) we obtain

δL =
i

2
∂µTr(Ψ̄Γµ, δΨ)− ∂µTr(δXI , DµXI) + bulk terms, (3.1)

where the ‘bulk terms’ denote non-total derivative terms and are precisely equal

to zero when the conditions (2.28)–(2.33) are satisfied. Let us choose a boundary

σ2 = 0 on the M2-branes worldvolume so then the variation of the action yields

δ

∫
d3σL =

i

2

∫
d2σ

(
Tr(Ψ̄Γ2, δΨ)− 2Tr(D2X

I , Ψ̄ΓIε)
)
, (3.2)

we then obtain the supersymmetric boundary condition

0 = DαX
IΨ̄Γ2ΓαΓIε− 1

6
[XI , XJ , XK ]Ψ̄Γ2ΓIJKε+

1

4
XMΨ̄Γ2G̃/ ΓMε−D2X

IΨ̄ΓIε,

(3.3)

where α = 0, 1 and the trace Tr is omitted for clarity. This is the most general su-

persymmetric boundary condition one may have for a system of open M2-branes in

the flux background [10]. This is a boundary equation of motion which so happens

to satisfy the bulk equation of motion of Basu-Harvey (with fluxes), the boundary

condition σ2 = 0 can be taken at other constant values to obtain slices of the bound-

ary equation along the bulk equation. Due to the different number of Γ-matrices

in each term, the equation (3.3) generically only has a trivial solution due to the

linear independence of the Γ-matrices. We may obtain non-trivial solutions when

we impose further conditions on the matter fields XI ,Ψ and projector conditions

on the supersymmetry parameter ε. Different conditions on these fields and param-

eters yield different configurations of multiple M2-branes ending on other M-theory

objects.

As previously mentioned, the study of the boundary conditions without flux was

carried out in [63], the type of solutions to the boundary condition are determined

by the number of scalars obeying a Dirichlet boundary condition (or more precisely

being set equal to zero). We consider the flux configuration (2.36) and perform

a similar analysis to [63] for the boundary condition (3.3) and find how much su-
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persymmetry is broken in the different configurations of open M2-branes with flux

ending on different M-theoretic objects.

3.1.2 Half Dirichlet: A flux modified Basu-Harvey equation

The half Dirichlet case corresponds to an ansatz for half of the transverse scalars to

be set to zero. We shall consider the case where we set

X3,4,5,6 = 0, (3.4)

which corresponds to a breaking of the R-symmetry from SO(8) to SO(4). Breaking

the supersymmetry in the directions of X3,4,5,6 is imposed by the projector

Γ01789(10)ε = ε, (3.5)

this is obtained from Γ012ε = ε and Γ0123456789(10) = 1. It then follows that

Γijkε = εijklΓ2Γlε, i, j, k, l = 7, 8, 9, 10; (3.6)

this term is useful for reducing the number of gamma matrices in the 3-bracket term

in the boundary equation of motion (3.3). Another useful relation to reduce the G̃/

term in (3.3) is given by

Γ2G̃/ ε = 2µ ε, (3.7)

where we used the form of the flux (2.36).

Using the above relations (3.4)-(3.7), the boundary condition (3.3) is reduced to

boundary equation of motion

0 = DαX
iΨ̄Γ2ΓαΓiε− 1

6
εijkl[X i, Xj, Xk]Ψ̄Γlε+

µ

2
X iΨ̄Γiε−D2X

iΨ̄Γiε. (3.8)

The first term in (3.8) is identically zero when we impose the projector condition

on the fermion

Γ01789(10)Ψ = −Ψ. (3.9)

This reduction in the degrees of freedom is consistent with the 1/2 BPS nature of

the projector (3.5) on the supersymmetry parameter ε. After eliminating the first

term, we obtain the boundary equation of motion by factorising the fermionic terms;

D2X
i = −1

6
εijkl[Xj, Xk, X l] +

µ

2
X i (3.10)
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for i, j, k, l = 7, 8, 9, 10. This is the Basu-Harvey equation in the presence of a specific

flux (2.36). Adding mass terms to the Basu-Harvey equation was first considered

in [13]To summarise, the supersymmetric boundary conditions are given by

Γ01789(10)Ψ = −Ψ,

D2X
i = −1

6
εijkl[Xj, Xk, X l] +

µ

2
X i,

X3,4,5,6 = 0,

DαX
i = 0, α = 0, 1. (3.11)

We must now check that the boundary conditions (3.11) are indeed supersym-

metric, i.e. we must check that they are invariant under the supersymmetry trans-

formations δ with supersymmetry parameter ε obeying Γ01789(10)ε = ε. Indeed, it is

simple to show that

δX i′ = 0, i′ = 3, 4, 5, 6 (3.12)

and

(1 + Γ01789(10)) δΨ = 0 (3.13)

using the conditions (3.5) and (3.9). For the Basu-Harvey equation (3.10), invariance

of supersymmetry requires that we impose the fermionic boundary equation

D2Ψ = −1

2
Γ2Γij[Ψ, X

i, Xj] +
µ

2
Ψ = 0. (3.14)

Indeed this equation is invariant under the supersymmetry transformations δ. The

last equation in (3.11) must also be invariant under supersymmetry, this requires a

new boundary condition

DαΨ = 0, α = 0, 1. (3.15)

So we include (3.15) to the set of boundary conditions (3.11).

In (3.5) we made a choice to preserve half the supersymmetry by the choice of

the projector’s sign, we can instead choose to preserve the other half; this results in

Γ01789(10)ε = −ε. (3.16)

The same analysis can then be repeated to derive the boundary conditions, thus the

Basu-Harvey equation is

D2X
i =

1

6
εijkl[Xj, Xk, X l]− µ

2
X i. (3.17)
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Applying the supersymmetry transformations on this new Basu-Harvey equation

(3.17) yields

D2Ψ =
1

2
Γ2Γij[Ψ, X

i, Xj]− µ

2
Ψ = 0. (3.18)

This can be interpreted as a system of M2-branes stretched between a single M5-

brane at σ2 = 0.

No Dirichlet: The M2-M9 system

We may now consider the case of keeping all eight scalar fields which corresponds

to having no Dirichlet boundary conditions. The object in M-theory which would

be described by this would be the M9-brane [64], so in our case we will examine the

supersymmetric boundary conditions of M2-branes with flux ending on an M9-brane.

The M9-brane projector condition is defined as

Γ013456789(10)ε = ε, (3.19)

which implies

Γ2ε = ε (3.20)

as a result of using Γ0123456789(10) = 1. We also have the M2-brane projector condition

Γ012ε = ε, so we actually have:

Γ2ε = ε = Γ01ε. (3.21)

The condition corresponding projector condition

Γ013456789(10)Ψ = Ψ (3.22)

is applied on the fermion.

We proceed to find the boundary equation of motion by considering the boundary

condition (3.3) and using the above conditions on ε and Ψ. It is clear that the first

term in (3.3) is zero by inserting the projectors. The penultimate term is interesting

as it is a linear combination of two products of three and five gamma matrices. Due

to the independence of the gamma matrices as a basis of the Clifford algebra, we

must impose that the coefficient of the Γ(5) term is zero, namely XI = 0. Thus the

term with the 3-bracket must also be zero. We have

D2X
I = 0 (3.23)
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and

XI = 0. (3.24)

So we see that there are no non-trivial solutions for a system of M2-branes with a

non-zero flux ending on an M9-brane.

Turning off the flux in (3.3) results in the problematic term described above to

have a combination of three and five gamma products to be zero. Then we only

have the three bracket term, which is proportional to Γ(3) and the derivative term

proportional to ΓI . The first term in the boundary condition vanishes for the same

reason as in the massive case. Again, independence of the gamma matrices yields

D2X
I = 0, [XI , XJ , XK ] = 0. (3.25)

This has been interpreted as an M9-brane occupying the directions 013456789(10)

where the M2-branes end on [63].

In the presence of flux, the system of M2-branes cannot end on an M9-brane

supersymmetrically as we only obtain a trivial solution for the scalar fields. This is

a result of our open M2-branes with flux analysis, it would be interesting to motivate

this from another area of string theory. One can consider the projectors of the M2

and M9-branes with flux and show that they are incompatible to prove that they

have indeed only the trivial solution. To carry out this analysis, one needs to first

construct the supergravity solution of an M9-brane with a constant flux and then

determine the preserved supersymmetry as performed in [64] for the case without

flux.

Another way to approach the problem is to compactify M-theory to IIA theory

on the x10 direction. The M2-M9 system then reduces down to a D2-D8 system.

The D8-brane is endowed with a worldvolume NS-NS B-field in the 78, 79 or 89

directions as a result of the reduction of the RR 4-form flux of M-theory and the

projector condition is given by

e−a/2Γ013456789(10)ea/2ε = ε, (3.26)

where a = 1
2
YIJΓIJΓ(10) and Y is a nonlinear function of B whose explicit form

can be found in [65]. Note that only the 78, 79 or 89 components are non-zero
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in our case. It is then clear that the supersymmetry preserved by the D8-brane is

incompatible with Γ012ε = ε of the D2-brane. Therefore the D2-D8 system and the

M2-M9 system are not supersymmetric.

All Dirichlet: M-wave

In M-theory there is an object called the M-wave, this is the uplift of the D0-brane to

M-theory and is the (1+1)-dimensional gravitational wave analogue. For a system of

M2-branes ending on an M-wave, we set all the eight scalars to zero at the boundary.

As a result, all the modifications due to flux vanish and the terms proportional to

XI vanish. We are left with the boundary condition

D2X
IΨ̄ΓIε = 0. (3.27)

This can be solved immediately if one imposes the projection conditions

(1− Γ2)ε = 0, (1 + Γ2)Ψ = 0. (3.28)

The solution has been interpreted as an M-wave where the M2-branes end on [63].

3.2 Boundary Condition for the ABJM Theory

Coupled to Flux

We turn to the N = 6 theory of N open M2-branes probing the orbifold C4/Zk

and repeat the analysis of the N = 8 case to find the various boundary equations

of motion. To proceed we note that the boundary contributions will come from a

supersymmetric variation of the scalar and fermionic kinetic terms

δL = −2∂µTr(δZ̄A, D
µZA)− i∂µTr(ψ̄A, γµδψA) + bulk terms, (3.29)

Choosing the boundary condition σ2 = 0 gives the boundary equation of motion

0 = − 2iTr
(
ψ̄BεAB, D

2ZA
)
− iTr

[
ψ̄Aγ2, γµεABDµZ

B

+
2π

k

(
− εAB(ZCZ̄CZ

B − ZBZ̄CZ
C) + 2εCDZ

CZ̄AZ
D
)

+ ωεDFZ
F G̃AE

ED
]
. (3.30)
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The nice form of the flux (2.59) can be written simply as

G̃AE
ED = µδDA ηA, (3.31)

where ηA is the sign defined as

ηA =

+1 if A = 1, 2

−1 if A = 3, 4

. (3.32)

Substituting the form of the flux in (3.30), we obtain the boundary equation of

motion

0 = ψ̄A
[

2D2ZB − γ2γµDµZ
B + γ2 2π

k

(
ZCZ̄CZ

B − ZBZ̄CZ
C
)

−µ
2
ηAγ

2ZB
]
εAB −

4π

k
ψ̄Fγ2εABZ

AZ̄FZ
B, (3.33)

where the trace products are understood. This is the most general supersymmetric

boundary equation of motion for open M2-branes in the N = 6 theory with our

specific flux configuration.

To analyse the boundary condition, we introduce the following notation; A =

(a, i) where we split the SU(4) indices and denote ZA = (Xa, Y i), ψA = (χa, ξi),

where a = 1, 2 corresponds to the spacetime directions 3456 and i = 1, 2 corresponds

to the spacetime directions 789(10). The antisymmetric supersymmetry parameter

εAB is in the 6 representation of SU(4), it decomposes as [63]

εAB =

 εabε εai

−εai εij ε̃

 . (3.34)

Recasting the boundary equations of motion (3.33) in terms of the new fields yields:

0 = χ̄aεab

[
2D2Xb − γ2γµDµX

b + γ2 2π

k

(
ZCZ̄CX

b −XbZ̄CZ
C
)
− µ

2
γ2Xb

]
ε

−4π

k
εabψ̄

Fγ2εXaZ̄FX
b, (3.35)

0 = χ̄a
[

2D2Y i − γ2γµDµY
i + γ2 2π

k

(
ZCZ̄CY

i − Y iZ̄CZ
C
)
− µ

2
γ2Y i

]
εai

−4π

k
ψ̄Fγ2εaiX

aZ̄FY
i, (3.36)
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0 = ξ̄i
[

2D2Xa − γ2γµDµX
a + γ2 2π

k

(
ZCZ̄CX

a −XaZ̄CZ
C
)

+
µ

2
γ2Xa

]
εai

−4π

k
ψ̄Fγ2εaiY

iZ̄FX
a, (3.37)

0 = ξ̄iεij

[
2D2Y j − γ2γµDµY

j + γ2 2π

k

(
ZCZ̄CY

j − Y jZ̄CZ
C
)

+
µ

2
γ2Y j

]
ε̃

−4π

k
εijψ̄

Fγ2ε̃Y iZ̄FY
j. (3.38)

These four equations are independent and we will have to impose further conditions

on the fields in order to obtain the boundary equations of motion we expect.

3.2.1 Flux modified Basu-Harvey equation

As with the N = 8 case we can consider the half Dirichlet case which amounts to

setting half the scalar fields to zero, so we take Y i = 0. This condition reduces the

R-symmetry from SU(4) to SU(2). First we consider equations (3.35) and (3.37), it

turns out that the second term “γµDµX
a” in these equations vanishes1 for µ = 0, 1.

Assuming that this is true, the boundary equations of motion (3.35) and (3.37)

become

0 = χ̄aεab

[
D2Xb + γ2 2π

k

(
XcX̄cX

b −XbX̄cX
c
)
− µ

2
γ2Xb

]
ε− 4π

k
εcdχ̄

aγ2εXcX̄aX
d

(3.39)

and

0 = ξ̄i
[
D2Xa + γ2 2π

k

(
XcX̄cX

a −XaX̄cX
c
)

+
µ

2
γ2Xa

]
εai. (3.40)

The two equations are not compatible with each other in general, however it is

possible to impose suitable supersymmetry projection conditions on the spinors ε

and εai so that these two equations become equivalent for the bosonic parts. The

needed projector conditions are

(1 + γ2)ε = 0 = (1 + γ2)ε̃ (3.41)

(1− γ2)εai = 0, (3.42)

1We will come back to this later
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or equivalently

(1− γ2)ε = 0 = (1− γ2)ε̃, (3.43)

(1 + γ2)εai = 0. (3.44)

As a result, (3.39) and (3.40) are identical since we can use the simple identity

XcX̄cX
b −XbX̄cX

c = εbaεcdXcX̄aX
d. (3.45)

The modified Basu-Harvey equation with a mass term is then obtained

D2X
a ± 2π

k

(
XcX̄cX

a −XaX̄cX
c
)
± µ

2
Xa = 0, (3.46)

where the + sign corresponds to the choice (3.41), (3.42) and the − sign corresponds

to the choice (3.43), (3.44). We may also write the Basu-Harvey equation in terms

of the Hermitian 3-bracket

D2X
a ±

[
Xc, Xa; X̄c

]
± µ

2
Xa = 0. (3.47)

This is the mass deformed Basu-Harvey equation for the flux modifiedN = 6 theory.

The complete set of supersymmetric boundary conditions are given by

D2X
a ±

[
Xc, Xa; X̄c

]
± µ

2
Xa = 0

DαX
a = 0

Y i = 0. (3.48)

In the following we consider the choice of projectors (3.41), (3.42) which give + signs

in the Basu-Harvey equation

D2X
a +

2π

k

(
XcX̄cX

a −XaX̄cX
c
)

+
µ

2
Xa = 0. (3.49)

The analysis for the other choice of projector conditions is exactly the same.

We now wish to check that the boundary conditions (3.48) are indeed supersym-

metric. We have δY i = iεiaχa + iεij ε̃ξj, the boundary condition Y i = 0 is indeed

supersymmetric invariant after imposing (3.41) and (3.42), if

(1 + γ2)χa = 0, (3.50)

(1− γ2)ξi = 0. (3.51)
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The conditions (3.36) and (3.38), which read

χ̄aεaiD2Y
i = 0, (3.52)

and

ξ̄iεij ε̃D2Y
j = 0, (3.53)

after the boundary condition Y i = 0 are now satisfied immediately as a result of the

projection conditions (3.41), (3.42), (3.50), (3.51). It is also easy to see that these

projection conditions are supersymmetric invariant. Moreover, supersymmetry on

(3.46) requires the fermionic boundary equations

D2χc − [χc, X
a; X̄a] + 2[χd, X

d; X̄c]−
µ

2
χc = 0, (3.54)

D2ξj + [ξj, X
a; X̄a]− εjkεab[Xa, Xb; ξk]−

µ

2
ξj = 0. (3.55)

As for the above assumption of the vanishing of the terms of the form “γµDµX
b”

in the equations (3.35) and (3.37), one can see that it follows immediately from the

projection conditions (3.41) and (3.50), and respectively (3.42) and (3.51).

The Basu-Harvey equation (3.49) can be readily solved by employing the ansatz

Xa(s) = f(s)Ra, (3.56)

where s = x2 and Ra are N ×N matrices satisfying the relation

RcR
†

cR
a −RaR

†

cR
c = −Ra, (3.57)

then we obtain

f ′ − 2π

k
f 3 +

µ

2
f = 0. (3.58)

The equation (3.57) has been solved in [61] and the irreducible solution is

(R1)mn = δm,n
√
m− 1, (R2)mn = δm−1,n

√
N −m+ 1, m, n = 1, · · · , N. (3.59)

A direct sum of such blocks is also a solution. The equation (3.58) is the same

equation as in the N = 8 theory. This is how the M2-M5 intersection is represented

in the N = 6 theory.
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3.2.2 M9 and M-Wave Solutions

Finally, let us comment briefly on the no Dirichlet and all Dirichlet cases. For the

no Dirichlet case, we find only the trivial solution Xa = Y i = 0 as in the N = 8

theory. As for the all Dirichlet case, since the flux modifications all go away when

all the scalars are set to zero at the boundary, the boundary conditions (3.35)-(3.38)

reduce to exactly the same form as in flux-less case and one gets M2-branes ending

on an M-wave [63].

3.3 Summary

In this Chapter we generalised the boundary analysis of [63] to include fluxes as

constructed in [10]. In general the boundary condition (3.3) has a trivial solution,

this is due to the Γ-matrices being linearly independent. To obtain non-trivial so-

lutions, we had to impose conditions on the transverse scalar fields which required

us to demand further supersymmetry projector conditions; preserving supersym-

metry in the surviving directions. This lead to the Basu-Harvey equation with a

mass deformation which describes the profile of multiple M2-branes ending on an

M5-brane. The system is 1/2-BPS due to having to impose the projector (3.5),

(3.9). The boundary analysis was carried out for both BLG and ABJM theories. A

generalisation for the M-theory Myers terms was constructed in [66] and it would

be interesting to compare the analysis of this with the results obtained here.

It was also possible to consider the mass deformed M2-branes ending on an M9-

brane, but it turns out that only the trivial solution is possible here. However in [63],

we can see that there is a solution (3.25). So with the flux, it is not possible to find

a supersymmetric solution.
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Chapter 4

Lorentzian 3-Algebras and a

Reduction to D2-Branes

The BLG theory [11–13] was constructed in terms of the Lie 3-algebra A4, which

turned out to be the unique indecomposable 3-algebra solution to the generators

that satisfied the fundamental identity (1.22) for a Euclidean inner product [18,19].

The motivation for using A4 was to construct the Basu-Harvey equation [22] which

is a generalisation of the Nahm equation for describing M2-branes ending on an

abelian M5-brane.

In order to find a new 3-algebra which is not given by A4 we must relax some

assumptions, if we consider a Lorentzian inner product instead of a Euclidean one

this can indeed give us a new 3-algebra. It was shown in [31–34, 67, 68] that the

Lorentzian BLG theory reduces to an exact N = 8 SYM theory of multiple D2-

branes, as opposed to the novel Higgs mechanism reduction for the original BLG

theory [30] which gives higher order corrections.

In this chapter we review the Lorentzian BLG theory in the first section and

derive the D2-brane action but will keep the boundary terms in the action. The

literature [31–34,67,68] is collated and made consistent, we will adopt the notation

of [31]. In the second section we will apply the Lorentzian 3-algebra to the flux

modified BLG theory and analyse its reduction, carefully keeping the boundary

terms for the action. In the last section we will derive the supersymmetric boundary

condition on open D2-branes with flux and find the mass deformed Nahm equation.
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4.1 Lorentzian 3-algebras and D-branes

The main concept behind the Lorentzian 3-algebra is to introduce two extra gener-

ators to a standard Lie algebra G and then to impose a 3-bracket which will give us

Lie algebra structure constants, let us review the approaches of [31,34] in particular.

Consider a Lie algebra G of a compact gauge group G with generators T i, i =

1, ..., dimG such that

[T i, T j] = f ij
kT

k, (4.1)

equipped with a Killing form hij = δij. Then the Lorentzian 3-algebra is defined by

a set of generators T a = {T+, T−, T i}, with a 3-bracket specified by[
T a, T b, T c

]
= fabcdT

d, a = +,−, i, (4.2)[
T−, T a, T b

]
= 0, (4.3)[

T+, T i, T j
]

= f ij
kT

k, (4.4)[
T i, T j, T k

]
= f ijkT−. (4.5)

This algebra satisfies the fundamental identity (1.22). We still impose the relation

(1.19) and this means that the invariant metric on this Lorentzian 3-algebra is

Tr(T−, T+) = −1,

Tr(T i, T j) = δij, (4.6)

with all other products vanishing. One may expand all the fields of the BLG theory

with respect to the generators T a in the following way

XI = XI
aT

a = XI
−T
− +XI

+T
+ + X̂I , (4.7)

where X̂I = XI
i T

i are the modes corresponding to the Lie algebra G, similar expres-

sions can be obtained for the fermions Ψ and gauge field Ãµ. By applying all the

above rules one obtains the action for a Lorentzian BLG theory [32],

LLorentz = −1

2
Tr(D̂µX̂

I −BµX
I
+)2 + ∂µXI

+(∂µX
I
− − Tr(Bµ, X̂

I)) +
1

2
εµνλTr(BλFµν)

+
i

2
Tr( ˆ̄ΨΓµ, (D̂µΨ̂−BµΨ+))− i

2
Ψ̄+Γµ(∂µΨ− − Tr(Bµ, Ψ̂))− i

2
Ψ̄−Γµ∂µΨ+

+
i

2
Tr( ˆ̄ΨΓIJXI

+[X̂J , Ψ̂]) +
i

4
Tr( ˆ̄ΨΓIJ [X̂I , X̂J ]Ψ+)− i

4
Tr( ˆ̄Ψ+ΓIJ [X̂I , X̂J ]Ψ̂)

− 1

12
Tr
(
XI

+[X̂J , X̂K ] +XJ
+[X̂K , X̂I ] +XK

+ [X̂I , X̂J ]
)2

, (4.8)
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where I = 3, . . . , 10. The gauge field Aµ is for the compact gauge group G. The

gauge field Bµ is defined by Bµ = Aµijf
ij

kT
k and the theory is invariant under an

extra non-compact gauge symmetry associated with Bµ:

δBµ = Dµζ, δX̂I = ζXI
+, δXI

− = Tr(ζ, X̂I),

δΨ̂ = ζΨ+, δΨ− = Tr(ζ, Ψ̂). (4.9)

The fields Aµ, Bµ, X̂
I , Ψ̂ transform in the adjoint of the gauge group and all the

other fields are singlets. The supersymmetry transformations decompose under the

new generators as

δ0X
I
− = iε̄ΓIΨ−, (4.10)

δ0X
I
+ = iε̄ΓIΨ+, (4.11)

δ0X̂
I = iε̄ΓIΨ̂, (4.12)

δ0Âµ =
i

2
ε̄ΓµΓI(XI

+Ψ̂− X̂IΨ+), (4.13)

δ0Bµ = iε̄ΓµΓI [X̂I , Ψ̂], (4.14)

δ0Ψ− = (∂µX
I
− −BµX

I)ΓµΓIε− 1

3
X̂IX̂JX̂KΓIJKε,

δ0Ψ+ = ∂µX
I
+ΓµΓIε, (4.15)

δ0Ψ̂ = D̂µX̂
IΓµΓIε− 1

2
XI

+[X̂J , X̂K ]ΓIJKε. (4.16)

A special feature of the Lagrangian (4.8) is that the fields XI
−,Ψ− appear linearly.

For convenience let us collect the terms containing XI
−,Ψ−, they are

Lgh = ∂µX
I
+∂

µXI
− − iΨ̄+Γµ∂µΨ−. (4.17)

We have called these ghost terms since Lgh has an indefinite metric and is hence

non-unitary. To proceed, we may integrate out XI
−,Ψ− and obtain the equations of

motion:

∂2XI
+ = 0, (4.18)

Γµ∂µΨ+ = 0. (4.19)

A solution to (4.18) and (4.19) which preserves gauge symmetry and supersymmetry

is given by

XI
+ = v0δ

I
10, (4.20)

Ψ+ = 0, (4.21)
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where v0 is some real constant. If we substitute (4.20), (4.21) and integrate out the

Bµ field in the Lagrangian (4.8), we obtain

L = −1

2
(D̂µX̂

I)2 +
i

2
Tr( ˆ̄Ψ,ΓµDµΨ̂)− 1

4v2
0

Tr(Fµν , F
µν)− v2

0

4
Tr([X̂I , X̂J ], [X̂I , X̂J ])

+
iv0

2
Tr( ˆ̄ΨΓ(10)I [X̂I , Ψ̂]) + ∂λ

(
εµνλF̂µνX̂

10

2v0

)
, (4.22)

where we have kept the boundary term for later discussions on flux modified D2-

brane theories. For a closed theory, the Lagrangian (4.22) is the maximally su-

persymmetric N = 8 SYM theory in 2+1 dimensions describing the low energy

D2-brane theory. The only dependence of X̂10 is in the boundary term for the

open theory, this means we must impose a boundary condition in order to decouple

the field from the theory to obtain the correct field content and SO(7) invariance.

Furthermore, supersymmetric invariance of the boundary theory gives non-trivial

boundary conditions, namely the Nahm equation, so we will study these in the sub-

sequent sections. In particular more projector conditions must be imposed on ε and

so this indicates the presence of a brane at the boundary, we will examine the D2-D4

1/2 BPS configuration.

4.2 Multiple D2-branes in a background flux

In this section we will extend the results of [10] to the case of Lorentzian 3-algebras

and in doing so we will obtain the mass-deformed D2-brane theory. It is not difficult

to see that by applying the rules of the previous section in (2.14) and (2.15) we obtain

the flux and mass terms for the model

Lflux = 2G̃IJKLTr(XI , [XJ , XK , XL])

= −8G̃IJKLX
I
+X̂

L[X̂J , X̂K ], (4.23)

Lmass = −1

2
m2Tr(XI , XI)− i

8
Tr(Ψ̄,ΓIJKLΨ)G̃IJKL

= −1

2
m2X̂IX̂I +m2XI

+X
I
−

− i
8

ˆ̄ΨΓIJKLΨ̂G̃IJKL +
i

4
Ψ̄+ΓIJKLΨ−G̃IJKL. (4.24)

As an aside, we note it is easy to check that the gauge symmetry (4.9) extends to

the flux and mass Lagrangians (4.23), (4.24). We will take µ = 2m in the following
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analysis as chosen in [10].

The equations (4.18) and (4.19) are modified due to the presence of of new terms

in (4.23) and (4.24) linear in T− modes, the resulting changes are

∂2XI
+ −m2XI

+ = 0, (4.25)

iΓµ∂µΨ+ −
i

4
ΓIJKLΨ+G̃IJKL = 0. (4.26)

These are the Klein-Gordon and Dirac equations respectively. We will next show

that one is able to pick solutions to XI
+ and Ψ+ which preserves gauge invariance

and supersymmetry.

The supersymmetry transformations remains the same for the bosons as in (4.10)

but the flux modifies the supersymmetry transformations for the fermions

δΨ− = (∂µX
I
− −BµX

I)ΓµΓIε− 1

3
X̂IX̂JX̂KΓIJKε+

1

4
G̃/ ΓMεXM

− , (4.27)

δΨ+ = ∂µX
I
+ΓµΓIε+

1

4
G̃/ ΓMεXM

+ , (4.28)

δΨ̂ = D̂µX̂
IΓµΓIε− 1

2
XI

+[X̂J , X̂K ]ΓIJKε+
1

4
G̃/ ΓMεX̂M . (4.29)

Using a (−++) metric for spacetime, the simplest non-trivial solution to (4.25) and

(4.26) is

Ψ+ = 0, (4.30)

XI
+ =

v0e
mσ1δI10, or

v0e
imtδI10,

(4.31)

where v0 ∈ R and we pick the real solution in (4.31) for physical reasons.

We will now consider the first solution with the σ1 dependence and for conve-

nience we will denote this solution with v = v0e
mσ1 below. It is easy to see that the

solution (4.30) is supersymmetrically invariant. In fact for the flux (2.34), we have

δΨ+ = mvΓ2(10)(1− Γ2R′)ε, where R′ is defined by RΓ(10) = Γ(10)R′. Therefore the

configuration (4.30) is supersymmetrically invariant for ε satisfying

(1− Γ2R′)ε = 0. (4.32)

Since the projectors (2.24), (4.32) commute, 8 supersymmetries are preserved and

so this is a 1/2-BPS configuration.

June 27, 2012



4.2. Multiple D2-branes in a background flux 64

Now that we have examined what solutions to XI
+,Ψ+ we can have, we substitute

the solution (4.30) and the σ1 dependent solution in (4.31) and integrate out the Bµ

field. The Lagrangian that consists of (4.22), (4.23) and (4.24) then reads

L = −1

2
(D̂µX̂

A)2 − 1

4v2
Tr(Fµν , F

µν)− v2

4
Tr([X̂A, X̂B], [X̂A, X̂B])

+
i

2
Tr( ˆ̄Ψ,ΓµDµΨ̂) +

iv

2
Tr( ˆ̄Ψ,Γ(10)A[X̂A, Ψ̂])

−8vG̃(10)ABCTr(X̂A, [X̂B, X̂C ])− i

2
Tr( ˆ̄Ψ,Γ(10)ABCΨ)G̃(10)ABC

−1

2
m2Tr(X̂A, X̂A)− i

8
Tr( ˆ̄Ψ,ΓABCDΨ)G̃ABCD

+∂λ

(
εµνλ

2v
Tr(F̂µν , X̂

10)

)
− m

2
∂1Tr(X̂10, X̂10), (4.33)

where the indices A,B,C,D = 3, · · · , 9 are the SO(7) invariant indices of the R-

symmetry for the D2-brane theory. The boundary terms in (4.33) are the total

derivatives, these terms vanish for a closed boundary condition. They are non-

trivial for the open boundary case and we shall discuss them in some more detail

later. The RR coupling G̃ splits into a 4-form and 3-form under the integral in the

action, this is a feature that will be discussed later.

Since the Lambert-Richmond action is supersymmetric with 16 supercharges and

the solution (4.31) is 1/2-BPS, by construction our action (4.33) is supersymmetric

and preserves 8 supersymmetries:

δX̂A = iε̄ΓAΨ̂, (4.34)

δΨ̂ = D̂µX̂
AΓµΓAε− 1

2v
εµνλF̂

νλΓµΓ10ε− v

2
[X̂A, X̂B]ΓAB(10)ε+

1

4
G̃/ ΓAεX̂A,(4.35)

δÂµ =
iv

2
ε̄ΓµΓ(10)Ψ̂. (4.36)

These are found by substituting the solutions (4.30), (4.31) into the supersymmetry

transformations (4.10)-(4.16) and the contributions due to the flux in (4.27)-(4.29).

Note that here the variable v depends on the mass m and so the modifications to

the supersymmetry transformations of SYM in 2 + 1 dimensions is non-trivial but

still preserves some supersymmetry.

The Lagrangian (4.33) can be understood as the worldvolume theory of D2-

branes with a space(time) dependent coupling gYM = v and coupled to NS-NS and

R-R fluxes. In 10 dimensions, the flux G̃ABCD is identified with the R-R 4-form flux

June 27, 2012



4.3. Multiple D2-branes ending on a D4 65

of the 3-form potential C3 and G̃(10)ABC is identified with the NS-NS 3-form flux of

the 2-form potential B2 of the D2-brane theory. The term in (4.33) proportional

to G̃(10)ABC can be traced back as the low energy limit of the Myers’ action [58],

together with its superpartner. The terms proportional to m2 and G̃ABCD are typical

of couplings to the R-R fields. Supersymmetric Yang-Mills theories with a spacetime

dependent coupling were originally constructed in [69, 70] and are known as Janus

field theories.

The massive D2-brane theory with a boundary contains terms with the field X̂10,

these arise from the contributions from the total derivatives. The presence of this

field means that there is an additional symmetry in the theory that we do not want

if we are really describing D2-branes with an SO(7) R-symmetry. These decouple

in the closed case trivially but for the open case we need to examine this boundary

condition further to check that this does indeed decouple in a way that will preserve

the supersymmetry of the theory without breaking more or all of it, this shall be

discussed next.

4.3 Multiple D2-branes ending on a D4

The supersymmetric boundary conditions for the flux modified Lorentzian Bagger-

Lambert theory are now derived and we will discuss the issues discussed at the end of

the previous section. Since the field XI
− has been integrated out, the boundary con-

dition (3.10) cannot be applied immediately and one needs to derive the boundary

condition from the reduced action (4.33) directly.

There are two possible boundary conditions one can write down for (4.33), these

correspond to choosing σ1 = 0 and σ2 = 0 respectively. The reason why these

two choices are unique is because rotational invariance is broken due to the σ1

dependence of the coupling v and so the two are no longer equivalent. The two

cases which decouple the X̂10 are

Tr(2F̂02X̂
10 +mv(X̂10)2) = 0, boundary at σ1 = 0, (4.37)

Tr(F̂01X̂
10) = 0, boundary at σ2 = 0. (4.38)

It so turns out that (4.37) breaks all supersymmetry, we will choose the boundary
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condition (4.38) for now and justify it in what follows.

To find the boundary equation of motion we repeat the procedure of the mass

deformed BLG theory, so we perform a supersymmetric variation of the Lagrangian

given by

δL =
i

2
∂µTr( ˆ̄Ψ,ΓµδΨ̂)− ∂µTr(δX̂A, D̂µX̂A) + bulk terms. (4.39)

The boundary condition σ2 = 0 under the integral of the action gives

δ

∫
d3σL =

i

2

∫
d2σ

(
Tr( ˆ̄Ψ,Γ2δΨ̂)− 2Tr(δXA, D̂2X̂

A)
)
, (4.40)

so we obtain the boundary equation of motion

D̂µX̂
A ˆ̄ΨΓ2ΓµΓAε− v

2
[X̂A, X̂B] ˆ̄ΨΓ2Γ(10)ABε− 1

2v
εµνλF̂

νλ ˆ̄ΨΓ2Γµ(10)ε

+
1

4
ˆ̄ΨΓ2G̃/ ΓAεX̂A − 2D̂2X̂

A ˆ̄ΨΓAε = 0, (4.41)

where, µ = 0, 1, 2 and the Tr products are understood.

Now that we have a boundary equation of motion we can consider a BPS config-

uration of D2-branes ending on another brane, we will study the 1/2-BPS equation

of multiple D2-branes ending on a D4-brane. In general a system of two intersecting

D-branes is supersymmetric if the relative transverse space has dimension in multi-

ples of 4, so we will consider a setup for a solution to the boundary condition (4.41)

with

X̂3,4,5,6 = 0. (4.42)

This corresponds to a half Dirichlet boundary condition for a D4-brane with its

worldvolume lying in the 01789-directions, as a result the R-symmetry is broken

from SO(7) to SO(3). We also impose the condition

Γ01789(10)ε = ε. (4.43)

as well as (2.24), so we are left with 4 supercharges in our theory. Note that this

method of projecting out the supersymmetry is not the same as the D4-brane pro-

jector in the κ-symmetric formulation of D-branes as in [65, 71], the effect of a

background flux is already encoded in terms of the flux modified M2-branes descrip-

tion and so the D4-brane supersymmetry is simply given by (4.43) in the Lorentzian

M2-branes model.
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From the above, we can derive the following relations which will be useful in

simplifying the boundary equation of motion (4.41):

Γ(10)ijε = −εijkΓ2Γkε, (4.44)

Γ2G̃/ ε = 4mε, (4.45)

where we have used the indices i, j, k = 7, 8, 9. Note that here we have also used

the flux (2.36) for the same reasons as that for the projector condition, here we also

take µ = 2m. We also impose the projector on the fermion

Γ01789(10)Ψ = −Ψ. (4.46)

It follows that δÂα = 0 for α = 0, 1 and hence F̂01 is supersymmetric invariant.

Therefore one can impose the supersymmetric boundary condition

F̂01 = 0, (4.47)

which also implies (4.38).

The boundary equation of motion (4.41) can now be simplified by using the

relations (4.44),(4.45) to

D̂2X̂
i =

1

2
vεijk[X̂j, X̂k] +mX̂ i. (4.48)

This Nahm equation differs from (1.7) in a few ways but still describes the profile

of the D4-brane where the D2-branes end. Note that the commutator term is also

mass dependent as v depends on m and σ1. Also we have the additional mass term

proportional to X̂ i. To see how these changes effect the ODE that we obtain from

(4.48), we propose the following ansatz for the fuzzy funnel solution:

X̂ i(σ2) = f(σ2)T i, (4.49)

where T i obey the SU(2) algebra1 [T i, T j] = εijkT k and f(σ2) obeys the ODE

f ′ = vf 2 +mf. (4.50)

1We use a different convention here to (1.7) and so this takes into account the factor of 2i in

the structure constant given here.
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A solution to this ODE is given by

f =
m

ce−mσ2 − v
, (4.51)

where c is a constant. We can expand the solution for a small mass m as

f = v−1
0 /(s0 − σ2), (4.52)

where s0 is a constant, this is precisely the expected profile in the absence of flux

and so we find an agreement in this certain small m limit as in Figure 4.1.

The solution (4.51) describes a fuzzy sphere, given by

9∑
i=7

(X̂ i)2 = R2, (4.53)

whose radius R = Cf(σ2) depends on the Casimir C of the representation as well as

f(σ2). Since v actually depends on σ1 the fuzzy funnel has an S2 cross section whose

radius depends on both σ1 and σ2, this is a new feature of the flux we consider.

1.5 2.0 2.5 3.0 3.5 4.0
Σ

-4

-2

2

4

f

Figure 4.1: The profile of multiple coincident D2-branes blowing up into an Abelian

D4-brane via a fuzzy S2 in the presence of a small mass term m and v0 = s0 = 1.

The boundary conditions (4.42), (4.46) and (4.48) are indeed invariant under

supersymmetry and this can be checked with the projectors and supersymmetry
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transformations. Before we mentioned that we could have two possible boundary

conditions, one at σ1 = 0 and one at σ2 = 0. We now turn to the case σ1 = 0

and discuss its implications. We can repeat the analysis above exactly in the same

way with only a straightforward substitution of the index 2 to 1 in the equations

(4.40)-(4.46). However, it is easy to convince oneself that there is no way to impose a

supersymmetric boundary condition such that (4.37) holds. This is due to the fact

that X̂10 has a non-trivial supersymmetry variation. Therefore we conclude that

with the solution v = v0e
mσ1 , the flux modified Lorentzian Bagger-Lambert theory

is 1/2-BPS if there is a boundary at σ2 = 0. On the other hand, if the boundary is

at σ1 = 0, all supersymmetries are broken.

4.4 Summary

In this Chapter, we explored the applications of the Lorentzian 3-algebra to our

boundary analysis. The motivation behind this was to explore what could be studied

about 3-algebras when we move away from the Lie 3-algebra A4. The difference with

the Lorentzian 3-algebra and the novel Higgs mechanism is that the Lorentzian re-

duction gives no higher order terms to the N = 8 SYM theory in (2+1)-dimensions.

We then collated the literature on the Lorentzian 3-algebra into a consistent

construction of the N = 8 SYM in (2 + 1) dimensions, here we kept the boundary

terms after integrating out the decoupled ghost terms. A boundary condition must

be imposed to obtain the correct SO(7) R-symmetry of the multiple D2-brane theory.

The flux terms of the Lambert-Richmond model were added to the action in

the Lorentzian 3-algebra; after some modifications to the ghost terms we were able

to integrate them out, but this time the couplings were dependent on spacetime

coordinates. Theories with couplings which are spacetime dependent are known as

Janus field theories. Again all boundary terms were kept for consistency. We note

that the 4-form G̃IJKL splits into a RR 4-form G̃ABCD and a NS-NS G̃(10)ABC , these

terms can be traced back as Myers’ terms from the Chern-Simons action.

Finally the multiple D2-brane system was studied in the D2-D4 configuration.

In a similar fashion to the M2-M5 system, we obtained the mass deformed Nahm
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equation by imposing the D4-brane projector and turning off four transverse scalar

fields; reducing the SO(7) to an SO(3) symmetry. A new type of fuzzy funnel

solution was obtained for the 1/2-BPS system with boundary at σ2 = 0. What

would be interesting is to find the D2-D6 system by imposing a suitable projector,

both for the massive and massless case.
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Chapter 5

Quantum Geometries in String

Theory

This chapter focuses on the concept of matrix models in string theory and their com-

pactifications, also we will look at noncommutative geometry within these models.

Finally we will consider an example of a higher dimensional analogue of noncommu-

tative geometry in M-theory, particularly on M5-branes. This will allow us to have

a better understanding of the motivations of the following two chapters.

5.1 Matrix Models

In this section we will review what a matrix model is and why they are useful in

string theory, for a review of the general field see [72]. A matrix model is a theory in

which the fields are matrix valued. These matrices can be put into multidimensional

actions, i.e. have space-time dependence, or be constant random matrices for a zero

dimensional action.

In string theory, we are mainly interested in the 0 + 0 and 0 + 1 dimensional

matrix models named the IKKT and BFSS models respectively [73, 74]. Starting

from the 10D Super Yang Mills action, reductions of this give the various D-p-branes

of string theory for 0 ≤ p + 1 ≤ 10. The choices p = −1 and p = 0 give the IKKT

and BFSS models respectively, we shall now study these models in more detail.
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5.1.1 The IKKT Matrix Model

Let us consider the IKKT model from the choice p = −1. The action for the 10D

Super Yang Mills theory is given by

S =

∫
d10x

(
− 1

4g2
YM

tr(FµνF
µν) +

i

2g2
YM

tr(Ψ̄γµDµΨ)
)
, (5.1)

where µ = 0, ..., 9 and gYM is the coupling constant. Here we choose

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ], (5.2)

where the gauge field Aµ and fermion Ψ are in the adjoint representation of SU(N).

If we now consider a dimensional reduction to a zero dimensional action, we

obtain

S = − 1

4g2
tr[Xµ, Xν ]

2 − 1

2g2
trΨ̄γµ[Xµ,Ψ]. (5.3)

Here we use the notation where the gauge field Aµ is usually split into Aµ =

(Ai, X(9−i)) where X is now a transverse scalar. In the case of a complete reduction

to a zero dimensional action we can simply replace the A’s with X’s. The fields

X and Ψ are N × N constant matrices. The action (5.3) is invariant under the

supersymmetry transformations

δXµ = ε̄γµΨ (5.4)

δΨ =
i

2
[Xµ, Xν ]γ

µνε. (5.5)

The gauge symmetry acting on the fields is given by

Xµ → U−1XµU, U ∈ SU(N). (5.6)

The theory is also invariant under shifts proportional to the identity

Xµ → Xµ + aµ1, aµ ∈ R1,9, (5.7)

as any term proportional to the identity in the commutator in the action (5.3) is

trivially zero. It is also invariant under a SO(10) Euclideanised rotational symmetry

generated by Λ,

Xµ → Λµ
νXν . (5.8)
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So we have a matrix model which is Poincare invariant, we will not have this luxury

in the BFSS model as we will be working in a light cone gauge.

The action (5.3) describes an instantonic object, namely a D(-1)-brane. It is

possible to compactify this along tori to give us all the D-branes in type IIB string

theory, so this matrix model is seen as describing all the objects in type IIB string

theory.

As we shall see next, the other reduction to a D0-brane will give us the even

numbered D-p-branes of type IIA string theory. The examples of compactifying

these two matrix models to give higher dimensional D-branes will be covered later

in this section.

5.1.2 The BFSS Matrix Model

The BFSS model is a reduction of the 10D SYM theory to one time direction, hence

it describes a quantum mechanical action. In their paper, BFSS considered 11D

M-theory compactified on a circle S1 to give a 10D theory with large momenta in

the compactified x11 direction.

The resulting action is given by

S =
1

2gsls

∫
dt tr

[
DtX

µDtXµ +
1

2
[Xµ, Xν ]

2 + iΨ̄DtΨ− iΨ̄γµ[Xµ,Ψ]
]
, (5.9)

where we have nine Xµ which are N×N matrices and Ψ is the 16 component spinor

which is Grassmann valued in an N × N matrix. Note that we can gauge fix the

action with A0 = 0 and so it reduces to

S =
1

2gsls

∫
dt tr

[
ẊµẊµ +

1

2
[Xµ, Xν ]

2 + iΨ̄Ψ̇− iΨ̄γµ[Xµ,Ψ]
]
, (5.10)

this is known as the BFSS matrix model. The remarkable thing about the BFSS

matrix model is that although it describes D0-branes, and by extension all type

IIA D-branes, the value gsls is the M-theory radius R11. This allows us to rewrite

the action from an M-theoretic point of view.

The type IIA theory contains D0, D4, D6 and D8-branes in addition to the D2-

branes, so what can we say about these other branes in the model? If we compactify

M-theory on a circle and go to the infinite momentum frame, then only states with
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positive D0-brane charge are left in the physical description as shown in [74]. But

these happen to be all the D-branes in the type IIA theory since the worldvolume

Born-Infeld terms for each of the D-branes are of the form F ∧ · · · ∧ F with p/2

terms, hence the Dp-branes (p even) are charged under the RR C1.

The reason why it is not necessary to include the higher Dp-branes (p even)

is because they can be constructed out of the D0-branes and so they are already

included. This is so is because in flat space, the worldvolume action for such a

system of Dp-branes is given by

SYM =

∫
dp+1σ [XI , XJ ]2, (5.11)

where XI = (Xµ, X i), µ = 0, 1, · · · , p, i = p + 1, · · · , 9 and Xµ = iDµ and a

background with non-trivial F∧n is assumed. In this way one can see that all the

higher Dp-brane actions can actually be constructed from the D0-branes and so it

is sufficient to include only the D0-branes in the description. This explanation was

not originally made in [74], it is the interpretation that we make from the results

in [2] where couplings to the RR potentials are included. It demonstrates the power

of the BFSS theory as a model for describing branes.

5.1.3 Compactifications

From the IKKT and BFSS models, it is possible to compactify these theories on tori

to obtain the higher dimensional D-branes of type IIB and IIA theory respectively.

For a review of toroidal compactifications of matrix models, see [72] for example.

Typically these matrix models are compactified along tori using T-duality in the

type IIA /IIB theory we are working in respectively, i.e. the BFSS/IKKT model

respectively. Before we see how this is done first recall that if we start in type

IIA theory, then a compactification along a circle of radius R relates the type

IIA theory to type IIB theory on a circle of radius

R̂ =
α′

R
. (5.12)

In perturbative string theory the T-duality exchanges winding modes with momenta

for closed strings along the compactified direction. The Dirichlet and Neumann
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boundary conditions for open strings are exchanged via T-duality; this means that

Dp-branes compactified along a transverse direction become D(p+ 1)-branes, while

longitudinal compactifications give D(p− 1)-branes.

Dp-brane actions are SYM theories with a U(N) gauge symmetry obtained by

a dimensional reduction from 10D SYM to p + 1 dimensions. For example, we can

reduce 10D SYM to 0 + 1 dimensions to obtain (5.10), the BFSS matrix model as

previously mentioned which describes D0-branes. So T-duality exchanges transverse

scalars with covariant derivatives with a U(N) valued gauge field Ai, i.e.

X i → 2iπα′Di, (5.13)

where Di = ∂i − iAi. So the BFSS model on a q-torus T q is equivalent to a dimen-

sional reduction of 10D SYM to a q + 1 dimensional theory, namely Dq-branes [75].

5.2 Noncommutative Geometry in Matrix Mod-

els

In this section we discuss the origins of noncommutative geometry and the basic

underlying principles. We then show how we can use noncommutative gauge theories

in string theory, particularly in matrix models. This provides the foundation for the

next chapter on the Quantum Nambu Geometry.

5.2.1 Noncommutative Geometry

In quantum theories noncommutativity is a very important concept, for example: the

Heisenberg commutation relation [x, p] = i~ is key to writing down the Heisenberg

uncertainty relation. There is no reason, a priori, that the spacetime coordinates xµ

should commute. Theories where we write a relation such as

[xµ, xν ] = iθµν , θµν some antisymmetric parameter, (5.14)

are called noncommutative field theories. Here the θµν has some dependence on ~.

See [76, 77] for a review of the subject. These theories are constructed by taking a

field theory Lagrangian and apply the usual perturbative quantisation techniques
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except we must also take (5.14) into account. Noncommutative field theories tend

to be non-local due to (5.14) for length scales of order θ, for larger scales the theories

are effectively local. Another reason for studying noncommutative field theories is

because the fields now have an explicit cut-off at short distances and so these theories

are believed to be finite. Yang-Mills theories with simple gauge groups have no

dimensionless parameters to use for perturbative expansions so a noncommutative

Yang-Mills gauge theory could provide a finite theory.

String theory, as a candidate for a theory of quantum gravity, provides an in-

teresting setup to address some of these questions. One of our motivations is to

discover new types of quantum geometries in string theory and to study the physics

on these quantum spaces.

5.2.2 Noncommutative Gauge Theories

There are a a few known examples where a quantum geometry could emerge in string

theory in terms of noncommutative models. One possibility is when we consider open

string theory ending on a D-brane with a background NS-NS B-field on it and use

the open string to probe the geometry of the D-brane. The resulting form of the

noncommutative geometry could be either of Moyal type [78–82],

[Xµ, Xν ] = iθµν , (5.15)

or a fuzzy sphere [83,84]

[X i, Xj] = iλεijkXk. (5.16)

Noncommutative geometry arises in matrix models such as the IKKT and BFSS

models [73, 74] as a classical solution [85–88]. Myers effects [58] could introduce

additional terms to the matrix model and lead to new solutions [89]. We note

that all these quantised geometries are characterised by a commutator and could

be referred to as of Lie-algebra type.1 By considering small fluctuations around the

solutions (5.15),(5.16) we obtain a noncommutative gauge theory [86].

1For the fuzzy sphere it is indeed a Lie-algebra valued commutator, but for noncommutative

geometry solutions the algebra is mapped to a central element.
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In the paper [86], Seiberg considered the matrix model

S(XI) =

∫
dt (DtX

I)2 − gIKgJL[XI , XJ ][XK , XL], (5.17)

which admits the equation of motion

D2
tX

I + gJL[XJ , [XI , XL]] = 0. (5.18)

This has a static non-trivial solution XI = xi, i = 1, ..., p where p is even, satisfying

[xi, xj] = iθij1. (5.19)

Around such a classical solution, we make a small perturbationx
i = xi + θijAj ≡ xi + Ãi i = 1, ..., p

xa+p = φa a = 1, ..., 9− p.
(5.20)

Then S(x + Ã, φ) = S̃(Ã, φ) gives us a noncommutative SYM theory2 with a field

strength for the gauge fields given by

F̃ ij = [Ãi, Ãj]. (5.21)

5.2.3 Three Algebra Quantum Geometries

Given the mathematical structure of a Lie 3-algebra, it is natural to ask if it is

possible to construct a higher dimensional analog of noncommutative geometries and

fuzzy spheres. Moreover, one may wonder if the physics of the fluctuations around

such a solution may lead to new kinds of gauge theories. In the paper [90] such a

generalisation was made to the system of M2-branes ending on an M5-brane in a

constant C-field.3 There was a boundary analysis in which the Basu-Harvey equation

was derived and then was modified non-trivially by the C-field. The proposal for

2This can be related to a commutative DBI action via a Seiberg-Witten map [82].
3In [90], it was also shown that the standard noncommutative geometry (5.15) of D-branes in

a constant 2-form NS-NS B-field could be derived similarly by considering the intersecting system

of F1-strings and D3-brane in a B-field.
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the quantum geometry of the M5-brane in the presence of a constant 3-form C-field

takes the form

[Xµ, Xν , Xλ] = iθµνλ, (5.22)

where θ is a constant and the 3-bracket is given by a Lie 3-bracket satisfying the

fundamental identity (1.22) and µ, ν, λ = 0, ..., 5.

The Lie 3-bracket appears in the analysis because the geometry of the M5-brane

was inferred from the boundary dynamics of the open M2-branes which end on it;

the BLG model with boundary was used to describe the open M2-branes. In a

quantum theory, it is necessary to understand the relation (5.22) as an operator

relation acting on some states in the theory. However, the representation of the

Lie 3-algebra relation as transformations on vector spaces or maybe some kind of

generalisation is still an open question [91–94]. The main issue with constructing

representations of (5.22) is due to the insistence of the the fundamental identity, this

leads to the question of what types of mathematical structures could be used instead

of the Lie 3-algebra to avoid this issue of the fundamental identity being required.

Since the ABJM theory involves operators as the fields, one could naively think that

the analysis of [90] with the open ABJM theory could be carried out instead and we

could obtain a similar relation to (5.22) where X i’s would be operators. However

the fuzzy funnel solution of the ABJM theory with a C-field is classically a fuzzy

two sphere [95]. So the interpretation of the M2-M5 brane system does not apply

here necessarily. It is possible that this is describing the D2-D4 system and this

could be a further direction to be explored.
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Chapter 6

D1-Strings in Large RR 3-Form

Flux, Quantum Nambu Geometry

and M5-Branes in C-Field

6.1 A Proposal, The Quantum Nambu Geometry

The fundamental identity (1.22) of the multiple M2-brane theory places a constraint

on the 3-bracket used to describe the quantum geometry on the M5-brane theory

in (5.22). A priori, there is no reason why a 3-bracket structure with a different

origin than the M2-brane theory should obey the fundamental identity. For the

case of M2-branes, it was required to write down the gauge symmetry and for the

supersymmetry algebra to close.

In this chapter we propose a new type of quantum geometry based on the com-

pletely anti-symmetric quantum Nambu bracket

[A,B,C] := ABC +BCA+ CAB −BAC − CBA− ACB, (6.1)

where A,B,C are three operators in an algebra with the usual operator product. We

will see that this algebra is natural when considering D1-strings of type IIB string

theory in a large RR 3-form flux background.

The quantum Nambu bracket (6.1) does not obey the fundamental identity, this

can easily be checked, see [96] for a discussion of this as well as some other algebraic
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properties of the 3-bracket (6.1). The relaxation of the fundamental identity allows

us to consider a gauge group with large rank, this was one of the key constraints

of the BLG theory and it will not affect the quantum Nambu bracket. In the

absence of the fundamental identity the most natural 3-bracket to consider would

be the one given by (6.1) which is the most natural higher order generalisation of

the commutator. The 3-bracket (6.1) was originally introduced by Nambu [97] as a

possible candidate of the quantisation of the classical Nambu bracket

{f, g, h} := εijk∂if∂jg∂kh. (6.2)

The geometry (5.22) for the quantum Nambu bracket (6.1) is called the quantum

Nambu geometry.

In the previous chapter we gave an overview of noncommutative geometry in

string theory, the key equation is given by (5.15), which describes the breakdown of

commutativity for the scalar fields. A 2-form field strength can be written as

F µν = −i[Xµ, Xν ] (6.3)

when the fluctuation over the noncommutative geometry background is taken into

account. This is what was mentioned in the previous chapter regarding expanding

around a solution to the noncommutative geometry. We now turn to the quantum

Nambu geometry, we propose a straightforward uplift from the noncommutative

case to be given by

[Xµ, Xν , Xλ] = iθµνλ, (6.4)

where the bracket is the quantum Nambu bracket (6.1). It is natural to interpret

the quantum Nambu bracket of the target space coordinate fields Xµ as a 3-form

field strength

Hµνλ = −i[Xµ, Xν , Xλ]. (6.5)

This provides a suggestive connection to M-theory, in particular the 3-form field

strength Hµνλ on an M5-brane. To check this idea, we have to look for a way

to connect the D1-strings model to the non-abelian theory of multiple D4-branes1

1Where the 3-form field strength would be the Hodge dual of a 2-form field strength.
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and hence multiple M5-branes through the duality presented in the first chapter,

namely [54,55].

The D4-brane is a BPS object in type IIA string theory. We will show that

starting with D1-strings of type IIB string theory we may obtain matrix models for

not only IIB string theory, but for M-theory and IIA theory. Compactifying these

matrix models gives the various branes within each theory. The matrix models we

will find in our analysis are the large RR flux dominated terms, this is achieved

in a certain double scaling limit of the theories. These matrix models admit the

quantum Nambu geometry as a solution.

The quantum Nambu geometry can be expanded by some small fluctuation to

give a Lagrangian in terms of a non-abelian 1-form potential. This potential will

be of the same form as the dimensionally reduced version of the PST action [48–

51], hence describing the D4-branes. Note that this is a non-abelian description

of the D4-branes whereas the PST action is given in terms of an abelian gauge

symmetry. Physically we interpret this as the D1-strings expanding out over the

quantum Nambu geometry into D4-branes (in a certain limit).

Using the recent proposal for the duality between M5-branes on S1 and 5D super

Yang-Mills [54,55]; we generalise in a very natural way how to promote the D4-brane

theory into the M5-brane theory. The interpretation here is that the M5-branes are

in a constant self-dual C-field. Quite remarkably, the requirement of self-duality of

the Hµνλ of M5-brane theory is automatically satisfied in our model.

6.2 Matrix model of D1-strings in a limit of a

large RR 3-form F3

In this section we begin our construction by considering D1-strings in a constant RR

3-form flux background which is the natural coupling associated with the 2-form RR

gauge field C2. We find that there is a low energy - large flux double scaling limit in

which the action of the D1-strings are dominated by the RR terms. We then show

that the resulting D1-branes matrix model has the quantum Nambu geometry as a

classical solution.
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6.2.1 A Type IIB supergravity background

An exact IIB supergravity background with a constant RR 3-form flux was consid-

ered in [98], it was constructed by turning on a constant RR 3-form flux in the AdS5

sector of the AdS5 × S5 background. The background has a spacetime which is a

direct product of the AdS5 and S5 contributions;

M =M5 ×M′
5 (6.6)

respectively and has a dilaton, axion χ ≡ C0, RR potentials C2 and C4 specified by:

e−Φ = χ/(2
√

2) = constant, (6.7)

F3 =

fεijk, i, j, k = 1, 2, 3,

0, otherwise,

(6.8)

F5 =


cε5 on M5,

cε′5 on M′
5,

0 otherwise.

(6.9)

We note that F3 = dC2 and F5 = dC4 are the fluxes associated to the RR potentials.

Here f and c are real constants, ε5 and ε′5 are the volume forms on M5 with µ =

0, 1, 2, 3, 4 and M′
5 with µ = 5, 6, 7, 8, 9

εµ0···µ4 =
√
− detG5 εµ0···µ4 , ε′µ5···µ9

=
√
− detG′5 εµ5···µ9 , (6.10)

and εµ0···µ4 , εµ5···µ9 are the Levi-Civita symbols with convention:

ε01234 = −ε01234 = 1, ε56789 = ε56789 = 1.

It was shown in [98] that it is possible to construct a consistent background if

the fluxes of the RR potentials C2 and C4 are chosen to be

f 2 =
2

3
c2. (6.11)

The metric of the background now takes the form R3 × AdS2 × S5:

ds2 =
4∑
i=2

(dX i)2 +R2(
−dt2 + dU2

U2
) +R′2dΩ2

5, (6.12)

where

R2 = 2e−2Φ/f 2, R′2 = 80e−2Φ/f 2, (6.13)
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and dΩ2
5 = Ĝi′j′dX

i′dXj′ is the metric for an S5. The radius R is the AdS radius

while the radius R′ is that of the S5. The key point here is that we have warped the

spacetime such that there is a flat R3 where the F3 lives, as we will see later this is

the term which will dominate in the double scaling limit.

As previously mentioned, we will be considering a double scaling limit of the

system in which the RR potential C2 becomes the dominant term in the action for

the matrix model. So let us write explicitly the 2-form in a specific coordinate basis

C2 = fεijkX
idXjdXk, i, j, k = 1, 2, 3. (6.14)

The convention we shall use is the following

Fµνλ =
1

3
(∂µCνλ + ∂νCλµ + ∂λCµν). (6.15)

The expressions for C4 is more complicated, we will see that these terms do not

survive in the double scaling limit. Later we will consider a large f limit for a

system of D1-strings in this background. For our purpose, it is enough to note that

Cµ1···µ5 with µi = 0, 1, · · · , 4 is proportional to 1/f and Cµ1···µ5 with µi = 5, 6, · · · , 9

is proportional to cR5 ∼ 1/f 4.

6.2.2 Matrix model of D1-strings in limit of large F3

Let us consider a system of N parallel D1-branes in the background (6.12), the

worldvolume action for the D1-branes is given by the Non-abelian Born-Infeld action

plus the Chern-Simons term of the Myers type given by [58]

SCS = µ1

∫
TrP (eiλiΦiΦ

∑
n

Cn)eλF . (6.16)

Here µ1 = 1/(gs2πα
′), λ = 2πα′ and XI = 2πα′ΦI , the product iΦ is the interior

product. We have set the NS-NS B2 field to zero. With the axion χ, RR fields C2

and C4 turned on, the Chern-Simons term reads

SCS = µ1

∫
Tr

[
λFχ+ P C2 + iλ2F iΦiΦC2 + iλP iΦiΦC4 −

λ3

2
F i4ΦC4

]
(6.17)

:= Sχ + SC2 + SC4 , (6.18)
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where Sχ, SC2 , SC4 denote the terms in SCS that depend on the RR-potentials χ,C2

and C4 respectively. Substituting the explicit expression for C2 (6.14) into the term

SC2 above, we obtain

SC2/µ1 = f

∫
d2σTr(

1

2
εijkX

iDαX
jDβX

kεαβ) + f

∫
d2σTr(iFX iXjXkεijk)

≡ f

∫
d2σ (L1 + L2), (6.19)

here ε01 = −ε01 = 1, F = F01. From now on we will use F to refer to either the

curvature two-form or the component F01. It should be clear from the context which

is which. Naively, if we take a large RR flux F3 limit, then the D1-branes action is

dominated by SCS. But we can be more precise than this, we will show that there

is a certain double scaling limit where the dynamics of the system of D1-branes is

dominated by the C2 coupling term SC2 . To do this, we need to include the Non-

abelian Born-Infeld action, examine the large f limit of the equations of motion and

keep the parts of the action that contribute in the limit.

Typically non-abelian D-branes in curved space times are poorly understood,

this is due to several reasons which we shall touch upon in the following. This poses

a potential problem for the usual Born-Infeld term for the N parallel D1-branes.

The Yang-Mills action is obtained from the Born-Infeld action in flat space, this

term is fine in general but higher flat space terms have ordering ambiguities in the

worldvolume gauge field strength F n [99], [100]. For a general curved spacetime the

metric becomes a function of the coordinates, i.e. the scalar fields, GIJ(X). The

action for the D1-branes is then given by [101,102];

SX/µ1 :=

∫
d2σ
√
− detG

(
GIJ(X)DαX

IDβX
JGαβ

+
1

α′
GIJ(X)GKL(X)[XI , XK ][XJ , XL]

)
,(6.20)

where I, J = 2, ..., 9. But this is highly ambiguous again for the non-abelian theory

as the metric has an ordering problem in terms of scalar fields XI . The problems

highlighted above will not survive the particular limit we are taking of a large F3

with a small α′, so we can happily ignore these.

Let us assume that in the small α′ limit, the system of D1-branes is described by

an action of the form (6.20) together with the Chern-Simon coupling (6.17). Note
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that for our metric, the ambiguity of the action SX is concentrated entirely in the

S5 part. The full D1-strings action is given by

SD1 := SX + SCS + SYM , (6.21)

where the Yang-Mills term is

SYM/µ1 = α′2
∫ √

− detGαβ FαβFα′β′G
αα′Gββ′ (6.22)

and the metric is

Gαβ = R2σ−2ηαβ, α, β = 0, 1, (6.23)

Gij = δij, i, j = 2, 3, 4, (6.24)

Gi′j′ = R′2 × Ĝi′j′(X
k′), i′, j′ = 5, 6, 7, 8, 9, (6.25)

with Ĝi′j′ being the metric for a unit 5-sphere and σ is the physical gauge coordinate.

All other metric entries are zero.

We now comment on a few consequences of our choice of set up for the system

of D1-strings in the background (6.12):

1. The scalars X i and X i′ decouple from each other in the action SD1 as the

metric is in a block diagonal form and does not mix primed and unprimed

coordinates.

2. The contributions to the equations of motion of X i and X i′ from the various

pieces of the actions (6.17) and (6.20) are given by:

SX SC2 i2ΦC4 i4ΦC4

EOM of X i: O(1/α′) O( f
α′

) O( 1
fα′2

) 0

EOM of X i′ : O( 1
f2α′

) 0 O( 1
f4α′2

) O( 1
f4α′2

)

(6.26)

3. The equation of motion of X i′ can be solved with X i′ = 0.

These remarks are independent of the ambiguity of the form of the metric Gi′j′ in

the action (6.20) as we are only considering the powers of the couplings to f and α′.

Since the equations of motion imply X i′ = 0, we may drop these terms from

the action and focus on the sector with only the scalars X i and the gauge field
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activated. Finally we come to the double scaling limit that has been mentioned

previously. The action SC2 is of order O(f/α′) and the relevant piece of the Myers

term i2ΦC4 in (6.17) is of order O(1/fα′2). Therefore if we take a double scaling limit

ε→ 0:

α′ ∼ ε,

f ∼ ε−a, a > 0, (6.27)

such that a > 1/2, then SC2 dominates. Moreover, SYM can be ignored compared

to SC2 if a < 2. All in all, in the double scaling limit (6.27) with 1/2 < a < 2, the

low energy action of N D1-branes in a large F3 background is given by

lim
ε→0

SD1 = SC2 . (6.28)

6.2.3 Quantum Nambu Geometry as a classical solution

We can now find the equations of motion to the action SC2 , these are

εαβεijk[X
j, DβX

kX i] + εαβεijk[Dβ, X
iXjXk] = 0, (6.29)

3

2
εijkDαX

jDβX
kεαβ + εijk[F ;Xj, Xk]′ = 0, (6.30)

where [A;B,C]′ := [B,C]A+ A[B,C] +BAC − CAB is antisymmetric only in the

exchange of B and C. This bracket arises since Tr[A,B,C]D = Tr[D;B,C]′A, in

analogy to the relation TrD[A,B] = Tr[D,A]B which is useful in ordinary Yang-

Mills theory.2

The first equation of motion is solved with any covariantly constant configuration

DαX
i = 0. (6.31)

The second equation of motion becomes εijk[F ;Xj, Xk]′ = 0 and is solved by

F = 0. (6.32)

2Note that the 3-bracket which satisfies the fundamental identity has a more straightforward

generalisation (1.19), up to a sign, whereas the case for the quantum Nambu bracket does not.
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Recall that F is the worldvolume field strength of the non-abelian gauge field. The

standard noncommutative geometry

[X i, Xj] = iθij (6.33)

is allowed as the equation of motion is anti-symmetric in the two X i entries, but

there is also a new solution, the quantum Nambu geometry,

[X i, Xj, Xk] = iθεijk, (6.34)

where θ is a constant and the 3-bracket is given by (6.1). This relation is also known

as the Nambu-Heisenberg commutation relation. We note that the solution (6.34)

is not allowed in the standard matrix models [73,74] where no external F3 is turned

on.

The 3-bracket (6.1) was originally introduced by Nambu [97] as a possible way

to write down the quantisation of the classical Nambu bracket

{f, g, h} := εijk∂if∂jg∂kh. (6.35)

This quantisation was thought of as generalising Hamiltonian mechanics to the form

df

dt
= {H1, H2, f}, (6.36)

which involves two “Hamiltonians” H1, H2. This would require a generalised Jacobi

identity, the fundamental identity, but was not considered here. In fact one can

easily check that the fundamental identity is not satisfied for (6.1). The concept of

fundamental identity was introduced almost 20 years later by Takhtajan [103] as a

natural condition for his definition of a Nambu-Poisson manifold which allows him

to formulate the Nambu mechanics in an invariant geometric form similar to that

of Hamiltonian mechanics. For example, the fundamental identity implies that the

time evolution preserves the Nambu bracket. However for this purpose, a weaker

form of the fundamental identity, where two of the elements are fixed in (1.16): α =

H1, β = H2, is sufficient. What we have shown above is that a quantised geometry

characterised by the Nambu bracket (6.1) is allowed as a solution in string theory

and we will refer to the quantised geometry (6.34) as quantum Nambu geometry. An

analysis of the quantum Nambu geometry will be carried out in the next chapter,

two explicit infinite dimensional representations will be discussed.
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6.3 Matrix Theories in Large RR Flux Background

In the previous chapter we examined the expansion around a noncommutative geom-

etry to find a new gauge theory, namely noncommutative Yang-Mills, we would like

to extend this concept to that of the quantum Nambu geometry in the most straight-

forward and natural way. In noncommutative geometry, the expansion around the

solution [xµ, xν ] = iθµν gives a natural noncommutative 2-form field strength

F µν = −i[Xµ, Xν ]. (6.37)

In the case of the quantum Nambu geometry, it is natural to suggest that the

quantum Nambu bracket of the target space coordinate fields Xµ is a 3-form field

strength

Hµνλ = −i[Xµ, Xν , Xλ]. (6.38)

We now need to look for objects in string theory where such a non-abelian field

strength would live and then check if these theories are consistent with the quantum

Nambu geometry.

Within string theory the place where we can find a non-abelian 3-form field

strength would be in the theory of multiple D4-branes, here the 3-form field strength

would be the Hodge dual to a 2-form field strength on its five-dimensional world-

volume. If we consider M-theory, the theory of multiple M5-branes has a self-dual

3-form field strength of a 2-form tensor gauge field living on the worldvolume of the

branes. The D4-brane is an object in type IIA string theory whereas the D1-brane

matrix model we have is in type IIB string theory. So we must find a connection

between these theories in the large flux limit. As such, we construct the type IIB ,

M-theory and type IIA matrix models in the large flux (6.19) from which all their

respective branes can be found by compactifications.

6.3.1 Type IIB Matrix Theory

The IIB matrix model can be obtained by a large N reduction of the D1-string

action. Let us first denote the covariant derivative

Dα = ∂α − iAα, α = 0, 1 (6.39)
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as

iDα = Xα, (6.40)

and rewrite L1, L2 in terms of the X’s as

L1 = −1

2
TrX i[Xα, Xj][Xβ, Xk]εαβεijk, (6.41)

L2 = −Tr[X0, X1][X2, X3, X4]. (6.42)

It is simple to show that the two terms can be combined together to give

L1 + L2 =
1

40
Tr[Xa, Xb][Xc, Xd, Xe]εabcde. (6.43)

It is quite remarkable that the D1-branes’ Chern-Simons coupling to a constant RR

F3 flux can be written in such a simple form. The action for N D1-branes in a large

F3 double scaling limit can then be written as

SD1 =
µ1f

40

∫
d2σTr[Xa, Xb][Xc, Xd, Xe]εabcde =

3µ1f

10

∫
d2σTrXaXbXcXdXeεabcde,

(6.44)

where a, b, c, d, e = 0, 1, 2, 3, 4. The largeN reduction3 gives the D-instantonic action,

up to an unimportant overall numerical constant,

SIIB =
f

gsl2s
TrXaXbXcXdXeεabcde, a, b, c, d, e = 0, 1, 2, 3, 4. (6.45)

This gives the matrix model description for the IIB string theory in the limit of a

large constant RR 3-form flux, and in the sector with Xa′ = 0, a′ = 5, 6, 7, 8, 9. In

this limit, the Myers term dominates over the standard Yang-Mills term in the IKKT

matrix model [73] and so this matrix model can be thought of the large constant

RR 3-form flux version of the IKKT model.

6.3.2 Matrix Model of M-theory

Now we shall T-dualise the type IIB theory to type IIA , compactify the system to

describe D0-branes and then take the M-theory limit. The type IIB background

(6.12) is invariant under the Killing vector ∂/∂xi, i = 2, 3, 4 along the R3 directions.

3For a review of how to perform a large N reduction for matrix models, see [72]
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We can then compactify along the x2 direction, for example, on a circle of radius R2

and T-dualise the system. The corresponding theory is a type IIA background and

has

metric : S1 × R2 × AdS2 × S5, (6.46)

constant RR field strength :

Fij = F2ij, i, j = 3, 4,

Fabcd = F2abcd, a, b, c, d = 0, 1, 3, 4, (6.47)

F2a′b′c′d′e′ = Fa′b′c′d′e′ , a′, b′, c′, d′, e′ = 5, 6, 7, 8, 9,

constant dilaton: eφ
′
= eφ

√
α′

R2

. (6.48)

The T-duality we have performed turns the D1-branes into D2-branes, we must

now check what happens to the flux. In the double scaling limit (6.27), the D2-

branes action is given by the T-dual of the D1-branes action (6.44) by applying the

usual T-duality rule [74,75] to the D1-branes action;

X2 = iR2D2, (6.49)

Tr→
∫
lsdσ2

R2

Tr. (6.50)

The resulting action for the D2-branes is given by

SD2 =
f

gsls

∫
d3σTrXaXbXcXdXeεabcde, (6.51)

where a, b, c, d, e = 0, 1, 2, 3, 4 and we have ignored an unimportant overall numerical

constant again. Note that since the Chern-Simons coupling is topological, the R2

dependence gets cancelled in (6.51). We can also obtain (6.51) directly from the

Chern-Simons coupling of the D2-branes in the IIA RR flux background (6.47), so

the solution for the D2-brane action (6.51) can be checked for consistency. The

Chern-Simons action is given by

SCS =
1

gsl3s

[∫
P (C1)λF +

∫
P (C3) +

∫
P (iλiΦiΦC5)

]
. (6.52)

The C3 and C5 terms of type IIA theory have their origin from the RR 5-form of

IIB theory under T-duality and so they can be ignored in the double scaling limit

(6.27). The C1 term then reproduces precisely (6.51).
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The BFSS model proposed that M-theory in a flat space background, while

in the infinite momentum frame, is given by the large N quantum mechanics of

D0-branes [74] as described in the previous chapter. So if we reduce to an action

describing D0-branes, we can first obtain a matrix model for M-theory in the flux

background and then, after some tricks, obtain the type IIA matrix model in the

2-form flux background.

For us, we would like to derive the quantum mechanical description of M-theory

in a curved background that corresponds to (6.46) - (6.48) uplifted to 11 dimensions.

The eleven dimensional background reads

metric : ds2 = e−
2
3
φds2

IIA + e
4
3
φ(dx11 − dxiCi)2, (6.53)

3-form potential : C(3) =
1

6
Cabcdx

adxbdxc, (6.54)

where φ is the dilaton in IIA theory, Ci and Cabc are the RR 1-form potential and

RR 3-form potential which appear in (6.47).

In the following, we denote the compactified x11 radius by R11. In general,

with a suitable worldvolume flux turned on, the higher Dp-branes (p even) of type

IIA theory carry D0-brane charges as discussed in the previous chapter and so in

principle should be kept in the infinite momentum frame. However as in the flat

case, it is sufficient to select a subset of degrees of freedom in such a way that all

the other degrees of freedom as well as their dynamics could be recovered. Now

what is different for our background is that there is a set of non-vanishing RR gauge

potentials which lead to explicit Chern-Simons terms in the action of the Dp-branes.

We now examine this more rigorously and then obtain the M-theory matrix

model. As previously mentioned, the double scaling limit (6.27) eliminates the

terms C3 and C5 (which originate from the F5 of the IIB theory), we can also ignore

the Yang-Mills term in this limit and concentrate on the Chern-Simons coupling of

C1. Moreover in the sector where the fields in the sphere directions are set to zero:

Xa′ = 0, a′ = 5, 6, 7, 8, 9, the Chern-Simons couplings for D4, D6 and D8-branes are

zero. So we are only left with the D0-branes and the D2-branes. For the D0-branes,

we obtain the action, up to an unimportant overall numerical constant,

SD0 =
1

gsls

∫
P (C(1)) =

f

gsls

∫
dtεijX

iDtX
j, i, j = 3, 4, (6.55)
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where

C1 = fεijX
idXj. (6.56)

The f is the same and the C1 and C2 are related under T-duality. Now the action

(6.51) is equivalent to it’s dimensional reduction

f

gsls

∫
dtTrXaXbXcXdXeεabcde, (6.57)

since one can always recover SD2 by compactifying X1, X2 and then decompactify

using the rules (6.49), (6.50). Since the action (6.55) can be considered as a special

case of (6.57) in a background [X1, X2] = 1, we propose that in the large flux limit

and in the sector with Xa′ = 0, a′ = 5, 6, 7, 8, 9, M-theory in our curved background

(6.53), (6.54) is described by the quantum mechanical action

SM = − if

gsls

∫
dtTrDtX

bXcXdXeεbcde, b, c, d, e = 1, 2, 3, 4. (6.58)

Here we have substituted X0 = −iDt and we have ignored an unimportant overall

numerical constant.

6.3.3 Type IIA Matrix String Theory

Now that we have the Matrix model (6.58) for M-theory, it is simple to apply the

procedure of DVV in [104] and derive the corresponding type IIA matrix model.

This involves rewriting (6.58) in terms of the M-theory eleventh dimensional radius

R11 = gsls, (6.59)

then compactify the scalar X2 on a circle of radius R2, then finally perform an 11-2

flip which exchanges the role of the 11th and the 2nd direction of the torus T 2 where

our M-theory is now compactified on. Keeping all the powers of the constants in

the theory is important here. The process described above is simply applying the

‘rules’

R2 = gsls, (6.60)

and

R11 = N, (6.61)
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where a normalisation of lightcone momentum p+ = 1 is adopted, see the appendix

of [104]. We then obtain the matrix model for the type IIA theory

SIIA =
f

N

∫
d2σTrXaXbXcXdXeεabcde, a, b, c, d, e = 0, 1, 2, 3, 4, (6.62)

where

Xα = iDα, X i = scalars, α = 0, 1, i = 2, 3, 4 (6.63)

and we have ignored an unimportant overall numerical constant.

We note that the D1-strings action (6.44) and the IIA Matrix string action (6.62)

are indeed the same up to a constant coefficient. This is similar to what was found

in [104–106] where the same 2-dimensional supersymmetric Yang-Mils theory could

have different string interpretations depending on how one associates its parameters

with the string theories. We remark that the type IIB matrix model is given by an

instantonic action, the M-theory action is given by a quantum mechanical action

and the type IIA action is given by a matrix string action.

6.4 Multiple D4-Branes and M5-Branes

Starting with Matrix string theory action for the type IIA theory in a large flux, we

wish to construct the model of D4-branes in such a limit. Then we will make use of

the duality between M5-branes and D4-branes to obtain a theory of M5-branes, at

least the non-abelian 3-form field strength sector, in a large constant C-field.

6.4.1 D4-branes in large RR 2-form flux

Since the Matrix string theory (6.62) takes the same form as the original D1-strings

action (6.44), it admits the classical solution:

[Xα, Xβ] = 0, [Xα, X i] = 0, α = 0, 1, i = 2, 3, 4. (6.64)

As before, the commutation relations of X i among themselves are not constrained

at the classical level. Let us now consider the solution X i
cl = xi of quantum Nambu

geometry

[x2, x3, x4] = iθ (6.65)
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and consider a fluctuation around it in a similar fashion to the standard noncom-

mutative gauge theory case. In the large N limit, our matrix model is built up out

of large N matrices xi. The representation chosen of the quantum Nambu geometry

determines whether the basis spans the whole N ×N matrices. We will assume the

xi of the quantum Nambu geometry do not span the whole set of N × N matrices

in general. Then every N × N matrix can be expressed as a K ×K matrix whose

entries are functions of xi [86]. The expansion of the dynamical variables around

the classical solution can be parameterised as

X i = xi1K×K + Ai(σ, xj). (6.66)

The action (6.62) for the type IIA model expands over the quantum Nambu geometry

as a five-dimensional integral

S5 =
f

N

∫
Σ5

trXaXbXcXdXeεabcde (6.67)

where
∫

Σ5
=
∫
d2σ

∫
x

and
∫
x

is an integral on the quantum Nambu geometry which

can be constructed from a representation of the geometry. In the large N limit, the

trace over large N matrices decomposes as usual as Tr =
∫
x

tr.

We would like to interpret this as K parallel D1-branes expanding over the

quantum Nambu geometry to give K parallel D4-branes. To do this, let us introduce

a three-form H-field whose components are defined by

Habc = −i[Xa, Xb, Xc], (6.68)

Hde5 = −i[Xd, Xe], a, b, c, d, e = 0, 1, 2, 3, 4. (6.69)

We remark that a similar identification has also been proposed in [90] in the analysis

of the M5-brane geometry in a large C-field but with a Lie 3-algebra valued 3-bracket

and not our quantum Nambu geometry. The action (6.67) simplifies to

S5 =

∫
Σ5

trHabcHde5 εabcde, (6.70)

where have ignored the unimportant overall constant here.

In order to see the connection of (6.70) with D4-branes, we consider the abelian

case. This would mean a dimensional reduction on x5 of the PST action (1.148).
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The first term εabcdeH
abcHde5 in the dimensionally reduced, gauge fixed, PST action

(1.148) is precisely equal to (6.70). This reduction is quite remarkable and reaffirms

the conjecture between M5-branes and 5D Super Yang-Mills theory. It may at first

seem that it is inconsistent to find the absence of the second term H∗ab5H∗ab5 in the

action (6.70), it is actually identified with the D4-branes’ Yang-Mills Lagrangian
√
−gF 2

ab by performing a Hodge dualisation after the reduction to five dimensions.

But we have already shown above that the Yang-Mills term does not contribute

in the double scaling limit, therefore the H∗ab5H∗ab5 term is absent from (6.70). A

dimensionally reduced M5-brane is simply a D4-brane, so this means (6.70), for

the abelian case, does describe a D4-brane in the large RR flux background. We

would like to use this evidence to propose that, for the non-abelian case, the action

(6.70) describes the non-abelian 3-form sector of multiple D4-branes theory (where

Xa′ = 0) in a large RR 2-form flux background.

The relations (6.68) and (6.69) give us the relation to the PST action (1.148)

from the action (6.70), we have confidence that the reduction matching consistency

condition is sufficient to show that the non-abelian D4-brane theory is indeed given

by (6.70). We emphasise that the reason that it is possible to write (6.67) in terms of

the H’s is entirely due to the fact that the D1-branes’ Chern-Simons action could be

combined nicely into the remarkable form (6.44), which is true only for our constant

RR-flux in the IIB background.

6.4.2 Multiple M5-branes using a 1-form gauge field

There has been a recent proposal [54,55] that the instantons on multiple D4-branes

could be identified with the Kaluza-Klein modes associated with the compactifica-

tion of non-abelian M5-branes on a circle. By including all the KK modes, it was

proposed that the low energy 5D SYM theory of D4-branes is a well-defined quantum

theory and is actually the theory of multiple M5-branes compactified on a circle.

We would like a way to include these KK modes in our description of D4-branes

in the background flux (6.70), there is a very natural generalisation of this action

to indeed describe the M5-branes. It comes from the identification (6.69), we can
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think of the commutator as the following quantum Nambu bracket

Hab5 = −i[Xa, Xb] = −i[Xa, Xb,1], (6.71)

this allows us to make the generalisation to promote the identity 1 to a dynamical

field X5. Thus we have

Hde5 = −i[Xd, Xe, X5] (6.72)

with

X5 = 1 (6.73)

for the D4-brane theory.

We propose that the scalar field X5 is along the compactified X5 direction trans-

verse to the D4-branes, then one can understand the relation (6.69) and (6.73) as

saying only the zero mode of the M5-branes has been included, i.e. a dimensional

reduction to D4-branes. So it is suggestive to include the higher KK modes by pro-

moting X5 = 1 to a general field as in (6.72). We may now write the 3-form field

strength in terms of all six scalar fields as

Hµνλ = −i[Xµ, Xν , Xλ]. (6.74)

Note that this way of writing the 3-form field strength is different to the conventional

way of writing the field strength in terms of the non-abelian 2-form potential B. In

the conventional description, the non-abelian 2-form potential B is written as H =

dB + · · · where the · · · term denotes terms necessarily for the non-abelianisation.

For the abelian case, this field strength is well defined in the literature, however for

the non-abelian case it is not so simple as we do not fully understand how to write

a tensor-gauge connection4. So what we are proposing here is that there is a dual

description of the non-abelian 3-form field strength in terms of the 1-form variables

X = Xµdσ
µ; so the B-field and the X-fields are related, although one can expect

the relation to be very complicated. This has not yet been achieved.

To justify our proposal, one needs to show that Hµνλ satisfies the correct equation

of motion (1.140) and describes three on-shell degrees of freedom. We will now

4See [107,108] for some recent proposals using gerbes.
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propose an action for the tensor-gauge sector of the M5-brane theory on a quantum

Nambu geometry, this is a generalisation of (1.138) but has an additional term which

is allowed in the general case. It reads

SM5 = −1

4

∫
Σ6

tr

(
1

6
εabcdeH

abcHde5 +
√
−g
(
c2H

abcHabc + c3H
ab5Hab5

))
, (6.75)

where Σ6 = Σ5 × S1 is the worldvolume of the M5-branes and (6.74) is the def-

inition of the 3-form field strength, here we will consider a constant metric. The

action (6.75) is the most general quadratic action that can be constructed out of

the components Habc and Hab5 and which is compatible with the SO(1, 4) Lorentz

symmetry. For a non-abelian generalisation of the gauged PST Lagrangian (1.148),

it is expected that c2 = 1 and c3 = 0. A priori there is no reason to expect that our

action will be exactly the same as the PST action and so we will consider arbitrary

coefficients and find solutions for them.

Our goal is to construct an action for the non-abelian 3-form field strength

living on a system of M5-branes. Generally, one can turn on a constant C-field

on the worldvolume of the M5-branes. How could one incorporate a C-field in

(6.75)? It is useful to recall a similar story for the case of D-branes where it is

well known that a constant NSNS B-field can be naturally included as a classical

solution (which corresponds to a noncommutative geometry) of matrix models [85–

88]. The remarkable feature of this construction is that the different backgrounds

that correspond to different B-fields arise as different classical solutions of the same

degrees of freedom of the underlying matrix model. Therefore let us follow the same

route and consider a reduction of the matrix model to a point. As a result, we

obtain the matrix model

S0 =
1

4
Tr
(
c1εabcdeX

aXbXcXdXeX5 + c2[Xa, Xb, Xc]2 + c3[Xa, Xb, X5]2
)
, (6.76)

where

c1 = 2 (6.77)

and the parameters c2, c3 are to be determined. We would like to have an equation

of motion which is precisely the self-duality equation for H from our action. Quite

remarkably this can be achieved with a particular choice of the parameters.
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There are two equations of motion for S0, varying with respect to X5 yields

c1εabcdeX
aXbXcXdXe + 2c3[[Xa, Xb, X5], Xa, Xb]′ = 0, (6.78)

and with respect to Xa yields

c1εabcde
(
XbXcXdXeX5 +XbXcXdX5Xe +XbXcX5XdXe

+XbX5XcXdXe +X5XbXcXdXe
)

+ 6c2[[Xa, Xb, Xc], X
b, Xc]′ + 4c3[[Xa, Xb, X5], Xb, X5]′ = 0. (6.79)

The first equation of motion (6.78) can be rewritten as

(
c1

6
− c3)εabcdeX

aXbHcde + 2c3[Hab5 +
1

6
εabcdeH

cde, Xa, Xb]′ = 0. (6.80)

Since we want to interpret Hµνλ of (6.74) as the gauge covariant non-abelian field

strength on M5-branes, Hµνλ must satisfy a Bianchi identity. The most natural

gauge covariant version would be

[X [µ, Hνλρ]] = 0. (6.81)

We use a convention of [X [a, Hbcd]] = [Xa, Hbcd]−[Xb, Hcda]+[Xc, Hdab]−[Xd, Habc].

Let us assume this condition holds, particularly

[X [a, Hbcd]] = 0, (6.82)

then we see that the self-duality condition

Hab5 = −1

6
εabcdeH

cde (6.83)

solves (6.78).

We now look at the second equation of motion (6.79). Using the conditions

(6.82) and the self-duality condition (6.83), one can show that the LHS of (6.79)

can be written as

(
c1

2
+18c2){Hade, X

dXe}+{1

4
Ebcd5, Xe}εabcde+(

c′′1
4
− 2c3

3
)(XbX5Hcde−HcdeX5Xb),

(6.84)

where

Ebcd5 := c′1[Hbcd, X5]− 12c2[H5[bc, Xd]] (6.85)
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and the constants c′1, c
′′
1 satisfy

c′1 + c′′1 = c1. (6.86)

To get this, we have split the term proportional to c1 of (6.79) into two terms (with

coefficients c′1 and c′′1) and used the c′1 term to combine with the c2 term and the c′′1

term to combine with the c3 term to arrive at (6.84). We note that the term Ebcd5

is of the form of the Bianchi identity

[X [5, Hbcd]] = 0 (6.87)

if c′1 = 4c2. Therefore the equation of motion (6.79) is satisfied if the coefficients are

such that

c′1 = 4c2, c′′1 = −40c2, c3 = −15c2 (6.88)

and the condition (6.87) is satisfied. But the Bianchi identity (6.87) is natural from

(6.81), so we see that our proposal is justified through the equations of motion (with

self-duality).

So far we have obtained that the equations of motion (6.78), (6.79) are satisfied

if the self-duality condition (6.83) and the condition (6.81) are satisfied and if the

coefficients ci are given by

c2 = − 1

18
(c1/2), c3 =

5

6
(c1/2). (6.89)

It is quite remarkable that a set of parameters can be found in a consistent way so

that the self-duality condition of the 3-form field strength H emerges from a matrix

model where the 3-form is a product of 1-forms. This is not guaranteed a priori and

provides evidence that the matrix model (6.76) describes the tensor-gauge sector of

M5-branes with a self-dual 3-form field strength.

We obtained the Bianchi identity and the self-duality condition as a solution

of the reduced matrix model description. However we need to establish that it is

the only non-trivial solution to give strength to the proposal. We recall that in

the PST action (1.148), one does not get the self-duality condition (1.144) as the

equation of motion immediately. To do this, one needs to make crucial use of the

symmetry (1.141) which acts on the B-field. For our case, it is possible that there is

a counterpart of the symmetry (1.141) which acts on the X’s; and this symmetry is
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needed to derive the self-duality equation, hence the Bianchi identity. It is important

to understand whether such a symmetry really exists in our model, and if so, how

it acts.

The (2,0) supermultiplet [109,110] demands that the field strength be self-dual.

This gives the on-shell degrees of freedom, namely three. If we were to supersym-

metrise our theory by adding in the fermions and transverse scalar fields, self-duality

would be an automatic feature of the theory. The issue here is that we are looking

at just the tensor-gauge sector of the M5-brane theory and so we cannot argue that

self-duality is automatically satisfied, hence also the Bianchi identity.

To obtain a six dimensional field theory for the worldvolume of the M5-branes,

we need to consider classical solutions to the equations of motion and expand them

by a fluctuation around the solution to build the six dimensional theory in a similar

fashion to the Yang-Mills case (5.20). We will consider the following solution Xµ =

xµ such that

[xµ, xν , xλ] = iθµνλ1, (6.90)

where θµνλ are arbitrary constants. Clearly, the Bianchi identity (6.81) is satisfied

as the solution for

Hµνλ = θµνλ1 (6.91)

is proportional to the identity and so the commutator in the identity vanishes.

Moreover the self-duality condition (1.140) is satisfied if the parameter θµνλ is self-

dual due to (6.91). Thus we obtain a six dimensional quantum Nambu geometry

parameterised by self-dual parameter θµνλ.

The fluctuation around the solution (6.90) can be written as

Xµ = xµ1K×K + Aµ(x), (6.92)

where Aµ are K ×K matrices whose components are valued on the worldvolume of

the quantum Nambu geometry of the M5-branes. The large N trace becomes

Tr =

∫
x

tr, (6.93)

where
∫
x

is determined from the representations of the quantum Nambu geometry

(6.90) and our proposal for a theory of K M5-branes (or more precisely, K non-
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abelian 3-form) is

SM5,θ = −1

4

∫
x

tr

(
1

6
εabcdeH

abcHde5 +
(
α
−1

3
HabcHabc + (1− α)Hab5Hab5

)√
−g
)
,

(6.94)

with α = 1/6 which is precisely the solutions (6.89). We note that with the self-

duality condition, the second and the third term in (6.94) can be summed together

and is equal to Hab5Hab5 for any value of α; and therefore the action (6.94) has in fact

precisely the same form (including the coefficients) as the non-abelian generalisation

of (1.148). However only for α = 1/6 can one identify a Bianchi identity (6.81) and

the self-duality condition (1.140).

We have shown that the worldvolume of the non-abelian M5-brane theory has

a quantum Nambu geometry. Now we consider the origin of this quantum Nambu

geometry as a quantised spacetime. In the case of D-branes, the presence of a

noncommutative worldvolume on a brane is generally due to a background gauge

potential being turned on in its worldvolume i.e. an NS-NS B-field. The self-duality

of the quantisation parameter θµνλ suggests to identify it with the self-dual 3-form C-

field on the worldvolume of the M5-branes. We can perform a dimensional reduction

alongX5 to show that this is consistent with the D4-brane theory by puttingX5 = 1.

The relation (6.90) reads

[Xa, Xb,1] = [Xa, Xb] = iθab5. (6.95)

This is the noncommutative geometry over D4-branes with a B-field5 whose com-

ponents are Bab = θab5. Since the B-field is related to the 11-dimensional C-field

as Bab = Cab5, it is correct to identify θµνλ with the constant C-field Cµνλ. All in

all, we conclude that the geometry (6.90) is the result of having a self-dual 3-form

C-field

Cµνλ = θµνλ (6.96)

turned on in the worldvolume of the M5-branes. So the action (6.94) describes the

3-form field strength of multiple M5-branes in a self-dual constant C-field.

5Recall we are considering the linearised limit of the DBI action which contains the B-field.
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In the conventional description of the 3-form field strength Hµνλ of the 2-form

tensor-gauge field Bµν the definition is given by H = DB, where D is the tensor-

gauge covariant derivative which is not known for the non-abelian case. The correct

number of degrees of freedom is three which is reduced down from fifteen by the

tensor-gauge and self-duality, we need to make sure that this is what we have in the

1-form formalism to ensure that we are describing the same object. What we have

proposed is that there is a dual description to this in terms of non-abelian 1-forms

X such that the degrees of freedom match in both cases and that H is self-dual and

satisfies the Bianchi identity. Naively we may think that we have too many degrees

of freedom in the 1-form formalism by simply counting the fields in (6.74), this gives

six fields. But we also have an equation of motion which must be satisfied, namely

the self-duality equation (1.140), which reduces the degrees of freedom by half, i.e.

to three. So the two formalisms are equivalent except we do not choose to write the

3-form as a derivative of a 2-form, but rather as a product of 1-forms.

6.5 Discussions

In this Chapter, we demonstrated that a new novel structure exists both in String

Theory and M-Theory known as the quantum Nambu geometry (QNG). This geom-

etry is unique and is not of the same form of the Lie algebraic type noncommutative

geometries. We found that the D1-strings in a low energy large flux double scaling

limit gives rise to D4-branes as an expansion over the QNG. This leads to the pro-

motion of the D4-brane action to that of the M5-brane, here we are only considering

the gauge sector. The M5-brane is in a constant C-field which is also described by

the QNG, hence the C-field is self-dual θµνλ = Cµνλ.

The construction of the 3-form field strength of the M5-brane was constructed

as a product of 1-form gauge fields X. This is not the same as the conventional

description of the field equations of the M5-brane, as these are written as a derivative

of the tensor-gauge field Bµν . It is expected that the two descriptions are equivalent

but the relation between the two could be very complicated. It is important to

understand this for completeness. The construction in terms of the quantum Nambu
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bracket covers just the gauge sector, it does not give the transverse scalars or the

fermions of the theory. The supersymmetrisation of this model is important in

understanding the full multiple M5-brane theory.

The action (6.94) is of the M5-brane in a constant C-field over a QNG. So let us

discuss an analogy with D-brane physics. A D-brane in a NS-NS Bµν field can be

described in terms of a commutative DBI action or a noncommutative Yang-Mills

action. This dual description is called the Seiberg-Witten map [82], it relates the

noncommutative Yang-Mills action to the DBI action with commutative coordinates

and finds a relation between θ and B. Our action (6.94) is analogous to the noncom-

mutative YM action as it is described over a fluctuation around the QNG similar to

the noncommutative YM action over a noncommutative geometry. The equivalent

full DBI action for the M5-brane in a C-field to a first order approximation has not

been constructed. Some attempts of the case with C = 0 have been constructed

in [111–113].

The fluctuation analysis leads to the 3-form field strength Hµνλ on the QNG, so

we have a 3-bracket describing a 3-form field. For the noncommutative YM case we

have the commutator with a noncommutative geometry fluctuating to give a 2-form

Fµν . It seems natural for a quantum N -bracket to exist and to describe an N -form

gauge field strength. It would be interesting to explore this further; although we

only know of one higher tensor gauge field strength, it is possible that this would be

useful for describing the Hodge duals of field strengths as in the D4-brane picture.

An emphasis must be placed on the properties of the quantum Nambu bracket,

this is not a quantisation of the Nambu-Poisson bracket. The Nambu-Poisson

bracket was introduced by Takhtajan and obeys the fundamental identity (1.22).

The quantisation of this bracket is a difficult problem. The quantum Nambu bracket

does not obey the fundamental identity, it is the completely anti-symmetrised sum

of three operators on the QNG.
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Chapter 7

Representations of the Quantum

Nambu Geometry

In this chapter we will analyse the mathematical properties of the quantum Nambu

geometry. Infinite dimensional representations of the quantum Nambu geometry

are constructed. We will show that the infinite dimensional representations imply

that the quantum Nambu geometry is different from the ordinary Lie algebra type

geometry.

7.1 Finite Lie-algebraic Representations

Before we begin to analyse the representations for the quantum Nambu geometry, it

is useful to discuss finite representations of the relation (6.34) which were constructed

by Nambu where the generators of the algebra are in a Lie algebra. If we let X i = αli

for a constant α and li are the generators of the SU(2) algebra

[li, lj] = −iεijklk, (7.1)

then

[X i, Xj, Xk] = iεijkα3CR, (7.2)

where CR is the quadratic Casmir for the representation R where X i is in. For

N × N matrices, CN = (N2 − 1)/4 and so if we choose α3 = θ/CN , then we can

realise the relation (6.34) with finite N×N matrices. Nambu has also constructed a
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representation of the relation (6.34) in terms of SU(2)× SU(2) representations. In

these representations Nambu constructed, the quantum Nambu bracket is embedded

in an underlying Lie algebra (SU(2) or SU(2) × SU(2) algebras) as a Casmir. As

such, the relation (6.34) is not fundamental but is a result of an underlying Lie

algebraic structure. So for finite N , the quantum Nambu bracket has a reducible

representation in terms of just the usual Lie algebra SU(2). What we will show

next is that in the large N limit, there are new infinite dimensional representations

of (6.34) that are not representations of any Lie algebra. It is the existence of

these representations that demonstrates the fundamental and novel nature of the

Nambu-Heisenberg commutation relation (6.34).

7.2 Infinite dimensional representations

An infinite dimensional representation of (6.34) has been constructed by Takhtajan

[103], however his representation is complex as the operators X i are not represented

as Hermitian operators; as a result the quantum space is six dimensional. In his

paper, the Nambu bracket satisfies the fundamental identity, in our analysis we do

not demand this. In this subsection, we give two examples of representations where

the quantum space is three dimensional as opposed to six dimensional.

So let us begin by constructing representations of quantum Nambu geometry

with three operators X1, X2, X3 :

[X1, X2, X3] = iθ, (7.3)

where θ is real.

7.2.1 A representation in terms of Z, Z̄,X

In the case of representations of two Hermitian fields (as in the Heisenberg commu-

tation relation for example), it is natural to construct a complex field in the usual

manner of Z = X1 + iX2; for the case of the quantum Nambu geometry we have 3

fields, so let us consider Hermitian X i’s and introduce the complex fields

Z := X1 + iX2, Z̄ := X1 − iX2, (7.4)
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and X = X3. We can then rewrite the the bracket (7.3) in the form

[X,Z, Z̄] = 2θ. (7.5)

We consider an ansatz for a representation

Z|ω〉 = f1(ω)|ω + β〉+ f2(ω)|ω − β〉, (7.6)

Z̄|ω〉 = f ∗2 (ω + β)|ω + β〉+ f ∗1 (ω − β)|ω − β〉, (7.7)

X|ω〉 = g(ω)|ω〉, (7.8)

where the state |ω〉 is parameterised by a number ω and β is a fixed “step”. It is

clear the domain of ω is one-dimensional. Without loss of generality we can take β

real and ω ∈ R. The form of (7.7) is fixed by (7.6), this is by requiring Z̄ = Z†.

Since X is Hermitian, it follows that g is real. It would be natural to consider the

representation (7.6)-(7.8) with f2 = 0 or f1 = 0 if we think of the Z, Z̄ as raising

and lowering operators naively. However this always gives a constraint of the form

ZZ̄ + Z̄Z = Z(X) for some function Z and so describes at most a 2-dimensional

space. As a result, we are prompted to try the more general ansatz stated above.

By calculating

[X,Z, Z̄]|ω〉 = X[Z, Z̄]|ω〉+ Z[Z̄,X]|ω〉+ Z̄[X,Z]|ω〉, (7.9)

and evaluating each of the individual terms we obtain

[X,Z, Z̄]|ω〉 = I2(ω)|ω + 2β〉+ I−2(ω)|ω − 2β〉+ I0(ω)|ω〉, (7.10)

where

I2(ω) = G(ω)K(ω), (7.11)

I−2(ω) = I2(ω − 2β)∗, (7.12)

I0(ω) = F (ω)
(
2g(ω)− g(ω − β)

)
− F (ω + β)

(
2g(ω)− g(ω + β)

)
(7.13)

and

G(ω) := g(ω + 2β) + g(ω)− g(ω + β), (7.14)

K(ω) := f2(ω + β)∗f1(ω + β)− f1(ω)f2(ω + 2β)∗, (7.15)

F (ω) := |f1(ω − β)|2 − |f2(ω)|2. (7.16)
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We would like to find functions g, f1, f2 such that

I2 = I−2 = 0 (7.17)

and

I0 = 2θ, (7.18)

this is due to the condition (7.5). The condition (7.17) can be solved by requiring

K(ω) = 0 or G(ω) = 0, due to (7.11). The choice of K = 0 implies that [Z, Z̄]|ω〉 =

F (ω)|ω〉 and so there is a relation of the form [Z, Z̄] = Z(X) for some function Z.

This means the relation (7.5) is not the fundamental relation of the representation

but is reducible to a statement about commutators, we do not want this as we are

looking for new representations of the quantum Nambu geometry as a new kind of

geometry in string theory. So let us consider

g(ω + 2β) + g(ω)− g(ω + β) = 0. (7.19)

It is easy to see that it implies a pseduo-periodic condition

g(ω + 3β) = −g(ω), (7.20)

so

g(ω + 6β) = g(ω), (7.21)

and it follows that

I0(ω) = F (ω)A(ω)− F (ω + β)A(ω − β), (7.22)

where

A(ω) := g(ω) + g(ω + β), (7.23)

and A(ω + 3β) = −A(ω), F (ω + 3β) = −F (ω). The condition (7.19) is solved by

g(ω) = sinαω, cosαω, where α =
π

3β
(6p± 1), p ∈ Z, (7.24)

or generally a Fourier sum of these modes. For simplicity, let us construct a repre-

sentation for the simple mode

g(ω) = cosαω, (7.25)
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where α is as specified in (7.24). Consider the ansatz

F (ω) = k sin(αω − αβ

2
). (7.26)

By substituting this ansatz into the relations, we find (7.18) is solved with

k = − 2θ

sinαβ cos αβ
2

. (7.27)

This provides a constraint on the two functions f1 and f2. For example, a simple

solution is

|f1(ω)|2 = |f2(ω)|2 = k0 −
8θ

3
cosαω, (7.28)

where k0 > 8θ/3 is any constant such that the right hand side above is positive.

Without loss of generality, we can take β = 1. The representation space is given by

the 1-dimensional lattice

{|ω + n〉 : n ∈ Z}, (7.29)

and is of countably infinite dimension for each fixed ω.

7.2.2 A representation with Z3 symmetry

We now demonstrate that there is another way to construct a representation of (6.34)

such that the quantum space it represents is 3-dimensional. In this construction, we

assume no reality condition on the fields X i, thus far we have 6 degrees of freedom.

Instead, let us introduce a unitary operator,

U |ω〉 = |ρ2ω〉,

U †|ω〉 = |ρω〉, (7.30)

and assuming

X1|ω〉 = (ω + a)|ω + 1〉, (7.31)

one obtains

U †X1U |ω〉 = (ρ2ω + a)|ω + ρ〉,

U †2X1U2|ω〉 = (ρω + a)|ω + ρ2〉, (7.32)

where a ∈ C and ρ is a cubic root of unity (ρ3 = 1) which is not equal to 1.
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Now if the fields X1, X2 and X3 are unitarily related to each other by

X2 = U †X1U,

X3 = U †X2U, (7.33)

then

X1|ω〉 = (ω + a)|ω + 1〉,

X2|ω〉 = ρ2(ω + aρ)|ω + ρ〉,

X3|ω〉 = ρ(ω + aρ2)|ω + ρ2〉 (7.34)

and it easy to see that

[X1, X2, X3]|ω〉 = 3(a2 − a)(ρ− ρ2)|ω〉, (7.35)

where a ∈ C and ρ−ρ2 is pure imaginary. In this representation the fields X1, X2, X3

are not Hermitian. They are however related through a unitary transformation,

U = eiΘ, where Θ is some Hermitian operator. So in this representation, we have 2

degrees of freedom from X1 and one from Θ giving us 3 real dimensions.

We note that in this representation, the operators X i can be constructed as

pseudo-differential operators acting on functions 〈ω|ψ〉 = ψ(ω). Let us start with

X1 and note that 〈ω + 1|X1 = (ω + a)〈ω| and so X1ψ(ω) = 〈ω|X1|ψ〉 = (ω + a−

1)ψ(ω − 1). Therefore, we obtain

X1 = (ω + a− 1)e−
∂
∂ω . (7.36)

Similarly

X2 = (ρ2ω + a− 1)e−ρ
∂
∂ω , (7.37)

X3 = (ρω + a− 1)e−ρ
2 ∂
∂ω , (7.38)

and for the unitary operator

U = exp

[
ln(ρ)ω

∂

∂ω

]
. (7.39)

The Hermitian conjugate of the unitary operator is

U † = exp

[
ln(ρ2)ω

∂

∂ω

]
. (7.40)
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In this construction, the representation space is given by the 2-dimensional lattice

{|m+ nρ〉 : m,n ∈ Z} (7.41)

and is of countably infinite dimension.

In conclusion, we have shown that there are at least two ways to represent (6.34)

as a three-dimensional quantum space: either a real representation, or having one

complex field and introducing a unitary operator relating X2, X3. This is in contrast

to the representation in [103] where all the fields are complex and not unitarily

related.

7.3 Discussions

In this Chapter, we considered the representations of the QNG. Although the geom-

etry is quantised, the action is classical. It would be interesting to construct a QFT

on such a QNG. As with noncommutative geometry, it is interesting to construct

the operators as an algebra of functions with a ∗-product. It is not immediately

obvious how to construct this however, some attempts were made in [90].

In a similar spirit to noncommutative geometry where a fuzzy sphere solution

can be analysed, the relation

[X i, Xj, Xk] = iλεijklX l, (7.42)

can also be defined. It would be interesting to examine the physics of this and

construct the representations where the bracket is given by the QNB. The QFT’s

one can construct from this is still an open question.
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Chapter 8

Conclusions

In this Chapter we will discuss some recent advancements in the theory of M2 and

M5-brane theories, we will highlight interesting areas which can be explored as a

result of the work in this thesis.

The non-abelian (2,0) tensor supermultiplet

We now discuss the results obtained on the non-abelian (2, 0)-tensor multiplet cou-

pled to an auxiliary vector as an attempt to describe the non-abelian M5-brane on

the level of equations of motion. Since the equations of motion are linear in the

3-form field strength Hµνλ, we do not have the issues associated with self-duality.

Very little is known about the non-abelian theory of N M5-branes. On the level

of supersymmetry transformations and equations of motion, there has been some

recent progress [109,110] by introducing an auxiliary vector. We now consider these

results on the worldvolume field theory on multiple M5-branes. Originally, the free

six dimensional (2,0) tensor supermultiplet was found in [46,114]

δXI = iεΓIΨ

δΨ = ΓµΓI∂µX
Iε+

1

2

1

3!
ΓµνλHµνλε

δHµνλ = 3iε̄Γ[µν∂λ]Ψ, (8.1)

where µ = 0, ..., 5 and I = 6, ..., 10. The convention for the self-dual field strength is

Hµνλ = 3∂[µBνλ] and one could write the transformations (8.1) in terms of the 2-form

B also. The chirality of the supermultiplet implies that the projector conditions are
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given by

Γ012345ε = ε, (8.2)

also for the fermion we have

Γ012345Ψ = −Ψ. (8.3)

The algebra closes on-shell, satisfying the equations of motion;

∂2XI = 0 (8.4)

Γµ∂µΨ = 0 (8.5)

∂[µHνλρ] = 0, (8.6)

which are the usual free scalar and fermionic equations of motion along with the

Bianchi identity for Hµνλ.

This algebra was generalised to the non-abelian case in [109], the proposal relies

on introducing a new vector field which turns out to be auxiliary. All fields are now

promoted to live in a vector space (this turns out to be a 3-algebra), with the same

form of covariant derivative as in the BLG case (1.26). The theory of interacting

multiple M5-branes should have (2,0) supersymmetry and an SO(5) R-symmetry

acting in the transverse directions to the brane. The system upon reduction should

reduce to the D4-brane theory, this is described by 5D SYM. To this end, we know

what the interactions for the M5-brane theory should look like if they are to reduce

down in the correct way.

The key to writing the correct transformations for the interacting theory rely on

using a 3-bracket with structure constants fabcd;

δXI
a = iε̄ΓIΨa

δΨa = ΓµΓIDµX
I
aε+

1

3!

1

2
ΓµνλH

µνλ
a ε− 1

2
ΓλΓ

IJCλ
bX

I
cX

J
d f

cdb
aε

δHµνλ a = 3iε̄Γ[µνDλ]Ψa + iε̄ΓIΓµνλκC
κ
bX

I
cΨdf

cdb
a

δÃµ
b
a = iε̄ΓµλC

λ
c Ψdf

cdb
a

δCµ
a = 0. (8.7)

The structure constants are fully anti-symmetric fabcd = f [abcd] once we introduce

the metric hab = Tr(T a, T b). The structure constant also satisfies the fundamental
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identity;

f [abc
ef

d]ef
g = 0. (8.8)

Again the algebra can be made to close on-shell subject to the equations of motion

D2XI
a =

i

2
Ψ̄cC

ν
b ΓνΓ

IΨdf
cdb

a + Cν
bCνgX

J
c X

J
eX

I
ff

efg
df

cdb
a

D[µHνλρ] a = −1

4
εµνλρστC

σ
bX

I
cD

τXI
df

cdb
a −

i

8
εµνλρστC

σ
b Ψ̄cΓ

τΨdf
cdb

a

ΓµDµΨa = −XI
cC

ν
b ΓνΓ

IΨdf
cdb

a

F̃µν
b
a = −Cλ

cHµνλ df
cdb

a , (8.9)

and the conditions

Cρ
cDρX

I
df

cdb
a = 0 , DµC

ν
a = 0

Cρ
cDρΨdf

cdb
a = 0 , Cµ

c C
ν
df

bcd
a = 0

Cρ
cDρHµνλ af

cdb
a = 0, (8.10)

on Cµ
a . From these conditions, we see that the fields of the (2, 0) theory cannot

be parallel to the direction of Cµ
a and that the Cµ

a itself must be constant. This

means that the coupling of the (2, 0) supermultiplet to this vector seems to give

us a five-dimensional theory as opposed to a six-dimensional one. But in [110],

the energy-momentum tensor was calculated and was found to carry momenta in

all six directions, so the interpretation is that the theory does indeed describe a

six-dimensional theory. The momenta in the Cµ
a field however corresponds to the

instantons of a compactified D4-brane theory. This relates back to the duality

between M5-branes on S1 and 5D SYM as discussed in Chapter 1. If a space-like

vacuum expectation value for Cµ
a is taken with a Lorentzian gauge group then the

system reduces to that of 5D super Yang-Mills, this was discussed in [109]. It is also

possible to take a null reduction of Cµ
a to obtain a system of instantons in one of

the lightcone dimensions and the four space dimensions [110].

It would be interesting to see if one could add matter fields to the action (6.94)

and construct the supersymmetric action. The 3-form in the action obtained from

the quantum Nambu geometry does not obey the fundamental identity, so this poses

extra difficulties when trying to close supersymmetry algebras and indeed showing

that an action would be invariant under supersymmetry.
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Tensor-gauge symmetries and non-abelian actions

On the M5-brane, a solitonic object exists known as the self-dual string [24]. It was

proposed in [25] that a certain analysis of the boundary dynamics on M2-branes in

the ABJM theory gives the multiple self-dual strings action with a U(N) × U(N)

gauge symmetry. This is given by a Wess-Zumino-Witten action with couplings

to matter terms; the action arises by considering a boundary to the Chern-Simons

ABJM theory and instead of imposing a boundary condition, extra degrees of free-

dom are added to cancel the gauge non-invariance of the boundary term.

More recently in [111], it was shown that the induced U(N) × U(N) gauge

symmetry on the self-dual strings is in fact valid on their whole spacetime i.e. the

M5-branes. A G × G gauge symmetry is then found and the explicit tensor-gauge

symmetry is constructed with the use of two auxiliary Yang-Mills gauge fields. The

construction starts with finding the tensor-gauge symmetries in any dimension and

then building a free field action in arbitrary dimensions. TheG×G gauge symmetries

are given by

δΛAµ = ∂µΛ + [Aµ,Λ], δΛA
′
µ = [A′µ,Λ],

δ′Λ′Aµ = [Aµ,Λ
′], δΛ′A

′
µ = ∂µΛ′ + [A′µ,Λ

′],
(8.11)

where (un)primed fields are (left)right gauge fields in the direct product. This can

be used to construct gauge transformations on Bµν as

δΛBµν = [Bµν ,Λ], (8.12)

δΛ′Bµν = [Bµν ,Λ′], (8.13)

where Bµν := Bµν − 1
2
(Fµν − F ′µν). Finally, we can write down the tensor-gauge

transformations given by Λα;

δΛαBµν =
1

2

[
(Dµ +D′µ)Λν − (Dν +D′ν)Λµ

]
(8.14)

=

[
∂µ +

1

2
(Aµ + A′µ),Λν

]
− (µ↔ ν),

δΛαAµ = Λµ, (8.15)

δΛαA
′
µ = −Λµ. (8.16)

which implies

δΛαBµν = 0. (8.17)

June 27, 2012



Chapter 8. Conclusions 116

The 3-form field strength of the tensor-gauge invariant Bµν is given by

Hµνλ ≡ [∂µ +Aµ ,Bνλ] + (µ, ν, λ cyclic), (8.18)

with modified Bianchi identity

D[µHνλρ] =
3

2
[F[µν ,Bλρ]]. (8.19)

A self-duality condition may then be imposed with this tensor-gauge symmetry when

applying to M5-branes, this is a consequence of the (2, 0) supermultiplet equations of

motion. In a similar fashion to only the non-perturbative M2-brane theory admitting

maximal supersymmetry, Chu1 proposed that the full (2, 0) supersymmetry on the

non-abelian M5-brane theory may not be seen. The proposal is that the M5-branes

have a (1, 0) supersymmetry using this model.

Self-duality is a crucial ingredient in reducing the fifteen component tensor-gauge

field Bµν in the (2, 0) supermultiplet to three components. In our formalism pre-

sented in Chapter 6, we do not have a tensor-gauge symmetry but we do have the

correct degrees of freedom with a gauge symmetry G. In a G × G gauge group,

which contains tensor-gauge symmetry, the gauge symmetry can be fixed to a gauge

group G; so this agrees and supports both descriptions of the 3-form and to some

extent, the new type of Seiberg-Witten map.

In [113], a non-abelian (1, 0) superconformal model was also constructed in six

dimensions using a tensor hierarchy where the 3-form gauge potential is included

with the tensor field and YM gauge fields. The G × G structure described above

is a non-trivial solution to the constraints presented in this paper. However, the

gauge group is restricted to SO(5) or a nilpotent gauge group; the former restricts

the rank (hence number of branes), while the second is difficult interpret physically.

A generalisation of the Perry-Schwarz action [47] was recently constructed in

[115]; this gives the non-abelian action of the 2-form B in six dimensions and admits

the self-duality equation. This action has a modified 6D Lorentz symmetry and

admits the self-duality equation for the 3-form as an equation of motion. Upon

a compactification along an S1, the action gives 5D SYM plus corrections. So it

1Also [113] independently.
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has been argued that the gauge sector of the multiple M5-brane theory has been

found. Since this action is describing the non-abelian 3-form part of the M5-brane

theory, it may give a relation to the quantum Nambu geometry as a generalisation

of the Seiberg-Witten map. This would be an exciting new relation of M-brane

generalisations of the mapping.

Higher gauge groups and M-branes

The construction [108] provides a way to describe M2-brane and M5-brane theories

in terms of Lie 2-groups from their 3-algebras, these Lie 2-groups are higher gauge

theories which arise from non-abelian gerbes. The motivation for this development

comes from an attempt to write down a multiple self-dual string equation in space-

time coordinates instead of loop space [116]. This would require a tensor-gauge

connection and so this is where the non-abelian gerbe theory becomes useful. The

reformulation to Lie 2-groups gives a much more general framework for writing down

M-brane models than 3-algebras allow and so it is an interesting avenue of research

to explore. One possibility is that the N = 8 BLG theory in such a framework

will have a higher rank gauge group, thus allowing it to describe N M2-branes.

The current work has only described these models with matter fields as sections of

vector bundles. Once the tensor bundles have been established; it is hoped that

a Basu-Harvey type equation will be obtained, describing the chiral tensor field

B2 on the M5-brane. Another interesting area of research would be to obtain the

mass-deformed Basu-Harvey equation in this language and to find the qualitative

differences to the results obtained in this thesis. The key to finding the dualisation

between the 3-form Hµνλ = −i[Xµ, Xν , Xλ] and the definition H3 = DB2 in the

QNG could very well rely on the structures proposed here.

Free energy of M5-branes

In a SYM gauge theory, the free energy from the gravitational dual of a stack of N

D-branes scales as N2; this is well understood. In [117], the authors used the full

path integral on a sphere of the N = 6 ABJM theory which localised into a matrix

model. This allowed them to compute the free energy in the large ’t Hooft limit
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to obtain the famous N3/2 scaling for N M2-branes. For the M5-brane theory, the

scaling goes as N3. In [118] and more recently in [119–121], some progress has been

made in understanding the N3 scaling for the (2, 0)-theory in a Coulomb phase.

In [118] the scaling was indeed found for the Coulomb phase of the (2, 0)-theory and

more recently in [119], the (2, 0) Coulomb branch was related to the 4D SYM theory.

This allows one to compute the conformal anomaly for the SYM theory and then

relate it back to the M5-brane theory. These works are still early ideas on solving

the N3 mystery, but are promising initial results.
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Appendix A

Supersymmetry

In this Appendix we state some identities which are useful in Chapters 1,2,3,4.

We begin with the eleven dimensional gamma matrix identities Γa, the Clifford

algebra is given by

{Γa,Γb} = 2ηab1, (A.1)

where a, b = 0, ..., 10 and the spacetime signature is mostly positive. Anti-symmetrised

gamma matrix products are defined as

Γa1...an = Γ[a1Γa2 . . .Γan]. (A.2)

A.1 BLG Identities

For the BLG theory, we have the eleven dimensional gamma matrices decompose

as Γa = (Γµ,ΓI), where µ = 0, 1, 2 and I = 3, ..., 10. We also have the following

identities

Γ = Γ0123456789(10) = −1, (A.3)

Γ012ε = ε, (A.4)

Γ012Ψ = −Ψ, (A.5)
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for the BLG theory. These can be used to derive the duality relations for the

transverse directions

ΓI1...IkΨ =
(−1)

1
2

(8−k−1)(8−k)

(8− k)!
εI1...I8ΓI1...I(8−k)Ψ, (A.6)

ΓI1...Ikε = −(−1)
1
2

(8−k−1)(8−k)

(8− k)!
εI1...I8ΓI1...I(8−k)ε. (A.7)

The Fierz identity for the eleven dimensional theory which helps to close the super-

symmetry transformations is given by

(ε̄2χ)ε1 − (ε̄1χ)ε2 = (A.8)

− 1

16

(
2(ε̄2Γµε1)Γµχ− (ε̄2ΓIJε1)ΓIJχ+

1

4!
(ε̄2ΓµΓIJKLε1)ΓµΓIJKLχ

)
.

The following gamma matrix product identities are very useful

ΓMΓIJΓM = 4ΓIJ , (A.9)

ΓMΓIJKLΓM = 0, (A.10)

ΓIJPΓKLMNΓP = −ΓIΓKLMNΓJ + ΓJΓKLMNΓI , (A.11)

ΓIΓKLΓJ − ΓJΓKLΓI = 2ΓKLΓIJ − 2ΓKJδIL + 2ΓKIδJL − 2ΓLIδJK

+2ΓLJδIK − 4δKJδIL + 4δKIδJL, (A.12)

ΓIJMΓKLΓM = 2ΓKLΓIJ − 6ΓKJδIL + 6ΓKIδJL − 6ΓLIδJK

+6ΓLJδIK + 4δKJδIL − 4δKIδJL. (A.13)

A.2 ABJM Identities

The three dimensional gamma matrices are denoted γµ with µ = 0, 1, 2. The Fierz

transformation is

(λ̄χ)ψα = −1

2
(λ̄ψ)χα −

1

2
(λ̄γνψ)γνχα, (A.14)

it is useful in moving the spare index for the closure of the supersymmetry transfor-

mations. The following are also useful identities for the closure of the supersymmetry
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transformations:

1

2
ε̄CD1 γνε2CD δ

A
B = ε̄AC1 γνε2BC − ε̄AC2 γνε1BC ,

2ε̄AC1 ε2BD − 2ε̄AC2 ε1BD = ε̄CE1 ε2DEδ
A
B − ε̄CE2 ε1DEδ

A
B

− ε̄AE1 ε2DEδ
C
B + ε̄AE2 ε1DEδ

C
B

+ ε̄AE1 ε2BEδ
C
D − ε̄AE2 ε1BEδ

C
D (A.15)

− ε̄CE1 ε2BEδ
A
D + ε̄CE2 ε1DEδ

A
D,

1

2
εABCD ε̄

EF
1 γµε2EF = ε̄1ABγµε2CD − ε̄2ABγµε1CD

+ ε̄1ADγµε2BC − ε̄2ADγµε1BC (A.16)

− ε̄1BDγµε2AC + ε̄2BDγµε1AC .

A.3 Superspace Conventions

In three dimensions the Dirac matrices satisfy

γµγν = ηµν + εµνργρ, (A.17)

where we choose our basis of gamma matrices to be (γµ)α
β = (σ1, σ2, σ3), where σi

are the usual Pauli matrices. Spacetime indices µ, ν, ρ = 0, 1, 2, while spinor indices

α, β = 1, 2. We note that when both indices are down the gamma matrices become

symmetric

(γµ)αβ = (γµ)βα, (A.18)

where the metric on the Clifford algebra is given by εαβ. We take ε12 = −ε12 = 1.

Spinors are Weyl ordered and so we have

θαθβ = −1

2
θθεαβ, θαθβ =

1

2
θθεαβ, (A.19)

θαθ̄β = −1

2
θθ̄εαβ, θαθ̄β =

1

2
θθ̄εαβ, (A.20)

θ̄αθ̄β = −1

2
θθεαβ, θ̄αθ̄β =

1

2
θθεαβ. (A.21)

We note the useful relations

(θθ̄)(θθ̄) = −1

2
θθθθ, (A.22)

(θθ̄)(θγµθ̄) = 0, (A.23)

(θγµθ̄)(θγν θ̄) =
1

2
ηµνθθθθ. (A.24)
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By choosing chiral spacetime coordinates to be

yµ = xµ + iθαγµαβ θ̄
β, (A.25)

where xµ are the spacetime coordinates, we can define commutation relations

[yµ, yν ] = [yµ, θα] = [yµ, θ̄α] = 0. (A.26)

As a result of the above relations, one is able to derive the following in terms of the

xµ variables

[xµ, θα] = 0, [xµ, xν ] = 0. (A.27)

We can define the supercovariant derivatives where spacetime derivatives ∂µ are

defined as ∂µ ≡ ∂
∂yµ

;

Dα = ∂α + iγµαβ θ̄
β∂µ,

Dα = −∂̄α − iθβγµβα∂µ, (A.28)

and the supercharges as

Qα = ∂α − iγµαβ θ̄
β∂µ,

Q̄α = −∂̄α + iθβγµβα∂µ. (A.29)

The supercovariant derivatives and supercharges satisfy anti-commutator relations;

{Dα, Dβ} = 0, {Dα, Dβ} = 0,

{Dα, Dβ} = −2iγµαβ∂µ,

{Dα, Qβ} = {Dα, Qβ} = {Dα, Q̄β} = {Dα, Q̄β} = {Qα, Qβ} = 0,

{Q̄α, Qβ} = 2iγµαβ∂µ,

{Q̄α, Q̄β} = 0. (A.30)

We define the following integration measures

d2θ ≡ −1

4
dθαdθα, (A.31)

d2θ̄ ≡ −1

4
dθ̄αdθ̄α, (A.32)

d4θ ≡ d2θ d2θ̄, (A.33)
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so we have the normalisations ∫
d2θ θθ = 1, (A.34)∫
d2θ̄ θθ = 1, (A.35)∫

d2θd2θ̄ θθθθ = 1. (A.36)
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