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Abstract

The aim of this thesis is to look into Beilinson’s conjecture on the rank of the

integral part of certain algebraic K-groups of varieties over number fields, as applied

to K
(2)
1 (C × C) where C is a (smooth projective) curve. In particular, it examines

whether non-zero integral elements can be obtained from linear combinations of

certain special types of elements which I refer to as “triangle” configurations. Most

of the thesis examines the special case where C is an elliptic curve.

The main result is that whenever any rational linear combination of such triangle

configurations lies in the integral part of K
(2)
1 (E × E), then its image under the

Beilinson regulator map is the same as that of a “decomposable” integral element,

which is to say, one consisting only of constant functions along various curves. Hence,

if Beilinson’s conjecture is correct and the regulator is injective on the integral part,

then no previously unknown integral elements can be produced from these triangle

constructions.

I will also examine the same question for some slighly more general elements

of K
(2)
1 (E × E), and will show that (subject to one conjecture, which seems highly

likely to be true, although I have been unable to prove it rigorously) the same result

holds, provided that we restrict ourselves to an individual “triangle”, as opposed to

arbitrary linear combinations. This will follow from conditions on such a triangle

which are both necessary (always) and sufficient (at least for certain special types

of elliptic curve) for integrality.
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Chapter 1

Introduction

1.1 Background to the Beilinson Conjectures

The work I have done for this thesis has been an attempt to look at one very special

case of just one of the celebrated conjectures made by Alexander Beilinson in 1985.

Most of the material introducing the conjectures in this section and the next is taken

from the excellent article [18] by Peter Schneider.

The Beilinson Conjectures were introduced by Beilinson in his paper “Higher

regulators and values of L-functions” [2]. They are perhaps the most general of

many conjectures which link special values of L-functions of algebraic varieties over

number fields to arithmetic invariants of those varieties – in this case, certain pieces

of their algebraic K-groups, which are closely related to motivic cohomology groups.

These ideas go back to the classical Dirichlet regulator, and the analytic class

number formula. The Dirichlet regulator map for a number field K maps O∗
K , the

group of units in the ring of integers OK of K, into a real vector space of dimension

r1 + r2 − 1 (where r1 and r2 are, respectively, the number of real embeddings and

the number of conjugate pairs of complex embeddings of K) – Dirichlet proved that

this map is injective modulo torsion, and that its image is a full lattice in the target

space, or in other words that the regulator map becomes an isomorphism when

extended to O∗
K ⊗ R. Further, the covolume of this lattice, a real number which is

also known, somewhat confusingly, as the regulator, turns out to be an important

invariant of the number field. Of course, it is only invariant up to multiplication

1



1.1. Background to the Beilinson Conjectures 2

by a non-zero element of Q, as we first have to choose a Q-basis for O∗
K ⊗ Q. But

the (Dirichlet) regulator RK is often given explicitly as the determinant of a certain

matrix (formed using a particular set of generators for the free part of O∗
K), and

for this particular value, there is the famous analytic class number formula, which

states that the residue of the Dedekind zeta function at s = 1 (where it has a simple

pole) is equal to
2r1(2π)r2hKRK

ωK

√
|DK |

,

where hK is the class number of K, DK the discriminant and ωK the number of

roots of unity. Although often considered to be a tool for computing the class

number, if we read this formula modulo non-zero rationals, it gives an expression

for the transcendental part of the leading coefficient at s = 1 of the Dedekind zeta

function, in which the regulator RK is the most conspicuous element. It is in this

sense that the Beilinson conjectures attempt to generalise this formula.

In 1974, Armand Borel was able to compute the ranks of the algebraic K-groups

of OK [4] – thus generalising Dirichlet’s result on the rank of O∗
K , as K1(OK) is

precisely O∗
K . He also defined the first so-called “higher regulators”, the Borel

regulator maps from these algebraic K-groups of OK to certain real vector spaces.

As for the Dirichlet regulator, the images of the Borel regulator maps are full lattices,

whose covolumes are known as the Borel regulators for those K-groups. Borel also

later showed [5] that an analogue of the analytic class number formula holds for

the Borel regulators – in other words, the leading coefficient of the Dedekind zeta

function of the number field at certain integer values is closely related to the values

of the Borel regulator (different integer points correspond to different K-groups).

Among several attempts to generalise these results to the K-groups of algebraic

varieties over number fields, the Beilinson conjectures are perhaps the most ambi-

tious and far-reaching. There are basically two conjectures, corresponding to the

above two results of Borel – one giving information about the ranks of the K-groups,

and one relating a quantity called the (Beilinson) regulator to special values of L-

functions. It is the first of these two aspects which I have focused on for this thesis

– there will be no discussion of L-functions in the main body of the work. But,

by way of introduction, I am now going to state both of the conjectures – this will
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require me to briefly cover some technical definitions which are involved.

1.1.1 K
(j)
i (X)

We will be dealing throughout with the algebraic K-groups of an algebraic variety

X, Ki(X) for i a non-negative integer. For a good introduction to the algebraic

K-theory of schemes and varieties, see the book by Srinivas [23].

There are certain natural maps, called Adams operations, on the K-groups of

X, denoted by ψk – they exist for all positive integers k (see [20]). We define the

weight j Adams eigenspace of Ki(X) (strictly speaking, of Ki(X)⊗Q) as follows:

Definition 1.1

K
(j)
i (X) := {z ∈ Ki(X)⊗Q|ψk(x) = kj(x) ∀k ≥ 1}.

Note that K
(j)
i (X) is by definition a rational vector space. The most important

property of these Adams eigenspaces is that they give a decomposition of Ki(X)⊗Q:

Proposition 1.2 For any algebraic variety X and any i ≥ 0, we have the decom-

position:

Ki(X)⊗Q =
⊕
j≥0

K
(j)
i (X).

These Adams eigenspaces of the algebraic K-groups of a variety turn out to be

very important arithmetic invariants. For example, under certain natural conditions

they are isomorphic to both Spencer Bloch’s higher Chow groups (after the latter

have been tensored with Q), and also to Voevodsky’s motivic cohomology groups:

K
(j)
i (X) ∼= CHj(X, i)⊗Q ∼= H2j−i(X,Z(j)) [14]. K

(j)
i (X) is sometimes referred to

as the “weight j part” of Ki(X), and I shall use this terminology below from time

to time.

1.1.2 Integral elements in K-theory

Beilinson’s conjectures do not in fact concern the whole of K
(j)
i (X), but only a

certain subspace of so-called “integral” elements, which I shall denote by K
(j)
i (X)Z.

I will not give the definition of this subspace here, but I shall return to it in Chapter

3.
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1.1.3 Deligne Cohomology

Beilinson’s regulator map goes from a motivic cohomology group to the correspond-

ing real Deligne cohomology group – that is, fromK
(j)
i (X) toH2j−i

D (X,R(j)). Here, I

shall define the target group. In fact, Beilinson uses a more general form of Deligne

cohomology of his own invention, known as Deligne-Beilinson cohomology, but it

agrees with the more usual Deligne cohomology for smooth varieties (see [11]), so I

will stick to this in the following brief outline.

Let X be a complex manifold, p a positive integer, and A any subring of the

complex numbers. Then the Deligne cohomology groups H i
D(X,A(p)) are defined

as the hypercohomology of the following complex of sheaves on X:

A(p)D : 0 → A(p) → OX → Ω1
X → . . .→ Ωp−1

X → 0.

Here, as usual, A(p) denotes the “twisted” constants (2πi)pA, OX is the sheaf of

holomorphic functions on X, and Ωj
X is the sheaf of holomorphic j-forms, the maps

being the usual exterior derivatives, and inclusion of constant functions for the map

from A(p). Note that A(p) is in degree 0, so that Ωj
X is in degree j + 1, and not

degree j. It is clear there is a short exact sequence of complexes 0 → Ω<p
X [−1] →

A(p)D → A(p) → 0 (where the complex Ω<p
X denotes the usual complex ΩX of

differential forms but replaced by 0 in degrees ≥ p, and the [−1] means that the

degree is shifted upwards by 1), giving rise to a long exact cohomology sequence:

. . .→ H i−1(X,C)

F pH i−1(X,C)
→ H i

D(X,A(p)) → H i(X,A(p))

→ H i(X,C)

F pH i(X,C)
→ . . . .

(Here, and elsewhere, F •H i(X,C) denotes the Hodge filtration.)

The Beilinson regulator map concerns the real Deligne cohomology, H i
D(X,R(p)).

Here, providing i < 2p, it is easy to see that the map H i(X,R(p)) → Hi(X,C)
F pHi(X,C)

is

injective (this, like most of the material in this subsection, is in [18]), and therefore

the above long exact sequence breaks up into a series of short exact sequences:

0 → H i−1(X,R(p)) → H i−1(X,C)

F pH i−1(X,C)
→ H i

D(X,Rp) → 0.
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That is, H i
D(X,R(p)) ∼= Hi−1(X,C)

F pHi−1(X,C)+Hi−1(X,R(p))
, which in turn is isomorphic to

Hi−1(X,R(p−1))
π1(F pHi−1(X,C))

, where π1 : H i−1(X,C) → H i−1(X,R(1)) is induced by the natural

projection C = R⊕R(1) → R(1). Since, when i < 2p, π1 is injective when restricted

to F pH i−1(X,C) (by the same injectivity argument as the one referenced above),

we see that we have an alternative short exact sequence:

0 → F pH i−1(X,C) → H i−1(X,R(p− 1)) → H i
D(X,R(p)) → 0.

Next, one uses that, since X is a complex manifold, complex conjugation acts on

it, and hence on all the cohomology groups in the above exact sequence. There is

also an action of complex conjugation on the coefficients of the complex vector space

H i−1(X,C), and hence also on all three of the spaces in the short exact sequence

(as all can be thought of as subspaces of H i−1(X,C)) – it can be seen that both of

the maps above are compatible with the action resulting from the composition of

the two just mentioned. Therefore, if we pass to the invariants of each space under

the combined action of conjugation on X followed by conjugation on coefficients, we

still have a short exact sequence (here the “+” superscripts denote these invariants):

0 → F pH i−1(X,C)+ → H i−1(X,R(p− 1))+ → H i
D(X,R(p))+ → 0.

And this short exact sequence induces an isomorphism among the highest non-

zero exterior powers:

∧max
(
F pH i−1(X,C)+

)⊗ ∧max
(
H i
D(X,R(p))+

) → ∧max
(
H i−1(X,R(p− 1))+

)
.

(1.1)

This, of course, is an isomorphism between real vector spaces. But the first and

third of the three terms involved here both have a natural Q-structure – the first by

the algebraic de Rham cohomology on X/Q, and the third by singular cohomology

with rational co-efficients. What the Beilinson regulator map does is provide a way

of defining a (rather less obvious) Q-structure on the Deligne cohomology group in

the middle, which we can then compare with the other two Q-structures, using the

above isomorphism.
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1.2 Statement of the conjectures

Beilinson’s regulator map, which I shall denote in this thesis by “reg”, goes from

K
(j)
i (X) to the Deligne group H2j−i

D (XC,R(j))+, for any algebraic variety X defined

over a number field K, and any non-negative integers i and j. XC here denotes the

complex manifold associated to the complex variety X ×K C. The construction of

this map in general is very technical, and we shall not need to know the details –

the important thing is that the map exists. The first of Beilinson’s conjectures is

simply that the regulator map, when restricted to the subspace of integral elements

K
(j)
i (X)Z, gives rise to a Q-structure on the target space:

Conjecture 1.3 If i > 1, the Beilinson regulator map induces an isomorphism

K
(j)
i (X)Z ⊗ R→ H2j−i

D (X,R(j))+ of real vector spaces.

When i = 1, which it will be in the case I consider in this thesis, then the

conjecture is slightly different. One needs also to consider the group N j−1(X) of

algebraic cycles of codimension j−1 on X, defined over the basefield K, modulo ho-

mological equivalence. There is the usual cycle class map N j−1(X) → H2j−2(X,C),

given via Poincaré duality by integration along the given cycle, whose image lies

in H2j−2(X,R(j − 1)). If we compose this with the map H2j−2(X,R(j − 1)) →
H2j−1
D (X,R(j)) contained in the exact sequences of the previous section, we there-

fore obtain a map N j−1(X) → H2j−1
D (X,R(j)). Its image lies in the “plus” space,

and it can also be shown, using our exact sequences, that this map is injective.

Putting this map together with the Beilinson regulator on K
(j)
1 (X), we obtain

an induced map (K
(j)
1 (X)Z ⊕N j−1(X))⊗ R→ H2j−1

D (X,R(j))+, which I shall also

refer to as simply the (Beilinson) regulator map. Then the conjecture is:

Conjecture 1.4 The above Beilinson regulator map for K1, reg : (K
(j)
1 (X)Z ⊕

N j−1(X))⊗ R→ H2j−1
D (X,R(j))+, is an isomorphism.

The above conjectures, if true, would allow a relatively easy way to compute the

rank of the K-groups concerned, as the Deligne cohomology groups, being analytic

rather than algebraic, allow one to compute their dimension relatively straightfor-

wardly. We shall see an example of this in the next chapter, when we shall work
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out what Beilinson’s conjecture says the rank of K
(2)
1 (C × C) should be, for C an

algebraic curve. These two conjectures are, of course, the analogue of Dirichlet’s

result that the image of the Dirichlet regulator map is a full lattice in the target

space.

Incidentally, Beilinson originally made the above conjectures for K
(j)
i (X), not

just the subspace K
(j)
i (X)Z. The conjecture was modified after Bloch and Grayson

[3] found that the wholeK-group was too big, forK
(2)
2 of elliptic curves. But without

the restriction, the conjecture in fact even fails for the Dirichlet regulator – it would

give that K∗, instead of O∗
K , should have rank r1 +r2−1, which is obviously absurd.

The last of Beilinson’s conjectures is the analogue of the second part of Borel’s

theorem. I observed in the last section that two of the three terms in the isomorphism

(1.1) had natural Q-structures. If the previous two conjectures are true, then we also

have a Q-structure on the remaining term, namely the image of the relevant K-group

under the Beilinson regulator. Assuming this, we can compute the isomorphism (1.1)

relative to the Q-structures which we now have on each term. It is of course only

well-defined up to a non-zero rational multiple. This quantity is called the regulator

for K
(j)
i (X) (which should not be confused with the regulator map!). Beilinson’s

final conjecture is:

Conjecture 1.5 The regulator for K
(j)
i (X) is, up to a non-zero rational multiple,

equal to the leading co-efficient in the Taylor expansion, at the point s = j − i, of

the L-function of X associated to H2j−i−1(X).

1.3 Some previous work, and the aims of this

project

The Beilinson conjectures have not been proven in any cases except for when X is

a point (the spectrum of a number field), when Beilinson’s conjectures agree with

Borel’s theorem – even there, it was by no means easy show that Beilinson’s and

Borel’s regulators actually agree up to rational multiples (Beilinson only gave an

outline, the first complete proof was in [17]). A proof of any of the conjectures, for
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varieties of dimension greater than 0, even in very specific cases, seems likely to be

unattainable with the current state of knowledge.

However, there are some partial results known. One thing which can be looked at

is the rank that Beilinson’s conjecture (the first and/or second of the three above)

predicts for the integral part of K
(j)
i (X). It would be possible to show that the

rank is at least that predicted by Beilinson if one can find a set of concrete integral

elements, of the desired size, and show that they are linearly independent. For some

of the lower K-groups – principally Adams eigenspaces of K1 and K2 – it is possible

to construct quite explicit elements; then one hopes to find that some of these

elements are integral, and that one can find enough independent ones to generate

the whole group, if the predicted rank is correct. One way to show independence

is to use the Beilinson regulator map itself – while Beilinson’s conjecture that it

is an isomorphism is not known to be true, nor is it even known to be injective,

it is at least known to be a homomorphism, by construction. Hence, one way to

show that elements of the K-group are linearly independent is to show that their

regulator images are linearly independent. One can do this in practice by computing

the actual Beilinson regulator numerically – the real number, that is, obtained by

taking the determinant of a matrix whose rows or columns are the regulator images

of the elements concerned. If this regulator is non-zero, then the original set of

elements must be linearly independent.

This has been done, for K
(2)
2 of certain hyperelliptic curves, by Rob de Jeu, Tim

Dokchitser and Don Zagier [9]. They constructed the predicted number of elements,

and showed their independence by computing the regulator as the determinant of a

certain matrix, and taking the limit of this determinant over a continuous family of

curves – the limit was non-zero, so that eventually the regulator must not vanish, and

thus the elements are independent. (They also used these elements to numerically

verify the second conjecture, about the L-value.) De Jeu later wrote a follow-up

paper with similar arguments [8].

Rob de Jeu was my supervisor when I started this research project, and he

suggested that I should try to carry out a similar argument for the case of K
(2)
1 of

the product of a curve with itself – he had already come up with a construction of
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seemingly non-trivial elements in K
(2)
1 (C × C) (the “triangle” configurations which

I shall introduce in the next chapter), and wondered if it was possible to produce

enough integral elements from this construction to fill out the predicted rank. If so,

then he hoped that it would be possible to use a similar limiting argument to show

their independence, and thereby establish that K
(2)
1 (C ×C) has rank at least as big

as that expected if Beilinson’s conjecture is true.

However, as we shall see, I eventually discovered that this would not be possible

– there are no integral triangle configurations whose regulator does not vanish.

The following chapters will explain all the necessary background material, and give

statements and proofs of the results I have obtained.



Chapter 2

Beilinson’s Conjecture on the rank

of K
(2)
1 (C × C)

2.1 Description of K
(2)
1 (X)

Having briefly stated Beilinson’s conjectures in general, I shall in this chapter have a

look at what it says about the dimension of the rational vector space K
(2)
1 (C×C), for

C a curve over an arbitrary number field K. First, I shall give a concrete description

of this vector space, and describe what its elements are.

Let X be any non-singular variety over an arbitrary field – in fact, any regular

scheme will do. Then there is a so-called Brown-Gersten-Quillen (or BGQ) spectral

sequence, of cohomological type (see [23], Theorem 5.20):

Ep,q
1 =

⊕

x∈X(p)

K−p−q(k(x)) ⇒ K−p−q(X).

(Strictly speaking, it actually converges to K ′
−p−q(X), but with the condition that

X is regular, this is naturally isomorphic to the corresponding K-group.)

To explain the notation, X(p) refers to the set of subschemes of X of codimension

p, and k(x), for such a subscheme x, denotes its function field (ie. the residue field

at the generic point). It is also known that, after tensoring with Q, this spectral

sequence “decomposes” into several, one for each Adams weight [24], as follows:

Ep,q
1 =

⊕

x∈X(p)

K
(j−p)
−p−q (k(x))⊗Q⇒ K

(j)
−p−q(X).

10
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We shall see that, for low values of j, this spectral sequence allows us to give

a very concrete description of the K-groups concerned. We shall concentrate on

the case where j = 2, and also assume that X is irreducible. First, we note that

Ep,q
1 = 0 whenever p < 0 (as then X(p) is empty) or whenever p + q > 0 (as

fields have trivial negative K-groups). In particular, it is a 4th quadrant spectral

sequence, with non-zero entries only below (or on) the antidiagonal p + q = 0.

Now let us compute some E1 terms (for ease of notation, we shall write Q as a

subscript to denote tensoring with Q): E0,0
1 = ⊕x∈X(0)K

(2)
0 (k(x)) = 0, as K0 of

a field is pure of weight 0; E0,−1
1 = ⊕x∈X(0)K

(2)
1 (k(x)) = 0 (K1 of a field is pure

of weight 1); E1,−1
1 = ⊕x∈X(1)K

(1)
0 (k(x)) = 0 – so non-zero entries can only occur

when q ≤ −2. E0,−2
1 = ⊕x∈X(0)K

(2)
2 (k(x)) = K

(2)
2 (k(X)) = K2(k(X))Q, as K2 of

a field is likewise pure of weight 2. (NB. a similar “purity” result does not hold

for Kn with n > 2; for a proof when n = 0, 1 or 2, note that the ith Milnor K-

group of a field is isomorphic to K
(i)
i (K) – see Theorem 5.1 of [14] – and that when

i = 0, 1 or 2, the ith Milnor K-group is the same as the Quillen K-group; this is

trivial for i = 0 or 1, and Matsumoto’s famous theorem for i = 2.) Matsumoto’s

Theorem (see [15], or the first chapter of [23]) tells us that K2(K), for K a field,

is the free abelian group on symbols {f, g} with f, g ∈ K∗, subject to bilinearity

({f, gh} = {f, g}+{f, h}, {fg, h} = {f, h}+{g, h}) and the relation {f, 1− f} = 0

for all f ∈ K\{0, 1}. Meanwhile, E1,−2
1 = ⊕x∈X(1)K

(1)
1 (k(x)) = ⊕x∈X(1)k(x)∗Q, and

E2,−2
1 = ⊕x∈X(2)K

(0)
0 (k(x)) = ⊕x∈X(2)Q, so that the row q = −2 of the E1 page of

our spectral sequence is:

K2(k(X))Q
T→

⊕

x∈X(1)

k(x)∗Q
div→

⊕

x∈X(2)

Q.

The two maps in the above sequence are also easily described – it turns out that

the second (labelled “div”) is the sum of the usual divisor maps on each codimension

1 subscheme, while the first, labelled T , is the tame symbol, which sends the symbol

{f, g} to
{

(−1)ordx(f)ordx(g)
(

fordx(g)

gordx(f)

)
|x

}
x∈X(1)

(where ordx, for x a regular codimen-

sion 1 subscheme, as usual refers to the normalised discrete valuation corresponding

to x, and the vertical line denotes the restriction of a function). (The proof that

the second map is the divisor map is in [23], lemma 5.28, while the second being
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the tame symbol is a formal consequence of this and the existence of products in

K-theory – it is a bit long to put here, but I have included it in a subsection below,

as it does not seem to be in the literature.)

We shall also need the q = −3 row. Here, E0,−3
1 = ⊕x∈X(0)K

(2)
3 (k(x)) =

K
(2)
3 (k(X)), while E1,−3

1 = ⊕x∈X(1)K
(1)
2 (k(x)) = 0, and similarly E2,−3

1 = E3,−3
1 = 0.

Hence, at the E2 stage, we find that the q = −2 and q = −3 rows are:

kerT ker(div)
im (T )

coker(div)

? 0 0,

from which we can conclude (since all the other terms on the antidiagonal p+q = −1

in the E2 page must vanish), that K
(2)
1 (X) = ker div

im T
. In other words, an element of

K
(2)
1 (X) can be represented by a formal sum of the form

∑
i (Vi, fi), where the Vi are

codimension 1 subschemes, and the fi are functions on the Vi such that
∑

i(fi) = 0

as a codimension 2 cycle on X (for a function f , (f) will denote its divisor). Such

a cycle is zero in K
(2)
1 if and only if it is in the image of the tame symbol from

K2(k(X))Q. Note that, of course, (V, f)+(V, g) = (V, fg), and hence that (V, 1) = 0

for any V , and (V, f−1) = −(V, f) for any V and f .

2.1.1 The Tame Symbol

As promised, I shall now give a proof that the map T mentioned above is in fact

the tame symbol map. As I mentioned, I shall use the existence of products in

K-theory – for which see pp. 29-34, and Remark 5.7, p. 58, of [23]. In particular,

for any ring R, there is a natural product Ki(R) ⊗Kj(R) → Ki+j(R), induced by

the tensor product of modules. We can localise and deal with a regular local ring R,

with fraction field K and residue field k; then we need to show that the boundary

map K2(K) → K1(k) in the relevant localisation sequence is the tame symbol map.

Because all the rings involved here are regular, and thus their K-theory is canon-

ically isomorphic to their K ′-theory, we also obtain products K ′
i(R) ⊗ K ′

j(K) →
K ′

i+j(K) and K ′
i(R)⊗K ′

j(k) → K ′
i+j(k), since the tensor product of any R-module

with one which is divisible by the maximal ideal (respectively, annihilated by the

maximal ideal) will have the same property. By the naturality of the product, and
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of the localisation sequence, the square

K1(R)⊗K1(K) //

²²

K1(R)⊗K0(k)

²²
K2(K) // K1(k)

commutes, where the horizontal maps are the boundary maps in the respective

localisation sequences (tensored with K1(R) on the top one), and the vertical maps

are the products. We have already noted that the upper horizontal map is the

product of valuation map K∗ → Z with R∗. We will now use the fact – [23] pp. 15-

16 and p. 34 – that the product K1(R)⊗K1(R) → K2(R) is the maps which sends

u⊗ v to {u, v}, u, v ∈ R∗. (The elements {u, v} exist in K2(R) for any commutative

ring R, even though they may not generate it if R is not a field.) Since the symbols

{u, v} are multiplicative and skew-symmetric, it will suffice to check that the lower

horizontal arrow is the tame symbol for symbols of the form {u, v} with u, v ∈ R∗

and {u, π}, where u ∈ R∗ and π is a generator of the maximal ideal of R. But,

by the commutativity of the diagram, and the remark above about the product

K1(R) ⊗K1(R) → K2(R), we see that {u, v} 7→ 1 and {u, π} 7→ u, both of which

agree with the tame symbol. This completes the proof.

2.2 Elements of K
(2)
1 (C × C)

When X is the product of a curve with itself, then there are several ways in which

we can try to produce (representatives for) elements of K
(2)
1 (C×C), for a wide range

of curves C. Let us suppose that we can find a function f on C whose divisor has

the form

(f) = d(P )− d(Q),

for some positive integer d and 2 distinct points P,Q on C. (The existence of

such a function for a particular d requires, and for an elliptic curve is equivalent

to, the existence of non-trivial d-torsion points on the Jacobian of C – for higher

genus curves a bit more is needed.) Given this, we can instantly write down the

following element of K
(2)
1 (C × C), which we may call a “rectangle configuration”:

(C × {P}, f) + (C × {Q}, f−1) + ({P} ×C, f−1) + ({Q} ×C, f) (f is defined on C,
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and can therefore be considered as a function on each of these four curves, which

are all isomorphic to C in a natural way). Notice that the zeros and poles cancel

out at each “corner”: at (P, P ) there is a zero from f on C × {P} and a pole

from f−1 on {P} × C, both of order d, and similarly at each of the other three

corners. So we do have an element in the kernel of the divisor map, and hence a

class in K
(2)
1 (C × C). Unfortunately, it is zero, as can be seen by computing the

tame symbol of the element {f ◦ π1, f ◦ π2} in K2(k(C × C)), where π1 and π2 are

the two natural projections C × C → C; it is d times the element we just wrote

down, and hence the “rectangle configuration” is zero in K
(2)
1 (C × C) (recall that

we have tensored with Q). There is also a generalisation of this construction, with

two functions on C with divisors (f1) = d1(P1) − d1(Q1), (f2) = d2(P2) − d2(Q2);

then (C × {P1}, fd1
2 ) + (C × {Q1}, f−d1

2 ) + ({P2} × C, f−d2
1 ) + ({Q2} × C, fd2

1 ) is in

K
(2)
1 (C × C), but is seen to be zero by considering T ({f2 ◦ π1, f1 ◦ π2}).
However, we can also consider the “triangle configuration”, which, given a func-

tion f as above, is

αf := (C × {P}, f) + ({Q} × C, f) + (∆, f−1),

where here ∆ denotes the diagonal. One may suspect, or worry, that a similar, if

less obvious, computation to those above might prove elements of this form to be

always zero as well, but this turns out not to be the case – while they may be zero in

certain special circumstances, they are not universally 0, in contrast to the rectangle

configurations above. I will delay a proof of this fact until I have introduced the

regulator map for K
(2)
1 , in a later section.

One issue that needs to be mentioned here – and it will prove crucial in our com-

putations of integrality, and of the regulator images of these elements – is that the

above-mentioned elements remain in the kernel of the divisor map if we replace each

copy of the functions concerned by any suitable constant multiple. This means that

a “rectangle” configuration, in a slightly more general sense than that mentioned

above, need not be zero, for the tame symbol of {f2 ◦ π1, f1 ◦ π2} gives functions

which are the exact inverse of each other on opposite sides of the rectangle, but we

are free to choose a different constant on each curve. However, the fact that the

prototypical rectangle is zero means that any element derived from it by replacing
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the functions by constant multiples is equal, in K
(2)
1 , to a similar rectangle with

just constant functions along each of the four sides. And such elements have little

interest for us – as we shall see in the last section of this chapter, there will, over all

number fields except for Q and imaginary quadratic fields, always be such elements

in the integral part of K
(2)
1 (C × C), but they are not expected to generate all of it

(except in special cases).

But similar considerations apply for the triangles too. The main aim of this

research project was to find examples of integral elements in K
(2)
1 (C ×C) which are

linear combinations of such triangles, and for this we shall have to bear in mind

that, on each of the three curves, we may use any constant multiple of f in the

construction, and can choose these three constants independently. This will be

taken account of in all future computations – it clearly allows much more scope for

finding integral elements.

We can also state this more formally. We shall first recall a definition:

Definition 2.1 An element of K
(2)
1 (X), for X any variety, is called decomposable if

it is of the form
∑

i(Vi, ci), where the ci are all constant functions.

We will be working essentially in the quotient of K
(2)
1 (X) with the subspace

generated by all decomposable elements. Given that, by the remarks above, our

“triangle” configurations in this extended sense may not be zero, the question arises

of how many linearly independent such elements we can expect to find for a given

curve C. For we shall now see that there can certainly be relations among such

elements.

Let us suppose that there exists a finite set {P1, . . . , Pn} of points on C (defined

over the base field K), such that all the differences (Pi) − (Pj) are torsion in the

Jacobian of C (the existence of any function f as above gives us such a set with

n = 2, but larger such sets may exist in principle). This means that we can find,

for each ordered pair (i, j), a function fij such that (fij) = dij(Pi) − dij(Pj). We

shall make the assumption that C is geometrically irreducible (which will be the

case for all curves considered later), so that the fij are uniquely determined up to

constant multiples. Each pair (i, j), together with a choice of fij, gives us a “triangle”



2.2. Elements of K
(2)
1 (C × C) 16

configuration αfij
, constructed as above, in K

(2)
1 (C × C), which I shall denote by

αij. With this setup, we find that the following situation holds in K
(2)
1 (C × C):

Lemma 2.2 Let {P1, . . . , Pn} be a set of points on C such that the differences

Pi − Pj are all torsion divisors, and define αij as above for each ordered pair (i, j).

Then, given a suitable choice of functions fij, we have:

1. αij + αji = 0

2. For any triple (i, j, k) of indices, let Lijk be the common value of lcm(dij, dik),

lcm(dij, djk) and lcm(dik, djk). (These values will be the same provided that

we choose our fij so that the dij are as small as possible.) Then

Lijk

dij

αij +
Lijk

djk

αjk =
Lijk

dik

αik.

Proof 1. We have that αij = (C × {Pi}, fij) + ({Pj} × C, fij) + (∆, f−1
ij ), while

αji = (C × {Pj}, fji) + ({Pi} × C, fji) + (∆, f−1
ji ). But clearly, we can ensure

that fji = f−1
ij by choosing the functions appropriately, and then the sum

will be the “rectangle” configuration (C × {Pi}, fij) + ({Pj} × C, fij) + (C ×
{Pj}, f−1

ij ) + ({Pi} × C, f−1
ij ), which we earlier observed to be zero.

2. To see that all of the three least common multiples are equal, under the as-

sumption that the dij are as small as possible, note that any common multiple

of two of dij, dik and djk must also be a multiple of the third, since any integer

which annihilates, say, (Pi) − (Pj) and (Pj) − (Pk) in the divisor class group

(or Picard group) of C must also annihilate (Pi)− (Pk), which means that it

must be a multiple of dik since we chose this to be as small as possible (ie. the

order of (Pi)− (Pk) in the divisor class group).

For the relation, we first write out
Lijk

dij
αij +

Lijk

djk
αjk − Lijk

dik
αik in detail – it

has components on 2 horizontal and 2 vertical curves, as well as the diagonal,

on which the function is f
−Lijk

dij

ij f
−Lijk

djk

jk f

Lijk
dik

ik , whose divisor is easily seen to be

0. Hence we can assume that this function is 1 if we choose the component

functions appropriately. Having done so, we can use this relation to simplify
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the various functions involved, to find that the difference between the two sides

of our proposed relation is:

(C × {Pi}, f
−Lijk

djk

jk ) + ({Pj} × C, f

Lijk
dij

ij ) + (C × {Pj}, f
Lijk
djk

jk )

+({Pk} × C, f
−Lijk

dij

ij ).

This is simply − Lijk

dijdjk
times the generalised rectangle configuration which was

also mentioned on page 14, with fij and fjk playing the roles of f1 and f2

respectively, and so it is zero.

2

It is clear from these relations that, given a set {P1, . . . , Pn} of such points on C,

the group generated by the n(n − 1) elements αij, i, j ∈ {1, . . . , n}, i 6= j has rank

at most n − 1, as all αij can be expressed as linear combinations of, for example,

the αin with 1 ≤ i ≤ n − 1. In fact, it is not hard to see that the subgroup of the

free abelian group on the αij generated by the relations given in the lemma can be

generated by just those where j = n (by using a relation of the type given in part

2 to express any αij in terms of αin and αjn), and further that these relations, of

which there are (n− 1) + (n− 1)(n− 2) = (n− 1)2, are linearly independent. (For

each αij with neither of i, j equal to n occurs in only one of the relations, and all

of those of the second type occur in this way. Thus any linear dependence among

these relations must involve only those relations of the first type, which is clearly

impossible as they each involve different αin.) Hence, provided that there are no

more relations among the αij than the ones listed in the above lemma, a set of points

with the desired properties gives us a subgroup of K
(2)
1 (C × C) of rank n− 1.

(Of course, there is no guarantee that further relations may not exist in certain

cases.)

Lemma 2.2 might not appear to really answer the question of relationships among

different αij in general. For if we have two functions of the desired type, say (fi) =

di(Pi)− di(Qi) for i = 1, 2, then it is not clear that there need be any function with

divisor of the form d(P1) − d(P2), for example, for any positive integer d. Thus

it will not be the case that all of our triangle configurations come from a single
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set of points {P1, . . . , Pn}, as was assumed in the lemma. But in the remainder of

this thesis, I am going to concentrate on the case when C is an elliptic curve E, in

which case the group structure allows us to simplify the situation. In particular, by

replacing f with f ◦ τQ, where Q is the pole of f and τQ is the “translation-by-Q”

map R 7→ R+Q, we can ensure that Q = O, the identity for the group structure on

E, in all cases, and then the set of all points of the form Pi −Qi, where the Pi are

the zeros of the given functions and the Qi the poles, along with O, is just such a set

of points as dealt with in the lemma. Of course, the new elements with f replaced

by translations of f need not be the same – but in a later chapter I shall show that

they have the same image under the regulator map, meaning that, if Beilinson’s

conjecture is true, they coincide whenever they happen to be integral. In any case,

in examining these elements for integrality in the subsequent chapters, I will make

no assumption that all the elements in a given linear combination share the same

zero or pole.

Notice that, for an elliptic curve E with torsion subgroup of order t, the above

lemma tells us that there are (ignoring translations as just discussed) precisely t− 1

independent triangles to be found in K
(2)
1 (E ×E) – providing, of course, that there

are no relations among them other than the ones given in the lemma. (It is unlikely

that there are no such relations though – later we shall see that even some individual

triangles are almost certainly zero, and for non-trivial reasons.) And we can certainly

say that there will be at most t− 1 independent “triangle” elements.

Finally, and staying for the moment in the case of elliptic curves, we can also

adapt the triangle constructions to get some slightly more general elements of

K
(2)
1 (E × E). Again, we shall utilise the group structure on E, with basepoint

O. For any a ∈ Z, we can consider the curve consisting of all points of the form

{(P, aP )|P ∈ E} on E ×E. Clearly it is isomorphic to E (the obvious set-theoretic

bijection between the two is also an isomorphism of curves, since the addition law

on E is a morphism, and its inverse is just projection to the first component) – we

shall denote this curve by ∆a. Now suppose that, as before, we are given a function

f ∈ K(E) whose divisor has the form d(P ) − d(Q). This means that dP = dQ in

the group structure on E, which in turn means that daP = daQ, and hence that
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there exists a function fa with divisor fa = d(aP )− d(aQ) [21]. And

αa,f := (E × {aP}, f) + ({Q} × E, fa) + (∆a, f
−1)

satisfies the condition to be (a representative for) an element of K
(2)
1 (E × E) – the

zeros of the three given functions are at (P, aP ), (Q, aP ) and (Q, aQ) respectively,

while the respective poles are at (Q, aP ), (Q, aQ) and (P, aP ), and they all cancel

out since all have order d. Of course, the previous construction, when restricted

to elliptic curves, is just the case a = 1 of this one. (And when a = 0 we get an

element of the type we are not interested in, with only constant functions, since f0

is constant and ∆a = E×{aP} = E×{0}.) Note also that, under the conditions of

the previous lemma, if we replace each αij with the corresponding element for any

fixed a, the same results hold – the proof is exactly the same as it was for a = 1.

I can now explain what the main result of this thesis is. Originally, the hope

was to find certain linear combinations of triangles which would lie in the integral

part of K
(2)
1 (C × C), enough of them to fill out the rank of this group predicted by

Beilinson’s conjecture (which we shall compute in the next section), and then, by

using the regulator map, to show that these elements are linearly independent, and

hence that the rank must be at least that conjectured. Unfortunately, this turns

out to be impossible, in the case of an elliptic curve – for as we shall see, any linear

combination of such elements, if integral, must have vanishing regulator. Hence

either all integral triangles are zero, or the Beilinson regulator fails to be injective

(of which he first option seems the most plausible). I have been able to prove this

result if we restrict to the “original” triangles with a = 1. I have also tried to

generalise it to cases where a is allowed to vary, but I have been unable to attain

such a general result here (although I still expect it to be true). However, I have

been able to show certain partial results, including that any individual triangle, with

certain restrictions on a, cannot be both integral and have non-vanishing regulator.

The proofs of these facts will take up the remainder of the thesis.
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2.3 The Deligne Cohomology group

While K
(2)
1 (C × C) is the group in which my direct interest lies, in order to under-

stand what the Beilinson conjecture says about it, or to make use of the Beilinson

regulator, we need to know something about the Deligne cohomology group which

is the target space of the regulator map, which in this case is H3
D((C × C)C,R(2)).

Note that, since C is assumed to be smooth, so is C × C, and thus we can use

the “ordinary” Deligne cohomology, rather than the more general Deligne-Beilinson

cohomology.

The general definition of Deligne cohomology, for an arbitrary complex manifold

X, was given in the introduction. Recall that it is related to ordinary (de Rham)

cohomology, and the Hodge filtration on it, by the following long exact sequence:

. . .→ H i−1(X,C)

F pH i−1(X,C)
→ H i

D(X,A(p)) → H i(X,A(p))

→ H i(X,C)

F pH i(X,C)
→ . . . .

The particular Deligne cohomology group which I am interested in, as the target

of the Beilinson regulator from K
(2)
1 , is H3

D(X,R(2)), where X will be the complex

manifold associated to the surface C × C with C a curve defined over a number

field. However, for now we are going to use the above exact sequence to analyse

H3
D(X,R(2)) for an arbitrary X. We have the following exact sequence:

. . .→ H2(X,R) → H2(X,C)

F 2H2(X,C)
→ H3

D(X,R(2)) → H3(X,R)

→ H3(X,C)

F 2H3(X,C)
→ . . .

It can be shown that the mapsH i(X,R) → Hi(X,C)
F pHi(X,C)

here are nothing other than the

composition of the natural inclusion and projection maps, so the kernel of this map

is H i(X,R)∩F pH i(X,C). But, when 2p > i, which is the case when p = 2 and i = 2

or 3, then this intersection is trivial, as complex conjugation takes a form of type

(a, b) to one of type (b, a), so any non-trivial form of type (a, b) in the intersection

must not only have a ≥ p, but also b ≥ p since, being in H i(X,R), it must be equal

to its own conjugation; so i = a + b ≥ 2p > i, which is a contradiction. Therefore,
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the first and last maps in the part of the sequence shown above are injective, and

so we reduce to a short exact sequence, which tells us that

H3
D(X,R(2)) ∼= H2(X,C)

F 2H2(X,C) +H2(X,R)
.

We can also give an alternative description, which will be slightly easier to work

with. Firstly, if we apply the projection π1 : H2(X,C) = H2(X,R(1))⊕H2(X,R) →
H2(X,R(1)) (note that this has nothing to do with the projection map π1 : C×C →
C used in the previous section; this should cause no confusion!), we can also write the

above group as H2(X,R(1))/π1(F
2H2(X,C)). Next, we have the following simple

computation among subgroups of H2(X,C):

Lemma 2.3 Let U = H2(X,R(1)) ∩ F 1H2(X,C) and V = π1(F
2H2(X,C)). Then

1. U ∩ V = 0

2. U + V = H2(X,R(1))

Proof We will use the Hodge decomposition of H2(X,C) as H0,2(X)⊕H1,1(X)⊕
H2,0(X), and write x ∈ H2(X,C) as (α, β, γ) accordingly. Clearly, for such x, its

conjugate x is (γ, β, α). So, if x is in F 2H2(X,C), meaning that α = β = 0, then

π1(x) = 1
2
(x−x) = 1

2
(−γ, 0, γ). In other words, V is the set of all x for which β = 0

and γ = −α. And H2(X,R(1)), the image of the π1 map, consists of all elements

with γ = −α and β = −β, while lying in F 1H2(X,C) means that α = 0. So U is

the set of all x for which α = γ = 0 and β = −β. The two statements are now both

obvious. 2

Now, a direct application of the Second Isomorphism theorem gives us the fol-

lowing result:

Proposition 2.4 For any complex manifold X, H3
D(X,R(2)) ∼= H2(X,R(1)) ∩

F 1H2(X,C).

We shall now specialise to the case we are interested in, and compute the di-

mension of the real vector space H3
D(X,R(2))+ when X is the complex manifold
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associated to the surface C ×K C defined over a number field K, C being a (pro-

jective) curve. This manifold will consist of d disconnected copies of the product

of a Riemann surface S with itself, where d is the degree of the number field. So

the desired Deligne cohomology group, H3
D(X,R(2)) (I shall ignore the “+” super-

script for the moment) is the direct sum of d copies of H3
D(S × S,R(2)), which as

we have just seen is isomorphic to H2(S × S,R(1)) ∩ F 1H2(S × S,C). As we just

saw in the proof of Lemma 2.3, this is contained within H1,1(S ×S), being the part

which is anti-invariant under conjugation. The Künneth formula tells us that, as a

complex vector space, H1,1(S × S) ∼= (H0,0(S) ⊗H1,1(S)) ⊕ (H1,0(S) ⊗H0,1(S)) ⊕
(H0,1(S) ⊗ H1,0(S)) ⊕ (H1,1(S) ⊗ H0,0(S)), whose dimension over C is therefore

1 × 1 + g × g + g × g + 1 × 1 = 2g2 + 2, using the well-known basic results about

the cohomology of Riemann surfaces – here g is the genus of the surface (and hence

that of the algebraic curve from which it came). This description also gives us a

basis to use – if we let ω1, . . . , ωg be holomorphic 1-forms whose classes form a basis

for H1,0(S), and if π1, π2 : S × S → S are the natural projections, then one possible

basis is:

• π∗1(ω1 ∧ ω1)

• π∗1(ωk) ∧ π∗2(ωl), k, l ∈ {1, . . . , g}

• π∗1(ωk) ∧ π∗2(ωl), k, l ∈ {1, . . . , g}

• π∗2(ω1 ∧ ω1).

A basis for H1,1(S × S) as a real vector space, of course, is twice as big, and

can consist of the preceding elements along with those same elements multiplied by

i. Then the real vector space of elements anti-invariant under conjugation, which

clearly must have (real) dimension 2g2 + 2, has the following as a basis over R:

• π∗1(ω1 ∧ ω1)

• π∗1(ωk) ∧ π∗2(ωl)− π∗1(ωk) ∧ π∗2(ωl), k, l ∈ {1, . . . , g}

• iπ∗1(ωk) ∧ π∗2(ωl) + iπ∗1(ωk) ∧ π∗2(ωl), k, l ∈ {1, . . . , g}

• π∗2(ω1 ∧ ω1).
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In particular, we see at this point that H3
D(X,R(2)), when X comes from a

product of a curve with itself over a number field of degree d, has dimension 2d(g2 +

1). But the target group for the Beilinson regulator from K
(2)
1 (C × C) is not this

whole group, but rather the subgroup H3
D(X,R(2))+ consisting of all the elements

which are invariant under the action induced by complex conjugation on X, followed

by conjugation on all coefficients.

So, in the case where the base field is Q, meaning that there is just one compo-

nent, on which the above 2g2 + 2 elements are a complete basis, we see that those

in the first, second and fourth lines all remain invariant under the action concerned,

as its overall effect on such an expression is simply to replace i with −i (a form ω

goes to ω under conjugation on the manifold, and then back to ω after conjugat-

ing coefficients), while those in the third line are anti-invariant. Therefore, on any

specific self-product of Riemann surfaces, H3
D(S × S,R(2))+ has dimension g2 + 2.

And in the case of a general number field K of degree d, where we have d

different copies of S × S, the combined action will have the effect of acting on (in

other words, leaving fixed, as a set, although not pointwise) the copy of R2g2+2

corresponding to any real embedding of K, but exchanging the remaining ones

in complex conjugate pairs. So, to find an element which is invariant, we need

its components corresponding to any real embeddings to be invariant under the

corresponding action – over which, as we have just seen, we have g2 + 2 degrees

of freedom – and any choice at all for each remaining pair (as whatever we choose

on one of the pair determines uniquely what needs to happen on the other). So, if

we write r1 and r2 respectively for the number of real embeddings and the number

of pairs of complex embeddings, we see that the dimension over R of H3
D((C ×

C)C,R(2))+ is r1(g
2 + 2) + r2(2g

2 + 2) = dg2 + 2(r1 + r2).

We are now in a position to find out what Beilinson’s conjecture says about the

dimension of K
(2)
1 (C×C)Z, the integral part of K

(2)
1 (C×C). (I have not defined this

group yet, but will do so at the start of Chapter 3 – its definition is not important

for now.) Recall, from Chapter 1, that because we are dealing with K1, in our case

the Beilinson regulator will be a map

reg : K
(2)
1 (C × C)Z ⊕N1(C × C) → H3

D((C × C)C,R(2))+,
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and is conjectured to be an isomorphism. We now know the dimension of the

space on the right – what about N1(C ×C), also known as the Néron-Severi group,

NS(C ×C)? Clearly it contains the “horizontal” and “vertical” curves as indepen-

dent elements, and it is known that (for g > 0) once we quotient out the subgroup

generated by these two elements, we obtain a group isomorphic to the additive group

of the endomorphism ring of the Jacobian of C (each endomorphism corresponding

to its graph). This typically has rank 1 (the multiplication by n maps), but can of

course be bigger for some specific curves – for example, elliptic curves with complex

multiplication.

In fact, from here on we shall restrict to the case where C is an elliptic curve

(which we shall therefore usually denote by E, rather than C). Then we can say

precisely that NS(E×E) has rank 4 if E has CM defined over the base field K, and

has rank 3 otherwise. (Recall that the group N i(X) was defined to consist only of

those algebraic cycles of codimension i which are defined over the base field.) Hence,

Beilinson’s conjecture in our case predicts:

Conjecture 2.5 Let E/K be an elliptic curve defined over the number field K of

degree d = r1+2r2. ThenK
(2)
1 (E×E)Z has dimension d+2(r1+r2)−4 = 3r1+4r2−4

if E has CM over K, and 3r1 + 4r2 − 3 otherwise.

In particular, for K = Q (r1 = d = 1, r2 = 0, and no CM possible), the above

conjecture says that K
(2)
1 (E×E)Z is trivial – ie. that there are no non-trivial integral

elements in K
(2)
1 (E × E). The main result of this thesis can be seen as supporting

evidence for this conjecture – except that the result is independent of the base field,

so does not identify anything special about Q. Moving on to quadratic fields, in the

real quadratic case the predicted dimension is 3. However, in real quadratic fields

we have a non-trivial unit u in the ring of integers OK – and then the elements of

K
(2)
1 (E×E) given by u as a constant function on any curve within E×E can be easily

seen to be integral (I shall return to this when we discuss integrality in the next

chapter), and furthermore, the three elements (V, u), for V a horizontal, vertical

or diagonal curve, are all independent (as we shall see in the next section when

we compute their regulators). Hence there are already 3 independent elements,
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but these are decomposable, and the conjecture predicts no more. However, for

imaginary quadratic fields there are no units (roots of unity give trivial elements of

course, as we have tensored with Q), so we do not find such decomposables – but

the conjecture now predicts a rank of 1 in the non-CM case (and 0 in the CM case).

So we do expect to find non-trivial (that is, indecomposable) integral elements for

these fields. (However, as already mentioned, we will prove that they cannot be

made up of triangle configurations.)

In general, of course, there will be r1+r2−1 independent units, and hence 3(r1+

r2 − 1) decomposable integral elements. So the expected number of independent

nondecomposables is 3r1 + 4r2 − 3 − 3(r1 + r2 − 1) = r2, in the non-CM case – a

pleasingly neat prediction. In the CM case, on the other hand, there are four curves

to play with, and hence 4(r1+r2−1) (independent) decomposables – which is r1 more

than the total predicted rank! But of course, any complex multiplication cannot be

defined over any field which is not totally imaginary, so this is no contradiction –

and in the CM case, we expect no elements at all other than the decomposables,

whatever the (totally imaginary) base field.

2.4 The regulator map

In this section, I shall complete the description of the ingredients of the Beilinson

conjecture in our case, by giving an explicit description of the Beilinson regulator

map reg : (K
(2)
1 (X) ⊕ NS(X)) ⊗ R → H3

D(XC,R(2))+. This uses a slightly dif-

ferent description of the relevant Deligne cohomology group from the one used in

the previous section, namely H2(X,R(1)) ∩ F 1H2(X,C). If X has (complex) di-

mension d, then Poincaré duality tells us that H2(X,C) is the dual vector space to

H2d−2(X,C), via the pairing < ω, ω′ >=
∫

X
ω ∧ ω′. Clearly, if ω is of type (1, 1)

or (2, 0), then ω′ must be of type (d − 1, d − 1) or (d − 2, d) respectively, as the

only non-zero top-dimensional forms are of type (d, d), and so it follows that the

dual space of F 1H2(X,C) is F d−1H2d−2(X,C). But also, if ω is in H2(X,R(1)),

meaning that ω = −ω, then we find that, for any form ω′ of the required type,

< ω, ω′ >= < ω, ω′ > =< ω, ω′ >=< −ω, ω′ >=< ω,−ω′ >, from which it follows
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that the pairing also identifiesH2(X,R(1)) with the dual space ofH2d−2(X,R(d−1))

(as real vector spaces, now). Putting these two observations together, we can con-

clude that for any complex manifold X, H3
D(X,R(2)) ∼= H2(X,R(1))∩F 1H2(X,C)

is isomorphic to the dual of H2d−2(X,R(d−1))∩F d−1H2d−2(X,C) in a natural way

– and this space, by the same simple argument as we used in the proof of Lemma

2.3, is the same as H2d−2(X,R(d − 1)) ∩ F d−1H2d−2(X,C), as both consist simply

of all the forms of type (d − 1, d − 1) which are either invariant (of d is odd) anti-

invariant (if d is even) under conjugation. (Note that, for the purposes of describing

and computing the regulator, we do not need to worry about whether the “plus

spaces” of each cohomology group coincide under the duality pairing or not – for

the description of the regulator map we can simply map into the whole space; the

only reason for restricting to the plus space in the previous section was because that

was the subspace whose dimension we wished to determine.)

So, returning to our special case, in which d = 2, and letting X be an algebraic

surface over a number field, we can also consider H3
D(XC,R(2)) as the dual space

of H2(XC,R(1)) ∩ F 1H2(XC,C), as well as the space itself. Using this, we can now

write down an explicit description of the regulator in our case. Given an element

α in K
(2)
1 (X), which we can represent by a cycle

∑
k(Vk, fk), then ( [13], p.349) the

regulator image of α is the current which sends an R(1)-valued form ω of type (1, 1)

to the real number:
1

2πi

∑

k

∫

(Vk)C\sing((Vk)C)
log |fk| ∧ ω,

where sing(V ) denotes the set of singular points on V . (Note that this current, as it

is written here, is not a closed current, ie. it does not vanish on all exact forms ω.

However, there is another current, more complicated to write down, which is closed,

and which coincides with the above on all forms of the desired type.)

And, on NS(X), the regulator is just the most natural map possible, consisting

of the cycle map to ordinary cohomology, followed by the natural map to Deligne

cohomology (the one which occurs in the long exact sequence used in the previous

section), which, it is easy to see, just sends a cycle to the current given by integration

along it (divided by 2πi as usual).

As well as figuring heavily in the actual statement of Beilinson’s conjectures
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(especially with regard to the L-value, which I shall not consider in this thesis), for

us the main use of the regulator map will be simply in its role as a homomorphism

of vector spaces – to show that certain elements of K
(2)
1 (X) are non-zero, or are

independent of each other, if the same is true of their regulator images. And if

an integral element of K
(2)
1 (C × C) can be shown to have regulator zero, then

although this does not guarantee that the element itself is trivial, it does if we accept

Beilinson’s conjecture that the regulator map is an isomorphism when restricted to

the integral part. As an illustration, I shall now use the regulator to prove some

statements which I made earlier in this chapter. Firstly, I will show that, if u is a

unit (not a root of unity) in the ring of integers of our number field K, then the three

elements (V, u) for V a horizontal, vertical or diagonal curve in C × C, are linearly

independent. (In fact, this holds whenever u is in K∗ and not a root of unity.) So

let ω be any closed, non-constant holomorphic 1-form on C (we assume that the

genus of C is at least 1, so that such ω certainly exist). Then, with π1 and π2 as

projections C×C → C as before, consider the three forms π∗1(ω∧ω), π∗2(ω∧ω) and

π∗1(ω) ∧ π∗2(ω)− π∗1(ω) ∧ π∗2(ω), all of which are in H2((C × C)C,R(1)) ∩H1,1((C ×
C)C,C). We have to be a bit careful here over a general number field K, as there,

as we have already seen, (C × C)C consists of d = [K : Q] different components,

one for each embedding of K in C. If we first assume that our field has at least one

real embedding σ, then we know that we can take the form which consists of just

one of the three above on that component, and 0 on all other components. Then,

we see that the regulator of u on the horizontal, say, kills the second and third of

these three forms, but sends the first to 1
2πi

∫
Cσ log |σ(u)|ωσ ∧ ωσ, which cannot be

zero because the integral itself cannot be (as our form is part of a basis for H2),

and nor is log |σ(u)| as u is assumed not to be a root of unity (recall that σ is a real

embedding, so the only way for σ(u) to have absolutely value 1 is for u to be plus or

minus 1). The same happens to the vertical, with the first and second of our forms

switching roles, while for the diagonal we get non-zero results on all three forms.

So we see that these three (integral) elements of K
(2)
1 (C × C) have independent

regulator images, and hence are independent themselves. A similar argument also

holds even if K has no real embeddings; we simply have to take a pair of complex
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embeddings instead. This establishes:

Proposition 2.6 Let u ∈ K∗, not a root of unity. Then the three elements

(C × {P}, u), ({Q} × C, u) and (∆, u) of K
(2)
1 (C × C) are linearly independent,

for any points P and Q on C.

We can also now prove that the “triangle configuration” elements are not zero

in general. For an example of one which isn’t, consider the elliptic curve E over Q

given by the affine equation y2 = x(x−s)(x+s), where s ∈ Q is arbitrary (for now).

Then we have that (x) = 2(0, 0)−2(O) (where O is the point at infinity on this affine

model), so we can use it to form the element (C×{(0, 0)}, x)+({O}×C, x)+(∆, x−1)

in K
(2)
1 (E × E). Then we can take the form dx/y as our ω, as it is a closed,

holomorphic and non-exact 1-form. We can take any of the three R(1)-valued forms

of type (1, 1) associated to this given in the previous paragraph, and it is clear that

the result of pairing these with the regulator of the just-mentioned element of K
(2)
1

is in each case a constant multiple (zero in two of the three cases, and non-zero in

the other) of
∫

EC
log |x|dx

y
∧ dx

y
=

∫
EC

log |x|
|x(x−s)(x+s)|dx∧dx. Using the fact that EC is a

double cover of C, and that, over C, dx∧dx = −2πid(Re x)∧d(Im x), and ignoring

constant multiples, we see that it will suffice to show the following:

Proposition 2.7 For sufficiently large values of s, the integral

∫

C

log |z|
|z||z − s||z + s|dxdy

does not vanish (where z = x + iy, x, y ∈ R). Therefore, the element (E ×
{(0, 0)}, x) + ({∞} × E, x) + (∆E, x

−1) of K
(2)
1 (E × E) is non-trivial.

Proof Here, we shall use a very naive argument which gets the job done. Note

first that the integrand is negative inside the unit disc, and positive outside. If we

assume that s > 1 then, inside the unit disc, |z ± s| ≥ ||z| − s| = s − |z| > s − 1,

so that the absolute value of the negative contribution to the integral is bounded

above by − 1
(s−1)2

∫
|z|<1

log |z|
|z| dxdy = − 2π

(s−1)2

∫
R<1

logRdR = 2π
(s−1)2

. Meanwhile, if we

further assume that s > 2, then the positive contribution includes that from the disc

|z−s| < 1. On this disc, |z| = |(z−s)+s| < s+1, and so |z+s| < 2s+1, while also
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|z| ≥ ||z − s| − |s|| = s− |z − s| > s− 1, so log |z| > log(s− 1). Hence the positive

contribution is bounded below by log(s−1)
(s+1)(2s+1)

∫
|z−s|<1

dxdy
|z−s| = 2π log(s−1)

(s+1)(2s+1)
. Comparing

the two bounds, we see that the total integral must be greater than zero if we have

that log(s−1)
(s+1)(2s+1)

> 1
(s−1)2

, or that log(s − 1) > (s+1)(2s+1)
(s−1)2

. But that must happen

whenever s gets large enough, as the left-hand side of this inequality tends to ∞ as

s → ∞, while the right-hand side tends to 2. Hence, whenever s is large enough,

the integral cannot vanish. That means that this particular “triangle” element of

K
(2)
1 (E × E) has non-vanishing regulator, and hence is non-zero. 2

(Later, we shall take a more algebraic approach to evaluating integrals such as

this one, which will tell us that this integral is zero if and only if s lies on the unit

disc.)

Note that this does not provide a counter-example to Beilinson’s conjecture

(which predicts no non-zero integral elements of K
(2)
1 (E × E) when E is an el-

liptic curve defined over Q), as the element in question turns out not to be integral.

(Except when s = ±1, in which case, as remarked above, the corresponding integral

is zero in any case.) Nor does it, of course, say that any particular “triangle con-

figuration” (other than the one shown here, for s large enough) will not be trivial

– as we shall see, we will be able to find integral “triangle” elements for elliptic

curves over Q, which do appear to be zero (at least, they have zero regulator), thus

not contradicting Beilinson’s conjecture. As we have to be working with integral

elements in order to say anything about the conjecture itself, in the next chapter I

shall look in detail at the integrality condition, and derive some results which can

tell us whether our “triangle” elements – or more generally, linear combinations of

them – are integral or not.



Chapter 3

The Integrality Condition

We will fix some notation for the rest of the thesis – K denotes a number field, OK

its ring of integers, and p is a prime in Spec OK .. Later, when we have fixed a prime

p, we will introduce k = OK/p the residue field, R for the localisation of OK at p,

and π for a uniformiser in R.

3.1 Integral elements

As mentioned in the introduction, Beilinson’s original conjecture – that K
(j)
i (X)

for i > 1, or K
(j)
1 (X) ⊕ N j−1(X), is isomorphic to H2j−i

D (XC,R(j))+ – turned out

not to be correct, as was first pointed out by Bloch and Grayson. They found that

K
(2)
2 of certain elliptic curves defined over Q is bigger than the conjecture predicted.

Beilinson responded by modifying the conjecture, to apply only to a certain subspace

ofK
(j)
i (X), consisting of the so-called “integral” elements, which here will be denoted

by K
(j)
i (X)Z. In hindsight, it should have been obvious that this modification to

the original conjecture was needed, as the conjecture as originally formulated does

not even work for the most basic classical case, of the Dirichlet regulator for the

units in a number field! For if we take X = Spec K, where K is a number field,

then the original conjecture says that there is an isomorphism K
(1)
1 (K) ⊗ R →

H1
D(K⊗C,R(1))+. It is easy to compute that the right-hand side here has dimension

r1+r2 (where r1 and r2, as in the previous chapter, are the number of real embeddings

and number of pairs of complex embeddings, respectively), while K
(1)
1 (K) is simply

30
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K∗ (tensored with Q), which has infinite rank! The (Deligne) regulator map (which

coincides with Beilinson’s here), as we know from the classical result, becomes an

isomorphism (onto its image, a hyperplane in Rr1+r2) only when restricted to O∗
K –

and this is precisely the group of integral elements in K∗. This example may help

to motivate the definition.

To define in general what is meant by K
(j)
i (X)Z, we shall suppose that X admits

a regular proper model X over the ring of integers OK (that is, X is a regular scheme

which is proper over OK , and has generic fibre isomorphic to X). Then there is a

long exact “localisation” sequence in K-theory (see p.68 of [23]), or more accurately,

for the K ′-groups:

. . .→
⊕

p∈Spec OK

K ′
i(Xp) → Ki(X ) → Ki(X)

δ→
⊕

p∈Spec OK

K ′
i−1(Xp) → . . .

– where we have used the fact that, for a regular scheme Y , the natural mapKi(Y ) →
K ′

i(Y ) is an isomorphism [23]. (Xp here denotes the closed fibre of X at the prime

p.) Noting that the sequence will still be exact when we tensor each term with Q,

we then have ( [18], p.13):

Definition 3.1 Suppose X has a regular proper model X over OK . Then the

integral elements of K
(j)
i (X) are defined to be those elements of Ki(X) ⊗ Q which

lie in the kernel of the boundary map δ (or in the image of the preceding map

from Ki of the integral model, hence the “integrality” of the elements – these are

equivalent by the exactness of the localisation sequence), as well as in the weight j

Adams eigenspace.

Note that this definition is independent of the choice of regular proper model X
( [18] p.68). Further, the maps in the localisation sequence are compatible with the

Adams operations, so in particular δ maps K
(j)
i (X ) into K

(j)
i (X).

When X doesn’t have such a model, a different definition is needed. Beilinson

originally conjectured that, if X is any proper flat model (which always exists), then

the kernel of δ in the exact sequence above (now coming from K ′
i(X )) is independent

of the choice of X , but this conjecture was found to be false by Rob de Jeu [7]. But

Anthony Scholl, in [19], came up with an alternative definition of integral elements
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which is well-defined, and has all the desired properties – including coinciding with

the above when X has a regular proper model. We shall not need to know the details

of Scholl’s construction, but will use one consequence of it in the next section.

In almost all cases I shall consider, X will admit a regular proper model X over

OK , and the integral elements of K
(2)
1 (X) are those in the kernel of the boundary

map from K
(2)
1 (X ) to ⊕p∈Spec OK

K ′
0(Xp). K

′
0 of a variety is just the direct sum of

its various Chow groups of various codimensions (with coefficients in Q), as can be

seen from the BGQ spectral sequence mentioned in the previous chapter – and so

can the fact that, when the variety is non-singular, so that we can replace K ′
0 with

K0, the weight j part is the codimension j Chow group of X. And in our case,

the map from K
(2)
1 (X ) to ⊕p∈Spec OK

K ′
0(Xp) lands in just the codimension 1 part,

and is as follows. Given an element
∑

i(Vi, fi) in K
(2)
1 (X), first take the (Zariski)

closures Vi of the Vi in the integral model X of which X is the generic fibre, together

with the corresponding functions via the natural isomorphism of the function fields

of Vi and Vi, which we shall still denote by fi, with no risk of confusion.
∑

i(fi),

the sum of the divisors of these new fi, will be a codimension 2 cycle on X . Now,

each irreducible codimension 2 subscheme (and indeed any irreducible subscheme)

of X is of one of two types: “horizontal” ones, whose image under the natural map

X → Spec OK is the whole of Spec OK , and “vertical” ones, whose image is a single

closed point p. These are the only two possiblities, since the image must be an

irreducible closed subscheme of Spec OK . (This terminology comes from viewing

Spec OK as a horizontal line, with X above it, with the fibre at each prime p lying

directly above the point corresponding to p.) Because all elements
∑

i(Vi, fi) of

K
(2)
1 (X) satisfy

∑
i(fi) = 0 on X, it follows that all “horizontal” components of our

codimension 2 cycle on X will cancel out, leaving us with only “vertical” ones. And,

of course, these algebraic cycles of codimension 2 on X which are each contained in

a single fibre are, in a natural way, elements of ⊕p∈Spec OK
CH1(Xp), the direct sum

of the (rational) codimension 1 Chow groups of Xp as p runs over all primes, which

is a subspace of ⊕p∈Spec OK
K ′

0(Xp).

With this description of the boundary map, we can confirm my statement in the

previous chapter that if X = C × C and we take a unit u in the ring of integers,
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and consider it as a constant function along any curve inside C ×C, then we get an

integral element ofK
(2)
1 (C×C) – at least in the case where C×C has a regular proper

model. (The result for those elliptic curves C which do not possess such a model will

follow from the result of the next section.) This is because the constant function u

on a curve V corresponds to the same constant function on V , and because u ∈ O∗
K

it will have order zero at each prime.

3.2 Field extensions

In this section, and for the rest of this thesis, we shall restrict to the case where

X = E × E and E is an elliptic curve, defined over the number field K.

The purpose of this section and the next is to show that we can simplify our

discussion of the integrality of our “triangle” elements in a couple of ways. Here,

we will show that it is essentially unaffected if we extend the base field – but we

first need to make this statement precise. In general, we are going to consider a

linear combination of triangle elements, of the form
∑

h ehαfh
, where the h come

from some finite index set, the eh are rational numbers, and the αfh
are the triangle

elements introduced in the previous chapter – each constructed from a function

fh ∈ K(E) with (fh) = dh(Ph)− dh(Qh). (Note that, in this chapter and the next,

we will restrict to the simplest form of triangle elements which were introduced first,

with a = 1; in the final chapter I shall see what happens if we allow other more

general triangles as well.) However, as noted then, within each such triangle we

have three extra degrees of freedom in trying to obtain an integral element, in that

the three copies of f involved in the definition of αf can each be replaced by any

constant multiple and still produce an element of K
(2)
1 (E×E). So we are interested

in whether or not there are any such constant multiples which make the given linear

combination integral. This motivates the following definition:

Definition 3.2 Suppose we have a set of functions fh on E, for h in some finite

index set, allowing us to construct a triangle configuration αfh
∈ K

(2)
1 (E × E).

Further, let us associate to each h an eh ∈ Q. If for each h there exists an element

βh ∈ K
(2)
1 (E × E) which is constructed from constant functions along the three
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curves E×{Ph}, {Qh}×E and ∆, and an integer k, such that
∑

h (kehαfh
− βh) is

integral, we will say that the sum
∑

h ehαfh
is potentially integral.

(The integer k appearing in this definition might appear to be strange at first,

but this slightly more general definition of potential integrality allows for a cleaner

statement of Proposition 3.3.)

Our goal is now to prove the following:

Proposition 3.3 Let L/K be a finite Galois extension, and let φ denote the natural

map from (E ×E)/L to (E ×E)/K. Then α ∈ K(2)
1 (E ×E) is integral if and only

if φ∗(α) is. More generally, if α is a linear combination of triangle configurations,

then α is potentially integral if and only if φ∗(α) is.

For this, we need to recall some of the functoriality properties ofK-theory and the

related K ′-groups. K-theory is a contravariant functor on the category of schemes,

so given a morphism φ : X → Y of schemes, there is for each i a pullback map

φ∗ : Ki(Y ) → Ki(X). K ′-theory is also a contravariant functor when restricted to

the subcategory of Noetherian schemes and flat morphisms (see [23]). Finally, if we

restrict further to only proper morphisms, K ′-theory becomes a covariant functor

as well – for a proper morphism φ : X → Y , there is a “proper pushforward”

φ∗ : K ′
i(X) → K ′

i(Y ) (see [24]).

To return to our situation, let L be a finite extension of the base field K – then

we can consider the curve E as also being defined over L: E/L := E ×K L. We

will also consider (E × E)/L, which is the same as (E/L) ×L (E/L). There is a

natural (projection) map E/L→ E/K, and a corresponding map φ : (E×E)/L→
(E × E)/K. And if XE/OK and XE/OL are integral models for (E × E)/K and

(E × E)/L respectively, then φ also induces a map XE/OK → XE/OL, and hence

further induces maps on each fibre of this model – all these maps will also be denoted

by φ. The thing to note here is that all of these maps φ are necessarily flat and proper

– they are proper because they all come via basechange from the inclusion maps of

K into L, OK into OL, or similarly of their residue fields, all of which are finite and

therefore proper, and they are flat because the induced maps on local rings all make

the images into free modules over the sources. Further, all the schemes involved
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are Noetherian, and therefore each of these maps denoted φ induces both pullback

and pushforward maps in K ′-theory. What is more, these maps are compatible

with the localisation sequences in K-theory, meaning that the following diagram is

commutative:

K ′
1 (XE/OL) //

φ∗
²²

K1((E × E)/L) δ //

φ∗
²²

⊕
p′∈Spec OL

K ′
0

(
(XE)p′

)

φ∗
²²

K ′
1 (XE/OK) //

φ∗
OO

K1((E × E)/K) δ //

φ∗
OO

⊕
p∈Spec OK

K ′
0 ((XE)p)

φ∗

OO

– here (XE)p denotes the fibre of XE at the prime p.

We are going to assume first that we can find a model XE for E×E overOK which

is regular and proper, so that the integral elements in K1, in both rows, are those in

the kernel of δ. Suppose α =
∑

h ehαfh
is a potentially integral linear combination

of triangle configurations, as defined above – so in other words δ(kα + β) = 0,

for some β consisting of constants on the various copies of E which occur in the

expansion of α, and some integer k. Then, using the diagram above, we have that

0 = φ∗δ(kα + β) = δφ∗(kα + β) – so φ∗(kα + β) = kφ∗(α) + φ∗(β) is integral. And

φ∗(β) is also made up of constant functions – the constants in β are contained in

K, hence also in L, and φ∗(β) consists of the same constants on the same curves.

Thus, if α is potentially integral, so is φ∗(α).

Conversely, suppose φ∗(α) is potentially integral, so that δ(φ∗(kα) + β) = 0,

where β this time comes from constants in L, although not necessarily in K. Then

0 = φ∗δ(φ∗(kα) + β) = kδφ∗φ∗(α) + δφ∗(β). And the effect of φ∗φ∗, pullback

followed by push-forward, if L/K is a Galois extension (which we can ensure by

replacing L with its normal closure), is to multiply the original element by [L : K]

(as the pushforward takes an element to the sum of all its Galois conjugates). We

therefore find that 0 = k[L : K]δ(α) + δ(φ∗(β)). The element φ∗(β) will also be

made up of constant functions on the same curves as β – because φ∗ is a sum over

all Galois conjugates (which corresponds to multiplication on the level of functions,

since (V, f) + (V, g) = (V, fg) in K
(2)
1 (E × E)), each constant in L becomes the

constant over K given by the norm map from L to K. Thus we find that, if φ∗(α)

is potentially integral, then so is α.

Next, we want to deal with the case where there might not exist any regular
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proper model XE for E × E over OK . In this case, the definition given in the

previous section cannot be used, so we must instead work with the construction of

Scholl, which works in all cases. We will not need the whole construction, but merely

note the following consequence, which is Corollary 1.3.4 in [19] (I have altered the

notation so it matches that used here). Here, an alteration is a proper, surjective

and generically finite morphism between integral Noetherian schemes.

Proposition 3.4 Let X/K be a smooth and proper variety, and let φ : Y → X

be an alteration. If Y has a regular proper model OK , so that we can define the

subgroup K
(j)
i (Y )Z of integral elements of K

(j)
i (Y ), then K

(j)
i (X)Z = φ∗(K

(j)
i (Y )Z).

In the case we are considering, X being E×E where E is an elliptic curve, there

will always exist a finite extension field L such that (E×E)/L does admit a regular

proper model XE . This is because, after a suitable extension, we can ensure that E

has either good reduction or split multiplicative reduction at each prime (see [21]),

and as we shall see in the remainder of this chapter, in both these cases such models

do exist. (They are not known to exist in general when E has additive reduction at

any prime.)

We are going to take such an L so that (E × E)/L does admit a regular proper

model XE – this will be a scheme over OL, and hence can also be considered as

a scheme over OK via the natural inclusion of OK in OL. The natural morphism

φ : (E×E)/L→ (E×E)/K satisfies all the properties required to be an alteration

– it is clearly generically finite, is proper because it comes from Spec L → Spec K

(which is finite, and hence proper, since L/K is a finite extension) by base-change,

and is surjective by the same reason (as surjective morphisms are stable under base-

change).

Therefore, by Proposition 3.4, an element of K
(2)
1 (E ×E) (over K) is integral if

and only if it is of the form φ∗(α) for some integral element α in K
(2)
1 ((E × E)/L).

If so, then if we apply φ∗ to this element then we obtain the sum of all the Galois

conjugates of α, which must be integral since α is. Conversely, if α is in K
(2)
1 (E×E)

and φ∗(α) is integral, then so, by the proposition, is φ∗φ∗(α) = [L : K]α, and

therefore so is α.
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This completes the proof of Proposition 3.3.

3.3 Local-global behaviour

There is another aspect of the integrality condition which we need to look at, and

this is the relationship between “local integrality” at an individual prime p, and

actual integrality as defined above, which we may call “global integrality”. We shall

assume that E × E admits a regular proper model over the ring of integers OK , as

the results of the previous section allow us to do so without losing any information

about the integrality of our elements. So we know that α is integral if and only if it

vanishes under the boundary map to the direct sum, over all primes p of OK , of the

codimension one Chow groups of the fibres of the model at p. Being a direct sum,

we can examine this question one prime at a time, for α will be integral if and only

if its image in the Chow group vanishes at each individual prime.

However, when we wish to look at potential integrality, rather than actual in-

tegrality, we encounter a problem. Clearly, if there is a β made up of constants in

K, and an integer k, for which kα + β integral, then for each prime p there is a

βp (namely β) which makes kα + βp integral locally at p. But the converse is not

obvious – that the existence of a βp at all p guarantees the existence of a β.

But it turns out that we are OK, due to the finiteness of the class number of

K, and the fact that we are working in a rational vector space. For suppose a βp

exists at each prime p. Because it comes from working in the localisation, the only

relevant thing about βp is its order at p – if we multiply it by any unit in the discrete

valuation ring associated to p before adding it to kα, the result will still be integral

at p. So we are looking for a β ∈ K which has a specified order at each particular

prime p. In general, of course, this is not possible, although it is when the class

number of K is 1. If h is the class number, what we can guarantee is that a β exists

with order h ·ordp(βp) at each p, which again makes α potentially integral, according

to the definition above. Thus, we have established the following:

Proposition 3.5 If α is a linear combination of triangle configurations which is

potentially integral at each prime p, then it is potentially integral (globally).
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3.4 The case of good reduction

Thanks to the results of the previous two sections, we may approach the integrality

question one prime at a time, and also may extend the base field first if that will

make life easier. Extending the field will be extremely useful, because it is known

that, after a suitable finite extension, an elliptic curve E over K attains either good

or multiplicative reduction at each prime. After a further extension, if necessary –

still finite – we may assume further that the reduction is split multiplicative or good

at each prime. So we need only look at what happens at each prime individually, in

each of these two cases.

The case of good reduction is particularly easy. In this case, there is a regular

proper model E for E, over the localisation of OK at p, whose special fibre is itself an

elliptic curve over the residue field. Namely, we take as E the closure of E inside the

projective plane over R. Then E ×E , which is clearly a proper model for E×E, will

also be regular, as E is smooth over R, and the product of two smooth schemes over

the base is itself smooth and therefore regular. Clearly, the closure of, for example,

E × {P} inside this model will be E × {P} (the bar denotes Zariski closure), which

is naturally isomorphic to E itself. And if we take the function f , from which we

constructed the triangle αf , on this surface and look at the “vertical” component of

its divisor (in other words those components which lie within the special fibre), we

find something of the form {a(Ep × Pp)}, where Pp denotes the reduction of P mod

p (in other words the point of intersection of {P} with the fibre at p), and a is an

integer. If we then pick a constant on E × {P} which has order a at p, this will

clearly have the same image under the boundary map in the localisation sequence

(as far as “vertical” components are concerned, which is all that matters in the end

as the horizontal ones cancel over the whole triangle). The other curves involved in

our triangles – those of the form {Q} × E and the various ∆a – will similarly give

a constant times the equivalent construction in Ep × Ep, and let us find constants

on these curves with the right images. Thus, at a prime of good reduction we can

always find constants to cancel out the contributions from any individual triangle.

Summing up, then, we have:
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Proposition 3.6 If E has good reduction at p, then any triangle configuration αf

is potentially integral at p, and thus so is any linear combination of them.

We should also note that this description of the fibre at a prime of good reduction

gives us an alternative way of proving Proposition 2.6 in the case of an elliptic curve

– for, if we pick any prime at which the curve has good reduction (which is almost

all primes), and consider the images of the three elements discussed there under the

boundary map at that prime, one can see at once that these are independent.

3.5 The case of split multiplicative reduction

As we have just seen, the case of good reduction is particularly easy, because we have

a regular model for E × E readily to hand. In the case of bad reduction, though,

we cannot do this in the same way – the natural model E for E over OK (or its

localisation at the relevant prime) is no longer smooth, as it has singular points on

the fibres of bad reduction, and this in turn means that E ×OK
E is not necessarily

regular; in fact, it never is. So we must blow up any non-regular points that occur

as the singular points in the various fibres, and continue if there are any non-regular

points on the resulting model. We can continue this process indefinitely, in theory

– the difficulty is that it is not known, in general, whether or not this process

even comes to an end in a finite number of steps! The problem of resolving the

singularities in such a model was studied by Mansour Aghasi in his thesis [1] – he

found that the only cases he could treat were those where the reduction type of the

elliptic curve is either In, III or IV (using the Kodaira symbols for the classification

of the reduction types of elliptic curves), leaving the remaining cases (II,II∗,III∗

and IV ∗) as open problems. Fortunately, it turns out we shall not need to discover

regular integral models for all these cases. The only cases that we need to deal

with are the In’s – either good reduction (for n = 0) or multiplicative reduction, as

we can deal with the other cases by extending the base field. Having found good

reduction simple to deal with, it means that it is only multiplicative reduction which

we have left to consider – and here, too, a regular integral model is easy to come by

(although not quite as easy as in the case of good reduction). What is more, we can
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concentrate just on the easier case of split multiplicative reduction, as once again we

can always obtain this after a suitable finite field extension (see [21]). Thus, from

now on we will assume that E has split multiplicative reduction at our chosen prime

p.

3.5.1 A regular model

Let us suppose, then, that our curve E has split multiplicative reduction at the

prime p. We will, as usual, localise, and look for a regular, proper model for E ×E

over the localisation of OK at p – this allows us to concentrate just on integrality

at the prime p, which we have seen is enough (Proposition 3.5). As stated at

the beginning of this chapter, let us write R for this localisation, and π for any

uniformiser of R. Let us take the Néron model for E over R. Because we have

assumed split multiplicative reduction, the fibre of the Néron model is a so-called

“Néron n-gon” for some n – that is, n copies of P1
k (here, and throughout, k will

denote the residue field OK/p = R/(π)), glued together at their end-points so that

∞ on one corresponds to zero on the next, and with the singular points (the points

where these joins occur) removed. In fact, we shall need to keep these singularities

in place, so that our model is proper – the result is called the minimal proper regular

model for E over R, and we shall denote it by E .

But unfortunately, E being regular does not necessarily mean that E ×R E is also

regular, as I have already said. Non-regular points can occur in this case, but only at

singular (closed) points on a fibre. And the special fibre, which will be the product

of a Néron n-gon with itself, is singular along the 2n lines along which one of the

two coordinates is one of the singularities of the n-gon. The arithmetic threefold

E ×R E is still regular at most points on these lines, but fails to be so at any of these

n2 points of intersection of these lines – ie. at the points (P,Q) where both P and

Q are singularities of the fibre of E .

Thus our model is not regular as it stands. In this multiplicative case, however,

we can obtain a regular model with just a single blowup at each of the n2 non-

regular points. This fact is well-known (see [1], for example), but it needs to be

gone through in detail, as we shall need the details of the blown-up model in order
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to compute the codimension 1 Chow group of the fibre, and thus to determine the

image of our triangle configurations under the boundary map. However, this is a

somewhat lengthy, and computationally intensive, process, so to avoid distracting

from the flow of this chapter, I have put the relevant computations into Appendix

A, and will here merely refer to results in that appendix. I will use the notation XE
for the result of the n2 necessary blowups of E ×E , which will be our regular proper

model for E × E.

The first fact which we shall need is what the exceptional divisor of each blowup

is. The answer is:

Proposition 3.7 When we blow E × E up at one of its singular points, the excep-

tional divisor is a copy of P1
k × P1

k.

This allows us to describe what the fibre of XE is. Before the blowup, we had

Ep × Ep, with Ep consisting of n copies of P1 all joined up in a “circle”. So this

product consisted of a torus, tiled with n2 copies of P1×P1 – there were n2 different

points where the “corners” of these tiles met, and these were the non-regular points

of E × E which we had to blow up. We now know that the effect of this blowup was

to replace each of these n2 vertices with a new copy of P1 × P1 – giving 2n2 copies

in total.

This doesn’t quite give the full details, however, because new “edges” have been

introduced to this picture by the blowup, and it is these edges which will prove

crucial in computing the Chow group of the fibre. To be more precise, by an “edge”

of a P1 × P1 I shall mean one of the four curves {0} × P1, {∞} × P1, P1 × {0} and

P1 × {∞}. Note that, before the blowup, the tiles were glued edge-to-edge, in this

sense, so that this definition makes sense. As a result of the blowup, at each corner

we have a new P1×P1, and thus four new edges. Each new P1×P1, coming as it did

from a corner, touches four of the old tiles, and for reasons of symmetry it is clear

that one of the edges of this exceptional divisor must become a new edge for each

of these four. So we see that each of the tiles which existed before the blowup now

has 8 edges – ie. has become an octagon. Pleasingly, these can be characterised in

more familiar terms:
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Lemma 3.8 Each of the octagons referred to above is isomorphic (as a variety over

k) to a copy of P1 × P1 which has been blown up at each of its four corners.

Proof We recall a basic result on blowups: if Y and Z are closed subschemes of

the scheme X, and we blow X up along Z, then the strict transform of Y in this

blowup is isomorphic to the blowup of Y along Y ∩Z (see, for example, Proposition

IV-21 in [10], and the comments following it). We shall apply this to our case, with

X being E × E , Y one of the copies of P1 × P1 in the fibre, and Z that one of the

singular points at the “corners” of Y at which we are blowing up. This tells us that

the strict transform of the P1 × P1 is isomorphic to the blowup of P1 × P1 at this

corner.

The octagons which we are considering are precisely the strict transforms of these

“tiles” in the fibre of E × E . So, by the previous result, if we blow up at just one

point, so adding only one more edge to our original tile, the new edge is precisely

the exceptional divisor of the original tile when blown up at that corner. Since any

one corner is as good as another, this proves the desired result. 2

3.5.2 The Chow group of the fibre

The next stage in figuring out the conditions needed to make our triangle configura-

tions integral (at the given prime p of split multiplicative reduction) is to compute

the target group of the boundary map (or rather its component at the prime p) –

namely the codimension 1 Chow group of the fibre. We shall compute the rank of

this group, in terms of the number n of sides of the Néron n-gon which was the fibre

of E , as well as an explicit set of generators and relations.

We already noted that, prior to the blowup, the fibre was a torus tiled with n2

copies of P1 × P1. Pictorially, we can represent this as an n by n grid, in which the

pairs of outer edges are identified. After blowing up, each vertex becomes another

square, and the edges of these cause the former squares to look like octagons. And

each “octagon”, as we just saw, is in fact a copy of P1 × P1 which has been blown

up at each of its 4 vertices. So there are 6n2 edges in total – we need to choose a

consistent system of labelling to keep track of all of them. So let us label the vertices
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in the form (i, j) with i, j ∈ Z/nZ, and then label the 6 edges at the (i, j)th vertex

as follows:

@
@

@
¡

¡
¡@

@
@

¡
¡

¡

Aij

Bij

Cij

DijEij

Fij

Finding generators and relations for the codimension 1 Chow group of the fibre

is greatly simplified when we recall that each of the 2n2 separate components of

which it is made up is a copy of P1×P1, whose codimension 1 Chow group is free of

rank 2, the generators being any “horizontal” and any “vertical” copy of P1, all such

curves in the same direction being equivalent. So, the Chow group of our fibre can

be generated by 4n2 elements, one in each direction in each of the 2n2 tiles – but

these will not be independent, as all the edges belong to more than one of the tiles.

In order to compute precisely what the relations are, we will find it easier to work,

to begin with, with 6n2 generators, namely the ones given in the diagram above –

we shall see that all of the edges can be expressed in terms of these, so that these

elements do in fact generate the whole group.

One set of relations is immediately apparent from the picture – clearly Cij = Eij

and Fij = Dij for each pair (i, j), and this is clearly all that we get from the “squares”

(ie. the exceptional divisors of the n2 blowups which we have performed). So we

are back down to 4n2 generators (and will write everything in terms of just the Aij,

Bij, Cij, and Dij from now on) and need to compute what relations the “octagons”

give us.

We saw in the previous section that each octagon is just a P1×P1 which has been

blown up at each of the four vertices. This allows us to compute what each of the

four edges before the blowup becomes, in terms of the edges of the octagon, in the

following way: if we use x and y for the two co-ordinate functions on P1 × P1, then

the edges are simply the zeroes and the poles of these two functions. So all we need
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to do is to figure out the divisors of the functions x and y on the octagon created

by blowing up at each of the four corners, and set these equal to zero – these will be

all the relations which occur, and also demonstrate that our edges listed above are

enough to generate the whole group, as all of the original edges will be expressed in

terms of them.

As we are now concentrating on one individual octagon, it will be more conve-

nient to label its sides in a different way – I will do it as A through H, starting at

the top and going clockwise, as shown below. Afterwards, we will match these up

with the generators given above for the whole group.

@
@@

¡
¡¡@

@@

¡
¡¡

A
B

C

D
E

F

G

H

Let us first compute the divisor of the function x on the octagon. Clearly, it

has a simple zero along G and a simple pole along C, as it had these before the

blowup, and the blowup doesn’t affect these two sides (or A and E, along both

of which x has order 0). What remains to be computed is its order along each of

the four exceptional divisors. Let us first compute its order along F , which is the

exceptional divisor when P1 × P1 is blown up at the point (0, 0). As the blowup is

local, we can consider just the blowup of the affine plane at the origin. This blowup

is just Proj k[x,y,X,Y ]
(xY−yX)

, which can be covered by 2 affine co-ordinate charts. The first

occurs when X = 1, and is Spec k[x,y,Y ]
(xY−y)

∼= Spec k[x, Y ], and similarly the second is

Spec k[y,X]. The exceptional divisor is given by the ideal (x, y) in the global Proj

picture, and this becomes principal on each of the affine charts – generated by x on

the first and y on the second. So we see that the function x, which is yX on the

second chart, has order 1 along the exceptional divisor – ie. along the side we have

labelled F . The same computation gives the order of x at the other 4 corners of the

octagon – find the order along D, for example, which is the exceptional divisor of

the blowup of P1 × P1 at the point (∞, 0), we simply replace x by 1/x, to get order
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−1. So we see that the divisor of x is:

(x) = F +G+H −B − C −D,

and similarly that

(y) = D + E + F −H − A−B.

Translating these back in terms of the generators Aij, Bij, Cij and Dij, with

reference to the picture on page 43, we find the following 2n2 relations:

Ai,j+1 + Cij +Di,j+1 = Ai+1,j+1 + Ci+1,j+1 +Di+1,j (Xij)

Bij + Cij +Di+1,j = Bi,j+1 + Ci+1,j+1 +Di,j+1. (Yij)

We can now use these relations to compute the rank (or the dimension, as the

target group of the boundary map is really this Chow group tensored with Q) of

the codimension 1 Chow group. It is clear that the 2n2 relations given above are

not independent – adding together all n2 of each type produces the trivial relation.

However, I claim that these are the only two dependencies among the relations. To

see this, let us label the relations – that is, the differences between the two sides,

linear combinations of the generators which equal zero – as Xij and Yij respectively

(shown above). Then each Aij occurs only in Xi,j−1 and Xi−1,j−1, and with opposite

signs in each. Hence, in any linear combination of these relations which is trivial, the

coefficient of Xij depends only on j. By the same argument with Bij, the coefficient

of Yij depends only on i. Let xj be the coefficient of any Xij, and yi that of any Yij.

Then looking at either Cij or Dij will tell us that we must have xj +yi = xj−1 +yi−1

– for each pair (i, j). If we fix j and add these n relations over all i in Z/nZ, we see

that xj = xj−1, so all the xj are equal. Fixing i and summing over j proves that all

the yi are equal too. So any relation among these relations is a linear combination

of the two already noted. Thus, the 2n2 relations above generate a subgroup of rank

2n2 − 2 of the free group on the 4n2 generators, and establish that:

Proposition 3.9 The Chow group of the fibre at p, for p a prime of split multi-

plicative reduction of type In (n > 0), has rank 2n2 + 2.

Of course, we are still going to need to be able to determine whether or not a

given linear combination of our generators lies in the span of the relations, so merely
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knowing the rank of the quotient is not enough – we shall need to make careful use

of the relations.

3.5.3 Computations on E
Now that we have an explicit description of the target group, we are in a position

to compute the image of our triangle configurations under the boundary map, at

primes of split multiplicative reduction.

As before, E will denote the minimal regular proper model of E (over R), or the

Néron model with the singular points on the fibre included. The properties of both

properness and minimality will be crucial in the following arguments.

Of the three copies of E inside E×E which occur inside each individual triangle

configuration, two of them – namely the horizontal and vertical – do not touch any

of the singularities of the fibre when we take their closure inside E × E . For if they

did, then the closure of either P or Q would go through one of the singularities in

the fibre of E , and it is impossible for any point on the generic fibre of a regular

arithmetic surface to do this ( [22], Proposition 4.3b)). This means that, for these

two curves, we are free to work inside E × E before the blowup – and further, their

closures are clearly isomorphic to E itself.

Consider then the function f , whose divisor on E was d(P ) − d(Q), extended

to E – as always, its divisor can be split into “horizontal” components, which have

points in both the generic and special fibres, and “vertical” ones which lie entirely

in the special fibre. The horizontal components here must consist of a zero along P

and a pole along Q, both of order d – there can be no others, as if f has a zero or

pole along a “horizontal” curve, then its restriction to the generic fibre must also

be a zero or pole where it intersects, hence must be P or Q. And the only vertical

components here are the n components (copies of P1
k) of the Néron n-gon, which we

shall label so that ∞ on Di is glued to 0 on Di+1, with the indices in Z/nZ. So we

must have that

(f) = dP − dQ+ a1D1 + . . .+ anDn,

where the ai are integers, as yet unknown. In fact, because we are working through-

out in rational vector spaces, we will also allow the ai to be non-integral rational
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numbers.

We can work out the ai – or at least the relations between them – by using the

fact that the above divisor, being the divisor of a function, has intersection product

zero with any of the Di. (I shall denote the intersection product on the arithmetic

surface E by a dot.) It is clear that Di ·Dj = 0 unless j = i− 1, i or i+ 1, and that

Di ·Di±1 = 1. Further, it is a well-known fact that, when E is the minimal regular

model, as it is here, D2
i = −2. But we shall recall the proof, as we shall need to

use similar reasoning in a moment for the closure of the diagonal, which is not a

minimal model of E. The following argument is taken from [22].

First, (π) = D1 + . . .+Dn. This is because π must vanish along all of the Di, so

has order at least one among all, and by symmetry must have the same order along

each; if this common order were more than one, then all points of the fibre would be

singular, which is untrue. Therefore,
∑

iDi has zero intersection with any divisor

on C which lies within the fibre, and, in particular, with itself. We shall write Ep

for this whole fibre. The adjunction formula ( [22], Proposition 7.4a) tells us that

Ep · Ep +KE · Ep = 2ρa(Ep)− 2, where ρa denotes the arithmetic genus, and KE the

canonical divisor on E . Since Ep · Ep = 0, while the arithmetic genus of the special

fibre is the same as that of the generic fibre, namely 1, we find that KE · Ep = 0.

Next, we apply the adjunction formula again to Di individually:

D2
i +KE ·Di = 2ρa(Di)− 2.

First, we shall suppose that KE · Di < 0. Then D2
i = 2ρa(Di) − 2 − KE · Di >

2ρa(Di)− 2 ≥ −2. But it is also well-known in general that, for any divisor D lying

in the special fibre on an arithmetic surface, D2 ≤ 0, with equality if and only if D

is a multiple of the whole fibre. Provided n > 1, the latter is clearly not the case for

Di, so D2
i < 0. Combining with the inequality just proved, we find D2

i = −1, and

hence ρa(Di) = 0 as the left-hand-side of the adjunction formula must be negative.

(If n = 1 then D2 = 0, because it is the whole fibre, but the same result as we shall

obtain later – namely that the part of (f) which lies in the fibre is a multiple of (π)

– follows trivially in this case.) But if this were the case, Di could be blown down

(Castelnuovo’s criterion), contradicting the minimality of E . Thus we can conclude

that KE · Di ≥ 0 for all i. But we observed above that
∑

iKE · Di = 0, so can
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deduce that KE ·Di = 0 for each i. Now, looking at the adjunction formula above,

the left-hand-side is negative, which forces ρa(Di) to be 0, and then D2
i = −2.

Now, we want to take the intersection product of the above expression for (f)

with Di. The result depends on whether P or Q, or both, have non-zero intersection

(necessarily 1) with any particular Di. So let us now fix some notation. From now

on – until the end of the thesis – i and j will refer to specific indices, as follows:

Definition 3.10 • Let i ∈ Z/nZ be such that Di intersects P (so that the

reduction of P mod p lies on component Di).

• Similarly, let us use j for the fixed index for which the reduction of Q lies on

Dj.

• Let ∆ be the difference j − i.

(∆ will play a large role in the coming computations, but should cause no confusion

with the ∆ used to represent the diagonal in E × E.)

We will first deal with the case when ∆ = 0 – so the reductions of P and Q

lie on the same component of the n-gon. Then each Dk intersects either neither

or both of P and Q, so that the dP − dQ part always gives zero, resulting in

0 = ak−1+ak+1−2ak. We can utilise this relation between the ak to see that, for each

k, if we choose an integer representative which is positive, ak = (k−1)a2− (k−2)a1

– this follows by a straightforward induction. But then, recalling that these indices

are really elements of Z
nZ , a1 = an+1 = na2 − (n − 1)a1, from which we see that

a1 = a2, and hence that all the ai are identical. As (π) = D1 + . . .+Dn, we see that

the part of (f) which lies in the fibre is the same as that of the constant πak (for any

k), so we can multiply f by a suitable constant in order to make the contribution

of the horizontal and vertical curves to the image of the boundary map 0. Note

that, because we are only concerned here with local integrality, the only thing that

matters about the constant we pick is that it has the correct order at p.

When ∆ 6= 0, then we get a different result from intersecting (f) with different
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Dk. More precisely, we obtain:

2ai = d+ ai−1 + ai+1

2aj + d = aj−1 + aj+1

2ak = ak−1 + ak+1 for k 6= i, j.

One can then solve these equations in terms of just one parameter, just as we did

in the ∆ = 0 case. (There are n equations, but that they are dependent is easily

seen by adding them all together – this is to be expected, as we can alter the ai by

multiplying the function f by a constant.) So far we are considering the indices to

lie in Z/nZ, but it will prove more convenient now to choose integer representatives

for them. We shall choose these representatives for i and j so that ∆ = j − i lies

between 0 and n − 1, inclusive. Having done this, we will choose representatives

for each k which lie from i to i + n − 1 (although the following formulae work for

k = i+ n as well). Then, with these conventions, we find that:

ak = ai − (k − i)(n−∆)d

n
if k − i ≤ ∆ (3.1)

ak = ai − ∆(n− (k − i))d

n
if k − i ≥ ∆. (3.2)

(These can be derived as we did in the previous case, by writing all the ak in terms

of say ai and ai+1, and then using ai=ai+n to write ai+1 in terms of ai. But, having

derived these formulae, one can easily confirm that they are correct, just by verifying

that they satisfy all of the equations above, and hence give a one-parameter family

of solutions – for all the solutions must lie in a one-parameter family. )

From these formulae, we can extract the following result:

Proposition 3.11 Again choose k so that i ≤ k ≤ i+ n− 1. Then:

ak − ak+1 =





(n−∆)d
n

if i ≤ k ≤ i+ ∆− 1

−∆d
n

if i+ ∆ ≤ k ≤ i+ n− 1

It is worth noting that these last formulae actually apply to the case where ∆ = 0

as well – then it is the second line of the above result which always applies, and says

that all the ai are equal.
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We will later draw out various consequences of these formulae, but will state and

prove one here, as it will be used time and again in the next chapter, and is easy to

prove at this stage:

Proposition 3.12 With the ak as above, we have that

∑

k

ak = n

(
ai − ∆(n−∆)d

2n

)
. (3.3)

Proof If ∆ = 0, the result is trivial, as we have already seen that all ak are equal.

If ∆ 6= 0, the proof is a simple computation using the formulae already given:

∑

k

ak = nai − d

n

i+∆∑

k=i

(k − i)(n−∆)− d

n

i+n−1∑

k=i+∆+1

∆(n− (k − i))

= nai − d

n

∆∑

k=0

k(n−∆)− d

n

n−1∑

k=∆+1

∆(n− k)

= nai − (n−∆)d

n

∆∑

k=0

k − ∆d

n

n−∆−1∑

k=1

k

= nai − (n−∆)∆(∆ + 1)d

2n
− ∆d(n−∆− 1)(n−∆)

2n

= nai − ∆(n−∆)d

2n
((∆ + 1) + (n−∆− 1))

= n

(
ai − ∆(n−∆)d

2n

)
.

2

So far, we have concentrated on the closures of the horizontal and vertical curves

which occur in our triangle configurations – but there will also be a contribution

from the diagonal, which we need to examine. We first need to know what the image

of the diagonal is in the special fibre – in other words, how the fibre intersects with

the closure of the diagonal in our regular model for E×E. It is clear that the image

of the diagonal in the special fibre of E × E , before blowing up, is itself a diagonal

in our picture – at this stage the closure of ∆ is still isomorphic to the model E
of the curve. But it runs through n of the singular points at which we blow up,

which means that, after blowing up, its intersection with the fibre will have not n

but 2n components – the original n, plus an extra one at each point where it goes

through a singularity of the special fibre. Another way to view this is to note that
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this intersection will consist of the fibre of E – the Néron n-gon – after it has been

blown up at each of its n singular points. We shall call this blowup of the Néron

model E ′. If we label the original components Dk as before, with k ∈ Z
nZ , and use

Ek to denote the new component which came from the point of intersection of Dk

and Dk+1, then we know that, on ∆,

(f) = dP − dQ+ a1D1 + . . .+ anDn + b1E1 + . . .+ bnEn,

for certain (integer) constants ak and bk.

We wish to again use the fact that the intersection of (f) with each Dk and each

Ek is zero to be able to solve for the ak and bk in terms of just one parameter. For

this we shall need to know what the self-intersections of the Dk and Ek are on this

model. The earlier argument, for the Néron model E , goes through, right up until

the point where we ruled out the possibility that D2
k = −1. (Note that the argument

now works for n = 1, too, as even here there are 2 components in the fibre, so that

neither Dk nor Ek can be a multiple of the whole fibre.) We can no longer rule

this out, because the model is no longer minimal. In fact, we know that E2
k = −1,

and that ρa(Ek) = 0, precisely because it is the exceptional divisor of a blowup of

a surface at a point (namely, of the minimal model at one of the singularities of its

fibre) – this is Castelnuovo’s criterion again. Hence, by the adjunction formula for

Ek, KE ′ ·Ek = −1. And since we know that each Dk is a P1, its arithmetic genus is

0, and hence D2
k +KE ′ ·Dk = −2. We can now use these in the formula 0 = E ′p ·KE ′ ,

for which we need to know what E ′p is – that is, (π) – in terms of the components

Dk and Ek of the special fibre.

Clearly, π vanishes along each of the Dk and Ek, and further has a simple zero

at each Dk, since this was the case before the blowup, and the blowup did not affect

the Dk at all. The order at the Ek turns out to be 2; for this computation, again

see the appendix.

So, E ′p = D1 + . . .+Dn + 2E1 + . . .+ 2En, and thus it follows that

0 =
∑

k

(KE ′ ·Dk + 2KE ′ · Ek)

=
∑

k

(−2−D2
k − 2

)
,
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so
∑

k D
2
k = −4n. Since it is clear that all the D2

k must be equal, D2
k = −4.

We will again divide into two cases, according to whether ∆ = 0 or not. If it is,

then we obtain:

0 = −4ak + bk−1 + bk

0 = ak + ak+1 − bk,

so that bk = ak + ak+1, and hence that 0 = −4ak + (ak−1 + ak) + (ak + ak+1), or

2ak = ak−1 + ak+1, which is exactly the same relation we had among the ak for the

images of the horizontal and vertical curves. So the result will be the same – that

all the ak must be equal, and therefore can be made all zero if we use a suitable

constant multiple of f . Hence we already see the following result:

Theorem 3.13 If E has split multiplicative reduction at p, then any triangle with

∆ = 0 is potentially integral – and hence so is any linear combination of such

triangles.

If ∆ 6= 0, then we find that:

0 = d− 4ai + bi−1 + bi

0 = −d− 4aj + bj−1 + bj

0 = −4ak + bk−1 + bk for k 6= i, j

0 = ak + ak+1 − bk.

If we use the last of these (for each k) to express everything in terms of the ak, we

find that the resulting relations are identical to the ones which we had among the

ak for the images of the horizontal and vertical. Thus the relations among the ak

here are exactly the same as the ones we saw earlier, which means in particular that

the relations (3.1) and (3.2), Proposition 3.11, and the sum formula in Proposition

3.12, all still hold. Further, we know that bk = ak + ak+1 for each k.

3.5.4 The image of a linear combination of triangles

We are now going to use the results of the previous section to compute the image

in the codimension 1 Chow group of the fibre of our regular model XE of E ×E, at



3.5. The case of split multiplicative reduction 53

a prime of split multiplicative reduction, of a linear combination of triangles under

the boundary map – in terms of the generators Akl, Bkl, Ckl and Dkl we have been

using. What we have to do now is to translate the Dk and Ek, which we dealt with

in the previous section, into expressions involving our generators. To do this, first

let us recall the picture we were using:

@
@

@
¡

¡
¡@

@
@

¡
¡

¡

Akl

Bkl

Ckl

DklEkl

Fkl

(I have replaced i and j by k and l, respectively, to avoid confusion with the fact

that i and j now have specific meanings, whereas the indices in the picture above

are generic.) Now, the horizontal component in each individual triangle is precisely

E × {P}, and we are now using i to denote the component on which the reduction

of P lies. This means that, if the labelling of each axis on the above picture is

consistent with our labelling of the components Dk of the special fibre of E , then

the Dk on the horizontal component becomes Bki + Ck+1,i + Dki, if we recall the

divisors of the co-ordinate functions on the octagons. So the total contribution from

the horizontal under the boundary map is

∑

k

aH
k (Bki + Ck+1,i +Dki).

The superscript H here refers to the fact that this comes from the horizontal com-

ponent – I will use V and D for the same purposes on the other two components. It

is important to keep these separate, as the sets of ak need not be the same on each,

given that we want to be able to choose independent constants on each of the three

curves, if necessary, to multiply the function by.

We can read off the contribution of the vertical just as easily; it is:

∑

k

aV
k (Ajk + Cj,k−1 +Djk)

in this notation. As for the diagonal, recall that its closure inside the integral model
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we are using is the same as the blowup of E at each of the n singular points of

its fibre, which we considered in the previous section. The Dk correspond to the

diagonals of the P1 × P1’s which became the octagons after the blowup, while the

Ek are the intersections of the strict transform of the diagonal with the exceptional

divisors – we shall need to compute both of these.

Inside each octagon, we compute the divisor of the function y− x in the blowup

of P1×P1. This has a simple zero along the diagonal, and simple poles along A and

C – we use the same labelling of the edges of the octagon as we did before, clockwise

from A at the top (ie. P1 × {∞}). I will again repeat the earlier diagram:

@
@@

¡
¡¡@

@@

¡
¡¡

A
B

C

D
E

F

G

H

The order of y − x along the edges which come from the exceptional divisors of

blowups can be found in the same way as we did when we computed the divisors

of x and y, but now using the functions x− y, 1/x− y, x− 1/y and 1/x− 1/y for

F,D,H and B respectively. We find a simple zero along F , the lower-left corner,

and simple poles along the other three (as would be expected naively from treating

them as points with coordinates zero and infinity), and hence that, in the Chow

group, the diagonal of the octagon is equivalent to A+B + C +D +H − F .

We also need to compute the Ek. It turns out – see Proposition 5.1 later, and its

proof in the appendix – that this corresponds to the side of the “square” (which is the

exceptional divisor) labelled as a Dkl rather than a Ckl. (Again, this corresponds to

our intuition, as it is the sides Dkl which are parallel to the diagonal in our picture.)

Putting these together, and referring to the picture, we see then that the contri-

bution from the diagonal, from a single triangle, is

n∑

k=1

(−aD
k (Ak+1,k +Bkk + Ck+1,k − Ck,k−1 +Dkk +Dk+1,k−1)− bDk Dk+1,k

)

(The minus sign is because we have the function f−1 on the diagonal, whereas all
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the computations already done were for f . Note that replacing f by f−1 replaces i

and ∆ with i+∆ and n−∆ respectively – the reader can convince himself that the

formulae given earlier for the ak are unchanged if we replace each ak by −ak as well

as altering i and ∆ as just mentioned. This is most easily seen from the difference

formulae in Proposition 3.11 – the two ranges for k switch round, and each difference

becomes the other multiplied by −1, so that, for f−1, the differences are exactly as

they would be if we had replaced each ak by −ak.)

Therefore, by putting all three expressions together, we can write down what

the image of one of our triangle configurations is in the Chow group of the fibre, in

terms of the a•k. (And the bDk too, but we already know that bDk = aD
k + aD

k+1, which

we shall make use of.) In fact, we shall do so for an arbitrary linear combination of

triangles, of the form
∑

h ehαfh
. So each h comes with its own dh (∈ Z), ih and ∆h

(∈ {0, . . . , n− 1}). Further, the three sets of ak can be different on each, so I shall

write a•k,h. I shall use akl to denote the coefficient of Akl which appears as the image

under the boundary map of this linear combination, and analagously bkl, ckl and dkl

for the other coefficients. Then, we find the following results (here each δ denotes

the Kronecker delta):

akl =
∑

h

eh

(
δih+∆h,ka

V
l,h − δk,l+1a

D
l,h

)

bkl =
∑

h

eh

(
δih,la

H
k,h − δkla

D
k,h

)

ckl =
∑

h

eh

(
δih,la

H
k−1,h + δih+∆h,ka

V
l+1,h − δk,l+1(a

D
l,h − aD

k,h)
)

dkl =
∑

h

eh

(
δih,la

H
k,h + δih+∆h,ka

V
l,h − δkla

D
k,h − δk−1,l+1a

D
k−1,h − δk,l+1(a

D
l,h + aD

k,h)
)
.

3.5.5 Conditions for integrality

Finally, in this chapter, we shall note some conditions on the coefficients in a general

linear combination of the generators Akl, Bkl, Ckl and Dkl which are necessary for

the resulting element to be zero in the Chow group – that is, in the span of the

relations already given. We know that the relations span a subspace of dimension

2n2 − 2, so that any necessary and sufficient set of conditions on the coefficients for
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the element to be zero must have 4n2− (2n2− 2) = 2n2 +2 independent conditions.

It is not clear, in general, what these will be. However, it is easy to pick out 4n

conditions which are certainly necessary (although not usually sufficient), and it

turns out that these will be enough to allow us to prove that any integral linear

combination of triangles has vanishing regulator.

These conditions are as follows. It is clear that all of them are necessary, as they

are true of each of the 2n2 relations, and hence for anything in their span.

Proposition 3.14 Let
∑

k,l(aklAkl + bklBkl + cklCkl + dklDkl) be an element of the

codimension 1 Chow group of the fibre of our model for E × E (at a prime of split

multiplicative reduction). If it is zero, then we must have, for each k ∈ Z/nZ:

∑
m

amk = 0

∑
m

bkm = 0

∑
m

cm,m+k = 0

∑
m

dm,k−m = 0.

2

We now simply apply these conditions to the coefficients of a linear combination

of triangle configurations, which we have just written down. We find that:

0 =
∑
m

amk

=
∑

h

eh

(∑
m

δih+∆h,ma
V
k,h −

∑
m

δm,k+1a
D
k,h

)

=
∑

h

eh

(
aV

k,h − aD
k,h

)
;

0 =
∑
m

bkm

=
∑

h

eh

(∑
m

δih,ma
H
k,h −

∑
m

δkma
D
k,h

)

=
∑

h

eh

(
aH

k,h − aD
k,h

)
;
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Similar computations for the other two yield:

0 =
∑
m

cm,m+k

=
∑

h

eh

(
aH

ih−k−1,h + aV
ih+∆h+k+1,h

)
;

0 =
∑
m

dm,k−m

=
∑

h

eh


aH

k−ih,h + aV
k−ih−∆h,h − 2

∑

m|2m=k

aD
m,h −

∑

m|2m=k−1

aD
m,k −

∑

m|2m=k+1

aD
m,k


 .

What we will do next is, for each of these four sets of relations (each set contains

n relations, one for each k), is to sum them up over all k – so really the only

conditions for triviality in the Chow group which we are using are that the sum of

all the akl (and bkl etc.) must be zero. If we do this, we find the following conditions:

∑

h

eh

(∑

k

aV
k,h −

∑

k

aD
k,h

)
= 0

∑

h

eh

(∑

k

aH
k,h −

∑

k

aD
k,h

)
= 0

∑

h

eh

(∑

k

aH
k,h +

∑

k

aV
k,h

)
= 0

∑

h

eh

(∑

k

aH
k,h +

∑

k

aV
k,h − 4

∑

k

aD
k,h

)
= 0.

It is now clear from these that we must have that
∑

h eh

(∑
k a

•
k,h

)
= 0, for

• = H, V or D. Hence, using the formula (3.3), we discover the following crucial

result, which will be essential in the following chapter:

Theorem 3.15 If
∑

h ehαfh
is integral, then we must have

∑

h

eha
•
ih,h =

∑

h

eh
∆h(n−∆h)dh

2n

for • = H, V or D.



Chapter 4

The Vanishing of the Regulator

4.1 The regulator image of a triangle, and the

norm of a function

Having examined in some detail under what conditions a linear combination of

triangle configurations is integral (or might be integral), we are now going to have

a look at what the image of such a linear combination will be under the regulator

map – and in particular, at certain conditions under which this regulator image will

be zero.

Recall from Chapter 2 that the target group of the Beilinson regulator from

K
(2)
1 (X) is H3

D(XC,R(2)) (or the “plus space” which is a subspace of this), which we

saw was isomorphic to the dual space of H2d−2(X,R(1))∩F d−1H2d−2(X,C) (where

d is the dimension of X). In our case, X is a surface, so that the regulator image

of a triangle, like that of any other element of K
(2)
1 (E × E), is a linear map on

H2((E ×E)C,R(1))∩ F 1H2((E ×E)C,C), which as we saw in Chapter 2 is a space

of dimension [K : Q](2g2 + 2), or 4[K : Q] in the case we are dealing with, where E

is an elliptic curve.

In order to simplify our discussion to start with, we shall assume that the base

field K is Q, so that the target group of the regulator map is the dual space to

a 4-dimensional space of differential forms. We recall that a basis for this space

consists of the four forms π∗1(ω∧ω), π∗1(ω)∧π∗2(ω)−π∗1(ω)∧π∗2(ω), iπ∗1(ω)∧π∗2(ω)+

58
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iπ∗1(ω) ∧ π∗2(ω) and π∗2(ω ∧ ω), where π1 and π2 are the projections E × E → E

and ω is any representative for a non-zero element of H1,0(EC). These forms on an

elliptic curve all have a particular special property – ω is an invariant differential

form, meaning that, if R is any point on E and τR the translation map S 7→ S +R,

then ω ◦ τR = ω (see chapter 3 of [21]). This property, as we shall see, has some

striking consequences for the regulator image of our triangles.

So, let us look at what the regulator of a single triangle is going to do to each

of these four differential forms. For ease of notation, we shall actually multiply the

regulator by 2πi, which has no effect because our only concern here is whether or

not the regulator is zero. We shall write If for the quantity
∫

EC
log |f |ω ∧ ω. Then

π∗1(ω ∧ ω) vanishes on {Q} × E, and becomes ω ∧ ω on both E × {P} and ∆ – so

the result is If + If−1 . Stated this way, it looks like this is zero – but recall that we

can replace each of our copies of f by a suitable constant multiple. So all we know

is that this gives a constant times I =
∫

EC
ω ∧ ω. And π∗2(ω ∧ ω) gives the same

result, as the roles of the “horizontal” and “vertical” curves are merely switched

round. Let us note here that I must be non-zero, as the integration pairing between

homology and (de Rham) cohomology is non-degenerate, and the differential form

ω ∧ ω is a basis for the second cohomology group.

The second form, π∗1(ω)∧ π∗2(ω)− π∗1(ω)∧ π∗2(ω), vanishes on both E ×{P} and

{Q}×E, and becomes 2ω ∧ω on ∆ (because both π∗1(ω) and π∗2(ω) restrict to ω on

the diagonal). So the regulator image of the triangle sends this second form to 2If .

The third form, iπ∗1(ω)∧ π∗2(ω) + iπ∗1(ω)∧ π∗2(ω), vanishes on all three of the curves

concerned, so gives zero – this is not unexpected, as we know our regulator is really

mapping into a three-dimensional space rather than a four-dimensional one, and

this third form is precisely the one of the four which is not in the “plus” subspace.

These computations make it clear that it is the quantity If which controls ev-

erything that happens here, so we shall spend some time seeing if we can compute

it. By definition, it is
∫

EC
log |f |ω ∧ ω. But, by the invariance of ω, we can pick

any point R on E(K) and also have that If =
∫

EC
log |f ◦ τR|ω ∧ ω. In particular,

recalling that (f) = d(P )−d(Q), let us apply this with R = P −Q. This doesn’t tell

us much in itself, but if we also apply it with R = i(P −Q) and add these together
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from i = 0 up to i = d − 1, we have that If = 1
d

∫
EC

log
∣∣∣∏d−1

i=0

(
f ◦ τi(P−Q)

)∣∣∣ω ∧ ω.

The significance of this formula is shown by the following simple result:

Lemma 4.1 The function
∏d−1

i=0

(
f ◦ τi(P−Q)

)
is constant.

Proof This is a simple matter of writing out the divisor of the function, and observ-

ing that it is zero. The divisor of f ◦ τi(P−Q) is d(iQ− (i−1)P )−d((i+1)Q− i(P )),

so the negative contribution from f ◦ τi(P−Q) is always cancelled out by the positive

one from f ◦ τ(i+1)(P−Q). As P − Q is a d-torsion point, this also happens with the

negative contribution from i = d− 1 and the positive one from i = 0. 2

Definition 4.2 Let f ∈ K(E) have divisor d(P )− d(Q). Then we define the norm

of f to be N(f) :=
∏d−1

i=0

(
f ◦ τi(P−Q)

)
.

Note that, if P and Q are defined over K, then N(f) ∈ K. We can now state

the result just reached in a more enlightening way:

Proposition 4.3 We have that If = log |N(f)|
d

I, where I =
∫

EC
ω ∧ ω. In particular,

If = 0 if and only if N(f) is a root of unity.

Let us now recall the definition of decomposability from Chapter 1 (Definition

2.1). Note here that it is possible for elements to be decomposable even if they don’t

“look it”, as two element of K
(2)
1 (X) are equal whenever their difference is in the

image of the tame symbol map from K2 of the function field of X.

So our proposition above tells us that:

Corollary 4.4 A triangle configuration in K
(2)
1 (E × E) has the same regulator

image as a decomposable element. (And therefore, if the regulator is injective as is

believed, triangle configurations are in fact decomposable!)

Proof Let our triangle configuration be (E×{P}, fH)+({Q}×E, fV )+(∆, (fD)−1),

where fH , fV and fD are all obtained from multiplying the original function f by

constants, chosen arbitrarily in each case. Then, from the above discussion, it can be

seen that the decomposable element consisting of the constants N(fH), N(fV ) and

1/N(fD) on the horizontal, vertical and diagonal curves, respectively, has exactly

the same regulator image. 2
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As an illustration of this result, let us consider the case of a 2-torsion point – ie.

a function f with divisor 2(P )− 2(Q). After a change of co-ordinates, such a curve

will always have an affine equation of the form y2 = x(x2 + ax + b), with a and b

in K, and we take f(x, y) = x; then P = (0, 0) and Q = O (the point at infinity).

Then translation by P − Q = (0, 0) sends (x, y) to ( b
x
,− by

x2 ), so N(f) = b. Hence

If = 0 if and only if |b| = 1. And If can in this case be written as an integral over

the complex numbers: If = 2
∫
C

log |z|
|z||z2+az+b|dx ∧ dy. When |b| = 1, one find that the

substitution z 7→ b
z

gives If = −If , so that If = 0. (The example I gave at the end

of Chapter 2 to show that triangles do not always vanish was of this type; we have

now confirmed the statement I made then, that that integral is zero if and only if

|s| = 1.)

Note that, apart from this d = 2 case, computing N(f) directly from the defi-

nition, for a specific curve and function f , is quite involved. Much the easiest way

is to use the fact that it is a constant function, and simply evaluate it at any point

– so pick a point R on E, such that none of the points R + i(P − Q) are equal to

P or Q, and then N(f) =
∏d−1

i=0 f(R+ i(P −Q)). The restriction on R is to ensure

that none of the terms in this product are zero or infinity – it may be that there

are no R in E(K) which satisfy this, but we can always find a suitable R over some

extension field, and then calculate N(f) in exactly the same way using that.

With this in mind, we can list some of the properties of N(f):

Proposition 4.5 1. For any c ∈ K, N(cf) = cdN(f).

2. N(f−1) = N(f)−1.

3. For any positive integer a, N(fa) = N(f)a2
.

4. N(f) = N(f ◦ τR), for any R ∈ E(K).

Proof 1. This is clear from the definition.

2. Again, clear.

3. We have thatN(fa) =
∑ad−1

i=0 (f◦τi(P−Q))a, because the divisor of fa is ad(P )−
ad(Q). If the sum were just up to d − 1, then this would be equal to N(f)a.
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But since P − Q is a d-torsion point, the terms of this product just run over

those from i = 0 to i = d− 1, a times, which gives a further power of a.

4. Note that (f ◦ τR) = d(P − R) − d(Q − R), so that N(f ◦ τR) =
∏d−1

i=0 (f ◦
τR)(S + i(P −Q)) =

∏d−1
i=0 f(R+ S + i(P −Q)) for some (in fact, almost all)

S ∈ E(K). But this is exactly the computation that produces N(f), as it is

the (constant) function N(f) evaluated at R + S.

2

Returning to what we saw above, the regulator image of a single triangle will

be zero only if we have that N(f), for the copy of f on the diagonal, is a root of

unity, and that the two other copies of f are both some root of unity times the

diagonal copy. However, for our purposes it will be enough to show that these

quantities (which we have just said must be roots of unity) are in O∗
K . This is

because, as discussed in Chapter 2, we already know about “uninteresting” (that

is, decomposable) non-zero integral elements of K
(2)
1 (E × E), given by elements

of O∗
K along any horizontal, vertical or diagonal curve in E × E. The regulator

image of the unit u along a horizontal curve sends the first three of the four forms

listed above to 0, and the fourth to (log |u|)I. On the vertical, it sends the first

to (log |u|)I and the last three to zero, while on the diagonal, it sends them to

((log |u|)I, 2(log |u|)I, 0, (log |u|)I). As u varies over all of O∗
K , these three images

together span, over Q, the space of all vectors of the form (aI, bI, 0, cI), where

a, b and c are rational multiples of the logarithms of units. But clearly, if the

quantities above are units, then the regulator image of our triangle will be of this

form. So if this holds, then the triangle has the same regulator image as one of our

“uninteresting” integral elements. Another way of saying the same thing is that, as

we can multiply each of the copies of f involved in the triangle by any unit, without

affecting integrality, we can choose these units in such a way as to make its regulator

image zero.

All of the above of course only applies for a single triangle, over the base-field

Q. We shall deal with general linear combinations in a moment – but what happens

over larger number fields? Then there are 4[K : Q] different differential forms,
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which consist of the four given above restricted to each fo the [K : Q] connected

components of (E×E)C. This means that everywhere where I have written I above,

we really get Iσ :=
∫

Eσ(ω ∧ ω)σ, where Eσ is the component corresponding to the

embedding σ, and ωσ the image of ω on this embedding. In particular, the factors

of N(f) and so on stay in place, so it is once again enough for these quantities to

always be units.

4.2 Proof of the main result

We now have all the tools at our disposal to prove the following result:

Theorem 4.6 Let E/K be an elliptic curve defined over the number field K, and

let α =
∑

h ehαfh
be a linear combination of triangle configurations in K

(2)
1 (E×E).

Then if α ∈ K
(2)
1 (E × E)Z, then the regulator of α is equal to the regulator of an

element of K
(2)
1 (E×E)Z of the form

∑
k(Ck, uk), where the Ck are curves on E×E

and the uk are in O∗
K .

We have already seen that any triangle configuration – and hence any linear

combination of them – necessarily has the same regulator image as a decomposable

element. This theorem provides the further statement that, if the linear combination

of triangles is also integral, then it has the same regulator image as a decomposable

integral element. This does not follow from the previous statement, as we have no

guarantee that, if two elements have the same regulator image and one is integral,

the other must be too. The Beilinson regulator map is conjectured to be injective

when restricted to integral elements, but it is not thought to be injective on the

whole of K
(2)
1 (X), and thus we have no compelling reason to believe that it isn’t

possible for an integral and a non-integral element to share a regulator image.

So, we really do have something to prove. We will begin the proof with the

following important formula, which is related to (3.3) from the last chapter. I make

use of the notation given in Definition 3.10.

Proposition 4.7 Let the a•k (• = H, V or D) be as in the previous chapter. Then,
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for any k ∈ Z/nZ,
d∑

j=1

ak+j∆ = d

(
ai − ∆(n−∆)d

2n

)
.

Proof Given what we already know about the a•k, it is clearly sufficient to prove

that the sum is zero when ai = ∆(n−∆)d
2n

. Note next that when j exceeds n
gcd(n,∆)

then

k + j∆ starts repeating (as the indices are interpreted modulo n), so that the sum

is d gcd(n,∆)
n

∑ n
gcd(n,∆)

j=1 ak+j∆. (This is an integer multiple, as we have d(P − Q) = O

on E(K), so that dP = dQ in the fibre of E ; passing to the group of components,

we see that n|d∆, and hence n
gcd(n,∆)

|d ∆
gcd(n,∆)

; thus n
gcd(n,∆)

|d.) Thus it is enough

to prove that
∑ n

gcd(n,∆)

j=1 ak+j∆ = 0. Further, it is clear that we can rewrite this sum

as
∑ n

gcd(n,∆)

j=1 ak+j gcd(n,∆). Note that if gcd(n,∆) = 1, then the result we want is the

same as (3.3).

Firstly, we shall suppose that k = i. Then we can use the formulae (3.1) and (3.2)

derived in the previous chapter to compute the sum; let us write G for gcd(n,∆)

for ease of notation:

ai +

∆
G∑

j=1

ai+jG +

n
G
−1∑

j=∆
G

+1

ai+jG

=
n

G
ai −

∆
G∑

j=1

jG(n−∆)d

n

−
n
G
−1∑

j=∆
G

+1

∆(n− jG)d

n

=
n

G
ai − G(n−∆)d

n

∆
G∑

j=1

j

−
(
n

G
− ∆

G
− 1

)
∆d+

∆Gd

n

n
G
−1∑

j=∆
G

+1

j

=
∆(n−∆)d

2G
− G(n−∆)d

2n

(
∆

G

(
∆

gcd(n,∆)
+ 1

))

−
(
n

G
− ∆

G
− 1

)
∆d+

∆Gd

2n
×

[( n
G
− 1

) n

G
− ∆

G

(
∆

G
+ 1

)]
.
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It is now a routine, if tedious, matter to put this all over a common denominator

and find that all the terms cancel to give 0.

For other values of i, we shall use the difference formulae from Proposition 3.11.

The difference between the sum we are interested in for k = l and k = l + 1 is
∑ n

G
j=1(al+jG−al+jG+1), and it will suffice to show that this is 0, for any l. Again, we

shall take l = i first, when Proposition 3.11 provides a straightforward proof (the

sum is ∆
G

(n−∆)d
n

− (n−∆)
G

∆d
n

). And if we look at differences again – in other words at

n
G∑

j=1

((al+jG − al+jG+1)− (al+jG+1 − al+jG+2)) ,

it is easy to see that the sum will always be zero, as the terms are all zero apart from

those when l = i+ ∆− 1 and when l = i+ n− 1, which are d and −d respectively,

and each sum must contain either none or both of these two. 2

We will need just one more result before proving the main theorem, which I am

going to state separately because it will be needed several times in the main proof.

Lemma 4.8 Let E be the Néron model for E over the localisation of OK at the

prime p at which E has either good or (split) multiplicative reduction. Let f ∈ K(E)

be a function with divisor d(P )− d(Q). Then there exists a point T on E, defined

over some finite extension field of K, such that, for any integer k, the order of

f(T + k(P − Q) at p is equal to the order of the function f (considered now as

a function on E) along the component of the fibre along which the reduction of

T + k(P −Q) lies.

More generally, given any finite set of such functions, there exists a point T

which satisfies the above condition for all of the functions at once.

Proof Letting π be a uniformiser for the localisation of OK at p as before, we know

that π has order 1 along each component of the fibre – this is clear in the case of

good reduction (where there is only one component), and in the case of multiplicative

reduction it follows from our computation of (π) in the previous chapter. So, if we

denote by Dl the component of the fibre to which T + k(P − Q) reduces (so l

will depend on the choice of T , which hasn’t been made yet; it also depends on
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k), then π−ord(Dl)(f)f has order 0 along Dl, and thus can be considered as a genuine

function on Dl. There will be n of these functions in all (in the case of multiplicative

reduction; there is only one in the good reduction case) – let R1, . . . , Rs be the finite

set of all the zeros and poles of all n of them. Further, let S1, . . . , St be the set of all

d-torsion points of the fibre (the fibre is an elliptic curve over the residue field k, if

we have good reduction, or has a group structure isomoprhic to Z
nZ × k∗ if we have

multiplicative reduction). Note that not only are both of these sets finite, but that

their size is bounded above universally, no matter how big a finite extension of K

we take (by the size of these sets over the algebraic closure of k, which are both still

finite). On the other hand, the number of points on the fibre itself grows without

bound as the size of the field increases. This means that, if we take a large enough

extension field L/K, there exists some point T on the fibre of E(L) which is not any

of the finitely many points Rm + Sn. We can then lift this to E(L) (although we

may have to take a further finite extension to do this). Call this point T . I claim

that it satisfies the property needed for the lemma.

For, suppose that ordp(f(T + k(P −Q))) 6= ordDl
(f). Then we would have that

ordp(π
−ordDl

(f)f(T +k(P −Q))) 6= 0, since π is a uniformiser for p. This would mean

that π−ordDl
(f)f(T + k(P −Q)) is either divisible by π or has denominator divisible

by π, and hence that the function π−ordDl
(f)f , when restricted to Dl, has a zero or

a pole at T + k(P −Q) (the bar denotes reduction mod p) – so it would mean that

T + k(P −Q) = Rs for some s. This in turn would mean that T −Rs = k(Q− P ),

which is a d-torsion point of the fibre – contrary to the way we found T . This

completes the proof.

The generalisation is proved in exactly the same way – we still have infinitely

many points from which to choose T , and only have to avoid finitely many. 2

Now we can put together several of these past few results. We will be interested

in quantities such as ordp(N(f)), where p is a prime of either good or multiplicative

reduction. By definition of N(f) (and the way we noted in the first section that we

can compute it), this will be
∑d−1

k=0 ordp (f(T + k(P −Q)), for any suitable T . And

the lemma I have just stated and proved tells us that, for an appropriate choice of T ,

this will be equal to
∑d−1

k=0 ordDl
(f), where Dl is the component of the fibre on which
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the reduction T +k(P −Q) lies. But, in the multiplicative case, the order of f along

Dk is precisely the quantity we have been calling ak. So, if Dk is the component

on which the reduction of T lies, then we see that ordp(N(f)) =
∑d−1

j=0 ak+j∆. And

Proposition 4.7 tells us what this is (as j = 0 is the same term as j = d, since n|d∆).

Thus we have the following:

Proposition 4.9

ordp(N(f)) = d

(
ai − ∆(n−∆)d

2n

)

Note that this statement still holds in the good reduction case, if we interpret

the notation correctly – ai is the order of f along the single component of the fibre,

or in other words the order of f at π, and we must take ∆ = 0.

Let us now return at last to the regulator image of a general linear combination
∑

h ehαfh
of triangles. We already observed the effect of the regulator on each of

the three relevant types of differential form (there are actually four, but one of them

always vanishes on the regulator of any triangle) in the case of a single triangle.

Using this, we see that the first of our forms will be sent to
∑

h eh

(
IfH

h
− IfD

h

)
,

where the new superscripts, as with the ak, are there to keep track of whether

this is the f on the horizontal or on the diagonal. (In this notation, αfh
is (E ×

{P}, fH) + ({Q}×E, fV ) + (∆, (fD)−1).) By our computations in section one, this

is equal to
∑

h
eh

dh

(
log |N(fH

h )| − log |N(fD
h )|) times the integral I on the image of

E under one of the embeddings of the base field K into C. We can also write the

sum as 1
m

log

∣∣∣∣∣
∏

h

N(fH
h )

meh
dh

N(fD
h )

meh
dh

∣∣∣∣∣, where m is any common multiple of all the dh (m is

not important, it is chosen simply to ensure that all the powers stay integral). By

the comments I made at the end of the first section of this chapter, it is enough to

prove that the product is in O∗
K , or in other words that it has order 0 at each prime

p of K.

To do this, notice that we can once again replaceK by any finite extension ofK in

doing this, and this changes nothing in the product we are interested in, as everything

is defined over K. So we may assume that E has either good reduction or split multi-

plicative reduction at all primes of K. Then we can use the proposition above, to see

that the order of the product at p is
∑

hmeh

(
aH

ih,h − aD
ih,h

)
= m

∑
h eh

(
aH

ih,h − aD
ih,h

)
.
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And this is zero for an integral element, by Theorem 3.15

Clearly, the same happens for the other type of form, involving π∗2 instead of π∗1

– all that changes in the above is that the “H” superscripts become “V ”s, but here

Theorem 3.15 still applies.

Finally, we have to consider the image of π∗1(ω)∧π∗2(ω)−π∗1(ω)∧π∗2(ω) under the

regulator of our (integral) linear sum of triangle configurations. We have already seen

that this is
∑

h ehIfD
h

, which is equal to
∑

h
eh

dh
log |N(fD

h )|I, or 1
m

log
∣∣∣∏hN(fD

h )
meh
dh

∣∣∣
for m any common multiple of all the dh. Again, it is enough to show that the

product has order zero at each prime of good or split multiplicative reduction; and,

using the same proposition, this order is m
∑

h eh

(
aD

ih,h − ∆h(n−∆h)dh

2n

)
– and this is

zero, again by Theorem 3.15.

This completes the proof of Theorem 4.6.



Chapter 5

Some generalisations, and more on

integrality

The main result, at the end of the previous chapter, demonstrates that the triangle

configurations cannot generate any integral elements of K
(2)
1 (E × E) which can be

distinguished, via the regulator map, from those arising from units in the ring of

integers of the base field. But there are still several questions which have been left

unanswered. For I mentioned right at the start that these triangles are merely one

special case of a more generalised triangle configuration, involving the curves ∆a in

place of the diagonal. Does the vanishing result still hold for all linear combinations

of such triangles, or are there some integral linear combinations of such triangles

whose regulators do not vanish (even when we multiply the functions involved by

any units of our choice), thus providing non-zero integral elements of the relevant

K-group which do not arise from units?

We shall see that this turns out to be a much more difficult question, and one

which I have so far been unable to answer – although I strongly suspect the same

vanishing result to hold. (I will explain my reason for this belief in a Section 5.4.)

The main problem arises from one other question which I have so far left unan-

swered, even in the simpler a = 1 case we have been dealing with so far – what

are the conditions on such a linear combination of triangles which determine its

integrality? So far, I have only listed some necessary conditions, which proved to

be sufficient to demonstrate the required result on the regulator – in general these

69
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will not be sufficient for integrality. In fact, it is quite surprising that I was able

to derive so strong a result from so few conditions. For the target group of the

boundary map – the Chow group of the fibre – has, in the case of split multiplica-

tive reduction, 4n2 generators and 2n2 − 2 independent relations. This means that

any (linearly independent) set of necessary and sufficient conditions for integrality

on the coefficients of these generators must have size 2n2 + 2. But a glance at the

arguments used so far shows that we have used much fewer than this – I have so far

only mentioned 4n of these conditions, namely the ones given in Proposition 3.14.

But in fact we have not even used that many, as we then proceeded to sum up each

set of n relations, leaving us with just four! And even then, it can easily be seen

that these are linearly dependent when applied to our triangle configurations, so we

have so far been relying on only three relations out of a theoretically existing set of

2n2 + 2 – and there is of course no upper bound on what n could be.

This explains the difficulty arises with attempting to generalise our result to

linear combinations of arbitrary triangle configurations – the three or four conditions

that sufficed before do not suffice in general. So, it seems that a necessary step for

such a generalisation would be to determine a complete set of 2n2 + 2 independent

necessary conditions on the coefficients of the generators of the Chow group for

an element to be zero, and then apply this to the image of a linear combination

of triangles. But finding such a complete set does not seem to be as easy as one

might think. So far I have only been able to discover another 2n2 relations to add

to the 4n given earlier – and these are not all independent. These may or may

not be sufficient, as well as necessary, for integrality. But it turns out that they

certainly are enough – in fact, the original 4n are already enough, although the four

used before are not – to prove an integrality result for certain individual triangles.

The main bulk of this chapter is devoted to a proof of this result, which applies to

triangles for which a = 1 or a = −1. So far, all we have said about the (potential)

integrality of such triangles is that it will hold whenever ∆ = 0; here, we will see

that the converse does not hold, for there do exist at least some cases of integral

individual triangles for which ∆ 6= 0.

For |a| > 1, the question becomes a lot harder to treat in a general manner –
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I will explain why in section 5.4, illustrating it by looking at what happens in the

case when a = ±2.

5.1 The image of a triangle in the Chow group

Recall first the definition of the generalised triangle elements. We begin as before

with a function f ∈ K(E) with divisor (f) = d(P ) − d(Q). We also take an

arbitrary integer a, and consider the function fa with divisor d(aP )− d(aQ) (where

the multiplication by a takes place in the group structure of E) – this exists, and is

unique up to multiplication by constants. Then we defined the generalised triangle

configuration αa,f to be

αa,f := (E × {aP}, f) + ({Q} × E, fa) + (∆a, f
−1).

We now want to consider what the image of such an element will be under the

boundary map in the localisation sequence, in order to perform the same computa-

tions as we have already done in the previous three chapters for the case a = 1. We

shall discuss what happens for general a, and see the difficulties which arise, before

restricting to the special case where a is either 1 or −1.

For the “horizontal” and “vertical” components of this element, it is easy to

generalise the previous results from the a = 1 case. On the horizontal, the only

difference is that P has been replaced by aP . If we make sure that we organised

our numbering of the components so that the identity component is labelled as D0,

then the natural map from the fibre of the Néron model to its group of components

agrees with that taking a point on Dk to k ∈ Z/nZ, so in particular, if the reduction

of P lies on Di then the reduction of aP lies on Dai (the indices are to be interpreted

as being classes in Z/nZ). Hence the image of the horizontal component will be:

∑

k

aH
k (Bk,ai + Ck+1,ai +Dk,ai).

As for the vertical, the curve has remained the same, but the function has

changed. However, fa has the defining property that its divisor is d(aP ) − d(aQ),

so that the elements i and j, and therefore ∆ too, will here be a times what they
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were before. This will change the relationships among the various aD
k (as they were

crucially dependent on these quantities, and in particular on ∆), but it will not

make any difference to the image of the “vertical” component in terms of these (as

the j in the following expression comes from the curve on which the function lies,

rather than the function itself). Thus, this contribution will be (formally) exactly

as it was before:
∑

k

aV
k (Ajk + Cj,k−1 +Djk).

The “diagonal” contribution, however (which now comes from ∆a rather than

the diagonal itself), causes considerably more problems. Firstly, the fibre of the

Néron model is isomorphic to k∗ × Z
nZ as a group – it is certainly an extension of

Z/nZ by k∗ (see [22]), but all such extensions are trivial due to lemma 1 in section

23 of [16]. From this it follows, since the reduction map is a group homomorphism,

that the image in the fibre of the closure of ∆a must lie only in those components

(l,m) where m = al, and that on those components (each naturally isomorphic to

P1 × P1) it coincides with the curve y = xa, where y and x are the two co-ordinate

functions. But here a problem arises, as may be seen for example by considering a

case such as a = 2 and n = 2. For here the image lies only in the (0, 0)th and (1, 0)th

components, and is y = x2 in each – if we try to draw the intuitive picture that arises

here, we see that it is disconnected; there being no path in this image from (∞,∞)

on the (0, 0)th component, which is the same as (0,∞) on the (1, 0)th component, to

(0, 0) on the (1, 0)th component. But this would appear to be a contradiction, for it

is clear that the image of ∆a in the fibre of our regular model for E × E must be

connected.

The resolution of this apparent contraduction comes from realising that our

argument for this being the image of ∆a was purely group-theoretical, and thus

comes from considering only the Néron model – but this is not the whole of the

regular model which we have been using, as it comes without the singular points on

the fibre, in other words the points of intersection of any two adjacent P1’s. Thus,

in our intutitive picture of an n by n grid of P1× P1’s, we have so far been ignoring

any of the horizontal and vertical “edges” of each of these. And it is clear that,

if we are allowed to add some of these back in, we can always produce something
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connected (for example, by adding the edge {0} × P1 of the (1, 0)th component, in

the example above - we’d also have to add the same on the (0, 0)th component).

This, of course, isn’t a proof that this particular configuration in the special fibre

of E ×E is the precise image of ∆2 – in fact, it turns out that these “vertical” edges

each have multiplicity two. But it does show that we need to be very careful when

|a| is greater than 1, for then there will always be some values for n (and these

will occur on some elliptic curves) for which the union of all the required y = xa

curves will not produce a connected picture (“connectedness” occurs if and only if

a is either both positive and congruent to 1 mod n, or negative and and congruent

to −1 mod n). Indeed, even in the two cases just mentioned, it turns out that we

do still need some extra edges in our image – I will demonstrate this in section 5.4

when we look in a bit of detail at the cases a = ±2. We shall also see there how

hard it is to treat all these cases in any kind of generality, which is why, for the main

part of this chapter, until then, I am going to restrict to a being ±1.

It of course still needs to be proved, in the light of what I have just said, that

the image of ∆±1 in the fibre does consist of just the curves I am claiming, and no

more. Indeed, we have already used this fact in the previous chapters! This follows

from the fact that, for any two curves in E ×E, their images in the special fibre of

the integral model must have the same intersection number as the original curves

do inside E × E. Clearly, both the diagonal ∆1 and the antidiagonal ∆−1 have

intersection number 1 with any curves of the form E × {P} or {P} × E, so these

must be preserved on the special fibre. And as the curves we already know about in

the image of ∆±1 in the special fibre have the desired intersection numbers with any

horizontal or vertical fibre, whereas any new component in either of those directions

would add extra intersections, we can conclude that there can be nothing else in

this image. (The same argument applied to ∆a with |a| > 1 shows that there must

always be such additional curves, even if they are not needed to make the image

connected. I shall return to this in section 5.4.)

So, we will now determine the image in the Chow group of the fibre, of the

function f−1 along either ∆ or ∆−1. (We have already done this for ∆ in Chapter

3, of course, but I shall go over it again here.) In either case, the closure of ∆±1 in
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E × E (that is, before the blowup) will be isomorphic to E itself, and goes through

n of the n2 singular points of the fibre – those on the “diagonal” for a > 0, or the

“antidiagonal” for a < 0. After blowing up at these points, we will find, just as we

did before, that the “vertical” part of the divisor of f (that is, the part which lies in

the Chow group of the fibre) takes the form a1D1 + . . .+ anDn + b1E1 + . . .+ bnEn,

and that the same relations will hold among the coefficients ak and bk. So the only

thing that may be new is how the Di and Ei can be expressed in terms of our 4n2

generators for the Chow group.

This is relatively easy to do for the Di – originally we computed the divisor of

the function y − x on each “octagon” (x and y being the two co-ordinate functions

on the P1 × P1 of which the octagon is the result of blowing up each of the four

corners), and set it to zero, to find that ∆ was equivalent in the Chow group to

A + B + C + D + H − F , where we have adopted the temporary labelling of the

sides of the octagon as A to H going clockwise from A at the top. For ∆−1, we do

the same with the function xy− 1. We can compute that this function has a simple

zero along the curve we want, simple poles along A and C, and a double pole along

B. Hence the curve y = x−1 is equivalent in the Chow group to A+ 2B + C.

That leaves us with the Ei, which we recall are the strict transforms of the

images of these curves in the fibre after having blown up the model at each of the

n2 singular points of its fibre. I will leave a proof until the appendix, but the result

is the following

Proposition 5.1 The closure of ∆a in XE , when intersected with one of the excep-

tional divisors, gives a curve which is equivalent, in the Chow group, to something

of the form Dkl, for a = 1, and Ckl if a = −1.

(The same result in fact holds for ∆±2, with results 2Dkl and 2Ckl, at least when

n = 1, and I believe that an analagous result holds for all a, although I have been

unable to prove it. This will be discussed further in the appendix.)

Hence, if we revisit our usual diagram from Chapter 3:
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@
@

@
¡

¡
¡@

@
@

¡
¡

¡

Akl

Bkl

Ckl

DklEkl

Fkl

we find that the contribution from the ∆±1, in a connected triangle, is:

n∑

k=1

(−aD
k (Ak+1,k +Bkk + Ck+1,k − Ck,k−1 +Dkk +Dk+1,k−1)− bDk Dk+1,k

)

for ∆1 (the same result as we used in Chapter 3), and

n∑

k=1

(−aD
k (Ak+1,−k +Bk,−k + 2Ck+1,−k − bDk Ck,−k

)

for ∆−1. (Note that the k and l in the diagram satisfy k = l for ∆1, and k = −l for

∆−1, as we assume that the diagonal or antidiagonal in question goes through the

“octagon” in the lower-right portion of the diagram. Other conventions would yield

the same sum, but notated slightly differently.)

5.2 An integrality result

We are now going to use a refinement of the methods of Chpater 3, in order to

prove the following theorem about the integrality of a triangle configuration αf,±1

in K
(2)
1 (E×E) at a prime of split multiplicative reduction. (∆ here means the same

thing as it did in Chapters 3 and 4.)

Theorem 5.2 Let αf,a be a triangle, with a = ±1.

• If a = −1, then, for potential integrality, we need either ∆ = 0 or n = 2 and

∆ = 1. Further, all triangles satisfying the latter condition are potentially

integral.

• If a = 1, then there is no restriction on ∆ – for n = 2 or 3, at least, there exist

integral triangles for ∆ 6= 0.
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The proof of this theorem, except for the statements about the existence of

integral triangles with non-zero ∆, is the subject of the rest of this section. In the

next section I shall prove the existence statements, and give some examples.

Before beginning the proof, we note the following important corollary:

Corollary 5.3 Any integral triangle involving a ∆1 or ∆−1 has the same regulator

image as an integral decomposable element.

Proof We shall see in the proof of the theorem below that we must have a•i =

∆(n−∆)d
2n

for • = H, V or D. Thus, Proposition 4.9 tells us that all three of the

functions we are using in αf,±1 have norms with order 0 at the prime we are interested

in. The rest of the argument is the same as in Chapter 4. (Note that, when we take

apply the regulator of αf,±1 to the four differential forms involved, some will now

involve f−1 rather than f , but as we have just observed this also has a norm whose

order is 0 at the relevant prime, so there is no change to the result.) 2

We start the proof of Theorem 5.2, as before, by using the formulae of the

previous section to tell us what the image of our triangle in K
(2)
1 (E × E) in the

Chow group of the fibre of the regular model. As in Chapter 3, I shall do this by

giving the coefficients of each of the 4n2 generators, which can be read off from the

expressions in the previous section. I will split he whole proof up into the two cases

∆1 and ∆−1 – the two cases are very similar, but the precise formulae differ from

each other, so it is easier to deal with them separately. So, for now, we assume we

are dealing with ∆1 (here we are merely redoing what was already done in Chapter

3, but in the next section we shall use these formulae to prove the new result in

Proposition 5.1. The coefficients here are then:

akl = δi+∆,ka
V
l − δk,l+1a

D
l

bkl = δila
H
k − δkla

D
k

ckl = δila
H
k−1 + δi+∆,ka

V
l+1 − δk,l+1(a

D
l − aD

k )

dkl = δila
H
k + δi+∆,ka

V
l − δkla

D
k − δk−1,l+1a

D
k−1 − caδk,l+1(a

D
k + aD

l ).
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We will now use the same 4n necessary conditions for integrality as we did in

Chapter 3, and see what restrictions these place upon integral “connected” triangles.

We find, for each k

0 =
∑
m

amk

=
∑
m

δi+∆,ma
V
k −

∑

m,k+1

aD
k

= aV
k − aD

k ,

so aV
k = aD

k ;

0 =
∑
m

bkm

=
∑
m

δima
H
k −

∑
m

δkma
D
k

= aH
k − aD

k ,

so aH
k = aD

k ;

0 =
∑
m

cm,m+k

=
∑
m

δi,m+ka
H
m−1 +

∑
m

δi+∆,ma
V
m+k+1 −

∑
m

δm,m+k+1(a
D
m+k − aD

m)

= aH
i−k−1 + aV

i+∆+k+1.

Using the previous two sets of equations, this last can be rewritten as

0 = aD
i−k−1 + aD

i+∆+k+1. (5.1)

I shall omit for now the equations obtained from the condition
∑

m dm,k−m = 0,

as these are more complicated, and are not necessary for the first part of the proof

of Theorem 5.2.

Notice that if we sum all n of these relations together, we obtain that
∑

m a
D
m = 0,

which forces aD
i = ∆(n−∆)d

2n
, due to (3.3). This proves the a = 1 case of:

Proposition 5.4 For any potentially integral triangle αf,a with a = ±1, we have

aD
i = ∆(n−∆)d

2n
, or equivalently,

∑
m a

D
m = 0.
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(Of course, we have already proved the a = 1 case in Chapter 3; the a = −1 case

will follow from the equivalent formulae in that case.)

In combination with the relations given between the aH
k , aV

k and aD
k , this deter-

mines all of the a•k. However, as already pointed out, this is a very long way from

determining that all triangle configurations which meet these conditions must be

integral.

For the proof of the second part of Theorem 5.2 in the next section, we shall also

need to show that, when a = 1 and aD
i = ∆(n−∆)d

2n
, (5.1), which is equivalent to the

assertion that ak = −a2i+∆−k for each k, does necessarily hold, for all k – this I will

do next.

Firstly, if k = i, we need that ai = −ai+∆ – but we already know that ai =

∆(n−∆)d
2n

, from which it follows (due to the formulae (3.1) and (3.2)) that ai+∆ =

−∆(n−∆)d
2n

, so this holds. We shall establish that it holds for all other k by induction.

That is, we assume that ak = −a2i+∆−k, and wish to show that ak+1 = −a2i+∆−k−1

– this will be enough to prove the desired result. By the inductive assumption,

this is equivalent to showing that ak − ak+1 = a2i+∆−k−1 − a2i+∆−k, which we can

establish using the formulae in Proposition 3.11. Using those formulae, we put k

into the range i, . . . , i+ n− 1, and first suppose that i ≤ k ≤ i+ ∆− 1, so that the

first of these two differences is equal to (n−∆)d
n

. Our assumptions on k tell us that

i ≤ 2i + ∆ − k − 1 ≤ i + ∆ − 1, so that the second difference also is (n−∆)d
n

. This

argument clearly works in both directions, and thus completes the inductive proof.

Next, we will deal with the ∆−1 case. We proceed as before – assuming Conjec-

ture 5.1, the formulae for the co-efficients, which we can read off from the expressions

in the previous section, are:

akl = δi+∆,ka
V
l − δk−1,−la

D
k−1

bkl = δ−i,la
H
k − δk,−la

D
k

ckl = δ−i,la
H
k−1 + δi+∆,ka

V
l+1 − 2δk−1,−la

D
k−1 + δk,−l(a

D
k + aD

k+1)

dkl = δ−i,la
H
k + δi+∆,ka

V
l .
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Thus we obtain the conditions:

0 =
∑
m

amk

=
∑
m

δi+∆,ma
V
k −

∑
m

δm−1,−ka
D
m−1

= aV
k − aD

−k,

so aV
k = aD

−k;

0 =
∑
m

bkm

=
∑
m

δ−i,ma
H
k −

∑
m

δk,−ma
D
k

= aH
k − aD

k ,

so again aH
k = aD

k ;

0 =
∑
m

dm,k−m

=
∑
m

δ−i,k−ma
H
m +

∑
m

δi+∆,ma
V
k−m

= aH
k+i + aV

k−i−∆.

Again, this can be rewritten using the previous two sets of equations, as

0 = aD
i+k + aD

i+∆−k.

(Once more, one of the four sets of relations has been left out, to be returned to in

the following section.)

Note in particular the first of these conditions: aV
k = aD

−k, for all k. Recall, from

the formulae (3.1) and (3.2), that the greatest of the a•k is always at k = i, while the

smallest is at k = i + ∆ – this applies whether • is H, V or D. The only way for

this to be consistent with aV
k = aD

−k (other than to have all ak zero, and thus ∆ = 0)

is to have i = −i and i+ ∆ = −i−∆. Recall that these are equalities in Z/nZ, so

they have solutions not only when i = i + ∆ = 0 (which gives us the trivial case,

when ∆ = 0), but also, when n is even, when either i or i+∆ is n
2
. (Note that there

are no other solutions when n is odd.) Thus it is possible to have ∆ = n
2
, although

then we shall also require i to be 0 or n
2
.
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Note that, when a = −1, ∆ = n
2
, i = 0 or n

2
, and aD

i = ∆(n−∆)d
2n

, then once more

all the conditions dealt with so far are automatically met – the necessary induction

argument is identical to that for the case a = 1.

Note that we have now proved all of Theorem 5.2 apart from the assertions that

integral elements do exist with ∆ 6= 0, and that integral triangles with a = −1 and

∆ = n
2

(n even) must have n = 2. That is what we shall do in the next section.

5.3 Further conditions for integrality; completion

of the proof

We are now going to return to the issue which I mentioned in the introduction to this

chapter – that so far we only have necessary conditions for integrality, not sufficient

ones. The problem here is simply one of linear algebra – if we have a general element

∑

k,l

(aklAkl + bklBkl + cklCkl + dklDkl)

of the Chow group, what is a set of linear conditions on the coefficients akl, bkl, ckl,

dkl which will be both necessary and sufficient for the above expression to lie in the

span of the known relations:

Ak,l+1 + Ckl +Dk,l+1 − Ak+1,l+1 − Ck+1,l+1 −Dk+1,l

Bkl + Ckl +Dk+1,l −Bk,l+1 − Ck+1,l+1 −Dk,l+1,

as k and l run over all of Z/nZ?

As there are 4n2 generators and 2n2 − 2 independent relations (as we saw in

Chapter 3), any linearly independent set of necessary and sufficient conditions will

have size 2n2 + 2. So far, we have only used 4n – that
∑

m amk =
∑

m bkm =
∑

m cm,m+k =
∑

m dm,k−m = 0, for each k. Note that these 4n conditions are at least

linearly independent (each coefficient appears in exactly one of them), but they are

clearly not enough, as 4n is strictly less than 2n2 + 2 whenever n is more than 1

(2n2 +2−4n = 2(n−1)2). This means that, using these conditions alone, we cannot

say for sure whether or not any given linear combination of the generators is in fact
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zero, and thus cannot know for sure that any given triangle is actually integral

(except in trivial cases like when all of the coefficients are zero, which happens when

∆ = 0 and we ensure all the ak are zero). For n = 1, these conditions are enough

– reflecting the fact that the Chow group in this case is simply free on the four

generators A, B, C and D – but then we always have ∆ = 0 anyway, so we need

to look for larger values of n if we want examples of non-trivial (meaning ∆ > 0)

integral triangles.

So we need to find some further necessary conditions – ideally all 2(n − 1)2 of

the “missing” ones. n2 cmore are given in the following proposition:

Proposition 5.5 If
∑

k,l (aklAkl + bklBkl + cklCkl + dklDkl) is zero in the codimen-

sion 1 Chow group, then we must have, for each pair (k, l) of indices,

akl + ak,l+1 + bk−1,l + bkl = ckl + dkl.

Proof We need only check that this applies to each of the 2n2 relations given above

(and labelled as Xkl and Ykl in Chapter 3.) In the relation Xmn, for example, we

see that:

akl = δl,n+1(δkm − δk,m+1)

bkl = 0

ckl = δkmδln − δk,m+1δl,n+1

dkl = δkmδl,n+1 − δk,m+1δln,

from which it can be seen that the two sides of the proposed condition are indeed

equal. The same procedure can be carried out for Ymn, where again we find that the

condition holds. 2

We now have n2 +4n conditions, in total, and would like to investigate these for

independence. Firstly, it is clear that, if we sum together all n2 of the conditions in

the preceding proposition, we get something which is depend on the 4n conditions

which we already knew about (as they tell us that the sums over all k and l of the

akl, bkl, ckl and dkl are all zero). So, we have at most n2 + 4n− 1 conditions. These

are still not enough in general, of course – for 2n2+2 can easily be seen to be greater



5.3. Further conditions for integrality; completion of the proof 82

than n2 + 4n − 1 for all positive integers n greater than 3. However, it turns out

that we do have enough for the cases n = 2 and n = 3:

Proposition 5.6 The conditions listed in Propositions 3.14 and 5.5 are sufficient

for
∑

k,l (aklAkl + bklBkl + cklCkl + dklDkl) to be zero, when n = 2 or n = 3.

(They are also sufficient when n = 1, but this case is trivial and of no interest to

us.)

Proof First, suppose n = 2. Then the four “new” relations are:

a00 + a01 + b00 + b10 = c00 + d00

a00 + a01 + b01 + b11 = c01 + d01

a10 + a11 + b00 + b10 = c10 + d10

a10 + a11 + b01 + b11 = c11 + d11.

If we take the sum of the first and fourth of these, or the second and third, we can

see that we obtain
∑

k,l akl +
∑

k,l bkl = c00 + c11 + d00 + d11 in one case, while in the

other the right-hand side is c01 + c10 + d01 + d10. The conditions in Proposition 3.14

tell us that both right-hand sides, and the sum on the left, are zero. Thus we can

throw away the third and fourth of the list above, and lose no information. This

gives us 10 conditions in total – the 8 previous ones, and 2 new ones. In fact, these

10 are now independent – to see this, note that a10, for example, occurs in only one

of them (a00 + a10 = 0), so that one must not be involved in any linear dependence

relation. Further, a11, c10, c11, d10 and d11 are each only involved in one condition,

thereby eliminating those from any possible linear dependence. That leaves us with

just four – the first two in the four listed above, and the two involving just the bkl.

But now c00 and c01, for example, also occur in only one, eliminating the two “new”

relations, and meaning that any linear dependence has to be among just the two

conditions b00 + b01 = 0 and b10 + b11 = 0. Clearly, there are no such dependencies.

Thus, we find that we have 10 independent conditions for n = 2 – and the total

number we are looking for is 2n2 + 2, which equals 10 when n = 2. This proves

sufficiency for this case.
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The argument when n = 3 is very similar, but takes up more space, so it will be

most economical if I leave it to the reader. Here, we have 12 + 9 = 21 conditions

to start with, and there turns out to be just one dependence, which is the one I

mentioned straight after introducing the new conditions. 2

Thus, in the cases n = 2 and n = 3 we are now in a position to decide precisely

what conditions are needed on a triangle configuration in order for it to be integral

– and thus to complete the proof of Theorem 5.2.

We will first see what these “new” relations say in general about the integrality

of a triangle configuration, though – again splitting up into the two cases a = 1 and

a = −1. First, if a = 1, then, in our condition akl + ak,l+1 + bkl + bk−1,l = ckl + dkl,

we find that, for the image of a triangle configuration, the left-hand side is (upon

collecting like terms):

δil(a
H
k−1 + aH

k ) + δi+∆,k(a
V
l + aV

l+1)− (δk,l+1 + δk,l+2)a
D
k−1 − (δkl + δk,l+1)a

D
l .

The right-hand side gives exactly the same expression, after cancelling like terms,

and therefore our “new” relations give us no new information when a = 1.

So, let us recap the situation when a = 1. We wish to show that, for n = 2 or 3,

there exist integral triangles with ∆ > 0. I will again only go through the simpler

n = 2 case in detail, as n = 3 is very similar. So we need to check the case n = 2

and ∆ = 1. We know already that we must have aD
i = ∆(n−∆)d

2n
= d

4
, and hence

aD
i+1 = −d

4
,, and further that the same formulae hold for the aH

k and aV
k as well.

These are enough to satisfy six of the ten required conditions for n = 2, and nine of

the twenty required for n = 3, namely the ones we dealt with in the previous section.

Further, we have just seen that the n2 “new” conditions give no further information

– thus there are only two conditions left to check, which are those which I omitted

in the previous section, coming from
∑

m dm,k−m = 0.

Recall that we had, in general, for a = 1,

dkl = δila
H
k + δi+∆,ka

V
l − δkla

D
k − δk−1,l+1a

D
k−1 − δk,l+1(a

D
k + aD

l ).
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Using the above information, we can easily compute each of these four coefficients:

dii = aH
i − aD

i − aD
i+1

=
d

4

di,i+1 = −(aD
i + aD

i+1)

= 0

di+1,i = aH
i+1 + aV

i − (aD
i+1 + aD

i )

= 0

di+1,i+1 = aV
i+1 − aD

i+1 − aD
i

= −d
4
.

So we have that dii +di+1,i+1 = di,i+1 +di+1,i = 0, as required. As we have now gone

through what we know to be all of the necessary conditions when n = 2 (and n = 3,

although I have not written the necessary computations down), this completes the

proof of the theorem in the a = 1 case.

We now need to go through everything again when a = −1, starting with the

“new” conditions. Here, we find that the left-hand side is:

δ−i,l(a
H
k−1 + aH

k ) + δi+∆,k(a
V
l + aV

l+1)− (δk−1,−l + δk,−l)a
D
k−1 − (δk,−l + δk,1−l)a

D
−l,

while the right-hand side is:

δ−i,l(a
H
k−1 + aH

k ) + δi+∆,k(a
V
l + aV

l+1)− (δk−1,l + δk,−l)a
D
k−1 − δk−1,−la

D
k−1

+δk,−l(a
D
k−1 + aD

k + aD
k+1) .

Equating the two sides thus gives the relation:

0 = δk,−l(a
D
k−1 + 2aD

k + aD
k+1).

Recall that this holds for all k and l. Since, for each k, we can always choose −k
for l, we see that for all k we must have that aD

k−1 + 2aD
k + aD

k+1 = 0.

We assume that ∆ 6= 0 as usual, which allows us to deduce that aD
i+1 = aD

i − ∆d
n

,

while aD
i−1 = aD

i − (n−∆)d
n

(formulae (3.1) and (3.2)). Substituting these into the above
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condition (with k = i), we find that we must have aD
i = d

4
. But we already know that

we also need aD
i = ∆(n−∆)d

2n
, so n and ∆ must satisfy the condition n = 2∆(n−∆).

This can also be written as (2∆−1)n = 2∆2, and since n is an integer, we must have

that 2∆− 1 divides 2∆2. But then 2∆− 1|2∆2 −∆(2∆− 1) = ∆, which is clearly

only possible if ∆ = 1 – and this, in turn, forces n = 2. This confirms another of

the statements of Theorem 5.2.

It remains only to check that, when a = −1, n = 2, ∆ = 1, and aH
i = aV

i =

aD
i = d

4
, all ten of our necessary and sufficient conditions for integrality are met

– we have so far dealt with seven of them. Two of the remaining ones are that

dii + di+1,i+1 = di,i+1 + di+1,i = 0, which can be checked just as we did for a = 1.

The general formulae, for a = −1, are:

dkl = δ−i,la
H
k + δi+∆,ka

V
l .

Plugging in the known conditions, we find that dii = aH
i = d

4
, di,i+1 = 0, di+1,i =

aH
i+1 + aV

i = 0 and di+1,i+1 = aV
i+1 = −d

4
. So these two conditions are indeed met.

This finally completes the proof of Theorem 5.2.

5.3.1 Some examples

Strictly speaking, actually, we are not quite done with the proof of Theorem 5.2.

The above results guarantee that we can find non-trivial integral triangles on certain

elliptic curves of split multiplicative reduction of type I2 and I3, providing we can

find a function on such a curve with divisor d(P )− d(Q), for which P and Q reduce

to different components of the fibre of the Néron model. It does still remain to

show that there do exist elliptic curves of the required type, which do admit such

functions! One would expect there to be many, and this does indeed turn out to be

the case, but we still need to exhibit one. In this section, I will give a couple of the

many examples.

One can find several suitable examples of such curves, defined over Q, with low

conductor, and conveniently small coefficients, from the tables on John Cremona’s

website [6]. One example is the curve listed as 17a2:

y2 + xy + y = x3 − x2 − 6x− 4.
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This curve has bad reduction only at the prime 17, where the reduction is multi-

plicative, since the conductor is 17 and not any higher power of 17. Further, since

the discriminant of the curve can be computed to be 289 = 172, the precise reduction

type is I2.

Rewriting the above Weierstrass equation as (y+ 1
2
x+ 1

2
)2 = x3− 3

4
x2− 11

2
x− 15

4
=

(x − 3)(x + 1)(x + 5
4
), we see that there are three 2-torsion points, at (3,−2),

(−1, 0) and (−5
4
, 1

8
). (In fact, these three points, together with the identity, form

the whole group of torsion points defined over Q, which is therefore isomorphic to

(Z/2Z)2.) So we can find three functions of the desired type, namely x − 3 (with

divisor 2(3,−2) − 2(O)), x + 1 (with divisor 2(−1, 0) − 2(O)) and x + 5
4

(divisor

2(−5
4
, 1

8
)− 2(O)).

If we reduce the curve modulo 17, we see from the above form of the equation that

we obtain the equation (y−8x−8)2 = (x−3)2(x+1), from which it follows that the

singular point of the reduction is at (3,−2). (This also allows us to check that the

reduction is split – applying a translation to the curve mod 17 so that the singularity

is at the origin, it is (y−2)2+(x+3)(y−2)+(y−2) = (x+3)3−(x+3)2−6(x+3)−4,

or y2 + xy = x3 + 2x2, so the tangents at the singular point are given by the

quadratic 0 = y2 + xy − 2x2, which splits over the prime field as (y − x)(y + 2x).)

Since the reduction type is I2, The Néron model is obtained by a single blowup of

Spec Z[x,y]
(y2+xy+y−x3+x2+6x+4)

(or, more precisely, its closure inside the projective plane

over Z) at this singular point – one of the two resulting components is the exceptional

divisor, and the other consists of all the points on the fibre before the blowup

other than the singular point. This tells us that, in order to tell which of the two

components of the fibre a rational point on the curve reduces to, we need only take

the reduction mod 17 of its co-ordinates, and see whether or not the result is (3,−2).

If it is not, the reduction lies on the identity component (as the point at infinity

on E, acting as the identity for the group structure, reduces to this component);

otherwise, it lies on the other component (the exceptional divisor of the blowup).

Knowing this, we can see that any triangle built on the functions x− 3 or x+ 5
4

will have ∆ = 1, as the poles of these functions (namely O, in both cases) reduce to

the identity component, while the zeros reduce to the other one. So, for example,
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the triangle:

αx−3 = (E × {(3,−2)}, x− 3) + ({O} × E, x− 3) + (∆, (x− 3)−1)

is potentially integral.

We shall also figure out how to get an actually integral element from this triangle.

Recall that we will have actual integrality only when ai = d
4
, which here is 1

2
. So we

need to choose a multiple of the function x−3 which has order 1
2

along the exceptional

divisor, and −1
2

along the identity component. Of course, these fractional orders

are not possible, which is why the definition of potential integrality was extended

to allow for some multiple of the element being “adjustable” in this matter. So we

will replace x − 3 by (x − 3)2 (thereby taking α(x−3)2 = 2αx−3), and need this to

have orders 1 and −1 along the exceptional divisor and the identity component,

respectively.

It is clear that, before the blowup which produced the Néron model, the function

(x−3)2 had order 0 along the fibre, as it neither vanishes nor blows up everywhere on

the fibre. Hence, after the blowup, this function still has order 0 along the identity

component. It must therefore have order 2 along the exceptional divisor, as we know

that the ai+1 = ai− ∆(n−∆)d
2n

, where here n = 2, ∆ = 1 and d = 4 (since our function

is now (x− 3)2), so ai = ai+1 + 2 – and ai and ai+1 are the orders of (x− 3)2 along

respectively the exceptional divisor (the component containing the reduction of the

zero, (3,−2)) and the identity component. Thus, we can conclude that the triangle

configuration

(E × {(3,−2)}, 1

17
(x− 3)2) + ({O} × E,

1

17
(x− 3)2) + (∆, 17(x− 3)−2)

is integral (at the prime 17), despite having ∆ > 0. (α 1
17

(x+ 5
4
)2) is also integral, by

exactly the same argument.)

A slightly more complex example comes on the curve listed as 14a6, which is the

one given by the Weierstrass equation

y2 + xy + y = x3 − 11x+ 12.

This has conductor 14, and has reduction of type I2 at the prime 7 (the discriminant

is 98 = 2× 72, so it has type I1 reduction at 2). The singularity this time, one can

check, occurs at (0, 3) on the fibre, and the reduction is split multiplicative.
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The torsion subgroup this time is cyclic of order 6, a generator being (0, 3).

Notice that this 6-torsion point reduces to the non-identity component of the fibre

of the Néron model, while O of course reduces to the identity component – thus, the

triangle built from a function with divisor 6(0, 3) − 6(O) (which necessarily exists,

since (0, 3) is a 6-torsion point) will once again have ∆ = 1.

It is easy to find such a function – one simply keeps on computing multiples

of (0, 3) on E, and note down the various straight lines that occur in the process;

these give functions whose divisors give the desired 6(0, 3) − 6(O) in some linear

combination. Here, for example, we find the following divisors:

(2x+ y − 3) = 2(0, 3) + (2,−1)− 3(O)

(x− 2) = (2,−1) + (2,−2)− 2(O)

(3x− y − 4) = 3(2,−2)− 3(O),

and thus the function

f(x, y) =
(2x+ y − 3)3(3x− y − 4)

(x− 2)3

has the desired divisor.

Thus, with f as just defined, αf is potentially integral. This time, for integrality

we need ai = 3
2
, and ai+1 = −3

2
, which means that α 1

73
f2 will be integral.

Finally, we can use this same function to find an integral triangle of the form

α−1,f ′ , where f ′ is some function closely related to f above. Recall the definition of

αa,f :

αa,f := (E × {aP}, f) + ({Q} × E, fa) + (∆a, f
−1),

where, if (f) = d(P ) − d(Q), fa is a function with divisor d(aP ) − d(aQ). So,

for this particular function f , we are looking for a function f−1 whose divisor is

6(−(0, 3)) − 6(−O), or 6(0,−4) − 6(O). We can find this function in exactly the

same way we found f ; it turns out that one choice is:

f−1(x, y) =
(x− y − 4)3

(3x− y − 4)
.

Then we know, by the main theorem (Theorem 5.2) that αa,f is potentially integral

– and the proof tells us that in order to do this, we need to use a multiple of f with
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order −3
2

along the identity component, and the same with f−1. As these orders are

again zero for the functions I just wrote down, it follows that

(E × {(0,−4)}, 1

73
f 2) + ({O} × E,

1

73
(f−1)

2) + (∆−1, 7
3(f−1)−1)

is also integral.

Our theorem also tells us that any triangle with a = 1, on a curve with reduction

type I3 at a given prime, is potentially integral at that prime. There are once again

many examples of such curves – one is the curve 14a1 with equation y2 + xy + y =

x3 + 4x− 6, whose torsion subgroup is also cyclic of order 6, generated by (9, 23).

Needless to say, more examples could easily be found if needed. (Although I do

not know whether there are finitely or infinitely many.)

5.4 |a| > 1

In the original version of this thesis, this final chapter included an examination of

individual triangles for any value of a (subject to the “connectedness” condition

I mentioned in section 5.1), and Theorem 5.2 included a statement about such

triangles (I thought I had proved that no such triangles could be integral, except

when ∆ = 0). This result might well still be correct – I have no real intuition about

whether or not it ought to be – but the proof I had given was quite incorrect, as

was pointed out to me by my thesis examiner Dr. Matt Kerr. I shall in this section

give an indication of where the difficulties lie in attempting to generalise the above

results to this situation.

Many of the computations in this chapter would in fact be easy to generalise to

arbitrary values of a, but the problem comes before any of this, in working out the

image of the configuration – and, of course, the ∆a part in particular – in the Chow

group. We already know that, in those components of the fibre which ∆a passes

through (which are all copies of P1×P1), we obtain the curve y = xa, in appropriate

co-ordinates, and it is relatively easy to work out what happens to these, in terms of

the Akl, Bkl, Ckl and Dkl, when we blow up at each of the four corners, to produce

one of our “octagons”. Furthermore, one can also see what the image of ∆a in the
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exceptional divisors of each of the necessary blowups must be (at least for a = ±2);

see the comment immediately following Proposition 5.1.

The difficulty comes because it turns out that, when |a| > 1, there are always

extra components – “horizontal” and “vertical” ones (in fact, always “vertical” as

we shall see) – before the blowup has taken place. This is clear (and was already

remarked upon) if our triangle was not “connected”; what is less clear (but still

true) is that the same holds even in the connected cases (such as when n = 1). I will

now demonstrate this, using the image of ∆2 in the fibre for a curve of reduction

type I1 (which is therefore connected) – the following arguments can be made more

general, but I will only do it for one specific class of curves.

Consider, then, a curve defined over Q by the Weierstrass equation y2 = x3 +

x2 + p, where p is an arbitrary odd prime. This curve can be easily seen to have

reduction of type I1 at the prime p, and therefore its regular model E is simply

Spec Z[x,y]
(y2−x3−x2−p)

. One can also show (for example by using the duplication formula,

given in the appendix) that, in E × E, with affine coordinates x, y, u and v, the

equations for ∆2 include the relation u(4x3 + 4x2 + p) = x4 − 4x2 − 8px− 4p (and

one other involving v, to distinguish ∆2 from ∆±2, as inverses on a Weierstrass

elliptic curve share the same x co-ordinate). This must therefore be the one of the

equations for the Zariski closure of ∆2 inside E × E . On the special fibre, we reduce

the coefficients modulo p, to obtain, after factorisation, 4x2(x+1)u = x2(x+2)(x−2).

Since the “vertical” curve in our picture of the special fibre has equation x = y = 0,

we see that this particular equation holds everywhere on that curve. Of course, x = 0

forces y = 0 too, and with multiplicity two. Therefore, this particular equation,

which is in fact the equation for the union of (the Zariski closres of) ∆2 and ∆−2,

as well as picking out the two curves we already know about in the “interior” of our

P1 × P1, also picks out no fewer than four copies of the “vertical” curve x = y = 0

(x = 0 would give two, but our equation, when restricted to the special fibre, is

divisible by x2). As one would expect, when one puts in the further equation for

specifically ∆2 (or specifically ∆−2) one is left with exactly two of these. Therefore,

the “vertical” curve here occurs with multiplicity two in the special fibre of this

integral model.
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This fits in with the arguments I gave earlier, in section 5.1, about intersections

– that the intersection number of the total image of ∆a in the special fibre with any

horizontal or vertical fibre has to equal that of ∆a with the corresponding curve in

the generic fibre. In the generic fibre we clearly have intersection number precisely

one with any vertical fibre – the only place where {P}×E intersects ∆a is at (P, aP ).

But for a horizontal fibre, which has the form (E×{P}), we have intersections with

∆a at all points (Q,P ) for which aQ = P . For a given P , it is well-known that, at

least over the algebraic closure of K, there are a2 such points. It is rare, in general,

for all of these to be defined over K, but if they are defined over an extension

field of degree m, then it can be shown that, while there is only one “true” point

of intersection (corresponding to a maximal ideal in the relevant polynomial ring

defined over K), the intersection will have degree m, so that the total intersection

number remains a2.

Meanwhile, the curves “y = xa” inside the P1 × P1 components of the special

fibre (I put it in quotes to emphasize that this y and x are different from the y

and x in the Weierstrass equation of the elliptic curve) each contribute 1 towards

the intersection number with vertical fibres, and |a| towards that with horizontal

fibres (as the equation y = xa has |a| roots, up to multiplicity, for any given non-

zero y). Note that the above computations for ∆±2 on a curve of reduction type I1

are compatible with these numbers – the total vertical intersection is 1, while the

horizontal intersection is 4 (two from the “y = x±2” curve, and one from each of the

two copies of the vertical fibre), as required.

What can be seen from this is that there is no easy way to work out, in general,

what the image of ∆a is going to be in the special fibre of E × E , at a prime of

multiplicative reduction. At best, the above discussion allows it to be computed

for specific values of a and n – but these do not fall easily into general patterns.

Suppose, for the moment, that we focus on the specific value a = 2, and see what

this image will be for various values of n – in particular, which vertical fibres must

be included, and with what multiplicities (there can be no horizontal fibres ever

occuring, or the intersection number with a vertical fibre would then be greater

than 1). For n = 1, we have already computed this, finding that the single vertical
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curve occurs with multiplicity 2. For n = 2, the configuration we already have (two

copies of a “y = x2” curve) already has the desired intersection number of 4 with any

horizontal fibre E×{P} for which P lies in the identity component, but zero if P lies

in the other component. So one needs at least one of the two vertical fibres which

such a curve would pass through, and they need to have multiplicities totalling four.

It is easy to see that, for our image to be connected, both fibres must occur with

non-zero multiplicities, and it seems clear that, for reasons of symmetry, both must

have multiplicity exactly 2. Simiilar arguments occur for a = 2 and any value of

n, although the result which I would expect depends on whether n is even or odd.

For n odd, I would expect to see n of the n2 different vertical fibres occuring, all

with multiplicity two – these will occur on the “right-hand-side” (that is, ∞×P1) in

the components (k, 2k+ 1) for each value of k in Z/nZ (thereby connecting the two

copies of “y = x2” in the (k, 2k) and (k + 1, 2k + 2) components). Each horizontal

fibre here will intersect exactly one of these vertical fibres, thereby contributing 2 to

the intersection number, as well as twice with exactly one of the other curves. For

n even, the picture I expect will again have (just as for n = 2) n such components,

each of multiplicy 2, this time on the “right-hand-sides” of all components of the

form (k, 2k + 1) and (k, 2k + 1n
2
), where k is now restricted to 0 ≤ k < n

2
. If one

draws a diagram of this, one will see that this is both connected, and has the correct

intersection numbers. Further, this is the only way to fulfil both of these conditions.

Very similar results would be expected for ∆−2, for exactly the same reasons. (I

hesitate to describe any of these as actual “results”, as I have not done any explicit

computations for any examples with n > 2 – things soon get extremely messy if one

tries, as one needs to perform more and more blowups to produce E as n increases).

Clearly, one could try to redo the computations of earlier in this chapter for the cases

a = ±2, using this information – this is an obvious direction for further work. I had

hoped to do something in this direction myself, but the fact that, as can be sean

from the previous paragraph, things are rather different for different values of n (at

the very least, one would need to divide into separate cases according to whether n is

even or odd) means that one must be quite careful before making general assertions.

As for those values of a with |a| > 3, these seem to create further problems
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not encountered with ∆±2. Say we try to determine, using the same methods as

above, the image of ∆3 in the special fibre, for a curve of reduction type I2. We now

need an intersection number of 9 with each horizontal fibre, of which are “y = x3”

curves will only provide 3. So, we need a total of six extra intersections from the

two vertical fibres which each horizontal fibre will cross (as each crosses exactly one

of the other curves). And any such configuration will be connected, provided each

of the two connecting pairs of vertical fibres have the same multiplicity – but these

multiplicities could be 3 and 3, 6 and 0, 0 and 6, or even 1 and 5, and both of our

conditions (connectedness, and having the necessary intersections) will be met.

Of course, one could also try to use a symmetry argument here to argue that

the multiplicities must all be 3, and this may well be correct (although I am not so

convinced that the situation here is so necessarily symmetrical). But, if one looks at

the case where n = 4, still with n = 3, then one can still come up with two possible

configurations which meet all the conditions I have set out, for which there seems to

be no compelling reason to choose between then. Here, in any given vertical fibre,

the ends of the two “y = x3” curves which are contained within it are exactly two

units apart, meaning that there are two different and complementary choices for

which two of the four component fibres one chooses to connect them with (although

in either case, both would have to have multiplicity 3). So one these that there are

several further problems to be taken into account before one can try to extend the

arguments of this chapter to general triangle configurations.

5.5 Some further unanswered questions

I have now completed the presentation of all of the results of this thesis. In this

final section, I wish to mention, and briefly comment on, a few questions related to

this work, other than the one discussed in the preious section which I have not been

able to answer, whether through lack of ideas or lack of time (and often both). No

doubt several of these questions have already occurred to the reader!
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5.5.1 General conditions for integrality

Firstly, it would be nice to be able to give, for a single triangle configuration, a

set of necessary and sufficient conditions for its integrality. The main theorem of

this chapter, Theorem 5.2, comes close to doing this, at least for the limited case

when ∆ = ±1, but still leaves open the question of whether or not triangles with

a = 1 and ∆ 6= 0, or a = −1, n = 2, ∆ = 1, are actually integral for n > 3.

As already discussed, this would need more conditions among the coefficients of a

general element of the Chow group which are necessary for it to be zero. In theory

we want 2n2 +2 such conditions, but so far we have only found n2 +4n− 1, at most

– the −1 is because of the obvious linear dependence, that the sum of the “new” n2

conditions clearly lies in the linear span of the other 4n.

In fact, we can say precisely how many independent conditions we have among

this set:

Proposition 5.7 The n2 + 4n conditions given in Propositions 3.14 and 5.5 have

precisely one linear dependence when n is odd, and precisely two when n is even.

Proof Let us write out all of the conditions and label them

∑
m

amk = 0 (Ia,k)

∑
m

bkm = 0 (Ib,k)

∑
m

cm,k+m = 0 (Ic,k)

∑
m

dm,k−m = 0 (Id,k)

akl + ak,l+1 + bk−1,l + bkl = ckl + dkl (IIkl)

For specific (but arbitrary) k and l, ckl occurs in only two of these conditions,

namely Ic,l−k and IIkl. This means that, in any linear dependence relation among

the conditions, the coefficient of IIkl depends only on the difference l − k. By the

same reasoning applied to dkl, it also depends only on the sum l + k.

If we assume that n is odd, then given any two pairs (k1, l1) and (k1, l2), one can

always find a third pair (k3, l3) for which k3 + l3 = k1 + l1 and l3 − k3 = l2 − k2; for
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there is a unique inverse of 2 in Z/nZ, so we can take k3 = 1
2
(k1 + l1 − k2 − l2) and

l3 = 1
2
(k1 + l1 + k2 + l2). Then, by the observations made in the previous paragraph,

the coefficient of IIk1,l1 in any linear dependence relation equal that of IIk3,l3 , and

therefore also that of IIk2,l2 . As this applies to any two such pairs, all of the IIkl

must have the same coefficient. It then follows that all of the Ia,k do too, as do the

Ib,k, Ic,k and Id,k, and that this common coefficient is twice that of all the IIkl, for

the Ia,k and Ib,k, and minus that of the IIkl for the other two. This means that the

assumed linear dependence must be a multiple of the one which I already mentioned.

When n is even, it makes sense to talk about whether a given k ∈ Z/nZ is even

or odd, as all of its integer representatives will have the same parity. Then, if we

sum the relations IIkl over those pairs (k, l) of the same parity, or over those of

opposite parity, we will obtain
∑

k,l(akl + bkl) =
∑

k,l|k∼l(ckl + dkl), where the sum

on the left is over all pairs (k, l), and the relation ∼ on the right means that k and

l have either the same (in one of the two cases) or opposite (in the other) parity.

Both sides of this expression are in the span of the 4n conditions Ix,k (x = a, b, c,

d) – this is clear on the left-hand side, and on the right follows because the pairs

(m, k±m) have the same parity when k is even and opposite parity when k is odd.

This gives us two linear dependencies when n is even, which are clearly independent

of each other.

One can now use the same argument as we did when n was odd to prove that

these are the only two dependencies – it comes down to showing that the coefficient

of IIkl in such a dependency depends only on the relative parities of k and l. When

the two pairs (k1, l1) and (k2, l2) have either both the same parity or both opposite

parities, then the expressions k1 + l1 ± (k2 + l2) are both even, and thus we can

halve them, and proceed as we did before. The “half” is not unique this time, of

course, but for two of the four possible choices of both, k3 = 1
2
(k1 + l1− k2− l2) and

l3 = 1
2
(k1 + l1 + k2 + l2) will have the desired sum and difference. 2

Note that this is a generalisation of properties used in the proof of Proposition

5.6. For n > 3 though, we have only n2 + 4n − 1 independent conditions, at most

(one fewer than this if n is even), when we need 2n2 + 2, which is strictly greater

when n > 3 (the difference is (n − 1)(n − 3)). So what other conditions can we
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obtain?

Proposition 5.8 In addition to the conditions already given in Propositions 3.14

and 5.5, we also must have

akl + ak+1,l+2 + bk+1,l+1 + bk−1,l + ck,l+1 + ck+1,l = ak,l+1 + ak+1,l+1 + bkl + bk,l+1

+ckl + ck+1,l+1

for each k and l.

The proof is as for the others; one simply computes that the conditions hold for

each of the relations Xkl and Ykl. As it is both simple and a little tedious, and will

not be used for any important subsequent work, I will leave it to the reader to check.

Including this condition may get us closer to the full set of 2n2 +2 necessary and

sufficient ones – although how close I am not yet sure. Once again, if we sum up all

n2 conditions in this new set then we obtain something in the span of the already

known ones. But it is not at all clear to me how many conditions this adds to an

independent set – clearly none for n = 2 or 3. I have been unable to determine the

answer to this in general, and thus do not know whether or not there may be more

conditions to be found. (I would suspect that there are, actually – the above set

of relations involves none of the dkl at all, and it feels likely that there would be a

similar set involving the dkl but not the ckl.)

I am grateful to my supervisor, Herbert Gangl, for coming up with both this last

set of relations, and the set from Proposition 5.5 – he found these by analysing cases

for small values of n in PARI, and writing down the conditions needed; it was then

easy for us to guess what the general expressions were, and then for me to prove

that they are valid in general. The set in Proposition 5.5 came from analysing n = 2

and n = 3, and the set given in the last proposition from n = 4 – Dr Gangl tells

me that there seems to be yet another new type needed or n = 5, but I have not

pursued this.

Of course, we would like to apply any new set of conditions, such as the one just

given, to the image of a triangle configuration. When one does this, it turns out

that no further conditions are imposed upon the integrality of a triangle, and thus
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one gets no new information, other than extending the results already obtained on

integral triangles with ∆ 6= 0 to any cases for which all the conditions used so far are

sufficient. This probably includes the case n = 4 (it does if the PARI computations

are correct), and perhaps some others, and but I have not had time to investigate

this matter.

5.5.2 Linear combinations of arbitrary triangles

The main result of Chapter 4 – and of the whole thesis – was that any linear

combination of triangles (with a = 1), if integral, has vanishing regulator (after

possibly multiplying the functions by units). In this chapter, we have proven a

similar result for any individual triangle with a = −1. Clearly, it would be nice to

be able to generalise these both at once, and be able to say that the same result is

true for an arbitrary linear combination of triangles, whatever the values of a are.

Of course, this is a more general problem than that discussed in the last section,

so it is no surprise that I have not made any real progress on it. Indeed, even when I

believed that I was able to say things about the image in the Chow group of arbitrary

connected triangles (before I discovered that I had neglected an important part of

this image), I was unable to prove the result which I desired, as many difficulties

were caused in the algebraic computations were caused by the fact that one was

looking at sums (over h, to return to the notation of Chapters 3 and 4) over which

the values of a, as well as those of i and ∆, could vary.

Nevertheless, I do expect that the desired result is in fact true (and that it should

be possible to show it) – here is why. Firstly, if the base field is Q, then Beilinson’s

conjecture, as we saw in Chapter 2, predicts that there should be no non-trivial

integral elements of K
(2)
1 (E × E). This means, that, if the conjecture is true – as

seems likely, if very uncertain – any linear combination of triangle configurations

must, if integral, vanish, and therefore have zero regulator. But all the methods

I have been using apply over any number field whatsoever, as I have essentially

reduced it to a problem of linear algebra. So, if there is a method to prove that

these linear combinations of triangles, for curves defined over Q, vanish (or their

regulators do) whenever they are integral, it will also be applicable over any number
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field at all. As I certainly expect it to be demonstrable over Q, using these linear-

algebraic methods, it will therefore be demonstrable over any number field.

5.5.3 Injectivity of the regulator map

I have shown that all (connected) triangle configurations, and certain linear com-

binations of them, have vanishing regulator whenever they are integral (subject to

Conjecture 5.1). If, as seems likely (and as Beilinson predicts), the regulator map is

injective on integral elements, then it follows that there are no non-trivial integral

triangle configurations. However, as we do not know for sure that the regulator is

injective, it would be nice to be able to show directly that these elements are trivial

in K
(2)
1 (E × E) – that is, to construct an element of K2 of the function field of

E×E whose tame symbol is the given triangle configuration. This is something else

which I have attempted, but in this case I got absolutely nowhere with it. It seems

that in order to do this, one needs a function on E × E with a zero or pole along

the diagonal. There are obviously infinitely many such functions – π∗1(g) − π∗2(g)

for any function g on E, for example – but all have further zeros and poles along

other curves. I presume it is possible to construct the desired elements of K2 of the

function field, but one would need to somehow account for all the various zeros and

poles that arise, and cancel them out along all curves other than the three involved

in the triangle. I am not aware of how to do this.

5.5.4 Curves of higher genus

The original aim of my research project was to investigate triangle configurations

in K
(2)
1 (C × C), where C is any hyperelliptic curve (or perhaps even any curve) –

there was no restriction on E having genus 1. But I gradually concentrated on this

case, and for two principal reasons. One is that much more is known about elliptic

curves than about curves of genus 2 or higher, and in particular there is a much

smaller list of all the possible reduction types. Further, the group structure on an

elliptic curve is a powerful tool to be able to use, which is not available – at least

no immediately – for higher genus curves.



5.5. Some further unanswered questions 99

If we wish to try to obtain similar results for curves of higher genus, the first

problem is in determining a regular model for C × C over the ring of integers –

and this in turn needs one to know about the minimal regular model for C itself.

For elliptic curves, the theory of Néron models is well-known, and the number of

different types not too large – although even here, recall that we could not cope

directly with many of the reduction types, and instead had to deal with them via

field extensions. For curves of higher genus, there are enormously more reduction

types, greatly increasing the amount of work which would need to be done here.

Nevertheless, for those reduction types whose fibres consist of copies of P1 inter-

secting in ordinary double points, one can do the same procedures as I have done

in the multiplicative reduction case for elliptic curves. One would hope to obtain a

good description of the fibre of the regular model of C × C, and be able to figure

out generators and relations for its codimension 1 Chow group.

The one part of the argument which really relies on E being an elliptic curve

was the “translation” argument which allowed us derive an explicit formula for the

regulator of the triangle configurations, and to show that this is the same as the

regulator image of a decomposable element. In fact, it is not clear whether or not

any equivalent to N(f) exists, as that too was defined using translations in the

group structure of E. One other place where the group structure was used was in

constructing the triangles αa,f for a > 1 – on a higher genus curve, ∆a does not

exist, and nor do the functions fa for a 6= 1.

Of course, while the curve C has no group structure when its genus is greater

than 1, C will always have a Jacobian, which does have such a structure. It might

be possible to use the Jacobian to make some of these arguments work in the higher

genus cases – although this is not an issue I have thought about in any detail. But it

would not surprise me if arguments using the Jacobian were able to produce similar

results to the ones in this thesis.
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The blowup of E × E, in the case of

split multiplicative reduction

This appendix will be taken up with proofs of the statements made in chapters 3

and 5 concerning the regular model for E × E, where E is an elliptic curve over a

number field which has split multiplicative reduction at the prime we are interested

in.

We shall be performing very explicit computations on a general elliptic curves

with split multiplicative reduction. The general Weierstrass equation has the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6;

we shall assume that this gives an elliptic curve whose fibre, mod π, has a singularity

at (0, 0) (if it is anywhere else we can simply translate) which is split multiplicative.

The condition that the origin is a point of the reduction mod π means that π|a6, while

the assumption that the origin is singular further means that π|a3 and π|a4. The

reduction being multiplicative means precisely that π does not divide b2 = a2
1 +4a2,

and our assumption that it is split multiplicative means that
√
b2 exists in the residue

field k. For the rest of this appendix, we shall assume that all of these conditions

hold.

If π2 - a6, then P2
R modulo the above Weierstrass equation is already regular (as

the equation is in the maximal ideal (x, y, π) but not in (x, y, π)2), and thus we can

take this as our regular model E – this is reduction type I1, whose special fibre is a

100
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copy of P1
k with two points identified. If π2|a6, on the other hand, this model will not

be regular at the origin of the fibre, so we must blow it up here, and then repeatedly

at any new singularities which arise. This process always ends after finitely many

steps, and produces a model whose fibre consists of n copies of P1
k joined in a “circle”

(reduction type In), where n is the order at π of the discriminant of the original

Weierstrass equation. (See [22], Chapter 4, and especially the description of Tate’s

Algorithm 9.4.)

The repeated blowings-up, when π2|a6, are an inductive process, which means

that we need only prove our results in the cases of reduction types I1 and I2, as it

is clear that the local structure of E about each of the singularities of the fibre will

be identical. But I will do I1 and I2 separately, as type I1 is somewhat different

locally; when n > 1, we have, in the fibre, two separate copies of P1 intersecting

at a double point in the fibre of the Néron model of a curve with reduction type

In, while if n = 1 we have just one copy of P1 which intersects itself. So we will

perform detailed explicit calculations for reduction tpes I1 and I2, for which we

need a concrete description of the model E . For I1 it is just P2
R modulo the above

Weierstrass equation (with π2 - a6), but for I2 that is singular at the origin of the

special fibre, so we must first perform a blowup there.

So, let us assume that π2|a6 in our Weierstrass equation, and blow up our model

(P2
R modulo a projectivised form of the equation) at the singular point corresponding

to the maximal ideal (x, y, π). We will in fact take an affine part, Spec R[x, y] modulo

the equation, which is legitimate since blowing up is a local process. This means

that we take Proj of the graded ring G :=
∑

i≥0Mi, where M is the maximal ideal

(x, y, π), M0 is the whole ring R[x, y], and the grading is given by the index i.

(See [12].) If we take the polynomial ring R[x, y,X, Y, P ], considered as a graded

ring in which x, y and all elements of R have degree 0 while X, Y and P each

have degree 1, then there is a natural and surjective map of graded rings from G

to the one we are interested in, sending X, Y and P to x, y and π respectively

(each in degree 1). Thus our blowup will be Proj of G modulo some relations, and

these relations will be given precisely by the elements in the kernel of the map I just

described.
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So, what is in this kernel? Firstly, it will contain y2+a1xy+a3y−x3−a2x
2−a4x−

a6, since the Weierstrass equation tells us that this is zero in G, in degree 0. But

because every term in this equation is in the maximal ideal, it will also give rise to a

degree 1 element of the kernel, namely yY +a1xY +a3Y −x2X−a2xX−a4X− a6

π
P

– recall that π|a6, and that P is sent to π in degree 1. And because we have

further assumed that a6 is divisible by π2, and that a3 and a4 are divisible by π,

there is also a degree 2 elemen in the kernel, induced by the Weierstrass equation:

Y 2 + a1XY + a3

π
Y P − xX2 − a2X

2 − a4

π
XP − a6

π2P
2. Clearly there is nothing of

degree higher than 2 induced by the Weierstrass equation, as the term y2 is not in

the cube of the maximal ideal (x, y, π).

There are three more elements of the kernel, each in degree 1, coming from the

fact that elements such as xy in the degree 1 part of G have two pre-emages – xY and

yX. So, xY − yX is in the kernel, and so, by the same reasoning, are xP − πX and

yP −πY . It is easy to see that we have now found generators for the whole kernel –

and therefore that our blowup will consist of Proj of the graded ring R[x, y, Z, Y, P ]

modulo the ideal generated by the six elements I have just listed.

This new model is itself not regular in general. But it can be shown that it is

in the case when the reduction type is I2 (which is equivalent to the discriminant of

the Weierstrass equation having order exactly 2 at π), and hence that our regular

model E is the result of the blowup we just performed (with the addition of points

at infinity on both the generic and the special fibres, as we first took an affine chart

before we blew up). Notice that the special fibre (which we obtain by putting π = 0,

which makes a3, a4 and a6

π
vanish too) is subject to the equations xP = yP = 0,

so that either x = y = 0 or P = 0. The first of these options gives the exceptional

divisor, which can be seen to be isomorphic to the projective line over k. The second

likewise gives a quadratic in P2
k – when the reduction type is I2, this quadratic is

irreducible (and thus gives a curve isomorphic to P1), and further the two points at

which the two components meet, which are singular on the special fibre, are regular

on the arithmetic surface E . These facts are well-known, and straightforward but

tedious to check, so I will not go through them in detail here. I am now going to

use these models to prove the various assertions I have made about E × E and its
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blowup, in the cases I1 and I2.

First, though, we will change co-ordinates in the I2 case so that the singularity

of the special fibre lies at the origin. (Here of course there are two, and we want

to move one of them to the origin.) By the observations made above, these occur

when x = y = P = 0, which means that the homogeneous co-ordinates X and Y

are subject to the relation Y 2 + a1XY = a2X
2. Here, we recall that the reduction

was assumed to be split multiplicative, and therefore that a2
1 + 4a2 has a square

root in k. This is equivalent to saying that the above quadratic factorises over

k (and the two factors are distinct, since the reduction is multiplicative and not

additive). Let ω be an element of R whose reduction mod π is one of these roots

in k. Then one of the two singular points of the fibre is at (x, y) = (0, 0) and

[X,Y, P ] = [1, ω, 0] in homogeneous co-ordinates. So, to find a local picture with

a singularity at the origin of the fibre, we can go to the affine chart X = 1, and

translate Y to Y + ω. This gives, after eliminating redundant conditions, Spec of

the ring R[x, Y, P ] modulo the ideal generated by the two equations xP = π and

(Y +ω)2 +a1(Y +ω)+ a3

π
(Y +ω)P = x+a2 + a4

π
P + a6

π2P
2. The second of these can

be used to write x in terms of Y and P , so leaving us with a surface in the affine

plane over R given by a single equation, of the form Pf(Y, P ) = π, where f(Y, P )

is:

Y 2 +
a3

π
Y P − a6

π2
P 2 + (a1 + 2ω)Y + (

a3

π
ω − a4

π
)P + (ω2 + a1ω − a2).

The constant term here, by choice of ω, is divisible by π. Notice, though, that

if we replace ω by ω + cπ, as we are free to do for any c in R, then ω2 + a1ω − a2

is replaced by (ω2 + a1ω − a2) + c(2ω + a1 + cπ)π. Notice that 2ω + a1 + cπ is not

divisible by π – for if it is, we would have ω = −a1

2
in k (unless k has characteristic

2, in which case we would need that π|a1, which means π|a2
1 + 4a2 in this case too),

and hence that 0 = ω2 + a1ω − a2 = −1
4
(a2

1 + 4a2), contrary to the reduction being

multiplicative. Thus, if ω2 + a1ω − a2 is divisible by π2 for a particular choice of

ω, we can always find another choice for which this is not the case (for example

by replacing ω by ω + π). Therefore, changing the names of the variables to make

things look more visually intuitive, we find the following:
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Proposition A.1 If E has reduction of type I2, then, locally near a singularity of

the fibre, E is isomorphic to Spec R[x,y]
(xf(x,y)−π)

, where f(x, y) is a quadratic, irreducible

mod π (over k, the algebraic closure of k), whose constant term has order 1 at π.

A.1 Singularities of E × E
Recall that the statement here was that E ×E has non-regular points at each of the

n2 points (P,Q) where P and Q are both singularities on the special fibre of E , and

at no other places. I shall, as always in this appendix, prove this in two separate

cases, for reduction types In where n = 1 and then where n = 2 (which also accounts

for n > 2, as these cases are all the same locally).

A.1.1 n = 1

Recall here that E is just Spec R[x,y]
(y2+a1xy+a3y−x3−a2x2−a4x−a6)

, where π divides each of

a3, a4 and a6, but π2 does not divide a6. (Strictly speaking, E is a projectivisation

of this, but this will not concern us as we are only talking about local properties.)

Thus E × E is

Spec
R[x, y, u, v]

(w(x, y), w(u, v))
,

where w(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6. We want to show that the

only place where this fails to be regular is at the origin of the special fibre.

First, we look for singular points of the fibre itself. These occur when both of the

pairs of equations a1y−3x2−2a2x = 2y+a1x = 0 and a1v−3u2−2a2u = 2v+a1u = 0

hold simultaneously (in the fibre, that is, modulo π). The only pairs of solution

for (x, y) can be easily seen to be (0, 0) and (−a2
1+4a2

6
,

a1(a2
1+4a2)

12
), providing the

characteristic of k is neither 2 nor 3 – if k has one of these characteristics, (0, 0)

is the only solution. But the other point is easily seen not to actually satisfy the

required equation, y2 +a1xy = x3 +a2x
2, since a2

1 +4a2 does not vanish in the fibre.

So, the only non-regular points on E × E can occur at points (P,Q) on the fibre,

Ep × Ep, for which either P or Q is the singular point of Ep.

We will now check all such points for regularity on the threefold E × E . We

can do this by considering our two equations as being in the five variables x, y,
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u, v and π, and considering the matrix whose rows are the linear parts of each

equation in each of these five variables – the point (x0, y0, u0, v0) will fail to be

regular precisely when, after changing variables to translate (x0, y0, u0, v0) to the

origin, this matrix has less than the maximum rank (here 2). (See section 2.2 of [1].)

We have just seen that we need only check those points where either x0 = y0 = 0 or

u0 = v0 = 0 (on the fibre), and there is clearly no loss of generality in assuming that

x0 = y0 = 0. Then the first of our two equations is not translated at all, so stays as

y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6. Since a3 and a4 are assumed to vanish on

the fibre, this has no linear part in either x or y (and clearly none in u or v either),

and linear part a6

π
in π – this does not vanish since we assumed that π2 - a6.

In particular, we see that, in order for our 5x2 matrix to have rank less than 2,

and therefore for (x0, y0, u0, v0) to be non-regular, the second equation, which after

translation becomes (v + v0)
2 + a1(u+ u0)(v + v0) + a3(v + v0)− (u+ u0)

3 − a2(u+

u0)
2− a4(u+u0)− a6, must have zero linear parts in both u and v. These are easily

seen to be (the reductions mod π of) a1v0− 3u2
0− 2a2u0 and 2v0 +a1u0 respectively.

And we just saw that the only simultaneous solution to these two equations which

also satisfies the defining Weierstrass equation is (u0, v0) = (0, 0). Therefore, all

points apart from the origin of the fibre are regular, as I claimed.

Finally, the origin itself does fail to be regular, as both equations then have no

non-vanishing linear parts in x, y, u and v, and linear part a6

π
in π, and thus the

matrix has rank just 1.

A.1.2 n = 2

By Proposition A.1, E × E has the form Spec R[x,y,u,v]
(xf(x,y)−π,uf(u,v)−π)

, where f(x, y) is a

quadratic which, modulo π, is irreducible and goes through the origin. Checking

first for singular points of the fibre, we see for the same reasons as before that one

(or both) of the two pairs (x, y) and (u, v) must be roots of xf(x, y) and both of

its partial derivatives, which are f(x, y) + xfx(x, y) and xfy(x, y) = 0 (fx amd fy

here denote the partial derivatives of f with respect to x and y respectively). So,

if x 6= 0, we must have f(x, y) = 0, fy(x, y) = 0 and fx(x, y) = 0, meaning that

(x, y) is a singular point of the quadratic f(x, y) = 0 – and this is impossible since
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f is irreducible, and an irreducible quadratic is always non-singular. Thus we must

have x = 0, and also f(x, y) = 0 – this will have two roots in y (distinct, since

the reduction is multiplicative), one of which is y = 0, as the constant term of f is

divisible by π. These correspond, of course, to the two singular points of the fibre,

where the two components of the Néron 2-gon – given in this model by x = 0 and

f(x, y) = 0 – intersect. So, once again, the only singular points on the fibre of E ×E
are when one of the two co-ordinates is the singular point on the fibre of E .

And once more, such a point (x0, y0, u0, v0) is non-regular on E × E only when

all the four co-ordinates are zero (on the fibre) – the argument is exactly the same

as in the n = 1 case.

A.2 Proof of Proposition 3.7

Recall that the statement here was that, when we blow E × E up at one of the

singular points, the exceptional divisor is isomorphic to P1
k×P1

k. Again, it is enough

to prove this in the cases n = 1 and n = 2.

A.2.1 n = 1

Recall that, here Spec R[x,y,u,v]
(w(x,y),w(u,v))

is an affine chart for E × E , with w(x, y) =

y2 + a1xy + a3y − x2 − a2x
2 − a4x − a6, and the singularity at the origin of the

fibre, which corresponds to the maximal ideal (x, y, u, v, π). So the blowup will be

Proj of R[x, y, u, v,X, Y, U, V, P ] – a ring graded by the upper-case variables having

degree 1 and lower-case ones degree 0 – modulo the relations induced by the two

Weierstrass equations, and by each pair of generators of the maximal ideal. The

exceptional divisor is then found by setting all of the lower-case variables, and π, to

zero.

The relations induced by the Weierstrass equations in degree 1 are that (y +

a1x+a3)Y = (x2 +a2x+a4)X+ a6

π
P and (v+a1u+a3)V = (u2 +a2u+a4)U + a6

π
P .

So, in the exceptional divisor, since π vanishes and hence so do a3 and a4, as well

as x, y, u and v, either of these equations tells us that a6

π
P = 0, and hence that

P = 0, since our assumption here is that π2 - a6, meaning that a6

π
does not vanish
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in k. Meanwhile, while each Weierstrass equation on its own does not induce any

relation in degree 2 (precisely because π2 - a6, so a6 is not in (x, y, π)2), between

them they do – because each one allows us to express a6 in terms of things which are

in (x, y, π)2, and these two expressions must therefore coincide. Thus, we deduce

that, in the blowup of E × E , we have the following relation:

Y 2 + a1XY +
a3

π
Y P − xX2− a2X

2− a4

π
XP = V 2 + a1UV +

a3

π
V P − uU2− a4

π
UP.

On the exceptional divisor, this gives us the equation Y 2 + a1XY − a2X
2 =

V 2+a1UV −a2V
2, inside Proj R[X,Y, U, V ], or P3

k. We already know that both sides

factorise, to give (Y −ω1X)(Y −ω2X) = (V −ω1U)(V −ω2U). And this is isomorphic

to P1 × P1, via the Segre embedding which takes ([X1, Y1], [X2, Y2]) in P1 × P1 to

[X,Y, U, V ] = [X1X2 − Y1Y2, ω2X1X2 − ω1Y1Y2, X1Y2 − Y1X2, ω2X1Y2 − ω1Y1X2].

A.2.2 n = 2

Here, we again recall the affine description of E×E , which is Spec R[x,y,u,v]
(xf(x,y)−π,uf(u,v)−π)

– f(x, y) is a quadratic which goes through the origin mod π. We form the blowup,

at the origin, just as we did for n = 1; here the Weierstrass equations induce

Xf(x, y) = Uf(u, v) = P in degree 1 – so, in the exceptional divisor, we see that

P = 0. Let us now write out f(x, y) in more detail – we know it is quadratic, so has

the form ax2 + bxy+ cy2 + dx+ ey+ f , where f has order 1 at π. So, in degree 2 we

obtain X(axX+bxY +cyY +dX+eY + f
π
P ) = U(auU+buV +cvV +dU+eV + f

π
P ),

which simplifies to X(dX+eY ) = U(dU+eV ) in the exceptional divisor – this lying

inside P3, with homogeneous co-ordinates X, Y , U and V . This is isomorphic to

P1×P1 via a Segre embedding, exactly as in the n = 1 case. Note that this needs d

and e to not both be divisible by π, but here we saw that the “e” is a1 + 2ω, which

as noted earlier cannot be divisible by π.
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A.3 The order of π along the exceptional divisor

of a blowup of E
In this section I shall prove a statement I made at the end of Section 3.5.3 – that,

if we blow up the model E of the curve E at a singular point of its fibre, then π has

order 2 along the exceptional divisor of this blowup. Note that here we are working

with just E , and not with E × E . Again, it will be enough to consider just the two

cases n = 1 and n = 2.

A.3.1 n = 1

I once again remind you that E is given by the Weierstrass equation y2+a1xy+a3y =

x3+a2x
2+a4x+a6 in Spec R[x, y] (or, strictly speaking, the projective closure of this

in P2
R), where π divides each of a3, a4 and a6 but π2 - a6. To blow this up at the origin

of the special fibre means to take Proj ofR[x, y,X, Y, P ] (with grading given as before

by the upper-case variables), modulo the relations xY = yX, xP = πX, yP = πY ,

y2+a1xy+a3y = x3+a2x
2+a4x+a6 and yY +a1xY +a3Y = x2X+a2xX+a4X+ a6

π
P .

(There is no equation in degree higher than 1, because a6 has order exactly 1.) The

exceptional divisor is determined by the equations x = y = π = 0. To make things

more transparent, we shall take an affine part of the blowup, say that given by

X = 1. Then we have y = xY and π = xP , so that the ideal corresponding to the

exceptional divisor becomes principal, generated by x. Our question then becomes,

what is the highest power of x to divide π? Since π = xP , this must be one more

than the highest power of x to divide P . And the last of the relations in the blowup

which I just listed becomes a6

π
P = x[Y 2 +a1Y + a3

π
Y P −x−a2− a6

π
P ] when we make

the necessary substitutions to put everything in terms of the independent variables

x, Y and P . This shows us that x divides P , since a6

π
is not divisible by π, and

hence not by x either. But it is equally clear from this expression that x2 cannot

divide P , and therefore that P has order exactly 1 along the exceptional divisor.

Therefore π = xP has order exactly 2, as claimed.
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A.3.2 n = 2

E is now (a projectivisation of) Spec R[x,y]
xf(x,y)−π

, where f(x, y) has the form ax2 +

bxy + cy2 + dx + ey + f , and f is divisible by π but not by π2. When we blow E
up at the origin of the fibre, as we did in the n = 1 case, and take the affine chart

X = 1, this is the same as replacing y by xy′ and π by xπ′, where y′ and π′ are

new variables, corresponding to what I called Y and P before, and then cancelling

the highest power of x which occurs in the equation. Here, the equation becomes

xf(x, xy′) = xπ′, so we obtain f(x, xy′) = π′. Since π = xπ′, and we want to show

that π has order 2 at x, we must show that π′ has order 1. But π′ = f(x, xy′) =

ax2 + bx2y′ + cx2y′2 + dx+ exy′ + f
π
xπ′ = x(ax+ bxy′ + cxy′2 + d+ ey′ + f

π
π′), which

has order exactly one at x, since π2 - f .

A.4 Proof of (a slight generalisation of) Proposi-

tion 5.1

The last task which is left for this appendix is to prove this proposition, concerning

the image in the exceptional divisor of the blowup of E × E of the curves ∆±1 in

E × E. Once more we deal with just the two cases n = 1 and n = 2, as the local

structure of the blowup at a singular point of E × E when n > 2 is the same as

that when n = 2. I will prove not only Proposition 5.1 itself by these methods,

but also, for n = 1, its generalisation to ∆±2, which I mentioned immediately after

giving the proposition. I will then finish with a few closing remarks about a possible

generalisation of this result to other values of a and n.

A.4.1 n = 1

We saw already in section A.2.1 a concrete description of the blowup. We are now

going to take the curve ∆a in E × E, the generic fibre of our blown-up model, and

ask what the closure of this is in the blowup, and in particular how this intersects

with the exceptional divisor of the blowup. We will do the case a = 1 – the diagonal

– first of all.



A.4. Proof of (a slight generalisation of) Proposition 5.1 110

Here, E ×E before the blowup was Spec R[x,y,u,v]
(w(x,y),w(u,v))

, where w(x, y) is the Weier-

strass equation for E. The diagonal is given in the generic fibre by the equations

u = x and v = y, and therefore these equations also determine the closure of diagonal

inside E × E .

Now, let us impose these equations in the blowup. We have that xY = yX =

vX = xV , and yV = vY = yY , and therefore that V = Y unless both x and y are

zero. But x = y = 0 occurs only in the exceptional divisor, so when we take the

strict transform of this subscheme in the blowup – that is, remove the exceptional

divisor, and then take the closure – we see that it will satisfy the equation V = Y .

By similar arguments, U = X will also be satisfied – these are the equations for the

closure of the diagonal in the blowup.

We also saw that the exceptional divisor is (Y − ω1X)(Y − ω2X) = (V −
ω1U)(V − ω2U), which is isomorphic to P1× P1 via ([X1, Y1], [X2, Y2]) in P1× P1 7→
[X,Y, U, V ] = [X1X2−Y1Y2, ω2X1X2−ω1Y1Y2, X1Y2−Y1X2, ω2X1Y2−ω1Y1X2]. So,

when X = U and Y = V , we find that we have X2(X1 + Y1) = Y2(X1 + Y1) and

X2(ω2X1 +ω1Y1) = Y2(ω2X1 +ω1Y1). Since ω1 6= ω2 and we can’t have X1 = Y1 = 0

(as they are homogeneous co-ordinates for the projective line), the only solution to

these equations is X2 = Y2. This tells us that the image of the diagonal in the

exceptional divisor, P1 × P1, is P1 × {1}.
Note that this does correspond to the direction which I have labelled, in chapters

3 and 5, as Dkl, rather than the other one which is labeled as Ckl – for in the picture,

@
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¡
¡@

@
@

¡
¡

¡

Ckl

DklCkl

Dkl

the image of the diagonal must come in along the diagonal of the “octagon”, from

both directions, and there is clearly no way this could be connected if it intersected

the exceptional divisor (above) along the “Ckl” direction.

When dealing with ∆−1, the equations in the generic fibre – and hence for the

closure of ∆−1 in the blowup – are u = x and v = −y − a1x− a3, as the inverse of

(x, y) on the elliptic curve y2+a1xy+a3y = x3+a2x
2+a4x+a6 is (x,−y−a1x−a3).
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We now have, in the blowup, that xV = vX = −yX−a1xX−a3X. Since xY = yX

and xP = πX, while π|a3, this can also be written as xV = −x(Y + a1X + a3

π
P ).

Similarly, from yV = vY we obtain yV = −y(Y + a1X + a3

π
P ). As before, these

between them tell us that the strict transform of ∆−1 intersects the exceptional

divisior in the curve V = −Y − a1X − a3

π
P , or V = −Y − a1X, since P vanishes on

the exceptional divisior.

Putting these conditions into the Segre embedding, we find that (X1 +Y1)(X2−
Y2) = 0 and ω2X1Y2 − ω1Y1X2 = (ω1 + a1)Y1Y2 − (ω2 + a1)X1X2. Since ω1 and ω2

are the two roots of ω2 + a1ω − a2, we have that ω1 + ω2 = −a1. Hence the latter

condition can be rewritten as (ω1X2 − ω2Y2)(X1 + Y1) = 0. As in the a = 1 case,

these two conditions have only one simultaneous solution, Y1 = −X1, since ω1 6= ω2

and it is impossible to have X2 = Y2 = 0. Thus ∆−1 has image {−1}×P1 in P1×P1

– the opposite “direction” to that of ∆1. So this must give us a Ckl, as claimed.

Next, as promised, let us also consider the cases a = ±2. That is, we are

considering the curve ∆2 in E × E, defined as the set of all points (P,Q) where

Q = 2P in the group structure on E. Writing (x, y) and (u, v), as before, for the

affine co-ordinates of P and Q respectively, the duplication formula for elliptic curves

(see [21]) tells us that ∆2 – and hence its closure in E × E – satisfies the equation

u = x4−b4x2−2b6x−b8
4x3+b2x2+2b4x+b6

, where the bk are certain standard algebraic expressions in the

ak (also defined in [21]). Note that this does not completely define ∆2, as it only

gives us the x-coordinate. Since, on a curve given by a Weierstrass equation, the

two points with a given x-coordinate are inverses under the group law, the above

equation is in fact shared by ∆2 and ∆−2. There is a further equation, expressing

v in terms of x and y, which distinguishes which of the two cases we are in (this

equation is different in the two different cases) – but we will not worry about this

for the time being.

In the blowup, we have xU = uX. As in section A.3, I shall take the affine chart

X = 1 to make the computations easier. So we have xU = u = x4−b4x2−2b6x−b8
4x3+b2x2+2b4x+b6

, or,

clearing denominators, x(4x3 + b2x
2 +2b4x+ b6)U = x4− b4x2−2b6x− b8. When we

restrict this to the exceptional divisor, we get 0 = 0, as b8 = a2
1a6 +4a2a6−a1a3a4 +

a2a
2
3 − a2

4 is divisible by π. But, because we are interested in the strict transform,
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or the closure of the part of this subscheme outside the exceptional divisor, we may

divide through by x as many times as we need to get a non-trivial result (on this

affine part, x is a uniformiser for the exceptional divisor). If we divide through by

x2, and use the facts that b6 and b8 are both divisible by π (b6 = a2
3 +4a6), and that

π = xP , we find that (4x2 + b2x+ 2b4 + b6
π
P )U = (x2 − b4 − 2 b6

π
P − b8

π
P
x
).

The degree 1 analogue of the Weierstrass equation says that (y + a1x+ a3)Y =

(x2 +a2x+a4)X+ a6

π
P . Note first that, if we restrict to the exceptional divisor, this

gives a6

π
P = 0, hence P = 0 since π2 - a6. And then P

x
=

(Y +a1+
a3
π

P )Y−(x+a2+
a4
π

P )

(a6
π )

,

which therefore restricts to Y 2+a1Y−a2

(a6
π )

= (Y−ω1)(Y−ω2)

(a6
π )

on the exceptional divisor. If

we combine this with the equation at the end of the previous paragraph, and recall

that b4 = a1a3 + 2a4, so that π|b4, and that π2 - b8 because we are talking about

reduction type I1, we see that the closure of the union of ∆2 and ∆−2 in the blowup

of E×E intersects the exceptional divisor in the subscheme (Y −ω1X)(Y −ω2X) = 0.

That is, we have two “components” here, one with equation Y = ω1X and one with

equation Y = ω2X.

Since the equation of the exceptional divisor is (Y − ω1X)(Y − ω2X) = (V −
ω1U)(V −ω2U), this condition alone would give us four curves in all. But, as already

noted, what we have just done applies equally to ∆2 and ∆−2, and it turns out that

each gives exactly two of the four curves here.

To see this, we shall need the aforementioned formulae for v in terms of the

other three variables. We first recall how to double a point on an elliptic curve –

one takes the tangent line to the curve at the given point, and find its third point of

intersection with the curve. This point will be −2 times the given one; to find two

times it, we apply the formula already mentioned for inversion on an elliptic curve,

(x, y) 7→ (x,−y − a1x− a3).

The slope of the tangent at (x, y) is λ(x, y) := 3x2+2a2a−a1y+a4

a1x+2y+a3
, and the equation

of ∆−2 is v = λ(x, y)(u−x)+y, while that of ∆2 is v = λ(x, y)(x−u)−y−a1u−a3,

by the remark in the previous paragraph. We will first evaluate λ(x, y) on the

exceptional divisor, again by using the affine chart X = 1. As already noted, this

has the advantage that the exceptional divisor is defined by the single equation

x = 0, so to find the strict transform of any subscheme of E × E in the blowup,
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we can just keep dividing its defining equations by x until we get a relation other

than 0 = 0. In particular, notice that the expression given for λ(x, y) seems to

give 0
0

on the exceptional divisor, but if we divide numerator and denominator by

x then we get λ(x, y) =
3x+2a2−a1Y +

a4
π

P

a1+2Y +
a3
π

P
, which becomes 2a2−a1Y

a2+2Y
on the exceptional

divisor. Since we’ve just seen that, on the closure of ∆2 or ∆−2, we must have

Y = ωi (on this particular affine chart) for i = 1 or 2, we see further than λ

becomes 2a2−a1ωi

a1+2ωi
. Using the defining equation for ωi once more, the numerator is

2(ω2
i +a1ωi)− a1ωi = 2ω2

i +a1ω1, which is ωi times the denominator. Since a1 +2ωi

can never be zero (in characteristic 2, a1 must be non-zero, and otherwise −a1

2
is not

a root of Y 2 + a1Y − a2, both because a2
1 + 4a2 is non-zero in k), we find that λ is

equal to ωi on the images of both ∆2 and ∆−2 in the exceptional divisor.

∆−2 has equation v = λ(u− x) + y, which becomes 0 = 0 when restricted to the

exceptional divisor (inevitably so, since the closure of ∆−2 in E ×E is known to pass

through the singularity at which we are blowing up); so we pass to the X = 1 affine

part and divide both sides by x, to give V = λ(U − 1) + Y . Since we know that we

must have Y = ωi for i = 1 or 2, and have just seen that that forces λ = ωi too, we

must then have V = ωiU . Thus, on ∆−2 we do indeed get two of the four possible

curves when Y is one of the ωi times X, namely Y = ω1X, V = ω1U , and Y = ω2X,

V = ω2U . On ∆2, on the other hand, we have v = λ(x − u) − y − a1u − a3,

or V = λ(1 − U) − Y − a1U on dividing by x (a3 becomes a3

π
P , which vanishes

on the exceptional divisor). So if Y = ωi, meaning λ = ωi too, we find that

V = −ωiU − a1U = ωjU , where {i, j} = {1, 2}. Thus ∆2 gives the two curves

Y = ω1X, V = ω2U , and Y = ω2X, V = ω1U .

Finally, we shall use the Segre embedding to check that these curves go in the

right “directions” in P1 × P1. Since ω1 and ω2 are distinct, we find that Y = ω1X

corresponds to X1X2 = 0, Y = ω2X to Y1Y2 = 0, V = ω1U to X1Y2 = 0 and

V = ω2U to Y1X2 = 0. So, the two curves which form the image of ∆2 correspond

to X2 = 0 and Y2 = 0, respectively; that is, P1 × {0} and P1 × {∞}. Similarly, the

two for ∆−2 give the two fibres in the “vertical” direction. So, in each case, we get

precisely two curves in the same direction. And, looking back over the computations

above for ∆1 and ∆−1, we see that the directions for ∆2 and ∆−2 are the same as
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those for ∆1 and ∆−1 respectively – so we get 2Dkl for ∆2, and 2Ckl for ∆−2, as

claimed.

A.4.2 n = 2

Recall that here, we have modelled E as Spec R[x,y]
(xf(x,y)−π)

, where f(x, y) = ax2+bxy+

xy2 + dx + ey + f , with e not divisible by π, and f divisible by π but not by π2.

Further, the exceptional divisor of the blowup of E × E at its singular point at the

origin had equation X(dX + eY ) = U(dU + eV ).

In this case, we need to be a bit careful with our notation, as the x and y

coordinates on E do not correspond to the x and y coordinates on the curve E with

which we started, with Weierstrass equation y2 +a1xy+a3Y = x3 +a2x
2 +a4x+a6.

Reading through the discussion leading up to Proposition A.1, it can be seen that

the x-coordinate to which the Weierstrass equation refers is equal to f(x, y) on E ,

while the y-coordinate becomes (y + ω)f(x, y) – recall that ω is one of the two

distinct roots in k of the quadratic ω2 + a1ω − a2.

Let us start with the image of ∆1 = ∆ in the exceptional divisor. Here, we have

u = x and v = y as coordinates on the curve E, so, by the previous paragraph,

these become f(x, y) = f(u, v) and (y + ω)f(x, y) = (v + ω)f(u, v) in our blown-up

model for E × E. Substituting the first of these conditions into the second gives

y = v, from which we can conclude that Y = V on the strict transform. And, from

f(x, y) = f(u, v) itself, if we use the affine chart Y = 1 (not X = 1 this time, as we

may find important curves have their image in the exceptional divisor contained in

X = 0), and divide by y which is now the uniformiser for the exceptional divisor,

we find axX + bx+ cy + dX + e+ f
π
P = auU + buV + cvV + dU + eV + f

π
P . Since

the equation xf(x, y) = π gives x(axX + bxY + cyY + dX + eY + f
π
P ) = P in

degree 1, we see that P = 0 in the exceptional divisor, and hence that our condition

f(x, y) = f(u, v) gives dX + eY = dU + eV here, if we pass back to homogeneous

coordinates. So the image of ∆1 has equations Y = V and dX+eY = dU+eV . Our

exceptional divisor is, as we have seen, isomorphic to P1 × P1, the two coordinate

functions corresponding to X
U

= dU+eV
dX+eY

and X
dU+eV

= U
dX+eY

respectively – so when

dX + eY = dU + eV , then we have {1}×P1 (unless dX + eY and dU + eV are both
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zero, which doesn’t happen here; see the next paragraph, however), a curve in just

one of the two “directions”. As in the n = 1 case, it is easy to see that this must be

the direction that I labelled Dkl.

And for ∆−1, as the x- and u-coordinates (with respect to the Weierstrass equa-

tions) are still equal, we again obtain that dX + eY = dU + eV . This time, though,

the y and v coordinates (again, with respect to the Weierstrass equations) are not

equal, but sum to −a1u−a3. Thus we have, in our new coordinates on E ×E and its

blowup, f(x, y)(y+ω)+f(u, v)(v+ω) = −a1f(u, v)−a3. This, of course, gives no in-

formation on the exceptional divisor, so we again restrict to the Y = 1 chart, divide

by y, and only then set y = 0. This gives ω(dX + eY + dU + eV ) = −a1(dX + eY ),

or, using that dX + eY = dU + eV , 0 = (2ω + a1)(dX + eY ). Since, as we have

noted several times already in this appendix, 2ω+a1 is not zero in the residue field,

we find that ∆−1 has image dX + eY = dU + eV = 0. And this gives P1 × {∞} in

the coordinates on P1×P1 used above – thus a fibre in the opposite direction to the

image of ∆1, or a Ckl, as desired.

A.4.3 Possible generalisations of the Proposition

The obvious case to deal with next would be ∆±2 for reduction type I2, which

would simultaneously take care of all types In for n > 2 as well, as usual. However,

I have spent quite a while trying to show that the desired result holds here, without

success, but also without demonstrating that the desired result was incorrect; the

computations required are much harder than in any of the cases dealt with above.

So I have had to leave this case open for now; it is after all only one more case

among all those ∆a with |a| > 2!

When |a| > 2, of course, things become more complicated still, even for n = 1.

Previously, we have used specific formulae for the curves ∆±1 and ∆±2 – other ∆a

would need different formulae. ∆3, for example, would need a formula for the triple

of a point on an elliptic curve, similar to the well-known duplication formula which

I used for ∆±2. And a new such formula would be needed for each ∆a – these can

all in principle be computed, but this would not only rapidly become very tedious,

it would only allow those individual cases to be done, as there is no general formula
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in a simple form for the coordinates of a times (x, y) in terms of a, x and y.

Nevertheless, there might be a way to prove a full generalisation of Proposition

5.1 in general (or perhaps to disprove it!), by an inductive argument – if a > 0, and

one knows the formulae for ∆a, then one can work it out for ∆a+1 using the usual

addition formula for elliptic curves. Once again, this is something which I found

tricky to do in detail, and found myself unable to see any sensible results in time,

which is one reason why I have chosen only to focus on the cases of ∆±1 (the other

reason, of course, is that the results of Chapter 5 only deal with a = ±1 as it stands

anyway, even if such a generalisation could be proven).

I will, however, finish by saying a few words about why I believe that this gen-

eralisation of Propositio 5.1 – that one obtains aDkl when a > 0, and −aCkl when

a < 0. My reasoning is the same as that which I have already used to deduce that

the one fibre which is the image of ∆1 is a Dkl rather than a Ckl – that it seems

impossible, from looking naively at the pictures anyway, that there could be any

Ckl’s involved when a ∆a, for a > 0, crosses one of the exceptional divisors, as it is

plainly “in the wrong direction”. The same applies in reverse when a < 0, of course.

However, I am well aware that this falls well short of the rigorous argument which

would be required, which is why I do not offer it as a proof. Nonetheless, I cannot

help but feel that there ought to be some quite simple argument which proves the

conjecture while preserving the naive flavour of this particular argument. If there is

one, though, I have been unable to see it.
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