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Abstract

In this thesis we consider the Grassmannian complex of projective configurations in

weight 2 and 3, and Cathelineau’s infinitesimal polylogarithmic complexes as well as a

tangential complex to the famous Bloch-Suslin complex (in weight 2) and to Goncharov’s

“motivic“ complex (in weight 3), respectively, as proposed by Cathelineau [5].

Our main result is a morphism of complexes between the Grassmannian complexes and

the associated infinitesimal polylogarithmic complexes as well as the tangential com-

plexes.

In order to establish this connection we introduce an F-vector space βD
2 (F), which is an

intermediate structure between a �-module B2(F) (scissors congruence group for F) and

Cathelineau’s F-vector space β2(F) which is an infinitesimal version of it. The struc-

ture of βD
2 (F) is also infinitesimal but it has the advantage of satisfying similar functional

equations as the group B2(F). We put this in a complex to form a variant of Cathelineau’s

infinitesimal complex for weight 2. Furthermore, we define βD
3 (F) for the corresponding

infinitesimal complex in weight 3. One of the important ingredients of the proof of our

main results is the rewriting of Goncharov’s triple-ratios as the product of two projected

cross-ratios. Furthermore, we extend Siegel’s cross-ratio identity ([21]) for 2 × 2 deter-

minants over the truncated polynomial ring F[ε]ν := F[ε]/εν. We compute cross-ratios

and Goncharov’s triple-ratios in F[ε]2 and F[ε]3 and use them extensively in our compu-



iv

tations for the tangential complexes. We also verify a ”projected five-term” relation in the

group TB2(F) which is crucial to prove one of our central statements Theorem 4.3.3.
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Chapter 1

Introduction

In his seminal papers ([9],[10],[11],[12]), Goncharov uses the Grassmannian complex

(first introduced by Suslin (see [23])) associated to points in �2 in order to prove Zagier’s

conjecture on polylogarithms and special L-values (see [26]) for weight n = 3. This

conjecture in particular asserts that the values of Dedekind zeta function ζF(s) for some

number field F at an integer point s = n ≥ 2 can be expressed as a determinant of n-

logarithms evaluated at points in F. It was known for n = 2 by work of Suslin, Borel and

Bloch and also proved in a slightly weaker form by Zagier himself. Goncharov forms an

ingenious proof for weight n = 3.

In the process, he introduces complexes Γ(n) (which he called “motivic”). Cathelineau

investigates variants of these complexes in the additive (both infinitesimal and tangential)

setting (see [3],[4],[5]).

One of the most important ingredients of Goncharov’s work is the triple-ratio (Goncharov

called it generalized cross-ratio) which is first introduced by Goncharov (see [10]). In

his earlier paper Goncharov had a formula (which is not visibly antisymmetric) for the

morphism f (3)
2 : C6(3) → B3(F), (see §4 in [9]), for any field F, where C6(3) is the free

abelian group generated by the configurations of 6 points in 3 dimensional F-vector space

modulo the action of GL3(F) . The triple-ratio was discovered by Goncharov together

with Zagier by anti-symmetrization of formula for f (3)
2 . Having defined the triple-ratio he

described an antisymmetric formula for the morphism f6(3) : C6(3) → B3(F), but with

the restriction that it applies to generic configuration only, where points are in generic

1



2

position (see Formula 3.9 in [10]) (unfortunately, in [10] his proof of commutativity of

left square of diagram (3.2) in [10] was incorrect(see Theorem 3.10 in [10]); a missing

factor of 15
2 was pointed out by Gangl and Goncharov provided a correct proof in the

appendix of [13]). By using algebraic K-theory he constructed a map of complexes from

the Grassmannian complex to his own complex and then he proved Zagier’s conjecture

for weight n = 3.

Our point of view is to bring the geometry of configuration spaces into infinitesimal

and tangential settings. We tried to find suitable morphisms between the Grassman-

nian subcomplex (C∗(n), d) (see diagram (2.1a) in 2.1) and Cathelineau’s analogues of

Goncharov’s complexes Γ(n). For weight n = 2, we have not only shown that the corre-

sponding diagrams in both cases are commutative but also that they extend to morphisms

of complexes involving both the Grassmannian and Cathelineau’s complex (see §3.1 and

§4.2). For weight n = 3, we also proved that the corresponding diagrams in the infinites-

imal and the tangential setting connecting the Grassmannian subcomplex (C∗(n), d) (see

diagram (2.1a) in §2.1) are commutative (see §3.2 and §4.3).

Goncharov outlined the proof for commutativity of the left square of diagram (3.2c) at the

end of Chapter 3 (see §3 in [10] for the actual diagram and appendix of [13] for the proof).

For this he worked in
∧2 F× ⊗ F×, using the factorisation of 1 − ∆(l0,l1,l3)∆(l1,l2,l4)∆(l2,l0,l5)

∆(l0,l1,l4)∆(l1,l2,l5)∆(l2,l0,l3) ,

where ∆(li, l j, lk) denotes some 3 × 3-determinant, into a 3 × 3-determinant and a 6 × 6-

determinant and also had to appeal to a deeper result in algebraic K-theory (see Lemma

5.1 and Proposition 5.2 in [13]).

We observe that each term in the triple-ratio can be rewritten as product of two “projected”

cross-ratios in �2, which enables us to give an elementary proof (which does not use

algebraic K-theory) of one of our main results (Theorem 3.2.5).

Furthermore, we define infinitesimal group βD
2 (F) for any derivative D ∈ Der�F over a

field F which has more or less similar functional equations as the group B2(F) and use

it to our advantage for the proof which works almost same for the two direct summand

involving βD
2 (F)⊗ F× and F ⊗B2(F). In summary, the proof of Theorem 3.2.5 consists of

rewriting the triple-ratio as the product of two cross-ratios, combinatorial techniques and

the use of functional equations in βD
2 (F) and B2(F). Since B2(F) has similar functional
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equations, we can also apply this technique in Goncharov’s setting. For the convenience of

the reader, we also included the proof of commutativity of the left square of Goncharov’s

diagram in the appendix A.

For weight n > 3, Goncharov generalized a version of the infinitesimal analogue(see

[13]), involving the groups βn(F), βn−1(F)⊗F×, F⊗Bn−1(F), . . . , F⊗∧n−1 F×. We suggest

a slight modification in the maps to guarantee its being a complex (see Lemma 2.4.2)

and relate a variant of it to the Grassmannian complex in the top degree, using a natural

generalization of maps defined in weight n = 2 and n = 3(see Proposition 4.3.5 and

Proposition 3.2.7).

For given (l0, . . . , l3) ∈ C4(2), a well-known Siegel cross-ratio identity (See [21]) for

associated 2 × 2-determinants ∆(li, l j) for 0 ≤ i < j ≤ 3 becomes a very important tool

for the factorization of 1 − r(l0, . . . , l3), where r(l0, . . . , l3) =
∆(l0,l3)∆(l1,l2)
∆(l0,l2)∆(l1,l3) is a cross-ratio of

four points in the version used by Goncharov(see identity (4.1) or see §3 in [9]).

We elaborate on similar cross-ratio constructions in the tangential case, where instead

of F we are working over the ring of dual numbers F[ε]ν := F[ε]/εν. At first, for

(l∗0, . . . , l
∗
3) ∈ C4(�2

F[ε]ν
), we present an analogue to Siegel cross-ratio identity for 2 × 2-

determinants ∆(l∗i , l
∗
j), 0 ≤ i < j ≤ 3 for vectors in (l∗0, . . . , l

∗
3) ∈ C4(�2

F[ε]ν
) (see Lemma

4.1.1 and equations (4.3) and (4.2)) which is the analogue of (4.1), and consider their

cross-ratios as an element over the truncated polynomial ring F[ε]ν, i.e., r(l∗0, . . . , l
∗
3) =

(
rε0ε0 + rε1ε1 + · · · + rεν−1εν−1

)
(l∗0, . . . , l

∗
3), where rε0 is the usual cross-ratio of four points

in �2
F , while the other elements of r are computed in §4.1.1. We introduce a similar

construction for the triple-ratio as well (see §4.1.2).

Due to this analogue of cross-ratios, we are able to find morphisms between the Grass-

mannian subcomplex C∗(�n
F[ε]2

, d) for n = 2, 3 and the tangent complexes to the Bloch-

Suslin and the Goncharov complexes (see §4.2 and §4.3). We also produce results for the

projected five-term relation in βD
2 (F) and TB2(F) (see Lemma 3.1.5 and Lemma 4.2.4)

which are analogous to Goncharov’s projected five-term relation in B2(F) (see Lemma

2.18 of [9]) and very helpful for the proof of our main results (Theorem 3.2.5 and 4.3.3).

In appendix B, we provide a different way to look the tangential complexes to Bloch-

Suslin and Goncharov’s complexes, especially when one wants to look elements in F[ε]3.
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In §4.3, we provide a possible definition of a group TB3(F) which was first defined hy-

pothetically in §9 of [5]. On the basis of our definition, we mimic this construction with

the F-vector space βD
3 (F) and reproduce Cathelineau’s 22-term functional equation for

TB3(F). At the end of chapter 4, we present a suitable definition of group TBn(F) for any

n and try to put in the complex.



Chapter 2

Preliminaries and Background

As we mentioned in the introduction, we are relating the Grassmannian complex to a

variant of Cathelineau’s complex and tangent complex to Bloch-Suslin and Goncharov’s

complexes. For this it is important to recall them in this chapter. We will also present the

variant of Cathelineau’s (infinitesimal) complex in §2.4.1 and will try to form a general-

ized complex for βD
n (F) as Goncharov’s work in [12].

2.1 Grassmannian complex

In this section, we recall concepts from (see [9], [11]). Consider C̃m(X), which is the free

abelian group generated by elements (x1, . . . , xm) ∈ Xm for some set X with xi ∈ X. Then

we have a simplicial complex (C̃∗(X), d) generated by simplices whose vertices are the

elements of X, where the differential in degree -1 is given on generators by

d : Cm(X)→ Cm−1(X)

d : (x1, . . . , xm) 7→
m∑

i=0

(−1)i(x1, . . . , x̂i, . . . , xm) (2.1)

Let G be a group acting on X. The elements of G \ Xm are called configurations of X,

where G is acting diagonally on Xm. Further assume that Cm(X) is the free abelian group

generated by the configurations of m elements of X then there is a complex (C∗(X), d),

and C̃∗(X)G be the group of coinvariants of the natural action of G on C∗(X) = C̃∗(X). For

m > n, let us define Cm(n) (or Cm(�n−1
F )) which is the free abelian group, generated by the

5



2.1. Grassmannian complex 6

configurations of m vectors in an n-dimensional vector space Vn = �n
F over a field F (any

n vectors arising by using X = Vn) (or m points in �n−1
F ) in generic position (an m-tuple

of vectors in an n-dimensional vector space Vn is in generic position if n or fewer number

of vectors are linearly independent). Apart from the above differential d, we have another

differential map:

d′ : Cm+1(n + 1)→ Cm(n)

d′ : (l0, . . . , lm) 7→
m∑

i=0

(−1)i(li|l0, . . . , l̂i, . . . , lm),

where (li|l0, . . . , l̂i, . . . , lm) is the configuration of vectors in Vn+1/〈li〉 defined as the n-

dimensional quotient space, obtained by the projection of vectors l j ∈ Vn+1, j , i, pro-

jected from Cm+1(n + 1) to Cm(n) from which we have the following bicomplex

...

²²

...

²²

...

²²· · · // Cn+5(n + 2)

d′
²²

d // Cn+4(n + 2)

d′
²²

d // Cn+3(n + 2)

d′
²²· · · // Cn+4(n + 1)

d′
²²

d // Cn+3(n + 1)

d′
²²

d // Cn+2(n + 1)

d′
²²· · · // Cn+3(n) d // Cn+2(n) d // Cn+1(n)

(2.1a)

which is called the Grassmannian bicomplex. We will verify here commutativity of the

above diagram for this we just need to show that d′◦d = d◦d′ for the group Cn+k+m(n+k).

d′ ◦ d(l0, . . . , ln+k+m−1) =

n+k+m−1∑

i=0

(−1)i



n+k+m−1∑

j=0
j,i

(−1) j(l j|l0, . . . , l̂i, . . . , l̂ j, . . . , ln+k+k+m−1)



and

d ◦ d′(l0, . . . , ln+k+m−1) =

n+k+m−1∑

i=0

(−1)i



n+k+m−1∑

j=0
j,i

(−1) j(li|l0, . . . , l̂i, . . . , l̂ j, . . . , ln+k+m−1)



for the following we will use a subcomplex (C∗(n), d) called the Grassmannian complex,

of the above

· · · d−→ Cn+3(n)
d−→ Cn+2(n)

d−→ Cn+1(n)



2.2. Polylogarithmic Groups 7

We concentrate our studies to the subcomplex (C∗(n), d), but in some cases we will also

use the following subcomplex (C∗(∗), d′) of the Grassmannian complex

· · · d′−→ Cn+3(n + 2)
d′−→ Cn+2(n + 1)

d′−→ Cn+1(n)

2.2 Polylogarithmic Groups

From now on we will denote our field by F and F − {0, 1} will be abbreviated as F••. In

some texts F•• is also referred as doubly punctured affine line over F in ([7]). We will

also denote �[�1
F] as the free abelian group generated by [x] where x ∈ �1

F .

Scissors congruence group:([22])The Scissors congruence groupB(F) of F is defined as

the quotient of the free abelian group �[F••] by the subgroup generated by the elements

of the form

[x] − [y] +

[y
x

]
−

[
1 − y
1 − x

]
+

[
1 − y−1

1 − x−1

]
where x , y, x, y , 0, 1

The above relation is the famous Abel’s five-term relation for the dilogarithm. It can

also be interpreted geometrically (in terms of scissors congruences) whence its name:

Consider a an ideal polyhedron hyperbolic 3-space with five vertices x1, . . . , x5. Divide

this polyhedron into five tetrahedra by leaving out one vertex at a time i.e {x2, x3, x4, x5}
and {x1, x3, x4, x5} with common face {x3, x4, x5} and three other tetrahedra {x1, x2, x4, x5},
{x1, x2, x3, x5} and {x1, x2, x3, x4} so that the sum of first two volumes is same as the sum of

last three volumes( when taken with the right orientation). This volumes identity is mim-

icked in the following relation (where r(a, b, c, d) denotes the cross-ratio of four points)

[r(x2, x3, x4, x5)]+[r(x1, x3, x4, x5)] = [r(x1, x2, x4, x5)]+[r(x1, x2, x3, x5)]+[r(x1, x2, x3, x4)]

This relation is a version of the above five-term relation.

2.3 Bloch-Suslin and Goncharov’s polylog complexes

In this section we will closely follow [9] and [10].
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2.3.1 Weight 1:

We define subgroup R1(F) ⊂ �[�1
F] by

R1(F) =
〈
[xy] − [x] − [y], x, y ∈ F× − {1}〉

The map δ1 : B1(F) → F×, [a] 7→ a is defined as an isomorphism (see §1 of [9]), so we

have B1(F) = F×.

2.3.2 Weight 2:

First we define the subgroup R2(F) ⊂ �[�1
F \ {0, 1,∞}]

R2(F) :=
〈 4∑

i=0

(−1)i[r(x0, . . . , x̂i, . . . , x4)], xi ∈ �1
F

〉

where r(x0, x1, x2, x3) =
(x0−x3)(x1−x2)
(x0−x2)(x1−x3) is the cross-ratio of four points and δ2 is defined as

δ2 : �[�1
F \ {0, 1,∞}]→

∧
2F×

[x] 7→ (1 − x) ∧ x

where
∧ 2F× = F× ⊗� F×/〈x ⊗� x|x ∈ F×〉. One has δ2 (R2(F)) = 0. Now we can define

the free abelian group B2(F) which is generated by [x] ∈ �[�1
F \ {0, 1,∞}] and quotient

by the subgroup R2(F) ⊂ �[�1
F \ {0, 1,∞}], i.e.

B2(F) =
�[�1

F \ {0, 1,∞}]
R2(F)

and we get a complex BF(2) called the Bloch-Suslin complex of F

BF(2) : B2(F)
δ−→

∧
2F×

where first term is in degree 1 and second term in degree 2 and δ is induced from δ2 due

to fact δ2 (R2(F)) = 0.

2.3.3 Weight 3:

Consider the triple-ratio of six points r3 ∈ �[�1
F] which is defined as r3 : C6(�2

F) →
�[�1

F], where C6(�2
F) is a free abelian group generated by the configurations of 6 points
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in generic position over �1
F

r3(l0, . . . , l5) = Alt6
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

,

where li is the point in �2
F , ∆(li, l j, lk) = 〈ω, li ∧ l j ∧ lk〉 and ω ∈ det V∗. Now define the

relation R3(F) ∈ �[�1
F]

R3(F) :=
〈 6∑

i=0

(−)ir3(l0, . . . , l̂i, . . . , l6)
∣∣∣∣ (l0, . . . , l̂i, . . . , l6) ∈ C6(�2

F)
〉

One can define B3(F) as the free abelian group generated by [x] ∈ �[�1
F] and quotient by

R3(F), [0] and [∞]. Thus we get the complex BF(3)

BF(3) : B3(F)
δ−→ B2(F) ⊗� F×

δ−→
∧

3F×

2.3.4 Weight ≥ 3:

Here we will define group Bn(F). Suppose Rn(F) is defined already, we set

Bn(F) =
�[�1

F]
Rn(F)

and the morphism

δn : �[�1
F]→ Bn−1(F) ⊗ F×

[a] 7→



0 if x = 0, 1,∞

[x]n−1 ∧ x otherwise

where [x]n is class of [x] in Bn(F). We find more important is the case for n ≥ 2, where

we define

An(F) = ker δn

and Rn(F) ⊂ �[�1
F] is generated by the elements α(0)−α(1),[∞] and [0], where α(t) runs

through all the elements ofAn(F(t)), for an indeterminate t.

Lemma 2.3.1. (Goncharov) For n ≥ 2, Rn(F) ⊂ ker δn

Proof: See lemma 1.16 of [9]. �

Goncharov defines the following complex ([9],[10]) for the group Bn(F).

Bn(F)
δ−→ Bn−1 ⊗ F×

δ−→ Bn−2 ⊗
∧

2F×
δ−→ · · · δ−→ B2(F)

∧
n−2F×

δ−→
∧ nF×

2 − torsion
(2.2)
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2.4 Infinitesimal Complexes (Cathelineau’s Complexes)

There are two versions of infinitesimal complex or infinitesimal groups. In the literature

the first one was introduced by Cathelineau [4] while the other version was introduced by

Bloch-Esnault [1] also called “additive“. The latter version is beyond the scope of this

text we will discuss here only the former one.

Cathelineau ([4],[3]) has defined the group ( in fact an F-vector spaces) as an infinitesimal

analogue of Goncharov’s groups Bn(F) as follows

1. We define β1(F) = F

2. One can define β2(F) as

β2(F) =
F[F••]
r2(F)

where r2(F) is the kernel of the map

∂2 : F[F••]→ F ⊗F F×

[a] 7→ a ⊗F a + (1 − a) ⊗F (1 − a)

Cathelineau [4] has shown that r2(F) is given as the subvector space of F[F••] spanned

by the elements

[a] − [b] + a
[
b
a

]
+ (1 − a)

[
1 − b
1 − a

]
, a, b ∈ F••, a , b,

hence passing to the quotient by r2(F) we obtain the complex

β2(F)
∂−→F ⊗F F× (2.3)

∂ : 〈a〉2 7→ a ⊗ a + (1 − a) ⊗ (1 − a)

3. For n ≥ 3, the F-vector space βn(F) is defined as

βn(F) =
F[F••]
rn(F)

where rn(F) is kernel of the map

∂n : F[F••]→ (
βn−1(F) ⊗ F×

) ⊕ (F ⊗ Bn−1(F))

[a] 7→ 〈a〉n−1 ⊗ a + (1 − a) ⊗ [a]n−1
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where 〈a〉k is the class of [a] in βk(F) and [a]k is the class of [a] in Bk(F). For n = 2, we

have the following complex of F-vector spaces.

β3(F)
∂−→ (β2(F) ⊗ F×)⊕(F ⊗ B2(F))

∂−→ F ⊗
∧

2F× (2.4)

where

∂ : 〈a〉3 7→ 〈a〉2 ⊗ a + (1 − a) ⊗ [a]2

∂ : 〈a〉2 ⊗ b + x ⊗ [y]2 7→ − (a ⊗ a ∧ b + (1 − a) ⊗ (1 − a) ∧ b) + x ⊗ (1 − y) ∧ y

Before the following lemma we shall introduce Kähler differentials (see §25 in [17] and

§26 in [18]). First, recall the definition of a derivation map D ∈ Der(A,M) for a ring A

and an A-module M is D : A → M and this map satisfies D(a + b) = D(a) + D(b) and

D(ab) = aD(b) + bD(a). Now an A-module ΩA/F is generated by {da|a ∈ A} so that the

uniqueness of a linear map f : ΩA/F → M satisfying D = f ◦ d is obvious (see p192

of [17]). If a ∈ A then the element da ∈ ΩA/F and called the differential of a and the

A-module ΩA/F is called the module of Kähler differentials.

Lemma 2.4.1. (Cathelineau [3],[4]) The complexes 2.3 and 2.4 are quasi-isomorphic to

Ωi
F through the maps d log :

∧i F× → Ωi
F so that the following sequences

0→ β2(F)
∂−→ F ⊗ F×

d log−−−→ Ω1
F → 0

0→ β3(F)
∂−→ (β2(F) ⊗ F×) ⊕ (F ⊗ B2(F))

∂−→ F ⊗ ∧2F×
d log−−−→ Ω2

F → 0

are exact. Here Ωi
F is the vector space of Kähler differential with the respective definitions

of d log as d log(a ⊗ b) = adb
b and d log(a ⊗ b ∧ c) = adb

b ∧ dc
c .

Functional equations in β2(F)

Here we will mainly focus on the work in ([7])

1. The two-term relation

〈a〉2 = 〈1 − a〉2

2. The inversion relation.

〈a〉2 = −a
〈

1
a

〉

2
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3. The distribution relation

〈am〉2 =
∑

ζm=1

1 − am

1 − ζa
〈ζa〉2

4. The four-term relation in F[F••].

〈a〉2 − 〈b〉2 + a
〈

b
a

〉

2
+ (1 − a)

〈
1 − b
1 − a

〉

2
= 0, a , b (2.5)

The above equation is an infinitesimal version of the famous five-term relation and it can

be deduced directly from the following form of five term relation [22].

[a]2 − [b]2 +

[
b
a

]

2
−

[
1 − b
1 − a

]

2
+


1 − 1

b

1 − 1
a


2

= 0

Functional equation in β3(F)

Here as well we will mainly focus on the work of ([7])

1. The three-term relation.

〈1 − a〉3 − 〈a〉3 + a
〈
1 − 1

a

〉

3
= 0 (2.6)

2. The inversion relation.

〈a〉3 = −a
〈

1
a

〉

3
(2.7)

The inversion relation is a consequence of the three-term relation (2.6) (see lemma 3.11

of [7]).

3. The distribution relation

〈am〉3 = m
∑

ζm=1

1 − am

1 − ζa
〈ζa〉3

4. The 22-term relation.([7])
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There are number of ways to write it and one of them is the following.

c〈a〉3 − c〈b〉3 + (a − b + 1)〈c〉3
+(1 − c)〈1 − a〉3 − (1 − c)〈1 − b〉3 + (b − a)〈1 − c〉3

−a
〈c

a

〉
3

+ b
〈c

b

〉
3

+ ca
〈

b
a

〉

3

−(1 − a)
〈

1 − c
1 − a

〉

3
+ (1 − b)

〈
1 − c
1 − b

〉

3
+ c(1 − a)

〈
1 − b
1 − a

〉

3

+c(1 − a)
〈

a(1 − c)
c(1 − a)

〉

3
− c(1 − b)

〈
b(1 − c)
c(1 − b)

〉

3
− b

〈ca
b

〉
3

+(1 − c)a
〈

a − b
a

〉

3
+ (1 − c)(1 − a)

〈
b − a
1 − a

〉

3

−(a − b)
〈

(1 − c)a
a − b

〉

3
− (1 − b)

〈
c(1 − a)

1 − b

〉

3

−(b − a)
〈

(1 − c)(1 − a)
b − a

〉

3
+ c(a − b)

〈
(1 − c)b
c(a − b)

〉

3

+c(b − a)
〈

(1 − c)(1 − b)
c(b − a)

〉

3
= 0 (2.8)

For n > 7 inversion and distribution existing relations are the only known elements in

βn(F), while for n ≤ 7 one can derive non-trivial elements from functional equations

for Lin [7]. Cathelineau’s complex for βn(F) and for the higher Bloch groups Bk(F)

(2 ≤ k ≤ n − 1) is the following(see §2 of [12]):

βn(F)
∂−→ βn−1(F)⊗F×

⊕
F⊗Bn−1(F)

∂−→ βn−2(F)⊗∧2F×
⊕

F⊗Bn−2(F)⊗F×
∂−→ · · · ∂−→ β2(F)⊗∧n−2F×

⊕
F⊗B2(F)⊗∧n−3F×

∂−→ F ⊗ ∧n−1F× (2.9)

We correct here a misprint in the map defined in §2 of [12] for the above complex. The

above becomes a complex if we use a slightly different formula with the difference to put

alternative signs for ∂: when n = 2 then we put

∂ : 〈a〉2 7→ − (a ⊗ a + (1 − a) ⊗ (1 − a))

and when n ≥ 3 then we propose to use

∂ : 〈a〉n 7→ 〈a〉n−1 ⊗ a + (−1)n−1(1 − a) ⊗ [a]n−1

Note: By definition above β1(F) = F and when ∂ is applied to the group Bn(F) then it

agrees with δn defined by ([7] )

δ : [a]n 7→



[a]n−1 ⊗ a, for n ≥ 3

(1 − a) ∧ a, for n = 2
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Lemma 2.4.2. The sequence (2.9) is a complex under the map ∂ defined above.

Proof: We can show that the above sequence is a complex by considering the part for

2 ≤ k ≤ n − 2

· · · ∂−→ βn−k+1(F)⊗∧k−1F×
⊕

F⊗Bn−k+1(F)⊗∧k−2F×

∂−→ βn−k(F)⊗∧kF×
⊕

F⊗Bn−k(F)⊗∧k−1F×

∂−→ βn−k−1(F)⊗∧k+1F×
⊕

F⊗Bn−k−1(F)⊗∧kF×

∂−→ · · ·

Let 〈x〉n−k+1 ⊗∧k−1
i=1 yi + a ⊗ [b]n−k+1 ⊗∧k−2

j=1 c j ∈ βn−k+1(F)⊗∧k−1F×
⊕

F⊗Bn−k+1(F)⊗∧k−2F×

Now compute ∂
(
∂
(
〈x〉n−k+1 ⊗∧k−1

i=1 yi + a ⊗ [b]n−k+1 ⊗∧k−2
j=1 c j

))
.

To make calculation easy we calculate first

∂

∂
〈x〉n−k+1 ⊗

k−1∧

i=1

yi




=∂

〈x〉n−k ⊗ x ∧
k−1∧

i=1

yi + (−1)n−k(1 − x) ⊗ [x]n−k ⊗
k−1∧

i=1

yi



=〈x〉n−k−1 ⊗ x ∧ x︸︷︷︸
0

∧
k−1∧

i=1

yi + (−1)n−k−1(1 − x) ⊗ [x]n−k−1 ⊗ x ∧
k−1∧

i=1

yi

+ (−1)n−k(1 − x) ⊗ [x]n−k−1 ⊗ x ∧
k−1∧

i=1

yi

=0

then find

∂

∂
a ⊗ [b]n−k+1 ⊗

k−2∧

j=1

c j


 =∂

a ⊗ [b]n−k ⊗ b ∧
k−2∧

j=1

c j



=a ⊗ [b]n−k−1 ⊗ b ∧ b︸︷︷︸
0

∧
k−2∧

j=1

c j

=0

There is only one case left for k = 1 with the correction
∧0

i=0 yi = 1 ∈ � and using

R ⊗� � � R for any ring R. �

2.4.1 Derivation in F-vector space

Let F be a field and D ∈ Der�(F, F) be an absolute derivation, (see §25 of [17] and §6 of

[7]) we will also write simply as D ∈ Der�(F). For example if x ∈ F then its derivative

over � will be represented by D(x) and will be an element of F as well.
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According to §6.1 in [7] we have f̃D : �[F]→ F[F••], [a] 7→ D(a)
a(1−a) [a] induces a map

τ2,D : B2(F)→ β2(F), [a]2 7→ D(a)
a(1 − a)

〈a〉2

We define an F-vector space βD
2 (F) generated by ~a�D for a ∈ F•• and subject to the

five-term relation

~a�D − ~b�D +

�
b
a

�D

−
�

1 − b
1 − a

�D

+

�
1 − b−1

1 − a−1

�D

where a , b, 1 − a , 0,

where ~a�D := D(a)
a(1−a) [a] and [a] ∈ F[F••]. Furthermore, we have

∂D
2 : F[F••]→ F ⊗ F×

with

∂D
2 : ~a�D 7→ −D log(1 − a) ⊗ a + D log(a) ⊗ (1 − a),

where D log a =
D(a)

a . We identify Im(τ2,D) (⊂ β2(F)) with βD
2 (F). We can also write a

variant of Cathelineau’s complex by using the F-vector space

βD
2 (F) ⊂ F[F••]/(five-term relation),

as

βD
2 (F)

∂D

−−→ F ⊗ F×

with

∂D : ~a�D
2 7→ −D log(1 − a) ⊗ a + D log(a) ⊗ (1 − a)

where ~a�D
2 =

D(a)
a(1−a)〈a〉2.

We also want to define F-vector spaces βD
n (F) for n ≥ 3. For this we use a slightly

different construction by Cathelineau which in the case n = 2 gives his b2(F) (see [4]).

For this he divides F[F••] by the kernel of the map ∂2, of which an important element is

the Cathelineau’s four-term relation. By Remark 2.4.3 below the differential of the five-

term relation inB2(F) leads to Cathelineau’s four-term relation. For later purpose we note

that the differential of Goncharov’s 22-term relation in B3(F) vanishes in β3(F) for any

D ∈ Der�(F) (see Proposition 6.10 of [7]). We define

βD
3 (F) =

F[F••]
ρD

3 (F)
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where ρD
3 (F) is the kernel of the map

∂D
3 : ~a�D 7→ ~a�D

2 ⊗ a + D log(a) ⊗ [a]2

and βD
n (F) = F[F••]

ρD
n (F) for n > 3, where ρD

n (F) is the kernel of the map

∂D
n : ~a�D 7→ ~a�D

n−1 ⊗ a + (−1)n−1D log(a) ⊗ [a]n−1

The following is a complex which can be proved in a completely analogous way as

Lemma 2.4.2 (except that for given F, a is replaced by D(a)
a ):

βD
n (F)

∂D

−−→ βD
n−1(F)⊗F×
⊕

F⊗Bn−1(F)

∂D

−−→ · · · ∂
D

−−→ βD
2 (F)⊗∧n−2F×

⊕
F⊗B2(F)⊗∧n−3F×

∂D

−−→ F ⊗ ∧n−1F×

Now we have an F-vector space βD
2 (F) which is an intermediate stage between a �-

module B2(F) and an F-vector space β2(F) and has two-term and inversion relations

same as B2(F).

2.4.2 Functional Equations in βD
2 (F)

The inversion and two-term relations in βD
2 (F) are quite similar to group B2(F).

1. Two-term relation:

~a�D
2 = −~1 − a�D

2

We know from Cathelineau’s F-vector space β2(F).

〈a〉2 = 〈1 − a〉2
D(a)

a(1 − a)
〈a〉2 =

D(a)
a(1 − a)

〈1 − a〉2
D(a)

a(1 − a)
〈a〉2 = − D(1 − a)

(1 − a){1 − (1 − a)}〈1 − a〉2

~a�D
2 = −~1 − a�D

2

2. Inversion relation:

~a�D
2 = −

�
1
a

�D

2
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The inversion relation in β2(F) is

〈a〉2 = − a
〈

1
a

〉

2

D(a)
a(1 − a)

〈a〉2 =
D(a)

a(1 − a)
· −a

〈
1
a

〉

2

D(a)
a(1 − a)

〈a〉2 =

1
a2 D(a)

1
a

(
1 − 1

a

)
〈

1
a

〉

2

D(a)
a(1 − a)

〈a〉2 = −
D

(
1
a

)

1
a

(
1 − 1

a

)
〈

1
a

〉

2

~a�D
2 = −

�
1
a

�D

2

3. The five-term relation:

~a�D
2 − ~b�D

2 +

�
b
a

�D

2
−

�
1 − b
1 − a

�D

2
+

�
1 − b−1

1 − a−1

�D

2
= 0

Remark 2.4.3. If we use the definition of ~a�D
2 for certain D ∈ Der�(F),i.e., D = a(1 −

a) ∂
∂a + b(1 − b) ∂

∂b ∈ Der�(F, F) where ∂
∂a and ∂

∂b are the usual partial derivatives then

we see that
�

1−b−1

1−a−1

�D

2
= 0. This is how Cathelineau arrived at his four-term relation ( see

example 3.1.6 later in the next chapter).

2.5 The Tangent Complex to the Bloch-Suslin Complex

In this section mainly we will discuss text from [5]. Let F[ε]2 = F[ε]/ε2 be the ring of

dual numbers for an arbitrary field F. We can define an F×-action in F[ε]2 as follows.

For λ ∈ F×,

λ : F[ε]2 → F[ε]2, a + a′ε 7→ a + λa′ε

we denote this act by ?, so we use λ ? (a + a′ε) = a + λa′ε.

Definition:

The tangent group TB2(F) is defined as a Z-module generated by the combinations [a +

a′ε]−[a] ∈ �[F[ε]2], (a, a′ ∈ F): for which we put the shorthand 〈a; a′] := [a+a′ε]−[a]
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and quotient by the following relation

〈a; a′
]− 〈b; b′

]
+

〈
b
a

;
(
b
a

)′]
−

〈
1 − b
1 − a

;
(
1 − b
1 − a

)′]

+

〈
a(1 − b)
b(1 − a)

;
(
a(1 − b)
b(1 − a)

)′]
, a, b , 0, 1, a , b (2.10)

where (
b
a

)′
=

ab′ − a′b
a2 ,

(
1 − b
1 − a

)′
=

(1 − b)a′ − (1 − a)b′

(1 − a)2

and (
a(1 − b)
b(1 − a)

)′
=

b(1 − b)a′ − a(1 − a)b′

(b(1 − a))2

Remark 2.5.1. See [5] for a discussion of TB2(F), where the definition of TB2(F) was

justified using Lemma 3.1 of [5])

We give a list of relations in TB2(F) from [5]. These relations use the ?-action in TB2(F).

By specialization of the five-term relation (2.10), we find

1. Two-term relation:

〈a; b]2 = −〈1 − a;−b]2

2. Inversion relation:

〈a; b]2 =

〈
1
a

;− b
a2

]

2

3. Four-term relation:

If we use a′ = a(1 − a) and b′ = b(1 − b) then (2.10) becomes four-term relation (see

remark 2.4.3).

〈a; a(1−a)]2−〈b; b(1−b)]2+a?
〈

b
a

;
b
a

(
1 − b

a

)]

2
+(1−a)?

〈
1 − b
1 − a

;
1 − b
1 − a

(
1 − 1 − b

1 − a

)]

2
= 0,

where a, b , 0, 1, a , b.

The following map is an infinitesimal analogue of δ (defined in §2.3) and ∂ (defined in

§2.4) above and Cathelineau called it tangential map.

TB2(F)
∂ε−→ (

F ⊗ F×
) ⊕

(∧
2F

)
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with

∂ε (〈a; b]2) =

(
b
a
⊗ (1 − a) +

b
1 − a

⊗ a
)

+

(
b

1 − a
∧ b

a

)

The first term of the complex is in degree one and ∂ε has degree +1.

Note that we get the direct sum of two spaces on the right side.

We would like to see the comparison of various complexes discussed above in the tubular

form.

complex group defining functional equation

Bloch-Suslin B2(F)
δ−→ ∧2 F× B2(F) 5-term

infinitesimal β2(F)
∂−→ F ⊗ F× β2(F) 4-term

tangent TB2(F)
∂ε−→ F⊗F×⊕∧2 F

TB2(F) 5-term

complex group defining
functional equation

Goncharov B3(F)
δ−→ B2(F) ⊗ F×

δ−→ ∧ 3F× B3(F) Goncharov’s 840-term(*)

infinitesimal β3(F)
∂−→ βD

2 (F)⊗F×
⊕

F⊗B2(F)

∂−→ F ⊗∧ 2F× β3(F) Cathelineau’s 22-term

tangent TB3(F)
∂ε−→ TB2(F)⊗F×

⊕
F⊗B2(F)

∂ε−→ F⊗∧ 2F×
⊕∧ 3F

TB3(F) Not known (**)

(*): Goncharov’s 840-term relation is known defining functional equation of B3(F) and

ker δ might be large.

(**): The defining functional equation is not known for the group TB3(F) but we give a

tangential version of Cathelineau’s 22-term relation which lies in ker ∂ε (see §4.3)

Remark 2.5.2.

In some text (see [8]), groups βn(F) (by Cathelineau in [4]) and TBn(F) ( by Bloch-Esnault

in [1]) are called two infinitesimal versions of the K-theory of a field F. For clarity we

mention here that group TBn(F) is different from TBn(F). Cathelineau named TB(F)

tangent group so we also call TBn(F) the tangent group of Bn(F) and βn(F) will be called

as the infinitesimal n-logarithmic group throughout this text.



Chapter 3

Infinitesimal complexes

There are some homomorphisms which relate Bloch-Suslin and Goncharov’s complexes

to Grassmannian complex([9],[10],[11]). This chapter will relate variant of Cathelineau’s

infinitesimal complex to the geometric configurations of Grassmannian complex. We will

suggest here some suitable maps for this relation and then will verify the commutativity

of the underlying diagrams. Goncharov used K-theory to prove the commutativity of his

diagram in which he related his complex with the Grassmannian complex (see appendix

of [13]) but here we are giving proof of the commutativity of diagram (3.2a)(see §3.2

below) without using K-theory we shall use combinatorial techniques with the rewriting

of triple ratio into a product of two cross-ratios. The same technique can also be used in

Goncharov’s case (see appendix A).

Throughout this chapter we will work with modulo 2-torsion and use D ∈ Der�F as an

absolute derivation for a field F. For §3.1 determinant ∆ is defined as ∆(li, l j) := 〈ω, li∧l j〉,
for li, l j ∈ V2, where ω ∈ det V∗2 is volume form in V2. For §3.2 determinant ∆ is defined

as ∆(li, l j, lk) := 〈ω, li ∧ l j ∧ lk〉 for li, l j, lk ∈ V3, where ω ∈ det V∗3 is volume form in V3.

3.1 Infinitesimal Dilogarithm

Let Cm(2) (or Cm(�1
F)) be the free abelian group generated by configurations (l0, . . . , lm−1)

of m vectors in a two dimensional vector space V2 over a field F (or m points in �1
F) in

generic position. Configurations of m vectors in vector space V2 are 2-tuples of vectors

20
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modulo GL2(V2)-equivalence. Grassmannian subcomplex (see diagram 2.1a in §2.1) for

this case is the following.

· · · d−→ C5(2)
d−→ C4(2)

d−→ C3(2)

d : (l0, . . . , lm−1) 7→
m∑

i=0

(−1)i(l0, . . . , l̂i, . . . , lm−1)

We will outline the procedure initially for V2 and then will proceed further for V3. We will

also use the process of derivation (see §2.4.1) in combination with cross-ratio to define

our maps.

Consider the following diagram

C5(2) d // C4(2) d //

τ2
1

²²

C3(2)

τ2
0

²²
βD

2 (F) ∂D
// F ⊗ F×

(3.1a)

where βD
2 (F) and ∂D are defined in §2.4.1, we define

τ2
0 : (l0, l1, l2) 7→

2∑

i=0

D{∆(li, li+2)}
∆(li, li+2)

⊗ ∆(li, li+1)

− D{∆(li+1, li)}
∆(li+1, li)

⊗ ∆(li, li+2)} i mod 3 (3.1)

Note: The above can also be written as:

2∑

i=0

D{∆(li, li+2)}
∆(li, li+2)

⊗ ∆(li, li+1)
∆(li−1, li+1)

, i mod 3.

Furthermore, we put

τ2
1 : (l0, . . . , l3) 7→ ~r(l0, . . . , l3)�D

2 (3.2)

where ~a�D
2 =

D(a)
a(1−a)〈a〉 (defined in §2.4.1) and r(l0, . . . , l3) =

∆(l0,l3)∆(l1,l2)
∆(l0,l2)∆(l1,l3) is the cross ratio

of the points (l0, . . . , l3) ∈ C4(�1
F)(defined in §2.3).

To ensure well-definedness of our homomorphisms τ2
0 and τ2

1 above, we first show that

the definition is independent of length of the vectors and volume form ω. Here are some

results for verification.

Lemma 3.1.1. τ2
0 is independent of the volume form ω by the vectors in V2.
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Proof: According to (3.1), τ2
0 can be written for the vectors (l0, l1, l2) as

τ2
0(l0, l1, l2) =

D{∆(l0, l2)}
∆(l0, l2)

⊗ ∆(l0, l1) − D{∆(l0, l1)}
∆(l0, l1)

⊗ ∆(l0, l2)

+
D{∆(l1, l0)}

∆(l1, l0)
⊗ ∆(l1, l2) − D{∆(l1, l2)}

∆(l1, l2)
⊗ ∆(l1, l0)

+
D{∆(l2, l1)}

∆(l2, l1)
⊗ ∆(l2, l0) − D{∆(l2, l0)}

∆(l2, l0)
⊗ ∆(l2, l1)

further we can also write as

τ2
0(l0, l1, l2) =

D{∆(l0, l2)}
∆(l0, l2)

⊗ ∆(l0, l1)
∆(l2, l1)

− D{∆(l0, l1)}
∆(l0, l1)

⊗ ∆(l0, l2)
∆(l1, l2)

+
D{∆(l1, l2)}

∆(l1, l2)
⊗ ∆(l2, l0)

∆(l1, l0)

Changing the volume form ω 7→ λω does not change the expression on RHS, due to

homogeneity of the terms of the RH factors. �

Next lemma will show independence of the length of the vectors.

Lemma 3.1.2. τ2
0 ◦ d(l0, . . . , l3) does not depend on the length of the vectors li in V2.

Proof: By using a simple calculation we can write

τ2
0 ◦ d(l0, . . . , l3) =

D {∆(l0, l1)∆(l2, l3)}
∆(l0, l1)∆(l2, l3)

⊗ ∆(l0, l2)∆(l1, l3)
∆(l0, l3)∆(l1, l2)

− D {∆(l1, l2)∆(l0, l3)}
∆(l1, l2)∆(l0, l3)

⊗ ∆(l1, l3)∆(l0, l2)
∆(l0, l1)∆(l2, l3)

+
D {∆(l0, l2)∆(l1, l3)}

∆(l0, l2)∆(l1, l3)
⊗ ∆(l0, l3)∆(l2, l1)

∆(l0, l1)∆(l2, l3)
(3.3)

now consider λ ∈ F× and we know that D(λx)
λx =

D(x)
x for λ ∈ F× and the other part of the

right hand side is a cross-ratio. �

Note: Since τ2
1 is defined via cross-ratio and d log so there is no need to check things that

are mandatory for τ2
0.

Proposition 3.1.3. The diagram below is commutative.

C4(2) d //

τ2
1

²²

C3(2)

τ2
0

²²
βD

2 (F) ∂D
// F ⊗ F×

(3.1b)
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Proof: The first thing is to calculate ∂D ◦ τ2
1(l0, . . . , l3) because we have already computed

τ2
0 ◦ d(l0, . . . , l3) in (3.3) then by (3.2)

τ2
1(l0, · · · , l3) =

�
∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

�D

2

According to this we can identify l0, . . . , l3 with points in �1
F , then by the 3-fold transi-

tivity of PGL2(F) any (l0, . . . , l3) ∈ (�1
F)4 in generic position is PGL2(F)-equivalent to

(0,∞, 1, a) for some a ∈ F

τ2
1 (0,∞, 1, a) =

D(a)
a(1 − a)

〈a〉2 = ~a�D
2 for any a ∈ �1

F − {0, 1,∞}

where D log(a) =
D(a)

a . Calculate ∂D(
~a�D

2
)

= −D(1 − a)
(1 − a)

⊗ a +
D(a)

a
⊗ (1 − a)

For the vectors in C4(2) and by using the identity (4.1) we can write

∂D ◦ τ2
1(l0, . . . , l3) = −

D
{

∆(l0,l1)∆(l2,l3)
∆(l0,l2)∆(l1,l3)

}

∆(l0,l1)∆(l2,l3)
∆(l0,l2)∆(l1,l3)

⊗ ∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

+
D

{
∆(l0,l3)∆(l1,l2)
∆(l0,l2)∆(l1,l3)

}

∆(l0,l3)∆(l1,l2)
∆(l0,l2)∆(l1,l3)

⊗ ∆(l0, l1)∆(l2, l3)
∆(l0, l2)∆(l1, l3)

by using D( a
b )

( a
b ) =

D(a)
a − D(b)

b and then cancelling two terms we can convert the above into

(3.3) and the diagram (3.1b) is commutative. �

Further consider the diagram (3.1a) and note that τ2
1 ◦ d becomes

τ2
1 ◦ d(l0, . . . , l4) =

4∑

i=0

(−1)i~r(l0, . . . , l̂i, . . . , l4)�D
2 (3.4)

Now we can further check that τ2
1 ◦ d(l0, . . . , l4) ∈ ker(∂D)

∂D ◦ (τ2
1 ◦ d(l0, . . . , l4))

=

4∑

i=0

(
−

D
{
1 − r(l0, . . . , l̂i, . . . , l4)

}

1 − r(l0, . . . , l̂i, . . . , l4)
⊗ r(l0, . . . , l̂i, . . . , l4)

+
D

{
r(l0, . . . , l̂i, . . . , l4)

}

r(l0, . . . , l̂i, . . . , l4)
⊗

{
1 − r(l0, . . . , l̂i, . . . , l4)

} )

From now on we will write (i j) for ∆(li, l j) in short. The above expression can also be

written for each value of i’s, e.g.
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for i = 0 we have −
D

{
(12)(43)
(13)(42)

}

(12)(43)
(13)(42)

⊗ (14)(23)
(13)(24)

+
D

{
(14)(23)
(13)(24)

}

(14)(23)
(13)(42)

⊗ (12)(43)
(13)(42)

and similarly for others as well.

If we multiply out, using D(ab)
ab =

D(a)
a +

D(b)
b and start to collect each term of the form

D(i j)
(i j) ⊗ · · · from the above i.e. fix i and j, calculate the sum of all, then we will be able to

see that every individual term of D(i j)
(i j) ⊗· · · is 0. For example D(01)

(01) ⊗ (04)(13)
(03)(14)

(02)(14)
(04)(12)

(03)(12)
(02)(13) = 0

since the RHS is 2-torsion in F× so we can easily say that the above is zero and τ2
1 ◦ d ∈

ker(∂D).

Projeced cross-ratio: For l0, . . . , l4 ∈ �2
F , r(l0|l1, l2, l3, l4) is the projected cross-ratio of

four points l0, . . . , l4 projeced from l0 and is defined as

r(l0|l1, l2, l3, l4) =
∆(l0, l1, l4)∆(l0, l2, l3)
∆(l0, l1, l3)∆(l0, l2, l4)

,

where ∆(li, l j, lk) is a 3 × 3 determinant for li, l j, lk ∈ �2
F

Lemma 3.1.4. (Goncharov, A. B., [9]) Let x0, . . . , x4 be five points in generic position in

�2
F . Then

4∑

i=0

(−1)i[r(xi|x0, . . . , x̂i, . . . , x4)] = 0 ∈ B2(F),

where r(x0|x1, x2, x3, x4) is the projected cross-ratio of four points x1, . . . , x4 projected

from x0

See Lemma 2.18 in [9] for the proof. �

In continuation of the above lemma we have a similar result here which shows that the

projected five-term (or four-term in special condition) relation can also be presented for

βD
2 (F) in the same way using geometric configurations of five points in �2

F .

Lemma 3.1.5. Let x0, . . . , x4 be 5 points in generic position in �2
F then, for any D ∈

Der�F
4∑

i=0

(−1)i~r(xi|x0, . . . , x̂i, . . . , x4)�D
2 = 0 ∈ βD

2 (F) (3.5)

Proof: If x0, . . . , x4 in �2
F then Lemma 3.1.4 gives projected five-term relation

4∑

i=0

(−1)i[r(xi|x0, . . . , x̂i, . . . , x4)] = 0 ∈ B2(F).
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According to definition of D ∈ Der�F in §2.4.1 above (3.5) is the five-term relation in

βD
2 (F). �

Example 3.1.6.

By appropriate specialization of the configuration in C5(2), we can use (*) to produce

Cathelineau’s four-term relation from the geometric configurations by using the opera-

tor D = a(1 − a) ∂
∂a + b(1 − b) ∂

∂b for F = K(a, b) where a and b are indeterminates

over the field K and ∂
∂a and ∂

∂b are the usual partial derivatives (see §6 of [7]). Let

(0,∞, 1, a, b) ∈ (�1
F)5 in generic position be the five-tuple corresponding to (l0, . . . , l4) =


0

1

 ,


1

0

 ,


1

1

 ,


a

1

 ,


b

1



 ∈ C5(2). Calculate all possible determinants formed

by (l0, . . . , l4) ∈ C5(2), i.e. ∆(li, l j) for 0 ≤ i < j ≤ 4, put all of them in (3.4), we get

~a�D
2 − ~b�D

2 +

�
b
a

�D

2
−

�
1 − b
1 − a

�D

2
+

������
1 − 1

b

1 − 1
a

������
D

2

= 0

since τ2
1 ◦ d ∈ ker(∂D), then use D defined above, calculate each term of the above:

~a�D
2 =

D(a)
a(1 − a)

〈a〉2

=
a(1 − a) ∂

∂a (a) + b(1 − b) ∂
∂b (0)

a(1 − a)
〈a〉2

=1〈a〉2

for the second term

~b�D
2 =

D(b)
b(1 − b)

〈b〉2

=
a(1 − a) ∂

∂a (0) + b(1 − b) ∂
∂b (b)

b(1 − b)
〈b〉2

=1〈b〉2

for the third term
�

b
a

�D

2
=

D
(

b
a

)

b
a

(
1 − b

a

)
〈

b
a

〉

2

=
a(1 − a) ∂

∂a

(
b
a

)
+ b(1 − b) ∂

∂b

(
b
a

)

b
a

(
1 − b

a

)
〈

b
a

〉

2

=a
〈

b
a

〉

2
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for fourth term
�

1 − b
1 − a

�D

2
=

D
(

1−b
1−a

)

1−b
1−a

(
1 − 1−b

1−a

)
〈

1 − b
1 − a

〉

2

=
a(1 − a) ∂

∂a

(
1−b
1−a

)
+ b(1 − b) ∂

∂b

(
1−b
1−a

)

1−b
1−a

(
1 − 1−b

1−a

)
〈

1 − b
1 − a

〉

2

= − (1 − a)
〈

1 − b
1 − a

〉

2

for the last term

������
1 − 1

b

1 − 1
a

������
D

2

=

D
(

1− 1
b

1− 1
a

)

1− 1
b

1− 1
a

(
1 − 1− 1

b

1− 1
a

)
〈

1 − 1
b

1 − 1
a

〉

2

=
a(1 − a) ∂

∂a

(
(1−b)a
(1−a)b

)
+ b(1 − b) ∂

∂b

(
(1−b)a
(1−a)b

)

(1−b)a
(1−a) b

(
1 − (1−b)a

(1−a)b

)
〈

1 − 1
b

1 − 1
a

〉

2

=0

From this we retrieve Cathelineau’s four-term relation.

〈a〉 − 〈b〉 + a
〈

b
a

〉
+ (1 − a)

〈
1 − b
1 − a

〉
= 0 (3.6)

3.2 Infinitesimal Trilogarithm

Let Cm(3) (or Cm(�2
F)) be the free abelian group generated by the configurations of m

vectors in a three dimensional vector space V3 over a field F (or m points in �2
F) in generic

position. Consider the following diagram

C6(3) d //

τ3
2

²²

C5(3) d //

τ3
1

²²

C4(3)

τ3
0

²²
βD

3 (F) ∂ // (βD
2 (F) ⊗ F×) ⊕ (F ⊗ B2(F)) ∂ // F ⊗∧2 F×

(3.2a)

where

τ3
0 : (l0, . . . , l3) 7→

3∑

i=0

(−1)i D∆(l0, . . . , l̂i, . . . , l3)

∆(l0, . . . , l̂i, . . . , l3)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)

∧ ∆(l0, . . . , l̂i+3, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)
(3.7)
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τ3
1 : (l0, . . . , l4) 7→ −1

3

4∑

i=0

(−1)i{~r(li|l0, . . . , l̂i, . . . , l4)�D
2 ⊗

∏

j,i

∆(l̂i, l̂ j)

+
D

(∏
j,i ∆(l̂i, l̂ j)

)
∏

j,i ∆(l̂i, l̂ j)
⊗ [r(li|l0, . . . , l̂i, . . . , l4)]2}

τ3
2 : (l0, . . . , l5) 7→ 2

45
Alt6

�
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

�D

3

where

~a�D
3 =

D(a)
a(1 − a)

〈a〉3 and ∆(l̂i, l̂ j) = ∆(l0, . . . , l̂i, . . . , l̂ j, . . . , l4)

∂D
(
~a�D

3

)
= ~a�D

2 ⊗ a +
D(a)

a
⊗ [a]2

∂D
(
~a�D

2 ⊗ b + x ⊗ [y]2

)
=

D(1 − a)
1 − a

⊗ a ∧ b − D(a)
a
⊗ (1 − a) ∧ b + x ⊗ (1 − y) ∧ y

First we need to show that our maps τ3
0 and τ3

1 are independent of the chosen volume form

ω. There is no need to show that same thing for the map τ3
2. The proofs of the following

three lemmas are similar to those in §3 of [9].

Lemma 3.2.1. τ3
0 is independent of the volume element ω ∈ det V∗3 .

Proof: We can write equation (3.7) in the form

τ3
0(l0, . . . , l3) =

3∑

i=0

(−1)i+1 D∆(l0, . . . , l̂i, . . . , l3)

∆(l0, . . . , l̂i, . . . , l3)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)

∧ ∆(l0, . . . , l̂i+2, . . . , l3)

∆(l0, . . . , l̂i+3, . . . , l3)
(3.8)

If we apply the definition of ∆ in terms of ω in the above then the last two factors will

remain unchanged and we know that D(λa)
λa =

D(a)
a for all λ ∈ F×. �

Lemma 3.2.2. τ3
1 is independent of the volume element ω ∈ det V∗3 .

Proof: To prove the above we will take the difference of the elements τ3
1(l0, . . . , l4) by

using the volume forms λ · ω and ω(λ ∈ F×), term of type F ⊗ B2(F) will be zero while
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the term of type βD
2 (F) ⊗ F× will be

= −1
3

4∑

i=0

(−1)i
(
~r(li|l0, . . . , l̂i, . . . , l4)�D

2 ⊗ λ4
∏

i, j

∆(l̂i, l̂ j)

− ~r(li|l0, . . . , l̂i, . . . , l4)�D
2 ⊗

∏

i, j

∆(l̂i, l̂ j)

= −1
3

4∑

i=0

(−1)i~r(li|l0, . . . , l̂i, . . . , l4)�D
2 ⊗ λ4

We use lemma 3.1.5 which shows that left factor of the above is simply the projected

five-term relation in βD
2 (F). �

Now we need to show here that the composition map τ3
1 ◦ d is independent of the length

of the vectors in V3.

Lemma 3.2.3. τ3
1 ◦ d does not depend on the length of the vectors li in V3.

Proof: The proof of this lemma is quite similar to the proof of proposition 3.9 of [9],

but we will out line here main steps because this proof involves more calculations. It is

enough to prove that the following

τ(3)
1 ◦ d{(l0, . . . , l5) − (λ0l0, . . . , λ5l5)} = 0 (λi ∈ F×)

We will consider the case λ1 = · · · = λ5 = 1 and λ0 = λ

The first summand (l1, . . . , l5) will not give any contribution to the difference

τ3
1 ◦ d{(l0, . . . , l5) − (λ0l0, . . . , l5)} (3.9)
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Now consider the second summand −(l0, l2, l3, l4, l5)

1
3

(
−~r(l0|l2, l3, l4, l5)�D

2 ⊗ λ3
5∏

j=2

∆(l̂0, l̂ j) + ~r(l2|l0, l3, l4, l5)�D
2 ⊗ λ3

∏

j=0,3,4,5

∆(l̂2, l̂ j)

−~r(l3|l0, l2, l4, l5)�D
2 ⊗ λ3

∏

j=0,2,4,5

∆(l̂3, l̂ j) + ~r(l4|l0, l2, l3, l5)�D
2 ⊗ λ3

∏

j=0,2,3,5

∆(l̂4, l̂ j)

−~r(l5|l0, l2, l3, l4)�D
2 ⊗ λ3

∏

j=0,2,3,4

∆(l̂5, l̂ j)

+

5∑

i=0
i,1

D
(∏

j,1,i ∆(l̂i, l̂ j)
)

∆(l̂i, l̂ j)
⊗

[
r(li|l0, . . . , l̂i, . . . , l4)

] )

−1
3

(
−~r(l0|l2, l3, l4, l5)�D

2 ⊗
5∏

j=2

∆(l̂0, l̂ j) + ~r(l2|l0, l3, l4, l5)�D
2 ⊗

∏

j=0,3,4,5

∆(l̂2, l̂ j)

−~r(l3|l0, l2, l4, l5)�D
2 ⊗

∏

j=0,2,4,5

∆(l̂3, l̂ j) + ~r(l4|l0, l2, l3, l5)�D
2 ⊗

∏

j=0,2,3,5

∆(l̂4, l̂ j)

−~r(l5|l0, l2, l3, l4)�D
2 ⊗

∏

j=0,2,3,4

∆(l̂5, l̂ j)

+

5∑

i=0
i,1

D
(∏

j,1,i ∆(l̂i, l̂ j)
)

∆(l̂i, l̂ j)
⊗

[
r(li|l0, . . . , l̂i, . . . , l4)

] )

This difference gives us

1
3

(
~r(l2|l0, l3, l4, l5)�D

2 − ~r(l3|l0, l2, l4, l5)�D
2

+ ~r(l4|l0, l2, l3, l5)�D
2 − ~r(l5|l0, l2, l3, l4)�D

2

)
⊗ λ3 (3.10)

If we apply lemma 3.1.5 to the 5-tuple (l0, l2, l3, l4, l5) of points in �2
F then we see that

~r(l0|l2, l3, l4, l5)�D
2 = ~r(l2|l0, l3, l4, l5)�D

2 − ~r(l3|l0, l2, l4, l5)�D
2

+ ~r(l4|l0, l2, l3, l5)�D
2 − ~r(l5|l0, l2, l3, l4)�D

2

Then equation 3.10 can be written as

1
3
~r(l0|l2, l3, l4, l5)�D

2 ⊗ λ3 (3.11)

The contribution of the summand (−1)i(l0, . . . , l̂i, . . . , l5) in equation 3.11 is

1
3

(−1)i−1~r(l0|l1, . . . , l̂i, . . . , l5)�D
2 ⊗ λ3
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Now for all summands

1
3

5∑

i=1

(−1)i−1~r(l0|l1, . . . , l̂i, . . . , l5)�D
2 ⊗ λ3

According to lemma 3.1.5 left factor of the above is projected five-term relation in βD
2 (F)

and is zero. �

Theorem 3.2.4. The following diagram

C5(3)

τ3
1²²

d // C4(3)

τ3
0

²²(
βD

2 (F) ⊗ F×
)
⊕ (F ⊗ B2(F)) ∂ // F ⊗∧2 F×

is commutative i.e. τ3
0 ◦ d = ∂D ◦ τ3

1

Proof: From now on we will denote ∆(l0, l1, l2) = (l0, l1, l2)

τ3
0 ◦ d(l0, . . . , l4)

= τ3
0


4∑

i=0

(−1)i(l0, . . . , l̂i, . . . , l4)



= Ãlt(01234)

( 3∑

i=0

(−1)i D(l0, . . . , l̂i, . . . , l̂3)

(l0, . . . , l̂i, . . . , l̂3)
⊗ (l0, . . . , l̂i+1, . . . , l̂3)

(l0, . . . , l̂i+2, . . . , l̂3)

∧ (l0, . . . , l̂i+3, . . . , l̂3)

(l0, . . . , l̂i+2, . . . , l̂3)

)
, i mod 4 (3.12)

where Ãlt differs from usual alternation sum in the sense that we do not divide by the

order of the group for Ãlt. If we expand the inner sum first then we will get 4 terms which

can be simplified in 12 terms, i.e., we will have terms of the following shape:

D(l1, l2, l3)
(l1, l2, l3)

⊗ (l0, l2, l3) ∧ (l0, l1, l3) and so on

Then we pass to the alternation which gives us 60 terms so we keep together those terms

which have same first factor e.g.,

+
D(l0, l1, l2)
(l0, l1, l2)

⊗ {(l0, l1, l3) ∧ (l1, l2, l3) − (l0, l1, l4) ∧ (l1, l2, l4) − (l0, l2, l3) ∧ (l1, l2, l3)

+ (l0, l2, l4) ∧ (l1, l2, l4) − (l0, l1, l3) ∧ (l0, l2, l3) + (l0, l1, l4) ∧ (l0, l2, l4)}
...

and so on
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The other part of the calculation is very long and tedious but we will try to include some

steps here.

Going to the other side of the diagram, we find

∂D ◦ τ3
1(l0, . . . , l4) = −1

3
∂D

( 4∑

i=0

(−1)i~r(li|l0, . . . , l̂i, . . . , l4)�D
2 ⊗

∏

j,i

∆(l̂i, l̂ j)

+
D

(∏
j,i ∆(l̂i, l̂ j)

)
∏

j,i ∆(l̂i, l̂ j)
⊗ [r(li|l0, . . . , l̂i, . . . , l4)]}

)

= −1
3

4∑

i=0

(−1)i
(D

(
1 − r(li|l0, . . . , l̂i, . . . , l4)

)

1 − r(li|l0, . . . , l̂i, . . . , l4)
⊗ r(li|l0, . . . , l̂i, . . . , l4) ∧

∏

j,i

∆(l̂i, l̂ j)

−
D

(
r(li|l0, . . . , l̂i, . . . , l4)

)

r(li|l0, . . . , l̂i, . . . , l4)
⊗ {1 − r(li|l0, . . . , l̂i, . . . , l4)} ∧

∏

j,i

∆(l̂i, l̂ j)

+
D

(∏
j,i ∆(l̂i, l̂ j)

)
∏

j,i ∆(l̂i, l̂ j)
⊗

(
1 − r(li|l0, . . . , l̂i, . . . , l4)

)
∧ r(li|l0, . . . , l̂i, . . . , l4)

)
(3.13)

From now on we will use (i jk) instead of ∆(li, l j, lk) as a shorthand. If we expand the

above sum with respect to i, then we will get a long expression. For example when i = 0,

we have

+
D

(
(012)(034)
(013)(024)

)

(012)(034)
(013)(024)

⊗ (014)(023)
(013)(024)

∧ (234)(134)(124)(123)

−
D

(
(014)(023)
(013)(024)

)

(014)(023)
(013)(024)

⊗ (012)(034)
(013)(024)

∧ (234)(134)(124)(123)

+
D ((234)(134)(124)(123))

(234)(134)(124)(123)
⊗ (012)(034)

(013)(024)
∧ (014)(023)

(013)(024)

and we can get four more similar expressions for the other values of i as well. If we collect

terms of type D(i jk)
(i jk) ⊗· · ·∧ · · · i.e., fix i, j and k in all five expressions (one of them is given

above), then we will see a huge amount of terms but we cancel terms pairwise and collect

terms of the same kind, we get each remaining term with the coefficient “3”. So we can
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write in the following form.

−3
D(012)
(012)

⊗ {(013) ∧ (123) − (014) ∧ (124) − (023) ∧ (123)

+ (024) ∧ (124) − (013) ∧ (023) + (014) ∧ (024)}

−3
D(013)
(013)

⊗ {(014) ∧ (134) + (023) ∧ (123) − (012) ∧ (123)

− (034) ∧ (134) − (014) ∧ (034) + (012) ∧ (023)}
...

and so on

It turns out that every term has “−3” as a coefficient that cancels the factor − 1
3 in the

definition of τ3
1 then comparing the expression above with (3.12), we find after a long

calculation that both agree (term-wise) �

Here we have another result which will then complete the commutativity of diagram (3.2a)

Theorem 3.2.5. The following diagram

C6(3)

τ3
2

²²

d // C5(3)

τ3
1²²

βD
3 (F) ∂ //

(
βD

2 (F) ⊗ F×
)
⊕ (F ⊗ B2(F))

is commutative i.e. τ3
2 ◦ ∂D = d ◦ τ3

1.

Proof: The map τ3
2 is based on generalized cross-ratios of 3 × 3 determinants. The total

number of terms due to map τ3
2 will be 720 which can further be reduced to 120 due

to symmetry (cyclic and inverse). The direct procedure which was used in the previous

proof will be very lengthy and tedious so we will use techniques of combinatorics and

will rewrite the triple-ratio in to the product of two cross-ratios to prove this result.

We first compute ∂ ◦ τ3
2(l0, . . . , l5) and we already have

τ3
2(l0, . . . , l5) =

2
45

Alt
�

∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

�D

3
,

from now, in this proof we will use (i jk) for ∆(li, l j, lk) and (0. . . . , 5) for (l0, . . . , l5) as a

short hand.
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The above becomes

τ3
2(l0, . . . , l5) =

2
45

Alt6

�
(013)(124)(205)
(014)(125)(203)

�D

3

∂D ◦ τ3
2(l0, . . . , l5) =

2
45

Alt6


�

(013)(124)(205)
(014)(125)(203)

�D

2
⊗ (013)(124)(205)

(014)(125)(203)



+
2

45
Alt6

(
D log

(013)(124)(205)
(014)(125)(203)

⊗
[
(013)(124)(205)
(014)(125)(203)

]

2

)
(3.14)

First we will consider first term of the above

=
2

45

(
Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (013)
}

+ Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (124)
}

+Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (205)
}
− Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (014)
}

−Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (125)
}
− Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (203)
} )

where

r3(0, . . . , 5) =
(013)(124)(205)
(014)(125)(203)

Use the even cycle (012)(345)

Alt6

{
~r3(012345)�D

2 ⊗ (013)
}

= Alt6

{
~r3(120453)�D

2 ⊗ (124)
}

Now we use ~r3(012345)�D
2 = ~r3(120453)�D

2 and similar for the others, then the above

can be written as

=
2

45

(
3Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (013)
}
− 3Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (014)
})

Use the odd cycle (34)

=
2

45

(
6Alt6

{
~r3(0 . . . 5)�D

2 ⊗ (013)
})

If we apply the odd permutation (03), then

=
2

45

(
3Alt6

{
~r3(012345)�D

2 ⊗ (013)
}
− 3Alt6

{
~r3(312045)�D

2 ⊗ (310)
})

but (013)=(310) so up to 2-torsion

=
2

15
Alt6

{(
~r3(012345)�D

2 − ~r3(312045)�D
2

)
⊗ (013)

}
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Now we will use here the crucial idea of this proof in which we will divide the triple-ratio

into the product of two projected cross-ratios of four points each. There are exactly 3

ways to divide this ratio into such a product. i.e., if r3(a, b, c, d, e, f ) then it can be divided

by projection from a and b, projection from a and c or projection from b and c. In our

case we will divide by projection from 1 and 2.

=
2

15
Alt6




�
r(2|1053)
r(1|0234)

�D

2
−

�
r(2|1350)
r(1|3204)

�D

2

 ⊗ (013)



Apply lemma 3.1.5 (five-term relation in βD
2 (F)) then we will have

=
2

15
Alt6


−

�
r(2|1530)
r(1|0342)

�D

2
+ ~r(2|1053)�D

2 − ~r(1|0234)�D
2

 ⊗ (013)

 (3.15)

We will treat the above three terms individually. We consider first term now,

Alt6


�

r(2|1530)
r(1|0342)

�D

2
⊗ (013)



For each individual determinant, e.g. (013), we have the following terms.

Alt6


�

r(2|1530)
r(1|0342)

�D

2
⊗ (013)

 = Alt6


1
36

Alt(013)(245)


�

r(2|1530)
r(1|0342)

�D

2
⊗ (013)




We need a subgroup in S 6 which fixes (013) as a determinant i.e. (013) ∼ (310) ∼
(301) · · · .

Here S 3 permuting {0, 1, 3} and another one permuting {2, 4, 5} i.e. S 3×S 3. Now consider

Alt(013)(245)


�

r(2|1530)
r(1|0342)

�D

2
⊗ (013)



=Alt(013)(245)


�

(210)(235)
(213)(250)

· (104)(132)
(102)(135)

�D

2
⊗ (013)



=Alt(013)(245)


�

(253)(104)
(250)(134)

�D

2
⊗ (013)



By using odd permutation (25) the above becomes

=0

The new shape of (3.15) is

=
2

15
Alt6

{(
~r(2|1053)�D

2 − ~r(1|0234)�D
2

)
⊗ (013)

}
(3.16)
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Now we will consider the first terms

2
15

Alt6

{
~r(2|1053)�D

2 ⊗ (013)
}

=
2

15
Alt6

{
1
6

Alt(245)~r(2|1053)�D
2 ⊗ (013)

}

=
1

45
Alt6{

(
~r(4|1023)�D

2 − ~r(2|1043)�D
2

+ ~r(5|1043)�D
2 − ~r(4|1053)�D

2

+ ~r(2|1053)�D
2 − ~r(5|1023)�D

2

)
⊗ (013)}

We are able to use lemma 3.1.5 (projected five-term relation in βD
2 (F)) here.

=
1

45
Alt6{

(
~r(0|1234)�D

2 − ~r(1|0234)�D
2 − ~r(3|0124)�D

2

+~r(0|1435)�D
2 − ~r(1|0435)�D

2 + ~r(3|0145)�D
2

+~r(0|1532)�D
2 − ~r(1|0532)�D

2 + ~r(3|0152)�D
2

)
⊗ (013)}

Use the cycle (013)(245) then we get

=
1

45
· 9Alt6

{
~r(0|1234)�D

2 ⊗ (013)
}

(3.17)

We also have − 2
15Alt6

{
~r(1|0234)�D

2 ⊗ (013)
}

from (3.16) which can be written as

1
45
· −6Alt6

{
~r(1|0234)�D

2 ⊗ (013)
}

then (3.16) can be written as

=
1

45
Alt6{

(
9~r(0|1234)�D

2 − 6 ~r(1|0234)�D
2

)
⊗ (013)}

Use the cycle (01). We will get 1
3Alt6

{
~r(0|1234)�D

2 ⊗ (013)
}

as a result of (3.16).

This gives the first term in (3.14). For the second one, consider the second part of (3.14)

which has a D log factor in F and we know that D(ab)
ab =

D(a)
a +

D(b)
b and D( a

b )
a
b

=
D(a)

a − D(b)
b ,

while the right factor of second term is in B2(F) which is equipped with five-term relation

so same procedure can be adopted for the second term as we did for first term. So, after

passing through above procedure for second term, we get from the second term of (3.14)
1
3Alt6

{
D log(013) ⊗ [r(0|1234)]2

}
, at the end of the computation we have from the LHS of

the diagram (simpler form of the diagram)

=
1
3

Alt6

{
~r(0|1234)�D

2 ⊗ (013) + D log(013) ⊗ [r(0|1234)]2

}
(3.18)
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The above allows us to rewrite τ3
1 using alternation sums. In fact, we have

τ3
1(l0, . . . , l4) =

1
3

Alt5{~r(l0|l1, l2, l3, l4)�D
2 ⊗ ∆(l0, l1, l2)

+ D log(∆(l0, l1, l2)) ⊗ [r(l0|l1, l2, l3, l4)]2}

In reduced notation, the above can also be written as

τ3
1(0 . . . 4) =

1
3

Alt5

{
~r(0|1234)�D

2 ⊗ (012) + D log(012) ⊗ [r(0|1234)]2

}

It remains to compare ∂ ◦ τ3
2(0, . . . , 5) with τ3

1 ◦ d(0 . . . 5). For the latter, apply cycle

(012345) for d and then expand Alt5 from the definition of τ3
1 so we get

τ3
1 ◦ d(0 . . . 5) =

1
3

Alt6

{
~r(0|1234)�D

2 ⊗ (012) + D log(012) ⊗ [r(0|1234)]2

}

Now use the odd permutation (23) then the above becomes

= −1
3

Alt6{~r(0|1324)�D
2 ⊗ (013) + D log(013) ⊗ [r(0|1324)]2}

Finally use the two-term relation to get the correct sign and it will be same as (3.18). This

proves the theorem. �

Corollary 3.2.6. The diagram (3.2a) is commutative, i.e. there is a morphism of com-

plexes between the Grassmannian complex and a variant of Cathelineau’s complex which

involves the F-vector spaces βD
3 (F) and βD

2 (F) and the groups B2(F) and F ×∧2 F×.

Proof: The proof follows from combining Theorem 3.2.4 and Theorem 3.2.5. �

Now consider the diagram (3.2a) and note that τ3
1 ◦ d ∈ ker ∂D. It is clear from the

commutativity of the diagram that ∂D
(
τ3

1
(
d(l0, . . . , l5)

))
= 0.

Goncharov has given a morphism from the Grassmannian bicomplex to Γ(n), here we try

to establish a result in the following proposition for the infinitesimal case.

Proposition 3.2.7. The following maps

1. C4(3)
d′−→ C3(2)

τ2
0−→ F ⊗ F×

2. C5(3)
d′−→ C4(2)

τ2
1−→ βD

2 (F)

3. C5(4)
d′−→ C4(3)

τ3
0−→ F ⊗ ∧2F×
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4. Cn+1(n + 1)
d′−→ Cn+1(n)

τn
0−→ F ⊗∧n−1 F×

are zero, where

τn
0(l0, . . . , ln)

=

n∑

i=0

(−1)i

(D
(
∆(l0, . . . , l̂i, . . . , ln)

)

∆(l0, . . . , l̂i, . . . , ln)
⊗ ∆(l0, . . . , l̂i+1, . . . , ln)

∆(l0, . . . , l̂i+2, . . . , ln)

∧ · · · ∧ ∆(l0, . . . , l̂i+(n−1), . . . , ln)

∆(l0, . . . , l̂i+n, . . . , ln)

)
, i mod (n + 1)

Proof: See the proof of the lemmas 4.2.3, 4.2.5, 4.3.4 and 4.3.5. �

Now we can relate the above with the work of Goncharov ([9] and [10]) to see the bigger

picture.

Lemma 3.2.8. (Elbaz-Vincent–Gangl)(see Lemma 6.1 and Proposition 6.2 of [7]) Let

D ∈ Der�(F) be an absolute derivation for the field F. Then the following diagram is

commutative.

�[F••]
fD //

δn

²²

F[F••]

∂n
²²

Bn−1(F) ⊗ F×
gn

D //
(
βD

n−1(F) ⊗ F×
)
⊕ (F ⊗ Bn−1(F))

Where fD : [a] 7→ D(a)
a(1−a) [a]

δn : [a] 7→



[a]n−1 ⊗ a for n > 2

(1 − a) ∧ a for n = 2

∂n : [a] 7→



~a�n−1 ⊗ a + a ⊗ [a]n−1 for n > 2

−D(a)
1−a ⊗ a +

D(a)
a ⊗ (1 − a) for n = 2

gn
D : [a]n−1 ⊗ b 7→ ~a�n−1 ⊗ b +

D(b)
b
⊗ [a]n−1

Proof requires direct calculation(see the proof of Lemma 6.1 and Proposition 6.2 in [7]).

�
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Recall the Diagram (2.9) of §2.3 in [9]. Goncharov proved that the following diagram is

commutative.

C4(2) d //

f 2
1

²²

C3(2)

f 2
0

²²
B2(F) δ // ∧2 F×

for the following maps

f 2
0 (l0, l1, l2) = ∆(l0, l1) ∧ ∆(l0, l2) − ∆(l0, l1) ∧ ∆(l1, l2) + ∆(l0, l2) ∧ ∆(l1, l2)

and

f 2
1 (l0, . . . , l3) =

[
∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

]

2

where d is defined in §2.1 and δ is defined in §2.3.

On the basis of this diagram, Lemma 3.2.8 and diagram (3.1a) in §3.1, we can construct a

prism which has six faces and above discussion in this chapter shows that all square faces

of the following diagram are commutative.

C4(2) d //

²²

f 2
1

zzuuuuuuuuu
C3(2)

τ2
0

²²

f 2
0

zzttttttttt

B2(F) //

τ2
D

##HHHHHHHHH

τ2
1

²²

∧2 F×
g1

2,D

$$IIIIIIIIII

βD
2 (F) ∂ // F ⊗ F×

(3.2b)

where (see §6.1 in [7])

τ2
D([x]2) = ~x�2 and g1

2,D(x ∧ y) =
D(x)

x
⊗ y − D(y)

y
⊗ x

Corollary 3.2.9. The diagram (3.2b) above is commutative, i.e. there is a morphism of

complexes between all three complexes used in diagram (3.2b).

Proof: We only need to show that g1
2,D ◦ f 2

0 (l0, l1, l3) = τ2
0(l0, l1, l3) and τ2

D ◦ f 2
1 (l0, . . . , l3) =
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τ2
1(l0, . . . , l3).

g1
2,D ◦ f 2

0 (l0, l1, l3) =g1
2,D (∆(l0, l1) ∧ ∆(l0, l2) − ∆(l0, l1) ∧ ∆(l1, l2) + ∆(l0, l2) ∧ ∆(l1, l2))

=
D (∆(l0, l1))

∆(l0, l1)
⊗ ∆(l0, l2) − D (∆(l0, l2))

∆(l0, l2)
⊗ ∆(l0, l1)

−D (∆(l0, l1))
∆(l0, l1)

⊗ ∆(l1, l2) +
D (∆(l1, l2))

∆(l1, l2)
⊗ ∆(l0, l1)

+
D (∆(l0, l2))

∆(l0, l2)
⊗ ∆(l1, l2) − D (∆(l1, l2))

∆(l1, l2)
⊗ ∆(l0, l2)

=τ2
0(l0, l1, l3)

and

τ2
D ◦ f 2

1 (l0, . . . , l3) =τ2
D

([
∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

]

2

)
=

�
∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

�

2

We can construct the similar diagram for weight 3 case. We recall diagram (3.2) in §3 of

[10]

C6(3) d //

f 3
2

²²

C5(3) d //

f 3
1

²²

C4(3)

f 3
0

²²
B3(F) δ // B2(F) ⊗ F× δ // ∧3 F×

(3.2c)

is commutative for the following maps

f 3
0 (l0, . . . , l3) =

3∑

i=0

(−1)i
3∧

j=0
j,i

∆(l0, . . . , l̂ j, . . . , l3),

f 3
1 (l0, . . . , l4) = −1

3

4∑

i=0

(−1)i
[
r(li|l0, . . . , l̂i, . . . , l4)

]
2
⊗

∏

j,i

∆(l̂i, l̂ j)

and f 3
2 is defined via alternation sum for generic points.

f 3
2 (l0, . . . , l5) =

2
45

Alt6

[
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

]

3

where δ ([x]3) = [x]2 ⊗ x for all x , 0, 1 ∈ F× and δ([x]2) = (1 − x) ∧ x.

So, we can combine this diagram, diagram (3.2a) in §3.2 by using Lemma 3.2.8 to get the

following diagram where all square faces are commutative.

C6(3) d //

²²

f 3
2

xxqqqqqqqqqqq
C5(3) d //

²²

f 3
1

ttjjjjjjjjjjjjjjjjjj C4(3)

τ3
0

²²

f 3
0

ttjjjjjjjjjjjjjjjjjjj

B3(F) δ //

τ3
D

%%KKKKKKKKKKK B2(F) ⊗ F×

τ3
2

²²

δ //

g2
3,D

))TTTTTTTTTTTTTTT
∧3 F×

τ3
1

²²

g1
3,D

))SSSSSSSSSSSSSSSSSS

βD
3 (F) //

(
βD

2 (F) ⊗ F×
)
⊕ (F ⊗ B2(F)) // F ⊗∧2 F×

(3.2d)
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where (see §6.1 in [7])

τ3
D([x]3) = ~x�3, g2

3,D([x]2 ⊗ y) = ~x�2 ⊗ y +
D(y)

y
⊗ [x]2

and

g1
3,D(x ∧ y ∧ z) =

D(x)
x
⊗ y ∧ z − D(y)

y
⊗ x ∧ z +

D(z)
z
⊗ x ∧ y

Corollary 3.2.10. The diagram (3.2d) above is commutative, i.e. there is a morphism of

complexes between all three complexes used in diagram (3.2d).

Proof: We only need to show that g1
3,D ◦ f 3

0 (l0, . . . , l3) = τ3
0(l0, . . . , l3), g2

3,D ◦ f 3
1 (l0, . . . , l4) =

τ3
1(l0, . . . , l4) and τ3

D ◦ f 3
2 (l0, . . . , l5) = τ3

2(l0, . . . , l5)

g1
3,D ◦ f 3

0 (l0, . . . , l3)

=g1
3,D



3∑

i=0

(−1)i
3∧

j=0
j,i

∆(l0, . . . , l̂ j, . . . , l3)



=

3∑

i=0

(−1)i


D

(
∆(l0, . . . , l̂i, . . . , l4)

)

∆(l0, . . . , l̂i, . . . , l4)
⊗ ∆(l0, . . . , l̂i+1, . . . , l4)

∆(l0, . . . , l̂i+2, . . . , l4)
∧ ∆(l0, . . . , l̂i+2, . . . , l4)

∆(l0, . . . , l̂i+3, . . . , l4)

 ,

i mod 4

g2
3,D ◦ f 3

1 (l0, . . . , l4)

=g2
3,D


4∑

i=0

(−1)i
[
r
(
li|l0, . . . , l̂i, . . . , l4

)]
2
⊗

∏

i, j

(l̂i, l̂ j)



=

4∑

i=0

(−1)i
�
r
(
li|l0, . . . , l̂i, . . . , l4

)�
2
⊗

∏

i, j

(l̂i, l̂ j)

+

4∑

j=0
j,i

D(l̂i, l̂ j)

(l̂i, l̂ j)
⊗

[
r
(
li|l0, . . . , l̂i, . . . , l4

)]
2

τ3
D ◦ f 3

2 (l0, . . . , l5) =τ3
D

(
2
45

Alt6

[
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

]

3

)

=
2

45
Alt6

�
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

�

3



Chapter 4

Tangent Complexes

In the previous chapter, we have described a morphism between the Grassmannian com-

plex and a variant of Cathelineau’s infinitesimal complex. In this chapter we will discuss

and try to write geometric configurations for the tangent complex to Bloch-Suslin com-

plex and to Goncharov’s complex (see §3 of [10]). By specializing the derivation of that

tangent complex, we relate it with the variant of the Cathelineau’s infinitesimal complex

and with Goncharov’s complexes (see examples 4.2.6 and 4.3.2 below). This chapter will

also introduce cross-ratios and identities of determinants for the configurations of vectors

in Cm(�n
F[ε]ν

) for n = 2, 3, m = 3, . . . , 7 and ν ≥ 1 (ν = 1 is the usual case and we have

used this previously) (see §4.1 below).

One of our main results is Theorem 4.3.3. In its proof we shall use combinatorial tech-

niques and will rewrite the triple-ratio as the product of two projected cross-ratios in

F[ε]2.

4.1 Configurations of points in Cm(�n
F[ε]ν

)

Let F be a field of characteristic 0. For ν ≥ 1, we denote the νth truncated polynomial ring

over F by F[ε]ν := F[ε]/εν. Further define the abelian group Cm(�n
F[ε]ν

) generated by m

points in �n
F[ε]ν

in generic position, where �n
F[ε]ν

is the n-dimensional affine space over

the truncated polynomial ring F[ε]ν. We will not consider here degenerate points and we

are assuming that no two points coinciding and no three points are lying on a line. Now

41
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for the case n = 2 and ν = 2, any li =


ai

bi

 ∈ �
2
F \




0

0



 and li,ε :=


ai,ε

bi,ε

 ∈ �
2
F , we

put l∗i =


ai + ai,εε

bi + bi,εε

 =


ai

bi

 +


ai,ε

bi,ε

 ε = li + li,εε and define a differential

d : Cm+1(�2
F[ε]2

)→ Cm(�2
F[ε]2

)

d : (l∗0, . . . , l
∗
m) 7→

m∑

i=0

(−1)i(l∗0, . . . , l̂
∗
i , . . . , l

∗
m).

Let ω ∈ V∗2 be a volume element formed in V2 := �2
F and ∆(li, l j) = 〈ω, li ∧ l j〉, where

li, l j ∈ �2
F . Here we define

∆(l∗i , l
∗
j) = ∆(l∗i , l

∗
j)ε0 + ∆(l∗i , l

∗
j)ε1ε

where

∆(l∗i , l
∗
j)ε0 = ∆(li, l j) and ∆(l∗i , l

∗
j)ε1 = ∆(li, l j,ε) + ∆(li,ε, l j);

more generally for ν = n + 1, we have

l∗i = li + li,εε + li,ε2ε2 + · · · + li,εnεn and li,ε0 = li

and we get

∆(l∗i , l
∗
j) = ∆(li, l j) + ∆(l∗i , l

∗
j)εε + ∆(l∗i , l

∗
j)ε2ε2 + · · · + ∆(l∗i , l

∗
j)εnεn,

where

∆(l∗i , l
∗
j)εn = ∆(li, l j,εn) + ∆(li,ε, l j,εn−1) + · · · + ∆(li,εn , l j)

Consider the Siegel cross-ratio identity for the 2×2 determinants of four vectors in C4(�2
F)

(see [21], [9] or Remark 2 on p155 of [16])

∆(l0, l1)∆(l2, l3) = ∆(l0, l2)∆(l1, l3) − ∆(l0, l3)∆(l1, l2) (4.1)

With the above notation, an analogous to Siegel cross-ratio identity turns out to be true for

�2
F[ε]n+1

, and we can extract further results which are essential for the proof of our main

results. Throughout this section we will assume that ∆(li, l j) , 0 for i , j.

Lemma 4.1.1. For (l∗0, l
∗
1, l
∗
2, l
∗
3) ∈ C4(�2

F[ε]n+1
), we have

∆(l∗0, l
∗
1)∆(l∗2, l

∗
3) = ∆(l∗0, l

∗
2)∆(l∗1, l

∗
3) − ∆(l∗0, l

∗
3)∆(l∗1, l

∗
2) (4.2)
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where

l∗i = li + li,εε + li,ε2ε2 + · · · + li,εnεn and li,ε0 = li

∆(l∗i , l
∗
j) = ∆(li, l j) + ∆(l∗i , l

∗
j)εε + ∆(l∗i , l

∗
j)ε2ε2 + · · · + ∆(l∗i , l

∗
j)εnεn

where

∆(l∗i , l
∗
j)εn = ∆(li, l j,εn) + ∆(li,ε, l j,εn−1) + · · · + ∆(li,εn , l j)

Proof: For r = 0, . . . , n, we can write l∗ =


∑

r≥0 lrε
r

∑
r≥0 l′rε

r

 and m∗ =


∑

r≥0 mrε
r

∑
r≥0 m′rε

r

 .

Now we have

∆(l∗,m∗) =

∣∣∣∣∣∣∣∣

∑
r≥0 lrε

r ∑
r≥0 mrε

r

∑
r≥0 l′rε

r ∑
r≥0 m′rε

r

∣∣∣∣∣∣∣∣
=

∑

r≥0


r∑

k=0

lkm′r−k −
r∑

k=0

l′kmr−k

 εr

=
∑

r≥0


r∑

k=0

∆ (lk,mr−k)

 εr

Hence

∆(l∗0, l
∗
1)∆(l∗2, l

∗
3) =

∑

r≥0


r∑

k=0

∆(l0,k, l1,r−k)

 εr ·
∑

s≥0


r∑

j=0

∆(l0, j, l1,r− j)

 εs

=
∑

t≥0

εt


t∑

r=0


r∑

k=0

∆(l0,k, l1,r−k)
t−r∑

j=0

∆(l2, j, l3,t−r− j)




=
∑

t≥0

εt


t∑

r=0


r∑

k=0

t−r∑

j=0

∆(l0,k, l1,r−k)∆(l2, j, l3,t−r− j)


 ,

and similarly for ∆(l∗0, l
∗
2)∆(l∗1, l

∗
3) and ∆(l∗0, l

∗
3)∆(l∗1, l

∗
2). Hence we use validity of (4.1) to

deduce the analogue for ∆(l∗i , l
∗
j)’s in place of ∆(li, l j) passing from the ring F~ε� of power

series to a truncated polynomial ring, say to F[ε]n+1. �

As special cases we find for n = 0 the identity (4.1) while for n = 1 we have the following

identity which will be used extensively below:

∆(l0, l1)∆(l∗2, l
∗
3)ε + ∆(l2, l3)∆(l∗0, l

∗
1)ε

=
{
∆(l0, l2)∆(l∗1, l

∗
3)ε + ∆(l1, l3)∆(l∗0, l

∗
2)ε

} − {
∆(l0, l3)∆(l∗1, l

∗
2)ε + ∆(l1, l2)∆(l∗0, l

∗
3)ε

}
. (4.3)

if we write

(ab)εn := aεnbε0 + aεn−1bε + · · · + aε0bεn

then (4.3) can be more concisely written as

{
∆(l∗0, l

∗
1)∆(l∗2, l

∗
3)
}
ε =

{
∆(l∗0, l

∗
2)∆(l∗1, l

∗
3)
}
ε −

{
∆(l∗0, l

∗
3)∆(l∗1, l

∗
2)
}
ε .
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4.1.1 Cross-ratio in F[ε]ν:

In this section we will try to find the cross-ratio of four points in F[ε]ν for ν = n + 1. We

will use the same technique here as we did for the identity (4.2) but the procedure here

involves lengthy calculations. First we define the cross-ratio of four points (l∗0, . . . , l
∗
3) ∈

C4(�2
F[ε]n+1

) as

r(l∗0, . . . , l
∗
3) =

∆(l∗0, l
∗
3)∆(l∗1, l

∗
2)

∆(l∗0, l
∗
2)∆(l∗1, l

∗
3)

If we expand r(l∗0, . . . , l
∗
3) as a truncated polynomial over F[ε]n+1, then

r(l∗0, . . . , l
∗
3) =

(
rε0 + rεε + rε2ε2 + · · · + rεnεn

)
(l∗0, . . . , l

∗
3) (4.4)

If we truncate this for n = 0, then

r(l∗0, . . . , l
∗
3) = rε0(l∗0, . . . , l

∗
3) = r(l0, . . . , l3) =

∆(l0, l3)∆(l1, l2)
∆(l0, l2)∆(l1, l3)

(4.5)

If we truncate (4.4) for n = 1 then the coefficient of ε0 will remain the same as for n = 0

and we compute the coefficient of ε in the following way:

Consider (l∗0, . . . , l
∗
3) ∈ C4(�2

F[ε]2
) in generic position, we get

r(l∗0, . . . , l
∗
3) =

∆(l∗0, l
∗
3)∆(l∗1, l

∗
2)

∆(l∗0, l
∗
2)∆(l∗1, l

∗
3)

=
{∆(l0, l3) + ∆(l∗0, l

∗
3)εε}{∆(l1, l2) + ∆(l∗1, l

∗
2)εε}

{∆(l0, l2) + ∆(l∗0, l
∗
2)εε}{∆(l1, l3) + ∆(l∗1, l

∗
3)εε}

If a , 0 ∈ F then the inverse of (a + bε) ∈ F[ε]2 is 1
a − b

a2ε ∈ F[ε]2 (this is the same as the

inversion relation in TB2(F) discussed later in §2.5).

Simplify the above by multiplying the inverses of denominators and separate the coeffi-

cients of ε0 and ε. The coefficient of ε is the following

rε(l∗0, . . . , l
∗
3) =

{∆(l∗0, l
∗
3)∆(l∗1, l

∗
2)}ε

∆(l0, l2)∆(l1, l3)
− r(l0, . . . , l3)

{∆(l∗0, l
∗
2)∆(l∗1, l

∗
3)}ε

∆(l0, l2)∆(l1, l3)
(4.6)

Now for n = 2, i.e. (l∗0, . . . , l
∗
3) ∈ C4(�2

F[ε]3
), we will use (li, l j) instead of ∆(li, l j) to get

r(l∗0, . . . , l
∗
3) =

{(l0, l3) + (l∗0, l
∗
3)εε + (l∗0, l

∗
3)ε2ε2}{(l1, l2) + (l∗1, l

∗
2)εε + (l∗1, l

∗
2)ε2ε2}

{(l0, l2) + (l∗0, l
∗
2)εε + (l∗0, l

∗
3)ε2ε2}{(l1, l3) + (l∗1, l

∗
3)εε + (l∗1, l

∗
3)ε2ε2}

simplify and separate the coefficient of ε0, ε1 and ε2. Coefficients of ε0 and ε1 are same

as we computed in (4.5) and (4.6) respectively, and the coefficient of ε2 is

rε2(l∗0, . . . , l
∗
3) =

{(l∗0, l∗3)(l∗1, l
∗
2)}ε2

(l0, l2)(l1, l3)
−rε(l∗0, . . . , l

∗
3)
{(l∗0, l∗2)(l∗1, l

∗
3)}ε

(l0, l2)(l1, l3)
−r(0, . . . , l3)

{(l∗0, l∗2)(l∗1, l
∗
3)}ε2

(l0, l2)(l1, l3)
(4.7)
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Remark 4.1.2. The computation of coefficient of εn which is rεn(l∗0, . . . , l
∗
3) in the truncated

polynomial (4.4) will give us the following:

n∑

k=0

({
∆(l∗0, l

∗
2)∆(l∗1, l

∗
3)
}
εk rεn−k(l∗0, . . . , l

∗
3)
)

=
{
∆(l∗0, l

∗
3)∆(∗1, l

∗
2)
}
εn , (4.8)

where ∆(li, l j) , 0 for i , j and (l∗0, . . . , l
∗
3) ∈ C4

(
�2

F[ε]n+1

)

4.1.2 Triple-ratio in F[ε]ν:

In this subsection we will discuss triple-ratio (generalized cross-ratio) of 6 points, i.e.,

(l∗0, . . . , l
∗
5) ∈ C6(�3

F[ε]ν
) for ν = n + 1. We are pleased to see that the calculations in

triple-ratio are similar as the cross-ratio of 4 points (l∗0, . . . , l
∗
3) ∈ C4(�2

F[ε]ν
).

Case ν = 2:

First we take (l∗0, . . . , l
∗
5) ∈ C6(�3

F[ε]2
), for any l∗i ∈ (l∗0, . . . , l

∗
5)

l∗i =



ai + ai,εε

bi + bi,εε

ci + ci,εε


=



ai

bi

ci


+



ai,ε

bi,ε

ci,ε


ε = li + li,εε

∆(l∗i , l
∗
j, l
∗
k) = ∆(li, l j, lk) + ∆(l∗i , l

∗
j, l
∗
k)εε

where ∆(li, l j, lk) is a 3 × 3-determinant,

∆(l∗i , l
∗
j, l
∗
k)ε = ∆(li,ε, l j, lk) + ∆(li, l j,ε, lk) + ∆(li, l j, lk,ε)

and

∆(l∗i , l
∗
j, l
∗
k)ε0 = ∆(li, l j, lk)

As we can expand

r3(l∗0, . . . , l
∗
5) = r3(l0, . . . , l5) + r3,ε(l∗0, . . . , l

∗
5)ε

From [10] we have

r3(l0, . . . , l5) = Alt
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)
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for ∆(li, l j, l j) , 0 multiplicative inverse of ∆(l∗i , l
∗
j, l
∗
k) is − 1

∆(li,l j,l j)
− ∆(l∗i ,l

∗
j ,l
∗
k)ε

∆(li,l j,l j)2 ε and from now

on we will use (l∗i l∗jl
∗
k) instead of ∆(l∗i , l

∗
j, l
∗
k) unless specify.

r(l∗0, . . . , l
∗
5) = Alt

(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

= Alt
{ {(l0l1l3) + (l∗0l∗1l∗3)εε}{(l1l2l4) + (l∗1l∗2l∗4)εε}{(l2l0l5) + (l∗2l∗0l∗5)εε}
{(l0l1l4) + (l∗0l∗1l∗4)εε}{(l1l2l5) + (l∗1l∗2l∗5)εε}{(l2l0l3) + (l∗2l∗0l∗3)εε}

}

Simplify the above and separate coefficients of ε0 and ε1, we will see that the coefficient

of ε1 is the triple-ratio of six points (l∗0, . . . , l
∗
5) ∈ C6(�3

F) and the coefficient of ε is the

following:

r3,ε(l∗0, . . . , l
∗
5)

= Alt
{ {(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)}ε

(l0l1l4)(l1l2l5)(l2l0l3)
− (l0l1l3)(l1l2l4)(l2l0l5)

(l0l1l4)(l1l2l5)(l2l0l3)
{(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)}ε

(l0l1l4)(l1l2l5)(l2l0l3)

}
(4.9)

we can write the explicit formula. For 6 points in C6(�3
F[ε]2

)

r3,ε(l∗0, . . . , l
∗
5) = Alt

{ {(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)}ε
(l0l1l4)(l1l2l5)(l2l0l3)

− r3(l0, . . . , l5)
{(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)}ε

(l0l1l4)(l1l2l5)(l2l0l3)

}

Case ν = 3:

For 6 points in C6(�3
F[ε]3

) we will the following through same procedure as we did above,

and for a , 0 we have 1
a+aεε+a

ε2ε2 = b + bεε + bε2ε2 where b = a−1 ∈ F×, bε = (a, aε) and

bε2 = (a, aε, aε2)

r3,ε2 = Alt
{ {(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)}ε2

(l0l1l4)(l1l2l5)(l2l0l3)
− r3,ε(l∗0, . . . , l

∗
5)
{(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)}ε

(l0l1l4)(l1l2l5)(l2l0l3)

−r3(l0, . . . , l5)
{(l∗1l∗2l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)}ε2

(l0l1l4)(l1l2l5)(l2l0l3)

}

Here we used the following notation just for simplification.

(abc)ε := aεbε0cε0 + aε0bεcε0 + aε0bε0cε

4.2 Dilogarithmic Bicomplexes

In this subsection we will connect the Grassmannian bicomplex to the Cathelineau’s tan-

gential complex in weight 2.
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We will use the following notations throughout this section

∆(l∗i , l
∗
j)ε = ∆(li,ε, l j) + ∆(li, l j,ε) and ∆(l∗i , l

∗
j)ε0 = ∆(li, l j)

and we will assume that ∆(li, l j) , 0 (as we often want to divide by such determinants).

Let Cm(�2
F[ε]2

) be the free abelian group generated by the configuration (l∗0, . . . , l
∗
m−1) of m

points in �2
F[ε]2

, where �2
F[ε]2

is defined as an affine plane over F[ε]2. Configurations of

m points in �2
F[ε]2

are 2-tuples of vectors over F[ε]2 modulo GL2(F[ε]). In this case the

Grassmannian complex will be in the following shape

· · · d−→ C5(�2
F[ε]2

)
d−→ C4(�2

F[ε]2
)

d−→ C3(�2
F[ε]2

)

d : (l∗0, . . . , l
∗
m−1) 7→

m∑

i=0

(−1)i(l∗0, . . . , l̂
∗
i , . . . , l

∗
m−1)

where l∗i =


ai + ai,εε

bi + bi,εε

 =


ai

bi

 +


ai,ε

bi,ε

 ε = li + li,εε and ai, bi, ai,ε, bi,ε ∈ F,


ai

bi

 ,


0

0


Here we recall the �-module TB2(F) generated by 〈a; b]2 := [a + bε] − [a] ∈ � [F[ε]2]

(have discussed earlier in §2.5).

Consider the following diagram

C5(�2
F[ε]2

) d // C4(�2
F[ε]2

) d //

τ2
1,ε

²²

C3(�2
F[ε]2

)

τ2
0,ε

²²
TB2(F)

∂ε // F ⊗ F× ⊕∧2 F

(4.2a)

where

∂ε : 〈a; b]2 7→
(
b
a
⊗ (1 − a) +

b
1 − a

⊗ a
)

+

(
b

1 − a
∧ b

a

)

We write the map τ2
0,ε as a sum of two maps

τ(1) : C3(�2
F[ε]2

)→ F ⊗ F×

and

τ(2) : C3(�2
F[ε]2

)→
∧

2F



4.2. Dilogarithmic Bicomplexes 48

where

τ(1)(l∗0, l
∗
1, l
∗
2)

=
∆(l∗1, l

∗
2)ε

∆(l1, l2)
⊗ ∆(l0, l2)

∆(l0, l1)
− ∆(l∗0, l

∗
2)ε

∆(l0, l2)
⊗ ∆(l1, l2)

∆(l1, l0)
+

∆(l∗0, l
∗
1)ε

∆(l0, l1)
⊗ ∆(l2, l1)

∆(l2, l0)

and

τ(2)(l∗0, l
∗
1, l
∗
2)

=
∆(l∗0, l

∗
1)ε

∆(l0, l1)
∧ ∆(l∗1, l

∗
2)ε

∆(l1, l2)
− ∆(l∗0, l

∗
1)ε

∆(l0, l1)
∧ ∆(l∗0, l

∗
2)ε

∆(l0, l2)
+

∆(l∗1, l
∗
2)ε

∆(l1, l2)
∧ ∆(l∗0, l

∗
2)ε

∆(l0, l2)

Furthermore, we put

τ2
1,ε(l

∗
0, . . . , l

∗
3) =

〈
r(l0, . . . , l3); rε(l∗0, . . . , l

∗
3)
]

where r(l0, . . . , l3), rε(l∗0, . . . , l
∗
3) are the coefficient of ε0 and ε1 respectively, in r(l∗0, . . . , l

∗
3)

as defined in 4.1.1. and ∆ is defined in 4.1

Our maps τ2
0,ε and τ2

1,ε are based on ratios of determinants and cross-ratios respectively,

so there is enough evidence that these are independent of the length of the vectors and

the volume formed by these vectors. This independence can be seen directly through the

definition of the maps.

We will also use the shorthand (lil j) instead of ∆(li, l j) wherever we find less space to

accommodate long expressions.

Now calculate the cross-ratio of the points in �2
F[ε]2.

r(l∗0, . . . , l
∗
3) =

∆(l∗0, l
∗
3)∆(l∗1, l

∗
2)

∆(l∗0, l
∗
2)∆(l∗1, l

∗
3)

we have already assumed that ∆(li, l j) , 0

=

(
∆(l0, l3) + {∆(l0, l3,ε) + ∆(l0,ε, l3)}ε) (∆(l1, l2) + {∆(l1, l2,ε) + ∆(l1,ε, l2)}ε)(
∆(l0, l2) + {∆(l0, l2,ε) + ∆(l0,ε, l2)}ε) (∆(l1, l3) + {∆(l1, l3,ε) + ∆(l1,ε, l3)}ε)

=
(l0l3)(l1l2) + {(l0l3)

(
(l1l2,ε) + (l1,εl2)

)
+ (l1l2)

(
(l0l3,ε) + (l0,εl3)

)}ε
(l0l2)(l1l3) + {(l0l2)

(
(l1l3,ε) + (l1,εl3)

)
+ (l1l3)

(
(l0l2,ε) + (l0,εl2)

)}ε
=

(l0l3)(l1l2)
(l0l2)(l1l3)

+
x

(l0l2)2(l1l3)2ε

where

x = + (l0l2)(l1l3)(l0l3)(l1l2,ε) + (l0l2)(l1l3)(l0l3)(l1,εl2)

+ (l0l2)(l1l3)(l1l2)(l0l3,ε) + (l0l2)(l1l3)(l1l2)(l0,εl3)

− (l0l3)(l1l2)(l0l2)(l1l3,ε) − (l0l3)(l1l2)(l0l2)(l1,εl3)

− (l0l3)(l1l2)(l1l3)(l0l2,ε) − (l0l3)(l1l2)(l1l3)(l0,εl2)
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Similarly we calculate

1 − r(l∗0, . . . , l
∗
3) =

∆(l∗0, l
∗
1)∆(l∗2, l

∗
3)

∆(l∗0, l
∗
2)∆(l∗1, l

∗
3)

=
(l0l1)(l2l3)
(l0l2)(l1l3)

+
y

(l0l2)2(l1l3)2ε

where

y = + (l0l2)(l1l3)(l0l1)(l2l3,ε) + (l0l2)(l1l3)(l0l1)(l2,εl3)

+ (l0l2)(l1l3)(l2l3)(l0l1,ε) + (l0l2)(l1l3)(l2l3)(l0,εl1)

− (l0l1)(l2l3)(l0l2)(l1l3,ε) − (l0l1)(l2l3)(l0l2)(l1,εl3)

− (l0l1)(l2l3)(l1l3)(l0l2,ε) − (l0l1)(l2l3)(l1l3)(l0,εl2)

Remark 4.2.1. The F×-action of TB2(F) lifts to an F×-action on C4(�2
F[ε]2

) in the obvious

way:

The F×-action is defined above for F[ε]2 induces an F×-action in �2
F[ε]2

diagonally as

λ ?


a + aεε

b + bεε

 =


a + λaεε

b + λbεε

 ∈ �
2
F[ε]2

, λ ∈ F×

Lemma 4.2.2. The diagram (4.2a) is commutative

Proof: First we need to calculate τ2
1,ε.

τ2
1,ε(l

∗
0, . . . , l

∗
3) =

〈
(l0l3)(l1l2)
(l0l2)(l1l3)

;
x

(l0l2)2(l1l3)2

]

∂ε ◦ τ2
1,ε(l

∗
0, . . . , l

∗
3)

=

(
x

(l0l2)(l1l3)(l0l3)(l1l2)
⊗ (l0l1)(l2l3)

(l0l2)(l1l3)
+

x
(l0l2)(l1l3)(l0l1)(l2l3)

⊗ (l0l3)(l1l2)
(l0l2)(l1l3)

,

− x
(l0l2)(l1l3)(l0l3)(l1l2)

∧ x
(l0l2)(l1l3)(l0l1)(l2l3)

)

For the other side we first calculate d and then apply τ2
0,ε on d(l∗0, . . . , l

∗
3).

τ2
0,ε ◦ d(l∗0, . . . , l

∗
3) = τ2

0,ε
(−(l∗0, l

∗
1, l
∗
2) + (l∗0, l

∗
1, l
∗
3) − (l∗0, l

∗
2, l
∗
3) + (l∗1, l

∗
2, l
∗
3)
)

This calculation can be done in two steps. In a first step we find τ(1) ◦ d(l∗0, . . . , l
∗
3) and in

a second step we calculate τ(2) ◦ d(l∗0, . . . , l
∗
3)
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In the first step, we have

(τ(1) ◦ d)(l∗0, . . . , l
∗
3)

=
(l∗1l∗2)ε
(l1l2)

⊗ (l0l1)
(l0l2)

− (l∗0l∗2)ε
(l0l2)

⊗ (l0l1)
(l1l2)

+
(l∗0l∗1)ε
(l0l1)

⊗ (l0l2)
(l1l2)

− (l∗1l∗3)ε
(l1l3)

⊗ (l0l1)
(l0l3)

+
(l∗0l∗3)ε
(l0l3)

⊗ (l0l1)
(l1l3)

− (l∗0l∗1)ε
(l0l1)

⊗ (l0l3)
(l1l3)

+
(l∗2l∗3)ε
(l2l3)

⊗ (l0l2)
(l0l3)

− (l∗0l∗3)ε
(l0l3)

⊗ (l0l2)
(l2l3)

+
(l∗0l∗2)ε
(l0l2)

⊗ (l0l3)
(l2l3)

− (l∗2l∗3)ε
(l2l3)

⊗ (l1l2)
(l1l3)

+
(l∗1l∗3)ε
(l1l3)

⊗ (l1l2)
(l2l3)

− (l∗1l∗2)ε
(l1l2)

⊗ (l1l3)
(l2l3)

=

(
(l∗1l∗2)ε
(l1l2)

+
(l∗0l∗3)ε
(l0l3)

− (l∗1l∗3)ε
(l1l3)

− (l∗0l∗2)ε
(l0l2)

)
⊗ (l0l1)(l2l3)

(l0l2)(l1l3)

+

(
(l∗1l∗3)ε
(l1l3)

+
(l∗0l∗2)ε
(l0l2)

− (l∗2l∗3)ε
(l2l3)

− (l∗0l∗1)ε
(l0l1)

)
⊗ (l0l3)(l1l2)

(l0l2)(l1l3)
∈ F ⊗ F× (4.10)

By using identities (4.3) and (4.1) the above can be written as

=
x

(l0l2)(l1l3)(l0l3)(l1l2)
⊗ (l0l1)(l2l3)

(l0l2)(l1l3)
+

x
(l0l2)(l1l3)(l0l1)(l2l3)

⊗ (l0l3)(l1l2)
(l0l2)(l1l3)

Now go to the second step, and by using a ∧ a = 0, modulo 2 torsion and a ∧ b = −b ∧ a

and identities (4.3),(4.1) we can get here

τ(2) ◦ d(l∗0, . . . , l
∗
3)

=

(
(l∗1l∗2)ε
(l1l2)

+
(l∗0l∗3)ε
(l0l3)

− (l∗1l∗3)ε
(l1l3)

− (l∗0l∗2)ε
(l0l2)

)
∧

(
(l∗2l∗3)ε
(l2l3)

+
(l∗0l∗1)ε
(l0l1)

− (l∗1l∗3)ε
(l1l3)

− (l∗0l∗2)ε
(l0l2)

)
(4.11)

= − x
(l0l2)(l1l3)(l0l3)(l1l2)

∧ x
(l0l2)(l1l3)(l0l1)(l2l3)

�

In the remainder of this section we prove that the following diagram following is a bicom-

plex.

C5(�3
F[ε]2

) d //

d′
²²

C4(�3
F[ε]2

)

d′
²²

C4(�2
F[ε]2

) d //

τ2
1,ε

²²

C3(�2
F[ε]2

)

τ2
0,ε

²²
TB2(F)

∂ε // F ⊗ F× ⊕∧ 2F

(4.2b)

To prove the above is a bicomplex, we are giving the following results.

Proposition 4.2.3. The map C4(�3
F[ε]2

)
d′−→ C3(�2

F[ε]2
)
τ2

0,ε−−→ (F ⊗ F×) ⊕
(∧ 2F

)
is zero.



4.2. Dilogarithmic Bicomplexes 51

Proof: Let ω ∈ det V∗3 be the volume form in three-dimensional vector space V3, i.e.,

∆(li, l j, lk) = 〈ω, li ∧ l j ∧ lk〉 then ∆(li, ·, ·) is a volume form in V3/〈li〉. Use

∆(l∗i , l
∗
j, l
∗
k) = ∆(li, l j, lk) +

{
∆(l∗i , l

∗
j, l
∗
k)ε

}
ε

where

∆(l∗i , l
∗
j, l
∗
k)ε = ∆(li,ε, l j, lk) + ∆(li, l j,ε, lk) + ∆(li, l j, lk,ε)

We can directly compute τ2
0,ε ◦ d′

τ2
0,ε ◦ d′(l∗0, . . . , l

∗
3) = τ2

0,ε
(
(l∗0|l∗1, l∗2, l∗3) − (l∗1|l∗0, l∗2, l∗3) + (l∗2|l∗0, l∗1, l∗3) − (l∗3|l∗0, l∗1, l∗2)

)

First we calculate the first part of the map τ2
0,ε.

= − (l∗0l∗2l∗3)ε
(l0l2l3)

⊗ (l0l1l2)
(l0l1l3)

+
(l∗0l∗1l∗3)ε
(l0l1l3)

⊗ (l0l2l1)
(l0l2l3)

− (l∗0l∗1l∗2)ε
(l0l1l2)

⊗ (l0l3l1)
(l0l3l2)

+
(l∗1l∗2l∗3)ε
(l1l2l3)

⊗ (l1l0l2)
(l1l0l3)

− (l∗1l∗0l∗3)ε
(l1l0l3)

⊗ (l1l2l0)
(l1l2l3)

+
(l∗1l∗0l∗2)ε
(l1l0l2)

⊗ (l1l3l0)
(l1l3l2)

− (l∗2l∗1l∗3)ε
(l2l1l3)

⊗ (l2l0l1)
(l2l0l3)

+
(l∗2l∗0l∗3)ε
(l2l0l3)

⊗ (l2l1l0)
(l2l1l3)

− (l∗2l∗0l∗1)ε
(l2l0l1)

⊗ (l2l3l0)
(l2l3l1)

+
(l∗3l∗1l∗2)ε
(l3l1l2)

⊗ (l3l0l1)
(l3l0l2)

− (l∗3l∗0l∗2)ε
(l3l0l2)

⊗ (l3l1l0)
(l3l1l2)

+
(l∗3l∗0l∗1)ε
(l3l0l1)

⊗ (l3l2l0)
(l3l2l1)

Clearly the above gives zero. Similarly calculate the second part of the map.

=
(l∗0l∗1l∗3)ε
(l0l1l3)

∧ (l∗0l∗2l∗3)ε
(l0l2l3)

+
(l∗0l∗1l∗2)ε
(l0l1l2)

∧ (l∗0l∗1l∗3)ε
(l0l1l3)

+
(l∗0l∗2l∗3)ε
(l0l2l3)

∧ (l∗0l∗1l∗2)ε
(l0l1l2)

−(l∗1l∗0l∗3)ε
(l1l0l3)

∧ (l∗1l∗2l∗3)ε
(l1l2l3)

− (l∗1l∗0l∗2)ε
(l1l0l2)

∧ (l∗1l∗0l∗3)ε
(l1l0l3)

− (l∗1l∗2l∗3)ε
(l1l2l3)

∧ (l∗1l∗0l∗2)ε
(l1l0l2)

+
(l∗2l∗0l∗3)ε
(l2l0l3)

∧ (l∗2l∗1l∗3)ε
(l2l1l3)

+
(l∗2l∗0l∗1)ε
(l2l0l1)

∧ (l∗2l∗0l∗3)ε
(l2l0l3)

+
(l∗2l∗1l∗3)ε
(l2l1l3)

∧ (l∗2l∗0l∗1)ε
(l2l0l1)

−(l∗3l∗0l∗2)ε
(l3l0l2)

∧ (l∗3l∗1l∗2)ε
(l3l1l2)

+
(l∗3l∗0l∗1)ε
(l3l0l1)

∧ (l∗3l∗0l∗2)ε
(l3l0l2)

+
(l∗3l∗1l∗2)ε
(l3l1l2)

∧ (l∗3l∗0l∗1)ε
(l3l0l1)

=0

�

The following result is very important for proving Theorem 4.3.3. Through this result we

are able to see the projected-five term relation in TB2(F).

Lemma 4.2.4. Let x∗0, . . . , x∗4 ∈ �2
F[ε]2

be 5 points in generic position, then

4∑

i=0

(−1)i 〈r(xi|x0, . . . , x̂i, . . . , x4); rε(x∗i |x∗0, . . . , x̂∗i , . . . , x∗4)
]

= 0 ∈ TB2(F), (4.12)
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where x∗i = xi + x′iε and xi, x′i ∈ �2
F

r(x∗i |x∗0, . . . , x̂∗i , . . . , x∗4) = r(xi|x0, . . . , x̂i, . . . , x4) + rε(x∗i |x∗0, . . . , x̂∗i , . . . , x∗4)ε,

where the LHS denotes the projected cross-ratio of any four points projected from the fifth

from x∗0, . . . , x∗4 ∈ �2
F[ε]2

.

Proof: Consider five points y0, . . . , y4 ∈ �1
F in generic position. We can write the five-term

relation in terms of cross-ratios in B2(F) as (see Proposition 4.5 (2)b in [7]):
4∑

i=0

(−1)i[r(y0, . . . , ŷi, . . . , y4)]2 = 0

These five points depend on 2 parameters modulo the action of PGL2(F), whose action

on �1
F is 3-fold transitive, so we can express these five points with two variables modulo

this action, we can put

(y0, . . . , y4) =




1

0

 ,


0

1

 ,


1

1

 ,


1
a

1

 ,


1
b

1



 ,

then we get one of the form of five-term relation in two variables (needs to use inversion

in the last two terms).

[a]2 − [b]2 +

[
b
a

]

2
+

[
1 − a
1 − b

]

2
−


1 − 1

a

1 − 1
b


2

= 0.

Now we consider five points y∗0, . . . , y
∗
4 ∈ �1

F[ε]2
, in generic position, where y∗i = yi + y′iε

for yi, y′i ∈ �1
F . A generic 2 × 2 matrix in PGL2(F[ε]2) depends on 6 = 2(2 × 2) − 2(1)

parameters, while each point in �1
F[ε]2

depends on 2 parameters, so these five points in

�1
F[ε]2

modulo the action of PGL2(F[ε]2) have 4 parameters. Now we can express them

by using four variables we choose:

(
y∗0, . . . , y

∗
4
)

=




1

0

 ,


0

1

 ,


1

1

 ,


1
a − a′

a2ε

1

 ,


1
b − b′

b2ε

1



 .

We calculate all possible determinants which are the following:

∆(y0, y1) = ∆(y0, y2) = ∆(y0, y3) = ∆(y0, y4) = 1,∆(y1, y2) = −1,

∆(y1, y3) = −1
a
,∆(y1, y4) = −1

b
,∆(y2, y3) = 1 − 1

a
,∆(y2, y4) = 1 − 1

b

∆(y∗0, y
∗
1)ε = ∆(y∗0, y

∗
2)ε = ∆(y∗0, y

∗
3)ε = ∆(y∗0, y

∗
4)ε = ∆(y∗1, y

∗
2)ε = 0

∆(y∗1, y
∗
3)ε = ∆(y∗2, y

∗
3)ε =

a′

a2 ,∆(y∗1, y
∗
4)ε = ∆(y∗2, y

∗
4)ε =

b′

b2



4.2. Dilogarithmic Bicomplexes 53

For y∗0, . . . , y
∗
4 ∈ �1

F[ε]2
, we can write the following expression in TB2(F)

4∑

i=0

(−1)i 〈r(y0, . . . , ŷi, . . . , y4); rε(y∗0, . . . , ŷ
∗
i , . . . , y

∗
4)
]
2

If we expand the above expression and we put all determinants in it we will get the fol-

lowing expression in two variables.

〈a; a′
]
2 − 〈b; b′

]
2 +

〈
b
a

;
ab′ − a′b

a2

]

2
−

〈
1 − b
1 − a

;
(1 − b)a′ − (1 − a)b′

(1 − a)2

]

2

+

〈
a(1 − b)
b(1 − a)

;
b(1 − b)a′ − a(1 − a)b′

(b(1 − a))2

]

2

From (4.12) it is clear that the above is the LHS of the five-term relation in TB2(F). We

will reduce the claim to this latter form of five-term relation.

Consider x0, . . . , x4 ∈ �2
F in generic position. These five points also depend on 2 param-

eters modulo the action of PGL2(F), so we can express these five points in terms of two

variables by the following choice:

(x0, . . . , x4) =





1

0

0


,



0

1

0


,



0

0

1


,



1

1

1


,



1
b

1
a

1





We compute all possible 3 × 3 determinants of the above and put them in the expansion

of the following:
4∑

i=0

(−1)i [r(xi|x0, . . . , x̂i, . . . , x4)]2 ∈ B2(F),

we get the following expression in two variables

[a]2 − b]2 +

[
b
a

]

2
+

[
1 − a
1 − b

]

2
−


1 − 1

a

1 − 1
b


2

,

clearly the above is the LHS of one version of five-term relation in B2(F).

Since by assumption x∗0, . . . , x∗4 ∈ �2
F[ε]2

are 5 points in generic position, we can express

them modulo the action of PGL3(F[ε]2) into 4 parameters then we can choose these points

in terms of four variables in the following way:

(
x∗0, . . . , x∗4

)
=





1

0

0


,



0

1

0


,



0

0

1


,



1

1

1


,



1
b − b′

b2ε

1
a − a′

a2ε

1
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We compute all possible 3 × 3 determinants and substitute them in an expansion of the

following:

4∑

i=0

(−1)i 〈r(xi|x0, . . . , x̂i, . . . , x4); rε(x∗i |x∗0, . . . , x̂∗i , . . . , x∗4)
]
2 ∈ TB2(F),

we get

〈a; a′
]
2 − 〈b; b′

]
2 +

〈
b
a

;
ab′ − a′b

a2

]

2
−

〈
1 − b
1 − a

;
(1 − b)a′ − (1 − a)b′

(1 − a)2

]

2

+

〈
a(1 − b)
b(1 − a)

;
b(1 − b)a′ − a(1 − a)b′

(b(1 − a))2

]

2

which is the five-term expression in TB2(F) up to invoking the inversion relation for the

last two terms, which also holds in TB2(F) �

Lemma 4.2.4 indicates that we now have the projected five-term relation in TB2(F) and

this relation will help us to prove the commutative diagram for weight n = 3 in the

tangential case.

Proposition 4.2.5. The map C5(�3
F[ε]2

)
d′−→ C4(�2

F[ε]2
)
τ2

1,ε−−→ TB(F) is zero.

Proof: We can directly calculate τ2
1ε ◦ d′.

τ2
1,ε ◦ d′(l∗0, . . . , l

∗
4) = τ2

1,ε


4∑

i=0

(−1)i
(
l∗i |l∗0, . . . , l̂∗i , . . . , l∗4

)

=

4∑

i=0

(−1)i
〈
r
(
li|l0, . . . , l̂i . . . , l4

)
; rε

(
l∗i |l∗0, . . . , l̂∗i , . . . , l∗4

)]
(4.13)

The above is the projected five term relation in TB2(F) by Lemma 4.2.4. �

Theorem 4.2.2 shows that the diagram (4.2a) is commutative and Propositions 4.2.3 and

4.2.5 shows that we have formed a bicomplex between the Grassmannian complex and

Cathelineau’s tangential complex.

4.2.1 Special Case of Derivation

Let us look at our results for a very special derivation D ∈ Der�(F[ε]2, F) to make them

more explicit. Let D ∈ DerZ(F[ε]2, F) be the derivation map in the following way (see

[17] for the discussion related to derivation in F).

D(a + bε) = b
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If u ∈ F[ε]2 then D(u) ∈ F and holds the following rules:

D(u ± v) = D(u) ± D(v)

D(uv) = uD(v) + vD(u)

for all u, v ∈ F[ε]2

We can use this D in our case where ∆(l∗i , l
∗
j) ∈ F[ε]2

D
(
∆(l∗i , l

∗
j)
)

= D
(
∆(li, l j) + ∆(l∗i , l

∗
j)εε

)
= ∆(l∗i , l

∗
j)ε

Now (4.10) and (4.11) can be written here combine by using D.
( (

D(l∗1l∗2)
(l1l2)

+
D(l∗0l∗3)
(l0l3)

− D(l∗1l∗3)
(l1l3)

− D(l∗0l∗2)
(l0l2)

)
⊗ (l0l1)(l2l3)

(l0l2)(l1l3)

+

(
D(l∗1l∗3)
(l1l3)

+
Dε(l∗0l∗2)

(l0l2)
− D(l∗2l∗3)

(l2l3)
− D(l∗0l∗1)

(l0l1)

)
⊗ (l0l3)(l1l2)

(l0l2)(l1l3)

)

+

( (
D(l∗1l∗2)
(l1l2)

+
D(l∗0l∗3)
(l0l3)

− D(l∗1l∗3)
(l1l3)

− D(l∗0l∗2)
(l0l2)

)

∧
(

D(l∗2l∗3)
(l2l3)

+
D(l∗0l∗1)
(l0l1)

− D(l∗1l∗3)
(l1l3)

− D(l∗0l∗2)
(l0l2)

) )
∈ (

F ⊗ F×
) ⊕

(∧
2F

)

Example 4.2.6. If we specialise ε 7→ 0 then F[ε]2 → F and replace D ∈ Der�(F[ε]2, F)

with D ∈ DerZF as defined in (2.4.1) then the above becomes
(
D log

(l0l3)(l1l2)
(l0l2)(l1l3)

⊗ (l0l1)(l2l3)
(l0l2)(l1l3)

+ D log
(l0l1)(l2l3)
(l0l2)(l1l3)

⊗ (l0l3)(l1l2)
(l0l2)(l1l3)

)

+

(
D log

(l0l1)(l2l3)
(l0l2)(l1l3)

∧ D log
(l0l3)(l1l2)
(l0l2)(l1l3)

)
∈ (

F ⊗ F×
) ⊕

(∧
2F

)

From the above expression it is clear that the first part of the sum is same as ∂D ◦
τ2

1(l0, . . . , l3) = τ2
0 ◦ d(l0, . . . , l3) which we have shown in Lemma 3.1.3. This indicates

that (3.1a) in §3.1 is a special case of (4.2a). Further, when Goncharov found the mor-

phisms between Bloch-Suslin complex and Grassmannian complex [9], he got

δ ◦ f 2
1 (l0, . . . , l3) = f 2

0 ◦ d(l0, . . . , l3) =
(l0l1)(l2l3)
(l0l2)(l1l3)

∧ (l0l3)(l1l2)
(l0l2)(l1l3)

∈
∧

2F×

from both sides of the commutative diagram, where δ, f 2
0 and f 2

1 are defined at the end of

§3.2, but we have here through this example

D log
(l0l1)(l2l3)
(l0l2)(l1l3)

∧ D log
(l0l3)(l1l2)
(l0l2)(l1l3)

∈
∧

2F

with the comparison of above two expressions one can say that the second part of the sum

is D log of the Goncharov’s case.
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4.3 Trilogarithmic Complexes

We have already discussed the tangent group (or �-module) TB2(F) over F[ε]2 in §4.2.

In this section we will discuss group TB3(F) and its functional equations and will connect

Grassmannian complex and tangential complex to Goncharov complex.

4.3.1 Definition and functional equations of TB3(F):

The �-module TB3(F) over F[ε]2 is defined as the group generated by:

〈a; b] = [a + bε] − [a] ∈ � [F[ε]2] , a, b ∈ F, a , 0, 1

and quotiented by the kernel of the following map

∂ε,3 : � [F[ε]2]→ TB2(F) ⊗ F× ⊕ F ⊗ B2(F), 〈a; b] 7→ 〈a; b]2 ⊗ a +
b
a
⊗ [a]2

Now we can say that 〈a; b]3 ∈ TB3(F) ⊂ �[F[ε]2]/ ker ∂ε,3

We have the following relations which are satisfied in TB3(F).

1. The three-term relation.

〈1 − a; (1 − a)ε]3 − 〈a; aε]3 +

〈
1 − 1

a
;
(
1 − 1

a

)

ε

]

3

= 0 ∈ TB3(F)

We can verify that the three-term relation lies in the kernel of ∂ε, where ∂ε is induced by

∂ε,3 defined above.

∂ε : TB3(F)→ TB2(F) ⊗ F× ⊕ F ⊗ B2(F), 〈a; b]3 7→ 〈a; b]2 ⊗ a +
b
a
⊗ [a]2

∂ε

(
〈1 − a; (1 − a)ε]3 − 〈a; aε]3 +

〈
1 − 1

a
;
(
1 − 1

a

)

ε

]

3

)

=〈1 − a; (1 − a)ε]2 ⊗ (1 − a) +
(1 − a)ε

1 − a
⊗ [1 − a]2 − 〈a; aε]2 ⊗ a

−aε
a
⊗ [a]2 +

〈
1 − 1

a
;
(
1 − 1

a

)

ε

]

2

⊗
(
1 − 1

a

)
+

(
1 − 1

a

)
ε

1 − 1
a

⊗
[
1 − 1

a

]

2
(4.14)

For simplification separate the parts in TB2(F) ⊗ F× and F ⊗ B2(F).
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The part TB2(F) ⊗ F× is

=〈1 − a; (1 − a)ε]2 ⊗ (1 − a) − 〈a; aε]2 ⊗ a

+

〈
1 − 1

a
;
(
1 − 1

a

)

ε

]

2

⊗
(
1 − 1

a

)

Use the two-term relation in TB2(F) for the first term then combine it with second term.

Similarly use two term relation in third term, then we will have

〈a; aε]2 ⊗
(
1 − 1

a

)
+

〈
1
a

;
(
1
a

)

ε

]

2

⊗
(
1 − 1

a

)
;

we know that (
1
a

)

ε

= −aε
a2

so the above becomes (
〈a; aε]2 +

〈
1
a

;−aε
a2

]

2

)
⊗

(
1 − 1

a

)

the left hand factor vanishes due to the inversion relation in TB2(F).

The F ⊗ B2(F) part of (4.14) will be

=
(1 − a)ε

1 − a
⊗ [1 − a]2 − aε

a
⊗ [a]2 +

(
1 − 1

a

)
ε

1 − 1
a

⊗
[
1 − 1

a

]

2

=
−aε

1 − a
⊗ [1 − a]2 − aε

a
⊗ [a]2 +

aε
a2

− 1−a
a

⊗
[
1 − 1

a

]

2

use two term relation in first and last terms and

then inversion relation in last term in B2(F)

=

(
aε

1 − a
− aε

a
− aε

a(1 − a)

)
⊗ [a]2

This gives zero since we are working modulo 2 torsion.

2. The inversion relation

〈a; aε]3 =

〈
1
a

;
(
1
a

)

ε

]

3

3. The Cathelineau 22-term relation ([7])

This relation J(a, b, c) for the indeterminates a, b, c can be written in this way:

J(a, b, c) = [[a, c]] − [[b, c]] + a
[[

b
a
, c

]]
+ (1 − a)

[[
1 − b
1 − a

, c
]]
, (4.15)
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where

[[a, b]] = (b − a)τ(a, b) +
1 − b
1 − a

σ(a) +
1 − a
1 − b

σ(b),

while τ(a, b) is defined via five term relation and ?-action. We take 〈xi; xi,ε]3 with coeffi-

cient 1
1−xi

which is handled by ?-action.

τ(a, b) =

〈
a; aε · 1

1 − a

]

3
−

〈
b; bε · 1

1 − b

]

3
+

〈
b
a

;
(
b
a

)

ε

· 1
a − b

]

3

−
〈

1 − b
1 − a

;
(
1 − b
1 − a

)

ε

· 1
b − a

]

3

−
〈

a(1 − b)
b(1 − a)

;
(
a(1 − b)
b(1 − a)

)

ε

· 1
b − a

]

3

and

σ(a) = 〈a; aε · a]3 + 〈1 − a; (1 − a)ε · (1 − a)]3.

Then we can calculate Cathelineau’s 22-term expression by substituting all values in

(4.15).

J(a, b, c) =〈a; aεc]3 − 〈b; bεc]3 + 〈c; cε(a − b + 1)]3

+〈1 − a; (1 − a)ε(1 − c)]3 − 〈1 − b; (1 − b)ε(1 − c)]3 + 〈1 − c; (1 − c)ε(b − a)]3

−
〈c

a
;
(c
a

)
ε

]
3

+

〈c
b

;
(c
b

)
ε

]
3

+

〈
b
a

;
(
b
a

)

ε

c
]

3

−
〈

1 − c
1 − a

;
(

1 − c
1 − a

)

ε

]

3

+

〈
1 − c
1 − b

;
(

1 − c
1 − b

)

ε

]

3

+

〈
1 − b
1 − a

;
(
1 − b
1 − a

)

ε

c
]

3

+

〈
a(1 − c)
c(1 − a)

;
(
a(1 − c)
c(1 − a)

)

ε

]

3

−
〈ca

b
;
(ca

b

)
ε

]
3
−

〈
b(1 − c)
c(1 − b)

;
(
b(1 − c)
c(1 − b)

)

ε

]

3

+

〈
a − b

a
;
(
a − b

a

)

ε

(1 − c)
]

3

+

〈
b − a
1 − a

;
(
b − a
1 − a

)

ε

(1 − c)
]

3

+

〈
c(1 − a)

1 − b
;
(
c(1 − a)

1 − b

)

ε

]

3

−
〈

(1 − c)a
a − b

;
(
(1 − c)a

a − b

)

ε

]

3

−
〈

(1 − c)(1 − a)
b − a

;
(
(1 − c)(1 − a)

b − a

)

ε

]

3

+

〈
(1 − c)b
c(a − b)

;
(
(1 − c)b
c(a − b)

)

ε

]

3

+

〈
(1 − c)(1 − b)

c(b − a)
;
(
(1 − c)(1 − b)

c(b − a)

)

ε

]

3

(4.16)

For the special condition aε = a(1 − a),bε = b(1 − b) and cε = c(1 − c), this 22-term

expression becomes zero in TB3(F). The proof uses the four-term relation in TB2(F)

which is described with the help of ?-action in TB2(F). We calculate ∂ε (J(a, b, c)) in

steps. First apply ∂ε on each term of (4.16).

First, second and third terms will give us

〈a; aεc]2⊗a+
aεc
a
⊗[a]2−〈b; bεc]2⊗b−bεc

b
⊗[b]2+〈c; cε(a−b+1)]2⊗c+

cε(a − b + 1)
c

⊗[c]2,
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and next three terms are the following:

+〈1 − a; (1 − a)ε(1 − c)]2 ⊗ (1 − a) +
(1 − a)ε(1 − c)

1 − a
⊗ [1 − a]2

−〈1 − b; (1 − b)ε(1 − c)]2 ⊗ (1 − b) − (1 − b)ε(1 − c)
1 − b

⊗ [1 − b]2

+〈1 − c; (1 − c)ε(b − a)]2 ⊗ (1 − c) +
(1 − c)ε(b − a)

1 − c
⊗ [1 − c]2

and similar for others. There are two parts TB2(F) ⊗ F× and F ⊗ B2(F) so, first compute

TB2(F) ⊗ F×. We first collect all the terms of type · · · ⊗ a

=

(
〈a; a(1 − a)c]2 +

〈c
a

;
c
a

(
1 − c

a

)
a
]

2
−

〈
b
a

;
b
a

(
1 − b

a

)
a
]

2

+

〈
a(1 − c)
c(1 − a)

;
a(1 − c)
c(1 − a)

(
1 − a(1 − c)

c(1 − a)

)
c(1 − a)

]

2
−

〈ca
b

;
ca
b

(
1 − ca

b

)
b
]

2

−
〈

a(1 − c)
a − b

;
a(1 − c)

a − b

(
1 − a(1 − c)

a − b

)
(a − b)

]

2

)
⊗ a

=

(
〈c; c(1 − c)a]2 −

〈
b
a

;
b
a

(
1 − b

a

)
a
]

2

−
〈ca

b
;

ca
b

(
1 − ca

b

)
b
]

2
−

〈
a(1 − c)

a − b
;

a(1 − c)
a − b

(
1 − a(1 − c)

a − b

)
(a − b)

]

2

+〈a; a(1 − a)c]2 − 〈c; c(1 − c)a]2 +

〈c
a

;
c
a

(
1 − c

a

)
a
]

2

+

〈
a(1 − c)
c(1 − a)

;
a(1 − c)
c(1 − a)

(
1 − a(1 − c)

c(1 − a)

)
c(1 − a)

]

2

)
⊗ a

=

(
− a ?

{ 〈
b
a

;
b
a

(
1 − b

a

)]

2
− 〈c; c(1 − c)]2 +

〈
c
b
a

;
c
b
a

1 − c
b
a

 b
a


2

−
〈

1 − c
1 − b

a

;
1 − c
1 − b

a

1 − 1 − c
1 − b

a


(
1 − b

a

)
2

}

−
〈

1
a

;
1
a

(
1 − 1

a

)
ac

]

2
+

〈
1
c

;
1
c

(
1 − 1

c

)
ac

]

2

−
〈a

c
;

a
c

(
1 − a

c

)
c
]

2
+

〈
1 − 1

c

1 − 1
a

;
1 − 1

c

1 − 1
a

1 −
1 − 1

c

1 − 1
a

 c(1 − a)


2

)
⊗ a

=

(
− a ? {0} − ac ?

{ 〈
1
a

;
1
a

(
1 − 1

a

)]

2
−

〈
1
c

;
1
c

(
1 − 1

c

)]

2
+

〈
a
c

;
a
c

(
1 − a

c

) 1
a

]

2

+

〈
1 − 1

c

1 − 1
a

;
1 − 1

c

1 − 1
a

1 −
1 − 1

c

1 − 1
a


(
1 − 1

a

)
2

})
⊗ a

= 0
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Similarly, it can be proved for all of them, i.e., · · · ⊗ b, · · · ⊗ c, · · · ⊗ (1− a) and so on. The

other part F ⊗ B2(F) directly gives two-terms and five-terms relations. so it is clear that

∂ε (J(a, b, c)) = 0.

One can write the following complex for TB3(F).

TB3(F)
∂ε−→ TB2(F)⊗F×

⊕
F⊗B2(F)

∂ε−→
(
F ⊗

∧
2F×

)
⊕

(∧
3F

)

4.3.2 Mapping Grassmannian complexes to Tangential complexes in

weight 3:

In this subsection, we will try to find morphisms between this complex and the Grass-

mannian complex and after a long computation we see that each square of the following

diagram is commutative. Consider the following diagram

C6(�3
F[ε]2

) d //

τ3
2,ε

²²

C5(�3
F[ε]2

) d //

τ3
1,ε

²²

C4(�3
F[ε]2

)

τ3
0,ε

²²

TB3(F)
∂ε // (TB2(F) ⊗ F×) ⊕ (F ⊗ B2(F))

∂ε //
(
F ⊗∧2 F×

)
⊕

(∧3 F
)

(4.3a)

Here we define

r(l∗0|l∗1, l∗2, l∗3, l∗4) =
∆(l∗0, l

∗
1, l
∗
4)∆(l∗0, l

∗
2, l
∗
3)

∆(l∗0, l
∗
1, l
∗
3)∆(l∗0, l

∗
2, l
∗
4)

The projected cross-ratio is defined here

r(l∗0|l∗1, l∗2, l∗3, l∗4) = r(l0|l1, l2, l3, l4) + rε(l∗0|l∗1, l∗2, l∗3, l∗4)ε

where

r(l0|l1, l2, l3, l4) =
∆(l0, l1, l4)∆(l0, l2, l3)
∆(l0, l1, l3)∆(l0, l2, l4)

rε(l∗0|l∗1, l∗2, l∗3, l∗4) =
u

∆(l0, l1, l3)2∆(l0, l2, l4)2

u = − ∆(l0, l1, l4)∆(l0, l2, l3){∆(l0, l1, l3)∆(l∗0, l
∗
2, l
∗
4)ε + ∆(l0, l2, l4)∆(l∗0, l

∗
1, l
∗
3)ε}

+ ∆(l0, l1, l3)∆(l0, l2, l4){∆(l0, l1, l4)∆(l∗0, l
∗
2, l
∗
3)ε + ∆(l0, l2, l3)∆(l∗0, l

∗
1, l
∗
4)ε}
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where the morphisms between the two complexes are defined as follows:

τ3
0,ε(l

∗
0, . . . , l

∗
3)

=

3∑

i=0

(−1)i

(
∆(l∗0, . . . , l̂

∗
i , . . . , l

∗
3)ε

∆(l0, . . . , l̂i, . . . , l3)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)

∧ ∆(l0, . . . , l̂i+3, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)
+

3∧

j=0
j,i

∆(l∗0, . . . , l̂
∗
j, . . . , l

∗
3)ε

∆(l0, . . . , l̂ j, . . . , l3)

)
, i mod 4,

τ3
1,ε(l

∗
0, . . . , l

∗
4)

= −1
3

4∑

i=0

(−1)i

( 〈
r(li|l0, . . . , l̂i, . . . , l4); rε(l∗i |l∗0, . . . , l̂∗i, . . . , l∗4)

]
2
⊗

∏

i, j

∆(l̂i, l̂ j)

+

4∑

j=0
j,i


∆(l∗0, . . . , l̂

∗
i , . . . , l̂

∗
j, . . . , l

∗
4)ε

∆(l0, . . . , l̂i, . . . , l̂ j, . . . , l4)

 ⊗
[
r(li|l0, . . . , l̂i, . . . , l4)

]
2

)

and

τ3
2ε(l

∗
0, . . . , l

∗
5) =

2
45

Alt6
〈
r3(l0, . . . , l5); r3,ε(l∗0, . . . , l

∗
5)
]
3

where

r3(l0, . . . , l5) =
(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

and

r3,ε(l∗0, . . . , l
∗
5)

=
{(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)}ε

(l0l1l4)(l1l2l5)(l2l0l3)
− (l0l1l3)(l1l2l4)(l2l0l5)

(l0l1l4)(l1l2l5)(l2l0l3)
{(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)}ε

(l0l1l4)(l1l2l5)(l2l0l3)
(4.17)

the map ∂ε is defined as

∂ε (〈a; b]2 ⊗ c + x ⊗ [y]2)

=

(
− b

1 − a
⊗ a ∧ c − b

a
⊗ (1 − a) ∧ c + x ⊗ (1 − y) ∧ y

)
+

(
b

1 − a
∧ b

a
∧ x

)

and

∂ε(〈a; b]3) = 〈a; b]2 ⊗ a +
b
a
⊗ [a]2
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Theorem 4.3.1. The right square of the diagram (4.3a), i.e.

C5(�3
F[ε]2

)

τ3
1,ε

²²

d // C4(�3
F[ε]2

)

τ3
0,ε

²²

(TB2(F) ⊗ F×) ⊕ (F ⊗ B2(F))
∂ε //

(
F ⊗∧2 F×

)
⊕

(∧3 F
)

is commutative, i.e. τ3
0,ε ◦ d = ∂ε ◦ τ3

1,ε

Proof: First we divide the map τ3
0,ε = τ(1) + τ(2) then calculate τ(1) ◦ d(l∗0, . . . , l

∗
4)

τ(1) ◦ d(l∗0, . . . , l
∗
4) = τ3

0,ε


4∑

i=0

(−1)i(l∗0, . . . , l̂
∗
i , . . . , l

∗
4)



= Ãlt(01234)

( 3∑

i=0

(−1)i
(∆(l∗0, . . . , l̂

∗
i , . . . , l

∗
3)ε

∆(l0, . . . , l̂i, . . . , l3)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)

∧ ∆(l0, . . . , l̂i+3, . . . , l3)

∆(l0, . . . , l̂i+2, . . . , l3)

)
, i mod 4

)
(4.18)

We expand the inner sum first that contains 12 terms and passing alternation to the sum,

gives us 60 different terms overall. We collect terms involving same
∆(l∗i ,l

∗
j ,l
∗
k)

∆(li,l j,lk) ⊗· · · together

for calculation purpose. On the other hand second part of the map is the following:

τ(1) ◦ d(l∗0, . . . , l
∗
4)

=Ãlt(01234)

( 3∑

i=0

(−1)i
3∧

j=0
j,i

∆(l∗0, . . . , l̂
∗
j, . . . , l

∗
3)ε

∆(l0, . . . , l̂ j, . . . , l3)

)
(4.19)

The other side of the proof requires very long computations. For the calculation of ∂ε◦τ3
1,ε

we will use short hand (l∗i l∗jl
∗
k)ε for ∆(l∗i , l

∗
j, l
∗
k)ε and (lil jlk) for ∆((li, l j, lk). First we write

∂ε ◦ τ3
1,ε(l

∗
0, . . . , l

∗
4) by using the definitions above.

= ∂ε

(
− 1

3

4∑

i=0

(−1)i
( 〈

r(li|l0, . . . , l̂i, . . . , l4); rε(l∗i |l∗0, . . . , l̂∗i, . . . , l∗4)
]

2
⊗

∏

i, j

∆(l̂i, l̂ j)

+

4∑

j=0
j,i


∆(l∗0, . . . , l̂

∗
i , . . . , l̂

∗
j, . . . , l

∗
4)ε

∆(l0, . . . , l̂i, . . . , l̂ j, . . . , l4)

 ⊗
[
r(li|l0, . . . , l̂i, . . . , l4)

]
2

))
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then we divide ∂ε = ∂(1) + ∂(2). The first part ∂(1) ◦ τ3
1,ε(l

∗
0, . . . , l

∗
4) is

= −1
3

4∑

i=0

(−1)i

(
− rε(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)

1 − r(li|l0, . . . , l̂i, . . . , l4)
⊗ r(li|l0, . . . , l̂i, . . . , l4) ∧

∏

i, j

(l̂i, l̂ j)

−rε(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)

r(li|l0, . . . , l̂i, . . . , l4)
⊗ (1 − r(li|l0, . . . , l̂i, . . . , l4)) ∧

∏

i, j

(l̂i, l̂ j)

+

4∑

j=0
j,i


∆(l∗0, . . . , l̂

∗
i , . . . , l̂

∗
j, . . . , l

∗
4)ε

∆(l0, . . . , l̂i, . . . , l̂ j, . . . , l4)

 ⊗ (1 − r(li|l0, . . . , l̂i, . . . , l4))

∧r(li|l0, . . . , l̂i, . . . , l4)
)

(4.20)

The second part ∂(2) ◦ τ3
1,ε(l

∗
0, . . . , l

∗
4) is

= −1
3

4∑

i=0

(−1)i

(
−rε(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)

r(li|l0, . . . , l̂i, . . . , l4)
∧ rε(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)

1 − r(li|l0, . . . , l̂i, . . . , l4)

∧
4∑

j=0
j,i


∆(l∗0, . . . , l̂

∗
i , . . . , l̂

∗
j, . . . , l

∗
4)ε

∆(l0, . . . , l̂i, . . . , l̂ j, . . . , l4)


)

(4.21)

then we calculate bε
a and bε

1−a . i.e. all the values of the form rε(l∗0 |l∗1,l∗2,l∗3,l∗4)
r(l0 |l1,l2,l3,l4) and rε(l∗0 |l∗1,l∗2,l∗3,l∗4)

1−r(l0 |l1,l2,l3,l4) .

By using formula (4.6) we have

rε(l∗0|l∗1, l∗2, l∗3, l∗4)
r(l0|l1, l2, l3, l4)

=
(l∗0l∗1l∗4)ε
(l0l1l4)

+
(l∗0l∗2l∗3)ε
(l0l2l3)

− (l∗0l∗2l∗4)ε
(l0l2l4)

− (l∗0l∗1l∗3)ε
(l0l1l3)

Similarly we can find this ratio for each value of i = 0, . . . , 4. Now use formula (4.6) as

well as identities (4.1) and 4.3, we have

rε(l∗0|l∗1, l∗2, l∗3, l∗4)
1 − r(l0|l1, l2, l3, l4)

=
(l∗0l∗2l∗4)ε
(l0l2l4)

+
(l∗0l∗1l∗3)ε
(l0l1l3)

− (l∗0l∗3l∗4)ε
(l0l3l4)

− (l∗0l∗1l∗2)ε
(l0l1l2)

After calculating all these values. Expand the sums (4.20) and (4.21) and put all values

what we have calculated above. Let us talk about (4.20). In this sum we have huge

amount of terms, so we group them in a suitable way. First collect all the terms involving
(l∗0l∗1l∗2)ε
(l0l1l2) ⊗· · · , we find that there are 6 different terms with coefficient -3 involving (l∗0l∗1l∗2)ε

(l0l1l2) ⊗· · ·

−3
(l∗0l∗1l∗2)ε
(l0l1l2)

⊗
(
(l0l1l3) ∧ (l1l2l3) + (l0l2l4) ∧ (l1l2l3) + (l0l1l4) ∧ (l0l2l4)

−(l0l1l3) ∧ (l0l2l3) − (l0l1l4) ∧ (l1l2l4) − (l0l2l3) ∧ (l1l2l3)
)
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There are exactly 10 possible terms of
(l∗i l∗j l

∗
k)ε

(lil jlk) . Compute all of them individually. We will

see that each will have the coefficient −3 that will be cancelled by −1
3 in (4.20) and then

combine 60 different terms with 6 in a group of same
(l∗i l∗j l

∗
k)ε

(lil jlk) , write in the sum form then

we will note that it will be the same as (4.18).

Computation for the second part is relatively easy and direct. We need to put all values of

the form rε(l∗0 |l∗1,l∗2,l∗3,l∗4)
r(l0 |l1,l2,l3,l4) and rε(l∗0 |l∗1,l∗2,l∗3,l∗4)

1−r(l0 |l1,l2,l3,l4) in (4.21), expand the sums, use a ∧ a = 0 modulo 2

torsion. Here we will have simplified result which can be recombined in the sum notation

which will be same as (4.19). �

Example 4.3.2.

In this example we will discuss the part of the commutative diagrams which we have

discussed in previous chapter i.e. F ⊗∧2 F×, Goncharov has discussed in [9] i.e.
∧3 F×

and the last part of diagram (4.3a), i.e.
(
F ⊗∧2 F×

)
⊕

(∧3 F
)
. We will also try to find

some relations with the continuation of example 4.2.6. Let us use D ∈ Der�(F[ε]2, F)

defined in §4.2.1, here in this case, we have

D
(
∆(l∗i , l

∗
j, l
∗
k)
)

= D
(
∆(li, l j, lk) + ∆(l∗i , l

∗
j, l
∗
k)εε

)
= ∆(l∗i , l

∗
j, l
∗
k)ε

For the comparison, it is enough to see the images of f 3
0 (defined in [9]), τ3

0 and τ3
0,ε in

their respective qualifying complex. First find τ3
0,ε(l

∗
0, . . . , l

∗
3), which shall be the sum of

Ãlt(01234)

( 3∑

i=0

(−1)i
(D

(
∆(l∗0, . . . , l̂

∗
i , . . . , l

∗
3, l
∗
4)
)

∆(l0, . . . , l̂i, . . . , l3, l4)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

∧ ∆(l0, . . . , l̂i+3, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

)
i mod 4

)
∈ F ⊗

∧
2F×

and

Ãlt(01234)



3∑

i=0

(−1)i
3∧

j=0
j,i

D
(
∆(l∗0, . . . , l̂

∗
j, . . . , l

∗
3, l
∗
4)
)

∆(l0, . . . , l̂ j, . . . , l3, l4)


∈

∧
3F

As we did in example 4.2.6. For ε → 0 we have F[ε]2 → F and (l∗i , l
∗
j, l
∗
k) → (li, l j, lk). In

this situation one can replace Dε ∈ Der�(F[ε]2, F) by D ∈ Der�F. Then above becomes
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the sum of

Ãlt(01234)

( 3∑

i=0

(−1)i
(D

(
∆(l0, . . . , l̂i, . . . , l3, l4)

)

∆(l0, . . . , l̂i, . . . , l3, l4)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

∧ ∆(l0, . . . , l̂i+3, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

)
i mod 4

)
∈ F ⊗

∧
2F×

and

Ãlt(01234)



3∑

i=0

(−1)i
3∧

j=0
j,i

D
(
∆(l0, . . . , l̂ j, . . . , l3, l4)

)

∆(l0, . . . , l̂ j, . . . , l3, l4)
i mod 4


∈

∧
3F

First expression of the above is just τ3
0 ◦ d(l0, . . . , l4) and second expression of the above

is D log of f 3
0 ◦ d(l0, . . . , l4). In other words one can make a remark that in diagram (3.2a),

F ⊗ ∧2 F× is a special case of τ3
0,ε ◦ d(l0, . . . , l4) = ∂ε ◦ τ3

1,ε(l0, . . . , l4) in diagram (4.3a)

when ε → 0 and under these special condition D log of
∧3 F× in diagram (6.10) in [9] is

∧3 F in diagram (4.3a).

Theorem 4.3.3. The left square of the diagram (4.3a), i.e.

C6(�3
F[ε]2

)

τ3
2,ε

²²

d // C5(�3
F[ε]2

)

τ3
1,ε

²²
TB3(F)

∂ε // (TB2(F) ⊗ F×) ⊕ (F ⊗ B2(F))

is commutative i.e. τ3
2,ε ◦ ∂ε = d ◦ τ3

1,ε

Proof: The map τ3
2,ε gives 720 terms and due to symmetry (cyclic and inverse) we find

120 different ones (up to inverse). We will use the same technique here which we have

used in the proof of theorem 4.3.1. By definition, we have

τ3
2,ε(l

∗
0, . . . , l

∗
5) =

2
45

Alt6
〈
r3(l0, . . . , l5); r3,ε(l∗0, . . . , l

∗
5)
]
3

For convenience and similar to our previous conventions, we will abbreviate our notation

by dropping ∆ and commas.

∂ε ◦ τ3
2ε(l

∗
0 . . . l

∗
5)

=
2

45
Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ r3(l0 . . . l5) +

r3,ε(l∗0 . . . l
∗
5)

r3(l0 . . . l5)
⊗ [r3(l0 . . . l5)]2

}

(4.22)
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We need to compute the value of r3,ε(l∗0...l
∗
5)

r3(l0...l5) which is

=
(l∗0l∗1l∗3)ε
(l0l1l3)

+
(l∗1l∗2l∗4)ε
(l1l2l4)

+
(l∗2l∗0l∗5)ε
(l2l0l5)

− (l∗0l∗1l∗4)ε
(l0l1l4)

− (l∗1l∗2l∗5)ε
(l1l2l5)

− (l∗2l∗0l∗3)ε
(l2l0l3)

(4.22) can also be written as

=
2
45

Alt6

{ 〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗

(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

+

(
(l∗0l∗1l∗3)ε
(l0l1l3)

+
(l∗1l∗2l∗4)ε
(l1l2l4)

+
(l∗2l∗0l∗5)ε
(l2l0l5)

− (l∗0l∗1l∗4)ε
(l0l1l4)

− (l∗1l∗2l∗5)ε
(l1l2l5)

− (l∗2l∗0l∗3)ε
(l2l0l3)

)
⊗ [r3(l0 . . . l5)]2

}

We will consider here only first part of the above relation.

2
45

Alt6{〈r3(l0 . . . l5); r3,ε(l∗0 . . . l
∗
5)
]
2 ⊗

(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

Further,

=Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ (l0l1l3)

}
+ Alt6

{〈
r3(l0 . . . l5); r3,εn(l∗0 . . . l

∗
5)
]
2 ⊗ (l1l2l4)

}

+Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ (l2l0l5)

}
− Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ (l0l1l4)

}

−Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ (l1l2l5)

}
− Alt6

{〈
r3(l0 . . . l5); r3,ε(l∗0 . . . l

∗
5)
]
2 ⊗ (l2l0l3)

}

(4.23)

We use the even cycle (l0l1l2)(l3l4l5) ( or (l∗0l∗1l∗2)(l∗3l∗4l∗5)) to obtain

Alt6

{〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 ⊗ (l0l1l3)

}

=Alt6

{〈
r3(l1l2l0l4l5l3); r3,ε(l∗1l∗2l∗0l∗4l∗5l∗3)

]
2 ⊗ (l1l2l4)

}

We can also use here the symmetry

〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 =

〈
r3(l1l2l0l4l5l3); r3,ε(l∗1l∗2l∗0l∗4l∗5l∗3)

]
2

since

r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) = r3,ε(l∗1l∗2l∗0l∗4l∗5l∗3) precisely both have the same factors

and similar for the others as well so that (4.23) can be written as

=
2

15
Alt6

{ 〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 ⊗ (l0l1l3)

− 〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 ⊗ (l0l1l4)

}
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If we apply the odd permutation (l3l4) (or (l∗3l∗4)), then we have

=
2

15
· 2Alt6

{〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 ⊗ (l0l1l3)

}

Again apply an odd permutation (l0l3) ( or (l∗0l∗3))

=
2

15
Alt6

{ 〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2 ⊗ (l0l1l3)

− 〈
r3(l3l1l2l0l4l5); r3,ε(l∗3l∗1l∗2l∗0l∗4l∗5)

]
2 ⊗ (l3l1l0)

}

but up to 2-torsion, which we ignore here, we have (l0l1l3) = (l3l1l0) and then the above

will become

=
2

15
Alt6

{( 〈
r3(l0l1l2l3l4l5); r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)

]
2

− 〈
r3(l3l1l2l0l4l5); r3,ε(l∗3l∗1l∗2l∗0l∗4l∗5)

]
2

)
⊗ (l0l1l3)

}
(4.24)

Recall from (3.2) that the triple-ratio r3(l0l1l2l3l4l5) =
(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3) can be written as the

ratio of two projected cross-ratios.

We will see here that r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) can also be converted into the ratio of two first order

cross-ratios.

Let a and b be two projected cross-ratios whose ratio is the triple-ratio r3(l0l1l2l3l4l5) =

(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3) then r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) will be written as

(
a∗
b∗

)
ε
. Since we can also write as

r3(l∗0l∗1l∗2l∗3l∗4l∗5) = r3(l0l1l2l3l4l5) + r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5)ε

or

r3(l∗0l∗1l∗2l∗3l∗4l∗5) = r3(l0l1l2l3l4l5) +
(
r3(l∗0l∗1l∗2l∗3l∗4l∗5)

)
ε ε

we get

r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) =

(
(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

)

ε

Now it is clear that r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) can also be written as the ratio or product of two

projected cross-ratios. There are exactly three ways to write it (projected by (l∗0 and l∗1),

(l∗1 and l∗2) and (l∗0 and l∗2)) but we will use here l∗1 and l∗2. The last expression can be written

as

r3,ε(l∗0l∗1l∗2l∗3l∗4l∗5) =

(r(l∗2|l∗1l∗0l∗5l∗3)
r(l∗1|l∗0l∗2l∗3l∗4)

)

ε
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and 4.24 can be written as

=
2

15
Alt6



〈

r(l2|l1l0l5l3)
r(l1|l0l2l3l4)

;
(r(l∗2|l∗1l∗0l∗5l∗3)
r(l∗1|l∗0l∗2l∗3l∗4)

)

ε

]

2

−
〈

r(l2|l1l3l5l0)
r(l1|l3l2l0l4)

;
(r(l∗2|l∗1l∗3l∗5l∗0)
r(l∗1|l∗3l∗2l∗0l∗4)

)

ε

]

2

 ⊗ (l0l1l3)


Applying five-term relations in TB2(F) which are analogous to the one in (2.10).

=
2
15

Alt6{
( 〈

r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)
]
2 −

〈
r(l1|l0l2l3l4); rε(l∗1|l∗0l∗2l∗3l∗4)

]
2

−
〈

r(l2|l1l5l3l0)
r(l1|l0l3l4l2)

;
(r(l∗2|l∗1l∗5l∗3l∗0)
r(l∗1|l∗0l∗3l∗4l∗2)

)

ε

]

2

)
⊗ (l0l1l3)} (4.25)

For each individual determinant, e.g. (l0l1l3) will have three terms. First consider the third

term of (4.25)

2
15

Alt6


〈

r(l2|l1l5l3l0)
r(l1|l0l3l4l2)

;
(r(l∗2|l∗1l∗5l∗3l∗0)
r(l∗1|l∗0l∗3l∗4l∗2)

)

ε

]

2

⊗ (l0l1l3)


=
2
15

Alt6


1

36
Alt(l0l1l3)(l2l4l5)


〈

r(l2|l1l5l3l0)
r(l1|l0l3l4l2)

;
(r(l∗2|l∗1l∗5l∗3l∗0)
r(l∗1|l∗0l∗3l∗4l∗2)

)

ε

]

2

⊗ (l0l1l3)



We need a subgroup in S 6 which fixes (l0l1l3) as a determinant i.e. (l0l1l3) ∼ (l3l1l0) ∼
(l3l0l1) · · ·

Here in this case S 3 permuting {l0, l1, l3} and another one permuting {l2, l4, l5} i.e. S 3 × S 3.

Now consider

Alt(l0l1l3)(l2l4l5)


〈

r(l2|l1l5l3l0)
r(l1|l0l3l4l2)

;
(r(l∗2|l∗1l∗5l∗3l∗0)
r(l∗1|l∗0l∗3l∗4l∗2)

)

ε

]

2

⊗ (l0l1l3)


=Alt(l0l1l3)(l2l4l5)


〈

(l2l5l3)(l1l0l4)
(l2l5l0)(l1l3l4)

;
(
(l∗2l∗5l∗3)(l∗1l∗0l∗4)
(l∗2l∗5l∗0)(l∗1l∗3l∗4)

)

ε

]

2

⊗ (l0l1l3)


By using odd permutation (l2l5) the above becomes zero.

then (4.25) becomes

=
2

15
Alt6

{(〈
r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)

]
2 −

〈
r(l1|l0l2l3l4); rε(l∗1|l∗0l∗2l∗3l∗4)

]
2

)
⊗ (l0l1l3)

}
(4.26)

Consider the first term now,

2
15

Alt6

{〈
r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)

]
2 ⊗ (l0l1l3)

}

=
2
15

Alt6

{
1

36
Alt(l0l1l3)(l2l4l5)

{〈
r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)

]
2 ⊗ (l0l1l3)

}}

The permutation (l0l2l3) does not have any role because the ratio is projected by 2. So, it

will be reduced to S 3.

=
2

15
Alt6

{
1
6

Alt(l2l4l5)

{〈
r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)

]
2 ⊗ (l0l1l3)

}}
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Write all possible inner alternation, then

=
1
45

Alt6

{( 〈
r(l4|l1l0l2l3); rε(l∗4|l∗1l∗0l∗2l∗3)

]
2 −

〈
r(l2|l1l0l4l3); rε(l∗2|l∗1l∗0l∗4l∗3)

]
2

+
〈
r(l5|l1l0l4l3); rε(l∗5|l∗1l∗0l∗4l∗3)

]
2 −

〈
r(l4|l1l0l5l3); rε(l∗4|l∗1l∗0l∗5l∗3)

]
2

+
〈
r(l2|l1l0l5l3); rε(l∗2|l∗1l∗0l∗5l∗3)

]
2 −

〈
r(l5|l1l0l2l3); rε(l∗5|l∗1l∗0l∗2l∗3)

]
2

)
⊗ (l0l1l3)

}

Now we can use projected five-term relation for TB2(F) here,

=
1

45
Alt6

{( 〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)

]
2 −

〈
r(l1|l0l2l3l4); rε(l∗1|l∗0l∗2l∗3l∗4)

]
2

− 〈
r(l3|l0l1l2l4); rε(l∗3|l∗0l∗1l∗2l∗4)

]
2 +

〈
r(l0|l1l4l3l5); rε(l∗0|l∗1l∗4l∗3l∗5)

]
2

− 〈
r(l1|l0l4l3l5); rε(l∗1|l∗0l∗4l∗3l∗5)

]
2 +

〈
r(l3|l0l1l4l5); rε(l∗3|l∗0l∗1l∗4l∗5)

]
2

+
〈
r(l0|l1l5l3l2); rε(l∗0|l∗1l∗5l∗3l∗2)

]
2 −

〈
r(l1|l0l5l3l2); rε(l∗1|l∗0l∗5l∗3l∗2)

]
2

+
〈
r(l3|l0l1l5l2); rε(l∗3|l∗0l∗1l∗5l∗2)

]
2

)
⊗ (l0l1l3)

}

Use the cycle (l0l1l3)(l2l4l5) then we get

=
1

45
· 9Alt6

{〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)

]
2 ⊗ (l0l1l3)

}
(4.27)

The second term of (4.26) can be written as

1
45
· −6Alt6

{〈
r(l1|l0l2l3l4); rε(l∗1|l∗0l∗2l∗3l∗4)

]
2 ⊗ (l0l1l3)

}

(4.27) can be combined with the above so we get

=
1

45
Alt6

{(
9
〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)

]
2 − 6

〈
r(l1|l0l2l3l4); rε(l∗1|l∗0l∗2l∗3l∗4)

]
2

)
⊗ (l0l1l3)

}

(4.28)

Use the permutation (l0l1l3)(l2l4l5) to get

=
1
3

Alt6

{〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)

]
2 ⊗ (l0l1l3)

}

Since B2(F) satisfies five-term relation then we can write the following.

=
1
3

Alt6

{〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)

]
2 ⊗ (l0l1l3) +

(l∗0l∗1l∗3)ε
(l0l1l3)

⊗ [r(l0|l1l2l3l4)]2

}
(4.29)

Now go to the other side. Map τ3
1,ε can also be written in the alternation sum form

τ3
1,ε(l

∗
0 . . . l

∗
4) =

1
3

Alt{ 〈r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)
]
2 ⊗ (l0l1l2)

+
(l∗0l∗1l∗2)ε
(l0l1l2)

⊗ [r(l0|l1l2l3l4)]2}
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Compute τ3
1,ε ◦d(l∗0 . . . l

∗
5) and apply cycle (l0l1l2l3l4l5) for d and then expand Alt5 from the

definition of τ3
1,ε so we get

τ3
1ε ◦ d(l∗0 . . . l

∗
5) =

1
3

Alt6{ 〈r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4)
]
2 ⊗ (l0l1l2)

+
(l∗0l∗1l∗2)ε
(l0l1l2)

⊗ [r(l0|l1l2l3l4)]2}

Use the odd permutation (l2l3), then

= −1
3

Alt6{ 〈r(l0|l1l3l2l4); rε(l∗0|l∗1l∗3l∗2l∗4)
]
2 ⊗ (l0l1l3)

+
(l∗0l∗1l∗3)ε
(l0l1l3)

⊗ [r(l0|l1l3l2l4)]2}

Finally use two-term relation in TB2(F) and B2(F) to get the correct sign. The final

answer will be the same as (4.29). �

If we combine Theorem 4.3.1 and 4.3.3, then we see that the diagram (B.2a) is commuta-

tive and have maps of morphisms between the Grassmannian complex and the tangential

complex for weight 3. Here we have some results

Proposition 4.3.4. The map C5(�4
F[ε]2

)
d′−→ C4(�3

F[ε]2
)
τ3

0,ε−−→
(
F ⊗∧2 F×

)
⊕

(∧3 F
)

is zero.

Proof: The proof of this lemma is direct by calculation. Let (l∗0, . . . , l
∗
4) ∈ C5(�4

F[ε]2
)

Where

l∗i =



a + aεε

b + bεε

c + cεε

d + dεε



=



a

b

c

d



+



aε

bε

cε

dεε



= li + liεε

Let ω be the volume formed in four-dimensional vector space, and ∆(li, ·, ·, ·) be the vol-

ume form in V4/〈li〉.

τ3
0,ε ◦ d′(l∗0, . . . , l

∗
4)

=τ3
0,ε

( 4∑

i=0

(−1)i(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)
)

Consider the first coordinate of the map first

=Ãlt(01234)

( 3∑

i=0

(−1)i
(∆(l∗0, . . . , l̂

∗
i , . . . , l

∗
3, l
∗
4)ε

∆(l0, . . . , l̂i, . . . , l3, l4)
⊗ ∆(l0, . . . , l̂i+1, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

∧ ∆(l0, . . . , l̂i+3, . . . , l3, l4)

∆(l0, . . . , l̂i+2, . . . , l3, l4)

)
i mod 4

)
(4.30)
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First, we expand inner sum which gives us 12 different terms after simplification. When

we apply alternation sum then we get 60 terms and there is direct cancellation which leads

to zero. Now consider the second coordinate , which gives us

Ãlt(01234)



3∑

i=0

(−1)i
3∧

j=0
j,i

∆(l∗0, . . . , l̂
∗
j, . . . , l

∗
3, l
∗
4)ε

∆(l0, . . . , l̂ j, . . . , l3, l4)



Again if we expand inner sum first, then we get only four different terms but after the

application of alternation we get zero. �

As an analogy of Proposition 4.3.4 in higher weight, we present the following result

Proposition 4.3.5. The map Cn+2(�n+1
F[ε]2

)
d′−→ Cn+1(�n

F[ε]2
)
τn

0,ε−−→
(
F ⊗∧n−1 F×

)
⊕ (

∧n F) is

zero, where

τn
0,ε(l

∗
0, . . . , l

∗
n)

=

n∑

i=0

(−1)i

(
∆(l∗0, . . . , l̂

∗
i , . . . , l

∗
n)ε

∆(l0, . . . , l̂i, . . . , ln)
⊗ ∆(l0, . . . , l̂i+1, . . . , ln)

∆(l0, . . . , l̂i+2, . . . , ln)

∧ · · · ∧ ∆(l0, . . . , l̂i+(n−1), . . . , ln)

∆(l0, . . . , l̂i+n, . . . , ln)

)
+

( n∧

j=0
j,i

∆(l∗0, . . . , l̂
∗
j, . . . , l

∗
n)ε

∆(l0, . . . , l̂ j, . . . , ln)

)
,

i mod (n + 1)

Proof: Let (l∗0, . . . , l
∗
n+1) ∈ Cn+2(�n+1

F[ε]2
). We have

τn
0,ε ◦ d′(l∗0, . . . , l

∗
n+1) = τn

0,ε


n∑

i=0

(−1)i(l∗i |l∗0, . . . , l̂∗i , . . . , l∗n+1)



Now use definition of alternation to represent this sum then we have

τn
0,ε ◦ d′(l∗0, . . . , l

∗
n+1)

=Ãlt(0···n+1)

{ n∑

i=0

(−1)i

((∆(l∗0, . . . , l̂
∗
i , . . . , l

∗
n, l
∗
n+1)ε

∆(l0, . . . , l̂i, . . . , ln, ln+1)
⊗ ∆(l0, . . . , l̂i+1, . . . , ln, ln+1)

∆(l0, . . . , l̂i+2, . . . , ln, ln+1)

∧ · · · ∧ ∆(l0, . . . , l̂i+(n−1), . . . , ln, ln+1)

∆(l0, . . . , l̂i+n, . . . , ln, ln+1)

)
+

( n∧

j=0
j,i

∆(l∗0, . . . , l̂
∗
j, . . . , l

∗
n, l
∗
n+1)ε

∆(l0, . . . , l̂ j, . . . , ln, ln+1)

))
,

i mod n + 1
}

(4.31)
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First expand the inner sum on first term that gives n + 1 number of terms. Expand again

by using the properties of wedge that gives n(n + 1) terms. Apply alternation sum on that

gives us n(n + 1)(n + 2) terms, so there are n + 2 sets each consisting n(n + 1) terms and

each term in n(n + 1) term has n + 1 sets of n terms and good thing is that they cancelled

set by set to give zero.

Now expand the inner sum in the second term of (4.31) that gives n + 1 terms and then

apply alternation sum which gives n + 2 sets of n + 1 terms, we find cancellation in the

expansion of sum accordingly which gives zero as well. �

4.4 Tangent Complex for any n

In this subsection, we give suggestions how to define a tangent group TBn(F) for any n

in a similar spirit as in ([12]) and give technique for its appropriateness by relating them

in a suitable complex.

We can write the tangent group TBn(F) for any n by defining the map ∂ : �[F[ε]2] →
TBn−1(F) ⊗ F× ⊕ F ⊗ Bn−1(F).

Define TBn(F) as a �-module over F[ε]2 which is generated by 〈a; b] = [a + bε] − [a] ∈
�[F[ε]2] and quotiented by kernel of the following map

∂ : �[F[ε]2]→ TBn−1(F) ⊗ F× ⊕ F ⊗ Bn−1(F)

∂ : 〈a; b] 7→ 〈a; b]n−1 ⊗ a + (−1)n−1 b
a
⊗ [a]n−1

Then the following becomes a complex

TBn(F)
∂ε−→ TBn−1(F)⊗F×

⊕
F⊗Bn−1(F)

∂ε−→ · · · ∂ε−→ TB2(F)⊗∧n−2F
⊕

F⊗B2(F)⊗∧n−3F×

∂ε−→
(
F ⊗

∧
n−1F×

)
⊕

(∧
nF

)
(4.32)

where ∂ε is induced by ∂ and defined by

∂ε : 〈a; b]n 7→ 〈a; b]n−1 ⊗ a + (−1)n−1 b
a
⊗ [a]n−1

Note: when ∂ε is applied to the group Bn(F) then it agrees with δn defined by ([7])

δn : [a]n 7→



[a]n−1 ⊗ a, for n ≥ 3

(1 − a) ∧ a, for n = 2
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We can show that the equation (4.32) is a complex by considering the part for 2 ≤ k ≤ n−2

· · · ∂ε−→ TBn−k+1(F)⊗∧k−1F×
⊕

F⊗Bn−k+1(F)⊗∧k−2F×

∂ε−→ TBn−k(F)⊗∧kF×
⊕

F⊗Bn−k(F)⊗∧k−1F×

∂ε−→ TBn−k−1(F)⊗∧k+1F×
⊕

F⊗Bn−k−1(F)⊗∧kF×

∂−→ · · ·

Let 〈x; x1]n−k+1 ⊗∧k−1
i=1 yi + a1

a ⊗ [b]n−k+1 ⊗∧k−2
j=1 c j ∈ TBn−k+1(F)⊗∧k−1F×

⊕
F⊗Bn−k+1(F)⊗∧k−2F×

We can do this in two

steps. First calculate ∂ε
(
∂ε

(
〈x; x1]n−k+1 ⊗∧k−1

i=1 yi

))

=∂ε

〈x; x1]n−k ⊗ x ∧
k−1∧

i=1

yi + (−1)n−k x1

x
⊗ [x]n−k ⊗

k−1∧

i=1

yi



=〈x; x1]n−k−1 ⊗ x ∧ x︸︷︷︸
0

∧
k−1∧

i=1

yi + (−1)n−k−1 x1

x
⊗ [x]n−k−1 ⊗ x ∧

k−1∧

i=1

yi

+ (−1)n−k x1

x
⊗ [x]n−k−1 ⊗ x ∧

k−1∧

i=1

yi

=0

In the next step we calculate ∂ε
(
∂ε

(
a1
a ⊗ [b]n−k+1 ⊗∧k−2

j=1 c j

))

∂ε


a1

a
⊗ [b]n−k ⊗ b ∧

k−2∧

j=1

c j

 =
a1

a
⊗ [b]n−k−1 ⊗ b ∧ b︸︷︷︸

0

∧
k−2∧

j=1

c j = 0

We don’t know the homology of Complex (4.32), because we don’t have kernels of the

maps ∂ε but it is expected to be in a similar way as the homology of the complex (2.2).



Appendix A

A.1 Mapping Grassmannian to Goncharov’s complex in

weight 3

To show that the left hand square of the following diagram is commutative, we will re-

prove Theorem 3.10 from [10] (see proof in the appendix of [13]) without using K-theory,

where he construct a morphism from Grassmannian complex to his motivic complex in

weight 3.

C6(3) d //

f 3
2

²²

C5(3) d //

f 3
1

²²

C4(3)

f 3
0

²²
B3(F) δ // B2(F) ⊗ F× δ // ∧3 F×

(A.1a)

where the maps (as described in [10] and [13]) are the following:

f 3
2 (l0, . . . , l5) =

1
15

Alt6

[
∆(l0, l1, l3)∆(l1, l2, l4)∆(l2, l0, l5)
∆(l0, l1, l4)∆(l1, l2, l5)∆(l2, l0, l3)

]

3
,

f 3
1 (l0, . . . , l4) =

1
2

Alt5 {[r(l0|l1, l2, l3, l4)]2 ⊗ ∆(l0, l1, l2)}

and

f 3
0 (l0, . . . , l3) = Alt4 {∆(l0, l1, l2) ∧ ∆(l0, l1, l3) ∧ ∆(l0, l2, l3)}

while

δ ([x]3) = [x]2 ⊗ x and δ ([x]2 ⊗ y) = (1 − x) ∧ x ∧ y

74
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First, we will compute δ ◦ f 3
2 (l0, . . . , l5) and for short hand we will write (i jk) instead of

∆(li, l j, lk)

δ◦ f 3
2 (l0, . . . , l5)

=
1

15
Alt6

{[
(013)(124)(205)
(014)(125)(203)

]

2
⊗ (013)(124)(205)

(014)(125)(203)

}

Use the even cycle (012)(345), then we have

=
1
5

Alt6

{[
(013)(124)(205)
(014)(125)(203)

]

2
⊗ (013)

(014)

}

Use the odd cycle (34)

=
2
5

Alt6

{[
(013)(124)(205)
(014)(125)(203)

]

2
⊗ ∆(013)

}

If we apply the odd permutation (03)

=
1
5

(
Alt6

{[
(013)(124)(205)
(014)(125)(203)

]

2
⊗ (013)

}
− Alt6

{[
(310)(124)(235)
(314)(125)(230)

]

2
⊗ (013)

} )

Now we use the crucial step here in which we rewrite this triple-ratio in the product of

two projected cross-ratios.

=
1
5

Alt6

{([
r(2|1053)
r(1|0234)

]

2
−

[
r(2|1350)
r(1|3204)

]

2

)
⊗ (013)

}

Apply five-term relation in B2(F)) then we will have

=
1
5

Alt6

{(
−

[
r(2|1530)
r(1|0342)

]

2
+ [r(2|1053)]2 − [r(1|0234)]2

)
⊗ (013)

}
(A.1)

We will treat the above three terms individually. We consider first term now,

Alt6

{[
r(2|1530)
r(1|0342)

]

2
⊗ (013)

}

For each individual determinant, e.g. (013), will have the following terms.

Alt6

{[
r(2|1530)
r(1|0342)

]

2
⊗ (013)

}
= Alt6

{
1

36
Alt(013)(245)

([
r(2|1530)
r(1|0342)

]

2
⊗ (013)

)}

We need a subgroup in S 6 which fixes (013) as a determinant i.e. (013) ∼ (310) ∼
(301) · · · .
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Here S 3 permuting {0, 1, 3} and another one permuting {2, 4, 5} i.e. S 3×S 3. Now consider

Alt(013)(245)

{[
r(2|1530)
r(1|0342)

]

2
⊗ (013)

}

=Alt(013)(245)

{[
(210)(235)
(213)(250)

· (104)(132)
(102)(135)

]

2
⊗ (013)

}

=Alt(013)(245)

{[
(253)(104)
(250)(134)

]

2
⊗ (013)

}

By using odd permutation (25) the above becomes

=0

The new shape of (A.1) is

=
1
5

Alt6 {([r(2|1053)]2 − [r(1|0234)]2) ⊗ (013)} (A.2)

Now we will consider the first terms

1
5

Alt6 {[r(2|1053)]2 ⊗ (013)}

=
1
5

Alt6

{
1
6

Alt(245)[r(2|1053)]2 ⊗ (013)
}

=
1

30
Alt6{

(
[r(4|1023)]2 − [r(2|1043)]2

+ [r(5|1043)]2 − [r(4|1053)]2

+ [r(2|1053)]2 − [r(5|1023)]2

)
⊗ (013)}

We are able to use projected five-term relation in B2(F) here.

=
1

30
Alt6{

(
[r(0|1234)]2 − [r(1|0234)]2 − [r(3|0124)]2

+[r(0|1435)]2 − [r(1|0435)]2 + [r(3|0145)]2

+[r(0|1532)]2 − [r(1|0532)]2 + [r(3|0152)]2

)
⊗ (013)}

Use the cycle (013)(245) then we get

=
1

30
· 9Alt6 {[r(0|1234)]2 ⊗ (013)} (A.3)

We also have − 1
5Alt6

{
~r(1|0234)�D

2 ⊗ (013)
}

from (A.2) which can be written as

1
30
· −6Alt6 {[r(1|0234)]2 ⊗ (013)}
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the above expression can be combined with (A.3) and gives

=
1

30
Alt6{

(
9~r(0|1234)�D

2 − 6 ~r(1|0234)�D
2

)
⊗ (013)}

By using cycle (01), we get 1
2Alt6

{
~r(0|1234)�D

2 ⊗ (013)
}

as a result of (A.2). While the

computation of f 3
1 ◦ d(l0, . . . , l4) has no changes and can be performed in the usual way to

get the commutativity.



Appendix B

Second order tangent complex

Here we will define second order tangent complex and will try to relate it with geometric

configurations. This chapter will also describe the application of second component rε2 of

the cross-ratio of vectors in C4(�2
F[ε]3

) or triple-ratio of vectors in C6(�3
F[ε]3

). Construction

of groups and calculations in this chapter are similar to what we have in chapter 4. That’s

why we excluded it from the main text and presented here in the appendix.

B.1 Dilogarithmic complex

We remember from the first chapter that F[ε]3 := F[ε]/ε3 and F×-action in F[ε]3 is

defined as λ : a + b1ε + b2ε
2 7→ a + λb1ε + λb2ε

2, where λ ∈ F× and will be denoted by

?-action. Now we define second order tangent group TB2
2(F) as a �-module generated

by the following

〈a; b1, b2], a, b1, b2 ∈ F, a , 0, 1

where 〈a; b1, b2] = [a + b1ε + b2ε
2] − [a] ∈ �[F[ε]3], quotient with the five term relation.

〈a; aε, aε2] − 〈b; bε, bε2] +

〈
b
a

;
(
b
a

)

ε

,

(
b
a

)

ε2

]
−

〈
1 − b
1 − a

;
(
1 − b
1 − a

)

ε

,

(
1 − b
1 − a

)

ε2

]

+

〈
a(1 − b)
b(1 − a)

;
(
a(1 − b)
b(1 − a)

)

ε

,

(
a(1 − b)
b(1 − a)

)

ε2

]
(B.1)

78
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is denoted by 〈a; b1, b2]2
2, for a, b , 0, 1, a , b where

(
b
a

)

ε

=
abε − aεb

a2
(
1 − b
1 − a

)

ε

=
(1 − b)aε − (1 − a)bε

(1 − a)2
(
a(1 − b)
b(1 − a)

)

ε

=
b(1 − b)aε − a(1 − a)bε

(b(1 − a))2

and
(
b
a

)

ε2

=
a2bε2 − abaε2 − aaεbε + b (aε)2

a3

(
1 − b
1 − a

)

ε2

=
(1 − a)(1 − b)aε2 − (1 − a)2bε2 − (1 − a)aεbε + (1 − b) (aε)2

(1 − a)3
(
a(1 − b)
b(1 − a)

)

ε2

=
A

(b(1 − a))3 ,

where

A =(1 − a)
(
b(1 − b)aε2 − a(1 − b)bε2 − b(1 − a)aεbε + a (bε)2

+b (aε)2 bε
)
− a(1 − b)aε (bε)2

We found some more relations in TB2
2(F) through five term relation.

1. Two-term relation:

〈a; b1, b2]2
2 = −〈1 − a;−b1,−b2]2

2

2. Inversion relation:

〈a; b1, b2]2
2 =

〈
1
a

;−b1

a2 ,−
ab2 − b2

1

a3

]2

2

Let Cm(�2
F[ε]3

) be the free abelian group generated by the configuration (l∗0, . . . , l
∗
m−1) of

m points in �2
F[ε]3

, where �2
F[ε]3

is defined as an affine plane over F[ε]3 (here we assume

that all points are in generic position). In this case the Grassmanian complex will be in

the following shape

· · · d−→ C5(�2
F[ε]3

)
d−→ C4(�2

F[ε]3
)

d−→ C3(�2
F[ε]3

)

d : (l∗0, . . . , l
∗
m−1) 7→

m∑

i=0

(−1)i(l∗0, . . . , l̂
∗
i , . . . , l

∗
m−1)
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where l∗i =


ai + ai,εε + ai,ε2ε2

bi + bi,εε + bi,ε2ε2

 =


ai

bi

 +


ai,ε

bi,ε

 ε +


ai,ε2

bi,ε2

 ε
2 = li + li,εε + li,ε2ε2.

Here we will use second order �-module TB2
2(F).

Consider the following diagram

C4(�2
F[ε]3

) d //

τ2
1,ε2

²²

C3(�2
F[ε]3

)

τ2
0,ε2

²²
TB2

2(F)
∂ε2 // F ⊗ F× ⊕∧ 2F

(B.1a)

the maps of which we defined as follows:

1.

∂ε2 : 〈a; b1, b2] 7→

bε1 + bε

2

2

a
⊗ (1 − a) +

bε1 + bε
2

2

1 − a
⊗ a

 +


bε1 + bε

2

2

1 − a
∧ bε1 + bε

2

2

a



bε1 = pure bε parts from b1

bε
2

2 = pure bε2 parts from b2

Definition:

The coefficient of ε2 which comes through the product of coefficient of ε2 and coefficient

of ε0 or itself will be called as pure part of the coefficient of ε2., e.g., if

b + bεε + bε2ε2

a + aεε + aε2ε2 =
b
a

+
abε − aεb

a2 ε +
abε2 − abaε2 − aaεbε + b(aε)2

a3 ε2

then abε2 and −abaε2 are pure in the coefficient of ε2, while −aaεbε and b(aε)2 are non-

pure.

Note: If we consider the above in the context of cross-ratios then we see that rε (as in

§4.1) has only terms which are pure in bε while rε2 has some terms which are non-pure in

bε2 so we eliminate those terms through the definition of the map ∂ε2 . One major reason

for eliminating non-pure terms is that we would like to recombine terms using a d log-like

rule, but this is only guaranteed to work for pure terms.

2.

τ2
1,ε2(l∗0, . . . , l

∗
3) =

〈
r(l0, . . . , l3); rε(l∗0, . . . , l

∗
3), rε2(l∗0, . . . , l

∗
3)
]2
2



B.1. Dilogarithmic complex 81

3. For defining τ2
0,ε2 , first we divide is τ2

0,ε2 = τ1 + τ2

τ1(l∗0, l
∗
1, l
∗
2) =

2∑

i=0

(−1)i

(
(l∗i l∗i+2)ε + (l∗i l∗i+2)ε2

(lili+2)
⊗ (lili+1)

(li+2li+1)

)
, i mod 3

and

τ2(l∗0, l
∗
1, l
∗
2) =

2∑

i=0

(−1)i

(
(l∗i l∗i+1)ε + (l∗i l∗i+1)ε2

(lili+1)
∧ (l∗i l∗i+2)ε + (l∗i l∗i+2)ε2

(lili+2)

)
, i mod 3

where r, rε, rε2 are coefficients of ε0, ε1 and ε2 respectively in the following:

r(l0, . . . , l3) =r(l0, . . . , l3) + rε(l∗0, . . . , l
∗
3)ε + rε2(l∗0, . . . , l

∗
3)ε2

r(l0, . . . , l3) =
(l0l3)(l1l2)
(l0l2)(l1l3)

rε(l∗0, . . . , l
∗
3) =

{
(l∗0l∗3)(l∗1l∗2)

}
ε

(l0l2)(l1l3)
− (l0l3)(l1l2)

(l0l2)(l1l3)
·
{
(l∗0l∗2)(l∗1l∗3)

}
ε

(l0l2)(l1l3)

rε2(l∗0, . . . , l
∗
3) =

{
(l∗0l∗3)(l∗1l∗2)

}
ε2

(l0l2)(l1l3)
− rε(l∗0, . . . , l

∗
3) ·

{
(l∗0l∗2)(l∗1l∗3)

}
ε

(l0l2)(l1l3)
− (l0l3)(l1l2)

(l0l2)(l1l3)
·
{
(l∗0l∗2)(l∗1l∗3)

}
ε2

(l0l2)(l1l3)

for the notation purpose only we used in the upper definition of cross-ratios (ab)ε :=

aεb + abε and (ab)ε2 := aε2b + aεbε + abε2 .

Proposition B.1.1. The diagram (B.1a) is commutative.

Proof: It requires direct calculation. We will outline some steps here because the method-

ology of the calculation is quite similar to the previous calculation. The composition of

∂ε2 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3) will be

∂ε2 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3)

=∂ε2

(〈
r(l0, . . . , l3); rε(l∗0, . . . , l

∗
3), rε2(l∗0, . . . , l

∗
3)
]2
2

)

We already have the values of rε(l∗0,...,l
∗
3)

r(l0,...,l3) and rε(l∗0,...,l
∗
3)

1−r(l0,...,l3) but here we will also need rε2 (l∗0,...,l
∗
3)ε

2

r(l0,...,l3)

and r
ε2 (l∗0,...,l

∗
3)ε

2

1−r(l0,...,l3) . We find that

rε2(l∗0, . . . , l
∗
3)ε

2

r(l0, . . . , l3)
=

(l∗0l∗3)ε2

(l0l3)
+

(l∗1l∗2)ε2

(l1l2)
− (l∗0l∗2)ε2

(l0l2)
− (l∗1l∗3)ε2

(l1l3)

and

rε2(l∗0, . . . , l
∗
3)ε

2

1 − r(l0, . . . , l3)
=

(l∗0l∗2)ε2

(l0l2)
+

(l∗1l∗3)ε2

(l1l3)
− (l∗0l∗1)ε2

(l0l1)
− (l∗2l∗3)ε2

(l2l3)
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We divide ∂ε2 as ∂ε2 = ∂1 + ∂2 such that

∂1 (〈a; b1, b2]) =
bε1 + bε

2

2

a
⊗ (1 − a) +

bε1 + bε
2

2

1 − a
⊗ a

and

∂2 (〈a; b1, b2]) =
bε1 + bε

2

2

1 − a
∧ bε1 + bε

2

2

a

Now ∂1 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3) is

=

(
(l∗0l∗3)ε
(l0l3)

+
(l∗1l∗2)ε
(l1l2)

− (l∗0l∗2)ε
(l0l2)

− (l∗1l∗3)ε
(l1l3)

+
(l∗0l∗3)ε2

(l0l3)
+

(l∗1l∗2)ε2

(l1l2)
− (l∗0l∗2)ε2

(l0l2)
− (l∗1l∗3)ε2

(l1l3)

)

⊗ (l0l1)(l2l3)
(l0l2)(l1l3)

+

(
(l∗0l∗2)ε
(l0l2)

+
(l∗1l∗3)ε
(l1l3)

− (l∗0l∗1)ε
(l0l1)

− (l∗2l∗3)ε
(l2l3)

+
(l∗0l∗2)ε2

(l0l2)
+

(l∗1l∗3)ε2

(l1l3)
− (l∗0l∗1)ε2

(l0l1)
− (l∗2l∗3)ε2

(l2l3)

)

⊗ (l0l3)(l1l2)
(l0l2)(l1l3)

and ∂2 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3) is

=

(
(l∗0l∗3)ε
(l0l3)

+
(l∗1l∗2)ε
(l1l2)

− (l∗0l∗2)ε
(l0l2)

− (l∗1l∗3)ε
(l1l3)

+
(l∗0l∗3)ε2

(l0l3)
+

(l∗1l∗2)ε2

(l1l2)
− (l∗0l∗2)ε2

(l0l2)
− (l∗1l∗3)ε2

(l1l3)

)

∧
(
(l∗0l∗2)ε
(l0l2)

+
(l∗1l∗3)ε
(l1l3)

− (l∗0l∗1)ε
(l0l1)

− (l∗2l∗3)ε
(l2l3)

+
(l∗0l∗2)ε2

(l0l2)
+

(l∗1l∗3)ε2

(l1l3)
− (l∗0l∗1)ε2

(l0l1)
− (l∗2l∗3)ε2

(l2l3)

)

for the other side we compute first τ1 ◦ d(l∗0, . . . , l
∗
3).

τ1 ◦ d(l∗0, . . . , l
∗
3) = τ2

0,ε2


3∑

i=0

(l∗0, . . . , l̂
∗
i , . . . , l

∗
3)



By using alternation sum first part of this composition will be

τ1 ◦ d(l∗0, . . . , l
∗
3) = Ãlt(0123)


2∑

i=0

(−1)i

(
(l∗i l∗i+2)ε + (l∗i l∗i+2)ε2

(lili+2)
⊗ (lili+1)

(li+2li+1)

)
, i mod 3



By first expanding the inner sum we obtain three terms then pass the alternation through

that sum, will give us 12 terms and combining them will give us an expression equal to

∂1 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3). A similar technique can be used for the second part giving

τ2 ◦ d(l∗0, . . . , l
∗
3)

=Ãlt(0123)


2∑

i=0

(−1)i

(
(l∗i l∗i+1)ε + (l∗i l∗i+1)ε2

(lili+1)
∧ (l∗i l∗i+2)ε + (l∗i l∗i+2)ε2

(lili+2)

)
, i mod 3
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The inner sum will give us three terms which can be further distributed into 12 terms using

the wedge product. The procedure will be same as in theorem 4.2.2 for wedge factors are

of the same type i.e., both ()ε or both ()ε2 . Then we combine mixed terms together for

which one wedge factor is of type ()ε, while the other is of type ()ε2 , and the other with ε2

term, combining those gives us completely ∂2 ◦ τ2
1,ε2(l∗0, . . . , l

∗
3). �

B.2 Trilogarithmic Complex

In this section we will define a second order tangent group TB2
3(F) which is a �-module

over F[ε]3 and generated by 〈a; b1, b2], where

〈a; b1, b2] = [a + b1ε + b2ε
2] − [a] ∈ �[F[ε]3]

and quotient by the kernel of the following map.

∂ : �[F[ε]3]→
(
TB2

2(F) ⊗ F×
)
⊕ (F ⊗ B2(F)) ,

∂ : 〈a; b1, b2] 7→ 〈a; b1, b2]2
2 ⊗ a +

bε1
a
⊗ [a]2 +

bε2
a
⊗ [a]2

The following is a complex figuring TB2
3(F).

TB2
3(F)

∂ε2−−→ TB2
2(F)⊗F×
⊕

F⊗B2(F)

∂ε2−−→
(
F ⊗

∧
2F×

)
⊕

(∧
3F

)

Considerations above (§4.3) show that a suitable definition of TB2
3(F) should preferably

extend the above for TB2
3(F) such that the following diagram is commutative.

C6(�3
F[ε]3

) d //

τ3
2,ε2

²²

C5(�3
F[ε]3

) d //

τ3
1,ε2

²²

C4(�3
F[ε]3

)

τ3
0,ε2

²²

TB2
3(F)

∂
ε2 //

(
TB2

2(F) ⊗ F×
)
⊕ (F ⊗ B2(F))

∂
ε2 //

(
F ⊗∧2 F×

)
⊕

(∧3 F
)

(B.2a)

where (in the continuation of the previous subsection)

∂ε2

(
〈a; b1, b2]2

2 ⊗ b + x ⊗ [y]2

)

=

−
bε1 + bε

2

2

a
⊗ (1 − a) ∧ b − bε1 + bε

2

2

1 − a
⊗ a ∧ b + x ⊗ (1 − y) ∧ y



+


bε1 + bε

2

2

a
∧ bε1 + bε

2

2

1 − a
∧ x

 ,



B.2. Trilogarithmic Complex 84

τ3
2,ε2(l∗0, . . . , l

∗
5) =

2
45

Alt
〈
r3(l0, . . . , l5); r3,ε(l∗0, . . . , l

∗
5), r3,ε2(l∗0, . . . , l

∗
5)
]2
3 ,

and

τ3
1,ε2(l∗0, . . ., l

∗
4)

= −1
3

4∑

i=0

( 〈
r(li|l0, . . . , l̂i, . . . , l4); rε(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4), rε2(l∗i |l∗0, . . . , l̂∗i , . . . , l∗4)

]2

2
⊗

∏

i, j

(l̂il̂ j)

+

4∑

j=0
j,i


(l∗0 . . . l̂

∗
i . . . l̂

∗
j . . . l

∗
4)ε

(l0 . . . l̂i . . . l̂ j . . . l4)

 ⊗
[
r(li|l0, . . . , l̂i, . . . , l4)

]
2

+

4∑

k=0
k,i


(l∗0 . . . l̂

∗
i . . . l̂

∗
k . . . l

∗
4)ε2

(l0 . . . l̂i . . . l̂k . . . l4)

 ⊗
[
r(li|l0, . . . , l̂i, . . . , l4)

]
2

)

for the definition of τ3
0,ε2 , we divide τ3

0,ε2 = τ1 + τ2 such that, τ1(l∗0, . . . , l
∗
3) is

3∑

i=0

(−1)i


(l∗0 . . . l̂

∗
i . . . l

∗
3)ε + (l∗0 . . . l̂

∗
i . . . l

∗
3)ε2

(l0 . . . l̂i . . . l3)
⊗ (l0 . . . l̂i+1 . . . l3)

(l0 . . . l̂i+2 . . . l3)
∧ (l0 . . . l̂i+3 . . . l3)

(l0 . . . l̂i+2 . . . l3)



i mod 4

and τ2(l∗0, . . . , l
∗
3) is

3∑

i=0

(−1)i
3∧

j=0
j,i


(l∗0 . . . l̂

∗
j . . . l

∗
3)ε + (l∗0 . . . l̂

∗
j . . . l

∗
3)ε2

(l0 . . . l̂ j . . . l3)



where r3, r3,ε, r3,ε2 are coefficients of ε0, ε1 and ε2 respectively in the following:

r3(l0, . . . , l5) =r3(l0, . . . , l5) + r3,ε(l∗0, . . . , l
∗
5)ε + r3,ε2(l∗0, . . . , l

∗
5)ε2

r3(l0, . . . , l5) =Alt6
(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

r3,ε(l∗0, . . . , l
∗
5) =Alt6



{
(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)

}
ε

(l0l1l4)(l1l2l5)(l2l0l3)
− r3(l0, . . . , l5) ·

{
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

}
ε

(l0l1l4)(l1l2l5)(l2l0l3)



r3,ε2(l∗0, . . . , l
∗
5) =Alt6{

{
(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)

}
ε2

(l0l1l4)(l1l2l5)(l2l0l3)
− r3,ε(l∗0, . . . , l

∗
5) ·

{
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

}
ε

(l0l1l4)(l1l2l5)(l2l0l3)

− (l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

·
{
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

}
ε2

(l0l1l4)(l1l2l5)(l2l0l3)
}

Theorem B.2.1. The right hand square of the diagram (B.2a) is commutative ,i.e.,

C5(�3
F[ε]3

) d //

τ3
1,ε2

²²

C4(�3
F[ε]3

)

τ3
0,ε2

²²(
TB2

2(F) ⊗ F×
)
⊕ (F ⊗ B2(F))

∂ε2 //
(
F ⊗∧2 F×

)
⊕

(∧3 F
)
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Proof: We will do here direct calculation. First calculate τ1 ◦ d(l∗0, . . . , l
∗
4) is

τ1 ◦ d(l∗0, . . . , l
∗
4) =τ1


4∑

i=0

(l∗0, . . . , l̂
∗
i , . . . , l

∗
4)



=Ãlt(01234)

{ 3∑

i=0

(−1)i

(
(l∗0 . . . l̂

∗
i . . . l

∗
3)ε + (l∗0 . . . l̂

∗
i . . . l

∗
3)ε2

(l0 . . . l̂i . . . l3)

⊗ (l0 . . . l̂i+1 . . . l3)

(l0 . . . l̂i+2 . . . l3)
∧ (l0 . . . l̂i+3 . . . l3)

(l0 . . . l̂i+2 . . . l3)

)
, i mod 4

}

First evaluate inner sum of the above then we will find 12 terms of type aε
a ⊗ b ∧ c and

12 terms of type aε2

a ⊗ b ∧ c. Pass each sum through the Ãlt(01234) which gives 60 terms

of each type then regroup them on the basis of similar
(l∗i l∗j l

∗
k)ε

(lil jlk) ⊗ . . . and
(l∗i l∗j l

∗
k)ε2

(lil jlk) ⊗ . . .. We

will see that there are 10 possible determinants of each type and each has 6 terms, we are

listing here first few.

+
(l∗0l∗1l∗2)ε
(l0l1l2)

⊗
(
(l0l1l3) ∧ (l1l2l3) + (l0l2l4) ∧ (l1l2l3) + (l0l1l4) ∧ (l0l2l4)

−(l0l1l3) ∧ (l0l2l3) − (l0l1l4) ∧ (l1l2l4) − (l0l2l3) ∧ (l1l2l3)
)

and

+
(l∗0l∗1l∗2)ε2

(l0l1l2)
⊗

(
(l0l1l3) ∧ (l1l2l3) + (l0l2l4) ∧ (l1l2l3) + (l0l1l4) ∧ (l0l2l4)

−(l0l1l3) ∧ (l0l2l3) − (l0l1l4) ∧ (l1l2l4) − (l0l2l3) ∧ (l1l2l3)
)

and τ2 ◦ d(l∗0, . . . , l
∗
4) can also be evaluated in similar fashion that will be

= Ãlt(01234)



3∑

i=0

(−1)i
3∧

j=0
j,i


(l∗0 . . . l̂

∗
j . . . l

∗
3)ε + (l∗0 . . . l̂

∗
j . . . l

∗
3)ε2

(l0 . . . l̂ j . . . l3)





Now we go the other side of the diagram. We first divide ∂ε2 = ∂1 + ∂2 such that

∂1
(
〈a; b1, b2]2

2 ⊗ b + x ⊗ [y]2

)
= −bε1 + bε

2

2

a
⊗ (1− a)∧ b− bε1 + bε

2

2

1 − a
⊗ a∧ b + x⊗ (1− y)∧ y

and

∂1
(
〈a; b1, b2]2

2 ⊗ b + x ⊗ [y]2

)
=

bε1 + bε
2

2

a
∧ bε1 + bε

2

2

1 − a
∧ x

We first calculate ∂1 ◦ τ3
1,ε2(l∗0, . . . , l

∗
4), which is quite similar with the calculation in the

proof of theorem 4.3.1. The only difference here is that, instead of collecting terms of
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type
(l∗i l∗j l

∗
k)ε

(lil jlk) ⊗· · · , only we also collect the terms of type
(l∗i l∗j l

∗
k)
ε2

(lil jlk) ⊗· · · and we find that terms

match with result of τ1 ◦ d(l∗0, . . . , l
∗
4) with coefficient −3 that is killed by − 1

3 which is

already the coefficient of the map τ3
1,ε2 . We have similar situation with ∂2 ◦ τ3

1,ε2(l∗0, . . . , l
∗
4).

Direct calculation gives us the same result as we have for τ2 ◦ d(l∗0, . . . , l
∗
4) �

Theorem B.2.2. The left hand square of the diagram (B.2a) is commutative, i.e.,

C6(�3
F[ε]3

) d //

τ3
2,ε2

²²

C5(�3
F[ε]3

)

τ3
1,ε2

²²

TB2
3(F)

∂
ε2 //

(
TB2

2(F) ⊗ F×
)
⊕ (F ⊗ B2(F))

is commutative

Proof: First consider

∂ε2 ◦ τ3
2,ε2(l∗0, . . . , l

∗
5)

=
2

45
Alt6

{ 〈
r3(l0, . . . , l5); r3,ε(l∗0, . . . , l

∗
5), r3,ε2(l∗0, . . . , l

∗
5)
]2
2 ⊗ r3(l0, . . . , l5)

+
r3,ε(l∗0, . . . , l

∗
5)ε

r3(l0, . . . , l5)
⊗ [r3(l0, . . . , l5)]2 +

r3,ε2(l∗0, . . . , l
∗
5)ε

2

r3(l0, . . . , l5)
⊗ [r3(l0, . . . , l5)]2

}

(B.2)

The simplification of (B.2) is quite similar to (4.22) in the proof of theorem 4.3.3. We

can use same steps here if we show that r3,ε2(l∗0, . . . , l
∗
5) can be written in terms of two

projected cross-ratios whose ratio corresponds to r3(l0, . . . , l5). We know that

r3(l∗0, . . . , l
∗
5) =

(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

and is expanded as

r3(l∗0, . . . , l
∗
5) =r3(l0, . . . , l5) + r3,ε(l∗0, . . . , l

∗
5)ε + r3,ε2(l∗0, . . . , l

∗
5)ε2

where l∗i ∈ �3
F[ε]3

and (l∗i l∗jl
∗
k) ∈ F[ε]3. so we can write

r3,ε2(l∗0, . . . , l
∗
5) =

(
(l∗0l∗1l∗3)(l∗1l∗2l∗4)(l∗2l∗0l∗5)
(l∗0l∗1l∗4)(l∗1l∗2l∗5)(l∗2l∗0l∗3)

)

ε2

=
(
r3(l∗0, . . . , l

∗
5)
)
ε2

As it is the coefficient of ε2 from r3(l∗0, . . . , l
∗
5) which is a ratio of determinants in F[ε]3 so

it is clear that it can be written as the ratio of two projected cross-ratios. Now calculate
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∂ε2 ◦ τ3
2,ε2(l∗0, . . . , l

∗
5).

=
2
45

Alt6

{ 〈
r3(l0, . . . , l5); r3,ε(l∗0, . . . , l

∗
5), r3,ε2(l∗0, . . . , l

∗
5)
]2
2 ⊗

(l0l1l3)(l1l2l4)(l2l0l5)
(l0l1l4)(l1l2l5)(l2l0l3)

+

(
(l∗0l∗1l∗3)ε
(l0l1l3)

+
(l∗1l∗2l∗4)ε
(l1l2l4)

+
(l∗2l∗0l∗5)ε
(l2l0l5)

− (l∗0l∗1l∗4)ε
(l0l1l4)

− (l∗1l∗2l∗5)ε
(l1l2l5)

− (l∗2l∗0l∗3)ε
(l2l0l3)

)
⊗ [r3(l0, . . . , l5)]2

+

(
(l∗0l∗1l∗3)ε2

(l0l1l3)
+

(l∗1l∗2l∗4)ε2

(l1l2l4)
+

(l∗2l∗0l∗5)ε2

(l2l0l5)
− (l∗0l∗1l∗4)ε2

(l0l1l4)
− (l∗1l∗2l∗5)ε2

(l1l2l5)
− (l∗2l∗0l∗3)ε2

(l2l0l3)

)

⊗ [r3(l0, . . . , l5)]2

}
(B.3)

By using similar technique as in the proof of theorem 4.3.3, equation (B.3) can be written

as:

=
1
3

Alt6

{ 〈
r(l0|l1l2l3l4); rε(l∗0|l∗1l∗2l∗3l∗4); rε2(l∗0|l∗1l∗2l∗3l∗4)

]2
2 ⊗ (l0l1l3)

+
(l∗0l∗1l∗3)ε
(l0l1l3)

⊗ [r(l0|l1l2l3l4)]2 +
(l∗0l∗1l∗3)ε2

(l0l1l3)
⊗ [r(l0|l1l2l3l4)]2

}
(B.4)

Calculation of τ3
1,ε2 ◦ d(l∗0, . . . , l

∗
5) will give us same result as we have in (B.4). �

We can further relate this second order second with first order by constructing the follow-

ing result:

Proposition B.2.3. The following maps

1. C4(�3
F[ε]3

)
d′−→ C3(�2

F[ε]3
)
τ2

0,ε2−−−→ F ⊗ F× ⊕∧2 F

2. C5(�3
F[ε]3

)
d′−→ C4(�2

F[ε]3
)
τ2

1,ε2−−−→ TB2
2(F)

3. C5(�4
F[ε]3

)
d′−→ C4(�3

F[ε]3
)
τ3

0,ε2−−−→ F ⊗∧2 F× ⊕∧3 F

4. Cn+1(�n+1
F[ε]3

)
d′−→ Cn+1(�n

F[ε]3
)
τn

0−→ F ⊗∧n−1 F× ⊕∧n F

are zero.

Proof: See the proof of the lemmas 4.2.3, 4.2.5, 4.3.4 and 4.3.5. �

Second Order Tangent Group for any n

we define TB2
n(F) as a�-module over F[ε]3 is generated by 〈a; b1, b2] = [a+b1ε+b2ε

2]−
[a] ∈ �[F[ε]3] and quotient by the kernel of

∂ : �[F[ε]2]→ TB2
n−1(F) ⊗ F× ⊕ F ⊗ Bn−1(F)
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∂ : 〈a; b1, b2] 7→ 〈a; b1, b2]2
n−1 ⊗ a + (−1)n−1


bε1
a
⊗ [a]n−1 +

bε
2

2

a
⊗ [a]n−1


then the following is a complex

TB2
n(F)

∂ε2−−→ TB2
n−1(F)⊗F×
⊕

F⊗Bn−1(F)

∂ε2−−→ · · · ∂ε2−−→ TB2
2(F)⊗∧n−2 F
⊕

F⊗B2(F)⊗∧n−3 F×

∂ε2−−→
(
F ⊗

∧
n−1F×

)
⊕

(∧
nF

)

The correctness of the this complex can be shown in a similar way as we did in §4.4.
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formes, Ann. Inst. Fourier, Grenoble 46, (1996)1327-1347.

[5] Cathelineau, J-L., The tangent complex to the Bloch-Suslin complex, Bull. Soc.

Math. France 135 (2007) 565-597

[6] Cathelineau, J-L., Projective Configurations, Homology of Orthogonal Groups,

and Milnor K-theory, Duke Mathematical Journal, 2(121), 2004

[7] Elbaz-Vincent, Ph., and Gangl, H, On Poly(ana)logs I, Compositio Mathematica,

130, 161-210 (2002).

[8] Garoufalidis, S., An extended version of Additive K-theory, arXiv:0707.1828v2,

[math.AG], 6 Nov 2007.

[9] Goncharov, A. B., Geometry of Configurations, Polylogarithms and Motivic Coho-

mology, Adv. Math., 144(1995) 197-318.

89



Bibliography 90

[10] Goncharov, A. B., Polylogarithms and Motivic Galois Groups, Proceedings of the

Seattle conf. on motives, Seattle July 1991, AMS Proceedings of Symposia in Pure

Mathematics 2, 55(1994) 43-96.

[11] Goncharov, A. B., Explicit construction of characteristic classes, Advances in So-

viet Mathematics, I. M. Gelfand Seminar 1, 16(1993) 169-210

[12] Goncharov, A. B., Euclidean Scissors congruence groups and mixed Tate motives

over dual numbers, Mathematical Research Letters 11 (2004) 771-784.

[13] Goncharov, A, B., Deninger’s conjecture on L-functions of elliptic curves at

s = 3, J. Math. Sci. 81 (1996), N3, 2631-2656, alg-geom/9512016. MR 1420221

(98c:19002)

[14] Goncharov, A. B. and Zhao, J., Grassmannian Trilogarithms, Compositio Mathe-

matica, 127, 83-108, (2001)
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