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Abstract

In this thesis we consider the Grassmannian complex of projective configurations in
weight 2 and 3, and Cathelineau’s infinitesimal polylogarithmic complexes as well as a
tangential complex to the famous Bloch-Suslin complex (in weight 2) and to Goncharov’s

“motivic* complex (in weight 3), respectively, as proposed by Cathelineau [5].

Our main result is a morphism of complexes between the Grassmannian complexes and
the associated infinitesimal polylogarithmic complexes as well as the tangential com-

plexes.

In order to establish this connection we introduce an F-vector space ,Bé) (F), which is an
intermediate structure between a Z-module B,(F) (scissors congruence group for F) and
Cathelineau’s F-vector space 3,(F) which is an infinitesimal version of it. The struc-
ture of B2(F) is also infinitesimal but it has the advantage of satisfying similar functional
equations as the group $B,(F). We put this in a complex to form a variant of Cathelineau’s
infinitesimal complex for weight 2. Furthermore, we define 87 (F) for the corresponding
infinitesimal complex in weight 3. One of the important ingredients of the proof of our
main results is the rewriting of Goncharov’s triple-ratios as the product of two projected
cross-ratios. Furthermore, we extend Siegel’s cross-ratio identity ([21]) for 2 x 2 deter-
minants over the truncated polynomial ring Fle], := Fle]/e". We compute cross-ratios

and Goncharov’s triple-ratios in F[g], and F[&]; and use them extensively in our compu-



iv

tations for the tangential complexes. We also verify a ”projected five-term” relation in the

group 7'8,(F) which is crucial to prove one of our central statements Theorem 4.3.3.
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Chapter 1

Introduction

In his seminal papers ([9],[10],[11],[12]), Goncharov uses the Grassmannian complex
(first introduced by Suslin (see [23])) associated to points in IP? in order to prove Zagier’s
conjecture on polylogarithms and special L-values (see [26]) for weight n = 3. This
conjecture in particular asserts that the values of Dedekind zeta function {z(s) for some
number field F at an integer point s = n > 2 can be expressed as a determinant of n-
logarithms evaluated at points in F. It was known for n = 2 by work of Suslin, Borel and

Bloch and also proved in a slightly weaker form by Zagier himself. Goncharov forms an

ingenious proof for weight n = 3.

In the process, he introduces complexes I'(n) (which he called “motivic”). Cathelineau
investigates variants of these complexes in the additive (both infinitesimal and tangential)

setting (see [3],[4],[5]).

One of the most important ingredients of Goncharov’s work is the triple-ratio (Goncharov
called it generalized cross-ratio) which is first introduced by Goncharov (see [10]). In
his earlier paper Goncharov had a formula (which is not visibly antisymmetric) for the
morphism £1” : Cs(3) — B3(F), (see §4 in [9]), for any field F, where Cq(3) is the free
abelian group generated by the configurations of 6 points in 3 dimensional F-vector space
modulo the action of GL;(F) . The triple-ratio was discovered by Goncharov together
with Zagier by anti-symmetrization of formula for f2(3). Having defined the triple-ratio he
described an antisymmetric formula for the morphism fs(3) : C¢(3) — B3(F), but with

the restriction that it applies to generic configuration only, where points are in generic

1



position (see Formula 3.9 in [10]) (unfortunately, in [10] his proof of commutativity of
left square of diagram (3.2) in [10] was incorrect(see Theorem 3.10 in [10]); a missing
factor of % was pointed out by Gangl and Goncharov provided a correct proof in the
appendix of [13]). By using algebraic K-theory he constructed a map of complexes from
the Grassmannian complex to his own complex and then he proved Zagier’s conjecture

for weight n = 3.

Our point of view is to bring the geometry of configuration spaces into infinitesimal
and tangential settings. We tried to find suitable morphisms between the Grassman-
nian subcomplex (C.(n),d) (see diagram (2.1a) in 2.1) and Cathelineau’s analogues of
Goncharov’s complexes I'(n). For weight n = 2, we have not only shown that the corre-
sponding diagrams in both cases are commutative but also that they extend to morphisms
of complexes involving both the Grassmannian and Cathelineau’s complex (see §3.1 and
§4.2). For weight n = 3, we also proved that the corresponding diagrams in the infinites-
imal and the tangential setting connecting the Grassmannian subcomplex (C.(n),d) (see

diagram (2.1a) in §2.1) are commutative (see §3.2 and §4.3).

Goncharov outlined the proof for commutativity of the left square of diagram (3.2c) at the
end of Chapter 3 (see §3 in [10] for the actual diagram and appendix of [13] for the proof).

: : 2 px X : feat _ Aloli.B)AULDIDAD,D.I5)
For this he worked in A° F* ® F*, using the factorisation of 1 YA AT AL

where A(l;, 1}, ;) denotes some 3 X 3-determinant, into a 3 X 3-determinant and a 6 X 6-
determinant and also had to appeal to a deeper result in algebraic K-theory (see Lemma

5.1 and Proposition 5.2 in [13]).

We observe that each term in the triple-ratio can be rewritten as product of two “projected”
cross-ratios in P?, which enables us to give an elementary proof (which does not use

algebraic K-theory) of one of our main results (Theorem 3.2.5).

Furthermore, we define infinitesimal group B2(F) for any derivative D € DerzF over a
field F which has more or less similar functional equations as the group $,(F) and use
it to our advantage for the proof which works almost same for the two direct summand
involving B2(F)® F* and F ® B,(F). In summary, the proof of Theorem 3.2.5 consists of
rewriting the triple-ratio as the product of two cross-ratios, combinatorial techniques and

the use of functional equations in ,85 (F) and B,(F). Since B,(F) has similar functional



equations, we can also apply this technique in Goncharov’s setting. For the convenience of
the reader, we also included the proof of commutativity of the left square of Goncharov’s

diagram in the appendix A.

For weight n > 3, Goncharov generalized a version of the infinitesimal analogue(see
[13]), involving the groups S,(F), Bu-1(F)®F*, F®B,1(F), ..., FO \""' F*. We suggest
a slight modification in the maps to guarantee its being a complex (see Lemma 2.4.2)
and relate a variant of it to the Grassmannian complex in the top degree, using a natural
generalization of maps defined in weight n = 2 and n = 3(see Proposition 4.3.5 and

Proposition 3.2.7).

For given (ly,...,l3) € C4(2), a well-known Siegel cross-ratio identity (See [21]) for

associated 2 X 2-determinants A(/;,/;) for 0 < i < j < 3 becomes a very important tool

Iy) = Alol)Adib)
>3 7 Ao )AL )

four points in the version used by Goncharov(see identity (4.1) or see §3 in [9]).

for the factorization of 1 — r(l, ..., ), where r(ly, ... is a cross-ratio of

We elaborate on similar cross-ratio constructions in the tangential case, where instead
of F we are working over the ring of dual numbers Fle], = Fle]/e”. At first, for
(o>---. 1) € CAA%MV), we present an analogue to Siegel cross-ratio identity for 2 X 2-
determinants A(lj,l;‘.),O < i < j < 3 for vectors in ([, ..., ;) € C4(A12¢[8]V) (see Lemma
4.1.1 and equations (4.3) and (4.2)) which is the analogue of (4.1), and consider their
cross-ratios as an element over the truncated polynomial ring Flel,, i.e., r(l;,...,[;) =
(rgoeo +ragl+- 4 rgv_lgv‘l) (Is, ..., 1}), where re is the usual cross-ratio of four points

in A2

+, while the other elements of r are computed in §4.1.1. We introduce a similar

construction for the triple-ratio as well (see §4.1.2).

Due to this analogue of cross-ratios, we are able to find morphisms between the Grass-

n

mannian subcomplex C*(AF[S]z’

d) for n = 2,3 and the tangent complexes to the Bloch-
Suslin and the Goncharov complexes (see §4.2 and §4.3). We also produce results for the
projected five-term relation in ,8? (F) and TB,(F) (see Lemma 3.1.5 and Lemma 4.2.4)
which are analogous to Goncharov’s projected five-term relation in $,(F) (see Lemma
2.18 of [9]) and very helpful for the proof of our main results (Theorem 3.2.5 and 4.3.3).

In appendix B, we provide a different way to look the tangential complexes to Bloch-

Suslin and Goncharov’s complexes, especially when one wants to look elements in F[g]s.



In §4.3, we provide a possible definition of a group 78;(F) which was first defined hy-
pothetically in §9 of [5]. On the basis of our definition, we mimic this construction with
the F-vector space B7(F) and reproduce Cathelineau’s 22-term functional equation for
TB5(F). At the end of chapter 4, we present a suitable definition of group 78, (F) for any

n and try to put in the complex.



Chapter 2

Preliminaries and Background

As we mentioned in the introduction, we are relating the Grassmannian complex to a
variant of Cathelineau’s complex and tangent complex to Bloch-Suslin and Goncharov’s
complexes. For this it is important to recall them in this chapter. We will also present the
variant of Cathelineau’s (infinitesimal) complex in §2.4.1 and will try to form a general-

ized complex for B2(F) as Goncharov’s work in [12].

2.1 Grassmannian complex

In this section, we recall concepts from (see [9], [11]). Consider C,,(X), which is the free
abelian group generated by elements (xy, ..., x,,) € X" for some set X with x; € X. Then
we have a simplicial complex (C.(X),d) generated by simplices whose vertices are the

elements of X, where the differential in degree -1 is given on generators by
d: Cu(X) = Cpa(X)

d: (1, ) 2 ) (=D ) 2.1)
i=0

Let G be a group acting on X. The elements of G \ X" are called configurations of X,
where G is acting diagonally on X™. Further assume that C,,(X) is the free abelian group
generated by the configurations of m elements of X then there is a complex (C.(X), d),
and C.(X)g be the group of coinvariants of the natural action of G on C,(X) = C.(X). For

m > n, let us define C,,(n) (or Cm(]P’j;l)) which is the free abelian group, generated by the
5



2.1. Grassmannian complex 6

configurations of m vectors in an n-dimensional vector space V,, = A7 over a field F (any
n vectors arising by using X = V,,) (or m points in P%!) in generic position (an m-tuple
of vectors in an n-dimensional vector space V), is in generic position if n or fewer number
of vectors are linearly independent). Apart from the above differential d, we have another
differential map:

d : Cm+l(n + 1) - Cm(n)

& (oo sln) > ) (Dl E ),
i=0

where (/;|lo, .. .,lA,~, ..., 1,) is the configuration of vectors in V,./({l;) defined as the n-
dimensional quotient space, obtained by the projection of vectors [; € V., j # i, pro-

jected from C,,,1(n + 1) to C,,,(n) from which we have the following bicomplex

(2.1a)

s Cpys(n+2) — > Coa(n +2) — > Cos(n + 2)
d d d
s Ca(n 4+ 1) =45 Crz(n+ 1) L= Cra(mn + 1)
d d d

Chi3(n) Chia(n) Crr1(n)

which is called the Grassmannian bicomplex. We will verify here commutativity of the

above diagram for this we just need to show that d’ od = dod’ for the group C,+m(n+k).

n+k+m—1 n+k+m—1

d'odl, ... ben-) = D D' D GVl T Dsgene)
- o
and
n+k+m—1 . n+k+m—1 .
dod (o, lygen-) = D D0 D Gl D ki)
i=0 =0
J#

for the following we will use a subcomplex (C.(n), d) called the Grassmannian complex,
of the above

d d d
o= Cuy3(n) = Crpa(n) = Cypi(n)



2.2. Polylogarithmic Groups 7

We concentrate our studies to the subcomplex (C.(n), d), but in some cases we will also

use the following subcomplex (C.(x),d") of the Grassmannian complex

L s+ ) S Crnn + DS Con()

2.2 Polylogarithmic Groups

From now on we will denote our field by F and F — {0, 1} will be abbreviated as F**. In
some texts F** is also referred as doubly punctured affine line over F in ([7]). We will

also denote Z[P}.] as the free abelian group generated by [x] where x € P}.

Scissors congruence group:([22])The Scissors congruence group B(F) of F is defined as
the quotient of the free abelian group Z[F**] by the subgroup generated by the elements

of the form

- 1=y
[x]—[y]+[§]—[l_z]+[1_i}_l] where x #y, x,y # 0,1

The above relation is the famous Abel’s five-term relation for the dilogarithm. It can
also be interpreted geometrically (in terms of scissors congruences) whence its name:
Consider a an ideal polyhedron hyperbolic 3-space with five vertices xy, ..., xs. Divide
this polyhedron into five tetrahedra by leaving out one vertex at a time i.e {x,, X3, X4, X5}
and {xi, x3, x4, x5} with common face {x3, x4, x5} and three other tetrahedra {x;, x, x4, X5},
{x1, x5, X3, x5} and {x1, X2, x3, x4} so that the sum of first two volumes is same as the sum of
last three volumes( when taken with the right orientation). This volumes identity is mim-

icked in the following relation (where r(a, b, ¢, d) denotes the cross-ratio of four points)

[r(x2, x3, X4, X5) |+ [r(x1, X3, X4, X5)] = [1(X1, X2, X4, X5) ]+ [1(x1, X2, X3, X5)|+[1(x1, X2, X3, X4)]

This relation is a version of the above five-term relation.

2.3 Bloch-Suslin and Goncharov’s polylog complexes

In this section we will closely follow [9] and [10].



2.3. Bloch-Suslin and Goncharov’s polylog complexes 8

2.3.1 Weight 1:
We define subgroup R;(F) C Z[P}] by

Ri(F) =[xyl = [x] = Y], x,y € F* = {1})

The map 6, : B1(F) — F*,[a] — a is defined as an isomorphism (see §1 of [9]), so we

have B(F) = F*.

2.3.2 Weight 2:

First we define the subgroup Ry(F) C Z[P}, \ {0, 1, co}]

4
Ry(F) := <Z(—1)l‘[r(x0, R LX), x€ IP;>
i=0

(Xo—x3)(x1 —X2)

where r(xg, x1, X2, X3) = . Tr—

is the cross-ratio of four points and 9, is defined as
Sy 1 Z[Ph\ {0, 1, 00}] — /\ 2p%

[x] > (1 =-x)AXx

where A 2F* = F* ®z F*/{x ®z x|x € F*). One has 6, (R,(F)) = 0. Now we can define
the free abelian group B,(F) which is generated by [x] € Z[]PlF \ {0, 1, oo}] and quotient
by the subgroup Ry(F) C Z[P}. \ {0, 1, o0}], i.e.

Z[P.\ {0, 1, o0}]
Ry (F)

By(F) =
and we get a complex Bp(2) called the Bloch-Suslin complex of F
Br(2): Ba(F)> [\ 2F*

where first term is in degree 1 and second term in degree 2 and ¢ is induced from ¢, due

to fact 6, (Ry(F)) = 0.

2.3.3 Weight 3:

Consider the triple-ratio of six points r3 € Z[P}] which is defined as r; : Cs(P%) —

Z[P}], where Cq(IP%) is a free abelian group generated by the configurations of 6 points
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in generic position over P},

Ay, Iy, )AL, L, L)AL, 1y, Is)
Allo, Iy, L)AL, L, )AL, Lo, 13)

1’3(10, ey l5) = Alt6

where [; is the point in P2, A(/;, li,lr) = {w,l; AN1; ANy and w € det V*. Now define the
relation R3(F) € Z[P;.]

6
Ry(F) = <Z(—)ir3(lo, SR ) I AT cﬁ(JP%)>
i=0

One can define B;(F) as the free abelian group generated by [x] € Z[P}.] and quotient by
R;(F), [0] and [co]. Thus we get the complex Bz(3)

Br3):  BuF) BaF) oz P [\ P

2.3.4 Weight > 3:

Here we will define group B, (F). Suppose R, (F) is defined already, we set
Z[P}]

Bu(F) =% 73

and the morphism

5, : Z[PL] = B,_(F)® F*

0 ifx=0,1,00
[a] —

[x],-1 A x otherwise
where [x], is class of [x] in B,(F). We find more important is the case for n > 2, where
we define

A (F) = ker o,

and R,(F) C Z[]P}] is generated by the elements a(0) — a(1),[oo] and [0], where a(f) runs

through all the elements of A, (F(¢)), for an indeterminate .

Lemma 2.3.1. (Goncharov) For n > 2, R,(F) C kerd,

Proof: See lemma 1.16 of [9]. O

Goncharov defines the following complex ([9],[10]) for the group B,(F).

/\ }’IFX

— (22
2 — torsion (2:2)

B(F)S B, 0F58,,8 N\ 2F* ALY X1 A\ 2F 2
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2.4 Infinitesimal Complexes (Cathelineau’s Complexes)

There are two versions of infinitesimal complex or infinitesimal groups. In the literature
the first one was introduced by Cathelineau [4] while the other version was introduced by
Bloch-Esnault [1] also called ‘“additive®. The latter version is beyond the scope of this

text we will discuss here only the former one.

Cathelineau ([4],[3]) has defined the group ( in fact an F-vector spaces) as an infinitesimal

analogue of Goncharov’s groups 8B,,(F) as follows
1. We define 8,(F) = F

2. One can define B,(F) as
F[F..]
ra(F)

Bo(F) =

where r,(F) is the kernel of the map

&y, : FI[F**] » F ®p F*

[al a®ra+ (1 —a)®r (1 —a)

Cathelineau [4] has shown that r,(F) is given as the subvector space of F[F**] spanned

by the elements

a

[a] = [b] +a

1-b
+(1-a) [—],a,b e F**,a+b,
1—-a
hence passing to the quotient by r,(F) we obtain the complex
Bo(F) SF @ F 2.3)

0:{ap—a®a+(1-a)® (1 —a)
3. For n > 3, the F-vector space §,(F) is defined as

F[F..]

ﬁn(F) = r,,(F)

where r,,(F') is kernel of the map
0y : FIF*'] = (B (F)® F*) & (F ® B,_1(F))

[a] = (a)p-1 ®a+ (1 —a) ® [al,-
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where (a); is the class of [a] in 8;(F) and [a]; is the class of [a] in By (F). Forn = 2, we

have the following complex of F-vector spaces.
9 X 9 2
Bi(F) = (Bo(F) @ F)&(F ® By(F) = F & [\ *F (2.4)

where

d:{ay;— (a»r®a+(1—-—a)®|a],
0:@pb+x@yh,—» —(@®aAb+(1-a)@(1-a)Ab)+x(1—-y)Ay

Before the following lemma we shall introduce Kihler differentials (see §25 in [17] and
§26 in [18]). First, recall the definition of a derivation map D € Der(A, M) for a ring A
and an A-module M is D : A — M and this map satisfies D(a + b) = D(a) + D(b) and
D(ab) = aD(b) + bD(a). Now an A-module €4,r is generated by {dala € A} so that the
uniqueness of a linear map f : Qq/r — M satisfying D = f o d is obvious (see p192
of [17]). If a € A then the element da € Q,4,r and called the differential of a and the

A-module Q4 r is called the module of Kihler differentials.

Lemma 2.4.1. (Cathelineau [3],[4]) The complexes 2.3 and 2.4 are quasi-isomorphic to
Q. through the maps dlog : AN F* - QL. so that the following sequences

0 « dlog 1
0=BF) > FF — Q-0

05 By(F) S (Ba(F)® F) @ (F @ By(F)) > Fo A2 F* 225 2 5 0

are exact. Here QL. is the vector space of Kiihler differential with the respective definitions

of dlog as dlog(a® b) = a% and dlog(a®b A ¢) = a%? A ~.

c

Functional equations in §,(F)

Here we will mainly focus on the work in ([7])

1. The two-term relation

(a), =1 —a),

(@), = —a<1>
al,

2. The inversion relation.
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3. The distribution relation

o 1-a"
(@"y, = ; —za o
4. The four-term relation in F[F*°].
(@)y — (b, + a<l—)> +(1- a)<ﬂ> =0, a#bh (2.5)
al, 1—a )

The above equation is an infinitesimal version of the famous five-term relation and it can

be deduced directly from the following form of five term relation [22].

b
[al, — [D]y + [—

- _1
[=a) [ =
al, |1-al, 1—%2

Functional equation in 3;(F)

Here as well we will mainly focus on the work of ([7])

1. The three-term relation.

1
<1—a>3—<a>3+a<l——> =0 (2.6)
afs
2. The inversion relation.
1
(a); = —a<—> 2.7
ajs

The inversion relation is a consequence of the three-term relation (2.6) (see lemma 3.11

of [7]).
3. The distribution relation

1-a™
é*m:l 1 - {a

@ =m

(La)s

4. The 22-term relation.([7])



2.4. Infinitesimal Complexes (Cathelineau’s Complexes) 13

There are number of ways to write it and one of them is the following.
c{ays — c{b)s + (a — b+ 1)(¢)3
+(1 -l —a)3 — (=Xl =b)3+ (b—a)l -c)

c c b
-a{2), +o (), + <‘>
|- |- 1—b
~(1-a) <1—_2> +(1-b) <TZ> +e(l - a) <1Ta>
3 3

3
a(l -c)
)
3

b(1 -c¢) ca
rell—a\ 7 a> —d _b)<( —b)>3_b<?>3
a

e

<“_b> +(1—c)(1—a)< - >
a l—a3

(

—c)a> <c(1— )>
-(1-D)
b [5 3

+(1 —c)a

1

—(a—b)<

a b
1 1-
I F Rt
(1-0¢c)1-b) 3
+c(b—a)<—c(b_a) >3_ 2.8)

For n > 7 inversion and distribution existing relations are the only known elements in
B.(F), while for n < 7 one can derive non-trivial elements from functional equations
for Li, [7]. Cathelineau’s complex for §,(F) and for the higher Bloch groups B;(F)
(2 <k <n—1)is the following(see §2 of [12]):

0 B (F)®FX a 2 (F)OAZFX 0 8 BoF)RAN'2F* 9 _
Bu(F) 5! ProallgenE™ o, 8 PO % Fe AT FX 2.9)
F®Bn 1(F) FRB,_2(F)®F* FRBy(F)@N"=3 F*

We correct here a misprint in the map defined in §2 of [12] for the above complex. The
above becomes a complex if we use a slightly different formula with the difference to put

alternative signs for d: when n = 2 then we put
0:{ay,» —(a®a+(1-a)®(1 —a))
and when n > 3 then we propose to use
3 :{a), = (a1 @a+ (1" (1 - a)®[al,

Note: By definition above B,(F) = F and when 0 is applied to the group B,(F) then it
agrees with ¢,, defined by ([7] )

[al,-1 ®a, forn>3
6:lal, -

(1-a)Ana, forn=2
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Lemma 2.4.2. The sequence (2.9) is a complex under the map 0 defined above.

Proof: We can show that the above sequence is a complex by considering the part for
2<k<n-2

0 Buknt (PN 9 By (FRANF* 9 Buyt (@A FX
- ® - ® - ® — e

FRBy_s1 (FYON2FX FRB,_i(F)QNFX FRB,_j_1 (F)QNKF*

_ _ Bukr1(F)@AFTFX
Let (x), 401 ® Ay + a® [bl,se1 ® N 2ci € ®
< >n k+1 /\1_1 Vi [ ]n k+1 /\]_1 Jj FOB, 101 (FYoN2F

Now compute 9 (5 ((X>n—k+1 ® Nisl i+ a® [bl,s1 ® /\ﬁlf Cj))~

To make calculation easy we calculate first

k-1
0 (5 [<x>n—k+1 ® A yi))
i=1

k=1 k=1
=0 (<x>n—k ®x A /\ yi+ (D)1 - %) ® [x],4 ® /\ Vi
i=1 i=1
k=1 k=1

=@kt 8 XAZA N\ yit G A=) @ i @x A [\ i
0 i=1 i=1
k-1
FEDHA =0 @ e 8x A\

i=1

=0

then find

k-2 k=2
0 [(9 (Cl Q [bl—ks1 ® Cj]] =0 (Cl Q0] ® b A Cj]

Jj=1 J=1
k-2
=a®[bl,x.1®bANDA Cj
0 J=1
=0

There is only one case left for k = 1 with the correction /\?:o yi = 1 € Z and using

R ®z 7. = R for any ring R. O

2.4.1 Derivation in F-vector space

Let F be a field and D € Derz(F, F) be an absolute derivation, (see §25 of [17] and §6 of
[7]) we will also write simply as D € Derz(F). For example if x € F then its derivative

over Z will be represented by D(x) and will be an element of F as well.
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According to §6.1 in [7] we have fD :Z|F] - F[F**],[a] — %[a] induces a map

D(a)

Top : Bo(F) — Bo(F), [al, =
a(l —a)

(a)

We define an F-vector space 85 (F) generated by [a]l” for a € F** and subject to the
five-term relation

p|” [1-b]” [1-0717°
[[a]]D—[[b]]D+l[aﬂ —l[ ]l +l[ ]l wherea#b, 1-a#0,

1-a 1-a!

where [a]]® := %[a] and [a] € F[F**]. Furthermore, we have

3y : F[F**] > F® F*
with
3> : [a]l” = —-Dlog(l1 — a)® a + Dlog(a) ® (1 — a),
where Dloga = @. We identify Im(7, p) (C B>(F)) with ,BQ(F ). We can also write a
variant of Cathelineau’s complex by using the F-vector space
,8? (F) c F[F**]/(five-term relation),
as
6D
BY(F) — F ® F*

with
aP [[a]]? — —Dlog(l —a)®a + Dlog(a) ® (1 —a)

D
where [a]? = a(1(2)<a>2’

We also want to define F-vector spaces f2(F) for n > 3. For this we use a slightly
different construction by Cathelineau which in the case n = 2 gives his b,(F) (see [4]).
For this he divides F[F**] by the kernel of the map d,, of which an important element is
the Cathelineau’s four-term relation. By Remark 2.4.3 below the differential of the five-
term relation in B,(F) leads to Cathelineau’s four-term relation. For later purpose we note
that the differential of Goncharov’s 22-term relation in $3(F) vanishes in S3(F) for any
D € Derz(F) (see Proposition 6.10 of [7]). We define

F[F..]
Py (F)

BY(F) =
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where p?(F) is the kernel of the map
6? [a]® [[a]]ZD ®a+ Dlog(a)® [al,
and B2(F) = %;)] for n > 3, where p?(F) is the kernel of the map

A2 : [al” & [al?, ® a+ (-1)"'Dlog(a) ® [al,_i

The following is a complex which can be proved in a completely analogous way as

Lemma 2.4.2 (except that for given F, a is replaced by @):

P pP (F)eF* 9P a0 BD(F)QA"2F* b
ﬁnD(F)Hﬁnfl(ea — .= e S FQANTFX
F®B,-1(F) FRBy(F)®A"3F*

Now we have an F-vector space 55 (F) which is an intermediate stage between a Z-
module B,(F) and an F-vector space (5,(F) and has two-term and inversion relations

same as B,(F).

2.4.2 Functional Equations in 82(F)

The inversion and two-term relations in 82 (F) are quite similar to group B,(F).
1. Two-term relation:

[al? = -[1 - aly

We know from Cathelineau’s F-vector space B, (F).

(@) =(1-a)p
D@ . D@
a(l - a)<a>2 = a(l —a)<1 ay
D(a) B DA -a)
- 0ot

[al? = —[1 —aly

1D
-}
all, a2

2. Inversion relation:
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1
(a), = - a<—>
af,

The inversion relation in 8,(F) is

D(a) D(a) 1
-0\ gi—a <5>2
D(a) =D(a) |1
.

a(l —a) <“>2:£(1_ y
1

-2

al—a) 2=

3. The five-term relation:

PR l_)D_ 1-b]” [1-b7"]"
Ll [[b]]2+l[a]lz l[l—a]l2+l[l—a‘1 2_0

Remark 2.4.3. If we use the definition of [al} for certain D € Derz(F),i.e., D = a(l —

a)a% + b(1 — b)% € Deryz(F, F) where a% and 8% are the usual partial derivatives then

-1 P . . . . .
we see that [[%]L = 0. This is how Cathelineau arrived at his four-term relation ( see

example 3.1.6 later in the next chapter).

2.5 The Tangent Complex to the Bloch-Suslin Complex

In this section mainly we will discuss text from [5]. Let F[g], = F[&]/€* be the ring of
dual numbers for an arbitrary field F. We can define an F*-action in F[g], as follows.
For A € F*,

A: Flgl, = Fleh,a+de— a+ Ad'e
we denote this act by %, so we use A x (a + a’e) = a + Ad'e.
Definition:

The tangent group T B,(F) is defined as a Z-module generated by the combinations [a +

a'el-lal € Z[Flel,], (a,a’ € F): for which we put the shorthand (a; a’] := [a+a’e]-[a]
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and quotient by the following relation

war-oo+ 2 (|- (= (20

a(l =b) (a1 -b)\
+<b(1—a)’(b(1—a))]’ ab+0,1,a+b (2.10)
where
l_’ ' _ab'—adb
a B a? ’
(1 —b)/ _ (1 —b)a’ _(1 _a)b/
l-a) (1 —a)?
and

a(l-b)\" _ b(1-b)a —al —a)’
b(l-a)) (1 - )

Remark 2.5.1. See [5] for a discussion of T B,(F), where the definition of T B,(F) was
justified using Lemma 3.1 of [5])

We give a list of relations in 78, (F) from [5]. These relations use the x-action in 78,(F).

By specialization of the five-term relation (2.10), we find
1. Two-term relation:
(a;blp = (1 —a;-b],

2. Inversion relation:

a a?

1 b
(a;b], = <—;——]
2

3. Four-term relation:

If we use @’ = a(l —a) and b’ = b(1 — b) then (2.10) becomes four-term relation (see

remark 2.4.3).

(a; a1 -a)l,—(b; b(l—b>]2+a*<’3;’3(1 - 9)] +(1—a)*<1 b 1-b (1 _! ‘b)] _0,
a a a 2 2

l-a’l-a 1-a
where a,b #0,1,a # b.

The following map is an infinitesimal analogue of ¢ (defined in §2.3) and 0 (defined in

§2.4) above and Cathelineau called it tangential map.

TB,(F) 5 (F® F) @ (/\*F)
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with

b b b b
@)= (2ot -0+ ;2ed) (2o A7)

The first term of the complex is in degree one and 0, has degree +1.

Note that we get the direct sum of two spaces on the right side.

We would like to see the comparison of various complexes discussed above in the tubular

form.

complex group defining functional equation
Bloch-Suslin | B,(F) > A2F* | 8(F) | 5-term
infinitesimal | Bo(F) > F ® F* | By(F) | 4-term

0 FQF*
tangent THB,(F) — /?;F THB,(F) | 5-term

defining
functional equation

Goncharov | B3(F) 5N Br(F)® F* AN AN3F* | B3(F) Goncharov’s 840-term(*)

. .. 8 BY(FRF* 8 2 . s
infinitesimal | B53(F) — . E(F) - F N\ F* | B(F) Cathelineau’s 22-term
®8B>

complex group

3 TBy(F)®F* 0; F®N\ZF¥
tangent THBi(F) — 2(@) — Aea TB5(F) | Not known (**)
F®B,(F) 3F

(*): Goncharov’s 840-term relation is known defining functional equation of B5(F) and

ker 6 might be large.

(**): The defining functional equation is not known for the group 7 8;(F) but we give a

tangential version of Cathelineau’s 22-term relation which lies in ker 9, (see §4.3)

Remark 2.5.2.

In some text (see [8]), groups B, (F) (by Cathelineau in [4]) and TB,,(F) ( by Bloch-Esnault
in [1]) are called two infinitesimal versions of the K-theory of a field F. For clarity we
mention here that group 78,(F) is different from TB,(F). Cathelineau named 7 B(F)
tangent group so we also call 78,,(F) the tangent group of B,(F) and 5,(F) will be called

as the infinitesimal n-logarithmic group throughout this text.



Chapter 3

Infinitesimal complexes

There are some homomorphisms which relate Bloch-Suslin and Goncharov’s complexes
to Grassmannian complex([9],[10],[11]). This chapter will relate variant of Cathelineau’s
infinitesimal complex to the geometric configurations of Grassmannian complex. We will
suggest here some suitable maps for this relation and then will verify the commutativity
of the underlying diagrams. Goncharov used K-theory to prove the commutativity of his
diagram in which he related his complex with the Grassmannian complex (see appendix
of [13]) but here we are giving proof of the commutativity of diagram (3.2a)(see §3.2
below) without using K-theory we shall use combinatorial techniques with the rewriting
of triple ratio into a product of two cross-ratios. The same technique can also be used in

Goncharov’s case (see appendix A).

Throughout this chapter we will work with modulo 2-torsion and use D € DerzF as an
absolute derivation for a field F. For §3.1 determinant A is defined as A(/;, [;) := (w, [;AL}),
for [;,1; € V,, where w € det V] is volume form in V,. For §3.2 determinant A is defined

as A(li, 1, k) == (w, l; NLj Ny for [, 1;, [y € V3, where w € det V} is volume form in V3.

3.1 Infinitesimal Dilogarithm

Let C,,(2) (or Cm(]P})) be the free abelian group generated by configurations (ly, . .., l,—1)
of m vectors in a two dimensional vector space V; over a field F (or m points in P}) in

generic position. Configurations of m vectors in vector space V, are 2-tuples of vectors

20
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modulo GL,(V,)-equivalence. Grassmannian subcomplex (see diagram 2.1a in §2.1) for

this case is the following.
50005 GRS G

d: (o s ln) = ) (=D os i)

We will outline the procedure initially for V, and then will proceed further for V5. We will
also use the process of derivation (see §2.4.1) in combination with cross-ratio to define

our maps.

Consider the following diagram

Cs(2) —4= C42) —4~ C3(2) (3.1a)

2 2
iTI l"o

BY(F) ——~ F @ F*

where B2 (F) and 9® are defined in §2.4.1, we define

D{A(;, livn))

75 (lo, I, ) Z AU L) ® A(l;, liv1)
1’ Vi+
D{A(lis1, 1)} -
-—— AU, d3 3.1
Ml 1y & A li)fimo G-D

Note: The above can also be written as:

WIS o Aliliv)
Al Al ln)’

mod 3.

Furthermore, we put

2 (o, ..., 1) = [rlo, ..., )P (3.2)

where [[a]]g = aﬁ(a;) (a) (defined in §2.4.1) and r(ly, ..., l3) = % is the cross ratio

of the points (ly,...,[3) € C4(]P )(defined in §2.3).

To ensure well-definedness of our homomorphisms 7(2) and T% above, we first show that
the definition is independent of length of the vectors and volume form w. Here are some

results for verification.

Lemma 3.1.1. T(Z) is independent of the volume form w by the vectors in V,.
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Proof: According to (3.1), T(z) can be written for the vectors (ly, 1, [5) as

> _ D{A(y, b)} _ D{A(, 1))
To(lo, 11, 1) = Ao L) ® A(lo, ) Ao, 1) ® A(lp, o)
D{A(l1, 1p)} DAL, 1)}
Ay AT g,y A0
D{A(L, 1)) D{A(L, o)}
Ay ST TGy A

further we can also write as

D{A(ly, 1)} ® Allo,l) — D{A(, 1)} _ Ay, 1) N D{A(L, 1)} ® ALy, ly)
A(ly, 1) A, 1) Aly, 1) Ay, 1) A(ly, 1) Ay, ly)

T(z)(lo, L, ) =

Changing the volume form w +— Aw does not change the expression on RHS, due to

homogeneity of the terms of the RH factors. O

Next lemma will show independence of the length of the vectors.

Lemma 3.1.2. T% od(ly,...,13) does not depend on the length of the vectors [; in V,.

Proof: By using a simple calculation we can write

) D (Ao, DAy, 13)y Al )AL, 1)
Too o ) = = A ) & Mo )AL )
B D {A(ly, L)A(ly, I3)} ® Ay, )AL, 1)
A, L)AL, 13) A(ly, )AL, 13)

D (Ao, )AUL, 1)y Ao, 13)A(, 1)
Ay, L)AL, 13) A, 11)A(L, 13)

(3.3)

now consider 4 € F* and we know that % = @ for A € F* and the other part of the

right hand side is a cross-ratio. O

Note: Since T% is defined via cross-ratio and d log so there is no need to check things that

are mandatory for 7Z.

Proposition 3.1.3. The diagram below is commutative.

C4(2) —4~ C5(2) (3.1b)

2 2
lTl lTo

BP(F)—L- F g F*
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Proof: The first thing is to calculate 9° o 73(ly, . . ., I3) because we have already computed

75 0d(ly, . ..,15) in (3.3) then by (3.2)

Adlo, 1AL, lz)]lD

2 lo, -+ ,13) =
T1(lo 3) Aly, L)AL, 13) ||,

According to this we can identify Iy, ..., /5 with points in P}, then by the 3-fold transi-
tivity of PGL,(F) any (ly,...,[3) € (]P}D)4 in generic position is PGL,(F)-equivalent to

(0,00,1,a) for some a € F

D(a)
a(l —a)

where D log(a) = 2. Calculate 8°([a]?)

71 (0,00, 1,0) = (@), = [a]? for any a € P}. — {0, 1, co}

D(1 —a) D(a)
- 1-a) ®a+ p

®(—-a)

For the vectors in C4(2) and by using the identity (4.1) we can write

Ao, l1)A(L,I3)
D {A(zg,ém(lil;} Aly, 3)A(LL, 1)

Alo.11)A,13) Al DAL ]
NONSINIS (lo, L)A(Ly, 13)

P otily,....I3) = -

Ao, lI3)Ay,lp)
D8P Ao, 1A, 1)

OSSR N AN
Aol)A L) (07 2) (17 3)

by using % = @ D (h) and then cancelling two terms we can convert the above into
b
(3.3) and the diagram (3.1b) is commutative. O

Further consider the diagram (3.1a) and note that T% o d becomes

7t od(y, ..., L) = Z( Do .. B 112 (3.4)
Now we can further check that Tf od(ly,..., 1) € ker(dP)

& o (rff o d(lo, L)
4 r(l()’ ) 14)}

Z l - r(lo, .

i=

@rly,.... L., 1)

Y S A

D{rllo..... 0. 1)} A
M A rEd URACRRBURSLY)

From now on we will write (ij) for A(/;,;) in short. The above expression can also be

written for each value of i’s, e.g.
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(12)(43) (14)(23)
D55 L 19023 D{F5) L (1243)

(12)43) (14)(23)
@ (13)(24) @) (13)(42)

and similarly for others as well.

for i = 0 we have —

D(ab) _ D(a)

= = -t and start to collect each term of the form

If we multiply out, using 2o

D) o ..
() ®
see that every individual term of ?S—%) ®--- is 0. For example

- from the above i.e. fix i and j, calculate the sum of all, then we will be able to

D(01) ® (04)(13) (02)(14) (03)(12) __ 0
(01) (03)(14) (04)(12) (02)(13) —

since the RHS is 2-torsion in F* so we can easily say that the above is zero and 77 o d €

ker(dP).

Projeced cross-ratio: For [,...,l4 € ]P%, r(lo|ly, I, I3, 14) is the projected cross-ratio of
four points [y, . .., l4 projeced from [, and is defined as

Ally, 11, 14)Ay, 1, 13)

I L, 1y) =
r(bolly, b, I3, 1) Ay, 1y, 1Ay, b, 1s)’

where A(l;, [;,[;) is a 3 X 3 determinant for [;, [}, [, € ]Pfr

Lemma 3.1.4. (Goncharov, A. B., [9]) Let xo, . .., x4 be five points in generic position in

]P%. Then
4

DD o, - R x0)] = 0 € Bo(F),
i=0
where r(xg|xy, x2, X3, X4) is the projected cross-ratio of four points xi,..., X4 projected

from x,

See Lemma 2.18 in [9] for the proof. O

In continuation of the above lemma we have a similar result here which shows that the
projected five-term (or four-term in special condition) relation can also be presented for

P(F) in the same way using geometric configurations of five points in P5..

Lemma 3.1.5. Let xo,...,xs be 5 points in generic position in P3. then, for any D €

DerzF

4
D DTl - i 2012 = 0 € B(F) (3.5)
i=0

Proof: If xo, ..., x4 in P% then Lemma 3.1.4 gives projected five-term relation

4
Z(—l)i[r(xilxo, R x)] = 0 € By(F).
i=0
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According to definition of D € DerzF in §2.4.1 above (3.5) is the five-term relation in
B3 (F). O

Example 3.1.6.

By appropriate specialization of the configuration in Cs(2), we can use (*) to produce
Cathelineau’s four-term relation from the geometric configurations by using the opera-
tor D = a(l — a)% + b(1 — b)a% for F = K(a,b) where a and b are indeterminates
over the field K and 2 and £ are the usual partial derivatives (see §6 of [7]). Let

(0,00,1,a,b) € (]PIL)5 in generic position be the five-tuple corresponding to (ly, ..., [3) =

0 1 1 a b
[[ ),( ][ ],[ ),( ]] € Cs(2). Calculate all possible determinants formed
1 0 1 1 1

by (lp, ..., 1l4) € Cs(2),1.e. A(l;,1;) for 0 < i < j <4, putall of themin (3.4), we get

D
D _ D ZZD_ 1_bD 1_% _
el = 171 +l[a]lz [[1_‘1]]2 " 1_% 2 -0

since T% o d € ker(dP), then use D defined above, calculate each term of the above:

p __ D@
[al; Tl - a)<a>z
_a(l - a)Z(a) + b(1 — b)=(0) @)y
a(l —a)
=1{a),
for the second term
D(b
(617 = b1 (_)b) (b2
_a(l = a)£:(0) + b(1 = b)z;(b)
B b(1 — b) ?
=1b),

for the third term
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for fourth term

a(l —a)2 (1;) +b(1-b)2 (}%”) <1 _ b>
1
2

1-a

for the last term

1-1
-3 D(l—g) <1‘%>
l—é ) _ﬁ( _ﬁ) l_é 2
1-1
(1-b)a (1-ba
a(l - a)% ((1—a)b) +b(1 - b)a% ((1—a)b) <1 —
1 -

(1-b)a (1-b)a
(1-a) b(l B <1—a)b)

Q==

)

=0
From this we retrieve Cathelineau’s four-term relation.

(a)—(b>+a<l—?>+(1 —a)<ﬂ> 0 (3.6)
a 1-a

3.2 Infinitesimal Trilogarithm

Let C,,(3) (or Cm(]P%)) be the free abelian group generated by the configurations of m
vectors in a three dimensional vector space Vs over a field F' (or m points in P2) in generic

position. Consider the following diagram

Cs(3) d Cs(3) d C4(3) (3.22)
BP(F) —2~ (B2(F) ® F*) ® (F ® B,(F)) —> F @ \2 F*
where

3 A
DA(ly, ..., I, ...,1 Ao, ..., g, ... 1
2 s ) Z(_l), (lo s 3) ® (lo 1 3)
Py Ally, ..., Lo ) Ao, ... Lo, ..o 13)
AA(ZO,---,l:i+3,---,l3)

A(ZO’ .. '7li+27- B ,13)

3.7
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4
1 : N PN
7o ) o =3 D DU, 1 © | | AGLT)
i=0

J#i

D(T1 4 AL 1)) .
+ (I, AA’)®[r(liuo,...,zi,...,z4>]z}
Hj;ti A(l;, lj)

7 (lp, ..., I5) = —Altg

2 HA(lo, L, )AL, b, 1A, b, ZS)HD

45 Ao, 1y, L)AL, by 1A, 1o, 13) |
where
[al? = ag(f)a)<a>3 and AL, 1) = Ao, ... iy oo 1y L)
0 (1al?) = [al} ® a + ? ® [al,
6D([[a]]2D®b+x®[y]2) = %@a/\b—?@(l —a)Ab+x®(1—-y) Ay

First we need to show that our maps TS and T? are independent of the chosen volume form
w. There is no need to show that same thing for the map Ti. The proofs of the following

three lemmas are similar to those in §3 of [9].

Lemma 3.2.1. 7(3) is independent of the volume element w € det V;.

Proof: We can write equation (3.7) in the form

A

3 A
DALy, ... ] Alo, ... g, ..., 1
o, 1) = Z(_l)m (lo, 3 3) ® (lo lis1 3)
i=0

A(ZO"'-alia"-alf}) A(ZO""’li+27"-’l3)
A A(107'-'7ii+2"--’l3)
A(ZO"~"i[+3’~--’l3)

If we apply the definition of A in terms of w in the above then the last two factors will

(3.8)

remain unchanged and we know that % = @ forall 1 € F*. O

Lemma 3.2.2. Tf is independent of the volume element w € det V3.

Proof: To prove the above we will take the difference of the elements T%(lo, ...,1y) by

using the volume forms A - w and w(Ad € F*), term of type F ® B,(F) will be zero while
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the term of type B2 (F) ® F* will be

W =

4
D O (rllo, - B 1010 @ 24| | AdLT)
i=0

i#]

~ [rUllo, - By 1R © | [ AG )

i#j
4
1 . ~
= —3 2 VIl 0 1] @ 2
i=0

We use lemma 3.1.5 which shows that left factor of the above is simply the projected

five-term relation in B9 (F). O

Now we need to show here that the composition map 73 o d is independent of the length

of the vectors in V3.

Lemma 3.2.3. 7 o d does not depend on the length of the vectors l; in V5.

Proof: The proof of this lemma is quite similar to the proof of proposition 3.9 of [9],
but we will out line here main steps because this proof involves more calculations. It is

enough to prove that the following
7”0 d{(p, .., 15) = (Aolo, -, Asl5)} = 0 (A € F¥)

We will consider thecase 4; =---=Ads=1land 4p =4

The first summand (/, ..., /s) will not give any contribution to the difference

od{(lo,...,Is) — (Aolo, . . ., 15)} 3.9
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Now consider the second summand —(/y, I, I3, I4, I5)

1 A
( [r(lolla, I3, 1y, I5)]5 ® A° l—[ A(lo,l )+ [r(bll, 3, 1, 15)]5 © 2° ALy, 1))
j=2 j=0,3.45
~[ralo, b, 1, I @ 8 | | AG I + [rlallo, b, b, DI @ 2 [ | Al D))
J=0,2,45 j=02,3,5
D 3 77
~Ir(sllo, by I, IR @ 2 | | AGs,
j=0,23.4
Hj#l i A(ll, l/))
+ r(lillo, ..., ol )
Z N [ (Lillo 4)]
l;tl
( LrClolla, 13, la, 1515 ® ]_[ Adlo, 1)) + [r(Bollo, s, 1, 19)17 ® A 1)
j=2 j=0,3,4,5
~[ralio, b, L, D5 @ [ | AG, 1) + o, b, 1, 1)1 © Al 1))
Jj=0.2,4,5 j=0,2,3.5
~[rGsllo, b, b WP ® [ | Ads, I
j=0,2,3,4
>y D([Tje1, A1)
+ (m, — ) ® | riill,.... I 14)])
o A
#

This difference gives us

1
g([[r(lzﬂo, L, 1, )15 = [r(lllo, b, 1y, 15)]7

+ [r(lallo, o, s, 1)1 = [r(sllo, Lo, I3, 14)]15) ® A (3.10)

If we apply lemma 3.1.5 to the 5-tuple (ly, L2, 3, 14, Is) of points in P7. then we see that

[r(lollz, 13, L, I)1E = [r(lallo, I3, L, )1 = [r(lsllo, Lo, Ly, 15)]5
+ [r(lllo, o, I, 1] = [r(sllo, b, 15, 1)1

Then equation 3.10 can be written as

1 D o 13

gﬂr(lo|lz,l3,l4, [HIy ® A4 (3.11)
The contribution of the summand (-1)(ly, ..., Iy..., l5) in equation 3.11 is

( Dol - s 1915 © 4
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Now for all summands
= . .
3 2OV 191 © 8
i=1

According to lemma 3.1.5 left factor of the above is projected five-term relation in 82(F)

and is zero. O

Theorem 3.2.4. The following diagram

Cs(3)

3 3
iﬁ lTo

(BY(F) & F*) & (F ® By(F)) ——*

3

Is commutative i.e. 7(3) od=09Po T

Proof: From now on we will denote A(ly, l1, 1) = (lp, 1, 12)

o od(ly, ..., 1)

4
:73[22(—1yum..”2,”.,uﬂ
i=0

3 A A A~ N
D(ly, ..., L. .., 1 loy .o slivry.o sl
Z(_l), (lo ] A3) ®(0 lis As)
i=0 (105---511'9---913) (ZO""’li+25---5l3)
A (ZO"'-’l:i+39---9l:3)
(o5 livay - 13)

where Alt differs from usual alternation sum in the sense that we do not divide by the

= Alt(01234)(

), i mod4 (3.12)

order of the group for Alt. If we expand the inner sum first then we will get 4 terms which
can be simplified in 12 terms, i.e., we will have terms of the following shape:

D(ly, b, 1)
(ll’ 12’ l3)

Then we pass to the alternation which gives us 60 terms so we keep together those terms

® (lo, b, 13) A (ly,1;,13) and so on

which have same first factor e.g.,

Dy, 11, 1)

(o, 11, 3) Ay, b, 1) = (Lo, i, La) ALy, s 1s) = (los Lo, 3) A (L, D, 1)
(lo, 1y, 1»)

+ (lo, Lo, 1g) ALy, By 1s) = (los 1y, 13) A (Lo, by 13) + (Los Ly, La) A (Lo, Dy 1s))

and so on
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The other part of the calculation is very long and tedious but we will try to include some

steps here.

Going to the other side of the diagram, we find

1 . o
P otily,... 1) = —530( Z(—l)’[[r(lillo, U O ) ]_[ A, 1))
i=0

i
D([1,. A1) .
+ ( e AA])®[r(lillo,...,li,...,l4)]})
Hj#i A(lh l])
1< D(U=rll,.. 1) . .
=—= ) (=1) _ @rlily,.... L ..., i)~ [ AGL T
3; ( U= rlillo - B ) ’ ! D !
D(r(illo, ... v 1)) . .
- = L = r(lilly, ..., Li, ..., L)Y N | | AU L)
r(llo. .. T 1) l,_[ '
D (1,4 A1) . )
+ ( da ’)®(1—r(l,-|lo,...,z,-,...,l4))Ar(l,-|lo,...,z,-,...,z4)) (3.13)

[T A1 7)
From now on we will use (i jk) instead of A(l;,/;,[;) as a shorthand. If we expand the

above sum with respect to 7, then we will get a long expression. For example when i = 0,

we have

(012)(034)
D((013)(024)) (014)(023)

(012)(034) (013)(024)

A (234)(134)(124)(123)

(013)(024)
D ((014)(023))
(013)(024) (012)(034)
- om0 % (013)(024) A (234)(134)(124)(123)
(013)(024)

D ((234)(134)(124)(123)) ® (012)(034) A (014)(023)
(234)(134)(124)(123) (013)(024)  (013)(024)

and we can get four more similar expressions for the other values of i as well. If we collect
terms of type % ®---A--- 1e., fix i, jand k in all five expressions (one of them is given
above), then we will see a huge amount of terms but we cancel terms pairwise and collect

terms of the same kind, we get each remaining term with the coefficient “3”. So we can
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write in the following form.
D(012)
(012)
+ (024) A (124) — (013) A (023) + (014) A (024)}

D(013)
(013)

— (034) A (134) — (014) A (034) + (012) A (023)}

-3

®{(013) A (123) = (014) A (124) — (023) A (123)

-3

® {(014) A (134) + (023) A (123) — (012) A (123)

and so on

It turns out that every term has “—3” as a coefficient that cancels the factor —% in the
definition of T? then comparing the expression above with (3.12), we find after a long

calculation that both agree (term-wise) O

Here we have another result which will then complete the commutativity of diagram (3.2a)

Theorem 3.2.5. The following diagram

Cs(3) d Cs(3)

3 3
l‘[’z iTI

BE(F) ——— (BD(F) ® F*) & (F ® By(F))

Is commutative i.e. Tg 0od? =do T?.

Proof: The map 7; is based on generalized cross-ratios of 3 x 3 determinants. The total
number of terms due to map T; will be 720 which can further be reduced to 120 due
to symmetry (cyclic and inverse). The direct procedure which was used in the previous
proof will be very lengthy and tedious so we will use techniques of combinatorics and

will rewrite the triple-ratio in to the product of two cross-ratios to prove this result.

We first compute 0 o Tg(lo, ...,1s) and we already have

2 l[A(lo,ll,13)A(l1,lz,l4)A(lz,lo,ls)]lD

’;
2o,y ..., 15) = —Alt
Tallos s s = A S A b 1A o, 1)

3
from now, in this proof we will use (i jk) for A(l;,;,ly) and (0....,5) for (ly,...,ls) as a

short hand.
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The above becomes

(013)(124)(205) |"
(014)(125)(203) |,

2
3lo, ..., ls) = 25 Alt H

2

3” o t3(ly, ..., 1s) =15l (H

(013)(124)205) |° _ (013)(124)(205)
(014)(125)(203)]]2 ® (014)(125)(203))
(013)(124)(205) [(013)(124)(205)] ) G
(014)(125)(203) | (014)(125)(203) |, ‘

2
Z Alte[D1
S 6( o8

First we will consider first term of the above

2
= E(Alté{[[m(o..ﬁ)]]?@ (013)} + Alts {[75(0... )10 ® (124))

+Altg {[73(0. .. 5)15 ® (205)} - Altg {[73(0... 5)15 ® (014)}

—Altg {[r3(0...5)12 ® (125)} - Altg {[r3(0...5)]7 ® (203)})

where
_(013)(124)(205)

~ (014)(125)(203)

Use the even cycle (012)(345)
Altg {[r3(012345)]2 © (013)} = Al {[r3(120453)]2 ® (124)}

Now we use [r3(012345)]Y = [r3(120453)]% and similar for the others, then the above

can be written as

= % (3Alt {[73(0... 5)15 ® (013)} — 3Alte {[r3(0.... 5] ® (014)})

Use the odd cycle (34)

= 2 (61 {17017 ©.013))

If we apply the odd permutation (03), then

= % (3Alts {[r3(012345)12 ® (013)} - 3Alt {[r3(312045)]2 © (310)})

but (013)=(310) so up to 2-torsion

= %Altﬁ {(|Ir3(012345)]]§ - |[r3(312045)]]§) ® (013)}
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Now we will use here the crucial idea of this proof in which we will divide the triple-ratio
into the product of two projected cross-ratios of four points each. There are exactly 3
ways to divide this ratio into such a product. i.e., if r3(a, b, ¢, d, e, f) then it can be divided
by projection from a and b, projection from a and c or projection from » and c¢. In our

case we will divide by projection from 1 and 2.
2 r211053)]°  [r11350)]°
= —Alt ———— | === 013
15°° {(Hr(uoz:m)ﬂz r(113204) || ®(013)

Apply lemma 3.1.5 (five-term relation in ﬁé) (F)) then we will have

= 15A1t6 {[ H7(1|0342)ﬂ2 + [[r(2|1053)]]2 [[r(l|0234)]]2)®(013)} (3.15)

We will treat the above three terms individually. We consider first term now,

r211530) ”
Altﬁ{ﬂm]L ®(o13)}

For each individual determinant, e.g. (013), we have the following terms.

r(211530) " ~ 1 r(211530) "
Altg {HM]L ® (013)} = Altg {%Alt(om)(zzts) (HW]L ® (013))}

We need a subgroup in S which fixes (013) as a determinant i.e. (013) ~ (310) ~
(301)---.

Here S5 permuting {0, 1, 3} and another one permuting {2,4, 5} i.e. S5 XS 3. Now consider

[ +(2]1530) [|°
Alt(013)(245){ m]‘ ® (013)
L 2

~ [(210)(235)  (104)(132)°
=Altoses) { | (213)(250) (102)(135)]]2 ® (013 )}

[(253)(104) [°
:Alt(013)(245){ %ﬂ ®(013)}
| 2

By using odd permutation (25) the above becomes

=0
The new shape of (3.15) is

= 2 Al {(Ir 21105312 - [110234)12) & 013)) (3.16)
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Now we will consider the first terms

2
Al {[r(211053)17 ® (013)}

2 1
=15 Alt {gAlt(245)[[r(2|1053)]]§ ® (013)}

:%Altﬁ{(l[r(4|1023)]]§ - [r(211043)]5

+ [(511043)]2 — [r(4]1053)]%
+ [r(2]1053)]2 - [[r(5|1023)]]2D) ® (013)}

We are able to use lemma 3.1.5 (projected five-term relation in ,3? (F)) here.

= %Al%{(ﬂ”(ollﬂ“)}lé’ — [(1]0234)]2 — [(3]0124)]2

+[r(0[1435)]7 — [r(110435)]5 + [(3|0145)]%
+[r(0[1532)]17 - [7(110532)]> + [[r(3|0152)]]§) ® (013)}
Use the cycle (013)(245) then we get

1
= 45 ' 9Al {[ro1234)12 ® (013)} (3.17)

We also have —%Alt(, {[[r(1|0234)]]§ ® (013)} from (3.16) which can be written as

1
15 ~OAltg {[r(110234)12 ® (013)}

then (3.16) can be written as

= %Alts{(9[[r(0|1234)]]§ — 6[[r(110234)]7 ) ® (013))

Use the cycle (01). We will get %Alt6 {[[r(0|1234)]]§ ® (013)} as a result of (3.16).

This gives the first term in (3.14). For the second one, consider the second part of (3.14)

D(ab) _ D(a)
ab

+

D(4
DO) ypg 2B = D@ _ 20
b a b

which has a Dlog factor in F and we know that
while the right factor of second term is in 8,(F) which is equipped with five-term relation
so same procedure can be adopted for the second term as we did for first term. So, after
passing through above procedure for second term, we get from the second term of (3.14)
%Alt(, {D1og(013) ® [r(0]1234)],}, at the end of the computation we have from the LHS of

the diagram (simpler form of the diagram)

= %Anﬁ {[r(01234)]2 ® (013) + D1og(013) ® [r(0]1234)], (3.18)
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The above allows us to rewrite 7> using alternation sums. In fact, we have
1

1
T?(lo, oy = gAlts{[[r(loﬂl, b, 13, 14)]15) ® Ally, 11, 1)

+ Dlog(A(ly, I, 1)) ® [r(lolli, I, I3, 14)]2)
In reduced notation, the above can also be written as
1
Tzl’(O o) = 5A1t5 {[[r(0|1234)]]§ ®(012) + D1og(012) ® [r(0|1234)]2}

It remains to compare 9 o T;(O, ...,9) with T‘;’ o0d(0...5). For the latter, apply cycle

(012345) for d and then expand Alts from the definition of Tf so we get
3 0d(0...5) = %Altﬁ {[r(01234)]2 ® (012) + D1log(012) ® [r(0]1234)],
Now use the odd permutation (23) then the above becomes
= —%Altﬁ{[[r(0|l324)]]§’ ® (013) + D1og(013) ® [r(0]1324)],}

Finally use the two-term relation to get the correct sign and it will be same as (3.18). This

proves the theorem. O

Corollary 3.2.6. The diagram (3.2a) is commutative, i.e. there is a morphism of com-

plexes between the Grassmannian complex and a variant of Cathelineau’s complex which

involves the F-vector spaces ﬂ? (F) and BY(F) and the groups B,(F) and F X A F*.

Proof: The proof follows from combining Theorem 3.2.4 and Theorem 3.2.5. O

Now consider the diagram (3.2a) and note that T? od € kerdP. It is clear from the

commutativity of the diagram that 6" (T? (dl, ..., 15))) =0.
Goncharov has given a morphism from the Grassmannian bicomplex to I'(n), here we try

to establish a result in the following proposition for the infinitesimal case.

Proposition 3.2.7. The following maps
4 7-2
1G5 2 S FoF
’ TZ
2.C5(3) 5 €y 5 B

’ T3
3. Cs4) S Ci3) 5 F o A2F~
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4 Cot(n+ 1) 5 Cra(n) > Fo N FX

are zero, where

Tg(l(), ey ln)

Z( )( A<lo’--~fv-~,ln>)®A(lo,...,2+1,...,ln>
Ao, ... 1, .. z) Ao, .- Bivns 1)
A A(lo, .- t+(n s> ln)

A(l()$" l+n7'-"ln)

), i mod (n+1)

Proof: See the proof of the lemmas 4.2.3, 4.2.5, 4.3.4 and 4.3.5. O

Now we can relate the above with the work of Goncharov ([9] and [10]) to see the bigger

picture.

Lemma 3.2.8. (Elbaz-Vincent—Gangl)(see Lemma 6.1 and Proposition 6.2 of [7]) Let
D € Derz(F) be an absolute derivation for the field F. Then the following diagram is

commutative.

Z[F..] F[F..]

5,, B

B,.1(F) & F* (B2, (F)® F*) & (F ® B,_1(F))

Where fp : [a] — af)](fz) [a]

lal,.1®a forn>2
0, : [a] —

(l-ayAa forn=2

[al,-1®a+a®lal,.1 forn>?2
0, la]l —

D D
—£®a+$®(l—a forn =72

)
D(b)

gnD : [a]n—l ®b = [[a]]n—l ®b T ® [a]n 1

Proof requires direct calculation(see the proof of Lemma 6.1 and Proposition 6.2 in [7]).

O
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Recall the Diagram (2.9) of §2.3 in [9]. Goncharov proved that the following diagram is
commutative.

C4(2) —=C3(2)

ISR

By(F) —2= N2 F*

for the following maps
follo, i, ) = Ao, 1) A Ay, L) — Ao, 1) A Ay, L) + Ally, L) A Ay, 1)

and

2 [ A, )AL )
Jitlo..ho) = [A(lo, L)AL, 13)]2

where d is defined in §2.1 and 6 is defined in §2.3.
On the basis of this diagram, Lemma 3.2.8 and diagram (3.1a) in §3.1, we can construct a
prism which has six faces and above discussion in this chapter shows that all square faces

of the following diagram are commutative.

C4(2) d C3(2) (3.2b)
1} 12
By(F) A? FX 2
T%) gz D
|T1
B2(F) 0 F ® F*

where (see §6.1 in [7])

D D
) =[xl and gly(eny) = 2 @y - 2

y-——®ux
y

Corollary 3.2.9. The diagram (3.2b) above is commutative, i.e. there is a morphism of

complexes between all three complexes used in diagram (3.2b).

Proof: We only need to show that g, ,, o f5(lo, I1. I3) = 73(lo, 1, 13) and 7}, 0 f2(lo, ..., I3) =
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T%(lo, ey l3)

8 p o follo, 11, 13) =g (Ao, 1) A ALy, 1) — Ao, 1) A Ay, 1) + Ay, b) A AL, b))

D (A, 1)) _ DA, b))

Tl hy NPT NG @A
D (A(ly, 1)) D (A(ly, 1))

—W ® A(ll, lz) + W ® A(lo, ll)
D (A(ly, 1)) D (A1, 1))
W ® A(ly, 1) - W ® Alo, 1)

ZTS(ZO, I, 13)

and

75 0 fi(lo, . .. =

ly) =7 ([Aﬂo, )AL, lz)] ) B HA(IO, 13>A<ll,zz>]l
PPN Ay, L)AL 1) ) A(ly, )AL, ) ||,

We can construct the similar diagram for weight 3 case. We recall diagram (3.2) in §3 of
[10]
Co(3) — > C5(3) ——C4(3) (3.2)
e e e
Bs(F) —2> B, (F) ® F* —>> N3 F~

is commutative for the following maps

3 3
flos. 1) = Y (=D \ Ao, ..., 1. 1),
i=0 =0

J#i

4
D rillo, .. By )| ® A(ii’ij)
2

i=0 i

Folos . 1) = -

W| —

and f; is defined via alternation sum for generic points.

2 Altg [AUO’ L, YA, by, LA, Lo, 15)]
45 A(lOa 117 l4)A(ll, lz, lS)A(lz, 107 13) 3

where 6 ([x]3) = [x], ® xforall x # 0,1 € F* and 6([x],) = (1 — x) A x.

f;(lo’-"’ZS):

So, we can combine this diagram, diagram (3.2a) in §3.2 by using Lemma 3.2.8 to get the

following diagram where all square faces are commutative.

Co(3) d Cs(3) d C4(3) (3.2d)
By(F) —>By(F) @ F* ——* NP~ ?
T?) 3 g%,D 5 g;,n
BY(F) (B(F)® F*) @ (F @ By(F)) — F ® \* F*
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where (see §6.11in [7])

o (xlz) =[x, & D([x]z ®y) =[xl ®y+ % ® [x]2
and
gé,D(xAyAZ)=¥®y/\z—%® Az +ﬂ®x/\y

Corollary 3.2.10. The diagram (3.2d) above is commutative, i.e. there is a morphism of

complexes between all three complexes used in diagram (3.2d).

Proof: We only need to show that g} , o f(lo, ..., 15) = To(lo, . ... 13), g5 po fillo ..., 1s) =
T?(lo, ey l4) and T?) o f;(lo, ey l5) = T;(l(), ey l5)

g;,D © fg(lo, o)

3 3
:gé,D Z(_l)i /\ Ally, ..., Z,-, oo ly)
i=0 i=0

J#i
ZS: D (A, ... I, .,14))®A(10,.. oty oosl) | Al 1)
— Aoy iy ls) Aoy iwas i) Aoy dizs s L))

i mod 4

gip o fillo,....1y)

4
- ;D[Z( W [ (il ... .. .,14)]2®]_[(i,~,i,~)]

i=0 i#]

2 Ally, 1y, )AL, b, L)AL, Ly, Is)
3 3 3
ly,...,Ils) = —Alt,
™0 Syl 15) 70(45 6[A(lo,11,14)A(11,12,15)A(12,lo,13)]3)
240 HA(ZO,A,@)A(A,ZZ, DAL, lo,ls)]l
~45 | Ao, 1, 1AL b, )AL Do, 1) |




Chapter 4

Tangent Complexes

In the previous chapter, we have described a morphism between the Grassmannian com-
plex and a variant of Cathelineau’s infinitesimal complex. In this chapter we will discuss
and try to write geometric configurations for the tangent complex to Bloch-Suslin com-
plex and to Goncharov’s complex (see §3 of [10]). By specializing the derivation of that
tangent complex, we relate it with the variant of the Cathelineau’s infinitesimal complex
and with Goncharov’s complexes (see examples 4.2.6 and 4.3.2 below). This chapter will
also introduce cross-ratios and identities of determinants for the configurations of vectors
in Cm(A;[a]y) forn=2,3,m=3,...,7and v > 1 (v = 1 is the usual case and we have

used this previously) (see §4.1 below).

One of our main results is Theorem 4.3.3. In its proof we shall use combinatorial tech-
niques and will rewrite the triple-ratio as the product of two projected cross-ratios in

F[S]z.

4.1 Configurations of points in C,, (A}, . )

Let F be a field of characteristic 0. For v > 1, we denote the vth truncated polynomial ring
over F by Fle], := F[e]/e”. Further define the abelian group Cm(A’;[EJV) generated by m
points in A%, in generic position, where A%, is the n-dimensional affine space over
the truncated polynomial ring F[e],. We will not consider here degenerate points and we

are assuming that no two points coinciding and no three points are lying on a line. Now

41
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laly)

a; 2 O Cll"g 2
€ Ay \ and [;, = € Ay, we
b,’ O bi,s

e = l; + I, .€ and define a differential

for the casen =2 and v = 2, any /; =

a; + a; € a; Aig
put [y = = +
bi + bi,sg bi bi,e

d: Cm+1(A12r[g]2) - Cm(AIZV[s]z)

d: (..l DDy B,
i=0
Let w € V] be a volume element formed in V; := A% and A(l;,1;) = {w,l; A I;), where

li,1; € Ai. Here we define

AT = AL T + AL D) e

127

where

AL o =AU and AL e = AL L) + Alls, 1)

more generally for v = n + 1, we have
I=li+le+lp8+ -+ and L=1
and we get
A1) = AL L) + AU T ee + AL, l;‘.)azs2 +o AL ) e,

where

A D)o = A Lion) + A, Lign1) + -+ + Al 0, 1)

irkj
Consider the Siegel cross-ratio identity for the 2X2 determinants of four vectors in C4(A}2¢)

(see [21], [9] or Remark 2 on p155 of [16])
Aly, DAL, I3) = Allo, )AL, 13) — Ally, )AL, 1) 4.1)

With the above notation, an analogous to Siegel cross-ratio identity turns out to be true for
A%[S]M, and we can extract further results which are essential for the proof of our main

results. Throughout this section we will assume that A(/;,[;) # O fori # j.

Lemma 4.1.1. For (I3, [],15,13) € Ci(AZ l), we have

Flelns

Al DAL, I5) = Al L)AL, [3) = Ally, )AL, 1) (4.2)
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where
U=li+le+lpo8+  +lge" and lgwo=1
AL L) = A ) + AL 1) ee + AL, lj-)gze2 +o AL )"
where

A D)o = Ay Lion) + Ao, Lignt) + -+ - + Al 0, 1)

127

r r
. Zrzo lrg Zrzo m.&
Proof: For r =0, ...,n, we can write [* = and m* = .
’
ZrZO mrgr

Now we have
20 € XpsomE
ZrZO l;gr Zr>0 m g

= Z (Z A, m,_k)J g

r>0 \ k=0

A", m") = ‘

DI NTIEHNIE

r>0 \ k=0

Hence

Ay DAL E) =y (Z Ao I - k)] > [Z Aoj, - J)]

r>0 \ k=0 5s>0

= Z g (Z {Z Allog, It k) Z Al j, 13 -1 J)]]
>0 \r=0 \ =0

= Z & (Z {Zr: Z Allo, 1 )AL, j, l3,t—r—j))) ,
>0 \r=0 \k=0 j=0

and similarly for A(fy, [5)A(l7, [;) and A(l, I)A(l], 5). Hence we use validity of (4.1) to
deduce the analogue for A(/}, l;)’s in place of A(/;, [;) passing from the ring F[[] of power

series to a truncated polynomial ring, say to F[&],.. O

As special cases we find for n = 0 the identity (4.1) while for n = 1 we have the following

identity which will be used extensively below:
A(ZO’ ll )A(l;’ l;)e + A(IZ’ l3)A(l(>§’ ZT)S
= {AUo, L)AL, 1) + AL, B)AUy, B)e} — (AU, AL, B)e + AL, L)AL, B):} . (4.3)
if we write
(ab)gn = agnbgo + Clsn—lbg + -+ ag()bgn

then (4.3) can be more concisely written as

(AW, DAL, )}, = (AU, AU B)), — AU BAWL B)), -
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laly)

4.1.1 Cross-ratio in Flg],:

In this section we will try to find the cross-ratio of four points in F[e], forv =n+ 1. We
will use the same technique here as we did for the identity (4.2) but the procedure here
involves lengthy calculations. First we define the cross-ratio of four points (,...,[5) €

Ci(AZ%, ., )as

Fleln

A(ly, DAL, 1)
ALy, YA, 1)

If we expand r([j, ..., [3) as a truncated polynomial over F[g],,1, then

v, 15 =

Xl ..o 15) = (ro + 1+ rp8” + -+ 1) (G, 1) (4.4)

If we truncate this for n = 0, then

_ Aly, )AL, )
A(ly, LAy, 13)

r(ly,....55) = ro(ly,....55) =r(l,...,15) 4.5)

If we truncate (4.4) for n = 1 then the coefficient of £° will remain the same as for n = 0
and we compute the coeflicient of € in the following way:

Consider ([, ...,[5) € C4(A%[S]2) in generic position, we get

L) = Ay, DAL L) (AU, I3) + Ay, 13).eHA(L, ) + AL}, 15).€}
U AU AL L) AU, b) + AU B)s WAL B) + AL 1))

If a # 0 € F then the inverse of (a + be) € Fle], is i - a%s € F|&], (this is the same as the

inversion relation in 78, (F) discussed later in §2.5).

Simplify the above by multiplying the inverses of denominators and separate the coeffi-
cients of £” and &. The coefficient of ¢ is the following

ey < B BAG N A DAL,

Allo, L)AL, 1) Y Aly, L)AL 1)

(4.6)

Now forn = 2,1i.e. (Ij,...,[3) € C4(A§[sh), we will use (/;, ;) instead of A(/;, ;) to get

(o, 5) + (U, 1)ee + ([, )28 W (D, b) + (I}, B)ee + (1, 1) 287)
{(lo, ) + ([, B)ee + (I, D28 K1, B) + (1], e + (1], 15) 287}

r(ly,....[5) =

simplify and separate the coefficient of £°, ! and £%. Coefficients of £° and &' are same

as we computed in (4.5) and (4.6) respectively, and the coefficient of & is

{15, )7, )Y 1o, UL B
(lo, L)1, 13) (o, L)1, 13)

{(Uo, KT}, D)}

oy ) 1)
4.7

ra(ly, ..., [5) = —re(ly, .5 13) r(o,...,1
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laly)

Remark 4.1.2. The computation of coefficient of &" which is rp. (I, . . ., I) in the truncated
polynomial (4.4) will give us the following:

Z (A BAG B} e (B 1)) = (AU DAG, B} (4.8)
k=0
where A(l;,1;) # 0 for i # jand (Ij,....15) € Cy (A%, )

4.1.2 Triple-ratio in Fl¢],:

In this subsection we will discuss triple-ratio (generalized cross-ratio) of 6 points, i.e.,
(Lys---565) € C6(A13¢[s]y) for v = n+ 1. We are pleased to see that the calculations in

triple-ratio are similar as the cross-ratio of 4 points ([,...,[) € C4(A12%] ).
Case v = 2:

First we take ([, ..., [5) € C6(A137[g]2)’ forany I7 € (I, ..., [5)

a; +a; . a; e

* — —_— —

li = b,’ + bi,88 = bl‘ + bi’g &= li + li,ag
Ci+ Cis€ Ci Cige

AL G L) = AU L L) + AU T D).

127] i°"j

where A(l;, [;, [;) is a 3 X 3-determinant,
AW L) = Allie, s b)) + A Lie, I) + A, 1y L)

and

A(l;ks l;» ZZ)EO = A(li’ l]a lk)

As we can expand

I’3(l*, ceey l;) = 1”3(1(), ceey l5) + 1"3’8(18, cee, l;)é‘

From [10] we have

Ally, 11, 3)AUy, b, L)AL, 1y, Is)

lo,....ls) = Alt
r3(lo 5) Ay, 1, 1Ay, b, 15)A(L, 1y, I3)
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LG
AL~ ML)

for A(l;, 1}, 1;) # 0 multiplicative inverse of A(I’, lj, [)is — £ and from now

%

on we will use (I} lj.l,”;) instead of A([}, l;‘., [7) unless specify.

L ELEGEE)

HARAARAAR)

_ Al {{(101113) + (Il 1) e H (b L) + (LI e (b ols) + (131312)88}}
{(lolls) + (L1 L)X (L bls) + (LI eH(blols) + (L1) €}

r(l;, ..., [) = Alt

Simplify the above and separate coefficients of £° and &', we will see that the coeflicient
of &' is the triple-ratio of six points (..., ;) € C6(A%) and the coefficient of & is the

following:

r3e(lys ..., 15)
- X)L (MDY
(ol la)(Lbls)(blols) — (lolila)(hibls)(blols)  (lolila)(l Lls)(lols)

we can write the explicit formula. For 6 points in CG(A%[S]Z)

— I3 l(),...,ls
(bl L)L Lls)(L1ls) (bl L)1 Lls)(L1ls)

ey = i VG, R

Casev = 3:

For 6 points in CG(A%[gh) we will the following through same procedure as we did above,

1
a+age+ay &2

and for a # 0 we have =b+be+bog?whereb =a' € FX, b, = (a,a,) and

ba = (a,a., az)

(L B LD L)) 2 \ \
— r3’g(lo, ey 15)
(bl L)L LIs) (L)
{(l]‘ l;lZ)(lT l;l;)(l;lél;)}gz }
"7 ol L) (I ls)(blols)

{(l(*)lT lj)(l"[ l;l;)(l;l(*)l;)}g
(ol la)(Lials) (L lol3)

r3’62 = Alt{

—r 3(1(), NN
Here we used the following notation just for simplification.

(abc), := aboco + aob.coo + aoboc,

4.2 Dilogarithmic Bicomplexes

In this subsection we will connect the Grassmannian bicomplex to the Cathelineau’s tan-

gential complex in weight 2.
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We will use the following notations throughout this section
Al e = A, 1) + A 1) and AL e = AL 1)

and we will assume that A(/;, [;) # 0 (as we often want to divide by such determinants).

Let Cm(Af,[s]z) be the free abelian group generated by the configuration ([, ...,[; ) of m

points in A% ., where A2

Flely? Flel, 18 defined as an affine plane over F[e],. Configurations of

m points in AZ

Fle], AI€ 2-tuples of vectors over F[e], modulo GL,(F[g]). In this case the

Grassmannian complex will be in the following shape

d d d
+ = Cs(Afy,) = Ca(Afy,y) = Ci(ALy,,)

d: [y by ) o D (1 BT )
i=0

a; + ai & a; a;g a;
where [} = = + e=1l+l.canda;,b;a;.,b;. €F, *
bi + bi’gé‘ bi bi,s bi

]

Here we recall the Z-module T 5,(F) generated by {a; b], := [a + be] — [a] € Z[F|&],]

(have discussed earlier in §2.5).

Consider the following diagram

Cs(Afy,,,) — Cu(ALy,)) —— C3(Af,y) (4.2a)
le 0,&
TBy(F) -~ FoF® \*F

where

b b b b
0. {a;bh— |-®9(1—-a)+ — ®al + A —
a 1-a l-a a

We write the map 7, as a sum of two maps

™ Cy(Afy,,) » F®F”

and

@ C3(Afy) > /\°F
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where
O, 13, 1)
AL D) ® Allo, ) Al 15)s ® Ay, 1) N ALy, 1))s ® AL, 1Y)
A, L) Ao, L) All, L) — Al L) Al L) A, L)
and

O, I, 1)
AT, ALLE). AT AL  ATLE). AL
= A — A + AN

T Ao L) T AULL) Ao D) T Ao L) AULL) A, b)

Furthermore, we put

1 Lo 13) = (rlos - B re(ls .. 1]

where r(ly, ..., 1), r:(l, . . ., [3) are the coeflicient of g% and &' respectively, inr(l;, .. ., )

as defined in 4.1.1. and A is defined in 4.1

Our maps 73, and 77, are based on ratios of determinants and cross-ratios respectively,
so there is enough evidence that these are independent of the length of the vectors and
the volume formed by these vectors. This independence can be seen directly through the

definition of the maps.

We will also use the shorthand (/;/;) instead of A(l;,1;) wherever we find less space to

accommodate long expressions.

Now calculate the cross-ratio of the points in A% [£],.
AL, DAL, 1)
AL, YA, 1)
_ (Ao, 1) +{AUo, I ) + Allo ., 3)}e) (AL, b) + {AUL b ) + Al 4, b))e)
(Ao, b) + (Ao, b)) + Al s, )VE) (AL ) + {ALL ) + Al e, 1)}e)
_ (oB)Lb) + {(loh) ((Lile) + (L eh) + (i) ((ols ) + (loel3))}e

(o) (i) + (o) ((hls ) + (Lely)) + (L) (Uolae) + (loeho)))e

_ (lol3)(U1 1) N X .

(oh)(hilz)  (lol)*(1113)?

r(ly,....5) = we have already assumed that A(/;,[;) # 0

where

x =+ (lob) (L ) ol b.e) + (lol) (L ) Lol3) (U k1)
+ (o) (L)L) (ol ) + (o) (Lil3)(1i 1) (o s13)
= (lols) (L) (o) (1 3,6) = (lol3)(Li )l l2)(1 6 13)
= (o) (L) (Li3)(loby.e) = (ol3) (L)L 13) (Lo 1)
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Similarly we calculate

A, IHAL, )

A, DAL, )

_ (lol)(1213) + y s
(lol)(i13) — (loh)*(1113)?

1-rly,....0[5) =

where

y =+ (bl) (L)l )(hs.6) + (ola)(Li )l ) (L 613)
+ (lob) (L ) (L) (ol ) + (ob) (i) (L) (o s1)
= (lol)(Ll)(Uol) (1 3,6) = (lol)(Lal3)(loba)(1 613)
= (lol)(Ll)(Lil3)(loby.e) = (lol)(al3)(1i3) (Lo 12)

Remark 4.2.1. The F*-action of T B,(F) lifts to an F*-action on C4(A> ]2) in the obvious

Fle

way:

The F*-action is defined above for F|[g], induces an F*-action in A%[g]z diagonally as

a+age a+ Aage
A * =
[b+bgs] [b+/lb88

Lemma 4.2.2. The diagram (4.2a) is commutative

€ Ajy,,. A € F

Proof: First we need to calculate T%g.

T%,g(l*, L) = <(lol3)(l1lz). X ]

(lol)(h13)” (lol)*(1i13)?

0011 (I, .. 15)

_ x ®(1011)(1213) N X ® (lol3)(1115)
(Lb)(LB)Y o) hh) — (o)) (b)) (L) h) (L) — (hh)(hil)

x X
 (oh)( I3)(lols) (L1 L) 4 (lolz)(hls)(loll)(lzls))

For the other side we first calculate d and then apply 7'(2)"9 ond(l,...,[).
Top 0 dU, ... 1) = 1o, (=5, 13, 1) + (U, 13, 1) = (U, By, 15) + (15, 15, 15))

This calculation can be done in two steps. In a first step we find 7V o d(I}, ..., [5) and in

a second step we calculate 7 o d([3, ..., [3)
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In the first step, we have

@V od)T;, ..., 1)
LG Gl Gl Aol Gl b
T b Sl (ol D W) T Wl ()
_(l’{l;)a (loll)+(lf§l§)g (loll)_(lgli)s (bols)
(L) (ol  (ols) (L) (b)) (L)
(L) (lolz)_(lglz)e (bh) (e (lol3)
() 2ol oy © ol T ol © (ol
_(lil;’i)s (hh) (i) (lllz)_(lTZZ)a (L)
) 2 W) T W) Z Wy~ iy © ()
_ ((lTlﬁ)s N (Lhl3)e (1) (1313)8) (lol)(l13)
(hlh) (b)) (L)  (bh) (Lol)(L113)
((rfl;;)g LG G, (lz;r;)g) Gl
(L) (b)) (L) (o) (llr)(Li13)

By using identities (4.3) and (4.1) the above can be written as

_ X ® (lol1)(L213) " X ® (lol3)(11 1)
(o)L )l (hi) — (ol)(hilz) (o)) (ol )(Lls) — (ll)(lhi3)

Now go to the second step, and by using a A @ = 0, modulo 2 torsionanda A b = -b A a

€ F® F* (4.10)

and identities (4.3),(4.1) we can get here

@ od(,.... 1)

1) (55 (G5 (1813)5) ((1312)8 e (e (I55)e
_ _ _ _ - 411
((1112) ¥ (olz) (L) (ll) " (h13) " (bly) (i) (bh) 1D
X x
T (o)) Uols)(1 1) " (o)L ) (ol ) (La13)
O

In the remainder of this section we prove that the following diagram following is a bicom-

plex.

Cs(A},,) d Cu(A3,,) (4.2b)

Lk

C4(A129[s]2) ‘ C3(A12F[s]z)

2 2
iTl,s \LTO.};

TBy(F)—2 > Fo F*® \’F

To prove the above is a bicomplex, we are giving the following results.

’ T2
Proposition 4.2.3. The map C4(A13,[8]2) 2, C; (Afp[sh) S (FeF)® ( A\2F ) is zero.
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Proof: Let w € detV; be the volume form in three-dimensional vector space V3, i.e.,

A, 1, ) = (w, I; AL A L) then A(l;, -, +) 1s a volume form in V3/([;). Use

A1) = AL LG + (AL L 1) e

1

where

AT 0)e = A, Ly L) + A, Lig, L) + AL 1, D)

irtjo

We can directly compute T(2)’8 od
0.0 d (s, 15) = 750 (I, 1, 15) = (G, 1, 1) + (Gllg, 1, 1) = (G, 17, 1))

First we calculate the first part of the map Tg o

_ GhE).  (olily) N (GhB)e  (obl))  hh)s  (olsly)
— (bhk) T (bhilk)  (olily)  (ohl)  (ohlk) — (k)
(G 55)e ® (Lloh) — (ih55)e ® (L) N (G50 % (hisl)
(Lhibl) — (L)  (hilol) — (Libl)  (hlh) — (L)
RCUE CUTVN (BGly53)e o (20l (BGL5)e o (211
(Lhl) — (b))  (Lll) — (LhL)  (Llil) — (L)
(GHD)e g Bl _ (3lo5)e S CULON CUTE g (B2l0)
(Lhb) — (Bhh)  (Llh) — (LLL)  (Bll) — (k)
Clearly the above gives zero. Similarly calculate the second part of the map.
:(l(’;l*{l;‘)g \ (G55, N (L) \ (L) N (G55, \ (L)
(ohlz)  (bhlz)  (blil)  (ohlz)  (lohlz)  (lhl)
G N G R G N G I G UL R G L

(L) (L)  (Lbh) (L)  (Lkhl) (L)

(L113)e \ (LLE)e N (Gl)e \ (L113)e N (LIE)e \ (Ll)e

(Liolz)  (LLiL)  (Lbl) (L)  (LLL) (L)
_(lgl{;l;)s \ GGLEL)s N (LI, . (GG N (LGLEG)s \ (AR

(Lloly)  (BLil)  (Lhl) (o) (L) (Lhl)
=0

O

The following result is very important for proving Theorem 4.3.3. Through this result we

are able to see the projected-five term relation in 75, (F).

2

Lemma 4.2.4. Let x;,...,x; € P Fleh

be 5 points in generic position, then

4

Z(—l)i (r(xilxoy « ooy Riy ooy Xa)s re(X] X5 . R, .o, X)) = 0 € TBL(F), (4.12)

i=0
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where x; = x; + X, and x;, x| € P
r(X;Ixg, o X7 X)) = r(xlXo, o Ry oo Xa) + (X IXG, L R, L XS,

where the LHS denotes the projected cross-ratio of any four points projected from the fifth

2

* *
from x3, ..., x; € ]PF[g]z.

Proof: Consider five points yy, ..., ys € P} in generic position. We can write the five-term
relation in terms of cross-ratios in B,(F) as (see Proposition 4.5 (2)b in [7]):

4
Z(—l)i[”(yo, cesYiso ) =0

i=0

These five points depend on 2 parameters modulo the action of PGL,(F), whose action
on IPL is 3-fold transitive, so we can express these five points with two variables modulo

this action, we can put

1 0 1

(YO,---,)M): s ) s
0 1 1

—_ Q=
S

then we get one of the form of five-term relation in two variables (needs to use inversion

in the last two terms).

l-a - ﬁ
[l = Bl +{ = | +|5 b]—[ 1]:0.
2 LI=PhL [1-3],
Now we consider five points yj,...,y; € ]P}F[g]z, in generic position, where y! = y; + yle

for y;,y; € ]PlF. A generic 2 X 2 matrix in PGL,(F[¢g],) depends on 6 = 2(2 X 2) — 2(1)
parameters, while each point in ]P};[g]2 depends on 2 parameters, so these five points in

]Pl

Fleh modulo the action of PGL,(F|[¢],) have 4 parameters. Now we can express them

by using four variables we choose:

1 0 1 12 1_Eg
(ya"'-’yjl): ’ B ’ “ ) b
0 1 1 1 1

We calculate all possible determinants which are the following:

Ao, y1) = Ao, ¥2) = Ao, y3) = Ao, ys) = 1, A(y1,y2) = -1,
1

1 1 1
Ay, y3) = —;,A(Yuyzt) = —Z,A(yz,)%) =1- ;,A(yz,ﬂ) =1- 5

A(yf}, yT)s = A(y?)’ y;)e = A(yé, y;)s = A(yf), yZ)a = A(yT’y;)s =0

* >k * >k a 3k * 3k *
A(y1’y3)£ = A(\/z,y3)a = ;’A(yla)q)s = A(yz,y4)g = l?
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For yy,...,y, € ]P}[gh, we can write the following expression in 7 B, (F)

4
Z(_l)i <”()’0’ .. -’j}ia .. ay4); rs()’?p- .- ’j\]:f’ . ’yjl)]z
i=0

If we expand the above expression and we put all determinants in it we will get the fol-

lowing expression in two variables.

N e é_ab'—a’b B 1-b (1-b)a —(1-a)b
<a9a]2 <b’b]2+<a’ 612 ]2 <1_a’ (1—0)2 )
a(1=>b) b(1 -b)a’ —a(l —a)’
b1l -a)’ (b(1 — a))? 5

From (4.12) it is clear that the above is the LHS of the five-term relation in 75,(F). We

will reduce the claim to this latter form of five-term relation.

Consider xo, ..., x4 € PZ in generic position. These five points also depend on 2 param-
eters modulo the action of PGL,(F), so we can express these five points in terms of two

variables by the following choice:

1 0 0 1
(x0,---»xa)=l O |.,] 1 [.]O ] 1]
0 0 1 1

—_— Q= =

We compute all possible 3 X 3 determinants of the above and put them in the expansion

of the following:
4
DD el i X)) € Ba(F),
i=0
we get the following expression in two variables

o]l -l
» 11=bl [1-3]]

lal, = b]> +

a
clearly the above is the LHS of one version of five-term relation in B,(F).

2

1 1 ok ok
Since by assumption xg,...,x; € Py

are 5 points in generic position, we can express
them modulo the action of PGL;(F[&g],) into 4 parameters then we can choose these points

in terms of four variables in the following way:

(xgs-->x) =l o[, 1 [.]o[f1]
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We compute all possible 3 X 3 determinants and substitute them in an expansion of the

following:

4

DD Galos s i X PG B XD, € TB(F),
i=0

we get
o b abt'—ab| [1-b (1-b)d -(1-al
@l <b’b]2+<a’ @ L <1—a’ (-af |,
a(1 =b) b(l —b)a’ —a(l —a)’
b(1 —a)’ (b(1 — a))? 5

which is the five-term expression in 78,(F) up to invoking the inversion relation for the

last two terms, which also holds in 78,(F) O

Lemma 4.2.4 indicates that we now have the projected five-term relation in 78,(F) and
this relation will help us to prove the commutative diagram for weight n = 3 in the

tangential case.

Proposition 4.2.5. The map C5(A~;[8]Z) i C4(A12,[€]2) - THB(F) is zero.

Proof: We can directly calculate 73, o d’.

4
wdod U 1) =7 | > (U (B, B )
i=0

4
= > 0 (r (Ul B ) (Bl T 1) (4.13)

i=0
The above is the projected five term relation in 78,(F) by Lemma 4.2.4. O

Theorem 4.2.2 shows that the diagram (4.2a) is commutative and Propositions 4.2.3 and
4.2.5 shows that we have formed a bicomplex between the Grassmannian complex and

Cathelineau’s tangential complex.

4.2.1 Special Case of Derivation

Let us look at our results for a very special derivation D € Derz(F[&g],, F) to make them
more explicit. Let D € Derz(F|[€],, F) be the derivation map in the following way (see

[17] for the discussion related to derivation in F').

D(a+be)=b
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If u € F[e], then D(u) € F and holds the following rules:
D(u =v) = D(u) = D(v)
D(uv) = uD(v) + vD(u)

for all u,v € Fle],

We can use this D in our case where A(/}, lj.) € Fle],

D (A, 1) = D (AU 1) + AU 1)s8) = AL L),

Now (4.10) and (4.11) can be written here combine by using D.
((D(l”flé) L DUt DGt D<l$lz>) (bl
(l112) (lol3) (li15) (lol>) (lob)(1113)
(D(filﬁ) L Dellhy)  DGE) D(ZSIT)) o (1013)(1112))

(Li13) (lolr) (l13) (lol1) (lol)(1113)
( (D(f;l;) L DUl DAt D(l;;l;))
(lil2) (lol3) (Li13) (lol»)
D(l;l;‘) D(l;lsf) D(l’[ l;) D(l;l;)) ) " 5
— — FQF F
((1213) F Ty il ol ) € FerIe (A

Example 4.2.6. If we specialise € — 0 then Flel, — F and replace D € Derz(F|¢l,, F)
with D € DerzF as defined in (2.4.1) then the above becomes

(L)L) () (L) (b)) (bl)(L)
D1 D1
( 2 Gol) iy © Goly iy T 7 % Gol il © o), 13>)

(bl )(L15) (bl3)(111) « 5
+(D o8 oty P18 (lolz)(lll3))€(F o F9a(/\’F)

From the above expression it is clear that the first part of the sum is same as 6” o

71(lo, ..., 13) = 75 0 d(ly,...,I5) which we have shown in Lemma 3.1.3. This indicates
that (3.1a) in §3.1 is a special case of (4.2a). Further, when Goncharov found the mor-

phisms between Bloch-Suslin complex and Grassmannian complex [9], he got

(lol)(l3)  (ol3)(Li1o) 2 x
= F
ih " oa <\

from both sides of the commutative diagram, where 6, f; and /7 are defined at the end of

5o filo, ..., 1) = fy od(ly,...,15)

§3.2, but we have here through this example

(lol)(13) (lol3)(L11») ’
Dlog ————— A Dlog ——— F
o8 (bl)(L13) A Dlog (lolr)(l113) © /\

with the comparison of above two expressions one can say that the second part of the sum

is D log of the Goncharov’s case.
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4.3 Trilogarithmic Complexes

We have already discussed the tangent group (or Z-module) 78,(F) over F[e], in §4.2.
In this section we will discuss group 7'8;(F’) and its functional equations and will connect

Grassmannian complex and tangential complex to Goncharov complex.

4.3.1 Definition and functional equations of 753(F):
The Z-module T8B;5(F) over F[e], is defined as the group generated by:
(a;b] = [a + be] — [a] € Z|Fe),], a,beF, a+0,1
and quotiented by the kernel of the following map
0o3 1 Z.[Flelh] > TBy(F)Q F*® F ® By(F),{a;b] — (a; b, ®a + g ® [a],

Now we can say that (a; b]3; € TB5(F) C Z[F|e],]/ ker 0.3
We have the following relations which are satisfied in 785(F).

1. The three-term relation.

(1 =a;(1 = a)ls — (@ agls +<1 _ l;(1 _ 1) ] — 0 € TBy(F)
a a els

We can verify that the three-term relation lies in the kernel of d., where 9, is induced by

0.3 defined above.

b
0, . TB3(F) > TBy(F)QF*®F @ B5(F),{a;blz — {a;b, ®a + - ® [a],

ag(u (1 -a)ls —<a;ag]3+<1 —1;(1 —1) ] )
a Cl83

=(l-a;(1-a)®(1-a)+ (11—_a)5 ®[l-al—(@a:h®a
1-1
—%®[a]z+<1—1;(1—1)] ®(1—1)+(—“1)8®[1—1] (4.14)
a a al.l, a 1_2 al,

For simplification separate the parts in T8,(F) ® F* and F ® B,(F).
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The part TB,(F) ® F* is
=(1-a;(1-a):,®(l —a)—(a;a,]>®a

R (B

Use the two-term relation in 78, (F) for the first term then combine it with second term.

Similarly use two term relation in third term, then we will have

coneli {33 o1-1)
a a 6182 a

we know that

so the above becomes

((a;ag]z + <1; —a—z] )@ (1 _ 1)
a a 2 a

the left hand factor vanishes due to the inversion relation in 75,(F).

The F ® B,(F) part of (4.14) will be

1
1-a), . -2 1
M) ®[1—a]2—a—®[a]2+( )8® 1-=
l-a a 1—% al,
. ) 2 i
=% o[l —ah- Z®al+ —= ®[1——]
1-a a —1za al,

a

use two term relation in first and last terms and

then inversion relation in last term in $,(F)

e e e

= -—- )®[a]z

\l-a a a(l-a)

This gives zero since we are working modulo 2 torsion.

1 {1
(@;ag]; = <—;(—) ]
a'\a)_|,

3. The Cathelineau 22-term relation ([7])

2. The inversion relation

This relation J(a, b, c¢) for the indeterminates a, b, ¢ can be written in this way:

J(@a,b,c) =[la,c]] = [[b,c]] +a

b
_’C
a

+(1—a)[“:z,c”, (4.15)
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where

[[a,b]] = (b —a)t(a,b) + ﬂ0'(a) + 1_—aO'(b),
l1-a 1-b

while 7(a, b) is defined via five term relation and x-action. We take (x;; x; .]3 with coeffi-

cient ﬁ which is handled by %-action.

1 1 b (b 1
T(a’b):<a,a€.1_a]3 <bb l—b]3+<a’(a)8'a—bL

B 1—b.(1—b)' 1 B a(l—b).(a(l—b)). 1
l-a'\l1-a), b—a|, \b(1-a)'\b(1-a)), b-al,

o(a) =<a;a,-al3 +{1 —a;(1 —a), - (1 —a)ls.

and

Then we can calculate Cathelineau’s 22-term expression by substituting all values in
(4.15).
J(a,b,c) =(a;a.cls —(b;b.clz +{c;c.(a— b+ 1)]3

+H1-a;(1 -a)(1 -0))3 =1 =b; (1 =b).(1 = )3 + {1 = c;(1 = )o(b - D)]3

SO B2
rala)

1-c¢ (l—c) l—c l—c)
l-a’'\l-a b
a(l —c) a(l—c) B _a _a b(l—c) b(l —c¢)
c(l—a)’ cl-a)).|, b b 83 c(1=b)"\c(1-b)), |,
-a a
(el oo

(57 a0

+

2
A
|
{2
|
{5

a
N c(l—a), c(l1-a)
-6 \"1-5 )|,
(l—c)a (1-0)a) | _ (l—c)(l—a)_((l—c)(l—a)
a-b | |, b-a ’ b-a el

+ c(a—b) \c(a—-b) c(b - a) (b - a) (4.16)

For the special condition a. = a(l — a),b, = b(1 — b) and ¢, = c(1 — ¢), this 22-term

&l

<1—c)b (1-c)b) | +<(l—c)(1—b).((l—c)(l—b))]
3 el3

expression becomes zero in T8B;(F). The proof uses the four-term relation in 75,(F)
which is described with the help of x-action in T8,(F). We calculate d, (J(a, b, c)) in
steps. First apply 0. on each term of (4.16).

First, second and third terms will give us

c.la—b+1)

(a;agc]2®a+%®[a]2—(b;bgc]2® ]2®C+f®[c]z,
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and next three terms are the following:

(1 -a).(l-0)
1 -

(1 -b.(1-0)
1-b
(I-0b-a
1 -

+H1l-a;(1-a).(1-0),®(—-a)+ ®[1—al,

—(1-b:(0=Db)(1 -0)),®(1-D) - ® [l -5l

+H1l-c;(1-0)b-a),®(-c)+ ®[1—-cl

and similar for others. There are two parts 78,(F) ® F* and F ® 8,(F) so, first compute

TB,(F)® F*. We first collect all the terms of type - - - ® a

et -eni (- )] - (22(-2)]

+<a(1 ~¢) a(l -c) (1 _a(l —c))c(1 _a)L_<ca ca (1 3 %)b]z

d-a) cd-a\ cl-a e\ D

a(l —c) a(l-c) _a(l—c) B
_< a-b ’  a-b (1 a-b )(a b)L)@a

b b b
:(<c;C(1 —caly - <;; - (1 - 5)“]
2

ca ca( ca _a(l—c)_a(l—c) _a(l—c) B
_«E’b(l b)42 <a—b a-b @ a—b %a ML

c

-Hmaﬂ—akh—(adl—cMh+<§€x1——)42

a

a(l-c) a(l -c) _a(l—c) B
+<d1—m’d1—m(1 dl—m)dl @L)®“

b b b c c c)\b
(e G20 o i -5
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Similarly, it can be proved for all of them, i.e., ---®b, ---®c, - --® (1 —a) and so on. The
other part F ® B,(F) directly gives two-terms and five-terms relations. so it is clear that

0. (J(a,b,c)) =0.

One can write the following complex for 785(F).

T8;(F) 5 " % (Fo N\ 2P e (/\ °F)

F®B,(F)

4.3.2 Mapping Grassmannian complexes to Tangential complexes in
weight 3:
In this subsection, we will try to find morphisms between this complex and the Grass-

mannian complex and after a long computation we see that each square of the following

diagram is commutative. Consider the following diagram

Co(Ag,) ‘ Cs(A},) ‘ Ca(A}) (4.32)
T3 1'3 i#
2.e l.e 0,e
TB5(F) —"~ (TBy(F) ® F) & (F ® By(F)) — "~ (F ® \* F*) @ (\* F)
Here we define

Ay, I, LA, 15, 13)

L, 5,5, 1) =
r(lol, 5, B, 1) AL, T BN, I, 1)

The projected cross-ratio is defined here
r(boll, 5, 5, 1) = rolly, b, 5, ) + re(llly, 1, I, [)e

where

Ally, Iy, 1)A(lp, I, I3)

Ally, L, 3)A(ly, 12, 11)
u

A(lo, 11, 13)*Ally, I, 14)?

r(bolly, b, 13, 1y) =

re(lolly, b, 15, 1) =

u == Ao, 11, L) Ao, b, AU, L, B)A, b, 1) + Ao, b, L)AL, 1, 1)}

+ Allo, 11, Ay, b, {AU, L, L)ALy, 15, 1) + Alo, b, )AL, 1, 1)}
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where the morphisms between the two complexes are defined as follows

Tools -, 1)

(AW T e A, D
:Z(—l)l( 0 ,A 3) ® (0 K 3)
A(lO9---9li’---’l3) A(ZO9-'-9li+2’---713)

5 3OA, LB,
Ao, - - -, s, L) | /\ J ] ) i mod 4,
A(l()9 b ll+2’ ) l3) j=0 A(lo, PN l_/’ ey 13)

LA/ )

:__Z( 1)( r(illo . b L) (DN, L B

S]] [adii
i#j
LA, LT,
+Z[ CARR ] [rillo, .. ;. 14)])
S\ Ay, L)
J#EI
and
2 * %
Tgs(l*,.. l*)_ Altﬁ(r3(lo,...,15);r3,€(l,...,15)]
where
il - (ol L) (L oLy ) (L lols)
WO BT ol L) (s ) (L ols)
and

r3e(lys ... 5 105)
AGHEGLEGIE)) .

_ (olib)iLL)(Llls) (LI LI L)}
(bl L)L LIs) (L)

4.17)
(ol L)L LIs)(lols) (ol L)L Is)(Llol3)

the map 9, is defined as

0: (a; bl ® c + x® [y]2)
=(—L®a/\c—é®(1—a)/\c+x®(1— )/\y) ( b é )
1- l—-a a

and

b
0.(a;bl3) ={a;bl, ®a + p ® [al,
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Theorem 4.3.1. The right square of the diagram (4.3a), i.e.

Cs(AF[g]z) d C4(AF[8]2)
(TBo(F) ® F) @ (F ® By(F)) — (Fo A2 FX)e (A F)

is commutative, i.e. T, od = 8,017

Proof: First we divide the map 7;, = ¥ + 7@ then calculate 7V o d(I}, ..., [})

4
Dod(ly,... ) =15, [Z(—l)"(i*, o .,1;;)]
i=0

3 P s 7
A, . .., *...,l'(E Allys .. livts- .-
Z(‘”(( Ve o Aol 1)
i=0 A(lo’ .. l’ ey 13) A(lo’ ) li+27 ceey 13)
A A(l()’ . l+37 e 913)
A(ZO9 . l+2’ M l3)

We expand the inner sum first that contains 12 terms and passing alternation to the sum,

= Xft(01234)(

) i mod4) (4.18)

. . . . AL
gives us 60 different terms overall. We collect terms involving same m ®--- together
st ]

for calculation purpose. On the other hand second part of the map is the following:

Dodls,... 1)

(1*7-"’A l*)é‘
—Alt(01234)(2( 1) /\ A(l g )) (419)
05 - - .. 3
]il

The other side of the proof requires very long computations. For the calculation of d, oﬁ’(9
we will use short hand (lflj.l,’g)‘9 for A(I7, lj., [})e and (Iil;li) for A((l;,1;, ;). First we write

0 © Tis(l*, ..., [}) by using the definitions above.

4
=3( IZ( D((rllon . B Lyl P 1] @ [ | AGL D)

i=0 i#]

AU/ TP U Y A

4 EEERST csly
+Z N U T A Orthll o 10), ))
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then we divide 4, = 8V + @. The first part 9 o Tia(l*, L) s

1 re@lL, T
34 (_)( T A
reNE, L)
T A

Qrlillo, ... 0. 1) A ]—[(ll,l)

i£]

& (1= r(llly, ... 0. 1) A ]—[(1,,1)

i+
Ay, BT ...,l;;)g]

+ = Q@ —r(lilly,.... [ ..., 1))

Z[A(ZO,.. [ PR )

]iz

N 14)) (4.20)

The second part 8 o 73 (Is, ..., 1}) is

Ish o re@ T L) )
___Z(_l)(_ i A 4

r(l'llo,.. l4) 1—1‘(1 |l(),.. l,...,l4)
A(l*,...,A R LA i
AZ AR ) (4.21)
Aoy ... 0 Ly L)
j;tz

re(ly.015,05.0) re(5\ 1 1 1)

then we calculate 2 and 2. i.e. all the values of the form }
a 1-a r(lolly,l2,13,14) 1=r(loll1,l2,13,14)

By using formula (4.6) we have

Rl B 1) GBEe  Ghle  Ghl)e UL,
+ —
rolly, byl L) (olhly) (b)) (bly)  (lohls)

Similarly we can find this ratio for each value of i = 0,...,4. Now use formula (4.6) as
well as identities (4.1) and 4.3, we have
re(lolly, L, I 1) (LG 1)e N (bhB)e (Gl (hlih)e
1 =rlolly, b, 13,1)  (olals) — (ohilz) (sl (Lhily)

After calculating all these values. Expand the sums (4.20) and (4.21) and put all values
what we have calculated above. Let us talk about (4.20). In this sum we have huge

amount of terms, so we group them in a suitable way. First collect all the terms involving

((113‘)0’;’132); ®- - -, we find that there are 6 different terms with coefficient -3 involving ((1;*)011711[;2); Q- - -
Uohily)e ((101113) A (L) + (lohly) A (L) + (ol 1) A (lolals)
(lolllz)

—(loli13) A (lolalz) — (lolils) A (Lilaly) = (olalz) A (111213))
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tjk
Uiljly) *

see that each will have the coefficient —3 that will be cancelled by —5 in (4.20) and then

. , . ) GIE),
combine 60 different terms with 6 in a group of same (”’_;A K
itjlk

There are exactly 10 possible terms of

-. Compute all of them individually. We will

write in the sum form then

we will note that it will be the same as (4.18).

Computation for the second part is relatively easy and direct. We need to put all values of

Pl 130505
the form 7S and =G

torsion. Here we will have simplified result which can be recombined in the sum notation

LI
e BAY G 4.01), expand the sums, use a A a = 0 modulo 2

which will be same as (4.19). O

Example 4.3.2.

In this example we will discuss the part of the commutative diagrams which we have
discussed in previous chapter i.e. F ® A* F*, Goncharov has discussed in [9] i.e. A\® F*
and the last part of diagram (4.3a), i.e. (F @ N’ Fx) <) (/\3 F). We will also try to find
some relations with the continuation of example 4.2.6. Let us use D € Derz(F|el,, F)

defined in §4.2.1, here in this case, we have
D (AU} 5. 1) = D (AU Ly o) + AGEL I 1) e8) = AL T 1),

For the comparison, it is enough to see the images of f; (defined in [9]), 7; and 7}, in
their respective qualifying complex. First find TS’S(Z*, ..., [3), which shall be the sum of

A

AT S PG TG BED) Ay, B b
Alt(o1234)(2(—1)’( ( _ 3274 ) ® (lo, ,Al+1, L, 1)
i=0 Aly, ...\ 0, ..., 15, 1) Aly, ... Lo, ... 13, 1)

L Ao, liv3e.. a3, 1y)
Adly, . .. 2+2,.. s, 1)

) mod4)eF®/\2FX

and
_ 3 3 D(A(l*,..., 1)
Al ~1) ! :
to1234) ;( 1)Q Ao T bl E/\ F
J#i

As we did in example 4.2.6. For ¢ — 0 we have Fle], — F and (I}, 5, [;) — (I;,1;,[;). In

i’

this situation one can replace D, € Derz(F|e],, F) by D € DerzF. Then above becomes
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the sum of

— 3 A(lo,---, 13, 1) A(l i- ool
Alt(01234)(2(—1) ( )® (Lo, . : 3, 14)
- A(lo, . .. l’;, l4) A(ZO, l,+2, ) 137 l4)

A(lo,-- ,+%,-~-,l3,l4)) ; mod4)€F®/\2FX
A(lo,-- livas ..., 13, 14)

and

A(l()’ sy A" . 133 14))
Alt (-1)’ - i mod4|e /\3F
019 Z A Ao, ... L. 1) A
j:Fl

First expression of the above is just 7(3) od(ly,...,l;) and second expression of the above
is Dlog of fd” od(ly,...,l;). In other words one can make a remark that in diagram (3.2a),
F ® \* F* is a special case of o, 0 dlo, ..., 14) = 8 0 7} (Lo, ..., 1) in diagram (4.3a)
when & — 0 and under these special condition D log of A* F* in diagram (6.10) in [9] is

A’ F in diagram (4.3a).

Theorem 4.3.3. The left square of the diagram (4.3a), i.e.

Co(Ae,) : Cs(Aep,)

3 3
J/Tla i‘rl,a

TB5(F) (TBLF)® F*) @ (F ® By(F))

is commutative i.e. T3, 00, =do T

Proof: The map T;’g gives 720 terms and due to symmetry (cyclic and inverse) we find
120 different ones (up to inverse). We will use the same technique here which we have

used in the proof of theorem 4.3.1. By definition, we have

2
(.. 1) = Alt6 (r3os - 15); 3L, - . 1],

For convenience and similar to our previous conventions, we will abbreviate our notation

by dropping A and commas.

B0ty (ly... I%)

2
:—Alt6 {(7'3([0 15); 7'3,8(18 e l;)]z ® I”3(l() e 15) +

45 el k) [r3(lo - - ls)]z}

r3(lp . . ls)
4.22)



4.3. Trilogarithmic Complexes 66

Pl 02)

oD which is

We need to compute the value of

(L), N (GLL)e N BGhl)e  GhL)e (B (Gl5)e
(bhilz)  (Lhikl)  (Llbls)  (olils)  (Likls)  (llols)

(4.22) can also be written as

2 (Ll )L L) (L Ils)
=—AIlt lo...ls); 3.5 . . [
45 6{<r3(° S AN AT ATANA

GLG): L) (LI (51 (LGEE).  (GI5)e
+(013 L Wbl Wlls)e  Uohil)s  HhhEs)e  (Blols )®[r3(lo...ls)]2}
(L)  (Libly)  (Lhls)  (ohils)  (Likls) (L)

We will consider here only first part of the above relation.

2 (Lli )LL) (Lls)
—Alt, lo... )3 (I .. 2
g5 Attt 1) maals - D)) @ G

Further,

=Alte {(r3(lo ... 15): 3oLy - .. 1)1, ® Uoli13)} + Altg {(r3(Uy . .. 15): r3.on(ly . .. 19)], ® (1 al))

+Alt {(r3(lo ... 15): 730l ... 19)], ® (Llols)} = Altg {(r3(Uo ... 15): 73,00y - 1], ® (ol 1)}

—Alt {(rs(lo ... 15): 7oLy ... 19)], ® (hials)} = Altg {(r3(Uo ... 15): 73,00y .. 19)], ® (lalols)]
(4.23)

We use the even cycle (lol11)(I31415) (or ([l 15)(LLL15)) to obtain

Altg {(raoliallals); 13 (GG LED], © (ol 3))

=Alte {(rs (L Llolalsly): 13 (GBI L], ® (L)
We can also use here the symmetry
(r3(loliLl3lals); 3 (LB, = (rs(Liblolalsls); s (L LI E)],
since
r3 (LG GGG = r (L) precisely both have the same factors
and similar for the others as well so that (4.23) can be written as

2
= BAlt(,{ <I’3(l()l] 12131415); r3,g(lélfl;l§lZl§)]2 ® (loll l3)

—(r3(loli bl3lals); r3 (I LI, ® (101114)}
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If we apply the odd permutation (/3/4) (or (51})), then we have

2 3 ES EO S £ E S
= E . 2A1t6 {<r3(lolllzlgl4ls); r3’3(lslllzl3l4ls)]2 ® (101113)}

Again apply an odd permutation (lo/3) ( or (I;/3))

2
= EAI%{ <I’3(lolllzl3l4l5); r38(lngl;l§lZl§)]2 ® (101113)

—(r3(lsli blolals); r3 (LG ILIE)], ® (131110)}

but up to 2-torsion, which we ignore here, we have (ly/;/3) = (Il31;ly) and then the above
will become
2 L £ £SO £ B £
:TEAMJ(Uﬂhhbhhkﬁmﬁadﬂﬂydgh
- (r3(l311 12101415); rg’g(lzlil;l?)l:lg)]z ) ® (l()ll 13)} (424)

Recall from (3.2) that the triple-ratio r3(lyl;1rl314l5) = % can be written as the

ratio of two projected cross-ratios.

We will see here that r3 .([g[; 5151, [5) can also be converted into the ratio of two first order
cross-ratios.
Let a and b be two projected cross-ratios whose ratio is the triple-ratio r3(lol1l3l4ls) =

Uoli ) bla)(blols)

% Tk T Tk % T . . a* . .
AT, then r3 ([j1; 5 5115) will be written as (F)a' Since we can also write as

I‘g(lglil;l;l;:l;) = rg(l()lllzl3l4l5) + rg,g(lglil;lzl;:l;)é‘

or

(L LEELE) = rs(lol blslyls) + (es(GLLEELE), &

we get

x i g e i g (LB L)
I@A%hh%h%):( UIBICT 205)

(NN (SN
Now it is clear that r3([;/]5151;15) can also be written as the ratio or product of two

projected cross-ratios. There are exactly three ways to write it (projected by (/; and [}),
(7 and [5) and ([ and [3)) but we will use here /] and /5. The last expression can be written

as

r3,€(l()lllzl3l4ls) = (u)

(15
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and 4.24 can be written as

2 r(bhlolsly) (vGILEED) r(biLLisly) (v(GILEEE)
= —Altg == - N\ ® (loli13)
15 r(illobbl) \v@ILLEL) ) |, \riBhik) \r@I55EE)) .,

Applying five-term relations in 78,(F) which are analogous to the one in (2.10).

2 3 ES B £
:EAlté{( (r(Llllolsh); ro(GIG LR, — (r(illoblaly); re(GIGEL L),

r(L|hIsl31p) (r(l;lTl;l;lS))] )
- =230 ® (lol13)) (4.25)
<r(11|10131412) vl L)

For each individual determinant, e.g. (ly/;/3) will have three terms. First consider the third

term of (4.25)

2 Ll skl (x(GIGELL
—Altg {<r( 2lhilsls 0)'( (LIS O)) ] ®(lol1l3)}
el2

15 r(hllobslaly)’ \vCILELL)

2 1 r(bllIshly) (v(GILEELE)
= Al { — Alt ; ® (loli!
15 6{36 “01"3)(’21‘””(<r(zl|zolgl4lz> (r(l?ll;lélilé) , &)

We need a subgroup in S¢ which fixes ([p/;/3) as a determinant i.e. (lpl1l3) ~ (l311y) ~

(loly) - -

Here in this case S 3 permuting {/y, /1, [3} and another one permuting {/5, l4, s} i.e. S3 X S3.

Now consider

r(blIshly) (r(GINELLE)
Alt, : Il
(ol 3)(lalsls) {< rillolalala)” (r(ffll{;l;lzl;) 0, ® (Ioli15)

(LIsl)(Lioly) ((GEE)TTLLE)
; % T T % T T ®(lolll3)
(Lislo)(hilale) \(GIEL)GLLE) ), ],

By using odd permutation (/,/5s) the above becomes zero.

=Altg 5)1uls) {<

then (4.25) becomes

2 3 ES B3 £ * £ £ £ E3
=EAlt6 {((r(lz|l1lolsl3); re(GIG IR, — (r(Lillohl3ls); rs(llllolzl3l4)]2) ® (101113)} (4.26)

Consider the first term now,

2
EAlts {(7’(12|lllolsl3)§ re(GIGLER)], ® (101113)}

2 1 £ £ £ £ E3
= EAI% {%Alt(lollh)(lzuk) {(”(lz|lllolsl3); re(GINGER)], ® (101113)}}

The permutation (/p/»/3) does not have any role because the ratio is projected by 2. So, it

will be reduced to S'5.

2 1 % PR R PR TR
= 5 Altg {gAltM,S) {(rtallilolshs); ro GG I EE)], © (101113)}}
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Write all possible inner alternation, then

1
= EAltﬁ{( (r(ulli bl l3); re(IL L) ], — (rallilolals); re(BGIL L) ],

+(r(Us|lL Lolals); (I I ], — (r(lalllolss); re(GILII5E)],
+(r(L|L lolsh); ro(BIL ISR, — (rilsihlohl); ro(1L 1), )® (101113)}

Now we can use projected five-term relation for 785,(F) here,

1
= EAI‘[(,{( (rloll b lsly); re (LB IED ], = (r(illolalsls); re(GIG LI ],

—(r(lllol Ll ro (Gl L BIDT, + (r(bollilalzls); re(GIL LG,
—(r(lllolalsls); ro(LG LI, + (r(BlloliLuls); re(BIL L L],
+(r(lollIslb); ro(GIL ) ], — (r(hllolslsl)s ro(B IG5 1) ],
+(r(llloli Ish); (GG L )], ) ® (101113)}

Use the cycle (lpl,13)(l1415) then we get

= E 9AIte {(rloll LlsLa): ro Gl BID, ® (ol 1) (4.27)

The second term of (4.26) can be written as

1 .
25+ ~OAlL {(rhliohalsl): re L], © (ol 3)

(4.27) can be combined with the above so we get

1
= —Alte {(9 (rllolli ol la): ro (I, = 6 (r(hllohalal): reGIEID],) © (ol )}

45
(4.28)
Use the permutation (/y/,/3)(l>141s) to get
1
= §Alt6 {<I"(lo|lllzlgl4); rg(lé|l>1kl;l§l:)]2 ® (101113)}
Since B,(F) satisfies five-term relation then we can write the following.
1 * * * e
= Al {<r(10|11121314); re (GGG, ® (ol 1) + (Z)l‘ ;3) ® [r(10|11121314)]2} (4.29)

Now go to the other side. Map 73 . can also be written in the alternation sum form

1 S A £ £ £
T?’S(ZS )= §Alt (rloll b l3ls); ro (I B IED ], ® (ol k)

0128
INIAYEY
(lol L) ® [r(lolli 11314)]2}
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Compute Tis od(ly ...I%) and apply cycle (lyl;1;1314l5) for d and then expand Alts from the
definition of 77  so we get
T?a o d(ls ce l;) = §A1t6 <r(lollllzlv,l4); rg(lollllzl3l4)]2 ® (l()lllz)

***

0128
bl 1,151
(lol L) ® [r(lolli L1514)]2}

Use the odd permutation (/,/3), then

1
= —§A1t6 <r(lollllzlzl4); rg(léll’{lgl;lj)]z ® (101113)

013‘€
NI SY
(101113) ® [r(lolli 31214)]2}

Finally use two-term relation in 78,(F) and B,(F) to get the correct sign. The final

answer will be the same as (4.29). O

If we combine Theorem 4.3.1 and 4.3.3, then we see that the diagram (B.2a) is commuta-
tive and have maps of morphisms between the Grassmannian complex and the tangential

complex for weight 3. Here we have some results

’ T3
Proposition 4.3.4. The map Cs(Ak,,) 5 Cy(A},,) —> (F @ N2 F¥)@ (N F) is zero.

Proof: The proof of this lemma is direct by calculation. Let ([,...,[;) € CS(AF[&]Z)

Where
a+a.e a a,
b+b.e b b,
I = = + =+l
c+c.E c Cs
d+d.e d d.e

Let w be the volume formed in four-dimensional vector space, and A(/;, -, -, -) be the vol-

ume form in V,/{l;).

Tg’ od'(ly,....1[;)

_708(2( DI, .. LT l;;))

Consider the first coordinate of the map first

3 % B % 7
— .Al',... *.. i DDe Aoy ..y livrs . B
:Alt(01234)(2(—1) (s ) % (lo lisy 3, 14)
- A(ly, .. bl Aoy i, 0 1)

A(lo,~- z+3,--~,l3,l4)
A(l()’-' l+2" ..,13,14)

mod 4) (4.30)
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First, we expand inner sum which gives us 12 different terms after simplification. When
we apply alternation sum then we get 60 terms and there is direct cancellation which leads

to zero. Now consider the second coordinate , which gives us

— S (/U A i
Alto1234) (-1 i
;; J/:\O A(l()’""l 13,14)
J#i

Again if we expand inner sum first, then we get only four different terms but after the

application of alternation we get zero. O

As an analogy of Proposition 4.3.4 in higher weight, we present the following result

Proposition 4.3.5. The map Cpia(A% ) L Crat (A, BN (F e N\ FX) ®(\"F)is

Flel

zero, where

o (@)

n A, G Aoy,
:Z(_l)( ( )® (Lo lis1 )
Ao, ... 0. L) Aoy By 1)

Ay b D,...,zn))+mA(l*,...,zg, )
A(l()’" z+na---,ln) j=0 A(l()""’lj"'-’ln)

J#i

i mod (n+1)

Proof: Let (;,..., [, ) € Cn+2(A"+1] ). We have

Fle
n
wood (... L) =10, [Z(—l)’(l;‘llg, ol z,*,H))
i=0
Now use definition of alternation to represent this sum then we have

0. 0d Ly, 1 y)

—~ - : Al*,---, Y A D S Al,...,ii R .

A(l(b .. .. ln’ ln+l) A(l(b e li+2’ e ln5 ln+l)
A(l()7" l+(l’l 1)""71}’1’ ln+1)) + (/n\ A(l*" ot l* l:’ l*+1)‘9 )
A(l()a .. l+n’ RS ln’ ln+1) j=0 A(l()’ .- ln’ ln+1)
JEI

i modn+ 1} 4.31)
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First expand the inner sum on first term that gives n + 1 number of terms. Expand again
by using the properties of wedge that gives n(n + 1) terms. Apply alternation sum on that
gives us n(n + 1)(n + 2) terms, so there are n + 2 sets each consisting n(n + 1) terms and
each term in n(n + 1) term has n + 1 sets of n terms and good thing is that they cancelled

set by set to give zero.

Now expand the inner sum in the second term of (4.31) that gives n + 1 terms and then
apply alternation sum which gives n + 2 sets of n + 1 terms, we find cancellation in the

expansion of sum accordingly which gives zero as well. O

4.4 Tangent Complex for any n

In this subsection, we give suggestions how to define a tangent group 78, (F) for any n
in a similar spirit as in ([12]) and give technique for its appropriateness by relating them

in a suitable complex.

We can write the tangent group 78,(F) for any n by defining the map 9 : Z[F[g],] —
T8, (F) F*®F ® B8,_(F).

Define T8, (F) as a Z-module over F[e], which is generated by (a; b] = [a + be] — [a] €
Z[F[g],] and quotiented by kernel of the following map

0:Z[Fleh] > TB, (F)QF*®F® 8, |(F)

8 (@bl > (a; bl ®a+ (—1)"-12 ® [al, 1

Then the following becomes a complex

T8,(F) ﬁ) TB,-1(F)®F i) E} TBZ(Fg@/\n—ZF E} (F®/\”_1FX)GB(/\ "F) (4.32)

F®Bfi1 (F) F&By(F)®A"3 F*
where 0, is induced by d and defined by
n—1 b
aa : <a; b]n = <a; b]n—l ®a+ (_1) 5 ® [a]n—l
Note: when d, is applied to the group B,(F) then it agrees with ¢,, defined by ([7])

[al,-1 ®a, forn >3
0, @ [al, —

(I1-a)Aa, forn=2
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We can show that the equation (4.32) is a complex by considering the part for 2 < k < n—2

0:  TBuirt (NN 8, TB ((FONF* 8, TBujy(F)SNFIFX 5
= & — ® — & - .-
F®B_is1(F)@AK2F* FB,_1(F)®N-1F* F®B,_i_1(F)@AXF
TBn—k+1(F)®/\k_' F>

Let (x; x ® +2®[b ® Ci ® We can do this in two
( 1 n—k+1 /\, 1)’1 [b]n-k+1 /\ _1Cj € F&B, 0 (FBN-2F

steps. First calculate 68( e ((x; Xt ke ® AL} yi))

k-1 k-1

=0, |(ala@x A \yi+ G ol /\ v

i=1 i=1

k-1 k-1
—(xxl]nk1®X/\X/\/\yz+( l)nk1 [x]nk1®X/\/\yl
0 i=1

k-1

+ (= l)"" [X]nkl®X/\/\y:
=0

In the next step we calculate d, (68 (”—' Q bkl ® A _ic ]))

- k-2
1 a
—®[b]n_k®bA/:\lcj =— @bl ®brbA N\¢=

—
0 J=1

We don’t know the homology of Complex (4.32), because we don’t have kernels of the

maps 0. but it is expected to be in a similar way as the homology of the complex (2.2).



Appendix A

A.1 Mapping Grassmannian to Goncharov’s complex in

weight 3

To show that the left hand square of the following diagram is commutative, we will re-

prove Theorem 3.10 from [10] (see proof in the appendix of [13]) without using K-theory,

where he construct a morphism from Grassmannian complex to his motivic complex in

weight 3.
Co(3) —4— C5(3) —L— C4(3)

e s

Bs(F) —2% B,(F) ® F* 21— N3 F*

where the maps (as described in [10] and [13]) are the following:

1 [A(lo, L, AL, b, )AL, b, ls)]
3

3 —
lo,...,ls) = —Alt
S o ) 1570 | Ao, b, DAL b, 15)A(, Do, )

1
filo, ... ly) = EAlts {[r(lolly, b, I3, 11)], ® A(ly, 1y, 1)}

and

folo, ..., 1) = Alty {AUo, [y, ) A Ao, Iy, 13) A Allp, b, 13))

while

0([x]3) =[xh®x and O([xL®y)=(1-x)AxAYy

74

(A.1a)
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First, we will compute ¢ o f23(lo, ...,15) and for short hand we will write (ijk) instead of

UNTRY;

6of23(109 B 15)

—iAlt (013)(124)(205) (013)(124)(205)
150 (014)(125)(203) |, ® (014)(125)(203)

Use the even cycle (012)(345), then we have

_1 (013)(124)(205)] _ (013)
~5Als {[(014)(125)(203)]2 ® (014)}

5
Use the odd cycle (34)

2, {[(013)(124)(205)
~5 0] (014)(125)(203)

] ® A(OIB)}
2

If we apply the odd permutation (03)

1 (013)(124)(205) B (310)(124)(235)
- S(Altﬁ {[(014)(125)(203)]2 ® (013)} Alts {[(314)(125)(230)]2 ® (013)} )

Now we use the crucial step here in which we rewrite this triple-ratio in the product of

two projected cross-ratios.

1 r(2[1053) r(2|1350)
= —Alt - 013
500 {(lr(1|0234)}2 [r(1|3204)]2) ®( )}
Apply five-term relation in B,(F)) then we will have

1 _[r211530)
= 5Al {( [r(1|0342)

+ [r(2]1053)], — [r(1|0234)]2) ® (013)} (A.1)

2

We will treat the above three terms individually. We consider first term now,

r(2|11530)
Altg {[WL ® (013)}

For each individual determinant, e.g. (013), will have the following terms.

r(2]1530) _ L w
A {[WL ° (013)} ~ Al {36Alt(013)(245) ([r(1|o342)]2 ¢ (013))}

We need a subgroup in S¢ which fixes (013) as a determinant i.e. (013) ~ (310) ~
(301)---.
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Here S5 permuting {0, 1, 3} and another one permuting {2,4, 5} i.e. S5 XS 3. Now consider

[ #(2]1530)
Alt(013)(245){ m] ®(013)}
i 2

~ (210)(235) (104)(132)
=Altorses) {_(213)(250) (102)(135)]2 ® (013 )}

[(253)(104
=A1t(013)(245){ —§250§E134;] ®(013)}
| 2

By using odd permutation (25) the above becomes

=0
The new shape of (A.1) is
= éAlté {([r(2]1053)], = [r(1]0234)],) ® (013)} (A2)
Now we will consider the first terms
éAlt6 {[r(2]1053)], ® (013)}

1 1
:§A1t6 {gAlt(245)[r(2|1053)]2 ® (013)}

1
:%Alt6{([r(4|1023)]2 - [r(2]1043)],

+ [r(5]1043)], — [r(4]1053)],
+ [r(2]1053)], - [r(5|1023)]2) ® (013)}

We are able to use projected five-term relation in 8B,(F’) here.

= iAlt6{([r(0|1234)]2 — [r(1]0234)], — [r(3]0124)],

30
+[r(0]1435)], — [1(1]0435)], + [1(3]0145)]
+[r(011532)], - [1(110532)], + [r(310152)1,) ® (013)}
Use the cycle (013)(245) then we get
= % - 9Alte {[r(0]1234)], ® (013)) (A3)

We also have —%Alt6 {[[r(1|0234)]]g ® (013)} from (A.2) which can be written as

% - —6Alte {[(1]0234)], ® (013))
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the above expression can be combined with (A.3) and gives

- %Alt6{(9[[r(0|1234)]]§) ~ 6 [(110234)] ) ® (013)}

By using cycle (01), we get %Alt6 {[[r(0|1234)]]§ ® (013)} as a result of (A.2). While the
computation of f7 o d(ly, ..., ls) has no changes and can be performed in the usual way to

get the commutativity.



Appendix B

Second order tangent complex

Here we will define second order tangent complex and will try to relate it with geometric

configurations. This chapter will also describe the application of second component r,2 of

2
Flels

3

the cross-ratio of vectors in C4(A Flels

) or triple-ratio of vectors in C¢(A7, . ). Construction
of groups and calculations in this chapter are similar to what we have in chapter 4. That’s

why we excluded it from the main text and presented here in the appendix.

B.1 Dilogarithmic complex

We remember from the first chapter that Fle]; := F[e]/e’ and F*-action in F|[g]s is
defined as A : a + b1& + bye? — a + Ab,& + Ab,&*, where 1 € F* and will be denoted by
*-action. Now we define second order tangent group T85(F) as a Z-module generated
by the following

{a; by, by], a,b,byeF,a+0,1

where (a; by, b>] = [a + b,& + b,&*] — [a] € Z[F|&]s], quotient with the five term relation.

aianact -ttt (5 (2) () |- (=5 (=2 (=2
a\al, \a). l-a'\1-a), \1-al,

+<a(1—b);(a(1—b)) ’(a(l—b)) ] (B.1)
b(l-a) \b(1 -a)],  \D(-a)/.,

78
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is denoted by (a; by, b, 13, fora,b # 0,1, a # b where

b ab, —a.b
(Z . T2
1-b\ (1-b)a,—(1-a)b,
(1 —a),” (1 —ay?
a(1-b)\ b(1 -b)a, —a(l - a)b,
(b(l —a)). T b -a)y
and
b a*b — aba,: — aab, + b (a,)*
(5 2 B a’
1-b\ (I-a)l-ba,—(1- a)*b: — (1 — a)azb, + (1 — b) (a,)?
(l—agz_ (1-a)’
a(l-Db)\ A
(b(l —d))a (b(1 -a)*
where

A=(1- a)(b(l —b)az —a(l — b)b,: — b(1 — a)a.b, + a(b,)?
+b(a,)’ b,) - a(l - b)a, (b,)’

We found some more relations in TB%(F ) through five term relation.

1. Two-term relation:
(a; by, bz]% = —(1 —a;-b, —bz]g
2. Inversion relation:

1 b ab,— b
<a;b1,bz]§:<5;—a—;,— 2

a |,
Let Cm(A%[gh) be the free abelian group generated by the configuration ([, ..., [, ;) of

m points in A2, , where A?

Flels? Flels 18 defined as an affine plane over F[e]; (here we assume

that all points are in generic position). In this case the Grassmanian complex will be in

the following shape

d d d
LA CS(A%[S]S) - C4(A%[ ) — C3(A2F[e]3)

els

d: ([ by ) o D (=1 By )
i=0
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a; +a; £+ Cli’szé‘z a; as a; &2

where [} = = + e+ e =l+li.e+l 8.
bi + bi,sg + bi’8282 bi bi,g bi,82

Here we will use second order Z-module 78B5(F).

Consider the following diagram

Ci(A},,) d C3(A%,) (B.1a)
0
TBYF)—>F@F<® \°F

the maps of which we defined as follows:

1.
be + b be + b5 b+ b5 b+ b5
0. :{a;by,by] — l—2®(1—a)+1—2®a iy [ A N S
a 1-a l1-a a
b = pure b, parts from b,
b§2 = pure b, parts from b,
Definition:

The coefficient of 2 which comes through the product of coefficient of &> and coefficient

of £° or itself will be called as pure part of the coefficient of £2., e.g., if

b+be+bgeg> b ab,—ab  aby —abay — aasb, + b(ag)? ,
= £+ £

a+a.g+aqg  a a? a’

then ab,> and —aba,. are pure in the coefficient of &2, while —aa.b, and b(a,)* are non-

pure.

Note: If we consider the above in the context of cross-ratios then we see that r, (as in
§4.1) has only terms which are pure in b, while r,. has some terms which are non-pure in
b, so we eliminate those terms through the definition of the map d,.. One major reason
for eliminating non-pure terms is that we would like to recombine terms using a d log-like

rule, but this is only guaranteed to work for pure terms.

2.
T oo 1) = (o )i re 1), (T )]
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2
0,e2’

3. For defining 7; , first we divide is 77 , = 7' + 77

2 %

(G + (L) (Liliyr)

Tl(l*, l*, l*) — (_1)1( i7i+2 i7i4+2 ® it
1> Z (Liliv2) (ivalis1)

i=0

), i mod 3

and

2
(T e+ (BT e (BT)e + (I
2 l*,l*,l* — -1y i+l ii+1 A i7i+2 i7i+2 , . d3
Tk B) 2;( . ) ) P

where r, 1, 12 are coefficients of °, &' and & respectively in the following:

v(lo, ... 1) =rlos . I3) + 1ol e + ra (D . [P

(lol3)(11 1)
lo,....[5) =—————=
w1 =G D
o epan), b {GRan),
re(ly, ..., 15) = .

U T o) (W) (o)) (ol)(lils)
e EEDL L AGRED], bk (GEGD),
RO BT (o)L 1) FRO BT ()L 1) (bb)(ilz) (b))

for the notation purpose only we used in the upper definition of cross-ratios (ab), :=

a:b + ab, and (ab),. := a2b + a.b, + ab,.
Proposition B.1.1. The diagram (B.1a) is commutative.
Proof: It requires direct calculation. We will outline some steps here because the method-

ology of the calculation is quite similar to the previous calculation. The composition of

Oz 0 Tigz(l*, .., I5) will be
IR N (R

=02 ((ros - . 1) 1ol 13m0 B)]5)

re(lt o) rel ol ) ool I
e d =237 but here we will also need =23

We already have the values of o) T T

&

2
I
and rf(“—ﬂ We find that
=r(l,....[3)

rgz(l(*), . ,l;)‘92 B (l(*)l;)sz N (lTl;)gz ~ (l;l;)gz _ (lTl;)az
r(lo, ..., 15) (lol3) (L) (lol>) (Lil3)

and

rally,.. 7 () LGBe  Gide ()
1=rlo,....5) (b)) (L) (bl)  (bb)
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We divide 0,2 as 0,» = 0' + 8% such that

& <2 & &2
1

bt +
0' (a; b1, b)) = +—2 (1 —a)+ 1 2
a —

®a

and , )
bi + b5 \ bi + b5

1-a a

& (a; b1, by]) =

Now 8! o Tisz(l*, L) s

_ ((1813)5 N (liB)e  (hh)e (5. N (Lol N ihe  hh)e (ﬁ@)é)
(blz) (k) () () () (L) (k) (L)
(lol)(1213)
(lob)(1113)

N ((1813)5 . (GR)e  (hl)e (). N (Lol N iR Gl)e (l§l§)82)
() (L) (ol (L) () (h13) (lol) (h13)

(lol3)(L12)

(lob)(1113)

and &? o Tiaz(l*, LB s

®

_ ((1813)5 N (ih)e  (ph)e  (5)e N (Lol3)e2 N (ih)e  (hh)e (ZTQ)EZ)
(o) (L) (o) (L) () (li12) (lol) (L)

((1613)8 . (R)e  (pl)e (). N (Lol N (R (pl)e (lzlé)gz)
(o) (L) (ol (L) (hh) (hl3) (lol) (l13)

for the other side we compute first 7' o d(, . .., I}).

3
Hodaa“”g)=7&4::mp.”ﬁanp)
i=0

By using alternation sum first part of this composition will be

2
— AL e+ L) Lil;
Tl o d(ZS’ ce, l;) = Alt(0123) {Z(_l)z (( i 1+2) ( i z+2) 2 ® ( +1) )’ i mod 3}
i=0

(lili+2) (li+21i+1)

By first expanding the inner sum we obtain three terms then pass the alternation through
that sum, will give us 12 terms and combining them will give us an expression equal to

d' o Tisz(lg, ..., [3). A similar technique can be used for the second part giving

?od(l,....15)

2 Y
IN? 2: ATE )+ T ) ) + (P,
=Alt -1) i+l ili+1/¢ A L i+2 iti+2/e , . 43
o { i:()( ) ( (lili+1) (l,‘ll‘+2) L mo
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The inner sum will give us three terms which can be further distributed into 12 terms using
the wedge product. The procedure will be same as in theorem 4.2.2 for wedge factors are
of the same type i.e., both (), or both (),.. Then we combine mixed terms together for
which one wedge factor is of type ()., while the other is of type ()2, and the other with &

term, combining those gives us completely 9> o TiSQ(l*, LB m

B.2 Trilogarithmic Complex

In this section we will define a second order tangent group TB%(F ) which is a Z-module

over F|[e]; and generated by (a; by, b,], where
(a; b1, by] = [a + bie + bye’] - [a] € Z[F[e]3]
and quotient by the kernel of the following map.

3 : ZIFlels] - (TB(F) ® F*) & (F ® By(F)).

> b b3
0:{a;by,by] = (a;b1,b];®a + " ® [a], + " ® [al,

The following is a complex figuring TB%(F ).

TEAF) 25 O (P A2F)e(/\°F)

F®B(F)

Considerations above (§4.3) show that a suitable definition of TB%(F ) should preferably

extend the above for 78B5(F) such that the following diagram is commutative.

Co(A3, ) d Cs(A3, ) d Cy(A3, ) (B.2a)

Flels Flel3 Flels

3 3 3
T T T
l 2,52 i 1 ,52 i 0,82

TBUF) — = (TBUF) © F¥) ® (F ® By(F)) — = (F & \> F*) @ (A’ F)

where (in the continuation of the previous subsection)

9 ((@:br.ba3 @ b+ x® [y],)

[ be+bE be+bE

(1 —-a)Ab- ®a/\b+x®(1—y)/\y)
—-a

ANX],
a 1-a

be + b5 bE+ b
+[1 2 A 1 2
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2
ol 15 = Ao 151 B 1) a2 TS

and

7 ol s 1)

4
1 *| % * * * 2 77
52():( rllo o B L) (NG T, rsz(lll,...,l,...,l4)]2®l:l(l,-lj)
i= #]
(T T .z*))
0 i j 4/
+ = ~ I"(lllo,..., l4)
]Z:(; Ao by 0y ) ®| |
J#i
A A
(lg...l“.‘...l*...lj)z]
+ = r(lilly, . .., S lg)
Z (oI 1)) | |
ki
for the definition ofT0 ,, we divide 7'3 o =7 +7°such that, 7'(;, ..., [5) is
S R (/SN OO 3 JER (/SN HERY S S (/SO Y
Z( 1)[(0 )e + ( 3)2®(o lisy 3)/\(0 lis3 3)]
(lo...l,-...l3) Uo...lin... 1)y y...lin... )

and T2([5, ..., [5) is

3 S (. e+ (LT )
; 0 3)e Ty 3)e
Z(_l) /\ ( J _ J ]
. Uo.. 0. 1y
where r3, 13, 13 2 are coefficients of £°, &' and &* respectively in the following:

3o, ..o 15) =r3los . 1s) + 3ol ) + 1300y, ., [)E
(lol13)(Lib1y)(L1ols)
(bol1la)(LiLs)(L1ol3)
AR {(l;;r;lj)(ljl;l;)(l;l;l;)}s}

1"3(1(), ey l5) :A1t6

—nrlly,...,1l5)-
AT A NN A YA N B TANS
| (RGBT, {IHAGTIRIGIHA)
r32(ly, ..., 15) =Altg] = —r3e(lys .. 5) -
(Ll 1)L LIs)(LIl) (Lol 1)L L)L)
(ol 1)1 Lol (L lols) kﬁﬁﬁxﬁ@@x@%@ﬂg

(bl (ibls) (bl (olila)(ibls)(blols)
Theorem B.2.1. The right hand square of the diagram (B.2a) is commutative ,i.e.,

Pyl ..., I3) =Altg {

CS(AF[Sh) d C4(AF[€]3)

3 3
T T
i 1 ,82 i 0,82

(TBF) @ F*) @ (F © Bo(F) —= (F & A\’ F¥) @ (\* F)
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Proof: We will do here direct calculation. First calculate 7! o dly, ..., 1) 1s
4
todl, ... [[) =1" (Z(zg,...,i;f,...,lj))
=0

3 A ~ .
_ NI A S IO I
=A1t(01234){ (—1)1( l = l
; Uo...0...Ix)

®(lo"'lj“"'l3)A(ZO"'{i+3"'l3)), ; m0d4}
(lo...lisp... l3) (... lisa... 13)

First evaluate inner sum of the above then we will find 12 terms of type “ ® b A ¢ and

12 terms of type %2 ® b A c. Pass each sum through the Xft(01234) which gives 60 terms

e &k 2
 ®...and L= .. We
(Uiljle)

i
Uil ily)
will see that there are 10 possible determinants of each type and each has 6 terms, we are

of each type then regroup them on the basis of similar

listing here first few.

(LG,

Uolily) ® ((101113) A (L) + (olaly) A (L) + (lolils) A (lolals)
olilr

—(lolil3) A (bolalz) = (lolils) A (Lilaly) = (lolals) A (111213))

and

L)
+( ohh)

Uolily) ® ((101113) A (L) + (olals) A (Lills) + (lolils) A (lolals)
olilr

—(loli3) A (Lolals) = (lolils) A (L) = (bolalz) A (111213))

and 72 o d(ly, .. .,1}) can also be evaluated in similar fashion that will be

~ 3 3 )+ (P )
— 1N 0 J 3/e 0 j 3/e
= Alti234) Z( 1) /\ Gl

i=0 =0
J#i

Now we go the other side of the diagram. We first divide d,» = ' + §* such that

b+ bE b+ bE
L 2 9(l-ayab——L1—2

9" ((asbi. b3 ®b + x® [yh) = - ®aAb+x®(1—y)Ay

and , ,
& E & E
bi + b5 R bi + b5

0" ((a:br. b3 @b+ x® [yl) = —

ANX

We first calculate 9' o T? 52(1*’ ..., [}), which is quite similar with the calculation in the

proof of theorem 4.3.1. The only difference here is that, instead of collecting terms of
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GIR I
(l,'ljlk) (li[jlk)

match with result of 7! o d(I, ..., [;) with coeflicient —3 that is killed by —% which is

type ®--- and we find that terms

®---, only we also collect the terms of type

already the coefficient of the map 75 ,. We have similar situation with 8> o 75 ,([5, ..., [}).

Direct calculation gives us the same result as we have for 72 o dly, ..., 1) O
Theorem B.2.2. The left hand square of the diagram (B.2a) is commutative, i.e.,

d
C6(A13V[e]3) Cs (A3F[8]3)

3 3
T T
l 2,82 \L 1 .82

TBUF) —2 (TBUF) ® F¥) @ (F ® By(F))

IS commutative

Proof: First consider
3 * %
0, 0 72’82(10, o 1l3)

2 2 * * sk
= EAI%{ <r3(l(), ey ls); 1"3’5(1*, ey 15), r3’82(l ye e ey 15)]5 ® rg(lo, ey l5)

r3s(l*,...,l;)8 ”382(18,...,13‘)‘92
—— lo,....1 : lo,....1
o5 ® [r3(lo, .-, l5)], + oo le) ® [r3(lo, - - -5 15)]n

(B.2)

The simplification of (B.2) is quite similar to (4.22) in the proof of theorem 4.3.3. We
can use same steps here if we show that r3 ([}, ..., [;) can be written in terms of two
projected cross-ratios whose ratio corresponds to r3(ly, . . ., [s). We know that
_ LB LIS

LI NLIDGLE)

1'3(1*, ey l;)
and is expanded as
3, ) =3y o bs) + 13 0(ly . e+ 12 (D 1D)E

where [T € A%[gh and (l:.‘lj.l;:) € F|&];. so we can write

(i)
GG ERE) ) o

1’3’82(18,...,12) = = (l‘3(l*,...,l;))sz

As it is the coefficient of &> from r3(lg, ..., [%) which is a ratio of determinants in F'[£]3 so

it is clear that it can be written as the ratio of two projected cross-ratios. Now calculate
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O 01 L. 12).

(oli 13)(Li 1) (L lols)
(olils)(Lilhls) (L lol3)
(l*l*l*)(s e, (Grlh, @k, LD, (GEE),
( L Uibtde  Blols)e  ohile  Uibais)e  Ualols )®[r3(lo,...,l5)]2
(bhilz)  (hikly)  (Llbls)  (olils)  (hbkls)  (llols)
((l*l*l*)gz L Ghe | Ghie Gl G (l;lgl;)sz)
(bl 13) (Libly) (Lalols) (lol114) (Lilyls) (lols)

2 % % * %k
:EAI%{ <I"3(l(), ceey 15); 1"3,8(1 N 15), 7'3,82(1 Sy 15)]§ ®

® [r3(lo, - -‘,15)]2} (B.3)
By using similar technique as in the proof of theorem 4.3.3, equation (B.3) can be written
as:
1 -
= §Alt6{ <}"(lo|lllzlgl4); rg(lf)llTl;lle), Vg(l;ll?l;l;h)]; ® (l()ll 13)
Uofily)e ® [r(lolhi LBl + ——F— Glib)e [i’(lo|lllzl3l4)]2} (B.4)
(loli13) (loli13)
Calculation of T:f 2 odly, ..., [5) will give us same result as we have in (B.4). O

We can further relate this second order second with first order by constructing the follow-

ing result:

Proposition B.2.3. The following maps

2
)5 Cya2,) S FRF* e \°F
2
2. Cs(A}y,,) 5 Caliy,) = TBY(F)
3. Cs(AL,) S C4(AF[€] ) Fe N F @ \'F

)l

4. Cn+1(AF[£] ) _> Cn+1(AF[8] ) _) F® /\n IFX @ /\ F

1. Cy(A3

Flels

are zero.

Proof: See the proof of the lemmas 4.2.3, 4.2.5, 4.3.4 and 4.3.5. O

Second Order Tangent Group for any »

we define TB%(F) as a Z-module over F[g]; is generated by (a; by, by] = [a+bie+bye?] -
[a] € Z|F[€];] and quotient by the kernel of

0:Z[Flel,] » TB: (F)®F*® F® B, |(F)
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< 82

b
d:{a;by, by = (a;by, br)>  ®@a+ (1) ;1 ® [al,-1 + 72 ® [al,-1

then the following is a complex

0p TB: (F)RF* 0 9o TBAFSN'2F 92 _
TEF) S e S R e (Fe AT ) e (A F)
F®B,_1(F) FOBy(F)® "3 F*

The correctness of the this complex can be shown in a similar way as we did in §4.4.
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