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ABSTRACT 

Oil sands are naturally geologic formations of predominantly quartz sand grains 

whose void spaces are filled with bitumen, water, and dissolved gases. The electric rope 

shovel is the primary equipment used for excavating the Athabasca oil sand formations. 

The equipment’s static and dynamic loads are transferred to the formation during 

excavation and propel. These loads cause ground instability leading to sinkage or rutting, 

crawler wear, and fracture failures. These problems result in unplanned downtimes, 

production losses, and high maintenance costs. In order to address these problems, there 

is a need to develop valid models that capture the behavior and performance of oil sands 

under these loads. Particle-based physics methods, such as the discrete element method 

(DEM) can provide useful insight into the micromechanical and microstructural behavior 

of oil sands. This research is a pioneering effort towards contributing to the existing body 

of knowledge in oil sands formation characterization and numerical simulation using the 

DEM. These areas include oil sands as a four-phase material, shovel-formation 

interactions, and coupled deformation-stress under dynamic loading. A 2-D DEM model 

of the oil sands is built and simulated in PFC2D. The simulation results show that the 

generalized Burgers model with five Kelvin—Voigt elements fully characterized the 

microscopic viscoelastic response of the material. The micromechanical and 

microstructural viscoelastic model developed in this study can predict the dynamic 

modulus and phase angle of the material with a maximum error of 13.6%. This research 

initiative is a pioneering effort toward understanding shovel-oil sands formation 

interactions using a micromechanical and microstructural particle-based mechanics 

approach. 



 

 

iv 

ACKNOWLEDGMENTS 

I am thankful to my advisor, Dr. Samuel Frimpong, for his advice, help, guidance, 

and encouragement throughout the course of this work. Thank you for giving me this 

opportunity and the freedom to grow professionally. 

I also appreciate the effort and guidance of my advisory committee members: Dr. 

Maochen Ge, Dr. Greg Galecki, Dr. Andreas Eckert, and Dr. Kwame Awuah-Offei. The 

several one-on-one sessions with each of you during the course of this work have been 

very useful in doing this research. 

My gratitude goes to Ms. Shirley Hall, Ms. Judy Russell, and Ms. Tina Alobaidan 

for their assistance. I am also grateful to all members of the Heavy Mining Machinery 

Research group for their suggestion and encouragement, not forgetting Dr. Magesh 

Thiruvengadam. 

I am grateful for the financial support of the Saudi Mining Polytechnic (SMP) 

program. I also thank all members of Rolla First Assembly and All Nations Christian 

Fellowship for their prayers and encouragement. 

I am grateful to Sacha Emam of Itasca Consulting Inc. for his great support in the 

model development and insight into PFC formulation as well as the Itasca Education 

Partnership (IEP) program for providing the software. 

I am indebted to my loving wife, Jennifer, for her patience, support, prayers, and 

encouragement throughout this entire research. To our kids, Nhyira, Esinam, and Kojo, I 

say your understanding and innocent smiles was my motivation. Thank you all for the 

sacrifices you made for us to reach this far. To my parents and brothers, I say thank you 

for the prayers and encouragement.  

 



 

 

v 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ........................................................................................... viii 

LIST OF TABLES ........................................................................................................... xiii 

NOMENCLATURE ........................................................................................................ xiv 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

1.1. BACKGROUND OF THE RESEARCH PROBLEM ........................................ 1 

1.2. STATEMENT OF THE PROBLEM .................................................................. 4 

1.3. OBJECTIVES AND SCOPE OF WORK .......................................................... 9 

1.4. RESEARCH METHODOLOGY...................................................................... 10 

1.5. SCIENTIFIC AND INDUSTRIAL CONTRIBUTIONS ................................. 12 

1.6. STRUCTURE OF DISSERTATION ............................................................... 12 

1.7. SUMMARY ...................................................................................................... 13 

2. LITERATURE REVIEW ......................................................................................... 14 

2.1. GEOTECHNICAL PROPERTIES OF OIL SANDS ....................................... 14 

2.1.1. Microstructural Characteristics of Oil Sands. ........................................ 16 

2.1.2. Physical Properties, Fabric, and Shear Strength of Oil Sands. ............... 21 

2.2. MICROSTRUCTURAL AND MICROMECHANICAL MODELING 

       AND SIMULATION OF BITUMINOUS MATERIAL .................................. 27 

2.3. THEORY OF LINEAR VISCOELASTICITY ................................................ 37 

2.4. RATIONALE FOR PHD RESEARCH ............................................................ 39 

2.5. SUMMARY ...................................................................................................... 41 

3. CHARACTERIZATION OF THE VISCOELASTIC PROPERTIES OF OIL 

    SANDS MATERIAL ............................................................................................... 43 

3.1. OIL SANDS VISCOELASTIC BEHAVIOR ................................................... 43 

3.1.1. Burgers’ Viscoelastic Rheological Model. ............................................. 43 

3.1.2. Constitutive Behavior of the Generalized Burgers Model ..................... 46 

3.1.2.1 Response of generalized Burgers model to dynamic loading .....48 



 

 

vi 

3.1.2.2 Response of generalized Burgers model to shear loading ..........51 

3.2. DETERMINATION OF BURGERS MODEL INPUT PARAMETERS ........ 52 

3.2.1. Experimental Data and Analysis ............................................................ 52 

3.2.2. Time-Temperature Superposition Principle ........................................... 57 

3.3. SUMMARY ...................................................................................................... 66 

4. NUMERICAL SIMULATION OF OIL SANDS USING THE DEM  

    TECHNIQUE ........................................................................................................... 72 

4.1. OVERVIEW OF DISCRETE ELEMENT METHOD (DEM) ......................... 72 

4.1.1. Particle Shape and Size. ......................................................................... 77 

4.1.2. Design of PFC Model for Oil Sands ...................................................... 81 

4.2. CONTACT MODELS AND IMPLEMENTATION ........................................ 82 

4.2.1. Numerical Implementation of the Burgers Model ................................. 84 

4.2.2. Numerical Implementation of the Liquid Bridge-Burgers Model. ......... 87 

4.3. NUMERICAL SIMULATION ......................................................................... 89 

4.3.1. Numerical Simulation of Direct Shear Test. .......................................... 91 

4.3.2. Numerical Simulation of Cyclic Biaxial Test. ....................................... 93 

4.3.3. Shovel Crawler-Oil Sands Interactions. ............................................... 101 

4.4. VERIFICATION AND VALIDATION ......................................................... 105 

4.4.1. Verification. .......................................................................................... 107 

4.4.2. Validation. ............................................................................................ 107 

4.5. EXPERIMENTAL DESIGN AND EXPERIMENTATION .......................... 108 

4.5.1. Experimentation Environment. ............................................................ 109 

4.5.2. Constraints and Control Environments. ............................................... 110 

4.5.3. Experimental Design. ........................................................................... 110 

4.5.3.1 Experimentation for anisotropic conditions ..............................111 

4.5.3.2 Experimentation for viscoelastic modeling ..............................111 

4.5.3.3 Experimentation for direct shear test ........................................112 

4.5.3.4 Experimentation for shovel crawler-oil sands interactions .......113 

4.6. SUMMARY .................................................................................................... 114 

5. SIMULATION RESULTS AND DISCUSSIONS ................................................ 116 

5.1. CYCLIC BIAXIAL TEST .............................................................................. 116 



 

 

vii 

5.1.1. Oil Sand Anisotropy under Cyclic Loading. ........................................ 116 

5.1.2. Viscoelastic Modeling of Oil Sands. .................................................... 129 

5.2. DIRECT SHEAR TEST ................................................................................. 134 

5.3. CRAWLER SHOE-OIL SANDS INTERACTIONS ..................................... 140 

5.4. SUMMARY .................................................................................................... 150 

6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ......................... 154 

6.1. SUMMARY .................................................................................................... 154 

6.2. CONCLUSIONS............................................................................................. 156 

6.3. CONTRIBUTIONS OF PHD RESEARCH ................................................... 160 

6.4. RECOMMENDATIONS ................................................................................ 160 

APPENDICES 

     A. USER-DEFINED CONTACT MODEL (LIQUID BRIDGE-BURGERS  

          MODEL) ………………………………………………………………………...162 

     B. CLUMP ROTATION IN DIGITAL SAMPLE ………………………………… 206 

BIBLIOGRAPHY ........................................................................................................... 210 

VITA  .............................................................................................................................. 225 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

viii 

LIST OF ILLUSTRATIONS 

               Page 

Figure 1.1. World’s Conventional and Hydrocarbons Resources: (a) Total World Oil 

                   Resources [5] and (b) Oil Sand Reserves ........................................................ 2 

Figure 1.2. Actual and Predicted Crude Oil Production [7] ............................................... 3 

Figure 1.3. Ground Deformation-Stiffness of Oil Sand in Environmental  

                   Temperatures [11] ............................................................................................ 4 

Figure 1.4. Microstructural Section of Athabasca Oil Sand: (a) In Situ Structure of  

                   Oil-Rich Quartzose Oil Sand [13] and (b) Idealized Section of In Situ Oil 

                   Sand [9] ............................................................................................................ 5 

Figure 1.5. Sunk Electric Rope Shovel on Firm (Frozen) Near-Surface Oil Sand  

                  Ground [19] ....................................................................................................... 6 

Figure 1.6. Wear and Fracture in Crawler Shoes (Syncrude, 2014) ................................... 8 

Figure 1.7. Flowchart for Comprehensive Solution of Research Problem ....................... 11 

Figure 2.1. Location of Alberta’s Oil Sands [1] ............................................................... 16 

Figure 2.2. Schematic SW-NE Cross Section of the Alberta Foreland Basin [1] ............ 17 

Figure 2.3. Stratigraphy of the Athabasca Oil Sands [39] ................................................ 18 

Figure 2.4. Microstructure Model of Athabasca Oil Sands: (a) Sketch of a Model 

                  Proposed by [50], (b) Refined Model by [52], (c) In Situ Structure of  

                  Oil-Rich Quartzose Oil Sand [49], and (d) Refined Structural Model [13].... 19 

Figure 2.5. 2D Fabric of Oil-free McMurray Formation: (a) SEM image x 25 [57]  

                  and (b) Schematic Diagram [49] ..................................................................... 22 

Figure 2.6. Triaxial Compression Test Response of Oil Sand: (a) Stress-strain and  

                  (b) Volume Change [54] ................................................................................. 25 

Figure 2.7. Particle Size Distribution Curves of the Athabasca Oil Sand ........................ 26 

Figure 2.8. Oil-Free McMurray Formation Showing Grain Contacts and Surface  

                   Features [70] .................................................................................................. 28 

Figure 2.9. Forces Acting on Aggregate and Binder: (a) Forces Acting on Particles,  

                  (b) Aggregate-Aggregate Contact Interaction, and (c) Aggregate-Binder  

                  Contact Interaction [82] .................................................................................. 31 

Figure 2.10. 3D Micromechanical DEM Model of HMA [28]......................................... 32 

Figure 2.11. 2D Schematic Representation of an Idealized Mix [84] .............................. 33 

 

 



 

 

ix 

Figure 2.12. MDEM Model of HMA: (a) Scanned Image of a Stone Mastic Mixture,  

                    (b) Assembly of Discrete Element with Hexagonal Packing, and  

                    (c) Digital Sample of HMA .......................................................................... 35 

Figure 2.13. Idealized Response of: (b) Elastic; (c) Viscous; and (d) Viscoelastic  

                    Material when Subjected to (a) Constant Stress ........................................... 38 

Figure 3.1. Rheological Model of Four-Component: (a) Burgers’ Element; (b) Strain  

                  Response of Burgers’ Element under Constant Stress; (c) Burger’s  

                  Element Strain Response under Constant Amplitude Dynamic  

                  Stress Loading ................................................................................................. 45 

Figure 3.2. Generalized Burgers Model ............................................................................ 47 

Figure 3.3. Flowchart for Characterizing the Viscoelastic Properties of Oil Sands 

                  Material ........................................................................................................... 53 

Figure 3.4. Measured Rheological Properties of Bitumen at Selected Temperatures:  

                  (a) Storage Modulus and (b) Loss Modulus [133] .......................................... 56 

Figure 3.5. Computed Rheological Properties of Bitumen: (a) Dynamic Shear  

                   Modulus and (b) Phase Angle ........................................................................ 58 

Figure 3.6. Master Curves of Dynamic Moduli (Storage and Loss) at the Reference 

                  Temperature of 0°C ........................................................................................ 60 

Figure 3.7. Master Curve of Bitumen at -30°C ................................................................. 61 

Figure 3.8. Master Curve of Bitumen at 10°C .................................................................. 61 

Figure 3.9. Master Curve for Bitumen at 30°C ................................................................. 62 

Figure 3.10. Master Curve for Bitumen at 60ׄ°C ............................................................... 62 

Figure 3.11. Master Curve for Bitumen at 90°C ............................................................... 63 

Figure 3.12. Shift Factor Values and WLF Fitting at Test Temperatures ........................ 64 

Figure 3.13. Example of Measured and Predicted Storage and Loss Moduli by the  

                     Four-Parameter Burgers Model ................................................................... 65 

Figure 3.14. Generalized Burgers Model Fit (Tg=-30°C) ................................................ 67 

Figure 3.15. Generalized Burgers Model Fit (Tg=0°C) .................................................... 68 

Figure 3.16. Generalized Burgers Model Fit (Tg=10°C) .................................................. 68 

Figure 3.17. Generalized Burgers Model Fit (Tg=30°C) .................................................. 69 

Figure 3.18. Generalized Burgers Model Fit (Tg=60°C) .................................................. 69 

Figure 3.19. Generalized Burgers Model Fit (Tg=90°C) .................................................. 70 

Figure 4.1. Flow Chart for Oil Sands DEM Processes ..................................................... 73 

Figure 4.2. DEM Calculation Scheme .............................................................................. 74 

 



 

 

x 

Figure 4.3. Forces Acting on Particle (ball) i with Particle (clump) j and  

                  Non-Contacting Particle k ............................................................................... 75 

Figure 4.4. Illustration of the Linear Contact Model for Ball-Ball Contact ..................... 76 

Figure 4.5. Key Ingredients for a Successful DEM Model of Oil Sands.......................... 77 

Figure 4.6. Flow Chart for Creating Clumps and Clusters in PFC ................................... 79 

Figure 4.7. Clumps from Multiply Templates Randomly Distributed ............................. 80 

Figure 4.8. Oil Sands Aggregates Formed by Cluster of Bonded Balls ........................... 80 

Figure 4.9. Particle Size Distribution of Oil Sands Sample .............................................. 81 

Figure 4.10. DEM Model of Oil Sand in PFC2D ............................................................. 83 

Figure 4.11. Burgers’ Contact Model in PFC2D .............................................................. 84 

Figure 4.12. Moisture Force versus Contact Gap for the Liquid Bridge-Burger Model .. 88 

Figure 4.13. Geometry of a Capillary Bridge [154] .......................................................... 88 

Figure 4.14. Flow Chart of the Numerical Simulation ..................................................... 90 

Figure 4.15. Illustration of DST for Oil Sands Simulation in PFC2D .............................. 91 

Figure 4.16. Simple Shear Mode of Deformation in the Failure Plane of the DST:  

                    (a) Illustration of Shear Band and (b) Determination of Shear Band 

                    Thickness ...................................................................................................... 93 

Figure 4.17. Illustration of CBT DEM Simulation of Oil Sands ...................................... 94 

Figure 4.18. Compacted PFC2D Bitumen-Free Oil Sands Sample .................................. 96 

Figure 4.19. Flow Chart for Contact Model Assignment ................................................. 97 

Figure 4.20. DEM Model of a 9.5% BCW Oil Sand ........................................................ 98 

Figure 4.21. All Relevant Contact Models Appropriately Assigned ................................ 99 

Figure 4.22. Different Contact Models Parameters Properly Assigned............................ 99 

Figure 4.23. Density Distribution within the Sample ..................................................... 100 

Figure 4.24. Applied Stress and Strain Response ........................................................... 101 

Figure 4.25. 2D Crawler-Ground Interactions: (a) ERS Loading Cycle, (b) Ground  

                    Bearing Pressure Transmitted to Formation During  

                    Loading/Unloading [156], and (c) PFC2D Model of Crawler-Oil Sands  

                    Interactions .................................................................................................. 102 

Figure 4.26. Results of Curve Fitting: (a) Shoes 9–16 and (b) Shoes 1–8 ..................... 104 

Figure 4.27. Verification of the Burgers Model for Oil Sand Materials: (a) Stress 

                    Relaxation and (b) Creep ............................................................................ 106 

Figure 4.28. Capillary Force as a Function of Contact Gap ........................................... 108 



 

 

xi 

Figure 4.29. Measured [66] and Predicted: (a) Phase Angle and (b) Dynamic Shear  

                    Modulus ...................................................................................................... 109 

Figure 5.1. Frequency Histogram of Oil Sand Material Particle Orientation [54] ......... 117 

Figure 5.2. Particle Orientation Angle (θ) and Vector Contact Normal (n) ................... 118 

Figure 5.3. Flow Chart used to Generate Clumps at the Preferred Orientation Angle θ 119 

Figure 5.4. Frequency Distribution of Clump Orientation Angle: (a) θ = 0°,  

                  (b) θ = 30°, (c) θ = 60°, and (d) θ = 90° ........................................................ 120 

Figure 5.5. Clump Rotation: (a) Contour Plot and (b) Plot Along the Longest  

                  Diagonal ........................................................................................................ 121 

Figure 5.6. Characteristics of Internal Structure of Digital Sample ............................... 122 

Figure 5.7. Stress-Strain Response during Loading-unloading Cycles .......................... 123 

Figure 5.8. Evolution of Volumetric Strain during Loading-unloading Cycles ............. 124 

Figure 5.9. Evolution of Porosity during Loading-unloading Cycles ............................. 124 

Figure 5.10. Average Coordination Number at the end of Loading and  

                    Unloading Cycles ........................................................................................ 125 

Figure 5.11. Polar Histogram of Contact Normals at the Start of Loading .................... 126 

Figure 5.12. Polar Histogram of Contact Normals at the End of Loading ..................... 127 

Figure 5.13. Polar Histogram of Contact Normals at the End of Unloading .................. 128 

Figure 5.14. Particle Contact Force after Unloading: (a) Contour Map and  

                    (b) Distribution of Contact Forces Along Different Lines.......................... 129 

Figure 5.15. Contour Plots of the Contact Force Distribution ........................................ 130 

Figure 5.16. Vertical Stress on the Loading Platens ....................................................... 131 

Figure 5.17. Strain Response under Constant Stress Amplitude Loading ...................... 132 

Figure 5.18. Mechanical Energy Accumulated by Walls ............................................... 133 

Figure 5.19. Hysteresis Loop at the End of First Loading Cycles .................................. 134 

Figure 5.20. Effect of Bitumen Content and Temperature on Viscoelastic Energy 

                    Dissipated .................................................................................................... 135 

Figure 5.21. Evolution of: (a) Shear Stress to Normal Stress Ratio with Normalized 

                    Horizontal Displacement and (b) Normalized Vertical Displacement  

                    with Normalized Horizontal Displacement, and (c) Insert Plot of (a) ........ 136 

Figure 5.22. Particle Displacements in the Vertical: (a) Horizontal Displacement and  

                    (b) Vertical Displacement ........................................................................... 138 

Figure 5.23. Particle Displacement Contours: (a) Case-350-I and (b) Case-350-II ....... 140 

 



 

 

xii 

Figure 5.24. Evolution of Particle Rotations during Horizontal Displacement of  

                    Upper Box at: (a) 0 m, (b) 7.5e-4 m, (c) 1.5e-3 m, (d) 2.25e-3 m,  

                    and (e) 3e-3 m ............................................................................................. 141 

Figure 5.25. Distribution of Contact Stresses under Normal Pressure of: (a) 200 kPa  

                    and (b) 350 kPa ........................................................................................... 142 

Figure 5.26. Network of Contact Forces at Different Loading Positions ....................... 143 

Figure 5.27. Contact Forces on Crawler Shoes at the End of the Third Loading Cycle. 145 

Figure 5.28. Displacement Contour Profile at the End of the Third Loading Cycle ...... 146 

Figure 5.29. Contact Force with Respect to Displacement: (a) Shoes 9-10 and  

                    (b) Shoes 7-8 ............................................................................................... 147 

Figure 5.30. Oil Sands Response: (a) Strain and (b) Stress ............................................ 148 

Figure 5.31. Particle Instantaneous Velocity Field ......................................................... 149 

Figure 5.32. Displacement Contour Plots ....................................................................... 151 

Figure 5.33. Strain Contours: (a) for Test-030-30 and (b) Strain Plots Over  

                    Horizontal Distance Across Domain .......................................................... 152 

 



 

 

xiii 

LIST OF TABLES 

               Page 

Table 2.1 Some Major Physical Properties of Athabasca Oil Sands [38] ........................ 22 

Table 4.1. Generalized Burgers Model Parameters for Bitumen ...................................... 70 

Table 4.2. Input Parameters for DST Numerical Simulation of Oil Sands ....................... 92 

Table 4.3. Linear Viscoelastic Input Parameters for Oil Sands CBT ............................... 95 

Table 4.4. Coefficient of Parameters for the Fit Equation .............................................. 105 

Table 4.5. Characteristics of Experimentations–I for Anisotropic Study ....................... 111 

Table 4.6. Characteristics of Experimentations–II for Viscoelastic Modeling ............... 112 

Table 4.7. Characteristics of Experimentations–III for Direct Shear Test ..................... 113 

Table 4.8. Characteristics of Experimentations–IV for Crawler-Oil Sands Interactions 114 

Table 5.1. Resilient and Permanent Deformations under Cyclic Loading ..................... 133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xiv 

NOMENCLATURE 

Symbol Description         

I   Input to a System 

 R I   Response of the System from the Input I 

 and a bI I  Inputs that could be of the Same or Different Time History 

 t   Strain Response at Time t 

 t   Input Stress (Dynamic Stress) 

 Q t   Weighting Function Corresponding to the time Interval (t-u) 

o   A Step Change in Stress 

E   Elastic Modulus of Spring 

s    Spring Stress 

s   Spring Strain 

   Viscosity of Dashpot Fluid 

d   Dashpot Stress 

b   Strain Rate of Dashpot 

u   Total Deformation of the Generalized Burgers Model 

mKu   Displacement of the Spring Element of the Maxwell Section of the 

                        Generalized Burgers Model 

mCu   Displacement of the Dashpot Element of the Maxwell Section of the 

                        Generalized Burgers Model  

1

n

ki

i

u


   Sum of Displacement of the Spring Element of the Kelvin-Voigt Section  

                        of the Generalized Burgers Model 

u   Total Velocity of the Generalized Burgers Model 

mKu   Velocity of the Spring Element of the Maxwell Section of the  

                        Generalized Burgers Model 

mCu   Velocity of the Dashpot Element of the Maxwell Section of the  

                        Generalized Burgers Model 



 

 

xv 

1

n

ki

i

u


   Sum of Velocity of the Spring Element of the Kelvin-Voigt Section  

                        of the Generalized Burgers Model 

k   Total Stress in the Kelvin-Voigt Section of the Generalized Burgers Model 

kiK   Spring Constant of the ith Spring of the Kelvin-Voigt Section of the 

                        Generalized Burgers Model 

ki   Strain of the ith Spring of the Kelvin-Voigt Section of the 

                        Generalized Burgers Model 

kiC   Dashpot Constant of the ith Spring of the Kelvin-Voigt Section of the 

                        Generalized Burgers Model 

ki   Strain Rate of the ith Spring of the Kelvin-Voigt Section of the 

                        Generalized Burgers Model 

m   Strain Rate in the Maxwell Section 

mK   Spring Constant of the Maxwell Section 

mC   Dashpot Constant of the Maxwell Section 

m   Stress in the Maxwell Section 

   Loading Frequency 

 D   The Complex Compliance 

 D    Storage Compliance 

 D   Loss Compliance 

D   Dynamic Compliance 

E   Dynamic Modulus 

   Phase Angle 

 G   Dynamic Shear Modulus 

G   Storage Shear Modulus 

G   Loss Shear Modulus 

J    Dynamic shear Compliance 

J    Storage Shear Compliance 



 

 

xvi 

J    Loss Shear Compliance 

max   Maximum Shear Stress 

max   Maximum Shear Strain 

   Rotation (rad) 

T   Applied Torque 

h   Height of the Cylindrical Sample 

R   Radius of the Sample 

0

jG   Storage Shear Modulus Measured at the jth Frequency j  

0

jG   Loss Shear Modulus Measured at the jth Frequency j  

 jG   Predicted Storage Shear Modulus at the jth Frequency j  

 jG   Predicted Loss Shear Modulus at the jth Frequency j  

m   Number of Data Points 

M   Mass Matrix 

D   Damping Matrix 

K   Internal Restoring Force 

F   External Force 

u   Linear and Rotational Acceleration Vectors 

u   Velocity Vectors 

im   Mass of Particle i 

iI   Moment of Inertia of Particle i 

x i   Translational Acceleration of Particle i 

i   Angular Acceleration of Particle i 

i   Angular Velocity of Particle i 

f i   Sum of Forces acting on Particle i 

t i   Sum of Torques acting on Particle i 

Fc

ij
  Contact Force acting on Particle i by Particle j  or Rigid/Flexible 

                        Boundary 

 



 

 

xvii 

Mij   Torque acting on Particle i by Particle j  or Rigid/Flexible  

                        Boundary 

Fnc

ik   Non-contact Force acting on Particle i by Particle k  

F f

i   Fluid Force on Particle i 

Fg

i   Gravitational Force on Particle i 

Fa

i   Applied Force on Particle i 

nF   Force in the Normal Direction of the Contact Plane  

nu   Overlap between Particles in the Normal Direction 

sF   Tangential Force 

su   Relative Displacement in the Tangential Direction 

f   Contact Force of the Burgers Model 

ij   Average Stress in a Measurement Region 

cN   Number of Contacts that lie in the Measurement Region or on Its 

                        Boundary 

 c
F   Contact Force Vector 

 c
L   Branch Vector Joining the Centroids of the Two Bodies in Contact 

max   Applied Maximum Stress 

min   Applied Minimum Stress 

max   Maximum Predicted Strain 

min   Minimum Predicted Strain 

t   Time Difference between Two Adjacent Peak Stress and Strain 

T   Loading Period 

BCW  Bitumen Content by Weight 

 



 

 

1 

1. INTRODUCTION 

This section provides the background information for this research, highlighting 

key areas of previous research limitations and constraints. The section also puts the study 

in perspective with respect to the broader scientific and technical impact and briefly 

describes similar/related studies. The research objectives and scope of work are also 

given in this section. A brief overview of the research methodology, content, and 

organizational structure are captured in this section as well. 

 

1.1. BACKGROUND OF THE RESEARCH PROBLEM 

Heavy oil and bitumen (oil sands) resources are found in various countries (~70) 

throughout the world, but in extremely large quantities in Venezuela (Orinoco Belt) and 

Canada (Athabasca Oil Sands in Alberta) respectively, followed by the Middle East, the 

United States of America, and Russia.  According to Hein [1], an estimated 5.6 trillion 

bbls of bitumen and heavy oil resources are in the world, out of which approximately 

70% are hosted in Venezuela, Canada, and the USA (Figure 1.1). About 70% of the 

world’s total oil resources comes from heavy oil, extra-heavy oil, and oil sands [Figure 

1.1(a)]. Canada’s proven oil reserves were 173 billion barrels at the beginning of 2015 

according to the Oil and Gas Journal [2], of which 166 billion barrels are found in 

Alberta’s oil sands. In the United States, the largest (more than half) measured oil sand 

deposits are found in Utah (Uinta Basin) and are estimated to be between 19 and 32 

billion barrels [3]. Totally, North America holds approximately 84% of the world’s oil 

sands reserves [Figure 1.1(b)]. Consistent and steady growth in Canada’s oil sands 

production is a major contributor to the recent and unexpected increase in the world’s 

liquid fuel supply [2]. In 2014, crude oil production from Canada amounted to 3.7 million 

barrels/day, 58% of which was from oil sands [4]. Over the next five years, Canadian 

crude oil production is forecast to reach approximately 5 million bbls/day (Figure 1.2).  

Canada is one of the world’s top five largest energy producers and is the principal 

source of U.S. energy imports. According to the U.S. Energy Information Administration 

(EIA), about 37% of U.S. crude oil and refined products imports came from Canada in 

2014 [2].  
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(a) (b) 

Figure 1.1. World’s Conventional and Hydrocarbons Resources: (a) Total World Oil 

Resources [5] and (b) Oil Sand Reserves 

 

 

While oil imports from foreign countries have decreased due to increase in U.S. 

domestic production, U.S. imports of crude oil and other liquids from Canada have 

increased by 58% [2]. For secure and stable North American energy requirements, these 

crude oil production increases (mostly from oil sands) and scientific and engineering 

methodologies to enhance machinery capabilities and excavation efficiencies are vital for 

additional crude oil production. Additionally, as production from conventional energy 

resources increases and becomes depleted, more attention is placed on unconventional 

energy resources such as heavy oil and bitumen to fill future energy needs. 

With the commercial production of crude oil from the Utah oil sands deposit, 

technology development in the Athabasca oil sands will set the trend for future 

technology transfer to the United States. This will lead to reducing reliance on foreign 

imports and providing economic growth in both Canada and the United States. Oil sands 

have a complex microstructure and unique micromechanical properties that are different 

from other geomaterials.  

According to Joseph, Sharif-Abadi [6], oil sand properties perform akin to 

sandstone in winter and weak clay in summer, as temperature varies from -30°C to 

+30°C, respectively. Figure 1.3 shows a variation in oil sand ground stiffness for 

changing environmental temperatures. 
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Figure 1.2. Actual and Predicted Crude Oil Production [7] 

 

 

Typical oil sand comprises sand grains, predominately quartz, with pores filled 

with bitumen, water, and air. It is thus considered a four-phase media. Bowman [8] 

reported that the quartz grains constitute about 90–98% of the mineralogy composition 

and are 99% water-wet. Figure 1.4 shows the microstructural section of the material. The 

figure reveals that the grain-grain contact in oil sand formations mainly exhibits long and 

concavo-convex contacts. This structure is known as interpenetrative and is responsible 

for both the low void ratio and high shear strength [9]. 

Electric rope shovel (ERS) is the primary equipment used for both overburden 

and bulk excavation of oil sands. The presence of high bitumen content makes the oil 

sands a viscoelastic material that undergoes a significant amount of load-deformation 

behavior under static and dynamic loading. The static and dynamic loadings during 

formation excavation are transferred to the oil sands via the shovel crawlers. This causes 

material underfoot the crawler to deteriorate and unstable, especially in the summer, 

where the ground is soft. Consequently, truck and ERS fatigue failures and rutting or 

sinkage occur as a result of this ground stability issues [10]. These problems result in 

unexpected downtime and the high cost of maintenance and production.  
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Figure 1.3. Ground Deformation-Stiffness of Oil Sand in Environmental Temperatures 

[11] 

 

 

A proper understanding of ground interactions with equipment, especially where 

soft ground conditions (like oil sands) are encountered will provide original equipment 

manufacturers (OEMs) the technology and tools needed to design new equipment for 

mining operations in soft ground. This research is geared towards the formulation and 

implementation of a comprehensive viscoelastic micromechanical modeling of the oil 

sand material using the discrete element method (DEM). A comprehensive numerical 

model of the oil sand material will provide realistic contact forces and torques on shovel 

crawler shoes and other ground engaging tools (GET) during formation excavation for 

understanding the wear and fatigue failure of the lower assembly and attachments. 

Additionally, the model will characterize the time, temperature, and loading rate 

dependence of the mechanical behavior of the oil sands under cyclic loading. 

 

1.2. STATEMENT OF THE PROBLEM 

Oil sands are naturally geologic formations of predominately quartz sand grains 

whose void spaces are filled with bitumen, water, and dissolved gasses. The soil skeleton 

comprises dense, highly incompressible, uncemented fine interlocking grains exhibiting 

low in-situ void ratio and high shear strengths and dilatancy [9, 12]. 
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Figure 1.4. Microstructural Section of Athabasca Oil Sand: (a) In Situ Structure of Oil-

Rich Quartzose Oil Sand [13] and (b) Idealized Section of In Situ Oil Sand [9] 

 

 

It is also characterized by a high porosity of 32% to 35%, with oil saturation that 

averages 70% of the pore volume [14]. Large quantities of the oil sands formation are 

found in the Athabasca region of Canada [15]. In the United States, the deposits are 

located mainly in the Uinta Basin of northeastern Utah, and central southwestern Utah 

[16]. Only 20% of Alberta’s oil sand deposit is recoverable through surface mining 

methods (EUB, 2006).  Surface mining methods employ ultra-class machines like P&H 

4100C BOSS (105-ton payload) ERS for loading CAT 797F (400-ton payload) trucks for 

material haulage. The ERS is the primary excavator for oil sands and overburden 

extraction due to its high breakout forces, large dipper capacity, and low production and 

ownership cost. 

The use of these equipment imposes large magnitude of loadings on the 

formation. These loads are static, from the machine weight and dynamic, which is from 

the loading cycle (loading and unloading operations). After a few cycles of load, trucks, 

and shovels operating in oil sands during summer become less stable leading to ground 

deformation. It has also been observed that the deformed ground causes rack, roll, pitch, 

and cumulative bounce truck motions of the truck and shovel during excavation. These 

actions are reported by Joseph [10], Ardeshir [17], Wohlgemuth [18] to be the root cause 

of frame, suspension, and tire fatigue in trucks. 

Gas bubble 

Bitumen 

Quartz 

Water 

(a) (b) 
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For ERS, poor ground stability can cause twists in car bodies and undercarriages 

and sinkage/rutting of the lower assembly [11], as shown in Figure 1.5. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Sunk Electric Rope Shovel on Firm (Frozen) Near-Surface Oil Sand Ground 

[19] 

 

 

In winter, approximately 1.5 to 3 m of the near-surface oil sand material becomes 

firm (frozen), with higher ground stiffness. This overlays a softer material beneath, with 

less stiffness than the upper layer. This softer material beneath the surface softens and 

causes undulation after a few loading cycles of the ERS and trucks. The undulating 

ground results in high stress in ERS structures, causing fatigue wear and fracture, mostly 

in the lower assembly [11]. These problems have been partially addressed by OEMs by 

widening the shovel crawlers to reduce average stresses on the formation, which may also 

be costly. This solution effort only solves a part of a complex problem that requires the 

application of fundamental and applied research to fully understand the oil sands 

deformation behavior and stiffness changes under cyclic loading conditions.  

In mining operations, equipment maintenance costs range from 20% to 35% of 

the total mine operating cost Unger and Conway [20] and usually constitutes 40% to 50% 
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of the equipment operating cost [21]. At Syncrude, the cost of overburden movement and 

auxiliary feed was approximately 38% of the yearly operating expenses in the late 1980s 

[22]. The hourly ownership and operating costs associated with shovel excavation are 

estimated to be in the range from 3% to 35% of production costs [23, 24]. In Syncrude’s 

Aurora mine, it is about 14% of the total production cost [25]. It is also estimated that the 

cost of one hour of shovel downtime is approximate $200,000 [26]. This makes 

excavation a major cost component that needs to be addressed to maintain an appreciable 

profit margin. 

The bitumen content in oil sands is typically between 0% and15% by weight. This 

has an impact on the abrasiveness of the material, bulk density, and diggability of the 

formation. The presence of boulders during digging results in varying mechanical loads 

on the attachments that are finally transferred to the ground via the lower assembly. The 

resulting repeated cycles of low and high stresses cause wear and fracture of the lower 

assembly (see Figure 1.6). Consequently, these problems result in increased machine 

downtime, low utilization, high production costs, and reduced economic machine lives.  

Previous research efforts have used fundamental models by Buisman-Terzaghi, 

numerical approaches using finite element modeling (FEM), and a simple mass-spring-

dashpot system to model oil sands material. These methods do not account for the unique 

physical nature of oil sands as a complex multiphase material. Also, the oil sands are 

heterogeneous and behave as interacting granular particles. Thus, modeling the oil sand 

material as a continuum medium using FEM could lead to unrealistic and erroneous 

results because FEM lacks the ability to take into account the slippage and interlocking of 

aggregates. Additionally, the continuum mechanics approach is too simple to model the 

complex microstructural and micromechanical behavior of the oil sands. In order to 

understand the fundamental science underlying crawler shoes wear and fracture, an 

appropriate model of the oil sands composition must be formulated to capture the 

constituent components of sands, bitumen, air, and water. From this model, the predictive 

behavior of the interactions between the crawler shoes and the abrasive sand particles 

could be examined to capture the wear and fracture processes. Thus, a discrete element 

method (DEM) technique is used to study and analyze the oil sand material at the micro 

level.  
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Figure 1.6. Wear and Fracture in Crawler Shoes (Syncrude, 2014) 

 

 

The DEM is a discontinuum analysis method that can simulate the load-

deformation behavior of discrete particle assembly under quasi-static and dynamic 

conditions. This formulation provides understanding into the micromechanics of oil sands 

constituents and how the constituents interact with the GET at the micro- and macro-

scale levels. 

This research is a pioneering effort that captures, examines, and explains the 

micro- and macro-structures of the oil sands formation. Knowing the mechanical 

behavior of the material in four-phase is essential for understanding and providing 

technological and scientific solutions to problems of oil sand excavation. Thus, it is 

necessary to develop comprehensive constitutive models for such materials to analyze 

their mechanical behavior. The research provides an understanding of the sand particulate 

interactions with the crawler shoes and the subsequent wear and fracture processes.  
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This research effort also provides a substantial component towards solving the 

crawler shoes wear and fracture problem in the Athabasca Oil Sands Formation, which is 

part of a project funded by Joy Global Inc. of Milwaukee, WI.  The project is being 

carried out by the Heavy Mining Machinery Research (HMMR) Group at Missouri 

University of Science and Technology. The research findings will lead to further 

understanding of the machine-ground interactions at the micro-scale level and create the 

basis for significant input into the causes of formation and crawler shoe failures for 

safety, health, efficiency, and economic production of excavation. 

 

1.3. OBJECTIVES AND SCOPE OF WORK 

The primary research objective of this study is to develop a constitutive 

microstructural and micromechanical model of the Oil Sands Formation as a multiphase 

material. The elements of this primary objective include the following: (i) develop a 

comprehensive linear viscoelastic model for simulating the micromechanical multiphase 

interactions within the oil sands material; (ii) develop a liquid bridge model to 

incorporate the effect of the thin film of water; (iii) evaluate the effects of temperature, 

loading frequency, and bitumen content on the overall macroscopic response; (iv) 

investigate the deformation-stress response of both bitumen-free and oil-rich oil sands 

under direct shear test and cyclic biaxial; and (v) provide an understanding into shovel 

crawler-oil sands inteactions for machine performance simulations.  

This study is limited to the numerical modeling and simulation of the Oil Sands 

formation (a complex bituminous composite material). The study focuses on developing a 

comprehensive particle-based model using the DEM technique. However, the 

formulations and models can be applied to other geomaterials such as the Powder River 

Basin coal, iron range, and similar composite particulate materials. All the numerical 

tests are simulated in 2D space. The 2D DEM material model cannot reproduce all the 

features of a 3D behavior of the oil sand material. The ability to visualize the material 

behavior in microscale, less computational time and great simplicity are some of the 

reasons for the 2D model.  

The DEM technique relies on the fundamental properties of the constituents of the 

oil sands material to predict the global behavior under loading. To achieve the research 
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objectives, a reasonable and accurate representation of the particle size and shape, 

loading rate, phase composition, and temperature needs be included in the model to 

characterize the oil sand material numerically properly. Other factors that influence the 

overall mechanical behavior are illustrated in the cause-and-effect diagram in Figure 1.7. 

 

1.4. RESEARCH METHODOLOGY 

To achieve the set of research objectives, this research will combine analytical 

surveys of relevant literature, mathematical, numerical, and modeling techniques to build 

a comprehensive viscoelastic microstructural and micromechanical model of oil sands. 

The DEM technique developed by Cundall and Strack [27] has been employed to model 

the oil sand material as a four-phase particulate media. Over the past decade, several 

researchers have used DEM to simulate discontinuous materials with some success. 

Current research efforts indicate little or no application of DEM for modeling composite 

material such as oil sands. However, DEM has been used to model the heterogeneous 

multiphase material of asphalt mixtures Chang and Meegoda [28], Rothenburg and 

Bathurst [29], and a number of researchers have developed micromechanical models with 

DEM [30-35]. 

Appropriate contact models and numerical calibration are developed to capture 

the temperature, time, and loading rate dependence of the formation during excavation. 

The model includes capillary forces, particle size distribution and shape, and dynamic 

loading of the oil sand material. The DEM model captures the forces, moment, and 

torque at the grain-grain contacts or grain-bitumen contacts. The model will be solved 

using Newton’s second law of motion and explicit time stepping scheme to find the 

forces at every contact. The stress-strain response of oil sand material is influenced by the 

temperature, loading rate, amount of bitumen content, and stress state. Due to high 

temperature in the summer (approximately 40°C), the stiffness of the material is reduced. 

This reduced stiffness makes the oil sand behave as soft clay. However, at low winter 

season (-40°C), the material stiffness increases, making it akin to hard sandstone. A time-

temperature superposition principle is applied to construct a master curve at different 

temperatures to simulate the thermomechanical effects on oil sands. 
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Figure 1.7. Flowchart for Comprehensive Solution of Research Problem 

 

 

The survey assessed the macro-physical and mechanical properties of oil sands 

formation to develop its constitutive equation at the microstructure and implemented 

numerically using the DEM approach. Critical review and analysis of the relevant 

literature will provide the current body of knowledge in a bituminous material with a 

model using the DEM technique to predict micromechanical stress-strain behavior. 

Verification and validation processes, as well as experimental design and 

experimentation, will be used to obtain relevant results for studying linear viscoelastic 

micromechanical modeling of oil sand material. These processes ultimately place the 

research study at the frontiers of this research paradigm and provide a rationale for the 

PhD research.  

The DEM technique is a numerical solution method used to capture and solve the 

mechanical behavior problems of discontinuous bodies [36]. It was developed for 

analyzing rock mechanics problems using deformable polygonal-shaped blocks.  Cundall 

and Strack [27] extended this technique to capture assemblies of disc and spheres to 

model soils as particulate media. The oil sand is modeled as a four-phase particulate 

media to capture the unique features of this geomaterial. The numerical modeling and 

simulation are performed in Particle Flow Code (PFC2D) [37]. The results from all the 
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simulation experiments will be analyzed to draw relevant conclusions with 

recommendations. 

 

1.5. SCIENTIFIC AND INDUSTRIAL CONTRIBUTIONS 

This research initiative is a pioneering effort toward understanding machine-oil 

sand interactions using a microstructural and micromechanical particle-based mechanics 

approach. It advances the frontiers of numerical modeling of oil sands material as 

complex composite material, and ultra-class mining equipment interacting on tough 

terrains and contributes immensely to its body of knowledge. Comprehensive numerical 

modeling of oil sand material using DEM and the real-time load-deformation mechanics 

have previously never been studied to provide understanding into cable shovel-oil sands 

interactions during formation excavation.  

This research advances the heavy machinery-ground interactions and contributes 

to the existing body of knowledge on shovel excavation using numerical and simulation 

techniques. The research will formulate the mathematical models for particle-particle 

interactions and generate the dynamic forces and moments exerted at every contact. The 

use of PFC2D will enable full-scale modeling of the formation for realistic material 

behavior, as the number of contacts is reduced, and thus, require less computation 

expense. Firstly, the result of the numerical simulation will provide real-time formation 

failure mode under dynamic loading.  

Secondly, it will also provide understanding into shovel crawler-oil sands 

interaction forces for appropriate product design and development. Additionally, the 

results from the research will provide technologies for workplace safety and operators’ 

health and safety in surface mining operations.  This will further maximize the useful 

economic lives of ERS, machine availability, and production economics and minimize 

maintenance and production costs. 

 

1.6. STRUCTURE OF DISSERTATION 

Section 2 contains a comprehensive review of all relevant literature. It has three 

sub-sections on geotechnical properties of oil sands, microstructural and 

micromechanical modeling of bituminous materials, and discrete element method 
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application in modeling composite materials. Section 3 contains the mathematical 

formulation of the micromechanical viscoelastic model of oil sand material using DEM. 

Section 4 presents the implementation of the numerical model in PFC2D. This section 

also contains the verification and validation of the models and design of experiments and 

experimentations. Section 5 discusses the results of the simulation, with supporting 

details in Appendix A. Section 6 summarizes the findings and presents the conclusions, 

contributions of this PhD research, and recommendations for future work. 

 

1.7. SUMMARY 

This section has laid the foundation for the rational of this research study. A brief 

history of what has been done before was presented in this section. The objectives of this 

research were concisely stated as well as the focus of the study. The approach used to 

achieve the reseach objectives is presented. The scientific and industrial benefits of the 

study are also presented. 
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2. LITERATURE REVIEW 

This section covers a comprehensive review of the literature underlying the 

research in micromechanical modeling and simulation of oil sand material using the 

DEM technique. This review covers previous work done in oil sand material, physical 

and mechanical behavior, and discrete element modeling of particulate media. All the 

symbols, signs, and abbreviations used in this section are defined in the Nomenclature 

section of this dissertation. 

 

2.1. GEOTECHNICAL PROPERTIES OF OIL SANDS 

The Alberta Oil Sands is a composite material made up of an intimate mixture of 

bitumen, water, quartz sand, and clays.  Alberta’s oil sands are located in three major 

areas (Athabasca, Cold Lake and Peace River) that underlie about 142,200 km2 of land, 

as shown in Figure 2.1 [38]. These deposits present a major source of energy for North 

America. The oil is characterized by a highly viscous bitumen, which is mostly found in 

the arenaceous Cretaceous Formations in the Athabasca area [39]. The depth of 

overburden above the oil-bearing layer varies from 0 m to 650 m [38]. Depending on the 

depth of overburden, two extraction methods are employed: surface mining and in situ 

thermal recovery. Surface mining operations are generally limited to areas where the 

overburden thickness is 75 m or less (NEB, 2004). In the surface mining method, ultra-

class electric rope shovels dig into the oil sand formation and dump it into trucks. The 

trucks then transport the sand to a crusher that breaks up the oil sands. Alternatively, the 

in situ thermal recovery method is employed where the overburden is more than 75 m. 

According to Butler and Yee [40] Wong, Polikar [14], Butler and Yee [41], Fan, Liu [42], 

the in situ thermal extraction technique utilizes steam injection through vertical or 

horizontal wells, such as Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam 

Stimulation (CSS), among others, to extract the oil. Alberta’s Energy Department 

reported that approximately 4800 km2 of the surface mineable areas are found in the 

Athabasca region. The Athabasca deposit occurs within the McMurray Formation.  

The McMurray Formation comprises a series of continental sediments of Early 

Cretaceous age that rest unconformably on Devonian limestone and dolomite and that are 
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overlain by marine sands and shales of the Clearwater Formation [43], as shown in 

Figure 2.2. The mineral composition in this formation is over 90% quartz with minor 

amounts of potash feldspar, chert, and muscovite [13]. Carrigy [43] performed field and 

laboratory studies to examine the engineering characteristics of the McMurray 

Formation. The study shows that the McMurray Formation is primarily characterized by 

random interbedding of uncemented coarse-grained and fine-grained tar sand, silt, and 

poorly compacted clay. The formation is grouped into three-fold divisions, and Carrigy 

[44] defined these stratigraphic units as Members—Lower, Middle, and Upper Members. 

The Lower Member includes argillaceous deposits, poorly sorted medium- to 

coarse-grained quartzose sandstones (coarser than the Middle and Upper Members), and 

pebble conglomerates deposited in ancient river channels [38, 43]. The maximum 

thickness of the member occurs in the Bitumount basin, which is composed of 75 m of 

water-bearing sand overlain by 15 m of shale and coal [45].  Carrigy [46] described in 

some detail the various lithologies of the strata found in the McMurray Formation. 

Carrigy’s study found that depositional environments, formed as a consequence of an 

extensive marine transgression in the early Cretaceous, are the observable lithologic 

features of the Athabasca Oil Sands. The McMurray Formation was deposited during the 

early part of a sedimentary cycle associated with marine transgression. The lithology of 

the McMurray Formation is made up of lenticular beds of conglomerate and coarse-

grained sands at the base and horizontal beds of laminated silt at the top, as illustrated in 

Figure 2.3. 

The Middle Member is made up of fine-grained, well-sorted quartzose sands that 

are characterized by small-scale cross bedding that ranges from 0.1 m to 0.3 m. The 

bitumen content of the oil sand material in this layer is the richest and is characteristic of 

the middle layer of the McMurray Formation [38]. The Upper Member has a maximum 

thickness of 30 m and consists of silt, very fine-grained sands, and thinly bedded, 

horizontal micaceous sands. The development of a comprehensive constitutive model of 

oil sands and related strata requires an understanding of in-situ compositions, shapes, and 

orientations of grain particles and structures. Kosar [47] indicates that the properties of 

the McMurray Formation in the Athabasca Deposit are complex and highly variable, and 

these properties are the focus of this research.  
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Figure 2.1. Location of Alberta’s Oil Sands [1] 

 

 

2.1.1. Microstructural Characteristics of Oil Sands.  Dusseault [38] and 

Mossop [48] defined the high-grade oil sand material of the Athabasca Deposit as 

consisting of predominately fine- to medium-grained and uniformly graded quartz sands. 

Additionally, the Athabasca Oil sands are said to be water-wet, with a significant amount  

of viscous interstitial bitumen filling the pore spaces [38].  
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Figure 2.2. Schematic SW-NE Cross Section of the Alberta Foreland Basin [1] 

 

 

The Athabasca Oil Sands consists of approximately 95% quartz, 2% to 3% 

feldspar grains, 2% to 3% mica and clay minerals, and small traces of other minerals 

[48]. Also, the Athabasca Oil Sands are composed of a densely interlocked grain fabric 

that exhibits a large number of concavo-convex and long contacts [9, 48]. This 

interpenetrative structure is responsible for both the low void ratios and high shear 

strength. Figure 2.4 reveals the unique structure of the material. The interpenetrative (or 

interlocked) contacts are caused by diagenetic processes (dissolution and redeposition of 

quartz at the grain boundaries). This leads to a porosity of about 35% by volume. The 

dense structure corresponds with a mixture made up of approximately 82% minerals by 

weight and with the remaining 18% distributed between water and bitumen [13]. 

Typically, the bitumen content varies between 6-18% by weight. Takamura [13] reported 

that the highest grade oil sands are measured to be about 18% by weight (90% of pore 

volume), with water saturations of about 2% by weight (10% of pore volume). Several 

authors have studied the microstructure of Athabasca Oil Sands [13, 15, 48-51]. The 

presence of the connate water layer and bitumen distribution within the void spaces of 

this microstructure has been the subject of continued debate over the last four decades. 
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Figure 2.3. Stratigraphy of the Athabasca Oil Sands [39]  

 

 

Cottrell [50] was the first to propose a schematic structural model for oil sand 

material regarding the mutual arrangement of particles and the distribution of water and 

bitumen in the voids. In his model, each quartz grain was assumed to be surrounded by a 

uniform film of water. This water layer contains suspended fine clay minerals. The layer 

is further encased by the bitumen; thus, the bitumen does not make direct contact with 

particles, as shown in Figure 2.4(a). 
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(b) (a) 

  

  

Figure 2.4. Microstructure Model of Athabasca Oil Sands: (a) Sketch of a Model 

Proposed by [50], (b) Refined Model by [52], (c) In Situ Structure of Oil-Rich Quartzose 

Oil Sand [49], and (d) Refined Structural Model [13] 

 

 

Takamura [13], Dusseault [38], Mossop [52] and Dusseault and Morgenstern [39] 

all agreed on the composition of oil sand material as proposed by Cottrell [50], but they 

reported a refined model. Dusseault [38], Mossop [52], and Dusseault and Morgenstern 

[39] postulated that the quartz grains are all in direct contact with each other and that the 

clay fines adhere directly to the grain surface, rather than being suspended in the water 

layer [Figure 2.4 (b) and (c)] as in Cottrell’s model. However, all three models are 

applicable only to high-grade oil and are also limited by the assumption of uniform 

(c) (d) 
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thickness of water layer. A more refined model has been proposed by Takamura [13] to 

address the limitations of Cottrell’s, Mossop’s, and Dusseault’s model. 

The refined structural model developed by Takamura [13], as shown in Figure 2.4 

(d), agrees with the basic models. However, the concept of irreducible saturation of the 

quartz grains was introduced to quantitatively explain the amount of connate water 

present and to predict the thickness of the water layer surrounding the grains. The water 

phase in the mixture appears in three configurations: as pendular rings at the contact 

points between the quartz grains, as a thin film of water that covers the grain surface, and 

as water retained in the fine clusters. The pendular rings cover approximately 30% of the 

grain surface, and the remaining 70% is covered by a thin film of water, which connects 

the pendular rings. The thickness of this thin water layer ranges from 10 nm to 15 nm.  

Doan, Delage [53] further investigated the microstructure of oil sand material 

from the estuarine Middle McMurray Formation in order to test the important hypothesis 

of the presence of 10–15 nm thin layer of connate water postulated by Takamura [13], 

Czarnecki, Radoev [15], Dusseault and Morgenstern [49]. The authors used a high-

resolution 3-D X-ray microtomography (µCT) and cryo-scanning electron microscopy 

(CryoSEM) to better understand and provide a detailed description of the constituent 

mixture. The results of their study found no evidence of the presence of a thin layer of 

water between grains and bitumen. This observation departs from the existing structural 

models of Takamura [13], Cottrell [50], Mossop [52] that reported the Athabasca Oil 

Sands as a water-wet1 material. 

The microstructural models of oil sands are important to this study in so far as 

they provide detailed exhibitions of constituent micromechanics that govern the overall 

mechanical behavior of the material. They are relevant because the development of a 

realistic constitutive model is defined by the interaction between the different phases. 

Additionally, because of the heterogeneous multiphase structure of oil sand material, 

microstructural models are needed to simulate the complex behavior of this composite 

material based on micromechanical formulation. This behavior is largely governed by 

                                                 

1 This means the bitumen does not make direct contact with the quartz grains. Other oil sands deposit in the 

World (e.g. Utah, New Mexico) are classified as oil-wet. That is, the bitumen makes direct contact with the 

quartz grains. 
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properties of quartz grains (shape, size distribution, and stiffness), the fabric of quartz 

grains (tangential, straight, and concavo-convex contacts), properties of bitumen 

(stiffness), volume ratios of constituents, and the bitumen-quartz and quartz-quartz 

interactions. Also, knowledge of the microstructure is helpful when modeling the 

anisotropic behavior of the material and determining the essential physical parameters to 

include in the numerical model. Therefore, the microstructure is important in the quest to 

accurately model the oil sand mechanical behavior under dynamic loading when using 

the DEM technique.  

2.1.2. Physical Properties, Fabric, and Shear Strength of Oil Sands.   The two 

dominant physical characteristics of oil sand are the quartzose mineralogy and the large 

quantities of interstitial bitumen [49]. Table 2.1 is a summary of some major physical 

properties of the McMurray Formation. The in-situ quartz grain packing is such that the 

porosity is estimated to be about 35% by volume [13]. Unlike dense sands, which exhibit 

mainly tangential grain-to-grain contacts, the Athabasca Oil Sands grain fabric shows 

long and concavo-convex contacts (arrows) with considerable surface rugosity. A 2-D 

schematic diagram of the fabric of oil sand is presented in Figure 2.5.  

Several studies have shown that mechanical behavior (such as dilatancy) of soil is 

not only determined by density or void ratio [54]; the structure, or fabric, of the 

aggregates, is an important feature that also affects the mechanical behavior of soil [55]. 

Consequently, understanding the detailed morphological and physical properties of 

granular particles and their orientation are important in the modeling of oil sands when 

using the DEM. Oda [55] postulated two major characteristics of soil fabric: (i) the 

orientation of an individual particle and (ii) the position of the particle and its contact 

interactions to other particles (packing). The orientation of individual particles can be 

characterized by the spatial distribution of the long axes of the particles, whereas the 

contact interaction is characterized by the distribution of the contact normals. Brewer 

[56] defined the term “fabric” as a representation of the spatial arrangement of solid 

particles and associated voids. Touhidi-Baghini [54] qualitatively and quantitatively 

characterized the fabric of an oil sand image obtained from a scanning electron 

microscope (SEM). The image was analyzed with US National Institutes of Health’s 

(NIH) Image 1.6 digital image analysis software. 
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Table 2.1 Some Major Physical Properties of Athabasca Oil Sands [38] 

Physical 

property 

Description/ range of values 

In situ bulk 

density 

2.11 ±0.06 Mg/m3, coarse-grained sands and well-sorted, fine-

grained sands 

2.21 ±0.06 Mg/m3, fine-grained sands 

2.32 ±0.06 Mg/m3, sandy and clayey silts 

Mineralogy Quartz (90-98%) 

Feldspar (1-5%) 

Muscovite (0-3%) 

Clay minerals (0-4%) 

Bitumen content 8-16%, fine-to-medium-grained sands 

12-16%, coarse-grained sands 

Bitumen 

viscosity (10ºC) 

700 Pa.s 

Grain shape Coarse and medium grained; well-rounded to subangular 

Fine-grained sands and silts; subangular to angular 

 

 
  

(a)        (b) 

Figure 2.5. 2D Fabric of Oil-Free McMurray Formation: (a) SEM Image x 25 [57](b) and 

Schematic Diagram [49] 

 

 

The results of the image analysis showed a clear, preferred particle orientation 

that is parallel to the horizontal plane. Touhidi-Baghini [54] concluded that oil sand 

material exhibits some level of inherent anisotropy that results from the orientation of 

Straight contact 

Tangential 

contact Interpenetrative contact 
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particles. There are three major sources of anisotropy in soils suggested by Nakayama 

and Oda [58]: (i) anisotropic distribution of contact normals, (ii) preferred orientation of 

nonspherical voids, and (iii) preferred orientation of nonspherical particles.  

The first study to examine the strength anisotropy in soils were conducted by 

Casagrande and Carillo [59]. They concluded that inherent and induced anisotropy are 

two classifications of anisotropy most often experienced in soils. Oda, Nemat‐Nasser [60] 

conducted a biaxial compression test on 2D assemblies of rods in order to discuss the 

three sources of anisotropy. They observed that the inherent anisotropy caused by the 

distribution of contact normals and the orientation of nonspherical voids tends to be 

completely altered during the relatively early stage of nonelastic deformation. 

Conversely, the anisotropy caused by the orientation of nonspherical particles remains the 

same at the later stage of deformation. 

Several studies have been conducted to examine the influence of preferred 

particle orientation on the constitutive behavior of soils and oil sands. Oda [55], Arthur 

and Menzies [61], Oda [62] concluded that stress-strain response and strength are 

dependent on the direction of loading and on particle orientation. Touhidi-Baghini [54] 

performed a series of drained triaxial compression tests on vertical and horizontal oil 

sand core samples in order to evaluate the effects of anisotropic fabric on shear strength 

and deformation behavior. The result of the stress-strain and volumetric response at an 

effective confining pressure of 250 kPa is illustrated in Figure 2.7. It shows that the initial 

anisotropic fabric becomes less significant at strains of 6% and over. The shear strength 

is much higher in the vertical sample than in the horizontal, as illustrated in Figure 2.6(a). 

The size and shape of the soil particle have an effect on the engineering response 

of the granular material. Thus, researchers are often interested in the particle or grain 

sizes present in a particular soil as well as the distribution of those sizes. This 

classification is termed particle size distribution (PSD2). The PSD of oil sand is an 

essential physical component for improved understanding of the oil sand deposits when 

                                                 

2 The PSD is defined as the weight percent of particles of different sizes with respect to the total weight of 

all particles 
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using the DEM technique. Additionally, the PSD is an important indicator of the 

characteristics of the McMurray Formation sediments, which is in the scope of this work.  

Babak [63] relates the PSD data to the depositional environment. That is, the 

sandier the facies, the lower the percentage of small-sized grains and the higher the 

percentage of large-sized grains, and vice-versa for muddier facies [63]. For oil sands, 

Baughman [64] relates the PSD to the volume of water and bitumen contained within the 

pore space. Takamura [13], Carrigy [65] postulate that an inverse relationship exists 

between bitumen grade (percentage of bitumen by weight in the oil sands) and fines. 

Several authors including Dusseault and Morgenstern [49], Doan, Delage [53], Touhidi-

Baghini [54], Anochie-Boateng, Tutumluer [66], have employed different measuring 

methods to obtain the PSD for oil sand material, as illustrated in Figure 2.7. 

Dusseault and Morgenstern [49] used sieve analysis to obtain the PSD of 

compacted Athabasca Oil Sand. The curve shows a slightly well-graded soil with 

approximately 25% fines. To investigate the gradation properties in relation to bitumen 

content, Anochie-Boateng, Tutumluer [66] conducted sieve analyses on two oil sand 

samples with different bitumen content (8.5% and 14.5%) to obtain the PSD. The two oil 

sand samples were uniformly graded fine- to medium-grained sands with the smallest to 

largest particles ranging from 0.6 mm to 2.36 mm, and the fines contents (i.e., passing 

No. 200 sieve or 0.075 mm) ranging from 7% to 15%. Laser granulometry analysis has 

recently been used by Doan, Delage [53] to measure the PSD of oil sand and they 

reported that the sand is moderate to well sorted, with a mean grain size ranging from 

0.16 mm to 0.2 mm. The shear strength of Athabasca Oil Sands has been the subject of 

significant study in the last five decades [43, 49, 67-70]. 

Oil sand exhibits considerably high natural strength compared to dense sand. The 

high strength is evidenced by the steep and high slopes; natural slopes along the 

Athabasca and Clearwater Rivers were reported to be 50-55° and up to 70 m high [38]. 

Hardy and Hemstock [67], Brooker [68] and Carrigy [43] were the first to attempt to 

explain the abnormal strength of oil sands. Hardy and Hemstock [67] conducted a series 

of tests on high-quality samples and concluded that remolded oil sands displayed low 

strength. Also, exsolution of dissolved gasses from the interstitial bitumen resulted in 
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sample disturbance (gross fabric disruption), which markedly affected the tests results 

[71]. 

 

 

 

Figure 2.6. Triaxial Compression Test Response of Oil Sand: (a) Stress-Strain and (b) 

Volume Change [54] 

 

 

Carrigy [43] attempted to provide reasons for the oil sands strength data by 

conducting triaxial tests. However, the author failed to give reasons for the high strength 

exhibited by oil sands. Brooker [68] was the first to provide a detailed assessment of 

shear strength. The results of Brooker [68] test indicated that as void ratio decreases, the 

(b) 

(a) 
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shear strength increases. Because of the disturbance of the fabric due to poor oil sand 

handling, all the tests conducted were limited in data quality. This leads to 

underestimation of the natural shear strength of the sample compared to the in-situ data. 

 

 

 

Figure 2.7. Particle Size Distribution Curves of the Athabasca Oil Sand 

 

 

Dusseault [38] conducted a comprehensive laboratory study to explain the 

abnormally high shear strength of the Athabasca Oil Sands. Previous studies  have 

postulated many sources of strength: bitumen viscosity, gas-bitumen-water-mineral 

interfacial tensions, clay-mineral cementation, mineral cementation, and pore pressures 

[8, 67]. These strength hypotheses are inadequate for explaining the unique in-situ oil 

sand behavior.  

Using a series of triaxial and shear-box tests on undisturbed oil sand sample, 

Dusseault [38] provided engineering understanding of the high strength response of the 

material. The results of the study concluded that the strength is due to the diagenetic 

microfabric of the oil sand. This diagenetic process alters the structure of the material and 

creates an interlocking grain fabric. 
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Barnes and Dusseault [70] went further in conducting tests on oil-free samples 

and used both engineering and geology to provide a scientific explanation of the observed 

behavior at the microscale. The authors’ use of oil-free samples obtained from river 

outcrops in the Fort McMurray area allows for the examination of grain surface and 

contact features that are obscured by bitumen in oil-rich samples. They concluded that 

increased grain contact area caused by interlocking grain fabric with many long and 

concavo-convex contacts, as shown in Figure 2.8, causes a decrease in the modulus of 

compressibility and an increase in shearing resistance. Geological factors such as density, 

mineralogy, grain shape and size, and the degree of diagenetic alteration influenced the 

engineering behavior. Barnes and Dusseault [70] and Dusseault [38] have all concluded 

that the abnormal shear strength of oil sand is caused by the diagenetic microfabric. 

The understanding of the physical properties, fabric, and shear strength 

characteristics of oil sands are significant for this particle-based micromechanical 

research. First, understanding the source of the abnormal shear strength is important in 

the modeling and simulation of the oil sand when using the DEM technique. This way, 

the important factors, such as grain fabric, grain shape and size, interlocking contacts, 

and density will be captured in the model. Second, knowing the mechanical and physical 

properties such as the variability in the bulk density, Young’s modulus, void ratio, and 

angles of internal friction are essential in the design of experiments and experimentation. 

Finally, determining grain fabric arrangement will provide an understanding of the 

modeling of the anisotropic behavior of the material.  

 

2.2. MICROSTRUCTURAL AND MICROMECHANICAL MODELING  

       AND SIMULATION OF BITUMINOUS MATERIAL 

Micromechanical models can be used to predict the macroscale material 

properties of a multiphase material based on the properties of individual phases. 

Micromechanical modeling of complex composites like as bituminous and oil sand 

materials can provide useful insight into microstructural material behaviors such as 

aggregate-aggregate contact fabric and stress transmission. Soils generally exhibit both 

elastic (recoverable) and plastic (permanent deformation) behavior under loading. 
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However, bituminous material such as asphalt mixtures and oil sands exhibit viscous 

flow in addition to elastic and plastic behavior under loading. 

 

 

 (a) (b) 

(c) (d) 

 

Figure 2.8. Oil-Free McMurray Formation Showing Grain Contacts and Surface Features 

[70] 

 

Early researchers studied the properties of a bituminous material by using 

physical tests combined with constitutive macromechanical models. These efforts 
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considered the material as elastic, homogeneous, and linear. The internal structure of the 

bituminous material shows discrete grain particles interacting with each other. The 

particles relative positions changes during loading and unloading and the overall 

macromechanical behavior of the material is determined by the interaction between its 

constituents. Thus, a micromechanical model is required to comprehensively simulate the 

heterogeneous, nonlinear, and anisotropic behavior of the material. This section will 

focus on the works that have been done in the area of bituminous material modeling and 

simulation applied to asphalt mixtures by using microstructural and micromechanical 

approaches. The composition and material properties of asphalt mixtures and their 

interface make it a composite material with complicated stress/strain responses similar to 

those of oil sands.  

Within the last two decades, the use of numerical methods to model and simulate 

the behavior of particulate media has gained popularity as a tool for fundamental studies 

[28, 36, 72]. Two numerical methods commonly utilized are the finite element method 

(FEM) and DEM. Numerical approaches using FEM produce some advantages over the 

analytical and experimental approaches [19, 73-76]. Material models developed from 

these methods are either micromechanical or macromechanical in nature. In 

macromechanical approaches, a constitutive model is used to represent the global 

material behavior that considers the material as a continuum. Alternatively, the 

micromechanical approach is based on discretizing the composite microstructure and 

modeling the material properties of its constituents [77].  

FEM is based on continuum mechanics, which lacks the ability to handle large 

strains and discontinuous strain fields. Hence, model slippage between the aggregate 

particles, which has been cited as one of the most important mechanisms resulting in 

permanent deformation or rutting [78], cannot be addressed using FEM. Additionally, the 

continuum-based approach is incapable of handling rutting, movement, and rotation of 

granular particles in the mixture. Such limitations can be addressed by an alternative 

DEM approach.  

In recent past, the use of micromechanical computational methods (DEM) has 

gained prominence for simulating the complex physical properties of particulate 

composite materials. Jensen, Bosscher [79] developed an enhanced DEM model for 
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particulate media in order to study the effect of particle shape and surface roughness on 

the bulk mechanical response. The particle shapes were modeled using a clustering 

approach, where smaller discs were bonded together to act as a single particle. This 

accounted for particle angularity, which is responsible for particle interlocking and 

resistance to rolling. The results of the study concluded that clustered particles undergo 

less rolling and lead to increased shear resistance under loading compared to unclustered 

particles. 

Ng [80] used DEM to study the fabric (microstructure) of granular media after its 

compaction. A 3D specimen of 520 identical ellipsoidal elements were generated with 

varied aspect ratio and particle-particle friction. Both isotropic and 1D compaction tests 

were simulated. The following conclusions were drawn from the study: the coordination 

number increases with an increase in aspect ratio under both loading, and this 

coordination decreases with an increase in particle-particle friction. Kamp and Konietzky 

[81] developed a conceptual 2D DEM model of a stiff clay in order to investigate its 

mechanical behavior under uniaxial loading and  during quasi-static creep tests. The 

stress/strain curves of the creep test showed relatively small amounts of permanent 

deformation, and the deformations were mainly elastic. 

In particulate composite modeling, such as asphalt mixtures, Rothenburg, 

Bogobowicz [82] developed a discrete micromechanical  model of asphalt concrete 

mixture to understand the effect of aggregate interaction on rutting response. The authors 

used simple polygonal shapes to model the aggregate particles. These polygonal shapes 

were considered as elastic discrete elements bounded by a linear viscoelastic binder that 

fills the pore spaces, as illustrated in Figure 2.9. Contacts between aggregates were 

modeled as a series combination of spring and dashpot in both the shear and the normal 

direction. The results of the study show that granular material interactions affect the 

mechanical response of asphalt concrete. Buttlar and Roque [83] used micromechanical 

DE models to evaluate asphalt stiffnesses at low temperatures. Empirical and theoretical 

models were reviewed and evaluated to understand the relationship between the binder 

and mixture stiffness at low temperatures. 
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Figure 2.9. Forces Acting on Aggregate and Binder: (a) Forces Acting on Particles, (b) 

Aggregate-Aggregate Contact Interaction, and (c) Aggregate-Binder Contact Interaction 

[82] 

 

 

The results showed that the micromechanical models are able to predict the 

viscoelastic properties of mastics very well, but the results also underestimate the asphalt 

mixture stiffness at low temperatures. This underestimation is due to the poor 

characterization of binder and aggregate interaction in the asphalt mixtures. To overcome 

the lack of proper characterization, Chang and Meegoda [28] developed a more advanced 

3D DEM model to describe the different types of aggregate-aggregate and asphalt-

aggregate contacts to simulate hot mix asphalt (HMA). Different contact models were 

adapted to simulate the different contact interactions between the various constituents of 

the HMA. Each contact within the HMA is either an aggregate-asphalt-aggregate contact 

or an aggregate-aggregate contact. Several viscoelastic contact elements (i.e., Maxwell, 

Kelvin-Voigt, and Burgers) were considered to simulate the asphalt cement, as shown in 

Figure 2.10. Contact between aggregates was simulated with an elastic spring. The 

Burger element was selected as the best viscoelastic element for modeling asphalt binder 

behavior. Additionally, the mechanical responses compared very well to experimental 

results. 

The microstructural and micromechanical models described above do not predict 

important deformation characteristics such as the dilation behavior under deviatoric 

stresses and anisotropic behavior. The inability to model the aggregate-aggregate contact 

(a) 
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and stress wave transmissions through the aggregate fabric is the primary reason for these 

limitations. To overcome these challenges, Cheung, Cocks [84] derived an isolated 

contact model, first developed for analysis of powder compaction, to model the 

deformation behavior of an idealized asphalt mix. Bituminous material is idealized by 

assuming thin films of bitumen separating the rigid particles, as illustrated in Figure 2.11. 

 

 
 

 

  
 

 

Figure 2.10. 3D Micromechanical DEM Model of HMA [28] 

 

The large differences in effective stiffness of the bitumen and aggregates make 

the microstructural modeling of a bituminous material as rigid particles embedded in a 

matrix of voided bitumen. The results of the study indicate that the deformation behavior 
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of the idealized mix is influenced by the distribution of thin films of bitumen, the 

deformation behavior of the constituent bitumen, and the particle arrangement. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11. 2D Schematic Representation of an Idealized Mix [84] 

 

 

Uddin [85] used Aboudi [86] method of cells (MOC), a micromechanical model 

to calculate creep compliance of asphaltic mixes at the microscopic level. Results of a 

viscoelastic characterization of the binder and elastic material of the aggregates at a given 

temperature were used as input. Contacts between aggregates are assumed to be linear 

elastic and described by the elastic constitutive model. The viscoelastic response was 

modeled using a time-stepping algorithm with a Prony series representation to capture the 

time-dependent properties of the material. They concluded that there exists a reasonably 

good match between the predicted and measured modulus of the mix if the proper percent 

of air voids are used. 

Shashidhar, Zhong [87] modeled the mechanical response of aggregate structures 

in asphalt pavement using the DEM. The authors demonstrated that even in the presence 

of asphalt binder, the asphalt concrete behaves as a granular material. Furthermore, 

different volumes of aggregates in the mixture produces different load distributions due 

to corresponding aggregate structures. This leads to stress patterns within the material 

that are markedly different from patterns generated from continuum-based models. 



 

 

34 

Recent advancement in computational efficiency has led to significant modeling 

effort in capturing complex microstructure of bituminous material with great success. 

Imaging algorithms are now utilized to create a more representative aggregate geometry 

than the early idealized simplified geometry. Utilizing imaging technology, Kose, Guler 

[88] captured the microscale structure of asphalt concrete (AC) mixtures to understand 

the distribution of binder and air voids in selected HMA. Images of a thin cross section of 

the specimen were processed and converted into finite element mesh. ABAQUS was used 

to numerically solve the digital sample under load to determine the strain and stress 

distribution within the asphalt and binder domain. The results show that incorporating air 

voids in the analysis reduces the strain in the mastic.  

Employing a similar image processing approach, Papagiannakis, Abbas [32] and 

Zelelew and Papagiannakis [89] captured the complex asphalt concrete microstructure 

and applied FEM and DEM techniques to model its stress-strain behavior in the time 

domain. Zelelew and Papagiannakis [89] used DEM to model the creep behavior of 

asphalt concretes under uniaxial loading. The microstructure of asphalt concretes was 

captured from an X-ray CT image of a thin vertical section. Burgers viscoelastic model 

was fitted to dynamic shear rheometer (DSR) mastic data to characterize the viscoelastic 

properties of asphalt binders and mastic. The results from the DEM simulation matched 

the experimental uniaxial creep data very well. Other researchers have used these 

imaging techniques to accurately capture the actual microstructure of asphalt mixtures 

[90-93]. 

Buttlar and You [33] developed the microfabric discrete element method 

(MDEM), which is an extension of DEM to model the interaction among the different 

phases of an HMA. The MDEM is capable of modeling complex particle geometric 

shapes by bonding very small discrete discs together to form a cluster, as shown in Figure 

2.12. A 2D micromechanical model was built in PFC2D to implement the MDEM 

technique. The linear force-displacement contact behavior with bonding effect was 

installed at the contacts. An indirect tension test (IDT) was performed on the digital 

sample to predict creep strains of the asphalt concrete.  

In a similar work, You and Buttlar [94] extended the work of Buttlar and You 

[33] to simulate uniaxial compression tests of coarse-grained mixtures and mastics to 
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predict its viscoelastic properties. Dynamic modulus from the DEM model of the coarse-

grained mixtures matched the experimental test results very well but differed in the case 

of the mastic mixtures. 

 

 

   

 

Figure 2.12. MDEM Model of HMA: (a) Scanned Image of a Stone Mastic Mixture, (b) 

Assembly of Discrete Element with Hexagonal Packing, and (c) Digital Sample of HMA  

 

 

Collop, McDowell [95] developed a highly idealized 3D DEM model of a 

bituminous mixture to study the effects of particle size and contact stiffness on the 

macroscopic material. Simulations were carried out using uniaxial compressive creep 

tests. The time-dependent response was modeled with a simple elastic-visco-plastic 

Burgers model. They found that a linear relationship exists between the bulk modulus of 

the idealized mixture and the normal contact stiffness.  

You and Buttlar [96] extended You and Buttlar [94] to predict complex modulus 

of AC mixtures under different testing temperatures and loading frequencies. The 

complex modulus of the aggregate and mastic was predicted using a 2D MDEM model. 

The results show that the prediction of mixture moduli was reasonable at lower 

temperatures when compared to measured values. However, at higher temperatures, the 

prediction was found to be between lower and upper theoretical bounds, but low 

compared to measured values. 

Abbas, Masad [31] used DEM and the lower-bound Hashin model (a 

micromechanics-based model) to simulate the dynamic mechanical behavior of asphalt 
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mastics. Dynamic modulus and phase angle of the mastic were obtained using the 

dynamic shear rheometer (DSR) and compared to the DEM and the micromechanics-

based model predictions. Their simulation results indicate that the predicted dynamic 

shear modulus of the mastic was highly dependent on the dynamic shear modulus of the 

binder, which matched the experimental data.  

Collop, McDowell [97] and Collop, McDowell [98] have investigated the use of 

DEM to simulate the mechanical behavior of a highly idealized bituminous mixture under 

uniaxial and triaxial compressive creep tests. The study showed that the idealized mixture 

tends to dilate as the ratio of compressive to tensile contact stiffness increases as a 

function of time. Similarily, Zelelew, Papagiannakis [99] simulated an idealized asphalt 

mixture under biaxial compression to study its dilation behavior. A user-defined 

viscoplastic contact model was developed and implemented in PFC2D. The study 

modeled the aggregates as elastic materials and the asphalt binder as a viscoelastic 

cementing material. The results  found that the volumetric deformation showed a 

transition from contraction to dilation. 

To date, numerous authors [30, 100-107] continue to use DEM techniques to 

provide very useful insights into the micromechanical and microstructural response of the 

bituminous material. In oil sand modeling and simulation, little or no work has been done 

to formulate its micromechanical and microstructural behavior based on DEM. This is the 

first attempt at comprehensively modeling and simulating the oil sands material as a four-

phase particulate composite media. Recently, Gbadam and Frimpong [108] developed a 

comprehensive microstructural and micromechanical model of 14.5% bitumen content oil 

sand to examine its viscoelastic behavior under quasi-static loading.  A 2D DEM model 

with two temperatures and three loading frequencies subjected to a constant amplitude 

compression tests was simulated. The results of the study showed good agreement 

between the model prediction and the measured dynamic modulus and phase angle. 

Previous studies on oil sands mainly focused on macroscopic laboratory experiments [14, 

66, 109-113] and numerical formulation and implementation [114-117]. 

Tannant and Wang [115] conducted a numerical (DEM) and experimental study 

of wedge penetration into compacted oil sand to measure the force required to push the 

steel wedge into oil sand formations. The force computed using the numerical model was 
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about four to six times higher than that measured experimentally. This discrepancy 

between the model and laboratory test may be due to simplification of the DEM model. 

 

2.3. THEORY OF LINEAR VISCOELASTICITY 

The section reviews the theory of linear viscoelasticity (LVE), which is used to 

characterize the rheological behavior of the bitumen and the mixture. Schapery [118] 

defined a viscoelastic material as any material that exhibits a significant amount of time-

dependent stress-strain behavior. Two major types of experiments are performed to 

characterize viscoelastic materials: transient and dynamic. Transient testing involves 

deforming the material and monitoring the response with time. Creep and stress 

relaxation are  two dominant transient tests mostly performed on the bituminous material.  

In creep experiments, the material is loaded, and the change of deformation is 

recorded with time. Stress-relaxation, on the other hand, is when the material is 

deformed, and the force required to maintain the deformation at a constant value is 

measured with time. Material response to constant stress loading is illustrated in Figure 

2.13. Figure 2.13 illustrates that when an elastic material is loaded in creep, it 

immediately deforms to a constant strain [Figure 2.13(a)], and then immediately returns 

to its initial shape on unloading. Viscous material, on the other hand, will deform at a 

constant rate when the load is applied and will continue to deform at that rate until 

unloading, at which point there is no further recovery. Viscoelastic material, as shown in 

Figure 2.13 (d), has both elastic and viscous components of response. 

When loaded in creep, there is an immediate deformation, corresponding to the 

elastic response, followed by a gradual time-dependent deformation or creep. Upon 

removing the load at t1, the viscous flow ceases, and none of this deformation is 

recovered. Once the load is removed, the delayed elastic deformation is slowly recovered 

at a decreasing rate, as shown in part (d). The unrecoverable deformation is called 

viscous deformation. The dynamic experiment is one in which the applied stress or strain 

is varied sinusoidally with time, and the response is measured at different frequencies of 

deformation. During transient and dynamic testing, viscoelastic materials experience 

increased deformation under creep, stress relaxation under constant strain, and the 

distinct lag between stresses and strains under dynamic loading. 
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Figure 2.13. Idealized Response of: (b) Elastic; (c) Viscous; and (d) Viscoelastic Material 

When Subjected to (a) Constant Stress 

 

 

The theory of linear viscoelasticity (LVE) is based on the Boltzmann [119] 

superposition principle, which is one of the most widely used formulations for 

viscoelastic material modeling [118]. Linear viscoelastic behavior must satisfy two 

conditions: proportionality and superposition. These are expressed mathematically in 

Equation (1) and (2), respectively [118]: 
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                                                   a b a aR I I R I R I                                                 (2) 

 

The stress-strain behavior of these viscoelastic materials can be characterized by 

the total strain or stress at time t in the form of a hereditary integral, given in Equation (3) 

and (4) [120, 121]: 

 

     
0

t

t Q t u u du                                                  (3) 

 

     
0

 =
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t U t u u du                                                  (4) 

 

Equation (3) and (4) are the fundamental constitutive relations for linear 

viscoelastic theory. The equation indicates that stress/strain at time t (present) under an 

arbitrary stress/strain history is the linear sum of all stresses/strains applied at time t-1 

(historic) multiplied by a weighting function Q(t) corresponding to the time intervals (t-

u). 

 

2.4. RATIONALE FOR PHD RESEARCH 

Oil sands are a major source of energy for North America. Previous and current 

research studies have mainly focused on laboratory experiments, which traditionally 

predict the stress/strain response at the macro-scale to examine the abnormally high shear 

strength. Few numerical studies have been conducted on oil sand material using FEM. 

The FEM technique is based on a continuum mechanics approach, which models the oil 

sand as a continuous single-phase material, and thus, is limited in capturing the 

interaction between multiple phases. In this approach, the relative movements and 

rotations of the particles inside the material are not considered. DEM presents an 

alternative to the FEM when modeling mechanical behavior of granular and bituminous 

materials. The DEM approach to granular materials uses the explicit finite difference 

numerical technique to solve for particle-particle interactions at the micro-level, which is 

particularly appropriate for investigating how changes at the micro-level influence the 

macro behavior of the material.  
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In bituminous material modeling (e.g., asphalt mixtures), Chang and Meegoda 

[28] developed a 3D DEM model to simulate an HMA, taking into consideration the 

different types of aggregate-aggregate and asphalt-aggregate interactions. Their model 

showed great promise for bituminous material simulation in providing a microstructural 

and micromechanical response that would not be possible with traditional laboratory 

experiments or FEM. This research study focuses on providing understanding into oil 

sands material microstructural and micromechanical behavior under dynamic and static 

loading. This is the first attempt at comprehensively modeling the oil sand material as a 

four-phase, nonlinear, nonhomogeneous, and anisotropic bituminous material using 

particle-based physics, DEM. The research will develop relevant formulation and 

constitutive models of oil sands as a four-phase material with the corresponding 

numerical solution using the DEM algorithm from the PFC software package. 

In the past, the closest attempt at oil sands micromechanical modeling using the 

DEM technique was the work by Tannant and Wang [115] and Tannant and Wang [122]. 

In their work, a simplified, idealized parallel-bonded contact model was considered for 

the bitumen, and the quartz aggregates were modeled as elastic disc particles. Tannant 

and Wang [115] ignored the time- and temperature-dependent behavior of the material. 

Additionally, the water and void air were not included in their model. This simplification 

may be the cause of the numerical results not matching the experimental data of wedge 

penetration into oil sands. A new micromechanical model based on fundamental and 

applied science is needed to provide understanding into oil sand materials behavior under 

loading. This is the first attempt to study the micromechanical and microstructural 

behavior of oil sands using the DEM technique and will create a frontier in this area by 

modeling the oil sands as a four-phase bituminous granular material. Furthermore, this 

research will provide useful insights into shovel crawler-oil sands interactions during 

formation excavation. This PhD research study will provide useful insights, through 

contact mechanics formulation for the modeling of oil sands. The study will provide a 

complete understanding of oil sands microscale behavior during loading. Also, the study 

will provide a basis for developing a system-level multibody simulation (MBS) of ERS in 

formation excavation. The results could also be used to develop robust soil-tool 

interaction models to support multibody machine simulations. These models will be 
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based on analytical models for soil interaction and DEM techniques for general soil 

interactions. Additionally, the results will lead to complete DEM-FEM-MBS 

technologies for evaluating new equipment product design and development. 

 

2.5. SUMMARY 

All the literature relevant to this research has been reviewed and summarized in 

this section. The first section reviewed various microstructural models of the oil sand 

formation. The Athabasca Oil Sands is found in two geological formations: the 

McMurray, which contains over 95% of the oil reserves and Clearwater Formation, the 

lower, arenaceous portion [44]. Also, the Athabasca Oil Sands are fine- to coarse-grained, 

water-wet and orthoquartzitic sands with significant volumes of viscous interstitial 

bitumen. The mineral composition of the oil sands is over 90% quartz with minor 

amounts of potash feldspar, chert and muscovite; and clay minerals, which are 

predominately kaolinite [13]. Cottrell [50] was the first to propose a schematic structural 

model for oil sand material regarding the mutual arrangement of particles and distribution 

of water and bitumen in the voids. In his model, each quartz grain was assumed to be 

surrounded by a uniform film of water. The water layer contains suspended fine clay 

minerals. The layer is further encased by the bitumen; thus, the bitumen does not make 

direct contact with the particles. Takamura [13], Dusseault [38], Mossop [52] and 

Dusseault and Morgenstern [39] all agreed on the composition of oil sand material as 

proposed by Cottrell [50] but reported a refined model. A more refined model has been 

proposed by Takamura [13] to address the limitations of Cottrell’s, Mossop’s, and 

Dusseault’s models. The model as proposed by Takamura [13] is adapted for this work. 

This section also reviews fabric and shear strength characteristics of the oil sands. Unlike 

dense sands, which exhibit mainly tangential grain-to-grain contacts, the oil sands grain 

fabric shows long and concavo-convex contacts with considerable surface rugosity. The 

structure or fabric of the aggregates is an important feature that also affects the 

mechanical behavior of soil [55]. Consequently, understanding the detailed 

morphological and physical properties of granular particles and their orientation is 

important in the modeling of oil sand material using the DEM. Oil sands exhibit inherent 

anisotropy caused by depositional processes. The DEM model for this work would 
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consider anisotropy, nonhomogeneous, and nonlinear input parameters. The theory of 

linear viscoelastic (LVE) behavior, which is based on the Boltzmann [119] superposition 

principle, was briefly reviewed in this section. 

Traditionally, oil sands research has focused on obtaining a stress-strain model to 

describe shear strength and elastic behavior using laboratory [14, 49, 111, 123] and/or 

FEM [19, 116, 117] and mass-spring-dashpot system with two degrees of freedom [124]. 

The literature has shown that both FEM and DEM have been used for modeling 

bituminous material with some success. FEM, based on the continuum mechanics 

approach, generally has the ability to handle the stress/strain distribution within the 

composite more quantitatively than the DEM. However, DEM has the advantage to 

model discrete particles and large displacements, where the dynamic equations of motion 

are solved for the particles. 

In summary, the analysis of the internal structure of oil sand material by means of 

a discrete element method is powerful and has great promise. Although it is 

computationally expensive, it can serve to conceptually provide understanding into 

microscale deformation mechanisms inside the composite and their relation to the 

bitumen viscoelastic properties. DEM has the ability to model the complex internal 

microstructure, and along with realistic viscoelastic contact models, simulate the time and 

temperature dependence of the oil sand behavior. 
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3. CHARACTERIZATION OF THE VISCOELASTIC PROPERTIES OF OIL 

SANDS MATERIAL 

This section contains the characterization of the viscoelastic rheological 

properties of the multiphase oil sand material. The viscoelastic rheological properties of 

oil sands under load are time- and temperature-dependent. The overall mechanical 

response of the material depends on these viscoelastic properties. Several authors, such as 

Chang and Meegoda [28], Liu, Dai [30], Abbas, Masad [31], Gbadam and Frimpong 

[108], and Ren and Sun [125], have conducted studies to characterize the viscoelastic 

response of bituminous material using the Maxwell, Kelvin—Voight, and Burgers 

models. Defining appropriate contact models for the different phase-phase interactions 

requires rheological testing such as frequency sweep shear tests. A nonlinear optimization 

technique is used to fit experimental data from a dynamic shear rheometer (DSR) testing 

to the viscoelastic model. The DSR is an experimental tool used to determine the elastic, 

viscous, and viscoelastic properties of bitumen over a wide range of frequencies and 

temperature. A master curve is constructed for a wide range of loading frequencies at 

different temperatures to characterize the effect of temperature. Mathematical 

formulations and implementations of the viscoelastic contact model parameters in DEM 

are briefly discussed.  

 

3.1. OIL SANDS VISCOELASTIC BEHAVIOR 

Oil sands exhibit time- and temperature-dependent mechanical behavior under 

any deforming force, and its properties depend on temperature, loading frequency, and 

degree of strain. This behavior implies that oil sands exhibit both viscous and elastic 

behavior under deformation. When granular media is stressed/strained, rearrangement of 

the particles occurs within the material. On unloading, the material partly returns to its 

original shape with some permanent deformation (or set) due to plastic deformation or 

particle slippage.  

3.1.1. Burgers’ Viscoelastic Rheological Model. Rheological modeling of 

viscoelastic material consists of expressing the behavior of the material in terms of a 

combination of simple mechanistic elements.  
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The basic mechanical elements that are widely used are the spring, dashpot, and 

friction slider. The constitutive relation of the spring, dashpot, and slider are respectively 

given in Equations (6)—(8): 

 

                                                           s sE                                                                  (6) 

 

d b                                                                  (7) 
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Equation (6) is derived from Hooke’s law, while Equation (7) is derived from 

Newton’s viscous law. Different combinations of springs and dashpots, in series or 

parallel connection, are built to model the bitumen comprehensively. 

The three most commonly used viscoelastic models for modeling bituminous 

materials are the Maxwell, Kelvin—Voigt, and Burgers elements [34]. The Maxwell 

element is a two-component model consisting of a linear spring and a viscous dashpot in 

series, the Kelvin—Voigt model is a two-component model consisting of a linear spring 

and viscous dashpot in parallel, and the Burgers element is a four-component model 

made up of a Maxwell model in series with a Kelvin—Voigt model, as illustrated in 

Figure 3.1 (a). The Maxwell model is most suitable for simulating stress relaxation in 

which a constant strain is applied and the stress is monitored, whereas the Kelvin—Voigt 

model is most applicable to creep loading. Figure 3.1 (b) illustrates the mechanical 

response of an asphalt binder under constant stress tests, where the Burgers model can 

simulate instantaneous strain, creep, elastic strain, delayed elastic strain, and irreversible 

creep. In Figure 3.1 (c), for a constant amplitude sinusoidal stress, the resulting Burgers 

model response is also sinusoidal in shape with a phase lag of φ. Selecting the most 

suitable elements for a material involves a thorough analysis of the behavior of elements. 

Chang [34], Dey and Basudhar [126] conducted an in-depth analysis of the 

applicability of Maxwell’s, Kelvin-Voigt’s,  
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(b) 

 

(c) 

Figure 3.1. Rheological Model of Four-Component: (a) Burgers’ Element, (b) Strain 

Response of Burgers’ Element under Constant Stress, and (c) Burger’s Element Strain 

Response under Constant Amplitude Dynamic Stress Loading 

 

and Burgers models to select the proper model for simulating an asphalt binder under 

sinusoidal loads. Based on mechanical responses and curve fitting results, the Burgers 
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linear viscoelastic model was the best element for modeling asphalt binder behavior [28]. 

Many researchers have adapted the Burger’s linear viscoelastic element to represent the 

mechanical behavior of bituminous material [28, 30, 77, 98, 100, 101, 127]. 

 Some of the reasons for the wide application of the Burgers model for modeling 

bituminous materials are (i) the model comprised response elements for characterizing 

elastic, viscous, and viscoelastic components of the material response, and (ii) the model 

is stable and computationally efficient. However,  because of its simplicity for simulating 

contact between elements in DEM, it underpredicts model characterization [77]. 

Additionally, the model is only applicable to a narrow frequency range. Because of these 

drawbacks, this study will use a more comprehensive form of the Burgers model, the 

generalized Burgers model, to simulate the rheological behavior of oil sands bitumen and 

the mixture.  

3.1.2. Constitutive Behavior of the Generalized Burgers Model. This model 

contains a series of Kelvin—Voigt models in series with a Maxwell model, as illustrated 

in Figure 3.2. The constitutive relation of the generalized Burgers model is derived from 

Equation (6) and (7). The total deformation of the generalized Burgers model is the sum 

of the deformation of the Kelvin-Voigt models and the Maxwell model, given by 

Equation (9). 
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Differentiating Equation (9) twice leads to Equation (10) and (11): 
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Figure 3.2. Generalized Burgers Model 

 

 

The total stress in the Kelvin-Voigt section is given in Equation (12), and 

Equation (13) is the first derivative: 
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The strain rate in the Maxwell section is given in Equation (14), and its first 

derivative is in Equation (15): 
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Similarly, multiplying Equation (15) by  
1

n

ki

i

C


  and then adding the result to 

Equation (16) obtains Equation (17): 
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The series combination of elements, as shown in Figure 3.3, leads to Equations 

(18)–(20). 

 

                                                
1

n

ki m

i

  


                                                                 (18) 

 

                                               
1

n

ki m

i

  


                                                                     (19) 

 

                                               
n

ki m

i

                                                                      (20) 

 

Substituting Equations (18)–(20) into Equation (17) and then simplifying obtains 

Equation (21): 
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Equation (21) is the general constitutive relation for the generalized Burgers model. 

3.1.2.1 Response of generalized Burgers model to dynamic loading The 

response of viscoelastic materials (i.e., generalized Burgers element) subjected to 

sinusoidal loading is developed in this section. Creep and stress relaxation, which are two 

common transient tests normally performed to obtain complete rheological properties of 
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viscoelastic material, require a wide range of time scale to conduct the test. This is 

computationally expensive and was not implemented in this study. Alternatively, 

dynamic loading tests are implemented to provide rheological information corresponding 

to short times. The response of the generalized Burgers model to dynamic load is 

characterized by complex modulus  E  (ratio of dynamic stress to the dynamic strain)  

and phase angle ẟ. Considering the application of dynamic stress given in Equation (22) 

to the generalized Burgers model will also result in a dynamic strain as given in Equation 

(23): 
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Taking the first and second derivatives of Equations (22) and (23) and substituting the 

result into Equation (21) leads to Equation (24) (the complex compliance): 
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Equation (24) can be rewritten into a complex number notation with real and imaginary 

components as given in Equation (25)–(27): 
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Equations (26) and (27) are also referred to as storage compliance and loss 

compliance, respectively. The square root of the sum of squares of Equations (26) and 

(27) is termed as dynamic compliance, given by Equation (28): 
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The tangent inverse of the ratio of loss compliance to storage compliance is 

termed as phase angle ẟ and is given by Equation (29). The phase angle is a measure of 

the viscous or elastic properties of the material. For purely elastic materials, the phase 

angle is zero whereas, for purely viscous materials, the phase angle is 90°: 
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The dynamic modulus E  is the reciprocal of the dynamic compliance D , 

which is given in Equation (30):  

 

              
2 2

2 2 2 2 2 2
1 1

1

1 1n n
ki ki

i im ki ki m ki ki

E

K C

K K C C K C



  



 



      
        

       
 

.             (30) 

 

Dynamic modulus is one of the fundamental engineering properties (stiffness 

parameter) used mainly to characterize the viscoelastic behavior of bituminous material 

under varying temperature and loading frequencies. 
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3.1.2.2 Response of generalized Burgers model to shear loading The response 

of bitumen under dynamic shear stresses/strains loading is characterized by the dynamic 

shear modulus,  G  , and the phase angle,  [128]. The derivation of the Burgers 

model response for this case is similar to that in the previous Equations (22)–(30). The 

dynamic shear modulus and phase angle are presented in Equations (31)–(37) [128]: 
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Equations (31)–(37) will be fitted to experimental data of bitumen due to dynamic 

shear loading. The parameters of the fitting process are the Burgers element parameters at 

the macroscale level. Once the macroscopic parameters are determined, the microscopic 
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input data are determined using a set of equations formulated by [30]. The next section 

will describe these steps of model fitting. 

 

3.2. DETERMINATION OF BURGERS MODEL INPUT PARAMETERS 

Various methods for determining the four Burgers macroscopic element 

parameters are reported in the literature [30, 129-132]. Laboratory experiments are 

conducted on bitumen at various temperatures and frequencies to determine its dynamic 

shear modulus and phase angle. To model the effect of temperature on the mechanical 

response of the oil sands, dynamic shear measurements obtained at the various 

temperatures were shifted to a reference to construct a master curve. The procedure used 

for the material characterization is illustrated by the flowchart in Figure 3.3. 

After experimental DSR testing of bitumen at different temperatures and loading 

frequencies, Equations (38)–(44) are used to calculate the complex dynamic shear 

modulus, phase angle, and loss and storage moduli. Plot graphs of the loss and storage 

moduli at each testing temperature and over the range of loading frequency. A master 

curve is then constructed from the calculated test data at different reference temperatures 

for both loss and storage moduli. The WLF equation is fitted to the master curve to obtain 

the bitumen universal constants C1 and C2. From the master curve, new loss and storage 

moduli are extracted and used for the parameter optimization (curve fitting). The fitting 

procedure was based on minimizing an objective function that is equal to the sum of 

squares of errors (SSM) in predicting the storage and shear loss moduli over the available 

range of testing frequencies. The parameter is deemed converged if the SSM is less than 

or equal to four.  

3.2.1. Experimental Data and Analysis. Experimental work was conducted by 

Behzadfar and Hatzikiriakos [133] on oil sand bitumen with a specific gravity of 0.969 at 

22°C obtained from Athabasca Oil Sands area. The objective of their work was to obtain 

the response of bitumen for various loading frequencies and temperatures. The 

rheological behavior of the bitumen was obtained using the dynamic shear rheometer 

(DSR) under a stress/strain controlled condition.  

The authors measured the loss and storage moduli of bitumen at different 

temperatures, applying frequencies from 0.005 to 500 rad/s.  
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Figure 3.3. Flowchart for Characterizing the Viscoelastic Properties of Oil Sands 
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The measurements of the loss and storage moduli were determined from 

frequency sweep experiments of small amplitude oscillatory shear. The temperature 

range of the experimental testing varied from -30°C to 90°C. The DSR is the most 

commonly used equipment to determine the rheological properties of viscoelastic 

materials. The authors used the Anton Paar MCR501, a stress/strain controlled rheometer 

equipped with the parallel plate and cone  with plate geometries with a diameter of 25 

mm. The testing involved a small sample of bitumen sandwiched between two parallel 

plates at the desired temperature. A sinusoidal torque (shear stress) was applied to the 

upper plate while the lower plate is fixed and the angular rotation (shear strain) is 

measured. The induced strain was also sinusoidal with a time lag because of the viscous 

bitumen deformation. A full description of the test procedures and sample preparations is 

included in the works of Behzadfar [134] and Behzadfar and Hatzikiriakos [133]. The 

measured storage, G , and loss, G , moduli are shown in Figure 3.4. The storage 

modulus corresponds to the elastic component and represents the ability of the bitumen to 

store energy elastically. The loss modulus, on the other hand, corresponds to the viscous 

behavior and its ability to dissipate energy.  

Equation (38) and (39) are the relations used to obtain the maximum shear stress 

and strain from the DSR test: 

 

                                                           max

R

h


                                                               (38) 

 

                                                           max 3

2T

R



 .                                                          (39) 

 

Then, the complex dynamic shear modulus and phase angle are calculated from 

Equations (40) and (41): 

 

                                                     * max

max

G





                                                              (40) 
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                                                             t   .                                                             (41) 

 

 

After combining Equation (40) and (41), the storage and loss moduli at each 

temperature and for each frequency are calculated by Equation (42) and (43):  

 

                                                            * cosG G                                                    (42) 

 

                                                           * sinG G    .                                                (43) 

 

As shown in Figure 3.4(a), the slope of the storage modulus becomes steeper as 

temperature increases, but the opposite is true for loss modulus, in Figure 3.4(b). This 

indicates that at a higher temperature, the bitumen dissipates more energy (viscous 

behavior) than stores elastically and thus behaves as a Newtonian fluid. Conversely, at     

-30°C, the bitumen behaves as elastic material as more energy is stored than dissipated. 

Additionally, as the loading frequency increases, the rate of change of energy loss and 

storage also increases within the temperature range of 0°C to 60°C. However, at the 

extreme high and low temperatures of 90°C and -30°C, the rate of increase in the storage 

modulus is negligible. This observed phenomena makes the bitumen, and eventually the 

oil sands mixture, a thermorheological simple viscoelastic material. 

Using Equation (43) and (44), the dynamic complex modulus and phase angle of 

the bitumen at selected temperatures were computed, as illustrated in Figure 3.5:  

 

                                        
2 2*G G G                                                      (43) 

 

                                           1tan
G

G
   
  

 
.                                                        (44) 

 

The dynamic modulus represents the resistance of the bitumen to deformation, 

while the phase angle is a measure of the elastic or viscous behavior of the bitumen.  
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Figure 3.4. Measured Rheological Properties of Bitumen at Selected Temperatures: (a) 

Storage Modulus and (b) Loss Modulus [133] 

 

(a) 
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As expected, the bitumen behaves as a purely elastic and viscous material at the 

two extreme temperatures of -30°C and 90°C. However, between -30°C and 90°C, the 

bitumen behavior can be considered to be viscoelastic in nature (a combination of both 

elastic and viscous response). It can be concluded that the bitumen reaches a constant 

stiffness at very low temperatures. 

3.2.2. Time-Temperature Superposition Principle . The results of the dynamic 

shear modulus, 
*G , and phase angle,  , [Figure 3.5(a)] of bitumen obtained from the 

dynamic loading test are influenced by temperature and the loading frequency (or 

response time). For oil sand bitumen and the mixture, the effect of temperature will be 

significant. In this section, the effect of temperature on the bitumen response is 

incorporated. Researchers have investigated the effect of temperature on the performance 

of bituminous material [28, 101, 133, 135]. The DSR test conducted by Behzadfar and 

Hatzikiriakos [133] was carried out in a reasonable range of frequencies since conducting 

over long ranges is impractical and time-consuming. However, in a real application, it is 

important to know the response of the material under complex loading and unloading 

over long periods of time/frequencies. Thus, the test data is inadequate to fully 

characterize the viscoelastic behavior of the bitumen and the oil sands mixture at a single 

temperature. With test data obtained at several temperatures, time-temperature 

superposition principle (TTSP) can be used to generate a master curve that covers many 

decades of frequencies. TTSP is an empirical and powerful tool used for describing the 

viscoelastic behavior of linear polymers over a wide range of frequencies by shifting data 

obtained at several temperatures to a common reference temperature [136]. Materials 

whose rheological properties can be shifted either vertically or horizontally to produce a 

continuous smooth curve to study its viscoelastic response are classified as 

thermorheologically simple materials.  

The continuous smooth curve is obtained by shifting vertically the rheological 

parameter of a given temperature to a rference twmperature, 0T . The reference 

temperature can be any of the test temperatures or any chosen temperature within the test 

range. Also, the rheological parameter for the shifting can be any of storage and loss 

moduli, dynamic shear modulus, and phase angle.  
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Figure 3.5. Computed Rheological Properties of Bitumen: (a) Dynamic Shear Modulus 

and (b) Phase Angle 

 

 

 

(a) 
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The amount of shifting to the reference temperature is termed shift factor  Ta . 

The shift factor at the desired reference temperature can be calculated from the William-

Landel-Ferry (WLF) equation developed by Williams, Landel [137], the Arrhenius 

equation  [138], and the Log-polynomial [135]. In this study, the WLF equation given in 

Equation  (45) was used: 

 

                                                  
 

 
1 0

2 0

log T

C T T
a T

C T T


 

 
.                                           (45) 

 

Test results (storage and loss moduli) obtained from the DSR experiments were 

shifted horizontally to a reference temperature to construct the master curves. The 

obtained curve was plotted as a function of reduced/increased frequency. The amount of 

shifting required at each temperature was obtained using Equation (45). Figure 3.6 shows 

the master curve constructed from shifting the loss and storage moduli at the reference 

temperature of 0°C.  

The master curves at other temperatures (-30°C, 10°C, 30°C, 60°C, and 90°C) 

were obtained by calculating new frequencies at desired temperatures, are shown in 

Figures 3.7–3.11. The values of the shift factors ( Ta ) calculated to produce the master 

curves are plotted in Figure 3.12. As illustrated in Figure 3.6 (upper and lower inset), if 

the reference temperature is chosen to be 0°C, then the test data measured at temperature 

< 0°C are shifted to the right (i.e., at higher frequencies) until the ends of adjacent curves 

partially overlap. Similarly, the test data measured at temperature > 0°C are shifted to the 

left (i.e., lower frequencies). 

In the end, the master curve constructed will cover a much larger range of 

frequencies than the original experimental data. The shift factors can now be fitted to one 

of the mathematical models. The WLF equation, given in Equation (45), was selected to 

relate the shift factors to temperature. Illustrated in Figure 3.12 is a plot of the 

experimentally determined shift factors as a function of temperature.. The solid line 

represents the WLF model, while the markers represent the experimentally determined 

shift factors. 
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Figure 3.6. Master Curves of Dynamic Moduli (Storage and Loss) at the Reference 

Temperature of 0°C 

 

 

A good fit is obtained for all the temperatures, and the respective universal 

constants, 1C  and 2C  are the outputs from the fitting process. Once the master curves are 

constructed, the input parameters in the generalized Burgers model can be computed. 

Various methods are reported in the literature for determining the generalized Burgers 

model parameters. Some of these techniques are the collocation method to fit viscoelastic 

data [129], a multi-data method to fit data in Laplace-transform domain [132], a 

generalized inverse formulation [139], a recursive algorithm to avoid negative parameters 

by using only well-defined subsets of the experimental data [140], and nonlinear 

regression in which time constants and the number of terms are all variable [141]. The 

method from Baumgaertel and Winter [141], is the most common approach used for 

determining Burgers model parameters for bituminous material [77, 108, 135]. To fit the 

Burgers model parameters, Papagiannakis, Abbas [32] evaluated several objective 
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functions and found that the objective function proposed by Baumgaertel and Winter 

[141], as given in Equation (46), provided the best fit. 

 

 

Figure 3.7. Master Curve of Bitumen at -30°C 

 

 

Figure 3.8. Master Curve of Bitumen at 10°C 
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Figure 3.9. Master Curve for Bitumen at 30°C 

 

 

 

Figure 3.10. Master Curve for Bitumen at 60ׄ°C 
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Figure 3.11. Master Curve for Bitumen at 90°C 

 

 

This can be cast as a parameter optimization problem, where the design variables 

are the coefficients and the objective is to minimize the sum of squares of errors in 

predicting the storage and shear loss moduli over the available range of testing 

frequencies. Excel Solver and its GRG nonlinear  algorithm based on the generalized 

reduced gradient (GRG2) code were used for optimization. To obtain the macroscopic 

parameters, a nonlinear fitting technique must be utilized to fit the nonlinear experimental 

data from DSR tests.  Two rheological measurements were fitted simultaneously (namely 

the storage and the loss shear moduli). Recently, this method was implemented to fit the 

Burgers model parameters for asphalt mastic and oil sands material [77, 108, 128]. A 

two-step approach was taken in this research to obtain the optimal model parameters. 

First, Equation (46) and (47) were fitted with the decimated master curve storage 

and loss moduli dataset using the four-parameter Burgers model. Figure 3.13 shows a 

plot of predicted and measured storage and loss moduli after fitting to a four-parameter 

Burgers model. As illustrated in Figure 3.13, this four-parameter Burgers model yields a 

fairly poor fit with the sum of squares mean (SSM) of 34.09. The model fitting was poor 
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at low frequencies for the storage modulus, as well as at high frequencies for the loss 

modulus. For this reason, the generalized Burgers model was used for this research. 

 

 

 

Figure 3.12. Shift Factor Values and WLF Fitting at Test Temperatures 
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The elements in the Kelvin—Voigt section of the generalized Burgers model 

characterizes the material response over a narrow frequency range.  So to produce a good 

fit and to model the response over the wide frequency range, Woldekidan, Huurman 

[142] proposed a minimum of 10 to 15 Kelvin—Voigt model (this is equivalent to 22 to 

32 model parameters) to fully describe the bituminous material over a wide range of 

frequency. After a series of tests, this study adapted five Kelvin—Voigt elements as the 

optimum number required to fully describe the bitumen viscoelastic response. The model 

parameter determination using Equation (46) and (47) was sensitive to the degree of data 

scatter.  

 

 

 

Figure 3.13. Example of Measured and Predicted Storage and Loss Moduli by the four-

Parameter Burgers Model 

 

 

As illustrated in Figure 3.13, the model approaches a limiting threshold value at 

both higher and lower frequencies. For the storage modulus data, the threshold value is 

the maximum value. Also at lower frequencies and higher temperatures, the model 
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approaches a limiting value (the minimum value of storage modulus), termed as rubbery 

shear modulus, G . These observations were used as new constraints in the parameter 

optimization fitting problem. The storage modulus, G , as given in Equation (33), was 

modified to incorporate G , as shown in Equation (48): 

 

                                              
   

2 2

J
G G

J J
 


  

 

.                                           (48) 

 

Now the input parameters for the generalized Burgers model for the viscoelastic 

response of the bitumen can be determined. The resulting curve fitting with the SSM for 

each testing temperature is illustrated in Figures 3.14–3.19 and the resulting parameters 

are listed in Table 4.1. The good quality of fit, reflected in low SSM values obtained for 

both the storage and loss moduli, suggests the model’s excellent ability in describing oil 

sands bitumens response for a wide range of frequencies and temperatures. The obtained 

macroscopic model parameters are used in Section 4 to calculate the microscopic DEM 

contact properties in both normal and tangential directions. 

 

3.3. SUMMARY 

This section presented the characterization of viscoelastic rheological properties 

bitumen obtained from Athabasca oil sands using DSR tests. The section also 

demonstrated a methodology for nonlinear curve fitting for mechanical constants for the 

generalized Burgers model. Constitutive stress/strain relations for Burgers model were 

developed under both shear and dynamic loading. Master curves were constructed for 

each test temperature using the TTSP. The characterization of the bitumen in this study 

was assumed as a linear response (i.e., the deformation at any time and temperature is 

directly proportional to the applied load). However, the DEM model and simulation of 

the composite oil sands material as a four-phase (in Section 4) was conducted in the 

nonlinear case. The test data used for characterizing the viscoelastic mechanical response 

of the bitumen was obtained from Behzadfar and Hatzikiriakos [133]. The master curves 

for the bitumen was constructed at different test temperatures by shifting the data 
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horizontally with respect to a reference temperature. The shifting was done using the 

WLF equation. The shifting based on the WLF equation fitted very well with the 

experimental data. 

 

 

 

Figure 3.14. Generalized Burgers Model Fit (Tg=-30°C) 

 

 

The good agreement between the two datasets indicates that the selected WLF 

equation can be used to determine the bitumen material universal constants, C1 and C2. A 

nonlinear optimization technique based on minimizing the sum of squares of errors was 

developed to determine the parameters for the generalized Burgers model. It was 

observed that the curve-fitting process was sensitive to scatter in the experimental data.  

SSM=1.0467 
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Figure 3.15. Generalized Burgers Model Fit (Tg=0°C) 

 

 

Figure 3.16. Generalized Burgers Model Fit (Tg=10°C) 

 

SSM=3.18 

SSM=2.694 
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Figure 3.17. Generalized Burgers Model Fit (Tg=30°C) 

 

 

Figure 3.18. Generalized Burgers Model Fit (Tg=60°C) 

SSM=3.0286 

SSM=3.0278 
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Figure 3.19. Generalized Burgers Model Fit (Tg=90°C) 

 

Table 4.1. Generalized Burgers Model Parameters for Bitumen 

Parameters 

(Pa/Pa.s) 

Reference Temperature, Tg (°C) 

-30 0 10 30 60 90 

Km 1.05e8 7.2e7 7.4e6 7.8e6 8.0e6 7.3e6 

Cm 4.3e7 1.03e4 9.57e2 1.8e1 0.307 0.034 

Kk1 4.7e7 1.6e5 1.53e5 1.91e5 1.1e6 1.09e6 

Kk2 4.6e6 8.5e5 6.9e5 1.25e6 1.5e5 1.18e5 

Kk3 1.4e6 0.05 1.57e2 1.25e3 1.0e3 1.3e3 

Kk4 5.5e5 1.2e3 1.3e3 0.00341 0.008 0.0053 

Kk5 0.29 2.4e4 2.6e4 1.4e4 1.02e4 1.28e4 

Ck1 1.3e4 5.8e1 3.95e1 0.40 0.000289 2.69e-5 

Ck2 9.6e3 8.7 0.40 0.003671 0.000114 0.000197 

Ck3 1.28e5 1.8e4 1.11e4 1.5e1 0.399 0.0444 

Ck4 1.5e7 3.5e2 7.28 0.0068 0.0132 1.55e-5 

Ck5 1.1e6 3.03 0.78 0.06 0.00192 0.0011 

SSM=2.2826 
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Better model parameters were obtained when pre-smoothing of the experimental 

data comprising the loss and storage modulus was decimated. As the number of the 

Kelvin-Voigt elements increased, better fits were obtained. A total of five Kelvin-Voigt 

elements in series with the Maxwell element, which results in a total of 12 model 

parameters, were used to describe the response of the bitumen over a wide range of 

loading frequency. 
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4. NUMERICAL SIMULATION OF OIL SANDS USING THE DEM 

TECHNIQUE 

In this section, the development and implementation of a model based on the 

DEM technique to simulate an oil sand material as a four-phase particulate media is 

described. The distinct-element modeling framework available in Particle Flow Code 

(PFC2D) v5.0 was used to simulate the behavior of oil sand materials under different 

loading conditions to gain useful insight into the microstructural and micromechanical 

response. The linear viscoelastic rheological model of the bitumen developed in section 3 

is implemented in PFC2D. Different contact models are developed and implemented to 

simulate the overall constitutive behavior of the material. Four types of DEM contacts 

that represent three different interactions of the oil sand constituents within the sample 

are considered. The DEM numerical technique is briefly explained in this section. 

Numerical samples for both oil-free oil sand and oil sand with a bitumen content of 8.5% 

and 13.5% respectively, by weight, were simulated under direct shear test and cyclic 

biaxial test. Figure 4.1 illustrates a flow chart for modeling and simulating the complex 

oil sands in a virtual environment. 

 

4.1. OVERVIEW OF DISCRETE ELEMENT METHOD (DEM) 

The DEM technique is a numerical method introduced by Cundall [36] for rock 

mechanics analysis and then extended by Cundall and Strack [27] for soil as an 

alternative to continuum modeling of particulate media. Two main modeling techniques 

are utilized for simulating particulate systems. These are continuum (Eulerian) and 

discrete (Lagrangian) mechanics. In continuum mechanics, the granular matter is 

assumed to behave as a continuous material that is described by constitutive laws. The 

study does not consider the relative movement and rotation of soil grains necessary to 

understand the micro-level soil behavior. On the other hand, the discrete method is used 

to model each single particle as a distinct element, and it captures the particulate system 

as an idealized assembly of particles. Contact interactions between individual particles 

represent the overall (macroscopic) system behavior. Newton’s second law, contact 

mechanics, and finite difference scheme are used to study the mechanical interactions  
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Figure 4.1. Flow Chart for Oil Sands DEM Processes 
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between a large collection of independent and varying discrete particles with rigid or 

deformable bodies. As the particles and bodies (walls) interact with each other, creating 

contacts, a force-displacement law (usually termed contact model) is used to update the 

contact forces and moment arising from the relative motion at each contact.  

First of all, contact detection algorithm through the use of appropriate contact 

models (force-displacement laws) is used to compute the contact forces on each particle. 

Once the contact forces/moments are calculated, Newton’s 2nd law is used to determine 

the motion of each particle arising from the contact and body forces acting upon it and 

then an explicit time stepping scheme to determine the new velocities and positions of the 

particles, as illustrated in the flow chart in Figure 4.2. The translational and rotational 

motions of each particle are calculated from the contact forces and moment using 

Newton’s second law. Figure 4.2 illustrates that the particles kinematics and forces are 

calculated using Newton’s second law and contact mechanics techniques, respectively. 

The overall governing equation of motion for the dynamic analysis of the DEM system is 

expressed as Equation (49) [143]: 

 

                                            u u uM D K F   .                                             (49) 

 

 

 

 

 

 

 

 

Figure 4.2. DEM Calculation Scheme 

 

 

The dynamics (translational and rotational motion) of the particle i  with mass im  

and moment of inertia iI , as illustrated in Figure 4.3, are governed by the Newton and 

Euler terms in Equations (50) and (51) [144, 145]: 
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Figure 4.3. Forces Acting on Particle (ball) i with Particle (clump) j and Non-Contacting 

Particle k 

 

 

The soft contact approach is used where the particles are assumed to be rigid, but 

allows overlap at the contact points. The contact force is related to the magnitude of the 

overlap and is computed using a force-displacement law (contact model). The 

development and implementation of a realistic contact model at the micro-level are the 

heart of the particle-based simulation. The simplest contact model (linear contact model) 

that can be selected consists of a spring and dashpot connected in series (Figure 4.4), 

where the contact force in the normal and tangential directions are computed in Equations 

(52) and (53) [146]:  
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Each contact is assigned a single contact model. Local constitutive models or 

contact models are used to characterize the different constituent interactions at the micro 

level by calculating the contact forces and torques.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Illustration of the Linear Contact Model for Ball-Ball Contact 

 

 

The Particle Flow Code in Two-Dimensions (PFC2D) is a commercial software 

developed by Itasca Consulting Group, Inc. PFC2D is a general purpose distinct-element 

modeling framework that simulates the movement and interaction of many finite-sized 

particles. A collection of an assembly of particles is referred to as a PFC model, which 

can be in 2D or 3D domain. PFC2D is viewed as a simplified implementation of the 

DEM technique because of the soft contact approach, where particles are restricted to be 

rigid spherical media. The most critical components needed to build a comprehensive 

DEM model of oil sands are particle generation and properties and appropriate contact 

models. These critical components are illustrated in Figure 4.5. A comprehensive DEM 

model for oil sands must address these key components. 
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Figure 4.5. Key Ingredients for a Successful DEM Model of Oil Sands 

 

 

4.1.1. Particle Shape and Size. The effect of aggregate shapes and sizes on the 

overall mechanical behavior of a granular system cannot be neglected. Rong, Liu [147], 

Lin [148], Ting, Meachum [149], Qing-bing, XIANG [150], Koyama and Jing [151] have 

all conducted DEM studies to quantify the effect of grain size and shape on the 

mechanical properties of rocks and soils.  

The oil sands are considered as four-phase granular systems  made up of a densely 

interlocked skeleton of predominately quartz sand grains. The contacts within the sand 

grains exhibit mainly long, tangential, and concavo-convex contact. This interpenetrative 

structure is responsible for both the low void ratio and high shear strength of the material.  
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A recent study by Bell, Eruteya [152] using multivariate statistical techniques to 

examine grain morphology of oil sands material concluded that quartz grain shapes were 

predominately subrounded to subangular. Two modeling approaches were employed to 

produce the morphological features (shape, sphericity, angularity) of quartz aggregates in 

PFC: clump and cluster techniques.he clump technique is used to approximate complex 

aggregate shapes. A clump is a collection of rigidly attached balls, which behaves as a 

rigid body. Oil sand aggregate (quartz) angularity can be similarly represented using 

clumps. The contact forces only exist between clumps, and the intra-clumps contacts are 

skipped during the calculation cycle to reduce CPU processing time [37]. However, 

contacts with other particles external to the clump are considered during the calculation 

cycle. Particles within a clump may overlap to any extent. It will not generate internal 

contact forces, and any contact forces that exist when the clump is created will be 

preserved unchanged during cycling. Clumps can rotate and translate and obey the 

equations of motions. 

Clusters, on the other hand, are a collection of particles bonded together. The 

particles are rigid, but the contacts are soft [37]. The bonded particles can take the surface 

geometry of any aggregate grain to produce close morphological features of the oil sand 

aggregates. The intra-cluster bond strength was set sufficiently high to prevent breakage. 

The average clump and cluster size (grain diameter) were matched to the average single 

real particle size to obtain a match for the PSD of the oil sand material. Figure 4.6 

illustrates the flow chart that was employed to generate clumps and clusters shown in 

Figure 4.7 and 4.8, respectively for the DEM simulation of oil sands. 

First, an image of in situ vertical cross-sections of bituminous oil sands core 

sample was obtained and exported to Rhinoceros, a CAD based surface modeling tool. 

The surface geometry of each quartz aggregates and air voids are color-coded in the CAD 

environment to differentiate each constituent from others. Then, surface geometry is 

delineated to create CAD templates that define the morphological features of the particles 

and void spaces. The CAD template is a closed geometry of line segment that is manifold 

and orientable. For clusters, the CAD templates are moved to different layers and saved 

as a drawing exchange format (DXF) (i.e., each layer stores one particle geometry 

surface). 
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Figure 4.6. Flow Chart for Creating Clumps and Clusters in PFC 

 

 

The DXF file is imported into PFC2D and then imposed on an assembly of 

particles. In the case of clumps, each particle surface geometry is saved separately as a 

DXF file and then imported into PFC2D. The imported DXF files are used to create a set 

of clump templates that represent the desired particles. 
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Figure 4.7. Clumps from Multiply Templates Randomly Distributed 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Oil Sands Aggregates Formed by Cluster of Bonded Balls 

 

 

Clump template is a clump made up of a distribution of balls/disc to represent the 

particle surface geometry to the desired fidelity. In this study, the oil sand numerical 

specimen was constructed with a given number of clusters/clumps generated with pore 

spaces to match the actual particle size distribution (PSD). Figure 4.9 shows the PSDs of 

the real sample and the corresponding generated DEM model in PFC2D. Due to high 

Polyline surface geometry 
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computational expense, the fine particles (i.e., passing #200 sieve or <0.075 mm) were 

not included in the PFC model.  

 

 

 

Figure 4.9. Particle Size Distribution of Oil Sands Sample 

 

 

4.1.2. Design of PFC Model for Oil Sands In this research, the oil sand material 

digital specimen is constructed with a number of clusters/clumps. The bitumen was 

microscopically represented by two sets of Burgers element model in the normal and the 

tangential direction at each contact. The water phase is not modeled explicitly but is 

represented by a pendular liquid bridge that forms between the contacting particles. A 

digital sample of a thin section was delineated to categorize the various phases, as shown  

in Figure 4.10.  

Three types of contacts that represent three different interactions within the 

sample are illustrated in Figure 4.10. The three corresponding contact models are 

associated with each contact to characterize the overall constitutive behavior of the oil 
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sand material. The elastic linear model was defined at contacts between boundary walls 

and adjacent particles. The spring elements with stiffness nk and sk were used for the 

contact interactions between adjacent particles and boundary walls. A clump with a mass, 

centroid position, and inertia tensor connected by elastic elements (springs and dashpots) 

in the normal and tangential directions at each contact is used to model the quartz. The 

interactions within a bitumen or between particle-bitumen are modeled with Burgers’ 

model in the normal and shear directions. 

 

4.2. CONTACT MODELS AND IMPLEMENTATION 

When particles interact with each other in a DEM simulation, constitutive contact 

models are then used to calculate the contact forces at the contact point. The particles are 

considered rigid, and therefore its deformation is modeled as an overlap. The constitutive 

contact models relate the amount of overlap between two particles to determine the 

magnitudes of the forces. The resultant interparticle forces are resolved into two 

orthogonal components: normal and tangential to the contact point. The contact models 

are defined in the normal and tangential direction using two rheological models. These 

rheological models are made up of a combination of springs, sliders, and dashpots. The 

macroscopic material behavior of oil sands based on DEM is simulated in PFC2D by 

associating a single contact model with each contact.  

A contact model defined at a contact point can either be a stiffness model, a slip 

model, or a bonding model [37]. The stiffness model provides an elastic relationship 

between the contact force and relative displacement of the particles. The slip model 

enforces a relation between shear and normal contact forces such that the two contacting 

balls may slip about one another. The bonding model serves to limit the total normal and 

shear forces that the contact can carry by enforcing bond-strength limits [30]. The oil 

sand material was modeled with three different contact models to simulate the 

heterogeneous multiphase microstructure of the material. Each contact is either a quartz-

quartz contact, quartz-bitumen contact, bitumen-bitumen contact, or quartz-water-

bitumen contact. The contact models implemented for the oil sands are the Burgers 

model, liquid bridge-Burgers model, and linear contact model. 
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Figure 4.10. DEM Model of Oil Sand in PFC2D 
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4.2.1. Numerical Implementation of the Burgers Model . In Section 3, the 

constitutive behavior of the Burgers model that relates the partial derivative of stress and 

strain with respect to time was formulated. Alternatively, the formulation can be derived 

to fit the force-displacement law (contact model) of a DEM solution scheme, which 

relates the stress at any time to the complete past history of strain. The contact model in 

the discrete element analysis is defined in terms of the forces and displacements instead 

of stresses and strains. Figure 4.11 shows a Burgers model, which contains the Kelvin-

Voigt model and Maxwell model connected in a series in both normal and shear 

directions, respectively, at ball-ball or ball-wall contact points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11. Burgers’ Contact Model in PFC2D 

 

Expressing Equation (21) in force-displacement relation leads to Equation (54): 
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The symbols   and  correspond to the cases of normal direction and shear 

direction [37]. Simplifying Equation (12) of the Kelvin–Voigt section results in 

eEquation (55): 

 

                                                            k k
k

k

K u f
u

C

 
 .                                      (55) 

 

Using a central difference approximation of the finite difference scheme and 

taking average values, the solution for Equation (55) is Equation (56): 
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Equation (56) can be rewritten as Equation (57)–(59): 
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Similarly, expressing Equation (14) of the Maxwell section in force-displacement 

relation gives Equation (60): 
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Applying a central difference approximation of the finite difference scheme for 

Equation (60) and taking average value results in Equation (61): 
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Simplifying Equation (61) gives Equation (62): 
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The total displacement and the first derivative of the Burgers model are given in 

Equation (63) and (64), respectively: 

 

                                                             k mu u u                                                (63) 

 

                                                             k mu u u  .                                             (64) 

 

Using the finite difference scheme to solve Equation (63) results in Equation (65): 

 

                                              1 1 1t t t t t t

k k m mu u u u u u       .                               (65) 

 

Substituting Equations (57) and (62) into Equation (65), force-displacement 

relationship of the Burgers viscoelastic contact model in the normal and tangential 

direction can be expressed in Equation (66)–(67): 
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1
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As given in Equation (65), 1tf   is calculated from the previous time step force, 

tf , and displacement within the Kelvin-Voigt model, t

ku .  

4.2.2. Numerical Implementation of the Liquid Bridge-Burgers Model.  The 

thin film of water (~10-15 nm) that surrounds the quartz grains was implicitly modeled 

via a force model (liquid bridge model) that mechanistically computes the capillary force 

between the particles. Surface tension develops at the quartz-water-bitumen interface, 

which imparts this capillary force onto the individual particles. These forces may or may 

not contribute significant impact on the overall material response under loading. The 

grain-grain systems look like two local particles that have a liquid bridge, as illustrated in 

Figure 4.10. The liquid bridge-Burgers model that is formulated in this research 

incorporates a liquid bridge formulation of Itasca [37], Lian, Thornton [153], Richefeu, 

El Youssoufi [154] for the normal force, on top of the Burgers model. The contact force 

at the interface is the sum of the surface-interaction (Burgers force, bf ) and moisture 

force, mf . The moisture force (capillary force) is present only when the thin film of 

water is present. The force is maximum when the particles are touching each other and 

decays exponentially until the contact gap n  reaches a critical value max

n  at which the 

liquid bridge breaks, as illustrated in Figure 4.12. 

According to Richefeu, El Youssoufi [154] and from Figure 4.13, the moisture 

force is a function of the contact gap n , the liquid volume bV , the liquid surface tension 

s , and the particle-liquid-gas contact angle  .  

The moisture force at contact (i.e., 0n  ) is given by Equation (68) and (69): 

 

                                                              0f R                                                              (68) 

 

                                                           2 coss   .                                                     (69) 
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Figure 4.12. Moisture Force versus Contact Gap for the Liquid Bridge-Burger Model 

 

 

 

  

 

 

 

Figure 4.13. Geometry of a Capillary Bridge [154] 

 

 

The geometric mean, R is given by Equation (70), and the distance at which the 

liquid bridge ruptures is given by Equation (71) from Lian, Thornton [155]: 
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Equation (72) gives the capillary force equation for all cases of n : 
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The length scale   is given by Equation (73): 
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Equations (68) to (73) were implemented in PFC2D through a user-defined 

contact model defined as a liquid bridge-Burgers model in a C++ Plug-in. Two C++ files, 

the header file (ContactModelburgerfcap.h) and the source file 

(ContactModelburgerfcap.cpp) provided in Appendix A. These files were compiled as 

DLL (dynamic link library) files and loaded at PFC runtime. 

 

4.3. NUMERICAL SIMULATION 

This section describes the numerical simulation carried out on both bitumen-free 

oil sands and oil-rich oil sands under direct shear test (DST)  and biaxial cyclic test 

(BCT) to explore the underlying micromechanical mechanics of the unique behavior of 

the material. Numerical simulations of crawler-oil sands interactions are also discussed. 

These numerical tests are performed under quasistatic conditions for various stress and 

strain paths in which inertia effects are negligible. Figure 4.14 presents the flow chart 

used for the numerical simulations. All simulations are conducted on a Dell Precision 

Tower 7910 workstation. The system characteristics of the workstation are Intel(R) Xeon 

2 CPU E5-2699 @ 2.30GHz, 2301 Mhz, 18 Cores, and 36 Logical Processors. The 

timestep used varied between 1.0e-8–1.0e-10 s. 
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Figure 4.14. Flow Chart of the Numerical Simulation 
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4.3.1. Numerical Simulation of Direct Shear Test.   Direct shear tests have been 

widely used to investigate the shear strength and dilatancy of granular material over the 

past decades because of its simplicity and easy analysis of results. The DST is performed 

in a box separated into two halves: lower and upper. The upper half of the specimen is 

translated horizontally with a constant shear rate relative to the lower half of the 

specimen in order to create a shear band across the mid-height of the specimen.  

A confinement force is applied on the rigid top plate and is free to move vertically 

as the specimen deforms. In this research, the normal stresses applied during the shear 

tests were selected to be within the range experienced during static loading of oil sand 

materials by P&H 4100 BOSS ERS. Ardeshir and Joseph [156] estimated that this shovel 

generates a static ground loading of 210 kPa and would induce a ground confinement of 

about 70 kPa. The test arrangement is shown diagrammatically in Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. Illustration of DST for Oil Sands Simulation in PFC2D 

 

 

During the simulation, the horizontal displacement  h  of the upper shear box 

and the vertical displacement  v  of the top rigid wall were measured. A measurement 

region was created at the center of the shear box to calculate the stress tensor from the 

distribution of the contact forces in the region using Equation (74) [37].  
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The strain state cannot be computed from the measurement region because the 

deformation throughout the specimen is not uniform. Alternatively, the shear band, as 

illustrated in Figure 4.16 (a), is relatively uniform. Given the thickness  L  of the shear 

band in Figure 4.16 (b), the shear strain  yx  and the normal strain  y  on the 

horizontal plane can be calculated by Equations (75)-(76) [157]: 
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Table 4.2 shows the DEM parameters used for the DST of oil sands. The results 

of this study are reported and discussed in Section 5.0. 

 

 

Table 4.2. Input Parameters for DST Numerical Simulation of Oil Sands  

DEM parameter Value used 

Mass density of particle (kgm3) 2567 

Effective modulus (N/m) 3-6e9 

Wall friction 0 

Interparticle friction angle (°) 30-60 

Normal to shear stiffness ratio (kratio) 0.9-2.8 

Particle diameter (m) 0.0006-0.00236 

Porosity 0.18 
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Figure 4.16. Simple Shear Mode of Deformation in the Failure Plane of the DST: (a) 

Illustration of Shear Band and (b) Determination of Shear Band Thickness 

 

 

4.3.2. Numerical Simulation of Cyclic Biaxial Test. A series of uniaxial 

compressive sinusoidal dynamic loading tests were conducted with the viscoelastic model  

developed in this study.  
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The macroscopic generalized Burgers model parameters that were obtained in 

Table 3.1 were converted to particle-particle contacts by using a set of equations 

developed by Liu, Dai [30]. Table 4.3 lists the viscoelastic model input parameters that 

were obtained from Liu’s set of equations and other relevant data used for the simulation. 

A complete sine load waveform at loading frequencies of 2, 5, and 10 Hz, and four test 

temperatures of -30, 0, 10, and 30°C were used as inputs to simulate winter and summer 

field loading conditions of the oil sand materials. The sine load was applied to the top and 

bottom platens of the digital sample, as shown in Figure 4.17, while the two vertical 

boundary walls were fixed in all directions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. Illustration of CBT DEM Simulation of Oil Sands 

 

 

The simulation test involved two stages: (i) isotropic consolidation, and (ii) 

uniaxial compressive sinusoidal loading. Before the cyclic uniaxial compression testing, 

the digital sample was brought to equilibrium under isotropic stress state. 
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Table 4.3. Linear Viscoelastic Input Parameters for Oil Sands CBT 

Temperature (°C) -30 0 10 30 

 Within bitumen 

Kkn (GPa) 25.06 21.06 20.01            18.01 

Ckn (GPa.s) 15.8 13.8 12.2 10.2 

Kks (GPa) 11.02 10.02 9.32 7.32 

Cks (GPa.s) 7.9 5.9 5.2 4.4 

Kmn (GPa) 13.79 11.79 10.29 9.32 

Cmn (GPa.s) 22.6 18.6 16.2            14.32 

Kms (GPa) 10.8 9.8 8.6 7.3 

Cms (GPa.s) 16.1 14.1 13.05 11.01 

 Between quartz and bitumen 

Kkn (GPa) 14.53 12.59 11.13 10.10 

Ckn (GPa.s) 8.9 7.5 6.7 4.4 

Kks (GPa) 6.51 6.02 5.61 5.01 

Cks (GPa.s) 4.95 3.25 3.05 3.05 

Kmn (GPa) 7.3 6.1 6.1 5.1 

Cmn (GPa.s) 12.8 10.4 9.6 8.6 

Kms (GPa) 5.65 4.13 3.45 3.02 

Cms (GPa.s) 8.5 7.3 6.5 5.5 

Poisson’s ratio 0.29-0.33[158] 

Young’s 

modulus (GPa) 
3-6 [159] 

Porosity 0.29 [9] 

Angles of internal 

friction (°C) 
39-61 [9] 

 

 

The sample was loaded in a strain-controlled manner where the boundary walls 

were adjusted using a servo-controlled mechanism to achieve a target confining stress 

[37]. In this study, haversine stress at different frequencies (2, 5, and 10 Hz) was applied 
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to the loading platens. During the simulation, stresses and strains developed in the sample 

were recorded to compute dynamic modulus properties of the oil sand materials. The 

model geometry for the used for the anisotropic study of the granular bitumen-free oil oil 

sands is illustrated in Figure 4.18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Compacted PFC2D Bitumen-free Oil Sands Sample 

 

 

Because of the nonhomogeneous multiphase nature of the oil sand materials, the 

PFC model must determine which contact model needs to be assigned when contacts are 

formed. The solution to this complex contact assignments to a specific contact point is 

fundamental to the overall constitutive mechanical behavior of the DEM simulation. The 

flow chart in Figure 4.19 is processed whenever a contact is created and detected during 

the entire duration of the simulation.  
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Figure 4.19. Flow Chart for Contact Model Assignment 
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The slot 1 in Figure 4.19 controls the assignment of the Burgers model within the 

bitumen (i.e., ball-ball contact interactions). Slot 2, on the other hand, controls the 

assignment of the second Burgers model at the bitumen-quartz contact points. The default 

slot is for quartz-quartz contacts and contacts within it. Figures 4.20–4.22 show the final 

state of static equilibrium of the oil sand materials DEM model after all the contact 

models and densities have been appropriately assigned. Figure 4.20 shows the digital 

sample of the oil sands. Figure 4.21 illustrates that all the relevant contact models have 

been properly assigned at their respective contact points. Furthermore, Figures 4.22 and 

4.23 show that different contact properties and phase densities for inter- and intra-

clusters, respectively are correctly assigned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. DEM Model of a 9.5% BCW Oil Sand 

 

 

Consequently, the figure illustrates that the different contact models and particle 

group properties have been assigned appropriately. Thus, the complex oil sand materials 
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microstructural and micromechanical, nonhomogeneous multiphase nature is deemed 

reasonably verified for subsequent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21. All Relevant Contact Models Appropriately Assigned 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Different Contact Models Parameters Properly Assigned 
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Figure 4.24 shows the applied sinusoidal compressive loading and the 

corresponding strain response calculated from the displacement of the top and bottom 

platens. Dynamic complex modulus  *E and phase angle    were calculated from the 

applied stress and strain response, as shown in Figure 4.24, using Equations (77) and 

(78): 
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Figure 4.23. Density Distribution within the Sample 

 

 

Results for the viscoelastic DE simulation of oil sand material with the 

corresponding model parameters under compressive dynamic sinusoidal loading are 

presented in Section 5. 
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Figure 4.24. Applied Stress and Strain Response 

 

 

4.3.3. Shovel Crawler-Oil Sands Interactions. Electric rope shovel (ERS) is the 

primary equipment used for oil sand excavations due to its large breakout force and low 

maintenance cost. During ground loading, the ERS machine weight and cyclic loads are 

transferred to the oil sands formation via its crawlers. This dynamic loading reduces the 

shear strength and the stability of the formation. Consequently, the material under the 

crawler deteriorates. This has lead to sinkage and/or shovel bench failure, wear and tear 

of the crawler shoes, and high rate of soil plastic deformation and failure.  

The HMMR group at the Missouri S&T are collaborating with Joy Global of 

Milwaukee to provide scientific and engineering understanding into the fatigue failure of 

the crawler shoes Frimpong and Thiruvengadam [160], and modeling the oil sand 

formation as a multi-phase material Gbadam and Frimpong [108]. This section will 

attempt to provide coupled deformation-stress mechanics and ground stiffness behavior 

during loading/unloading by a P&H 4100 BOSS ERS. Figure 4.25 illustrates the model 

domain setup and DEM model of crawler-oil sands interactions. 
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Figure 4.25. 2D Crawler-Ground Interactions: (a) ERS Loading Cycle, (b) Ground 

Bearing Pressure Transmitted to Formation during Loading/Unloading [156], and (c) 

PFC2D Model of Crawler-Oil Sands Interactions 
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Figure 4.25. 2D Crawler-Ground Interactions: (a) ERS Loading Cycle, (b) Ground 

Bearing Pressure Transmitted to Formation during Loading/Unloading [156], and (c) 

PFC2D Model of Crawler-Oil Sands Interactions (Cont.) 

 

 

Due to computational expense, the PSD of oil sands illustrated in Figure 4.9 were 

multiplied by a scaling factor of 50 inorder to reduce the number particles in the domain 

in Figure 4.25. The shovel crawler shoes 7–10, as illustrated in Figure 4.25 (a) were 

selected for the simulations. During the simulation, the cyclic pressures in Figure 4.25 (b) 

are transferred to the oil sand formation via the crawlers. A strain-controlled 

servomechanism that applies varying translational velocities to the shoes to achieve the 

desired ground bearing pressure was formulated and implemented in PFC2D. First, a 

curve-fitting technique was used to fit the ground bearing pressure field data. The results 

of the fitting using 8-parameter Fourier series are shown in Figure 4.26, and the Equation 

(79) is the equation of fit for both the front and rear crawler shoes. The coefficient (with 

95% confidence bounds) of the parameters in Equation (79) are given in Table 4.4. 

Equation (79) are used as input in PFC2D to simulate the dynamic loading of the crawler 

shoes interacting with the oil sand material. 
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Figure 4.26. Results of Curve Fitting: (a) Shoes 9–16 and (b) Shoes 1–8 
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where x is normalized by mean 69.9 and std 40.33. 
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4.4. VERIFICATION AND VALIDATION 

The DEM formulation and implementation of the linear viscoelastic model of oil  

sands bitumen developed in this study were verified and validated through comparison 

between closed-form solution, measured laboratory solution, and the DEM solution in 

PFC2D. 

 

 

Table 4.4. Coefficient of Parameters for the Fit Equation 

Parameter Front fitting Rear fitting 

a0 298.9 (298.6, 299.2) 157.5 (157.2, 157.7) 

a1 23.32 (22.95, 23.69) 16.91 (16.5, 17.32) 

a2 -43.48 (-43.85, -43.12) 28.37 (27.99, 28.74) 

a3 49.77 (49.41, 50.13) 36.6 (36.24, 36.97) 

a4 6.099 (5.734, 6.463) -2.245 (-2.62, -1.869) 

a5 -2.001 (-2.363, -1.639) -2.034 (-2.398, -1.671) 

a6 -9.508 (-9.87, -9.146) 6.958 (6.589, 7.327) 

a7 1.633 (1.271, 1.996) 2.572 (2.213, 2.932) 

a8 -0.3698 (-0.732, -0.00759) -0.6972 (-1.059, -0.3358) 

w 5.419 (5.418, 5.421) 0.1357 (0.1357, 0.1358) 

b1 -102.1 (-102.5, -101.8) -63.6 (-63.96, -63.23) 

b2 30 (29.64, 30.37) -18.69 (-19.1, -18.29) 

b3 15.44 (15.07, 15.8) -1.009 (-1.538, -0.4792) 

b4 -5.971 (-6.331, -5.611) 8.289 (7.924, 8.654) 

b5 -4.743 (-5.103, -4.383) -1.225 (-1.589, -0.8617) 

b6 -0.7675 (-1.128, -0.4069) -2.49 (-2.88, -2.099) 

b7 1.678 (1.317, 2.038) 0.8015 (0.4327, 1.17) 

b8 0.1465 (-0.2137, 0.5067) 0.9501 (0.5863, 1.314) 
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Figure 4.27. Verification of the Burgers Model for Oil Sand Materials: (a) Stress 

Relaxation, (b) Creep 
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4.4.1. Verification. The response of the Burgers model under constant stress and 

strain, which was solved numerically and analytically is presented in Figure 4.27. Figure 

4.27 (a) shows the stress response of the model under the constant strain of 0.01 mm/mm. 

The result shows a perfect match with the analytical and numerical solutions. Figure 4.27 

(b) presents the model response under a creep load (constant stress) of 10 N for 5 

seconds. As can be seen, both numerical and closed-form solutions produced the same 

results with a very good fit. These results indicate that the proposed particle-based linear 

viscoelastic model of oil sand materials in this study is appropriate. 

A simple load-unload test was also conducted in PFC2D to verify the liquid 

bridge-Burgers model formulated in the previous section. This verification is an 

important step in this study to investigate whether to include the liquid bridge model in 

the oil sands DEM simulation or not. Two particles are stacked one atop the other. The 

bottom particle was fully fixed. The liquid bridge-Burgers model was assigned to the 

contact between the two particles. The upper particle was displaced vertically down by 

0.1 mm, and the contact force monitored.  

A second test was also performed where the Burgers contact model was assigned 

at the particle-particle contact. Figure 4.28 shows the results of the capillary force as a 

function of the liquid gap, n , between the two particles. At a contact gap of 10 nm, the 

capillary force was -5.38e-8 N. It can be concluded that the inclusion of the liquid bridge-

Burgers model, which modeled the capillary force at the quartz-water-bitumen interface, 

is negligible. This result agrees with the work of Richefeu, El Youssoufi [154], which 

concluded that capillary cohesion is negligibly small for coarse grains or at high 

confining stresses. This conclusion may be attributable to small interphase surface areas 

in coarse-grained materials and therefore cannot be a significant source of contact force 

at the interface. Based on this result, computational cost, and scaled up particle sizes, this 

study did not include the liquid bridge-Burgers model. 

4.4.2. Validation. Figure 4.29 presents the predicted versus experimentally 

measured dynamic modulus and phase angle for an oil sand material.  

The model prediction compared well with the measured phase angle at 10°C, while it was 

higher than the measured dynamic modulus at -30°C. On the other hand, the measured 

dynamic modulus at -30°C was close to the predicted model. 
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Figure 4.28. Capillary Force as a Function of Contact Gap 

 

 

4.5. EXPERIMENTAL DESIGN AND EXPERIMENTATION 

A detailed experimental design employed to analyze the oil sands 

micromechanics response within its multiphase microstructure is described. Experiments 

were conducted to analyze the deformation-stress response under dynamic loading. 

Comprehensive numerical simulations with full factorials of governing test parameters 

and material properties were conducted. The choice of the experimental design 

parameters for the numerical test simulation was based on field and laboratory 

conditions. The main experimental design parameters for the oil sand materials were 

temperature, loading frequency, bitumen content, internal friction angle, and confining 

stress. Four sets of experiments were conducted. The first set of experiments is designed 

to evaluate the impacts of anisotropic conditions on the stress-strain response. The second 

set of experiments is designed to study the microstructural and micromechanical 

viscoelastic behavior under cyclic loading. The last but one test is designed to explore 

strain localization and the micromechanics of shear band formation of bitumen-free oil 

sands. The last test is designed to provide understanding into machine/earth interaction 

models for machine performance simulations. 
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Figure 4.29. Measured [66] and Predicted: (a) Phase Angle and (b) Dynamic Shear 

Modulus 

 

 

4.5.1. Experimentation Environment. The virtual experiments for all the four 

test cases (viscoelastic modeling, direct shear test, anisotropic study, and crawler-oil 

sands interactions) are performed using PFC2D v5.0 platform.  

 

(a) 

(b) 
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The PFC2D models the movement and interaction of stressed assemblies of arbitrary 

rigid disc particles using the DEM technique. The PFC2D model provides a synthetic 

material consisting of an assembly of rigid grains that interact at contacts [37]. A digital 

sample of the oil sand with varying particle shapes and sizes were built and simulated in 

PFC2D. 

The oil sand is modeled as an assemble of quartz particles with void spaces filled 

with bitumen. The oil sand microstructure was captured from an electron scanning 

micrograph image of a 13.5% bitumen content Athabasca oil sand. The micromechanical 

approach is based on discretizing the oil sands microstructure and modeling particle 

interactions (contacts) of its constituents at microscale. The quartz aggregates, water, and 

bitumen included in the digital samples were modeled using different contact models.  

The digital sample is created within a material vessel (MV) made up of walls, which is a 

manifold surface composed of line segments termed as facets. The walls can translate and 

rotate about a reference point but do not obey the equations of motion [37]. After creating 

the particles and distributing it within the MV with a specified porosity, the assemble is 

allowed to rearrange to smaller porosity. Each constituent in the digital sample is 

assigned a density in order to calculate its inertia during simulation. The particle inertia is 

used to calculate a valid, finite timestep to ensure the numerical stability of the model. 

4.5.2. Constraints and Control Environments. All model simulations of the oil 

sands digital sample are performed in the PFC environment of the validated PFC2D 

model. The PFC2D model comprises the quartz particles, bitumen, void space, and 

bitumen, which are interconnected through different contact models at the microscale. 

The boundary conditions and simulation experiments are based on field conditions in 

typical oil sand surface mining operations. The control environment for the PFC2D 

model consists of maintaining quasistatic equilibrium conditions and ensuring that 

contacts are created between pieces prior to the point that forces/moments develop 

between interacting bodies. 

4.5.3. Experimental Design.  Several numerical experiments are conducted to 

study the microstructural and micromechanical viscoelastic behavior oil sands under 

dynamic loading.  
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All the required inputs parameters are obtained from the curve-fitting 

optimization study in Section 3.0. A total of 45 numerical experiments is conducted to 

provide useful insights into the micromechanical behavior of oil sands at different test 

temperatures, bitumen contents, loading frequencies, and internal friction angle. 

4.5.3.1 Experimentation for anisotropic conditions The microstructure of the 

oil sands material shows a discrete behavior as relative particles are changed under 

loading. Many numerical and computational studies have considered the material as an 

isotropic and homogenous. However, with such particulate composite material as the oil 

sand, the orientation of the reinforcements (quartz grains) affect the stiffness isotropy of 

the material. Little or no work has been done to provide scientific and engineering 

understanding of the stiffness anisotropy for this complex composite. A micromechanical 

model based on the DEM technique is built to investigate the stiffness anisotropy of the 

material under quasistatic loading. Table 4.5 summarizes the experimentation series for 

this numerical study. 

 

Table 4.5. Characteristics of Experimentations–I for Anisotropic Study 

Experiment I Series: Variation of Preferred Angle of Orientation 

Experimentation Description 

Variable and scope Variable: preferred angle of orientation, θ  

Scope: (θ = 0°, 30°, 60°, and 90°) 

Number of experiments Total number of experiments = 4 

Significance The present model enables the prediction 

of the macroscopic deformation behavior 

of the material. 

Expected results It is expected that oil sands strength and 

deformation behavior are significantly 

dependent on the orientation of quartz 

aggregates. 

 

4.5.3.2 Experimentation for viscoelastic modeling The viscoelastic 

micromechanical behavior of oil sand material is represented by a Burgers model, which 
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is a linear combination of springs and dashpots elements connected in series and parallel. 

The quartz grains are modeled with an irregular (subrounded and subangular) shape 

clumps (a rigid collection of disc bonded together) to capture the interpenetrative 

(locked) structure of the formation. The thin-film of water surrounding the quartz grains 

are represented as a liquid bridge model based on the formulation of Richefeu, El 

Youssoufi [154] and Itasca [37]. The microstructural and micromechanical model of the 

oil sands was developed with four different constitutive laws (force-displacement contact 

models) to represent the contact interactions of the various constituents at the microscale 

level. Each contact is either a quartz-quartz contact or quartz-bitumen contact or bitumen-

bitumen contact or quartz-water-bitumen contact. Table 4.6 illustrates the characteristics 

numerical experiments for the anisotropic study. 

 

Table 4.6. Characteristics of Experimentations–II for Viscoelastic Modeling 

Experiment II Series: Variation of bitumen content, temperature, and loading 

frequency 

Experimentation Description 

Variable and scope Variable: bitumen content (8.5% and 

13.5% by weight), testing temperature (-

30°C, 0°C, 10°C, and 30°C), and loading 

frequencies (5 and 10 Hz) 

Number of experiments Total number of experiments = 12 

Significance The present model enables the prediction 

of thermal-mechanical loading effects. 

Expected results It is expected that oil sands time- and 

temperature-dependent viscoelastic 

response has been properly modeled. 

 

 

4.5.3.3 Experimentation for direct shear test The presence of dissolved gases in 

the bitumen has led to a disturbance in sample preparation for laboratory test. 

Consequently, different authors have reported different strength parameters of oil sands. 



 

 

113 

Bitumen-free oil sands is an alternative for laboratory testing, which eventually will 

provide useful results for the macroscopic behavior. The micromechanical response of 

granular bitumen-free oil sands is numerical experimented in PFC2D. Table 4.7 provides 

the variables used for this task. 

4.5.3.4 Experimentation for shovel crawler-oil sands interactions The oil sand 

formations are mined for crude oil production in Northern Alberta, Canada. Surface 

mining methods, using ultra-class mining equipment such as the P&H 4100 BOSS ERS 

and the CAT 797 dump trucks are used for bulk excavation of the overburden, providing 

access to the oil-rich formation. These equipment units impose varying magnitudes of 

static and dynamic loading in both the horizontal and vertical directions to the ground 

during excavation. This has led to equipment sinkage/rutting, lower frame fatigue failure 

[161], and wear, and tear of crawler shoes [160]. Table 4.8 shows the variables used for 

this numerical test. 

 

Table 4.7. Characteristics of Experimentations–III for Direct Shear Test 

Experiment III Series: Variation of confining stress, temperature, and internal friction 

angle 

Experimentation Description 

Variable and scope Variable: confining stress (100, 200, 350, 

and 500 kPa), testing temperature (-30°C 

and 30°C), and internal friction angle 

(30°, 45°, and 50°) 

Number of experiments Total number of experiments = 24 

Significance Investigate the micromechanics of 

granular oil sands (i.e., bitumen-free oil 

sands), and its evolution of strain 

localization and shear band formation. 

Expected results It is expected that the micromechanical 

response at the shear band zone will be 

dependent on confining stress and internal 

friction angle. 
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4.6. SUMMARY 

This section has described the numerical simulation of oil sand materials using the 

DEM technique. An overview of the DEM technique introduced by Cundall [36] and 

Cundall and Strack [27] was discussed as well. The oil sand material was developed in 

PFC2D as a four-phase particulate media. The particle shapes and sizes have been 

successfully incorporated into the PFC model. The linear viscoelastic model of the 

bitumen formulated in section 3 was implemented in PFC. The complex microstructural 

and micromechanical nature of the material is presented by a Burgers, liquid bridge-

Burgers, and linear contact model. 

 

Table 4.8. Characteristics of Experimentations–IV for Crawler-Oil Sands Interactions 

Experiment IV Series: Variation of bitumen content, temperature, and internal 

friction angle 

Experimentation Description 

Variable and scope Variable: bitumen content (8.5% and 

13.5% by weight), testing temperature (    

-30°C and 30°C), and internal friction 

angle (30°, 45°, and 50°) 

Scope: the particles are scaled up by a 

factor of 50, and the model domain is 

made smaller. All this leads to less 

computational time. 

Number of experiments Total number of experiments = 10 

Significance Build and simulate crawler-oil sands 

interaction model to provide 

understanding into deformation-stress 

mechanics. 

Expected results It is expected that oil sands undergo 

permanent strain at the end of cyclic 

loading. 
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Numerical simulations of the oil sand PFC model were performed using direct 

shear test, cyclic biaxial test, and crawler-oil sand interactions. Both bitumen-free oil 

sand and oil-rich oil sand were simulated to provide insight into the micromechanical 

behavior of the material. The oil sand PFC models were verified and validated, and thus, 

deemed fit for other experiments. 
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5. SIMULATION RESULTS AND DISCUSSIONS 

This section presents the simulation results and detailed analysis of the DEM 

modeling of oil sand materials as a multiphase media. An analysis of the microstructural 

and micromechanical multiphase interactions based on the DEM simulation of oil sands 

is presented. Four different experiments were conducted to investigate the behavior of oil 

sands under different loading conditions based on the material characterization (Section 

3) and numerical setup (Section 4). These experiments are a cyclic biaxial test (to study 

inherent anisotropy of bitumen-free oil sands), cyclic biaxial test (to study the 

viscoelastic micromechanical and microstructural response of 8.5 and 13.5% bitumen by 

weight oil sands), direct shear test, and the crawler-shoe oil sands interactions. 

 

5.1. CYCLIC BIAXIAL TEST 

Two numerical experiments (cyclic biaxial test) were conducted on both bitumen-

free oil sands, lean-, and rich-oil sands. The experiment conducted on the bitumen-free 

was to investigate the micromechanical behavior of inherent anisotropic conditions of the 

material as reported by Touhidi-Baghini [54] under load-unload cycles. Due to sample 

disturbance during laboratory test preparation where exsolution of dissolved gases 

occurs, many researchers have conducted laboratory tests on bitumen-free samples to 

investigate the material behavior. 

5.1.1. Oil Sand Anisotropy under Cyclic Loading. The constitutive behavior of 

sand (oil sands) depends primarily on the structure and the arrangement of particles (i.e., 

fabric) within the material. The mechanical properties of oil sand such as load 

deformation behavior and directional strength-dependence are influenced by the fabric of 

the material. Therefore, anisotropy is a fundamental granular feature that needs to be 

taken into account for a better understanding of oil sands macro-scale behavior. Touhidi-

Baghini [54] studied fabric characteristics of bitumen-free oil sand in order to understand 

the mechanical properties of Athabasca Oil Sand. A series of SEM images were acquired 

and analyzed from specimens obtained from the bitumen-free oil sands in the McMurray 

Formation.  
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From the results of the image analyses, the author postulated that oil sand 

specimens showed a clear preferred particle orientation parallel to the horizontal plane, as 

illustrated in Figure 5.1. It can be seen that there are more particles oriented along the 

reference axis/horizontal direction (i.e., θ = 0°) than other directions. Therefore, oil sands 

can exhibit inherent anisotropic conditions. Oda and Nakayama [162] stated that three 

sources/factors must be taken into account for the study of strength and stiffness 

anisotropy of soils: distribution of contact normals, preferred particle orientation, and 

preferred void shape, as illustrated in Figure 5.2.  

Angle θ is the orientation angle of the quartz aggregates with the horizontal 

direction. This simulation considered only the contact normals to study the anisotropy of 

oil sands. The simulation results tend to investigate the relationship that exists between 

the macro-scale oil sands behavior and stiffness/strength anisotropy under cyclic loading.  

 

 

 

Figure 5.1. Frequency Histogram of Oil Sand Material Particle Orientation [54] 
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Figure 5.2. Particle Orientation Angle (θ) and Vector Contact Normal (n)  

 

 

In this section, a dense assembly of clumps, which represents bitumen-free oil 

sand was generated in a frictionless material vessel in PFC2D. Four different inherent 

anisotropic conditions were created with four particle orientations: θ = 0°, θ = 30°, θ = 

60°, and θ = 90°. A new two-step approach was adapted to generate clumps at the 

preferred particle orientation. The steps are outlined in the flow chart in Figure 5.3. The 

outcome of the flow chart in Figure 5.3 is shown in Figure 5.4 and 5.5. Figure 5.4 shows 

the frequency distribution of the preferred angle orientation of particles at the end of the 

particle generation and compression. 

The results in Figure 5.4 show a slight deviation from the real sample illustrated 

in Figure 5.3. The simulation results regarding the preferred particle orientation were 

found to be θ = 0.136°, 27.942°, 58.892°, and 90.577°, which are close to the original 

particle orientations. Data along the longest diagonal of the material vessel (MV) was 

extracted, and Figure 5.5 shows the plot in the case of θ = 0° (The rest of the plots are 

shown in Appendix B). Figure 5.5 also confirms the earlier observation made in Figure 

5.4. During the sample preparation, porosity and coordination number were monitored. 

Figure 5.6 shows the in-situ characteristics of the digital sample at the end of the particle 

generation. As the orientation angle increases from 0 to 60°, the porosity also increases 

gradually but drops after 60°. 
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Figure 5.3. Flow Chart used to Generate Clumps at the Preferred Orientation Angle θ 

 

 

This is attributed to the arrangement of the particles, which creates more 

tangential and straight contacts. A similar trend was observed for the coordination 

number. As the orientation angle increases, the coordination number (a measure of the 

number of contacts per particle) also increases. Conversely, the coordination number 

decreases after 60°. 
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Figure 5.4. Frequency Distribution of Clump Orientation Angle: (a) θ = 0°, (b) θ = 30°, 

(c) θ = 60°, and (d) θ = 90° 

 

 

This is because as the particle orientation deviates from the horizontal reference 

axis, the particles make more contact with each other and then decrease when the 

deviation approaches 90°. Both porosity and coordination number quantify the dense 

structure of the sample. Using the model geometry in Figure 4.18 and the parameters 

from Table 4.2, dense DEM sample of bitumen-free oil sands were simulated under 

cyclic loading with a constant axial strain amplitude of 0.5% . All the four inherent 

anisotropic conditions were simulated under axial strain rate of 0.001s-1 on the material 

vessel height. The confining (lateral) stress on the axial walls was maintained at 150 kPa 

during the loading and unloading cycles by a servomechanism that controls the velocities 

of the walls. 
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Figure 5.5. Clump Rotation: (a) Contour Plot and (b) Plot along the Longest Diagonal 

 

 

The response of the sample under load-unload cycle for all the anisotropic 

conditions are shown in Figure 5.7–5.13. Figure 5.7 shows the deviator stress against the 

axial strain where hysteresis loops were observed, typical of cyclic loading of granular 

materials. In Figure 5.7, the plastic strain for all cases is approximately 0.0021, and the 

resilient strain is 0.0029. It can be seen that at an axial strain of 0.003, the deviator stress 

increase is the same for all cases of the orientation angle during loading. However, the 

deviator stress changes in value when the axial strain is greater than 0.003. This 

observation is because particles tend to rearrange during the initial strain application for 

all cases. 
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Figure 5.6. Characteristics of Internal Structure of Digital Sample 

 

 

At the end of the loading cycle, the corresponding deviator stresses for θ = 0, 30, 

60, and 90° are 4.807e5, 5.027e5,4.938e5, and 4.675e5 N/m2, respectively. The maximum 

deviator stresses occur in the sample with θ = 30 and 60° where the direction of loading 

is vertical to the horizontal axis. Conversely, the deviator stresses converge as unloading 

begins from -0.005 to -0.0015, and the rate of change in the stress values is the same for 

all cases of θ. Figure 5.8 shows the evolution of the volumetric deformation during 

loading-unloading for all cases of θ. A constant rate of contraction (i.e., negative 

volumetric strain) is observed in the initial strain loading of 0.0015 for all cases of θ. The 

deformation shows a transition from contraction to dilation (i.e., positive volumetric 

strain) at an axial strain of 0.002. The rate of change of volumetric deformation begins to 

diverge after the initial strain of 0.0015. At the end of the loading cycle, the maximum 

deformation for θ = 0°, 30°, 60°, and 90° are 0.002385, 0.00244, 0.002587, and 

0.002554, respectively, which indicates that the samples with 0 or near zero horizontal 

bedding (i.e., θ = 0–30°) show less dilation compared to when θ = 60–90°. However, this 

observation is the opposite at the end of unloading.  
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Figure 5.7. Stress-Strain Response during Loading-unloading Cycles 

 

 

From the observations, inherent anisotropic conditions affect the volumetric 

deformation of the bitumen-free oil sands which qualitatively agrees with the work of 

Touhidi-Baghini [54]. Figure 5.9 shows the evolution of porosity during cyclic loading 

for different particle orientation angles. During loading, the porosity for all samples 

decreased marginally by approximately 1% at an axial strain of 0–0.0015. The porosity at 

the end of the loading cycle increases as the particle orientation angle increases from 0° 

to 90°. At the start of unloading, the porosity for θ = 60° and 90° initially decreases until 

a constant value is maintained at small strain.  

The average coordination number of the samples under loading-unloading cycles 

is presented in Figure 5.10. It is observed that the average coordination number at the end 

of loading decreases with increase in loading cycles for all samples (i.e., at the end of 

unloading cycle). The reduction of about 0.20% in coordination number (i.e., loss of 

contact) at the end of unloading is more dominant when θ = 30°, 60°, or 90° compared to 

when θ = 0°. 
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Figure 5.8. Evolution of Volumetric Strain during Loading-unloading Cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Evolution of Porosity during Loading-unloading Cycles 
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This may be attributed to the stability of the particles under loading. The particles 

in the sample with θ = 30°, 60°, or 90° are more likely to rotate due to out-of-plane 

force/moment, causing instability. This leads to the particles losing contacts on 

unloading. A similar trend is observed at the end of loading when θ = 30°, 60°, or 90°, 

but the reduction is less compared to the former. 

 

 

 

Figure 5.10. Average Coordination Number at the end of Loading and Unloading Cycles 

 

 

During the simulation of granular systems, particles undergo continuous plastic 

deformation. This leads to the loss of contacts or formation of new contacts and 

consequently, weak or strong contact fabrics are created. Contact normal distribution has 

been used to describe the characteristics of contact fabric. The contact normal (n) 

illustrated in Figure 5.2 is the unit vector normal to the plane between two contacting 

particles. Figures 5.11, 5.12, and 5.13 show the polar histogram of the contact normal 

distribution at the start of loading, end of loading, and end of unloading cycles for all four 

orientation angles. The contact normal distribution of the sample after material generation 
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and confinement is shown in Figure 5.11 for all cases of θ. The distribution in Figure 

5.11 reveals that the sample generation and confinement really yielded inherently 

anisotropic conditions. At θ = 30° and 60°, the anisotropy was more evident compared to 

when θ = 0° and 90°. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Polar Histogram of Contact Normals at the Start of Loading 

 

 

Figure 5.12 shows the distribution of the contact normals at the end of the loading 

cycle. It is evident that the strain loading led to an increase in inherent anisotropy (i.e., 

induced anisotropy). This is because during loading, more contacts are broken in the 

(a) θ = 0° (b) θ = 30° 

(c) θ = 60° (d) θ = 90° 
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loading direction (vertical), and new contacts are formed but oriented at angles between 

100–130° from the horizontal axis.  

However, during the unloading cycle, the highly induced anisotropy in Figure 

5.12 changes into almost isotropic fabric (Figure 5.13) for all θ = 0°, 30°, 60°, or 90°. 

Additionally, the distribution becomes more extended and skewed in the northeast 

direction after unloading compared to nearly unbiased distribution at the start of loading 

in Figure 5.12. Figure 5.12 and 5.13 indicate that loading produces more pronounced 

induced fabric anisotropy than unloading.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12. Polar Histogram of Contact Normals at the End of Loading 

(a) θ = 0° (b) θ = 30° 

(c) θ = 60° (d) θ = 90° 
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Figure 5.13. Polar Histogram of Contact Normals at the End of Unloading 

 

 

Additionally, the direction of the contact normals for θ = 0° and 90°, which were 

initially skewed to the northwest direction tends to rotate back to its original preferred 

orientation towards the principal direction of unloading. A contour plot of the contact 

forces at the end of unloading  for the sample θ = 0° is shown in Figure 5.14. It is 

observed in Figure 5.14 (a) that the contact force is randomly distributed within the 

sample.  To illustrate this observation further, a series of lines (at 0°, 30°, 60°, and 90°) 

were drawn across the contour surface. Contact force was probed at points along these 

lines and is displayed in Figure 5.14 (b). As the cutting plane line reduces from 90° to 0°, 

the microstructural contact force increases along the length of the line (cutting plane).  

 

(a) θ = 0° (b) θ = 30° 

(c) θ = 60° (d) θ = 90° 
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Figure 5.14. Particle Contact Force after Unloading: (a) Contour Map and (b) 

Distribution of Contact Forces Along Different Lines 

 

 

The highest contact force is experienced along the line θ = 0°, which happens to 

be the orientation angle for the sample. Distribution of particle-particle contact forces at 

the end of loading is illustrated in Figure 5.15 for θ = 0°, 30°, 60°, or 90°. It is observed 

that when θ = 0° and 90°, the contact forces are partly distributed within the sample 

domain with some few pockets of islands that carry the maximum magnitude. However, 

for θ = 30° and 60°, the contact force distributions are mostly skewed towards the 

direction of the particle orientation. This is because the number of active contacts is less 

for θ = 30° and 60° than for θ = 0° and 90°. The number of active contacts is 3658 and 

3575 for θ = 30° and 60°, and 3085 and 3097 for θ = 0° and 90°. 

5.1.2. Viscoelastic Modeling of Oil Sands.  Results of the micromechanical 

modeling and simulation of the viscoelastic behavior of 8.5% and 13.5% bitumen oil 

sands at temperature of -30°, 0°C, 10°C, and 30°C subjected to 5 Hz and 10 Hz loading 

frequencies are presented in Figure 5.16–5.25. Figure 5.16 shows the applied sinusoidal 

stress and the resulting vertical stress. The resulting vertical stress is calculated from the 

average reaction forces exerted by the digital sample on the top and bottom walls, and 

divided by the area of the walls. The reaction stress is also sinusoidal in shape, but with 

higher amplitude. This is because the sample is very dense, and thus, more active 

particle-wall contacts exist.  

 

 

90° line 

0° line 

30° 

line 

60° 

line 

(a) 
(b) 
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Figure 5.15. Contour Plots of the Contact Force Distribution 

 

 

Figure 5.17 shows the macroscopic axial strain response for 8.5% and 13.5% 

BCW oil sands computed from the relative displacement of the loading platens due to the 

application of three loading cycles at a frequency of 10 Hz. High strain accumulation was 

observed for the first loading cycle for all temperatures, but the accumulation decreases 

gradually as the loading cycle increases, as shown in Figure 5.17 (a) and (b). Generally, 

for the same loading frequency, the magnitude of the strain decreases as loading 

frequency and temperature increase. As expected, the oil sand material becomes softer at 

higher temperatures, and thus, undergoes high deformation under loading. The 
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viscoelastic response of the oil sand material is depicted in the reduction of strain 

accumulation with the increase of loading cycle for all temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Vertical Stress on the Loading Platens 

 

 

The reduction in maximum and minimum strain peak as the loading cycle 

increases is due to the slippage and rearrangement of the discrete quartz particles under 

loading. This phenomenon leads to some permanent deformation on the removal of the 

load. Table 5.1 shows the calculated resilient and permanent strain at the end of the third 

load cycle. From Table 5.1, as temperature increases, both the resilient and permanent 

strains also increase for all bitumen content. Similarly, as the bitumen content increases, 

the strains increase as well. Additionally, it is evident that as temperature increases, the 

material becomes more viscous (plastic), and thus, attains high permanent strain after 

unloading. Figure 5.18 shows the accumulated mechanical  energy due to boundary work 

at each time step for the first loading cycle at 10 Hz. The boundary work is the sum of the 

dot product of the wall contact force/moment and the incremental translational/angular 
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displacement. More work is done by the wall as temperature increases from -30°C to 

30°C. This is because the bitumen flows at higher temperatures, making the quartz grains 

more pronounced and become the load-bearing media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Strain Response under Constant Stress Amplitude Loading  

 

(a) 

-0.04528 

-0.04375 

(b) 

-0.04492 

-0.04345 
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Table 5.1. Resilient and Permanent Deformations under Cyclic Loading 

Temperature 

(°C) 

Resilient strain (%) Permanent Strain (%) 

13.5% BCW 8.5% BCW 13.5% BCW 8.5% BCW 

-30 0.994 0.979 0.035 0.031 

0 1.039 1.01 0.037 0.033 

10 1.076 1.06 0.04 0.037 

30 1.115 1.104 0.038 0.039 

 

The stress/strain response behavior (i.e., hysteresis loop) is presented in Figure 

5.19 at the corresponding loading frequencies (5 and 10 Hz). The area under the loop 

(i.e., the viscoelastic dissipated energy) decreases with increasing loading frequency at -

30°C. However, the area under the loop increases as loading frequency decreases. This 

implies that the viscoelastic dissipated energy increases with cyclic loading. Figure 5.20 

shows the bar plot illustrating the cumulative effect of temperature and bitumen 

content/frequency on the amount of energy dissipated at the end of the loading cycle. 

 

 

 

Figure 5.18. Mechanical Energy Accumulated by Walls 
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The dissipated energy is reduced as frequency changes from 10 to 5 Hz for all 

temperatures. This means that the amount of bitumen content in the oil sands formation 

affects the rate of viscoelastic energy dissipated during loading. The rates of change of 

energy dissipated as temperature increases from -30°C to 30°C are approximately 1.41%, 

1.23%, 1.39%, and 1.21%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19. Hysteresis Loop at the End of First Loading Cycles 

 

 

5.2. DIRECT SHEAR TEST 

The simulation results of an 8.5% BCW oil sands under direct shear loading is 

presented to explore the relationship between particle interactions and macroscopic 

behavior. Figures 5.21 to 5.23 show the macroscopic shear stress to normal stress ratio 

(τ/σ), where τ is the shear stress, and σ  is the normal stress on the shear band in Figure 

4.16 (a) for different confining normal pressure (cf), temperature (t), and microscopic 

model parameters. 
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Figure 5.20. Effect of Bitumen Content and Temperature on Viscoelastic Energy 

Dissipated 

 

 

Figure 5.21 shows the evolution of the ratio of shear to normal stress acting in the 

shear band and evolution of the normalized vertical displacement, v/H, of the top platen 

versus the normalized horizontal displacement, h/l, of the upper box (H and l are height 

and length of the specimen, respectively). It can be seen that the stress ratio is similar for 

case-100-I (cf =100 kPa, t=-30°C) case-200-I (cf =200 kPa, t=-30°C), case-350-I (cf 

=350 kPa, t=-30°C), and case-500-I (cf =500 kPa, t=-30°C) and cases 200-II (cf =200 

kPa, t=30°C), 350-II (cf =350 kPa, t=30°C), and 500-II (cf =500 kPa, t=30°C) are also 

similar, as illustrated in Figure 5.21 (a). However, the peak stress ratio is different due to 

the different applied normal stress values. Figure 5.21 (c) represents the evolution when 

the displacement is 1.25e-3m. The plot shows a response typical of dense granular media 

during shearing. As illustrated in Figure 5.21 (c), the oil sands exhibit very stiff response 

during the initial shearing and gradually grow to reach maximum stress at very small 

displacement. This is followed by strain softening in the cases of case-100-I, case-200-I, 
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case-350-I, and case-500-I. Conversely, for cases 200-II, 350-II, and 500-II, no 

distinctive peak stress is observed, but it reaches an average asymptotic value of 0.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Evolution of: (a) Shear Stress to Normal Stress Ratio with Normalized 

Horizontal Displacement and (b) Normalized Vertical Displacement with Normalized 

Horizontal Displacement, and (c) Insert Plot of (a) 

(a) 

(b) 

(b) 
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Figure 5.21. Evolution of: (a) Shear Stress to Normal Stress Ratio with Normalized 

Horizontal Displacement, (b) Normalized Vertical Displacement with Normalized 

Horizontal Displacement, and (c) Insert Plot of (a) (Cont.) 

 

It can also be seen that as the confining stress increases from 100 to 500 kPa, the 

stress ratio also increases in Figure 5.21 (c). The vertical displacement of the top platen 

represents the overall volume change of the specimen. Figure 5.21 (b) shows that the oil 

sands undergo dilatancy during shear, which is characteristic of granular materials. 

During the early part of the simulation, the top platen is slightly lowered due to the 

normal pressure causing contraction and then translated vertically to accommodate the in-

situ stress due to dilatancy. The volume increase is linear up until h/l = 0.02 and then 

begins to increase nonlinearly. Figure 5.22 shows the profile of the particles’ vertical 

displacement after maximum shear displacement is reached, which corresponds to the 

upper box translational movement of 7.2e-3 m. Figure 5.22 (a) shows that the shear band 

is localized within a small layer of material. The thickness of the shear band is 

approximately 0.0165 m for case-100-I, case-200-I, case-350-I, and case-500-I. For cases 

200-II, 350-II, and 500-II, the thickness is 0.02 m. This implies that as the particle-wall 

friction increases, the shear band increases as well. This shear band thickness is estimated 

to be 30–40 times the maximum particle diameter.  

(c) 
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Figure 5.22. Particle Displacements in the Vertical: (a) Horizontal Displacement and (b) 

Vertical Displacement 

 

Figure 5.22 (b) validates the earlier observation of macroscopic dilatancy 

measured by the vertical displacement of the top platen during shearing.The vertical 

L = 0.0165 m 
L = 0.02 m 

(a) 

(b) 
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displacement of the particles shows some erratic up and down movements with the 

maximum of 3e-4 m occurring at case-100-I. This indicates that the higher the confining 

pressure, the lower the vertical displacements, and thus, the smaller macroscopic 

dilatancy. Further micro-scale analysis of the particle displacement is illustrated in the 

contour lines in Figure 5.23 for case-350-I. Large displacement occurs at the mid-height 

of the specimen and the contour lines increase gradually towards the top and bottom 

walls. A series of plots showing the evolution of particles rotations as the shear 

displacement is increased from 0 to 3e-3 m is illustrated in Figure 5.24 for case-350-II. As 

expected, the particle rotations are found to be larger and concentrated in the mid-plane 

of the domain as the shear strain increases. The rotations consist of both clockwise and 

counterclockwise patterns. The microstructure pattern within the shear band shows a 

localized shear-induced anisotropy. As illustrated in Figure 5.24 (a), (b), and (c), few 

particle rotations are randomly distributed in the domain but start to develop gradually 

from the mid-plane and spread towards each of the shear boxes.  

As the strain deformation increases in Figure 5.24 (d) (onset of localization 

appears at this stage), the rotation concentrates into a central band in Figure 5.24 (e), 

where the shear is fully developed at large strain. This implies that during shearing, the 

particles in the distinctive shear band rotate more significantly than the particles outside 

the band. The particles outside the shear band are characterized by the green color (0–

10°), and those within the band are colored in blue (counterclockwise) and red 

(clockwise). The contour distribution of contact stresses in the oil sands at the end of the 

shear strain is in Figure 5.25.  

Both Figures 5.25 (a) and (b) show a nonuniform distribution of particle stresses, 

thus exhibiting anisotropy. The color intensity represents the stresses in the entire system 

of particles. The stresses propagate through the bitumen phase mainly along the direction 

of the diagonal going from the top left to the lower right of the shear box because the 

stiffness of the bitumen is smaller compared to the quartz grains. The contour plot also 

confirms the earlier observation that high normal confining pressure leads to high internal 

stresses. 
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Figure 5.23. Particle Displacement Contours: (a) Case-350-I and (b) Case-350-II 

 

 

5.3. CRAWLER SHOE-OIL SANDS INTERACTIONS 

The simulation results for crawler shoe-oil sands interactions of a P&H 4100 

BOSS ERS in Figure 4.23 are presented in Figures 5.26–5.31 for different test 

experiments. Figure 5.26 shows the evolution of contact force network and how the force 

is propagated through the system for test-030-30.  
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Figure 5.24. Evolution of Particle Rotations during Horizontal Displacement of Upper 

Box at: (a) 0 m, (b) 7.5e-4 m, (c) 1.5e-3 m, (d) 2.25e-3 m, and (e) 3e-3 m 

 

(a) (b) 
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The test nomenclature is defined as follows: test-030-30 (at t = -30°C and contact 

friction angle = 30°) and vice versa. In the figure, line segments are drawn connecting the 

centroid of contacting particles, thereby creating a spatial variation in the inter-particle 

contact forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25. Distribution of Contact Stresses under Normal Pressure of: (a) 200 kPa and 

(b) 350 kPa 

 

 

The thickness of the line segments is proportional to the magnitude of the force. 

The color intensity characterizes whether tension or compression force is transmitted.  
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Figure 5.26. Network of Contact Forces at Different Loading Positions 

 

(a) – Before Crawler Interactions 

(b) – Tucked in face 

(c) – Full in face 
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Figure 5.26. Network of Contact Forces at Different Loading Positions (Cont.) 

 

(d) – Full corner 

(e) – Empty spot 

(f) – Empty face 
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From Figures 5.26 (a)–(f), it is clear that the distribution of the in-situ contact 

force fabric is nonuniform and changes continuously with loading cycle of the ERS. The 

contact force fabric in Figure 5.26 (a) is approximately uniform (appears quite isotropic) 

prior to crawler shoe interactions with some few heavily loaded line segments. Figure 

5.26 (b) shows the distribution when the ERS crawler shoes interact with the oil sands 

formation, where a preferred orientation is observed. The static machine weight is 

transmitted during this cycle to the ground. The reaction force on the crawler shoes as 

illustrated in Figure 5.27 is also cyclic as the input load in Figure 4.25 (b).  

The contact forces propagate uniformly from below the machine bearing area and 

transmit through the bitumen phase, which has less stiffness at high temperatures. 

Contacts are broken (at the top left and right corners), and new contacts are also formed 

(below the bearing area) during this cycle. The almost zero-force fabric at the top left and 

right corners of the domain is due to the collapse of contacts caused by high porosity in 

that area. The recorded porosity in that area is approximately 0.1375, compared to 0.1107 

recorded below the bearing area. This observation is further evident by high particle 

displacement in Figure 5.28.  

 

 

Figure 5.27. Contact Forces on Crawler Shoes at the End of the Third Loading Cycle 

Shoe 7-8 

Shoe 9-10 
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As the loading, swing loaded, dump, and swing empty cycles continue, Figures 

5.26 (a)–(f) demonstrate the contact force network within the system. The maximum 

inter-particle contact force of 1.7687e5 N was recorded in Figure 5.26 (c). The contact 

force on the crawler shoes with respect to vertical displacement is shown in Figure 5.29 

for both shoes 7-8 and 8-9, respectively. It can be seen that the profile is similar in all 

cases with maximum values of the contact force of 0.4 MN (at front shoes) and 0.198 

MN (at rear shoes). Additionally, test-30-45 and test-30-30 lags test-30-50. This means 

the test with the smaller internal angle of friction (test-30-30) between contacting bodies 

exhibits high displacement in the first loading cycle and gradually decreases in the 

subsequent second and third loading cycle in Figures 5.29 (a) and (b).  

The stress and strain material response within the domain is illustrated in Figure 

5.30 for each test case in the principal xx- and yy-directions. Both the stress and strain 

responses are cyclic, similar to the input loads. This response behavior is due to the 

viscoelastic properties of the oil sands. 

 

 

 

Figure 5.28. Displacement Contour Profile at the End of the Third Loading Cycle 
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Figure 5.29. Contact Force with Respect to Displacement: (a) Shoes 9-10and (b) Shoes  

7-8 
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Figure 5.30. Oil Sands Response: (a) Strain and (b) Stress 
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(b) 
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The effect of ambient temperature and internal angle of friction on the strain is 

evident in Figure 5.30 (a). In this figure, as the internal angle of friction increases from 

50° to 45°, the lateral strain increases steadily at the same temperature, and the opposite 

is true in the axial direction. Conversely, at the same internal angle of friction, both the 

ϵxx and ϵyy increase as the temperature decreases from 30°C to -30°C. This is because the 

particles tend to rearrange and settle in the long axes. This tendency displaces more 

particles in the x-direction under the axial shovel loading. While the ϵxx response shows 

strain-hardening behavior because of the particle velocity flow trend (in Figure 5.31), the 

ϵyy exhibits strain-softening behavior. Figure 5.31 shows the particle velocity flow field 

within the domain. It can be observed that most particles tend to flow away from the 

loading y-direction towards the x-direction, accounting for the high ϵxx compared to ϵyy. 

The flow field is significantly different at the front crawler side with particles flowing in 

the x-direction compared with the rear crawler side where particles flow down. A 

snapshot of the displacement contour plots in the vertical direction is illustrated in Figure 

5.32. The figure shows the extent of the deformed region at the end of the third loading 

cycle, when the ambient temperature is varied from -30°C to 30°C and angle of internal 

friction from 30° to 45°. 

 

 

Figure 5.31. Particle Instantaneous Velocity Field 
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With increasing angle of internal friction at a constant temperature, the depth of 

the deformed profile increases. This is because high friction angle leads to high resistance 

to particle rearrangement. Similarly, with increasing ambient  temperature at a constant 

angle of internal friction, the deformation is decreased. The permanent rutting caused by 

the crawler shoes varies from 0.0079 m to 0.0083 m. Figure 5.33 shows the strain contour 

and probed plots along the horizontal length of the domain. It can be seen that the strains 

are localized in the front and rear side of the crawler shoes, where the maximum strain is 

concentrated in Figure 5.33 (a). An in-situ analysis is performed to provide understanding 

into the strain evolution beneath the crawler bearing area. Figure 5.33 (b) shows the strain 

plots for the horizontal line drawn below the crawler shoes. The sinkage and the 

undulating surface caused at the end of the loading cycle is a major cause of fracture and 

fatigue failure of carbodies and lower assembly of ERS. 

 

5.4. SUMMARY 

This section presents the simulation results of three numerical tests: cyclic biaxial 

test, direct shear test, and crawler shoe-oil sands interactions. Both the direct shear test 

and crawler shoe-oil sands interactions were conducted on an idealized oil sand digital 

sample where the bitumen phase was modeled as a thin layer at each particle-particle 

contact. Two series of numerical simulation of the cyclic biaxial test have been 

performed to examine the anisotropy under cyclic loading and viscoelastic behavior of oil 

sands. These two tests have provided useful micro-scale results to understand the 

micromechanical and microstructural material behavior better. In the anisotropy study, 

four different inherent anisotropic conditions were created with four particle orientations: 

θ = 0°, θ = 30°, θ = 60°, and θ = 90°. The results of the test showed that inherent 

anisotropic conditions affect the volumetric deformation of the bitumen-free oil sands 

and qualitatively agree with the work of Touhidi-Baghini [54]. In the second cyclic 

biaxial test series, a viscoelastic model for oil sand as developed in Section 4 was 

simulated under cyclic compressive loading. The test was performed on 8.5% and 13.5% 

bitumen oil sands at a temperature of -30°, 0°C, 10°C, and 30°C subjected to 5 Hz and 10 

Hz loading frequencies. 
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Figure 5.32. Displacement Contour Plots 

 

 

To study the micromechanical behavior within the material, four types of contacts 

were considered: aggregate-aggregate, aggregate-bitumen, and aggregate-water-bitumen 

contacts. The quartz aggregates were modeled as discs bonded together, and the linear 

contact model was defined by the interaction among the aggregates. The time- and 

temperature-dependent bitumen were modeled with the viscoelastic material model. 

Contact interactions within the bitumen and bitumen-quartz were defined with the 

Burgers model. High strain accumulation was observed for the first loading cycle for all 

temperatures, but the accumulation decreases gradually as the loading cycle increases. 
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Numerical simulation of the direct shear test has been performed on an 8.5% 

BCW sample to understand its micromechanical shear behavior, anisotropy, dilatancy, 

and strain localization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.33. Strain Contours: (a) for Test-030-30 and (b) Strain Plots Over Horizontal 

Distance Across Domain 

 

(a) 

(b) 

Sinkage 
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In this test, different normal confining pressures and microscopic model 

parameters were simulated to explore the relationship between particle interactions and 

macroscopic behavior. The contour distribution of contact stresses in the oil sands at the 

end of the shear strain shows a nonuniform distribution of particle stresses, thus 

exhibiting anisotropy. The stresses propagate through the bitumen phase mainly along the 

direction of the diagonal going from the top left to the lower right of the shear box 

because the stiffness of the bitumen is smaller compared to the quartz grains. 

Crawler shoes interacting with oil sands were also simulated for a P&H 4100 

BOSS ERS. The contact forces at the crawler-oil sands interface propagate uniformly 

from below the machine-bearing area and transmit through the bitumen phase, which has 

less stiffness at high temperatures. Contacts are broken (at the top left and right corners), 

and new contacts are also formed (below the bearing area) during this cycle. The almost 

zero-force fabric at the top left and right corners of the domain due to the collapse of 

contacts caused by high porosity in that area. 
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

This section provides highlights of the essential results, conclusions, contributions 

to the body of knowledge, and recommendations for future studies. The summary gives 

the procedures used to achieve the primary and secondary objectives of the study. A 

concise (numbered) list of all the important points central to this study is also presented 

to provide a link  between the research objectives and the list of significant achievements. 

The section also presents the original contributions from this study and how they advance 

knowledge and frontiers in the research area. The research constraints and limitations, 

important directions for improved results, and research areas not covered in the current 

study are listed in the recommendation for future study. 

 

6.1. SUMMARY 

Oil sands are a dense granular material with pore spaces whose two main physical 

compositions are quartz grains and large quantities of interstitial bitumen. The pore 

spaces are also filled with dissolved gasses and water [13]. The water is a thin film (~10 

nm) that surrounds the quartz grains (about 99% water-wet) [163]. The connate water 

fills 10-15% of the pore spaces, and the remaining is occupied by bitumen [13]. 

According to Hein [1], an estimated 5.6 trillion bbls of bitumen and heavy oil resources 

are found in the world, out of which approximately 70% are hosted in Venezuela, 

Canada, and the USA. As the demand for petroleum and petroleum products increases, 

the conventional petroleum energy resources are not able to meet this demand. Thus, 

unconventional oil resources such as bitumen (oil sands) and heavy oil must fill the gap. 

Canada and the United States hold the largest bitumen and heavy oil recoverable reserves 

in the world (~38.31%) [1]. These reserves present a major source for secure and reliable 

energy needs of North America. 

Large surface mining machinery such as electric rope shovel is employed to mine 

the overburden and oil sands of the near-surface deposits for crude oil production. This 

equipment constitutes approximately 19% of the cost elements in a typical oil sands cost 

[164]. These equipment units impose varying magnitudes of static and dynamic loading 

in both the horizontal and vertical directions to the ground during excavation.  
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The resulting forces from the loading and unloading operations cause equipment 

sinkage/rutting, lower frame fatigue failure, wear, and tear of crawler shoes. Thus, it is 

necessary to develop comprehensive machine/earth interaction constitutive models for 

such materials to analyze their mechanical behavior under loading based on the discrete 

element method (DEM). 

Research studies on oil sands have focused on using traditional laboratory tests to 

provide stress-strain behavior to understand their usual high shear strength. No 

fundamental research studies have yet been carried out on oil sands-crawler interactions 

using the particle-based method. This research study includes development and 

implementation of an oil sand materials as a four-phase particulate media based on the 

DEM technique for general machine/earth interaction. Furthermore, a multiphase 2D 

digital sample of oil sands is built and simulated in PFC2D. 

The following concise list summarizes the detailed procedures used to achieve the 

research objectives: 

1. The introduction provides the background information for this research, highlighting 

key areas of previous research limitations and constraints. The section also puts the 

study in perspective with respect to the broader scientific and technical impact and 

briefly describes similar/related studies.   

2. A comprehensive review of the literature underlying the research in micromechanical 

modeling and simulation of oil sand material using the DEM technique was carried 

out. The review also covered previous work done in oil sand materials, physical and 

mechanical behavior, and discrete element modeling of particulate media. The 

analysis of the internal structure of oil sand material by means of a discrete element 

method is powerful and has great promise. Although it is computationally expensive, 

it can serve to conceptually understand the microscale deformation mechanisms 

inside the composite and their relation to the bitumen viscoelastic properties. DEM 

has the ability to model the complex geometry of the internal structure, which can be 

incorporated along with realistic viscoelastic contact models to better simulate the 

time and temperature dependence of the oil sand behavior. 

3. The characterization of the viscoelastic rheological properties of the multiphase oil 

sand material has been successfully calibrated. Also, a methodology for nonlinear 
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curve fitting for mechanical constants for the generalized Burgers model was 

developed. Master curves were constructed for each test temperature using the TTSP. 

4. Numerical simulations were carried out on both bitumen-free oil sands and oil-rich oil 

sands under direct shear test (DST) and biaxial cyclic test (BCT) to explore the 

underlying micromechanical mechanics of the unique behavior of the material. 

Numerical simulations of crawler-oil sands interactions are also simulated. These 

numerical tests are performed under quasistatic conditions for various stress and 

strain paths in which inertia effects are negligible. Verification and validation of the 

numerical results are evaluated.  

5. Results of several numerical experiments conducted in Section 4.0 are analyzed and 

discussed thoroughly. Simulation results of three numerical tests—cyclic biaxial test, 

direct shear test, and crawler shoe-oil sands interactions—are discussed. Both the 

direct shear test and crawler shoe-oil sands interactions were conducted on an 

idealized oil sand digital sample where the bitumen phase was modeled as a thin layer 

at each particle-particle contact. Two series of numerical simulation of the cyclic 

biaxial test were performed to examine the anisotropy under cyclic loading and 

viscoelastic behavior of oil sands. 

 

6.2. CONCLUSIONS 

A solid foundation was laid to provide justification of this research endeavor by 

carrying out a comprehensive literature survey to examine the existing body of 

knowledge on geotechnical properties of oil sands, microstructural and micromechanical 

modeling and simulation of bituminous materials, and characterization of the linear 

viscoelastic behavior. The results of the survey have established the frontier and provided 

means of filling in the gaps in this research domain. Additionally, the results of the 

literature survey concluded that no previous studies had been conducted for solving the 

problems outlined in Section 1.0 in this research effort. Therefore, this research is a 

pioneering effort to provide contributions, knowledge, and understanding of ERS crawler 

shoe-oil sands interactions based on the DEM technique for efficient excavation of oil 

sands formation.  
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This research study is limited to DEM microstructural and micromechanical 

modeling of bituminous oil sands under varying ambient temperatures and loading. The 

study focuses on developing a comprehensive particle-based model for both bitumen-free 

and bituminous oil sands using the DEM technique.  However, the formulations and 

models can be applied to other geomaterials as found in the Powder River Basin coal, 

Iron Ranges of the Lake Superior region, and other composite particulate materials. The 

results of this research will lead to the development and application of comprehensive 

DEM models for oil sands interactions with various tools/implements, and integration of 

these models into machine performance simulation for evaluating new product design 

and development. Consequently, providing understanding into crawler shoe wear and 

fatigue failure, and plastic deformation of oil sands formation during loading. All the 

research objectives outlined in Section 1.0 have been achieved within the research scope.  

From the characterization of the linear viscoelastic rheological properties of 

bitumen, the following conclusions can be drawn: 

1. Both temperature and loading frequency affects the viscoelastic rheological properties 

of bitumen and the oil sands mixture. 

2. At a higher temperature, the bitumen dissipates more energy (viscous behavior) than 

stores elastically and thus behaves as a Newtonian fluid. 

3. Conversely, at below zero temperatures, the bitumen behaves as elastic material as 

more energy is stored than dissipated. The bitumen reaches a constant stiffness at 

very low temperatures. 

4. As the loading frequency increases, the rate of energy loss and storage also increases. 

5. The GRG nonlinear algorithm based on the generalized reduced gradient code in 

Excel Solver was used to obtain the viscoelastic microscopic parameters through 

curve-fitting.  

6. The curve-fitting process was sensitive to scatter in the experimental data. 

7. The model fitting was poor at low frequencies for the loss modulus, as well as at high 

frequencies for the storage modulus. 

8. The existing four-parameter Burgers model did not provide a good fit for the oil sands 

material viscoelastic parameter calibration. The sum of squares mean (SSM) was 

34.09 after the fitting. 
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9. The generalized Burgers model made of five Kelvin—Voigt elements provided a 

good fit for the calibration of oil sands material. The SSM has a maximum, a 

minimum, and an average SSM of 3.18, 1.0467, and 2.54, respectively. 

A 2D digital sample of bitumen-free, 8.5% BCW, and 13.5% BCW were modeled 

and simulated in PFC2D to provide understanding into the microscale behavior. A cyclic 

biaxial test is developed to study inherent anisotropy of bitumen-free oil sands under 

cyclic compressive loading. Viscoelastic micromechanical and microstructural model of 

8.5% and 13.5% BCW under different loading frequencies and temperatures is developed 

and simulated. The direct shear test is performed under varying constant normal stress 

conditions to study the formation of the shear band and force propagation within the 

particle system. Crawler shoes interactions in oil sands formation excavation is modeled 

and simulated to provide understanding into coupled deformation-stress behavior. 

The following conclusions can be drawn from the simulation results of the 

anisotropy test. 

1. The new two-step approach (in Figure 5.3) yielded the preferred angle of orientation 

of particles at the end of the particle generation and compression. Thus, the inherent 

anisotropy of oil sands was correctly modeled. 

2. The magnitude of contact forces at particle-particle contacts is slightly skewed in the 

direction of the preferred particle orientation. 

3. The stress distribution within the sample for any given preferred particle orientation 

depends on the number of contacts. 

4. The deviator stress is constant for all particle orientation within 0.025% axial strain 

during both loading and unloading. 

5. The magnitude of the volumetric deformation is dependent on the preferred particle 

orientation. 

The following conclusions can be drawn from the simulation results of the 

viscoelastic micromechanical model. 

1 Reaction stress on the loading platen is also sinusoidal in shape but with high 

amplitude. 

2 High strain accumulation was observed for the first loading cycle for all temperatures. 

3 The magnitude of the strain decreases as loading frequency and temperature increase. 
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4 Slippage and rearrangement of the discrete quartz particles lead to a reduction in 

accumulated strain. 

5 High bitumen content leads to high resilient and permanent strain. 

6. The amount of viscoelastic dissipated energy decreases with increasing loading 

frequency. 

The following conclusions can be drawn from the simulation results of the direct 

shear test. 

1 Oil sands exhibit very stiff response during the initial shearing and gradually grow to 

reach maximum stress at very small displacement. 

2 High particle-wall friction angle leads to the high shear band at the shear interface. 

3 The microstructural pattern within the shear band shows a localized shear-induced 

anisotropy. 

4 A nonuniform distribution of particle stresses occurs within the domain. The stresses 

propagate through the bitumen phase along the direction of the diagonal of the shear 

box. 

The following conclusions can be drawn from the simulation results of crawler-oil 

sands interactions. 

1. The distribution of the in situ contact force fabric is nonuniform and changes 

continuously with loading cycle. 

2. The contact forces on the crawler shoes are cyclic. These forces propagate through 

the bitumen phase, which has less stiffness at high temperatures. Conversely, at low 

temperature, the force propagation occurs through the finite contact area at the quartz-

quartz contact points. 

3. The contact force with respect to displacement shows a phenomenon where high 

vertical displacement is recorded during the first loading cycle but reduces in the 

subsequent cycles.  

4. The contact fabric within the sample shows both weak and strong induced anisotropy. 
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6.3. CONTRIBUTIONS OF PHD RESEARCH 

The following constitute the key contributions of this PhD study. 

1. This is the first attempt to comprehensively model oil sands as a four-phase material 

based on the dynamic interactions between discrete particles, and calculating the 

particle translational and rotational velocities using contact mechanics.  

2. This research initiative is a pioneering effort toward understanding shovel crawler-oil 

sands interactions using a microstructural and micromechanical particle-based 

mechanics approach. It advances the frontiers of the development of machine/earth 

interaction models to support machine performance simulations in order to examine 

fatigue failure and wear and tear of lower assemblies and ground engaging tools.   

3. This work introduces a two-step approach to completely calibrate the viscoelastic 

model parameters of oil sands using the generalized Burgers model with five 

Kelvin—Voigt elements. This research advances the frontier of mechanistic, linear 

viscoelastic modeling of bituminous composite material. 

4. This is the first attempt to incorporate the thin film of water that surrounds the quartz 

grains into oil sands modeling. This has been made possible by implicitly modeling 

the water via a force model (liquid bridge model) that mechanistically computes the 

capillary force between the particles. Surface tension develops at the quartz-water-

bitumen interface, which imparts this capillary force onto the individual particles. 

5. This work provides a potential basis for demonstration of machine performance 

simulation technologies for evaluating new machine designs for product development 

for workplace safety and operators’ health and safety in surface mining operations.  

This will further maximize the useful economic lives of ERS, machine availability, 

and production economics and minimize maintenance and production costs. 

 

6.4. RECOMMENDATIONS 

The following areas could significantly advance knowledge and create frontiers 

for future research. 

1. Due to lack of nonlinear DSR experimental data, the viscoelastic parameter 

calibration considered the only linear model.  
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Further work is thus necessary to fully calibrate the oil sands viscoelastic model based on 

nonlinear DSR experimental data. 

2. The huge computational cost involved in DEM simulation and the inability of PFC 

software to run on the cluster lead to modeling and simulating this work in the 2D 

domain. However, the 2D models lack the ability to fully model physical phenomena 

that are 3D in nature even though the results showed good agreement with 

experimental and field data. This is because in 2D modeling only two force 

components and one-moment component exist, as opposed to the three force 

components and three-moment components that exist in a 3D model. The out-of-

plane force component and the two in-plane moment components are not considered 

in the particle kinematics and contact mechanics calculations. Additionally, the 

particle size was scaled up to reduce the number of contacts and consequently reduce 

the CPU time. All these modeling assumptions and limitations lead to 

underestimation of the real material behavior. 

3. Future work can focus on building a full-scale 3D DEM model that will capture all 

the constituents of the oil sands. 
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APPENDIX A. 

USER-DEFINED CONTACT MODEL (LIQUID BRIDGE-BURGERS MODEL) 
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#pragma once 

// contactmodelburgerfcap.h 

 

#include "contactmodel/src/contactmodelmechanical.h" 

 

#ifdef burgerfcap_LIB 

#  define burgerfcap_EXPORT EXPORT_TAG 

#elif defined(NO_MODEL_IMPORT) 

#  define burgerfcap_EXPORT 

#else 

#  define burgerfcap_EXPORT IMPORT_TAG 

#endif 

 

namespace cmodelsxd { 

    using namespace itasca; 

 

    class ContactModelburgerfcap : public ContactModelMechanical { 

    public: 

 

        enum PropertyKeys {  

              kwKnK=1 

            , kwCnK                             

            , kwKnM 

            , kwCnM                             

            , kwKsK                             

            , kwCsK                             

            , kwKsM 

            , kwCsM                             

            , kwMode 

            , kwFric    

            , kwF 
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            , kwS 

            , kwCapPhi 

            , kwCapSTen 

            , kwCapDCreate 

            , kwCapDBreak 

            , kwCapF 

            , kwCapState 

        }; 

        

        burgerfcap_EXPORT ContactModelburgerfcap(); 

        burgerfcap_EXPORT virtual ~ContactModelburgerfcap(); 

        virtual void                copy(const ContactModel *c); 

        virtual void                archive(ArchiveStream &);  

   

        virtual QString  getName() const { return "burgerfcap"; } 

        virtual void     setIndex(int i) { index_=i;} 

        virtual int      getIndex() const {return index_;} 

       

        virtual QString  getProperties() const {  

            return " bur_knk" 

                   ",bur_cnk" 

                   ",bur_knm" 

                   ",bur_cnm" 

                   ",bur_ksk" 

                   ",bur_csk" 

                   ",bur_ksm" 

                   ",bur_csm" 

                   ",bur_mode" 

                   ",bur_fric" 

                   ",bur_force" 

                   ",bur_slip"; 
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                   ",cap_phi" 

                   ",cap_sten" 

                   ",cap_dcreate" 

                   ",cap_dbreak" 

                   ",cap_force"  

                   ",cap_state"; 

        } 

   

        //enum EnergyKeys { kwEStrain=1,kwESlip,kwEDashpot}; 

        //virtual QString  getEnergies() const { return "estrain,eslip,edashpot";} 

        //virtual double   getEnergy(uint i) const;  // Base 1 

        //virtual bool     getEnergyAccumulate(uint i) const; // Base 1 

        //virtual void     setEnergy(uint i,const double &d); // Base 1 

        //virtual void     activateEnergy() { if (energies_) return; energies_ = 

NEWC(Energies());} 

        //virtual bool     getEnergyActivated() const {return (energies_ !=0);} 

         

        enum FishCallEvents { fActivated=0, fSlipChange}; 

        virtual QString  getFishCallEvents() const { return "contact_activated,slip_change"; 

} 

        virtual QVariant getProperty(uint i,const IContact *) const; 

        virtual bool     getPropertyGlobal(uint i) const; 

        virtual bool     setProperty(uint i,const QVariant &v,IContact *); 

        virtual bool     getPropertyReadOnly(uint i) const; 

         

        //virtual bool     supportsInheritance(uint i) const;  

        //virtual bool     getInheritance(uint i) const { assert(i<32); quint32 mask = 

to<quint32>(1 << i);  return (inheritanceField_ & mask) ? true : false; } 

        //virtual void     setInheritance(uint i,bool b) { assert(i<32); quint32 mask = 

to<quint32>(1 << i);  if (b) inheritanceField_ |= mask;  else inheritanceField_ &= ~mask; 

} 
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        //enum MethodKeys { kwDeformability=1}; 

 

        //virtual QString  getMethods() const { return "deformability";} 

        //virtual QString  getMethodArguments(uint i) const;  

        //virtual bool     setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); 

// Base 1 - returns true if timestep contributions need to be updated 

             

        virtual uint     getMinorVersion() const; 

         

        virtual bool    validate(ContactModelMechanicalState *state,const double 

&timestep); 

        //virtual bool    endPropertyUpdated(const QString &name,const 

IContactMechanical *c); 

        virtual bool    forceDisplacementLaw(ContactModelMechanicalState *state,const 

double &timestep); 

         

  virtual DVect2  getEffectiveTranslationalStiffness() const { return 

DVect2(knk_,ksk_); } 

  //virtual DVect2  getEffectiveTranslationalStiffness() const { return 

effectiveTranslationalStiffness_;} 

        //virtual DAVect  getEffectiveRotationalStiffness() const { return DAVect(0.0);} 

         

        virtual ContactModelburgerfcap *clone() const { return 

NEWC(ContactModelburgerfcap()); } 

        virtual double              getActivityDistance() const {return 

std::max(cap_dcreate_,cap_dbreak_);} 

        virtual bool                isOKToDelete() const { return !isBonded(); } 

        virtual void                resetForcesAndMoments() { force_.fill(0.0); } 
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        virtual bool     checkActivity(const double &gap) { return (gap <= cap_dcreate_) || 

cap_state_ ; } 

         

        virtual bool     isSliding() const { return s_; } 

        virtual bool     isBonded() const { return cap_state_; } 

  virtual bool     endPropertyUpdated(const QString &name,const 

IContactMechanical *c); 

        virtual void     propagateStateInformation(IContactModelMechanical* oldCm,const 

CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes()); 

        virtual void     setNonForcePropsFrom(IContactModel *oldCM); 

         

        // Methods to get and set properties.  

        const double & knk() const {return knk_;} 

        void           knk(const double &d) {knk_=d;} 

        const double & cnk() const {return cnk_;} 

        void           cnk(const double &d) {cnk_=d;} 

        const double & knm() const {return knm_;} 

        void           knm(const double &d) {knm_=d;} 

        const double & cnm() const {return cnm_;} 

        void           cnm(const double &d) {cnm_=d;} 

        const double & ksk() const {return ksk_;} 

        void           ksk(const double &d) {ksk_=d;} 

        const double & csk() const {return csk_;} 

        void           csk(const double &d) {csk_=d;} 

        const double & ksm() const {return ksm_;} 

        void           ksm(const double &d) {ksm_=d;} 

        const double & csm() const {return csm_;} 

        void           csm(const double &d) {csm_=d;} 

 

        const double & fric() const { return fric_;} 

        void           fric(const double &d) {fric_=d;} 
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        uint           bmode() const {return bmode_;} 

        void           bmode(uint b) {bmode_= b;} 

 

        const double & fn0() const { return fn0_;} 

        void           fn0(const double &d) {fn0_=d;} 

        const double & u_n0() const { return u_n0_;} 

        void           u_n0(const double &d) {u_n0_=d;} 

        const double & u_nk0() const { return u_nk0_;} 

        void           u_nk0(const double &d) {u_nk0_=d;} 

        const DVect &  u_sk() const { return u_sk_;} 

        void           u_sk(const DVect &v) {u_sk_=v;} 

 

        const double & conAn() const { return conAn_;} 

        void           conAn(const double &d) {conAn_=d;} 

        const double & conB_An() const { return conB_An_;} 

        void           conB_An(const double &d) {conB_An_=d;} 

        const double & conCn() const { return conCn_;} 

        void           conCn(const double &d) {conCn_=d;} 

        const double & conDn() const { return conDn_;} 

        void           conDn(const double &d) {conDn_=d;} 

 

        const double & conAs() const { return conAs_;} 

        void           conAs(const double &d) {conAs_=d;} 

        const double & conB_As() const { return conB_As_;} 

        void           conB_As(const double &d) {conB_As_=d;} 

        const double & conCs() const { return conCs_;} 

        void           conCs(const double &d) {conCs_=d;} 

        const double & conDs() const { return conDs_;} 

        void           conDs(const double &d) {conDs_=d;} 

 

        const double & tdel() const { return tdel_;} 
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        void           tdel(const double &d) {tdel_=d;} 

        const DVect &  force() const { return force_;} 

        void           force(const DVect &v) {force_=v;} 

        bool           s() const {return s_;} 

        void           s(bool b) {s_= b;} 

 

        void    cap_phi(const double &d) {cap_phi_ = d;}  

        double  cap_phi() const {return cap_phi_;}  

        void    cap_sten(const double &d) {cap_sten_ = d;}  

        double  cap_sten() const {return cap_sten_;}  

        void    cap_dcreate(const double &d) {cap_dcreate_ = d;}  

        double  cap_dcreate() const {return cap_dcreate_;}  

        void    cap_dbreak(const double &d) {cap_dbreak_ = d;}  

        double  cap_dbreak() const {return cap_dbreak_;}  

        void    cap_volume(const double &d) {cap_volume_ = d;}  

        double  cap_volume() const {return cap_volume_;} 

        void    cap_f0(const double &d) {cap_f0_ = d;}  

        double  cap_f0() const {return cap_f0_;} 

        void    cap_decay(const double &d) {cap_decay_ = d;}  

        double  cap_decay() const {return cap_decay_;} 

        void    cap_force(const double &d) {cap_force_ = d;}  

        double  cap_force() const {return cap_force_;}  

        void    cap_state(bool b) {cap_state_ = b;} 

        bool    cap_state() const {return cap_state_;}   

 

        /*bool    hasEnergies() const {return energies_ ? true:false;} 

        double  estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;} 

        void    estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;} 

        double  eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;} 

        void    eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;} 

        double  edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;} 
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        void    edashpot(const double &d) { if(!hasEnergies()) return; energies_-

>edashpot_=d;} 

 

        uint inheritanceField() const {return inheritanceField_;} 

        void inheritanceField(uint i) {inheritanceField_ = i;} 

 

        const DVect2 & effectiveTranslationalStiffness()  const          {return 

effectiveTranslationalStiffness_;} 

        void           effectiveTranslationalStiffness(const DVect2 &v ) 

{effectiveTranslationalStiffness_=v;}*/ 

 

   private: 

        // Index - used internally by PFC. Should be set to -1 in the cpp file.  

        static int index_; 

 

        // Burger model properties 

        double  knk_;     // normal stiffness for Kelvin section  (bur_knk) 

        double  cnk_;     // normal viscosity for Kelvin section  (bur_cnk) 

        double  knm_;     // normal stiffness for Maxwell section (bur_knm) 

        double  cnm_;     // normal viscosity for Maxwell section (bur_cnm) 

        double  ksk_;     // shear stiffness for Kelvin section   (bur_ksk) 

        double  csk_;     // shear viscosity for Kelvin section   (bur_csk) 

        double  ksm_;     // shear stiffness for Maxwell section  (bur_ksm) 

        double  csm_;     // shear viscosity for Maxwell section  (bur_csm) 

        double  fric_;    // friction coefficient                 (bur_fric) 

        uint    bmode_;   // FDLaw option, with or without tensile force, default false (with 

tensile) 

        double  fn0_;     // normal contact force 1 step before 

        double  u_n0_;    // normal total overlap 1 step before 

        double  u_nk0_;   // normal overlap of Kelvin part 1step before 

        DVect   u_sk_;    // shear relative displacement of Kelvin part 1step before 
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        double  conAn_;   // constant A in eq.(), normal 

        double  conB_An_; // constant B/A in eq.(), normal 

        double  conCn_;   // constant C in eq.(), normal 

        double  conDn_;   // constant D in eq.(), normal 

        double  conAs_;   // constant A in eq.(), shear 

        double  conB_As_; // constant B/A in eq.(), shear 

        double  conCs_;   // constant C in eq.(), shear 

        double  conDs_;   // constant D in eq.(), shear 

        double  tdel_;    // current timestep 

        DVect   force_;   // current total force 

        bool    s_;       // current sliding state 

 

        // Constants 

        inline double A(const double k_k, const double c_k) { return(1.0 + 

k_k*tdel_/(2.0*c_k)); } 

        inline double B(const double k_k, const double c_k) { return(1.0 - 

k_k*tdel_/(2.0*c_k)); } 

        inline double B_A(const double k_k, const double c_k) { 

return(B(k_k,c_k)/A(k_k,c_k)); } 

        inline double C(const double k_k, const double c_k, const double k_m, const double 

c_m) { 

          return(tdel_/(2.0*c_k*A(k_k,c_k)) + 1.0/k_m + tdel_/(2.0*c_m)); } 

        inline double D(const double k_k, const double c_k, const double k_m, const double 

c_m) { 

          return(tdel_/(2.0*c_k*A(k_k,c_k)) - 1.0/k_m + tdel_/(2.0*c_m)); } 

 

        //struct Energies { 

        //    Energies() : estrain_(0.0), eslip_(0.0),edashpot_(0.0) {} 

        //    double estrain_;  // elastic energy stored in contact  

        //    double eslip_;    // work dissipated by friction  

        //    double edashpot_; // work dissipated by dashpots 
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        //}; 

 

        //struct dpProps { 

        //    dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) 

{} 

        //    double dp_nratio_;     // normal viscous critical damping ratio 

        //    double dp_sratio_;     // shear  viscous critical damping ratio 

        //    int    dp_mode_;      // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = 

shear limit, 3 = limit both 

        //    DVect  dp_F_;  // Force in the dashpots 

        //}; 

 

        //bool   updateKn(const IContactMechanical *con); 

        //bool   updateKs(const IContactMechanical *con); 

        //bool   updateFric(const IContactMechanical *con); 

 

        //void   updateEffectiveStiffness(ContactModelMechanicalState *state); 

 

        //void   setDampCoefficients(const double &mass,double *vcn,double *vcs); 

        void   updateEffectiveBridgeData(ContactModelMechanicalState *state);  

 

        // inheritance fields 

    /*    quint32 inheritanceField_;*/ 

 

        //// linear model 

        //double      kn_;        // normal stiffness 

        //double      ks_;        // shear stiffness 

        //double      fric_;      // Coulomb friction coefficient 

        //DVect       lin_F_;     // Force carried in the linear model 

        //bool        lin_S_;     // the current slip state 

        //uint        lin_mode_;  // specifies absolute (0) or incremental calculation mode  
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        //dpProps *   dpProps_;   // The viscous properties 

 

        double cap_phi_;        // thickness of the fluid layer (radius factor : rW = 

(1+phi)*Rs) 

        double cap_sten_;       // fluid surface tension 

        double cap_dcreate_;    // bridge creation distance 

        double cap_dbreak_;     // bridge breaking distance 

        double cap_volume_;     // bridge volume 

        double cap_f0_;         // bridge force at zero-gap 

        double cap_decay_;      // bridge force decay length-scale 

        bool   cap_state_;      // bridge bonded state 

        double cap_force_;      // fluid force (normal component only) 

  

        //Energies *   energies_; // energies 

 

        //DVect2  effectiveTranslationalStiffness_; 

          

    }; 

} // namespace cmodelsxd 

// EoF 
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// contactmodelburgerfcap.cpp 

#include "contactmodelburgerfcap.h" 

 

#include "module/interface/icontactmechanical.h" 

#include "module/interface/icontact.h" 

 

#include "module/interface/ipiecemechanical.h" 

#include "module/interface/ipiece.h" 

#include "version.txt" 

 

#include "module/interface/ifishcalllist.h" 

#include "utility/src/tptr.h" 

#include "base/src/mathutil.h" 

 

#include "kernel/interface/iprogram.h" 

#include "module/interface/icontactthermal.h" 

#include "contactmodel/src/contactmodelthermal.h" 

 

#ifdef burgerfcap_LIB 

    int __stdcall DllMain(void *,unsigned, void *) { 

        return 1; 

    } 

 

    extern "C" EXPORT_TAG const char *getName() { 

#if DIM==3 

        return "contactmodelmechanical3dburgerfcap"; 

#else 

        return "contactmodelmechanical2dburgerfcap"; 

#endif 

    } 
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    extern "C" EXPORT_TAG unsigned getMajorVersion() { 

        return MAJOR_VERSION; 

    } 

 

    extern "C" EXPORT_TAG unsigned getMinorVersion() { 

        return MINOR_VERSION; 

    } 

 

    extern "C" EXPORT_TAG void *createInstance() { 

        cmodelsxd::ContactModelburgerfcap *m = new 

cmodelsxd::ContactModelburgerfcap(); 

        return (void *)m; 

    } 

#endif // burgerfcap_LIB 

 

namespace cmodelsxd { 

 

    //static const quint32 linKnMask      = 0x00002; // Base 1! 

    //static const quint32 linKsMask      = 0x00004; 

    //static const quint32 linFricMask    = 0x00008; 

   

    using namespace itasca; 

   

    int ContactModelburgerfcap::index_ = -1; 

    UInt ContactModelburgerfcap::getMinorVersion() const { return 

MINOR_VERSION;} 

 

    ContactModelburgerfcap::ContactModelburgerfcap() :knk_(0.0)       

                                             ,cnk_(0.0)       

                                             ,knm_(0.0)      

                                             ,cnm_(0.0)      
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                                             ,ksk_(0.0)       

                                             ,csk_(0.0)    

                                             ,ksm_(0.0)   

                                             ,csm_(0.0)   

                                             ,fric_(0.0)   

                                             ,bmode_(0)   

                                             ,fn0_(0.0)   

                                             ,u_n0_(0.0)   

                                             ,u_nk0_(0.0)   

                                             ,u_sk_(0.0)  

                                             ,conAn_(0.0)  

                                             ,conB_An_(0.0) 

                                             ,conCn_(0.0)    

                                             ,conDn_(0.0)    

                                             ,conAs_(0.0)  

                                             ,conB_As_(0.0) 

                                             ,conCs_(0.0)   

                                             ,conDs_(0.0)  

                                             ,tdel_(0.0)  

                                             ,force_(0.0)  

                                             ,s_(false)  

                                             , cap_phi_(0.0) 

                                             , cap_sten_(0.0) 

                                             , cap_dcreate_(0.0) 

                                             , cap_dbreak_(0.0) 

                                             , cap_volume_(0.0) 

                                             , cap_f0_(0.0) 

                                             , cap_decay_(0.0) 

                                             , cap_state_(false) 

                                             , cap_force_(0.0) 

{ 
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        //setFromParent(ContactModelMechanicalList::instance()->find(getName())); 

    } 

 

    ContactModelburgerfcap::~ContactModelburgerfcap() { 

    } 

 

    void ContactModelburgerfcap::archive(ArchiveStream &stream) { 

        // The stream allows one to archive the values of the contact model 

        // so that it can be saved and restored. The minor version can be 

        // used here to allow for incremental changes to the contact model too.  

        stream & knk_;      

        stream & cnk_;      

        stream & knm_;      

        stream & cnm_;      

        stream & ksk_;      

        stream & csk_;      

        stream & ksm_;      

        stream & csm_;        

        stream & fric_;     

        stream & bmode_;    

        stream & fn0_;      

        stream & u_n0_;     

        stream & u_nk0_;    

        stream & u_sk_;     

        stream & conAn_;    

        stream & conB_An_;  

        stream & conCn_;    

        stream & conDn_;    

        stream & conAs_;    

        stream & conB_As_;  

        stream & conCs_;    
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        stream & conDs_;    

        stream & tdel_;     

        stream & force_;     

        stream & s_;   

        stream & cap_phi_; 

        stream & cap_sten_; 

        stream & cap_dcreate_; 

        stream & cap_dbreak_; 

        stream & cap_volume_; 

        stream & cap_f0_;    

        stream & cap_decay_; 

        stream & cap_force_; 

        stream & cap_state_;   

 

        /*if (stream.getArchiveState()==ArchiveStream::Save) { 

            bool b = false; 

            if (dpProps_) { 

                b = true; 

                stream & b; 

                stream & dpProps_->dp_nratio_;  

                stream & dpProps_->dp_sratio_;  

                stream & dpProps_->dp_mode_;  

                stream & dpProps_->dp_F_;  

            } 

            else 

                stream & b; 

 

            b = false; 

            if (energies_) { 

                b = true; 

                stream & b; 
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                stream & energies_->estrain_; 

                stream & energies_->eslip_; 

                stream & energies_->edashpot_; 

            } 

            else 

                stream & b; 

        } else { 

            bool b(false); 

            stream & b; 

            if (b) { 

                if (!dpProps_) 

                    dpProps_ = NEWC(dpProps()); 

                stream & dpProps_->dp_nratio_;  

                stream & dpProps_->dp_sratio_;  

                stream & dpProps_->dp_mode_;  

                stream & dpProps_->dp_F_;  

            } 

            stream & b; 

            if (b) { 

                if (!energies_) 

                    energies_ = NEWC(Energies()); 

                stream & energies_->estrain_; 

                stream & energies_->eslip_; 

                stream & energies_->edashpot_; 

            } 

        } 

 

        stream & inheritanceField_; 

        stream & effectiveTranslationalStiffness_; 

        */ 

    } 
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    void ContactModelburgerfcap::copy(const ContactModel *cm) { 

// Copy all of the contact model properties. Used in the CMAT  

        // when a new contact is created.  

        ContactModelMechanical::copy(cm); 

        const ContactModelburgerfcap *in = dynamic_cast<const 

ContactModelburgerfcap*>(cm); 

        if (!in) throw std::runtime_error("Internal error: contact model dynamic cast 

failed."); 

        knk(in->knk());      

        cnk(in->cnk());      

        knm(in->knm());      

        cnm(in->cnm());      

        ksk(in->ksk());      

        csk(in->csk());      

        ksm(in->ksm());      

        csm(in->csm());      

        fric(in->fric());     

        bmode(in->bmode());    

        fn0(in->fn0());      

        u_n0(in->u_n0());     

        u_nk0(in->u_nk0());    

        u_sk(in->u_sk());     

        conAn(in->conAn());    

        conB_An(in->conB_An());  

        conCn(in->conCn());    

        conDn(in->conDn());    

        conAs(in->conAs());    

        conB_As(in->conB_As());  

        conCs(in->conCs());    

        conDs(in->conDs());    
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        tdel(in->tdel());  

        force(in->force()); 

        s(in->s()); 

        cap_phi(in->cap_phi()); 

        cap_sten(in->cap_sten()); 

        cap_dcreate(in->cap_dcreate()); 

        cap_dbreak(in->cap_dbreak()); 

        cap_volume(in->cap_volume()); 

        cap_f0(in->cap_f0()); 

        cap_decay(in->cap_decay()); 

        cap_force(in->cap_force()); 

        cap_state(in->cap_state()); 

    } 

 

 

    QVariant ContactModelburgerfcap::getProperty(uint i,const IContact *con) const { 

               // Return the property. The IContact pointer is provided so that  

        // more complicated properties, depending on contact characteristics, 

        // can be calculated. Not used with the Burger model. 

        QVariant var; 

        switch (i) { 

        case kwKnK   : return knk_; 

        case kwCnK   : return cnk_; 

        case kwKnM   : return knm_; 

        case kwCnM   : return cnm_; 

        case kwKsK   : return ksk_; 

        case kwCsK   : return csk_; 

        case kwKsM   : return ksm_; 

        case kwCsM   : return csm_; 

        case kwMode  : return bmode_; 

        case kwFric  : return fric_; 
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        case kwF     : var.setValue(force_); return var; 

        case kwS     : return s_; 

 

        case kwCapPhi: return cap_phi_;  

        case kwCapSTen: return cap_sten_;  

        case kwCapDCreate: return cap_dcreate_;  

        case kwCapDBreak: return cap_dbreak_;  

        case kwCapF: return cap_force_;  

        case kwCapState: return cap_state_ ? 1 : 0; 

        } 

        assert(0); 

        return QVariant(); 

    } 

 

    bool ContactModelburgerfcap::getPropertyGlobal(uint i) const { 

        switch (i) { 

        case kwF:    

            return false; 

        } 

        return true; 

    } 

 

    bool ContactModelburgerfcap::setProperty(uint i,const QVariant &v,IContact *) { 

        // Set a contact model property. Return value indicates that the timestep 

        // should be recalculated.  

        switch (i) { 

        case kwKnK: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_knk must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 
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                    throw Exception("Negative bur_knk not allowed."); 

                knk_ = val; 

                return true; 

            } 

        case kwCnK: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_cnk must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_cnk not allowed."); 

                cnk_ = val; 

                return true; 

            } 

        case kwKnM: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_knm must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_knm not allowed."); 

                knm_ = val; 

                return true; 

            } 

        case kwCnM: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_cnm must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_cnm not allowed."); 

                cnm_ = val; 

                return true; 

            } 
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        case kwKsK: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_ksk must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_ksk not allowed."); 

                ksk_ = val; 

                return true; 

            } 

        case kwCsK: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_csk must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_csk not allowed."); 

                csk_ = val; 

                return true; 

            } 

        case kwKsM: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_ksm must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_ksm not allowed."); 

                ksm_ = val; 

                return true; 

            } 

        case kwCsM: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_csm must be a double."); 

                double val(v.toDouble()); 
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                if (val<0.0) 

                    throw Exception("Negative bur_csm not allowed."); 

                csm_ = val; 

                return true; 

            } 

        case kwMode: { 

                if (!v.canConvert<uint>()) 

                    throw Exception("bur_mode must be 0 (tensile) or 1 (no-tension)."); 

                uint val(v.toUInt()); 

                if (val >1) 

                    throw Exception("bur_mode must be 0 (tensile) or 1 (no-tension)."); 

                bmode_ = val; 

                return false; 

            } 

        case kwFric: { 

                if (!v.canConvert<double>()) 

                    throw Exception("bur_fric must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative bur_fric not allowed."); 

                fric_ = val;   

                return false; 

   } 

        case kwCapPhi: { 

                if (!v.canConvert<double>()) 

                    throw Exception("cap_phi must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative cap_phi not allowed."); 

                cap_phi_ = val; 

                return false; 
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            } 

        case kwCapSTen: { 

                if (!v.canConvert<double>()) 

                    throw Exception("cap_sten must be a double."); 

                double val(v.toDouble()); 

                if (val<0.0) 

                    throw Exception("Negative cap_sten not allowed."); 

                cap_sten_ = val; 

                return false; 

            } 

        } 

        return false; 

    } 

 

    bool ContactModelburgerfcap::getPropertyReadOnly(uint i) const { 

        switch (i) { 

        case kwF: 

        case kwS: 

        case kwCapDCreate: 

        case kwCapDBreak: 

        case kwCapF: 

        case kwCapState: 

            return true; 

        default: 

            break; 

        } 

        return false; 

    } 

 

    //bool ContactModellinearfcap::supportsInheritance(uint i) const { 

    //    switch (i) { 
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    //    case kwKn: 

    //    case kwKs: 

    //    case kwFric: 

    //        return true; 

    //    default: 

    //        break; 

    //    } 

    //    return false; 

    //} 

 

    bool ContactModelburgerfcap::validate(ContactModelMechanicalState *state,const 

double &) { 

        /*assert(state); 

        const IContactMechanical *c = state->getMechanicalContact();  

        assert(c);*/ 

 

        //if (state->trackEnergy_) 

        //    activateEnergy(); 

 

        //if (inheritanceField_ & linKnMask) 

        //    updateKn(c); 

        //if (inheritanceField_ & linKsMask) 

        //    updateKs(c); 

        //if (inheritanceField_ & linFricMask) 

        //    updateFric(c); 

 

        //updateEffectiveStiffness(state); 

        updateEffectiveBridgeData(state); 

        return checkActivity(state->gap_); 

    } 

 



 

 

188 

    //static const QString knstr("kn"); 

    //bool ContactModellinearfcap::updateKn(const IContactMechanical *con) { 

    //    assert(con); 

    //    QVariant v1 = con->getEnd1()->getProperty(knstr); 

    //    QVariant v2 = con->getEnd2()->getProperty(knstr); 

    //    if (!v1.isValid() || !v2.isValid()) 

    //        return false; 

    //    double kn1 = v1.toDouble(); 

    //    double kn2 = v2.toDouble(); 

    //    double val = kn_; 

    //    if (kn1 && kn2) 

    //        kn_ = kn1*kn2/(kn1+kn2); 

    //    else if (kn1) 

    //        kn_ = kn1; 

    //    else if (kn2) 

    //        kn_ = kn2; 

    //    return ( (kn_ != val) ); 

    //} 

 

    //static const QString ksstr("ks"); 

    //bool ContactModellinearfcap::updateKs(const IContactMechanical *con) { 

    //    assert(con); 

    //    QVariant v1 = con->getEnd1()->getProperty(ksstr); 

    //    QVariant v2 = con->getEnd2()->getProperty(ksstr); 

    //    if (!v1.isValid() || !v2.isValid()) 

    //        return false; 

    //    double ks1 = v1.toDouble(); 

    //    double ks2 = v2.toDouble(); 

    //    double val = ks_; 

    //    if (ks1 && ks2) 

    //        ks_ = ks1*ks2/(ks1+ks2); 
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    //    else if (ks1) 

    //        ks_ = ks1; 

    //    else if (ks2) 

    //        ks_ = ks2; 

    //    return ( (ks_ != val) ); 

    //} 

 

    //static const QString fricstr("fric"); 

    //bool ContactModellinearfcap::updateFric(const IContactMechanical *con) { 

    //    assert(con); 

    //    QVariant v1 = con->getEnd1()->getProperty(fricstr); 

    //    QVariant v2 = con->getEnd2()->getProperty(fricstr); 

    //    if (!v1.isValid() || !v2.isValid()) 

    //        return false; 

    //    double fric1 = std::max(0.0,v1.toDouble()); 

    //    double fric2 = std::max(0.0,v2.toDouble()); 

    //    double val = fric_; 

    //    fric_ = std::min(fric1,fric2); 

    //    return ( (fric_ != val) ); 

    //} 

 

    bool ContactModelburgerfcap::endPropertyUpdated(const QString &name,const 

IContactMechanical *c) { 

        assert(c); 

        QStringList availableProperties = 

getProperties().split(",",QString::SkipEmptyParts); 

        QRegExp rx(name,Qt::CaseInsensitive); 

        int idx = availableProperties.indexOf(rx)+1; 

        bool ret=false; 

 

        if (idx<=0) 



 

 

190 

            return ret; 

    //      

    //    switch(idx) { 

    //    case kwKn:  { //kn 

    //            if (inheritanceField_ & linKnMask) 

    //                ret = updateKn(c); 

    //            break; 

    //        } 

    //    case kwKs:  { //ks 

    //            if (inheritanceField_ & linKsMask) 

    //                ret =updateKs(c); 

    //            break; 

    //        } 

    //    case kwFric:  { //fric 

    //            if (inheritanceField_ & linFricMask) 

    //                updateFric(c); 

    //            break; 

    //        } 

    //    } 

    //    return ret; 

    } 

 

    //void 

ContactModellinearfcap::updateEffectiveStiffness(ContactModelMechanicalState *) { 

    //    DVect2 ret(kn_,ks_); 

    //    // correction if viscous damping active 

    //    if (dpProps_) { 

    //        DVect2 correct(1.0); 

    //        if (dpProps_->dp_nratio_) 

    //            correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - 

dpProps_->dp_nratio_; 
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    //        if (dpProps_->dp_sratio_) 

    //            correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - 

dpProps_->dp_sratio_; 

    //        ret /= (correct*correct); 

    //    } 

    //    effectiveTranslationalStiffness_ = ret; 

    //} 

      

    bool ContactModelburgerfcap::forceDisplacementLaw(ContactModelMechanicalState 

*state,const double &timestep) { 

        assert(state); 

 

        double overlap = -1.0*state->gap_; 

        DVect trans = state->relativeTranslationalIncrement_; 

        double correction = 1.0; 

 

        if (state->activated()) { 

            if (cmEvents_[fActivated] >= 0) { 

                FArray<QVariant,2> arg; 

                QVariant v; 

                IContact * c = const_cast<IContact*>(state->getContact()); 

                TPtr<IThing> t(c->getIThing()); 

                v.setValue(t); 

                arg.push_back(v); 

                IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()-

>findInterface<IFishCallList>()); 

                fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]); 

            } 

            if (trans.x()) { 

                correction = -1.0*overlap / trans.x(); 

       if (correction < 0) 
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                    correction = 1.0; 

        } 

 } 

 

     trans*=correction; 

 

     if (timestep!=tdel_) { // re-calculated constants. 

            tdel_ = timestep; 

            // need some protection for divided by zero (k_k c_k k_m c_m = zero) 

            conAn_ = A(knk_, cnk_); 

            double conBn = B(knk_, cnk_); 

            conB_An_ = conBn / conAn_; 

            conCn_ = C(knk_, cnk_, knm_, cnm_); 

            conDn_ = D(knk_, cnk_, knm_, cnm_); 

            conAs_ = A(ksk_, csk_); 

            double conBs = B(ksk_, csk_); 

            conB_As_ = conBs / conAs_; 

            conCs_ = C(ksk_, csk_, ksm_, csm_); 

            conDs_ = D(ksk_, csk_, ksm_, csm_); 

        } 

 

  // normal force  

        force_.rx() = 1.0/conCn_*(overlap-u_n0_+(1.0-conB_An_)*u_nk0_-conDn_*fn0_); 

        if (bmode_ && force_.x()<0.0) force_.rx() = 0.0; 

        u_nk0_ = conB_An_*u_nk0_+timestep/(2.0*cnk_*conAn_)*(force_.x()+fn0_); 

        u_n0_  = overlap; 

        fn0_   = force_.x(); 

 

  // Calculate the shear force. 

        DVect sforce(0.0); 

        DVect sforce_old = force_; 
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        sforce_old.rx()=0.0; 

        DVect v1 = trans; 

        DVect v2 = u_sk_ * (1.0-conB_As_); 

        DVect v3 = sforce_old * conDs_; 

        sforce = (v1+v2+v3) / conCs_ * (-1.0); 

        double d1 = timestep / (2.0*csk_*conAs_); 

        sforce.rx() = 0.0; 

        v1 = sforce + sforce_old; 

        u_sk_ = u_sk_*conB_As_-v1*d1; 

 

//#ifdef THREED 

//        DVect norm(trans.x(),0.0,0.0); 

//#else 

//        DVect norm(trans.x(),0.0); 

//#endif 

//        DAVect ang  = state->relativeAngularIncrement_; 

//        DVect lin_F_old = lin_F_; 

// 

//        if (lin_mode_ == 0) 

//            lin_F_.rx() = overlap * kn_; 

//        else 

//          lin_F_.rx() -= correction * norm.x() * kn_; 

// 

//        // normal force is positive only 

//        lin_F_.rx() = std::max(0.0,lin_F_.x()); 

// 

//        DVect u_s = trans; 

//        u_s.rx() = 0.0; 

//        DVect sforce = lin_F_ - u_s * ks_ * correction; 

//        sforce.rx() = 0.0; 

// 
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//        if (state->canFail_) { 

//            // resolve sliding 

//            double crit = lin_F_.x() * fric_; 

//            double sfmag = sforce.mag(); 

//            if (sfmag > crit) { 

//                double rat = crit / sfmag; 

//                sforce *= rat; 

//                if (!lin_S_ && cmEvents_[fSlipChange] >= 0) { 

//                    FArray<QVariant,3> arg; 

//                    QVariant p1; 

//                    IContact * c = const_cast<IContact*>(state->getContact()); 

//                    TPtr<IThing> t(c->getIThing()); 

//                    p1.setValue(t); 

//                    arg.push_back(p1); 

//                    p1.setValue(0); 

//                    arg.push_back(p1); 

//                    IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()-

>findInterface<IFishCallList>()); 

//                    fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]); 

//                } 

//                lin_S_ = true; 

//            } else { 

//                if (lin_S_) { 

//                    if (cmEvents_[fSlipChange] >= 0) { 

//                        FArray<QVariant,3> arg; 

//                        QVariant p1; 

//                        IContact * c = const_cast<IContact*>(state->getContact()); 

//                        TPtr<IThing> t(c->getIThing()); 

//                        p1.setValue(t); 

//                        arg.push_back(p1); 

//                        p1.setValue(1); 
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//                        arg.push_back(p1); 

//                        IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()-

>findInterface<IFishCallList>()); 

//                        fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]); 

//                    } 

//                    lin_S_ = false; 

//                } 

//            } 

//        } 

//         

//        sforce.rx() = lin_F_.x(); 

//        lin_F_ = sforce;          // total force in linear contact model 

//        state->force_  = lin_F_; 

//          

//        // 3) Account for dashpot forces 

//        if (dpProps_) { 

//            dpProps_->dp_F_.fill(0.0); 

//            double vcn(0.0), vcs(0.0); 

//            setDampCoefficients(state->inertialMass_,&vcn,&vcs); 

//            // First damp all components 

//            dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component    

//            dpProps_->dp_F_ -= norm * vcn / timestep;       // normal component 

//            // Need to change behavior based on the dp_mode 

//            if ((dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3))  { // limit the 

tensile if not bonded 

//                if (dpProps_->dp_F_.x() + lin_F_.x() < 0) 

//                    dpProps_->dp_F_.rx() = - lin_F_.rx(); 

//            } 

//            if (lin_S_ && dpProps_->dp_mode_ > 1)  { // limit the shear if not sliding 

//                double dfn = dpProps_->dp_F_.rx(); 

//                dpProps_->dp_F_.fill(0.0);  



 

 

196 

//                dpProps_->dp_F_.rx() = dfn;  

//            } 

//            state->force_ += dpProps_->dp_F_; 

//        } 

  // The canFail flag corresponds to whether or not the contact can undergo 

non-linear 

        // force-displacement response. If the SOLVE ELASTIC command is given then the  

        // canFail state is set to FALSE. Otherwise it is always TRUE.  

        if (state->canFail_) { 

            // Resolve sliding. This is the normal force multiplied by the coefficient of 

friction. 

            double crit = force_.x() * fric_; 

            // The is the magnitude of the shear force. 

            double sfmag = sforce.mag(); 

            // Sliding occurs when the magnitude of the shear force is greater than the  

            // critical value. 

            if (sfmag > crit) { 

                // Lower the shear force to the critical value for sliding. 

                double rat = crit / sfmag; 

                sforce *= rat; 

                // Handle the slip_change event if one has been hooked up. Sliding has 

commenced.   

                if (!s_ && cmEvents_[fSlipChange] >= 0) { 

                    FArray<QVariant,3> arg; 

                    QVariant p1; 

                    // Put a pointer to the contact in the array plus 0 to indicate slip has initiated. 

                    IContact * c = const_cast<IContact*>(state->getContact()); 

                    TPtr<IThing> t(c->getIThing()); 

                    p1.setValue(t); 

                    arg.push_back(p1); 

                    p1.setValue(0); 
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                    arg.push_back(p1); 

                    IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()-

>findInterface<IFishCallList>()); 

                    fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]); 

                } 

                s_ = true; 

            } else { 

                // Handle the slip_change event if one has been hooked up and 

                // the contact was previously sliding. Sliding has ceased.   

                if (s_) { 

                    if (cmEvents_[fSlipChange] >= 0) { 

                        FArray<QVariant,3> arg; 

                        QVariant p1; 

                        // Put a pointer to the contact in the array plus 1 to indicate slip has ceased. 

                        IContact * c = const_cast<IContact*>(state->getContact()); 

                        TPtr<IThing> t(c->getIThing()); 

                        p1.setValue(t); 

                        arg.push_back(p1); 

                        p1.setValue(1); 

                        arg.push_back(p1); 

                        IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()-

>findInterface<IFishCallList>()); 

                        fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]); 

                    } 

                    s_ = false; 

                } 

            } 

        } 

 

  //// Set the shear components of the total force. 

  //      for (int i=1; i<dim; ++i) 
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  //          force_.rdof(i) = sforce.dof(i); 

  //      // Set the contact model state force to this force. 

  //      state->force_ = force_; 

        // 4) capillary force 

        cap_force_ = 0.0; 

        if (cap_state_) { 

          // bonded 

          if (state->gap_ <= 0.0) { 

              cap_force_ = cap_f0_; 

          } else if (state->gap_ < cap_dbreak_) { 

              cap_force_ = cap_f0_*std::exp(-1.0*state->gap_/cap_decay_); 

          } else 

              cap_state_ = false; 

        } else if (state->gap_ < cap_dcreate_) { 

          if (state->gap_ <= 0.0)  

              cap_force_ = cap_f0_; 

          else  

              cap_force_ = cap_f0_*std::exp(-1.0*state->gap_/cap_decay_); 

        } 

        state->force_.rx() += cap_force_; 

        //// 5) Compute energies 

        //if (state->trackEnergy_) { 

        //    assert(energies_); 

        //    energies_->estrain_ =  0.0; 

        //    if (kn_) 

        //        energies_->estrain_ = 0.5*lin_F_.x()*lin_F_.x()/kn_; 

        //    if (ks_) { 

        //        DVect s = lin_F_; 

        //        s.rx() = 0.0; 

        //        double smag2 = s.mag2(); 

        //        energies_->estrain_ += 0.5*smag2 / ks_; 
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        //        if (lin_S_) { 

        //            lin_F_old.rx() = 0.0; 

        //            DVect avg_F_s = (s + lin_F_old)*0.5; 

        //            DVect u_s_el =  (s - lin_F_old) / ks_; 

        //            energies_->eslip_ -= std::max(0.0,-(avg_F_s | (u_s + u_s_el))); 

        //        } 

        //    } 

        //    if (dpProps_) { 

        //        energies_->edashpot_ += dpProps_->dp_F_ | trans; 

        //    } 

        //} 

// Set the shear components of the total force. 

        for (int i=1; i<dim; ++i) 

            force_.rdof(i) = sforce.dof(i); 

        // Set the contact model state force to this force. 

        state->force_ = force_; 

  state->momentOn1_ = DAVect(0.0); 

        state->momentOn2_ = DAVect(0.0); 

        // The state force has been updated - update the state with the resulting torques 

        state->getMechanicalContact()->updateResultingTorquesLocal(state-

>force_,&state->momentOn1_,&state->momentOn2_); 

        assert(force_ == force_); 

        return true; 

    } 

 

    void ContactModelburgerfcap::propagateStateInformation(IContactModelMechanical* 

old,const CAxes &oldSystem,const CAxes &newSystem) { 

        // Only do something if the contact model is of the same type 

        if (old->getContactModel()->getName().compare("burger",Qt::CaseInsensitive) == 

0 && !isBonded()) { 

            ContactModelburgerfcap *oldCm = (ContactModelburgerfcap *)old; 
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#ifdef THREED 

            // Need to rotate just the shear component from oldSystem to newSystem 

            // Step 1 - rotate oldSystem so that the normal is the same as the normal of 

newSystem 

            DVect axis = oldSystem.e1() & newSystem.e1(); 

            double c, ang, s; 

            DVect re2; 

            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) { 

                axis = axis.unit(); 

                c = oldSystem.e1()|newSystem.e1(); 

                if (c > 0) 

                    c = std::min(c,1.0); 

                else 

                    c = std::max(c,-1.0); 

                ang = acos(c); 

                s = sin(ang); 

                double t = 1. - c; 

                DMatrix<3,3> rm; 

                rm.get(0,0) = t*axis.x()*axis.x() + c; 

                rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s; 

                rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s; 

                rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s; 

                rm.get(1,1) = t*axis.y()*axis.y() + c; 

                rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s; 

                rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s; 

                rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s; 

                rm.get(2,2) = t*axis.z()*axis.z() + c; 

                re2 = rm*oldSystem.e2(); 

            } 

            else 

                re2 = oldSystem.e2(); 
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            // Step 2 - get the angle between the oldSystem rotated shear and newSystem 

shear 

            axis = re2 & newSystem.e2(); 

            DVect2 tpf; 

            DMatrix<2,2> m; 

            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) { 

                axis = axis.unit(); 

                c = re2|newSystem.e2(); 

                if (c > 0) 

                    c = std::min(c,1.0); 

                else 

                    c = std::max(c,-1.0); 

                ang = acos(c); 

                if (!checktol(axis.x(),newSystem.e1().x(),1.0,100)) 

                    ang *= -1; 

                s = sin(ang); 

                m.get(0,0) = c; 

                m.get(1,0) = s; 

                m.get(0,1) = -m.get(1,0); 

                m.get(1,1) = m.get(0,0); 

                tpf = m*DVect2(oldCm->force_.y(),oldCm->force_.z()); 

            } else { 

                m.get(0,0) = 1.; 

                m.get(0,1) = 0.; 

                m.get(1,0) = 0.; 

                m.get(1,1) = 1.; 

                tpf = DVect2(oldCm->force_.y(),oldCm->force_.z()); 

            } 

            DVect pforce = DVect(0,tpf.x(),tpf.y()); 

#else 

            oldSystem; 
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            newSystem; 

            DVect pforce = DVect(0,oldCm->force_.y()); 

#endif 

            for (int i=1; i<dim; ++i) 

                force_.rdof(i) += pforce.dof(i); 

            oldCm->force_ = DVect(0.0); 

        } 

        assert(force_ == force_); 

    } 

//#ifdef THREED 

//                tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_-

>dp_F_.z()); 

//                pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y()); 

//#else 

//                pforce = oldCm->dpProps_->dp_F_; 

//#endif 

//                dpProps_->dp_F_ += pforce; 

//                oldCm->dpProps_->dp_F_ = DVect(0.0); 

//            } 

//            if(oldCm->getEnergyActivated()) { 

//                activateEnergy(); 

//                energies_->estrain_ = oldCm->energies_->estrain_; 

//                energies_->edashpot_ = oldCm->energies_->edashpot_; 

//                energies_->eslip_ = oldCm->energies_->eslip_; 

//            } 

//        } 

//        assert(lin_F_ == lin_F_); 

//    } 

    //void ContactModellinearfcap::setNonForcePropsFrom(IContactModel *old) { 

    //    // Only do something if the contact model is of the same type 

    //    if (old->getName().contains("linear",Qt::CaseInsensitive) && !isBonded()) { 
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    //        ContactModellinearfcap *oldCm = (ContactModellinearfcap *)old; 

    //        kn_ = oldCm->kn_; 

    //        ks_ = oldCm->ks_; 

    //        fric_ = oldCm->fric_; 

    //        lin_mode_ = oldCm->lin_mode_; 

     //        if (oldCm->dpProps_) { 

    //            if (!dpProps_) 

    //                dpProps_ = NEWC(dpProps()); 

    //            dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_; 

    //            dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_; 

    //            dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_; 

    //        } 

    //    } 

    //} 

    //void ContactModellinearfcap::setDampCoefficients(const double &mass,double 

*vcn,double *vcs) { 

    //    *vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_)); 

    //    *vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_)); 

    //} 

 

     void ContactModelburgerfcap::setNonForcePropsFrom(IContactModel *old) { 

        // Only called for contacts with wall facets when the wall resolution scheme 

        // is set to full! 

        // Only do something if the contact model is of the same type 

        if (old->getName().compare("burger",Qt::CaseInsensitive)) { 

            ContactModelburgerfcap *oldCm = (ContactModelburgerfcap *)old; 

            knk_ = oldCm->knk_; 

            cnk_ = oldCm->cnk_; 

            knm_ = oldCm->knm_; 

            cnm_ = oldCm->cnm_; 

            ksk_ = oldCm->ksk_; 
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            csk_ = oldCm->csk_; 

            ksm_ = oldCm->ksm_; 

            csm_ = oldCm->csm_; 

            fric_ = oldCm->fric_; 

            bmode_ = bmode_; 

        } 

    } 

    void 

ContactModelburgerfcap::updateEffectiveBridgeData(ContactModelMechanicalState 

*state) { 

        const IContactMechanical *c= state->getMechanicalContact(); 

        double reff(1.0); 

        cap_dcreate_ = 0.0; 

        cap_volume_ = 0.0; 

        cap_f0_ = 0.0; 

        cap_decay_ = 0.0; 

        double r1(0.0),rf1(0.0); 

        double r2(0.0),rf2(0.0); 

        double c1 = c->getEnd1Curvature().y(); 

        double c2 = c->getEnd2Curvature().y(); 

        if (c1) { 

            r1 = 1.0/c1; 

            reff *= r1; 

            cap_dcreate_ += r1*cap_phi_; 

            if (c2) rf1 = r1*c2; 

#ifdef TWOD 

           cap_volume_ = dPi*r1*r1*(cap_phi_*cap_phi_+2*cap_phi_); 

#else 

           cap_volume_ = (4.0/3.0)*dPi*pow(r1,3.0)*(pow(cap_phi_+1,3.0)-1); 

#endif 

        } 
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        if (c2) { 

            r2 = 1.0/c2; 

            reff *= r2; 

            cap_dcreate_ += r2*cap_phi_; 

            if (c1) rf2 = r2*c1; 

#ifdef TWOD 

           cap_volume_ += dPi*r2*r2*(cap_phi_*cap_phi_+2*cap_phi_); 

#else 

           cap_volume_ += (4.0/3.0)*dPi*pow(r2,3.0)*(pow(cap_phi_+1,3.0)-1); 

#endif 

        } 

        reff = sqrt(reff); 

        cap_dbreak_ = pow(cap_volume_,1.0/3.0); 

        cap_f0_ = -2.0*dPi*cap_sten_*reff; 

        reff =  (c1+c2)*std::max(rf1,rf2); 

        cap_decay_ = 0.9*sqrt(cap_volume_*reff/2.0); 

if (state->gap_ <= cap_dcreate_) cap_state_ = true; 

    } 

} // namespace cmodelsxd 

// EoF 
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APPENDIX B. 

CLUMP ROTATION IN DIGITAL SAMPLE 
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When θ = 30° 
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When θ = 60° 
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When θ = 90° 
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