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ABSTRACT

Computed tomography (CT) has become pervasive in medical diagnostics as im-

proved imaging techniques and processing algorithms provide higher quality information

to doctors. However, the exponentially increasing usage of CT has raised concerns re-

garding long term low-dose radiological risks. Currently, the dose to patients is computed

using Monte Carlo methods and experimental tests. In other areas of radiation transport,

deterministic codes have been shown to be much faster than Monte Carlo codes.

Currently, no deterministic methodology exists to automatically generate a spatially

distributed dose profile from a CT voxel phantom. This work proposes a new code, Discrete

Ordinate CTOrganDose Simulator (DOCTORS)which utilizes aGPUaccelerated raytracer

and discrete ordinate solver to compute photon flux in the patient. The flux is then converted

to dose.

The DOCTORS code was benchmarked against MCNP6 and found to have good

qualitative agreement using both a water phantom and a realistic patient phantom. DOC-

TORS was also found to be much faster than MCNP6; MCNP takes hours to compute flux

profiles that take less than a minute using DOCTORS.

A GPU algorithm was implemented that speeds up the DOCTORS code by a factor

of up to nearly 40 for large problems. GPU acceleration was found to benefit smaller

problems much less. Speedup was seen in both single precision and double precision

problems.
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1. INTRODUCTION

Since its introduction in 1973 by Hounsfield [1973], computed tomography (CT)

has become pervasive in medical diagnostics as improved algorithms and techniques give

doctors access to higher quality information. Increased information results in faster and

more accurate diagnosis. However, the exponentially increasing usage of CT and dose

patients receive from it has raised concerns of potential long term risks [Brenner and Hall,

2007, Einstein et al., 2007a, Monson et al., 2004, Einstein et al., 2007b, McCollough et al.,

2009, Yu et al., 2009]. These concerns are exemplified by the push for low dose CT.

Though concerns have been raised in the medical community about the risks as-

sociated with CT, the techniques used to quantify dose are very simple and not patient

specific. The dose-length-product (DLP) is used as a measure to quantify the effective

dose a patient receives. However, the DLP must be modified by a factor accounting for

many variations amongst patients such as age, gender, and size as well as the kVp used in

the procedure. Currently, dose estimation relies on a priori computation verified with a

standardized benchmark.

Nomethodology currently exists to verify that the dosimetry evaluationwas accurate

after the patient has undergone the procedure. This work proposes a patient specific

methodology by which a patient’s CT reconstruction is used to compute the dose received

from the radiation beam. This can also help doctors estimate spatial dose distribution in the

patient to ensure no specific organ received more dose than permissible.

This work implements and analyzes a new computer code system called Discrete

Ordinate CTORgan dose Simulator (DOCTORS) bywhich the dose to a patient is computed

using a full transport solution inside a CT phantom. The methodology converts a CT mesh

into a voxel phantom of materials and densities. The user supplies information about the



2

beam and a discrete ordinate method computes the flux throughout the phantom. The

flux is then used to compute the dose using local energy deposition to relieve the need for

secondary electron transport.

DOCTORS leverages graphics processing units (GPUs) to accelerate the transport

step. GPUs differ from the central processing unit (CPU) in that each of the many cores

performs identical instruction to all others at the same time but each with different data.

For example, consider a grayscale 1024×768 image. If some pixelwise operation is applied

on a CPU, 786,432 operations must occur. Onboard a GPU with 1024 cores, every pixel

in the entire row can be computed simultaneously reducing the number of operations to

768. However, issues such as communication to and from the GPU and cache coherency

problems can degrade performance. GPU technology and performance is discussed more

thoroughly in Section 4.6.

In addition to rapidly computing the patient dose, another goal of DOCTORS is to

present the code in a user-friendly fashion. To this end, a graphical user interface (GUI) was

developed. The GUI was built using the Qt5 graphics framework for the windows, buttons,

and other necessary widgets. The GUI leads the user through the steps necessary to use

the code in an intuitive way by using colors to indicate required and completed steps. The

output is then plotted graphically as well as sent to an ASCII text file for more advanced

postprocessing. Utilization of Qt5 also makes the code portable, it can be compiled on

either Linux or Windows operating systems with no changes to the code. More details

about the GUI are included in Section 4.5.

Overall, good qualitative agreement was found between the reference code, MCNP6,

and DOCTORS. The primary source of error is believed to be the angular treatment of the

transport which is causing the flux inside the patient to be underestimated while the flux at

the very periphery is overestimated.
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In the future, DOCOTRS may be extended to other application domains such as

dose estimation of patients receiving radiation therapy. Often, before the procedure, a

time dependent, 4D CT scan of the patient is taken so that radiologists can account for

breathing patterns during administration of the treatment [Pan et al., 2004]. With further

development, this methodology may enable real time dose computation as the treatment is

administered. Thiswould be greatly beneficial to both patients and the doctors administering

the procedure.

The remainder of this work is organized into five sections. Section 2 summarizes the

existing literature pertinent to this work. Section 3 lays themathematical foundation for each

of the major components of DOCTORS. Section 4 gives a overview of the implementation

strategies used to transform the mathematical framework in Section 3 into code that can

execute on a modern computing platform. Section 5 summarizes the results obtained.

It quantifies both the dosimetric accuracy and runtime of the DOCTORS code. Finally,

Section 6 summarizes the entire work and provides some concluding remarks. Afterward,

an appendix provides additional information that was not included in the main text but may

still be helpful to a reader.
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2. LITERATURE REVIEW

This section summarizes the literature reviewed in preparation of this work. The

literature review is split into multiple sections, each highlighting relevant works pertaining

to a particular component or methodology behind DOCTORS. The first two sections cover

current dose estimation techniques and steps necessary for preprocessing data. Section 2.3

covers historical and recent work in discrete ordinate solution methodology, the methodol-

ogy used by DOCTORS. The remaining sections give an overview of GPU hardware and

other implementation facets.

2.1. CT DOSE ESTIMATION

As discussed in Section 1, the dose a patient receives from both diagnostic CT

procedures and radiation therapy is of concern to the medical community. However, dose

quantification is not currently patient specific. Measuring the dose in a patient directly

is impossible, instead the air kerma (measured in Gy), which measures the x-ray beam

intensity, and can be measured directly with ionization chambers [Wolbarst, 2005]. As the

x-ray beam passes through the patient, it deposits energy. The energy deposition per unit

mass is the absorbed dose (measured in Gy) which is then weighted by the radiation type

to give the equivalent dose (measured in Sv). The equivalent dose quantifies the biological

detriment to the patient from the procedure. The effective dose (measured in Sv) accounts

for the radiosensitivity of each organ and is the most meaningful measure of risk to the

patient. Any two procedures that result in the same effective dose to the patient carry the

same acute and long-term risks. Any procedure that gives an effective dose to a patient has

the same risk as any procedure that would give the same whole body dose.
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Unfortunately, neither the absorbed dose, equivalent dose, nor effective dose to a

patient can be measured directly. Instead, the CT Dose Index (CTDI) is measured using a

pencil shaped ionization chamber at the center of a standardized acrylic phantom placed at

the scanner isocenter [Huda and Mettler, 2011]. The CTDI quantifies the equivalent dose

the patient receives from a single slice of the CT scan protocol. The CTDI does not capture

patient-specific papameters, but rather quantifies the amount of radiation emitted by the

source.

The CTDI does not provide the dose from an entire procedure, but rather a single

slice. The dose from a procedure is obtained from the dose-length-product (DLP) which

is the product of the CTDI and the axial scan length. The DLP is related to the effective

dose to the patient for a particular procedure by a conversion factor that is dependent on

many variables including the anatomical region scanned, the x-ray tube voltage, and the

patient’s age, gender, and size [Huda and Mettler, 2011]. For example, Lau et al. [2016]

found that severly obese patients received twice as much dose from CT procedures as others

on average. Some patients received as much as five times the typical dose.

The need for a complete understanding of the transport and scatter through the

patient motivates full transport solutions. Typical solution modalities involve three key

steps: (1) interpret the user input and prepare the solver, (2) run the transport solution to

compute the scalar flux, and (3) convert the scalar flux to a dose. The first step is completely

code dependent. The second and third steps of all major solvers falls into one of a few

categories.

Nearly all transport solutions fall into one of two categories: Monte Carlo and

deterministic. Monte Carlo codes are generally known for their accuracy; they are able

to sample the problem and attain arbitrarily high precision given sufficient runtime. They

also take advantage of combinatorial geometry allowing a user to produce geometrically

complex 3D structures. Deterministic methods are generally much faster than their Monte

Carlo counterparts but do not benefit from excess runtime. They also consume vastly more
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resources, particularly random-access memory (RAM). However, in regularly structures

meshes, deterministic methods can greatly outperform Monte Carlo. A large number of

spatial regions slows down the particle transport in Monte Carlo and increases the RAM

required to store the numerous voxels.

Codes such as EGS4, its improved versions EGSnrc, and EGS5 [Nelson and Field,

2007], and PENELOPE [Salvat, 2015] are early Monte Carlo that have shown very good

comparison to experimental results. However, these codes were developed primarily for

shower simulations in high energy physics.

Monte Carlo codes such as TOPAS [Perl et al., 2012], Geant4 [Agostinelli et al.,

2003], and MCNP6 [Goorley et al., 2016] are the current gold standard in computational

dosimetry [Jia et al., 2012]. This work compares results to those obtained from MCNP6.

MCNP6 is a Monte Carlo code developed for general purpose particle transport and is well

validated. MCNP6 was selected for comparison because it is so well validated and the input

files can be easily generated procedurally. Codes whose input such as Geant4 do not lend

themselves easily to procedural code generation are difficult to benchmark precisely against

for arbitrary computational phantoms.

The alternative to Monte Carlo is deterministic solutions. The best known solu-

tion techniques include the discrete ordinate method, the finite element method, and the

method of characteristics. The discrete ordinate method is employed by DOCTORS and

the methodology is covered independently in Section 2.3. Other deterministic methods are

summarized here.

The method of characteristics solves the characteristic form of the Boltzmann trans-

port equation which is defined along a single direction (called the characteristic). Along that

direction, the 3-dimensional gradient operator found in the full Boltzmann equation (see

Section 3.1.1) becomes a 1-dimensional derivitive. This reduction gives rise to an analytical

solution along the characteristic [Askew, 1972]. Sufficient characteristic solutions solved

simulateously gives the solution over the entire problem domain. Currently, though, MOC
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has not been extended to full 3D, instead, hybrid methods such as the NEM-SN technique

employed by DeCART have been used. DeCART uses 2D MOC to solve planar slices of

reactor transport problems and links the slices using diffusion [Hursin et al., 2014]. Another

MOC implementation is the TRANSMED code which was used to compute external beam

therapy dose profiles accurately [Williams et al., 2003]. Method of characteristic solutions

have been extended to the time dependent domain by Hoffman and Lee [2016].

However the energy dependent flux is computed, it must afterward be converted to

dose. Monte Carlo codes have been used in the past to compute flux-to-dose conversion

factors for a reference person [ICRP, 2010]. The values provided by ICRP [2010] are

energy dependent conversion factors, H (E) that convert flux to effective dose for a particular

orientation. The dose, D is then computed

D =
∫ ∞

0
ϕ(E)H (E)dE (2.1)

where ϕ is the scalar flux. The weakness of this method is that even though the flux may

be computed to be patient specific, the weighting factors are evaluated using a standard

reference man phantom.

Alternatively, codes can compute the dose deposition directly during the transport

solution. The simplest example of this is in Monte Carlo codes which tally the energy

deposited by each collision rather than track length in voxels which estimates the absorbed

dose. Since the particle type that caused the scatter is always, known, the equivalent dose

is simple to compute. However, in order to compute the effective dose, which is organ

weighted, the organ to which the voxel of interest belongs must be known. In general, this

is a very difficult problem with no fully automated solutions without significant additional

information about human anatomy and the scan procedure employed. Therefore, this dose

estimation technique is rarely employed in practice.
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(a) (b) (c)

Figure 2.1. CT reconstruction of a phantom. (a) The original phantom. (b) The sinogram
produced by 360 projections. (c) The filter backprojection reconstruction.

2.2. CT PHANTOM GENERATION

In order for the proposed methodology to be viable, the patient’s CT phantom must

be available. The phantom is reconstructed from the CT data. Though it is not the focus of

this work, a brief summary of reconstruction algorithms is given here.

Fundamentally, all reconstructions algorithms are based on a thin parallel beam of

x-rays rotating axially about a patient to produce a sinogram. The inverse radon transform

backprojects each row of the sinogram back to physical space. Filtering each row in

Fourier space and then compositing all layers together recreates the image [Mersereau and

Oppenheim, 1974]. Figure 2.1 shows a phantom, the sinogram created from it, and the final

backprojected recreation. Thismethodology has been extended to fan beams [Besson, 1999]

and cone beams [Turbell, 2001]. Besides the filtered backprojection (FBP) method, iterative

reconstruction techniques can also be applied to greatly improve the image reconstruction

quality [Pontana et al., 2011].

Along any particular ray, monoenergetic particles will attenuate through a homoge-

nousmedia according to the Beer-Lambert law given in Eq. 2.2 [Lamarsh and Baratta, 2001]

resulting in a small fraction of the source particles reaching the detector. This phenomena
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leads to an image of the attenuating media but also results in the detector receiving infor-

mation about the attenuation coefficient, µ, along that ray. With sufficient rays of varying

directionality, the entire object can be quantified with respect to its spatially distributed

attenuation coefficient.

I (x) = I0e−µx (2.2)

The reconstruction populates theCTmeshwithCTnumers, also known asHounsfield

units. These values are related to the attenuation coefficient of the material represented by

the voxel. Traditionally, a CT number of zero corresponds to the attenuation of water while

-1000 corresponds to dry air though some variations do exist [du Plesis et al., 1998, Saw

et al., 2005].

Schneider et al. [1996] proposed a method to utilize different phantom materials to

calibrate a HU-to-material conversion. He used only six different materials that descrimi-

nated between fat, water, muscle, and three densities of bone. From the calibration curve,

he computed proton stopping powers accurate to within 1-2%.

du Plesis et al. [1998] used a methodology similar to Schneider’s but instead of

performing experiments with phantoms, he used the ITS3 [Halbleib et al., 1992] Monte

Carlo code to generate data. He identified 16 major tissue types in the body and classified

them into seven dosimetrically equivalent categories. The resulting algorithm transormed

HU directly into material and density values. Shortly thereafter, Schneider et al. [2000]

completed a similar study but proposed considering all materials as a mixture of tissue and

bone to varying degrees. However, the proposed algorithm fails to work well in soft tissue

regions due to the presence of three components (water, fat, and muscle).

Many of the earlier studies in HU-to-material conversions were done with high

energy (typically 6-8 MeV) photon beams used for treatment [Kim et al., 2014] [Vander-

straeten et al., 2007]. Saw et al. [2005] used a phantomwith 17 inserts representing different

dosimetric tissues.
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Ottosson and Behrens [2011] extended the methodology provided by Schneider

et al. [1996] to provide 19 dosimetric groups of materials in the diagnostic energy domain

independent of the particular scanner used to generate the data. The DOCTORS code relies

on his proposed 19-group model. Table 2.1 shows the mapping of CT number to material

composition (reproduced from Ottosson and Behrens [2011]).

2.3. DISCRETE ORDINATES

The dsicrete ordinates method dates back to Chandrasekahar [1950] who used it

for radiation transport in atmospheres, yet it remains one of the most prominent solu-

tion modalities for radiation transport in use today. A comprehensive review of discrete

ordinate methods is given by Lewis and Miller [1993]. Additional historical references

include Carlson [1953] Lanthrop and Carlson [1965].

The oldest major discrete ordinate method implementation is DORT which was

superceded by its 3D counterpart TORT [Rhoades and Simpson, 1997]. Since TORT,

new discrete ordinate method implementations have laregly been extensions allowing more

advanced computation or updates to modernize the code.

Discrete ordinate methods are almost always done on a Cartesian grid, though alter-

native derivations on general geometry do exist [DeHart, 1993]. Extension to unstructured

tetrahedral meshes was done by Wareing et al. [1998].

Walters [2015] extended the discrete ordinates method to employ an adaptive col-

lision source. Similarly, Ahrens [2015] wrote an algorithm that allows the quadrature to

adapt to the energy group. Both of these methods improve the angular refinement. Ibrahim

et al. [2015] added an adaptive mesh refinement. The adaptive mesh refinement allowed

the code to automatically refine areas of interest where the flux was rapidly changing. This

reduced the error in those regions reducing the computation time needed to reach a partic-
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ular uncertainty level. An overview of other multigrid reduction schemes is given by Lee

[2012]. Efremenko et al. [2013] enumerates additional acceleration techniques available

for discrete ordinates that can increase speed by 15-30%.

Denovo is a massively parallel general-purpose discrete ordinate solver developed

by Evans et al. [2010] to replace TORT. Denovo uses modern programming standards and

utilizes the Exnihilo package for data processing and solution methods [Evans et al., 2006].

To overcome ray effect artifacts (discussedmore thouroughly in Section 3.2), discrete

ordinate solutions often employ a raytracing algorithm to compute the uncollided flux. The

uncollided flux is then computed using the full discrete ordinate method. Raytracing

algorithms have been developed for numerous discret ordinate codes include RAY3D [Ying

et al., 2015] and ATTILLA [Wareing et al., 1998] which utilizes unstructured tetrahedral

meshes.

2.4. RAYTRACING

Many raytracing algorithms are based on the Bresenham line raserizing algorithm

which was designed for graph plotting hardware [Bresenham, 1965]. That algorithm was

intended to produce lines acceptable for human interpretation and no guarantee is made

that all pixels along the line will be identified making this class of algorithms inappropriate

for dosimetric raytracing since attenuation through some voxels would be skipped. Some

extensions have been added to it that guarantee passage through all voxels though [Liu et al.,

2004].

Cleary and Wyvill [1988] proposed a voxel traversal algorithm in which he initially

identifies the voxel containing the starting point of the ray, and transport it to the first surface

of its bounding voxel it would cross. This is done by computing the distance traveled to

cross each enclosing surface. The surface with the least distance is the first surface crossed.

Therefore, the particle is advanced to the intersection point and considered inside the next

cell, having crossed the surface. This process is repeated until a termination criteria is met.
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This work uses the raytracing algorithm proposed by Amanatides and Woo [1987]

which is very similar to the method proposed by Cleary and Wyvill [1988] but based on the

parametric equation of a line, u + vt which makes implementation in 3D simple. Since its

develpment, many improvements and extensions have been made for alternate geometries

such as rhombic dodecahedra [He et al., 2013] for volume rendering but the core algorithm

remains state of the art for floating-point arithmetic. On systems that are highly efficient at

computing integer arithmetic, alternatives exist which are faster [Liu et al., 2004] but they

do not outperform on hardware optimized for floating-point operations.

2.5. GPU ACCELERATION

A graphics processing unit (GPU) is similar to a central processing unit (CPU)in

that it executes instructions to process data. However, it differs in that a CPU may have up

to 22 physical cores, each of which can operate independently, a GPU has up to thousands

of cores, but they cannot operate independently. Instead, cores execute simulaneously in

groups called warps. All cores in a warp execute the same instruction at the same time as

all others.

Two major GPU manufacturers control the vast majority of the market, Nvidia

and AMD. In 2007, Nvidia released its Compute Unified Device Architecture (CUDA)

language. CUDA allows code written in C/C++/FORTRAN to communicate with a GPU

with minimal additional code. Therefore, CUDA was selected for the GPU acceleration of

DOCTORS. Therefore, only Nvidia GPUs are considered in this work.

In GPU texts, the GPU itself is referred to as a device and the CPU or other hardward

running the GPU is referred to as the host. The device has its own instruction set which

requires a special compiler. The device also has its own onboard memory so data must be

copied from the host to the device and then back.
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Conceptually, code run on the device is split into block on a grid, each block then

runs multiple concurrent computations, each on a thread. In hardware, threads execute in a

warp (32 to 128 streaming multiprocessors depending on the GPU architecture).
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3. METHODS

This chapter summarizes the solution methodology employed by DOCTORS. The

techniques used to compute the collided and uncollided fluxes are described in separate

sections. After the flux solution methodology is explained, the methods used for source

generation and flux-to-dose conversion are covered.

3.1. DISCRETE ORDINATE METHODS

The discrete ordinate solver computes the flux distribution inside the CTmesh given

a source, physical geometry information, and other associated solver parameters such as

quadrature and energy discretization. Discrete ordinates is a deterministic solution to the

linear Boltzmann equation.

3.1.1. The Boltzmann Equation. The linear Boltzmann equation (LBE) is gen-

erally true of any particle for which outside forces (electromagnetic or gravitational) are

either not present or negligible and particle-particle collisions are insignificant. Therefore,

the LBE is generally not valid for charged particles or systems whose particle density is on

the order of the confining medium. In such systems, particle-particle interactions may not

be negligible requiring the non-linear Boltzmann equation.

In general, the LBE is valid for multiplying media (such as neutrons passing through

fuel in a reactor), but the variant considered in this work omits such terms since only photons

in medical systems are of concern. Solutions to the LBE can also be used to solve criticality

eigenvalue problems or to produce adjoint parameters for other codes. Such solutions are

not considered in this work.

The steady state form of the LBE can be readily derived from simple intuition. In the

steady state, particle production and removalmust be equal. In any volume, three production

mechanisms are present. Particles can (1) stream into the volume across a bounding surface,
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(2) inscatter from another energy-direction component of phase space, or (3) be produced

directly by the external source. At the same time, three removal terms are present, particles

can (1) stream out of the volume of interest by crossing a bounding surface, (2) be absorbed

and vanish entirely, or (3) outscatter to a energy-direction component of phase space other

than the one of interest.

The downscatter and absorption removal terms are typically grouped together as

Σt = Σa + Σs (3.1)

where Σt , Σa, and Σs are the macroscopic total, absorption, and scatter cross sections

respectively. The removal of particles from interactions (scatter and absorption) per volume

is then

Σt (r, E)ψ(r, E, Ω̂) (3.2)

where ψ is the angular flux. The production and removal streaming operators are combined

as

Ω̂ · ∇ψ(r, E, Ω̂) (3.3)

and included as a removal term since the normal is defined pointing outward from the

volume. The normal sign convention results in particles streaming out being positive and

those streaming in becoming negative.

The inscatter to a particular energy and direction is computed by integrating over

all other energies and directions

∫
4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψ(r, E′, Ω̂′)dE′dΩ̂′. (3.4)
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Figure 3.1. The coordinate system used in DOCTORS. Given an arbitrary direction, Ω, µ,
η, and ξ are its direction cosines with respect to the x, y, and z axes respectively. ϕ is the
azimuthal angle (with respect to x) and θ is the polar angle (with respect to z).

An external source S produces particles per volume. Combining the removal terms on the

left and the production terms on the right yields

[
Ω̂ · ∇ + Σt (r, E)

]
ψ(r, E, Ω̂) =∫

4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψ(r, E′, Ω̂′)dE′dΩ̂′ + S(r, E, Ω̂)

(3.5)

which is the LBE. The following sections show how Eq. 3.5 is discretized and solved

computationally.

3.1.2. AngularDiscretization. The coordinate systemused inDOCTORS is shown

in Figure 3.1. A discrete set of Na angles (Ωa, a = 0 . . . Na − 1) is selected to represent

continuous directional space. Particles are transported only along these discrete directions

from each voxel to adjacent voxels.
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(a) (b) (c)

Figure 3.2. Some various SN quadratures. The black dots indicate the location of a ray. (a)
S2 (b) S4 (c) S6

The rotation symmetrical (SN ) quadrature is implemented in DOCTORS. From

amongst many different quadrature sets, the rotation symmetrical quadratures were selected

because they are easy to implement, rotationally symmetric, and used in production discrete

ordinate solvers [Evans et al., 2010] which enables simple, direct comparison to other

solvers. Arbitrary quadratures are permissible in a plain text file supplied by the user

enabling other quadratures.

The SN quadrature ensures 90 degree symmetry about any axis. In order to ensure

the rotational symmetry, the SN quadrature has a single degree of freedom. The LQN

quadrature (which is the specific SN implemented in DOCTORS) uses the remaining degree

of freedom tominimize error causedwhen integrating Legendre polynomials since that class

of polynomials are used to represent anisotropy in scattering (see Section 3.1.8). For a more

thorough discussion of quadrature generation, see Lewis and Miller [1993]. Figure 3.2

shows the simplest three quadratures implemented in DOCTORS.

To include a user defined quadrature, the plain text file should be formatted such

that it contains four columns similar to Table 3.1 (without any headings). No checks are

performed to ensure that octants are covered, this allows simple testing quadratures that

utilize only a single direction to be used. Values for µ, η, and ξ do not necessarily need to

add to unity as they will be automatically normalized by DOCTORS. Likewise, the weights
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will be normalized such that their summation is unity. However, user defined directions

should not be parallel to any major axis. Doing so may result in undefined behavior. Also,

after normalization, no two rows should have identical values for µ, η, and ξ such as the

last two rows of Table 3.2, nor may any weights be negative. The data in Table 3.1 would

be read in and renormalized by DOCTORS resulting in data identical to Table 3.2.

Values are read in as a 32-bit IEEE-754 floating point number [IEEE, 2008] which

ensures seven significant digits. Significant digits beyond this will be truncated. Note that

Table 3.2 rounds four digits after the decimal.

Table 3.1. User Defined Quadrature Input

µ η ξ Weight
1 0 0 1

0.999 0.001 0.001 1
1.0 1.0 1.0 1.3

0.02198 0.2987 .34520 .02226
.001 .001 .999 0.999
-1 1 -1 .2
-1.2 1.2 -1.2 0.1
-1 1 -1 .2

Table 3.2. User Defined Quadrature Interpretation

µ η ξ Weight
1.0000 0.0000 0.0000 0.2074
1.0000 0.0010 0.0010 0.2074
0.5774 0.5774 0.5774 0.2696
0.0481 0.6536 0.7553 0.0207
0.5000 -0.5000 0.7071 0.0046
0.5774 -0.5774 -0.5774 0.2072
-0.5774 0.5774 -0.5774 0.0415
-0.5774 0.5774 -0.5774 0.0415

A given direction, Ω̂, is determined by its three cosine components:

Ω̂ = µî + η ĵ + ξ k̂ (3.6)
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Figure 3.3. The energy grid structure used in DOCTORS. The highest energy group is
group 0 and the lowest energy is group G − 1.

where î, ĵ, and k̂ are the unit directions in the x, y, and z directions respectively. Therefore,

any discrete direction Ω̂a can be expressed as < µa, ηa, ξa >. The two forms will be used

interchangeably.

Discretizing the LBE (Eq. 3.5) in angular space gives

[
Ω̂a · ∇ + Σt (r, E)

]
ψa (r, E) =

Na−1∑
a=0

∫ ∞

0
Σs,a,a′ (r, E′ → E)ψa′ (r, E′)dE′ωa + Sa (r, E)

(3.7)

where the subscript a denotes the direction number and ωa is a weight associated with

that direction. The weights are designed with the angles such that once a discrete quadra-

ture is selected, integration over continuous space becomes integration in discrete space

approximated by ∫
4π

f (Ω̂)dΩ̂ ≈
Na−1∑
a=0

f (Ω̂a)ωa = 1. (3.8)

3.1.3. Energy Discretization. Continuous energy is discretized into G groups in-

dexed from 0 to G − 1 as illustrated in Figure 3.3. Therefore, Eq. 3.7 becomes

[
Ω̂a · ∇ + Σ

g
t (r )

]
ψ
g
a (r ) =

Na−1∑
a=0

G−1∑
g′=0
Σ
g,g′

s,a,a′ (r )ψg′

a′ (r )ωa + Sg
a (r ) (3.9)

where the group number is indexed by superscript g.
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The user must provide cross section data in the form of an AMPX formatted binary

file (Format details are provided in Section 4.2). The cross section data file contains

group structure information. Group averaged cross section values from energy E1 to E2

are computed using Eq. 3.10 where σ(E) is the continuous microscopic cross section. A

weighting function, f , is used to weight the energies. The weighting function can be any

of a number commonly used functions. The SCALE data libraries use a uniform function.

σG =

∫ E2
E1

f (E′)σ(E′)dE′∫ E2
E1

f (E′)dE′
(3.10)

In photon based problems, upscatter is typically negligible. By the time photons

become low enough in energy to upscatter significantly, they are no longer of dosimetric

concern. Removing upscatter reduces Eq. 3.9 to

[
Ω̂a · ∇ + Σ

g
t (r )

]
ψ
g
a (r ) =

Na−1∑
a=0

G−1∑
g′=g

Σ
g,g′

s,a,a′ (r )ψg′

a′ (r )ωa + Sg
a (r ) (3.11)

which nearly identical; only the starting point for the scatter summation changes. Compu-

tationally, though, the lack of upscatter makes a significant difference. The highest energy

group can be solved independently of all those below it. Once that group is solved, the next

group can also be solved and so forth. In the presence of upscatter, the highest group depends

on the solution to all groups below it so all energy groups must be solved simultaneously.

The group structure cannot be arbitrarily selected by DOCOTRS, instead it is deter-

mined by the external cross section data file loaded by the user. The energy group structure

should be selected appropriately for the problem. The cross sections currently included

with DOCTORS are those available from the SCALE 6.2 distribution. Those cross sections

are designed for light water reactor analysis and are not well suited to medical physics

applications. This is one of the limitations of the current version of DOCOTRS. The
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SCALE cross section data also contains neutron data which is useless for the CT dosimetry

DOCTORS performs. More details of the cross section parsing and generation are included

in Section 4.2 and 4.3 respectively.

3.1.4. Spatial Discretization. The problem domain is split into an evenly spaced

Cartesian grid. Uniform grid spacing is not required by discrete ordinate methods though

it is helpful and can speed up the computation.

The problem domain for a CT voxel phantom is a regular, rectangular parallelepiped

of dimension Dx ×Dy ×Dz, the values of which are known based on the CT setup provided

by the user. The mesh is partitioned into Nx , Ny, and Nz evenly spaced bins along each

major direction as shown in Figure 3.4. The total number of voxels, NV is easily computed

from the number of bins in each major direction:

NV = Nx NyNz . (3.12)

The length of a voxel along the x-direction is computed by

∆x =
Dx

Nx
. (3.13)

Analogous equations apply in the y and z directions as well.

Voxels can be indexed in one of two ways, either by their component indices or

global index. Each voxel in the mesh has three components indices, one in each major

direction, ix , iy, and iz that range from 0 to Nx − 1, Ny − 1, or Nz − 1. However, this makes

indexing cumbersome, so they are combined into a unique global index, i using

i = ix (Nz + Ny) + iyNz + iz . (3.14)
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Figure 3.4. The spatial mesh imposed on the problem domain.

In general, this is known as "flattening" a matrix into a one-dimensional vector. More

details about the flattening implementation used in DOCTORS is given in Section 4.1.

Using global indexing discussed, the fully discretized steady state LBE is

[
Ω̂a · ∇ + Σ

g
t,i

]
ψ
g
i,a =

Na−1∑
a=0

G−1∑
g′=g

Σ
g,g′

s,i,a,a′ψ
g′

i,a′ωa + Sg
i,a . (3.15)

3.1.5. Solution. To solve the fully discretized form of the Linear Boltzmann Equa-

tion given in Eq. 3.15, the gradient operator must first be computed numerically. Recall

that Ωa can be written in vector notation using its cosine components as defined in Eq. 3.6.

Also recall the definition of the gradient:

∇ f (x, y, z) =
∂ f (x, y, z)

∂x
î +

∂ f (x, y, z)
∂y

ĵ +
∂ f (x, y, z)

∂z
k̂ . (3.16)
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To a first order approximation, a partial derivative is computed

∂ f (ζ )
∂ζ

≈
f (ζ + ∆ζ/2) − f (ζ − ∆ζ/2)

∆ζ
(3.17)

with respect to ζ . Combining Eq. 3.16 and 3.17, the Ω̂ · ∇ψ term can be rewritten as:

Ω · ∇ψ =< µ, η, ξ > · <
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z
>

=
∂ψ

∂x
µ +

∂ψ

∂y
η +

∂ψ

∂z
ξ

≈
ψ(x + ∆x/2, y, z) − ψ(x − ∆x/2, y, z)

∆x
µ

+
ψ(x, y + ∆y/2, z) − ψ(x, y − ∆y/2, z)

∆y
η

+
ψ(x, y, z + ∆z/2) − ψ(x, y, z − ∆z/2)

∆z
ξ.

(3.18)

The flux variables ψg
i,a,x,in, ψ

g
i,a,x,out , ψ

g
i,a,y,in, ψ

g
i,a,y,out , ψ

g
i,a,z,in, and ψ

g
i,a,z,out are surface

averaged flux values while ψg
i,a is a volume averaged flux value.

The gradient is computed with respect to the direction Ω̂, thus Eq. 3.18 is valid only

for the first octant (µ, η, ξ > 0). In other octants, a new gradient must be used. Rather than

enumerating all eight variants, Eq. 3.18 can be generalized to

Ω · ∇ψ ≈
ψx,out − ψx,in

∆x
µ +

ψy,out − ψy,in

∆y
η +

ψz,out − ψz,in

∆z
ξ (3.19)

where

ψx,out =




ψ(x + ∆x/2, y, z) , µ > 0

ψ(x − ∆x/2, y, z) , µ < 0
(3.20)

and

ψx,in =




ψ(x − ∆x/2, y, z) , µ > 0

ψ(x + ∆x/2, y, z) , µ < 0
(3.21)

andψy,out , ψy,in, ψz,out , andψz,in are similarly defined but with respect to η and ξ respectively.
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Using the generalized approximation given in Eq. 3.19, Eq. 3.15 can be rewritten as



ψ
g
i,a,x,out − ψ

g
i,a,x,in

∆x
µ +

ψ
g
i,a,y,out − ψ

g
i,a,y,in

∆y
η +

ψ
g
i,a,z,out − ψ

g
i,a,z,in

∆z
ξ


+ Σ

g
t,iψ

g
i,a

=

Na−1∑
a=0

G−1∑
g′=g

Σ
g,g′

s,i,a,a′ψ
g′

i,a′ωa + Sg
i,a .

(3.22)

In order for the discretized LBE to be solved using Eq. 3.22, both the incoming and

outgoing flux must be known. Therefore, in order to compute the average flux in a cell,

some relationship between the average flux and the outgoing surface fluxes must be known.

These values can be related by any one of many different mechanisms, the most common

of which is the diamond difference approximation.

3.1.6. Diamond Difference Approximation. The diamond difference approxima-

tion, relates the incoming and outgoing surface fluxes to the cell averaged flux. The cell

averaged flux is assumed to be the average of any two opposite surface fluxes. This is

assumed to be the case in all three spatial dimensions leading to:

ψ
g
i,a,x,in + ψ

g
i,a,x,out

2
= ψ

g
i,a

ψ
g
i,a,y,in + ψ

g
i,a,y,out

2
= ψ

g
i,a

ψ
g
i,a,z,in + ψ

g
i,a,z,out

2
= ψ

g
i,a .

(3.23)

Multiplying both sides of Eq. 3.23 by 2 and subtracting twice the incoming surface flux

from each yields:

ψ
g
i,a,x,out − ψ

g
i,a,x,in = 2ψg

i,a − 2ψg
i,a,x,in

ψ
g
i,a,y,out − ψ

g
i,a,y,in = 2ψg

i,a − 2ψg
i,a,y,in

ψ
g
i,a,z,out − ψ

g
i,a,z,in = 2ψg

i,a − 2ψg
i,a,z,in.

(3.24)
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The form of the left hand side of Eq. 3.24 is the same as in Eq. 3.22. This allows

Eq. 3.24 to be used to make a substitution in Eq. 3.22 that removes the dependence on the

outgoing flux. After the substitution:



2ψg
i,a − 2ψg

i,a,x,in

∆x
µ +

2ψg
i,a − 2ψg

i,a,y,in

∆y
η +

2ψg
i,a − 2ψg

i,a,z,in

∆z
ξ


+ Σ

g
t,iψ

g
i,a

=

Na−1∑
a=0

G−1∑
g′=g

Σ
g,g′

s,i,a,a′ψ
g′

i,a′ωa + Sg
i,a .

(3.25)

Rearranging Eq. 3.25 to factor out the volume averaged flux term yields:



2ψg
i,a

∆x
µ +

2ψg
i,a

∆y
η +

2ψg
i,a

∆z
ξ


−



2ψg
i,a,x,in

∆x
µ +

2ψg
i,a,y,in

∆y
η +

2ψg
i,a,z,in

∆z
ξ


+ Σ

g
t,iψ

g
i,a

=

Na−1∑
a=0

G−1∑
g′=g

Σ
g,g′

s,i,a,a′ψ
g′

i,a′ωa + Sg
i,a

(3.26)

which can be directly solved for the volume averaged flux:

ψ
g
i,a =

∑Na−1
a=0

∑G−1
g′=g Σ

g,g′

s,i,a,a′ψ
g′

i,a′ωa +

[ 2ψg
i,a,x,in

∆x µ +
2ψg

i,a,y,in

∆y η +
2ψg

i,a,z,in

∆z ξ
]
+ Sg

i,a

2µ
∆x +

2η
∆y +

2ξ
∆z + Σ

g
t,i

. (3.27)

The diamond difference approximation defined in Eq. 3.23 can also be rearranged

to solve for each outgoing flux once the volume averaged flux is computed. The outgoing

flux is:

ψ
g
i,a,x,out = 2ψg

i,a − ψ
g
i,a,x,in

ψ
g
i,a,y,out = 2ψg

i,a − ψ
g
i,a,y,in

ψ
g
i,a,z,out = 2ψg

i,a − ψ
g
i,a,z,in.

(3.28)

The outgoing flux values are then used as the incoming flux values for subsequent voxels.
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Repeatedly iteration Eq. 3.27will eventually yield the solution to the flux distribution

regardless of the initial guess. Choosing an accurate guess can greatly accelerate the code

and guide convergence on amore accurate solution as discussed inmore detail in Section 3.2.

Either way, some metric must be used to determine when to stop the iteration process.

3.1.7. Convergence Criteria. The typical convergence criteria used to determine

whether or not to terminate further iteration is the maximum relative error from the previous

iteration to the current iteration given in Eq. 3.29 over the phase space R where t is the

current iteration number. Once the relative error in the parameter of interest, φ, is below

some threshold, ε , the iteration stops and the solution is considered converged.

max
R

{
φt − φt−1

φt

}
< ε (3.29)

In some problems, the convergence criteria given in Eq. 3.29 is not reached for

many iterations. In these cases, terminating the solution early rather than waiting for

full convergence is appropriate. This is enforced by a second criterial given by Eq. 3.30.

Whenever the number of iterations, t, exceeds the total permissible number of iterations, T ,

the iteration is terminated.

t > T (3.30)

Under further investigation, the cause of the convergence failure that results in

Eq. 3.30 being exercised often stems fromfloating point error. The fluxmagnitude fluctuates

wildly in regions of very flow flux, such as the gantry. In these regions, the relative

uncertainty remains much higher than in regions with smoother flux distributions.
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In order to measure the uncertainty due to floating-point error, another convergence

criteria was added. Rather than considering the relative change from iteration to iteration,

the total absolute change is measured:

ε =
∑
R

|φi − φi−1 |. (3.31)

The termination criteria is given by Eq. 3.32. Computation of a value for ε requires two

previous iteration, thus this condition cannot be met until the third iteration and thereafter.

εi > εi−1 (3.32)

3.1.8. Anisotropy Treatment. Scatter is assumed to be a function of only the

scatter angle θs between the initial, Ω̂a, and scattered, Ω̂a′, directions as illustrated in

Figure 3.5. The cosine of the scatter angle, µs is related by

µs = Ωa · Ωa′ = cos(θs) , 0 ≤ θs ≤ π. (3.33)

Typically, at this point, discrete ordinate methods will describe the discrete angular

flux, ψ using flux moments, φ. The motivation for using flux moments is that they improve

computational performance and reduce memory overhead.

The data files containing the scatter cross sections store the information using

Legendre polynomial expansion coefficients. The use of a Legendre expansion removes

the dependence on the quadrature from the data. This allows any quadrature to work with

any cross section dataset. A l-order Legendre polynomial is denoted by Pl . Details of the

Legendre polynomials can be found in Appendix 7.2. The anisotropic scatter cross section

is rewritten using a Legendre expansion as

Σ
g,g′

s,i,a,a′ =

L∑
l=0

2l + 1
4π
Σ
g,g′

s,i,l Pl (µs). (3.34)
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Figure 3.5. The scatter angle. A photon (blue) at energy E traveling in direction Ω, hits a
stationary atom (green) and scatters into a new direction Ω′ with a new energy E′.

An alternate anisotropy treatment is to use the Klein-Nishina formula [Shultis and

and, 1950]. The Klein-Nishina formula describes the scattering cross section as

σ(E, µ) ∝ q3 + qµ2 (3.35)

where

q(E, µ) =
1

1 + (E/E0)(1 − µ)
. (3.36)

Figure 3.6 shows a comparison of the Klein-Nishina scattering cross section as a function of

scatter angle versus the computed cross sections in DOCTORS using the Klein-Nishina for-

mula given in Eq. 3.35. The slight discrepancy between the two is due to the postprocessing

used to merge data from the DOCTORS output. The underlying trends are identical.
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Figure 3.6. Comparison of the Klein-Nishina formula to the computed cross section values
in DOCTORS using the Klein-Nishina anisotropy treatment.

3.2. UNCOLLIDED SOLUTION METHODS

One of the earliest problems with the discrete ordinate methods is the presence of

ray effect. Ray effect arises due to the restriction of particle transport to a set of discrete

directions. To illustrate ray effect, consider a point source streaming particles isotropically

into vacuum. Since no scatter or absorption takes place in vacuum conditions, the particles

can only stream and particles must be conserved. However, if particles are transported

along a single discrete direction only as illustrated in Figure 3.7 (Ω̂ =<
√

2/2,
√

2/2 > in

Figure 3.7 and 3.8) the phenomena observed in Figure 3.8 is observed. As the discretization

becomes more refined, the isotropic source becomes more heavily biased in the Ω̂ direction.

This phenomena is called ray effect and has been thoroughly studied by many [Mathews,

1999] [Tencer, 2016].
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(a) (b) (c) (d)

Figure 3.7. A simple illustration of how ray effect emerges from discrete angles. (a)
Particles start in the lower left cell and travel along Ω. (b) Half travel to the cell above and
half to the right. (c) Half of the particles in each cell move up and half to the right. The
center cell gets particles from the cells below and left of it. (d) Some particles escape across
the vacuum boundary.

All particles must stream from one voxel to adjacent voxels. The streaming is

considered (in 2D) along <
√

2/2,
√

2/2 > as shown in Figure 3.7. All particles in the initial

cell must stream outward into the two cells touching in the Ω̂ direction. The particles in

each voxel split, half go to the voxel above and the other half travel to the right. This process

is illustrated in Figure 3.7.

The solution to prevent ray effect is to utilize an analytical uncollided source term.

The full flux solution is split into two subproblems. Equation 3.5 is rewritten as two

equations solving for the uncollided flux, ψu, and collided flux, ψc independently:

ψ = ψu + ψc. (3.37)

Both ψu and ψc obey the LBE. The uncollided flux

[
Ω̂ · ∇ + Σt (r, E)

]
ψu(r, E, Ω̂) = S(r, E, Ω̂) (3.38)

has no scatter term since scattered particles are not considered in the uncollided flux. The

lack of a scatter termmakes the uncollided flux (whose analytical solution is derived shortly)

computable with a raytracing algorithm. The uncollided flux is then used to compute the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8. The ray effect artifact. The subfigures on the left (a, c, and e) show the correct
solution modeled with 1/r2. The right subfigures (b, d, and f) show the corresponding
solution with ray effect generated by the process described in Figure 3.7. The top row of
subfigures uses 4 cells, the middle row uses 12, and the bottom row uses 500.
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first collision source, Su:

Su =

∫
4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψ(r, E′, Ω̂′)dE′dΩ̂′. (3.39)

which is then used to drive the collided flux in the same way the external source drives the

uncollided flux distribution:

[
Ω̂ · ∇ + Σt (r, E)

]
ψc(r, E, Ω̂) =∫

4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψc(r, E′, Ω̂′)dE′dΩ̂′ + Su(r, E, Ω̂).

(3.40)

Substituting Eq. 3.39 into Su in Eq. 3.40 simplifies it to

[
Ω̂ · ∇ + Σt (r, E)

]
ψc(r, E, Ω̂)

=

∫
4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψc(r, E′, Ω̂′)dE′dΩ̂′+∫

4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψu(r, E′, Ω̂′)dE′dΩ̂′

=

∫
4π

∫ ∞

0
Σs (r, E′ → E, Ω̂′ → Ω̂)ψ(r, E′, Ω̂′)dE′dΩ̂′.

(3.41)

A rigorous derivation for the uncollided flux is not provided in this work. Instead,

an intuitive approach is used. First, consider an isotropic point source in a homogeneous

media. The (scalar) flux is well known to be

ϕ(r, E) =
S(E)e−µ(E)r

4πr2 (3.42)

where S is the source strength, µ is the attenuation coefficient in the material, and r is the

distance traveled by the photon [CITE]. Expanding the problem to a full 3D model, the flux

at r from a point source at s is

ϕ(r, E) =
S(E)e−µ(E) |r−s |

4π |r − s |2
. (3.43)
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The only non-intuitive step is the introduction of anisotropy. The 4π solid angle term in the

denominator of Eq. 3.43 is generally expressed by

∫
4π

∫ ∞

0
S(E, Ω̂)dEdΩ̂ (3.44)

but DOCTORS assumes S is normalized such that the integral in Eq. 3.44 is 4π. The flux

is nonzero only in the direction of travel, namely in the unit direction r − s. Therefore, a

Kronecker delta function (defined in Eq. 3.46) is used to produce the angular flux:

ψ(r, E, Ω̂) =
S(E, Ω̂)e−µ(E) |r−s |

4π |r − s |2
δ

(
Ω̂,

r − s

|r − s |2

)
. (3.45)

δ(A, B) =




1 , if A = B

0 , otherwise
(3.46)

Equation 3.45 can be expanded to accomodate any number of spatially distributed

sources of arbitrary directionality given in Eq. 3.47 by integrating over the entire spatial

domain, V

ψu(r, E, Ω̂) =
$

V
S(s, E, Ω̂)

e−
∑

i Σt,i xi

|r − s |2
δ

(
Ω̂,

r − s

|r − s |2

)
d s. (3.47)

3.3. SOURCE GENERATION

All photon transport problems considered in the DOCTORS code are ultimately

driven by an external source, namely the medical equipment producing the photon beam.

These sources can come in a variety of geometric shapes and energy spectra. Currently,

DOCTORS has a number of built-in beam types available for analysis including point

sources, fan beams, and cone beams. Fan beams and cone beams can be arranged about a
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(a) (b)

Figure 3.9. The geometry of fan and cone beams in DOCTORS. (a) A fanbeam is defined
by θ in the polar coordinate and ϕ azimuthally. (b) A cone beam is described only be θ.

Figure 3.10. Typical DOCTORS phantom geometry viewed axially with the phantom. The
beam (gray) is centered on s and the vector from the source to the voxel of interest c is used
to determine whether that voxel should be accepted or rejected. In the case of isotropic
point sources, s is undefined.

phantom to produce an axial slice. Currently, helical paths are not supported, though they

could be added with little additional effort. The geometry of fan beams and cone beams in

DOCTORS is shown in Figure 3.9.

3.3.1. Point Source. The simplest source implemented is an isotropic point source.

This source is defined only by its position and energy distribution. Given a vector from

the source to the center of the geometry, s, and a vector from the source to the center of a

cell, c,the uncollided flux is computing using Eq. 3.43. The collided flux is then computed

using the discrete ordinate solution to the LBE given in Eq. 3.41. The vectors are shown in

Figure 3.10.

3.3.2. Fan Source. In addition to the values defining a point source (position s

and the energy distribution) a fan source is defined by two additional parameters, ϕ and

θ which describe the azimuthal and polar angles subtended by the fan beam respectively.

Figure 3.9a shows ϕ and θ with respect to the geometry setup. The raytracing algorithm



36

used for the fan beam is identical to the point source raytracer except for one difference:

before the raytracing is done, whether the ray falls within the fan beam is determined and

any ray falling outside the fan beam is not traced, instead its uncollided flux is immediately

set to zero. Some voxels are partially enclosed inside the beam which is not accounted for

resulting in artifacts at the edges of the beam.

To determine whether a ray is accepted or rejected, the ray direction is first projected

onto the xy plane giving< sx, sy, 0 > and< cx, cy, 0 >. Then the cosine of the angle between

them, ζϕ, is computed using

cos(ζϕ) =
< Sx, Sy, 0 >√

S2
x + S2

y

·
< Cx,Cy, 0 >√

C2
x + C2

y

=
SxCx + SyCy√

S2
x + S2

y

√
C2

x + C2
y

. (3.48)

Once ζϕ is computed,

|ζϕ | <
ϕ

2
(3.49)

is evaluated. If the condition is met, the angle is accepted and raytraced normally, otherwise,

it is rejected immediately.

Treatment for the θ variable is similar to that of ϕ except the polar angle is required

instead of the azimuthal angle. The polar angle of an arbitrary vector ξ can be computed

using

cos(θξ ) =
ξz√

ξ2
x + ξ

2
y + ξ

2
z

. (3.50)

This is used to compute the polar angle for both s and c. The difference between the polar

angles of the two vectors

ζθ = θs − θc (3.51)

is used to evaluate

|ζθ | <
θ

2
. (3.52)
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Figure 3.11. The fan beam rejection. Voxels whose center lies outside the beam are rejected.
This may lead to artifacts along the edges of the beam.

(a) (b) (c) (d)

Figure 3.12. Different numbers of fan beam projections (N). (a) N = 6. (b) N = 12. (c)
N = 16. (d) N = 64.

If the condition is not met, the ray is rejected and no raytrace is performed. Figure 3.11

shows a simple example demonstrating cases when a voxel would be accepted or rejected.

3.3.3. Multi-fan Source. The focal point about which the CT system rotates is

assumed to be the center of the xy plane and at the same z-elevation as the first user

specified point. Instead of integrating the path of the beam mathematically, a set of samples

are taken as illustrated in Figure 3.12. The focal spot defines the center of each fan beam.

Rotation of an arbitrary point (x, y) about the origin θ radians to a new position

(x′, y′) is performed by

x′ = x cos θ − y sin θ (3.53)

and

y′ = y cos θ + x sin θ. (3.54)



38

Rotation about an arbitrary point (namely the focal point), (x f , y f ) requires trans-

lating the system such that the focal point is at the origin, performing the rotation given in

Eq. 3.53 and 3.54, and then translating back to the original coordinates. This is done by

x′ = (x − x f ) cos θ − (y − y f ) sin θ + x f (3.55)

and

y′ = (y − y f ) cos θ + (x − x f ) sin θ + y f . (3.56)

3.3.4. Cone Source and Multi-cone Source. Cone sources are identical to fan

beam sources except for the rejection criteria used to determine whether or not a voxel

is inside the beam. The rejection criteria is a function of only a single parameter, θ, the

maximum permissible angle between the center of the beam, s, and a ray toward the point

of interest, c. The angle between s and c is

cos(ζ ) =
< Sx, Sy, Sz >√

S2
x + S2

y + S2
z

·
< Cx,Cy,Cz >√

C2
x + C2

y + C2
z

(3.57)

which, if s and c are unit vectors, simplifies to

cos(ζ ) = SxCx + SyCy + SzCz . (3.58)

Once the angle is computed, the condition

|ζ | < θ (3.59)

is evaluated to determine whether the ray is accepted or rejected. Figure 3.13 shows a

comparison of the cone beam and fan beam shapes. The most noticable difference is in

the xz plne where the cone beam is circular, but the fan beam produces a rectangular cross

section.
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(a) Cone xy (b) Fan xy

(c) Cone yz (d) Fan yz

(e) Cone xz (f) Fan xz

Figure 3.13. Comparison of a cone beam (a), (c), and (e) to a fan beam (b), (d), and (f). The
cone beam is 20 degrees in both the xy and yz planes but the fant beam is different. The
cross section of the cone beam is cicular (e), but the fan beam cross section is rectangular
(f).
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Figure 3.14. Fluence-to-dose conversion factors from ICRP 116 for photons and the group
averaged conversion factors for the 47-group data library in DOCTORS.

3.4. DOSE COMPUTATION

Dose can be computed in either one of two ways. The first way is to compute the flu-

ence distribution andmultiply by a fluence-to-dose conversion factor from ICRP 116 [ICRP,

2010]. The second way to compute dose is to compute the energy deposition in each cell.

In both methods, transport of secondary particles is neglected and all energy deposition is

assumed to be local.

3.4.1. Fluence-to-doseConversion. The publications of the ICRP include fluence-

to-dose conversion factors for a reference phantom from various particle types and patient

orientations. For CT systems, the rotationally symmetric (ROT) orientation is the most

appropriate since the beam rotates about the patient. Figure 3.14 shows the energy dependent

fluence-to-dose conversions for the ROT orientation. ICRP 116 distributes the conversion

factors as point-wise data which must be converted to group data. This is performed using

linear interpolation between the ICRP 116 data points.
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This methodology is very simplistic and can be computed quickly with no extra

(memory) overhead. When DOCTORS finishes running, the scalar flux is multiplied by the

conversion factor and summed over all energy groups:

Di =

G−1∑
g=0

ϕ
g
i Hg (3.60)

where Hg is the conversion factor for the gth group.

3.4.2. Energy Deposition. The alternative way to compute the dose is directly

from the local energy deposition. The total deposition, ET,i for voxel i is

ET,i = Ea,i + Es,i (3.61)

where Ea,i is the energy deposition from absorption and Es,i is the energy deposition from

scatter. The absorption deposition is

Ea,i =

G−1∑
g=0
Σ
g
a,iϕ

g
i Vi ĒgF1 (3.62)

where Ē is the average energy (in MeV) of the gth group and F1 is a unit conversion factor

that converts MeV to Joules. The average group energy is assumed to be the average

between the two bounding energies of the group. Equation 3.62 assumes total local energy

deposition in the voxel of interest. The energy deposition from scatter is

Es,i =

G−1∑
g=0

G−1∑
h=g+1

[
Σ
g,h
s,i ϕ

g
i Vi (Ēg − Ēh)F1

]
(3.63)

making the total deposition

ET,i = ViF1

G−1∑
g=0

ϕ
g
i


Σ
g
a,i Ē

g +

G−1∑
h=g+1

{
Σ
g,h
s,i (Ēg − Ēh)

}
(3.64)
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The mass of the voxel, Mi is then computed

Mi = ρiViF2 (3.65)

where ρi is the density in g/cm3 and F2 is a conversion factor to convert grams to kilograms.

The absorbed dose (in Gy) to the voxel is then

Di =
ET,i

Mi
=

F1
ρiF2

G−1∑
g=0

ϕ
g
i


Σ
g
a,i Ē

g +

G−1∑
h=g+1

{
Σ
g,h
s,i (Ēg − Ēh)

}
. (3.66)
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4. IMPLEMENTATION

This section covers the details of the implementation of the different components of

the DOCTORS code base. The code is available from a GitHub Git repository. At the time

of this writing, the repository is located at https://github.com/eNorris/thesis and

is only available subject to special request and license agreement. An executable version

can also be made available upon request. An executable-only public release is planned for

the future.

The code is implemented in C++ and requires a C0x11 compliant compiler. The

user interface is written using the Qt5 framework. GPU computation is performed via

CUDA which must be compiled seperatly by Nvidia’s proprietary compiler, nvcc.

Unless noted otherwise, all code listings are formatted as C++ code though some

parts of the code may be omitted. Omissions include typical "boiler plate" code that accom-

panies all code such as the #include statements and any using namespace commands.

Additionally, the main() function and others are omitted, showing only the code relevant

to the discussion.

4.1. VECTOR FLATTENING

Data is stored in large, multi-dimensional arrays. For example, theCTvoxel phantom

can be intuitively stored as a 3D array of floating precision values which can be easily

indexed. However, DOCTORS is written such that it is extensible to GPUs. GPUs are

not optimized for data stored in a multi-dimensional fashion, but rather for data stored as a

single 1-dimensional array. To emulate the 3-dimensional storage arrangement of the data,

indexing arithmetic is used.
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On the CPU, data is stored as C++ std::vector<T> objects where the T template

parameter can be either float or double depending on the precision (32 bits or 64 bits

respectively) needed. The storage space available to a std::vector<T> object is effectively

unlimited, bounded only by the host CPU’s physical RAM. However, other effects such as

memory fragmentation can limit the practical size of a single, continuous std::vector<T>

object significantly. To emulate indexing of a Nx × Ny matrix, a single std::vector<T> is

created and resized to Nx × Ny elements. The global index, i, in the flattened array is then

i = ix Ny + iy . (4.1)

This pattern extends to multi-dimensional matrices. For example, a Nx × Ny × Nz matrix

would be globally indexed as

i = ix NyNz + iyNz + iz . (4.2)

Figure 4.1 gives an example of the spatial indexing scheme using an 8× 8× 8 mesh.

The indicated voxel has ix , iy, and iz indices of 1, 5, and 6 respectively. Therefore, the

index value of the highlighted voxel is 1 × 8 × 8 + 5 × 8 + 6 = 110. This flattening pattern

continues to higher dimensional phase space to encompas energy and direction.

A variable that is dependent on x, y, z, E, andΩ would be written as φ(x, y, z, E,Ω)

would be discretized to φ(ix, iy, iz,G, ia). Rather than storing φ as a 5-dimensional matrix,

φ is stored as a 1-dimensional vector of the same number of elements.

4.2. CROSS SECTION PARSING

AMPX cross sections are stored in a binary format. These files are not distributed

with DOCTORS but must be obtained from SCALE6.2 or another code. Figure 4.2 shows

the data format of the overall file. The binary file is split into a sequence of records. The
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Figure 4.1. Conversion from 3D indexing to 1D "flattened" indexing.

header section of the file has overall information about the file including the number of

nuclides stored, their energy group structure, and a comment string describing the file.

Following the header section is a list of directory records. Each directory has information

about a specific nuclide including the cross section reaction types available, temperatures

for which the cross sections were evaluated, the number of Legendre expansion coefficients

stored in the scatter matrix, and other data. Following the directories, more records follow

that describe the energy structure used in the file. There is one such record for each particle

type. The libraries used in the current version of DOCTORS have both neutron and photon

cross section data stored.

The file header section, directories, and energy group boundaries describe the

structural information necessary to read the following nuclide records. Nuclides are listed

in the same order their directories are found after the header setion. Each nuclide contains

numerous records.
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(a) (b)

Figure 4.2. The format of the AMPX file. (a) The file contains a header, a list of directory
records, energy group information and a list of nuclide entries. (b) Each nuclide entry
contains multiple records; the two of concern in this work are the last two containing
gamma data.

Each record contains a string of data bytes between a four byte header and four byte

footer. The header and footer are identical and, when interpreted as a signed four byte

integer, give the size in bytes of the record. An example record is shown in Figure 4.3.

The data is stored in Big Endian format which must be converted to Little Endian for

most Intel and AMD processors. The endianess rearrangement is shown in Figure 4.4. Each

record is one of 12 unique types; each type of record is formatted and interpreted differently.

For example, Type 1 contains general information about the data file such as the number of

nuclides, number of energy groups, and a brief description. Type 2 records contains a list of

floating-point numbers representing the energy group boundaries. Figure 4.3 shows a Type

1 record. In the case of the header bytes given in Figure 4.3 and 4.4, the bytes correspond

to the integer 440 which is the length in bytes of the record (not including the header or

footer). Each byte of data is sequentially read, reordered, and converted to an apprpriately

typed variable. Table 4.1 shows the converstion for the record given in Figure 4.3.

The header always reports the number of 8-bit bytes required to store the data.

However, some data types, such as char, are only one byte so each word represents

multiple (4 in the case of char) distinct characters.
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Figure 4.3. An example record parsed. The header and footer are identical and equal to the
number of bytes in the record.

Figure 4.4. The byte reordering from Big Endian to Little Endian. Individual bits within a
byte are not rearranged, but the ordering of the four bytes withing a 32-bit word is reversed.

The first entry in each nuclide entry is the directory record. The directory contains

general information regarding the nuclide and information necessary to parse the proceeding

records. Following the directory, Bondarenko data, resonance parameters, neutron data,

and gamma production which are not of interest in photon only problems are read.

The penultimate record contains the average cross section data. This data is averaged

over all energies and directions using Eq. 3.10. The only data used in this section in

DOCTORS is the total cross section values necessary for implementing the fully discretized

form of the LBE given in Eq. 3.15.

The 2D data is stored in a special format optimized for scatter matrix data. The

format concists of a sequence of "magic numbers" interpersed within a list of data points.

A magic number is a nine digit number IIIJJJKKK. The first three digits, III, are the group

number of the highest energy group to scatter to the energy of interest. The next three

digits, JJJ, are the group number of the lowest energy to scatter. The final three digits,

KKK, are the group number of the sink energy to which particles are scattering. Given a

magic number magic, the three values can be computed in Listing 1. Note that the group

numbers are indexed from 1 to G instead of 0 to G − 1 as required by DOCTORS. This is

corrected by subtracting 1 while doing the indexing arithmetic.
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Table 4.1. Byte Reordering

Word Big Endian Little Endian Interpreted Notes
0 B8 01 00 00 00 00 01 B8 440 Header
1 8B 69 00 00 00 00 69 8B 27019 ID
2 A4 01 00 00 00 00 01 A4 420 Number of nuclides
... — — — —
11 70 75 6F 43 43 6F 75 70 "Coup" First four char of the title
12 20 64 65 6C 6C 65 64 20 "led " Second four char of the title
... — — — —
110 20 20 20 20 20 20 20 20 " " 4 spaces ending the title
111 B8 01 00 00 00 00 01 B8 440 Footer

1 magic = READ_NEXT_BINARY_INT()
2 KKK = magic % 1000
3 JJJ = (magic % 1000000 - KKK) /1000
4 III = (magic - JJJ - KKK) / 1000000
5

6 src = JJJ
7 while src >= III
8 data = READ_NEXT_BINARY_FLOAT()
9 xs[(src - 1)*G + KKK - 1] = data

10 src = src - 1

Listing 1. Computation of the source and sink groups from the magic number and the
subsequent data parsing.

Figure 4.5 shows themicroscopic cross section data pulled from the 200-neutron/47-

gamma group data file currently used by DOCTORS for hydrogen and oxygen. The data is

compared to reference data pulled directly from the ENDF/B-VII.1 photoatomic (MT=501)

data library [Cullen et al., 1997] accessible through the Sigma database [NNDC, 2011].

4.3. GENERATION OF MATERIAL CROSS SECTION DATA

Once the data is parsed, weighted combinations of elemental data is used to create

material cross sections. Cross section data for photons always uses the naturally ocurring

since photo-atomic reactions are not sensitive to the nuclear differences between isotopes.
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(a) (b)

Figure 4.5. The microscopic cross section in bars for hydrogen and oxygen. Both subfigures
show identical data, (a) shows the entire data range available in the reference data library
and (b) shows only the data range applicable to DOCTORS.

The compositions of N materials are assumed to be given as weight fractions, wi subject to

N∑
i=1

wi = 1 (4.3)

and is converted to an atom fraction, ai:

ai =
wi

Mmi
(4.4)

where

M =
N∑

i=1

wi

mi
(4.5)

and mi is the element’s atomic weight.

In the solution employed by DOCTORS, only the total and scattering cross sections

are required. The AMPX data files however, support arbitrary reaction types and have up

to a dozen or more reactions for photo-atomic reactions alone for elemental datasets. The
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(a) 19 group data (b) 47 group data.

Figure 4.6. Comparison of the group-averaged DOCTORS cross section data to continuous
NIST data.

reaction types are identified by their MT designation. The total, inelastic, and elastic scatter

cross sections are MT 501, 502, and 504 respectively. The scatter cross section used by

DOCTORS is the sum of the elastic and inelastic cross sections.

The cross section of compound materials are computed as a weighted summation

of their components. For example, the cross section of water for a particular reaction is

σH2O =
2σH + σO

3
. (4.6)

Two materials were used to validate that the material generation algorithm implemented is

correct. Water and air were both generated and compared to emperical data obtained from

NIST for their macroscopic cross sections shown in Figure 4.6. The computed group-wise

data and the continuous NIST evaluations agree very well.
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4.4. QT5 FRAMEWORK

The Qt5 framework was used for implementation of the user interface. Qt5 enables

asynchronous calls through its signal/slotmechanism. Signals and slots are special functions

that have additional processing performed by the meta-object-compiler (MOC). A signal

can be emitted which will execute all connected slots. Signals and slots are connected

manually by the user except special ones automatically generated by Qt5.

Qt5 prvides a user interface for building user interfaces. Components such as

buttons, drop boxes, radio buttons, etc. are made available to the user. Through extensive

use of polymorphism, Qt5 simplifies the addition of graphical interactive elements called

widgets. All widgets inherit from the base QWidget class which inherits from QObject.

Any class that utilizes the signal/slot mechanism must extend the QOjbect class. As an

example, a button can be created in the Qt5 user interface and named button1. This

object will be accessible as ui->button1. When the user clicks on the button, the signal

button1.clicked()will automatically be emitted. The user can connect this signal to any

slot with an identical number arguments of the same type. The button1.clicked() signal

can be connected to the slot doStuff1() but not doStuff2(int) since the arguments are

not compatible.

Listing 2 gives a C++ snippet that has a long function that will block the user

interface. A corresponding sequence diagram is given in Figure 4.7. When the user

interacts with the GUI, the writer object begins executing the doWrite() function. Until

this function completes, the UI thread will be busy and unable to handle additional user

interaction or updates. This results in the GUI becoming unresponsive and potentially

issuing a warning to the user from the operating system.

To remedy the blocked code, asynchronous calls are made as shown in Figure 4.8.

The doWrite() function now executes on a seperate thread while code in the GUI continues

execution. This prevents the GUI from becoming unresponsive. The code in Listing 2 is

updated to use the Qt signal/slot mechanism whose code is given in Listing 3.
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1 class MainWindow : public QMainWindow
2 {
3 // Constructor
4 MainWindow(QObject *parent);
5

6 // Other parts of the class
7

8 protected slots:
9 void doSomethingLong();

10 }
11

12 void MainWindow::doSomethingLong()
13 {
14 // Execute a long piece of code
15 }
16

17

18 MainWindow::MainWindow(QObject *parent)
19 {
20 // Initializations
21

22 // When a button named button1 which was created in the Qt5
23 // creator interface is clicked, the clicked() signal is
24 // automatically emitted which executes the doSomethingLong()
25 // function
26 connect(ui->button1, clicked(), this,
27 doSomethingLong());
28 }

Listing 2. A long function causes the user interface to block.

4.5. GRAPHICAL USER INTERFACE

The data display plots that show materials and other geometry as well as the flux

output use an implementation of the built-in QGraphicsView object to render a matrix of

QGraphicsRectItems on the screen. The data to be drawn on the screen is populated and

some metrics such as the dataset minimum and maximum are computed. The data value at

each point is evaluated to determine which bin it belongs to.
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Figure 4.7. Sequence diagram for the synchronous call.

Figure 4.8. Sequence diagram for the asynchronous call.

The first tab is the geometry input, shown in Figure 4.9. In the current version of

DOCTORS, the only supported format is unsigned 16-bit binary files whose size is known

a priori. When the user clicks on the "Open" button, the user is prompted with a dialog for

selection of a binary file. The file is read in as a list of Nx × Ny × Nz CT numbers. As soon

as the data is read in and some checks are performed, the user is prompted for selection of a

CT-number-to-material conversion. Currently, two conversions are included in DOCTORS.

The first is a water/air only conversion and the second is a more complex conversion to a

series of dosimetrically equivalent materials representative of a human patient. Once the

user specifies a conversion, the geometry explorer becomes available which allows the user

to visualize the geometry file to verify that it was read and interpreted correctly.

Some screenshots of the geometry explorer are shown in Figure 4.10. The geometry

viewer can show slices through the voxel phantom along all three major planes. The depth

of the slice viewed is changed by moving the scroll bar in the center of the viewer up or

down. As the scroll bar moves, the number at its bottom is updated accordingly to indicate
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Figure 4.9. The geometry selection tab. The user must first specify the dimensionality of
the voxel phantom and then load it from a binary file.

the depth (in voxels) of the slice. In addition to the material, the geometry viewer can render

the physical density (in g/cm3) and the atom density (in atom/b-cm) as well as the raw CT

number used to generate the material and density.

The next three tabs identify the cross section dataset to use for the material genera-

tion, the quadrature, and the solution anisotropy treatment used. All three tabs are relatively

strightforward and contain few widgets. The final tab, shown in Figure 4.11 defines the

source. The user is presented with a number of different source geometries to choose from.

Each type is described more fully in Section 3.3. Clicking on the "Energy Distribution"

button will reveal the popup shown in Figure 4.12. This popup cannot be fully populated

until after the cross section is loaded in the "Cross Section" tab since the cross section data

file defines the energy group structure.
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(a) (b)

Figure 4.10. The geometry explorer. (a) The material viewer which shows which material
each voxel was converted to. (b) The atom density plot.

The energy distribution dialog, shown in Figure 4.12, can plot the x axis on either

a linear or logarithmic scale. The user can click and drag to "paint" a spectrum to generate

quick, qualitative spectra suiting the user’s needs. Alternatively, the user can select from

any of the preset spectra in the dropdown menu. Currently, only the uniform beam and

diagnostic pulse distributions described later are present.

Once all necessary data is loaded, the "Launch" button becomes active and will

remain so until the user creates a conflicting set of input that would prevent the solver

from being able to run. When the user clicks on the launch button, the raytracer begins

running asynchronously and the output display shown in Figure 4.13 opens automatically.

When the raytracer completes, the output dialog is updated with the flux information and

the solver begins executing asynchronously. As each iteration completes, the output dialog

is progressively updated so that the user can monitor the evolution of the solution.

The output dialog has controls very similar to the geometry explorer. The user can

freely choose the plane to slice through the solution and can plot the solution on either

a linear or logarithmic scale. The "Distribution" radio buttons allows the user to choose

whether the uncollided, collided, or total flux is shown. The "Level Local Scale" checkbox

allows the user to control whether the current slice colormap is scaled to the contents of

the viewed slice or the contents of the entire voxel phantom. Checking the "Level Local
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Figure 4.11. The source tab. The user must select a geometry type and enter all applicable
values as well as define the source energy spectrum.

Scale" box will ensure that the viewed data is normalized to include only the viewed data.

Unchecking the box will scale the viewed data based on the range of the entire voxel

phantom.

In the current version of DOCTORS, dosimetric output is only written to an output

file and cannot be visualized graphically. The output format is designed to be human

readable and easily read by any major programming language. Listing 4 gives the code to

read the file format where the prod() algorithm is given in Listing 5. Note that LIST may

be any appropriately typed list object such as a std::vector and a LIST2D is a list of lists

or vector of vectors.
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Figure 4.12. The spectrum energy distribution. The spectrum can be displayed on either a
linear or logarithmic scale on the x axis. The user can either click and drag on the spectrum
to "paint" or select a preset.

Figure 4.13. The output dialog. The controls are similar to those found in the geometry
viewer.

4.6. CUDA

CUDA code is compiled with the Nvidia complier nvcc. Qt5 uses the gcc compiler

and its MOC generator for meta code. In order to connect CUDA code to the Qt MOC, the

CUDA code is compiled by nvcc to produce an object (.o) file. Qt5 then compiles all other

files into corresponding object files. The linker then automactically picks up all object files

generated by nvcc. The final result is an executable that has a Qt5 generated user interface

that can communicate with an Nvidia graphics card through the CUDA language.
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In order to accelerate the discrete ordinate solution on a GPU, the concurrent tasks

at any given moment must be known. In the single-threaded version of the code, the solver

sweeps through the voxels one by one in a pre-determined fashion based on the direction. At

the very beginning, the input flux to a single voxel is known from its boundary conditions.

However, once that voxel’s flux is computed, all three of its outgoing flux values enable

three voxels to be computed independently of each other. After those three, six can be

computed. Each layer of voxels whose flux can be computed independently is called a

"subsweep." Figure 4.14 illustrates some subsweeps through a cubic mesh.

In order to parallelize the sweep through the mesh, the global index of each voxel

that can be computed in the S subsweep must be known. When those indices are known,

each voxel in subsweep S can be solved independently by a CUDA kernel. This task is

greatly simplified by noticing that the x, y, and z indices of all voxels in the fourth subsweep,

shown in Figure 4.14 all sum to 4 as shown in Table 4.2.

Table 4.2. Subsweep Indices

i ix iy iz ix+iy+iz
0 4 0 0 4
1 3 1 0 4
2 3 0 1 4
3 2 2 0 4
4 2 1 1 4
5 2 0 2 4
6 1 3 0 4
7 1 2 1 4
8 1 1 2 4
9 1 0 3 4
10 0 4 0 4
11 0 3 1 4
12 0 2 2 4
13 0 1 3 4
14 0 0 4 4
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(a) (b)

(c) (d) ) with labels

Figure 4.14. The progression of subsweeps throughout a sweep. Each subsweep must
complete before those after it. Each voxel within a subsweep can be solved in parallel with
all others in its subsweep. (a) Subsweep 0 (S = 0) (b) Subsweep 1 (S = 1) (c) Subsweep 6
(S = 6) (d)Subsweep 6 (S = 6) with labels.
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(a) S = 0 (b) S = 1 (c) S = 2 (d) S = 3

(e) S = 4 (f) S = 5 (g) S = 6 (h) S = 7

(i) S = 8 (j) S = 9 (k) S = 10 (l) S = 11

(m) S = 12 (n) S = 13 (o) S = 14

Figure 4.15. The generalized subsweep.

The special case of the cube shown in Figure 4.14 can be extended to a more general

case illustrated in Figure 4.15. Notice that the aforementioned intuition that ix + iy + iz = S

is not necessarily true. The final subsweep (S = 14) contains a single voxel even though

many combinations of three integers will sum to 14. The additional constraint is

ix < Nx

iy < Ny

iz < Nz .

(4.7)
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The constraints listed in Eq. 4.7 can be used to compute the total number of parallel

tasks in any subsweep. The number of parallel tasks, P, that can be done on subsweep S of

an Nx × Ny × Nz mesh is given by

P = CS − Lx − Ly − Lz + Gxy + Gyz + Gxz (4.8)

where CS, Lx , Ly, Lz, Gxy, Gyz, and Gxz are defined by Equations 4.9-4.21.

CS =
(S + 1)(S + 2)

2
(4.9)

Lx =
dx (dx + 1)

2
(4.10)

Ly =
dy (dy + 1)

2
(4.11)

Lz =
dz (dz + 1)

2
(4.12)

Gxy =
dxy (dxy + 1)

2
(4.13)

Gyz =
dyz (dyz + 1)

2
(4.14)

Gxz =
dxz (dxz + 1)

2
(4.15)

dx = max(S + 1 − Nx, 0) (4.16)

dy = max(S + 1 − Ny, 0) (4.17)

dz = max(S + 1 − Nz, 0) (4.18)

dxy = max(S + 1 − Nx − N y, 0) (4.19)

dyz = max(S + 1 − Ny − N z, 0) (4.20)

dxz = max(S + 1 − Nx − N z, 0) (4.21)
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Each voxel in a subsweep can be computed in parallel. Mathematically, the ith

subsweep from all directions can be computed in parallel. However, in practice, this results

in a race condition on the GPU hardware. As such, parallelization in angular space is not

implemented in the current version of DOCTORS.

4.7. MCNP6 GENERATION

DOCTORS has the capability to generate MCNP6 input files from the CT mesh

data and source specification provided by the user. The input file is procedurally generated

using the information provided to DOCTORS. If insufficient information is provided, an

error message is generated and no output file is made. Note that the output is always named

"mcnp_out.inp" so it will override existing files. To save a file, it must be manually renamed

to avoid accidental deletion!

The geometry is the largest section of the MCNP6 input file. The dimensions

of the phantom mesh are used to generate planar surfaces at the appropriate locations.

Those surfaces are then arranged into cells defining each voxel. The density information is

pulled directly from the internally generated data built during the CT-number to material

conversion.

The source is the most difficult component to generate. Currently, all source types

except fan beams can be generated automatically. The difficulty in generating fan beams

comes from an intrinsic limitation ofMCNP6. MCNP6 can only model cone beams through

a biasing mechanism; it cannot model other kinds of beams. In practice, this is rarely a

major limitation since physical collimators can be added to a input model to generate the

desired beam shape. However, since DOCTORS already has a geometry mesh, addition of

collimators is very difficult since the collimator becomes "smeared" across voxels.
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4.8. HARDWARE

For this work, a computer with an Intel i7-5960X 8 core (16 hyperthreads) processor

with a base clock speed of 3.5 GHz and anNvidia Titan Z graphics card was used. Currently,

if the problem requires more memory than is available on the GPU, the problem can still

be solved, but much more time will be required to to copy overhead between the CPU and

GPU. If the problem requires more memory than either the GPU or CPU can provide, an

error is thrown and the simulation is not run.

Only Nvidia GPUs are recognized by DOCTORS since it relies on the CUDA

interface which is a Nvidia proprietary product. There are no limitations on the CPU except

that it be Little-Endian based (nearly all major CPUs meet this requirment). Big-Endian

hardware would fail to parse the data files correctly.
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1 class MainWindow : public QWindow
2 {
3 // Member variables
4 QThread workerThread;
5 Worker *worker;
6

7 // Constructor
8 MainWindow(QObject *parent);
9

10 protected slots:
11 handleResult();
12 }
13

14 MainWindow::MainWindow(QObject *parent)
15 {
16 // Initializations
17 worker = new Worker;
18

19 worker.moveToThread(&workerThread);
20

21 // Set up the thread connections
22 connect(&workerThread, finished(), worker, deleteLater());
23 connect(this, begin(), worker, doSomethingLong());
24 connect(worker, done(), this, handleResult());
25 }
26

27 class Worker : public QObject
28 {
29 private signals:
30 void done();
31

32 public slots:
33 void soSomethingLong();
34 }
35

36 Worker::doSomethingLong()
37 {
38 // Do stuff...
39 emit done();
40 }

Listing 3. Signals and slots enable a long function to be called without blocking the user
interface.
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1 // Declare variables
2 int N;
3 LIST S;
4 LIST2D dims;
5 LIST data;
6

7 // Read the number of dimensions
8 READ_INT(N);
9

10 // Read the size of each dimension
11 for(int i = 0; i < N; i++)
12 READ_INT(S[i]);
13

14 // Read the axis labels
15 for(int i = 0; i < N; i++)
16 for(int j = 0; j < S[i]; j++)
17 READ_FLOAT(dims[i][j]);
18

19 // Read the data
20 int dataElem = prod(S);
21 for(i = 0; i < dataElem; i++)
22 READ_FLOAT(data[i]);

Listing 4. Algorithm to read the output format used by DOCTORS.

1 int prod(LIST p)
2 {
3 int product = 1;
4 for(int i = 0; i < p.SIZE(); i++)
5 product = product * p[i];
6 return product;
7 }

Listing 5. The prod() algorithm
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5. RESULTS

This section summarizes the computational results obtained from DOCTORS and

the validation to MCNP6. The MCNP6 reference compared to is automatically generated

by DOCTORS to guarantee that the geometry and source parameters are identical. This

process is described in detail in Section 4.7.

5.1. PREPROCESSING

Two computational phantoms were used for verification of the DOCTORS code.

The first phantom is a 256 × 256 × 64 voxel mesh of a 35 cm water phantom. The water

phantom is in an acrylic casing and the entire mesh measures 50×50×12.5 cm. Each voxel

is then a cube with sides of 1.95 mm. The mesh has a total of 4194304 voxels. The second

phantom is of the same dimensions and resolution, but of a realistic human phantom. The

mesh emulates a CT scan of a patient’s midsection where the liver would be located.

Hounsfield units range from -1000 for air to 0 for water and higher for more ra-

diopaque materials. However, data is stored as an 16-bit unsigned int in the CT voxel

phantoms. Therefore, the data has 1024 (210) added to it to avoid rolling negative values

over. The first step is to reinterpret the unsigned int values as int values and subtract

1024.

5.1.1. Artifact Removal. At the periphery of the computational mesh, artifacts can

appear as a byproduct of the reconstruction algorithm used. Figure 5.1 shows the artifacts

in question in a xy slice at the lowest (z = 0) level in the phantom. Two hundred sixty one

(261) artifacts were detected in the phantom. To remove these artifacts, the CT number of

any voxels whose CT number was greater than or equal to 65500 was set to 0. Figure 5.2

shows the same cross sectional plot after the artifacts are removed.
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Figure 5.1. The unmodified phantom. An xy slice at z index = 0. Scale is the raw CT
number before correction to CT number (by subtracting 1024).

Thewater phantom in Figure 5.2 can be broken into four regions: the water phantom,

the container, the air, and the corner artifacts. The water phantom is the centermost region

of the slice.

5.1.2. Geometry Simplification. The original phantom data for both the water

phantom and the liver phantom are 256 × 256 × 64 meshes which result in 4,194,304 total

voxels. Though MCNP6 is capable of running such a mesh, the overhead of loading the

mesh into memory and initiating the Monte Carlo solver can take on the order of hours.

Therefore, the benchmarks were run using a simplified geometry of 64 × 64 × 16 which

has only 65,536 voxels. The smaller files can run to completion of 109 particles within

two hours. The water phantom original and simplified geometries are shown in Figures 5.3

and 5.4 respectively. A more detailed comparison of the xy slices is shown in Figure 5.5.
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Figure 5.2. The phantom after artifacts are removed. An xy slice at z index = 0. Scale is
the raw CT number before correction to CT number (by subtracting 1024).

5.2. CONE-BEAMWATER BENCHMARK

The first benchmark, is a 8 degree cone targeting a water phantom. The water

phantom is a 35 cm diameter water cylinder that stands 12.5 inches tall. The water is

encased in a 0.5 cm thick plastic container. Each voxel in the mesh is assigned one of the

materials given in Table 5.1. Note that the CT range column is of the raw data before 1024

Figure 5.3. CT number data for the 256 × 256 × 64 water phantom.
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Figure 5.4. CT number data for the 64 × 64 × 16 water phantom.

(a) (b)

Figure 5.5. The phantom materials derived from CT numbers before (a) and after (b)
geometry simplification.

is subtracted. Once the artifacts are removed, the histogram is plotted in Figure 5.6. The

logarithmic scaled histogram shows the low frequency voxels between -800 and -100 the are

difficult to identify as water or air. These voxels are around the periphery of the container.

One of the materials listed in Table 5.1 is the "Artifact" material. These voxels

apppear in the corners of the reconstruction and are artifacts caused by the reconstruction

algorithm. The corners are not sampled by each projection as theCT system rotates about the

phantom. During reconstruction, this results in those regions being asigned proportionally

higher CT numbers.
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Table 5.1. Water Regions

Region CT Range Voxels Fraction (%)
Water 0 ≥ x > −67 1581199 37.70
Container −67 ≥ x > −600 81502 1.94
Air −600 ≥ x > −1080 1650372 39.35
Artifact −1080 ≥ x > −65535 881231 21.01

(a) (b)

Figure 5.6. The histogram of the CT numbers in the water phantom on a (a) linear scale
and (b) logarithmic scale.

Due to the meshing used in CT phantoms, the spatial domain of the problem is iden-

tical for both the deterministic andMonte Carlo problems. A key difference between though

is the group structure used in the group-averaged deterministic cross sections. Figure 5.7

shows the continuous energymacroscopic cross section for both air and water versus the dis-

cretized data used by DOCTORS. Unfortunately, the datasets used in DOCTORS originate

from SCALE6.2, a light water reactor analysis code. Therefore, their upper photon energy

bound is 20 MeV which is far higher than necessary for diagnostic imaging. This results in

the region of interesting being discretized very roughly. In the 19-group discretization, the

entire diagnostic domain is covered by only three energy groups.

5.2.1. Uniform Beam. This benchmark uses a "uniform" beam in which source

particles are generated equiprobably in all groups. Therefore, the energy distribution

S0(E), is not uniform, but rather S0(E)/∆E is. The goal of this benchmark is to determine
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(a) (b)

Figure 5.7. Comparison of the group cross section data used byDOCTORS to the continuous
cross section data used by MCNP6 for (a) 19 groups and (b) 47 groups. The continuous
data is provided by NIST [Hubbell and Seltzer, 1996].

the impact the energy discretization has on the results. The 19-group data set is very coarse

in the diagnostic energy range; this benchmark is designed to determine whether or not this

data set can yield meaningful results.

Figure 5.8 shows the results of the comparison of the group averaged uncollided

flux values between MCNP6 and DOCTORS for the 19-group approximation. The plot

shows the uncollided flux averaged over the center 8 voxels in the phantom. Only the

uncollided flux is used in this benchmark because it is not dependent on the additional

solver parameters such as quadrature and anisotropy treatment but instead has an exact

solution. The agreement is within about 2% for energy groups above 300 keV but falls off

rapidly in the diagnostic energy range.

To explore the reason for the discrepancy in the diagnostic range, the finely meshed

uncollided flux in energy space is examined in Figure 5.9. The uncollided flux at lower

energy drops off rapicly at the low energy side of each group in the diagnostic regime.

This is caused by the significant downscatter that is not accurately modeled with such wide

energy groups. To address this, the 47-group data file was also run. Similar results are

plotted in Figure 5.10.
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(a) (b)

Figure 5.8. Ratio of the MCNP6 uncollided flux to the DOCTORS uncollided flux for each
group. (a) The entire range of data. (b) The same data scaled to show the range of interest.

Figure 5.9. The 19 group center flux comparison for a uniform beam.

As an additional verification that DOCTORS is computing correct results, analytical

data points were added. The analytical points are computed

(
dϕ
dE

)g
=

e−(µgaxa+µ
g
w xw )

4πG(xa + xw)2(∆E)g
(5.1)

where µga and µ
g
w are the attenuation coefficients for air and water repectively for the g

group, xa and xw are the pathlength through air and water respectively, and ∆E is the width

of the g group in MeV. Dividing by the number of groups maintains consistency with the

computational codes which uniformly distribute particles across all groups.
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Figure 5.10. The 47 group center flux comparison for a uniform beam.

The results shown in Figure 5.10 agree with theMCNP6 uncollided flux distribution

much more accurately than for the 19-group approximation. Therefore, all results after this

use the 47-group approximation exclusively. Ideally, amore refined dataset with only photon

data in the diagnostic range would be used, but currently, no such data set is available in

DOCTORS.

5.2.2. Diagnostic Pulse. Once the 19 and 47 group datasets were compared using

the uniform energy distribution, a second benchmark was created. This benchmark uses

a 1-group pulse of photons in group 41 (70-75 keV). Using a single group pulse is not

representative of a diagnostic x-ray beam, but it makes interpretation of the results simpler.

Since all uncollided flux is in a single group, the downscatter and within-group inscatter

can be differentiated explicitly which would not be otherwise possible. This facilitates

debugging of code and validation against MCNP6.
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(a) (b)

Figure 5.11. Comparison of the uncollided flux in (a) DOCTORS and (b) MCNP6.

Figure 5.11 shows the uncollided flux distribution for bothMCNP6 and DOCTORS.

Qualitatively, the distributions appear to agree very well except for the artifacts around the

edges of the beam in the MCNP6 results.

Figure 5.12 shows a comparison of the MCNP6 collided flux and the DOCTORS

collided flux. The DOCTORS flux exhibits noticable ray effect artifacts but good qualitative

agreement otherwise with respect to the shape of the flux distribution. A vertical lineout

of Figure 5.12 is shown in Figure 5.13. The lack of anisotropy results in more particles

streaming out to the side of the beam and backscattering that expected. This causes a

buildup when the beam enters the phantom and a rapid decrease as more particles scatter

than predicted by MCNP6. Figure 5.14 shows lineouts for the in-group scatter with the

uncollided flux (group 41) and the purely downscattered flux in group 42. Figure 5.15

also shows lineouts for the in-group scatter with the uncollided flux (group 41) and the

purely downscattered flux in group 42 but with respect to different quadratures instead of

anisotropy treaments.

In MCNP6, the effective dose was computed using a FMESH tally with associated

DE and DF cards to weight the flux. The most accurate tally to compute the absorbed

dose with is a F6 tally, however, those cannot be spatially distributed via a FMESH tally.
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(a) (b)

Figure 5.12. The in-group collided flux in group 41 (70-75 keV)

Therefore, a F4 tally was used with a multiplier designed to emulate a F6 tally as closely as

possible. The comparison is shown in Figure 5.16. The F6 and F4 tallies agreed within 2%

at the center of the phantom, which validates that the spatially distributed FMESH with a

FM multiplier is a good approximation of the energy depositied in a voxel.

The effetive dose and equivalent doese in DOCTORS are computed using Eq. 3.60

and 3.66 respectively. The effective dose and absorbed doses are given in Figure 5.17.

5.3. 16 CONE-BEAMWATER BENCHMARK

This benchmark is designed to test the multi-cone beam projection. Sixteen cone

beams are simultaneously used to generate the data. Each cone beam fires the 1-group

diagnostic pulse energy spectra described in Section 5.2. Overall, the raytracer shows

excellent agreement but the collided flux has more error than expected.

The uncollided flux, which should be nearly identical between MCNP6 and DOC-

TORS is shown in Figure 5.18. The relative error between the two and a vertical lineout

through the center are shown in Figure 5.19.
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Figure 5.13. Comparison of the in-group scatter in group 41 using an isotropic assumption.

(a) (b)

Figure 5.14. Lineout showing the effect of anisotropy. (a) Group 41 (70-75 keV). (b) Group
42 (60-70 keV).

The collided flux is shown in Figure 5.20. The MCNP6 collided flux is much more

uniform across the patient. The uniformity is seen in both the side-by-side comparison of

the flux distributions shown in Figure 5.20 and the vertical lineout shown in Figure 5.21.

DOCTORS overestimates the flux at the periphery and underestimates the flux at the center

of the patient. The trend is effectively an overestimation of the attenuation through the

patient by DOCTORS.
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(a) (b)

Figure 5.15. Lineout showing the effect of quadrature. (a) Group 41 (70-75 keV). (b) Group
42 (60-70 keV).

Knowing that the flux profiles vary, the dose profiles can also be compared; a

similar discrepancy appears in the dose profile generated from both dose computation

methodologies used shown in Figure 5.22. Qualitatively, the dose profiles in both MCNP6

and DOCTORS are very similar, though the DOCTORS dose is overestimated by roughly

a factor of two. This is believed to indicate that the scatter distribution at lower energies is

being overestimated. This overestimation is in turn caused by the angular treatment of the

transport.

The angular transport is affected by two parameteres: the quadrature and the

anisotropy treatment. Since the anisotropy treatment was explored in the previous bench-

mark and no significant changes were found be increasing the PN expansion or changing

the anisotropy methodology altogether, the problem likely lies with the quadrature. Higher

quadratures may result in significantly improved flux distributions since lower quadratures

will cause particles to preferentially leave the beam if insufficient angular directions are

within the beam. This then motivates the final benchmark problem.
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Figure 5.16. Comparison of the absorbed dose computed with F4 and F6 tallies in MCNP6.
All eight data points were located at the center of the phantom and the two computation
methods were within 2% of each other.

5.4. 64 CONE-BEAM PHANTOM BENCHMARK

The final benchmark problem uses 64 cone beams surrounding a full patient phan-

tom. Since the triangular artifacts were still seen in the 16-beamwater phantom, the number

of beams used in this benchmark was increased to 64 cone beam projections. Also, each

beam was moved further from the isocenter of the phantom. The total diameter between

the detector and x-ray tube is 1 meter, thus the coordinate of the first projection is at y =

-25 cm. The cone beam was broadened to 30 degrees to more closely match the CT data.

The energy distribution was not changed. This benchmark problem is much more realistic

and provides a more distributed uncollided source which is expected to help mitigate some

of the problems identified in the water benchmarks.
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(a) (b)

Figure 5.17. The computed dose in the phantom. (a) The effective dose computed us-
ing ICRP 116 fluence-to-dose conversion factors. (b) The absorbed dose using energy
deposition.

(a) (b)

Figure 5.18. Comparison of the uncollided flux in (a) DOCTORS and (b) MCNP6 for the
16 cone-beam water benchmark problem.
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(a) (b)

Figure 5.19. Comparison of the uncollided flux in (a) DOCTORS and (b) MCNP6 for the
16 cone-beam water benchmark problem.

(a) (b)

Figure 5.20. Comparison of the collided flux in (a) DOCTORS and (b) MCNP6 for the 16
cone-beam water benchmark problem.
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Figure 5.21. Vertical lineout of the collided flux for the 16 cone-beam water benchmark
problem.

In some phantom models, a table the patient lies on is present. The table poses a

challenge since it is a highly attenuating material relative to the patient which reduces the

available flux. Further, the table is not mentioned in the literature which only consider

the phantom. The CT number to material conversion developed by Ottosson and Behrens

[2011] which is implemented in this work does not have an equivalent for the table region.

All voxels whose CT number is above the highest bone value given by Ottosson

and Behrens [2011] are assumed to be part of the table. The table is assumed to be

aluminum with a density of 2.70 g/cm3. Figure 5.23 shows the materials before and after

geometry simplification. Figure 5.23 shows the geometry of the full phantom before and

after geometry simplification.

As with the previous benchmark problem, the raytracer provides very good agree-

ment (well within 1-2% for most voxels) between MCNP6 and DOCTORS as shown in

Figure 5.24. Because the "corner artifacts" cannot be removed in the full phantom model,

those artifacts show up in the flux profile. Since those regions are only air, the artifacts’
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(a) (b)

Figure 5.22. Comparison of the dose to the water phantom using (a) the energy deposition
model and (b) the ICRP fluence-to-dose conversion model.

(a) (b)

Figure 5.23. The phantom materials derived from the full phantom CT number data before
(a) and after (b) geometry simplification.
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(a) (b)

Figure 5.24. Comparison of the uncollided flux in (a) DOCTORS and (b) MCNP6 for the
64 cone-beam phantom benchmark problem.

(a) (b)

Figure 5.25. The difference between the MCNP6 and DOCTORS uncollided distribution.
(a) The 2D relative difference. (b) A vertical lineout down the center.

impact on the overall results are expected to be negligible. Otherwise, the uncollided

has no apparent artifacts such as the triangle artifacts in the previous benchmark problem.

Figure 5.25 shows that the profile between the two are effectively identical.

Similar to the water phantom benchmarks, DOCTORS underestimates the dose on

the interior of the patient as shown in Figures 5.26 and 5.27. Again, this may be due to

either the anisotropy treatment or the quadrature, further investigation will refeal the culprit.
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(a) (b)

Figure 5.26. Comparison of the uncollided flux in (a) DOCTORS and (b) MCNP6 for the
64 cone-beam phantom benchmark problem.

5.5. GPU ACCELERATION

Table 5.2 summarizes the runtime required for the CPU-only version of DOCTORS

and Table 5.3 summarizes the analogous runtime results for the GPU accelerated version.

The speedup of the GPU over the CPU is given in Table 5.4. From those tables, a number

of conclusions can be drawn.

The first, andmost obvious, conclusion is that the speedup for large problems ismuch

greater than the speedup for small problems. The GPU failed to accelerate the 64× 64× 16

problems bymore than a factor of a fewwhich hardlywarrants any acceleration at all, instead

further CPU optimization would likely benefit more. Larger problems showed significant

speedups though due to the reduced proportion of time spent in overhead operations. The

most time consuming part of the GPU computation is launching a new kernel. Each kernel

is itself very simple and can execute rapidly so small problems that have kernels with fewer

parallel tasks do not perform as well.

The second, and more surprising, conclusion is that the speedup varied very little for

single and double precision floating arithmetic. In fact, in most cases, the double precision

outperformed the single precision! This result is unexpected in general, but even more so
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Figure 5.27. Comparison of the collided flux for the 64 cone-beam phantom benchmark
problem.

on a GPU where single precision is vastly superior. The higher precision allows the double

precision computations to converge more rapidly reducing the total number of iteraions

necessary. Since a large portion of the overall time spent is in overhead operations, the time

savings of using single precision are actually outweighed by the time savings of reducing

the convergence iterations.

Table 5.2. CPU Runtime (msec)

Data Type Method 64 × 64 × 16 256 × 256 × 64
float Raytracer 820 125,000

Solver 15,500 2,700,000
double Raytracer 930 180,000

Solver 14,300 2,400,000
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Table 5.3. GPU Runtime (msec)

Data Type Method 64 × 64 × 16 256 × 256 × 64
float Raytracer 360 10,300

Solver 2,420 71,600
double Raytracer 363 13,500

Solver 4,500 61,400

Table 5.4. Speedup

Data Type Method 64 × 64 × 16 256 × 256 × 64
float Raytracer 2.3 12.2

Solver 6.4 37.6
double Raytracer 2.6 13.5

Solver 3.2 39.1
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6. CONCLUSIONS

This section summarizes the conclusions drawn from the results given in Section 5

and suggests further improvements to DOCTORS.

6.1. ACCURACY

The raytracer is very fast compared to the discrete ordinate solution which computes

the collided flux. The uncollided flux quantifies the source distribution from the medical

system. This uniquely enables discrete ordinate solutions to rapidly characterize complex

systems. Multiple cone beams and fan beams are possible as well as many other, more

complex beam shapes.

Qualitatively, the most of the trends identified by DOCTORS agreed very well with

MCNP6. The largest discrepancy was in the attenuation of particles through the patient

region. However, since the raytracer is very accurate with respect to MCNP6, the difference

is likely with the discrete ordinate methodology rather that cross section related. The key

driver of this discrepancy is believed to be due to poor treatment of the angular transport

either by way of the quadrature or anisotropy treatment.

This indicates that DOCTORS is better suited for problems that use a broad, dis-

tributed source as opposed to a narrow, directionally biased source. Such directional

sources, require much higher quadratures to accurately characterize the beam due to ray

effect.
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6.2. APPLICABILITY TO CLINICAL SETTINGS

With further development, DOCTORS is well positioned to become a code of

significant clincal impact. Though it is still lacking in medical diagnostic quality accuracy,

it is easily extensible and capable of characterization of complex beams making it ideal for

some types of clinical dosimetry.

Great effort was put into producing a code that is simple to use yet capable of

producing powerful results quickly. However, usage in a clinical setting would likely require

further refinement of the GUI to make the code more robust and intuitive. Additionally, the

direct output of DOCTORSmay not necessarily be of clinical importance since radiologists

and technitians are more interested in compliance with regulations and ensuring patient

safety. Therefore, a bulk report of overall numbers would likely be of more benfit than the

entire spatial flux and dose distribution in a clinical setting.

6.3. GPU SPEEDUP

TheGPU algorithmwas implemented in CUDA and is very straightforward. At each

subsweep, the global index of all voxels that can be computed in parallel are determined

and a kernel is launched that executes those voxels. Unsurprisingly, this algorithms scales

much better on larger problems where more time is spent in the computational execution

of the kernal as opposed to the overhead operations of launching the kernel and memory

transfer.

The GPU acceleration algorithm was found to speed the DOCTORS code up by

a factor of 40x for large problems and only a factor of 3-6x for smaller problems. The

improved accuracy of double precision arithmetic was found to outweigh the speed im-

provement from faster calculations.
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6.4. FUTUREWORK

A number of simple modifications to DOCTORS could be made that would greatly

increase the code’s usability and robustness. One of these modifications, generation of more

refined group structures, is not a change to DOCTORS per se but rather a change in the

input cross section data. The other changes are additions to DOCTORS that would add new

capabilities to the software. In addition to specific modifications, some additional, broader

future goals can also be identified.

6.4.1. Anisotropy Treatment. A more sophisticated anisotropy treatment would

be appropriate since the collided flux was found to have issues regarding its behavior.

Alternatively, adding a spherical harmonics solver may help the anisotropy treatment as

well, or at least reduce its memory footprint and runtime. This would require moving the

solution from discrete angle space to flux moment space which can greatly complicate the

debugging. However, once the correctness of the overall algorithm is shown, this step

should be relatively simple.

6.4.2. Group Structure. The cross section data currently used by DOCTORS are

taken from SCALE6.2. While these cross sections have been found to be sufficient to

produce flux distributions in medical CT imaging, a more refined group structure designed

for medical applications would be worth investigation. Also, the data distribtuion from

SCALE6.2 contains potentially export controlled information since it also includes nuclear

reactor materials. A medical purposed cross section library would alleviate this problem

and allow the code to be freely released with a dataset. In the current version of DOCTORS,

the user is required to obtian the cross section data files independently. This work can be

done using either NJOY or the newly released AMPX code. Either code has the capability

to collapse an ENDF formatted data file into a group structure of the user’s choosing in the

format DOCTORS reads.
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6.4.3. Therapy Extension. An advantage of the raytracer is that it is very fast.

Therefore, it can characterize many beams and integrate them temporally easily. This would

allow DOCTORS to model more complex beam shapes and scan protocols accurately. This

would be particularly useful for medical treatment systems that use a multileaf collimator.

Some treatment systems employ a multileaf collimator to continuously shape the

beam, resulting in a large dose deposition only at the area of interest. DOCTORS can

likely be extended to high energy therapeutic beams for clinical treatment. However, higher

energy photons will scatter more anisotropicly. This will require careful analysis of the

angular treatment used.

6.4.4. Partial Acceptance Criteria. In the current version of doctors, the raytracer

is very accurate with respect to MCNP6 in predicting the uncollided flux, except for along

the periphery of the beam. Voxels are currently either completely inside the beam or

completely outside of it as determined by its isocenter. A more sophisticated technique

whereby a voxel cah be partially accepted in the beam would remove these artifacts.

6.4.5. Organ Identification. Currently, DOCTORS cannot automatically identify

specific organs, thus it is only able to compute the equivalent dose via dose deposition.

If specific organs could be identified, tissue specific weighting factors could be applied

resulting in the effective dose to each organ which would be of greater clinical significance.

However, such identification currently requires additional input about the scan protocol and

extensive knowledge about the human anatomy not currently integrated into DOCTORS.
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APPENDIX

LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

This appendix gives a brief summary of flux moments and the Legendre spherical

harmonics needed to compute them.

FLUX MOMENTS

The fluxmoments are an alternate representation of the angular flux within a system.

The rationale behind usage of flux moments is that they map the discrete flux (ψ) from a

function of angle to a function of PN expansion. This reduces the amount of memory

required for computation. Storing ψ directly requires storing G × NV × Na values where

G is the number of groups, NV is the number of voxels, and Na is the number of angles.

Storing the flux moments, however, requires storing only G × NV × (N2 + 2N + 1) values

where N is the PN expansion value. For example, a problem requiring S6 needs 6 × 8 = 48

directions, but a problem requiring P6 needs 49 expansion coefficients which would seem

approximately eqivalent, but typical problems require far more discrete directions than

expansion coefficients. Complex problems can easily require S16 or higher but expansions

above P5 are rarely encountered.

LEGENDRE POLYNOMIALS

The Legendre polynomials are solutions to:

P0(µ) = 1

Pl (µ) =
1

2l l!
dl

dµl (µ2 − 1)l , l ∈ N
(A.1)
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whereN is the set of natural numbers (1, 2, 3...). Table 7.1 gives the solution of the first few

Legendre polynomials. The Legendre polynomials are orthogonal on the domain [−1, 1] in

that

1
2

∫ 1

−1
Pl (µ)Pl ′ (µ)dµ =




1
2l+1 , l = l′

0 , otherwise
(A.2)

holds.

Table 7.1. Legendre Polynomials

Pl Pl (µ)
P0 1
P1 µ

P2
1
2 (3µ2 − 1)

P3
1
2 (5µ3 − 3µ)

P4
1
8 (35µ4 − 30x2 + 3)

P5
1
8 (63µ5 − 70µ3 + 15µ)

P6
1

16 (231µ6 − 3154 + 1052 − 5)
P7

1
16 (429µ7 + 693µ5 − 3153 + 353µ)

The orthogonality of the Legendre polynomials allows an infinite series to exactly

represent any function on the domain [−1, 1] as

f (µ) =
∞∑

l=0
Cl Pl (µ) (A.3)

with apprpriately selected constants, Cl and is used to approximate functions arbitrarily

f (µ) ≈
N∑

l=0
Cl Pl (µ). (A.4)

The Legendre polynomials are extended into the associated Legendre polynomials which

have an additional orthogonality.
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ASSOCIATED LEGENDRE POLYNOMIALS

The associated Legendre polynomials are defined as the solution to

Pm
l (µ) = (−1)m(1 − µ2)m/2 dm

dµm Pl (µ)

P0
l (µ) = Pl (µ)

(A.5)

and exhibit the following orthogonality on [−1, 1]:

1
2

∫ 1

−1
Pm

l (µ)P (µ)dµ =




1
2l+1

(l+m)!
(l−m)! , l = l′ and m = m′

0 , otherwise.
(A.6)

The spherical harmonics take advantage of the double orthogonality to approximate 2D

distributions.

SPHERICAL HARMONICS

The spherical harmonics are defined as:

Ylm(Ω̂) =

√
(2l + 1)(l − m)!

(l + m)!
Pm

l (µ)eeτm (A.7)

where µ is the cosine of the angle between Ω̂ and the x-axis and τ is the rotation about the

x-axis with respect to the y-axis of Ω̂ projected onto the yz plane which can be compuated

as:

τ =
η√

η2 + ξ2
. (A.8)

The spherical harmonics have the orghogonality

∫
Ylm(Ω̂)Y ∗l ′m′ (Ω̂)dΩ̂ =




1 , l = l′ and m = m′

0 , otherwise
(A.9)
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where Y ∗lm is the complex conjugate of Ylm. Using the addition theorem which states

Pl (Ω̂ · Ω̂′) =
1

2l + 1

l∑
m=−l

Y ∗lm(Ω̂′)Ylm(Ω̂) (A.10)

gives

Pl (Ω̂ · Ω̂′) = Pl (µ)Pl (µ′) + 2
l∑

m=1

(l − m)!
(l + m)!

Pm
l (µ)Pm

l (µ′)cos(m[τ − τ′]). (A.11)
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