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ABSTRACT 

The dragline machinery is one of the largest equipment for stripping overburden 

materials in surface mining operations. Its effectiveness requires rigorous kinematic and 

dynamic analyses. Current dragline research studies are limited in computational dynamic 

modeling because they eliminate important structural components from the front-end 

assembly. Thus, the derived kinematic, dynamic and stress intensity models fail to capture the 

true response of the dragline under full operating cycle conditions. This research study 

advances a new and robust computational dynamic model of the dragline front-end assembly 

using Kane’s method. The model is a 3-DOF dynamic model that describes the spatial 

kinematics and dynamics of the dragline front-end assembly during digging and swinging. A 

virtual simulator, for a Marion 7800 dragline, is built and used for analyzing the mass and 

inertia properties of the front-end components.  

The models accurately predict the kinematics, dynamics and stress intensity profiles of 

the front-end assembly. The results showed that the maximum drag force is 1.375 MN, which 

is within the maximum allowable load of the machine. The maximum cutting resistance of 

412.31 KN occurs 5 seconds into digging and the maximum hoist torque of 917. 87 KN occurs 

10 seconds into swinging. Stress analyses are carried out on wire ropes using ANSYS 

Workbench under static and dynamic loading. The FEA results showed that significant stresses 

develop in the contact areas between the wires, with a maximum von Mises stress equivalent 

to 7800 MPa. This research study is a pioneering effort toward developing a comprehensive 

multibody dynamic model of the dragline machinery. The main novelty is incorporating the 

boom point-sheave, drag-chain and sliding effect of the bucket, excluded from previous 

research studies, to obtain computationally dynamic efficient models for load predictions.  
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1. INTRODUCTION 

 

This section introduces the background and statement of the research problem in 

dragline machinery kinematics and dynamics, which highlight the limitations of previous 

research studies. The introduction also outlines the research scope, objectives and 

methodology for providing solutions to the problems. The broader impact and scientific 

contributions of this research and the dissertation structure are provided in this section. 

1.1. BACKGROUND OF THE PROBLEM 

The global energy demand is expected to grow by 30% between 2018 and 2040 

(WEO, 2017). According to the International Energy Agency (IEA, 2017), the 

contributions of India to the energy demand growth is about 30% (WEO, 2017). India and 

China still have the largest dependence on coal in the primary energy production (IEA, 

2017). The projections show that China holds a towering presence in the coal sector 

between 2018 and 2025 as shown in Figure 1.1. On the other hand, new policies by China 

will lead to a decline of 15% in the coal market demand from 2018 to 2040. Coal imports 

have undergone significant reductions in India to boost domestic production targets (WEO, 

2017). Indian imports decreased to 200.1 Mt, while China imports increased to 255.6 Mt 

in 2016 (IEA, 2017). Despite these trends, China and India were the two largest producers 

and importers of coal.   

According to the U.S. Energy Information Administration (EIA), the United States 

net electricity generation from coal was the largest in history between 2000 and 2010, and 

it reached a peak of 1,500 billion kWh (EIA, 2017). This reflects a strong dependence on 
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coal production, which was the largest around 1,190 million short tons in 2008 as illustrated 

in Figure 1.2.  

 
 
 

Figure 1.1. Historical and future projections of China’s energy production from coal 
(WEO, 2017) 

 
 

 

 

 

 

 

 

 

 

Figure 1.2. Historical and future projections of U.S. coal production (U.S. EIA, 2017) 
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However, the US total coal production decreased significantly to 660 million short 

tons in 2016. This decrease is a result of the impact of the Clean Power Plan (CPP) Act 

(2015), where coal lost market share to natural gas and renewable generation in the electric 

power sector. Despite the retirement of old, less-efficient coal-fired units, the EIA predicts 

that the coal-fired units will regain market share from renewables and natural gas in the 

electricity generation in 2018. The U.S. total coal production is predicted to increase 

through 2020 to more than 800 million short tons as shown in Figure 1.2 (EIA, 2017).             

The coal mining technology started a long time ago and is still going through 

steady, continuous developments, especially with the advent of new mining methods in the 

last century. The strip mining method represents the best practice of the coal production 

techniques. Increased coal demand has pushed for the design of larger draglines for bulk 

production capacities to achieve economies of scale. Dragline excavators are designed to 

meet these demands and their productivity peaked between 1994 and 2010. In North 

America, the median peak productivity for draglines was around 112,000 bank cubic 

meters per ton (BCM/t) of Rated Suspended Load (RSL), which occurred in 2006 as shown 

in Figure 1.3 (Lumley and McKee, 2014). The productivity has declined about 5% in North 

America compared to Australia and Africa. The figure shows that draglines are always 

favored for use in the U.S mining sector as compared to its use in Australia and Africa. 

It is clear that the benefits from large draglines are immense to mining clients, 

especially for providing quick returns on investment. Each piece of dragline costs between 

$30 and $100 million and would only be designed and built upon request. However, the 

use of large-capacity dragline results in a number of challenges in their design, production 

and use including, but not limited to, mass, volume, flexibility and longevity. 



 

 

4 

 
 
 
Caterpillar and Komatsu, the global leaders in the production of these large mining 

machinery, are working steadily to increase the dragline size to maximize the productivity, 

reduce cycle time, and improve safety measures. The implemented improvements impacted 

machine availability, maneuverability, and productivity. However, they do not provide 

reliable assessment of the effect of increasing the RSL on the overall machine useful life, 

especially its ropes. It is very challenging to experimentally predict the RSL scenarios on 

a dragline during its development phase. The random dynamics loading, inertia effects, 

operator efficiency, and formation characteristics form a significant source of uncertainty 

to manufacturers for developing new draglines. The design of scaled-down physical 

models was used in the industry and academia with the aim to improve digging efficiency 

and bucket pose (Kyle and Costello, 2006). The experimental techniques provided a 

valuable benchmarking in terms of static loading predictions and RSL, but failed to predict 

Figure 1.3. Median productivity of draglines by region (Lumley and McKee, 2014) 
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transient loading scenarios. This drawback can lead to inaccurate designs, unplanned 

downtimes, and an increase in the cost associated with machine maintenance. As a result, 

a premature failure of dragline ropes is more likely to happen and best maintenance 

practices, alone, cannot resolve these issues.  

1.2. STATEMENT OF THE PROBLEM 

The unique design of the dragline excavators allows for a massive and quick 

handling of overburden in strip mining operations. With a complex, massive engineered 

mechanical front-end assembly, the dragline has a bucket capacity range of between 85 

and 122 m³ and can efficiently expose the coal and spoil the waste materials within the pit 

lengths. The capital investment in draglines in the millions of dollars with operating cost 

estimate of about US $5 million per year (Corke et al., 2008). The critical task that faces 

mining clients, who invest in draglines, stems from the right decision of selecting an 

appropriate model and number of draglines for specific tasks. The best mining practices 

for using such capital investment are to keep the dragline busy to achieve high 

productivities subject to operating constraints, and with minimum downtime and 

maintenance costs. The cyclical operations and irregularities in digging materials can 

increase the loads on the boom, ropes, and bucket.  

The components that are impacted the most from these variable loads are ropes, 

and the associated maintenance and replacement cost is valued at about 30% of the 

operating cost (Corke et al., 2008). The dragline usually operates in a cyclic mode and each 

cycle moves up to about 344,736 kg (760,000 lbs) of Suspended Load Rating (SLR) in 

about 60 seconds (P&H 9020XPC; Joy Global, 2016). The attractive bulk handling 

capacity and cost of these draglines may trigger mining clients to invest in a fewer number 
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of machine. The selection of larger draglines will boost mine productivities as long as 

machine availability is high enough between about 85 and 95%. It happens sometimes that 

the peaks in machine productivity can be leveraged when an operator is exceeding the SLR 

limits of dragline. Cost reduction associated with these practices can generate a quick 

return in the short-term, but it can be catastrophic in the long term. It is more likely that 

dragline downtimes and maintenance costs will increase. Thus, as a result of focusing on 

short-term production targets, the entire project may become unsustainable in the long-

term.     

In addition to long-term problems, the delays in early inspections of ropes and 

improper digging trajectories can significantly impact dragline productivity. Poor digging 

zones require 15% to 40% more power to lift the overburden (WireCo Dragline Guide 9-

10, 2018). It means that more loads on the rope electric motors develop and additional 

stresses will be generated in the ropes. Consequently, the ropes are overloaded resulting in 

increasing stresses, wear and tear, and the downtime for replacing ropes. Dragline 

efficiency, availability and utilization are mainly controlled by ropes functionality and their 

longevity. Any failure can cause significant delays in the mining operations, resulting in 

increasing maintenance time and costs with adverse impact on the feasibility of using large 

draglines. Dayawansa et al. (2006) reported that the cost of maintaining wire ropes 

accounts for 15% of a dragline’s total maintenance costs and it is estimated as $300,000 

per annum per machine.  

Alzheimer et al. (1981) reported that the actual life of dragline ropes varies from 

few weeks to several months and also stated that the life of drag ropes is only half of that 

of hoist ropes. They also stated that the cost of operating a dragline of medium size bucket 
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capacity of 45 to 54 m³ is about US $2,500 per hour and the capital cost of a pair of drag 

ropes is about US $15,000. As a result, the total cost of their replacement and downtime 

can be US $25,000 per hour without accounting for the costs of the time lost and the loss 

of overburden production. The adverse effect of load fluctuations from improper bucket 

positioning on the dig face is not well articulated in the literature. These fluctuations can 

directly reduce the expected life of the rope when they exceed its yield strength. Advanced 

research initiative is also required to understand the underlying effects of digging scenarios 

on the dragline ropes endurance and to correlate it to the availability and productivity of 

dragline and the economic useful life of ropes.  

Resistance to failures in the hoist ropes can significantly diminish when ropes run 

over the deteriorated surfaces (e.g., worn groove of point sheave) and/or misalignments of 

the fairlead sheaves. The running ropes without impendence from sheaves can reduce metal 

deformations in the rope strands. The deterioration mechanisms for drag ropes are 

attributed to the abrasive wear from rope interactions with the digging face. Fragments of 

gravels with sharp edges may be trapped between strands and can cause premature failure 

if the operator keeps the drag ropes continuously in contact with the bench. With more, 

smaller outside wires per strand, this adverse effect can be reduced significantly.  

The efficiency and availability of the dragline are the backbone of any strategy to 

achieve maximum productivity and sustainability of strip mining operations. Breakdowns 

due to excessive loading and bad mining practices can be minimized through a good 

engineering understanding of every component capacity and a rigorous kinematic and 

dynamic analyses of the dragline machinery. The stress analysis of weak components, 

combined with an appropriate maneuverability of bucket, can increase the dragline 
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utilization, availability and machine performance. Advanced research initiatives are 

required to provide understanding into dragline availability, reliability, maintainability and 

efficiency with focus on its front-end assembly kinematics and dynamics, the subject of 

this research study. 

1.3. RESEARCH SCOPE AND OBJECTIVES OF THE STUDY 

Dragline is a massive electrically driven machine and is considered as the primary 

tool of choice for removing overburden materials in large scale surface strip mining 

operations. The machine has many electrical and mechanical components that operate in 

complex geological formations. This research initiative, therefore, focuses on the design, 

kinematic and dynamic analyses of dragline front-end assembly. To address the problem 

statement in this research, a dynamic model of the dragline front-end assembly is 

developed, where important structural components are included to fully describe the 

dragline dynamic behavior. The design of a 3D CAD model of dragline front-end assembly 

comprising structural elements: (i) machine house; (ii) boom and boom point sheave; (iii) 

hoist rope; (iv) dump rope and bucket, and (v) drag rope. The analysis of the front-end 

assembly focuses on: (i) formulating the kinematics of the dragline with three degrees of 

freedom (DOF); (ii) formulating the dynamics to predict the loads (forces and torques) in 

the assembly; and (iii) carrying out finite element analysis of the drag rope-sheave 

interactions to capture areas of high stresses in the ropes and calculate stress intensity 

factors.       

The primary research objective is to advance research into the kinematics and 

dynamics of the dragline front-end assembly and to examine in detail maximum stresses 

and stress intensity factors in the wire ropes. The knowledge from this research could also 
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be used as basis for improving dragline maintainability, reliability and availability. The 

elements of this primary objective include the following: 

• Formulating complete kinematic and dynamic models of dragline front-end assembly. 

• 3D virtual modeling and analysis of a complete dragline front-end assembly. 

• Verification and validation of the models. 

• Evaluating stresses in wire ropes under static and dynamic loading. 

1.4. RESEARCH METHODOLOGY 

The nature of this research problem requires a combination of research tools to 

individually address each of the objectives and to achieve the expected contributions. The 

combined objectives can be achieved through using an integrated modelling approach. The 

integrated model includes a critical review of the current body of knowledge in the 

dynamics and stress analyses of large dragline and lifting machinery. A theoretical 

formulation of the dragline kinematics and dynamics, which is based on vector mechanics 

and Kane’s method, was developed in order to generate a compact set of kinematic and 

dynamic equations of motion.  

Numerical methods and algorithms are formulated to solve a set of differential 

algebraic equations (DAE) and ordinary differential equations (ODE). They use constraints 

handling techniques and Newton-Raphson method to find initial conditions of generalized 

coordinates and speeds, as well as forces and torques. A 3D CAD model is designed in 

SolidWorks, with front-end assembly pertaining to a real dragline. The numerical results 

of the analytical model are compared with real world data from Nikiforuk and Ochitwa 

(1964) and Frimpong and Demirel (2009). Trajectories are generated to capture any 

potential hazards resulting in operating the simulator beyond its limits. The validated 
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mathematical model of the dragline front-end assembly serves as a standalone model for 

further experimentation.  

The final aspect of the integrated approach is based on a finite element analysis 

(FEA) to capture stresses in the drag ropes of the front-end assembly. Finite element 

models of ropes with different constructions are tested under static and dynamic loading. 

ANSYS Workbench is used to recover maximum von Mises stresses generated in the 

flexible ropes and to determine the stress intensity factors. Stresses are generated at 

particular points where stress concentrations are high due to wire-wire contacts.  

1.5. SIGNIFICANCE AND RESEARCH CONTRIBUTIONS 

This research builds on the existing body of knowledge in the area of flexible 

Multibody Dynamics (MBD) and advance the stress analyses of the dragline machinery. 

The significance of this research is attributed to an advanced mathematical formulation of 

the dragline dynamics based on the Kane’s Method (KM). The dragline front-end dynamic 

modeling is a type of closed-loop mechanism that was not properly addressed in previous 

studies. Most of the closed-loop mechanisms in the literature were cut into two mechanisms 

to facilitate the kinematic and dynamic analyses. This creates additional unknowns and 

makes the EOMs more difficult. This study improves on existing models by including all 

the components in the closed-loop mechanism. In addition to that, dynamic analysis using 

Kane’s Method (KM) was never done before on any dragline. The significance of using 

KM is attributed to the elimination of the reaction forces. It also centers the dynamic 

formulation towards finding the solutions for the unknown forces/trajectories.   

Moreover, this research expands the limited knowledge about flexible ropes 

modelling approaches and considers the rope-point sheave interactions. It also takes into 
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consideration the effect of sliding of bucket on the digging bench. These considerations 

contribute to mining excavation technology and heavy machines that contain ropes. The 

analytical dynamic model is manually and symbolically derived using advanced 

computational techniques in Mathematica. The dynamic model provides reliable estimates 

of the forces and torques that are used for validation purposes. It also serves as a testbed 

for several types of closed-loop mechanisms (e.g., cranes, grasping robots, and shovels).  

It also pioneers the development of 3D virtual simulator for simulating the dragline 

machinery performance. Another significance is the optimum control of the dragline 

digging scenarios by the application of feedforward displacement approach. Optimum 

trajectories have been well articulated to show its contributions to the efficiency and to the 

reduction in machine downtime due to better control strategies of the dragline cycles. This 

leads to a reduction of stresses and increases the useful lives of ropes and the dragline 

machinery. This research endeavor contributes to the methods of wire ropes stress analysis 

that can be used as guidelines to the design code of ultra-class heavy duty ropes. The new 

findings can help companies expand the knowledge of their operators and provide training 

to increase safety and fidelity in using large mining machines. The results of this research 

create a safer working environment with a higher trust from public in surface mining 

technologies and Virtual Reality.    

1.6. STRUCTURE OF DISSERTATION 

This research advances the kinematics and dynamics of a dragline front-end 

assembly including stress analysis and stress intensity calculations of the dragline rope 

system. After an introductory section on the research problem, scope, objectives and 

methodology, the report discusses the current body of knowledge in the kinematics and 
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dynamics of closed-loop mechanisms and the benefits of Kane’s Method in Section 2. The 

detailed kinematics and dynamics modeling is provided in Section 3. For accurate 

numerical simulations of the kinematics and dynamics of a constraint dragline excavator, 

Section 4 shows different techniques and algorithms for finding the joint forces and 

torques. This section also entails the verifications and validation of the mathematical 

models and the virtual simulator and the setup of the FE experiments. Section 5 discusses 

the experimental results from the mathematical and the FE models. Section 6 provides a 

summary of the research study with conclusions, contributions and future 

recommendations. Appendix A is also included and contains Mathematica code for the 

derivation of the kinematic and dynamic model.  
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2. LITERATURE SURVEY 

 

This section contains a critical review of previous contributions in advancing the 

research on dragline machinery and other excavators. The review is divided into four 

components including: (i) dragline operational performance and control (ii) kinematics and 

dynamics of dragline closed-loop wire ropes, (iii) dragline virtual modelling and 

simulation, and (iv) structural integrity analysis. The first part describes the characteristics 

of the dragline, its modelling and operational control. The second part considers the 

fundamental theories that are used to develop the dynamic models of the dragline 

machinery with its intertwined components, bucket-ground interactions, and rope-sheave 

interactions. The third part addresses the use of simplified virtual dragline and control 

models. The fourth part of the review highlights the structural integrity of dragline 

machine. From the limitations of current research efforts, the author’s PhD research is 

placed at the frontiers of dragline front-end assembly to advance the computational 

dynamics of this assembly.         

2.1. DRAGLINE MACHINERY 

In large strip mining operations, dragline methods are used to excavate significant 

amounts of overburden and to expose the orebody efficiently and economically. Coal 

seams may exist at depths from 20 to 150 feet beneath the ground. Two major stripping 

tools, therefore, are used to quickly reach out the coal, which are bucket wheel and dragline 

excavators. Dragline is one of the most economic excavators used to extract overburden 

materials to expose coal or minerals for extraction. Osgood (1880) invented the dragline 

and it was first manufactured in 1884 by Osgood Dredge Company (Lovass, 1982). Early 
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small models of draglines were found in civil engineering applications, such as canal 

excavation (Lovass, 1982). The bucket capacity has increased from 7 to 168 cubic meters 

(10 to 220 cubic yards) over the past decades (Stilwell et al., 1979).  

Draglines have machine house of welded steel plates mounted on a radial tub using 

centered king post and tapered high strength rollers. They also have tubular, lattice-design 

boom filled with pressurized gas to detect cracks, power drive systems for the hoisting and 

dragging machinery, as well as swing machinery, and massive bucket attached to ropes 

through rigging system. The boom is anchored to the revolving house at machine-bored 

mounted lugs and is suspended from its end by the aid of galvanized bridge-strands. The 

hoist and drag ropes synchronously operate to maneuver the bucket for filling, hoisting, 

and spoiling purposes. The hoist rope is a single-line run from a hoist drum, which is driven 

by electric motors, and passes over a gantry sheave, the point sheave and then is attached 

to the bucket using hoist rope sockets. The drag rope is either a single-line or double-line 

run, which passes through fairlead sheave located near the operator cabin, and is connected 

to a drum driven by set of AC motors. The total requirement of wire ropes of dragline is 

about 3,000 m (2.25 miles) and it weighs about 82.5 tons (Bucyrus, 1974). The wire rope 

diameter varies from 69 to 125 mm (2.75 to 5 in) and has an approximate weight between 

18.9 and 64.7 kg per meter (12.7 and 64.7 lbs per foot) as per (WRI, 2018). These ropes 

are multi-strand, multi-wire ropes of conventional type (6 strand/rope x 19 wire/strand) or 

advanced type of (8 strand/rope x 36 wire/strand) with plastic infusion to reduce internal 

friction. The minimum breaking force of these ropes ranges from 395 to1,383 metric tons 

(870,825.9 to 3048,993.1 lbs). 
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The drive system comprises multiple motors rather than larger motors to deliver the 

power requirement of magnitudes from 8,948.39 to 13,422.59 kW (12,000 to 18,000 hp).  

Each dragline is equipped with four or five swing motors and several drag and hoist motors 

to minimize the cycle time and to improve the bucket capacity. Each hoist and drag motor 

supplies a power of up to 372.85 kW (500 hp), 230 volts, and 480 rpm, whereas each swing 

motor is rated at 104.39 kW (140 hp), 230 volts, and 480 rpm. All motors, generators, and 

other electrical machines are securely anchored inside the machine house of a heavy 

welded steel structure. The machine house also carries an A-shape mast or a tri-structure, 

which supports the boom of a length ranging from 30 to 132.5 m (100 to 435 foot). The 

boom is fixed at angle between 30 to 40 degrees using intermediate supporting ropes to 

handle a Rated Suspended Load (RSL) exceeding 226,000 to 383,000 kg (500,000 to 

845,000 lbs). Figure 2.1 shows a dragline in 2D beginning a new cycle of excavation 

(Nikiforuk and Zoerb, 1966). 

Lumley (2014) claimed that the Actual Suspended Load (ASL) equals the total 

suspended load carried by the boom and it is calculated as in equation (2. 1) 

ASL = 𝑊𝑊Bucket + 𝑊𝑊Rigging + 𝑊𝑊Payload         (2.1)     

Equation (2.1) does not account for the weights of the hoist and drag ropes, which 

are variable during the operation. The hoist and drag ropes exclusion can lead to large 

errors. If the ASL is equal to 226, 000 kg (498,244.71 lbs) and a hoist rope weighs 64.7 

kg/m  (43.47 lbs/ft), the hoist rope will have weight of 3,763.98 kg (8,298.15 lbs) if it is 

laid vertically below the boom tip (for a maximum dumping height of 27.33 m (82 ft) and 

digging depth of 36.66 m (110 feet) as per Figure 2.1. For this operating condition, the 
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error is 1.6% and can grow as the rope is reeled out to reduce the effect of passive loading 

on the bucket during digging motion. An accurate modelling technique is used to rectify 

the error in this study and considers the effect of ropes extension on the loading.  

 
 
 

 
 Figure 2.1. Schematic diagram of the Marion 7800 dragline  

 
 
 

 Operational Characteristics and Performance Monitoring. All draglines  

operate in a dynamic environment and many variables can affect their functionality, 

availability, utilization, and reliability. The operational variables include position, digging 

depth, and dumping height and the dragline radius, as well as its bucket capacity. These 

variables are cyclic in nature and vary from an operator to another. Other variables are 

Machine 
House 

Suspension 
Ropes 

Boom 
Boom Point 

Sheave 

Ground 

Bank 

Bucket 

Front-end 
Assembly 



 

 

17 

related to the capacities of the electric drives and the strength of mechanical components, 

especially the wire ropes, bucket design, and rigging mechanism. Although draglines are 

engineered from high strength materials (mainly high performance alloy steels), there is a 

general consensus that a dragline tool cannot last for 50 years (Carter, 2015). Most open-

cast mines rely on maximum dragline utilization throughout the year, with a 24 hours a 

day, 7 days a week schedule.  In coal mines, the strip mining activities are entirely driven 

by the dragline performance (Lovass, 1982). Alzheimer et al. (1981) claimed that a gain of 

20 percent in rope life can be obtained when rope load is reduced by 10 percent. The authors 

mentioned that the gain in rope life could save around US $10,000 per year, but it can result 

in a net loss of US $510,000 in unremoved overburden due to RSL reductions. The loss in 

revenues associated with this decrease of rope loading capacity does not include additional 

losses due to machine downtime and unplanned maintenance, which could total up to $1 

million/day (Ebrahimi et al., 2003). 

Dragline productivity is controlled by two parameters, the amount of overburden 

removed (Rated Suspended Load) and cycle time. The bucket plays a central role in 

defining the productivity of any mining excavator. Bucket manufacturers of draglines 

provide different designs with increased sizes, and furnish them almost with the same 

rigging system to address the need of productivity increase. The capability of draglines has 

increased nonlinearly with the increased sizes of buckets, resulting in increased RSL. 

Stilwell et al. (1979) developed a rule to define the standard bucket size and related it to 

the RSL. They indicated that the hoist force in tons, for an empty bucket, is roughly equal 

to the bucket capacity in cubic yards. However, this claim is inaccurate based on the current 

review of the dragline manufacturers’ specifications. Applying this hypothesis to a dragline 
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of a bucket capacity of 35 cubic yards yields a hoist load of 35.00 Mt (77,161.8 lbs), which 

cannot be used to hoist a load of 125.64 Mt (277,000 lbs) (Nikiforuk and Zoerb, 1966).  

The design of dragline rigging system did not change for decades until the invention 

of the Universal Drag and Dump rigging (UDD) by Rowland et al. (2002). The invention 

of UDD eliminated over two thirds of rigging in a conventional dragline and reduced the 

carry angle to around 20° (ACARP, 2000). UDD allows bucket hoisting as soon as it is 

filled with material, and the operator is not required to drag the bucket close to the machine 

to avoid spillages. The drag time is reduced by about 3 seconds and the payload is increased 

due to front and rear hoist ropes. A study has shown that UUD’s equipped draglines have 

an increased productivity of about 19% in a chop pass and 29% for high wall pass compared 

to conventional draglines (Rowland, 2000). 

The design of dragline buckets has been refined since 1900s with different models 

in order to maximize the fill factor and reduce bucket weight while maximizing the digging 

efficiency and payload retention (Pundari, 1981; Rowlands, 1991; Mclure, 1995; 

Esterhuyse, 1997; Gentle, 2002; and Lenoard, 2011). Dragline Key Performance Indicators 

(KPIs) are used as a rule to estimate the performance of the operator and the dragline 

(Lumley, 2014). These measures include the cycle time, swing angle, payload, and digging 

rate. The KPIs provide critical information about how the mining practices track the preset 

goals and guide mine production engineers to achieve them throughout the mine life. It 

should be pointed out that these KPIs, when combined together, are counterproductive 

(Lumley, 2014). There are no machines in any database that can achieve the best value for 

each KPI parameter. The best filling time will most likely lead to a reduction of another 

important indicator, which is the payload.  
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Draglines are engineered to last between 20 and 30 years, with many technological 

developments. Modern draglines began in the late 1960s with the development of digital 

computers, improvements in AC drive motors, and optimization of structural components. 

Significant advancements in the dragline monitoring (Chironis, 1978a; McCoy, Jr. and 

Crowgey, 1980; McCoy Jr. et al., 1983; Scoble and Muftuoglu, 1984; Wu, 1990; Knights 

and Shanks, 1991; and Scoble et al., 1991) started to develop control techniques to assess 

production and productivity metrics. These advances created safer working environments 

by alerting operators of any potential failure or misuse of the mining machine and provided 

benchmarking for maintenance and training purposes.  

Chironis (1978b) highlighted the benefits of using onboard display monitoring 

system installed in a Marion dragline cabin at the Jim Bridge mine, Wyoming. The system, 

developed by Douglas Electronics Co., receives inputs from encoders attached to the shafts 

of hoist and drag drums and swing gearing and it display details about the absolute 

positions and bucket loads. Additional performance gauge displays the location of the 

bucket with respect to the bench where the dragline is sitting on. The author claimed that 

the display systems, with its four performance gauges for visualizing the cycle time, 

allowed for higher productivity gains from 3,300 to 5,000 cubic yard/hour.     

Bucyrus-Erie Co., in collaboration with General Electric Co., developed a static 

and dynamic anti-tightline control system to avoid collision between the bucket and boom 

in draglines (McCoy Jr. and Crowgey, 1980). The control system operates using the hoist 

and drag ropes length signals that are derived from two separate potentiometers driven by 

the hoist and drag drums. The static limit system uses a voltage signal that is equivalent to 

the sum drag and hoist lengths and then compares it to a preset value, whereas the dynamic 
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limit system uses the net velocity of ropes. A regulating amplifier is set to a preset voltage 

bias and any values that exceed this limit activate the amplifier to drain out the current 

from the hoist and/or drag rope circuits and reduce its speed. The preset bias voltage is 

defined by the minimum ellipse zone that the bucket cannot enter for safe operations. 

Wu (1990) developed a dynamic monitoring control model of the excavation 

process under different geological formations. The model provides dynamic output of the 

simulation process and plots the dragline efficiency versus pit width and digout length. 

Knights and Shanks (1991) used a short-term monitoring of a dragline bucket and found it 

to increase the dragline productivity by 2%. Arora et al. (1999) developed a set of symbolic 

program called “the expert system” that analyzes the vibration levels induced in the 

dragline bearings due to misalignment or looseness. The expert system was developed on 

the basis of vibration levels and frequency data collected at bearings of interest. The authors 

argued that any faults can be traced in three directions and their early diagnosis increased 

the dragline availability by 6%. Eggers et al. (2007) used computed order tracking to 

monitor the faults in swing gears of dragline that operate under random rotational speeds 

and orientations. They mounted an accelerometer with the proximity sensors to measure 

the amplitude and direction of rotational speed of gear and its vibrations. The online 

monitoring station on the dragline allowed an early detection of any damage progression 

in the pinion over its life span. 

Increased demands of dragline productivity and reliability have resulted in 

designing and deploying of larger mining equipment. Most coal mines have dozens of 

trucks, drillers, shovels, draglines, and many other machines that are operating 

concurrently. Schiffbauer (2001) stated that on average 13 mining fatalities occur every 
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year in surface mining operations and around 24 fatalities were related to the underground 

mining activities. This is due to lack of advanced monitoring systems, interactions among 

small and big equipment units. The search for additional monitoring techniques that 

improve safety and eliminate any collision led the National Institute for Occupational 

Safety and Health (NIOSH) to create an advanced instrument, Hazardous Area Signaling 

and Ranging Device “HASARD,” for proximity warning (Schiffbauer, 2001, and Ruff, 

2007). The HASARD device was instrumented on a Joy continuous miner, a highwall 

launch vehicle, and a Komatsu haul truck (Schiffbauer, 2001).            

Complex operations with machine-machine interactions require advanced 

monitoring systems with high precisions to ensure safety. The Global Positioning Systems 

(GPS) technology is limited in these applications due to its centimeter precisions (Wusaty 

and Paulhus, 1995). However, these constraints imposed by U.S. Department of Defense, 

were removed to allow real-time centimeter precision. The application of GPS technology 

to locate a mining equipment is very beneficial in terms of safety, availability, utilization 

and productivity (Wusaty and Paulhus, 1995, Marshall et al., 1998). The benefits of the 

GPS machine control systems on dragline excavators include reduction in the necessary 

leveling effort in recent years. The GPS technology has allowed precise definition of the 

work plans of excavators. Wusaty and Paulhus (1995) at Fording Coal Ltd., introduced a 

dispatch system on a truck, which resulted in a 4.5% increase in fleet productivity. The 

authors also used GPS shovel technology to precisely determine the instant position of the 

shovel dipper. 

Tritronics 9000 Series II dragline monitoring and navigation system has been 

applied to 65 draglines worldwide (Hansen, 2000). The system allows engineers and 
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managers to track tones of excavated overburden, cycle time, dragline delay times, and 

bucket positioning. The author claimed that the installation of Tritronics monitors has 

improved the productivity by 4%. Corke et al. (2000) have designed and tested a 3,500-ton 

dragline and Roberts et al. (2003) and Winstanley et al. (2007) have used Real Time 

Kinematic (RTK)-GPS to monitor the operation of a scaled-down dragline using 3D Digital 

Map Terrain (DTM). The integration of RTK-GPS receiver at the boom tip allowed for 

real-time 3D visualization of the terrain. Their approach was based on using a single-axis 

scanning laser mounted at boom-tip directed downward where the angular position of each 

scan is determined at every rotation from an encoder fixed on the slew drive. According to 

their study, dragline DTM successfully performed 50 autonomous cycles without the 

intervention of the operator.  

Dragline monitoring systems are vital elements in the development and 

sustainability of mining operations. Overloading the dragline with payloads above the 

recommended loads can damage the dragline boom and electric motors (Vynne, 2008). The 

dragline productivity can be compromised due to unplanned downtime resulting in loss of 

millions of dollars. Another important KPI indicator, diggability index, has received a great 

attention due to the implementation of GPS technology. The assessment of dragline 

diggability index has become more meaningful with accurate measures of dragline bucket 

position. It can define efficiently the blasting and hole burden and provide possible 

alternatives for optimizing hole spacing and burden. Vynee (2008) argued that the 

application of mining monitoring techniques (Thunderbird Mining Systems) safely 

increased the RSL of Marion dragline 8750 from 306 to 383 tons. 
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 Dragline Simulation and Automatic Control. Dragline simulation greatly   

helped mine planning engineers, operators, and management to precisely schedule and 

visualize the digging and dumping processes, as well the topography of mine geological 

features and equipment. Bandopadhyay and Ramani (1979, 1985) developed computer 

models to quantify the interrelationship between the mine geological conditions, 

equipment, and methods. The models accept input data of materials (swell factor, highwall 

angle, bucket fill factor, angle of repose) and mining parameters (height and width of 

chopdown bench, mining block length, overburden and interburden height). According to 

the authors, the model fidelity was established from the 99% confidence interval of 

production rate per hour and delay time per shift with a small error of 1.87 % and 5%, 

respectively.  

 Wu (1990) developed a 3D dragline simulation model for a multi-seam pit that has 

Graphical User Interphase (GUI) and validated it using field data from two mines. The 

model was based on a single digout for each coal seam and a Monte Carlo integration 

method was used as simulation experiment. Mirabediny (1998) developed a computer 

simulation model of dragline operations that incorporates seven stripping methods. These 

methods are simple side casting, standard extended bench, split bench, chop cut in pit 

bench, extended key cut, single highwall and double longwall passing, and double high 

wall and single lowwall multi-pass. The author argued that the model can provide an 

optimum solution to the dragline mining methods and planning. Most of these research 

models have resulted in increased dragline productivity, reduced mine planning time and 

improved utilization (Baafi et al., 1995; Mirabediny, 1998; Erdem et al., 2004). These 



 

 

24 

dragline simulation models focused on mine planning and operations, with no discussions 

on how productivity improvements affect dragline longevity.  

 The use of computer models for planning dragline operations improves the existing 

automatic control models and establishes new modelling approaches. The dragline operates 

in a cyclic, repetitive mode and its cycle lasts about 60 seconds. Two-thirds of the cycle 

time, 40 seconds, is devoted to swinging after digging with the loaded bucket towards the 

spoil area. Thus, this area of research is given a greater attention with the improvements of 

computational tools and computer capabilities. Very early simulations of the dragline 

dynamics, on analog and digital computers, started in the mid-1960s and accelerated at 

slow rates until the early 1990s (Nikiforuk and Ochitwa, 1964; Nikiforuk and Zoerb, 1966; 

Jones, 1974a; Kemp, 1977; McCoy Jr. and Crowgey, 1980; Godfrey and Susanto, 1989; 

Shannon, 1990; and Roberts et al., 1999). Current computational software with robust 

capabilities has advanced the analysis of complex machines and made it more manageable. 

Physical modelling of excavators for experimental purposes has become secondary, 

especially given the rapid emergence of virtual simulation (VS) (Frimpong and Li, 2006; 

Frimpong et al., 2007; Frimpong et al., 2008).   

2.2. EXCAVATION METHODOLOGY AND MODELLING TECHNIQUES 

In strip mining operations, depending on the depth of the overburden layer, the 

exposure of coal or minerals may require the excavation of large amounts of overburden 

materials. The type of overburden and its geological features dictate the type of excavation 

technique, equipment type, and cycle of operations. If the deposits are coal seams lying 

near the surface less than 60 m (200 feet), the stripping method will be the preferred 

method. Open-cast (stripping) method is characterized by casting the excavated overburden 
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to the spoil area. The advantage of the stripping method is the associated high productivity 

resulting from the deployment of a large mining excavator (dragline, rope shovel, or bucket 

wheel excavator). Rope shovels are favorable for digging hard rocks, while bucket wheel 

excavators and draglines are favored for the long reach and higher capacity.  

Hartman (1987) compared the productivity of mining equipment under similar 

conditions of operations. The author claimed that a bucket wheel excavator (BWE) of 

bucket size 4 m³ (5.23 yd³) can achieve an output 8,490 m³ per hour (11,000 yd³ per hour). 

The productivities of a dragline and a shovel of equal bucket size of 57 m³ (75 yd³) are 

1,990 m³ per hour (2,600 yd³ per hour) and 2,180 m³ per hour (2,850 yd³ per hour), 

respectively. However, the productivities of these machines (bucket size/hr) should not be 

the only basis for equipment selection; it should also include the unit ownership and 

operating cost per ton ($/tons). In these terms, the dragline is the most economic piece of 

equipment for stripping of overburden material (Hartman, 1987) as shown in Figure 2. 2. 

BWE and dragline quickly spoil the overburden and allow for an immediate 

reclamation, which is another advantage associated with the strip mining method. Another 

advantage of the dragline machinery is its long digging and dumping reach. However, the 

use of few dragline units has the disadvantage for tying large production capacities to one 

equipment unit. Any breakdown in the dragline unit will cause significant delays and 

production losses. Another disadvantage associated with the dragline use is the variations 

in digging and dumping that makes it suitable only for large scale overburden removal 

(Scheffler, 2002). The dragline operating cycle is about 60 seconds depending on operator 

skills (Nikiforuk and Zoerb, 1966; Kemp, 1974; Nichols et al., 1981; Corke et al., 2000; 

Fry, 2003). It includes the bench digging and bucket loading, simultaneous lifting and 
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swinging of the loaded bucket, bucket dumping at the spoil pile, and returning of empty 

bucket to the bank to start a new digging cycle (Nichols et al., 1981).  

 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2. Equipment operating cost per ton comparison (Hartman, 1987) 
 
 
 
The key structural elements in a dragline are the wire ropes that control the bucket 

under the boom point sheave. These ropes are subjected to various types of loading 

(abrasion, corrosion, and fatigue) and they provide the weakest link in the front-end 

assembly. However, the research on dragline wire ropes focusing on its degradation under 

these types of loading is not fully understood. Current research on dragline dynamics 

focuses on bucket design and rigging dynamics, dragline automation, and dragline behavior 

modelling using machinery kinematics and dynamics theories.          
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 Kinematics and Dynamics Modeling of Excavators. Excavators are one 

of the great technological advancements of the early 1830s (Fairhurst, 1928). Their design 

and functionality have greatly been reshaped over many centuries to increase bulk loading 

capacity, efficiency and longevity. Any excavator can be regarded as a multibody 

mechanical system with many links that are intertwined to provide specific motion and 

carry part of the load. Each link of the excavator provides one or several degrees of freedom 

(DOF) to execute the associated motion. A kinematic analysis is usually performed to study 

the motion of each link (body) and to track its spatial orientation without the acting forces 

or loads (Housner and Hudson, 1980; Josephs and Huston, 2002). This branch can be 

applied to analyze any mechanism in two ways, either forward kinematics or inverse 

kinematics. The first one is a mapping from excavator joints coordinate to the bucket pose 

using a predefined transformation and a position vectors of each link and joint. The latter 

is a reverse process that relies on defining the joint coordinates according to a specific pose 

of the bucket or link (Corke, 2016). 

The kinematics analysis of any excavator is an important process used to assess its 

maneuverability and its bucket trajectory and to avoid any potential collision among its 

mechanical components (Vinogradov, 2000). Dynamic modeling is also required to 

completely analyze the behavior of excavators under the action of transient loading 

(Housner and Hudson, 1980; Josephs and Huston, 2002; Corke, 2016). This branch, thus, 

considers the effect of loading variations and describes the periodic machine behavior. The 

use of kinematics and dynamics modeling allows a complete description of the mechanism 

behavior using a set of differential-algebraic equations. The fundamental laws that define 
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the governing mechanical behavior of a rigid body are the Newton’s second law and 

Euler’s second law using equations (2.2) and (2.3), respectively (Shabana, 2010). 

𝐹𝐹𝑖𝑖 =  ∑𝑚𝑚𝑖𝑖
𝑅𝑅𝑎𝑎𝑖𝑖𝑅𝑅             (2.2) 

𝑀𝑀𝑖𝑖 =  ∑𝐼𝐼𝑜𝑜�̈�𝜃              (2.3) 

Equations (2.2) and (2.3) can be directly used to develop a set of equations of 

motion for a single- or multi- body system about a reference point located at its center of 

mass (Shabana, 2010; Kasdin and Paley, 2011). However, the location of the points of load 

application can significantly impact the derivation of the mass moment of inertia defined 

in equation (2.3). The parallel axis theorem must be used to extend equation (2.3) in a case 

where the reference point of the body is not located at its center of mass. The application 

of Newton-Euler approach to develop a dynamic model leads to a sparse matrix that can 

be programmed to solve the accelerations and reactions (Shabana, 2010). The Newton-

Euler method requires drawing and analyzing the free body diagram (FBD) for every link 

and associating the acceleration of its center of mass to forces and torques applied at joints. 

This technique is very efficient for the dynamics formulation of serial manipulators with 

limited number of links (less than 10) (de Jalon and Bayo, 1994). The Newton-Euler 

method can be recursively applied to solve the inverse dynamics of systems (Luh et al., 

1980; Saha, 2013).  

Lagrange (1788, 1813), in his memoires entitled “Mecanique Analytiques II”, 

credited the seminal work about the theory of motion to earlier philosophers Galileo, Euler, 

Descartes, and Wallis. Lagrange developed his equations on the basis of the definitions of 

the generalized coordinates and virtual velocities (Richie, 2012). The Lagrangian 
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formulation was first used to solve the dynamics of a system of pulleys connected via ropes 

under a new principle called “The Lagrangian” (Lagrange, 1788). Lagrange’s principle 

provides a completely different approach to formulate the equations of motion for rigid 

bodies. The resulting equations of motion are of second order ordinary differential 

equations. A choice between Newton’s Laws and Lagrange’s equations depends on the 

type of problem under investigation. If one is trying to analyze the motion of the slider in 

a slider-crank mechanism to determine the slider displacement, applying the Newtonian 

mechanics requires solving time-varying constraint forces, which hold the slider in place. 

However, using Lagrangian mechanics requires only a simple definition of the generalized 

coordinates that define the motion of the slider.  

Although the Lagrangian formulation eliminates the need to work with 

noncontributing forces (constraint forces), it is problematic when used in systems that have 

mathematical entities derived in terms of velocity (Kasdin and Paley, 2011). Thus, it is 

better to describe any system using the velocity-like definition and generalized coordinates. 

The most acceptable definition is using the angular velocity as will be seen in the next 

section upon developing the dynamic model of a dragline using Kane’s method. Another 

short-coming of Lagrangian formulation is due to the nonlinearity that results from the 

derivations of kinetic and potential energies and the complexity of variables separation. 

Moreover, the analyst would also sense the difficulty of understanding the equations and it 

cannot be used to describe dissipative systems (Taylor, 2005). Despite these limitations, 

Lagrangian formulation started regaining popularity among analysts as a result of the 

availability of powerful computational resources.   
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Hamilton (1856) contributed to the field of dynamics by introducing the concept of 

vectors and extended the work of Lagrange through his discovery of the integrated 

equations of motion. The transformation of equations of motion expanded by Hamilton 

received a great attention from Jacobi who considered his results important (Graves, 1889). 

Both Hamiltonian and Lagrangian formulations are based on the energy methods and can 

be used instead of Newton’s laws as fundamental principles in dynamic analysis. The 

Hamiltonian, as defined by H, is derived from the Lagrangian using Legendre 

transformation (Richie, 2012). The Lagrangian, denoted by L, is the difference between 

the kinetic and potential energies. The Hamiltonian principle is called the principle of least 

action, which means the variation of a functional S (the integral of Lagrangian over time) 

is equal to zero over time, as illustrated in equation (2.4). 

𝛿𝛿 𝑆𝑆
𝛿𝛿𝛿𝛿(𝑖𝑖)

 = 0                    (2.4) 

This definition leads to finding the trajectory function 𝑞𝑞(𝑡𝑡) since Lagrange had built 

his discoveries based on the difference between kinetic energy T and potential energy V. 

In other words, the minimization of this difference is just the path that an object should 

follow over time. The remarkable advantage of using the Hamiltonian’s formulation is that 

the integrand of equation (2.4) is invariant to the generalized coordinates (Meirovitch, 

1970). However, the function S must be differentiable twice and the boundary conditions 

must also be known. Luu (2014) applied Hamilton’s principle to derive the equations of 

motion of the BWE boom. The boom was modelled as a 3-D deformable elastic beam using 

Euler-Bernoulli beam theory. This study addressed the effects of deformation-motion 
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couplings in the boom on its dynamics response. However, the author did not include the 

dynamics of the counterbalance arm where inertia loadings are significant.  

D'Alembert (1743) had studied the infinitesimal motion of bodies under different 

geometrical configurations and constraints. The author stated that the sum of all inertia and 

gravitational forces acting on a body is zero (Kane, 1961). This discovery was used as a 

starting point by Kane (1961) and Kane and Wang (1964) to develop a new formulation of 

Lagrangian mechanics. Kane (1968) expanded the Lagrangian mechanics by including the 

concept of generalized speeds. A new formulation was named after Kane (1968) “The 

Lagrange’s Form of D’Alembert’s Principle” and Kane’s equations of motion as 

established in Kane and Levinson (1985).               

In the United States, the design of digging excavators, which used the steam 

engines, was started by Otis Company in the 1836s and continued its developments till the 

1920s (Fairhurst, 1928). Despite the advancements in the field of dynamics at that time, 

the design of these equipment was based on the static analysis and graphical techniques. 

Peters (1955) and Volkov (1965) studied the design of single bucket excavators (rope 

shovels and draglines) and established the guidelines based on the static analysis and 

experimental testing. Pankratov (1967) investigated the dynamics of excavators based on 

the theory of stability of motion (Lyapunov, 1892). The author developed mathematical 

models to describe the oscillatory motions of a dragline boom using differential equations 

of the second order.  

Satovsky (1963) highlighted the limitations of the studies that used the separation 

of working mechanisms when modeling the dynamic of mining excavators. In his 

approach, the mining excavator machine house, boom, bucket and rope are modeled as 
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lumped masses connected by elastic springs and dampers. The solutions of the differential 

equations of these models capture the vibrations in the machine due to unsafe operations 

and reduced unnecessary increase of safety factor.       

The fundamental laws and principles, stated earlier, have also been used for 

investigating and developing equations of motion in mining machines. Sethna (1962) used 

the Lagrangian formulation to find the equations of motion of four-wheeled vehicle for the 

sprung mass. Bakholdin et al. (1967) studied the dynamics of a pit loader mechanism using 

the Lagrange equations. They found that a geometrical optimization of the geometry of the 

hoisting mechanism can significantly reduce the driving torque of its motor and can 

increase the loader productivity.  Chang el al. (1989) performed a man-in-the-control-loop 

simulation on a backhoe excavator in the framework of Newton-Euler formulation. They 

used relative motion of joint coordinates to derive the equations of motion. 

Bullock et al. (1990), Vaha and Skibniewski (1990), Hemami and Daneshmend 

(1992), and Koivo (1994) developed kinematics and dynamics force/torque models using 

Newton-Euler formulation. These researchers related the loads at joints to their arm forces 

through the corresponding joint angles. Koivo et al. (1996) developed a dynamic model of 

a backhoe excavator in the digging mode and used it for the Proportional-Integral-

Derivative (PID) controller design. They used Denavit-Hartenberg (D-H) convention in 

order to construct the transformations between the excavator links. Newton-Euler 

technique was used to establish a complete dynamic model of the excavator. A desired 

trajectory was developed based on the inverse kinematic procedures and the Proportional-

Integral-Derivative (PID) controller was used to generate the required torques to be applied 

on the machine to follow this trajectory. 
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Frankel (2004) used the Lagrangian formulation to develop the dynamics equations 

of a backhoe excavator. The author used the inverse kinematics analysis to map the joint 

space to cylinder space, which is required to calculate the time history of the cylinder length 

for control tasks. The Lagrangian model of the backhoe was modeled in Simulink using 

blocks that have information about the joint torques, inverse Jacobian, and joint torques 

and forces. The direct dynamics process allowed calculating the bucket pose and cylinder 

lengths according to the input forces. To validate the model, a user-defined digging 

trajectory was input into the backhoe model and a virtual model and the simulation results 

were compared to the collected data. Knotz (2007) extended the work by Frankel (2004) 

and used a minimization of a cost function that includes the bucket angle to avoid the 

singularity in the backhoe excavator. A constraint method was implemented in the Jacobian 

and is based on the elimination of the velocity of the link that moves the backhoe bucket 

in areas where singularity is possible. A force control technique was used to adjust the 

command velocity in the backhoe links according to forces that resist its motion.  

Frimpong and Hu (2004) and Frimpong et al. (2005) and Frimpong and Hu (2008) 

developed the kinematics and dynamics of cable shovel excavator using Newton-Euler 

technique. The dynamic model used crowd arm length and its angular displacement as 

generalized coordinates. A predefined trajectory and a virtual model of the rope excavator 

were used for validation purposes. The resistive forces to digging used in their calculations 

are based on the work by Zelenin et al. (1975). Awuah-Offei (2005) developed a dynamic 

model for a rope shovel based on the simultaneous constraint method (SCM) and Newton-

Euler method. The kinematic model considered the boom point sheave in the shovel front-

end assembly and used hoist rope and crowd arm angles as generalized coordinates. 
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Awuah-Offei and Frimpong (2007, 2011) have shown that an optimal digging energy per 

unit loading rate can be achieved with a digging trajectory produced by 0.7 and 0.25 m/s 

speeds of hoist rope and crowd arm, respectively. 

    Frimpong et al. (2005) reported the limitations of Newton-Euler and Lagrangian 

formulations and contributed to the dynamic analysis of cable shovel excavators based on 

Kane’s Method. Their dynamic model has 2 DOF as generalized speeds, which are the first 

derivatives of translational and angular displacements of the crowd handle in local and 

inertial frames, respectively. To maintain higher rope shovel productivity, the authors 

developed a Proportional-Integral-Derivative (PID) controller that used inputs vectors of 

desired displacement and velocity. Frimpong and Li (2006), Li and Frimpong (2008), 

Frimpong and Wardeh (2016) and Raza and Frimpong (2017) published seminal works in 

the virtual simulation of electric rope shovels. These researchers developed 3-D virtual 

simulators of the rope shovel and their models were mainly used to study the kinematics 

and dynamics and to identify zones of high stress loading on an excavator boom.  

Shi (2007) developed simplified kinematic and static models of rope shovel and 

claimed its superiority over its counterparts. A drawback of this model is that the boom 

point sheave is modeled as a point mass. Another shortcoming is that static equilibrium 

was used to derive the forces in the hoist and crowd arm. However, the model was capable 

of generating precise digging trajectories with a hoist speed of 1.7 m/s. Slob (2007) used a 

load sensing technique to estimate the load at the boom point sheave of a P&H 4100A rope 

shovel. The dynamics modeling was established in the framework of the Lagrange method 

and also considered the electrical motors outputs. Awuah-Offei et al. (2009) extended the 

work by Awuah-Offei and Frimpong (2007) on rope shovel and applied the passive earth 
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theory to develop the dipper-formation cutting resistance and estimated dipper payload. 

The authors showed that the horizontal cutting forces are more significant than those in the 

vertical direction. The estimated payload outweighed the cutting resistance.    

Himmelman (2011) studied the dynamics and control of a 2800 XPB P&H electric 

rope shovel and estimated the inertia and frictions based on data provided by sensors 

mounted on it. The (D-H) parameters were used in developing the forward kinematics 

analysis. Euler-Lagrange formulation technique was applied to derive the equations of 

motions and then estimate the shovel inertia. In his research, an important modeling aspect 

is based on the inclusion of a complete geometry of the boom-point sheave and shipper 

shaft. The dynamics model was built in the Simulink environment and used three inputs. 

These inputs are the torque applied by the swing motor, torque developed in shipper shaft 

by the hoist rope tension and the force in the crowd arm developed hoist rope and crowd 

motor. The modeling approach was purposefully applied to control the swinging and 

hoisting motion and to develop a collision avoidance system. Rasuli (2012) also used the 

Lagrangian method to derive the equations of motion of a simplified 2 DOF model of cable 

shovel. The author used the least square technique to search the dynamic parameters under 

the effects of static and dynamic loadings. The sought-after parameters included the 

coefficients related to hoist and crowd motors, dynamics payload estimation and inertia. 

Raza (2016) and Raza and Frimpong (2017) also used D-H convention and 

Newton-Euler method to study the kinematics and dynamics of a P&H 4100-XPC electric 

rope shovel. The authors investigated the fatigue failures of the dipper using linear elastic 

fracture mechanics. J-integral values of a virtual crack, located in the dipper bottom face, 

were calculated from a finite element software (ANSYS). It allowed estimating the stress 
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intensity factor (SIF), which provided valuable information about the crack propagation 

and service life estimates. The SIF curves were generated using a least square regression 

and a fitting technique and showed a rapid increase as crack size increases. Research 

findings also showed that crack growth rate is high at a certain crack length and for a crack 

length of 75 mm the remaining life is reported 16 days.     

 Kinematics and Dynamics Modeling of Dragline. Section 2.2.1 has shown 

extensive research efforts on the kinematics and dynamics of backhoe, hydraulic 

excavators, and electric rope shovels. However, there is very little research on kinematics 

and dynamics of dragline excavators, which requires research and development. Dragline 

kinematics and dynamics must start with proper assignment of geometrical constraints and 

DOFs to the dragline structural components. These constraints and DOFs must represent 

reasonably as many working limits and mobility functions as possible to capture the 

mechanics of the dragline front-end assembly. The arrangement of the structural 

components of the dragline front-end assembly (boom, ropes, and bucket) have been 

designed and assembled to maximize bucket maneuverability and reachability. The 

arrangement has made the kinematics analysis very complex and reduced the fidelity of 

models reported in the literature due to significant elimination of major mechanical 

components. As will be seen in Section 3, the digging kinematics are only controlled by 

two DOFs, which are ropes velocities. The presence of fewer control input variables than 

DOFs classifies the dragline as an under-actuated mechanical system (Spong, 1998).    

Schwedes and Stoetzel (1948) provided valuable information about the rope shovel 

and dragline power demands in kilowatt-hours per cubic yard according to varied dipper 

and bucket capacities up to 30.5 m³ (40 yd³). Swanson and Meier (1956) reported the 
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effects of rapid load changes on the performance of a Bucyrus B-22 rope mining shovel. 

They experimentally tested an engine and torque converter and found that rapid losses in 

the output power were caused by the engine acceleration and lower torque-converter 

efficiency. Matuszak (1964) emphasized the importance of static control in the draglines 

to achieve desirable torque-speed curves for the swing, hoist and drag motions. The author 

stated that the torque regulated, speed limited controls provide more control and safety in 

high inertia movements. However, the speed regulated, torque limited controls provide full 

use of machine capacity at low speed, and thus, increase the useful motion and the 

excavator productivity. 

Drybrough (1965) explained the benefits of using direct current (DC) drives of 

motor current and generator sets of the hoist motor and compared it to alternative current 

(AC) drives. Morley (1982) investigated the duty cycle of the dragline and has shown that 

it can be represented by four quadrants. If any fault occurs during the hoisting quadrant or 

any other quadrant (motoring, braking, and swing) due to the overload, a high-fault current 

is generated in the DC motors with high armature current and consequently damage the 

armature circuit. These abnormalities affect the productivity of rope shovels and draglines, 

and they were major hurdles that remained unsolved until the development of synchronized 

AC motors with Insulated Gate Bipolar Transistor (IGBT) inverters controls.  

These new technologies are beneficial in many shovels and locomotives (Koellner, 

2006). The application of these technologies in dragline started in 2006 by Siemens Inc., 

and was seen to increase the dragline productivity by 20%, which resulted from reduced 

maintenance and robust control against perturbations (Koellner, 2006). The dynamic 

analysis of the electric drives in a dragline is a very broad topic and requires 
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interdisciplinary collaborative research efforts. However, this research initiative is mainly 

contributing to the dynamics analysis of dragline using the modern theory of dynamics 

(Kane’s method).  

2.3. DYNAMIC LOADS IN DRAGLINE ROPES 

Nikiforuk and Ochitwa (1964) and Nikiforuk and Zoerb (1966) might be the first 

to provide an analytical dynamic model of a dragline. Newton’s Law was used to relate the 

bucket motion to the accelerations of the hoist and drag ropes and their respective hoist and 

drag forces. The simulation was, however, performed for hoist and drag motions 

independently. A great emphasis was given to the electrical characteristics of both hoist 

and drag motors and their respective generators. Jones (1974b) successfully simulated the 

behavior of dragline ropes using a simplified catenary equation that accounts for rope sag.  

The unbalanced inertia in the rigging system and the difference between two points on a 

drag rope allowed the calculation of the drag rope force. The mathematical analysis is very 

basic and did not include information about position, velocity, and acceleration vectors. 

However, the results are fairly acceptable from operational point of view.  

Kemp (1974) developed a computerized system to analyze the dragline 

performance. Several sensors were used to automatically measure the cycle times, delays, 

amperage in the hoist and drag armatures, total power consumption, and bucket loading 

force. McCoy Jr. and Crowgey (1980) patented an anti-tightline control system that 

controls the limits of the hoist and drag ropes to reduce the bucket motion in proximity to 

the machine and to avoid boom collision. A family of curves were proposed based on the 

hoist and drag drive lengths and speeds that identify the static and dynamic limits. The 

static limit is defined by dragline manufacturers as a boundary line beneath the boom where 
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the hoist and drag ropes cannot pass. In other words, it is calculated from the sum of the 

hoist and drag ropes. Whereas the dynamic limit is found based on the velocities of these 

ropes, the key idea of anti-tightline system was based on examining the bucket position in 

5 seconds and 2 seconds before a collision could happen. These findings are doubtful in a 

real world when the inertia in the bucket are high and need further investigations. 

Godfrey and Susanto (1989) also contributed to the automation and control of 

dragline and developed a semi-automatic model of dragline drives motions. Drive 

controllers for hoist and drag systems successfully detected the trajectory of the hoist and 

drag ropes in a 40-second duty cycle. The swing controller design accounted for the 

pendulum effect of the bucket motion relative to the boom. Although the simulation models 

considered this effect, as well as variable inertia, tub inclination, torsional resonance, and 

external loads; the rope catenaries, centrifugal forces and Coriolis effects were dropped 

during the analysis. The kinematics results showed good agreement with physical 

experiments. However, these results cannot be accepted given the stated assumptions. The 

Coriolis force is significant for a large mass (bucket) translating in a local reference frame 

and rotating in an inertial reference frame. Its magnitude is given by equation (2.5). 

𝐹𝐹𝐶𝐶𝑜𝑜𝑟𝑟 =  2 𝑚𝑚𝑏𝑏𝑣𝑣 × 𝜔𝜔                     (2.5) 

 𝑚𝑚𝑏𝑏 is the bucket mass, 𝑣𝑣 its velocity or the velocity of drag rope, and 𝜔𝜔 is the angular 

velocity of machine house. If the mass of a full bucket is 200,000 kg, its linear velocity in 

the drag rope reference frame is 1.75 m/s and machine house angular velocity 9 deg/sec, 

the Coriolis force is 105 KN. The dynamic analysis done by Godfrey and Susanto (1989) 

is questionable and Coriolis forces cannot be ignored in this kind of machinery.  



 

 

40 

 Ridley et al. (2001) developed a scaled-down model of rigging dynamics of a 

dragline bucket to study its static pose. The model with 2 DOFs was tested based on the 

perturbation theory and used velocity inputs of the drag-rope. Several features can be 

obtained from the model, such as hoist and drag rope angles, and tension in the drag rope. 

McInnes (2009) applied the Lagrangian to derive a 4 DOFs dynamic model of a dragline 

front-end assembly with an out-of-digging plane inclination of the bucket. The model 

considered the rotary motion of the dragline without investigating the digging motion. The 

slewing torque of the machine was optimized over a simple cycle during peak duty and 

validated with field data. The fatigue analyses on the boom, based on a FEA, were 

implemented and have shown that stresses are below the threshold fatigue limits. However, 

two serious limitations were found, which are due to a point mass modeling of each of the 

bucket and the boom-point sheave. It is clear that the Lagrangian formulation requires a 

substantial removal of some DOFs of a system to make the EOMs more compact.  

 Frimpong and Demirel (2009) and Demirel and Frimpong (2009) developed an 

advanced kinematic and dynamic model of dragline based on the simultaneous constraint 

method (SCM). The kinematic model used vector loop method and was a benchmark to 

develop the dynamic model using Newton-Euler Formulation. The model accounts for the 

omitted components (boom point sheave and bucket) in the earlier studies and accepts 

velocity inputs of the hoist and drag ropes. A Simulink based ODE solver was used to 

integrate the velocities and accelerations and a Gaussian elimination technique was 

implemented to solve a linear system of equations. The authors successfully calculated 

forces in the hoist and drag ropes, as well as forces at joints and used them to plot stress 

contours. However, their contributions were limited to a planar motion and rigid body 
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kinematics. Since the hoist and drag rope change their lengths during operations, 

corrections to their corresponding masses should be applied to make these findings more 

realistic. In the current endeavor, the rigging system is expanded and is modeled as a two-

link mechanism rigidly connected with the bucket as point mass located at the free end.     

Li and Liu (2013, 2014) provided virtual and analytical models to analyze the 

kinematic and dynamic behavior of two draglines. They used SCM and Newton’s Laws to 

relate the velocities and accelerations of ropes to the bucket position and mass. The 

analytical model did not include the rope-sheave motion, nor the rigging dynamics. The 

authors developed co-simulation in MSC.ADAMS-Simulink-ANSYS to assess the 

functionality of their design and to predict the stress history and fatigue life. The analysis 

revealed that the lowest fatigue life was 3.11 years for the largest stresses at boom structural 

member located at the foot of the boom. The MSC.ADAMS model was superior to the 

Simulink one and the erroneous results in the Simulink are attributable to the elimination 

of two major components (sheave and rigging system).  

Research findings show that the boom point force reached a maximum of -5,000 

KN (Li and Liu, 2013) at the onset of 15 seconds of cycle time and -1,200 KN at time 40 

seconds for the CAT 8750 dragline. It also reported -110 KN and -135 KN at 15 seconds 

and 40 seconds, respectively, for the Marion 7620 model (Frimpong and Demirel, 2009). 

The maximum allowable load of Marion dragline is 99,400 kg (175,000 lbs) (Demirel, 

2007), which is equivalent to 99,400 kg* 9.81 m/s² = 974.78 KN. These results are very 

limited in terms of operational capacity defined in the manufacturer’s catalogue. However, 

very limited information about CAT dragline did not allow conducting a fair comparison. 

It is important to consider the bucket weight, its payload, the variable weight of the ropes 
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in dynamics analysis to improve the accuracy of results and avoid unnecessary increase in 

safety factor during design. 

 Hoist Rope - Sheave Interactions. Dragline productivity and performance 

are a function of its components that continuously operate under heavy duty cycles. Hoist, 

drag, and dump wire ropes, hoist and drag chains, and boom point and fairlead sheaves 

control the bucket for executing its functions within the normal duty cycle. Figure 2.3 

shows the arrangement of ropes and chains that are used to properly control the dragline 

bucket for loading. A particular concern that hinders the productivity of a dragline is mainly 

attributed to its unplanned downtime.  

 
 
 

Figure 2.3. Komatsu 9020 dragline: (a) physical model, (b) 2D sketch and physical model 
of ropes (Bridon, 2017), and (c) rigging system 

(a) 
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Figure 2.3. Komatsu 9020 dragline: (a) physical model, (b) 2D sketch and physical model 
of ropes (Bridon, 2017), and (c) rigging system (Cont.) 
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Ropes and sheaves operate in a direct contact with other parts and the surrounding 

environment. Thus, wear, tear, and fatigue are more likely to start and develop over time 

and can cause a complete shutdown of the strip mining process. As a matter of fact, the 

analyses conducted on the rope-sheave and rope-formation contacts in draglines are rarely 

given a considerable attention and requires research attention. The hoist rope is used to lift 

the bucket and payloads off the bank and surmount changes of suspended loads, bending 

over points-sheave and frictions in its grooves.  

Boomsliter and Morgantown (1927) gave an excellent discussion about the effects 

of the accelerations of mine hoisting systems on loading induced in ropes during service. 

The authors considered the elasticity of ropes in their analysis of the mine shaft hoisting 

mechanism that carries loaded skip. They noticed that excessive stresses in the rope could 

be dropped by the proper selection of wire rope, which could result in a reduction of safety 

factor by half. Haas (1951) illustrated the designs and features of wire ropes that were 

mainly used for mining applications at that time. According to the author, the construction 

of the 6 × 41 Filler wire was used on large draglines and shovels and made up of 16 outers, 

8 small fillers, 8 inners, and a single core wire, as seen in Figure 2.4. 

The 16 outers in each strand are of large diameter comparing to the inners, which 

imply that this construction is confined to large diameter sheaves. This design provides a 

good flexibility (Haas, 1951) and is not as durable as the current ropes used in the mining 

industry (Bridon, 2017). The Bridon model is more compact and has excellent wear 

resistance and higher breaking forces (Bridon, 2017). It is also recommended for draglines 

that are typically equipped with larger boom point sheaves.  
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Figure 2.4. 6x41 Filler hoist rope used in dragline (Modified after Haas, 1951) 

 
 
 
Heller (1970) studied the static and dynamic contacts of a rope-sheave system under 

the effects of uniform pressure and angular velocity of sheave (𝜔𝜔). The analytical model 

differs from the Capstan equation, 𝑇𝑇 = 𝑇𝑇0𝑒𝑒𝜇𝜇𝜇𝜇 , and it also accounts for the effects of rope 

weight on the rope tension, (𝑇𝑇) and its contact pressure with sheave (𝑃𝑃). Information about 

the role of every parameter on the tension were furnished in the model and are included in 

equation (2.6) for an angle of contact that varies between 0 and 180°.   

    𝑇𝑇
𝑇𝑇0

= 𝑀𝑀𝑖𝑖𝑖𝑖[1 −   𝑀𝑀𝑎𝑎𝑎𝑎
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𝑀𝑀𝑎𝑎𝑎𝑎,𝑀𝑀𝑖𝑖𝑖𝑖,𝑀𝑀𝑟𝑟𝑟𝑟,𝑁𝑁𝑎𝑎𝑎𝑎,𝑁𝑁𝑖𝑖𝑖𝑖,𝑁𝑁𝑟𝑟𝑟𝑟  are multipliers for the effects of initial tension, angular 

velocity, rope weight on rope tensions and contact pressure, respectively. D, d, and 𝜌𝜌 are 

the diameters of sheave and rope and material density of wire rope. The author claimed 

  (2.6) 
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that the effects of rope weight and angular velocity are negligible and can be eliminated 

from equation (2.6). Thus, a simplified form of tension and contact pressure are given in 

equation (2.7).   

𝑇𝑇 = 𝑇𝑇0 𝑒𝑒−𝜇𝜇(∅−∅1)[𝜇𝜇
𝛼𝛼

sinh𝛼𝛼 (∅ − ∅1) + cosh𝛼𝛼  (∅ − ∅1)]    

𝑃𝑃. 𝑑𝑑𝐷𝐷
2𝑇𝑇0

= 2 𝜇𝜇
𝛼𝛼

 𝑒𝑒−𝜇𝜇(∅−∅1)sinh𝛼𝛼 (∅ − ∅1)                                            

∅ − ∅1 refers to the angle of contact, 𝛼𝛼 = �𝛽𝛽2 + 𝐷𝐷
𝑑𝑑

 ,𝛽𝛽 = �𝐷𝐷
𝑑𝑑

+ 1� /2𝑓𝑓; and f is the 

coefficient of frictions between rope and sheave. It can be seen that the contact pressure 

adds an additional force to the tension, at the rope end, due to the friction phenomena. Both 

the contact pressure and tension are maximum at the point the rope departs the sheave. 

Alzheimer et al. (1981) found that the maximum stresses due to bending over 

sheave double occur when the ratio �𝐷𝐷
𝑑𝑑
� is reduced by one half because of the added axial 

linear tension. Depending on the location of wire rope in the sheave groove, every wire 

strand experiences different tension against the groove, while its twist keeps it tight to the 

wire rope core. Relative motions between wires in a strand and the motion of strands 

relative to the core impose a significant friction and cause non-localized deformations. As 

a result, the damage due to deformation increases over time and some wires break, which 

reduce the load carrying capacity. Nabijou and Hobbs (1995a) evaluated the frictional 

performance of heavily loaded ropes and found that the coefficient of friction increases 

with increasing sheave size. Their research also showed that the type of rope core does not 

affect the sheave friction coefficient. Nabijou and Hobbs (1995b) analyzed the relative 

motions and slip between wires of strands and their cores in ropes bent over sheave. They 

  (2.7) 
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concluded that the positions of maximum movements of wires are similar to those of failed 

wires under the experimentation due to high loading. 

 Schönherr (2005) examined the influence of fleet angle for different construction 

of ropes and found that for a fleet angle 𝜑𝜑 = 4°, the loss of endurance varies between 16% 

and 48%. The author also claimed that the loss of endurance for four rope constructions 

occurs when the ratio �𝐷𝐷
𝑑𝑑
� is reduced and fleet angle increases above 4°. Imanishi et al. 

(2009) simulated the dynamic contact of rope-winch coupled to a hydraulic system in a 

tower crane. The dynamic contact was modeled using truss elements of variable length. 

Their research finding showed that using a hydraulically operated winch-rope system 

prevented disordered winding.  

 Kuczera (2012) developed an analytical model to calculate the forces induced in a 

rope running over a sheave. The dynamic model takes into account the inertia effects of 

rope, its linear speed and the line of contact pressure with sheave. The results of 

MSC.ADAMS simulations showed that the contact forces are linearly proportional to the 

rope acceleration. These forces are higher if the rope enters the sheave at fleet angle higher 

than 60°. Wang et al. (2013) proposed a time varying length of a hoist rope model to 

improve the dynamics of winding of rope over a hoisting drum. The MSC.ADAMS model 

uses angle sensors to capture the friction forces, as the rope is paid out, using the Hertzian 

contact theory. The sensor is a function that measures the rotation between the COM of the 

drum and COM of discretized element of the rope within a global reference frame.  

The model is depicted in Figure 2.5 and is verified in a numerical simulation 

experiment using Lagrangian formulation of the hoisting mechanism. Although the virtual 
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model is computationally efficient and advanced in comparison to the MSC.ADAMS 

library, the contact model is very basic and based on Coulomb friction. 

 
 
 

     
Figure 2.5. Rope-drum contact (a) Mapping process, (b) decomposition process (Wang et 

al., 2013) 

  
 
 
Shi et al. (2017) developed a (6 × 1) 3D simplified wire rope model to study the 

rope-sheave interaction. The analytical model uses a V-shape groove and Euler-Eytelwein 

formula of traction. The simulation results support the claim that the wire core endures 

tension while the helical wires undergo the effects of friction and pressure. The traction 

conditions are improved when the angle of grooves is increased and contact pressure get 

reduced as well. Leonard et al. (2009) designed and tested a scaled-down model of a 

dragline that uses two hoist sheaves mounted at the boom end. Two hoist ropes are used to 

maneuver the bucket, which eliminated the need to have the conventional rigging system. 

The goal was to automate the digging process and reduce the variability of human error.   

 Drag Rope-Formation Interactions. The dragline digging process is driven 

by a drag rope, a structural element which is connected to the drag chains and dump rope 

and reels in/out on fairlead sheaves located near the operator cabin, as seen in Figure 2.3. 

(a) (b) 
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The drag rope construction is not different from that for the hoist ropes. However, a drag 

rope should be designed and engineered to reduce the damage due to wear and abrasive 

contact with the overburden. The subject of study on bucket-formation interaction remains 

an active area of research for different kinds of machines (shovels, dragline, backhoes, and 

wheel loaders). Although research on dragline dynamics has been given fair attention, very 

little has been done about rope-formation interaction (Alzheimer et al., 1981; Dayawansa 

et al., 2005; Dayawansa et al. 2008). These research studies show that the drag ropes are 

prone to damage from abrasive wear more than bending fatigue over fairlead sheaves. 

 Zelenin (1968) investigated the issues of cutting soils and resistance to cutting 

under various conditions for different cutting tools. The results showed that resistance to 

cutting depends on the category of soil, the degree of its saturation and the shape of cutting 

(Петерс, 1955).  

𝑃𝑃 = 𝑛𝑛.𝐶𝐶.ℎ𝑥𝑥 = 𝐴𝐴.ℎ𝑥𝑥                      (2.8) 

P is the cutting force at the given cutting width in kg; h refers to the depth of cut (cm); x is 

an indicator of degree at h (x = 1.35); n is a numerical coefficient depending on the cutting 

width; C is the number of strokes of Densitometer; A is a coefficient depending on the 

cutting width and the number of strikes by the densitometer (e.g., 12 DorNII rammer). An 

improved form of the digging force takes into account the tooth angle of the bucket is given 

by equation (2.9) (Zelenin et al., 1975 and Kudryavtsev, 2017). 

𝑃𝑃 = 10.𝐶𝐶. (ℎ)1.35. (1 + 2.6 𝑙𝑙). (1 + 0.0075 𝛼𝛼). 𝑧𝑧       (2.9) 

𝑙𝑙: refers to the bucket width (m); h is the depth of cut (m); h is a function of bucket angular 

displacement in the hydraulic excavators, and bucket linear displacement in the draglines; 
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z is a factor that considers the teeth of side bars. The effect of inertia of falling 

materials, 𝑔𝑔(𝑚𝑚. 𝑠𝑠−2).𝑉𝑉(𝑚𝑚3). 𝛾𝛾 �𝑘𝑘𝜌𝜌
𝑛𝑛3� . 𝑡𝑡𝑔𝑔(∅), in the bucket is eliminated from equation 

(2.9) since the boiling effect of soil happens at low constant speed. Konakov and Eliseev 

(1974) formulated a criterion to improve the diggability of dragline bucket and included 

variables for the effect of loaded materials, length of digging, and duration. The equation 

of motion of the drag system was derived and used to find the line of action of drag rope.   

Stilwell et al. (1979) showed the effect of location of attachment points of drag 

chains on the digging energy of a dragline bucket. The authors noticed that the line of 

action of drag rope depends significantly on locations of the drag hatches (Figure 2.3, c) 

and on the frictions between the bucket and soil. The presence of friction shifts this line 

from the center of gravity (C.G) of the bucket to pass through a point located directly 

beneath it at ground zero level, as seen in Figure 2.6.  

 
 
 

Figure 2.6. Optimum line of action of a drag rope force (Stilwell et al., 1979) 
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In fact, the wear plates and chains add extra weight to the bucket, which improves 

its digging efficiency. Their weights, however, constitute about 8% of the dragline payload, 

which can compromise the productivity. Morgenstern et al. (1980) fabricated load sensors 

(links) and connected them to drag ropes in a Bucyrus dragline to capture its dynamic loads. 

To receive data from the sensor, they used radio telemetry (low radio frequency waves), a 

well-established, reliable technique at that time. The authors found that dynamic loads are 

more severe in drag ropes than those in hoist ropes and static analysis does not capture their 

degree of damage.        

 
 

 
Figure 2.7. Hoist rope tension as function of bucket position (Morgenstern et al., 1980) 

 
 

Static analysis (Morgenstern et al., 1980) was used to estimate the load 

magnification factor (the ratio of the hoist rope tension to bucket weight) for different 
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values of hoist and drag rope angles, as shown in Figure 2.7. This analytical model is not 

reliable since it ignores inertia effects and rope weights. Hamm (1983) and Golosinski 

(1995) claimed that retired hoist ropes can be used as drag ropes since its retirement criteria 

are more stringent. Such scenarios require the analysist to consider drag ropes as pre-

deformed structures and would make the dynamics analyses very challenging. 

Rowlands (1991) designed and tested three scaled down models of dragline buckets 

to identify the factors with maximum impact on bucket filling. His experiments showed a 

great role of bucket geometry and the material type on the specific digging energy. Aspinall 

(1992) emphasized the effect of rope selection and weights on the bucket payload and 

productivity. Haneman et al. (1992) evaluated the performance of dragline buckets using 

small and large scale physical testing. Two hundred experiments were performed on the 

physical models to estimate the drag force, payload, fill distance, drag peak load, and 

specific digging energy (SDE). The authors found that the filling behaviors of both buckets 

are similar to the field data. They also found that drag force at stall was not achieved due 

to the use of powerful motors, and the SDE of large scale model is less than of a small one 

due to higher filling efficiency. The large scaled model was successfully verified to 

potentially increase the productivity by comparing its payload with the field data.    

Mclure (1995) also examined the effects of the bucket trunnions and drag and hoist 

chains lengths on drag rope-ground interaction and on the digging performance. Rowlands 

(1991) performed experiments that showed that a proper location of the trunnion provides 

optimum digging where the bucket teeth do not skate over material, nor penetrate it too 

much and tip the bucket forwards. Mclure (1995) proposed that increasing the length of 

drag chain reduces drag rope contact with ground. This practice adds more dead loads, due 
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to longer chains, which move the bucket’s CG further to the bucket tip and requires 

additional dragging distance. It also reduces the carry angle and the filled materials may 

fall, which results in less carried payloads. Moreover, having longer drag chain imposes an 

additional operating constraint on the operator to increase dragging distance and to keep a 

dynamically balanced C.G. of the bucket. Thus, this practice is not recommended as the 

digging cycle may add two to five seconds, which is disadvantageous to productivity.  

Esterhuyse (1997) built and tested a scaled down dragline to study the influence of 

bucket geometry on its filling performance. Experimental tests revealed that the filling 

speed of different bucket geometries is the same, when hitch height is fixed, and it is a 

function of (i) relative position of the teeth, (ii) center of gravity, and (iii) hitch height. Also 

increasing the hitch height and lowering it increased the drag force, but led to additional 

wear in the drag rope and drag chains. However, no meaningful conclusions were drawn 

from the influence of drag angle on the drag force. This limitation is due to the fact that the 

experimentations were done at a drag angle equivalent to the angle of an inclined, flat 

digging surface. Schmidt et al. (1998) and Bray (1999) patented rear-dump dragline bucket 

designs with conventional hoist-trunnion and a tagline instead of a dump rope of adjustable 

length. These features maximized the dumping radius due to dumping from bucket rear-

end, shortened cycle time due to quickly lifting the bucket off the bank, and provided varied 

carrying attitude of bucket due to varied length of gate-arm chains and tagline.      

Crous (2000) used the Newton-Euler method to develop a general framework of 

the multibody dynamics of a dragline. An experimental model of a rope-pulley was 

established to model the contact between the dump block and dump rope using simple 

pulley-chain system. The numerical solution for this subsystem was successful and agreed 
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with experimental results. However, the entire dragline system was not successfully tested 

due to many constraints in the multibody dynamics approach and the lack of computational 

resources (Crous, 2000). Townson et al. (2003) formulated a mathematical model, based 

on Weibull distribution, to estimate the effect of dragline load on its availability, output 

yield, and maintenance. The mathematical model used some field data gathered from 

different maintenance databases. The lack of data from different draglines did not permit a 

proper validation of the Weibull model. Coetzee et al. (2009) built a scaled model of 

dragline bucket and simulated the motion of its filling using Discrete Element Method 

(DEM). The models have two drag ropes and no hoist ropes were considered in this study. 

The analytical model, with the aid of a particle flow code (PFC), was verified using 

experimental setup but it was incapable of producing the same drag forces.  

 
 
 

Figure 2.8. MSC.ADAMS-EDEM Co-simulation of a dragline bucket (Curry and Deng, 
2017) 



 

 

55 

Curry and Deng (2017) studied the distribution of loads in a dragline bucket during 

digging based on efficient MSC.ADAMS-EDEM Co-simulation as shown in Figure 2.8. 

The coupling allowed real assessment of loads imposed on a 45-ton dragline bucket, 

reduced the bucket mass, and provided a productivity gain of 2%. The drag rope forces and 

bucket payload were accurately estimated in real-time. The coupling results were used to 

optimize equipment design by replacing physical testing and reducing cycle time. 

2.4. STRUCTURAL INTEGRITY OF FRONT-END ASSEMBLY  

Wheeler (1974, 1976) developed the finite element (FE) software to resolve the 

structural problem in Bucyrus dragline booms. The author also used NASTRAN to develop 

a new dragline with longer boom. Manser and Clark (1980) measured the loads on the 

hoist, drag, and suspension ropes using strain gauges and shear bridges. They reported the 

disadvantages and uncertainties of using electric motors characteristics (i.e., armature 

current, armature voltage, and armature speed or field excitation voltage) to estimate rope 

loads. These disadvantages include (i) friction losses in electric drives, (ii) reduced 

efficiency of electric motors, (iii) nonlinear relationship of armature current-torque; (iv) 

damping of dynamic effects, and (v) very high torque of motor shaft.  

Test results on drag rope loads were more accurate using shear bridge gauges 

mounted at fairlead sheave than those based on motor armature current estimation, as 

shown in Figure 2.9. For the hoist rope load, the dragline bucket and rigging weights were 

taken and the armature current of hoist drive was recorded during bucket hoisting at 

constant speed where the drag rope was in a horizontal position. This procedure was 

repeated for different bucket fills until a correlation was established between the armature 
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current and load. Unfortunately, there is no information to show these variations but a more 

appropriate procedure was described in the work by Slob (2007).   

 
 
      

 
Figure 2.9. Drag rope load measurements for horizontal drags (Manser and Clark, 1980) 

 
 
 
Lovass (1982) mentioned that FEA was performed on a Bucyrus dragline in the 

early 1970s and NASTRAN, developed by NASA, was the software environment for the 

analysis. The revolving frame and boom structure were successfully modeled and a set of 

design loads that included inertia effects were developed for the boom and bucket during 

digging. The results included a representation of maximum and minimum stresses in every 

member and buckling effect checks. Ehret and Hasse (1992) reported great benefits from 

using finite element method (FEM) for modeling and analyzing the stresses in a rotating 

frame, tub, and roller circle of an 8750 Marion dragline. The results showed that cracking 

developed in the weld joints around mouseholes, buckling of the floor and distortion of the 
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roller support pad. These results led engineers to modify their designs and rectify some 

structural components that resulted in a 70% reduction in their stresses.   

Gurgenci et al. (2000) introduced the concept of damage point and duty meters to 

optimize dragline operations under conflicting concerns of productivity and availability. 

Field tests on a dragline operated by three different operators have shown that the damage 

in the machine is mainly due to differences in their operational behaviors. Monitoring the 

stress cycles, at specific joint, has also shown that filling-dumping cycle of a skilled 

operator is faster than other operators. This observation led to a conclusion that overloading 

the machine to increase productivity can be done with extensive maintenance efforts based 

on the severity of damage. Guan et al. (2001) experimentally and numerically tested the 

dynamic response of a dragline boom-mast using three different excitations for fatigue life 

predictions. An FE model was used to calculate the first ten modes of the DRE23 dragline. 

The authors instrumented the dragline front-end assembly with 16 accelerometers located 

at highest master nodes (DOFs) to assess the first 10 FE modes using the modal assurance 

criteria (MAC). Their results, however, did not yield an appropriate pairing between the 

FE modes and those obtained from the experiments except for the first FE mode.        

Fry (2003) discussed structural failures of draglines and listed different failure 

patterns associated with different components. Several failures are weld-related and others 

are due to either running the machine beyond its capacity or under repeated cycles within 

its static limits. He investigated a boom collapse that occurred as a result of doubling the 

buckling effects when a lacing member broke. The breakage of the member was due to a 

fatigue crack initiation. Improper maintenance failed to address the issue. Thorough 

material testing and engineering analysis revealed that no defects were present in the boom, 
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and extensive structural analysis was necessary before restoring the machine to normal 

operations.  

Eggers (2007) applied a computed order tracking method to detect the faults in the 

drag gear of a Dresser 8200 Marion dragline. An accelerometer was used to measure the 

vibration and frequency levels and two proximity sensors were used to determine the pinion 

speed and its rotational directions. The author noticed fatigue cracks opening due to the 

outward motion of the bucket and this failure was a result of gear misalignment.  

Pang et al. (2009) and Pang and Zhao (2009) used FEA to determine the stress 

intensity factor (SIF) in welded joints of a tubular boom of a dragline. Experimental testing 

was also done to measure the hot stress spots on 4 full size specimens loaded once at the 

main chord and then at two bracing members. The values of SIF were found using FEA in 

a close agreement with those in the experimental analysis and their ratio within [0.94- 

1.062]. Mashiri et al. (2011) also used the hot stress spots concept to investigate the fatigue 

in the tubular boom structure of a dragline. The results of their work showed that hot stress 

spots are more intense in the welds of the lacing members than those in the chords. These 

results are in agreement with other research findings by Joshi et al. (2009).   

 Finite Element Analysis of Ropes. Although wire rope efficiently transmits  

axial loads, its complex construction makes it very difficult to perform multibody dynamics 

analysis. In many cases, a common approach to study the dynamics of ropes is to discretize 

them to a finite number of segments allowing some degrees of flexibility. Alzheimer et al. 

(1981) used the FEM package (ADINA) to analyze the loads on a dragline drag rope since 

the experimental setup using a load sensor (Morgenstern et al., 1980) did not yield accurate 

results. The FEM simulations were run on a 35 elements of truss model and resulted in a 
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maximum tension in the rope of 3,113.7 KN (700,000 lbs) at a drag distance of 33.53 m 

(110 feet). Cutchins et al. (1987) examined the damping characteristics of wire ropes used 

as vibration isolators. A model of wire rope with seven strand and one core was modelled 

using NASTRAN and the assumed modes method was implemented to account for the 

deformation in the rope. Loading results showed that strands tend to separate due to 

negative Coulomb friction. 

 Jiang et al. (1999) used a commercial finite element package (ANSYS) to model 

the torsional behavior and contact friction in a 7 strand wire rope loaded axially. The 

simplified model indicated a nonlinearity of stress at contact points between strands. 

Kamman and Huston (2001) used finite segment approach to develop a multibody 

dynamics model of a variable length cable system. The model mimics a wire rope partially 

submerged in water and rope links are connected via spherical joints. One important aspect 

of their model is the ability to effectively reel in and out on a sheave during the motion of 

the ship. Moreover, the links masses are lumped at joints, which eliminated the inertia 

effects of rope segments, increased the number of elements, and increased the 

computational efficiency. Kyle and Costello (2006) developed a dynamic model of a rope 

with 20 lumped masses located at joints and connected by springs and dampers. The model 

is based on Newton’s second law and includes the effects of viscos stiffing and viscos 

damping for each element. Research findings have shown that increasing the number of 

rope elements resulted in a good agreement between measured and simulated pitch angles 

of the bucket. 

 Kuczera (2012) calculated the deformations and stresses in a large diameter sheave 

using FEM and a dynamic model of rope-sheave developed in MSC.ADAMS. Ropes are 
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represented as rigid multi-bars and run over sheave. The simulation results of the 

MSC.ADAMS model made it possible to capture the dynamic contact and maximum forces 

in the sheave. The results also showed that the spokes in the sheave were more likely to 

deform under alternating tensile loads. The results also indicated that the maximum stresses 

exist at the points of attachment of spokes to the sheave. Shi et al. (2017) created a 3-D FE 

model of a wire rope with a 6 + 1 construction to analyze its interaction and bending effects 

over sheave. A contact model based on friction Coulomb was used in a commercial FE 

software (ABAQUS). The research results indicated that von Mises stress contours depict 

the real behavior of strands under different tension loads. The authors observed that the 

contact pressure is higher for a sheave groove angle of 30° than that for a larger angle (40°). 

 Wokem et al. (2018) studied the bent over sheave for two wire rope constructions 

(7 wire strand and 19 wire strand) under the effects of cyclic tension. The authors noticed 

that the SIF reduces when higher forces are applied at the strand end and is independent of 

sheave groove radius. Their research suggested that increasing the number of wires in a 

rope from 7 to 19 did not establish a correlation between SIF and applied load.    

 Fatigue Analysis of Ropes. A skilled dragline operator must maneuver and 

 position the bucket into the bank in a way that improves its diggability and filling 

efficiency, reduces the loads on drag and hoist motors, and minimizes drag ropes contact 

with the ground. Although these measures improve the machine availability and 

productivity, dragline overall performance is controlled by implementing rigorous 

maintenance practices. Other maintenance factors are reduced probabilities of failure 

occurrences. For example, the probability of a rope failure is higher than other components 

and should be concurrently replaced within periods of planned maintenance. Since there 
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are no criteria replacing dragline ropes, a good engineering judgement and proper periodic 

inspections play a key role in this process. Many practices set a replacement time while a 

rope still retain some of its useful life.               

Anderson and Brady (1980) investigated the downtime of 17 pieces of draglines 

and found that the average downtime from rope-related failures constitutes 105.6 hours per 

year for a 46 m³ (60 yd³) dragline operating 6,650 hours of availability per year. If this 

dragline moves 1.4 × 109 m³ (1.8 × 109yd³), a production loss from this failure is 

estimated to be 19 × 106 m³ (25 × 106yd³). The authors found that the average life of 

hoist rope is twice that of one drag rope. Morgenstern et al. (1980) have tested several wire 

ropes using bending-over-sheave machine to estimate the fatigue when its strength 

approached 50% of the breaking strength. Golosinski (1993) mentioned that the 

performance of hoist and drag ropes varies based on their constructions, operating 

conditions, and maintenance practices. The author criticized the replacement criterion of 

drag ropes, which is based on the worn-out by one-third of rope diameter. Other discard 

criteria were also used by industry depend on the number of broken wires in a rope, wear 

of the external wires, and deformation in the rope. According to his study, the wear limits 

should be based on permissible loss of rope strength.   

Golosinski (1995) showed the wear factor in hoist and drag ropes and found that 

hoist ropes outperformed drag ropes. According to the author, surveys revealed that 

average service life of hoist ropes is 99,000 operating cycles and 55,000 operating cycles 

for the drag ropes. His assessment of wire rope performance was based on three indicators: 

(i) work cycle count, (ii) rope wear factor, and (iii) unit work factor. These indicators are 

of particular importance since they are correlated with the dragline productivity, safety, 
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cycle time, and rope characteristics (length, unit mass, number of ropes). To complement 

his analysis, it is fundamental to calculate the transient loads in ropes, define zones of hot 

stresses, and estimate SIF. These procedures enhance rope replacement practices and 

reduce the capital cost associated with unnecessary early replacements.  

Dayawansa et al. (2006) showed that the average service life is 32 weeks for hoist 

ropes, 10 weeks for drag ropes and 2 weeks for dump ropes. The authors reported that the 

cost of maintenance of wire ropes accounts (15%) of the dragline total maintenance costs 

and is estimated at $300,000 per annum per machine. The research on fatigue failures and 

expected service lives of large diameter ropes (e.g., 85, 114, 130 mm) is limited (Hanzawa, 

et al., 1981; Wolf, 1987; Marsh, 1988; Feyrer, 2007; Wokem, 2015). Maintenance practices 

show that the replacement of hoist and drag ropes is done every 16 weeks and 10 weeks, 

respectively (Alzheimer et al., 1981). Dayawansa et al. (2008) detailed several maintenance 

practices that increase service life of ropes. These practices include: (i) maintaining the 

ratio of sheave groove radius to hoist rope radius as equal to or greater than 1.08, (ii) drag 

rope area loss due to wear and breaking of wires exceeding 20%, (iii) accommodating 

larger sheaves and hence larger diameters of ropes, and (iv) improving maintenance 

practices and understanding rope subsystems carefully. 

Wokem (2018) conducted several FE analyses to estimate fatigue life of ropes used 

in an electric rope shovel. He calculated the SIF and then established a fatigue life 

estimation based on the reduced endurance limit of a single wire in the rope. This concept 

considers that the endurance of a structural component is subject to several factors (i.e., 

surface finish, notch in the wire, tensile strength). The author used the Stress-Number of 

cycle (S-N) curve and the reduced endurance limit of a wire to deduce the fatigue life of 
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rope at any level of stress (Thorpe et al., 1985). Figure 2.10 presents the estimated time to 

first wire failure for a given stress. It can be seen that the diggability of materials affects 

the stresses and the time to the first failure. It should be noted that this estimation takes into 

account the availability and utilization of the electric rope shovel.  

 
 
 

 
Figure 2.10. Performance of a 6 × 36 wire rope in 4100 rope shovel (Wokem et al., 

2018) 

 
 
 

2.5. RATIONAL FOR PHD RESEARCH 

The dragline machinery is used to efficiently excavate and remove overburden and 

to reduce manpower. Their design and functionality remain unchanged despite the 

technological advancements. These machines have received major improvements in terms 

of size and loading capabilities. They are designed and tested under the effect of static 

loading. However, their performance are not properly tested under dynamic loading 
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scenarios. The literature contains few studies that did not consider the dynamics of the 

front-end assembly in details. To the author’s knowledge, all the models have major 

limitations due to the elimination of important structural components from the front-end 

assembly. To date, there is no computational dynamic model of the dragline front-end 

assembly that contains all structural components.  

The kinematic and dynamic of the front-end assembly in a dragline machinery is 

one of the most challenging research areas in heavy mining machinery. The multi-link 

structures make it difficult in developing accurate kinematic and dynamic equations.  In 

addition, the dragline uses only two degrees of freedom during the digging phase and three 

degrees of freedom in the remaining duty cycle components. There is no model in the 

literature that can handle digging and swinging simultaneously, which contains all 

components of the front-end assembly. McInnes (2009) developed a dynamics model that 

has more degrees of freedom than that in a real dragline. This consideration would result 

in unnecessary computations and the model cannot be reliably applied to a real dragline.             

The current available dynamic models that describe the behavior of the dragline 

front-end assembly have limited structural systems and cannot accurately predict the forces 

in the hoist and drag ropes and the swinging torque. Demirel and Frimpong (2009) 

developed an advanced model that accounts for the digging phase and contains a good 

representation of the missing structures of the front-end assembly. However, their model 

is limited to a planar motion and only valid for digging. McInnes (2009) developed a good 

model for the bucket swinging motion and ignored the digging phase. Many dragline 

dynamic models have been developed with no boom-point sheave, rigging system, and 

machine housing (Nikiforuk and Ochitwa, 1964; Nikiforuk and Zoerb, 1966; Jones, 1974a; 



 

 

65 

Kemp, 1974; McCoy, Jr. and Crowgey, 1980; Godfrey and Susanto, 1989; Shannon, 1990; 

and Roberts et al., 1999; McInnes, 2009; Li and Liu, 2013).  

This research study accounts for the major components that were eliminated from 

previous research studies, such as the boom-point sheave, bucket rigging, and frictional 

contact with the ground, as well as the accurate prediction of the cutting resistance force. 

It describes the digging phase using two input variables and the swinging phase using 3 

input variables. The dynamic model also contains all structural components of the dragline 

front-end assembly, and their material and inertia properties not included in previous 

research studies. The model is built using the new theory of multibody dynamics derived 

from the Kane’s method. This model results in an advanced dynamic model that eliminates 

the need to solve unnecessary forces and torques, but increases its accuracy to achieve 

better load predictions. The dynamic model of the dragline is fully capable of producing 

accurate numerical results of the spatial kinematics and dynamics. The resulting loads can 

be used with higher confidence to predict stress concentrations in complex construction of 

wire ropes running on sheaves under static and dynamic loads.  

This research study builds on the current body of knowledge and advances the area 

of modelling and analysis of dragline. This research initiative is a pioneering effort to solve 

the problems associated with the kinematics and dynamics of dragline ropes and rigging 

using the advanced theory of dynamics derived from Kane’s method. It entails new 

concepts and original contributions in the area dragline front-end modelling and analyses. 

This work resolves the pitfalls of previous models in the literature and provides advanced 

solutions that address structural safety of dragline wire ropes on a long-term basis. This 

study also advances a rigorous virtual prototype modelling of the dragline and serves as a 
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good starting point to evaluate the functionality of other machines (rope shovels, backhoe, 

cranes, and wire-driven robots).          

2.6. SUMMARY 

The critical literature review covers the current body of knowledge on dragline 

front-end assembly kinematics and dynamics and the evolution of equipment design and 

productivity since the early 1920s. A critical assessment is provided to understand this 

body of knowledge and to highlight the contributions by researchers in the area of dragline 

machinery. This literature survey defines new frontiers in this research area. Most of the 

work cited pertain to the dragline availability, performance, utilization, and productivity. 

Other indicators were also thoroughly addressed and include: (i) kinematics and dynamics 

of excavators (backhoe, rope shovel, and dragline), (ii) finite element analysis (FEA) of 

structural components (boom, sheave, rope), and (iii) fatigue analysis of these structures. 

A walking dragline is an expensive mining machine and a vital equipment used for 

stripping overburden in surface mining operations. The effectiveness of this machine 

requires rigorous kinematics and dynamics analyses to keep it operating at the highest 

availability and productivity levels. These analyses also provide a real engineering 

judgement about the functionality of machine components under variable working 

conditions. This section provided a review of these measures and underscored the effects 

of wire ropes failure on machine performance.  

This PhD research study advances the frontiers of dragline kinematics and 

dynamics modeling with stress intensity and fatigue analysis for providing new knowledge 

and a basis for maximizing efficiency, availability, reliability and maintainability of the 

front-end assembly.  
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3. COMPUTATIONAL DYNAMICS MODEL OF A DRAGLINE FRONT-END 
ASSEMBLY 

 

This section deals with the kinematics and dynamics models of a dragline for strip 

mining operations. Figure 3.1 shows the main research components, which are mainly 

related to the dragline front-end assembly. The models describe the motions and constraints 

imposed on the front-end assembly, as well as forces and torques required to perform the 

digging task and overburden spoiling. Once the dynamic model is formulated, the resulting 

forces and torques can then be used to simulate real scenarios using a virtual simulator.  

  
 
 

 
Figure 3.1. PhD research components and flow processes 

 
 
 

The virtual simulator contains all the relevant structural components (bucket, 

chains, ropes, boom, and machine house) that are used to develop the stress fields on any 
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critical component and estimate its performance. The longevity of the machine parts is 

estimated from the number of cycles that any structural member can sustain under repeated 

dynamics loading until failure occurs.  The configuration of the dragline vector loop is the 

most comprehensive one among current models reported in the literature on the dragline 

machinery. A good understanding of the functionality of each component significantly 

helps in formulating the kinematics relationships among these components in the inertial 

reference frame and in a Newtonian reference frame. These analyses form the basis for 

developing equations of motion of the system under a task of digging in the x-z plane and 

swinging in the x-y plane (Figure 3.2). 

3.1. GEOMETRIC DESCRIPTION OF DRAGLINE MACHINERY  

 Draglines are massive equipment and vary in size and material excavation 

capabilities. A dragline equipment contains essential structures to excavate and spoil 

materials for exposing mineral formations. These structures are mainly the machine house, 

boom structure, hoist sheave and drag fairlead sheaves, bucket, chains and ropes. An 

assembly of the boom structure, boom point-sheave, hoist, drag and dump ropes and bucket 

is called the front-end assembly (Figures 2.1 and 3.2). This combination is a complex 

design built to control the bucket using hoist and drag ropes only in a 3D operational space. 

This research contributes to the kinematics and dynamics analysis of this assembly and 

does not include motions such as propelling of the machine. However, the dragging and 

swinging motions are developed, which are a major significance of this research in 

comparison to existing dragline models. The dragline cycle comprises: (i) swinging-back 

of the machine house with an empty-bucket, (ii) digging by engaging the materials and 

dragging the bucket into the bank towards the machine, (iii) simultaneous hoisting and 
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swinging of loaded bucket towards spoiling area, (iv) overburden dumping in the spoil 

area, and (v) rope reeling-out and swinging simultaneously to reposition the empty bucket 

in the digging area.       

This research study assumes that the dragline machine house and swinging axes are 

not coincident to permit capturing the significant inertia effects of the machine during 

swinging. This consideration is very important when developing the dynamics of the front-

end assembly, since a loaded bucket weighs hundreds of tons and relatively swings in a 

short time of about 30 seconds. This study also assumes that machine house, boom 

structure, chains, and ropes are inextensible and rigid. However, ropes can vary in lengths 

and inertias to mimic actual motions of the dragline bucket. A complete representation of 

these components using the vector loop method is shown in Figure 3.2. Constant vectors 

and angles during the kinematics and dynamic analyses are: (i) machine housing 

height 𝐵𝐵1𝐵𝐵2���������⃗ , (ii) boom length (𝐵𝐵2𝐶𝐶1���������⃗ ) and its orientation (𝑞𝑞2), (iii) boom-sheave interaction 

represented by vector 𝐶𝐶1𝐷𝐷∗���������⃗ , (iv) the location of bucket, represented by vector (𝐸𝐸1𝐻𝐻1���������⃗ ), with 

respect to the center of mass of the dump rope (𝐷𝐷∗), and (v) the length of the dump rope, 

represented by vector (𝐸𝐸1𝐹𝐹1��������⃗ ). Moreover, ropes are considered as rigid links connected by 

revolute joints to capture the relative motions among them during the bucket motion.  

This representation is required when modelling the hoist rope during digging, as 

the hoist motor clutch is released to avoid impeding the bucket motion. Hoist, dump, and 

drag ropes orientations are considered as variables changing with time and are denoted by 

𝑞𝑞4, 𝑞𝑞5 and 𝑞𝑞6, respectively. The bucket motion (located at point 𝐻𝐻1) over the bank is 

constrained by a linear motion of the drag rope 𝑞𝑞7, its orientation 𝑞𝑞6, and a linear motion 

of the hoist rope 𝑞𝑞8 and its orientation 𝑞𝑞4. From this vector representation, one can conclude 
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that the quantities (𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6, 𝑞𝑞7 and 𝑞𝑞8) are numerically related to each other. In other 

words, there are independent generalized coordinates, such as 𝑞𝑞1, 𝑞𝑞7 and 𝑞𝑞8 and dependent 

generalized coordinates, such as 𝑞𝑞4, 𝑞𝑞5 and 𝑞𝑞6. The angles are measured from the vertical 

y-axis and considered positive if the corresponding link rotates clockwise. The directions 

of vectors that represent the structural elements are arbitrarily chosen from a hinged-point 

of inward structure toward the center of mass (COM) of outward structure. Their 

projections in the machine house inertial reference frame (B) guarantee the loop closure.  

 
 
 

 
 
 
The configuration of the dragline vector loop is the most comprehensive one among 

current models reported in the literature on the dragline machinery. A good understanding 

Figure 3.2. Dragline kinematics and its vector loop representation 
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of the functionality of each component significantly helps in formulating the kinematics 

relationships among these components in the inertial reference frame and in a Newtonian 

reference frame. These analyses form the basis for developing equations of motion of the 

system under a task of digging in the x-z plane and swinging in the x-y plane (Figure 3.2). 

3.2. KINEMATICS OF THE DRAGLINE FRONT-END ASSEMBLY 

Kinematics is a prerequisite science for machine dynamics, which deals with 

system or link motions using vector notation approach. It builds the relationships among 

positions, velocities, and accelerations of a mechanical system links without regard to the 

forces or torques causing these motions. Important kinematic parameters in this study are 

angular velocity of a dragline hoist and drag ropes and their linear displacements in a 

reference frame. The motion of the dragline bucket is derived from the vector loop method 

using appropriate kinematics constraints and motion variables related to each element. The 

dragline bucket slides along the digging face with a defined orientation and digs the 

materials via a prescribed translational speed (�̇�𝑞7). The clutch of the hoist rope is released 

to extend the rope by a translational speed (�̇�𝑞8). These combined motions dominate the 

position and trajectory of the bucket being filled through the dragging process. Thus, it is 

fundamental for the closed loop formulation and subsequent kinematics analysis to take 

into consideration these characteristics. 

 The use of vector loop approach results in nonlinear constraints algebraic equations 

that relate the kinematics quantities (𝑞𝑞1, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6, 𝑞𝑞7 and 𝑞𝑞8), which are the angular 

displacement of the machine house and linear and angular displacements of the dragline 

front-end assembly. The presence of the closed kinematic chain of the front-end assembly 

also requires that 𝑞𝑞𝑖𝑖, (𝑖𝑖 = 1, . . ,7) are interrelated. It also imposes dependency among the 
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derivatives of these variables after first and second differentiations. The vector loop method 

is used to satisfy the kinematics constraints between links and to replace the dependent 

generalized coordinate 𝑞𝑞5, 𝑞𝑞7, and 𝑞𝑞8in terms of  𝑞𝑞4 and 𝑞𝑞6. Further differentiation of the 

closed loop equation leads to additional relationships between the derivatives of the 

independent and dependent generalized velocities. Thus, the kinematic analyses of the 

dragline front-end assembly can be mainly described using the independent generalized 

coordinates of 𝑞𝑞1, 𝑞𝑞4 and 𝑞𝑞6 and their time derivatives. The dragline shaking motion 𝑞𝑞1, in 

a vertical axis located in the tub structure, is a given quantity and considered for this model. 

It can, however, be eliminated from the analysis at any time after developing the kinematics 

and dynamics models, which greatly simplifies the kinematics and dynamics equations. 

Torques and forces are transmitted to hoist and drag ropes from points located at the boom-

point sheave (D) and point 𝐵𝐵2 located in the machine house, respectively. 

 The definition of measures of vector components of all bodies involved in the 

front-end assembly and their COM leads to the constraint equations (3.1), (3.2) and (3.3). 

�𝐵𝐵1𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶1���������⃗ + 𝐶𝐶1𝐷𝐷∗���������⃗ + 𝐷𝐷∗𝐷𝐷1����������⃗ + 𝐷𝐷1𝐸𝐸1���������⃗ + 𝐸𝐸1𝐹𝐹1��������⃗ + 𝐹𝐹1𝐵𝐵1���������⃗ � .𝑏𝑏1���⃗ = 0            (3.1) 

�𝐵𝐵1𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶1���������⃗ + 𝐶𝐶1𝐷𝐷∗���������⃗ + 𝐷𝐷∗𝐷𝐷1����������⃗ + 𝐷𝐷1𝐸𝐸1���������⃗ + 𝐸𝐸1𝐹𝐹1��������⃗ + 𝐹𝐹1𝐵𝐵1���������⃗ �.𝑏𝑏2����⃗ = 0            (3.2) 

�𝐵𝐵1𝐵𝐵∗���������⃗ + 𝐵𝐵∗𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶∗���������⃗ + 𝐶𝐶∗𝐶𝐶1���������⃗ + 𝐶𝐶1𝐷𝐷∗���������⃗ + 𝐷𝐷∗𝐷𝐷1����������⃗ + 𝐷𝐷1𝐸𝐸∗���������⃗ + 𝐸𝐸∗𝐸𝐸1���������⃗ + 𝐸𝐸1𝐹𝐹1��������⃗ �.𝑔𝑔1����⃗ = 𝑞𝑞7     (3.3) 

One is required to define measures of vector components of all bodies involved in 

the front assembly. The scalar values of each element and its relevant orientation after 

introducing the trigonometric abbreviations s = Sin and s = Cos are given in Tables 3.1 

and 3.2. Thus, the equations (3.1) and (3.2) are rewritten as equations (3.4) and (3.5).  
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   (𝐿𝐿5 + 𝐿𝐿6)𝑐𝑐2 + 𝐿𝐿7𝑠𝑠2 + 𝐿𝐿8𝑐𝑐4 − 𝑞𝑞8𝑠𝑠4 − (𝐿𝐿9 + 𝐿𝐿10)𝑐𝑐5 − 𝑞𝑞7𝑐𝑐6 = 0      (3.4) 

       𝐿𝐿0 + (𝐿𝐿5 + 𝐿𝐿6)𝑠𝑠2 − 𝐿𝐿7𝑐𝑐2 − 𝐿𝐿8𝑠𝑠4 + 𝑞𝑞8𝑐𝑐4 − (𝐿𝐿9 + 𝐿𝐿10)𝑠𝑠5 + 𝑞𝑞7𝑠𝑠6 = 0      (3.5) 

Projecting equation (3.3) of the drag rope’s linear displacement in the machine reference 

frame (b) yields equations (3.6) and (3.7).    

−(𝐿𝐿5 + 𝐿𝐿6)𝑐𝑐2 + 𝐿𝐿7𝑠𝑠2 − 𝐿𝐿8𝑐𝑐4 − 𝑞𝑞8𝑠𝑠4 + (𝐿𝐿9 + 𝐿𝐿10)𝑐𝑐5 = 𝑞𝑞7 𝑐𝑐6       (3.6) 

         𝐿𝐿0 − (𝐿𝐿5 + 𝐿𝐿6)𝑠𝑠2 − 𝐿𝐿7𝑐𝑐2 + 𝐿𝐿8𝑠𝑠4 − 𝑞𝑞8𝑐𝑐4 + (𝐿𝐿9 + 𝐿𝐿10)𝑠𝑠5 = 𝑞𝑞7𝑠𝑠6      (3.7) 

Equations (3.6) and (3.7) can be further manipulated to formulate a function of 𝑞𝑞7 in 

terms of other variables 𝑞𝑞4, 𝑞𝑞5 and 𝑞𝑞8. The inclination angle 𝑞𝑞5 of the dump rope is 

considered as a dependent generalized coordinate and unknown. However, it can be 

derived using the loop closure equations. The vector representation of the hoist rope-sheave 

interactions provides a way to deduce the angular displacement of the sheave 𝑞𝑞3in terms 

of 𝑞𝑞4. For this analysis, it is noticed that the orientations of the sheave-radius vector 𝐶𝐶1𝐷𝐷∗���������⃗  

is constant and measures 𝑞𝑞2. It is also observed that the sheave radius vector 𝐷𝐷∗𝐷𝐷1����������⃗  makes 

an angle 𝑞𝑞3 with a horizontal x-axis and its value equals 𝑞𝑞4. These observations are 

considered in the kinematics analysis and greatly simplify the kinematic functions. 

 
 
 

Table 3.1. Vector notation of closed loop of dragline front-end assembly 

𝐿𝐿0 =  𝐵𝐵1𝐵𝐵2���������⃗ .𝑏𝑏2����⃗   𝐿𝐿4 = 𝐵𝐵∗𝐵𝐵2���������⃗ . 𝑏𝑏2����⃗   𝐿𝐿8 = 𝐷𝐷∗𝐷𝐷1����������⃗ . 𝑒𝑒1���⃗   𝐿𝐿12 = 𝐹𝐹∗𝐻𝐻1����������⃗ . 𝑓𝑓1���⃗  

 𝐿𝐿1 =  𝐵𝐵∗𝐵𝐵1���������⃗ .𝑏𝑏1���⃗   𝐿𝐿5 = −𝐶𝐶∗𝐵𝐵2���������⃗ . 𝑐𝑐1���⃗   𝐿𝐿9 = 𝐹𝐹∗𝐸𝐸1���������⃗ .𝑓𝑓1���⃗   𝐿𝐿13 = −𝐹𝐹∗𝐻𝐻1����������⃗ .𝑓𝑓2���⃗  

 𝐿𝐿2 =  −𝐵𝐵∗𝐵𝐵1���������⃗ .𝑏𝑏2����⃗   𝐿𝐿6 = 𝐶𝐶∗𝐶𝐶1���������⃗ . 𝑐𝑐1���⃗   𝐿𝐿10 = −𝐹𝐹∗𝐹𝐹1���������⃗ . 𝑓𝑓1���⃗    𝑞𝑞7 = 𝐵𝐵1𝐹𝐹1���������⃗ .𝑔𝑔1����⃗  

 𝐿𝐿3 =  𝐵𝐵∗𝐵𝐵2���������⃗ . 𝑏𝑏1���⃗   𝐿𝐿7 = 𝐷𝐷∗𝐶𝐶1���������⃗ . 𝑐𝑐2���⃗   𝐿𝐿11 = 𝐵𝐵3𝐵𝐵∗���������⃗ . 𝑏𝑏1���⃗    𝑞𝑞8 = 𝐸𝐸1𝐷𝐷1���������⃗ . 𝑒𝑒2���⃗  
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The current kinematic equations are derived when the dragline machine house has 

already made the required rotation 𝑞𝑞1. 𝑏𝑏�⃗ 2 in order to engage the bank and start excavating 

the materials. Thus, the transformation matrices, in Table 3.2, provide the orientation of 

machine house position vectors and other vectors related to the remaining components.  

 
 
 

Table 3.2. Transformation matrices of the front-end assembly 

 𝑏𝑏�⃗ 1 𝑏𝑏�⃗ 2 𝑏𝑏�⃗ 3 
𝑛𝑛1 𝑐𝑐1 0 𝑠𝑠1 

𝑛𝑛2 0 1 0 

𝑛𝑛3 −𝑠𝑠1 0 𝑐𝑐1 
 

 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 

𝑏𝑏�⃗ 1 𝑐𝑐2 −𝑠𝑠2 0 

𝑏𝑏�⃗ 2 𝑠𝑠2 𝑐𝑐2 0 

𝑏𝑏�⃗ 3 0 0 1 

 𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 

𝑏𝑏�⃗ 1 𝑐𝑐3 𝑠𝑠3 0 

𝑏𝑏�⃗ 2 −𝑠𝑠3 𝑐𝑐3 0 

𝑏𝑏�⃗ 3 0 0 1 
 

 𝑒𝑒1 𝑒𝑒2 𝑒𝑒3 

𝑏𝑏�⃗ 1 𝑐𝑐4 𝑠𝑠4 0 

𝑏𝑏�⃗ 2 −𝑠𝑠4 𝑐𝑐4 0 

𝑏𝑏�⃗ 3 0 0 1 

 

 �⃗�𝑔1 �⃗�𝑔2 �⃗�𝑔3 

𝑏𝑏�⃗ 1 𝑐𝑐6 𝑠𝑠6 0 

𝑏𝑏�⃗ 2 −𝑠𝑠6 𝑐𝑐6 0 

𝑏𝑏�⃗ 3 0 0 1 

 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 

𝑏𝑏�⃗ 1 𝑐𝑐5 −𝑠𝑠5 0 

𝑏𝑏�⃗ 2 𝑠𝑠5 𝑐𝑐5 0 

𝑏𝑏�⃗ 3 0 0 1 

 
 
 

 Kinematics Constraint Equations. A conventional procedure to relate the  

velocities of links together is to derive the configuration constraint equations. In this 

research, the kinematics is developed using the concept of generalized speeds (Kane and 

Levinson, 1985). The definition of generalized speed allows the description of the system 
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motion rather than its configurations. The concept of generalized speeds is used in order to 

facilitate the mathematical description and to solve equations of motion for multibody 

dynamics of the front-end assembly. Kane’s method (Kane and Levinson, 1985) is used to 

formulate the equations of motion using 40 generalized speeds ur (r = 1, . . ,40). The 

method becomes evidently advantageous when a system has several rigid bodies that their 

configurations, angular velocities, and velocities of their particles can be grouped as 

equation (3.8). 

𝑢𝑢𝑟𝑟 =  ∑ 𝑌𝑌𝑟𝑟𝑠𝑠𝑛𝑛
𝑠𝑠=1 �̇�𝑞𝑠𝑠 + 𝑍𝑍𝑟𝑟 (r=1…n)              (3.8)  

𝑌𝑌𝑟𝑟𝑠𝑠 and 𝑍𝑍𝑟𝑟 are functions of 𝑞𝑞1,…: 𝑞𝑞𝑛𝑛 and time t. 𝑞𝑞𝑠𝑠 is the sth generalized coordinates. 

𝑌𝑌𝑟𝑟𝑠𝑠 represents a matrix, the number of rows of which is equal to the number of the 

generalized speeds and the number of columns represents the number of generalized 

coordinates 𝑞𝑞𝑠𝑠. To find �̇�𝑞𝑠𝑠 in terms of generalized speeds 𝑢𝑢𝑟𝑟, 𝑌𝑌𝑟𝑟𝑠𝑠 must be invertible, 

nonsingular, square matrix, and is given in equation (3.9). 

�̇�𝑞𝑠𝑠 = ∑ 𝑌𝑌𝑟𝑟𝑠𝑠−1𝑛𝑛
𝑠𝑠=1 (𝑢𝑢𝑟𝑟 − 𝑧𝑧𝑟𝑟)                                                                             (3.9) 

Equation (3.9) allows the definition of the derivatives of the generalized 

coordinates of hoist, dump, and drag ropes angular displacements in terms of known 

generalized quantities (�̇�𝑞7 and �̇�𝑞8).  

This research defines generalized speeds as angular velocities and velocities of the 

center of gravity associated with unit vectors and parallel to the central principal axes in 

each body. Thus, one can now write the angular velocity 𝜔𝜔𝑘𝑘of body k, with k = B, C… H, 

as defined by equation (3.10).   
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𝜔𝜔𝐵𝐵 = 𝑢𝑢1𝑏𝑏2����⃗                                       

𝜔𝜔𝐶𝐶 = 𝑢𝑢5𝑐𝑐1���⃗ + 𝑢𝑢6𝑐𝑐2���⃗ + 𝑢𝑢7𝑐𝑐3���⃗                                 

𝜔𝜔𝐷𝐷 = 𝑢𝑢11𝑑𝑑1����⃗ + 𝑢𝑢12𝑑𝑑2����⃗ + 𝑢𝑢13𝑑𝑑3����⃗                      

𝜔𝜔𝐸𝐸 = 𝑢𝑢17𝑒𝑒1���⃗ + 𝑢𝑢18𝑒𝑒2���⃗ + 𝑢𝑢19𝑒𝑒3���⃗                                   (3.10)  

𝜔𝜔𝐹𝐹 = 𝑢𝑢23𝑓𝑓1���⃗ + 𝑢𝑢24𝑓𝑓2���⃗ + 𝑢𝑢25𝑓𝑓3���⃗                            

𝜔𝜔𝐺𝐺 = 𝑢𝑢29𝑔𝑔1����⃗ + 𝑢𝑢30𝑔𝑔2����⃗ + 𝑢𝑢31𝑔𝑔3����⃗             

𝜔𝜔𝐹𝐹1 = 𝑢𝑢38𝑔𝑔1����⃗ + 𝑢𝑢39𝑔𝑔2����⃗ + 𝑢𝑢40𝑔𝑔3����⃗             

The velocity 𝑣𝑣𝑘𝑘∗ of center of mass of each body (K) are computed by equation (3.11). 

𝑣𝑣𝐵𝐵∗ = 𝑢𝑢2𝑏𝑏1���⃗ + 𝑢𝑢3𝑏𝑏2����⃗ + 𝑢𝑢4𝑏𝑏3����⃗                      

𝑣𝑣𝐶𝐶∗ = 𝑢𝑢8𝑐𝑐1���⃗ + 𝑢𝑢9𝑐𝑐2���⃗ + 𝑢𝑢10𝑐𝑐3���⃗                      

𝑣𝑣𝐷𝐷∗ = 𝑢𝑢14𝑑𝑑1����⃗ + 𝑢𝑢15𝑑𝑑2����⃗ + 𝑢𝑢16𝑑𝑑3����⃗         

𝑣𝑣𝐸𝐸∗ = 𝑢𝑢20𝑒𝑒1���⃗ + 𝑢𝑢21𝑒𝑒2���⃗ + 𝑢𝑢22𝑒𝑒3���⃗                     (3.11) 

𝑣𝑣𝐹𝐹∗ = 𝑢𝑢26𝑓𝑓1���⃗ + 𝑢𝑢27𝑓𝑓2���⃗ + 𝑢𝑢28𝑓𝑓3���⃗            

𝑣𝑣𝐺𝐺∗ = 𝑢𝑢32𝑔𝑔1����⃗ + 𝑢𝑢33𝑔𝑔2����⃗ + 𝑢𝑢34𝑔𝑔3����⃗   

𝑣𝑣𝐻𝐻1 = 𝑢𝑢35𝑓𝑓1���⃗ + 𝑢𝑢36𝑓𝑓2���⃗ + 𝑢𝑢37𝑓𝑓3���⃗     

To establish the relationships between the generalized speeds 𝑢𝑢𝑟𝑟 and the 

generalized coordinates, the constraints motion equations of every element are developed 

using the golden rule for vector differentiation as defined in equations (3.12). 

 𝑣𝑣𝐶𝐶∗ = 
𝐶𝐶𝑑𝑑𝑟𝑟��⃗  𝐵𝐵2𝐶𝐶

𝑑𝑑𝑖𝑖
 + CBω × 𝑟𝑟𝐵𝐵2𝐶𝐶    (3.12) 

Thus, the left term of the right hand side of equation (3.12) gives the variation of 

the position vector of the COM of the boom (C) in its local frame. This variation is zero 

since the boom is assumed as a rigid body. The second term gives the projection of this 

vector based on the angular variation of reference frame associated with the same body. If 
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the dragline is engaged in digging activities, this component vanishes and reappears when 

swinging from the bank to the spoil area. The COM of machine housing 𝐵𝐵∗ and the 

rotational axis (𝑛𝑛2����⃗ ) are not coincident, but are spaced by a vector position 𝐵𝐵∗𝐵𝐵3���������⃗ . Thus, its 

velocity in the reference frame (B) is given by equation (3.13). 

                𝑣𝑣𝐵𝐵∗������⃗ = BNω × 𝐵𝐵3𝐵𝐵∗���������⃗            (3.13) 

                       = 𝑢𝑢1𝑏𝑏2����⃗ × �𝐿𝐿11𝑏𝑏1���⃗ � 

                 𝑣𝑣𝐵𝐵∗������⃗ = −𝐿𝐿11𝑢𝑢1𝑏𝑏3����⃗            (3.14) 

The estimation of the generalized speeds 𝑢𝑢3 and 𝑢𝑢4 is done by comparing equation 

(3.14) to the velocity vector 𝑣𝑣𝐵𝐵∗������⃗  defined in equation (3.11). One can deduce that 𝑢𝑢3 = 𝑢𝑢4 =

0, and this analogy is used to produce values of other dependent generalized speeds in the 

system kinematics. Based on system constraint motion, the boom structure (C) does not 

rotate relative to B and CBω = 0. Thus, 𝑢𝑢7 = 0 and the velocity of the boom 𝜔𝜔𝐶𝐶equals 𝜔𝜔𝐵𝐵. 

The search for generalized speeds 𝑢𝑢5 and 𝑢𝑢6 is done by transferring 𝜔𝜔𝐶𝐶from a reference 

frame associated with the machine house (B) to its local reference frame. This yields 

𝑢𝑢5 and 𝑢𝑢6 as defined in equation (3.15). 

                𝜔𝜔𝐶𝐶 = 𝜔𝜔𝐴𝐴 + CBω   

                     = 𝑢𝑢1𝑏𝑏2����⃗ + 𝑢𝑢7𝑐𝑐3���⃗    

𝑢𝑢5𝑐𝑐1���⃗ + 𝑢𝑢6𝑐𝑐2���⃗   = 𝑠𝑠2𝑢𝑢1𝑐𝑐1���⃗ + 𝑐𝑐2𝑢𝑢1𝑐𝑐2���⃗                 (3.15)  

The velocity of COM of the boom in a Newtonian reference frame is provided by 

equation (3.16). 
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𝑣𝑣𝐶𝐶∗������⃗ = 𝑣𝑣𝐵𝐵2 + 𝜔𝜔𝐶𝐶 × �𝐵𝐵∗𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶∗���������⃗ � 

                = 𝑣𝑣𝐵𝐵∗ + 𝜔𝜔𝐵𝐵 × �𝐵𝐵2𝐵𝐵∗���������⃗ � + 𝜔𝜔𝐶𝐶 × �𝐵𝐵∗𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶∗���������⃗ �    

        = −(𝐿𝐿11 + 𝐿𝐿3 + 𝐿𝐿5𝑐𝑐2)𝑢𝑢1. 𝑐𝑐3���⃗          (3.16) 

The angular velocity and linear velocity of the boom point sheave is defined by 

equations (3.17) and (3.18), respectively.                 

𝜔𝜔𝐷𝐷  = 𝜔𝜔𝐵𝐵 + CBω + DCω         

=  𝑢𝑢1�−𝑠𝑠4𝑑𝑑1����⃗ + 𝑐𝑐4𝑑𝑑2����⃗ � + �̇�𝑞4𝑑𝑑3����⃗          (3.17)         

𝑣𝑣𝐷𝐷∗ = 𝑣𝑣𝐵𝐵∗ + 𝜔𝜔𝐷𝐷 × �𝐵𝐵∗𝐵𝐵2���������⃗ + 𝐵𝐵2𝐶𝐶∗���������⃗ + 𝐶𝐶∗𝐶𝐶1���������⃗ + 𝐶𝐶1𝐷𝐷∗���������⃗ �   

       = −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿7𝑠𝑠2 + 𝐿𝐿11)𝑢𝑢1                    (3.18) 

 The velocity of the point 𝐷𝐷1 of the hoist rope from the boom point sheave is required 

for calculating the linear velocity of its COM in a local reference frame (E). The resulting 

linear velocity 𝑣𝑣𝐸𝐸∗of the hoist rope and its angular velocities are given in equations (3.20) 

and (3.21). 

𝑣𝑣𝐷𝐷1 =  𝐿𝐿8𝑢𝑢13𝑑𝑑2����⃗ − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝑠𝑠2𝐿𝐿7 + 𝐿𝐿8 + 𝐿𝐿11)𝑢𝑢1𝑑𝑑3����⃗      (3.19) 

𝑣𝑣𝐸𝐸∗ = 𝑣𝑣𝐷𝐷1 + 𝜔𝜔𝐸𝐸 × 𝐷𝐷1𝐸𝐸∗���������⃗    

       = 0.5𝑞𝑞8𝑢𝑢19 𝑒𝑒1���⃗ + 𝐿𝐿8𝑢𝑢13𝑒𝑒2���⃗ − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝑠𝑠2 𝐿𝐿7 + 𝐿𝐿8 + 𝐿𝐿11)𝑢𝑢1𝑒𝑒3���⃗      (3.20) 

𝜔𝜔𝐸𝐸 = 𝜔𝜔𝐵𝐵 + CBω + DCω + EDω   

        = 𝑢𝑢1(−𝑠𝑠4𝑒𝑒1���⃗ + 𝑐𝑐4𝑒𝑒2���⃗ ) + �̇�𝑞4𝑒𝑒3���⃗          (3.21) 

Equation (3.20) accounts for the variation of the length of the hoist rope, which is 

defined by the linear displacement input 𝑞𝑞8. Equations (3.20) and (3.21) also define the 
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unknown generalized speeds 𝑢𝑢17,𝑢𝑢18,𝑢𝑢19,𝑢𝑢20, 𝑢𝑢21, and 𝑢𝑢22. Point 𝐸𝐸1 represents a revolute 

joint between the hoist rope and the rigging system. It is required to find its absolute linear 

velocity in order to find the linear velocity of the COM of the dump rope 𝐸𝐸1𝐹𝐹1 ����������⃗ , and is 

given in equation (3.22). 𝑐𝑐45 and 𝑠𝑠45 are trigonometric abbreviation of Cos(𝑞𝑞4 + 𝑞𝑞5)  and 

Sin(𝑞𝑞4 + 𝑞𝑞5).  

          𝑣𝑣𝐸𝐸1 = 𝑣𝑣𝐸𝐸∗ + 𝜔𝜔𝐸𝐸 × 𝐸𝐸∗𝐸𝐸1���������⃗   

= (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19𝑒𝑒1���⃗ + (𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19𝑒𝑒2���⃗ − 

(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑢𝑢1𝑒𝑒3���⃗       (3.22) 

The linear and angular velocities of the dump rope can now be estimated and 

provided in equations (3.23) and (3.24), respectively. 

𝑣𝑣𝐹𝐹∗ = 𝑣𝑣𝐸𝐸1 + 𝜔𝜔𝐹𝐹 × 𝐸𝐸1𝐹𝐹∗���������⃗ = 𝑣𝑣𝐹𝐹1 + 𝜔𝜔𝐹𝐹 × 𝐹𝐹1𝐹𝐹∗���������⃗                                              

       = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19 𝑓𝑓1���⃗ + (𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19 − 𝐿𝐿9𝑢𝑢25) 𝑓𝑓2���⃗ + (𝐿𝐿9 − 𝐿𝐿3 + 

   𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑢𝑢1𝑓𝑓3���⃗         (3.23) 

 𝜔𝜔𝐹𝐹 = 𝜔𝜔𝐵𝐵 + FBω  = 𝑢𝑢1𝑏𝑏2����⃗ + �̇�𝑞5𝑓𝑓3���⃗  = 𝑢𝑢1�𝑠𝑠5𝑓𝑓1���⃗ + 𝑐𝑐5𝑓𝑓2���⃗ � + �̇�𝑞5𝑓𝑓3���⃗      (3.24)                                   

The generalized speed 𝑢𝑢25 is just the angular velocity of the dump rope and it takes 

another notation �̇�𝑞5, which is the first derivative of the dump rope angular displacement. It 

is an unknown quantity and it imposes a great challenge when solving the dynamics of the 

dragline. This fact led several research studies on the dragline dynamics to omit this link 

and model the complete rigging system as a point mass. The linear and angular velocities 

of the COM of the drag rope are shown in equations (3.25) and (3.26), respectively. 
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𝑣𝑣𝐺𝐺∗ = 𝑣𝑣𝐵𝐵∗ + 𝜔𝜔𝐺𝐺 × �𝐵𝐵∗𝐵𝐵1���������⃗ + 𝐵𝐵1𝐺𝐺∗���������⃗ � 

         = 0.5𝑞𝑞7𝑢𝑢31𝑔𝑔2����⃗ +  (𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)𝑢𝑢1𝑔𝑔3����⃗       (3.25) 

  𝜔𝜔𝐺𝐺 = 𝜔𝜔𝐵𝐵 + CBω = 𝑢𝑢1𝑏𝑏2����⃗ + �̇�𝑞6𝑔𝑔3����⃗   = 𝑢𝑢1(−𝑠𝑠6𝑔𝑔1����⃗ + 𝑐𝑐6𝑔𝑔2����⃗ ) + 𝑢𝑢31𝑔𝑔3����⃗      (3.26) 

The bucket is modelled as a point mass 𝐻𝐻1and is rigidly attached to the hoist 

chain 𝐸𝐸1𝐻𝐻1����������⃗  . The absolute velocity of the bucket is calculated in equations (3.27). 

  𝑣𝑣𝐻𝐻1 = 𝑣𝑣𝐹𝐹∗ + 𝜔𝜔𝐹𝐹 × 𝐹𝐹∗𝐻𝐻1����������⃗  

         = ((𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19 + 𝐿𝐿13𝑢𝑢25)𝑓𝑓1���⃗ + ((𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19 + (−𝐿𝐿9 +

𝐿𝐿12)𝑢𝑢25)𝑓𝑓2���⃗ − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 + 𝐿𝐿7𝑠𝑠2)𝑢𝑢1 𝑓𝑓3���⃗    (3.27) 

 From equation (3.27), it is evident that the motion of the bucket is controlled by the 

linear displacement of the hoist rope 𝑞𝑞8, its angular velocity 𝑢𝑢19, and the angular velocity 

of the dump rope. The value of the angular speed of machine house 𝑢𝑢1 is zero during the 

digging motion and can be dropped from the analysis. However, it must appear in the 

calculations when the dragline bucket is lifted off the bank, where a rotational torque is 

provided to the front-end assembly, to dump the materials on the spoil area. The drag chain 

velocity, denoted by 𝑣𝑣𝐹𝐹1 , is also used to facilitate the determination of the relationships 

between the unknown generalized speeds, and it is given by equation (3.28). 

𝑣𝑣𝐹𝐹1 =  �̇�𝑞7 𝑔𝑔1����⃗ + 𝑞𝑞7𝑢𝑢31𝑔𝑔2����⃗ − (𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)𝑢𝑢1𝑔𝑔3����⃗           (3.28)  

 Equations (3.13) and (3.28) provide a basis for estimating the values of the 

remaining unknown generalized speeds, as defined in equations (3.10) and (3.11). With 

appropriate manipulations, these kinematics quantities are sought after using a vector 
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approach that defines the velocity of a joint with respect to two links located in two adjacent 

reference frames. An example of this idea is provided in equations (3.29) and (3.30). 

𝑣𝑣𝐸𝐸1 = 𝑣𝑣𝐸𝐸∗ + 𝜔𝜔𝐸𝐸 × 𝐸𝐸∗𝐸𝐸1���������⃗ = 𝑣𝑣𝐹𝐹∗ + 𝜔𝜔𝐹𝐹 × 𝐹𝐹∗𝐸𝐸1���������⃗                

                   = 𝑢𝑢20𝑒𝑒1���⃗ + 𝑢𝑢21𝑒𝑒2���⃗ + 𝑢𝑢22𝑒𝑒13�����⃗ + (𝑢𝑢17𝑒𝑒1���⃗ + 𝑢𝑢18𝑒𝑒2���⃗ + 𝑢𝑢19𝑒𝑒3���⃗ ) × (0.5 𝑞𝑞8. 𝑒𝑒2���⃗ )   (3.29) 

             𝑣𝑣𝐸𝐸1 = 𝑢𝑢26𝑓𝑓1���⃗ + 𝑢𝑢27𝑓𝑓2���⃗ + 𝑢𝑢28𝑓𝑓3���⃗ + �𝑢𝑢23𝑓𝑓1���⃗ + 𝑢𝑢24𝑓𝑓2���⃗ + 𝑢𝑢25𝑓𝑓3���⃗ � × �𝐿𝐿9.𝑓𝑓1���⃗ �    (3.30) 

 
 
 

Table 3.3. Dependent generalized speeds as functions of independent ones 

𝑢𝑢2 = 𝑢𝑢3 = 0 𝑢𝑢23 = 𝑠𝑠6𝑢𝑢1 
𝑢𝑢4 = −𝐿𝐿11𝑢𝑢1 𝑢𝑢24 = 𝑐𝑐5𝑢𝑢1 
𝑢𝑢5 = 𝑠𝑠2𝑢𝑢1 𝑢𝑢25 = �̇�𝑞5 
𝑢𝑢6 = 𝑐𝑐2𝑢𝑢1 𝑢𝑢26 = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19 
𝑢𝑢7 = 0 𝑢𝑢27 = (𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19 − 𝐿𝐿9𝑢𝑢25 

𝑢𝑢8 = 𝑢𝑢9 = 0 𝑢𝑢28 = 𝐿𝐿9𝑢𝑢1 − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11
+ 𝐿𝐿7𝑠𝑠2)𝑢𝑢1 

𝑢𝑢10 = −(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝐿𝐿11)𝑢𝑢1 𝑢𝑢29 = −𝑠𝑠6𝑢𝑢1 
𝑢𝑢11 = −𝑠𝑠4𝑢𝑢1 𝑢𝑢30 = 𝑐𝑐6𝑢𝑢1 
𝑢𝑢12 = 𝑐𝑐4𝑢𝑢1 𝑢𝑢31 = �̇�𝑞6 

𝑢𝑢13 = 𝑢𝑢19 = �̇�𝑞4 𝑢𝑢32 = 0 
𝑢𝑢14 = 𝑢𝑢15 = 0 𝑢𝑢33 = 0.5𝑞𝑞7𝑢𝑢31 

𝑢𝑢16 = −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿11
+ 𝐿𝐿7𝑠𝑠2)𝑢𝑢1 

𝑢𝑢34 = −(𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)𝑢𝑢1 

𝑢𝑢17 = −𝑠𝑠4𝑢𝑢1 𝑢𝑢35 = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19 + 𝐿𝐿19𝑢𝑢25 
𝑢𝑢18 = 𝑐𝑐4𝑢𝑢1 𝑢𝑢36 = (𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19 + (−𝐿𝐿9 + 𝐿𝐿12)𝑢𝑢25 
𝑢𝑢19 = �̇�𝑞4 𝑢𝑢37 = −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12

+ 𝐿𝐿7𝑠𝑠2)𝑢𝑢1 

𝑢𝑢20 = 0.5𝑞𝑞8𝑢𝑢19 𝑢𝑢38 = �̇�𝑞7 
𝑢𝑢21 = 0 𝑢𝑢39 = 𝑞𝑞7𝑢𝑢31 

𝑢𝑢22 = −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8
+ 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑢𝑢1 

𝑢𝑢40 = −(𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)𝑢𝑢1 
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The approach used in equations (3.29) and (3.30) is applied to establish 

relationships among the dependent and independent generalized speeds. The resulting 

generalized speeds of the entire front-end assembly are provided in Table 3.3. Some 

generalized speeds listed in Table 3.3 still contain unknown kinematics entities like the 

derivatives of generalized coordinates �̇�𝑞4, �̇�𝑞5, and �̇�𝑞6. Thus, further refinement is needed to 

express these functions in terms of �̇�𝑞7, and �̇�𝑞8. Section 4 provides a systematic approach to 

handle these kinematics constraints based on the constraint equations (3.4) and (3.5) and 

their time derivatives.   

 Nonholonomic System and its Partial Velocities.  Vector loop method in  

Section 3.1 allows the system to be described by quantities 𝑞𝑞𝑖𝑖, (𝑖𝑖 = 1, … 8) and only 

requires  𝑞𝑞1, 𝑞𝑞4, 𝑞𝑞5,  𝑞𝑞6, 𝑞𝑞7, and 𝑞𝑞8 to define its configuration. Thus, six generalized 

coordinates are needed. However, forty generalized speeds, 𝑢𝑢𝑟𝑟 (𝑟𝑟 = 1, 2, … 40), are 

required to define its motion, as defined in equations (3.10) and (3.11). It was also 

concluded that these speeds are not independent of each other; three of them are chosen as 

independent generalized speeds to control the motion. The remaining speeds are 

represented in terms of these independent generalized speeds. In other words, there are 

thirty seven motion constraints (𝑚𝑚 = 37), which are expressed as linear combinations of 

one or more independent generalized speeds.  

Finally, the degrees of freedom of the system (𝑃𝑃), 𝑛𝑛 −𝑚𝑚 = 40 − 37 = 3, are three 

independent generalized speeds. The 𝑚𝑚 equations are called non-holonomic constraint 

equations. The word “nonholonomic” refers to a constraint equation that can be expressed 

in a form such as provided in equation (3.31). In other words, equation (3.31) is 
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nonintegrable and its differentiation also yields a nonholonomic differential equation 

(Kane, 1968).  

𝑓𝑓(𝑞𝑞1,𝑞𝑞2, . . , 𝑞𝑞𝑛𝑛, �̇�𝑞1, �̇�𝑞2, . . , �̇�𝑞𝑛𝑛, 𝑡𝑡) ≠ 0      (3.31)       

The use of Kane’s method, in developing equations of motion of the dragline, relies 

on defining other expressions of angular velocity 𝜔𝜔𝑘𝑘 and linear velocity 𝑣𝑣𝑘𝑘 vectors. These 

expressions use the independent generalized speeds 𝑢𝑢𝑟𝑟 (𝑟𝑟 = 1,2,3) explicitly and they are 

given in equations (3.32) and (3.33) (Kane and Levinson, 1985). 

  𝜔𝜔𝑘𝑘 = ∑ 𝜔𝜔�𝑟𝑟
𝑝𝑝
𝑟𝑟=1 𝑢𝑢𝑟𝑟 + 𝜔𝜔�𝑖𝑖                   (K=A,…E)     (3.32) 

𝑣𝑣𝑘𝑘 = ∑ 𝑣𝑣�𝑟𝑟
𝑝𝑝
𝑟𝑟=1 𝑢𝑢𝑟𝑟 + 𝑣𝑣�𝑖𝑖                                                                           (3.33) 

𝑣𝑣�𝑟𝑟, 𝜔𝜔�𝑟𝑟 (𝑟𝑟 = 1, … 𝑝𝑝) are called the 𝑟𝑟th nonholonomic partial velocity and 

nonholonomic partial angular velocity vectors. 𝜔𝜔�𝑖𝑖 and 𝑣𝑣�𝑖𝑖 are functions of 𝑞𝑞1,… 𝑞𝑞𝑛𝑛 and t, 

along with 𝑣𝑣�𝑟𝑟 and 𝜔𝜔�𝑟𝑟, (𝑟𝑟 = 1, 19, 31). Comparing equations (3.32) and (3.33) of every 

link with its linear and angular velocities vectors, defined in equations (3.10) and (3.11), 

along with kinematics constraint equations (in Table 3.3), allows the construction of the 

partial velocities, 𝑣𝑣�𝑟𝑟 and 𝜔𝜔�𝑟𝑟. These partial velocities (in Table 3.4) play a central role in 

developing the dynamics equations based on Kane’s method. 

Finding the time derivative of angular displacement of the dump rope 𝑢𝑢25, based 

on the vector loop equations (3.5) and (3.6), is the only way to estimate the quantity 𝑍𝑍1. 

However, 𝑢𝑢25 and 𝑍𝑍1 are given by equation (3.34) and equation (3.35) and their detailed 

derivation is given in the Appendix A.    
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Table 3.4. Partial velocities and partial angular velocities of COM of links 

 r = 1 r = 19 r = 31 

𝜔𝜔�𝑟𝑟𝐵𝐵 𝑏𝑏2����⃗  0 0 

𝑣𝑣�𝑟𝑟𝐵𝐵
∗ −𝐿𝐿11𝑏𝑏3����⃗  0 0 

𝜔𝜔�𝑟𝑟𝑐𝑐 𝑠𝑠2𝑐𝑐1���⃗ + 𝑐𝑐2𝑐𝑐2���⃗  0 0 

𝑣𝑣�𝑟𝑟𝑐𝑐
∗ −(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝐿𝐿11)𝑐𝑐3���⃗  0 0 

𝜔𝜔�𝑟𝑟𝐷𝐷 −𝑠𝑠4𝑑𝑑1����⃗ + 𝑐𝑐4𝑑𝑑2����⃗  𝑑𝑑3����⃗  0 

𝑣𝑣�𝑟𝑟𝐷𝐷
∗ −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑑𝑑3����⃗  0 0 

𝜔𝜔�𝑟𝑟𝐸𝐸 −𝑠𝑠4𝑒𝑒1���⃗ + 𝑐𝑐4𝑒𝑒2���⃗  𝑒𝑒3���⃗  0 

𝑣𝑣�𝑟𝑟𝐸𝐸
∗  −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑒𝑒3���⃗  0.5 𝑞𝑞8𝑒𝑒1���⃗  0 

𝜔𝜔�𝑟𝑟𝐹𝐹 𝑠𝑠5𝑓𝑓1���⃗ + 𝑐𝑐5𝑓𝑓2���⃗  𝑍𝑍1𝑓𝑓3���⃗  0 

𝑣𝑣�𝑟𝑟𝐹𝐹
∗ 𝐿𝐿9𝑢𝑢1 − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑓𝑓3���⃗  𝑍𝑍2𝑓𝑓1���⃗ + 𝑍𝑍3𝑓𝑓2���⃗  0 

𝜔𝜔�𝑟𝑟𝐺𝐺 −𝑠𝑠6𝑔𝑔1����⃗ + 𝑐𝑐6𝑔𝑔2����⃗  0 𝑔𝑔3����⃗  

𝑣𝑣�𝑟𝑟𝐺𝐺
∗ −(𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)𝑔𝑔3����⃗  0 0.5𝑞𝑞7𝑔𝑔2����⃗  

𝑣𝑣�𝑟𝑟
𝐹𝐹1 −(𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)𝑔𝑔3����⃗  0 𝑞𝑞7𝑔𝑔2����⃗  

𝑣𝑣�𝑟𝑟
𝐻𝐻1 −(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12

+ 𝐿𝐿7𝑠𝑠2)𝑓𝑓3���⃗  

𝑍𝑍4𝑓𝑓1���⃗ + 𝑍𝑍5𝑓𝑓2���⃗  0 

 

𝑢𝑢25 = (𝛿𝛿8(−𝑐𝑐24(𝐿𝐿5+𝐿𝐿6)+𝑐𝑐45(𝐿𝐿9+𝐿𝐿10)−𝐿𝐿0𝑠𝑠4+𝐿𝐿7𝑠𝑠24)+𝐿𝐿8(−𝑐𝑐4𝐿𝐿0+𝑐𝑐24𝐿𝐿7+(𝐿𝐿5+𝐿𝐿6)𝑠𝑠24−(𝐿𝐿9+𝐿𝐿10)𝑠𝑠45))
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45)

𝑢𝑢19  +  

        𝛿𝛿7�̇�𝛿7+(𝑐𝑐4𝐿𝐿0−𝑐𝑐24𝐿𝐿7−𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠24+(𝐿𝐿9+𝐿𝐿10)𝑠𝑠45)𝛿𝛿8�̇�𝛿8
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45)

       (3.34) 

𝑍𝑍1 =  𝛿𝛿8(−𝑐𝑐24(𝐿𝐿5+𝐿𝐿6)+𝑐𝑐45(𝐿𝐿9+𝐿𝐿10)−𝐿𝐿0𝑠𝑠4+𝐿𝐿7𝑠𝑠24)+𝐿𝐿8(−𝑐𝑐4𝐿𝐿0+𝑐𝑐24𝐿𝐿7+(𝐿𝐿5+𝐿𝐿6)𝑠𝑠24−(𝐿𝐿9+𝐿𝐿10)𝑠𝑠45)
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45)

      (3.35) 

Equation (3.36) is the linear velocity of the dump rope in terms of its nonholonomic 

partial linear velocities. It is used to establish the unknown quantities 𝑍𝑍2 and 𝑍𝑍3 as shown 

in equations (3.37). Their derivation is given in equations (3.38) and (3.39).  
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       𝑣𝑣�𝑟𝑟𝐹𝐹
∗ = 𝑣𝑣�1𝐹𝐹

∗𝑢𝑢1 + 𝑣𝑣�19𝐹𝐹
∗𝑢𝑢19 + 𝑣𝑣�31𝐹𝐹

∗𝑢𝑢31        (3.36) 

𝑢𝑢26𝑓𝑓1���⃗ + 𝑢𝑢27𝑓𝑓2���⃗ + 𝑢𝑢28𝑓𝑓3���⃗  = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19𝑓𝑓1���⃗ + ((𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢19 − 𝐿𝐿9𝑢𝑢25)𝑓𝑓2�����⃗ +

                                                (𝐿𝐿9 − (𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2))𝑢𝑢1𝑓𝑓3���⃗           (3.37) 

After substituting 𝑢𝑢25 of equation (3.34) into equation (3.37) and regrouping terms 

of 𝑢𝑢19, one finds 𝑍𝑍2 and 𝑍𝑍3, as given in equation (3.38). 𝑍𝑍4 and 𝑍𝑍5 are also used to find the 

partial velocities of the bucket motion. Their components reflect the complex nonlinear 

motion behavior during the digging operation and material loading. 

   𝑍𝑍2 = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45), 𝑍𝑍3 =  ((𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) − 𝐿𝐿9 𝑍𝑍1)      (3.38) 

   𝑍𝑍4 = (𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45 + 𝐿𝐿13𝑍𝑍1 ) ,  𝑍𝑍5 = (𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) + (−𝐿𝐿9 + 𝐿𝐿12) 𝑍𝑍1            (3.39) 

 Linear and Angular Accelerations. Equations (3.13-3.30) contain needed 

linear and angular velocities of all components in the dragline front-end loop and they are 

used to find the linear and angular acceleration vectors. By differentiating the velocity 

vector, the resulting acceleration equations are provided in Appendix A. It is important to 

keep the generalized speeds in explicit evidence during the derivation. The angular 

accelerations and acceleration of COM points B∗, C∗, … G∗, and H1 are calculated based 

on equation (3.40 and 3.41) along with equations (3.10) and (3.11). 

   𝑎𝑎𝑃𝑃 = 𝐾𝐾𝑑𝑑𝑎𝑎�⃗ 𝑃𝑃

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐾𝐾 × �⃗�𝑣𝑃𝑃        (3.40) 

𝛼𝛼𝑃𝑃 = 𝐾𝐾𝑑𝑑𝜔𝜔���⃗ 𝑃𝑃

𝑑𝑑𝑖𝑖
         (3.41) 

Thus, the left term of the right hand side of equation (3.40) gives the variation of 

the velocity of a point 𝑝𝑝 in its local frame and the second term gives the projection of 
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velocity vector based on the angular variation of the reference frame associated with the 

same body. The angular velocity and the velocity of each body center of mass, taken in 

their local reference frame, make the derivation of its acceleration a straightforward 

procedure. At the end, one is required to keep the first derivative of each generalized speed 

in an explicit form as it will be replaced by the derivative of the corresponding independent 

generalized speed. The linear acceleration equations of the whole multibody system of the 

dragline front-end assembly are provided in equation (3.42) and their detailed derivations 

are provided in the Appendix A.  

 𝑎𝑎𝐵𝐵∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐵𝐵
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐵𝐵 × �⃗�𝑣𝐵𝐵∗ 

 𝑎𝑎𝐶𝐶∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐶𝐶
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐶𝐶 × �⃗�𝑣𝐶𝐶∗  

 𝑎𝑎𝐷𝐷∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐷𝐷
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐷𝐷 × �⃗�𝑣𝐷𝐷∗  

 𝑎𝑎𝐸𝐸∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐸𝐸
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐸𝐸 × �⃗�𝑣𝐸𝐸∗     (3.42) 

 𝑎𝑎𝐹𝐹∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐹𝐹
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐹𝐹 × �⃗�𝑣𝐹𝐹∗ 

 𝑎𝑎𝐺𝐺∗ = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐺𝐺
∗

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐺𝐺 × �⃗�𝑣𝐺𝐺∗  

 𝑎𝑎𝐻𝐻1 = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐻𝐻1

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐹𝐹 × �⃗�𝑣  𝐻𝐻1  

 𝑎𝑎𝐹𝐹1 = 𝐵𝐵𝑑𝑑𝑎𝑎�⃗ 𝐹𝐹1

𝑑𝑑𝑖𝑖
+ 𝜔𝜔��⃗ 𝐺𝐺 × �⃗�𝑣  𝐹𝐹1  

The acceleration of the bucket COM is taken in a local reference frame (F) 

associated with the rigging system. The bucket is assumed to be rigidly connected to the 

drag rope at point 𝐸𝐸1 during the excavation process. This means the bucket position and its 

orientation, with respect to the drag rope, does not change during the digging. This 

assumption is acceptable based on the observation of the positions variations of both bucket 
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and dump rope in a real digging cycle of a dragline. Another key point is that the COM 

acceleration of the drag chain �⃗�𝑎𝐹𝐹1  changes in a reference frame (G) associated with the drag 

rope, as seen in the last part of equation (3.42).  

The angular accelerations of every component of the front-end assembly are given 

by equation (3.43) after a direct differentiation of their correspondent angular velocity 

vectors. 

𝑁𝑁𝛼𝛼𝐵𝐵 =  �̇�𝑢1 𝑏𝑏2����⃗  

𝑁𝑁𝛼𝛼𝐶𝐶 =  𝑠𝑠2 �̇�𝑢1𝑐𝑐1���⃗  + 𝑐𝑐2 �̇�𝑢1 𝑐𝑐2���⃗  

𝑁𝑁𝛼𝛼𝐷𝐷 = (−𝑐𝑐4𝑢𝑢1𝑢𝑢19 − 𝑠𝑠4�̇�𝑢1)𝑑𝑑1����⃗ + (−𝑠𝑠4𝑢𝑢1𝑢𝑢19 + 𝑐𝑐4�̇�𝑢1)𝑑𝑑2����⃗ +  �̇�𝑢19 𝑑𝑑3�����⃗    

𝑁𝑁𝛼𝛼𝐸𝐸 = (−𝑐𝑐4𝑢𝑢1𝑢𝑢19 − 𝑠𝑠4�̇�𝑢1)𝑒𝑒1���⃗ + (−𝑠𝑠4𝑢𝑢1𝑢𝑢19 + 𝑐𝑐4�̇�𝑢1)𝑒𝑒2���⃗ +  �̇�𝑢19 𝑒𝑒3����⃗   

𝑁𝑁𝛼𝛼𝐹𝐹 =

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛

�𝛿𝛿8(−𝑐𝑐24(𝐿𝐿5+𝐿𝐿6)+𝑐𝑐45(𝐿𝐿9+𝐿𝐿10)−𝐿𝐿0𝑠𝑠4+𝐿𝐿7𝑠𝑠24)�𝑢𝑢19
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45) +
�+𝐿𝐿8(−𝑐𝑐4𝐿𝐿0+𝑐𝑐24𝐿𝐿7+(𝐿𝐿5+𝐿𝐿6)𝑠𝑠24−(𝐿𝐿9+𝐿𝐿10)𝑠𝑠45)�𝑢𝑢19
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45)

𝛿𝛿7�̇�𝛿7+(𝑐𝑐4𝐿𝐿0−𝑐𝑐24𝐿𝐿7−𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠24+(𝐿𝐿9+𝐿𝐿10)𝑠𝑠45)𝛿𝛿8�̇�𝛿8
(𝐿𝐿9+𝐿𝐿10)(𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝛿𝛿8−(𝐿𝐿5+𝐿𝐿6)𝑠𝑠25+𝐿𝐿8𝑠𝑠45) ⎠

⎟⎟
⎞
𝑐𝑐5𝑢𝑢1 + 𝑠𝑠5�̇�𝑢1

⎠

⎟
⎟
⎞
𝑓𝑓1���⃗ +        (3.43) 

         

⎝

⎜
⎜
⎜
⎛
−

⎝

⎜
⎜
⎜
⎛

�𝑞𝑞8�−𝑐𝑐24�𝐿𝐿5+𝐿𝐿6�+𝑐𝑐45�𝐿𝐿9+𝐿𝐿10�−𝐿𝐿0𝑠𝑠4+𝐿𝐿7𝑠𝑠24��𝑢𝑢19
�𝐿𝐿9+𝐿𝐿10��𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝑞𝑞8−�𝐿𝐿5+𝐿𝐿6�𝑠𝑠25+𝐿𝐿8𝑠𝑠45�

+

�+𝐿𝐿8�−𝑐𝑐4𝐿𝐿0+𝑐𝑐24𝐿𝐿7+�𝐿𝐿5+𝐿𝐿6�𝑠𝑠24−�𝐿𝐿9+𝐿𝐿10�𝑠𝑠45��𝑢𝑢19
�𝐿𝐿9+𝐿𝐿10��𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝑞𝑞8−�𝐿𝐿5+𝐿𝐿6�𝑠𝑠25+𝐿𝐿8𝑠𝑠45�

𝑞𝑞7�̇�𝑞7+�𝑐𝑐4𝐿𝐿0−𝑐𝑐24𝐿𝐿7−𝑞𝑞8−�𝐿𝐿5+𝐿𝐿6�𝑠𝑠24+�𝐿𝐿9+𝐿𝐿10�𝑠𝑠45�𝑞𝑞8�̇�𝑞8
�𝐿𝐿9+𝐿𝐿10��𝑐𝑐5𝐿𝐿0−𝑐𝑐25𝐿𝐿7−𝑐𝑐45𝑞𝑞8−�𝐿𝐿5+𝐿𝐿6�𝑠𝑠25+𝐿𝐿8𝑠𝑠45� ⎠

⎟
⎟
⎟
⎞
𝑠𝑠5𝑢𝑢1 + 𝑐𝑐5�̇�𝑢1

⎠

⎟
⎟
⎟
⎞
𝑓𝑓2���⃗ + 

    �̇�𝑢25𝑓𝑓3��⃗   

𝑁𝑁𝛼𝛼𝐶𝐶 = (−𝑠𝑠6�̇�𝑢1 − 𝑐𝑐6𝑢𝑢1𝑢𝑢31)𝑔𝑔1����⃗ +  (𝑐𝑐6�̇�𝑢1 − 𝑠𝑠6𝑢𝑢1𝑢𝑢31)𝑔𝑔2����⃗ + �̇�𝑢31𝑔𝑔3����⃗  

3.3. DYNAMICS OF THE DRAGLINE FRONT-END ASSEMBLY 

The dynamic analysis of any mechanical system deals with the formulation of its 

equations of motions. These equations are a set of differential equations that relate the 
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forces and torques applied to a system to its motion variables. The differential order of an 

EOM changes according to the theory used to find these equations. In most cases, a second 

order ordinary differential equations (ODE) of motion are obtained and solved using 

general ODE solvers. A common practice to formulate the EOM is to use Newton-Euler, 

Euler-Lagrange, and Hamilton’s Equations, which yield very lengthy hand calculations. In 

addition to that, the fidelity of the model is questionable as a result of eliminating major 

components. The aim of building a dynamic model is to understand the behavior of the 

machine under transient loading. The variations in forces and torques over one cycle of 

operation can be significant and lead to a reduction of the dragline performance. The more 

loading hysteresis happen, the quicker failure happens. Consequently, the performance 

becomes unacceptable.             

The construction of EOM of the dragline front-end assembly is very problematic as 

this assembly contains complex structures with a closed loop. To avoid this difficulty, it 

should be a representative model to capture the essential operations of the dragline. The 

current research uses Kane’s method (Kane and Levinson, 1985) to find the torques and 

forces of a real dragline operation. The inertia forces and torques of the massive structures 

are calculated using Newton-Euler equations. The EOM of the dragline are developed for 

the machine house, hoist rope, and drag rope, which are the control state variables that any 

real dragline uses to operate. The use of Kane’s method yield a compact form of EOM, 

which are suitable for control purposes. The EOMs are differential algebraic equations of 

a differential index order 2. The choice of Kane’s method eliminates the need for creating 

free body diagram (FBD) of every link as used in Newton-Euler formulation. In other 

words, the reaction forces are considered as noncontributing forces and eliminated from 
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the analysis. Thus, the dragline dynamics is advanced and expanded to provide a more 

accurate assessment of the dragline performance by the inclusion of accurate contributing 

forces in the dynamic analysis.    

  Inertia Torques of the Structural Components.  In addition to linear and 

angular accelerations, inertia torques are required for calculating generalized inertia forces 

of the machine house, boom structure, boom-point sheave, and hoist, dump, and drag ropes. 

Kane and Levinson (1985) defined the inertia torques 𝑇𝑇𝐾𝐾∗ of a link K as given in equation 

(3.43). However, this representation is provided on the basis of derivation of the central 

angular momentum of a rigid body in a reference frame C. Equation (3.44) may yield 

misleading results in a case of a massive structure that weighs hundred tons like the rigging 

system of the dragline. To rectify this limitation, a complete representation of the moment 

of inertia tensors are used and a 3-D design of the dragline front-end assembly is done in 

SolidWorks. The CAD design provides an accurate estimate to the central moments of 

inertia and product of inertia for every structure with a truncated error. Thus, an accurate 

estimation of the generalized inertia torques can be done based on equation (3.45) and some 

manipulation. The resulting inertia torque vectors are provided in the Appendix A.         

𝑇𝑇𝐾𝐾∗ = −[𝛼𝛼1𝐼𝐼1 − 𝜔𝜔2𝜔𝜔3(𝐼𝐼2 − 𝐼𝐼3)]𝑐𝑐1  

         −[𝛼𝛼2𝐼𝐼2 − 𝜔𝜔3𝜔𝜔1(𝐼𝐼3 − 𝐼𝐼1)]𝑐𝑐2 

         −[𝛼𝛼3𝐼𝐼3 − 𝜔𝜔1𝜔𝜔2(𝐼𝐼1 − 𝐼𝐼2)]𝑐𝑐3                                                            (3.44) 

𝛼𝛼𝑖𝑖 and 𝜔𝜔𝑖𝑖 are, respectively, the first derivative of the angular velocity vector in the 

direction 𝑐𝑐𝑖𝑖 and generalized speed 𝑢𝑢𝑖𝑖 of link K. 𝐼𝐼𝑖𝑖 (i=1,2,3) is the inertia dyadic of K. 𝑐𝑐1, 

𝑐𝑐2, 𝑐𝑐3 are the dextral set of unit vectors parallel to the principal axes of link K.  

𝑇𝑇𝐾𝐾∗ =  −𝛼𝛼𝐾𝐾. 𝐼𝐼𝐾𝐾𝑖𝑖/𝐾𝐾𝑖𝑖∗ − 𝜔𝜔��⃗ 𝐾𝐾 × 𝐼𝐼𝐾𝐾𝑖𝑖/𝐾𝐾𝑖𝑖∗ .𝜔𝜔��⃗ 𝐾𝐾       (3.45) 

 𝐼𝐼𝐾𝐾𝑖𝑖/𝐾𝐾𝑖𝑖∗ is the inertia dyadic of body 𝐾𝐾𝑖𝑖 about its COM 𝐾𝐾𝑖𝑖∗. 
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 Kane’s Method. The construction of EOM using Kane method is systematic  

and leads to a compact form of equations. The equations are first order DAE in terms of 

generalized speeds derivatives (�̇�𝑢1, �̇�𝑢19 and �̇�𝑢31), which are the accelerations in the 

Newton-Euler formulation. It is important to note that the independent generalized speed 

�̇�𝑢1 of the machine angular motion is known and can be prescribed as a trapezoidal function 

of time. However, other quantities �̇�𝑢19 and �̇�𝑢31are unknown and can only be found from 

the integration of the constraints equations at the acceleration level. When both the hoist 

and drag ropes change their respective lengths, these values change as well to control the 

bucket. The integration of these accelerations leads to their angular velocities and a further 

integration allows the dynamic derivation of the bucket position at each time. Thus, the 

dynamics model of the dragline using Kane’s method is an advanced model that can be 

used to improve the performance of the machine.  

The Kane’s method eliminates the non-working forces that are orthogonal to the 

tangent space of the vector motion. This important property is established by a scalar 

product of both the partial velocities and Newton-Euler forces (Storch and Gates, 1989; 

Lesser, 1992). The Newton-Euler method deals with constraint forces in every link and the 

Lagrange method includes adding and finding unknown Lagrangian multipliers. These 

formulations make the derivation more complicated and are not always required for the 

subsequent analysis. Kane’s equations of motion use the multiplication of Newton law with 

the partial velocity, which is called “nonholonomic generalized inertia forces.” 

3.3.2.1 Generalized inertia forces. The derivations of velocities and accelerations 

play a prominent role in the construction of Kane’s dynamic equations. They are directly 
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used in the derivation of generalized inertia forces �𝐹𝐹�𝑟𝑟∗�𝐾𝐾 and partially helps in deriving 

generalized active forces �𝐹𝐹�𝑟𝑟�𝐾𝐾. Each body in the dragline front-end assembly contributes 

to the total generalized inertia force by the following entities defined in equation (3.46). 

�𝐹𝐹�𝑟𝑟∗�𝐾𝐾 = −𝑣𝑣�𝑟𝑟𝐾𝐾.𝑚𝑚𝐾𝐾. 𝑎𝑎𝐾𝐾∗ + 𝜔𝜔�𝑟𝑟𝐾𝐾.𝑇𝑇𝐾𝐾∗       (3.46)  

K is the 𝑘𝑘𝑡𝑡ℎ body, 𝐾𝐾 = (𝐵𝐵, … ,𝐻𝐻1), and 𝑟𝑟 represents the index of the independent 

generalized speeds associated with the system (𝑟𝑟 = 1, 19, 31 ). Spanning equation (3.46) 

over all bodies in the front-end assembly yields equation (3.47). 

𝐹𝐹�𝑟𝑟∗ = −𝑚𝑚𝐵𝐵.𝑣𝑣�𝑟𝑟𝐵𝐵
∗ .𝑎𝑎𝐵𝐵∗ + 𝜔𝜔�𝑟𝑟𝐵𝐵.𝑇𝑇𝐵𝐵∗ − 𝑚𝑚𝐶𝐶 . 𝑣𝑣�𝑟𝑟𝐶𝐶

∗ .𝑎𝑎𝑐𝑐∗ + 𝜔𝜔�𝑟𝑟𝑐𝑐.𝑇𝑇𝑐𝑐∗  

         −𝑚𝑚𝐸𝐸 . 𝑣𝑣𝑟𝑟𝐸𝐸
∗ . 𝑎𝑎𝐸𝐸∗ + 𝜔𝜔�𝑟𝑟𝐸𝐸 .𝑇𝑇𝐸𝐸∗ − 𝑚𝑚𝐺𝐺 . 𝑣𝑣�𝑟𝑟𝐺𝐺

∗ .𝑎𝑎𝐺𝐺∗ + 𝜔𝜔�𝑟𝑟𝐺𝐺 .𝑇𝑇𝐺𝐺∗      (3.47) 

         −𝑚𝑚𝐷𝐷 .𝑣𝑣𝑟𝑟𝐷𝐷
∗ .𝑎𝑎𝐷𝐷∗ + 𝜔𝜔�𝑟𝑟𝐷𝐷.𝑇𝑇𝐷𝐷∗ −𝑚𝑚𝐹𝐹 . 𝑣𝑣�𝑟𝑟𝐹𝐹

∗ .𝑎𝑎𝐹𝐹∗ + 𝜔𝜔�𝑟𝑟𝐹𝐹 .𝑇𝑇𝐹𝐹∗ 

         −𝑚𝑚𝐻𝐻1 . 𝑣𝑣�𝑟𝑟
𝐻𝐻1 . 𝑎𝑎𝐻𝐻1 − 𝑚𝑚𝐹𝐹1 . 𝑣𝑣�𝑟𝑟

𝐹𝐹1 .𝑎𝑎𝐹𝐹1                                                          

𝑚𝑚𝐵𝐵 represents the mass of the machine housing and its mast; 𝑚𝑚𝐶𝐶 is the mass of the 

boom structure; 𝑚𝑚𝐷𝐷 is the mass of boom-point sheave; and 𝑚𝑚𝐸𝐸  and 𝑚𝑚𝐺𝐺 are the mass flow 

of the hoist and drag ropes during the simulation. The mass flow changes as the velocity 

of each rope changes in magnitude and direction over time. Previous research studies have 

considered these entities as constants, which are not relevant to a real dragline. 𝑚𝑚𝐹𝐹1  is the 

mass of the drag chain; and 𝑚𝑚𝐹𝐹 is the dump rope mass. 𝑚𝑚𝐻𝐻1 represents the mass of the 

bucket, which is a function of time, filling factor, and material properties of overburden. 

The nonholonomic partial velocity vectors, 𝑣𝑣�𝑟𝑟𝐾𝐾
∗ , and the nonholonomic partial angular 

velocity vectors 𝜔𝜔�𝑟𝑟𝐾𝐾 are defined in Table 3.4. They are used along with accelerations and 

inertia torques to directly assemble equation (3.47).  



 

 

92 

For an index 𝑟𝑟 = 1, and with the aid of equations (3.42-3.47), the generalized 

inertia force 𝐹𝐹�1∗ is given in equation (3.48).  

𝐹𝐹�1∗ =  𝑋𝑋11 �̇�𝑢1 +  𝑍𝑍6           (3.48) 

𝑋𝑋11 = −𝐵𝐵22 − 𝑐𝑐22𝐶𝐶22 − 𝑐𝑐42𝐷𝐷22 − 𝑐𝑐42𝐸𝐸22 − 𝑐𝑐52𝐹𝐹22 − 𝑐𝑐62𝐺𝐺22 − 𝐿𝐿112 𝑚𝑚𝐵𝐵 − (𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 +

𝐿𝐿11)2𝑚𝑚𝐶𝐶 − 𝑚𝑚𝐺𝐺(𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)2 − 𝑚𝑚F1(𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)2 − 𝐶𝐶11𝑠𝑠22 − 𝑚𝑚𝐷𝐷(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 +

𝑐𝑐2𝐿𝐿6 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)2 − 𝑚𝑚𝐸𝐸(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)2 − 𝑚𝑚𝐹𝐹(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 +

𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)2 − 𝑚𝑚H1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 +

𝐿𝐿7𝑠𝑠2)2 − 𝐷𝐷11𝑠𝑠42 − 𝐸𝐸11𝑠𝑠42 − 𝐹𝐹11𝑠𝑠52 − 𝐺𝐺11𝑠𝑠62        (3.49)  

𝑍𝑍6 = 𝑚𝑚𝐸𝐸(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)(−0.5𝑐𝑐4𝑞𝑞8 − 𝐿𝐿8𝑠𝑠4)𝑢𝑢1𝑢𝑢19 − 𝑚𝑚𝐹𝐹(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 +

𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)(𝑐𝑐4𝑞𝑞8 + 𝐿𝐿8𝑠𝑠4)𝑢𝑢1𝑢𝑢19 − 𝑚𝑚H1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 +

𝐿𝐿11 + 𝐿𝐿12 + 𝐿𝐿7𝑠𝑠2)(𝑐𝑐4𝑞𝑞8 + 𝐿𝐿8𝑠𝑠4)𝑢𝑢1𝑢𝑢19 − 𝑚𝑚F1(𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)(𝑐𝑐456𝑞𝑞8 + 𝐿𝐿8𝑠𝑠456)𝑢𝑢1𝑢𝑢19 −

2𝑐𝑐5𝐹𝐹11𝑠𝑠5𝑢𝑢1𝑢𝑢25 + 2𝑐𝑐5𝐹𝐹22𝑠𝑠5𝑢𝑢1𝑢𝑢25 − 𝐿𝐿9𝑚𝑚𝐹𝐹(𝐿𝐿3 + 𝑐𝑐2(𝐿𝐿5 + 𝐿𝐿6) + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 +

𝐿𝐿7𝑠𝑠2)𝑠𝑠5𝑢𝑢1𝑢𝑢25 − 𝑚𝑚H1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 + 𝐿𝐿7𝑠𝑠2) (𝑐𝑐5𝐿𝐿13 + 𝐿𝐿9𝑠𝑠5 −

𝐿𝐿12𝑠𝑠5)𝑢𝑢1𝑢𝑢25 − 0.5𝑚𝑚𝐺𝐺(𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)𝑞𝑞7𝑠𝑠6𝑢𝑢1𝑢𝑢31 + 𝑚𝑚F1(𝐿𝐿1 + 𝐿𝐿11 + 𝑞𝑞7)𝑢𝑢1(−𝑐𝑐6𝐿𝐿13𝑢𝑢25 +

𝐿𝐿9𝑠𝑠6𝑢𝑢25 − 𝐿𝐿12𝑠𝑠6𝑢𝑢25 − �̇�𝑞7) − 0.5𝑚𝑚𝐺𝐺(𝐿𝐿1 + 𝐿𝐿11 + 0.5𝑞𝑞7)𝑢𝑢1�̇�𝑞7      (3.50) 

Trigonometric functions 𝑐𝑐456 and 𝑠𝑠456 refer to the 𝐶𝐶𝐶𝐶𝑠𝑠(𝑞𝑞4 + 𝑞𝑞5 + 𝑞𝑞6) and 𝑆𝑆𝑖𝑖𝑛𝑛(𝑞𝑞4 +

𝑞𝑞5 + 𝑞𝑞6). The generalized inertia force related to the index 𝑟𝑟 = 19 is given in equation 

(3.51). 

𝐹𝐹�19∗ = −𝑋𝑋22 �̇�𝑢19 +  𝑍𝑍7          (3.51) 

𝑋𝑋22 = 𝐷𝐷33 + 𝐸𝐸33 + 𝐿𝐿82(𝑚𝑚𝐸𝐸 + 𝑚𝑚𝐹𝐹 + 𝑚𝑚H1) + (0.25𝑚𝑚𝐸𝐸 + 𝑚𝑚𝐹𝐹 + 𝑚𝑚H1)𝑞𝑞82     (3.52) 
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𝑍𝑍7 = (0.5𝑐𝑐4𝑚𝑚𝐸𝐸𝑞𝑞8(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2) − 𝑐𝑐4𝐷𝐷11𝑠𝑠4 + 𝑐𝑐4𝐷𝐷22𝑠𝑠4 −

𝑐𝑐4𝐸𝐸11𝑠𝑠4 + 𝑐𝑐4𝐸𝐸22𝑠𝑠4 + 𝐿𝐿8𝑚𝑚𝐸𝐸(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑠𝑠4 + 𝑐𝑐5𝑚𝑚𝐹𝐹(𝐿𝐿3 +

𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) + 𝑐𝑐5𝑚𝑚H1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 +

𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 + 𝐿𝐿7𝑠𝑠2)(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) −𝑚𝑚𝐹𝐹(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 +

𝐿𝐿11 + 𝐿𝐿7𝑠𝑠2)𝑠𝑠5(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) −𝑚𝑚H1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 +

𝐿𝐿7𝑠𝑠2)𝑠𝑠5(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45))𝑢𝑢12 + (−𝑐𝑐45𝐿𝐿8𝑚𝑚𝐹𝐹(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) − 𝑐𝑐45𝐿𝐿8𝑚𝑚H1(𝑐𝑐45𝑞𝑞8 +

𝐿𝐿8𝑠𝑠45) + 𝑚𝑚𝐹𝐹𝑞𝑞8𝑠𝑠45(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) + 𝑚𝑚H1𝑞𝑞8𝑠𝑠45(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) + 𝑐𝑐45𝑚𝑚𝐹𝐹𝑞𝑞8(𝑐𝑐45𝐿𝐿8 −

𝑞𝑞8𝑠𝑠45) + 𝑐𝑐45𝑚𝑚H1𝑞𝑞8(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) + 𝐿𝐿8𝑚𝑚𝐹𝐹𝑠𝑠45(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) + 𝐿𝐿8𝑚𝑚H1𝑠𝑠45(𝑐𝑐45𝐿𝐿8 −

𝑞𝑞8𝑠𝑠45))𝑢𝑢192 − 𝐿𝐿9𝑚𝑚𝐹𝐹(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢252 − 𝐿𝐿9𝑚𝑚H1(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢252 + 𝐿𝐿12𝑚𝑚H1(𝑐𝑐45𝑞𝑞8 +

𝐿𝐿8𝑠𝑠45)𝑢𝑢252 − 𝐿𝐿13𝑚𝑚H1(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)𝑢𝑢252 + 𝑢𝑢19(−0.25𝑚𝑚𝑒𝑒𝑞𝑞8�̇�𝑞8 − 𝑐𝑐45𝑚𝑚𝐹𝐹(𝑐𝑐45𝑞𝑞8 +

𝐿𝐿8𝑠𝑠45)�̇�𝑞8 − 𝑐𝑐45𝑚𝑚H1(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)�̇�𝑞8 + 𝑚𝑚𝐹𝐹𝑠𝑠45(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45)�̇�𝑞8 + 𝑚𝑚H1𝑠𝑠45(𝑐𝑐45𝐿𝐿8 −

𝑞𝑞8𝑠𝑠45)�̇�𝑞8)               (3.53) 

The generalized inertia force associated with 𝑟𝑟 = 31 is given in equation (3.54). 

𝐹𝐹�31∗ = −𝑋𝑋33 �̇�𝑢31 +  𝑍𝑍8          (3.54)  

𝑋𝑋33 = 𝐺𝐺33 + 0.25𝑚𝑚𝐺𝐺𝑞𝑞72 + 𝑚𝑚F1(1 + 𝑞𝑞72)        (3.55) 

𝑍𝑍8 = (𝑐𝑐6𝑚𝑚F1(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 + 𝐿𝐿7𝑠𝑠2) − 𝑐𝑐6𝐺𝐺11𝑠𝑠6 + 𝑐𝑐6𝐺𝐺22𝑠𝑠6 +

0.25𝑚𝑚𝐺𝐺𝑞𝑞7(2. 𝐿𝐿1 + 2. 𝐿𝐿11 + 𝑞𝑞7)𝑠𝑠6 + 𝑚𝑚F1𝑞𝑞7(𝐿𝐿3 + 𝑐𝑐2𝐿𝐿5 + 𝑐𝑐2𝐿𝐿6 + 𝐿𝐿8 − 𝐿𝐿9 + 𝐿𝐿11 + 𝐿𝐿12 +

𝐿𝐿7𝑠𝑠2)𝑠𝑠6)𝑢𝑢12 + 𝑢𝑢31(−𝑚𝑚F1(−𝑐𝑐45𝐿𝐿8𝑢𝑢19 + 𝑞𝑞8𝑠𝑠45𝑢𝑢19 + (𝐿𝐿9 − 𝐿𝐿12)𝑢𝑢25) − 0.25𝑚𝑚𝐺𝐺𝑞𝑞7�̇�𝑞7 −

𝑚𝑚F1𝑞𝑞7((𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45)𝑢𝑢19 + 𝐿𝐿13𝑢𝑢25 + �̇�𝑞7))        (3.56) 

3.3.2.2 Generalized active forces. The construction of equations of motion using  

KM requires defining the generalized active forces, as well. The generalized active forces 

are the projection of the contributing forces on a tangent space of motion. This projection 
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automatically leads to the cancellation of nonworking forces. A mathematical definition of 

the generalized active forces is given in equation (3.57) (Kane and Levinson, 1985). 

𝐹𝐹�𝑟𝑟 = ∑ 𝑣𝑣�𝑟𝑟
𝑝𝑝𝑖𝑖 .𝑅𝑅𝑖𝑖𝑎𝑎

𝑖𝑖=1               (𝑟𝑟 =  1, … ,𝑃𝑃)                                              (3.57) 

𝑣𝑣�𝑟𝑟
𝑃𝑃𝑖𝑖 is the nonholonomic partial velocity of a particle 𝑃𝑃𝑖𝑖  in a reference frame; 𝑅𝑅𝑖𝑖 is 

the resultant of all contact forces and distance forces acting on 𝑝𝑝𝑖𝑖. The definition in 

equation (3.57) allows the calculation of the contribution of all gravity forces acting of 

each link’s COM as provided in equation (3.58). 

�𝐹𝐹�𝑟𝑟�𝐺𝐺 = 𝑉𝑉�𝑟𝑟𝐵𝐵
∗ . �⃗�𝐺𝐵𝐵 + 𝑉𝑉�𝑟𝑟𝐶𝐶

∗ . �⃗�𝐺𝐶𝐶 + 𝑉𝑉�𝑟𝑟𝐷𝐷
∗ . �⃗�𝐺𝐷𝐷  + 𝑉𝑉�𝑟𝑟𝐸𝐸

∗ . �⃗�𝐺𝐸𝐸 +  

               𝑉𝑉�𝑟𝑟𝐹𝐹
∗ . �⃗�𝐺𝐹𝐹 + 𝑉𝑉�𝑟𝑟𝐺𝐺

∗ . �⃗�𝐺𝐶𝐶 + 𝑉𝑉�𝑟𝑟
𝐹𝐹1 .𝐺𝐺𝐹𝐹1 + 𝑉𝑉�𝑟𝑟

𝐻𝐻1 . �⃗�𝐺𝐻𝐻1                                                (3.58) 

�⃗�𝐺𝐵𝐵 represents the resultant gravity force acting on 𝐺𝐺∗. It acts downward, where the 

partial velocity, 𝑉𝑉�⃗ 𝐵𝐵∗ , is calculated in the reference frame (𝐵𝐵). Thus, one has to express the 

gravity force of each link in its local reference frame. The gravity force of each link is 

given in equations (3.59).  

�⃗�𝐺𝐵𝐵 = −𝑔𝑔 𝑚𝑚𝐵𝐵𝑏𝑏�⃗ 2                                        �⃗�𝐺𝐶𝐶 = −𝑔𝑔 𝑚𝑚𝐶𝐶(−𝑠𝑠2𝑐𝑐1 − 𝑐𝑐2𝑐𝑐2) 

𝐺𝐺𝐷𝐷 = −𝑔𝑔𝑚𝑚𝐷𝐷�𝑠𝑠3𝑑𝑑1����⃗ − 𝑐𝑐3𝑑𝑑2�                     �⃗�𝐺𝐸𝐸 = −𝑔𝑔 𝑚𝑚𝐸𝐸(𝑠𝑠4𝑒𝑒1 − 𝑐𝑐4𝑒𝑒2) 

�⃗�𝐺𝐹𝐹 = −𝑔𝑔𝑚𝑚𝐹𝐹�−𝑠𝑠5𝑓𝑓1���⃗ − 𝑐𝑐5𝑓𝑓2�                    �⃗�𝐺𝐺𝐺 = −𝑔𝑔 𝑚𝑚𝐺𝐺(𝑠𝑠6�⃗�𝑔1 − 𝑐𝑐6�⃗�𝑔2)     

�⃗�𝐺𝐻𝐻1 = −𝑔𝑔𝑚𝑚𝐻𝐻1�−𝑠𝑠5𝑓𝑓1���⃗ − 𝑐𝑐5𝑓𝑓2�                 𝐺𝐺𝐹𝐹1 = −𝑔𝑔 𝑚𝑚𝐺𝐺(𝑠𝑠6�⃗�𝑔1 − 𝑐𝑐6�⃗�𝑔2)     

The contribution to the generalized active forces of gravity forces expressed in 

equation (3.59). There are other forces that contribute to 𝐹𝐹𝑟𝑟, such as contact forces. To bring 

their effect into evidence, one can rewrite equation (3.57), such as in equation (3.60).   

   (3.59) 
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(𝐹𝐹𝑟𝑟)𝑅𝑅 = 𝑤𝑤𝑟𝑟 .𝑇𝑇 + 𝑣𝑣𝑟𝑟
𝑄𝑄 .𝑅𝑅                                                                               (3.60) 

From Kane et al. (1983), equation (3.60) is a replacement of all body and contact 

forces acting on (R) by the torque T and the force R applied to point Q of link R. 𝑣𝑣𝑟𝑟
𝑄𝑄 is the 

partial velocity of point Q in N. In equation (3.60), one can write (𝐹𝐹𝑟𝑟)𝐴𝐴, the contribution of 

all forces acting on body (B) to the generalized active forces as equation (3.61).  

(𝐹𝐹𝑟𝑟)𝐵𝐵 = 𝜔𝜔𝑟𝑟𝐵𝐵 �𝑇𝑇
𝑁𝑁
𝐵𝐵� + 𝑇𝑇𝐶𝐶 𝐵𝐵� � + 𝑣𝑣𝑟𝑟𝐵𝐵

∗ �𝑅𝑅𝑁𝑁 𝐵𝐵� + 𝐺𝐺𝐵𝐵�                                    (3.61) 

In the same manner, for bodies (C and D) these contributions are given in equations 

(3.62) and (3.63).  

(𝐹𝐹𝑟𝑟)𝐶𝐶 = 𝜔𝜔𝑟𝑟𝐶𝐶 �𝑇𝑇
𝐵𝐵
𝐶𝐶� + 𝑇𝑇𝐷𝐷 𝐶𝐶� � + 𝑣𝑣𝑟𝑟𝐶𝐶

∗ �𝑅𝑅𝐵𝐵 𝐶𝐶� + 𝐺𝐺𝐶𝐶�                                     (3.62) 

(𝐹𝐹𝑟𝑟)𝐷𝐷 = 𝜔𝜔𝑟𝑟𝐷𝐷 �𝑇𝑇
𝐷𝐷
𝐶𝐶� + 𝑇𝑇𝐸𝐸 𝐷𝐷� �+ 𝑣𝑣𝑟𝑟𝐷𝐷

∗ �𝑅𝑅𝐶𝐶 𝐷𝐷� + 𝐺𝐺𝐷𝐷�                                    (3.63) 

The contribution of all forces acting on other links E,…, 𝐻𝐻1 can be derived using 

equation (3.60) in the same fashion. The relative motion between the drag chain 𝐹𝐹1 and the 

COM (𝐺𝐺∗) of the drag rope leads to a contribution 𝑅𝑅
𝐹𝐹1

𝐺𝐺� , acting on link (𝐺𝐺) at point (𝐹𝐹1) 

and constantly coincident with (𝐺𝐺), which is given in equation (3.64).  

�𝑣𝑣𝑟𝑟
𝐹𝐹1 − 𝑣𝑣𝑟𝑟𝐺𝐺

∗�.𝑅𝑅
𝐹𝐹1

𝐺𝐺�       𝑟𝑟 =  (1,19, 31)                                                  (3.64)  

and                          𝑅𝑅
𝐹𝐹1

𝐺𝐺� = 𝜎𝜎. �⃗�𝑔𝑟𝑟                                                       (3.65) 

and                           𝜏𝜏1 = 𝑇𝑇𝑁𝑁 𝐵𝐵� . 𝑏𝑏�⃗ 2                                                     (3.66) 

                                     𝜏𝜏2 = 𝑇𝑇𝐸𝐸 𝑁𝑁� . 𝑒𝑒3         (3.67) 
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Equations (3.59-3.67) lead to the sum of the contributions to the generalized active 

forces of all gravity forces and actuator forces acting on the system and is given in equation 

(3.68). The actuator that controls the motion of the hoist rope, which provides a torque 𝜏𝜏2, 

is placed at the COM of boom-point sheave. This assumption is acceptable from the control 

theory and eliminates the need to include the constant length of hoist rope from the machine 

house to the end of the boom. Thus, the expanded form of the generalized active forces is 

given in equation (3.68). However, there is also the effect of the friction between the 

dragline bucket and the overburden at the cutting tip. Another effect plays a role into the 

generalized forces 𝐹𝐹𝑟𝑟, which is the frictional contact between the drag rope and digging 

face. These effects must be included in the final from of the generalized active forces to 

make the analysis more accurate from operational stand point. 

𝐹𝐹𝑟𝑟 = 𝜏𝜏1.𝜔𝜔�𝑟𝑟𝐵𝐵. 𝑏𝑏�⃗ 2 + 𝜏𝜏2.𝜔𝜔�𝑟𝑟𝐸𝐸 . 𝑒𝑒3 + 𝜎𝜎�𝑉𝑉𝑟𝑟
𝐹𝐹1 − 𝑉𝑉𝑟𝑟𝐺𝐺

∗�.𝑔𝑔1����⃗   

         +𝑣𝑣�𝑟𝑟𝐵𝐵
∗ . �⃗�𝐺𝐵𝐵 + 𝑣𝑣�𝑟𝑟𝐶𝐶

∗ . �⃗�𝐺𝐶𝐶 + 𝑣𝑣�𝑟𝑟𝐷𝐷
∗ . �⃗�𝐺𝐷𝐷 + 𝑣𝑣�𝑟𝑟𝐸𝐸

∗ . �⃗�𝐺𝐸𝐸                                         (3.68) 

         +𝑣𝑣�𝑟𝑟𝐹𝐹 . �⃗�𝐺𝐹𝐹 + 𝑣𝑣�𝑟𝑟𝐺𝐺
∗ . �⃗�𝐺𝐺𝐺 + 𝑣𝑣�𝑟𝑟

𝐹𝐹1 . �⃗�𝐺𝐹𝐹1 + 𝑣𝑣𝑟𝑟
𝐻𝐻1 .𝐺𝐺𝐻𝐻1   (𝑟𝑟 =  1,19, 31) 

The drag force (𝜎𝜎) is provided to simulate the effect of the drag motion of the 

bucket on the top of soil and is established as a result of placing a drag motor at point (𝐵𝐵1). 

This provides a relative motion of the drag chains and drag rope with respect to the machine 

house. The cutting force provided by dragging the heavy bucket into the bank should also 

be considered in the dynamic equations.  

3.3.2.3 Dynamics of the dragline bucket. The dragline bucket and its structural 

elements (drag chains, hoist chains, trunnions, and spreaders) are designed to surmount the 
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harsh digging environments, speed up the filling and dumping processes, and maximize 

the productivity. The dump rope is also a critical component in the rigging system and its 

length affects the bucket carry angle and the direction of the cutting force. The bucket 

motion is controlled by a constant dragging speed of magnitude of about 1.32 m/s (4.33 

ft/s) that guarantees the filling of the bucket in 10 seconds. The rigging system must be 

operated to orient the bucket properly before the digging starts. Improper bucket-ground 

engagements cause more vibrations and friction between the rigging system elements. It 

also reduces the effectiveness of cutting and filling and reduces the longevity of the rigging 

system. The dynamic nature of bucket-ground contact is a complex phenomenon, and thus, 

this research is limited to the effect of cutting resistance force on the overall dynamics of 

the machine.         

• Bucket cutting force. The motion of dragline bucket into the overburden during 

digging phase generates cutting forces at its teeth, which vary with the travelling speed of 

the bucket and the material properties of the soil. In general, except for chop cutting, the 

dragline bucket digs the overburden at an inclined surface. The cutting force is, thus, a 

function of the digging face angle, cutting angle (qc), and the orientation of the dump rope 

in the machine reference frame (q5). The components of the bucket cutting resistance force 

associated with a reference frame (F), located at the COM of dump rope, can be modelled 

using equation (3.69).  

𝐹𝐹𝑐𝑐���⃗ = 𝐹𝐹𝑐𝑐𝑖𝑖. 𝑐𝑐𝐶𝐶𝑠𝑠(𝑐𝑐𝑎𝑎). cos(𝑞𝑞5)𝑓𝑓1���⃗ − 𝐹𝐹𝑐𝑐𝑖𝑖. 𝑐𝑐𝐶𝐶𝑠𝑠(𝑐𝑐𝑎𝑎). sin(𝑞𝑞5)𝑓𝑓2���⃗       (3.69) 

Assuming that the bucket drag velocity is �̇�𝑞7, which is known and using the formula 

provided by Poderni (2003), the digging force is given by equation (3.70).  
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𝐹𝐹𝑐𝑐𝑖𝑖 = 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖 (1+𝜆𝜆0) 𝐾𝐾𝐹𝐹
𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛.𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖.𝐾𝐾𝑝𝑝 

           (3.70) 

𝐸𝐸𝑏𝑏𝑢𝑢𝑐𝑐𝑘𝑘𝑒𝑒𝑖𝑖 is the capacity of the dragline bucket (m3); 𝜆𝜆0 is the ratio of the volume of 

the prism drawn to the volume of the bucket; 𝐾𝐾𝐹𝐹 is a coefficient of specific resistance to 

digging; 𝐾𝐾𝑛𝑛𝑛𝑛𝑛𝑛 is the ratio of the bucket filling path to the length of the bucket 𝑙𝑙𝑝𝑝𝑎𝑎𝑖𝑖ℎ
𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖

; 

𝑙𝑙𝑏𝑏𝑢𝑢𝑐𝑐𝑘𝑘𝑒𝑒𝑖𝑖 is the bucket length; and 𝑘𝑘𝑝𝑝 is a coefficient of loosening of the rock in the bucket 

(Poderni, 2003). 𝐾𝐾𝐹𝐹 is 0.12 × 106 𝑁𝑁/𝑚𝑚2 for loose sands and rocks and 0.29 × 106 for a 

medium type, 𝜆𝜆0 is 0.4 for a loose category of rock and is 0.3 for a medium type, and 𝐾𝐾𝑝𝑝 is 

1.25 for a loose type rock and 1.3 for a medium type.  

Field observations of the dragline operations show that the dragline bucket 

rotational motion is very short and takes place when the bucket starts to engage the bank. 

The translational motion is dominant during material excavation. The cutting resistance 

force in equation (3.70) accounts for the translational motion on the digging face and the 

capacity of the bucket. The continuous motion of the bucket under a constant velocity 

�̇�𝑞7(m/s) makes the overburden pile up to a height ℎ(𝑞𝑞7). This height can be found from the 

conditions of static equilibrium as there is no inertia effect of the loaded materials in the 

bucket. By taking the FBD of the bucket as shown in Figure 3.3, under a static equilibrium 

condition and no hoist force acts on the bucket, the height of overburden being piled-up in 

the bucket is given by equation (3.71).  

ℎ(𝑞𝑞7) = 
𝑛𝑛𝐻𝐻1 .𝜌𝜌 

𝐹𝐹𝑏𝑏.𝐶𝐶𝑜𝑜𝑠𝑠(𝛿𝛿𝑏𝑏)
         (3.71) 

𝑚𝑚𝐻𝐻1 is the bucket tare mass + overburden mass. Overburden mass changes as a 

function of digging time 𝑡𝑡𝑑𝑑𝑖𝑖𝜌𝜌, which can be found from an elementary formula 
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(𝑞𝑞7/�̇�𝑞7). The dragging speed (�̇�𝑞7) is a known function of time and is related to the diameter 

of the winding drag drum and its angular velocity. The hoisting force is least during the 

process of digging since the hoist rope is flaccid during the digging motion. However, it 

may slightly increase to properly reorient the bucket for facing the bank. In other words, it 

does not contribute to the cutting resistance force. The line of action of the drag force in 

the bucket dynamics model (Figure 3.3) intercepts the lines of action of cutting force and 

bucket weight. Thus, static equilibrium is used to define the height of cut.  

 
 
 

 

Figure 3.3. Dragline bucket and rigging dynamics 

 

 
 
Demirel (2007) estimated the cutting force of a dragline bucket from the dynamics 

equilibrium of the bucket-rigging system using the hoist and drag forces. It should be 
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clarified that the cutting force must be developed only based on material properties, cutting 

tool shape, filling sequence and the bucket capacity. Thus, equations (3.71) and (3.69) are 

now sufficient to provide a good estimation of bucket cutting force.  

• Payload model of dragline bucket. The aim for using draglines in strip mining  

operations is to efficiently and economically dig and dump materials in a short cycle of 

60s. To achieve this goal, the dragline bucket design must allow for a quick filling process, 

reduce the friction between bucket and dirt, and increase the load carrying capacities. Thus, 

increasing the tare weight of a dragline bucket affects the payloads and has adverse effects 

on the productivity. A simplified model of the bucket payload is proposed using the 

simulation results from EDEM package (Li et al., 2017). The equation (3.72) is derived by 

interpolation and is a linear function of digging time (tdig).      

𝑚𝑚𝐻𝐻1 = 𝑚𝑚𝑜𝑜𝑎𝑎𝑒𝑒𝑟𝑟𝑏𝑏𝑢𝑢𝑟𝑟𝑑𝑑𝑒𝑒𝑛𝑛 + 𝑚𝑚𝑏𝑏𝑢𝑢𝑐𝑐𝑘𝑘𝑒𝑒𝑖𝑖  

                    = 3,400.18 𝑡𝑡𝑑𝑑𝑖𝑖𝜌𝜌 + 30,000.4(𝑘𝑘𝑔𝑔)        (3.72) 

The value of 30,000.4 (kg) of the 𝑚𝑚𝑏𝑏𝑢𝑢𝑐𝑐𝑘𝑘𝑒𝑒𝑖𝑖 is accurately estimated using 3D CAD 

model of a dragline bucket designed in SolidWorks (Figure 3.3). The tare weight of bucket 

plus the weight of loaded materials and including the breakout forces must be within the 

allowable dragline load limits provided by the manufacturers.  

• Drag rope and overburden contact model. The digging process in any dragline 

should be smooth, stable with as much reduced vibration on drag ropes and chains as 

possible. Inefficient dragging and digging increase the digging time resulting in low 

productivity. They also cause much wear and tear on the drag rope and its chains. Thus, 

the drag ropes and chains may break before their scheduled maintenance periods. 
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Sometimes the drag ropes come into direct contact with the ground during the 

bucket filling process. Thus, the dynamic equations of the front-end assembly must include 

this effect. The drag rope can be partially immersed in the dirt, which results in friction 

forces that reduce its useful service life. If the end of the drag rope 𝐹𝐹1 (Figure 3.2) is 

partially submerged at a depth of (𝑑𝑑𝑟𝑟 . 𝑏𝑏2����⃗ ), a portion of the drag rope 𝐹𝐹1𝐹𝐹2��������⃗  is subjected to 

static and dynamic frictional forces, which acts at the COM of 𝐹𝐹2𝐹𝐹1��������⃗ . The depth of the 

submerged part can be estimated from the kinematics of the drag rope established earlier 

and is given in equation (3.73). The kinematics model of the link-granular material contact 

is depicted in Figure 3.4 and contains one link. However, multigrid links may be 

constructed when sufficient boundary conditions about each link orientation exist.   

y(t) = �q7(0) sin�q6(0)�  − q7(t)sin(q6(t))�       (3.73) 

B1F3���������⃗ = q7(t) − 
0.5 y(t)
sinq6(t)

  

The position vector 𝐵𝐵1𝐹𝐹3���������⃗  defines the location of the COM of the submerged portion 

of the rope in a reference frame associated with drag rope reference frame (G). The angular 

and linear velocities of the point 𝐹𝐹3 in the drag rope reference do not vary as it is assumed 

that there is no deformation in this rope. However, its magnitude and direction change with 

respect to the machine house reference frame as the rope reels in/out on the fairlead 

sheaves. The area of contact 𝐴𝐴𝑐𝑐 can be estimated as in equation (3.74). 𝑑𝑑𝑟𝑟 represents the 

diameter of drag rope. 

Ac = dr  y(t)
Sin(q6)

            (3.74) 
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Thus, the horizontal dynamic forces due to friction are estimated by equation (3.75) (Lee 

and Marghitu, 2011). 

Fdh = −sign (vh).β. Ac. vF3,h
2             (3.75) 

v�⃗ F3 = ωG × B1F3���������⃗   

       = (1.5q7s6 − 0.5q70s60)u31 g1����⃗ + (1.5c6q7 − 0.5ct6q70s60)u31g2����⃗ + 

 (−1.5c26q7 + q70(0.5c6ct6 − 0.5s6)s60)u1g3����⃗  

𝑠𝑠60, 𝑐𝑐60, 𝑠𝑠26 and 𝑐𝑐26 are the abbreviated trigonometric functions sin(𝑞𝑞6(0)), cos(𝑞𝑞6(0)), 

sin(2 𝑞𝑞6(𝑡𝑡)), and cos(2 𝑞𝑞6(𝑡𝑡)), respectively; β is the drag coefficient of 1569.7 per 

experimental data (Lee and Marghitu, 2011).  The dynamic friction force of the submerged 

part of the drag rope due to the vertical velocity of dragging is given in equation (3.76). 

Fdv = sign(vv).β. AcVF3,v
2           (3.76)  

Hill et al. (2005) suggested equation (3.77) to estimate the vertical static friction. 

Fsv = −sign (vv) �y(t)
dc
�
λ
ηv. g. ρ. V          (3.77) 

The impeding force to the horizontal motion is proportional to the density of the 

granular material 𝜌𝜌, and 𝑉𝑉 the submerged component of the rope; and it is equal y(t)∗ 𝜋𝜋𝑑𝑑𝑏𝑏2

4 ∗𝑠𝑠6
; 

𝜂𝜂𝑎𝑎 = 10 for plunging motion; and the submerged depth 𝑑𝑑𝑟𝑟(t) and dc. The horizontal 

friction force is also given as equation (3.78). 

 Fsh = − sign(vh) y(t)2 . ηh. g. ρ. dc                    (3.78)  
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For plunging motion, 𝜆𝜆 = 1.4, 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑣𝑣ℎ) = 1, and 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛(𝑣𝑣𝑎𝑎) = −1. Their values 

indicate that the rope penetrates the medium in a vertical component that matches the 

direction of dragging and with a rotational displacement acting clockwise at 𝑞𝑞6 > 0. 

 
 
 

 

Figure 3.4. Dragline rope and granular medium dynamics 
 
 
 
The new form of generalized active forces, defined in equation (3.79), now includes 

the effects of friction between the drag rope and mine granular matter and effect of cutting 

forces at bucket tip. 

𝐹𝐹𝑟𝑟 = 𝜏𝜏1.𝜔𝜔�𝑟𝑟𝐵𝐵. 𝑏𝑏�⃗ 2 + 𝜏𝜏2.𝜔𝜔�𝑟𝑟𝐸𝐸 . 𝑒𝑒3 + 𝜎𝜎�𝑉𝑉𝑟𝑟
𝐹𝐹1 − 𝑉𝑉𝑟𝑟𝐺𝐺

∗�.𝑔𝑔1����⃗  +𝑣𝑣�𝑟𝑟𝐵𝐵
∗ . �⃗�𝐺𝐵𝐵 + 

        𝑣𝑣�𝑟𝑟𝐶𝐶
∗ . �⃗�𝐺𝐶𝐶 + 𝑣𝑣�𝑟𝑟𝐷𝐷

∗ . �⃗�𝐺𝐷𝐷 + 𝑣𝑣�𝑟𝑟𝐸𝐸
∗ . �⃗�𝐺𝐸𝐸 + 𝑣𝑣�𝑟𝑟𝐹𝐹 . �⃗�𝐺𝐹𝐹 + 𝑣𝑣�𝑟𝑟𝐺𝐺

∗ . �⃗�𝐺𝐺𝐺 + 

              𝑣𝑣�𝑟𝑟
𝐹𝐹1 . �⃗�𝐺𝐹𝐹1 + 𝑣𝑣𝑟𝑟

𝐻𝐻1 .𝐺𝐺𝐻𝐻1+ 𝑣𝑣�𝑟𝑟
𝐻𝐻1 . �⃗�𝐹𝑐𝑐𝑢𝑢𝑖𝑖 + 𝑣𝑣�𝑟𝑟

𝐹𝐹1 . �⃗�𝐹𝐹𝐹𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛   (3.79) 

The friction force equation defined according to equations (3.75-3.79) can now take 

the form of equation (3.80). 
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�⃗�𝐹𝐹𝐹𝑟𝑟𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛 = (𝐹𝐹dh + 𝐹𝐹sh).𝑔𝑔1����⃗ + (𝐹𝐹dv + 𝐹𝐹sv).𝑔𝑔2����⃗        (3.80) 

    = ((−𝑞𝑞7𝑠𝑠6 + 𝑞𝑞70𝑠𝑠60)sgnVℎ(−2.25𝛽𝛽𝑑𝑑𝑟𝑟𝑠𝑠6(1. 𝑞𝑞7𝑠𝑠6 − 0.34𝑞𝑞70𝑠𝑠60)2𝑢𝑢312 + 

𝑔𝑔𝜌𝜌𝑑𝑑𝑐𝑐(𝑞𝑞7𝑠𝑠6 − 𝑞𝑞70𝑠𝑠60)𝜂𝜂ℎ).𝑔𝑔1����⃗ + (1
4

(−𝑞𝑞7𝑠𝑠6 + 𝑞𝑞70𝑠𝑠60)sgnV𝑎𝑎(−9.𝛽𝛽𝑑𝑑𝑟𝑟𝑠𝑠6    

(1. 𝑐𝑐6𝑞𝑞7 − 0.34 𝑐𝑐𝑡𝑡6 𝑞𝑞70𝑠𝑠60)2𝑢𝑢312 − 𝑔𝑔𝑔𝑔𝜌𝜌 csc6 𝑑𝑑𝑐𝑐2(−𝛿𝛿7𝑠𝑠6+𝛿𝛿70𝑠𝑠60
𝑑𝑑𝑏𝑏

)𝜆𝜆𝜂𝜂𝑎𝑎)).𝑔𝑔2����⃗  

Constructing the corresponding generalized active forces leads to the generalized 

active forces associated with index (𝑟𝑟 = 1, 19, 31) in equations (3.81-3.83). 

𝐹𝐹�1 = 𝜏𝜏1                                                                                                       (3.81)  

𝐹𝐹�19 = 𝜏𝜏2 + 𝑍𝑍9            (3.82) 

𝐹𝐹�31 = 𝜎𝜎 + 𝑍𝑍10                                        (3.83) 

with 

𝑍𝑍9 = 𝑔𝑔.𝑚𝑚𝑒𝑒𝑐𝑐4𝐿𝐿8 − 0.5𝑔𝑔.𝑚𝑚𝑒𝑒𝑞𝑞8𝑠𝑠4 + 𝑔𝑔.𝑚𝑚𝐹𝐹𝑠𝑠5(𝑐𝑐45𝑞𝑞8 + 𝐿𝐿8𝑠𝑠45) + 𝑔𝑔.𝑚𝑚H1𝑠𝑠5(𝑐𝑐45𝑞𝑞8 +

          𝐿𝐿8𝑠𝑠45) + 𝑔𝑔.𝑚𝑚𝐹𝐹𝑐𝑐5(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) + 𝑔𝑔.𝑚𝑚H1𝑐𝑐5(𝑐𝑐45𝐿𝐿8 − 𝑞𝑞8𝑠𝑠45) +  

        𝑐𝑐𝑏𝑏𝑎𝑎𝑐𝑐5 𝐸𝐸bucket 𝑘𝑘𝐹𝐹 𝑘𝑘𝑝𝑝 𝑙𝑙bucket(𝑐𝑐45𝛿𝛿8+𝐿𝐿8𝑠𝑠45+𝑐𝑐45𝐿𝐿8−𝛿𝛿8𝑠𝑠45)(1+𝜆𝜆0)
𝑘𝑘nym

       (3.84) 

𝑍𝑍10 = 𝑔𝑔.𝑚𝑚F1𝑐𝑐6𝑞𝑞7 + 0.5𝑔𝑔.𝑚𝑚𝐺𝐺𝑐𝑐6𝑞𝑞7 − 𝑔𝑔.𝑚𝑚F1𝑠𝑠6 + (1.5𝑞𝑞7𝑠𝑠6 − 0.5𝑞𝑞70𝑠𝑠60) 

(−𝑞𝑞7𝑠𝑠6 + 𝑞𝑞70𝑠𝑠60)sgnVℎ(−2.25𝛽𝛽𝑑𝑑𝑟𝑟𝑠𝑠6(1. 𝑞𝑞7𝑠𝑠6 − 0.34𝑞𝑞70𝑠𝑠60)2𝑢𝑢312 + 𝑔𝑔𝜌𝜌𝑑𝑑𝑐𝑐(𝑞𝑞7𝑠𝑠6 −

𝑞𝑞70𝑠𝑠60)𝜂𝜂ℎ) + 1
4

(−𝑞𝑞7𝑠𝑠6 + 𝑞𝑞70𝑠𝑠60)(1.5𝑐𝑐6𝑞𝑞7 − 0.5𝑐𝑐𝑡𝑡6𝑞𝑞70𝑠𝑠60)sgnV𝑎𝑎* 

(−9.𝛽𝛽𝑑𝑑𝑟𝑟𝑠𝑠6(1. 𝑐𝑐6𝑞𝑞7 − 0.34𝑐𝑐𝑡𝑡6 𝑞𝑞70𝑠𝑠60)2𝑢𝑢312 − 𝑔𝑔𝑔𝑔𝜌𝜌csc6 𝑑𝑑𝑐𝑐2(−𝛿𝛿7𝑠𝑠6+𝛿𝛿70𝑠𝑠60
𝑑𝑑𝑏𝑏

)𝜆𝜆𝜂𝜂𝑎𝑎)      (3.85) 

Equations (3.48, 3.51, 3.54, and 3.80-3.82) are the main elements in the Kane’s 

equations of motion, which are given in the equation (3.86).   

𝐹𝐹�𝑟𝑟∗ + 𝐹𝐹�𝑟𝑟 = 0                  (3.86) 
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The final set of EOM of the front-end assembly is given by equations set (3.87). 

   𝑋𝑋11 �̇�𝑢1   + 𝑍𝑍6  = 𝜏𝜏1    

              −𝑋𝑋22 �̇�𝑢19 +  𝑍𝑍7  = 𝜏𝜏2 + 𝑍𝑍9                    (3.87) 

−𝑋𝑋33 �̇�𝑢31 + 𝑍𝑍8  = 𝜎𝜎 + 𝑍𝑍10                             

Equation (3.87) can be solved after finding appropriate initial values of the 

generalized coordinates associated with each component and using numerical techniques 

described in Section 4. The solution is based on the inverse dynamics approach where 

predefined motion variables are provided for estimating torques, forces and acceleration.  

3.4. SUMMARY 

This section provided a solid, concise formulation of the kinematics and dynamics 

of a dragline front-end assembly using vector mechanics and Kane’s method. The EOM 

construction is straight and systematic with the right assumptions to every link in the front-

end assembly. This computational dynamic model is a 3D spatial model with 3 DOFs that 

consider the full dragline motion at any period of operation. The model can be directly 

reduced to a 2 DOF model by eliminating the generalized coordinate and speed associated 

with the machine house. The resulting boom point sheave torque 𝜏𝜏2 and drag force 𝜎𝜎 are 

used for studying of the stress distribution on different wire rope constructions.   

The dynamic analysis using Kane’s method was augmented by the consideration of 

the external forces and their contribution to the generalized active forces. A comprehensive 

dynamic model was built to account for the friction between the drag rope and the 

overburden. It also uses an accurate model of cutting resistance force, which was 

established based on the effective cutting of overburden material. Section 4 contains the 
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numerical methods for solving the dynamic model. The 3D dragline CAD model is also 

provided and used to provide good estimates of the front-end weights and inertia. These 

estimates are used to reduce the error from using mathematical calculations. The model 

outputs are used in a finite element analysis (FEA) using ANSYS Workbench to generate 

the maximum equivalent stresses and stress concentrations in the wire ropes.  
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4. NUMERICAL SOLUTION PROCEDURES AND VIRTUAL PROTOTYPE 
MODELING 

 

The dynamic model of the dragline front-end assembly developed in Section 3 will 

be solved using efficient numerical techniques to find the machine housing swinging 

torque, hoist rope torque, and drag force. The model is an advanced dynamic model and 

has only three kinematic inputs, which are the linear velocities of hoist and drag ropes and 

angular displacement of machine house. The equations of motion in equation (3.87) along 

with a feedforward kinematics analysis are solved using Mathematica (Wolfram, 2018). 

These equations are solved in a systematic way, based on the initial values of the front-end 

assembly configuration constraints.    

The solution starts with accurate estimations of geometrical quantities that define 

the COM of machine house, boom, boom-sheave, ropes, and bucket. Central principal 

moments of inertias of every component are found from the 3D CAD model designed in 

SolidWorks and used in the numerical solutions. The kinematics constraint equations (3.6) 

and (3.7) are used to capture the loop closure of the front-end assembly. These equations 

also contribute to the solution of equations of motion and provide a description of the 

trajectories of the machine house, bucket, and ropes. The numerical procedures are 

developed using user-defined functions that contain all relevant details of the dragline 

front-end geometry. Kinematic constraint equations are also solved independently to find 

initial conditions, which are used in the dynamics model.  

The results of kinematics and dynamic analyses of the model are plotted at the end 

of the simulation. These results are used as boundary conditions in the finite element 

analysis of wire ropes using ANSYS. Verification and validation for both the 
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computational dynamics model and virtual dragline simulator are then carried out in 

Sections 4.2 and 4.3. These procedures are provided in details and used to establish the 

accuracy, errors, and robustness of these models. Sections 4.1.1 and 4.1.2 deals with the 

search of the initial input values of the configuration constraint variables using the closed 

loop equations (3.6) and (3.7) of the dragline front-end assembly. It also details the process 

of integration of the dynamics model using the available DAE solver that can handle stiff 

differential algebraic equations.      

4.1. NUMERICAL SOLUTION PROCEDURES 

The kinematics and dynamics models of the dragline front-end assembly are a set 

of differential algebraic equations (DAEs) that describes the physical model of the dragline 

machinery. DAEs are built using the mutual interactions of the front-end assembly 

components and their interactions with the mine environment. The configurations 

constraint equations (3.1), (3.2) and (3.3) in Section 3 are a set of DAEs that contains 

nonlinear functions of time. The kinematics constraint equations (3.10) and (3.11) are first 

ordinary differential equations (ODEs) in terms of generalized speeds 𝑢𝑢𝑖𝑖.  

The dynamics equations of motion (3.87) are first DAE in terms �̇�𝑢𝑖𝑖 and second 

order, nonlinear DAE in terms of 𝑞𝑞𝑖𝑖 . Thus, the solution of the complete model of the 

dragline system is a numerical solution of combined system of DAEs and ODEs. To 

establish accurate numerical solution procedures, it is fundamentally required to solve the 

configuration constraint equations. A unique value of each generalized coordinate must be 

obtained at one instance of time from the geometrical configuration equations of the front-

end assembly and must satisfy these equations at that time. Initial lengths of the hoist and 
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drag ropes must be input into the equations (3.1), (3.2) and (3.3) and should lie within the 

actual lengths when a dragline bucket is positioned on the ground to start the digging phase.  

The ODEs solver proceeds with the numerical evaluations of the differential 

kinematics equations that have been developed based on the loop closure equations. The 

kinematics equations are provided in Appendix A and are derived from the beginning of 

the starting cycle of the dragline, which is the digging cycle. Once the kinematics quantities 

are evaluated, the algorithm proceeds to the evaluation of the generalized inertia forces and 

generalized active forces. An iteration process in the DAEs solver evaluates these forces 

concurrently with the kinematics quantities based on the initial conditions. The algorithm 

is developed for the digging phase and full-bucket swinging phase. At maximum bucket 

capacity, the digging phase ends, and the swing motion starts towards the spoil area.             

 Kinematics Solution Procedures. The kinematics analysis of the dragline 

front-end assembly was established on the basis of the DOF and constraints governing the 

structural member of real draglines. The dragline kinematics model was derived using the 

concept of generalized speeds in equations (3.10) and (3.11). It also contains all relevant 

kinematics quantities to perform a full-bucket swinging operation. The model can be 

extended to account for an empty-bucket, swing-back motion of the machine house with 

its front-end assembly. This can be done by reversing the direction of the trajectory 

functions (𝑞𝑞1, 𝑞𝑞7 and 𝑞𝑞8).  

During the kinematics simulation, when the hoist motor clutch is released, the hoist 

rope length increases and the drag rope reduces in length by retraction. These ropes change 

their lengths and their respective velocities during the simulation. The orientation and 

length of the dump rope quickly change at the beginning this phase, but slightly change 
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during the loaded bucket swinging phase. The orientations of the hoist and drag ropes 

during these phases change over time in a reciprocal manner. Thus, the kinematics models 

of these ropes can be mathematically represented by first order ODEs. Also, the nature of 

the geometrical constraints of the dragline allows the complete kinematics model to be 

described by a set of multivariable, time-dependent DAEs. The solution of these 

differential equations can be done by a numerical integration technique that contains the 

necessary initial conditions for the applications of kinematics constraint and geometrical 

constraint equations. 

Two algorithms are developed for both the digging phase and the loaded bucket 

swinging phase, where all kinematics quantities (𝑞𝑞1, 𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6, 𝑞𝑞7 and 𝑞𝑞8) change with 

time. Figure 4.1 shows the algorithm used for the solution of the kinematics model during 

digging phase. The algorithm uses fixed and variable inputs, which are, respectively, the 

machine geometrical constraints and hoist and drag ropes linear displacements. The inverse 

kinematics provides the necessary kinematics functions of the trajectories, 𝑞𝑞4, 𝑞𝑞5, and 𝑞𝑞6, 

and these quantities are solved during the digging and swinging cycles. The direct 

differentiations of 𝑞𝑞4 and 𝑞𝑞6 yield the kinematics differential equations  𝑢𝑢19 and 𝑢𝑢31, 

respectively. However, the differential equation of the trajectory function of the dump 

rope 𝑞𝑞5, denoted by 𝑢𝑢25, was found from the solution of the constraint equations in 

equations (3.4) and (3.5). This technique provides stability during the numerical integration 

and reduces the possibility of having singularity in the solution process.  

      The numerical solver has user-defined functions of the closed kinematics loop, 

linear displacements of hoist and drag ropes, numerical integration scheme, and outputs. 



 

 

111 

The initial conditions that represent the hoist and drag ropes lengths, initial values of 

𝑞𝑞4, 𝑞𝑞5, and 𝑞𝑞6 are established at the beginning of the integration. 

 
 
 

 

 
 
 
The results of the first iteration are then used as initial conditions to establish the 

evolution of the kinematics functions during the entire numerical integration time of the 

Solve Constraints and Kinematics 
Differential Algebraic Equations 
Using Newton-Raphson Method 

Closed-Loop Forcing 
Equations (3.4 &3.5) 
 

 �̇�𝑞7  

 �̇�𝑞5  

Inputs (Fixed 𝑞𝑞1 = 0, 𝑞𝑞2, 𝐿𝐿𝑖𝑖, i = 1, 13) 

(Variables  𝑞𝑞7,  𝑞𝑞8)  

��̇�𝑢19 ��̇�𝑢25 ��̇�𝑢31 

�𝑢𝑢19 �𝑢𝑢25 �𝑢𝑢31 

 𝑞𝑞6  𝑞𝑞5  𝑞𝑞4 

Outputs 

 �̇�𝑞8  

Figure 4.1. Scheme of kinematics procedures algorithm 
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digging cycle. The results of 𝑞𝑞4, 𝑞𝑞5, and 𝑞𝑞6 of 10 seconds iteration are the output that show 

the variation of the trajectories of the hoist, dump, and drag ropes over time. The block of 

an integration sign denotes a numerical integrator that accepts initial conditions for each 

of 𝑢𝑢19, 𝑢𝑢25, and 𝑢𝑢31 and return their respective values 𝑞𝑞4, 𝑞𝑞5, and 𝑞𝑞6. The stability of the 

numerical integration scheme was established based on the Baumgarte’s stabilization 

technique (Baumgarte, 1972). This technique is used to convert the differential algebraic 

equations at the velocity level to second order ordinary differential equations at the 

acceleration level. 

4.1.1.1 Initial condition search. The equations resulted from the loop closure and 

an additional constraint equation for the length of a virtual link 𝐷𝐷1𝐹𝐹1 form a set of 

nonlinear, non-differential, algebraic equations. These equations are used to find the initial 

conditions of the trajectories and to perform the required kinematics analysis. The nature 

of these equations makes the direct search for initial conditions a challenging task and 

requires a special numerical treatment. The differentiation of these equations with respect 

to time yields a set of DAE that can be solved using advanced numerical methods (Newton-

Raphson) since it provides fast convergence to the solution. 

• Full set of constraint equations. A full representation of the constraint algebraic  

equations of the trajectories (𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6) of the front-end assembly, as well as the linear 

displacements of the hoist and drag ropes (𝑞𝑞7, 𝑞𝑞8) is given in a set of equations (4.1). The 

symbolic abbreviations, “c” and “s” denote the trigonometric functions, sin and cos, 

respectively. The linear displacements functions of the hoist and drag ropes are input into 

the kinematics model and they take the form of the last two rows of equations (4.1).  

 



 

 

113 

 76.60 + 1.715𝑐𝑐4 − 10.5𝑐𝑐5 − 𝑐𝑐6𝑞𝑞7 + 𝑞𝑞8𝑠𝑠4 = 0 

 56.89  + 𝑐𝑐4𝑞𝑞8 − 1.715𝑠𝑠4 − 10.5𝑠𝑠5 + 𝑞𝑞7𝑠𝑠6 = 0 

−11986.81 + 220 𝑐𝑐 �37𝜋𝜋
180

+ 𝑞𝑞6� 𝑞𝑞7 − 𝑞𝑞72 + 𝑞𝑞82 − 21 𝑐𝑐[1.57  + 𝑞𝑞4 + 𝑞𝑞5]�2.94  + 𝑞𝑞82 = 0 

                  −75 + 1.32𝑡𝑡 + 𝑞𝑞7 = 0 

−75 − 2.54𝑡𝑡 + 𝑞𝑞8 = 0 

To solve the kinematics and dynamics models of the dragline, all of the constraint 

equations must be satisfied during the numerical integration. Any violation will force the 

numerical solver to stop the integration, otherwise the numerical results maybe erroneous. 

These constraint equations define the limits introduced by the machine geometry during 

the digging phase and are then modified to meet the loaded bucket swinging motion. The 

initial conditions of (𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6) can be resolved by switching these algebraic constraint 

equations into a set of DAEs that accept initial values of the kinematics entities 

(𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6, 𝑞𝑞7, 𝑞𝑞8). Equation (4.2) represents a new set of DAEs from the direct 

differentiation of equation (4.1) with respect to the independent variable (t).     

               (c4q8  − 1.715s4)q̇4 + 10.5s5q̇5 + q7s6q̇6 − c6q̇7 + s4q̇8 = 0 

             −(1.715c4 + q8s4)q̇4 − 10.5c5q̇5 + c6q7q̇6 + s6q̇7 + c4q̇8 = 0 

        21 s[1.57 + q4 + q5]�2.94 + q82  (q̇4 + q̇5) − 220 s �37π
180

+ q6� q7q̇6 

            +220 c �37π
180

+ q6� q̇7 − 2q7q̇7 + 2q8q̇8 − 
21 c[1.57+q4+q5]q8q̇8

�2.94+q82
 = 0 

                                                                                              1.32  + q̇7 = 0 

                   −2.54 + q̇8 = 0 

  (4.2)   

 

  (4.1)   
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Equation (4.2) takes the form of equation (4.3), which is very common in 

constrained multibody mechanical systems.  

F𝑗𝑗(qi, q̇i, t) = 0 (i, j) = (1, . . ,5)      (4.3) 

F𝑗𝑗 represents the jth DAE, qi and q̇i represent the dependent variables or state variables 

and the time derivative, respectively. An important step to follow when solving the DAEs 

set in equation (4.2) is to select a good intital value of each dependent variable. This feature 

defines the difference between the numerical solutions of the DAEs and ODEs. The latter 

does not necessarily have a good initial value because no hidden constraints must be 

satisfied at each integration step. A major difficulty in arriving at a quick numerical 

solution has been attributed to the nature of the dependent variables. In other words, the 

generalized coordinates do not have the same units and other entities (𝑞𝑞7 and 𝑞𝑞8) vary 

signficantly with time.  

Several numerical experiments have been carried out in Matlab and Mathematica 

to understand the role of every dependent variable on the numerical stability and 

convergence of the solution algorithm. If no initial values are given to the numerical 

alogrithm, NDSolve searches for initial values that yields zero DAEs residual. The 

numerical alogrithm, based on the Newton-Raphson method, achieved  a good convergence 

at 1.52 seconds, but failed to advance the integration due to the presence of singularity at 

this time step. The trajectories of all ropes based on the initial values are shown in Figure 

4.2 (a), with quick changes in their values at the onset of digging. These results show 

further enhancement of the numerical experiments and can be used as a starting point to 

construct new values.  
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Figure 4.2 (b) shows the variations in the lengths of the hoist and drag ropes, with 

a linear behavior as the bucket penetrates the ground. It can be seen that the initial values 

of the kinematics parameters, in radians, are 𝑞𝑞4,1[0] = 10 ∗ Pi 180⁄ , 𝑞𝑞5,1[0] = 30 ∗

Pi 180⁄ , and 𝑞𝑞6,1[0] = −30 ∗ Pi 180⁄ , respectively, and the initial values of the linear 

displacements of hoist and drag ropes are chosen as 75 m. These linear displacedments are 

found to reduce the numerical intgeration error. From an operational viewpoint, the rapid 

change of the angular displacement of the dump rope is unacceptable. This change induces 

additional vibrations in the rigging system and reduces the machine productivity. 

 
 

 

 
Figure 4.2. Trajectories of hoist, dump, and drag ropes versus time during 1s of digging 

phase: (a) angular trajectories and (b) linear displacements of hoist and drag ropes 

 
 
 
The integration of the DAEs in equation (4.2) with the proposed initial conditions, 

(𝑞𝑞𝑖𝑖,1) with 𝑖𝑖 = 0, . . ,5, produced a singularity phenomenon shown in Figure 4.3. The second 

initial values were chosen to minimize the residual values for integrating equation (4.1). 

This apporach was further used in the calculations to improve the initial values of (𝑞𝑞𝑖𝑖,𝑛𝑛), 

where n is the number of numerical experiments. At each experiment, the solver uses best 

  (a)   

 
  (b)   

 



 

 

116 

values to recalculate the residual at every time step and tries to mimimize it to zero. This 

kind of numerical study is relevant to an optimization method with inequality constraints.  

 
 
 

           
Figure 4.3. Singularity of the kinematics model at time 1.52 s of digging phase 

 
 
 

Another method for integrating the DAEs was to start with a zero initial value to 

every trajectory variable. The alogrithm with a predefined residual minimization embedded 

option tries to find better values and proceed to the final step. The output of the numerical 

experiment is shown in Figure 4.4 (a) and another singular location was found at time 7.16 

seconds due to the stiffness of equations. Improvements in the numerical integration at 

time 7.16 seconds of 10-second total digging time do not permit the selection of initial 

values due to erroneous results in the linear displacements as seen in Figure 4.4 (b). 

Moreover, the field expirements show that a rapid increase in the trajectory of the hoist 

rope is not likely to happen during the digging phase. Thus, the numerical stablity of the 

solution algorithm is not beneficial and cannot be further expanded for finding the actual 

forces and torques in the front-end assembly.    
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• Minimal set of constraint equations. The numerical analyses that were done a 

full set of constraint equations (4.2) resulted in singularity and untable solution process. 

Numerical stability issues in these analyses are attributed to the fact that the functions of 

linear displacements cause the integration to fail. In other words, those equations create 

redundancy that can be avoided by eliminating them. The redundancy means that the 

excavator has more DOFs available than the number required to do the task. This reason 

has led to a reduction in the number of the constraint equations to a minimal set as shown 

in equation (4.4). The numerical solution of these equations is also challenging due to the 

presence of embedded constraints and the nonlinearities that follow the differentiations. 

Equation (4.4) forms a set of DAEs that are used to find the initial conditions using 

FindRoot or NDSolve, which are built-in subroutines in Mathematica. The same analogy 

is applied to find the initial conditions of all kinematics quantities (𝑞𝑞4, 𝑞𝑞5, 𝑞𝑞6). It is 

important to note that the differential kinematics constraint equations (4.4) may yield 

multiple solutions or may not have any solutions depending the nature of the geometric 

constraints. 

Figure 4.4. Singularity of the kinematics model at time 7.16 s of digging phase: (a) 
angular trajectories and (b) linear displacements of hoist and drag ropes 

(a)  (b)   
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1.32 c6 + 2.54 s4 + (75 + 2.54 t)c4q̇4 − 1.715 s4 q̇4 + 10.5 s5 q̇5 + 
                                      (75 − 1.32t)s6q̇6 = 0 

  2.54 c4 − 1.32 s6 − 1.715 c4 q̇4 − (75 + 2.54 t)s4q̇4 − 10.5 c5q̇5 + 

(75 − 1.32t)c6q̇6 = 0 

2.64 (75 − 1.32t) + 5.08 (75 + 2.54t) − 
53.34(75+2.54t) c[1.57+q4+q5]

�2.941 +(75+2.54t)2
 −

290.4 c �37π
180

+ q6� + 21 �2.94  + (75 + 2.54t)2 s[1.57 + q4 + q5](q̇4 + q̇5) 

 −220(75 − 1.32t) s �37π
180

+ q6� q̇6  = 0     

Equation (4.4) can be rewritten in a matrix form as shown in equations (4.5) and 

will have a solution only when the Jacobian matrix �J = 𝜕𝜕F𝑗𝑗(qi)

𝜕𝜕qi
� is a full rank matrix. 

�
(75 + 2.54 t)c4 − 1.715 s4 10.5 s5 (75− 1.32t)s6
−1.715 c4  − (75 + 2.54 t)s4 −10.5 c5 (75− 1.32t)c6

Z6 Z6 Z7
�  �

q̇4
q̇5
q̇6
� = �

−1.32 c6 − 2.54 s4
−2.54 c4 + 1.32 s6

Z8
�      (4.5) 

The Jacobian is a 3x3 matrix given in the equation (4.6). Thus, the rank of the Jacobian 

must be 3. 

J = �
(75 + 2.54 t)c4 − 1.715 s4 10.5 s5 (75 − 1.32t)s6
−1.715 c4  − (75 + 2.54 t)s4 −10.5 c5 (75 − 1.32t)c6

Z6 Z6 Z7
�       (4.6) 

Z6 = 21 �2.94  + (75 + 2.54t)2 s[1.57 + q4 + q5]         (4.7) 

Z7 = 220(75 − 1.32t) s �37π
180

+ q6�                (4.8) 

Z8 = 2.64 (75 − 1.32t) + 5.08 (75 + 2.54t) − 
53.34(75+2.54t) c[1.57+q4+q5]

�2.941 +(75+2.54t)2
   

       −290.4 c �37π
180

+ q6�                       (4.9) 

 (4.4)   
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 Figure 4.5. Trajectories of hoist, dump, and drag ropes versus time during digging phase 
 
 
 
 

Integration of equation (4.4) was successfully performed using zero initial values 

of the trajectory functions q4, q5 and q6, in Figure 4.5. The singularity behavior was not 

an issue and the integration started and ended at the required interval of time [0, 10] 

seconds. However, the evolution of the trajectory functions through this interval does not 

meet the limits of the machine’s operational space. These responses are due to the fact that 

the initial values used by the solver at time 𝑡𝑡 = 0 second are still out of range. It can be 

concluded that there is a trade-off between the initial value search and numerical stability 

of the applied method. To circumvent this problem, subsection (4.1.1.3) highlights the use 

of Baumgarte Stabilization Technique (BST) to solve a stiff DAE with inequality 

constraints.   

4.1.1.2 Singularity of closed front-end assembly. The singularity behavior is a  

major issue when attempting to integrate a system of constraint differential equations at 

different intervals of time [0, 10] seconds. Singularity means that the Jacobian (𝐽𝐽) is rank 

deficient and its determinant is zero. During the integration, the step size becomes very 
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small at singular positions and the solution algorithm quits without any convergence. From 

a geometrical viewpoint, singularity means that two or more links in the front-end assembly 

are coincident and make an angle either (0 or 180) degrees.  

Field observations of the dragline operations have shown that the coincidence of 

dump and drag ropes rarely happens during the digging phase. However, this singular 

position exists and is depicted in the red-colored vectors in Figure 4.6 (a). The hoisting 

operations of a loaded bucket swinging require that the drag rope be extended enough at 

each cycle. As the drag rope extends, the angle between the drag and dump ropes increases 

and may reach 180 degrees. These positions of the drag and dump ropes cause the closed-

loop of the front-end assembly to operate within the proximity of another singularity 

position. This position is also shown in Figure 4.6 (b), and other positions can be deduced 

by switching the direction of the short red vector.  

Singular positions can be avoided during the numerical integration by applying the 

appropriate constraints to the solution algorithms. It should be pointed out that the more 

mathematical constraints are added to the DAE formulation, the stiffer is the mathematical 

model. Caution should be taken when applying the constraints to the model as it may retard 

the solution process and reduce the search space. The first inequality constraints applied to 

the kinematics model are the limits of the hoist and drag rope lengths and are provided in 

equation (4.10). Other kinematics constraints are chosen in the course of the numerical 

analysis and were found to be redundant.   

          61.67 ≤ q7 ≤ 75.00 

75.00 ≤ q8 ≤ 100.18 

 

(4.10)   

 

 

 



 

 

121 

   

 

 

 

 
 

 

 
 

 
4.1.1.3 Baumgarte’s stabilization technique (BTS). Although equation (4.4) has 

shown a higher numerical stability towards the integration over the digging time, it is not 

sufficient to accurately estimate the trajectories of the ropes and their corresponding initial 

values. The precedent analyses performed in Section (4.1.1.1) were based on the 

assumption that the constraint equations (4.1) are smooth and differentiable twice. It was 

found that the Jacobian matrix is not symmetric and that resulted in singularity at different 

time steps. Equations (4.1), with the embedded linear displacements of the drag and hoist 

ropes, is defined by equation (4.11).  

F𝑗𝑗(qi(𝑡𝑡), t) = 0 (i, j) = (1, . . ,3)     (4.11) 

Differentiating equation (4.11) with respect to time results in the constraint 

equations at the velocity level as shown in equation (4.12). h𝑖𝑖(q, t) is called the hidden 

constraint and is given by the equation (4.13). 

𝑑𝑑
𝑑𝑑𝑖𝑖

 �F𝑗𝑗(qi(𝑡𝑡), t)� = 𝐽𝐽(q(t), t). q̇(t) +  h𝑖𝑖(q(t), t) = 0          (4.12) 

  (a)   

 

Figure 4.6. Singularity of dragline kinematics models: (a) digging phase (b) full-bucket 
hoisting phase 

  (b)   
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h𝑖𝑖(q(t), t) =  𝜕𝜕(F𝑗𝑗(qi(𝑖𝑖),t))
𝜕𝜕𝑖𝑖

         (4.13) 

The hidden constraints are just the right-hand side of equation (4.5) and are 

nonlinear algebraic equations. Differentiating equation (4.12) with respect to time yields 

the second order differential equation (4.14) at the acceleration level. 

𝑑𝑑2

𝑑𝑑𝑖𝑖2
 �F𝑗𝑗(qi(𝑡𝑡), t)� = 𝐽𝐽(q(t), t). q̈(t) + J𝛿𝛿(q(t), t). (𝑞𝑞.̇ �̇�𝑞) + h𝑖𝑖𝑖𝑖(q(t), t) + 2h𝑖𝑖𝛿𝛿(q(t), t) = 0   (4.14) 

J𝛿𝛿(q(t), t) =  
𝜕𝜕J(q(𝑖𝑖),t))

𝜕𝜕𝛿𝛿
, h𝑖𝑖𝑖𝑖(q(t), t) =  

𝜕𝜕(ℎ𝑖𝑖(q(𝑖𝑖),t))
𝜕𝜕𝑖𝑖

, h𝑖𝑖𝛿𝛿(q(t), t) = 𝜕𝜕(ℎ𝑡𝑡(q(𝑡𝑡),t))
𝜕𝜕𝑞𝑞    (4.15) 

The last two terms in the equation (4.14) are also hidden constraints and their 

representation is often undesirable due to the complexity of the equations in a constraint 

multibody system. Equation (4.14) can be rewritten in a simplified form without 

augmented hidden constraint and is given in equation (4.16). 

𝑑𝑑2

𝑑𝑑𝑖𝑖2
 �F𝑗𝑗(qi(𝑡𝑡), t)� = 𝐽𝐽(q(t), t). q̈(t) + 𝒜𝒜(𝑞𝑞, �̇�𝑞, 𝑡𝑡)    (4.16) 

with  

𝒜𝒜(𝑞𝑞, �̇�𝑞, 𝑡𝑡) = J𝛿𝛿(q(t), t). (𝑞𝑞.̇ �̇�𝑞) + h𝑖𝑖𝑖𝑖(q(t), t) + 2h𝑖𝑖𝛿𝛿(q(t), t)         (4.17) 

A central process that follows these derivations is to combine the differential 

equations (4.12) and (4.16) with the constraint equation (4.11). This combination leads to 

the Baumgarte’s formalism (Baumgarte, 1972), which is given by equation (4.18). 

F̈ + 𝛼𝛼𝐵𝐵. Ḟ +  𝛽𝛽𝐵𝐵. F = 0                                                             (4.18) 

with,  

𝛼𝛼𝐵𝐵 ≥ 0  &  𝛼𝛼𝐵𝐵2 = 4 𝛽𝛽𝐵𝐵       (4.19) 
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𝛼𝛼𝐵𝐵and 𝛽𝛽𝐵𝐵 are parameters defined by the user and are more likely selected as stated in 

equation (4.19) (Baumgarte, 1972). The benefit of using equation (4.18) is that the 

numerical violations resulted from embedded constraints of velocity and constraint 

equations are minimized, if not eliminated. The system of equations becomes more stable 

during integration and the drift error is reduced to a minimum. The drift error can be 

regarded as the perturbations in the acceleration when the constraint equations and 

constraint velocity equations are differentiated. Thus, the drift error in equation (4.20) is a 

quadratic function of time and is related to the constraint equations violation (Simeon, 

2010).   

𝜅𝜅 =  1
2

 (𝑡𝑡 − 𝑡𝑡0)2𝜁𝜁𝑎𝑎 +  (𝑡𝑡 − 𝑡𝑡0)𝜁𝜁𝑎𝑎 + 𝜁𝜁𝑝𝑝       (4.20) 

𝜁𝜁𝑎𝑎 , 𝜁𝜁𝑎𝑎 and 𝜁𝜁𝑝𝑝 are constants associated with the error at acceleration, velocity and position 

levels, respectively. The use of Baumgarte’s method has been found to solve the singularity 

problem and improve the accuracy of resulting trajectories. However, the choice of 

parameters bigger than 3 did not dampen the errors, but resulted in a stiff DAE system. 

Correct trajectories are generated after integration for the selected parameters 𝛼𝛼𝐵𝐵 =

1 and 𝛽𝛽𝐵𝐵 = 0.25 and are shown in Figure 4.7 (a). Other trajectories that are not within 

machine limits are not a part of the solution of the equations of motions. In addition, the 

applicability of BTS was also evaluated against the errors, which are calculated from the 

invariants (constraints algebraic equations). Caution must to be taken when choosing the 

values of Baumgarte’s parameters. From Figure 4.7 (b), the selection of 𝛼𝛼𝐵𝐵 = 6 and 𝛽𝛽𝐵𝐵 =

9 meets the conditions of equation (4.19). However, it has changed the structure of the 



 

 

124 

constraints and their derivatives. Consequently, the numerical analysis has produced 

inaccurate results.  

It can be concluded from Figure 4.7 (a) that the angular displacements of the hoist 

and drag ropes follow the same behavior and their trajectories vary within the machine 

limits for the parameters 𝛼𝛼𝐵𝐵 = 1 and 𝛽𝛽𝐵𝐵 = 0.25. The same behavior can be seen for values 

𝛼𝛼𝐵𝐵 = 6 and 𝛽𝛽𝐵𝐵 = 9, but the values of the angular displacements of the hoist and drag ropes 

are around 70 ° and 90 ° and are not within the machine limits. The initial conditions of the 

angular displacements of the rope angles and their initial angular velocities are listed in 

Table 4.1. 

 
 
 

 
Figure 4.7. Trajectories of ropes using BTS during digging phase: (a) α =1, β =0.25 (b), α 

=6, β =9 

 
  

 
Table 4.1 Initial angular displacements and angular velocities of ropes 

Rope Initial Angle (rad) Initial Velocity (rad/s) 

Hoist rope 𝑞𝑞4[0] = −0.0437 �̇�𝑞4[0] = 0.0 

Dump rope 𝑞𝑞5[0] =    0.2831 �̇�𝑞5[0] = 0.0 

drag rope  𝑞𝑞6[0] = −0.4692  �̇�𝑞6[0] = 0.0 
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 Dynamics Solution Procedures. The dynamic model of the dragline front- 

end assembly was formulated based on Kane’s method. The mathematical model, in 

Section 3, has all the relevant information to perform the inverse dynamic analysis. Figure 

4.8 shows the flowchart for developing and implementing the simultaneous kinematics and 

dynamic analyses. The solution of the dynamic model during the digging phase is two-

fold: (i) feedforward displacement calculations based on Newton-Raphson method in 

Mathematica, and (ii) inverse dynamics based on the calculated feedforward displacements 

from step (i). These procedures are also used for calculating the drag force and hoist and 

swing torques for the loaded bucket swing motion. The inverse kinematics analysis must 

be integrated in the solution of the inverse dynamic procedures. The BST used in Section 

4.1.1.3 is integrated into the dynamics solution procedures to enforce the constraints of 

equation (4.4).  

It can be seen from Figure 4.8 that the dynamic analysis of a dragline is similar to 

any multibody dynamic analysis. It starts with a mathematical formulation of the constraint 

equations, followed by a full kinematics analysis for defining the independent generalized 

speeds, and finally the formulation of the EOM using Kane’s method. The latter are solved 

simultaneously by enforcing the acceleration constraints using BST to minimize the drift 

errors. Finally, the outputs of the numerical analysis are plotted and verified based on the 

machine operational limits. The outputs of the dynamics model during the digging phase 

include the drag force and hoist torque. In the case of loaded bucket swinging phase, the 

outputs include the drag force and hoist and swing torques that are used as inputs in the 

advanced finite element analysis on wire ropes. The errors due to constraint violations are 
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also plotted and visualized to verify the accuracy of the solution approach and the 

numerical algorithm.  

 
 
 

 
Figure 4.8. Flowchart of the dynamics solution algorithm 

 
 
 
The equations of motion in equation (3.87) combined with the acceleration 

constraint equations in equation (4.4) form a stiff system of highly nonlinear differential 

equations. The initial conditions found in Section (4.1.1.1) must be consistent and produce 

minimal errors over the whole integration domain. The derivation of the constraint 

algebraic equations with respect to time produces a system of equations with a reduced 

index and it changes the structure of the original equations. As was seen in equations set 
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(4.5), the derived equations contain additional expressions of nonlinear trajectory 

functions, which result in drift errors. The DAE solver in Mathematica contains the 

necessary algorithms to handle a stiff system for a twice-differentiable drift. The reduction 

of the drift error, in the solution algorithm, is based on using a simplified method that 

minimizes the residual at each iteration step. In other words, the right-hand side of the 

complete system, in equation (4.18), is subtracted from the left-hand side to create a 

residual function. A general type of this residual is given by equation (4.21). 

F𝑗𝑗(qi(𝑡𝑡), q̇i(𝑡𝑡), t) = 0       (4.21) 

The initial conditions proposed earlier satisfy this residual, as well as its derivative, 

which is given in the equation (4.22). 

𝑑𝑑
𝑑𝑑

 F𝑗𝑗(qi(𝑡𝑡), q̇i(𝑡𝑡), t) = 0        (4.22) 

Inconsistent initial conditions are more likely to violate the residual equations and 

their derivatives resulting in accumulated errors. Solving DAE with higher index is very 

challenging because of the requirement to satisfy several equations along with second-to-

third degrees of their derivatives. The procedures of the DAE solvers are described in the 

integrated solution algorithm in Figure 4.9. The algorithm contains a solver for the first 

order kinematics DAE, a solver for the second order kinematics DAE, and a dynamic solver 

that integrates the equations of motion. The algorithm starts evaluating the index of the 

constraints algebraic equations and determines the order of differentiations that is required 

to relate the variables together. If the index of the DAE1, DAE2, and DAE3 is 1, the 

equations are solved by integration and their results are passed onto the equations of motion 

solver.  
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Figure 4.9. Scheme of numerical implementation of the DAE solvers 
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If the index of the DAE1, DAE2, and DAE3 is 1, the equations are solved by 

integration and their results are passed onto the equations of motion solver. When the DAE 

index is 2, a second derivation is performed on the constraints equations and the DAE 4, 

DAE 5, and DAE6 are then integrated and plotted. In addition, their integration results are 

passed onto the dynamics solver to calculate the required forces and torques.  

The constraint algebraic equations may have an index of three that requires an 

additional differential order to be carried out to relate the hidden variables. This case is 

encountered in the vibration and jerky motion of links in the mechanical system. It can be 

concluded that the formulation of the constraint equations has a profound impact on the 

numerical solution process. In general, the dynamics of a closed kinematics mechanism 

that possesses a number of links less than 3 can be done without any difficulty. However, 

for a multilink mechanism, such as the dragline front-end assembly, it requires a substantial 

amount of work and fine tuning of the model at all stages of its development. Therefore, it 

is recommended to start the kinematic and dynamic analyses using a simplified vector loop 

equation and then expanding it to incorporate additional links. It should be pointed out that 

the derivations of the kinematic and dynamic models are done in Mathematica and are 

provided in details in Appendix A.  

4.2. VERIFICATIONS OF THE MODELS  

The verification of the mathematical model is established based on the 

technological capabilities and limitations of a real-world dragline machinery. The 

mathematical model contains the important geometric, structural, and operational features 

for performing the numerical experimentations. The verification process is three-fold:    
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 Verification of the Symbolic Mathematical Model. The derivations of the 

kinematic and dynamic models of the dragline front-end assembly are performed by hand 

using the concept of intermediate variables (Kane and Levinson, 1985). This concept is a 

good approach for simplifying the work flow of the derivation and reduces the amount of 

arithmetic calculations in a large multibody dynamic model. The analytical model was then 

derived using Mathematica, on a step-by-step basis, to generate the same hand-

calculations. Both the hand and computer calculations are compared for the resulting 

symbolic output of all functions and are provided in Appendix A. 

 Verification of the Virtual Model and Structural Properties. The dragline 

has several massive structures, such as machine undercarriage, machine housing, and front-

end assembly (boom, boom-point sheave, ropes, and bucket and rigging mechanism). 

These structures weigh thousands to hundreds of thousands tons and have complex 

geometries that need to be designed properly. A 3-D CAD software, SolidWorks, was used 

to create the geometries and estimate the masses and inertia properties of each structural 

system used in the dynamic model. The dragline virtual model, a Marion 7800 dragline, 

has a working weight of 1,383,457 kg (Nikiforuk and Zoerb, 1966). Thus, all structural 

systems including the ropes are designed to satisfy this total weight. Figure 4.10 shows the 

geometry and structural details of the boom.  

The inertia property of the multilink structure, such as boom structure, are 

calculated after grouping all structural members using structural steel (ASTM A36). The 

central moments of inertia of the corresponding body must be measured in a reference 

frame that exactly matches its local frame in Figure 3.2. Otherwise, the dynamic model 

yields erroneous results. Structural steel members of the boom are pipes with inner and 
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outer diameters 0.206 m and 0.27 m, respectively. Other structural data of the dragline are 

provided in Figures 4.11-4.15 and in Tables 4.2-4.5. The moments of inertia of the boom 

are selected according to the values calculated using SolidWorks in Figure 4.11 (see dashed 

frame). They are calculated with respect to the center of mass (COM) of the boom and 

aligned with the output coordinate system. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

Local Reference Frame 

Figure 4.10. Dragline boom and its structural detailing 
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Table 4.2. Boom structure and its material and structural properties 

Density 7,850.00 kg/m³ 

Mass 421,149.81 kg 

 

Moments of 

Inertia 

𝐶𝐶11= 13,075,449.73 𝐶𝐶12= -2,138,753.88 𝐶𝐶13=  -43,689.34 

𝐶𝐶21= -2,138,753.88 𝐶𝐶22= 272,515,394.48 𝐶𝐶23= -60,270.76  

𝐶𝐶31= -43689.34 𝐶𝐶32= -60,270.76 𝐶𝐶33= 272,515,394.48 

 

 

 

     

 
Figure 4.11. Boom structure and its structural properties  
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The structural system of the machine housing and mast are designed as one structure 

and it is shown in Figure 4.12. The moments of inertia are taken from Figure 4.12 (see 

dashed frame) since this coordinate system is aligned with that defined in Figure 3.2. 

Obviously, this selection results in higher moments of inertia when the machine swings. 

Moreover, the significant inertia loads that develop during the rotation increase the tension 

in the drag and hoist ropes. Thus, these values provide a baseline for a better estimation to 

the forces and torques. The values of these inertia and the structural mass and material 

density are also given in Table 4.3. The material used for this design is structural steel 

(ASTM A36). 

 
 

 
Figure 4.12. Machine housing structure and its structural properties  
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Table 4.3. Machine housing and mast and their material and structural properties 

Density 7,850.00 kg/m³ 

Mass 849,673.79 kg 

 

Moments of Inertia  

𝐵𝐵11= 47,450,389.75 𝐵𝐵12 = 0.0 𝐵𝐵13= -765,0302.86 

𝐵𝐵21= 0.0 𝐵𝐵22= 58,456,628.84 𝐵𝐵23= 0.0  

𝐵𝐵31= -7,650,302.86 𝐵𝐵32= 0.0 𝐵𝐵33= 39,532,097.02 

 

  

 

 
Figure 4.13. Boom point sheave design and its structural properties  
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The boom point sheave design and its structural and material properties are given 

in Figure 4.13 and Table 4.4. The sheave has a radius 𝑅𝑅𝑠𝑠 = 1.715 m and is made of a 

structural steel (ASTM A36). The groove width, where the hoist rope runs, is 𝑑𝑑 = 350 

mm. 

 
 

Table 4.4. Boom point sheave and its material and structural properties 

Density 7,850.00 kg/m³ 

Mass 29,867.36 kg 

 

Moments of Inertia  

𝐷𝐷11= 28,480.61 𝐷𝐷12= 0.0 𝐷𝐷13= 0.0 

𝐷𝐷21= 0.0 𝐷𝐷22= 23,394.02 𝐷𝐷23= 0.0  

𝐷𝐷31= 0.0 𝐷𝐷32= 0.0 𝐷𝐷33= 23,394.02 

  
 
 

The bucket and rigging design contains several structural elements (bucket, hoist 

chains, drag chains, dump sheave, trunnions, dump rope, spreaders and connecting pins). 

The description of this design, as well as its material properties are given in Figure 4.14 

and Table 4.5. The same material used for the boom and machine housing is also used for 

all other structures in the front-end assembly, which a structural steel, type (ASTM A36).   

 
 
 
Table 4.5. Bucket and its rigging and their material and structural properties 

Density 7,850.00 kg/m³ 

Mass 30,000.23 kg 

 

Moments of Inertia  

𝐹𝐹11= 1,523,336.30 𝐹𝐹12= 18,410.32 𝐹𝐹13= 89,651.56 

𝐹𝐹21= 18,410.32 𝐹𝐹22= 1,346,557.91 𝐹𝐹23= 237,263.18 

𝐹𝐹31= 89,651.56 𝐹𝐹32= 237,263.18 𝐹𝐹33= 338,923.45 
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 Figure 4.14. Bucket and rigging design and their structural properties  

 
 
 
Drag and hoist ropes are considered typical in terms of design and material 

properties. The initial lengths of both ropes are also equal to 75 m. The resulting structural 

properties and design of drag and hoist ropes are given in Figure 4. 15 and Table 4. 6.    

 
 
 

Table 4.6. Drag and hoist ropes and their materials and structural properties 

Density 7870.00 kg/m³ 
Mass 2,729.57 kg 

 
Moments of Inertia  

𝐺𝐺11= 1,082,956.60 𝐺𝐺12= 0.0 𝐺𝐺13= 0.0 
𝐺𝐺21= 0.0 𝐺𝐺22= 1,082,956.60 𝐺𝐺23= 0.0 
𝐺𝐺31= 0.0 𝐺𝐺32= 0.0 𝐺𝐺33= 2.18 



 

 

137 

       
Figure 4.15. Drag and hoist ropes design and their structural properties 

 
 
 
 The total mass of the dragline machinery is calculated as the sum of the masses of 

the machine housing and its mast, boom, boom point sheave, bucket and rigging system, 

and ropes. This weight must not exceed the weight, 457,383,1  kg (Nikiforuk and Zoerb, 

1966), is calculated according to equation (4. 23).    

 𝑊𝑊𝐷𝐷 = 𝑊𝑊𝑀𝑀.ℎ𝑜𝑜𝑠𝑠𝑢𝑢𝑖𝑖𝑛𝑛𝜌𝜌 + 𝑊𝑊𝐵𝐵𝑜𝑜𝑜𝑜𝑛𝑛 + 𝑊𝑊𝑆𝑆ℎ𝑒𝑒𝑎𝑎𝑎𝑎𝑒𝑒 + 𝑊𝑊𝐵𝐵𝑢𝑢𝑐𝑐𝑘𝑘𝑒𝑒𝑖𝑖 + 𝑊𝑊𝑟𝑟𝑜𝑜𝑝𝑝𝑒𝑒𝑠𝑠    (4.23) 

       =  849,673.79 +  421,149.81 + 29,867.36 +  2 × 2,729.57 

=  1,306,150.1 <  1,383,457 Kg 

Thus, this design is acceptable with and an error of 0.055%. 
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 Verification of the Operational Limits. Operational limits are the loading 

and geometrical constraints that a dragline cannot surpass based on its allowable design 

load and geometric properties. The linear and angular trajectories of the hoist, dump, and 

drag ropes are limiting geometries of the dragline despite their flexibilities. In addition, the 

loading scenarios of a dragline vary from cycle to cycle and must not exceed the allowable 

designed limits. During the digging phase, the hoist rope extends and drag rope retracts 

following linear functions of time as prescribed in equation (4.1). Figure. 4.2 (b) shows 

that the hoist and drag rope operate within the machine limits. Another feature is that their 

trajectories change with time as the bucket engages the bank and are consistent with the 

limits of the dragline.  

 
 
 

 

 

 

 

 

 

 

Figure 4.16. Trajectories errors of the hoist, dump, and drag ropes 
 

 

The angular displacements of the hoist, dump, and drag ropes do not exceed 27°, 

26° and 65°, respectively. Thus, the bucket motion is limited by these constraints to prevent 
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it from hitting the boom or the machine house. The resulting errors of these operational 

constraints are derived from the constraint equation (4.1) using Mathematica. These 

functions estimate the changes of each variable and return the absolute error during the 

numerical experiments. The error associated with each trajectory function is shown in 

Figure 4.16 and the drag rope has the maximum value. It can be seen that all trajectories 

errors are less than 10−4 degree, which indicate the accuracy of the kinematics analysis 

and the solution algorithm.             

4.3. VALIDATION OF THE DYNAMIC MODEL 

After the numerical model is verified using accurate design inputs and design 

variables, it is validated by checking the evolution of the resulting hoist torque and drag 

force during the course of simulation in the digging phase using real-world environment. 

The results are validated using machine capacity and ropes breaking loads. These results 

are provided in details in Section 5 for the kinematic and dynamic analyses (see Sections 

5.1 and 5.2). The resulting forces of the dynamic model are important for the finite element 

analysis on wire ropes. They are used as boundary conditions for the static and dynamic 

analyses.  

Figure 4.17 (a) shows the maximum drag force, 1.19 × 106N, that was predicted 

by the dynamic model during the digging phase. Nikiforuk and Ochitwa (1964) stated that 

the maximum drag load that the dragline machinery can pull, at a rated speed of 1.32 m/s 

(260 f.p.m), is 7.077,136  kg (300,000 lb). The value of 136,077.7 kg is equivalent to a 

load (136,077.7 kg × 9.81 m/s²), which is 1,334,922.237 N.  Thus, the dynamic model is 

capable of producing right values of the drag load. 
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In the case of predicting the hoist force, the dynamic model defines a hoist torque 

as one of its outputs. The maximum hoist torque occurs within the hoist phase when the 

loaded bucket is hoisted to its closest point to the boom-point sheave. Figure 4.17 (b) shows 

the resulting hoist torque from the numerical experiment in this phase.  It can be seen that 

the hoist torque is maximum at time 40 seconds, where the swinging-back cycle time has 

elapsed 10 second. The maximum value of the torque is 922,930.00 N.m. This value is 

transformed to the form of load, which is 54,857.45 kg on the sheave. The allowable hoist 

force for the dragline (Nikiforuk and Ochitwa, 1964) is 125,645.1 kg (277,000 lb). 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

Figure 4.17. Maximum Generated loads on the drag and hoist ropes 
 
 
 

4.4. WIRE ROPES STRESS MODELING 

The dragline machinery operates in a harsh environment under variable, repeated 

loading scenarios, which endanger the machine availability, productivity, and its service 

life. The maximum allowable loads on the hoist and drag ropes in a dragline machinery, 

such as Marion 7800, can reach up to 136,077 kg (300,000 lb) and 125,645 kg (277,000 

lb), respectively, (NikiForuk and Zoerb, 1966). The dragline bucket payload and its dead 

(a)  (b)  
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weight introduce significant stresses on the drag and hoist ropes and reduce their expected 

useful life.  

This research endeavor provides a stepwise analysis of the stresses generated in 

ropes of different constructions and diameters. The use of finite element method (FEM) 

makes such analysis possible in the highly deformable flexible wire ropes. FEM is used to 

estimate the stresses distribution in a complex structural system that operates under the 

static and dynamic loading conditions. The structure is discretized into finite segments or 

elements that may vary in size and shape. The problem space is then defined by a number 

of nodes whose degrees of freedom (DOF) vary based on the boundary conditions. The 

application of boundary conditions along with the nodes information constitute a set of 

PDEs. The solution of the PDEs reveals information about displacements, forces, torques, 

stresses, and other reactions that capture the response of the system under the load.     

Recent advancements in high performance computational environments (solution 

capabilities, fast processing and visualization techniques) in the last decades have 

improved the problem solving efficiency and accuracy. However, analyzing a large system 

using FEM to obtain a closed-form solution, is time-consuming and computationally 

expensive. For wire rope stress analysis, a rope consisting of 3-5 mm wire diameter and 

30-80 mm rope diameter, requires the finite element size to be small enough to realistically 

capture the deformation during the analysis. The step size also affects the analysis and the 

solver type (Euler, Lagrangian,) plays a central role in solving the PDEs. The finite element 

analysis (FEA) has been carried out under the static and dynamic loading using the ANSYS 

Workbench Version 18.1.  
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The workflow of the FEA is shown in Figure 4.18, which shows the steps required 

to perform a complete study. The geometry is imported into ANSYS Workbench after 

being designed and verified in SolidWorks. Meshing is then applied to the entire geometry 

using a part or surface depending on the nature of the problem. One is recommended to use 

a hexahedral mesh on sweepable bodies and a tetrahedral mesh on other bodies. Once the 

mesh is ready, the physics is applied to different regions of the geometry. The boundary 

conditions are applied to regions with consistency of units. In this research study, the 

boundary conditions are mainly related to the drag force and angular velocity, reaction 

support, frictional contact, and gravity effects.  

 
 
 

 
 
 
Material type, which is structural steel (galvanized) is also applied at this step. 

Static and modal analysis solver options with the Newton-Raphson method could be used 

for faster convergence of the stiffness matrix. Static analysis means that the inertia effects 

and damping are not important and are dropped from the analysis. The dynamic analysis 

means that the applied load varies at each time step and follows a specific function. The 

results are then plotted and visualized using post-processing viewer. Valuable inputs can 

 

Geometry 
Modeling Meshing Physics 

Solution Results

Figure 4.18. FEA workflow of the wire ropes 
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be deduced, such as equivalent stress and strain, displacement, and stress intensity factors. 

Those results are used to predict wire rope useful life under tension and bent-over sheave.     

 Ropes Geometry and Material Properties. This research study investigates 

the stress analysis on several constructions of wire ropes under the effect of direct tensile 

loading. Three dimensional CAD models of different rope diameters and shapes are 

designed and analyzed to understand the effects of the geometry, curvature, and diameter 

of rope and sheave diameter on rope stress distributions. Three dimensional solid models 

of rope-sheave interactions are constructed and tested under static loading where the rope 

was modeled as single rod bent over sheave. The rope-sheave solid models are also shown 

in Figure 4.19. Spiral ropes of diameters 15.00 mm and 13.27 mm of the construction (1 ×

6), and bent over sheave, are analyzed under the effect of static loading and are shown in 

Figure 4.20.   

Figure 4.21 shows spiral wire ropes of diameter 15 and 30.065 mm of construction 

(1 × 6 × 12 × 18) bent over sheave analyzed under the effect of dynamic loading. All 

ropes and their geometries are designed to provide good contacts (wire-to-wire and rope-

to-sheave). The ratio of the sheave diameter to the rope diameter (D/d) is also investigated 

in FEA to assess its effects on the maximum stresses for different ropes. The construction 

of straight ropes was used to create curved ropes bent on a sheave of diameter 632 mm. 

The material type for the ropes and sheave is structural steel with a modulus of elasticity 

of 2 × 1011Pa and a Poisson’s ratio 0.3. Homogeneous, isotropic behavior of materials 

was used in the analysis to reduce the computational time. However, each mesh was refined 

enough to improve the accuracy of the analyses and to obtain meaningful results. Frictional 

contacts between wires are also included to improve the accuracy of results. 
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Figure 4.19. Geometry and construction of a wire rope (1×1) bent over sheave 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction: 𝟏𝟏 × 𝟏𝟏  

Bent over sheave, sheave D = 632 mm 
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Figure 4.20. Geometry and construction of straight and bent wire ropes (1×6) 

 

 

 

 

 

Construction: 𝟏𝟏 × 𝟔𝟔 
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Bent over sheave, sheave D = 632 mm 
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Figure 4.21. Geometry and construction of a 37 wire rope (1×6×12×18) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construction: 𝟏𝟏 × 𝟔𝟔 × 𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏  

Bent over sheave, sheave D = 632 mm 
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 Meshing, Elements Type, and Size. Meshing is a fundamental step in FEM 

and its idea relies on dividing the solid geometry or the problem domain into finite 

elements. The elements in a finite domain are connected via nodes that are partially or 

completely constrained. The shape and size of the elements determine the FEA fidelity and 

model refinements may follow in several subsequent steps to reduce the stress localization, 

material usage and improve the accuracy of results. For this study, hexahedron and 

tetrahedron element types are chosen with the first geometry for the sweepable bodies, such 

as the wire ropes, while the second is used for bodies that are not sweepable, such as the 

sheave. Figure 4.22 shows the mesh for both the rope and sheave using the hexahedral and 

tetrahedral geometries, respectively. This representation is used to verify the effect of the 

mesh refinement on the accuracy of the results. The number of elements and other 

characteristics are described in Table 4.7.  

 
 
 

 

 

 

 

 

 

 

 

  (a)   

  (b)   

Figure 4.22. Meshing of 30 mm wire rope of construction 1×1:  (a) hexahedral 
element type (b) complete mesh of rope bent-over sheave 
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Following the mesh refinement on the rod-shape wire rope, the mesh is greatly 

refined without refining the mesh of the sheave. The results of refinement are depicted in 

Figure 4.23. The characteristics of this mesh are described in Table 4.7 as well.  

 
 
 

  

 

 

 

 

Figure 4.23. Mesh refinement of wire rope of construction 1×1: (a) hexahedral element 
type (b) complete mesh of rope bent-over sheave 

 
 
 

The effect of the mesh refinement on the accuracy of the FEA results are articulated 

using a straight 7 wire rope with a lay length 404.62 mm. The geometry of the model is 

shown in Figure 4.20 and the mesh is shown in Figure 4.24. Wokem (2015) used the same 

geometry and dimensions for the analysis, but with a hexahedral mesh and 1,224,132 

  (a)   

 

  (b)   
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elements. The number of element of the FE model shown in Figure 4.24 is 743,280 and is 

a tetrahedral type.   

 
 

 

Figure 4.24. Meshing of 7 wire rope (1×6): (a) complete mesh of rope (b) tetrahedron 
mesh of wire rope  

 
 
 

 To understand the effect of rope diameter and the type of analysis on the results, a 

wire rope of construction (1 × 6), “7 wire rope,” is wrapped on a sheave of radius 632 mm. 

The rope has a hexahedral element type. The results of meshing using ANSYS are shown 

in Figure 4.25. Mesh characteristics and other information about this experiment are given 

in Table 4.7. This experiment is also used for comparison purpose with the dynamic 

experiment of wire rope of construction ( 1 × 6 × 12 × 18).  

  (b)   

 
  (a)   
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Figure 4.25. Mesh of a 13.3 mm wire rope of construction 1×6: (a, b) wires discretization 
(with hexahedral elements) (c) complete mesh of rope bent-over sheave 

 
 
 
The mesh of the rope-sheave of 𝐷𝐷/𝑑𝑑 =  632/15 is depicted in Figure 4.26 with an 

appropriate mesh and mesh quality check. The element size in this FE model is 0.002 m, 

as it is a starting point for the subsequent FE analysis and further refinements are required 

to reduce the size of the input file. The number of elements and nodes are 85,904 and 

240,085, respectively for the wire rope of 15 mm diameter. Size control and boundary 

layering are applied in appropriate regions, where the important physics phenomena (such 

as frictional contact and plastic deformations) are more likely to develop. It can be seen 

that the wires-sheave contact area and the rope structure require attention. 

  (c)   

 

  (a)   

 

  (b)   
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  (b)   

 

Figure 4.26. Meshing of wire rope of construction 1×6×12×18: (a) complete mesh 
of rope bent over sheave (b) tetrahedron mesh of wire rope 

  (a)   
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Table 4.7. FEA experimental setup and mesh characteristics 

No Mesh Characteristics Parameters Characteristics of 

experiment 

Rationale for the 

experiment 

 Rope Construction  1×1 bent over sheave  

1  No. total nodes  
 No. elements  

= 89379 
= 28420 STATIC ANALYSIS Comparison 

effect of mesh 
refinement 2  No. total nodes  

No. elements 
= 977318 
= 305838 STATIC ANALYSIS 

 Rope Construction  1×6 straight  

3  No. total nodes  
 No. elements  

= 61917 
= 23888 STATIC ANALYSIS 

Validation 
purposes 

4  No. total nodes  
No. elements 

= 1081978 
= 743280 STATIC ANALYSIS 

 Rope Construction  1×6 bent over sheave  

5  No. total nodes  
No. elements 

= 61917 
= 23888 STATIC ANALYSIS Comparison the 

effects of 
number of 

wires and type 
of experiments 
on the stress 
distribution 

 Rope Construction  1×6×12×18 bent over sheave 

6  No. total nodes  
No. elements 

= 240,085 
= 85,904  DYNAMIC ANALYSIS 

 
 
 

 Boundary Conditions and Load Type. A frictional contact behavior was 

applied between the wires with a frictional coefficient 0.12 for the simple strands and 0.25 

for the wires on sheave (Raoof, 1990; Wokem, 2015). The contact behavior was established 

automatically among all wires and wires and sheave using the contact generator in ANSYS 

Workbench. ANSYS automatically detected 12 frictional conditions in the 1 × 6 

construction, and 337 contacts for the (1 × 6 × 12 × 18) construction. The straight wire 

ropes are loaded axially in the case of static analysis and the bent-over sheave. Static 
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analysis means that the equations of motion of the FE model are solved without the effect 

of the acceleration (∑𝐹𝐹 = 0). The FE experiments are also performed on the same 

structures using explicit dynamics approach as shown in Figure 4.27. In this approach, 

ANSYS uses Autodyn (a solver with pre/post-processing features), to provide solutions to 

the problem of the nonlinear dynamics of wire ropes. Explicit dynamics is well suited for 

the problem of complex contacts and large deformations. The results of the mathematical 

model, such as the angular velocity of wire rope, which is 0.052 rad/s, and the tension in 

the drag rope 1,375 KN are used as boundary conditions for the explicit dynamics analysis.  

 
 
 

 
Figure 4.27. Dynamic analysis of rope construction 1×6×12×18 bent over sheave under 

the effect of boundary conditions 
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4.5. SUMMARY 

In this section, the numerical analysis of an advanced computational dynamic 

model of a dragline was tested, verified and validated using real-world data. The 

mathematical formulation of a closed loop multibody mechanism resulted in a set of highly 

nonlinear differential algebraic equations. The initial conditions search was investigated 

thoroughly as it is believed to be the first part toward an accurate solution of the equations 

of motion. The stabilization of the solution algorithms was established using the 

Baumgarte’s Stabilization Technique (BTS), which gave accurate results. The 

computational dynamic model of dragline was analyzed after generating the right input 

files in Mathematica. The accurate estimation of the dragline machinery parameters using 

the 3-D CAD models eliminated the need to input wrong inertia properties and weights. 

The residual errors, for a digging phase of 10 seconds, were in the magnitude of 

10−4 degree. Thus, this mathematical model is verified, validated, and significantly 

improved compared to current models.  

The effects of static and transient loading on the wire ropes were also investigated 

using the ANSYS Workbench. These ropes, the weakest part of the dragline front-end 

assembly, were subjected to tremendous loading (tensile, frictional, and bending). FEA has 

been conducted on different wire rope constructions to estimate the maximum stresses and 

stress intensity factors. The FE models are constructed using SoildWorks and analyzed in 

ANSYS Workbench. The output of the mathematical model permits the application of the 

resulting loads on the ropes in static and dynamic analyses. Explicit dynamic modeling 

approach is very well used in finite element analysis for short-period events. The FE 

models are enough to capture the rope responses when the dragline bucket is fully loaded.  
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5. NUMERICAL TESTING AND SIMULATION RESULTS 

 

This section provides a detailed numerical testing of the kinematics and dynamics 

of the proposed mathematical model of a Marion 7800 dragline. The results of the 

numerical experimentations are carried out for the digging phase and loaded bucket 

swinging to dump material on spoil piles. The input data for the mathematical model are 

provided in Table 5.1. The results of the finite element analyses conducted on the wire 

ropes are also discussed for the different loading cases. For these analyses, a High 

Performance Computer (HPC) with 72 logical core processors and a memory capacity of 

512 GB was used to carry out the FEA experimentations.  

 
 
 

Table 5.1. Input data for the mathematical model 

 

 
Parameter Value (m) Parameter Value 

𝐿𝐿0 7 𝑅𝑅𝑠𝑠 1.715 (m) 
𝐿𝐿1 10.76 E1H2 5.66 (m) 
𝐿𝐿2 10.76 E1E2 6.041(m) 
𝐿𝐿3 7.95 E1F1 10.5 (m) 

𝐿𝐿4 7.95 DE1 
�𝑅𝑅𝑠𝑠2 + 𝑞𝑞82 

𝐿𝐿5 45.7 B1D 110 (m) 
𝐿𝐿6 45.7 𝑘𝑘𝐹𝐹 0.29 × 106 
𝐿𝐿7 1.715 𝑘𝑘𝑝𝑝 1.3 
𝐿𝐿8 1.715 𝑙𝑙bucket 5.2 
𝐿𝐿9 5.25 𝜆𝜆0 0.3 
𝐿𝐿10 5.25 𝑘𝑘nym 3 
𝐿𝐿11 2.29 ca 5 ∗ Pi 180⁄  
𝐿𝐿12 7.14 𝑞𝑞2 32 ∗ Pi 180⁄  
𝐿𝐿13 7.14 𝜆𝜆 37 ∗ Pi 180⁄  
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5.1. KINEMATIC SIMULATIONS RESULTS AND DISCUSSIONS 

 The kinematic model of the dragline front-end assembly was built using the concept 

of generalized coordinates and generalized motion variables (generalized speeds). It was 

verified and validated in Section 4 using real world data. Section 5 focuses on the numerical 

implementation of the digging phase and the loaded bucket swinging to dump material on 

spoil piles. This model contains all the relevant data and information about the linear and 

angular measurements of displacements, velocities, and accelerations of the machine house 

and the hoist, dump, and drag ropes. The operational cycle of a dragline usually starts when 

the dragline machinery, with its empty bucket, begins swinging back from the spoil piles 

to the digging area. In the kinematic simulations, the time is set to zero at the beginning of 

the digging phase. 

As can be seen in Figure 5.1 (a), during the digging phase the hoist rope extends 

and the drag rope retracts to move the bucket towards the bank and excavate the 

overburden. The linear displacements of the hoist and drag ropes are given in equation 

(4.1). Thus, the linear velocities of the hoist and drag ropes are fixed and are of magnitude 

2.54 m/s and −1.32 m/s, respectively. The linear and angular displacements of the drag 

and hoist ropes govern the motion of the dragline bucket and constrain it from colliding 

with the machine house or the boom. Figure 5.1 (b) shows an agreement among the linear 

and angular displacements of both ropes. The hoist rope trajectory increases with the 

digging time as a result of its extension to permit more mobility to the bucket. Releasing 

the hoist clutch and engaging the drag motor cause the drag rope to start dragging the 

bucket. This rope gets shorter as the bucket is partially submerged in the bank under its 

weight and the weight of the filled materials in the loading process. This occurrence causes 
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an additional angular displacement to occur in the drag rope and it improves the diggability 

of the bucket. It can also be seen from Figure 5.1 (b) that the variation of the angular 

displacement of the hoist rope is less than that for the drag rope and this behavior is also 

governed by the profile of their linear displacements. The initial angular displacement of 

the hoist rope is zero and that for the drag rope is -30 °, which is the slope of the digging 

face. All angular displacements are consistent with the machine operating limits and the 

model is accurate for simulating the real kinematic operations of a dragline.   

      
 
 

 

 

 

 

 

 

 

Figure 5.1. Displacements of hoist and drag ropes: (a) linear and (b) angular 
  

 
 
The trajectory of the rigging system is characterized by a polynomial function of 

third order and it is depicted in Figure 5.2. This trajectory was established based on the 

numerical integration of the nonlinear constraints differential algebraic equation (4.4) at 

the acceleration level. The trajectory q5 is also a representative of the bucket trajectory 

according to the assumption that the bucket is rigidly attached to the rigging system. The 

variation of the trajectory function of the dump rope 𝑞𝑞5 is relevant to its behavior in a real 

digging event. It begins with positive orientation and changes rapidly to position the bucket 

(a) (b) 
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properly against the digging phase. At the end of the digging, it has a steady slow change 

to eliminate spilling of the filled materials.  The field observations have also shown that 

the orientations of the dump rope slightly change during the hoisting of a loaded bucket. 

In addition, the dump rope and boom are parallel to each other during the swinging of the 

loaded bucket onto the spoil piles. This feature plays a key role in stabilizing the bucket 

carry angle and provides a momentary dynamic balancing until the dumping happens. 

 
 
     

 
Figure 5.2. Angular displacements of dump rope  

  
 
 

The behavoir of the angular velocity of the hoist and drag ropes is shown in Figure 

5.3 (a) and it captures the real operation. The hoist rope is not under direct tension from 

the hoist motor and its velocity changes at a slow rate. On the contrary, the drag rope rotates 

at higher velocity to peferctly position the bucket during the digging operation. The angular 

velocity of the dump rope is plotted in Figure 5.3 (b) and it is much higher than that for the 

hoist and drag ropes. This is because the dump rope has more mobility to rotate than other 

ropes.  
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Figure 5.4 shows the variations in the angular accelerations of the hoist, drag, and 

dump ropes. These accelerations provide valuable information about the dynamics of the 

dragline machinery during the digging phase. It can be seen that all ropes rapidly change 

the acceleration within the first 4 seconds of the digging time and then deceleration occurs 

during the bucket loading process. The acceleration profiles for each rope approximately 

reaches steady-state after 7 seconds when the bucket is almost filled and is ready to be 

lifted off the bank.  

 
 

 

 

 

 

 

 

 

 

Figure 5.4. Angular accelerations: (a) hoist and drag ropes and (b) dump rope  

(a) (b) 

Figure 5.3. Angular velocities: (a) hoist and drag ropes and (b) dump rope 

(a) (b) 
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The acceleration curves for the drag and dump ropes have decreasing profiles at 

different rates. This behavior indicates that both ropes operate consistently during the 

digging phase. It can be explained that the dump rope accelerates to quicly respond to the 

motion of the drag rope. As the bucket slides on the ground, the acceleration of the dump 

rope gradually decreases to 1 deg/s2. It was seen in Section 4.1.1.1 that the initial 

conditions of the trajectory functions 𝑞𝑞4, 𝑞𝑞5 and 𝑞𝑞6 have significant impact on the kinematic 

solutions. This impact also affects the results of the dynamic simulations. Wrong initial 

values are more likely to give incorrect solutions, especially when dealing with a stiff 

mathematical DAE model. The invariants of the kinematic model are a key to performing 

full and acceptable kinematic and dynamic simulation experiments. They provide 

consistency in the behavior of the model during the integration and reduce the possibility 

of increasing the drift error.  

The mathematical model also provides information about the velocity and 

acceleration variations of ropes with respect to their resulting trajectories, as shown in 

Figure 5.5. The experiment shows that the hoist rope velocity is minimal when its trajectory 

is – 40 °, as given in Figure. 5.5 (a). The hoist rope, at this angle, is close to the boom and 

its angular speed is already decreased to avoid collision with it. The angular velocity of the 

dump rope is much faster than that of the hoist rope allowing for a quick adjustment to the 

rigging system, as depicted in Figure 5.5 (b). Figure 5.5 (c) shows the variation of the 

angular velocity of drag rope versus its trajectory and it is similar to that of the hoist rope. 

When the bucket is filled, the drag rope angle is maximum and the velocity is minimal to 

prevent the bucket from hitting the machine. 
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 5.5. Angular velocity versus trajectory: (a) hoist, (b) dump, and (c) drag ropes 
angular acceleration versus trajectory: (d) hoist, (e) dump, and (f) drag ropes 



 

 

162 

The behavior of the dynamic model is also investigated during the digging phase 

for the acceleration and deceleration of the ropes. Figure 5.5 (d, e, f) show the resulting 

angular acceleration of each rope versus its trajectories at time interval [0, 10] seconds. 

The angular acceleration profile is steep at the beginning of the excavation process and it 

gradually decreases through the excavation process. The acceleration is minimal at the end 

of digging and this behavior is explainable from an operational viewpoint. The rapid 

change in the accelerations, at the beginning of the digging phase, may be attributable to 

the stiffness of the constraint, velocity and acceleration equations. The initial conditions of 

the constraint and velocity functions are also the cause of such behavior. The acceleration 

of a structural member in the front-end assembly is due to its interaction with other 

members. Equations (3.42) and (3.43) provide an explanation to this interaction.    

 
 

 

Figure 5.6. Angular displacement versus linear displacement for hoist and drag ropes 

 
 
 

The variations in both the hoist and drag rope lengths also affect their trajectories 

during the digging. They also change the trajectory of the dump rope, whose length is fixed 

(a) (b) 
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for all experiments. Figure 5.6 (a) shows that by increasing the hoist rope length 𝑞𝑞8, its 

trajectory increases and it has a maximum magnitude of -22.5° at 100 m. The drag rope 

trajectory also increases with time and it has a maximum magnitude of -72.5° at 62 m of 

its length, as given in Figure 5.6 (b). At the end of digging, the operator switches the control 

from digging to full-bucket swinging motion and the drag rope extends while the hoist rope 

retracts. Thus, the behavior of the trajectory functions depends on the underlying task that 

the dragline machinery performs and on its technological limitations.         

 

 

 
Figure 5.7. Filled bucket trajectory in a 3 D space during swinging-back phase 
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The front-end assembly of a dragline machinery, with its three ropes (hoist, dump, 

and drag), governs the bucket motion in a (x-z) plane of digging as shown in Figure (3.2) 

(see Section 3). The ropes also determine the trajectory of the bucket in a 3D space during 

a loaded bucket swinging operation. The resulting trajectories of the kinematic model are 

also used to simulate the bucket motion after completing the digging phase. In a loaded 

bucket swing motion, the bucket moves in the x-z plane and changes its coordinates in a 

global reference frame, as depicted in Figure 5.7. The trajectories 𝑞𝑞1, 𝑞𝑞4 and 𝑞𝑞6 

simultaneously change with time to return the filled bucket to the dumping area. It can be 

seen that the machine house makes a rotational displacement of -80°, whereas the 

trajectories of the drag and hoist ropes make 22.5° and 25°, respectively.    

5.2. DYNAMICS SIMULATION RESULTS AND DISCUSSION 

The mathematical model of the dragline machinery has been verified and tested 

using the correct angular displacements as described in Section 4.2. The results of the 

kinematic simulations generated in Section 5.1 are used as inputs for the dynamics 

simulation. The dynamic model contains three actuators, which are used to generate the 

required torques and force and operate the machine in a cycle time of 60 seconds. These 

actuators may provide simultaneously a swinging torque 𝜏𝜏1, a hoisting torque 𝜏𝜏2, and a 

dragging force 𝜎𝜎 or a hoisting and a dragging force depending on the underlying 

operational task. Thus, a dragline machinery can be regarded as a robotic excavator with 

three DOF. The solution of the dragline force and torques is a problem of inverse dynamics. 

The latter requires providing accurate values of the trajectory functions that must meet the 

machine limits in the course of the solution.      
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Generally, a loading cycle of a dragline starts when the operator has already 

positioned an empty bucket and engages the drag motor to begin excavating the materials. 

In the digging phase, the bucket penetrates the bank with a prescribed dragging velocity �̇�𝑞7 

of approximately -1.32 m/s. The digging extends for 15 seconds and terminates when the 

bucket is fully loaded with the materials. Previous studies have shown that the maximum 

loads are more likely to develop, in a dragline machinery front-end assembly, at the end of 

digging cycle (Nikiforuk and Ochitwa, 1964; Nikiforuk and Zoerb, 1966; Nichols et al., 

1981). Thus, the simulation of the digging cycle is of particular interest and would result 

in valuable information about the dynamic loading of a dragline machinery. The developed 

dynamic model, in equation (3.87) in Section 3, is a robust model that helps to accurately 

predict the unknown dynamic loading.     

The solution process of the dynamic model was given in Figures (4.8) and (4.9). It 

starts with the definition of the geometry of the dragline front-end assembly, masses and 

inertia of components, and prescribed trajectory inputs. The solution of the DAE, in 

equation (3.87), during digging eliminates the needs for the swinging torque, as the 

machine house is fixed during this phase. The dynamic solution algorithm includes the 

kinematic algorithm with its Baumgarte’s Stabilization Technique (BTS) and the dynamic 

equations of motion in equation (3.87). Mathematical functions are developed and contain 

all relevant information about the dynamic and kinematic analyses. The resistance force to 

cutting was included in the analysis and it follows the model given in equation (3.70). 

However, the developed friction model of the drag rope, in equation (3.80), was not 

included in the dynamic simulation based on the assumption of limited contact with the 

ground. Its parameters need further research and that is out of the scope of this dissertation.      
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The bucket payload model was developed using an input function given in equation 

(3.72). The maximum load (in kg), that the drag rope pulls at the end of the digging phase 

is depicted in Figure (5.8). It includes the bucket tare mass and the overburden (waste 

materials) mass, which is a maximum of 80,000 kg per the machine allowable payload 

(Nikiforuk and Zoerb, 1966).   

 
      

 

 

 Figure 5.8. Bucket mass variation during digging phase 
 
 
 
During the digging operation, the bucket tip interacts with the ground and a 

resistance force to cutting the material develops and increases with time. The cutting 

resistance model is included and was developed according to Poderni (2003). It was 

assumed that the bucket has already made an angle, called “the carry angle ca” with the 

horizontal and its magnitude is 35°. This value was chosen on the basis that this angle 

provides a good estimate to the cutting force. It also reduces the bucket tipping-over during 

the digging and minimizes material spillage during a completely loaded bucket swinging 

onto the spoil piles. The resulting resistance force to cutting is calculated in accordance 



 

 

167 

with equation (3.69) and is plotted in Figure 5.9. Two components of the resistant cutting 

force affect the diggability of materials and the horizontal component is always maximum. 

The variation of the horizontal cutting resistance force is around 400 KN, whereas the 

maximum value of the horizontal component, at 4 seconds, is 100 kN. This model captures 

the complex digging scenarios when the bucket starts penetrating the ground. It can be seen 

that the vertical cutting force reduces with time and this is an indication of the reduction 

resistivity of ground to digging. The orientation of the bucket and its carry angle, as well 

as the fragmentation of the rock and its resistance to cutting and the bucket capacity 

influence this behavior. 

 
 
 

 
Figure 5.9. Cutting resistance force during digging phase 

  
 
  

During the empty-bucket lowering phase, the hoist rope carries most of the load, 

which includes its own weight, bucket weight, and a partial tension from the drag rope. On 

the other hand, the drag rope has less load acting on it. The operator releases the hoist 

clutch quickly and that results in increasing the hoist rope length. The drag motor is also 
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engaged to position the bucket properly. Both ropes change their lengths and their masses. 

This change also occurs during the digging phase, in which, the hoist rope becomes longer 

and the drag rope becomes shorter as in Figure 5.1 (a). This implies that hoist rope mass is 

linearly increasing with time, whereas the drag rope mass is linearly decreasing with time. 

In this dissertation, the dynamic simulation takes into account these simple variations to 

correct the pitfalls of using constant rope mass during the analysis. The variable masses of 

the hoist and drag ropes are shown in Figure 5.10 for given inputs of 𝑞𝑞8 and 𝑞𝑞7.       

 
 
 

        

Figure 5.10. Variation of rope mass during digging: (a) hoist rope, and (b) drag rope 

 
 
 

The dynamic model is developed to cover an operational period of 40 seconds, 

which encompasses the digging phase and the loaded bucket swinging phase. However, it 

can be extended to consider the full cycle with appropriate changes to the input functions. 

The solution of the dynamic model during digging only includes the drag force and hoist 

force at the beginning of excavation. That corresponds to the solution of the second and 

third equations in the complete dynamic model captured by equation (3.87). Figure 5.11 

(a) shows the variation of the drag force with time and it follows a polynomial function.  

(a) (b) 
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Figure 5.11. Rope loads during digging and full-bucket swinging back motions 
 
 
 

It can be seen that the drag rope has some tension at the beginning of digging to 

allow the orientation of the bucket tip towards the operator. The tension in the drag rope 

increases rapidly with time as the bucket is being filled with the materials. Also, the 

resistance to cutting increases, as shown in Figure 5.9, during an operational time span 

between 15 and 20 seconds. A maximum dragging force, which approximately 

measures 1.375 × 106 𝑁𝑁, occurs when the bucket has already moved for a period 

equivalent to three-quarters of the digging time (27 seconds).     

 The hoist force is also shown in Figure 5.11 (b) for the digging phase and the loaded 

bucket swinging onto the spoil piles. At the beginning of the digging phase, the hoist rope 

has some tension due to the empty- bucket weight. This force decreases with time to allow 

the bucket to move freely under the effect of the drag force. At 5 seconds of digging, the 

hoist force changes direction to hosit  the bucket and to prevent it from being tipped over. 

The tension in the hoist rope increases with time until the bucket is filled at time 30 seconds 

into the digging operation. At the end of the digging phase, the bucket is lifted off the bank, 

which requires significant hoisting torque to lift a loaded bucket of 80,0000 kg. It can be 

seen that the maximum hoisting torque, during time interval [15-30] seconds is 690.39 

(a) (b) 
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KN.m. However, during the swinging of the loaded bucket onto the spoil pile, at interval 

of time [30-45] seconds, the maximum hoisting torque is 917.87 KN.m at time 40 seconds.  

Nikiforuk and Zoerb (1966) reported the maximum allowabe drag and hoist forces 

on the dragline Marion 7800. The maximum drag force is 300,000 lb, which is equvailent 

to 077.7,136  Kg and 1,334 KN and the maximum hoist force is 277,000 lb, which is 

equvailent to 645.1,125  Kg and 1,232.5 KN. These values (in Figure 5.11) are within the 

machine limits. Thus, the dynamic model of the dragline front-end assembly is capable of 

generating accurate results. These values validate the results for the finite element analysis 

on wire ropes. The maxiumum drag force 1,375 KN was used as a buoundry condition in 

analyzing the maximum stresses in several wire rope constructions. The results of the stress 

analysis  are provided in the Section 5.3 and for the geometries given in Figures 4.19-4.21 

(see Section 4.4.1).    

5.3. FINITE ELEMENT MODELS RESULTS AND DISCUSSIONS 

The performance and productivity of a dragline machinery are characterized by the 

amount of drag and hoist forces, as well as the swinging torque, provided by the machine 

in a full cycle of 60 seconds, to excavate and spoil materials. The hoist and drag forces are 

applied to the bucket during the entire cycle at varying magnitudes. They greatly affect the 

machine performance and may reduce the machine availability if the ropes break during 

operations. These forces and their ropes are, therefore, of paramount importance and 

require further investigation. A major cause of a wire rope breakage is due to loading the 

rope beyond its ultimate strength under excessive repeated dynamic loading and 

unscheduled maintenance.       
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As was seen in Figures 4.19-4.21, the wire ropes are complex structural elements 

and their response to the static and dynamic loading is still an area for further research. In 

this research study, one of the main objectives was to find the stress distribution in an 

axially loaded straight ropes, and in ropes running on sheaves. The FEM was used to 

predict the stresses and stress concentrations at different loactions in the rope. The dynamic 

analysis concluded that a maximum drag force of 1.375 MN is produced and it will be used 

in the FEA input files. The material for all wire ropes used in the analyses are galvanized 

structural steel with a Young’s modulus 2.00 × 1011Pa and mass density of 7,850Kg/m³. 

The results of the static and dynamic FEA using ANSYS 18.1 are analyzed and discussed 

for each structural member.     

 Static Analysis of Simple Wire Ropes. Figure 5.12 (a) shows the static FEA   

of two wires that were taken from a 7 wire rope construction. The two wire length is 0.404 

m and each wire diameter is 2.6 mm. The drag rope load of 1, 375 KN was used in the 

analysis and it resulted in 4.52 × 1011 Pa von Mises stress and a severe displacement of 

magnitude 4.65 m as shown in Figure 5.12 (b). These results are limited for predicting the 

stresses in a multi-strand wire rope of complex construction. It can be seen that the 

maximum deformation is very significant, the location of which is shown in red color of 

the loaded rope and corresponds to the location of the applied load. The resulting average 

stress intensity factor (SIF) for this FE model is 2.738 × 1010 Pa. The 15 mm diameter, 7 

wire rope construction was used in this dissertation and it was similar to the rope used by 

Wokem (2015) for comparison purposes. To further validate the current FEA, the same 

wire rope used by Costello (1997) and Wokem (2015) is now subjected to the same load 
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85 KN. The results are given in Figure 5.13 for the maximum von Mises stress and 

maximum equaivlent strain.  

 
 

      
 Figure 5.12. Equivalent stress and maximum deformation in two wire rope 

 
 

              
Figure 5.13. Equivalent stress and deformation in a 15 mm, 7 wire rope under F= 85KN  

(a) (b) 

(a) (b) 
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It can be seen that the von Mises stress along the strand, except the white dotted 

regions, is very close to 7.7 × 108Pa provided by Wokem (2015). The displacement is 

maximum at the outer layer and its magnitude is 2.5 mm and this value matches the results 

given in Wokem (2015). It can be concluded that the mesh element type for the simple wire 

rope construction does not have significant impact on the accuracy of the results. 

Now, additional experiment is performed by applying the resultant drag load on the 

7 wire rope construction. The stress results of the 15 mm, 7 wire rope, under axial loading 

of 1.375 × 106 KN, are depicted in Figure 5.14 (a). It can be seen that the maximum 

equivalent von Mises stress, at points of contact between the wires, is 1.019 × 1010Pa.  

 
 
 

       
 Figure 5.14. Stress and deformation in a 15 mm, 7 wires rope under F= 1,375 KN 

 
 
 

Figure 5.14 (b) shows that the outer layer is not fully bonded. That resulted in a 

higher deformation than the one in the core wire, and its maximum equivalent value is 

(a) (b) 
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16.3mm. Wokem (2015) has shown that the maximum equivalent stress for the same 

construction is approximately 7.7 × 108Pa for an applied load of magnitude 85 KN. The 

load, he used, was predicted based on the theory of Costello (1997) and his model was used 

just for validating the effect of mesh refinement of the results. To investiagte the effects of 

rope diameter and its length on the stress distribtion in the strand, another FE experiment 

was conducted using 7 wire rope, with diameter 30 mm and reduced length of 200 mm.  

 
 
 

        

 Figure 5.15. Stress and deformation in a 30 mm, 7 short rope under F= 1,375 KN 

 
 
 

The results are plotted in Figure 5.15 for the maximum von Mises stress, which is 

1.2 × 108Pa, and maximum displacement of magnitude of 5.33 mm. It can be seen that 

stress concentrations are maximum at points of loading. At these locations, the wire 

undergoes the effect of tension, twisting, and friction. Obviously, the stresses are less than 

those developed in the 15 mm wire rope. The results of this analysis indicate that the shorter 
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the length of the strand is, the lower the deformation in the rope. As the rope becomes 

longer, its rigidity decreases, and its flexibility becomes more significant. In fact, the short 

rope behaves similar to a beam when the number of mesh elements in not enough.   

The wire rope construction (1 × 6) bent over sheave, whose geometry and mesh 

properties are shown in Figure 4.25 and in Table 4.7, is tested under the effect of steady-

state applied load. The equaivlent stress and deformation of the FEA are provided in Figure 

5.16. The maximum von Mises stress appears in the location of the applied load and its 

value is 1.25 × 109Pa. Maximum displacement also occurs in the same region and its value 

is 20 × 10−3m. The FEA results of the 7 wire rope bent over sheave indicate that stress 

waves significantly exist in the rope and propagate towards the fixed end. The bending of 

the rope over sheave increases these stresses and the deformation as well.   

 
 
 

         

Figure 5.16. Stress and deformation in a 15 mm, 7 wire rope under F= 1,375 KN 
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It should be noticed that the load applied in this analysis are monotonic load. These 

results will be compared with that from the 36 wire rope generated under the dynamic 

analysis (see Section 5.3.2). 

The results of the FE model that uses wire rope representation as a single rod are 

shown in Figure 5.17. The maximum von Mises stress is 8.8 × 108Pa and exists at the 

fixed support as shown in Figure 5.17a. However, the maximum displacement occurs at 

the free-end, with a maximum value of 0.04 m Figure 5.17b. This representation is not 

equivalent to the stress-strain contours that were shown in Figures 5.12-5.16. That means 

the wire rope construction cannot follow the behavior of a simply supported beam. Thus, 

more wires are required with an appropriate construction to fully describe the real behavior 

of a complex rope structure under loading.  

 
 
 

   
 Figure 5.17. Stress and deformation in a 30 mm, 1 wire rope under F= 1,375 KN  

(a) (b) 
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 Dynamic Analysis of Rope Bent over Sheave. Explicit dynamics has been 

performed on the ropes running over sheaves. It is well suited for the analysis of wire ropes, 

where large deformations, geometry nonlinearity, complex contact conditions, and failure 

can be modeled and captured in a short period of time. The simulations are performed for 

a short time, in milliseconds, and the angular velocity of rope, its weight and the frictional 

contacts of its wire are applied.  

 
 
 

 

            

Figure 5.18. Stress and deformation of a 15 mm,1×36 strand wire rope with F= 1,375 KN 

 (a) 

 (b)  (c) 
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The results of the first explicit dynamics experiment on a 1 × 36 wire rope with 

diameter 15 mm are shown in Figure 5.18. It can be seen that the maximum equivalent 

(von-Mises) stress is 4.12 × 1010 Pa in the wires of the outer layer. Other stresses are 

probed and depicted in Figure 5.18 (b). Figure 5.18 (c) shows that the maximum equivalent 

strain is 0.433 [𝑚𝑚/𝑚𝑚], which indicates a large deformation in the strands.  

 
 
 

 

 

 
Figure 5.19. Equivalent stress in a 15 mm, 1×36 strand wire rope under F=1,375 KN: 

(a) core , (b) layer 1, (c) layer 2, and (d) layer 3 

(a) 

(b) 

 (c) 
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Figure 5.19. Equaivlent stress in a 15 mm, 1×36 strand wire rope under F=1,375 KN: 

(a) core , (b) layer 1, (c) layer 2, and (d) layer 3 (Cont.) 
 
 
 
Figures 5.19 (a-d) show the equivalent von Mises stresses in different layers of the 

spiral wire rope. The results indicate that the stresses developed in the core are the least, 

whereas other layers sustain significant stresses. These results are not far from those in the 

static analyses that have been carried out on simple strands. Thus, the static analysis can 

be used for analyzing the wire rope stress distribution with a good degree of accuracy.   

 However, stress distribution cannot be used alone to judge the safe use of wire ropes. In 

this case, the safety factor of the wire rope was determined for a limited number of cycles.  

It can be concluded from Figures 5.19 that the behavior of the wire is anisotropic 

and the stresses are significant in the zones of contact between the wires. To capture this 

behavior, each layer responds to the applied load by an extension along its neutral axis and 

a confinement in the radial direction. As a result, the wires become highly distorted and 

permanent plastic strain develops indicating irreversible process of deformation and 

yielding of the steel material. To further investigate the safe operational use of this rope, 

(d) 
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the factor of safety was estimated for a number of cycles equivalent to 19,772 cycles. The 

results are shown in Figure 5.20 (a) and (b) for the core wire and first inner layer.  

 
 
 
 

 

 
 Figure 5.20. Safety factor in a 15 mm, 1×36 wire rope under F = 1,375 KN: (a) wire and 

(b) first inner layer 

 

 

5.4. SUMMARY  

The kinematic and dynamic analyses of a multibody system provide valuable 

information about the loads that a structural member is subjected to. In the case of a 

(a) 

(b) 
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dragline machinery, it saves time, money, and personnel required to carry out dynamic 

experimentations. In this research study, the spatial kinematic functions and dynamic loads 

associated with dragline operations, are accurately predicted and validated using real-world 

data in literature and field observations. The formulation of the multibody dynamic model 

using Kane’s method has provided information about the acceleration and the variation of 

other loads that develop during the operation. The dynamic model of the dragline front-

end assembly is a complete model and can be used in any part of the operational cycle of 

the dragline machinery. This significance is also confirmed by designing and analyzing a 

virtual dragline model for the kinematics and dynamic analysis. 

The kinematic and dynamic of the dragline front-end assembly resulted in a highly 

nonlinear differential algebraic equations (DAE), which are solved using numerical 

methods in Mathematica. The results of the computational dynamic model show that the 

drag rope is the weakest link in the front-end assembly since it carries the maximum load 

of 1.375 × 106 N. This load was used to perform FEA on wire rope of simple and complex 

constructions. Static analysis were performed on simple strands to check the feasibility of 

using static FEA, which can save computational time. The results of the static analyses are 

compared and validated using the literature on simple strands. In addition, explicit 

dynamics analysis has been carried out on complex spiral rope of 36 wire rope. The FEA 

results showed that significant stresses and deformations are more likely to develop in the 

area of contact between the wires. The wire-wire contact areas are believed to be highly 

intense localized stress areas. The manufacturing process of the wire ropes can cause high 

deformation in the layers and it should also be considered in the form of microstructural 

characterization research. That would help defining the premier cause of wire rope failures.  
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

This section provides a summary of the findings, conclusions, contributions to the 

current body of knowledge, and recommendations for a new direction in this research. The 

summary highlights the important steps followed to achieve the research objectives. The 

conclusions provide the key points that relate the research objectives to the major 

contributions in the research scope. The original contributions are provided, as well as their 

potential impact on the current research knowledge and frontiers. The section ends with 

recommendations for future study to improve the current research results and expand the 

directions and frontiers of the dragline kinematics and dynamics research.  

6.1. SUMMARY 

The dragline machinery is a capital-intensive machinery that is primarily used to 

excavate and move 200+ tons of waste materials in a cycle of about 60 seconds (Kumatso, 

2017).  The productivity of such machinery is constrained by the performance and the 

longevity of its components. The payload and the bucket of the Marion 7800 dragline for 

this study weighs about 30 tons (Nikiforuk and Ochitwa, 1964). These parameters are 

variable, repeated load and are considered as important indicators of the machine 

performance and its longevity. These loads, on the other hand, due to their variations, are 

a source of uncertainty to the dragline performance (Lumley, 2014).  

Dragline performance monitoring systems are essential tools in every dragline 

machinery. They provide critical information about the payload, stresses in the machine 

boom, and excessive loading. They are, however, built using simplified kinematics and 

dynamic models since the 80’s (McCoy Jr. and Crowgey,1980; Godfrey and Susanto, 
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1989). These studies excluded important structural components that can hinder machine 

availability, performance and productivity. In addition, the dragline simulation models 

provided in literature are limited to either the digging or swinging phases. That makes the 

use of current computer models limited in capturing the machine response to the full 

operating cycle.       

As a result of the limitations of current models, dragline kinematics and dynamics 

have been advanced in this research endeavor by including important structural 

components within the front-end assembly. The kinematic model of the dragline is a 

comprehensive model that allows the description of the motion of all dragline front-end 

assembly in details. The model is built based on a 3-D visualization of the motion of every 

component in the front-end assembly using the concept of the generalized speeds (Kane 

and Levinson, 1985).  

The dynamic model is a 3 DOF computational model and it incorporates the 

payloads, formation cutting resistance, and rope-formation friction forces. Numerical 

simulations have been carried out using Mathematica for simulating the kinematics of the 

hoist, dump, and drag ropes. The dynamic model is developed to include only the important 

contributing forces and torques, an important feature of the Kane’s method. 

A virtual dragline simulator is built using SolidWorks and it highlights the elements of the 

unknown properties, such as their masses and moments of inertia. Finite element (FE) 

models of different constructions of wire rope are tested in ANSYS (R18.1) using the 

output of the dynamic model. The results of the FE models under static and dynamic 

loading conditions are provided in Section 5 and analyzed thoroughly.  
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6.2. CONCLUSIONS  

This research study was undertaken to address the limitations of the current body of 

knowledge established via thorough literature review on the kinematics, dynamics and 

stress intensity of dragline machinery. All the objectives enlisted in Section one have been 

achieved within the scope defined in Section 1.3. Detailed kinematics and dynamic models 

of the dragline front-end assembly have been formulated using Kane’s method. The 

kinematics model is based on the concept of generalized speeds (motion variables) and the 

vector loop method was used as configuration constraints. The kinematics model provides 

information about the front-end assembly during digging phase, and it also captures the 

kinematics in the sense of angular rotation of the machine house and the relative motion 

between components with respect to the machine house. 

From the kinematics simulation of the dragline front-end assembly, the following 

conclusions can be drawn: 

1. Vector loop method is not enough to capture the relative motions between different 

moving components in a multibody mechanical system. The method is important 

for minimizing constraint violation and it supports the kinematics analysis.  

2. Inconsistent initial conditions of the unknown trajectories may produce a singular 

Jacobian matrix, or yield inaccurate trajectory functions of the ropes.  

3. The drift error for using the constraint equations is very small and its value for every 

trajectory is below 10−4degree, which indicates the accuracy of the kinematics 

formulation and its solution algorithm. 

4. The angular velocity of the dump rope is much higher than that for the hoist and 

drag ropes since it has higher degrees of freedom than that of other ropes.  
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5. The linear displacements of the hoist, drag and dump ropes affect their angular 

displacements.  Maximum values of -22.5° at 100 m and -72.5° at 62 m are achieved 

for the hoist rope and drag rope, respectively. 

6. The angular accelerations of the ropes are minimal at the end of digging and they 

are 0.1 deg/s², -0.05 deg/s², and 1 deg/s² for the hoist, drag, and dump ropes, 

respectively. This behavior is explainable from an operational viewpoint.  

7. The Baumgarte’s Stabilization Technique (BTS) reduced the drift error that exists 

due to constraints violation. 

 The dynamic formulation focused on finding the unknown contributing forces and 

torques rather than solving the reaction forces, which are not required for this research 

study. That resulted in an advanced formulation of the dynamic model and the inclusion of 

different important aspects in the analysis, such as the friction of the drag rope with the 

formation, resistance to cutting force, and variable masses in the ropes. The solution of the 

dynamic model was performed using Mathematica on a compact form of the equations of 

motion. From the analysis of the dynamic model simulation, the following conclusions can 

be drawn:    

1. Mass and inertia properties of the front-end assembly are important design data and 

are directly used to estimate the forces and torques. Thus, the accuracy of the 

dynamic analysis fundamentally depends on these inputs and other engineering 

inputs. 

2. The solution of the dynamic model also depends on the initial condition of 

trajectory functions and their evolution with time. 
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3. The horizontal component of the cutting resistance force is always greater than the 

vertical one. The maximum cutting resistance of 412. 31 KN, occurs 5 seconds into 

the digging time. 

4. Hoist rope mass increases 1000 kg, while the drag rope mass decreases 600 kg at 

the end of digging. Their variations affect the dynamic results and must be 

accurately factored into the analysis. 

5. A maximum dragging force of 1.375 × 106N, occurs when the bucket has already 

moved for a period equivalent to three-quarters of the digging time. 

6. The maximum hoist torque 917. 87 KN.m occurs after 10 seconds into the 

swinging time. 

The results of the finite element analysis on wire ropes yield the following conclusions: 

1. The deformation of the wires of an axially loaded rope is anisotropic due to their 

geometric nonlinearity and the load variations along the cross section of the rope. 

2. Under the effect of static loading, stress is less in areas of wires that are not in direct 

contact. However, significant stresses develop at contact zones. A (1 × 6) wire rope 

exhibits a maximum contact stress of  6 × 109 Pa, whereas a construction ( 1 × 6 ×

12 × 18) rope bent on sheave exhibits a maximum contact stress of 7.8 × 1010 Pa. 

3. Dynamic explicit tests for a rope construction of ( 1 × 6 × 12 × 18) bent on a 

sheave showed that maximum stresses are the least in the core wire with a value of 

7.6 × 109Pa and are the highest for the outer layers with a value of 7.8 × 1010Pa. 

4. The core layer (wire) exhibits significant stress waves along its length, whereas the 

outer layers have less stresses along their lengths. 
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5. The Stress intensity factor (SIF) is the highest at zones of contact, where stress 

localization is evident, and lower in other regions. 

6. The SIF estimates for the rope construction of (1 × 6 × 12 × 18) bent on a sheave 

showed that this rope fails under the effect of dynamic loading. 

7. Contact stresses are the main source of failure mechanisms in wire ropes due to 

fretting fatigue between wires.  

6.3. MAJOR CONTRIBUTIONS 

 This research is a pioneering effort in dragline front-end assembly kinematics and 

dynamics modeling and the associated stress analysis. It has expanded research frontiers in 

these areas and provided knowledge and tools for further research and education for 

understanding the complex geometric domains of the dragline machinery. The research 

contributions are as follows: 

1. This study is a pioneering effort toward completely modeling and simulating the 

dragline front-end assembly. Previous research studies ignored the effect of the 

boom point sheave and the bucket and its rigging system. In this research, an 

appropriate representation is considered for all front-end elements. 

2. The current study introduces new formulation of the kinematics of a multibody 

system of the front-end assembly. The kinematic equations are not only based on the 

vector loop method, but on a complete kinematic analysis and coupling of all 

dragline front-end components using the method of generalized speeds. 

3. The solution of the kinematics differential algebraic equations is a three-step 

approach to accurately solve the initial conditions of the trajectories, reduce the drift 

error and improve the model response versus the imposed geometrical constraints. 
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This research is a pioneering effort in advancing the kinematics of closed-loop 

mechanisms. 

4. The dynamic model is a pioneering effort toward formulating the dynamics of the 

dragline machinery using Kane’s method. All previous studies used the Newton-

Euler or the Lagrange’s formulations, which require major model simplification. 

The geometry of the dragline front-end assembly is augmented in the current study 

and is the most complete model to date in dragline dynamics. 

5. A significant contribution in dragline machinery research stems from the dynamic 

modeling of any combination of the dragline operating cycles. The digging phase 

and full bucket swinging phase are modeled successfully without augmenting the 

degrees of freedom of the model. No research, to date, has provided such description 

to the dragline operating cycle. 

6. The virtual dragline simulator serves as a platform for training mining engineers and 

can be used as a tool for education and research initiatives.  

7. The stress analysis on wire ropes provides new avenues towards design 

modifications of complex wire rope construction. The stress intensity calculation 

has also identified the root cause of failures in the wire rope running under variable 

loading. 

6.4. RECOMMENDATIONS 

This research was carried out based on the current body of knowledge and can be 

improved by considering the following recommendations: 

1. Due to proprieties constraints, the virtual model of the dragline was designed based 

on the operational characteristics of the machine and on scaling a model from 
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literature (Nikiforuk and Ochitwa, 1964). Thus, the results can be significantly 

improved by using a CAD model of a real dragline.  

2. The Kane’s method fits well for rigid body modeling and analysis, and the ropes 

are modeled as rigid bodies. The current study should include flexible, deformable 

ropes which produce accurate tension in the ropes. 

3. The bucket-ground interactions are limited to the estimation of resistive cutting 

force and ignored the effect of frictions. The inclusion of the frictional contact 

forces between the bucket and ground can increase the accuracy of the results. 

4. Frictional contact between the drag rope and the ground has been developed, but 

was not part of the analysis due to limited knowledge of the model parameters.  

5. The development of stress analysis framework of the wire rope is significantly 

constrained by the huge computational cost and the limitation of the current models 

to run with limited number of licenses on the cluster. Nonlinear contact behavior, 

large deformation, and mesh refinements, solution step discretization resulted in 

very large input files that take very long time to load, run and converge. Thus, the 

stress analyses on wire rope are limited to 3 D wire ropes of construction (1 × 6) 

and (1 × 6 × 12 × 18). 

6. Future research can include more complex constructions such as the construction 

described in Figure 2.4. Other constructions can be analyzed such as Bridon model 

(Figure 2.3b) with polymer infused in the core. 

7. Comprehensive fatigue analysis must be carried out using experimental S-N 

curved, cyclic stresses versus number cycles to failure.  
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8. Detailed parametric analysis must be carried out to understand the effect of the ratio 

of sheave to rope diameters on stress distribution and deformation. 

9. Experimental analysis must also be carried out to examine the increased length of 

the wire rope constructions to improve the rope behavior to mechanical loading. 

10. Microstructural characterization of the different constructions of the wire rope must 

be examined to understand its fatigue behavior under static and dynamic loading 

conditions.  
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APPENDIX 

MATHEMATICA CODE FOR THE FORMULATION OF THE KINEMATIC AND 
DYNAMIC MODEL USING KANE’S METHOD 

 
 
Clear["Global`*"] 
Clear[U] 
n1={1,0,0}; 
n2={0,1,0}; 
n3={0,0,1}; 
NRB= {{Cos[q1],0,Sin[q1]},{0,1,0},{-Sin[q1],0,Cos[q1]}}; 
BRbod1= {{c,-s,0},{s,c,0},{0,0,1}}; 
BRbod2= {{c,s,0},{-s,c,0},{0,0,1}}; 
BRC={{Cos[q2],-Sin[q2],0},{  Sin[q2],Cos[q2],0},{0,0,1}} 
BRD={{Cos[q3],  Sin[q3],0},{-Sin[q3],Cos[q3],0},{0,0,1}}/.{q3-
>q4[t]} 
BRE={{Cos[q4],  Sin[q4],0},{-Sin[q4],Cos[q4],0},{0,0,1}}/.{q4-
>q4[t]} 
BRF={{Cos[q5],-Sin[q5],0},{   Sin[q5],Cos[q5],0},{0,0,1}}/.{q5-
>q5[t]} 
BRG={{Cos[q6],  Sin[q6],0}, {-Sin[q6],Cos[q6],0},{0,0,1}}/.{q6-
>q6[t]} 
 {{Cos[q2],-Sin[q2],0},{Sin[q2],Cos[q2],0},{0,0,1}} 
 {{Cos[q4[t]],Sin[q4[t]],0},{-Sin[q4[t]],Cos[q4[t]],0},{0,0,1}} 
 {{Cos[q4[t]],Sin[q4[t]],0},{-Sin[q4[t]],Cos[q4[t]],0},{0,0,1}} 
 {{Cos[q5[t]],-Sin[q5[t]],0},{Sin[q5[t]],Cos[q5[t]],0},{0,0,1}} 
 {{Cos[q6[t]],Sin[q6[t]],0},{-Sin[q6[t]],Cos[q6[t]],0},{0,0,1}} 
NωB[t_]={0,u1[t],0} 
NωC[t_]={u5[t],u6[t],u7[t]} 
NωD[t_]={u11[t],u12[t],u13[t]} 
NωE[t_]={u17[t],u18[t],u19[t]} 
NωF[t_]={u23[t],u24[t],u25[t]} 
NωG[t_]={u29[t],u30[t],u31[t]} 
 {0,u1[t],0} 
 {u5[t],u6[t],u7[t]} 
 {u11[t],u12[t],u13[t]} 
 {u17[t],u18[t],u19[t]} 
 {u23[t],u24[t],u25[t]} 
 {u29[t],u30[t],u31[t]} 
VB[t_]={u2[t],u3[t],u4[t]} 
VC[t_]={u8[t],u9[t],u10[t]} 
VD[t_]={u14[t],u15[t],u16[t]} 
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VE[t_]={u20[t],u21[t],u22[t]} 
VF[t_]={u26[t],u27[t],u28[t]} 
VG[t_]={u32[t],u33[t],u34[t]} 
VH1[t_]={u35[t],u36[t],u37[t]} 
VF1[t_]={u38[t],u39[t],u40[t]} 
VE1[t_]={u41[t],u42[t],u43[t]} 
 {u2[t],u3[t],u4[t]} 
 {u8[t],u9[t],u10[t]} 
 {u14[t],u15[t],u16[t]} 
 {u20[t],u21[t],u22[t]} 
 {u26[t],u27[t],u28[t]} 
 {u32[t],u33[t],u34[t]} 
 {u35[t],u36[t],u37[t]} 
 {u38[t],u39[t],u40[t]} 
 {u41[t],u42[t],u43[t]} 
NωC[t_]= NωB[t].BRC+{0,0,NωC[t][[3]]} 
NωD[t_]= NωB[t].BRE+{0,0,NωD[t][[3]]}/.{q4->q4[t]} 
NωE[t_]= NωB[t].BRE+{0,0,NωE[t][[3]]}/.{q4->q4[t]} 
NωF[t_]= NωB[t].BRF+{0,0,NωF[t][[3]]}/.{q5->q5[t]} 
NωG[t_]= NωB[t].BRG+{0,0,NωG[t][[3]]}/.{q6->q6[t]} 
 {Sin[q2] u1[t],Cos[q2] u1[t],u7[t]} 
 {-Sin[q4[t][t]] u1[t],Cos[q4[t][t]] u1[t],u13[t]} 
 {-Sin[q4[t][t]] u1[t],Cos[q4[t][t]] u1[t],u19[t]} 
 {Sin[q5[t][t]] u1[t],Cos[q5[t][t]] u1[t],u25[t]} 
 {-Sin[q6[t][t]] u1[t],Cos[q6[t][t]] u1[t],u31[t]} 
B1B2={0,L0,0}(* DIDN'T use L17 instead of L2 and (-) is related 
to a direction from B3 to COM B^**) 
B1B*={-L1,L2 ,0}(* DIDN'T use L1 instead of L2*) 
B2B*={-L3,-L4 ,0} 
B2C*={L5,0,0} 
C1C*={-L6,0,0} 
C1D*={0,-L7,0} 
D1D*={-L8,0,0} 
D1E*={0,-0.5 *q8[t],0}  
E1E*={0,0.5 *q8[t],0} 
E1F*={-L9,0,0} 
F1F*={L10,0,0} 
F1G*={-0.5 *q7[t] ,0,0} 
B1G*={0.5 *q7[t] ,0,0}  
B1F1={q7[t],0,0} 
B3B*={L11,0,0} 
FH1={L12,-L13,0} 
 {0,L0,0} 
 {-L1,L2,0} 
 {-L3,-L4,0} 
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 {L5,0,0} 
 {-L6,0,0} 
 {0,-L7,0} 
 {-L8,0,0} 
 {0,-0.5 q8[t],0} 
 {0,0.5 q8[t],0} 
 {-L9,0,0} 
 {L10,0,0} 
 {-0.5 q7[t],0,0} 
 {0.5 q7[t],0,0} 
 {q7[t],0,0} 
 {L11,0,0} 
 {L12,-L13,0} 
VBinB[t_]= Cross[NωB[t],B3B*] 
 {0,0,-L11 u1[t]} 
NωC[t]=NωB[t]+{0,0,NωC[t][[3]]}/.{u7[t]->0} 
 {0,u1[t],0} 
VB2[t_]=VBinB[t]+ Cross[NωB[t], -B2B*]//Simplify 
 {0,0,-(L3+L11) u1[t]} 
VC[t_]= VB2[t]+ Cross[NωB[t],BRC. B2C*]//Simplify (*B2C^*is 
projected in B_Frame since NωC = NωB Both B2 and C are fixed on 
C*) 
 {0,0,-(L3+Cos[q2] L5+L11) u1[t]} 
VCinCS[t_]=VC[t]//Simplify 
 {0,0,-(L3+Cos[q2] L5+L11) u1[t]} 
NωD[t_]= NωB[t]+{0,0,NωE[t][[3]]}//Simplify 
 {0,u1[t],u19[t]} 
VC1inC[t]= VB2[t]+ Cross[NωB[t],BRC.( B2C*-C1C*)]//Simplify 
 {0,0,-(L3+Cos[q2] L5+Cos[q2] L6+L11) u1[t]} 
VC1inCS[t]= VC1inC[t]//FullSimplify 
 {0,0,-(L3+Cos[q2] (L5+L6)+L11) u1[t]} 
VD[t_]= VC1inCS[t]+ Cross[NωB[t],BRC. C1D*] (*Chosen NωB because 
D is fixed in boom frame, which is also fixed in Machine house 
frame *) 
VDinDS[t_]=VD[t]//FullSimplify  
 {0,0,-Sin[q2] L7 u1[t]-(L3+Cos[q2] (L5+L6)+L11) u1[t]} 
 {0,0,-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t]} 
VD1inD[t_]= VDinDS[t]+ Cross[NωD[t],-D1D*] (*No need to transform 
VDinDS[t] because it is in the same frame*) 
VD1inDS[t_]=VD1inD[t]//FullSimplify 
 {0,L8 u19[t],-L8 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t]} 
 {0,L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
NωE[t]= NωB[t]+{0,0,NωE[t][[3]]}//Simplify 
 {0,u1[t],u19[t]} 
VD1inE= VD1inDS[t](* No need to transfer VD1inE to E ref.frame 
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because D and E are rotating in together*)  
 {0,L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
VD1inES[t_]= VD1inE//FullSimplify 
 {0,L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
VE[t_]=VD1inES[t]+ 
Cross[NωE[t],D1E*]/.{n_Real/;IntegerPart[n]==n-> IntegerPart[n]} 
VEinES[t]=VE[t]//FullSimplify 
 {0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
 {0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
VE1inE[t_]=VEinES[t]+Cross[NωE[t],-
E1E*]/.{n_Real/;IntegerPart[n]==n-> IntegerPart[n]} 
VE1inES[t_]=VE1inE[t]//FullSimplify 
 {q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
 {q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
NωF[t]=NωB[t]+{0,0,NωF[t][[3]]} 
 {0,u1[t],u25[t]} 
VE1inB[t_]=VE1inES[t].Transpose[BRE]//FullSimplify(*Return a 
vector described in e-frame to a vector in ref (B)*) 
 {(Sin[q4[t]] L8+Cos[q4[t]] q8[t]) u19[t],(Cos[q4[t]] L8-Sin[q4[t]] 
q8[t]) u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
VE1inFS[t_]=VE1inB[t].BRF//FullSimplify 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t],-
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
VFinFS[t_]=VE1inFS[t]+Cross[NωF[t],E1F*]//FullSimplify 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 
u25[t],L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
VB1[t_]= VBinB[t]+Cross[NωB[t],-B1B*]//Simplify 
 {0,0,-(L1+L11) u1[t]} 
NωG[t]=NωB[t]+{0,0,NωG[t][[3]]} 
 {0,u1[t],u31[t]} 
VGinGS[t_]=VB1[t].BRG+Cross[NωG[t],B1G*]/.{n_Real/;IntegerPart[n]
==n-> IntegerPart[n]}//FullSimplify 
 {0,0.5 q7[t] u31[t],-1. (L1+L11+0.5 q7[t]) u1[t]} 
VH1inFS[t_]=VFinFS[t]+Cross[NωF[t],FH1]//FullSimplify 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 
u25[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]+(-L9+L12) 
u25[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) u1[t]} 
VF1inGS[t_]=VB1[t].BRG 
+Cross[NωG[t],B1F1]+{D[q7[t],t],0,0}//FullSimplify 
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(*In Fasseler Thesis, {D[Subscript[q, 7][t],t],0,0} is written 
^CV^D= Subscript[u, 15]-Subscript[u, 12]*) 
 {Subscript[q, 7]′[t],q7[t] u31[t],-(L1+L11+q7[t]) u1[t]} 
NωCT[t_]= NωB[t].BRC+{0,0,NωC[t][[3]]} 
NωDT[t_]= NωB[t].BRE+{0,0,NωD[t][[3]]}/.{u13[t]-> u19[t]} 
NωET[t_]= NωB[t].BRE+{0,0,NωE[t][[3]]} 
NωFT[t_]= NωB[t].BRF+{0,0,NωF[t][[3]]} 
NωGT[t_]= NωB[t].BRG+{0,0,NωG[t][[3]]} 
 {Sin[q2] u1[t],Cos[q2] u1[t],0} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {Sin[q5[t]] u1[t],Cos[q5[t]] u1[t],u25[t]} 
 {-Sin[q6[t]] u1[t],Cos[q6[t]] u1[t],u31[t]} 
u1[t]=NωB[t][[2]]//FullSimplify 
{u2[t],u3[t],u4[t]}=VBinB[t]//FullSimplify 
{u5[t],u6[t],u7[t]}=NωCT[t]//FullSimplify 
{u8[t],u9[t],u10[t]}=VCinCS[t]//FullSimplify 
{u11[t],u12[t],u13[t]}=NωDT[t]//FullSimplify 
{u14[t],u15[t],u16[t]}=VDinDS[t]//FullSimplify 
{u17[t],u18[t],u19[t]}=NωET[t]//FullSimplify 
{u20[t],u21[t],u22[t]}=VEinES[t]//FullSimplify 
{u23[t],u24[t],u25[t]}=NωFT[t]//FullSimplify 
{u26[t],u27[t],u28[t]}=VFinFS[t]//FullSimplify 
{u29[t],u30[t],u31[t]}=NωGT[t]//FullSimplify 
{u32[t],u33[t],u34[t]}=VGinGS[t]//FullSimplify 
{u35[t],u36[t],u37[t]}=VH1inFS[t]//FullSimplify 
{u38[t],u39[t],u40[t]}=VF1inGS[t]//FullSimplify 
{u41[t],u42[t],u43[t]}=VE1inES[t]//FullSimplify 
 u1[t] 
 {0,0,-L11 u1[t]} 
 {Sin[q2] u1[t],Cos[q2] u1[t],0} 
 {0,0,-(L3+Cos[q2] L5+L11) u1[t]} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {0,0,-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t]} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
 {Sin[q5[t]] u1[t],Cos[q5[t]] u1[t],u25[t]} 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 
u25[t],L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
 {-Sin[q6[t]] u1[t],Cos[q6[t]] u1[t],u31[t]} 
 {0,0.5 q7[t] u31[t],-1. (L1+L11+0.5 q7[t]) u1[t]} 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 
u25[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]+(-L9+L12) 
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u25[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) u1[t]} 
 {Subscript[q, 7]′[t],q7[t] u31[t],-(L1+L11+q7[t]) u1[t]} 
 {q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
Clear[vv]; 
V= Array[vv,42]; 
Do[vv[i]=VBinB[t][[i]],{i,1,3}] 
Do[vv[i+3]=NωCT[t][[i]],{i,1,3}] 
Do[vv[i+6]=VCinCS[t][[i]],{i,1,3}] 
Do[vv[i+9]=NωDT[t][[i]],{i,1,3}] 
Do[vv[i+12]=VDinDS[t][[i]],{i,1,3}] 
Do[vv[i+15]=NωET[t][[i]],{i,1,3}] 
Do[vv[i+18]=VEinES[t][[i]],{i,1,3}] 
Do[vv[i+21]=NωFT[t][[i]],{i,1,3}] 
Do[vv[i+24]=VFinFS[t][[i]],{i,1,3}] 
Do[vv[i+27]=NωGT[t][[i]],{i,1,3}] 
Do[vv[i+30]=VGinGS[t][[i]],{i,1,3}] 
Do[vv[i+33]=VH1inFS[t][[i]],{i,1,3}] 
Do[vv[i+36]=VF1inGS[t][[i]],{i,1,3}] 
Do[vv[i+39]=VE1inES[t][[i]],{i,1,3}] 
V= FullSimplify[V] 
 
 {0,0,-L11 u1[t],Sin[q2] u1[t],Cos[q2] u1[t],0,0,0,-(L3+Cos[q2] 
L5+L11) u1[t],-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t],0,0,-
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t],-Sin[q4[t]] 
u1[t],Cos[q4[t]] u1[t],u19[t],0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8+L11) u1[t],Sin[q5[t]] u1[t],Cos[q5[t]] 
u1[t],u25[t],(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 
u25[t],L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t],-
Sin[q6[t]] u1[t],Cos[q6[t]] u1[t],u31[t],0,0.5 q7[t] u31[t],-1. 
(L1+L11+0.5 q7[t]) u1[t],(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t]+L13 u25[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) 
u19[t]+(-L9+L12) u25[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) 
u1[t],Subscript[q, 7]′[t],q7[t] u31[t],-(L1+L11+q7[t]) u1[t],q8[t] 
u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
U=V//FullSimplify; 
U=U/.{u13[t]->u19[t]} 
 {0,0,-L11 u1[t],Sin[q2] u1[t],Cos[q2] u1[t],0,0,0,-(L3+Cos[q2] 
L5+L11) u1[t],-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t],0,0,-
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t],-Sin[q4[t]] 
u1[t],Cos[q4[t]] u1[t],u19[t],0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8+L11) u1[t],Sin[q5[t]] u1[t],Cos[q5[t]] 
u1[t],u25[t],(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 



 

 

197 

u25[t],L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t],-
Sin[q6[t]] u1[t],Cos[q6[t]] u1[t],u31[t],0,0.5 q7[t] u31[t],-1. 
(L1+L11+0.5 q7[t]) u1[t],(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t]+L13 u25[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) 
u19[t]+(-L9+L12) u25[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) 
u1[t],Subscript[q, 7]′[t],q7[t] u31[t],-(L1+L11+q7[t]) u1[t],q8[t] 
u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
(*US={For[i=2,i⩽43,i++,Print[Subscript[u, i][t]]]};*) 
For[i=0;U[[i]][t]=U[i+1],i<42,i++; Print[U[[i]]]]; 
 Set::write: Tag List in {t} is Protected. 
 0 
 0 
 -L11 u1[t] 
 Sin[q2] u1[t] 
 Cos[q2] u1[t] 
 0 
 0 
 0 
 -(L3+Cos[q2] L5+L11) u1[t] 
 -Sin[q4[t]] u1[t] 
 Cos[q4[t]] u1[t] 
 u19[t] 
 0 
 0 
 -(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t] 
 -Sin[q4[t]] u1[t] 
 Cos[q4[t]] u1[t] 
 u19[t] 
 0.5 q8[t] u19[t] 
 L8 u19[t] 
 -(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t] 
 Sin[q5[t]] u1[t] 
 Cos[q5[t]] u1[t] 
 u25[t] 
 (Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t] 
 (Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 u25[t] 
 L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t] 
 -Sin[q6[t]] u1[t] 
 Cos[q6[t]] u1[t] 
 u31[t] 
 0 
 0.5 q7[t] u31[t] 
 -1. (L1+L11+0.5 q7[t]) u1[t] 
 (Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 u25[t] 
 (Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]+(-L9+L12) u25[t] 
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 -(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) u1[t] 
 Subscript[q, 7]′[t] 
 q7[t] u31[t] 
 -(L1+L11+q7[t]) u1[t] 
 q8[t] u19[t] 
 L8 u19[t] 
 -(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t] 
U=Evaluate[Table[ui+1[t],{i,1,42}]] 
{{List/@U,List/@V}}//TableForm//FullSimplify 
 
{u2[t],u3[t],u4[t],u5[t],u6[t],u7[t],u8[t],u9[t],u10[t],u11[t],u12[t],
u13[t],u14[t],u15[t],u16[t],u17[t],u18[t],u19[t],u20[t],u21[t],u22[t],u2
3[t],u24[t],u25[t],u26[t],u27[t],u28[t],u29[t],u30[t],u31[t],u32[t],u33[
t],u34[t],u35[t],u36[t],u37[t],u38[t],u39[t],u40[t],u41[t],u42[t],u43[t} 
 
{{u2[t]},   {u3[t]},    {u4[t]},  {u5[t]},   {u6[t]},   {u7[t]}, 
{u8[t]},    {u9[t]},   {u10[t]},  {u11[t]},  {u12[t]},   {u13[t]},   
{u14[t]},   {u15[t]},   {u16[t]},  {u17[t]},  {u18[t]},   {u19[t]},   
{u20[t]},   {u21[t]},   {u22[t]},  {u23[t]},  {u24[t]},   {u25[t]},   
{u26[t]},   {u27[t]},   {u28[t]},  {u29[t]},  {u30[t]},   {u31[t]},   
{u32[t]},   {u33[t]},   {u34[t]},  {u35[t]},   {u36[t]},  {u37[t]},   
{u38[t]},   {u39[t]},   {u40[t]},  {u41[t]},   {u42[t]},   {u43[t]}}, 
{ 
   {0}, 
   {0}, 
   {-L11 u1[t]}, 
   {Sin[q2] u1[t]}, 
   {Cos[q2] u1[t]}, 
   {0}, 
   {0}, 
   {0}, 
   {-(L3+Cos[q2] L5+L11) u1[t]}, 
   {-Sin[q4[t]] u1[t]}, 
   {Cos[q4[t]] u1[t]}, 
   {u19[t]}, 
   {0}, 
   {0}, 
   {-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t]}, 
   {-Sin[q4[t]] u1[t]}, 
   {Cos[q4[t]] u1[t]}, 
   {u19[t]}, 
   {0.5 q8[t] u19[t]}, 
   {L8 u19[t]}, 
   {-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]}, 
   {Sin[q5[t]] u1[t]}, 
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   {Cos[q5[t]] u1[t]}, 
   {u25[t]}, 
   {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]}, 
   {(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 u25[t]}, 
   {L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]}, 
   {-Sin[q6[t]] u1[t]}, 
   {Cos[q6[t]] u1[t]}, 
   {u31[t]}, 
   {0}, 
   {0.5 q7[t] u31[t]}, 
   {-1. (L1+L11+0.5 q7[t]) u1[t]}, 
   {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 u25[t]}, 
   {(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]+(-L9+L12) 
u25[t]}, 
   {-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) u1[t]}, 
   {Subscript[q, 7]′[t]}, 
   {q7[t] u31[t]}, 
   {-(L1+L11+q7[t]) u1[t]}, 
   {q8[t] u19[t]}, 
   {L8 u19[t]}, 
   {-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
  }} 
} 
(*UWOt=V/.{Subscript[q, 3] Subscript[q, 4],Subscript[q, 4][t] 
Subscript[q, 4],Subscript[q, 5][t] Subscript[q, 5],Subscript[q, 
6][t] Subscript[q, 6],Subscript[q, 7][t] Subscript[q, 
7],Subscript[q, 8][t] Subscript[q, 8],(Subscript[q, 
6]^′)[t]Subscript[u, 31][t]}//Simplify*) 
UWt= V/.{q4-> q4[t],q5-> q5[t],q6-> q6[t],u13[t]->u19[t])}//Simplify 
PartialvelR1= D[UWt,u1[t]] 
PartialvelR19= D[UWt,u19[t]] 
PartialvelR31= D[UWt,u31[t]] 
Partialvel=PartialvelR1+PartialvelR19+PartialvelR31 
 0 
 0 
 0 
 0 
VBinBN[t]=VBinB[t]//FullSimplify 
NωCTN[t]=NωCT[t]//FullSimplify 
VCinCSN[t]=VCinCS[t]//FullSimplify 
NωDTN[t]=NωDT[t]  
VDinDSN[t]=VDinDS[t]  
NωETN[t]=NωET[t] 
VEinESN[t]=VEinES[t]  
NωFTN[t]=NωFT[t] 
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VFinFSN[t]=VFinFS[t]  
NωGTN[t]=NωGT[t]  
VGinGSN[t]=VGinGS[t] 
VH1inFSN[t]=VH1inFS[t]  
VF1inGSN[t]=VF1inGS[t]/.{Subscript[q, 7]′[t]-> u31[t]} 
VE1inESN[t]=VE1inES[t] 
(*VBinBN[t]=VBinB[t]//FullSimplify 
NωCTN[t]=NωCT[t]//FullSimplify 
VCinCSN[t]=VCinCS[t]//FullSimplify 
NωDTN[t]=NωDT[t]  
VDinDSN[t]=VDinDS[t]  
NωETN[t]=NωET[t] 
VEinESN[t]=VEinES[t]  
NωFTN[t]=NωFT[t]/.{Subscript[u, 25][t] Subscript[Z, 5][t]} 
VFinFSN[t]=VFinFS[t]/.{Subscript[u, 25][t] Subscript[Z, 5][t]} 
NωGTN[t]=NωGT[t]/.{Subscript[u, 25][t] Subscript[Z, 5][t]} 
VGinGSN[t]=VGinGS[t] 
VH1inFSN[t]=VH1inFS[t]/.{Subscript[u, 25][t] Subscript[Z, 5][t]} 
VF1inGSN[t]=VF1inGS[t]/.{(Subscript[q, 7]^′)[t] Subscript[u, 
31][t]} 
VE1inESN[t]=VE1inES[t]*) 
 {0,0,-L11 u1[t]} 
 {Sin[q2] u1[t],Cos[q2] u1[t],0} 
 {0,0,-(L3+Cos[q2] L5+L11) u1[t]} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {0,0,-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) u1[t]} 
 {-Sin[q4[t]] u1[t],Cos[q4[t]] u1[t],u19[t]} 
 {0.5 q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
 {Sin[q5[t]] u1[t],Cos[q5[t]] u1[t],u25[t]} 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]-L9 
u25[t],L9 u1[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) u1[t]} 
 {-Sin[q6[t]] u1[t],Cos[q6[t]] u1[t],u31[t]} 
 {0,0.5 q7[t] u31[t],-1. (L1+L11+0.5 q7[t]) u1[t]} 
 {(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 
u25[t],(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) u19[t]+(-L9+L12) 
u25[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) u1[t]} 
 {u31[t],q7[t] u31[t],-(L1+L11+q7[t]) u1[t]} 
 {q8[t] u19[t],L8 u19[t],-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
u1[t]} 
aB[t_]= D[VBinBN[t],t]+Cross[NωB[t],VBinBN[t]] 
aC[t_]= D[VCinCSN[t],t]+Cross[NωCTN[t],VCinCSN[t]] 
aD[t_]= D[VDinDSN[t],t]+ Cross[NωDTN[t],VDinDSN[t]] 
aE[t_]=D[VEinESN[t],t]+ Cross[NωETN[t],VEinESN[t]] 
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aF[t_]=D[VFinFSN[t],t]+ Cross[NωFTN[t],VFinFSN[t]] 
aG[t_]=D[VGinGSN[t],t]+ Cross[NωGTN[t],VGinGSN[t]] 
aH1[t_]=D[VH1inFSN[t],t]+ Cross[NωFTN[t],VH1inFSN[t]] 
aF1[t_]=D[VF1inGSN[t],t]+ Cross[NωGTN[t],VH1inFSN[t]] 
 {-L11 Subscript[u, 1][t]2,0,-L11 Subscript[u, 1]′[t]} 
 {-Cos[q2] L3 Subscript[u, 1][t]2-Cos[Subscript[q, 2]]2 L5 
Subscript[u, 1][t]2-Cos[q2] L11 Subscript[u, 1][t]2,Sin[q2] L3 
Subscript[u, 1][t]2+Cos[q2] Sin[q2] L5 Subscript[u, 1][t]2+Sin[q2] 
L11 Subscript[u, 1][t]2,-(L3+Cos[q2] L5+L11) Subscript[u, 1]′[t]} 
 {-Cos[q4[t]] L3 Subscript[u, 1][t]2-Cos[q2] Cos[q4[t]] L5 
Subscript[u, 1][t]2-Cos[q2] Cos[q4[t]] L6 Subscript[u, 1][t]2-
Cos[q4[t]] Sin[q2] L7 Subscript[u, 1][t]2-Cos[q4[t]] L11 
Subscript[u, 1][t]2,-Sin[q4[t]] L3 Subscript[u, 1][t]2-Cos[q2] 
Sin[q4[t]] L5 Subscript[u, 1][t]2-Cos[q2] Sin[q4[t]] L6 
Subscript[u, 1][t]2-Sin[q2] Sin[q4[t]] L7 Subscript[u, 1][t]2-
Sin[q4[t]] L11 Subscript[u, 1][t]2,-(L3+Cos[q2] (L5+L6)+Sin[q2] 
L7+L11) Subscript[u, 1]′[t]} 
 {-Cos[q4[t]] L3 Subscript[u, 1][t]2-Cos[q2] Cos[q4[t]] L5 
Subscript[u, 1][t]2-Cos[q2] Cos[q4[t]] L6 Subscript[u, 1][t]2-
Cos[q4[t]] Sin[q2] L7 Subscript[u, 1][t]2-Cos[q4[t]] L8 
Subscript[u, 1][t]2-Cos[q4[t]] L11 Subscript[u, 1][t]2-L8 
Subscript[u, 19][t]2+0.5 u19[t] Subscript[q, 8]′[t]+0.5 q8[t] 
Subscript[u, 19]′[t],-Sin[q4[t]] L3 Subscript[u, 1][t]2-Cos[q2] 
Sin[q4[t]] L5 Subscript[u, 1][t]2-Cos[q2] Sin[q4[t]] L6 
Subscript[u, 1][t]2-Sin[q2] Sin[q4[t]] L7 Subscript[u, 1][t]2-
Sin[q4[t]] L8 Subscript[u, 1][t]2-Sin[q4[t]] L11 Subscript[u, 
1][t]2+0.5 q8[t] Subscript[u, 19][t]2+L8 Subscript[u, 19]′[t],-
Sin[q4[t]] L8 u1[t] u19[t]-0.5 Cos[q4[t]] q8[t] u1[t] u19[t]-
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) Subscript[u, 1]′[t]} 
 {-Cos[q5[t]] L3 Subscript[u, 1][t]2-Cos[q2] Cos[q5[t]] L5 
Subscript[u, 1][t]2-Cos[q2] Cos[q5[t]] L6 Subscript[u, 1][t]2-
Cos[q5[t]] Sin[q2] L7 Subscript[u, 1][t]2-Cos[q5[t]] L8 
Subscript[u, 1][t]2+Cos[q5[t]] L9 Subscript[u, 1][t]2-Cos[q5[t]] 
L11 Subscript[u, 1][t]2-Cos[q4[t]+q5[t]] L8 u19[t] 
u25[t]+Sin[q4[t]+q5[t]] q8[t] u19[t] u25[t]+L9 Subscript[u, 
25][t]2+u19[t] (Cos[q4[t]+q5[t]] L8 (Subscript[q, 4]′[t]+Subscript[q, 
5]′[t])-Sin[q4[t]+q5[t]] q8[t] (Subscript[q, 4]′[t]+Subscript[q, 
5]′[t])+Cos[q4[t]+q5[t]] Subscript[q, 8]′[t])+(Sin[q4[t]+q5[t]] 
L8+Cos[q4[t]+q5[t]] q8[t]) Subscript[u, 19]′[t],Sin[q5[t]] L3 
Subscript[u, 1][t]2+Cos[q2] Sin[q5[t]] L5 Subscript[u, 
1][t]2+Cos[q2] Sin[q5[t]] L6 Subscript[u, 1][t]2+Sin[q2] Sin[q5[t]] 
L7 Subscript[u, 1][t]2+Sin[q5[t]] L8 Subscript[u, 1][t]2-Sin[q5[t]] 
L9 Subscript[u, 1][t]2+Sin[q5[t]] L11 Subscript[u, 
1][t]2+Sin[q4[t]+q5[t]] L8 u19[t] u25[t]+Cos[q4[t]+q5[t]] q8[t] 
u19[t] u25[t]+u19[t] (-Sin[q4[t]+q5[t]] L8 (Subscript[q, 
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4]′[t]+Subscript[q, 5]′[t])-Cos[q4[t]+q5[t]] q8[t] (Subscript[q, 
4]′[t]+Subscript[q, 5]′[t])-Sin[q4[t]+q5[t]] Subscript[q, 
8]′[t])+(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) Subscript[u, 19]′[t]-
L9 Subscript[u, 25]′[t],Cos[q4[t]+q5[t]] Sin[q5[t]] L8 u1[t] u19[t]-
Cos[q5[t]] Sin[q4[t]+q5[t]] L8 u1[t] u19[t]-Cos[q5[t]] 
Cos[q4[t]+q5[t]] q8[t] u1[t] u19[t]-Sin[q5[t]] Sin[q4[t]+q5[t]] 
q8[t] u1[t] u19[t]-Sin[q5[t]] L9 u1[t] u25[t]+L9 Subscript[u, 1]′[t]-
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) Subscript[u, 1]′[t]} 
 {-1. Cos[q6[t]] L1 Subscript[u, 1][t]2-1. Cos[q6[t]] L11 
Subscript[u, 1][t]2-0.5 Cos[q6[t]] q7[t] Subscript[u, 1][t]2-0.5 
q7[t] Subscript[u, 31][t]2,-1. Sin[q6[t]] L1 Subscript[u, 1][t]2-1. 
Sin[q6[t]] L11 Subscript[u, 1][t]2-0.5 Sin[q6[t]] q7[t] 
Subscript[u, 1][t]2+0.5 u31[t] Subscript[q, 7]′[t]+0.5 q7[t] 
Subscript[u, 31]′[t],-0.5 Sin[q6[t]] q7[t] u1[t] u31[t]-0.5 u1[t] 
Subscript[q, 7]′[t]-1. (L1+L11+0.5 q7[t]) Subscript[u, 1]′[t]} 
 {-Cos[q5[t]] L3 Subscript[u, 1][t]2-Cos[q2] Cos[q5[t]] L5 
Subscript[u, 1][t]2-Cos[q2] Cos[q5[t]] L6 Subscript[u, 1][t]2-
Cos[q5[t]] Sin[q2] L7 Subscript[u, 1][t]2-Cos[q5[t]] L8 
Subscript[u, 1][t]2+Cos[q5[t]] L9 Subscript[u, 1][t]2-Cos[q5[t]] 
L11 Subscript[u, 1][t]2-Cos[q5[t]] L12 Subscript[u, 1][t]2-
Cos[q4[t]+q5[t]] L8 u19[t] u25[t]+Sin[q4[t]+q5[t]] q8[t] u19[t] 
u25[t]+L9 Subscript[u, 25][t]2-L12 Subscript[u, 25][t]2+u19[t] 
(Cos[q4[t]+q5[t]] L8 (Subscript[q, 4]′[t]+Subscript[q, 5]′[t])-
Sin[q4[t]+q5[t]] q8[t] (Subscript[q, 4]′[t]+Subscript[q, 
5]′[t])+Cos[q4[t]+q5[t]] Subscript[q, 8]′[t])+(Sin[q4[t]+q5[t]] 
L8+Cos[q4[t]+q5[t]] q8[t]) Subscript[u, 19]′[t]+L13 Subscript[u, 
25]′[t],Sin[q5[t]] L3 Subscript[u, 1][t]2+Cos[q2] Sin[q5[t]] L5 
Subscript[u, 1][t]2+Cos[q2] Sin[q5[t]] L6 Subscript[u, 
1][t]2+Sin[q2] Sin[q5[t]] L7 Subscript[u, 1][t]2+Sin[q5[t]] L8 
Subscript[u, 1][t]2-Sin[q5[t]] L9 Subscript[u, 1][t]2+Sin[q5[t]] 
L11 Subscript[u, 1][t]2+Sin[q5[t]] L12 Subscript[u, 
1][t]2+Sin[q4[t]+q5[t]] L8 u19[t] u25[t]+Cos[q4[t]+q5[t]] q8[t] 
u19[t] u25[t]+L13 Subscript[u, 25][t]2+u19[t] (-Sin[q4[t]+q5[t]] L8 
(Subscript[q, 4]′[t]+Subscript[q, 5]′[t])-Cos[q4[t]+q5[t]] q8[t] 
(Subscript[q, 4]′[t]+Subscript[q, 5]′[t])-Sin[q4[t]+q5[t]] Subscript[q, 
8]′[t])+(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) Subscript[u, 
19]′[t]+(-L9+L12) Subscript[u, 25]′[t],Cos[q4[t]+q5[t]] Sin[q5[t]] L8 u1[t] 
u19[t]-Cos[q5[t]] Sin[q4[t]+q5[t]] L8 u1[t] u19[t]-Cos[q5[t]] 
Cos[q4[t]+q5[t]] q8[t] u1[t] u19[t]-Sin[q5[t]] Sin[q4[t]+q5[t]] 
q8[t] u1[t] u19[t]-Sin[q5[t]] L9 u1[t] u25[t]+Sin[q5[t]] L12 u1[t] 
u25[t]-Cos[q5[t]] L13 u1[t] u25[t]-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-
L9+L11+L12) Subscript[u, 1]′[t]} 
 {-Cos[q6[t]] L3 Subscript[u, 1][t]2-Cos[q2] Cos[q6[t]] L5 
Subscript[u, 1][t]2-Cos[q2] Cos[q6[t]] L6 Subscript[u, 1][t]2-
Cos[q6[t]] Sin[q2] L7 Subscript[u, 1][t]2-Cos[q6[t]] L8 
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Subscript[u, 1][t]2+Cos[q6[t]] L9 Subscript[u, 1][t]2-Cos[q6[t]] 
L11 Subscript[u, 1][t]2-Cos[q6[t]] L12 Subscript[u, 1][t]2-
Cos[q4[t]+q5[t]] L8 u19[t] u31[t]+Sin[q4[t]+q5[t]] q8[t] u19[t] 
u31[t]+L9 u25[t] u31[t]-L12 u25[t] u31[t]+Subscript[u, 31]′[t],-Sin[q6[t]] 
L3 Subscript[u, 1][t]2-Cos[q2] Sin[q6[t]] L5 Subscript[u, 1][t]2-
Cos[q2] Sin[q6[t]] L6 Subscript[u, 1][t]2-Sin[q2] Sin[q6[t]] L7 
Subscript[u, 1][t]2-Sin[q6[t]] L8 Subscript[u, 1][t]2+Sin[q6[t]] L9 
Subscript[u, 1][t]2-Sin[q6[t]] L11 Subscript[u, 1][t]2-Sin[q6[t]] 
L12 Subscript[u, 1][t]2+Sin[q4[t]+q5[t]] L8 u19[t] 
u31[t]+Cos[q4[t]+q5[t]] q8[t] u19[t] u31[t]+L13 u25[t] u31[t]+u31[t] 
Subscript[q, 7]′[t]+q7[t] Subscript[u, 31]′[t],-Cos[q6[t]] 
Sin[q4[t]+q5[t]] L8 u1[t] u19[t]-Cos[q4[t]+q5[t]] Sin[q6[t]] L8 u1[t] 
u19[t]-Cos[q4[t]+q5[t]] Cos[q6[t]] q8[t] u1[t] 
u19[t]+Sin[q4[t]+q5[t]] Sin[q6[t]] q8[t] u1[t] u19[t]+Sin[q6[t]] L9 
u1[t] u25[t]-Sin[q6[t]] L12 u1[t] u25[t]-Cos[q6[t]] L13 u1[t] u25[t]-
u1[t] Subscript[q, 7]′[t]-(L1+L11+q7[t]) Subscript[u, 1]′[t]} 
aBtS[t_]=aB[t] 
aCtS[t_]=aC[t]//Simplify 
aDtS[t_]=Collect[aD[t],{Subscript[u, 1]′[t],Subscript[u, 
19]′[t],u19[t],u1[t]}]//Simplify 
aEtS[t_]=Collect[aE[t],{Subscript[u, 1]′[t],Subscript[u, 
19]′[t],u19[t],u1[t]}]//FullSimplify 
aFtS[t_]=Collect[aF[t],{Subscript[u, 1]′[t],Subscript[u, 19]′[t],Subscript[u, 
31]′[t],u31[t],u19[t],u1[t]}]/.{Subscript[u, 25]′[t]-> 0}//FullSimplify 
aGtS[t_]=Collect[aG[t],{Subscript[u, 1]′[t],Subscript[u, 19]′[t],Subscript[u, 

31]′[t],u31[t],u19[t],u1[t]}]/.{Subscript[u, 25]′[t]-> 0}//FullSimplify 
aH1tS[t_]=Collect[aH1[t],{Subscript[u, 1]′[t],Subscript[u, 19]′[t],Subscript[u, 

31]′[t],u31[t],u19[t],u1[t]}]/.{Subscript[u, 25]′[t]-> 0}//FullSimplify 
aF1tS[t_]=Collect[aF1[t],{Subscript[u, 1]′[t],Subscript[u, 19]′[t],Subscript[u, 

31]′[t],u31[t],u19[t],u1[t]}]//FullSimplify 
 {-L11 Subscript[u, 1][t]2,0,-L11 Subscript[u, 1]′[t]} 
 {-Cos[q2] (L3+Cos[q2] L5+L11) Subscript[u, 1][t]2,Sin[q2] 
(L3+Cos[q2] L5+L11) Subscript[u, 1][t]2,-(L3+Cos[q2] L5+L11) 
Subscript[u, 1]′[t]} 
 {-Cos[q4[t]] (L3+Cos[q2] L5+Cos[q2] L6+Sin[q2] L7+L11) Subscript[u, 
1][t]2,-Sin[q4[t]] (L3+Cos[q2] L5+Cos[q2] L6+Sin[q2] L7+L11) 
Subscript[u, 1][t]2,-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L11) 
Subscript[u, 1]′[t]} 
 {-Cos[q4[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) Subscript[u, 
1][t]2-L8 Subscript[u, 19][t]2+0.5 u19[t] Subscript[q, 8]′[t]+0.5 q8[t] 
Subscript[u, 19]′[t],-Sin[q4[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) 
Subscript[u, 1][t]2+0.5 q8[t] Subscript[u, 19][t]2+L8 Subscript[u, 
19]′[t],-1. (Sin[q4[t]] L8+0.5 Cos[q4[t]] q8[t]) u1[t] u19[t]-(L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8+L11) Subscript[u, 1]′[t]} 
 {-Cos[q5[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11) Subscript[u, 
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1][t]2+L9 Subscript[u, 25][t]2+u19[t] (-(Cos[q4[t]+q5[t]] L8-
Sin[q4[t]+q5[t]] q8[t]) (u25[t]-Subscript[q, 4]′[t]-Subscript[q, 
5]′[t])+Cos[q4[t]+q5[t]] Subscript[q, 8]′[t])+(Sin[q4[t]+q5[t]] 
L8+Cos[q4[t]+q5[t]] q8[t]) Subscript[u, 19]′[t],Sin[q5[t]] (L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8-L9+L11) Subscript[u, 1][t]2+u19[t] 
((Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) (u25[t]-Subscript[q, 
4]′[t]-Subscript[q, 5]′[t])-Sin[q4[t]+q5[t]] Subscript[q, 
8]′[t])+(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) Subscript[u, 
19]′[t],-u1[t] ((Sin[q4[t]] L8+Cos[q4[t]] q8[t]) u19[t]+Sin[q5[t]] L9 
u25[t])-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11) Subscript[u, 1]′[t]} 
 {Cos[q6[t]] (-1. L1-1. L11-0.5 q7[t]) Subscript[u, 1][t]2-0.5 
q7[t] Subscript[u, 31][t]2,Sin[q6[t]] (-1. L1-1. L11-0.5 q7[t]) 
Subscript[u, 1][t]2+0.5 u31[t] Subscript[q, 7]′[t]+0.5 q7[t] 
Subscript[u, 31]′[t],-0.5 Sin[q6[t]] q7[t] u1[t] u31[t]-0.5 u1[t] 
Subscript[q, 7]′[t]-1. (L1+L11+0.5 q7[t]) Subscript[u, 1]′[t]} 
 {-Cos[q5[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) 
Subscript[u, 1][t]2+L9 Subscript[u, 25][t]2-L12 Subscript[u, 
25][t]2+u19[t] (-(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) 
(u25[t]-Subscript[q, 4]′[t]-Subscript[q, 5]′[t])+Cos[q4[t]+q5[t]] Subscript[q, 
8]′[t])+(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) Subscript[u, 
19]′[t],Sin[q5[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) 
Subscript[u, 1][t]2+L13 Subscript[u, 25][t]2+u19[t] 
((Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) (u25[t]-Subscript[q, 
4]′[t]-Subscript[q, 5]′[t])-Sin[q4[t]+q5[t]] Subscript[q, 
8]′[t])+(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t]) Subscript[u, 
19]′[t],u1[t] (-(Sin[q4[t]] L8+Cos[q4[t]] q8[t]) u19[t]-(Sin[q5[t]] 
(L9-L12)+Cos[q5[t]] L13) u25[t])-(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-
L9+L11+L12) Subscript[u, 1]′[t]} 
 {-Cos[q6[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) 
Subscript[u, 1][t]2+((-Cos[q4[t]+q5[t]] L8+Sin[q4[t]+q5[t]] q8[t]) 
u19[t]+(L9-L12) u25[t]) u31[t]+Subscript[u, 31]′[t],-Sin[q6[t]] 
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) Subscript[u, 
1][t]2+u31[t] ((Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t]) 
u19[t]+L13 u25[t]+Subscript[q, 7]′[t])+q7[t] Subscript[u, 31]′[t],-u1[t] 
((Sin[q4[t]+q5[t]+q6[t]] L8+Cos[q4[t]+q5[t]+q6[t]] q8[t]) 
u19[t]+(Sin[q6[t]] (-L9+L12)+Cos[q6[t]] L13) u25[t]+Subscript[q, 
7]′[t])-(L1+L11+q7[t]) Subscript[u, 1]′[t]} 
NαBt[t_]=D[NωB[t],t] 
BαCt[t_]=D[NωCTN[t],t] 
BαDt[t_]=D[NωDTN[t],t]/.{Subscript[q, 4]′[t]->u19[t]} 
BαEt[t_]=D[NωETN[t],t]/.{Subscript[q, 4]′[t]->u19[t]} 
BαFt[t_]=D[NωFTN[t],t]/.{Subscript[q, 5]′[t]->u25[t],Subscript[u, 
25]′[t]-> 0} 
BαFt[t_]=Collect[BαFt[t],{Subscript[u, 1]′[t],Subscript[u, 19]′[t]}]/.{Subscript[q, 5]′[t]-
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>u25[t],Subscript[Z, 5]′[t]-> 0} 
BαGt[t_]=D[NωGTN[t],t]/.{Subscript[q, 6]′[t]->u31[t]} 
 {0,Subscript[u, 1]′[t],0} 
 {Sin[q2] Subscript[u, 1]′[t],Cos[q2] Subscript[u, 1]′[t],0} 
 {-Cos[q4[t]] u1[t] u19[t]-Sin[q4[t]] Subscript[u, 1]′[t],-Sin[q4[t]] 
u1[t] u19[t]+Cos[q4[t]] Subscript[u, 1]′[t],Subscript[u, 19]′[t]} 
 {-Cos[q4[t]] u1[t] u19[t]-Sin[q4[t]] Subscript[u, 1]′[t],-Sin[q4[t]] 
u1[t] u19[t]+Cos[q4[t]] Subscript[u, 1]′[t],Subscript[u, 19]′[t]} 
 {Cos[q5[t]] u1[t] u25[t]+Sin[q5[t]] Subscript[u, 1]′[t],-Sin[q5[t]] 
u1[t] u25[t]+Cos[q5[t]] Subscript[u, 1]′[t],0} 
 {Cos[q5[t]] u1[t] u25[t]+Sin[q5[t]] Subscript[u, 1]′[t],-Sin[q5[t]] 
u1[t] u25[t]+Cos[q5[t]] Subscript[u, 1]′[t],0} 
 {-Cos[q6[t]] u1[t] u31[t]-Sin[q6[t]] Subscript[u, 1]′[t],-Sin[q6[t]] 
u1[t] u31[t]+Cos[q6[t]] Subscript[u, 1]′[t],Subscript[u, 31]′[t]} 
IB=({ 
   {B11, 0, 0}, 
   {0, B22, 0}, 
   {0, 0, B33} 
  });IC=({ 
   {C11, 0, 0}, 
   {0, C22, 0}, 
   {0, 0, C33} 
  });ID=({ 
   {D11, 0, 0}, 
   {0, D22, 0}, 
   {0, 0, D33} 
  }); 
IE=({ 
   {E11, 0, 0}, 
   {0, E22, 0}, 
   {0, 0, E33} 
  });IF=({ 
   {F11, 0, 0}, 
   {0, F22, 0}, 
   {0, 0, F33} 
  });IG=({ 
   {G11, 0, 0}, 
   {0, G22, 0}, 
   {0, 0, G33} 
  }); 
 
TIB[t_]=-(IB.NαBt[t]+Cross[NωB[t],IB.NωB[t]]) 
TICc[t_]=-(IC.BαCt[t]+Cross[NωCTN[t],IC.NωCTN[t]]) ; 
TIC[t_]= Collect[TICc[t],{u1[t] u19[t],Subscript[u, 1]′[t],Subscript[u, 
1][t]2}] 
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TIDd[t_]=-(ID.BαDt[t]+Cross[NωDTN[t],ID.NωDTN[t]]) ; 
TID[t_]= Collect[TIDd[t],{u1[t] u19[t],Subscript[u, 1]′[t],Subscript[u, 
1][t]2}] 
TIEe[t_]=-(IE.BαEt[t]+Cross[NωETN[t],IE.NωETN[t]]); 
TIE[t_]= Collect[TIEe[t],{u1[t] u19[t],Subscript[u, 1]′[t],Subscript[u, 
1][t]2}] 
TIFf[t_]=-(IF.BαFt[t]+Cross[NωFTN[t],IF.NωFTN[t]]); 
TIF[t_]= Collect[TIFf[t],{u1[t] u19[t],Subscript[u, 1]′[t],Subscript[u, 
1][t]2}] 
TIGg[t_]=-(IG.BαGt[t]+Cross[NωGTN[t],IG.NωGTN[t]]); 
TIG[t_]= Collect[TIGg[t],{u1[t] u19[t],,u1[t] u31[t],Subscript[u, 
1]′[t],Subscript[u, 1][t]2}] 
 
 {0,-B22 Subscript[u, 1]′[t],0} 
 {-Sin[q2] C11 Subscript[u, 1]′[t],-Cos[q2] C22 Subscript[u, 1]′[t],(Cos[q2] 
Sin[q2] C11-Cos[q2] Sin[q2] C22) Subscript[u, 1][t]2} 
 {(Cos[q4[t]] D11+Cos[q4[t]] D22-Cos[q4[t]] D33) u1[t] 
u19[t]+Sin[q4[t]] D11 Subscript[u, 1]′[t],(Sin[q4[t]] D11+Sin[q4[t]] D22-
Sin[q4[t]] D33) u1[t] u19[t]-Cos[q4[t]] D22 Subscript[u, 1]′[t],(-
Cos[q4[t]] Sin[q4[t]] D11+Cos[q4[t]] Sin[q4[t]] D22) Subscript[u, 
1][t]2-D33 Subscript[u, 19]′[t]} 
 {(Cos[q4[t]] E11+Cos[q4[t]] E22-Cos[q4[t]] E33) u1[t] 
u19[t]+Sin[q4[t]] E11 Subscript[u, 1]′[t],(Sin[q4[t]] E11+Sin[q4[t]] E22-
Sin[q4[t]] E33) u1[t] u19[t]-Cos[q4[t]] E22 Subscript[u, 1]′[t],(-
Cos[q4[t]] Sin[q4[t]] E11+Cos[q4[t]] Sin[q4[t]] E22) Subscript[u, 
1][t]2-E33 Subscript[u, 19]′[t]} 
 {u1[t] (-Cos[q5[t]] F11 u25[t]+Cos[q5[t]] F22 u25[t]-Cos[q5[t]] F33 
u25[t])-Sin[q5[t]] F11 Subscript[u, 1]′[t],u1[t] (-Sin[q5[t]] F11 
u25[t]+Sin[q5[t]] F22 u25[t]+Sin[q5[t]] F33 u25[t])-Cos[q5[t]] F22 
Subscript[u, 1]′[t],(Cos[q5[t]] Sin[q5[t]] F11-Cos[q5[t]] Sin[q5[t]] 
F22) Subscript[u, 1][t]2} 
 {(Cos[q6[t]] G11+Cos[q6[t]] G22-Cos[q6[t]] G33) u1[t] 
u31[t]+Sin[q6[t]] G11 Subscript[u, 1]′[t],(Sin[q6[t]] G11+Sin[q6[t]] G22-
Sin[q6[t]] G33) u1[t] u31[t]-Cos[q6[t]] G22 Subscript[u, 1]′[t],(-
Cos[q6[t]] Sin[q6[t]] G11+Cos[q6[t]] Sin[q6[t]] G22) Subscript[u, 
1][t]2-G33 Subscript[u, 31]′[t]} 
GIK1[t_]=- mB*aBtS[t].D[VBinBN[t],u1[t]]- 
mc*aCtS[t].D[VCinCSN[t],u1[t]]- mD*aDtS[t].D[VDinDSN[t],u1[t]]- 
mE*aEtS[t].D[VEinESN[t],u1[t]]- mF*aFtS[t].D[VFinFSN[t],u1[t]]- 
mG*aGtS[t].D[VGinGSN[t],u1[t]]- mH1*aH1tS[t].D[VH1inFSN[t],u1[t]]-
mF1*aF1tS[t].D[VF1inGSN[t],u1[t]]+TIB[t].D[NωB[t],u1[t]]+TIC[t].D[
NωCTN[t],u1[t]]+TID[t].D[NωDTN[t],u1[t]]+TIE[t].D[NωETN[t],u1[t]]+
TIF[t].D[NωFTN[t],u1[t]]+TIG[t].D[NωGTN[t],u1[t]]/.{Subscript[q, 
4]′[t]->u19[t]};//ExpandAll 
GIK1C[t_]=Collect[GIK1[t],{Subscript[u, 1]′[t], u1[t] u19[t],u1[t] 
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u25[t]}]//Simplify 
 -1. (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8+L11) mE (Sin[q4[t]] L8+0.5 
Cos[q4[t]] q8[t]) u1[t] u19[t]-1/2 Sin[2 q5[t]] (F11-F22-F33) u1[t] 
u25[t]-1/2 Sin[2 q5[t]] (F11-F22+F33) u1[t] u25[t]-(L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8-L9+L11) mF u1[t] ((Sin[q4[t]] L8+Cos[q4[t]] 
q8[t]) u19[t]+Sin[q5[t]] L9 u25[t])+(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-
L9+L11+L12) mH1 u1[t] (-(Sin[q4[t]] L8+Cos[q4[t]] q8[t]) u19[t]-
(Sin[q5[t]] (L9-L12)+Cos[q5[t]] L13) u25[t])-0.5 Sin[q6[t]] mG 
(L1+L11+0.5 q7[t]) q7[t] u1[t] u31[t]-0.5 mG (L1+L11+0.5 q7[t]) u1[t] 
Subscript[q, 7]′[t]+mF1 (-L1-L11-q7[t]) u1[t] ((Sin[q4[t]+q5[t]+q6[t]] 
L8+Cos[q4[t]+q5[t]+q6[t]] q8[t]) u19[t]+(Sin[q6[t]] (-
L9+L12)+Cos[q6[t]] L13) u25[t]+Subscript[q, 7]′[t])+(-B22-
Sin[Subscript[q, 2]]2 C11-Cos[Subscript[q, 2]]2 C22-
Sin[Subscript[q, 4][t]]2 D11-Cos[Subscript[q, 4][t]]2 D22-
Sin[Subscript[q, 4][t]]2 E11-Cos[Subscript[q, 4][t]]2 E22-
Sin[Subscript[q, 5][t]]2 F11-Cos[Subscript[q, 5][t]]2 F22-
Sin[Subscript[q, 6][t]]2 G11-Cos[Subscript[q, 6][t]]2 G22-L11

2 mB-
(Subscript[L, 3]+Cos[Subscript[q, 2]] Subscript[L, 
5]+Subscript[L, 11])2 mc-(Subscript[L, 3]+Cos[Subscript[q, 2]] 
Subscript[L, 5]+Cos[Subscript[q, 2]] Subscript[L, 
6]+Sin[Subscript[q, 2]] Subscript[L, 7]+Subscript[L, 11])2 mD-
(Subscript[L, 3]+Cos[Subscript[q, 2]] (Subscript[L, 
5]+Subscript[L, 6])+Sin[Subscript[q, 2]] Subscript[L, 
7]+Subscript[L, 8]+Subscript[L, 11])2 mE-(Subscript[L, 
3]+Cos[Subscript[q, 2]] (Subscript[L, 5]+Subscript[L, 
6])+Sin[Subscript[q, 2]] Subscript[L, 7]+Subscript[L, 8]-
Subscript[L, 9]+Subscript[L, 11])2 mF-(Subscript[L, 
3]+Cos[Subscript[q, 2]] (Subscript[L, 5]+Subscript[L, 
6])+Sin[Subscript[q, 2]] Subscript[L, 7]+Subscript[L, 8]-
Subscript[L, 9]+Subscript[L, 11]+Subscript[L, 12])2 mH1-1. mG 
(Subscript[L, 1]+Subscript[L, 11]+0.5 Subscript[q, 7][t])2-mF1 
(Subscript[L, 1]+Subscript[L, 11]+Subscript[q, 7][t])2) 
Subscript[u, 1]′[t] 
 GIK19[t_]=- mB*aBtS[t].D[VBinBN[t],u19[t]]- 
mc*aCtS[t].D[VCinCSN[t],u19[t]]- mD*aDtS[t].D[VDinDSN[t],u19[t]]- 
mE*aEtS[t].D[VEinESN[t],u19[t]]- mF*aFtS[t].D[VFinFSN[t],u19[t]]- 
mG*aGtS[t].D[VGinGSN[t],u19[t]]- 
mH1*aH1tS[t].D[VH1inFSN[t],u19[t]]-
mF1*aF1tS[t].D[VF1inGSN[t],u19[t]]+TIB[t].D[NωB[t],u19[t]]+TIC[t].D
[NωCTN[t],u19[t]]+TID[t].D[NωDTN[t],u19[t]]+TIE[t].D[NωETN[t],u19[t
]]+TIF[t].D[NωFTN[t],u19[t]]+TIG[t].D[NωGTN[t],u19[t]]/.{Subscript
[q, 4]′[t]->u19[t],Subscript[q, 5]′[t]-> u25[t]}; 
GIK19C[t_]=Collect[GIK19[t],{Subscript[u, 19]′[t],Subscript[u, 
1][t]2,Subscript[u, 25][t]2,Subscript[q, 8]′[t]}]//Simplify 
 (-(1/2) Sin[2 q4[t]] D11+Cos[q4[t]] Sin[q4[t]] D22-1/2 Sin[2 q4[t]] 
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E11+Cos[q4[t]] Sin[q4[t]] E22+Sin[q4[t]] L8 (L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8+L11) mE+0.5 Cos[q4[t]] (L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8+L11) mE q8[t]+Cos[q5[t]] (L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8-L9+L11) mF (Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] 
q8[t])+Cos[q5[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) mH1 
(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t])-Sin[q5[t]] (L3+Cos[q2] 
(L5+L6)+Sin[q2] L7+L8-L9+L11) mF (Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] 
q8[t])-Sin[q5[t]] (L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) mH1 
(Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] q8[t])) Subscript[u, 
1][t]2+(-L8 ((-Sin[q4[t]+q5[t]] L12+Cos[q4[t]+q5[t]] L13) 
mH1+Sin[q4[t]+q5[t]] L9 (mF+mH1))+((Cos[q4[t]+q5[t]] 
L12+Sin[q4[t]+q5[t]] L13) mH1-Cos[q4[t]+q5[t]] L9 (mF+mH1)) q8[t]) 
Subscript[u, 25][t]2-0.25 mE q8[t] u19[t] Subscript[q, 8]′[t]-1. mF 
q8[t] u19[t] Subscript[q, 8]′[t]-1. mH1 q8[t] u19[t] Subscript[q, 8]′[t]-
1. (D33+E33+L8

2 m mF mH1 +0.25 mE Subscript[q, 8][t]2+mF Subscript[q, 
8][t]2+mH1 Subscript[q, 8][t]2) Subscript[u, 19]′[t] 
 GIK31[t_]=- mB*aBtS[t].D[VBinBN[t],u31[t]]- 
mc*aCtS[t].D[VCinCSN[t],u31[t]]- mD*aDtS[t].D[VDinDSN[t],u31[t]]- 
mE*aEtS[t].D[VEinESN[t],u31[t]]- mF*aFtS[t].D[VFinFSN[t],u31[t]]- 
mG*aGtS[t].D[VGinGSN[t],u31[t]]- 
mH1*aH1tS[t].D[VH1inFSN[t],u31[t]]-
mF1*aF1tS[t].D[VF1inGSN[t],u31[t]]+TIB[t].D[NωB[t],u31[t]]+TIC[t].D
[NωCTN[t],u31[t]]+TID[t].D[NωDTN[t],u31[t]]+TIE[t].D[NωETN[t],u31[t
]]+TIF[t].D[NωFTN[t],u31[t]]+TIG[t].D[NωGTN[t],u31[t]]/.{Subscript
[q, 4]′[t]->u19[t]}; 
GIK31[t_]=Collect[GIK31[t],{Subscript[u, 31]′[t],u31[t],Subscript[u, 
1][t]2}]//Simplify 
 (-(1/2) Sin[2 q6[t]] G11+Cos[q6[t]] Sin[q6[t]] G22+Cos[q6[t]] 
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) mF1+Sin[q6[t]] 
(L3+Cos[q2] (L5+L6)+Sin[q2] L7+L8-L9+L11+L12) mF1 q7[t]+0.5 Sin[q6[t]] 
mG (1. L1+1. L11+0.5 q7[t]) q7[t]) Subscript[u, 1][t]2+u31[t] (-mF1 
((-Cos[q4[t]+q5[t]] L8+Sin[q4[t]+q5[t]] q8[t]) u19[t]+(L9-L12) 
u25[t])-0.25 mG q7[t] Subscript[q, 7]′[t]-mF1 q7[t] ((Sin[q4[t]+q5[t]] 
L8+Cos[q4[t]+q5[t]] q8[t]) u19[t]+L13 u25[t]+Subscript[q, 7]′[t]))-1. 
(G33+0.25 mG Subscript[q, 7][t]2+mF1 (1+Subscript[q, 7][t]2)) 
Subscript[u, 31]′[t] 
GB[t_]=-g.mB{0,1,0} 
GC[t_]=-g.mc{-Sin[q2],-Cos[q2],0} 
GD[t_]=-g.mD{Sin[q4[t]] ,-Cos[q4[t]],0} 
GE[t_]=-g.mE{Sin[q4[t]] ,-Cos[q4[t]],0} 
GF[t_]=-g.mF{- Sin[q5[t]],-Cos[q5[t]],0} 
GG[t_]=-g.mG{Sin[q6[t]],-Cos[q6[t]],0} 
GH1[t_]=-g.mH1{- Sin[q5[t]],-Cos[q5[t]],0} 
GF1[t_]=-g.mF1{Sin[q6[t]],-Cos[q6[t]],0} 
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 {0,-g.mB,0} 
 {g.mc Sin[q2],Cos[q2] g.mc,0} 
 {-g.mD Sin[q4[t]],Cos[q4[t]] g.mD,0} 
 {-g.mE Sin[q4[t]],Cos[q4[t]] g.mE,0} 
 {g.mF Sin[q5[t]],Cos[q5[t]] g.mF,0} 
 {-g.mG Sin[q6[t]],Cos[q6[t]] g.mG,0} 
 {g.mH1 Sin[q5[t]],Cos[q5[t]] g.mH1,0} 
 {-g.mF1 Sin[q6[t]],Cos[q6[t]] g.mF1,0} 
 (*Friction Force*) 
y[t_]= q70Sin[q60]-q7[t]Sin[q6[t]] 
B1F3={q7[t]-(0.5*y[t])/Sin[q6[t]],0,0} 
B1F3.Transpose[BRG] 
VF3=Cross[NωGTN[t],B1F3. Transpose[BRG]]/.{Sin[q6] -> 
Sin[q6[t]],Cos[q6] -> Cos[q6[t]]}//Simplify 
Ac=dr y[t]Sin[q6[t]] 
Vol= (y[t]/Sin[q6[t]])*dc^2Pi/4 
Fdv=-sgnVvβ AcVF3[[2]]^2 
Fdh=-sgnVh β Ac VF3[[1]]^2 
Fsh=-sgnVh ηhρ g dcy[t]^2  
Fsv=-sgnVv ηv(y[t]/dc)^λ g ρ Vol 
Ffr= {Fdh+Fsh,Fdv+Fsv,0}/.{ Sin[q60]-> s60,Cos[q60]-> c60,u1[t]-
>u1,u31[t]->u31,Cos[q6[t]]-> c6,Sin[q6[t]]-> s6,q7[t]-> q7}//Simplify 
Ffr= {Fdh+Fsh,Fdv+Fsv,0} 
 
(*Cutting Force*) 
Fct=Ebucket*(1+λ0)*kF/knym*lbucket*kp 
FCut={Fct Cos[ca]Cos[q5],Fct Cos[ca]Sin[q5],0}//Simplify 
GAK31[t]/.{ Sin[q60]-> s60,Cos[q60]-> c60,u1[t]->u1,u31[t]-
>u31,Cos[q6[t]]-> c6,Sin[q6[t]]-> s6,q7[t]-> q7}//FullSimplify 
 Sin[q60] q70-Sin[q6[t]] q7[t] 
 {q7[t]-0.5 Csc[q6[t]] (Sin[q60] q70-Sin[q6[t]] q7[t]),0,0} 
 {Cos[q6[t]] (q7[t]-0.5 Csc[q6[t]] (Sin[q60] q70-Sin[q6[t]] 
q7[t])),-Sin[q6[t]] (q7[t]-0.5 Csc[q6[t]] (Sin[q60] q70-Sin[q6[t]] 
q7[t])),0} 
 {(-0.5 Sin[q60] q70+1.5 Sin[q6[t]] q7[t]) u31[t],(-0.5 Cot[q6[t]] 
Sin[q60] q70+1.5 Cos[q6[t]] q7[t]) u31[t],(Sin[q60] (0.5 Cos[q6[t]] 
Cot[q6[t]]-0.5 Sin[q6[t]]) q70-1.5 Cos[2 q6[t]] q7[t]) u1[t]} 
 Sin[q6[t]] dr (Sin[q60] q70-Sin[q6[t]] q7[t]) 
 1/4 π Csc[q6[t]] dc

2
 (Sin[q60] q70-Sin[q6[t]] q7[t]) 

 -β Sin[q6[t]] dr sgnVv (-0.5 Cot[Subscript[q, 6][t]] 
Sin[Subscript[q, 60]] Subscript[q, 70]+1.5 Cos[Subscript[q, 
6][t]] Subscript[q, 7][t])2 (Sin[q60] q70-Sin[q6[t]] q7[t]) 
Subscript[u, 31][t]2 
 -β Sin[q6[t]] dr sgnVh (Sin[q60] q70-Sin[q6[t]] q7[t]) (-0.5 
Sin[Subscript[q, 60]] Subscript[q, 70]+1.5 Sin[Subscript[q, 
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6][t]] Subscript[q, 7][t])2 Subscript[u, 31][t]2 
 -g ρ dc sgnVh ηh (Sin[Subscript[q, 60]] Subscript[q, 70]-
Sin[Subscript[q, 6][t]] Subscript[q, 7][t])2 
 -(1/4) g π ρ Csc[q6[t]] dc

2
 sgnVv ηv (Sin[q60] q70-Sin[q6[t]] q7[t]) 

((Sin[Subscript[q, 60]] Subscript[q, 70]-Sin[Subscript[q, 6][t]] 
Subscript[q, 7][t])/Subscript[d, c])λ 
 {(-q7 s6+q70 s60) sgnVh (-2.25 β dr s6 (1. Subscript[q, 7] 
Subscript[s, 6]-0.333333 Subscript[q, 70] Subscript[s, 60])2 u31

2
+g 

ρ dc (q7 s6-q70 s60) ηh),1/4 (-q7 s6+q70 s60) sgnVv (-9. β dr s6 (1. 
Subscript[c, 6] Subscript[q, 7]-0.333333 Cot[Subscript[q, 6][t]] 
Subscript[q, 70] Subscript[s, 60])2 u31

2
-g π ρ Csc[q6[t]] dc

2
 ((-

Subscript[q, 7] Subscript[s, 6]+Subscript[q, 70] Subscript[s, 
60])/Subscript[d, c])λ ηv),0} 
 {-g ρ dc sgnVh ηh (Sin[Subscript[q, 60]] Subscript[q, 70]-
Sin[Subscript[q, 6][t]] Subscript[q, 7][t])2-β Sin[q6[t]] dr sgnVh 
(Sin[q60] q70-Sin[q6[t]] q7[t]) (-0.5 Sin[Subscript[q, 60]] 
Subscript[q, 70]+1.5 Sin[Subscript[q, 6][t]] Subscript[q, 7][t])2 
Subscript[u, 31][t]2,-(1/4) g π ρ Csc[q6[t]] dc

2
 sgnVv ηv (Sin[q60] 

q70-Sin[q6[t]] q7[t]) ((Sin[Subscript[q, 60]] Subscript[q, 70]-
Sin[Subscript[q, 6][t]] Subscript[q, 7][t])/Subscript[d, c])λ-β 
Sin[q6[t]] dr sgnVv (-0.5 Cot[Subscript[q, 6][t]] Sin[Subscript[q, 
60]] Subscript[q, 70]+1.5 Cos[Subscript[q, 6][t]] Subscript[q, 
7][t])2 (Sin[q60] q70-Sin[q6[t]] q7[t]) Subscript[u, 31][t]2,0} 
 (Ebucket kF kp lbucket (1+λ0))/knym 
 {(Cos[ca] Cos[q5] Ebucket kF kp lbucket (1+λ0))/knym,(Cos[ca] Sin[q5] 
Ebucket kF kp lbucket (1+λ0))/knym,0} 
 GAK31[t] 
GAK1[t_]={0,τ1[t],0}.D[NωB[t],u1[t]]+{0,0,τ2[t]}.D[NωETN[t],u1[t]]
+{σ[t],0,0}.D[VF1inGSN[t]-VGinGSN[t],u1[t]]+ 
GB[t].D[VBinBN[t],u1[t]]+GC[t].D[VCinCSN[t],u1[t]]+GD[t].D[VDinDSN
[t],u1[t]]+GE[t].D[VEinESN[t],u1[t]]+GF[t].D[VFinFSN[t],u1[t]]+GG[
t].D[VGinGSN[t],u1[t]]+GH1[t].D[VH1inFSN[t],u1[t]]+GF1[t].D[VF1inG
SN[t],u1[t]]+Ffr. D[VF3,u1[t]]+FCut.D[VH1inFSN[t],u1[t]] 
 
GAK19[t_]={0,τ1[t],0}.D[NωB[t],u19[t]]+{0,0,τ2[t]}.D[NωETN[t],u19[
t]]+{σ[t],0,0}.D[VF1inGSN[t]-VGinGSN[t],u19[t]]+ 
GB[t].D[VBinBN[t],u19[t]]+GC[t].D[VCinCSN[t],u19[t]]+GD[t].D[VDinD
SN[t],u19[t]]+GE[t].D[VEinESN[t],u19[t]]+GF[t].D[VFinFSN[t],u19[t]]
+GG[t].D[VGinGSN[t],u19[t]]+GH1[t].D[VH1inFSN[t],u19[t]]+GF1[t].D[
VF1inGSN[t],u19[t]]+Ffr. D[VF3,u19[t]] +FCut.D[VH1inFSN[t],u19[t]] 
 
GAK31[t_]={0,τ1[t],0}.D[NωB[t],u31[t]]+{0,0,τ2[t]}.D[NωETN[t],u31[
t]]+{σ[t],0,0}.D[VF1inGSN[t]-VGinGSN[t],u31[t]]+ 
GB[t].D[VBinBN[t],u31[t]]+GC[t].D[VCinCSN[t],u31[t]]+GD[t].D[VDinD
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SN[t],u31[t]]+GE[t].D[VEinESN[t],u31[t]]+GF[t].D[VFinFSN[t],u31[t]]
+GG[t].D[VGinGSN[t],u31[t]]+GH1[t].D[VH1inFSN[t],u31[t]]+GF1[t].D[
VF1inGSN[t],u31[t]]+Ffr. D[VF3,u31[t]]+FCut.D[VH1inFSN[t],u31[t]] 
 0. +τ1[t] 
 Cos[q4[t]] g.mE L8+τ2[t]-0.5 g.mE Sin[q4[t]] q8[t]+g.mF Sin[q5[t]] 
(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t])+g.mH1 Sin[q5[t]] 
(Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] q8[t])+(Cos[ca] Cos[q5] Ebucket 
kF kp lbucket (1+λ0) (Sin[q4[t]+q5[t]] L8+Cos[q4[t]+q5[t]] 
q8[t]))/knym+Cos[q5[t]] g.mF (Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] 
q8[t])+Cos[q5[t]] g.mH1 (Cos[q4[t]+q5[t]] L8-Sin[q4[t]+q5[t]] 
q8[t])+(Cos[ca] Sin[q5] Ebucket kF kp lbucket (1+λ0) (Cos[q4[t]+q5[t]] 
L8-Sin[q4[t]+q5[t]] q8[t]))/knym 
 0. -g.mF1 Sin[q6[t]]+σ[t]+Cos[q6[t]] g.mF1 q7[t]+0.5 Cos[q6[t]] 
g.mG q7[t]+(-0.5 Cot[q6[t]] Sin[q60] q70+1.5 Cos[q6[t]] q7[t]) (-
(1/4) g π ρ Csc[q6[t]] dc

2
 sgnVv ηv (Sin[q60] q70-Sin[q6[t]] q7[t]) 

((Sin[Subscript[q, 60]] Subscript[q, 70]-Sin[Subscript[q, 6][t]] 
Subscript[q, 7][t])/Subscript[d, c])λ-β Sin[q6[t]] dr sgnVv (-0.5 
Cot[Subscript[q, 6][t]] Sin[Subscript[q, 60]] Subscript[q, 
70]+1.5 Cos[Subscript[q, 6][t]] Subscript[q, 7][t])2 (Sin[q60] q70-
Sin[q6[t]] q7[t]) Subscript[u, 31][t]2)+(-0.5 Sin[q60] q70+1.5 
Sin[q6[t]] q7[t]) (-g ρ dc sgnVh ηh (Sin[Subscript[q, 60]] 
Subscript[q, 70]-Sin[Subscript[q, 6][t]] Subscript[q, 7][t])2-β 
Sin[q6[t]] dr sgnVh (Sin[q60] q70-Sin[q6[t]] q7[t]) (-0.5 
Sin[Subscript[q, 60]] Subscript[q, 70]+1.5 Sin[Subscript[q, 
6][t]] Subscript[q, 7][t])2 Subscript[u, 31][t]2) 
(*GIK10[t]=GIK1[t]/.{Subscript[u, 1][t]0,(Subscript[u, 1]^′)[t] 
0}  
GIK190[t]=GIK19[t]/.{Subscript[u, 1][t]0,(Subscript[u, 1]^′)[t] 
0}   
GIK190[t]=Collect[GIK190[t],(Subscript[u, 19]^′)[t]] 
 GIK310[t]=GIK31[t]/.{Subscript[u, 1][t]0,(Subscript[u, 
1]^′)[t] 0}  
GAK10[t]=GAK1[t]/.{Subscript[u, 1][t]0,(Subscript[u, 1]^′)[t] 
0}  
GAK190[t]=GAK19[t]/.{Subscript[u, 1][t]0,(Subscript[u, 1]^′)[t] 
0}  
GAK310[t]=GAK31[t]/.{Subscript[u, 1][t]0,(Subscript[u, 1]^′)[t] 
0}*)  
 Vol= (y[t]/Sin[q6[t]])*dc^2Pi/4 
 1/4 π Csc[q6[t]] dc

2
 y[t] 
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