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ABSTRACT

Access to space has expanded dramatically over the past decade. The growing

popularity of small satellites, specifically cubesats, and the following launch initiatives

have resulted in exponentially growing launch numbers into low Earth orbit. This

growing congestion in space has punctuated the need for local space monitoring and

autonomous satellite inspection. This work describes the development of a framework

for monitoring local space and tracking multiple objects concurrently in a satellite’s

neighborhood. The development of this multitarget tracking systems has produced

collateral developments in numerical methods, relative orbital mechanics, and initial

relative orbit determination.

This work belongs to a class of navigation known as angles-only navigation, in

which angles representing the direction to the target are measured but no range mea-

surements are available. A key difference between this work and traditional angles-

only relative navigation research is that angle measurements are collected from two

separate cameras simultaneously. Such measurements, when coupled with the known

location and orientation of the stereo cameras, can be used to resolve the relative

range component of a target’s position. This fact is exploited to form initial statis-

tical representations of the targets’ relative states, which are subsequently refined in

Bayesian single-target and multitarget frameworks.
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1. INTRODUCTION

The eruption of the small satellite and cubesat markets has caused a dramatic

global increase in the satellite launch tempo. In fact, the number of micro- and

nanosatellites launched has grown exponentially each year since 2011 [1]. The small

size, mass, and cost of small satellites have enabled new mission concepts that were

once considered infeasible due to the restrictive cost of “big” satellites. Specifically,

a number of small satellite constellations has recently been proposed [2–4]. Although

these constellations promise great utility, the consequential congestion and collision

threats are a cause of concern to many satellite operators. Many of these objects are

tracked from ground-based RADAR and telescopes [5–8]. However, the ability for a

satellite to track nearby objects without ground intervention and mitigate collision

threats has obvious advantages.

1.1. SPACE-BASED ANGLES-ONLY NAVIGATION

Satellite proximity operations have been actively researched since the 1960s [9–

11]. The ability to accurately track and predict the motion of nearby space objects

is necessary for surveillance, inspection, formation flight, rendezvous, docking, and

satellite servicing. Recent research has given special focus to accurate relative motion

tracking and prediction using only angles data [12, 13]. As the name implies, angles-

only navigation systems operate in the absence of range measurements, estimating

the motion of a nearby target using only a time-history of noisy angular measure-

ments typically taken from an optical navigation camera. For many applications,

angles-only systems may be advantageous over ranging systems, such as RADAR.

For instance, in uncooperative proximity operations, the passive nature of angles-

only sensors may be preferable over active ranging sensors that are detectable by the

target satellite. Furthermore, the required electromagnetic emission of most ranging
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systems contributes to generally higher power consumption than comparable angles-

only systems. For this reason, in small satellite designs with limited power availability,

lower-power angles-only systems are often more attractive.

Angles-only navigation research is conducted on multiple fronts. For exam-

ple, many efforts focus on the development of accurate and computationally efficient

relative motion models [9, 11, 14, 15]. Perhaps the simplest and most popular rel-

ative satellite motion model is the Clohessy-Wiltshire (CW) model [16]. The CW

model is linear, admits a closed-form general solution, and its equations are easily

interpretable. Drawbacks of the model include the assumptions of simple two-body

motion and a circular inspector orbit, although the negative effects of these assump-

tions can be mitigated by proper filter design [17]. A close variant of the CW model

is the second-order Clohessy-Wiltshire (CW2) model [18]. Although the CW2 model

makes the same dynamical assumptions as the CW model, it retains higher-order

terms in its approximation whilst very computationally efficient and thus offers mod-

est improvements over the CW model in its agreement to the reference two-body

motion.

Another major focus of space-based angles-only navigation research is initial

relative orbit determination (IROD). IROD is the process of initializing the state

estimates that define the relative orbit of a target (most commonly, relative position

and velocity). In general, angles-only IROD is performed deterministically [19] or by

batch-processing a sequence of angular measurements to form an initial state estimate

and covariance [12].

In past years, much research has been dedicated to the observability issues

inherent of angles-only IROD under the CW model [20–23]. References [21] and [22]

have shown that the Cartesian states representing the relative position and velocity

of a target satellite are unobservable when all of the following common assumptions

are made:
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A1. The motion of the target satellite is modeled using the CW equa-

tions.1

A2. Angular measurements are taken in reference to the center of mass

of the inspector satellite.

A3. No calibrated thrust maneuvers are performed by the inspector satel-

lite.

Under the preceding assumptions, in a given relative orbital plane, an infinite number

of relative orbits produce the same angular measurement history. In theory, the

higher-order terms found in the CW2 model mitigate this ambiguity, thus relaxing

Assumption A1. The use of the nonlinear CW2 equations in place of the linear

CW model theoretically allows the relative states to be observed. However, existing

angles-only CW2-based IROD methods fail in the presence of modest measurement

noise, likely due to the inability to resolve and exploit the subtle differences in the

CW and CW2 models [24].

One promising approach to angles-only proximity operations is through the

relaxation of Assumption A2 by using a dual-camera system, or stereoscopic im-

ager [25–27], as recently demonstrated with a single target by the Visual Estimation

for Relative Tracking and Inspection of Generic Objects (VERTIGO) program [28].

The VERTIGO program, which was conducted in the Synchronized Position Hold,

Engage, Reorient, Experimental Satellites (SPHERES) laboratory onboard the Inter-

national Space Station, demonstrated the first fully autonomous robotics vision-based

navigation strategy with a noncooperative spacecraft [28].

In this study, both Assumptions A1 and A2 are relaxed. Target satellite

motion is modeled using the nonlinear CW2 equations, and angles-only measurements

are taken of the targets from an inspector-hosted stereoscopic imager. A unique

1This includes derivative models expressed in alternative element sets that, nonetheless, obey the
CW equations of motion.
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method for performing IROD using stereoscopic measurements is presented. The

presented IROD method accepts multiple relative motion models, and two examples

are discussed. Both methods require the relative Lambert problem to be solved,

which consists of finding the set of relative velocity solutions that satisfy a pair of

temporally-separated relative position vectors and the associated time of flight. The

relative Lambert solution under CW model assumptions is reviewed, and the solution

for the CW2 relative Lambert problem is presented and analyzed.

Frameworks for angles-only navigation are established for single-target and

multitarget tracking using Gaussian mixture (GM) filters. For single-target tracking,

a Gaussian mixture square-root unscented Kalman filter (GMSRUKF) is employed

to track single targets to high accuracy using angles-only data. A multitarget ar-

chitecture for performing space-based angles-only tracking of multiple targets is then

presented that makes use of recent developments in intensity filtering, namely the

cardinalized probability hypothesis density (CPHD) filter.

1.2. CONTRIBUTIONS OF THE THESIS

In the pursuit of the space-based multitarget tracking solution presented in

this work, collateral studies are performed in algebraic systems, relative orbital me-

chanics, and statistical IROD. The relative Lambert problem is formulated using

CW2 mechanics and casted as a multivariate polynomial root-finding problem. To

solve this polynomial system, a unique method for solving n multivariate polynomi-

als with n unknowns is developed using Macaulay resultant expressions. While the

application of Macaulay resultants to solve multipolynomial systems is not altogether

new, a new and clear approach to the resultant matrix construction is presented that

avoids the shortcomings and ambiguities of existing methods. The resultant method

is employed to find all solutions to the second-order relative Lambert problem without

introducing fictitious solutions. To the best of the author’s knowledge, the applica-
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tion of Macaulay resultants to the second-order relative Lambert problem is the first

documented use of resultant theory in aerospace engineering.

The relative Lambert solver plays a critical role in the novel bearings-only

IROD architecture, by “linking” together two temporally-separated parameterized

probability density functions (pdfs). While many IROD methods predate this work,

the presented framework is the first to leverage the statistical power of GMs.

Space-based tracking of a single satellite is a well-studied research problem.

However, studies in multiple satellite tracking are largely found in the context of

ground-based systems. In fact, to the best of the author’s knowledge, this work

is the first documented effort in space-based multitarget tracking. The presented

multitarget tracking architecture is developed under the CPHD framework, and its

performance is compared to a similar architecture based on the probability hypothesis

density (PHD).

1.3. ORGANIZATION OF THE THESIS

This thesis is composed as follows:

• In Chapter 2, satellite relative motion is reviewed, and abbreviated derivations

of the CW and CW2 relative motion models are provided.

• In Chapter 3, the relative Lambert problem is formulated. The solution for

the relative Lambert problem under the CW model is provided in Section 3.1.

In Section 3.2, Macaulay resultant expressions are introduced and applied to

solve the CW2 relative Lambert problem. A comparison of the CW solver,

CW2 solver, and an alternative solver based on the classic Lambert problem is

presented in Section 3.3.
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• In Chapter 4, the fundamentals of stereoscopic imaging are reviewed. A math-

ematical model for synthesizing stereoscopic measurements is established, and

the limitations of typical stereoscopic triangulation approaches are discussed.

• In Chapter 5, a framework for tracking a single target from a space-based stereo-

scopic platform is presented. GMs and their applications to stereoscopic mea-

surement uncertainty are discussed in Sections 5.1 and 5.2, respectively. In Sec-

tion 5.3, using GM approximations to model relative range uncertainty at two

measurement times, a relative Lambert problem is used to link two temporally-

separated positional pdfs and produce a full-state pdf in relative position and

velocity. Further pdf refinement is achieved recursively via processing angles-

only measurements in the GMSRUKF. Simulations of the IROD process and

single-target recursive estimation are presented and discussed in Section 5.5.

• In Chapter 6, the concepts developed in Chapter 5 are extended to multiple

targets. The multitarget CPHD intensity filter is presented and thoroughly de-

tailed. The necessary models for the intensity filters, including the measurement

clutter model (Section 6.3.2), probability of detection model (Section 6.3.3), and

target birth model (Section 6.4) are developed. In Section 6.6, the performance

of the PHD and CPHD filters is investigated in the context of a simulated debris

cloud tracking problem.

• In Chapter 7, simulation results are summarized and conclusions are compiled.
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2. SATELLITE RELATIVE MOTION

For many multiple-satellite missions, determining the relative motion of a

nearby satellite is more important and often more convenient than determining the

inertial motion of one or more of the satellites. For instance, when docking to a space-

craft such as the International Space Station (ISS), the position and velocity relative

to the approaching spacecraft must be known to extremely high accuracy to ensure a

safe docking. On the other hand, a less accurate knowledge of the spacecraft’s specific

orbital position may be acceptable.

Far too many relative motion models have been documented in the literature to

cite all in this thesis. One of the first satellite relative motion models to be introduced

(and perhaps the first) is the Clohessy-Wiltshire (CW) model, and it remains the

most widely used to date. Some notable models accommodate eccentric orbits [29],

while others capture perturbations such as the nonspherical gravitational forces due

to Earth’s oblateness [15]. In this study, the standard CW model is considered as

well as a newer model known as the second-order Clohessy-Wiltshire (CW2) model,

which captures higher-order terms neglected in the CW model.

2.1. CLOHESSY-WILTSHIRE MODEL

The inertial motion of the inspector and target spacecraft are assumed to be

unperturbed such that the motion may described using two-body dynamics as

r̈ins = −
µrins
r3ins

and r̈tgt = −
µrtgt
r3tgt

, (2.1)

where µ is the gravitational parameter of the central body, r is the inertial position of

the satellite with respect to the two-body system center of mass (taken to be Earth’s

center), and the subscripts “ins” and “tgt” denote the inspector and target satellites,
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respectively. The relative position of the target satellite with respect to the inspector

is defined as

δr , rtgt − rins .

Differentiating twice with respect to time and substituting Equations (2.1) yields the

differential acceleration

δr̈ = r̈tgt − r̈ins =
µ

rins3

[
rins −

rins
3

rtgt3
rtgt

]
. (2.2)

Making the substitution rtgt = rins+δr, expanding, and neglecting terms on the order

O(‖δr‖2) and higher yields

δr̈ = − µ

rins3

(
δr− 3xR̂

)
, (2.3)

where R̂ is the unit vector pointing radially in the direction of rins, and x is the compo-

nent of the relative position vector in the R̂ direction [30]. Note that Equation (2.3) is

the differential inertially referenced acceleration. It is convenient to express the rela-

tive motion of the target spacecraft in terms of the rotating Hill frame (see Figure 2.1),

which is centered about the inspector spacecraft. To that end, the basic kinematic

equation is used to express the relative acceleration of the target spacecraft as

δr̈R = −2ω × δṙ− ω × (ω × δr)− ω̇ × δr+ δr̈ , (2.4)

where ω is the angular velocity of the rotating Hill frame with respect to the inertial

frame.
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Ẑ

X̂
Ŷ

Ŝ R̂

δr

Target

Inspector

rins

rtgt

Ŵ

Figure 2.1. Inspector/Target orbit geometry. The Hill frame rotates with the inspec-
tor and is defined by the axes R̂-Ŝ-Ŵ . The R̂ axis (radial) extends the inspector’s
geocentric position vector. The Ŵ axis (cross-track) is normal to the orbital plane
and points in the direction of the geocentric specific angular momentum vector. The
Ŝ axis (along-track) completes the triad, and for circular orbits, is parallel to the
inspector’s inertial velocity vector.

Assuming that the inspector’s orbit is nearly circular, the magnitude of the

frame’s angular velocity is constant and equal to the orbital mean motion, such that

ω = [0, 0, n]T and ω̇ = 0 , (2.5)

where n =
√
µ/(Rins

3) and Rins = ‖rins‖. With the substitution of Equations (2.3)

and (2.5), Equation (2.4) can be written in component form as

ẍ− 2nẏ − 3n2x = 0 (2.6a)

ÿ + 2nẋ = 0 (2.6b)

z̈ + n2z = 0 , (2.6c)
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noting that δr̈R = [ẍ, ÿ, z̈]T . The coordinates x, y, and z represent the Hill frame-

referenced relative displacements of the target satellite in the radial R̂, along-track

Ŝ, and cross-track Ŵ directions, respectively. Equations (2.6) are most commonly

referred to as the Clohessy-Wiltshire (CW) equations, or in some literature, Hill’s

equations. The general closed-form solutions of the CW equations are

x(t) =
ẋ0
n0

sin(ψ)−
(
3x0 +

2ẏ0
n0

)
cos(ψ) +

(
4x0 +

2ẏ0
n0

)
(2.7a)

y(t) =

(
6x0 +

4ẏ0
n0

)
sin(ψ) +

2ẋ0
n0

cos(ψ)− (6n0x0 + 3ẏ0)t+

(
y0 −

2ẋ0
n0

)
(2.7b)

z(t) = z0 cos(ψ) +
ż0
n0

sin(ψ) , (2.7c)

where

ψ , n0(t− t0), Cψ , cos(ψ) , Sψ , sin(ψ) ,

and n0 is the mean motion of the inspector satellite evaluated at t0, which is constant

under the circular orbit assumption.

2.2. SECOND-ORDER CLOHESSY-WILTSHIRE MODEL

To obtain Equation (2.3), approximations are made by performing a first-

order binomial expansion and dropping terms on the order of O(‖δr‖2) and higher.

Alternatively, Equation (2.4) can be written as [18]

δr̈R ≈ aK + aJ0 , (2.8)

where aK is a collection of the three kinematic terms in Equation (2.4) and aJ0 is an

alternative higher-order approximation of the differential acceleration due to spherical
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gravity. The relative kinematic acceleration is written in matrix form as

aK =
[
AKδr AKδṙ

]  δr

δṙ

 , (2.9)

where

AKδr , n2
0


1 0 0

0 1 0

0 0 0

 and AKδṙ , 2n0


0 1 0

−1 0 0

0 0 0

 .

The new approximation for the inertial differential acceleration is derived from the

difference in the two-body gravity gradient, written as

∇FJ0 = µ



(R0 + x)

[(R0 + x)2 + y2 + z2]3/2
− 1

R0
2

y

[(R0 + x)2 + y2 + z2]3/2

z

[(R0 + x)2 + y2 + z2]3/2


,

where R0 is the orbital radius of the inspector spacecraft at t0. Performing a Taylor

series expansion about the inspector position (taken to be the origin of the Hill frame)

and retaining only first- and second-order terms yields [18]

∇FJ0 ≈ aJ0 = AJ0δr+A
(2,δr)
J0 δr(2) , (2.10)
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where

AJ0 , n2
0


2 0 0

0 −1 0

0 0 −1

 and

A
(2,δr)
J0 ,

3

2

n2
0

R0


−2 0 0 0 1 0 0 0 1

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 1 0 0

 .

The vector δr(2) is the Kronecker product δr⊗ δr, which when applied between two

column vectors is defined as

a⊗ b , [a1b
T , . . . , amb

T ]
T
,

where a is m× 1. In other words,

δr(2) , δr⊗ δr = [x2, xy, xz, yx, y2, yz, zx, zy, z2]
T
. (2.11)

Note that in Equation (2.11), δr(2) contains three redundant monomials, namely xy,

xz, and yz. Substituting Equations (2.9) and (2.10) into Equation (2.8) yields

δr̈ =
[
AKδr AKδṙ

]  δr

δṙ

+AJ0δr+A
(2,δr)
J0 δr(2) . (2.12)

The intent is to express Equation (2.12) in state space form such that a state transition

matrix may be computed; however, there is an inconsistency between the vector

arguments on the right hand side. At this point in the derivation, Reference [18]
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rewrites Equation (2.12) in state space form as

ẋ⊗ = Āx⊗ , (2.13)

where x⊗ is defined as

x⊗ , [xT , (x⊗ x)T ]
T

and x , [δrT , δṙT ]
T
. (2.14)

In other words,

x⊗ = [x, y, z, ẋ, ẏ, ż, x2, . . . , xż, . . . , żx, . . . , ż2]
T
.

Using the definition of Reference [18], x⊗ is 42 × 1 and, similar to Equation (2.11),

contains multiple redundant monomials, such as xy, xz, xẋ, and so on. The inclusion

of these redundant terms results in 42 × 42 system matrix Ā, which due to its size

makes the analytical computation of the state transition matrix truly cumbersome.

Instead, the redundant monomials can be eliminated by defining

x̄ = [x, y, z, ẋ, ẏ, ż, x2, . . . , xż, y2, . . . , yż, z2, . . . , zż, ẋ2, . . . , ẋż, ẏ2, ẏż, ż2]
T
,

which yields

˙̄x = Āx̄ , (2.15)

where the reduced 27× 27 system matrix Ā is given in Appendix 7.

The system defined by Equation (2.15) can be written in state transition ma-

trix form as x̄k = Φk−1x̄k−1, where the state transition matrix Φk−1(t) is found by
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computing the inverse Laplace transform of the resolvent matrix, which is

Φk−1(s) = (sI − Ā)−1 ,

From the state transition matrix Φk−1(t) = L−1{Φk−1(s)}, the first three rows cor-

respond to the time-varying relative position coordinates, which when expanded are

x(t) = [4− 3Cψ]x0 + [ηR0Sψ] ẋ0 + [2ηR0 (1− Cψ)] ẏ0

+

[
3

2
ηn0

(
7− 10Cψ + 3C2ψ + 12ψSψ − 12ψ2

)]
x20

+

[
3

2
ηn0 (1− Cψ)

]
y20 +

[
1

4
ηn0 (3− 2Cψ − C2ψ)

]
z20

+

[
1

2
η2R0 (−3 + 4Cψ − C2ψ)

]
ẋ20

+

[
1

2
η2R0

(
6− 10Cψ + 4C2ψ + 12ψSψ − 9ψ2

)]
ẏ20

+

[
1

4
η2R0 (3− 4Cψ + C2ψ)

]
ż20

+ [6ηn0 (−Sψ + ψ)]x0y0 + [3η (4Sψ − S2ψ − 4ψ + 2ψCψ)]x0ẋ0

+
[
3η
(
4− 6Cψ + 2C2ψ + 7ψSψ − 6ψ2

)]
x0ẏ0

+ [3η (−Sψ + ψ)] y0ẏ0 +

[
1

2
η (2Sψ − S2ψ)

]
z0ż0

+
[
η2R0 (7Sψ − 2S2ψ − 6ψ + 3ψCψ)

]
ẋ0ẏ0 (2.16a)
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y(t) = [6 (Sψ − ψ)]x0 + y0 + [2ηR0 (−1 + Cψ)] ẋ0 + [ηR0 (4Sψ − 3ψ)] ẏ0

+

[
3

4
ηn0 (40Sψ + 3S2ψ − 22ψ − 24ψCψ)

]
x20 + [3ηn0 (Sψ − ψ)] y20

+

[
1

4
ηn0 (4Sψ + S2ψ − 6ψ)

]
z20 +

[
1

4
η2R0 (8Sψ − S2ψ − 6ψ)

]
ẋ20

+
[
η2R0 (10Sψ + S2ψ − 6ψ − 6ψCψ)

]
ẏ20

+

[
1

4
η2R0 (8Sψ − S2ψ − 6ψ)

]
ż20 + [3ηn0 (1− Cψ)]x0y0

+

[
3

2
η (−5 + 4Cψ + C2ψ + 4ψSψ)

]
x0ẋ0

+ [3η (12Sψ + S2ψ − 7ψ − 7ψCψ)]x0ẏ0

+ [3η (−Sψ + ψ)] y0ẋ0 +

[
1

2
η (−3 + 4Cψ − C2ψ)

]
z0ż0

+
[
η2R0 (−3 + 2Cψ + C2ψ + 3ψSψ)

]
ẋ0ẏ0 (2.16b)

z(t) = [Cψ] z0 + [ηR0Sψ] ż0

+

[
3

2
ηn0 (−3 + 2Cψ + C2ψ + 4ψSψ)

]
x0z0

+

[
3

2
η (2Sψ + S2ψ − 4ψCψ)

]
x0ż0

+

[
1

2
η (2Sψ − S2ψ)

]
z0ẋ0

+ [η (−3 + 2Cψ + C2ψ + 3ψSψ)] z0ẏ0

+

[
1

2
η2R0 (3− 4Cψ + C2ψ)

]
ẋ0ż0

+
[
η2R0 (Sψ + S2ψ − 3ψCψ)

]
ẏ0ż0 (2.16c)

where

ψ , n0(t− t0) , η ,
1

n0R0

, C2ψ , cos(2ψ) , and S2ψ , sin(2ψ) .

Equations (2.16) are referred to as the CW2 equations throughout the remain-

der of this thesis, as they capture second-order effects not included in the original
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linear CW equations. In fact, setting the second-order terms (x20, x0y0, etc.) equal

to zero produces the original linear CW solution. Reference [18] demonstrates that

the CW2 equations more closely approximate the nonlinear two-body equations than

the traditional CW equations, particularly when propagating over several orbits. For

larger scale relative orbits (separations of kilometers for low Earth orbits), the CW2

equations’ nonlinear terms can, in fact, dominate the along-track drift of the target

satellite.
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3. THE RELATIVE LAMBERT PROBLEM

In a well-known theorem of orbital mechanics, the unique conic (and thus ve-

locity) of an orbiting body can be computed given two unique times and position

vectors; this is the familiar Lambert problem [30–32]. Similarly, with relative dynam-

ics, the relative velocity of a nearby spacecraft can be computed given its relative

position vectors δr0 and δrf at times t0 and tf , as illustrated in Figure 3.1.

Ẑ

X̂
Ŷ

δr0

Inspector

δrf

Target

Figure 3.1. Relative motion of target spacecraft over time. Given two relative posi-
tions δr0 and δrf and the time of flight tf − t0, the relative velocity can be solved,
thus fully defining the relative orbit.

In this chapter, a brief review of the relative Lambert problem using the CW

model is given, after which the CW2 relative Lambert problem is formulated and

solved using Macaulay resultant expressions. Finally, a comparison of the CW solver,

CW2 solver, and a classical Lambert-based solver is performed in a Monte Carlo
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simulation, and the results are analyzed. Preliminary results are published in Refer-

ence [33]. The current work is a more comprehensive study with stronger results.

3.1. CW RELATIVE LAMBERT SOLUTION

The relative position and velocity are expressed in Cartesian coordinates in

the rotating Hill frame as

δr = [x, y, z]T and δṙ = [ẋ, ẏ, ż]T .

Defining the relative state vector to be xk = [δrTk , δṙ
T
k ]
T
, Equations (2.7) may be

written in terms of a state transition matrix as

xk = Fk−1xk−1 , (3.1)

where the state transition matrix is

Fk−1 =

 Φrr Φrv

Φvr Φvv

 , (3.2)

with

Φrr =


4− 3Cψ 0 0

6(Sψ − ψ) 1 0

0 0 Cψ

 ,

Φvr =


3n0Sψ 0 0

6n0(Cψ − 1) 0 0

0 0 −n0Sψ

 ,

Φrv =


1
n0
Sψ

2
n0
(1− Cψ) 0

2
n0
(Cψ − 1) 4

n0
Sψ − 3

n0
ψ 0

0 0 1
n0
Sψ

 ,

Φvv =


Cψ 2Sψ 0

−2Sψ −3 + 4Cψ 0

0 0 Cψ

 .
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Using the CW model, if δr0, δrf , and the time of flight (tf − t0) are known, it follows

that

δṙ0 = Φ−1
rv (δrf −Φrrδr0) . (3.3)

Note that the inverse Φ−1
rv exists for all n0(tf−t0) = ψ 6= mπ, wherem = {0, 1, 2, . . .}.

This phenomenon is due to the decoupled, periodic nature of the cross track motion

(Eq. (2.7c)), as illustrated in Figure 3.2. Repeating Equation (2.7c) for convenience,

z(t) = z0 cos(ψ) +
ż0
n0

sin(ψ)

it is straightforward to see that when ψ = mπ, the z position is independent of the

initial cross track velocity ż0.

5
10
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20

25
30
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50

−100

−50

50

100

δr0

δrf

y [m]

x [m]

z [m]

Figure 3.2. Due to the decoupled, periodic nature of the cross-track motion, an
infinite number of relative velocities satisfy the relative Lambert problem for times
of flight that are integer multiples of the orbital half period.
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3.2. CW2 RELATIVE LAMBERT SOLUTION

The relative Lambert solution for the CW model is very simple due to the

linear nature of the dynamics. In contrast, due to the nonlinear nature of the CW2

model, a relative velocity solution cannot be obtained in the same algebraic fashion

as Equation (3.3). However, if the relative positions at t0 and tf are known, Equa-

tions (2.16) can be formulated as a multivariate root finding problem; that is, the

problem becomes to find the relative velocity δṙ0 = [ẋ0, ẏ0, ż0]
T that satisfies

x(ẋ0, ẏ0, ż0)− xf = 0 , (3.4a)

y(ẋ0, ẏ0, ż0)− yf = 0 , (3.4b)

and z(ẋ0, ẏ0, ż0)− zf = 0 . (3.4c)

Equations (3.4) are simply the rewriting of Equations (2.16) with functional depen-

dence on ẋ0, ẏ0, and ż0 rather than the known tf (note that xf = x(tf ), and so

on). Equations (3.4) can be written as a set of multivariate polynomials in standard

polynomial form as

f1(ẋ0, ẏ0, ż0) = a1ẋ
2
0 + a2ẋ0ẏ0 + a3ẋ0 + a4ẏ

2
0 + a5ẏ0 + a6ż

2
0 + a7ż0 + a8 = 0

(3.5a)

f2(ẋ0, ẏ0, ż0) = b1ẋ
2
0 + b2ẋ0ẏ0 + b3ẋ0 + b4ẏ

2
0 + b5ẏ0 + b6ż

2
0 + b7ż0 + b8 = 0

(3.5b)

f3(ẋ0, ẏ0, ż0) = c1ẋ0ż0 + c2ẋ0 + c3ẏ0ż0 + c4ẏ0 + c5ż0 + c6 = 0

(3.5c)
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where, from Equations (2.16), the coefficients in Equations (3.5) are given by

a1 =
1

2
η2R0 (−3 + 4Cψ − C2ψ)

a2 =η
2R0 (7Sψ − 2S2ψ − 6ψ + 3ψCψ)

a3 =ηR0Sψ + [3η (4Sψ − S2ψ − 4ψ + 2ψCψ)]x0

a4 =
1

2
η2R0

(
6− 10Cψ + 4C2ψ + 12ψSψ − 9ψ2

)
a5 =2ηR0 (1− Cψ) +

[
3η
(
4− 6Cψ + 2C2ψ + 7ψSψ − 6ψ2

)]
x0 + [3η (−Sψ + ψ)] y0

a6 =
1

4
η2R0 (3− 4Cψ + C2ψ)

a7 =

[
1

2
η (2Sψ − S2ψ)

]
z0

a8 = [4− 3Cψ]x0 +

[
3

2
ηn0

(
7− 10Cψ + 3C2ψ + 12ψSψ − 12ψ2

)]
x20

+

[
3

2
ηn0 (1− Cψ)

]
y20 +

[
1

4
ηn0 (3− 2Cψ − C2ψ)

]
z20

+ [6ηn0 (−Sψ + ψ)]x0y0 − xf

b1 =
1

4
η2R0 (8Sψ − S2ψ − 6ψ)

b2 =η
2R0 (−3 + 2Cψ + C2ψ + 3ψSψ)

b3 =2ηR0 (−1 + Cψ) +

[
3

2
η (−5 + 4Cψ + C2ψ + 4ψSψ)

]
x0 + [3η (−Sψ + ψ)] y0

b4 =η
2R0 (10Sψ + S2ψ − 6ψ − 6ψCψ)

b5 =ηR0 (4Sψ − 3ψ) + [3η (12Sψ + S2ψ − 7ψ − 7ψCψ)]x0

b6 =
1

4
η2R0 (8Sψ − S2ψ − 6ψ)

b7 =

[
1

2
η (−3 + 4Cψ − C2ψ)

]
z0

b8 = [6 (Sψ − ψ)]x0 + y0 +

[
3

4
ηn0 (40Sψ + 3S2ψ − 22ψ − 24ψCψ)

]
x20

+ [3ηn0 (Sψ − ψ)] y20 +
[
1

4
ηn0 (4Sψ + S2ψ − 6ψ)

]
z20 + [3ηn0 (1− Cψ)]x0y0 − yf
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c1 =

[
1

2
η2R0 (3− 4Cψ + C2ψ)

]
c2 =

[
1

2
η (2Sψ − S2ψ)

]
z0

c3 =
[
η2R0 (Sψ + S2ψ − 3ψCψ)

]
c4 = [η (−3 + 2Cψ + C2ψ + 3ψSψ)] z0

c5 = [ηR0Sψ] +

[
3

2
η (2Sψ + S2ψ − 4ψCψ)

]
x0

c6 = [Cψ] z0 +

[
3

2
ηn0 (−3 + 2Cψ + C2ψ + 4ψSψ)

]
x0z0 − zf (3.6)

Note that the final relative position coordinates xf , yf and zf are contained within

the coefficients a8, b8, and c6, respectively.

For simplicity and generality, the independent variables ẋ0, ẏ0, and ż0 are

represented by x1, x2, and x3 throughout the remainder of this chapter and should

not be confused with the time-varying relative position coordinates. In the new

notation, Equations (3.5) are expressed as

f1(x1, x2, x3) = a1x
2
1 + a2x1x2 + a3x1 + a4x

2
2 + a5x2 + a6x

2
3 + a7x3 + a8 = 0 (3.7a)

f2(x1, x2, x3) = b1x
2
1 + b2x1x2 + b3x1 + b4x

2
2 + b5x2 + b6x

2
3 + b7x3 + b8 = 0 (3.7b)

f3(x1, x2, x3) = c1x1x3 + c2x1 + c3x2x3 + c4x2 + c5x3 + c6 = 0 (3.7c)

Equations (3.7) can be represented geometrically as three intersecting quadrics,

as shown for a particular set of coefficients in Figure 3.3. By Bezout’s theorem, three

quadric surfaces can intersect at infinitely many points or, at most, eight unique

points [34].

3.2.1. Macaulay Resultant Expressions. In order to find all of the possi-

ble relative trajectories that pass through the relative positions δr0 and δrf at times

t0 and tf , the set of relative velocity components that satisfy the set of polynomials

given in Equations (3.5) must be computed. All of the possible solutions can be found
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Figure 3.3. Geometric representation of f1, f2 and f3 polynomial surfaces. The points
at which all three surfaces intersect represent the velocity solutions to the CW2
relative Lambert problem.

non-iteratively1 via the application of Macaulay resultants. For instance, consider a

general system of n polynomial equations in n unknowns given by

f1 (x1, x2, ..., xn) = 0

f2 (x1, x2, ..., xn) = 0 (3.8)

...

fn (x1, x2, ..., xn) = 0

with degrees d1, d2, . . . , dn, respectively. A polynomial’s degree is equal to the degree

of its highest-degree monomial. For example, the polynomial

f(x1, x2) = x21x
2
2 + x32

is degree-four because the combined powers of monomial x21x
2
2 is four.

1Here, “non-iteratively” means that solutions are not computed and corrected iteratively as is
common in other numerical root-finding methods. However, the solution process, as is demonstrated
later, involves an intermediate eigenvalue problem, which is most readily solved by an iterative
method.
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Multipolynomial resultants can be used to eliminate the variables

x2, x3, . . . , xn

from Equations (3.8) by projecting the algebraic set into a lower dimension [35]. In

other words, a new univariate polynomial may be formed, and its roots correspond to

the roots of the original multivariate system. Furthermore, this univariate polynomial,

formally known as the resultant, is systematically constructed using the coefficients

of the original polynomials. Nearly all methods of computing resultants represent the

resultant in terms of matrices and determinants. One of these formulations, known as

the Macaulay resultant, expresses R(x1), that is the resultant obtained by eliminating

x2, . . . , xn from the equations, as a ratio of determinants of two matrices M and D

as [36]

R (x1) =
det (M )

det (D)
. (3.9)

The entries of M and D are polynomials in x1, and if D is nonsingular, the roots

of the polynomial det (M ) correspond exactly to the roots of x1 in the original sys-

tem [37]. For most applications, it is impractical to compute the determinant of M .

Fortunately, the roots of the polynomial set can be found while avoiding this calcu-

lation. Reference [35] shows how resultant expressions can be expressed as matrix

polynomials, in which the root-finding problem reduces to an eigenvalue problem.

Nonetheless, in the examples that follow, the determinant of M is computed and

shown for illustrative purposes.

Herein, a unique method for constructing multipolynomial resultants for the

common problem of n polynomial equations with n unknowns is presented. Given the

multivariate polynomials f1, f2, . . . , fn, the resultant transforms the nonlinear system
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of Equations (3.8) into a linear system as given in Equation (3.10) such that [35]

M (x1)
[
1, x2, . . . , xn, . . . , x

d
2, x

d
3, . . . , x

d
n

]T
=



0

0

...

0


. (3.10)

Note that in Equation (3.10), the organization of the power products varies depend-

ing on the choice of the variable projection and the structure of the polynomials

themselves.

If f1, f2, . . . , fn simultaneously vanish at some point in the projective space,

then the kernel of M (x1) contains some nontrivial vector [38]. Recall that a resultant

is simply a polynomial in the coefficients of the original system. Therefore, as shown

in Equation (3.10), if x1 is known, the remaining roots x2, x3, . . . , xn simply corre-

spond to the kernel of M (x1). With this, the root finding process consists of three

main steps: 1) constructing M , 2) computing x1, and 3) solving for the remaining

coordinates’ roots. The matrix M is constructed using the coefficients of the original

set of polynomials. Once M is formed, it is expanded into a matrix polynomial. The

matrix polynomial’s coefficient matrices are used in a generalized eigenvalue problem

to compute all of the possible roots in x1. Once x1 is found, the remaining roots

are found by computing the kernel of M(x1). This entire process, including the

construction of M , the formation of the matrix polynomial, the computation of x1

using eigendecomposition, and the computation of the remaining coordinates’ roots

is discussed in greater detail in the following sections.

3.2.2. Solution of Relative Lambert Problem Using Resultants. In

order to compute the initial relative velocity δṙ0, the roots of the multivariate, in-

homogeneous, nonlinear set of polynomials given in Equations (3.7) must be found.

These roots can be computed systematically through the use of Macaulay resultant
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expressions. Recall that the resultant can be expressed as the ratio of two deter-

minants (Eq. 3.9). The entries of M and D are polynomials in x1, and if D is

nonsingular, the roots of the polynomial det (M ) correspond exactly to the roots of

x1 in the original system [37]. Once the numerator matrix M is constructed, it can

be written as a matrix polynomial in x1, and the solution(s) α1 = x1 can be computed

using a simple eigendecomposition. Once a solution set α1 is computed, the remaining

coordinate solution sets, α2, α3, . . . , αn can be computed using the relation shown in

Equation (3.10).

Because the intent is to express M as a univariate matrix polynomial, one

variable is chosen to be the sole functional dependence of M . This same variable

is then treated as constant in the original polynomial set and is absorbed into the

coefficients. Rewriting Equations (3.7) and absorbing x3 into the coefficients,

f1(x1, x2) = A1x
2
1 + A2x1x2 + A3x1 + A4x

2
2 + A5x2 + A6 = 0 (3.11a)

f2(x1, x2) = B1x
2
1 +B2x1x2 +B3x1 +B4x

2
2 +B5x2 +B6 = 0 (3.11b)

f3(x1, x2) = C1x1 + C2x2 + C3 = 0 (3.11c)

where

A1 = a1 A2 = a2 A3 = a3

A4 = a4 A5 = a5 A6 = a6x
2
3 + a7x3 + a8

B1 = b1 B2 = b2 B3 = b3

B4 = b4 B5 = b5 B6 = b6x
2
3 + b7x3 + b8

C1 = c1x3 + c2 C2 = c3x3 + c4 C3 = c5x3 + c6

Note that Equations (3.11) could be written in three ways by choosing to absorb either

x1, x2, or x3. However, the choice of x3 results in a lower polynomial degree (degree-
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one) of Equation (3.11c), and greatly simplifies the resultant expression. For example,

the selection of x1 results in a polynomial f3(x2, x3) that contains the monomial x2x3

and is, therefore, degree-two.

3.2.2.1. Homogenization. Equations (3.11) are inhomogeneous, meaning

that the monomials of each polynomial do not all have equal degree. For example,

the first two monomials of Equation (3.11a), x21 and x1x2, are of degree-two, whereas

the following monomial x1 is degree-one. In order to form the resultant expression,

the polynomials must first be homogenized. To homogenize, an extra variable w is

added to even the monomial degrees:

f1(x1, x2, w) = A1x
2
1 + A2x1x2 + A3x1w + A4x

2
2 + A5x2w + A6w

2 = 0 (3.12a)

f2(x1, x2, w) = B1x
2
1 +B2x1x2 +B3x1w +B4x

2
2 +B5x2w +B6w

2 = 0 (3.12b)

f3(x1, x2, w) = C1x1 + C2x2 + C3w = 0 (3.12c)

To maintain the equivalency of the polynomials after homogenization, the specializa-

tion of variables is chosen such that w = 1. This specialization is important in the

later steps of the algorithm.

3.2.2.2. Matrix size. To construct the resultant matrix M for the system

of polynomials f1, f2, . . . , fn, the total degree of the system must be determined. The

total degree, d of a given set of polynomials is computed as

d = 1 +
m∑
i=1

(di − 1) ,

where m is the number of equations and di is the degree of the ith equation. From

this, the size of M can be computed as

size(M ) =

 n+ d

n

 ,
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where n is the number of variables in the set before homogenization. Equations (3.12)

are of degree d1 = 2, d2 = 2, and d3 = 1. The resulting total degree is computed as

d = 1 + (2− 1) + (2− 1) + (1− 1) = 3 .

With this, the size of the square numerator matrix is computed as

size(M ) =

 2 + 3

2

 = 10 .

3.2.2.3. Construction of M. The numerator matrixM is constructed with

entries that are polynomials in x3. The columns of M correspond to all the possible

monomials of degree d arranged in lexicographical order. Thus, the column labels of

M are all of the degree-three monomials in x1, x2, and w, given as

{
x31, x

2
1x2, x

2
1w, x1x

2
2, x1x2w, x1w

2, x32, x
2
2w, x2w

2, w3
}
.

The row labels correspond to the homogeneous polynomials multiplied by the system

variables, specifically,

{
x1f1, x2f1, wf1, x1f2, x1x2f3, x1wf3, x2f2, wf2, x2wf3, w

2f3
}
.

With this, the application Equation (3.10) is written as

M(x3)
[
x31, x

2
1x2, x

2
1w, x1x

2
2, x1x2w, x1w

2, x32, x
2
2w, x2w

2, w3
]T

= 0 . (3.13)

For a more in-depth discussion on the construction of M , including a set of explicit

rules for the formation of row labels, the reader is directed to Reference [39]. The
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resulting M matrix for the CW2 relative Lambert problem is

M(x3) =



x31 x21x2 x21w x1x
2
2 x1x2w x1w

2 x32 x22w x2w
2 w3

x1f1 A1 A2 A3 A4 A5 A6 · · · ·

x2f1 · A1 · A2 A3 · A4 A5 A6 ·

wf1 · · A1 · A2 A3 · A4 A5 A6

x1f2 B1 B2 B3 B4 B5 B6 · · · ·

x1x2f3 · C1 · C2 C3 · · · · ·

x1wf3 · · C1 · C2 C3 · · · ·

x2f2 · B1 · B2 B3 · B4 B5 B6 ·

wf2 · · B1 · B2 B3 · B4 B5 B6

x2wf3 · · · · C1 · · C2 C3 ·

w2f3 · · · · · C1 · · C2 C3



(3.14)

where the dots correspond to entries that are zero, and the row/column labels are

provided for reference.

3.2.2.4. Construction of D. In Macaulay’s original formulation, the deter-

minant of the denominator matrix D was formed to factor out extraneous factors

in the resultant. However, if D is nonsingular, the roots of the determinant of M

correspond to the roots of the original system exactly. If D is singular, M must be

replaced with its largest non-vanishing minor [35]. Therefore, although the denomi-

nator is not directly used in the computation of the polynomial roots, it still must be

constructed to check its singularity. For this problem, D is constructed as

D =

 A1 A4

B1 B4

 .

It can be shown that the determinant of D in this problem is only zero when t = 0.

Note that t = 0 is a degenerate case of Equations (2.16), and can only result in
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infinite velocities (when δr0 6= δrf ) or zero velocities (when δr0 = δrf ). Again, a

more detailed discussion on the construction of D can be found in Reference [39].

3.2.2.5. Matrix polynomial. Recalling that the A, B, and C coefficients

are functions of x3, the M matrix from Equation (3.14) can be expanded into a

matrix polynomial expression as

M (x3) = M0 +M1x3 +M2x
2
3 , (3.15)

where

M0 =



a1 a2 a3 a4 a5 a8 · · · ·

· a1 · a2 a3 · a4 a5 a8 ·

· · a1 · a2 a3 · a4 a5 a8

b1 b2 b3 b4 b5 b8 · · · ·

· c2 · c4 c6 · · · · ·

· · c2 · c4 c6 · · · ·

· b1 · b2 b3 · b4 b5 b8 ·

· · b1 · b2 b3 · b4 b5 b8

· · · · c2 · · c4 c6 ·

· · · · · c2 · · c4 c6



,
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M1 =



· · · · · a7 · · · ·

· · · · · · · · a7 ·

· · · · · · · · · a7

· · · · · b7 · · · ·

· c1 · c3 c5 · · · · ·

· · c1 · c3 c5 · · · ·

· · · · · · · · b7 ·

· · · · · · · · · b7

· · · · c1 · · c3 c5 ·

· · · · · c1 · · c3 c5



, M2 =



a6 · · · ·

· · · a6 ·

· · · · a6

b6 · · · ·

010×5 · · · · ·

· · · · ·

· · · b6 ·

· · · · b6

· · · · ·

· · · · ·


(3.16)

Note that the elements of M0, M1, and M2 are simply the coefficients of the original

polynomials (Eqs. 3.5) and are constant for some given initial position, final position,

and elapsed time. Because Equation (3.15) is univariate, the roots of its determinant

can be computed using eigendecomposition. Given the matrix polynomial, M (x3),

the roots of the resultant polynomial (given by the determinant of M ) are the eigen-

values of the generalized system [35]

Ax3 = B , (3.17)

where

A =

 Im 0

0 M2

 , B =

 0 Im

−M0 −M1

 ,

and Im is the identity matrix of size equal to that of M .

Because x3 corresponds to the z-component of velocity, only real and finite

eigenvalues obtained from the solution of the generalized eigenvalue problem in Equa-
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tion (3.17) are of interest. After discarding the infinite and imaginary eigenvalues, the

remaining values α3 correspond to the possible and valid solutions in x3 (i.e. ż0). For

each valid simple eigenvalue α3 = x3, the remaining states can be found by computing

the kernel of M (α3); that is, computing the nontrivial vector v such that

M (α3)v = 0 (3.18)

Depending on the linear algebra routines used, the kernel vector v may be a

scalar multiple of the solution [35]. In that case, the relationship of Equation (3.13)

and the specialization of w = 1 can be used to back out the scale factor β:

(
x31 x21x2 x21 x1x

2
2 x1x2 x1 x32 x22 x2 1

)T
= β (v1 v2 . . . v10)

T

(3.19)

For this problem, β =
1

v10
, so the remaining two velocity terms are computed as

ẋ0 = α1 =
v6
v10

and ẏ0 = α2 =
v9
v10

(3.20)

Because the specialization of variables was chosen such that w = 1, α1 and α2 cor-

respond to the sixth kernel element v6 and ninth kernel element v9, respectively, as

is clearly shown in Equation (3.19). The computation of these coordinate solutions

completes the CW2 relative Lambert solver algorithm, which is summarized in Algo-

rithm 1.
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Algorithm 1: CW2 Relative Lambert Solver

Given δr0, δrf , tf − t0, compute coefficients a1, . . . , a8, b1, . . . , b8, c1, . . . , c6 (Eq. 3.6)

Construct M0,M1,M2 using coefficients computed in previous step. (Eq. 3.16)

Solve the generalized eigenvalue problem to find all possible ż0 solutions. (Eq. 3.17)

for each valid ż0 solution do

Compute the kernel, v, of M(ż0). (Eq. 3.18)

Compute ẋ0 and ẏ0 from v. (Eq. 3.20)

end for

3.2.3. Numerical Example. Consider the following relative positions mea-

sured at t0 = 0 and tf = 10, 000 [s], respectively:

δr0 = [1, −3, 15]T [m] δrf = [−1305.18, −3830.05, −3002.31]T [m]

The matrices M0, M1, and M2 are built to form A and B. Using the A and B

matrices, the solutions in ż0 (or x3) are computed through the generalized eigenvalue

problem. Recall that the eigenvalues correspond exactly to the roots of the resultant,

R(ż0), as shown in Figure 3.4.

As illustrated in Figure 3.4, there exist two possible initial relative (cross-track)

velocities ż0 = 2.3197 [m/s] and ż0 = 3.5000 [m/s] that satisfy the initial conditions.

Mathematically, the values x3 = 0.0023197 and x3 = 0.0035000 cause M(x3) to be

singular; that is, detM (x3) = 0. From each of the two possible solutions in ż0, the
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Figure 3.4. The resultant polynomial roots correspond to the possible ż0 solutions.

solutions in the remaining coordinates are found by computing the kernel of M (ż0).

M(0.0023197)v = 0→ v =



−3.21137

−0.07331

2.17667

−0.00167

0.04969

−1.47536

−0.00004

0.00113

−0.03368

1.00000



, M (0.0035000)v = 0→ v



0.00000

0.00000

0.00000

0.00000

0.00000

0.00150

0.00000

0.00000

−0.00001

1.00000



,

where it is noted that the distance unit of the elements in the kernel vectors is

kilometers. Because the tenth element is 1.0, the scale factor is consequently β = 1.0

and the ẋ0 and ẏ0 solutions correspond exactly to the sixth and ninth kernel elements,
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respectively. Thus, it follows that the two possible relative velocity solutions are

δṙ0 =

[
−1475.355491135100 −33.680914305322 2.319738379749

]T
[m/s]

and δṙ0 =

[
1.500001264432 −0.010000624179 3.500007679171

]T
[m/s] .

It should be noted that, in this example, the relative Lambert routine finds multiple

solutions, as compared to the traditional linear CW equations, which can produce, at

most, one solution. Furthermore, in this example, the relative Lambert routine finds

only two solutions—no extraneous roots are computed. In other words, no real-valued

solutions are computed that do not actually satisfy the CW2 equations. By substi-

tuting these values into f1, f2 and f3, it can be shown that these solutions do in fact

solve the system of equations. However, even though large relative velocity solutions

may satisfy the CW2 equations, when propagated forward in time, the corresponding

relative ranges quickly grow too large to satisfy the underlying assumptions of the

CW and CW2 models.

3.3. COMPARISON OF METHODS

Two alternative methods of solving the relative Lambert problem are consid-

ered and applied to a targeting scenario in order to benchmark the accuracy of the

CW2 relative Lambert solver developed in this work. The first alternative method

involves mapping relative position vectors into the inertial space, solving the Lambert

problem using Battin’s method [32], and finally mapping the velocity solutions that

are obtained as outputs of the traditional Lambert (TL) solver back into the relative

space. Because Battin’s method is iterative, a maximum iteration limit is set at 1,000.

The second alternative method utilizes standard linear CW dynamics and requires

only simple matrix operations, as demonstrated in Equation (3.3).
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A rendezvous scheme is simulated as follows. As illustrated in Figure 3.5, the

inspector satellite occupies a geosynchronous orbit, with known inertial position and

velocity r0 and ṙ0. This orbit is treated as the reference from which the Hill frame

r0

CW

CW2

TL

ref.

rf,desδrf,des

Figure 3.5. Trajectories of solutions given by Clohessy-Wiltshire, second order
Clohessy-Wiltshire, and traditional Lambert solvers. The miss-distances are rep-
resented by the dashed lines.

is constructed. An external guidance algorithm provides an input in the form of a

desired relative position (referenced from the original orbit) δrf,des at time tf . Each of

the three methods is then used to calculate nominal velocities ˙̂r0,TL, δ ˙̂r0,CW2, and ˙̂r0,CW

at t0 to achieve the desired rendezvous. The solutions obtained from the CW- and

CW2-based methods are then mapped into the inertial frame to be propagated using

the true dynamics (taken to be two-body motion). After all three solutions are

propagated using two-body dynamics to time tf , the resulting final positions are

compared to the inertially-mapped desired position. Because the TL-based approach
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is slightly more complicated than the other two methods, a block diagram of the

method, including the error calculation, is provided in Figure 3.6.

r̈ = −µrins
r3

HILL→ECI

Battin Lambert Solver

r̈ = −µrins
r3

‖ · ‖

r0, ṙ0
δrf,des

rf , ṙf

r0

rf,des

r0

˙̂r0,TL

r̂f,TL −

‖r̂f,TL − rf,des‖

Figure 3.6. Flow chart of traditional Lambert approach to relative Lambert problem.

In order to properly compare the accuracy of the three solutions, ˆ̇r0,TL, δˆ̇r0,CW2,

and δˆ̇r0,CW, the following rules are enforced:

• The two relative velocity solutions from the CW and CW2 solvers are con-

verted to inertially referenced velocities. All three inertial solutions are then

propagated in terms of the inertial frame using two-body dynamics to time tf .

• The final positions are compared in the inertial frame to the desired posi-

tion rf,des.

• The accuracy of the method is scored based on the magnitude of the final miss-

distance, defined by ‖r̂f − rf,des‖.
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The methods are compared by varying the desired relative position δrf,des and

computing the miss-distance for each solution. Due to the high dimensionality of

the problem, that is, the four dimensions over which the input set can vary, the

analysis is performed using an arbitrarily selected fixed time of flight of four hours

and a constant desired cross-track component of zf,des = 0.5 [km]. The radial and

along-track components of δrf,des are varied between −10 and 10 [km] and −20 and

20 [km], respectively. For each value of xf,des and yf,des, the final relative position is

constructed, and each of the relative Lambert solver routines is used to compute the

initial velocity, from which, using the above described procedure, the miss-distance is

computed. The miss-distance for each method is shown in Figures 3.7a-3.7c.
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y f
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(a) CW miss-distance.
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(b) CW2 miss-distance.
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(c) TL solver miss-distance.

Figure 3.7. Miss distances of Lambert solvers with constant tf and zf,des.

As shown, under the assumption of two-body motion, the TL solver provides

the most accurate rendezvous solutions, with miss-distances on the order of microns.

The next best solutions are provided by the CW2 relative Lambert solver, which

produces solutions 10,000 times more accurate than the CW solver. With both the
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CW and CW2 solvers, distant target positions result in lower accuracy solutions, as

the large magnitude of these relative position vectors impugn the integrity of the

underlying dynamic assumptions.

Performing this same type of analysis uniformly over the full input space

(i.e. varying tf and zf,des in addition to xf,des and yf,des) is infeasible due to the

high dimensionality. Therefore, in an effort to characterize the performance of the

three methods over the variables tf , xf,des, yf,des, and zf,des, a Monte Carlo simula-

tion is employed. 10,000 simulations are run with randomly generated target posi-

tions (δrf,des) and travel times (tf ) uniformly distributed over xf,des ∈ [−10, 10] [km],

yf,des ∈ [−20, 20] [km], zf,des ∈ [−5, 5] [km], and tf ∈ [5, 20] [hr]. The miss-distances

are shown in a histogram for each of the three methods in Figure 3.8. Although most

of the data is embedded in the first bins of these plots, the abscissa scales of each plot

capture the magnitude of the worst outlier cases. Again, these higher error cases are

likely the product of trajectories that abuse the assumptions of relative motion.

In order to compare the three methods in the absence of outliers, the worst 5%

of runs for each method are discarded, and the histograms of the lowest 95% miss-

distance solutions are shown in Figure 3.9. As shown in Figure 3.9c, the CW solver

generally produces solutions that pass within 10 [m] of the desired target with a

median miss-distance of 4.1 [m]. The CW2 and traditional solvers surpass the CW

method, as demonstrated in Figures 3.9a and 3.9b, achieving miss-distances on the

order of centimeters and lower. A closer look at these histograms reveals that most

of the miss-distances associated with the solutions generated by the CW2 solver fall

under 1 [mm], with a median miss-distance of 0.95 [mm]. The best solutions are

provided by the TL solver with a median miss-distance of 1.3 [µm].
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(c) CW relative Lambert solver miss-distance histogram.

Figure 3.8. Miss distance histograms for the three Lambert solver methods.
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(a) TL solver miss-distance histogram. First 95% of points are shown.
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(b) CW2 relative Lambert solver miss-distance histogram. First 95% of points are shown.
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(c) CW relative Lambert solver miss-distance histogram. First 95% of points are shown.

Figure 3.9. Histograms of the best 95% miss-distance solutions. The median miss-
distance values are shown in red.
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What then, is the source of the error seen in the worst 5% of the CW, CW2,

and TL solutions? The answer is clear from Figure 3.10, which sorts the complete

set of miss-distances in terms of ψ = n0(tf − t0). As discussed in Chapter 3, the
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Figure 3.10. The complete set of miss-distances, arranged by ψ = n0(tf − t0).

CW and CW2 Lambert solvers suffer numerical issues at times of flight close to

integer multiples of the reference orbital half-period. This is clearly demonstrated in

Figure 3.10, where spikes in the miss-distance are seen near ψ = π, which directly

corresponds to a time of flight equal to the orbital half-period. Interestingly, although

the Battin method is capable of computing solutions at these times of flight [30], a

significant degradation in accuracy is clearly observed around ψ = π as well.

Altogether, the CW2 relative Lambert solver provides solutions that are sev-

eral orders of magnitude better than the CW relative Lambert solver. Because the TL

solver is based upon the full two-body dynamics, and the CW2 solver is based upon



43

approximations of the full two-body dynamics, higher-accuracy solutions are consis-

tently found using the TL solver in comparison to the CW2 approach. However, in

addition to required inputs of δr0, δrf , and tf − t0, the CW2 solver only requires

knowledge of the reference orbital mean motion, as opposed to the TL solver, which

additionally requires full state knowledge (inertial position and velocity) of the ref-

erence orbit. In many proximity operations involving relative targeting, accurate

inertial orbital knowledge may be unavailable. In such situations, the CW2 relative

Lambert solver provides targeting solutions with sub-centimeter miss-distances when

1) the reference orbit is circular, 2) the magnitude of the relative positions and veloc-

ities are not “too large” (i.e. they do not nullify the small deviation assumptions of

the CW2 model), and 3) the times of flight are not close to integer multiples of the

reference orbital half-period.
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4. STEREOSCOPIC IMAGING

Stereoscopic imaging is widely used in terrestrial robotics applications. Only

recently, however, has it been proposed as a mechanism for small satellite proximity

operations [26, 27, 40]. Advantages of stereoscopic imaging for space-based imaging,

in comparison to the previously mentioned relative sensing alternatives, include its

passive sensing nature and the availability of inexpensive low-power commercial-off-

the-shelf stereo cameras for small satellite applications.

When capturing stereoscopic images, a variety of image processing algorithms

can be implemented for the purpose of object identification through edge and/or

corner detection and feature extraction between a stereoscopic image pair. These

algorithms include Canny edges [41], Harris corners [42], and speeded up robust fea-

tures (SURF) [43], to name a few. Because a detailed analysis of these algorithms

is beyond the scope of this thesis, it is assumed that the image processing system

provides the projected object centroid’s pixel coordinates ε, as shown in Figure 4.1.

In most cases, the centroid will be offset from the object’s center of mass and thus

εx

εz

σθ

σφ

Figure 4.1. Centroid image coordinates and angle measurement deviations shown in
image frame.
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will not obey the point-mass equations of motion. However, for small targets, or for

instances when the ratio of this offset to the relative range is very small, the errors

induced by this difference are negligible. In proximity operations where the relative

range is comparable to the size of target spacecraft (for example, docking missions),

a more sophisticated knowledge of the target satellite’s geometry, mass properties,

and attitude is usually needed.

The geometry of a stereoscopic imager is shown in Figure 4.2. Given a set of

L

R

ẑ c2

ŷ c2

ŷ c1

ẑ c1

u c1

u c2

fb
COP c1

COP c2

x̂ c1, x̂ c2

ε c2

ε c1

Figure 4.2. The stereoscopic LOS geometry. x̂ c1-ŷ c1-ẑ c1 and x̂ c2-ŷ c2-ẑ c2 define the
Camera 1 frame and Camera 2 frame, respectively. Adapted from Ref. [27].

pixel coordinates and the effective optical focal length f , a camera frame-referenced

line of sight (LOS) unit vector u is computed as

u =


ux

uy

uz

 =
1√

(εx)2 + f 2 + (εz)2


εx

f

εz

 . (4.1)
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From an LOS unit vector, azimuth and elevation angles are extracted as

θ = arctan (ux/uy) and φ = arcsin (uz) .

With a single camera, the azimuth and elevation angles do not provide enough infor-

mation to resolve the three-dimensional position vector, as the range component is

unknown. With the inclusion of a second camera and the knowledge of its placement

with respect to the first camera, depth information can be determined. The system’s

measurement model is augmented by a second set of bearings to yield

y =
[
θ c1, φ c1, θ c2, φ c2

]T
+ νk .

The “ cn” subscript denotes the camera’s image frame in which the angles are ex-

pressed, as illustrated in Figure 4.2.

The placement of Camera 2 is quantified by the baseline b, which is the distance

between the two cameras’ centers of projection (COPs) from which the LOS vectors

originate. The angular measurements are taken to be corrupted by zero-mean white

noise νk with covariance Rk; that is

E{νk} = 0 and E{νkνkT} = Rk = diag{σ2
θ , σ

2
φ, σ

2
θ , σ

2
φ} ,

where σθ and σφ are the measurement noise standard deviations in the azimuth and

elevation angles, respectively. Note that, for convenience, the cameras are assumed

to have the same noise characteristics, but this assumption is easily relaxed. For

instance, the inspector satellite could be equipped with both narrow-field and wide-

field cameras.

Using the angle measurements and the known location and orientation of each

camera, standard triangulation schemes can be used to compute the range and thus
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fully resolve the nearby space object’s relative position. However, due to the imper-

fection of angular measurements, traditional stereoscopic measurement schemes rely

on the minimization of the Euclidean distance between the two camera-originated

skew LOS vectors to produce an approximate relative position measurement. The

minimization process is nonlinear in nature [44] and the inner product between two

unbiased LOS vectors is in fact biased [45]. The assumption of zero-mean Gaussian

noise in position is therefore invalidated, and a better quantification of relative po-

sition uncertainty is sought. To illustrate, an arbitrary relative position is chosen,

and 1,000 stereoscopic azimuth and elevation angles are generated and corrupted

with zero-mean white noise. The corrupted angular measurements are then used to

best recreate the relative position vector using the standard triangularization method.

The recreated relative position vectors are shown in coordinate form in Figure 4.3.

As shown, the resulting distributions are clearly non-Gaussian and biased, and thus,

(a) x-y view (b) x-z view (c) y-z view

Figure 4.3. Typical non-Gaussian distribution of triangulated positions generated
from Gaussian-distributed angular measurements.

when using stereoscopically triangulated measurements, the assumption of zero-mean

Gaussian distributed noise cannot be made.

The aforementioned issues can be mitigated by skipping the triangulariza-

tion step and directly processing incoming angles data. To initialize the navigation
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process, however, a pdf must be formed that includes the missing relative range infor-

mation. A new approach, which was first introduced by the author in Reference [46],

is taken, in which the uncertainty in one camera’s LOS is used to bound possible

ranges along the other camera’s LOS, over which uniform uncertainty is assumed. By

assuming uniform relative range uncertainty over a statistically bounded relative po-

sition space, initial relative orbit determination (IROD) is performed conservatively,

thereby improving the odds that all plausible true states are contained within the

pdf, even in the event of poor initial measurements.
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5. SINGLE TARGET TRACKING

In this chapter, the applications of modern ground-based angles-only orbit

determination techniques to the relative orbit determination problem are investigated.

In Reference [47], the range along ground-based line of sight (LOS) measurements is

bounded by orbital range constraints. By generating candidate positions within the

bounded LOS segment for multiple measurements, candidate orbits are postulated by

applying a Lambert solver for each possible point combination. Reference [8] presents

a similar approach in which the orbiting body’s admissible region is constructed to

determine bounds on range and range-rate relative to the observer. Gaussian mixture

approximations are then applied to the admissible region in order to generate an initial

pdf associated with uniform ambiguity within the admissible region.

A hybrid approach motivated by the work of References [47] and [8] is consid-

ered and applied to initial relative orbit determination (IROD). Stereoscopic measure-

ments of a target and their associated geometry are used to bound potential relative

range values along a single LOS originating from one of the inspector spacecraft’s

cameras. A Gaussian mixture (GM) is used to approximate the relative range uncer-

tainty under the assumption of a uniform distribution in relative range. After GMs

are constructed at two measurement times, a relative Lambert solver, which makes

use of CW2 dynamics, connects all Gaussian component combinations to formulate

a full state initial pdf in relative position and velocity. After IROD is completed,

the initial pdf is then further refined through processing subsequent angles-only mea-

surement data in a Bayesian framework. For brevity and simplicity, uncertainties

in the inspector’s attitude and camera alignment and the uncertainty in the target’s

center of mass are not considered in this work. Preliminary results are published in

Reference [48]. The current work is a more comprehensive study.
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5.1. GAUSSIAN MIXTURE MODELS

In order to quantify the assumed uniform relative range uncertainty associated

with a stereoscopic measurement, a uniform pdf can be approximated by a GM.

Previous works have shown that a large class of pdfs, including uniform pdfs, can be

modeled by a GM [49, 50]. The uniform distribution, which is given by

p(x) =


1

b− a
, a ≤ x ≤ b

0 , otherwise

can be approximated by a GM pdf of the form [49]

q(x) =
L∑
`=1

w(`)pg(x ; m
(`), P (`)) , (5.1)

where L is the total number of components and w(`), m(`), and P (`) are the discrete

probability, mean, and covariance, respectively, of the `th Gaussian component, and

pg(x ; a,A) represents a Gaussian pdf for the random variable x with mean a and

covariance A, such that

pg(x ; a,A) = |2πA|−1/2 exp

{
−1

2
(x− a)TA−1(x− a)

}
.

To find the optimal set of weights, means, and covariances in Equation (5.1) that best

approximate the true distribution, the difference between the true and approximate

distributions is taken as the L2 norm via

L2[p||q] =
∫
(p(x)− q(x))2dx .

To make the optimization problem tractable, Reference [8] assumes that the weights

are equal, the components are homoscedastic, and the means are evenly distributed
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across the support of p(x), which reduces the L2 distance to

L2[p||q] =
1

b− a
+

w2

2
√
πσ

L∑
i=1

L∑
j=1

exp
{
−M2

i,j

}
− w

b− a

L∑
`=1

[erf {B`} − erf {A`}] ,

where

A` ,

(
a−m(`)

√
2σ

)
, B` ,

(
b−m(`)

√
2σ

)
, and M2

i,j ,

(
m(i) −m(j)

2σ

)2

and requires optimization only over the common standard deviation parameter, σ =
√
P (`). The aforementioned optimization consists of finding the roots of the L2 deriva-

tive with respect to σ, given as

dL2[p||q]
dσ

=
w2

2
√
πσ2

L∑
i=1

L∑
j=1

[
2M2

i,j − 1
]
exp

{
−M2

i,j

}
− 2w

(b− a)
√
πσ

L∑
`=1

[
A` exp

{
−A2

`

}
−B` exp

{
−B2

`

}]
= 0 .

5.1.1. Library of Solutions. Reference [8] demonstrates that by performing

the optimization for the case of a = 0 and b = 1, a generalized library of solutions can

be produced, which can then be easily scaled to any arbitrary uniform distribution.

For the case of a = 0 and b = 1, the optimal standard deviation (i.e. the σ value that

yields a zero derivative), is denoted as σ̃. It follows that the component weights and

means can be calculated as

w̃(`) = w̃ =
1

L
and m̃(`) =

`

L+ 1
∀ ` ∈ {1, 2, . . . , L} .

Here, the “˜” notation denotes values obtained from the generalized case of a = 0 and

b = 1. The prominent advantage in generating a general library is that it needs to be

computed only once, as the obtained values are directly scalable to any approximation.
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To extend the library to an arbitrary uniform distribution, the generalized parameters

are scaled as follows:

w = w̃ , m(`) = a+ (b− a)m̃(`) , σ = (b− a)σ̃ .

It is intuitive that increasing the number of components L used will result in a closer

approximation to the true uniform distribution (Figure 5.1). Because computational

cost also increases with L, an appropriate value must be chosen, especially when

considering current satellite flight-hardware processing and memory limitations. To

control the accuracy/computational cost reciprocity, the acceptable maximum devi-

ation parameter, σmax is specified. The precomputed general library is then searched

to find L, such that σ̃(b − a) ≤ σmax. This method ensures that no superfluous

computations are made for the given mission requirements.
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Figure 5.1. GM approximation of a uniform pdf for different numbers of components.
The uniform pdf is given by the solid line and the GM pdf is given by the dashed
line.
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5.2. GM APPROXIMATION OF STEREOSCOPIC MEASUREMENT
UNCERTAINTY

The uncertainty in one camera’s LOS can be used to bound possible ranges

along the other camera’s LOS, over which equal uncertainty is assumed. To estab-

lish the range boundaries, a rectangular-based pyramid is formed about Camera 2’s

LOS vector that represents the uncertainty of the measurement. The pyramid is

constructed using user-specified half-angles that are equal to some multiple of the

angular measurement standard deviations, σθ and σφ. For example, the half angles

can be chosen as 3σθ and 3σφ, as is done later in Section 5.5.

For a given stereo measurement, the range constraints along Camera 1’s LOS

are obtained by finding the two points of intersection between Camera 1’s LOS and the

uncertainty pyramid, as shown in Figure 5.2. These points, ρmin and ρmax, represent

t2

t1

Figure 5.2. Uncertainty bounding of bearings-only measurements.

the minimum and maximum possible ranges along u c1 in which the imaged target’s

position is hypothesized, as shown in Figure 5.3. Equal uncertainty in the range
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ρmin

ρmax
θc1, φc1uc1

boresight

Figure 5.3. Gaussian mixture approximating uniform uncertainty ∈ ρmin ≤ ρ ≤ ρmax.

component is assumed over these bounds, such that

p(ρ) =


1

ρmax − ρmin

, ρmin ≤ ρ ≤ ρmax

0 , otherwise

Specification of ρmin and ρmax, along with the accuracy parameter, σρ,max, provides the

required information to determine a Gaussian mixture approximation of p(ρ) using

the previously described method. Note that σρ,max is analogous to σmax, as described

in Section 5.1, and is used to control the resolution of the GM approximation. The

range pdf is modeled by

p(ρ) =
L∑
`=1

w(`)
ρ pg(ρ ; m

(`)
ρ , σ

(`)
ρ

2
) , (5.2)

where

w(`)
ρ =

1

L
, m(`)

ρ = ρmin +
(ρmax − ρmin) `

L+ 1
, and σ(`)

ρ = ((ρmax − ρmin) σ̃ρ) .

The position of the nearby spacecraft with respect to Camera 1 can be ex-

pressed in spherical coordinates as

zk =
[
ρ, θ c1, φ c1

]T
.
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The relative position pdf p(zk) is obtained by extending Equation (5.2) to include

the Gaussian uncertainty in the azimuth and elevation angles, resulting in

p(zk) =
L∑
`=1

w(`)
z pg(zk ; m

(`)
z ,S

(`)
z S(`)

z

T
) , (5.3)

where

w(`)
z = w(`)

ρ , m(`)
z =

[
m(`)
ρ , θ c1, φ c1

]T
, and S(`)

z = diag{σ(`)
ρ , σθ, σφ}

In other words, the pdf p(zk) is approximated by the sum of the pdfs of linearly

spaced range means m
(`)
ρ , each with uncertainty in the range, azimuth angle, and

elevation angle. The resulting pdf is approximately uniform in range and Gaussian

in azimuth and elevation.

5.3. LINKAGE

Equation (5.3) gives the probability distribution of the random position vari-

able zk in three spherical coordinates relative to the camera frame. To construct

the full six-dimensional pdf, both the relative position and relative velocity in Carte-

sian coordinates are needed. The purpose of the linkage process is to transform two

three-dimensional position pdfs, which are constructed at times t1 and t2 in spheri-

cal coordinates, to a six-dimensional pdf in Cartesian coordinates. This new pdf is

formed by “linking” the two initial pdfs via the relative Lambert solver (Chapter 3).

5.3.1. State Linking. In order to transform a set of spherical coordinate

position vectors at t1 and t2 to a full Cartesian state x1, the nonlinear function g(z̄)

is defined as

xk = g(z̄) =

δrk(z̄)
δṙk(z̄)

 , where z̄ =

 zk

zk+1

 .
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The relative position δrk describes the position of the nearby spacecraft with

respect to the origin of the Hill frame at tk and requires mapping from spherical to

Cartesian coordinates and the addition of the cameras’ positions. For convenience,

the camera orientations are chosen such that they align with the Hill frame. Note that

the linkage process can be performed between any two times tk and tk+1. However,

for ease of exposition, the process is presented in terms of t1 and t2. At times t1

and t2, the Cartesian positions are computed from the spherical coordinates and

camera positions as

δr1(z̄) = ρ1



sinφ1 cos θ1

sinφ1 sin θ1

cosφ1


+ d c1,1 and δr2(z̄) = ρ2



sinφ2 cos θ2

sinφ2 sin θ2

cosφ2


+ d c1,2 .

Here, d c1,k is the position of Camera 1’s COP with respect to the Hill frame origin

at time tk. Recall that the intent is to formulate an initial pdf in relative positions

and relative velocity, and thus, the relative Lambert solver is applied to compute the

velocity at time t1. In functional form,

δṙ1(z̄) = RelativeLambert (δr1, δr2, t2 − t1) . (5.4)

Note that both the CW and CW2 relative Lambert solvers of Chapter 3 may be

readily used in Equation (5.4). The traditional Lambert approach, as also described in

Chapter 3, additionally requires accurate knowledge of the chief’s inertial position and

velocity, and therefore is not considered in this development. Thus far, this section

has presented a deterministic mapping from a dual set of camera-referenced spherical

coordinates to a Hill-referenced relative position and velocity. The formulation of the
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full state pdf in relative position and velocity requires that the uncertainty of the

stereoscopic measurements be mapped through this process.

5.3.2. Uncertainty Mapping. Recall that p(z1) and p(z2) are known and

are taken to be independent, such that the joint pdf is given by the product of the

pdfs via p(z̄) = p(z1)p(z2). The multiplication of these pdfs, which are modeled by

GMs, is obtained by computing the joint distribution between every permutation of

GM component pairs between t1 and t2. Because there are L1 components in p(z1)

and L2 components in p(z2), p(z̄) contains L1·L2 components. The resulting pdf p(z̄)

is then mapped to the desired state variable space via the mapping g(·) to obtain

p(x1).

The relative position distribution at time t1 is directly known (in spherical co-

ordinates) from p(z1), but the relative velocity distribution at time t1 is not directly

known. In order to determine the relative velocity distribution at time t1, each com-

ponent of the GM representation of p(z̄) is mapped through g(·). This is equivalent to

mapping each pair of components from the GMs of p(z1) and p(z2), which represent

the relative position distributions at times t1 and t2, respectively. To perform this

component-wise mapping, an unscented transformation is employed [51]. The initial

mean, uncertainty, and discrete probability of a given pair of relative positions can be

represented by the combination of the relative position component means, covariance

square-root factor matrices, and weights at t1 and t2; that is

mz̄ =

 mz,1

mz,2

 , Sz̄ =

 Sz,1 03×3

03×3 Sz,2

 , and wz̄ = wz,1wz,2 ,

where 03×3 denotes the 3× 3 zero matrix. First, given the state dimension n = 6, the

n× 1 mean vector mz̄, and the n× n square-root factor Sz̄, 2n sigma points Z are
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chosen as [52]

Z =

[
mz̄ · · · mz̄

]
+

[
−
√
nSz̄

√
nSz̄

]
. (5.5)

The transformed sigma points are then calculated as

X (i) = g
(
Z(i)

)
, (5.6)

where Z(i) denotes the ith column of Z. The transformed full Cartesian state mean

and covariance square-root factors can then be calculated as

mx =
1

2n

2n∑
i=1

X (i) , (5.7)

Sx ← qr {A} , A =
1√
2n

[
X (1) −mx X (2) −mx · · · X (2n) −mx

]
, (5.8)

where “qr{ }” represents the application of a QR decomposition [53], returning only

R, where A = QR. This transformation is repeated for every combination of the

components of p(z1) and p(z2) (see Eq. 5.3), as illustrated in Figure 5.4. Each linkage

generates a new Gaussian component, resulting in L1·L2 total components. These

components are then summed in the same fashion of Equation (5.1) to complete the

full initial state pdf approximation at t1; that is,

q(x1) =

L1∑
`=1

L2∑
j=1

w(`,j)
x pg(x ; m(`,j)

x ,S(`,j)
x S(`,j)

x

T
) , (5.9)

where

w(`,j)
x = w(`)

z w
(j)
z , (5.10)

and m
(`,j)
x and S

(`,j)
x are found by the application of Equations (5.7) and (5.8) for

every (`,j) component link. The complete algorithm is summarized in Algorithm 2.
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Figure 5.4. Gaussian mixture linkage between t1 and t2.
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Algorithm 2: Gaussian Mixture Construction (IROD)

Compute p(z1) for t1 and θ c1,1, φ c1,1 (Eq. 5.3)

Compute p(z2) for t2 and θ c1,2, φ c1,2 (Eq. 5.3)

for ` = 1, ...L1 do

for j = 1, ..., L2 do

Construct m
(`,j)
z̄ from:

`th mean of p(z1) at t1

jth mean of p(z2) at t2

Construct S
(`,j)
z̄ from:

`th covariance of p(z1) at t1

jth covariance of p(z2) at t2

Compute Z (Eq. 5.5)

for i = 1, ..., 2n do

Compute X (i) (Eq. 5.6)

end for

Compute w
(`,j)
x (Eq. 5.10)

Compute m
(`,j)
x (Eq. 5.7)

Compute S
(`,j)
x (Eq. 5.8)

end for

end for

Output q(x1) (Eq. 5.9)
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5.4. RECURSIVE STATE ESTIMATION

To predict the state of the spacecraft at future times, standard Bayesian filter-

ing techniques are employed [54]. The systems used for propagation and measurement

prediction are nonlinear and are given by

xk = f(xk−1) and yk = h(xk) + νk ,

where f(·) is the application of the CW2 equations (Eqs. 2.16), νk is zero-mean

Gaussian white noise with E{νTk νk} = Rk, and

h(xk) =



arctan (u c1,k,x/u c1,k,y)

arcsin (u c1,k,z)

arctan (u c2,k,x/u c2,k,y)

arcsin (u c2,k,z)


, where u cn,k =

δrk − d cn,k

‖δrk − d cn,k‖
, (5.11)

noting that δrk is the relative position portion of the state vector xk.

Bayesian estimation can be broken into two fundamental steps: prediction

and correction. In the prediction step, the posterior pdf of the state xk−1, given

the dynamic model, is integrated to find the predicted distribution at tk via the

Chapman-Kolmogorov equation [54], given as

p(xk|Y k−1) =

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1, (5.12)

where Y k−1 is the set of all prior measurements up to and including yk−1. The

corrector step updates the predicted (prior) distribution with the new measurement yk

via Bayes rule [54], given as

p(xk|Y k) =
p(yk|xk)p(xk|Y k−1)∫
p(yk|xk)p(xk|Y k−1)dxk

. (5.13)
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In general, direct computation of the multidimensional integrals in Equations (5.12)

and (5.13) is infeasible except for special cases, such as linear Gaussian systems [55].

In most other cases, approximate forms must be used. For a comprehensive list of

these approximate forms, the reader is directed to References [55] and [54].

The approximate method considered in this thesis is the Gaussian mixture

square-root unscented Kalman filter (GMSRUKF) [55]. The GMSRUKF is simply the

square-root unscented Kalman filter (SRUKF) algorithm implemented in parallel for

each Gaussian component, with an additional weight update after each measurement

update. It is noted that the Gaussian mixture square-root extended Kalman filter

would likely perform similarly to the GMSRUKF in this application. However, the

GMSRUKF is chosen here to maintain consistency with the nonlinear approximation

approaches employed in the linkage process (Section 5.3).

The initial state is taken to be random with pdf p(x1), which is constructed

using the GM approach and linkage process that is detailed in Section 5.3 and outlined

in Algorithm 2. This initial pdf is described by q(xk−1), as given in Equation (5.9),

or through a simple rewriting as

p(x1) =
L∑
`=1

w
(`)
x,1pg(x1 ; m

(`)
x,1,S

(`)
x,1S

(`)
x,1

T
) .

5.4.1. Predictor. At time tk−1, the posterior pdf is given as a GM of the

form

p(xk−1 |Y k−1) =
L∑
`=1

w
(`)
x,k−1pg(xk−1 ; m

(`)
x,k−1,S

(`)
x,k−1S

(`)
x,k−1

T
) .

In order to process incoming measurement data at time tk, the posterior pdf must be

propagated forward in time via the predictor step to obtain the predicted (or prior)

pdf p(xk|Y k−1). In the predictor step, the weights, means, and covariance square-root
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factors are propagated using the unscented Kalman filter (UKF) in square-root form

as presented in [52]. The use of square-root factors in place of traditional covariance

matrix propagation has been shown to improve both computational stability and cost.

The SRUKF algorithm (Eqs. 5.14-5.24) is applied to each Gaussian component `. For

compactness, the (`) superscript is omitted in the remainder of this section.

First, sigma points are generated on the basis of the mean and the covariance

square-root factor as

X k−1 =

[
mx,k−1 · · · mx,k−1

]
+

[
−
√
nSx,k−1

√
nSx,k−1

]
. (5.14)

The sigma points are generated using the 2n method, such that the resulting size of

X k−1 is 6× 12. Each ith column of X k−1 represents an individual sigma point, all of

which are propagated using the CW2 equations and averaged to obtain the predicted

state estimate at time tk; that is,

X (i)
k|k−1 = f

(
X (i)
k−1

)
and mx,k|k−1 =

1

2n

2n∑
i=1

X (i)
k|k−1 . (5.15)

The state error covariance information can be extracted from the propagated sigma

points. The covariance square-root factor is computed using a QR decomposition of

the compound matrix containing the propagated sigma points as

Sx,k|k−1 ← qr

{
1√
2n

[
X (1)
k|k−1 −mx,k|k−1 X (2)

k|k−1 −mx,k|k−1 · · · X (2n)
k|k−1 −mx,k|k−1

]}
,

(5.16)

which can be written in short form as

Sx,k|k−1 ← qr

{
1√
2n

[
X k|k−1 −mx,k|k−1

]}
. (5.17)
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As previously mentioned, Equations (5.14)-(5.17) are applied to each Gaussian com-

ponent `. Throughout the propagation step, the weights of every Gaussian component

are held constant, such that

wx,k|k−1 = wx,k−1 .

The resulting pdf is a GM of the form

p(xk |Y k−1) =
L∑
`=1

w
(`)
x,k|k−1pg(xk ; m

(`)
x,k|k−1,S

(`)
x,k|k−1S

(`)
x,k|k−1

T
) .

5.4.2. Corrector. At time tk, measurements are received in the form of az-

imuth and elevation angles from both cameras. The agreement of the measurement

data with the prior estimate is determined by comparing the predicted measurement

my,k|k−1 of each of the L total GM components with the received measurement yk.

For every component `, posterior sigma points are generated by propagating the sigma

points X k|k−1 through the true nonlinear function

Y(i)
k = h

(
X (i)
k|k−1

)
, (5.18)

where the definition of h(·) is given in Equation (5.11). The expected measurement

is then computed in the same fashion as Equation (5.15) as

my,k =
1

2n

2n∑
i=1

Y(i)
k . (5.19)

The observation error covariance is a function of both the prediction/observa-

tion agreement and the known sensor noise characteristics, which is represented by

the covariance matrix Rk. The observation error covariance matrix is computed in
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square-root form as

Sy,k ← qr

{[
1√
2n

(Yk −my,k)
√
Rk

]}
, (5.20)

where
√
Rk represents the square-root factor of Rk such that

√
Rk

√
Rk

T
= Rk. The

cross covariance Px,y,k is then found and used to compute the Kalman gain Kk as

Px,y,k =
1

2n

2n∑
i=1

[
X (i)
k|k−1 −mx,k|k−1

] [
Y(i)
k −my,k

]T
(5.21)

Kk =
(
Px,y,kSy,k

−T )Sy,k−1 . (5.22)

Note that the “ −T” operation represents the transpose of the inverse of a matrix.

The a posteriori state estimate is simply computed in the same fashion as a standard

Kalman filter as

mx,k = mx,k|k−1 +Kk (yk −my,k) . (5.23)

The final step in computing the measurement-updated state noise covariance square-

root factor is the application of the Cholesky downdate of Sx,k|k−1 by the update

factors U , given as

U = KkSy,k and Sx,k ← cholupdate
{
Sx,k|k−1 ,U ,−1

}
. (5.24)

The Cholesky downdate effectively finds the square-root factor of Sx,k|k−1Sx,k|k−1
T −

UUT . Several software routines are available for performing Cholesky factor updates

(or downdates), including Matlab’s cholupdate and Linpack’s schdd routines.

Equations (5.18)-(5.24) are applied to every Gaussian component. The final

step of the measurement update is recomputing the weights of the updated Gaussian

components based on their agreement with the measurement data. The updated
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weight of component ` is computed as [49]

w
(`)
x,k = β

(`)
k w

(`)
x,k|k−1/

∑L
j=1β

(j)
k w

(j)
x,k|k−1 ,

where the weight gain β
(`)
k is computed on the basis of yk as

β
(`)
k = pg(yk ; m

(`)
y,k,S

(`)
y,kS

(`)
y,k

T
) .

The conditional pdf of xk, given all of the measurement information up to and

including tk, is then given by the Gaussian sum

p(xk |Y k) =
L∑
`=1

w
(`)
x,kpg(xk ; m

(`)
x,k,S

(`)
x,kS

(`)
x,k

T
) .

As with any GM filter, it is usually advantageous to prune low-probability compo-

nents from the mixture to reduce computational cost. A straightforward approach

to pruning is to choose some threshold level c and remove any component ` where

w
(`)
x < c. If any components are pruned, the weights of the mixture must be normal-

ized to satisfy
∑L

`=1w
(`)
x = 1 so that the integral of the pdf over its support is equal

to one. A block diagram representation of the complete IROD and filter algorithm is

shown in Figure 5.5.

5.5. SIMULATION

The IROD algorithm and accompanying GMSRUKF are simulated for a typi-

cal sensor suite and low Earth orbit two-satellite formation. The inspector spacecraft

is equipped with two identical cameras with 20◦ horizontal and vertical fields of view.

The angular measurements are corrupted with white noise with standard deviations

of σθ = σφ = 67 [arcsec], which corresponds to a 1-pixel error in a 1080 × 1080 pixel

focal plane array. Assuming that the inspector maintains a fixed attitude with respect
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Figure 5.5. Block representation of the GM pdf construction and refinement algo-
rithm.

to the Hill frame, the cameras are modeled at constant positions, taken as

d c1,k = d c1 = [1, 0, 0]T [m] and d c2,k = d c2 = [−1, 0, 0]T [m] ,

consistent with a scale corresponding to a microsatellite. The inspector spacecraft is

simulated in a circular orbit of 400 [km] altitude with inclination i = 30◦, argument of

periapsis ω = 20◦, right ascension of the ascending node Ω = 50◦, and mean anomaly

M = 210◦. The target satellite is initialized at epoch t0 with the relative position

and velocity

δr0 = [0, 150,−15]T [m] and δṙ0 = [−0.01414, 0.00005, 0.01000]T [m/s] .

The inspector and target satellites’ true inertial motions are propagated with two-

body dynamics for six hours, and the relative trajectory is shown in Figure 5.6.
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Figure 5.6. True relative motion of target in Hill frame using two-body dynamics.
The inspector position is denoted by the cross marker.

In the simulated linkage process, ten minutes is used between the first and

second measurements, with the first measurement taken approximately one hour after

the epoch, such that t1 = 3350 [s] and t2 = 3950 [s]. When computing the GM

approximation to the uniform range uncertainty, the tolerance σρ,max is used to control

the resolution of the GM approximation. For this test case, this tolerance is taken

to be σρ,max = 1 [m]. The components generated at t1 and t2 are then processed via

the linkage algorithm (see Section 5.3) to produce the Cartesian pdf in position and

velocity (Figure 5.7). In general, for the linkage and Gaussian mixture construction,

a larger spacing between measurements, that is, a larger (t2− t1), produces an IROD

solution that is more tightly concentrated about the true solution; that is, it has less

uncertainty. One exception to this trend occurs when the linkage time is close to an

integer multiple of the inspector’s orbital half-period. This phenomenon is discussed

further later in this section.

Measurements are processed at 1 [Hz] and are occluded when the target is

in shadow or when the Sun is in either of the cameras’ fields of view. At each

step, the first and second central moments of the posterior pdf are computed to

give a conditional mean and covariance matrix. From the conditional covariance,
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Figure 5.7. Position and velocity pdfs at t1 = 3350 [s]. The truth is denoted by the
cross markers.
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the position root sum square (RSS) and velocity RSS are extracted. These RSS

values for each measurement are collected over 1000 Monte Carlo runs with different

random measurement data and a constant truth model. In addition to the relative

position and velocity RSS, the relative position and velocity tracking errors and their

averages (over the 1000 runs) are computed. Figures 5.8a and 5.8b illustrate 100

time histories of the position and velocity RSS, where the 100 runs are randomly

selected from the set of 1000 Monte Carlo runs. Similarly, the position and velocity
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(a) Position RSS.
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(b) Velocity RSS.

Figure 5.8. Overlaid position and velocity RSS over 100 runs of same orbit. Although
indistinguishable to the naked eye, the RSS values vary slightly from run to run.

tracking errors (for the 100 runs) are illustrated in Figure 5.9, and the average tracking

error (using all 1000 runs) is shown on top of the individual tracking errors. As

evident in Figures 5.8-5.9, the estimation error and uncertainty decrease drastically

during the first hour of measurements. After the first hour, the solution accuracy is

continuously improved, but is more heavily dominated by the periodic nature of the

dynamics, as suggested by the sinusoidal behavior of the RSS and tracking errors. In

the worst-case run of the 1000 Monte Carlo runs, the filter achieves relative position
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(b) Velocity error.

Figure 5.9. Overlaid position and velocity error over 100 runs of same orbit. The
gray line denotes the average error.

and velocity tracking errors as low as 10 [cm] and 10 [µm/s], respectively. In the best

case, accuracies of 1 [mm] and 1 [µm/s] are realized.

Additionally, the relationship between the camera baseline distance to the al-

gorithm performance is investigated. The camera baseline is varied from 1 [m] to 8 [m],

and the position RSS is averaged over 25 measurement sets for each baseline value

(Figure 5.10a). As shown, a linear decrease in RSS is observed with increased base-

line separations. For example, in general, doubling the camera separation results in

estimates that are twice as accurate.

In real-world mission operations, some parameters, such as the initial separa-

tion distance between the target and inspector, cannot easily be controlled, whereas

the time allowed between processing the first and second angular measurements can

be chosen by the mission designer. In order to better understand the relationship be-

tween the initial GM approximation and these parameters, namely the initial along-

track separation y0 and linkage time (t2−t1), pdfs are generated for a survey of initial

conditions. The initial along-track separation is varied from 15 ≤ y0 ≤ 150 [m] and
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Figure 5.10. Camera baseline study: average position and velocity uncertainty.

the linkage time from 1 ≤ (t2 − t1) ≤ 90 [min]. In this study, the first measurements

are taken at the epoch t0, such that δr1 = δr0 and δṙ1 = δṙ0. For each combination,

three metrics are used to assess the approximation: the total number of Gaussian

components generated (Figure 5.11), the position and velocity RSS (Figure 5.13),

which is computed from the conditional covariance, and the Shannon entropy of the

position and velocity pdfs (Figure 5.14), which is defined for a general pdf as

Hs , −
∫
p(x) log p(x)dx . (5.25)

In this particular study, the LOS measurements are left uncorrupted in order to

maintain consistency between the runs.

As shown in Figure 5.11, the driving factor of the component generation is

the orbital geometry, namely y(t2). The number of components generated increases

as y(t2) grows because as the relative range approaches very large values, the LOS

vectors become equivalent. As the LOS vectors approach equivalence, the distance
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Figure 5.11. Number of initial components generated as a function of linkage ∆t and
along-track separation.

between ρmin and ρmax grows larger, requiring more components to achieve the same

GM resolution of σρ,max, as illustrated in Figure 5.12.

The dependence of uncertainty on initial along-track separation and linkage

time is explored by first examining the effects on the relative position and velocity

pdfs’ second moments, which are captured by the RSS extracted from the conditional

covariances. As shown in Figure 5.13a, the relative position RSS is dominated by the

initial along-track separation, exhibiting a nearly linear dependence of y0.

The relative velocity RSS (Figure 5.13b) behaves much differently, exhibiting

two trends not seen in the relative position RSS. First, the relative velocity RSS grows

exponentially with linkage times close to the reference orbit’s half-period. These

travel times correspond to near-180◦ transfers, where an infinite number of initial

relative velocity solutions satisfy the given relative position vectors and elapsed time.

A similar phenomenon is observed in the traditional Lambert problem, as well

as in a relative motion cylindrical coordinate formulation given in Reference [56].

Second, with the exception of these RSS values near the half-period, a general trend

of decreasing relative velocity RSS with increasing travel times is shown. This second
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Figure 5.12. For very large initial relative ranges, the LOS vectors approach equiva-
lence, requiring more components in the construction.

trend suggests that measurements taken farther apart result in higher confidences in

the IROD solution; that is, less uncertainty in the initial estimate.

Because the pdfs generated from the IROD are non-Gaussian, the Shannon

entropy of each of the linkage solutions is computed to analyze the uncertainty infor-

mation not previously represented in the RSS analysis. Similar to what is shown in

the relative position RSS analysis, the relative position entropy exhibits no apparent

dependence to linkage time (Figure 5.14a).
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(a) RSS of initial position pdf.
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(b) RSS of initial velocity pdf.

Figure 5.13. RSS of initial pdf as a function of linkage ∆t and along-track separation.

However, contrary to the approximately-linear dependence of the relative position

RSS to the initial along-track separation, the relationship exhibited between the rel-

ative position pdf entropy and y0 is logarithmic. The difference between these two

trends implies that the relative position pdf’s higher-order moments and correlations

quickly become more dominant as the initial along-track separation is increased. The

initial velocity entropy response map shown in Figure 5.14b is a powerful result of

the linkage analysis, as it captures the majority of the linkage trends described thus

far.
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(a) Shannon entropy of position pdf.
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Figure 5.14. Shannon entropy, Hs, of initial pdf as a function of linkage ∆t and
along-track separation.

This response exhibits a similar logarithmic dependence to initial along-track

separation as in Figure 5.14a, a general decrease in relative velocity uncertainty with

longer linkage times, as observed in Figure 5.13b, as well as a sharp increase in

uncertainty at linkage times near the half-period. Because it captures multiple trends,

from an operational standpoint, Figure 5.14b can serve as an effective tool for selecting

more effective measurements in the IROD process.



77

6. MULTITARGET TRACKING

The growing population of space objects in Earth orbit and, in particular, the

subset of objects belonging to densely populated constellations, furthers the demand

for the development and deployment of more sophisticated tracking algorithms. Ex-

amples of these dense constellations include debris clouds from satellite breakups or

collisions [57], as well as controlled satellite swarms, which have been recently pro-

posed as a means to provide broadband Internet across the globe [3], among numerous

other applications. The ability to track and catalog these objects from the ground

using optical-telescopes and/or RADAR is a well-studied problem [5–8]. Many of the

approaches to the ground-based multitarget tracking problem involve some form of

hypothesis formulation and data association [58]. These techniques, such as multiple

hypothesis tracking (MHT), suffer from time-exponential computational complexity

increases due to the required data association and consequently rely on heuristic

reduction methods to achieve tractability [59].

Newer methods, based on moment approximations of the multitarget Bayes fil-

ter, have shown promise as more computationally tractable and statistically-consistent

approaches to ground-based multitarget tracking [60, 61], as they mitigate the need

for explicit data association. Two such methods, referred to as the probability hypoth-

esis density (PHD) and cardinalized probability hypothesis density (CPHD) filters,

approximate the full multitarget Bayes filter by propagating the posterior intensity

function, which is the first-order moment of the full multitarget pdf. The CPHD

filter additionally propagates the posterior target cardinality probability mass func-

tion (pmf) [62]. Although the inclusion of cardinality statistics increases the com-

plexity of the filter, it has been shown to dramatically improve cardinality estimates

and state estimates [63].
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In this chapter, the CPHD filter is employed to serve as a means to track mul-

tiple targets in close proximity of an inspector satellite. The ability to autonomously

track multiple targets in neighboring orbits using angles from video data could en-

able a new class of proximity operations in which cooperation between vehicles is not

possible, or simply serve as a means to monitor the surrounding area in an effort to

mitigate collision risks.

This chapter considers an inspector satellite system with a stereo imaging sen-

sor that provides angular measurements of multiple nearby targets from two different

optical viewpoints. These stereo measurements, when available, are processed in a

CPHD filter to recursively and statistically estimate the number of nearby targets, as

well as their relative positions and velocities with respect to the inspector satellite.

The primary purpose of this work is to establish the fundamental modeling consider-

ations and challenges unique to angles-only space-based relative multitarget tracking.

Special consideration is given to the birth model, which is responsible for incorpo-

rating previously untracked targets into the multitarget intensity when they appear.

The performance of the presented framework is evaluated in a simulation of a chaotic

debris cloud tracking problem. Preliminary results are published in Reference [64].

The current work is a more comprehensive study with stronger results.

In an effort to prevent detraction from the multitarget focus of this chapter,

simplifications are made with respect to the presented single target tracking frame-

work. First, the linear CW dynamics are used in place of the higher-order CW2

dynamics. Naturally, the CW relative Lambert solution (Section 3.1) is used in place

of the CW2 relative Lambert solution (Section 3.2). Lastly, only planar motion is

considered to simplify the analysis. With this, the general system is given as

xk = Fk−1xk−1 +wk−1 and yk = h(xk) + νk ,
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where Fk−1 and h(·) are planar simplifications of Equations (3.2) and (5.11), respec-

tively. The process noise wk−1 and measurement noise νk are taken to be Gaussian

and white with Qk−1 = E{wk−1w
T
k−1} and Rk = E{νkνTk }.

6.1. THE CARDINALIZED PROBABILITY HYPOTHESIS DENSITY
FILTER

At time tk, there are N(k) targets with states xk,1,xk,2, . . . ,xk,N(k). The

multitarget state Xk ∈ X is composed of all of the target states, in no specified

order, such that

Xk =
{
xk,1,xk,2, . . . ,xk,N(k)

}
.

The multitarget state Xk is taken as a random finite set (RFS) and is expressed in

the multitarget domain X (note to be confused with sigma points X ). Reference [65]

defines the RFS as a random variable that takes values as unordered finite sets,

wherein the number of constituent points is random and the points themselves are

random. Propagation of the multitarget pdf, which is expressed in the multitarget

space F(X ), is generally intractable [66]. Tractable recursions can be achieved by

propagating the first-moment approximation of the multitarget pdf, which is known

as the intensity or PHD and exists in the single-target space.

In some situations, such as when the number of targets is large, the PHD filter

can produce poor estimates of target cardinality (number of targets) [63]. This is due

to the fundamental assumption of the PHD filter: the target cardinality is a Poisson

random variable. Recall that for a Poisson distribution, the variance is equal to the

mean, as illustrated in Figure 6.1. It is clear from Figure 6.1 that as the estimated

number of targets becomes large, so too does the variance of the estimate. Thus,

for many applications, including multitarget satellite relative navigation, in which

accurate target number knowledge is critical to spatial awareness, the errors induced
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by the Poisson approximation of the cardinality distribution may be unacceptable,

especially when the number of targets is high. In such situations, the CPHD filter

often offers significant improvements in performance over the PHD filter by jointly

propagating the target intensity vk|k and target cardinality distribution pk|k.

−10 0 10 20 30 40 50
0

0.1

0.2

0.3

n

p
K
,k
(n
)

λ = 2
λ = 20
λ = 40

Figure 6.1. Due to the PHD filter’s Poisson approximation of target cardinality,
higher target numbers result in higher cardinality variance.

The CPHD filter is similar to the PHD filter in that it propagates the posterior

intensity function at time tk−1 to time tk as [63]

vk|k−1(x) =

∫
pS,k(ξ)fk|k−1(x|ξ)vk−1(ξ)dξ + γk(x) ,

where fk|k−1(·|ξ) is the single-target transition density at time tk conditioned on pre-

vious state ξ, pS,k(ξ) is the state-dependent probability of target survival, and γk(x)

is the intensity of spontaneous births at time tk. A key difference between the PHD

filter and the CPHD filter is that the CPHD filter additionally propagates the discrete
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cardinality distribution as [63]

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)Πk|k−1[vk−1, pk−1](j) , (6.1)

where pΓ,k(·) is the cardinality pmf of target births, and

Πk|k−1[v, p](j) =
∞∑
`=j

C`
j

〈pS,k, v〉j 〈1− pS,k, v〉`−j

〈1, v〉`
. (6.2)

Here, C`
j denotes the binomial coefficient, which is defined as

C`
j ,

`!

j!(`− j)!
.

The operator 〈·, ·〉 denotes the inner product, which is defined between α and β as

〈α, β〉 ,
∫
α(x)β(x)dx and 〈α, β〉 ,

∞∑
`=0

α(`)β(`)

in the cases that α and β are scalar real-valued functions or real-valued sequences,

respectively.

Recall the general form of a discrete binomial distribution,

b(x;n, p) =

(
n

x

)
px(1− p)n−x (6.3)

which gives the probability that from n trials there will be exactly x successes, given

that the individual trial probability of success is p. Equation (6.2) is of the same

form; the summation argument is simply the probability that exactly j of ` targets

survive given the probability of survival pS,k conditioned upon the intensity v. Note

that because the multitarget state has no specific ordering, the ` choose j different

ways in which targets can survive or die is accounted for by the binomial coefficient

that appears in Equation (6.2).
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The cardinality distribution is represented by a pmf over the variable n. The

variable n represents a discrete cardinality hypothesis; that is,

pk|k−1(n) = Pr(N(k) = n) .

Note that the target cardinality distribution (Eq. (6.1)) is technically infinitely tailed.

In practice, however, the pmf can be reasonably truncated at some chosen limit nmax

without noticeable loss of information. In essence, the cardinality pmf is propagated

according to the target birth cardinality pmf pΓ,k and existing target survival proba-

bility Πk|k−1.

At time tk, a new measurement set Ỹk is made available. For reasons discussed

later in this chapter, the measurements corresponding to birth targets are denoted

as Ybirth,k and are handled separately. All other measurements, including both non-

Measurements of birth targets,
Ybirth,k

Spurious measurements, Yclutter,k

Non-birth target-originated mea-
surements, Ytarget,k

Complete multitarget measurement set, Ỹk

Non-birth measurement set, Yk

Figure 6.2. Block representation of the multitarget measurement structure.

birth target-originated measurements and clutter, belong to the unordered set Yk,

as illustrated in Figure 6.2. When the (non-birth) multitarget measurement Yk is

received, the cardinality distribution and intensity function are updated according
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to [67]

pk(n) =
Υ0
k[vk|k−1,Yk](n)pk|k−1(n)〈
Υ0
k[vk|k−1,Yk], pk|k−1

〉 and (6.4)

vk(x) =

〈
Υ1
k[vk|k−1,Yk], pk|k−1

〉〈
Υ0
k[vk|k−1,Yk], pk|k−1

〉 [1− pD,k(x)]vk|k−1(x) (6.5)

+
∑
y∈Yk

〈
Υ1
k[vk|k−1,Yk\{y}], pk|k−1

〉〈
Υ0
k[vk|k−1,Yk], pk|k−1

〉 ψk,y(x)vk|k−1(x) , where (6.6)

Υu
k [v,Y ](n) ,

min(|Y |,n)∑
j=0

(|Y | − j)!pK,k(|Y | − j)P n
j+u

〈1− pD,k, v〉n−(j+u)

〈1, v〉n
ej (Ξ(v,Y )) ,

(6.7)

ψk,y(x) ,
〈1, κk〉
κk(y)

gk(y|x)pD,k(x) , and (6.8)

Ξ(v,Y ) , {〈v, ψk,y〉 : y ∈ Y } . (6.9)

The distribution Υu
k [v,Y ](n) describes the likelihood of the multitarget observation Y

given that there are n targets. The function gk(·|x) is the single-target measurement

likelihood at time tk given current state x, pD,k(x) is the state-dependent probability

of target detection at time tk given current state x, κk(·) is the intensity of clutter

measurements at time tk, and pK,k(·) is the cardinality distribution of clutter at

time tk. The term Yk \ {y} denotes the set subtraction of {y} from Yk, and P n
j

represents the permutation coefficient, defined as

P n
j ,


n!

(n− j)!
, n ≥ j

0 , n < j

.

The jth-order elementary symmetric function ej(·) is defined as

ej(Z) ,
∑

S⊆Z,|S|=j

(∏
ζ∈S

ζ

)
(6.10)
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for a real finite set Z. An efficient method for the calculation of Equation (6.10) is de-

scribed in Reference [63]. The elementary symmetric polynomials can be alternatively

defined in n variables X1, . . . , Xn as

e0(X1, X2, . . . , Xn) = 1

e1(X1, X2, . . . , Xn) =
∑

1≤j≤n

Xj

e2(X1, X2, . . . , Xn) =
∑

1≤j<k≤n

XjXk

e3(X1, X2, . . . , Xn) =
∑

1≤j<k<l≤n

XjXkXl

...

en(X1, X2, . . . , Xn) = X1X2 . . . Xn

In order to better understand the form of the elementary symmetric function, con-

sider the simple example of receiving three measurements Y = {y1,y2,y3}. From

Equation (6.9), it follows that

Ξ(v,Y ) = {< v, ψk,y1 >,< v, ψk,y2 >,< v, ψk,y3 >} .

Thus, in this example, there are four possible elementary functions, given by

e0(Ξ(v,Y )) = 1 ,

e1(Ξ(v,Y )) =< v, ψk,y1 > + < v, ψk,y2 > + < v, ψk,y3 > ,

e2(Ξ(v,Y )) =< v, ψk,y1 >< v, ψk,y2 > + < v, ψk,y1 >< v, ψk,y3 >

+ < v, ψk,y2 >< v, ψk,y3 > , and

e3(Ξ(v,Y )) =< v, ψk,y1 >< v, ψk,y2 >< v, ψk,y3 > .

Equation (6.7) is certainly nonintuitive, and so a more thorough examination

of its various terms is provided in Table 6.1. The CPHD recursion admits both
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sequential Monte Carlo [66] and GM [63] implementations, the latter of which is

discussed in this thesis.

Table 6.1. Explanation of Υu
k [v,Y ](n), the likelihood of the multitarget observation Y

given that there are n targets.

Term Description

j hypothesis of the number of non-clutter measurements

|Y | number of measurements received

(|Y | − j)! number of ways that clutter measurements can be ordered

pK,k(|Y | − j) probability that |Y | − j of the measurements are clutter

P n
j+u number of ways j + u targets can be selected from n targets,

where order matters

〈1− pD,k, v〉n−(j+u)

〈1, v〉n
probability that n− (j + u) targets are not detected

ψk,y(x) conditional probability distribution of x given a
measurement and the known detection and clutter
distributions

Ξ(v,Y ) set of duplicate intensities conditioned upon each different
measurement

ej (Ξ(v,Y )) summation of all possible j-wise products of conditional
intensities

6.2. THE GAUSSIAN MIXTURE EXTENDED KALMAN CPHD

In the case of linear Gaussian dynamics and measurements, the CPHD re-

cursion admits a closed-form solution when the posterior intensity is modeled by a

GM. The closed-form recursion for linear Gaussian models can be extended to ac-

commodate nonlinear dynamics and measurements via linearization of the transition

density and measurement likelihood functions in the same fashion as the single-target
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extended Kalman filter (EKF) [49, 68]. Because only linear dynamics are considered

in this work, local linearizations are needed in the measurement update, only.

It is assumed that the posterior intensity at tk−1 is given in the form of a GM

as

vk−1(x) =

Jk−1∑
i=1

w
(i)
k−1pg(x ; m

(i)
k−1,P

(i)
k−1) ,

where Jk−1 is the total number of Gaussian components at tk−1, and m
(i)
k−1, P

(i)
k−1,

and w
(i)
k−1 are the mean, covariance, and weight, respectively, of the ith component.

Recall that for single-target GM filtering, the property
∑Jk−1

i=1 w
(i)
k−1 = 1 is enforced

to ensure that the pdf integrates to one. No such requirement exists for multitarget

filtering; in fact, the sum of the weights can be used to estimate the number of targets

as N̂(k) ≈
∑Jk−1

i=1 w
(i)
k−1.

It follows from [63] that the predicted target cardinality and intensity at tk

are given as

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)
∞∑
`=j

C`
jpk−1(`)p

j
S,k(1− pS,k)

`−j (6.11)

and vk|k−1(x) = vS,k|k−1(x) + γk(x) . (6.12)

The first term in Equation (6.11) accounts for the change in cardinality due to spon-

taneous births, and the remaining terms account for the existing targets’ survival

probability. Recall that the pmf is infinitely tailed. In practice, the pmf must be

truncated after an appropriate number of bins nmax such that

pk|k−1(n) =
n∑
j=0

pΓ,k(n− j)
nmax∑
`=j

C`
jpk−1(`)p

j
S,k(1− pS,k)

`−j . (6.13)
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The predicted intensity vk|k−1(x) is given by the summation of the predicted

intensity of surviving targets vS,k|k−1(x) and the intensity of new target births γk(x).

When the target dynamics (Eq. (3.2)) are linear Gaussian; that is, when

fk|k−1(x|ξ) = pg(x ; Fk−1ξ,Qk−1) , (6.14)

the intensity of existing targets can be propagated to tk as

vS,k|k−1(x) =

Jk−1∑
j=1

w
(j)
k|k−1pg(x ; m

(j)
S,k|k−1,P

(j)
S,k|k−1) , (6.15)

where

w
(j)
k|k−1 = pS,kw

(j)
k−1 (6.16)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1 (6.17)

P
(j)
S,k|k−1 = Fk−1P

(j)
k−1F

T
k−1 +Qk−1 , (6.18)

Fk−1 is the state transition matrix (Eq. 3.1), and Qk−1 is the process noise covariance

matrix. Note that in Equation (6.16), the target probability of survival is taken to

be constant. With this, the predicted intensity of surviving targets vS,k|k−1 and the

superposition of the intensity of new target births γk form the predicted intensity

vk|k−1(x) =

Jk|k−1∑
j=1

pg(x ; m
(j)
k|k−1,P

(j)
k|k−1) . (6.19)
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At time tk, the predicted target cardinality and intensity are updated with the

available measurement data Yk as [63]

pk(n) =
Ψ0
k[wk|k−1,Yk](n)pk|k−1(n)〈
Ψ0
k[wk|k−1,Yk], pk|k−1

〉 (6.20)

vk(x) =

〈
Ψ1
k[wk|k−1,Yk], pk|k−1

〉〈
Ψ0
k[wk|k−1,Yk], pk|k−1

〉(1− pD,k(x))vk|k−1(x) (6.21)

+
∑
y∈Yk

Jk|k−1∑
j=1

w
(j)
k (y)pg(x ; m

(j)
k (y),P

(j)
k ) (6.22)

Ψu
k [w,Y ](n) =

min(|Y |,n)∑
j=0

(|Y | − j)!pK,k(|Y | − j)P n
j+u

〈1− pD,k, v〉n−(j+u)

〈1, v〉n
ej (Λ(w,Y )) ,

(6.23)

Λk(w,Z) =

〈1, κk〉κk(y)

Jk|k−1∑
j=1

pD,k(x)w
(j)
k|k−1q

(j)
k (y)

 : y ∈ Y

 , (6.24)

w
(j)
k (y) = pD,k(x)w

(j)
k|k−1q

(j)
k (y)

〈
Ψ1
k[wk|k−1,Yk \ {y}], pk|k−1

〉〈
Ψ0
k[wk|k−1,Yk], pk|k−1

〉 〈1, κk〉
κk(y)

, (6.25)

m
(j)
k (y) = m

(j)
k|k−1 +K(j)(y − η(j)) , (6.26)

P
(j)
k =

[
I −K(j)H

(j)
k

]
P

(j)
k|k−1 , (6.27)

wk|k−1 =
[
w

(1)
k|k−1, . . . , w

(Jk|k−1)

k|k−1

]T
, (6.28)

q(j)(y) = pg(y ; η(j),S(j)) , (6.29)

η(j) = h(m
(j)
k|k−1) , (6.30)

H
(j)
k =

∂h(x)

∂x

∣∣∣∣
x=m

(j)
k|k−1

, (6.31)

S(j) = H
(j)
k P

(j)
k|k−1H

(j)
k

T
+Rk , and (6.32)

K(j) = P
(j)
k|k−1H

(j)
k

T
S(j)−1

(6.33)

In Equation (6.25), the GM weights are updated based on their associated com-

ponents’ probability of detection pD,k(x) and their measurement agreement q(j)(y)

(see Eq. 6.29). The remaining terms in Equation (6.25) account for all of the pos-



89

sible target/target-originated measurements/clutter combinations. Equations (6.30)-

(6.33) are simply the EKF equations, which for every measurement y ∈ Yk are applied

to every component of the predicted intensity function vk|k−1. As seen in Equa-

tions (6.23)-(6.25), the probability of detection pD,k is taken to be state-dependent.

The state-dependent probability of detection can be approximated at the prior means,

such that

pD,k(x)w
(j)
k|k−1 ≈ pD,k(m

(j)
k|k−1)w

(j)
k|k−1

and 〈1− pD,k, v〉 ≈
Jk|k−1∑
i=1

w
(i)
k|k−1(1− pD,k(m

(i)
k|k−1)) .

Altogether, the posterior intensity takes the form

vk(x) =

Jk∑
i=1

w
(i)
k pg(x ; m

(i)
k ,P

(i)
k ) , (6.34)

and the recursion continues.

6.3. MEASUREMENT MODEL

Similar to Chapter 5, angular measurements are taken from two cameras that

are fixed to the inspector spacecraft. The use of two cameras separated at a known

baseline (as opposed to a single-camera system) allows the state of a nearby target,

which includes its relative position and velocity, to be resolved over multiple mea-

surements. Furthermore, in using two cameras, no prior knowledge of the target’s

geometry is required.

6.3.1. Target-Originated Measurements. Robust image processing algo-

rithms are available [43, 69, 70] that identify unique features on an imaged target and

match the features between a stereoscopic image pair, such as in Figure 6.3. Similar

to the case of Figure 6.3, multiple features are identified and matched for a single
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target. Although the angles associated with these matched features will not, in gen-

eral, correspond to the target’s exact center of mass (CM), a simple averaging of the

features’ angles will result in a good approximation of the target’s geometric center,

which for geometrically small targets, will be close to the CM. Further improvements

in accuracy can be made with prior knowledge of the target’s geometry and mass

distribution, as might be the case with cooperative swarms.

Figure 6.3. Example of image processing subsystem output for a single target. The
lines demonstrate matched features between a stereoscopic image pair.

One of the primary benefits of the feature matching algorithm is that, because

the features are matched between images, angles can be processed in pairs as opposed

to individually. To that end, a single measurement is modeled as containing both

angles from the stereo imager with additive Gaussian white noise as

yk = [θ c1,k θ c2,k]
T + νk ,

where θ cn is the azimuth angle measured from the y axis (assumed to be aligned with

the Hill frame Ŝ axis) of the cn camera frame, E{νk} = 0, and E{νkνTk } = Rk =

diag{σ2
θ c1,k

, σ2
θ c2,k
}. For convenience, the camera frames are assumed to be aligned

with the Hill frame. With this assumption, a stereoscopic measurement is related to
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a target’s state by the measurement function

h(xk) =

 tan−1 (u c1,k,x/u c1,k,y)

tan−1 (u c2,k,x/u c2,k,y)

 , u cn =
δrk − dk, cn
‖δrk − dk, cn‖

,

where δrk is the relative position vector portion of the state xk and dk, cn is the

position of the cn camera frame origin with respect to the Hill frame origin.

6.3.2. False Alarms. Occasionally, the image processing subsystem will re-

turn measurements that do not correspond to actual targets, as illustrated in Fig-

ure 6.4. Such false alarms can be the result of sensor malfunctions, glint events [71],

Figure 6.4. Example of false matches.

or other space-lighting phenomena. These false alarms are modeled by the clutter

intensity κk(y) and cardinality distribution pK,k(n). The clutter intensity is assumed

to be uniform over the valid stereoscopic measurement domain Ds such that

κk(y) = λV U(y) , U(y) =

 1/V , y ∈ Ds

0 , otherwise
,
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where λ is the average number of clutter returns per unit “volume” and V is the

sensor volume. Because false alarms exhibit the same properties as target-originated

measurements, namely, that they correspond to LOSs that intersect in the composite

field of view (CFOV), the volume V must represent the space over which stereoscopic

measurements are valid. Valid stereo measurements are those for which the angular

measurements belong to both of the cameras’ fields of view (FOVs), and the LOSs

they describe intersect in the positive-y half of the plane (in “front” of the cameras).

For aligned cameras, to guarantee that the LOSs intersect, the azimuth angle from

the leftmost sensor must always be greater than the azimuth angle from the rightmost

sensor. With this, the sensor volume is obtained from the volume integral

V =

∫
Ds

1dy , Ds = {FOV c1 ∩ FOV c2|θ c1 > θ c2} . (6.35)

When the FOV angle is identical for both cameras; that is, when FOV c1 = FOV c2 =

FOV, the result of Equation (6.35) is simply V = 1
2
FOV2. The frequency of false

alarms is dependent on a plethora of parameters related to the sensor, the image pro-

cessing subsystem, lighting conditions, etc. The likelihood of receiving a given number

of false alarms at time tk is modeled by the clutter cardinality distribution pK,k(n).

In this study, pK,k(n) is taken as Poisson, such that

pK,k(n) =
(λV )n

n!
e−λV . (6.36)

For real-world operations, pK,k(n) should be generated from ground-testing data be-

fore spaceflight.

6.3.3. Probability of Detection. The probability of detection pD,k(xk)

represents the probability that a target with state xk will be measured by the stereo-

scopic imager at tk. As mentioned in the previous section, targets will, in general,

have multiple features that are matched, such that when the target is visible, there
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is a strong likelihood of detection. To that end, detection is taken to be guaranteed

if the target exists in the domain of valid stereoscopic measurements and within the

maximum ranges of the sensors, such that

pD,k(xk) =

 1 , h(xk) ∈ Ds and ‖δrk − dk, cn‖ ≤ ρmax, cn

0 , otherwise
(6.37)

where ρmax, cn is the maximum range of sensor cn.

Equation (6.37) is, in fact, a strong simplification of the complex metrological

considerations involved in satellite vision-based navigation. Such considerations in-

clude, but are not limited to, the solar illumination geometry, sensor solar keep-out

zones, and measurement occlusion caused by other targets [72]. These complex mod-

eling considerations are beyond the scope of this study, as they are very sensor- and

mission-dependent.

6.4. TARGET BIRTH

When new targets enter the inspector’s stereoscopic FOV, their intensity γk

must be superposed on the predicted intensity of existing targets vS,k|k−1, and the

cardinality pmf must be modified accordingly. It is assumed that measurements

associated with new targets are identified. The assumption that the measurements of

new targets are explicitly identified is certainly one of interest, but the development

of such an identification mechanism is beyond the scope of the current work. Such

mechanisms are not infeasible, however. For instance, one potential approach consists

of applying a parallel process that analyzes image feature data to detect new targets

and informs the birth process when a new target is detected. Additionally, this

parallel process, when applied to the data, would identify the angular measurements

in closest likelihood agreement with the new detection to be used by birth process.
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With this, the birth intensity can be computed from a set of stereoscopic mea-

surements using the IROD framework developed in Chapter 5. Recall that, in this

framework, two stereoscopic angle measurements are collected at times t1 and t2.

Henceforth, these times are denoted more generally as tk−2 and tk−1, as birth pro-

cesses can occur at any time step. At tk−2 and tk−1, the angle measurement and

corresponding uncertainty from Camera 2 are used to bound possible relative range

values along Camera 1’s LOS. The relative range uncertainty over these bounded

regions is taken to be uniform and is approximated by a GM, as illustrated in Fig-

ure 5.3. The resulting pdfs are expressed in polar coordinates in the relative position

space. Because the intent is to obtain a pdf that can be expressed in the single-target

space, the set of positional polar coordinate pdfs are transformed into a full-state

Cartesian pdf using a Lambert-linkage process.

As is developed Section 5.3, in the Lambert-linkage, components from the rel-

ative position mixture at tk−2 are linked to components from the relative position

mixture at time tk−1 by computing the relative velocities that satisfy a given pair of

relative positions and the time elapsed between them. Statistics are collected during

this process such that the linkage of every component pair combination between tk−2

and tk−1 produces a unique birth component in the single-target space with appro-

priate weight, mean, and covariance.

Suppose that at times tk−2 and tk−1, the measurements yk−2,` ∈ Ybirth,k−2,

and yk−1,j ∈ Ybirth,k−1 are identified as measurements that originate from a new

target. Note that, as implied by the subscripts ` and j, it is possible to introduce

multiple birth targets at the same time step; however, because Ybirth is unordered,

care must be taken to ensure that birth measurements at tk−2 and tk−1 are correctly

matched to the appropriate target. For notational simplicity, the ` and j subscripts

are dropped for the remainder of this section. Each measurement contains angles



95

from both cameras; that is

yk−2 = [θ c1,k−2 θ c2,k−2]
T + νk−2 and

yk−1 = [θ c1,k−1 θ c2,k−1]
T + νk−1 .

At tk−2 and tk−1, the LOS of Camera 2 is rotated by a user-specified deviation in

all directions, and the intersections between the rotated lines and LOS of Camera 1

are used to determine minimum and maximum relative range bounds ρmin and ρmax,

as is discussed in Chapter 5. In this study, the rotational deviation is chosen as

three times the angular standard deviation of Camera 2. The points ρmin and ρmax

represent the minimum and maximum relative range bounds (with respect to the

camera frame) within which the position of the birth target is hypothesized and thus

serve as the bounds in the construction of the relative range pdf. Note that ρmax is

not the same as the sensor range limitation ρmax, cn. However, in the event that the

bounding process generates a relative range ρmax that is larger than the known sensor

range limitation, ρmax, cn is appropriately used in the place of ρmax as the upper bound

on the relative range.

In the same fashion of Section 5.3, two single-target probability densities are

formed in polar coordinates at tk−2 and tk−1, given by

pz,k−2(z) =

Lk−2∑
`=1

w
(`)
z,k−2pg(z ; m

(`)
z,k−2,P

(`)
z,k−2)

and pz,k−1(z) =

Lk−1∑
`=1

w
(`)
z,k−1pg(z ; m

(`)
z,k−1,P

(`)
z,k−1) ,

where

w
(`)
z,k = w

(`)
ρ,k , m

(`)
z,k = [m

(`)
ρ,k , θ c1,k]

T , and P
(`)
z,k = diag{σ2

ρ,k , σ
2
θ c1,k
} .
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The Lambert-linkage consists of “linking” these two pdfs together to obtain

a new pdf that includes relative velocity information. Every component pair com-

bination must undergo a conversion from polar coordinates to Cartesian coordinates

and a transformation from the camera frame to the Hill frame, after which a rela-

tive Lambert solution is found to provide the relative velocity that satisfies the two

relative position components and their temporal separation. This linkage process is

nonlinear, and thus to properly capture the statistics of this process, an unscented

transform [51] is employed. Note that the unscented transform is necessary despite

the choice of a linear CW Lambert solver due to the nonlinear nature of the coordinate

transformations. The result of the Lambert-linkage process is an Lk−2 · Lk−1 com-

ponent GM that approximates the single-target pdf in relative position and velocity

and is expressed in Cartesian coordinates as

px,k−2|k−1(x) =

Lk−2Lk−1∑
`=1

w
(`)
x,k−2pg(x ; m

(`)
x,k−2,P

(`)
x,k−2) .

The birth intensity at time tk is then obtained by propagating px,k−2|k−1(x) to time tk,

such that

γk(x) =

∫
pS,k(ξ)fk|k−2(x|ξ)px,k|k−2(x)dξ .

In the event that multiple births occur simultaneously, the birth intensity is the

summation of the new single-target pdfs given by

γk(x) =
∑

Ybirth,k−2,k−1

∫
pS,k(ξ)fk|k−2(x|ξ)px,k|k−2(x)dξ .
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where Ybirth,k−2,k−1 denotes the set of temporally-paired (between tk−2 and tk−1) birth

target measurements. The cardinality of births is taken as Poisson, yielding

Γk(n) =
|Ybirth,k−2,k−1|n

n!
e−|Ybirth,k−2,k−1| ,

so that higher target number birth events are treated with more uncertainty than

lower target number birth events.

Because the birth intensity is formed from measurement data at tk−2 and tk−1,

the birth intensity is not introduced into the intensity model until another measure-

ment is available, such that the birth intensity is not doubly conditioned on the same

measurement data. A high-level block diagram of the complete tracking framework

can be found in Figure 6.5.

Ybirth,k−2

Form pz,k−2(z)

Ybirth,k−1

Form pz,k−1(z)

Lambert Linkage Predict Correct

Yk

γk(x) vk|k−1(x) vk|k(x)

Figure 6.5. Block diagram of space-based relative multitarget tracking framework.

Figure 6.6 illustrates an example of a new birth target with two existing tar-

gets. In Figure 6.6a, the distribution on the left corresponds to a birth intensity

at tk. Its elongated nature is due to the large uncertainty in relative range and the

uncertainty growth from propagation from tk−2 to tk. Because of this, some birth

components, when added to the intensity of surviving targets, reside outside of the
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(a) Untruncated birth intensity.
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(b) Truncated birth intensity.

Figure 6.6. Example of one birth with two existing targets.

detectable region, which is represented by the darker gray intersection of the cam-

eras’ FOVs. These components, if left unhandled, are treated as misdetected com-

ponents and do not undergo a measurement update. In this specific example, these

components will likely enter the detectable region at the following measurement up-

date and thus undergo an update at tk+1. In other cases, however, components may

reside outside out of detection region due to their relative range and, furthermore,

may never reenter the region. In applications where all target tracks are maintained

indefinitely (i.e. pS,k = 1.0), the persistence of such components can complicate nu-

merical aspects of the filter. Instead, if a measurement is known to be associated with

the birth target at tk, that target is inherently detectable, and thus, all components

that fall outside the detectable region can be safely truncated, as illustrated in Fig-

ure 6.6b. The truncated distribution is then renormalized and treated as the birth

intensity.

The necessity of this truncation is more apparent when measurements are

processed at high frequency, and more specifically, when little time is elapsed between
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Lambert-linkage measurements. As discussed in Section 5.5, pdfs formed from small

linkage times generally lead to a higher uncertainty in the target relative velocity

as compared to pdfs formed from longer linkage times. In some cases, such as for

exceptionally small linkage times, the large uncertainty in relative velocity will lead to

propagated components that fall in the negative-y half plane (“behind” the camera).

Another approach to handling these “runaway” components is to implement

a non-unity probability of survival. The effect of this is that components are down-

weighted at every step, which over time, significantly reduces the contribution of

components that are undetectable. For many terrestrial applications, specifically ap-

plications when target motion is secular, values between 0.95 and 0.99 for pS,k are

common [73, 74]. Conversely, for ground-based tracking of geostationary satellites,

where a future measurement is almost certainly guaranteed due to the satellites’ in-

trinsic periodic motion, pS,k = 1 is appropriate. Satellite relative motion is both

secular and periodic, and as a result, target survival is not as straightforward. Po-

tential approaches could involve computing the probability of re-detection based on

states extracted from the intensity function. The states of targets with low proba-

bilities of re-detection may be converted to inertial states for long-term propagation

while their corresponding components are downweighted. Currently, more sophisti-

cated target survival schemes are being investigated and will be considered in future

work.

6.5. NUMERICAL CONSIDERATIONS AND ANALYSIS METRICS

6.5.1. GM Reduction. At each measurement update, the PHD and CPHD

posterior intensities are reduced according to the same pruning/merging laws. Gaus-

sian components are combined if their Mahalanobis distance, defined between two
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Gaussian components i and j as

D = (m(i) −m(j))
T
P (i)−1

(m(i) −m(j)) ,

falls below a user-specified merging threshold U . Given a component j, all of the

components satisfying the merging threshold (including j) are collected and merged.

The merged weight w̃ is simply the sum of the collected weights. The merged mean m̃

is a weighted average of the collected components’ means. The merged covariance P̃

is a weighted average of the collected components’ covariances and cross-covariances

(between the original component and merged component). The complete merging

algorithm, which is adapted from Reference [75], is presented in Algorithm 3. Af-

ter the merging stage, components with weights less than a user-specified pruning

threshold T are removed from the mixture.

Algorithm 3: Component Merging

Given {w(i)
k ,m

(i)
k ,P

(i)
k } and merging threshold U :

Set ` = 0 and I = {i = 1, . . . , Jk}.

repeat

` = `+ 1 .

j = argmax
i∈I

w
(i)
k .

L =
{
i ∈ I

∣∣(m(i)
k −m

(j)
k )TP

(i)
k

−1
(m

(i)
k −m

(j)
k ) ≤ U

}
.

w̃
(`)
k =

∑
i∈L

w
(i)
k .

m̃
(`)
k = 1

w̃
(`)
k

∑
i∈L

w
(i)
k m

(i)
k .

P̃
(`)
k = 1

w̃
(`)
k

∑
i∈L

(
P̃

(i)
k + (m̃

(`)
k −m

(i)
k )(m̃

(`)
k −m

(i)
k )T

)
.

I = I \ L .

until I = ∅ .

Output
{
w̃

(i)
k , m̃

(i)
k , P̃

(i)
k

}`
i=1

as merged Gaussian components.
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6.5.2. Cardinality Statistics. After completing the GM reduction step, for

analysis purposes, the cardinality means and standard deviations for the CPHD filter

are computed as

N̂(k) =
nmax∑
n=0

npk(n) (6.38)

σ(k) =

√√√√nmax∑
n=0

(n− N̂(k))2pk(n) . (6.39)

Alternatively, cardinality estimates for both PHD and CPHD solutions can be at-

tained by utilizing the important relationship

N̂(k) =

∫
vk(x)dx , (6.40)

which can be simply computed by summing the intensity’s Gaussian component

weights; that is

N̂(k) =

Jk∑
i=1

w
(i)
k . (6.41)

6.5.3. State Extraction. One of the greatest challenges of PHD and CPHD

implementation is accurately and reliably extracting target state estimates from the

intensity function. One simple approach to state extraction involves selecting all

the components with weights that are greater than a threshold (most commonly, 0.5)

and treating the corresponding components’ means as the state estimates at that time

step [75]. This method is attractive because of its simplicity. Although this method

performs sufficiently for reasonably simple problems, it often produces inaccurate

estimates for more complex models, both in the number of estimates returned and

the estimates themselves.
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A more sophisticated and reliable method for state extraction is discussed in

Reference [76]. This maximum likelihood-based method is performed in three steps:

clustering, mode finding, and blending. First, the means of the posterior intensity

components are clustered together using the K-means algorithm [77]. The centers of

these clusters serve as the initial guesses in the optimization problem that finds the

point of locally maximum likelihood. Finally, these points, or peaks, are “blended” by

averaging all of the components’ means in close proximity of the peak. The blended

estimates are sorted by their likelihood, and the highest N̂(k) are taken as the state

estimates.

6.5.4. Multitarget Miss Distance. Wherein single-target filtering a mul-

titude of error metrics are readily available, in multitarget filtering, the concept of a

“miss distance” is not well-defined. This notion is especially true when attempting to

quantify the miss distance between two unequally-sized sets. One proposed metric,

known as the optimal subpattern assignment (OSPA) metric [78], defines the pth-order

miss distance between two arbitrary sets X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}

as

d̄(c)p (X,Y ) ,

[
1

n

(
min
π∈Πn

m∑
i=1

d(c)(xi,yπ(i))
p + cp(n−m)

)]1/p
, (6.42)

if m ≤ n, and d̄
(c)
p (X,Y ) , d̄

(c)
p (Y ,X) if m > n. Establishing d(x,y) to be a

distance of some sort (treated as Euclidean in this study) between x and y, the

modified distance d(c) is defined as d(c)(x,y) , min
(
c, d(x,y)

)
with cut-off distance c.

The cut-off distance c effectively controls how much a cardinality error is penalized

relative to localization penalties. For the case p = 1, c is exactly the penalty assigned

to each missing target. Note that the OSPA metric is minimized over the set Πk of

permutations on {1, 2, . . . , k}. In other words, when evaluating the accuracy of a set of

state estimates, every possible match between estimate and truth is considered. This
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combinatoric nature can be computationally troublesome in naive implementations of

the OSPA. Fortunately, a fast implementation of this calculation, as well as further

explanation and analysis of the OSPA metric, is provided in Reference [65].

6.6. TRACKING SIMULATION

The performance of the CPHD filter as well as the PHD filter [75, 79] is inves-

tigated in the context of a simulated debris cloud tracking problem. The inspector

satellite occupies a 400 km altitude circular Earth orbit. For simplicity, the satellite

is modeled to rotate with the Hill frame, such that the inspector’s cameras always

point along the positive Ŝ axis of the Hill frame (Figure 2.1), and perfect attitude

knowledge is assumed.

Two cameras are fixed to the inspector spacecraft, and due to the chosen

rotation of the inspector spacecraft, their locations within the Hill frame are constant

and are described by

d c1 = [−2, 0]T [m] and d c2 = [2, 0]T [m] .

Measurements from the stereo imager (comprised of the two cameras) are received

every 60 seconds in the form of bearings angles. In the synthesis of these measure-

ments, the true angles are corrupted by zero-mean Gaussian noise with a standard

deviation of 750 [arcsec], which corresponds to a five pixel deviation on a 1080×1080

pixel focal plane array with a 45 [deg] FOV. Targets are treated as undetectable

if they fall outside of either camera’s FOV or are more than 150 [m] away from ei-

ther camera. False alarms are generated in accordance with a Poisson cardinality

distribution (Eq. (6.36)) with mean λV = 2 returns per collection.

Targets are initialized in close proximity to the inspector spacecraft, and their

true initial relative states are listed in Table 6.2. The initial target cardinality pmf is
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initialized as uniform between zero and nineteen; that is

Pr(N(0) = n) = 0.05 ∀ n ∈ {0, . . . , 19} .

In plain terms, it is initially assumed that it is equally probable that the total number

of targets is anywhere between zero and nineteen. The initial states are propagated

using CW dynamics to produce the truth model, of which the positional histories

are shown in Figure 6.7. For convenience, the intensity function is initialized with

component means at the visible targets’ true states, with component covariances given

by P
(i)
0 = diag{22, 22, 0.012, 0.012} in m2 and m2/s2 as shown in Figure 6.8. It is

clear from Figure 6.7 that only six of the nine targets are initially visible to both

cameras, and thus, only six targets are represented in the initial intensity function,

as seen in Figure 6.8a. Due to the relatively large uncertainty in the initial relative

velocity intensity, the six unique target velocities are indistinguishable in Figure 6.8b.

Table 6.2. Initial relative states of targets.

Target x [m] y [m] ẋ [m/s] ẏ [m/s]
1 4.96026332 38.32210715 0.00441559 -0.01124242
2 5.39555258 18.63914052 -0.00715109 -0.00773215
3 -11.33700072 36.87592374 0.00532677 0.02230584
4 -8.86908651 23.98647305 -0.00436219 0.01892312
5 -14.29718807 27.12171413 -0.00070161 0.02893518
6 -3.07473223 14.79459501 -0.00459050 0.00995115
7 -0.16750985 18.95011169 -0.00591691 -0.00320291
8 -6.24943905 39.15861624 0.00750975 0.00747834
9 -16.15237908 18.14938250 -0.00111060 0.03229021

The PHD filter and CPHD filter are employed to recursively predict and cor-

rect the intensity function. Using Equations (6.38) and (6.41), the cardinality esti-
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Figure 6.8. Initial relative position and velocity intensities. Six of the nine targets
are represented in the initial intensity. Due to the relatively high uncertainty in the
relative velocities, the individual contributions of the targets are indistinguishable.
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mates for the CPHD and PHD solutions, respectively, are computed and compared

to the true target cardinality in Figure 6.9. As shown, the three targets that are not

accounted for by the initial intensity function are instantiated over the first several

time steps via the birth process. The PHD filter overestimates the cardinality for

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
6

7

8

9

10

t [hr]

N
(k
)

Truth
PHD
CPHD

Figure 6.9. PHD and CPHD cardinality estimates and true target cardinality.

two of these three births, and in general, exhibits much less accurate cardinality es-

timates than its cardinalized counterpart. For a closer examination of the CPHD’s

cardinality estimate, the cardinality error and pmf standard deviation are provided

in Figure 6.10. Note that shortly after t = 1.5 [hr], the cardinality error falls below

64-bit machine precision, thus making the log error undefined.

At each time step, the posterior intensity GM is reduced using a merging

threshold of U = 0.1 and a pruning threshold of T = 1 × 10−5. After GM re-

duction, the state estimates are extracted from the PHD and CPHD intensities us-
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Figure 6.10. CPHD cardinality statistics.

ing the clustering/mode-finding/blending technique as described in Section 6.5.3.

The x and y position coordinates of the extracted states are shown over time in

Figures 6.11-6.12.

As is apparent in Figures 6.11 and 6.12, a false target state is consistently

extracted from the PHD intensity. Recall that the number of estimates returned by

the state extraction process directly corresponds to N̂(k). Because the PHD solution

consistently over-estimates the target cardinality (Figure 6.9), the state extraction

routine provides an extraneous target estimate corresponding to the next-highest

likelihood point.

For clarity, Figures 6.11 and 6.12 are repeated with different scales in Fig-

ures 6.13 and 6.14, respectively. As seen at many of the time steps, some estimates

extracted from PHD solution do not fall near the true tracks. Examples of this trend

are labeled in Figures 6.13 and 6.14 using the marker 1 . In contrast to the PHD so-

lution state estimates, the estimates taken from the CPHD always closely agree with

true tracks with only a few exceptions. However, on multiple occasions, a target’s
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Figure 6.11. Comparison of x-coordinate position estimates to the true x-coordinate
position histories.
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Figure 6.12. Comparison of y-coordinate position estimates to the true y-coordinate
position histories.
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Figure 6.13. Comparison of x-coordinate position estimates to the true x-coordinate
position histories. 1 denotes instances of PHD false extraction. 2 denotes in-
stances of CPHD missed tracks due to duplicate extractions.
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Figure 6.14. Comparison of y-coordinate position estimates to the true y-coordinate
position histories. 1 denotes instances of PHD false extraction. 2 denotes in-
stances of CPHD missed tracks due to duplicate extractions.
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true state has no corresponding state estimate from either intensity solution. These

instances are labeled in Figures 6.13 and 6.14 using the marker 2 . In the case of

the CPHD, these “missing” estimates are the result of the state extraction routine

producing one or more duplicate estimates in lieu of the unaccounted target(s). Du-

plicate estimates occur when two or more local maxima are found in close proximity

and the corresponding likelihoods are large enough to make the N̂(k)-highest “cut.”

Note that these duplicates cannot simply be discarded, as it is possible for two or

more closely-spaced targets to produce a similar result. Although not pursued in

this study, proper tuning of the state extraction parameters can greatly reduce the

number of false duplicates. In the case of the PHD, the missing estimates are either

the result of duplicate estimates, false estimates caused by an inaccurate cardinality

estimate, or simply poor accuracy in the PHD intensity solution.

The miss distance between these extracted state estimates and the true target

states is computed using the OSPA metric [78]. In order to maintain a physical

interpretability, the metric is computed using only the relative position coordinates

of the states; this allows the cutoff distance c to be defined using physical units.

Here, a cutoff of c = 10 [m] is chosen. In the computation of the OSPA metric, in a

given permutation π, if the distance between the true position state xi and estimated

position state yπ(i) exceeds 10 [m], it is treated as a missed target. With this, the

OSPA metric is computed and shown in Figure 6.15. The accuracy of the CPHD

clearly filter exceeds that of the PHD filter with the exception of only a few time

steps, as is expected. The first-order OSPA metric (p = 1) can be interpreted as a

measure of the “per target” error. With this interpretation, both the PHD and CPHD

filters achieve a submeter level per target tracking errors during the first 0.2 [hr] of

the simulation due to the close proximity of the targets. As the targets drift farther

away, the OSPA metric increases slightly for both solutions. The maximum per target

errors experienced are ∼6 [m] for the PHD filter and ∼5 [m] for the CPHD filter.
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Figure 6.15. First-order OSPA metric with cutoff c = 10 [m].

It is often accepted that the CPHD filter requires additional execution time

in its recursion in comparison to the PHD because of its cubic complexity in mea-

surements. This generalization, however, is only valid under the assumption that the

number of components between the PHD and CPHD intensity mixtures remains the

same. In many cases, such as the presented example, the CPHD update and subse-

quent reduction step, in fact, produces a more tightly concentrated intensity function

with far fewer components. To that end, the total recursion time, or time elapsed

from the beginning of the prediction step to the end of the correction step, for the

CPHD filter is often less than the PHD filter. This trend is exemplified in Figure 6.16,

which compares the nondimensional execution times of the PHD and CPHD filters.

As execution time is highly system-dependent, all of the times are divided by the

maximum execution time, such that all of the execution times fall between zero and

one. As shown in Figure 6.16, in this example, the PHD filter is responsible for the



112

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

t [hr]

N
on

d
im

en
si
on

al
R
ec
u
rs
io
n
T
im

e

PHD
CPHD

Figure 6.16. Nondimensionalized recursion execution times.

highest single-step recursion time. In fact, the recursion time of the CPHD filter is

often less than that of the PHD filter, specifically during and following time steps

when new targets are instantiated.

The simulation presented in this study is far from exhaustive. There exist far

too many simulation parameters to consider an exhaustive study of their influence on

filter performance. These parameters include, but are not limited to, number of tar-

gets, frequency and cardinality of births, measurement noise distribution, frequency of

measurements, camera baseline separation, frequency and distribution of false alarms,

and choice of GM reduction method. Although such a study is not pursued, it should

noted that the simulation parameters are chosen here to reflect reasonable multitarget

scenarios and small satellite hardware; values are not “cherry-picked” to support any

hypothesis. It thus stands to reason that the trends observed in cardinality accuracy,

localization accuracy, and recursion execution time are not unique to the presented

results and can be observed for a variety of simulation parameter selections.
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7. CONCLUSIONS

A Lambert solver for relative satellite motion is presented, which computes

an initial relative velocity of a satellite given two unique relative positions and their

associated times. The relative Lambert solver finds all of the relative velocity vectors

that satisfy a set of CW2 equations, which can be expressed mathematically as a set

of degree-two trivariate polynomials and geometrically as three quadric surfaces. The

solutions of these polynomials are computed non-iteratively using Macaulay resultant

expressions and eigendecomposition methods. This second-order relative Lambert

solver, or CW2 solver, is compared to the first-order Clohessy-Wiltshire (CW) solver

equivalent, as well as a method that involves mapping the relative vectors back into

the inertial frame and performing a traditional Lambert solver. It is shown that the

CW2 solver, in terms of solution accuracy, surpasses the CW solver by several orders

of magnitude, and that sub-centimeter miss-distances are consistently achieved except

for in the degenerate cases when the time of flight is equal to the orbital half-period.

The applications of Gaussian mixture models and space-based stereoscopic

imaging to satellite close proximity operations are presented. The limitations of typ-

ical stereoscopic measurement schemes are mitigated by using stereoscopic geometry

to bound relative position range, for which uniform uncertainty is assumed. It is

shown that the uniform range uncertainty can be approximated with a mixture of

Gaussian probability density functions (pdfs). By applying these approximations

over two discrete measurements and linking all possible combinations of the Gaussian

components with a relative Lambert solver, a full state Cartesian pdf is composed.

For single-target tracking, the resultant pdf is further refined by processing subse-

quent angle measurements in a Bayesian framework, which results in high accuracy

relative orbit determination.
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When performing bearings-only initial relative orbit determination (IROD), it

is found that, in general, using measurements taken farther apart in time results in

initial pdfs that are more tightly concentrated about the mean; that is, they have less

uncertainty. One exception to this trend is when measurements are taken at integer-

multiples of the orbital half-period, as there exist infinitely many relative velocity

solutions that satisfy such a set of measurements. By examining the Shannon en-

tropies of the pdfs, it is shown that the pdf’s correlations and higher-order moments

are more influential at larger along-track separation distances. A Monte Carlo simu-

lation with synthetic data characterizes the performance of the Bayesian filter, which

demonstrates average tracking errors of less than 10 [cm] and 10 [µm/s] in relative po-

sition and velocity, respectively, in a common relative orbit determination scenario,

where synthetic angular measurements with a standard deviation of 67 [arcsec] are

processed at 1 [Hz]. Finally, it is shown that these errors can be improved by widen-

ing the separation between the stereo cameras, and that doubling the baseline can

result in a twofold improvement in accuracy.

Multitarget frameworks for tracking an unknown number of noncooperative

targets in nearby orbits from a space-based platform using the probability hypothesis

density (PHD) and cardinalized probability hypothesis density (CPHD) filters are

presented. The relative motion of several targets and the number of targets are esti-

mated by propagating the first-moment approximation of the multitarget pdf and the

target cardinality distribution, respectively. A stereoscopic imaging system onboard

the inspector satellite produces noisy inspector-to-target angular measurements and

sporadic false alarms, both of which are processed jointly to refine the state and

cardinality estimates. A measurement-driven model for introducing previously un-

tracked targets into the tracking solution is formulated using the bearings-only IROD

algorithm.
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To evaluate the performance of the presented multitarget frameworks, a satel-

lite debris cloud tracking problem is simulated using synthetic measurements, in which

stereoscopic angle measurements are corrupted with 750 [arcsec] standard deviation

white noise. A total of nine targets are tracked, and the Gaussian mixture imple-

mentations of the PHD and CPHD filters are compared based on their state estimate

accuracy, cardinality estimate accuracy, and recursion execution time. In the pre-

sented example, the CPHD filter consistently produces solutions that are far more

accurate than the PHD filter in their state and cardinality estimates. Furthermore,

when the Gaussian mixture representations of the intensity are subjected to the same

pruning/merging rules, the resulting CPHD intensity solution often contains signifi-

cantly fewer components and thus benefits from shorter total execution times in its

subsequent recursions. In the presented example, the highest execution time savings

of the CPHD filter over the PHD filter are observed when new targets are introduced

into the tracking solutions times.



APPENDIX: CW2 SYSTEM MATRIX

By consolidating the redundant state elements in the Kronecker form state x⊗

(42× 1) to form the new state x̄ (27× 1), the system matrix Ā is reduced to

Ā =



03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

Ā21 Ā22 Ā23 03×3 Ā25 Ā26 03×3 03×3 03×3

03×3 03×3 03×3 Ā34 Ā35 03×3 Ā37 03×3 03×3

03×3 03×3 Ā43 Ā44 03×3 03×3 03×3 I3×3 03×3

03×3 03×3 Ā53 03×3 03×3 Ā56 Ā57 Ā58 03×3

03×3 03×3 03×3 03×3 Ā65 03×3 Ā67 03×3 Ā69

03×3 03×3 Ā73 03×3 03×3 Ā76 Ā77 Ā78 Ā79

03×3 03×3 03×3 Ā84 03×3 03×3 Ā87 Ā88 Ā89

03×3 03×3 03×3 03×3 03×3 03×3 Ā97 Ā98 03×3


where

Ā21 = n2
0


3 0 0

0 0 0

0 0 −1

 , Ā22 = 2n0


0 1 0

−1 0 0

0 0 0

 , Ā23 =
3n2

0

R0


−1 0 0

0 1 0

0 0 1

 ,

Ā25 =
3n2

0

2R0


1 0 0

0 0 0

0 0 0

 , Ā26 =
3n2

0

2R0


0 0 1

0 0 0

0 0 0

 , Ā34 =


2 0 0

0 1 0

0 0 1

 ,
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Ā35 =


0 0 0

0 0 1

0 0 0

 , Ā37 =


0 0 0

0 0 0

1 0 0

 , Ā43 = Ā21 , Ā44 = Ā22 ,

Ā53 = 3n2
0


0 0 0

0 0 0

0 1 0

 , Ā56 =


2 0 0

0 1 0

2n0 0 0

 , Ā57 =


0 0 0

0 1 0

0 0 0

 ,

Ā58 =


0 0 0

0 0 0

0 1 0

 , Ā65 = n0


0 0 −2

0 −n0 0

0 0 0

 , Ā67 =


0 0 0

0 0 0

0 0 2

 ,

Ā69 =


1 0 0

0 1 0

0 0 0

 , Ā73 = 3n2
0


0 0 1

0 0 0

0 0 0

 , Ā76 = n2
0


0 0 0

0 0 0

0 0 −1

 ,

Ā77 =Ā22 , Ā78 =


0 0 1

0 0 0

0 0 0

 , Ā79 =


0 0 0

0 1 0

0 0 1

 ,

Ā84 = 3n2
0


2 0 0

0 1 0

0 0 1

 , Ā87 = n2
0


0 0 0

0 0 0

−1 0 0

 , Ā88 = 2n0


0 2 0

−1 0 0

0 0 0

 ,

Ā89 = 2n0


0 0 0

1 0 0

0 1 0

 , Ā97 = n2
0


0 0 0

0 −1 0

0 0 −2

 , Ā98 = 2n0


0 −2 0

0 0 −1

0 0 0

 .
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