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ABSTRACT 

 

Compliant mechanisms have shown a great deal of potential in the last few 

decades in providing better solutions to design problems with numerous benefits; 

however, their use has been limited due to current challenges in the material selection.  

With ever increasing focus on the applications of compliant mechanisms, it is necessary 

to find alternatives to the existing materials and methods of prototyping.  The purpose of 

this work is to develop a methodology for pseudo-rigid-body models of compliant 

segments with compliant inserts, comprised of a resilient material placed between the 

layers of a softer material, to alleviate any creep and strength issues associated with the 

softer material.  The pseudo-rigid-body models (PRBMs) for such beams subjected to 

various boundary conditions are presented and validated by means of analytical and 

experimental methods. 

Pseudo-rigid-body models are used to devise simple methods of large deflection 

analysis, and help expedite the compliant mechanism design process.  A method to 

improve the accuracy of the PRBM of a fixed-free beam by evaluating more accurate 

values of the stiffness coefficient is also presented. 



iv 
 

ACKNOWLEDGMENTS 

 

I would like to express my deepest gratitude and thanks to my advisor Dr. Ashok 

Midha for his never ending support, and excellent guidance throughout the duration of 

this research study.   His continual encouragement and unflagging enthusiasm have been 

very inspiring, and have contributed significantly to the success of this work.  I would 

also like to express my thanks to Dr. John Sheffield and Dr. Shun Takai for their 

invaluable time and effort as my committee members. 

I would like to express a special thanks to my friend and research partner Sushrut 

Bapat for his valuable guidance and help during the experimental stage.  It has been a 

pleasure working with him over the past two years.  I wish to sincerely thank my other 

research partners, Ashish Koli and Vivekananda Chinta, and all my friends at Missouri 

S&T for the many enlightening conversations throughout this research effort.  Support in 

the form Graduate Teaching Assistantships provided by the Department of Mechanical 

and Aerospace Engineering, Missouri S&T, is gratefully acknowledged. 

Finally, I am deeply indebted to my parents, Mr. Sharadchandra Kuber, Mrs. 

Savita Kuber, my sisters Mrs. Meenakshi Kulkarni and Mrs. Snehal Kulkarni for their 

unconditional love and support, and God Almighty for guiding me through the various 

stages of my life. 

 

 

  



v 
 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................. ix 

LIST OF TABLES ........................................................................................................... xiii 

 

SECTION 

1. INTRODUCTION ....................................................................................................... 1 

1.1. COMPLIANT MECHANISMS ........................................................................... 1 

1.2. HISTORICAL BACKGROUND ......................................................................... 3 

1.3. SCOPE OF THE INVESTIGATION ................................................................... 6 

2. LARGE DEFLECTION ANALYSIS ......................................................................... 8 

2.1. INTRODUCTION ................................................................................................ 8 

2.2. CANTILEVER (FIXED-PINNED) BEAM WITH A FORCE AT THE FREE    

       END .................................................................................................................... 10 

2.2.1. Closed-Form Elliptic Integral Solution. ....................................................... 11 

2.2.2. Pseudo-Rigid-Body Model. ......................................................................... 13 

2.3. INITIALLY-CURVED FIXED FREE SEGMENT ........................................... 16 

2.3.1. Closed-Form Elliptic Integral Solution. ....................................................... 17 

2.3.2. Pseudo-Rigid-Body Model. ......................................................................... 19 

2.4. INITIALLY-STRAIGHT SMALL-LENGTH FLEXURAL PIVOT ................ 21 

2.4.1. Closed-Form Elliptic Integral Solution. ....................................................... 22 

2.4.2. Pseudo-Rigid-Body Model. ......................................................................... 27 

2.5. INITIALLY-CURVED SMALL-LENGTH FLEXURAL PIVOT .................... 29 



vi 
 

2.5.1. Closed-Form Elliptic Integral Solution. ....................................................... 30 

2.5.2. Pseudo-Rigid-Body Model. ......................................................................... 33 

2.6. INITIALLY-CURVED PINNED-PINNED SEGMENT ................................... 37 

2.6.1. Closed-Form Elliptic Integral Solution. ....................................................... 37 

2.6.2. Pseudo-Rigid-Body Model. ......................................................................... 38 

2.7. FIXED-GUIDED COMPLIANT BEAM WITH AN INFLECTION POINT ... 41 

2.7.1 Closed-Form Elliptic Integral Solution. ........................................................ 41 

2.7.2. Pseudo-Rigid-Body Model. ......................................................................... 43 

2.8. SUMMARY ....................................................................................................... 49 

3. A METHOD FOR A MORE ACCURATE EVALUATION OF THE  

    STIFFNESS COEFFICIENT IN PSEUDO-RIGID-BODY MODEL (PRBM) ....... 50 

3.1. INTRODUCTION .............................................................................................. 50 

3.2. IMPROVED �� EQUATION FOR COMPRESSIVE LOADS, OR POSITIVE   

       LOAD FACTOR ................................................................................................ 56 

3.3. IMPROVED �� EQUATION FOR TENSILE LOADS, OR NEGATIVE  

       LOAD FACTOR ................................................................................................ 59 

3.4. AVERAGE �� VALUES ................................................................................... 63 

3.5. EXAMPLE ......................................................................................................... 64 

3.6. SUMMARY ....................................................................................................... 67 

4. PSEUDO-RIGID-BODY MODEL FOR COMPLIANT SEGMENTS WITH  

    INSERTS FOR VARIED BOUNDARY CONDITIONS AND CASES .................. 68 

4.1. INTRODUCTION .............................................................................................. 68 

4.2. EQUIVALENT SPRING STIFFNESS .............................................................. 68 

4.3. CANTILEVER BEAM WITH AN INSERT AND A FORCE AT THE FREE   

       END .................................................................................................................... 71 

4.3.1. Closed-Form Elliptic Integral Solution. ....................................................... 72 



vii 
 

4.3.2. Equivalent Pseudo-Rigid-Body Model. ....................................................... 73 

4.3.3. Stress Calculations. ...................................................................................... 77 

4.4. INITIALLY-CURVED FIXED-FREE BEAM WITH AN INSERT ................. 78 

4.4.1. Closed-Form Elliptic Integral Solution. ....................................................... 79 

4.4.2. Equivalent Pseudo-Rigid-Body Model. ....................................................... 81 

4.5. INITIALLY-STRAIGHT SMALL-LENGTH FLEXURAL PIVOT WITH 

      AN INSERT ........................................................................................................ 84 

4.5.1. Closed-Form Elliptic Integral Solution. ....................................................... 85 

4.5.2. Equivalent Pseudo-Rigid-Body Model. ....................................................... 86 

4.6. INITIALLY-CURVED SMALL-LENGTH FLEXURAL PIVOT WITH AN  

       INSERT .............................................................................................................. 88 

4.6.1. Closed-Form Elliptic Integral Solution. ....................................................... 89 

4.6.2. Equivalent Pseudo-Rigid-Body Model. ....................................................... 91 

4.7. INITIALLY-CURVED PINNED-PINNED SEGMENT WITH AN INSERT . 94 

4.7.1. Closed-Form Elliptic Integral Solution. ....................................................... 94 

4.7.2. Equivalent Pseudo-Rigid-Body Model. ....................................................... 96 

4.8. FIXED-GUIDED COMPLIANT BEAM WITH AN INSERT AND AN  

       INFLECTION POINT ........................................................................................ 98 

4.8.1. Closed-Form Elliptic Integral Solution. ....................................................... 99 

4.8.2. Equivalent Pseudo-Rigid-Body Model. ..................................................... 101 

4.9. SUMMARY ..................................................................................................... 108 

5. EXPERIMENTAL SETUP AND RESULTS ......................................................... 110 

5.1. INTRODUCTION ............................................................................................ 110 

5.2. EXPERIMENTAL SETUP .............................................................................. 110 

5.3. TESTING AND RESULTS ............................................................................. 114 



viii 
 

5.3.1. Experiment 1 – Vertical Loading. .............................................................. 117 

5.3.2. Experiment 2 – Vertical and Compressive Loading .................................. 120 

5.3.3.  Experiment 3 – Vertical and Tensile Loading. ......................................... 124 

5.4. CREEP TEST ................................................................................................... 126 

    5.4.1 Creep........................................................................................................... 127 

    5.4.2 Creep Recovery. ......................................................................................... 129 

5.5. DISCUSSION OF RESULTS. ......................................................................... 130 

5.6. SUMMARY ..................................................................................................... 131 

6. CONCLUSIONS AND RECOMMENDATIONS .................................................. 132 

6.1. CONCLUSIONS .............................................................................................. 132 

6.2. FUTURE WORK ............................................................................................. 133 

BIBLIOGRAPHY ........................................................................................................... 135 

APPENDICES 

       A. PLOTS COMPARING THE OLD AND NEW �� EQUATIONS FOR  

            VARYING LOAD FACTOR. ............................................................................ 141 

       B. MAPLE CODE FOR PRBM RESULTS OF EXPERIMENTS 1 AND 2. ......... 150 

       C. MAPLE CODE FOR PRBM RESULTS OF EXPERIMENT 3. ........................ 153 

VITA ............................................................................................................................... 156 

 

  



ix 
 

 LIST OF ILLUSTRATIONS  

Figure               Page 

1.1.  Compliers
®

: A Compliant Fish Hook Remover ......................................................... 1 

1.2.  Compliant Grippers ..................................................................................................... 3 

2.1.  A Cantilever Beam with Forces at Free End ............................................................ 10 

2.2.  Pseudo-Rigid-Body Model of an End-Force-Loaded Cantilever Beam ................... 13 

2.3.  Initially-Curved Beam with Forces at Free End ....................................................... 16 

2.4.  Beam Shapes for Various κ� ..................................................................................... 17 

2.5.  Pseudo-Rigid-Body Model of an Initially-Curved Cantilever Beam ....................... 20 

2.6.  Initially-Straight Small-Length Flexural Pivot ......................................................... 22 

2.7.  Equivalent Forces and Moment Acting on Straight SLFP Segment......................... 24 

2.8.  Pseudo-Rigid-Body Model of a Straight Small-Length Flexural Pivot .................... 27 

2.9.  Beam End Deflections of an Initially-Straight SLFP ............................................... 28 

2.10.  Plot of θ0 vs. Θ for Initially-Straight SLFP ............................................................. 29 

2.11.  Initially-Curved Small-Length Flexural Pivot ........................................................ 30 

2.12.  Equivalent Forces and Moment Acting on Curved SLFP Segment ....................... 31 

2.13.  PRBM of an Initially-Curved Small-Length Flexural Pivot ................................... 34 

2.14.  Beam End Deflections of an Initially-Curved SLFP .............................................. 36 

2.15.  Plot of θ0 vs. Θ for Initially-Curved SLFP ............................................................. 36 

2.16.  Initially-Curved Pinned-Pinned Segment ............................................................... 37 

2.17.  PRBM in Deflected Position ................................................................................... 39 

2.18.  PRBM of Entire Pinned-Pinned Segment ............................................................... 39 

2.19.  Fixed-Guided Compliant Beam with End Forces and Opposing Moment ............. 41 



x 
 

2.20.  Deformed State of Fixed-Guided Compliant Beam................................................ 44 

3.1.  A Large-Deflection Cantilever Beam with End Forces nP and P ............................. 51 

3.2.  Pseudo-Rigid-Body Representation of a Large Deflection Beam ............................ 52 

3.3.  Non-Dimensional Tangential Force versus Pseudo-Rigid-Body Angle ................... 55 

3.4.  Three-Dimensional Plot of α��, Θ	and	n for Compressive Loads .............................. 56 

3.5.  A Flow-Chart of Three-Dimensional Plot ................................................................ 58 

3.6.  Three-Dimensional Plot of α��, Θ	and	n for Tensile Loads ....................................... 60 

3.7.  Calculation of Error in Approximating Beam End Deflection ................................. 61 

3.8.  Relative Error versus Beam End Angle for n = 0 .................................................... 62 

4.1.  Compliant Segment with an Insert ............................................................................ 69 

4.2.  Linear Springs in Parallel .......................................................................................... 70 

4.3.  Initially-Straight Fixed-Free Beam with an Insert and End Forces .......................... 72 

4.4.  PRBM of an Initially-Straight Fixed-Free Beam with an Insert ............................... 74 

4.5.  Beam End Deflection Comparison of an Initially-Straight Fixed-Free Beam with  

        an Insert for n = 0 .................................................................................................... 77 

4.6.  Initially-Curved Fixed-Free Beam with an Insert Subject to End Forces ................. 79 

4.7.  PRBM of an Initially-Curved Fixed-Free Beam with an Insert ................................ 82 

4.8.  Beam End Deflection Comparison of Initially-Curved Fixed-Free Beam with an   

        Insert for n = 0 ......................................................................................................... 84 

4.9.  Initially-Straight Small-Length Flexural Pivot with an Insert .................................. 85 

4.10. PRBM of an Initially-Straight Small-Length Flexural Pivot with an Insert ............ 87 

4.11.  Beam End Deflection Comparison of Initially-Straight SLFP with an Insert for  

          n = 0 ....................................................................................................................... 88 

4.12.  Initially-Curved Small-Length Flexural Pivot with an Insert ................................. 89 

4.13.  PRBM of an Initially-Curved Small-Length Flexural Pivot with an Insert ............ 92 



xi 
 

4.14.  Beam End Deflection Comparison of Initially-Curved SLFP with an Insert for  

          n = 0 ....................................................................................................................... 93 

4.15.  Initially-Curved Pinned-Pinned Segment with an Insert ........................................ 94 

4.16.  PRBM in Deflected Position ................................................................................... 96 

4.17.  PRBM of Entire Pinned-Pinned Segment with an Insert ........................................ 97 

4.18.  Beam End Deflection Comparison of Initially-Curved Pinned-Pinned Segment  

          with an Insert........................................................................................................... 98 

4.19.  Fixed-Guided Compliant Beam with an Insert and End Forces and Opposing   

          Moment ................................................................................................................... 99 

4.20.  Deformed State of Fixed-Guided Compliant Beam with an Insert....................... 102 

5.1.  The Experimental Setup - CAD .............................................................................. 111 

5.2.  Experimental Setup (a) Test Beam; (b) The Fixture; (c) The Pulley and  

        Rope; and (d) The Loading Arrangement ............................................................... 112 

5.3.  The Experimental Setup .......................................................................................... 114 

5.4.  The Test Beams – CAD (a) Exploded View; and (b) Assembly ............................ 115 

5.5.  Test Beams (a) Plastic Beam 1; (b) Plastic Beam 2; and (c) Insert Beam .............. 116 

5.6.  The Clamping.......................................................................................................... 117 

5.7.  Experiment 1 – Vertical Loading ............................................................................ 118 

5.8.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical   

        Loading ................................................................................................................... 119 

5.9.  Experiment 2 – Vertical and Compressive Loading ............................................... 120 

5.10.  The Capstan Friction Equation Experiment .......................................................... 121 

5.11.  Calculation of the Actual Force Acting on the Beam for Experiment 2 ............... 122 

5.12.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical and   

          Compressive Loading ........................................................................................... 123 

5.13.  Experiment 3 – Vertical and Tensile Loading ...................................................... 124 

5.14.  Calculation of the Actual Force Acting on the Beam for Experiment 3…………125 



xii 
 

5.15.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical and  

          Tensile Loading .................................................................................................... 126 

5.16.  Creep Test - Without Insert. .................................................................................. 128 

5.17.  Creep Test - With Insert. ....................................................................................... 129 

 

 

 

  



xiii 
 

LIST OF TABLES 

Table               Page 

Table 3.1.  Summary of Results ........................................................................................ 67 

Table 4.1.  Dependence of Pi on P and M ......................................................................... 99 

Table 4.2.  Analysis of a Fixed-Guided Compliant Segment with an Insert Subjected  

                  to Load Boundary Conditions ....................................................................... 108 

Table 5.1.  Beam End Coordinate Comparison for Vertical Loading ............................ 119 

Table 5.2.  Beam End Coordinate Comparison for Vertical and Compressive Loading 123 

Table 5.3.  Beam End Coordinate Comparison for Vertical and Tensile Loading ......... 125 

 

 

 



 

 
 

1. INTRODUCTION 

 

1.1.  COMPLIANT MECHANISMS 

A mechanism is a mechanical device used to transfer motion, force, or energy 

(Erdman and Sandor, 1991; Shigley and Uicker, 1995; and Howell, 2001).  Traditionally, 

the mechanisms are comprised of rigid links connected together through movable joints, 

or kinematic pairs (Howell, 2001).  A simple example of a rigid-body mechanism is a 

planar four-bar linkage with a single degree of freedom.  In the past couple of decades, 

research interest has had a phenomenal growth in a new class of mechanisms called 

“compliant mechanisms.”  A compliant mechanism gains some or all of its mobility from 

the deflection of at least one of its flexible members (Her, 1986; Howell and Midha, 

1993; and Howell, 2001).  A compliant fish hook remover (Compliers
®

), shown in Figure 

1.1, is one such device.   

 

 

 

Figure 1.1.  Compliers
®

: A Compliant Fish Hook Remover 
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Compliant mechanisms are an attractive alternative to their rigid-body 

counterparts due to the many potential benefits they offer the designer, mentioned below: 

a) The total number of parts in a mechanism may be significantly reduced.  The 

reduction in the number of parts, in turn, can save on manufacturing and assembly 

costs significantly.  The mechanism may even be fabricated as a single piece, using 

milling, extruding, injection molding, or other processes (Howell and Midha, 1993). 

b) The mechanism may have a reduced number of rigid-body joints, resulting in reduced 

wear, backlash, and noise, and increased mechanical precision and reliability.  The 

need for lubrication may also be eliminated (Sevak and McLarnan, 1974; and Her, 

1986). 

c) Since the mobility of compliant mechanisms involves the deflection of their flexible 

members, strain energy is stored in the flexible members.  This energy can easily be 

stored or transformed, and may be applied toward a beneficial end in the design.   

d) The energy storage characteristics may be used to design mechanisms that have 

specific force-deflection properties, or to cause a mechanism to tend to particular 

mobility positions (Howell, 2001). 

 

As examples, Compliers
®

 and Compliant Grippers (Byers, 1990; and Byers and 

Midha, 1991) illustrated in Figure 1.1 and Figure 1.2 highlight some of these advantages.  

In spite of the inherent advantages of compliant mechanisms, the use of compliant 

mechanisms has been limited due to following associated challenges (Howell, 2001): 

a) Design and analysis of a compliant mechanism is relatively more difficult than those 

of a rigid-body mechanism. 
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b) Compliant links or segments subjected to long periods of mechanical or thermal 

loading may experience creep, if fabricated from polymeric materials. 

c) Flexible segments when loaded cyclically over a period of time are prone to fatigue 

failure.   

 

 

  

        (a)                                 (b)                (c) 

Figure 1.2. Compliant Grippers (a) In Open Position; (b) Fully Compliant (One-

Piece); and (c) Grippers in Closed Position 

 

1.2.  HISTORICAL BACKGROUND 

The early efforts in the area of compliant mechanisms (Burns, 1964), and (Burns 

and Crossley 1966, 1968) addressed the challenges involved in the design of compliant 

mechanisms, and developed closed-form solutions for simple geometric shapes using a 

kinetostatic analysis, for the analysis and synthesis of compliant mechanisms.  Initial 

approximations to the problem solutions were obtained by using elliptic integral solutions 

of the undulating and nodal elastica, developed by Shoup and McLarnan (1971) and 
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Shoup (1972).  Sevak and McLarnan (1974) used finite element techniques, along with 

optimization routines, to synthesize compliant mechanisms for function generation. 

 

Her (1986), Her and Midha (1987), Howell (1993), and Murphy (1993) 

introduced the compliance number concept and investigated the mobility issues in 

compliant mechanisms.  A finite element chain approach to analysis (Harrison, 1973; 

Miller, 1980; and Coulter and Miller, 1988) was further developed, referred to as the 

chain algorithm, and applied to compliant mechanism analysis (Midha, 1983), this was 

modified and improved upon by Her (1986), Salamon (1989), Midha et al. (1922a), and 

Her et al. (1992).  Hill (1987), and Hill and Midha (1990) applied a graphical, user driven 

iterative technique for better convergence of the chain algorithm.  A general methodology 

of adding compliance to a rigid-body design to obtain a compliant mechanism was 

presented by Salamon (1989).  Salamon (1989), and Salamon and Midha (1992) studied 

the effects of compliance on the mechanical advantage of mechanisms. 

 

  Howell and Midha (1991) investigated the effects of compliance on the 

input/output characteristics of toggle mechanisms.  Byers (1990) and Byers and Midha 

(1991) designed a gripper mechanism comprised of compliant, undulating structural 

members, which helped to produce a near parallel motion of gripping fingers using the 

chain algorithm.  Nahvi (1991) used the finite element techniques to investigate the 

dynamics of large-deflection compliant mechanisms.  He introduced the concept of using 

eigenvalues of the structural stiffness matrix, obtained from static analysis of the 

compliant mechanisms, as a structural stiffness and stability indicator. 
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Howell and Midha (1994) proposed a method for the design of compliant 

mechanisms comprised of small-length flexural pivots.  The concept of using pseudo-

rigid-body models to analyze and optimize compliant mechanisms was proposed.  The 

mechanism thus obtained would be verified later using the chain algorithm with a 

Newton-Raphson shooting method.  Howell (1991), and Howell and Midha (1995) 

further developed the pseudo-rigid-body model concept by presenting kinematic models 

for initially-straight cantilevered flexible segments, subjected to end-force loading, pure 

moment loading, and certain combined end-force and moment loading.  Norton (1991) 

developed a stiffness coefficient definition for initially-straight, end-force loaded 

compliant members, to understand their force-deflection characteristics. 

 

Murphy (1993) modified and expanded the existing type synthesis theory to 

include the complexities and unique features of compliant mechanisms, and proposed a 

novel method for the type synthesis of compliant mechanisms.  Norton (1991), Midha et 

al., (1992b), Midha et al., (1992c), and Midha et al., (1994) proposed the nomenclature 

and classification of compliant mechanisms.  Norton (1991), and Midha et al. (2000) used 

the triangle inequality concept (Midha et al., 1986; Norton et al., 1991, 1993, 1994; and 

Khanuja et al., 1994) and the pseudo-rigid-body model to investigate the kinematic 

mobility issues associated with compliant mechanisms.   

 

Howell and Midha (1996) presented a generalized loop-closure synthesis 

technique for simple, yet efficient design of compliant mechanisms using the pseudo-

rigid-body model concept.  In this technique, the kinematic synthesis equations were 
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combined with the work-energy equations obtained from virtual work principles, to 

account for the strain energy stored in flexible members.  Mettlach and Midha (1999) 

proposed the characteristic deflection domain concept for planar compliant members 

subjected to end-force loading and certain combined end-force and moment loading.  The 

concept of using average, single- or multi-segment pseudo-rigid-body models for planar 

compliant members of known geometry, to obtain initial estimates of end forces and/or 

moment for prescribed displacement boundary conditions, was introduced.  Mettlach and 

Midha (1995, 1996) also implemented a graphical or analytical synthesis technique and 

Burmester theory using input torque and/or potential energy considerations in compliant 

mechanism design. 

 

1.3.  SCOPE OF THE INVESTIGATION 

The objective of this work is to present a methodology for the development of 

pseudo-rigid-body models (PRBMs) of compliant segments with inserts, i.e., a strong 

material inside outer layers of a softer material, to alleviate the creep and strength issues 

associated with the softer material.  Section 2 presents a brief overview of two important 

methods adopted by various researchers for the large deflection analysis of flexible 

beams. 

 

Section 3 presents a method to improve the accuracy of the PRBM of a fixed-free 

beam by expressing the stiffness coefficient (�Θ) as a function of the pseudo-rigid-body 

angle, Θ and the load factor, n.  The improved expressions of stiffness coefficient for 

compressive and tensile loading have been evaluated and presented. 
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Section 4 presents a pseudo-rigid-body model based approach, for the analysis 

and modeling of compliant beams with inserts for various boundary conditions and cases.  

The PRBMs presented are validated using elliptic integral solutions and finite element 

analysis solutions.  Section 5 deals with the experimental testing and validation of a 

fixed-free compliant beam with an insert subject to vertical, vertical and compressive and 

vertical and tensile loading.  The results of an experiment comparing the creep behavior 

of plastic beams with and without insert material are discussed as well. 

 

Section 6 presents a brief summary of the current research effort, and offers 

recommendations for future study. 
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2. LARGE DEFLECTION ANALYSIS 

 

2.1.  INTRODUCTION 

Compliant mechanisms generally comprise of one or more flexible members that 

may be required to undergo large deflections.   The geometrically nonlinear deflections 

often associated with the motion of compliant mechanisms increase the complexity of 

analysis and design of the flexible members and requires special considerations in 

deriving methods for their analysis.  Much research has been undertaken into the analysis 

of large-deflection members (Howell, 1991).  The linearized beam equations assume 

small deflection, and limit the applications to small-motion mechanisms.  These 

equations are inadequate for the analysis of structural members that undergo large 

deflections. 

 

The Bernoulli-Euler equation states that the bending moment is proportional to 

the beam curvature, i.e. 

 � = ���� = ��� + 1�� (2.1) 

Where, � is the curvature, M is the internal moment, � the slope of the beam, s the 

length along curved beam, and �� the flexural rigidity, and �� the initial undeflected 

radius of curvature of the beam at a given point. 

 

For an initially-curved beam with a constant curvature, 1/ iR  is a constant.  A 

special case is a beam with zero initial curvature referred to as an initially-straight beam.  

The curvature may be written as, 
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������ =

������
�1 + ��������

 �  
(2.2) 

where, y is the transverse deflection and x the coordinate along the undeflected beam 

axis.  For small deflections, !"#"$%� is assumed to be negligibly small compared to unity.  

This assumption leads to the classical Euler-Bernoulli moment-curvature equation as 

follows (Shigley and Mischke, 2003): 

 � = �� &������' (2.3) 

However, when the beam undergoes large deflections, the slope  
"#"$ may no longer be 

small and a small-deflection assumption will produce inaccurate results. 

 

Analysis methods such as the closed-form solution, numerical methods, and 

pseudo-rigid-body approximations are used for compliant mechanisms as well.  

Bernoulli, in the 17
th

 century, began the theoretical treatment of beam deflection.  Later, 

in the 18
th

 century, Euler developed the differential equation for slender beam deflection 

curves.  Bisshopp and Drucker (1945) first derived a closed-form solution for large 

deflection cantilever beams with a vertical end load using elliptic integrals.  Frisch-Fay 

(1962) summarized in a monograph, methods used by researchers to arrive at solutions. 

 

Howell (1991) presented generalized, closed-form elliptic integral solutions for 

straight flexible members subjected to combined end force and moment.  These were 

used to develop equivalent pseudo-rigid-body models (PRBMs) for large deflection 
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members.  In recent years, the closed-form elliptic integral and PRBM solutions for 

various cases and boundary conditions have been developed.  This section provides a 

brief overview of these two distinct methods for standard compliant segments subjected 

to various boundary conditions. 

 

2.2. CANTILEVER BEAM (FIXED-PINNED) WITH A FORCE AT THE FREE 

END  

Figure 2.1 shows an initially-straight cantilever beam of length l and flexural 

rigidity EI subjected to non-follower horizontal and vertical end forces nP and P, 

respectively.  The combined end forces may be treated as a single force F acting at an 

angle (, where ( = tan*+ !− +-%. 

 

 

 

Figure 2.1.  A Cantilever Beam with Forces at Free End 
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2.2.1. Closed-Form Elliptic Integral Solution.  Bisshopp and Drucker (1945) 

used the elliptic integrals to find a closed-form solution for a large deflection cantilever 

beam subjected to a vertical end load.  Burns (1964), Burns and Crossley (1968), Shoup 

and McLarnan (1971), Shoup (1972), and Winter and Shoup (1972) used these closed-

form solutions in the analysis of flexible-link mechanisms.  Howell (1991) presented 

generalized, elliptic integral equations for the end deflection of a flexible cantilever beam 

of uniform cross section subjected to a combined end force and moment loading. 

 

From the generalized elliptic integral solutions (Howell, 1991), the beam end 

coordinates of the above cantilever beam may be given by: 

for beam end angle �� < (, 

 

/ = 101 23 242 , 67 − 3[9, 6]7 (2.4) 

;< = 1/1= �⁄ ?−@1 AB3 242 , 67 − 3[9, 6]C + 2 B�[9, 6] − � 242 , 67CD
+ 021(1 + F) cos 9K (2.5) 

Ll = 1/1= �⁄ ?1 A23 242 , 67 − 3[9, 6]7 + 2 B�[9, 6] − � 242 , 67CD
+ @021(1 + F) cos 9K (2.6) 
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where, 

/ = NO<���  (2.7) 

F = 1 cos(�� − () (2.8) 

1 = 01 + @�; 												( = tan*+ �− 1@� 
(2.9) 

9 = sin*+N1 − @1 + F ; 												6 = N@ + F21  (2.10) 

 

and, 3[R, S] and	�[R, S] denote the incomplete elliptic integrals of the first kind and 

second kind respectively, with amplitude R	and modulus q, calculated as, 

3[R, S] = T ��01 − S� sin� �U
�  (2.11) 

�[R, S] = T 01 − S� sin� �U
� �� (2.12) 

The elliptic integral solutions discussed above yield greater accuracy in large 

deflection analysis; however, these methods could only be applied to relatively simple 

geometries and loadings, and is often associated with convergence difficulties while 

solving set of nonlinear equations.  The method also requires several simplifying 

assumptions such as linear material properties and inextensible members (Howell, 2001).  

A more simplified and efficient model was needed for the analysis of large deflection 

members. 

 



13 
 

2.2.2. Pseudo-Rigid-Body Model.  Howell and Midha (1995) developed a 

physical model, called the pseudo-rigid-body model (PRBM), utilizing the observations 

of the nearly circular nature of beam end deflection paths in the elliptic integral solutions.  

In a PRBM, a compliant beam is simulated by rigid segments that are connected by a pin 

joint (characteristic pivot).  A torsional spring is placed at the pin joint to simulate the 

beam compliance.  Figure 2.2 shows the equivalent pseudo-rigid-body model of an 

initially-straight cantilever beam of length l and flexural rigidity EI subject to non-

follower horizontal and vertical end forces nP and P, respectively. 

 

 

 

Figure 2.2.  Pseudo-Rigid-Body Model of an End-Force-Loaded Cantilever Beam 
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A PRBM for a fixed-free compliant beam consists of two rigid segments pinned 

at the characteristic pivot.  The beam’s resistance to bending, or compliance, is modeled 

through a torsional spring located at the characteristic pivot.  The characteristic radius 

factor γ helps locate the characteristic pivot along the undeformed beam geometry and is 

determined through optimization such that the characteristic radius γW will trace the beam 

end deflection path to within a defined error of 0.5% with respect to the corresponding 

closed-form elliptic integral solution (Howell, 1991).  The beam end angle is denoted as 

��, pseudo-rigid-body angle as Θ, vertical displaced position of the beam end as ‘b’, and 

the horizontal displaced position as ‘a’. 

 

In addition to the foundational work of Howell and Midha (1995), Pauly and 

Midha (2004) improved upon the PRBM parameters for a fixed-free compliant beam 

subjected to end forces, discussed briefly below. 

The characteristic radius factor γ is given as: 

 9 = 0.855651 − 0.016438@, for − 4 < @ ≤ −1.5 
(2.13) 

 9 = 0.852138 − 0.01861@, for − 1.5 < @ ≤ −0.5 
 

9 = 0.851892 − 0.020805@ + 0.005967@� − 0.000895@ 
+ 0.000069@a − 0.000002@=, for − 0.5 < @ ≤ 10 
 

Beam end angle can be related to pseudo-rigid-body angle through the parametric 

angle coefficient bc (Howell, 2001) such that, 

 θ� = ceΘ (2.14) 
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The parametric angle coefficient ce is given as: 

bc = 1.238945 + 0.012035@ + 0.00454@�, fgh	 − 4 < @ ≤ −0.5			 
(2.15) bc = 1.238845 + 0.009113@ − 0.001929@� + 0.000191@ 

+ 0.00039@a − 0.000013@=, for − 0.5 < @ ≤ 10 
The beam stiffness coefficient �� is given as: 

�� = 2.66041 − 0.069005@ − 0.002268@�, for − 4 < @ ≤ −0.5 
(2.16) �� = 2.648834 − 0.074727@ + 0.026328@� − 0.004609@ 

+ 0.00039@a − 0.000013@=, for − 0.5 < @ ≤ 10 
The non-dimensional tangential load factor (Howell, 2001) is given as: 

 /i� = 3i<���  (2.17) 

where, the tangential load, 3i, is given by, 

 3i = 3�j@(( − k) (2.18) 

 3 = O√1 + @� , (2.19) 

and the load factor, @ = @O@  (2.20) 

 ( = tan*+ �− 1@� (2.21) 

also, /i� = ��k (2.22) 

The beam end coordinates are given by, 

 
;< = 1 − 9(1 − cosΘ) (2.23) 

 
L< = 9 sinΘ (2.24) 
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2.3. INITIALLY-CURVED FIXED FREE SEGMENT 

Figure 2.3 shows an initially-curved cantilever beam of length l and flexural 

rigidity EI subjected to non-follower horizontal and vertical end forces nP and P, 

respectively.  The beam has an initial radius of curvature �� and hence a curvature of 

1/��. 
 

 

 

Figure 2.3.  Initially-Curved Beam with Forces at Free End 

 

 

  The initial curvature can be related to the beam length using the non-dimensional 

parameter �� as, 
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 �� = <�� (2.25) 

Figure 2.4 illustrates the beam shapes for various ��, in the range: 0 ≤ �� ≤ 2. 

 

 

 

Figure 2.4.  Beam Shapes for Various κ� 

 

2.3.1. Closed-Form Elliptic Integral Solution. Howell (1991) presented elliptic 

integral solutions of such cantilever beam with initial curvature subjected to a 
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combination of end forces. The simplified equations for the end deflections are 

summarized below (Howell, 2001): 

 1 = 01 + @� (2.26) 

 ( = tan*+ �− 1@� 
(2.27) 

for	|F| < 1; ( − cos*+(−F/@) ≤ −�� < (′	and	/ ≠ 0, 
/ = 101 [3[9�, 6] − 3[9+, 6]] (2.28) 

a< = 1/1= �⁄ t−@1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 										
+ 021(1 + F)(cos 9+ −cos 9�)w (2.29) 

L< = 1/1= �⁄ t1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 																
+ @021(1 + F)(cos 9+ −cos 9�)w (2.30) 

for	F > 1; ( − 4 ≤ −�� 

/ = N 2F + 1 [3[y�, h] − 3[y+, h]] (2.31) 

;< = 02(1 + F)/1� z−@ A F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]vD
+ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} 

(2.32) 
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where, 

F = 12 !��/ %� + sin �� − @ cos �� (2.34) 

1 = 01 + @�; 												(′ = tan*+ �1@� (2.35) 

/ = NO<���  (2.36) 

9+ = sin*+N1 − @1 + F ;						9� = sin*+N1 + sin �� − @ cos ��1 + F  (2.37) 

y+ = sin*+N1 − @21 ;			y� = sin*+N1 + sin �� − @ cos ��y+  (2.38) 

6 = N1 + F21 ; 													h = N 211 + F (2.39) 

 

2.3.2. Pseudo-Rigid-Body Model. Figure 2.5 (Howell, 1991) shows the pseudo-

rigid-body-model of an initially-curved cantilever beam of length l and flexural rigidity 

EI subjected to combined end forces.  The characteristic radius length 9< is measured 

along the beam as if it were initially straight. 

 

 

L< = 02(1 + F)/1� z F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]v
+ @ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} 

(2.33) 
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The initial beam end coordinates ;�and L� (Howell, 2001) are, 

 ;� = <�� sin �� = 0 (2.40) 

 L� = <�� (1 − cos ��) (2.41) 

 

To account for the curvature, the length of rigid-body link is ~< where ~	is given by, 

 ~ = �2;�< − (1 − 9)7� + �L�< ���
+�
 (2.42) 

 

 

=  

Figure 2.5.  Pseudo-Rigid-Body Model of an Initially-Curved Cantilever Beam 
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Due to the initial curvature of the beam, the pseudo-rigid-body angle	Θ will have 

a non-zero initial value such that, 

 Θ� = tan*+ L�;� − <(1 − 9) (2.43) 

The non-dimensional tangential load factor is, 

 /i� = 3i<���  (2.44) 

where, 3i = 3 sin(( − Θ) (2.45) 

 3 = O01 + @� (2.46) 

 @ = @O@  (2.47) 

 ( = tan*+ �− 1@� (2.48) 

also, /i� = ��(Θ − Θ�) (2.49) 

The beam end coordinates are given by, 

 
;< = 1 − 9 + ~ cos Θ (2.50) 

 
L< = ~ sinΘ (2.51) 

 

2.4. INITIALLY-STRAIGHT SMALL LENGTH FLEXURAL PIVOT 

Figure 2.6 shows an initially-straight cantilever beam subjected to non-follower 

horizontal and vertical end forces nP and P, respectively.  The beam consists of two 

segments: one is shorter of length l, and the other longer of length L.  The small segment 

is significantly shorter and more flexible than the long element, i.e. W ≫ <, and (��)� ≫(��)�. 
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The small segment is referred to as small-length flexural pivot (Howell, 2001). 

Usually, L is 10 or more times larger than l.  The following section presents the closed-

form elliptic integral solution for an initially-straight SLFP subjected to a combination of 

axial and transverse forces.   

 

 

 

Figure 2.6.  Initially-Straight Small-Length Flexural Pivot 

 

 

2.4.1. Closed-Form Elliptic Integral Solution. As the beam is comprised of two 

discrete segments, the total displacement may be determined from the superposition of 

the elastic displacement of the compliant segment and the rigid-body displacement of the 

rigid segment.  The elastic displacement of the compliant segment is due to the 
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equivalent force and moment acting on the segment, determined from the beam end 

forces.  The rotation of the rigid segment of the beam is dictated by the beam end angle 

of the compliant segment. 

 

The force F acting at the beam end may be computed (Howell, 2001) as: 

 3 = 0O� + (@O)�  
(2.52) 

The angle of the force F is given by 

 ( = 6;@*+ !− +-%  (2.53) 

The transverse or tangential component of this force may be expressed as: 

 3i = 3�j@(( − ��) (2.54) 

 

As seen in Figure 2.7, the beam end force F can be transferred to the compliant 

segment as a combination of force F and an equivalent moment ��.  The moment acting 

on the beam end of the compliant segment due to the tangential component Ft may be 

written as, 

 �� = 3iW (2.55) 

 �� = 3W sin(( − ��) (2.56) 

where, ( = tan*+ �− 1@� (2.57) 
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Figure 2.7.  Equivalent Forces and Moment Acting on the Straight SLFP Segment 

 

 

The deflection of the compliant segment may be calculated using existing 

knowledge of the large deflection beam theory for a fixed-free cantilever beam with a 

force and moment applied at the free end.  The total displacement of the beam is 

calculated by superimposing the displacement of the rigid segment attached to the end of 

the compliant segment.  The beam end coordinates of the deflected beam, may be 

expressed as follows: 

/ = 1√2T ��0cos(�� − () − cos(� − () + Fc�
�  (2.58) 

L< = 1√2αT sin � ��0cos(�� − () − cos(� − () + Fc�
� + W sin �� (2.59) 
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a< = 1√2αT cos � ��0cos(�� − () − cos(� − () + Fc�
� + W cos �� (2.60) 

where, 

/ = N3<���  (2.61) 

F = 12 ������� � </�� (2.62) 

E is the elastic modulus, I the moment of inertia, and l the length of the flexural 

pivot.  The input parameters to the system of equations (2.58 - 2.60) are the three load 

parameters	/, F, and (.  Given these three load boundary conditions, the tip deflection 

parameters ��, a/l and b/l can be computed easily.  The large deflection equations can be 

solved using numerical integration, or the elliptic integral solution (Howell, 1991), as 

summarized below. 

 for	|F| < 1; ( − cos*+(−F/@) ≤ −�� < (′	and	/ ≠ 0, 
/ = 101 [3[9�, 6] − 3[9+, 6]] (2.63) 

a< = 1/1= �⁄ t−@1 2u3[9�, 6] − 3[9+, 6]v + 2u�[9+, 6] − �[9�, 6]v7 										
+ 021(1 + F)(cos 9+ −cos 9�)w + W cos �� 

(2.64) 

L< = 1/1= �⁄ t1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 																	
+ @021(1 + F)(cos 9+ −cos 9�)w + W sin �� 

(2.65) 

for F > 1; 	( − 4 ≤ −�� < (�;@�	/ ≠ 0,  
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/ = N 2F + 1 [3[y�, h] − 3[y+, h]] (2.66) 

;< = 02(1 + F)/1� z−@ A F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]vD
+ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} + W cos �� 

(2.67) 

L< = 02(1 + F)/1� z F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]v
+ @ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} + W sin �� 

(2.68) 

where, / = NO<���  (2.69) 

F = 12 ������� � </�� + sin �� − @ cos �� (2.70) 

1 = 01 + @�; 														(′ = tan*+ �1@� 
(2.71) 

9+ = sin*+N1 − @1 + F ;												9� = sin*+N1 + sin �� − @ cos ��1 + F  (2.72) 

y+ = sin*+N1 − @21 ;	 									y� = sin*+N1 + sin �� − @ cos ��y+  (2.73) 

6 = N1 + F21 ; 																	h = N 211 + F (2.74) 
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2.4.2. Pseudo-Rigid-Body Model. Howell and Midha (1994) developed a 

pseudo-rigid-body model for an initially-straight small-length flexural pivot subjected to 

end transverse and axial forces as shown in Figure 2.8. The beam is modeled as two rigid 

links pinned at the characteristic pivot located at the center of the undeformed flexural 

pivot.  The pseudo-rigid-body angle,	Θ, describes the rotation of the rigid link. For small-

length flexural pivots, the pseudo-rigid-body angle is assumed to be equal to the beam 

end angle (Howell, 2001), i.e. 

 Θ = �� (2.75) 

The compliant segment’s resistance to deflection is modeled through a torsional 

spring located at the characteristic pivot.  The stiffness of the torsional spring is given by, 

 � = ��<  (2.76) 

 

 

 

Figure 2.8.  Pseudo-Rigid-Body Model of a Straight Small-Length Flexural Pivot 
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The beam end deflections are given by, 

 ; = <2 + �W + <2� cos Θ (2.77) 

 L = �W + <2� sinΘ (2.78) 

also, �Θ = �W + <2�3 sin(( − Θ) (2.79) 

The values of the non-dimensionalized beam tip deflection ! ���� , ����% are 

calculated from the pseudo-rigid-body model equations (2.77) and (2.78).  These are then 

compared favorably with the values obtained from the elliptic integral solution equations 

(2.64) and (2.65) as shown in Figure 2.9. 

 

 

 

Figure 2.9.  Beam End Deflections of an Initially-Straight SLFP 
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Figure 2.10 shows a plot of the beam end angle ��, calculated using the elliptic 

integral solution, vs the pseudo-rigid-body angle Θ.  As can be seen from the figure, the 

plot is nearly linear, thus validating the assumption that for a small-length flexural pivot, 

the beam end angle is equal to the pseudo-rigid-body angle. 

 

 

 

 

Figure 2.10.  Plot of θ0 vs. Θ for Initially-Straight SLFP 

 

2.5. INITIALLY-CURVED SMALL-LENGTH FLEXURAL PIVOT 

Figure 2.11 shows an initially-curved small-length flexural pivot of length l and 

flexural rigidity EI subjected to non-follower horizontal and vertical end forces nP and P, 

respectively.  The beam has two segments; one is compliant and shorter of length l, and 
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the other rigid and longer of length L.  The flexural pivot has an initial radius of curvature 

�� and hence a curvature of 1/��.  The elliptic integral solution for the initially-curved 

small-length flexural pivot has been presented in the following section. 

 

 

 

Figure 2.11.  Initially-Curved Small-Length Flexural Pivot 

 

2.5.1. Closed-Form Elliptic Integral Solution. A methodology similar to that 

presented in the previous section is used to derive the elliptic integral deflection solution 

of an initially-curved small-length flexural pivot subjected to end forces.  The total 

displacement at the beam end may be determined by combining the elastic displacement 

of the initially-curved compliant segment and the rigid-body displacement of the rigid 

segment.  The elastic displacement of the initially-curved compliant segment is due to the 



31 
 

equivalent force and moment acting on the segment, as determined from the beam end 

forces.  The rigid segment of the beam follows the beam end angle of the compliant 

segment as a force is applied.   

 

Figure 2.12, shows the equivalent force F and moment �� acting on the initially-

curved compliant segment, as a result of the force F applied at the beam end.  The 

moment acting on the beam end of the compliant segment due to the tangential 

component Ft may be written as follows: 

 �� = 3iW (2.80) 

 �� = 3W sin(( − ��) (2.81) 

where, ( = tan*+ �− 1@� (2.82) 

 

 

 

Figure 2.12.  Equivalent Forces and Moment Acting on the Curved SLFP Segment 
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Again, the deflection of the compliant segment may be calculated using existing 

knowledge of the elliptic integral solution for an initially-curved fixed-free cantilever 

beam with a force and moment applied at the free end (Howell, 1991).  The total 

deflection of the beam may be calculated by superimposing the deflection due to rigid-

body rotation and the deflection of the compliant segment.  The beam end coordinates of 

the deflected beam may be expressed as: 

 for	|F| < 1; ( − cos*+(−F/@) ≤ −�� < (′	and	/ ≠ 0, 
/ = 101 [3[9�, 6] − 3[9+, 6]] (2.83) 

a< = 1/1= �⁄ t−@1 2u3[9�, 6] − 3[9+, 6]v + 2u�[9+, 6] − �[9�, 6]v7 										
+ 021(1 + F)(cos 9+ −cos 9�)w + W cos �� 

(2.84) 

L< = 1/1= �⁄ t1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 																	
+ @021(1 + F)(cos 9+ −cos 9�)w + W sin �� 

(2.85) 

for F > 1; 	( − 4 ≤ −�� < (�;@�	/ ≠ 0,  
/ = N 2F + 1 [3[y�, h] − 3[y+, h]] (2.86) 

;< = 02(1 + F)/1� z−@ A F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]vD
+ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} + W cos �� 

(2.87) 
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L< = 02(1 + F)/1� z F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]v
+ @ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} + W sin �� 

(2.88) 

where, / = NO<���  (2.89) 

F = 12 ����� + 1���� � </�� + sin �� − @ cos �� (2.90) 

1 = 01 + @�; 														(′ = tan*+ �1@� 
(2.91) 

9+ = sin*+N1 − @1 + F ;												9� = sin*+N1 + sin �� − @ cos ��1 + F  (2.92) 

y+ = sin*+N1 − @21 ;	 									y� = sin*+N1 + sin �� − @ cos ��y+  (2.93) 

6 = N1 + F21 ; 																	h = N 211 + F (2.94) 

 

2.5.2. Pseudo-Rigid-Body Model. Figure 2.13 shows the PRBM of an initially-

curved small length flexural pivot.  The beam has an initial radius of curvature �� and 

hence a curvature of 1/��.  The initial curvature can be related to the beam length using 

the non-dimensional parameter��	as: 
 �� = <�� (2.95) 
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Figure 2.13.  PRBM of an Initially-Curved Small-Length Flexural Pivot 

 

 

The beam is modeled as two rigid links joined at the characteristic pivot located at 

the center of the flexural pivot along the undeformed curvature.  The angle of the pseudo-

rigid link is the pseudo-rigid-body angle Θ.  For small-length flexural pivots, the pseudo-

rigid-body angle is equal to the beam end angle, i.e. 

 Θ = �� (2.96) 

The initial beam end coordinates ;�and L�are, 

 ;� = <�� sin �� + W cos �� (2.97) 

 L� = <�� (1 − cos ��) + W sin �� (2.98) 

As the beam is initially-curved, the pseudo-rigid-body angle Θ will have a non-

zero initial value such that, 



35 
 

 Θ� = tan*+�L� − <2�� (1 − cos ��);� − <2�� sin �� � (2.99) 

The compliant segment’s resistance to deflection is modeled through a torsional 

spring located at the characteristic pivot.  The stiffness of the torsional spring is given by: 

 � = ��<  (2.100) 

The beam end deflections are given by, 

 ; = <2�� sin �� + �W + <2� cos Θ (2.101) 

 L = <2�� (1 − cos ��) + �W + <2� sinΘ (2.102) 

also, �(Θ − Θ�) = �W + <2�3 sin(( − Θ) (2.103) 

 

Figure 2.14 shows the plot of the non-dimensionalized beam tip deflection 

! ���� , ����%, as obtained from the pseudo-rigid-body model and the elliptic integral 

solution. 

  

 Figure 2.15 plots the beam end angle ��, calculated from the elliptic integral 

solution, vs. the pseudo-rigid-body angle	Θ.  Again, it is evident that the plot is nearly 

linear, confirming that for a curved small-length flexural pivot, the beam end angle and 

the pseudo-rigid-body angle are equal. 
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Figure 2.14.  Beam End Deflections of an Initially-Curved SLFP 

 

 
 

Figure 2.15.  Plot of θ0 vs. Θ for Initially-Curved SLFP 
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2.6. INITIALLY-CURVED PINNED-PINNED SEGMENT 

Figure 2.16 shows an initially-curved pinned-pinned flexible segment of length l 

and flexural rigidity EI subjected to non-follower horizontal force P.  The beam has an 

initial curvature �� where, 

 �� = <�� (2.104) 

 

 

 

Figure 2.16.  Initially-Curved Pinned-Pinned Segment 

 

 

 2.6.1. Closed-Form Elliptic Integral Solution. Edwards (1996) presented the 

elliptic integral solution for such beam.  The equations are briefly summarized below: 

for F > 1 

 
;< = 1/6 [(6� − 2)3(R, 6) + 2�(R, 6)] (2.105) 

 
L< = √2/ �√F + 1 − 0F + cos ��� (2.106) 
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 / = 63(R, 6) (2.107) 

 / = NO<���  (2.108) 

 F = ���2/� − cos �� (2.109) 

 R = ��2  (2.110) 

 6 = N 2F + 1 (2.111) 

For |F| < 1 

 
;< = 1/ [2�(y, h) − 3(y, h)] (2.112) 

 
L< = √2/ �√F + 1 − 0F + cos ��� (2.113) 

 / = 3(y, h) (2.114) 

 y = sin*+N1 − cos ��F + 1  (2.115) 

 h = NF + 12  (2.116) 

 

2.6.2. Pseudo-Rigid-Body Model. Edwards (1996) and Mavanthoor (2002) 

developed the pseudo-rigid-body model of an initially-curved pinned-pinned segment.  

As the beam is symmetric, the complete segment is divided into two equivalent half-

segments which are conceptually equivalent to initially-curved fixed-free segments.  

Figure 2.17 shows the PRBM of such a beam.  Thus, the entire pinned-pinned segment 
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may be represented in terms of an identical PRBM on each side of the beam’s midpoint.  

The resistance of the beam to the deflection is modeled through nonlinear torsional 

springs which are identical due to symmetry.  The resulting pseudo-rigid-body model is 

given in Figure 2.18.   

 

 

 

Figure 2.17.  PRBM in Deflected Position 

 

 

Figure 2.18.  PRBM of Entire Pinned-Pinned Segment 
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The initial non-dimensional horizontal and vertical coordinates of the beam are, 

 ;� = <�� sin �� (2.117) 

 L� = <�� (1 − cos ��) (2.118) 

And the initial value of the pseudo-rigid-body angle Θ�is, 

 Θ� = tan*+ L�;� − <(1 − 9) (2.119) 

To account for the curvature, the length of rigid-body link is ~< where ~	is given by, 

 ~ = �2;�< − (1 − 9)7� + �L�< ���
+�
 (2.120) 

The non-dimensional tangential load factor /i� is given by, 

where,  /i� = 3i<���  (2.121) 

 3i = 3 sin(k) (2.122) 

Also, /i� = ��(Θ − Θ�) (2.123) 

And the value of the stiffness of spring constant is given by, 

 � = ~�� ��<  (2.124) 

The beam end coordinates are given by, 

 
;< = 1 − 9 + ~ cos � (2.125) 

 
L< = ~ sin � (2.126) 
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2.7. FIXED-GUIDED COMPLIANT BEAM WITH AN INFLECTION POINT 

A fixed-guided compliant beam of length < and flexural rigidity �� subject to end 

forces and moment is shown in Figure 2.19, where, P is the transverse force, nP the axial 

force, and M the moment.   

 

 

 

Figure 2.19.  Fixed-Guided Compliant Beam with End Forces and Opposing Moment 

 

2.7.1 Closed-Form Elliptic Integral Solution. Kimball (2002) developed the 

elliptic integral solutions for such beam.  The equations for fixed guided beams with an 

inflection point are summarized below: 
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The non-dimensionalized beam tip deflections are given by, 

 
;< = 1/1=/� u−@1f∗ + 2@1�∗ + 021b$∗v (2.127) 

 
L< = 1/1=/� u1f∗ − 21�∗ + 021b#∗v (2.128) 

where,   

 1 = 01 + @� (2.129) 

 / = NO<���  (2.130) 

 / = N11 f∗ (2.131) 

 f∗ = 3(9+, �) + 3(9�, �) (2.132) 

 �∗ = �(9+, �) + �(9�, �) (2.133) 

 b$∗ = b$+ + b$� (2.134) 

 b#∗ = b#+ + b#� (2.135) 

 b$+ = −0F + 1 �@N1 − @1 + @ − 1� (2.136) 

 b$� = −√��@N1 + sin �� − @ cos ��1 − sin �� + @ cos �� − 1� (2.137) 

 b#+ = 0F + 1 �@ +N1 − @1 + @� (2.138) 
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b#� = √��@ + N1 + sin �� − @ cos ��1 − sin �� + @ cos ��� (2.139) 

 9+ = sin*+N 21F + 1 �F + @1 + @� (2.140) 

 9� = sin*+N 21F + 1 � �1 − sin �� + @ cos ��� (2.141) 

 � = NF + @21  (2.142) 

 

2.7.2. Pseudo-Rigid-Body Model. Figure 2.20Figure 2. (a) shows a fixed-guided 

compliant beam in its deformed state with a positive beam end angle, where P, nP, and M 

are the transverse force, the axial force, and the moment, respectively; a, b, and θ0 are the 

beam end horizontal location, the vertical location and the angle, measured relative to the 

undeformed position of the beam end.   

 

This type of loading will lead to an inflection point in the beam.  Midha (2012) 

modeled the beam as two fixed-free compliant segments, pinned at the inflection point, 

Pi, which is characterized by zero curvature and, therefore, a zero moment.  Both the 

compliant segments and their respective pseudo-rigid-body models are shown in Figure 

2.20 (b), 2.20 (c), 2.20 (d) and 2.20 (e) respectively. 
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(a) 

 
(b) 

Figure 2.20.  Deformed State of Fixed-Guided Compliant Beam (a) Considered as Two 

Compliant Segments; (b) Compliant Segment 1; (c) Compliant Segment 2; (d) PRBM of 

Compliant Segment 1; and (e) PRBM of Compliant Segment 2 
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(c) 

 

 

(d) 

Figure 2.20.  Deformed State of Fixed-Guided Compliant Beam (a) Considered as Two 

Compliant Segments; (b) Compliant Segment 1; (c) Compliant Segment 2; (d) PRBM of 

Compliant Segment 1; and (e) PRBM of Compliant Segment 2 (cont.) 
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(e) 

Figure 2.20.  Deformed State of Fixed-Guided Compliant Beam (a) Considered as Two 

Compliant Segments; (b) Compliant Segment 1; (c) Compliant Segment 2; (d) PRBM of 

Compliant Segment 1; and (e) PRBM of Compliant Segment 2 (cont.) 

 

 

The equations for the analysis of the fixed-guided compliant beam, subjected to a 

variety of beam end load and/or displacement boundary conditions are summarized 

below. 

 

Based on the parametric expressions, equations (2.143) through (2.148) and are 

referred to as Parametric Equations (Midha, 2012). 

9+ = 0.855651 − 0.016438@+, fgh	 − 4	 < @+ 	≤ 	−1.5 

(2.143)  9+ = 0.852138 − 0.018615@+, fgh	 − 1.5	 < @+ 	≤ 	−0.5 

9+ = 0.851892 − 0.020805@+ 	+ 0.005867@+� − 0.000895@+ +
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										0.000069@+a − 0.000002@+=, fgh	 − 0.5	 < @+ 	≤ 	10 

 

9� = 0.855651 − 0.016438@�, fgh	 − 4	 < @� 	≤ 	−1.5 

(2.144)  

9� = 0.852138 − 0.018615@�, fgh	 − 1.5	 < @� 	≤ 	−0.5 

9� = 0.851892 − 0.020805@� 	+ 0.005867@�� − 0.000895@� +0.000069@�a − 0.000002@�=,	fgh	 − 0.5	 < @� 	≤ 	10	
 

bc� = 1.238945 + 0.012035@+ + 0.00454@+�, fgh	 − 4 < @+ ≤	−0.5 

(2.145)  

bc� = 1.238845 + 0.009113@+ − 0.001929@+� + 0.000191@+ +
0.000390@+a − 0.000013@+=, fgh	 − 0.5	 < @+ ≤ 	10 

 

bc� = 1.238945 + 0.012035@� + 0.00454@��, fgh	 − 4 < @� ≤	−0.5 

(2.146)  

bc� = 1.238845 + 0.009113@� − 0.001929@�� + 0.000191@� +
0.000390@�a − 0.000013@�= , fgh	 − 0.5	 < @� ≤ 	10 

 

��� = 2.66041 − 0.069005@+ − 0.002268@+�, fgh	 − 4 < @+ ≤	−0.5 

(2.147)  

��� = 2.648834 − 0.074727@+ + 0.026328@+� − 0.004609@+ +
0.000390@+a − 0.000013@+=, fgh	 − 0.5 < @+ ≤ 	10 

 

��� = 2.66041 − 0.069005@� − 0.002268@��, fgh	 − 4 < @� ≤	−0.5 

(2.148)  ��� = 2.648834 − 0.074727@� + 0.026328@�� − 0.004609@� +
0.000390@�a − 0.000013@�=,  fgh	 − 0.5 < @� ≤ 	10 
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Equations (2.149) through (2.153) are derived from force and moment 

equilibrium using the free-body diagrams, and are referred to as the Static Equilibrium 

Equations. 

3W+��� sin &(+ −	�+�bc�' − ��� �+�bc� = 0 (2.149) 

3W���� sin &(� −	���bc�' − ��� ���bc� = 0 (2.150) 

@+ = −16;@	((+) (2.151) 

@� = −16;@	((�) (2.152) 

� + �[@Obg�(��) − O�j@(��)]9�W��j@ �c��*c���� �� + �[Obg�(��) +
@O�j@(�0)1−92W2+92W2�j@�10−�0b�2=0  

(2.153) 

                 

              Equations (2.154) through (2.158) reflect constraints of length, slope, and 

displacements, and will be referred to as the Compatibility Equations. 

 W+ + W� = W  (2.154) 

�+� = ��� + �� (2.155) 

(+ = (� + �� (2.156) 

L = 9+W+ sin &�+�bc�' + 9�W�sin &���bc� + ��' + (1 − 9�)W�sin	(��) (2.157) 

; = (1 − 9+)W+ + 9+W+ cos �c������ + 9�W�cos �c����� + ��� + (1 −
92W2bg�	 �0  (2.158) 
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2.8. SUMMARY 

In this Section, two distinct methods of large deflection analysis for various 

boundary conditions and cases, adopted by various researchers for the design of 

compliant mechanisms, have been discussed.  The closed form elliptic integral solutions 

for initially-straight and initially-curved small-length flexural pivot have been presented.  

The closed-form elliptic integral solutions provide the best accuracy to large deflection 

analysis; but their use is limited to relatively simple geometries and loadings. The 

pseudo-rigid-body models provide a simple and accurate method of analysis of the 

compliant mechanisms.  The following section discusses an improved method to 

calculate the stiffness coefficient for a PRBM of a fixed-free compliant segment. 
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3. A METHOD FOR A MORE ACCURATE EVALUATION OF THE 

STIFFNESS COEFFICIENT IN PSEUDO-RIGID-BODY MODEL (PRBM) 

 

3.1. INTRODUCTION 

The previous section presented a brief overview of the large deflection analysis 

methods used in design of large deflection members.  As discussed earlier, Howell (1991) 

developed the elliptic integral solution of a cantilever beam subject to a combination of 

end loads.  Observing the nature of the beam end deflection paths obtained using elliptic 

integral solutions, the pseudo-rigid-body model was developed.  This uses the 

parameterization of the beam end deflection path, beam end angular deflection and load-

deflection relationships, in terms of the pseudo-rigid-body angle, Θ.  The parametric 

expressions were developed through polynomial curve fit of the available data.  Norton 

(1991) proposed a linear relation between the non-dimensional transverse force, /i� and 

the pseudo-rigid-body angle Θ.  He proposed a stiffness coefficient, ��, as a function of 

the load factor, n, which is defined as the ratio of the applied horizontal force to the 

vertical force.  However, the linear approximation yields certain amount of errors relative 

to the elliptic integral solutions when any arbitrary load and displacement boundary 

conditions are considered.  This Section focuses on deriving improved expressions for �� 

so as to reduce the error by investigating the effects of various parameters on ��.  

Subsequently, a relationship among the non-dimensional transverse force /i�, pseudo-

rigid-body model angle Θ and the load factor n is discovered.  New parameterization 

expressions for �� have been developed to show this relationship using a 3-dimensional 

curve fit among /i�,	Θ and n. 
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Figure 3.1 shows a large deflection cantilever (fixed-free) beam subjected to non-

follower horizontal and vertical end forces nP and P, respectively. Its equivalent pseudo-

rigid-body model is shown in Figure 3.2.  In a PRBM, a compliant beam is simulated by 

rigid segments that are connected by a pin joint (characteristic pivot) along the 

undeformed beam geometry.  The characteristic radius factor γ is used to help define the 

lengths of the rigid segments.  The beam end angle is denoted as ��, pseudo-rigid-body 

angle as Θ, vertical displaced position of the beam end as ‘b’, and horizontal displaced 

position as ‘a’ (Howell, 2001). 

 

 

 

Figure 3.1.  A Large-Deflection Cantilever Beam with End Forces nP and P 



52 
 

 

Figure 3.2.  Pseudo-Rigid-Body Representation of a Large Deflection Beam 

 

 

The force acting at the beam end, F, is given by, 

 3 = 0O� + (@�)� = 	1O (3.1) 

where, 1 = 01 + @� (3.2) 

The force contributing to the deflection of the pseudo-rigid link or the active force 

is the transverse or tangential component of the force F, and is given by: 

 3i = 3sin(( − Θ) (3.3) 
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A non-dimensional representation of 3i is used as the non-dimensional transverse 

load index, /i�, as follows: 

 /i� = 1Osin(( − Θ)<���  (3.4) 

where, 											( = tan*+ �− 1@� (3.5) 

The pseudo-rigid-body angle is calculated as, 

 Θ = tan*+ L; − <(1 − 9) (3.6) 

where, a and b are the beam end coordinates calculated from elliptic integral solution 

using equations (2.5) and (2.6) respectively, 9 is the characteristic radius factor calculated 

from equation (2.13) for given load index n.  The equations for elliptic integral solution 

are briefly mentioned below, for details, kindly refer Section 2.2.1. 

;< = 1/1= �⁄ ?−@1 AB3 242 , 67 − 3[9, 6]C + 2 B�[9, 6] − � 242 , 67CD
+ 021(1 + F) cos 9K  (2.5) 

Ll = 1/1= �⁄ ?1 A23 242 , 67 − 3[9, 6]7 + 2 B�[9, 6] − � 242 , 67CD
+ @021(1 + F) cos 9K  (2.6) 

where, / = NO<���   (2.7) 
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9 = 0.855651 − 0.016438@,			 for − 4 < @ ≤ −1.5 

9 = 0.852138 − 0.01861@,			 for − 1.5 < @ ≤ −0.5 
(2.13) 9 = 0.851892 − 0.020805@ + 0.005967@� − 0.000895@ 

+ 0.000069@a − 0.000002@=,			 for − 0.5 < @ ≤ 10 
The compliant beam’s resistance to deflection is modeled through a torsional 

spring located at the characteristic pivot.  The value of the spring constant for the beam’s 

equivalent pseudo-rigid-body model, K is determined (Howell, 2001) by combining the 

non-dimensional stiffness coefficient with the geometric and material properties of the 

beam as follows: 

 � = 9�� ��<  (3.7) 

The non-dimensional transverse load index, /i� is assumed to have the following 

linear relation with the pseudo-rigid-body angle Θ, related through a parameter �� 

termed as the stiffness coefficient:   

 /i� = ��k (3.8) 

where, �� is the stiffness coefficient, expressed in terms of the load factor n, as discussed 

in equation (2.16), expressed below: 

�� = 2.66041 − 0.069005@ − 0.002268@�,			for − 4 < @ ≤ −0.5 
     (2.16) �� = 2.648834 − 0.074727@ + 0.026328@� − 0.004609@ + 0.00039@a

− 0.000013@=,				 for − 0.5 < @ ≤ 10 
The assumption of the linear relation in equation (3.8) helps in simplification of 

the parametric expressions; however, it is not accurate for the entire range of deflection.  
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Figure 3.3 shows the plot of non-dimensional transverse load index /i�, versus the 

pseudo-rigid-body angle, Θ for @ = 0.  As seen in the figure, while the exact and the 

linear curve fits are close, there is room for improvement.  The results will be accurate for 

those values of Θ where the linear curve fit is closer to the exact curve, and errors will be 

introduced as the linear curve deviates further from the exact curve. 

 

 

 

 

Figure 3.3.  Non-Dimensional Tangential Force versus Pseudo-Rigid-Body Angle 
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In order to better understand the relation between /i� and Θ for other load factors 

n, various plots are generated.  Through these plots, it is observed that the non-

dimensional transverse force /i�  is not only a function of the load factor n, but also a 

function of the pseudo-rigid-body angle Θ, i.e., the stiffness coefficient, �� should be 

expressible as a function of the load factor n as well as the pseudo-rigid-body angle, Θ.  

The following sections discuss the improved expressions of the stiffness coefficient for a 

positive and negative load factor, i.e. for a compressive and tensile load, respectively, 

which yield significantly lower relative errors. 

 

3.2. IMPROVED �� EQUATION FOR COMPRESSIVE LOADS, OR 

POSITIVE LOAD FACTOR 

Figure 3.4 shows the three-dimensional plot of the non-dimensional transverse 

force /i�, with the load factor n, and the pseudo-rigid-body angle Θ for compressive 

loads.  A polynomial relation between /i�, n and Θ may be derived.   

 

 

Figure 3.4.  Three-Dimensional Plot of α��, Θ	and	@ for Compressive Loads 

/i� 

Θ (rad) n 
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Figure 3.5 shows the flowchart of the procedure used to obtain the three-

dimensional plot in Figure 3.4. The inputs to the code are the step size for the beam end 

angular deflection, Δ��, step size for the load factor Δ@, the range for the beam end angle 

and the load factor, and the geometric and material properties of the beam.  With the 

beam end angle initially set to Δ�� and the load factor initially set to @�, the 

corresponding characteristic radius factor γ and the load angle ( are calculated using 

equation (2.3) and equation (3.5) respectively.  The vertical and horizontal deflections are 

calculated using the elliptic integrals from equation (2.5) and equation (2.6).  The pseudo-

rigid-body angle Θ is calculated using equation (3.5) and the corresponding force P and 

the non-dimensional transverse force, /i� is calculated using equation (2.7) and equation 

(3.4).  The values of the non-dimensional transverse force /i�, the load factor n, and the 

pseudo-rigid-body angle Θ are recorded.  The load factor is incremented by Δ@ and the 

process is continued till the load factor is less than the maximum value specified.  When 

the maximum load factor is exceeded, the beam end angle is incremented by Δ��, 

triggering the second loop. The entire process is stopped when the beam end angle 

exceeds the maximum value specified.  The values used for Δ��, Δ@, @�, @��$ and ����$ 

are 0.01 rad., 0.1, 0, 10 and 1.4 rad, respectively. 

 

The three-dimensional plot is generated using the values recorded in the process 

above.  A polynomial curve-fit procedure may now be utilized to express /i� as a function 

of n and Θ.  A commercially available software CurveExpert
®

 is used to generate a 

polynomial full cubic 3D equation.  Equation (3.9) expresses the cubic relation among 

/i�, n, and Θ. 
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Figure 3.5.  A Flow-Chart of Three-Dimensional Plot 
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/i� = (0.004233 − 0.012972@ + 2.567095Θ + 0.003993n�
− 0.037173Θ� − 0.000297@ + 0.179970Θ − 0.034678@Θ
+ 0.003467@�Θ − 0.009474nΘ�),											fgh	0 ≤ @ ≤ 10, 0 ≤ Θ ≤ 65� 

(3.9) 

In order to maintain the consistency with the conventional equations, the stiffness 

coefficient �� is given by (Norton 1991), 

 /i� = ��Θ (3.10) 

From equation (3.9) and equation (3.10), the improved equation for stiffness 

coefficient is obtained as: 

The square of the correlation coefficient h�for the above relation is 0.9999 and the 

fitting target used is the lowest sum of squared relative error. 

 

3.3. IMPROVED �� EQUATION FOR TENSILE LOADS, OR NEGATIVE 

LOAD FACTOR 

Figure 3.6 shows the 3-dimensional plot among the non-dimensional transverse 

force /i�, the load factor n, and the pseudo-rigid-body angle Θ for tensile loads.  The plot 

is obtained using the same procedure mentioned above for tensile loads.  The values used 

for Δ��, Δ@, @�, @��$ and ����$ are 0.01 rad., 0.1, −4, 0 and ( rad, respectively.  It 

should be noted that the maximum value of �� i.e. ����$ for tensile loads is equal to ( 

since the elliptic integral solutions are valid only when �� < ( (Howell 1991). 

 

�� = 1Θ (0.004233 − 0.012972@ + 2.567095Θ + 0.003993n�
− 0.037173Θ� − 0.000297@ + 0.179970Θ − 0.034678@Θ
+ 0.003467@�Θ − 0.009474nΘ�), fgh	0 ≤ @ ≤ 10, 0 < Θ ≤ 65� 

(3.11) 
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Figure 3.6.  Three-Dimensional Plot of α��, Θ	and	n for Tensile Loads 

 

 

The data points are then used to derive the following expression for the stiffness 

coefficient �� for tensile loads. 

�� = 1Θ (0.000651 − 0.008244@ + 2.544577Θ − 0.004764n�
+ 0.071215Θ� − 0.000104@ + 0.079696Θ + 0.069274@Θ
+ 0.061507@�Θ − 0.347588nΘ�),
fgh − 4 < @ < 0, 0 < Θ < 0.8( 

(3.12) 

The square of the correlation coefficient h�for the above relation is 0.9998 and the 

fitting target used is the lowest sum of squared relative error. 
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Figure 3.8Figure 3.7 presents a vectorial illustration of the relative error 

calculation.  Figure 3.8 (Howell, 2001) plots the relative error versus the pseudo-rigid-

body angle Θ for @ = 0 with comparing the old and new �� equations, the plots for 

various values of n in the range −4	to	10 can be found in the Appendix A.   

 

 

 

Figure 3.7.  Calculation of Error in Approximating Beam End Deflection 

 

 

The relative error is calculated as follows: 

�hhgh�� = N�;< − (1 − 9(1 − cos Θ))�� + !L< − 9 sinΘ%�
�!1 − ;< %� + !L< %�  

(3.13) 

where, a and b are the horizontal and vertical beam end deflections, respectively, 

obtained using the elliptic integral approach.  The pseudo-rigid-body angle Θ is 

calculated considering the curve fit equations for ��.   
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Figure 3.8.  Relative Error versus Beam End Angle for n = 0 

 

 

It should be noted that the conventionally defined 0.5% relative error of PRBM is 

the error when pseudo-rigid-body angle Θ is calculated directly using the elliptic integral 

beam end coordinates and the characteristic radius factor without considering the curve 

fit for stiffness coefficient i.e. equation 3.8, however, the errors are significantly higher 

when the curve fits are considered. 

 

It can be seen from Figure 3.8 that the relative error is significantly reduced with 

the improved �� equations for most of the deflection range.   
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3.4. AVERAGE �� VALUES 

The equations discussed in above sections give fairly accurate results when 

compared with the elliptic integral solution, however, the equations are more complex.  

An average value of the stiffness coefficient, ��£¤¥, may be obtained for use in rough 

calculations or when high accuracy is not required.  Howell (2003) calculated the average 

�� value by integrating the �� equation over a specified range of n.  Here, the average 

�� value is determined by taking the average of the �� values calculated directly from 

the data points using the elliptic integral solutions. This way, the approximation of the 

curve fit equation is eliminated resulting in more accurate �� values. 

 

For the load factor range −4.0 < @ < 10.0 or 14.04� < ( < 174.3�, the average 

�� value is determined to be, 

 ��£¤¥ = 2.68 (3.14) 

 

Considering loads in only the most common range of −0.5 < @ < 1.0 63� < ( <
135�, the average �� value is found to be, 

 ��£¤¥ = 2.62 (3.15) 

 

It should be noted that this approximation is valid only for a small range and 

should be used only for rough calculations.  
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3.5. EXAMPLE 

A flexible steel beam with � = 30 × 10§	psi, length < = 12 in., width ¨ = 1.0 in. 

and height ℎ = (1/32) in. is subjected to a vertical force of 0.4 lb and a horizontal 

compressive force of 0.8 lb.  Calculate the horizontal and vertical deflections (a and b) 

using pseudo-rigid-body model and compare the solution with elliptic integrals. 

Solution: 

Given,	� = 30 × 10§	, < = 12,	¨ = 1.5,	ℎ = (1/32), O = 0.4	lb, @O = 0.8	lb. 

The moment of inertia, I, is 

� = ¨ℎ 12 = (1.5) × (1/32) 12 = 2.543 × 10*a	ina. (3.16) 

Load factor is, 

@ = @OO = 0.80.4 = 2 (3.17) 

The load angle ( is, 

( = tan*+ �− 1@� = 2.6779	rad. (3.18) 

Characteristic radius is found from equation (3.7) as, 

9 = 0.851892 − 0.020805@ + 0.005967@� − 0.000895@ 
+ 0.000069@a − 0.000002@= 

9 = 0.8276 

(3.19) 

Old ��equation: 

�� = 2.648834 − 0.074727@ + 0.026328@� − 0.004609@ 
+ 0.00039@a − 0.000013@= 

�� = 2.5736 

(3.20) 

Beam stiffness is, 
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� = 9�� ���W � = 13.5423 (3.21) 

The net force acting on the beam tip is: 

3 = 0O� + (@�)� = 0.8944 (3.22) 

The angular position of the pseudo-rigid-body link is related to the input force by the 

relations: 

« = �Θ (3.23) 

« = 3i9< (3.24) 

� = 9�� ���W � (3.25) 

3i = 3 sin(( − Θ) (3.26) 

From equation (3.23) through (3.26) we get, 

�Θ = 3i9< (3.27) 

�Θ = 3 sin(( − Θ) 9< (3.28) 

Substituting values, 

13.5423Θ = 0.8944 sin(2.6779 − Θ) 0.8276 × 12 (3.29) 

Solving equation (3.29) for Θ, we get, 

Θ = 0.5589	rad. (3.30) 

The beam tip deflections are, 

a = L�1 − γ(1 − cos Θ)� = 10.4887	in. (3.31) 

b = Lγ sinΘ = 5.2665	in. (3.32) 
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Using Improved �� equation, 

�� = 1Θ (0.004233 − 0.012972@ + 2.567095Θ + 0.003993n�
− 0.037173Θ� − 0.000297@ + 0.179970Θ − 0.034678@Θ
+ 0.003467@�Θ − 0.009474nΘ�) 

(3.33) 

�� = −0.0081 + 2.5116Θ − 0.0561Θ� + .17997Θ Θ  (3.34) 

Beam stiffness is, 

� = 5.261980692 &−0.0081 + 2.5116Θ − 0.0561Θ� + .17997Θ Θ ' (3.35) 

Substituting in equation (3.28),  

−0.0427 + 13.216Θ − 0.2953Θ� + 0.947Θ 
= 0.8944 sin(2.6779 − Θ) 0.8276 × 12 

(3.36)  

Solving equation (3.36) for Θ, we get, 

Θ = 0.57539	rad. (3.37) 

The beam tip deflections are, 

a = L�1 − γ(1 − cos Θ)� = 10.40	in. (3.38) 

b = Lγ sinΘ = 5.4044	in. (3.39) 

 

Solving the above problem using the elliptic integral solution discussed briefly in 

Section 2 results in the following beam tip deflection: 

a = 10.3879	in. (3.40) 

b = 5.4071	in. (3.41) 
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Table 3.1 summarizes the above results comparing the old and the improved �� 

equation in terms of the relative error calculated using equation 3.12 

 

Table 3.1. Summary of Results 

 Old �� equation 
Improved �� 

equation 

Elliptic 

integral 

solution 

a 10.4887 10.40 10.3879 

b 5.2665 5.4044 5.4071 

Relative error 

(%) 
3.0669 0.2343  

 

 

3.6. SUMMARY 

In this Section, an improved method to calculate the stiffness coefficient (��) for 

pseudo-rigid-body model of a fixed-free beam has been presented.  The improved 

expressions for the stiffness coefficient for compressive and tensile loads have been 

developed using a three-dimensional curve fit among non-dimensional transverse force 

/i�, the load factor n, and the pseudo-rigid-body angle Θ.  An example has been presented 

showing the relative error comparison of the old and improved �� expressions.    The 

plots of relative error versus the pseudo-rigid-body angle for various values of n in the 

range −4	to	10 may be found in the Appendix A.  
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4. PSEUDO-RIGID-BODY MODEL FOR COMPLIANT SEGMENTS WITH 

INSERTS FOR VARIED BOUNDARY CONDITIONS AND CASES 

 

4.1. INTRODUCTION 

The popularity of compliant mechanisms has been growing since past few 

decades due to their inherent advantages and continuous development of simpler methods 

of analysis.  The use of pseudo-rigid-body models has considerably simplified the 

analysis and synthesis of compliant mechanisms.  Although offering number of 

advantages, their use has been limited due to current challenges in the material selection 

as the compliant links that are subject to large deflections for long periods or at high 

temperatures may experience stress relaxation or creep (Howell 2001).  The creep is more 

prominent in polymers however, metals experience creep only at elevated temperatures.  

With ever increasing focus on the applications of compliant mechanisms, it is necessary 

to find alternatives to the existing materials usage and methods of fabrication. 

 

This section presents a methodology for the development of PRBMs of compliant 

segments with inserts, i.e., a strong material inside outer layer of a softer material, to 

alleviate the creep and strength issues associated with conventional materials.  The 

following sections discuss the closed-form elliptic integral and pseudo-rigid-body model 

solutions for standard compliant segments with inserts subjected to various boundary 

conditions.  

   

4.2. EQUIVALENT SPRING STIFFNESS 

The proposed PRBM and elliptic integral solutions are similar to the solutions for 

beams without insert material mentioned earlier.  The flexible beam with insert is 
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modeled assuming the two beams are in parallel; hence, the beam has equivalent stiffness 

equal to the addition of individual stiffness of the outer beam (casing) and the inner beam 

(insert).  This is analogous to the deformation of two linear springs connected in parallel.  

Figure 4.1 shows a CAD model of a compliant segment with an insert showing the casing 

and insert material. 

 

 

 

Figure 4.1.  Compliant Segment with an Insert 

 

 

Figure 4.2 shows two linear springs in parallel where, the deflection of each 

spring is equal to the total deflection of the system of springs. 

 � = �+ = �� (4.1) 

Casing 

Insert 
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Figure 4.2.  Linear Springs in Parallel 
 

 

The total force applied is equal to the sum of the force exerted each spring.  

Therefore, the total force is, 

 3 = �+�+ + ���� (4.2) 

 

where, �+ and �� represent the stiffness, and �+ and �� the displacement of each spring.  

The equivalent spring stiffness �� is given by, 

 �� = �+ + �� (4.3) 

 

Equation (4.3) is used to heuristically estimate the stiffness of the equivalent 

torsional spring at the characteristic pivot of the equivalent pseudo-rigid-body model.  

The equivalent torsional spring models the combined resistance of the casing and the 

insert to the deflection. 
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The assumptions made in this effort are summarized below: 

a) It is assumed that the casing and the insert are not bonded together, and therefore, 

each beam behaves independently under the applied load.  The beam that is weaker in 

longitudinal bending (in this case, the plastic casing) will deform to the shape of the 

stronger beam (the metal insert) about its own neutral axis.   

b) When loaded, each layer is free to slide on the adjacent layer(s), allowing slippage to 

occur.  Assuming negligible errors, the effect of the slip is ignored.  The surfaces are 

assumed to be smooth, therefore, the frictional resistance of the beams during 

deformation is considered negligible.   

c) The casing and the insert are assumed to be of equal lengths subject to the same 

boundary conditions. 

 

4.3. CANTILEVER BEAM WITH AN INSERT AND A FORCE AT THE FREE 

END  

Figure 4.3 shows an initially-straight cantilever beam of length l with an outer 

beam (casing) of flexural rigidity �+�+ and inner beam (insert) of flexural rigidity ���� 

subjected to non-follower horizontal and vertical end forces nP and P, respectively.  The 

combined end forces may be treated as a single force F acting at an angle (, where 

( = tan*+ !− +-%. 

 



72 
 

 

Figure 4.3.  Initially-Straight Fixed-Free Beam with an Insert and End Forces 

 

 

4.3.1. Closed-Form Elliptic Integral Solution.  The tip deflection of the above 

cantilever beam can be shown to be: 

For beam end angle �� < (, 

;< = 1/�1= �⁄ ?−@1 AB3 242 , 67 − 3[9, 6]C + 2 B�[9, 6] − � 242 , 67CD
+ 021(1 + F) cos 9K (4.4) 

L< = 1/�1= �⁄ ?1 A23 242 , 67 − 3[9, 6]7 + 2 B�[9, 6] − � 242 , 67CD
+ @021(1 + F) cos 9K (4.5) 
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where, 

 /� = 101 23 242 , 67 − 3[9, 6]7 
(4.6) 

 /� = N O<��+�+ + ���� (4.7) 

 F = 1 cos(�� − () 
(4.8) 

 1 = 01 + @�; 											( = tan*+ �− 1@� (4.9) 

 9 = sin*+N1 − @1 + F ; 												6 = N@ + F21  
(4.10) 

Where, 3[R, S] and	�[R, S] denote the incomplete elliptic integrals of the first 

kind and second kind respectively, with amplitude R	and modulus q, calculated as, 

 3[R, S] = T ��01 − S� sin� �U
�  (4.11) 

 �[R, S] = T 01 − S� sin� �U
� �� (4.12) 

 

4.3.2. Equivalent Pseudo-Rigid-Body Model. As discussed in Section 2, in a 

PRBM, a compliant beam is simulated by rigid segments that are connected by a pin joint 

(characteristic pivot).  A torsional spring is placed at the pin joint to simulate the beam 

compliance.  Figure 4.4 shows the equivalent pseudo-rigid-body model of shows an 

initially-straight cantilever beam of length l with casing of flexural rigidity �+�+ and 

insert of flexural rigidity ���� subjected to non-follower horizontal and vertical end 

forces nP and P, respectively. 
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Figure 4.4.  PRBM of an Initially-Straight Fixed-Free Beam with an Insert 

 

 

The torsional spring moment at the characteristic pivot is given by the following 

relationship: 

 �i�Θ = 3 sin(( − Θ) 9< (4.13) 

 

Where, �i� is the equivalent stiffness of the torsional spring, Θ is the pseudo-rigid-

body angle, 3i is the transverse force and 9< the characteristic radius. The characteristic 

radius factor γ is expressed as a function of the load factor @ by the following relation: 

 9 = 0.855651 − 0.016438@, for − 4 < @ ≤ −1.5 (4.14) 
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 9 = 0.852138 − 0.01861@, for − 1.5 < @ ≤ −0.5 

 

9 = 0.851892 − 0.020805@ + 0.005967@� − 0.000895@ 
+ 0.000069@a − 0.000002@=, for − 0.5 < @ ≤ 10 

 As it can be seen in Figure 4.4, both the casing and the insert will have the same 

angular deflection Θ. 

therefore, Θ = Θ+ =	Θ� (4.15) 

Based on the similarity between equation (4.1) and (4.15), the equivalent torsional 

spring at the characteristic pivot of the equivalent PRBM is approximated by two linear 

torsional springs connected in parallel with stiffness values �+ and �� where, �+is the 

stiffness of the casing and �� is the stiffness of the insert.  The equivalent torque of the 

torsional spring is given by, 

 �i�Θ = �+Θ + ��Θ (4.16) 

therefore, �i� = �+ + �� (4.17) 

where, 

 �+ = ��9 �+�+<  (4.18) 

and 

 �� = ��9 ����<  (4.19) 

therefore, �i� = ��9 ��+�+ + ����< � (4.20) 

The beam stiffness coefficient �� is calculated using the following improved 

equations discussed in Section 3: 
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Beam end angle can be related to pseudo-rigid-body angle through the parametric 

angle coefficient bc (Howell, 2001) such that, 

 θ� = ceΘ (4.22) 

The parametric angle coefficient ce is given as: 

bc = 1.238945 + 0.012035@ + 0.00454@�, fgh	 − 4 < @ ≤ −0.5			 
(4.23) bc = 1.238845 + 0.009113@ − 0.001929@� + 0.000191@ + 0.00039@a

− 0.000013@=, for − 0.5 < @ ≤ 10 

 

The beam end coordinates are given by, 

 
;< = 1 − 9(1 − cos Θ) (4.24) 

 
L< = 9 sin Θ (4.25) 

 

�� = 1Θ (0.004233 − 0.012972@ + 2.567095Θ + 0.003993n�
− 0.037173Θ� − 0.000297@ + 0.179970Θ − 0.034678@Θ
+ 0.003467@�Θ − 0.009474nΘ�),
fgh	0 ≤ @ ≤ 10, 0 < Θ ≤ 65� 

�� = 1Θ (0.000651 − 0.008244@ + 2.544577Θ
− 0.004764n� + 0.071215Θ� − 0.000104@ 
+ 0.079696Θ + 0.069274@Θ + 0.061507@�Θ
− 0.347588nΘ�),
fgh − 4 < @ < 0, 0 < Θ < 0.8( 

 

 

(4.21) 
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Above mentioned equations are validated with commercially available finite 

element software ABAQUS
®

.  Figure 4.5 shows the plot of the non-dimensionalized 

beam tip deflection !�� , ��% calculated from the elliptic integral solution equations (4.4) 

and (4.5), pseudo-rigid-body model equations (4.24) and (4.25) and ABAQUS
®

. 

 

 

 

 

Figure 4.5.  Beam End Deflection Comparison of an Initially-Straight Fixed-Free Beam 

with an Insert for n = 0 

 

 

 

4.3.3. Stress Calculations. As discussed in equation (4.2), the total force applied 

will be divided into two forces at the casing and the insert as  O+ and O� respectively. 

The stress at the top and bottom of the casing may be given by, 
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 +i ® = −(O+; + @O+L)b+�+ − @O+¯+  (4.26) 

 +� ii � = (O+; + @O+L)b+�+ − @O+¯+  (4.27) 

 

The stress at the top and bottom of the insert may be given by, 

 �i ® = −(O�; + @O�L)b��� − @O�¯�  (4.28) 

 �� ii � = O�; + @O�L)b��� − @O�¯�  (4.29) 

where, ¯+ and ¯� are the areas cross-section, and b+ and b� are the maximum distances 

from the neutral axes of the beam and insert respectively. Also, 

 O+ = �+Θ19< sin(( − Θ) (4.30) 

 O� = ��Θ19< sin(( − Θ) (4.31) 

 

4.4. INITIALLY-CURVED FIXED FREE BEAM WITH AN INSERT 

Figure 4.6 shows an initially-curved cantilever beam of length l with casing of 

flexural rigidity �+�+ and insert of flexural rigidity ���� subjected to non-follower 

horizontal and vertical end forces nP and P, respectively. 
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Figure 4.6.  Initially-Curved Fixed-Free Beam with an Insert Subject to End Forces 
 

 

  The beams have an initial radius of curvature �� and hence a curvature of 1/��.  
The initial curvature can be related to the beam length using the non-dimensional 

parameter��	;�, 

 �� = <�� (4.32) 

 

4.4.1. Closed-Form Elliptic Integral Solution.  The beam end deflections may 

be given by following equations: 

 1 = 01 + @� (4.33) 
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 ( = tan*+ �− 1@� 
(4.34) 

for	|F| < 1; ( − cos*+(−F/@) ≤ −�� < (′	and	/ ≠ 0, 
/� = 101 [3[9�, 6] − 3[9+, 6]] (4.35) 

a< = 1/�1= �⁄ t−@1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 										
+ 021(1 + F)(cos 9+ −cos 9�)w (4.36) 

L< = 1/�1= �⁄ t1 2[3[9�, 6] − 3[9+, 6]] + 2u�[9+, 6] − �[9�, 6]v7 																
+ @021(1 + F)(cos 9+ −cos 9�)w (4.37) 

for	F > 1; ( − 4 ≤ −�� 

 

 

/� = N 2F + 1 [3[y�, h] − 3[y+, h]] (4.38)  

;< = 02(1 + F)/�1� z−@ A F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]vD
+ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} 

(4.39)  

L< = 02(1 + F)/�1� z F1 + F [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]v
+ @ {N1 − 1 − @1 + F − N1 − 1 + sin �� − @ cos ��1 + F |} 

(4.40)  
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where, 

F = 12 !��/�%� + sin �� − @ cos �� (4.41) 

1 = 01 + @�; 												(′ = tan*+ �1@� (4.42) 

/� = N O<��+�+ + ���� (4.43) 

9+ = sin*+N1 − @1 + F ;						9� = sin*+N1 + sin �� − @ cos ��1 + F  (4.44) 

y+ = sin*+N1 − @21 ;			y� = sin*+N1 + sin �� − @ cos ��y+  (4.45) 

6 = N1 + F21 ; 													h = N 211 + F (4.46) 

 

4.4.2. Equivalent Pseudo-Rigid-Body Model. Figure 4.7 shows the equivalent 

pseudo-rigid-body-model of an initially-curved cantilever beam of length l with casing of 

flexural rigidity �+�+ and insert of flexural rigidity ���� subjected to combined end forces 

O and @O .  The equivalent characteristic radius length 9< is measured along the beam as 

if it were initially straight.  The combined end forces may be treated as a single force F 

acting at an angle (, where ( = tan*+ !− +-%. 

 

The initial beam end coordinates ;� and L� may be given in terms of the initial 

curvature as below: 
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 ;� = <�� sin �� (4.47) 

 L� = <�� (1 − cos ��) (4.48) 

 

To account for the curvature, the length of rigid-body link is ~< where ~ is given by, 

 ~ = �2;�< − (1 − 9)7� + �L�< ���
+�
 (4.49) 

 

 

 

Figure 4.7.  PRBM of an Initially-Curved Fixed-Free Beam with an Insert 
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As the beam is initially curved, the pseudo-rigid-body angle	Θ will have a non-

zero initial value such that, 

 Θ� = tan*+ L�;� − <(1 − 9) (4.50) 

The torsional spring moment at the characteristic pivot is given by the following 

relationship: 

 �i�(Θ − Θ�) = 3 sin(( − Θ) ~< (4.51) 

where, �i� is the equivalent stiffness of the torsional spring given by: 

 �i� = ��~ ��+�+ + ����< � (4.52) 

The beam end coordinates are given by, 

 
;< = 1 − 9 + ~ cosΘ (4.53) 

 
L< = ~ sinΘ (4.54) 

 

The values of the non-dimensionalized beam tip deflection ! ���� , ����% are 

calculated from the pseudo-rigid-body model equations (4.53) and (4.54).  These are then 

compared favorably with the values obtained from the elliptic integral solution equations 

(4.39) and (4.40) and ABAQUS
®

 as shown in Figure 4.8. 
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Figure 4.8.  Beam End Deflection Comparison of Initially-Curved Fixed-Free Beam with 

an Insert for n = 0 

 

 

4.5. INITIALLY-STRAIGHT SMALL-LENGTH FLEXURAL PIVOT WITH 

AN INSERT 

Figure 4.9 shows an initially-straight cantilever beam with a small-length flexural 

pivot (SLFP) subjected to non-follower combined end forces as shown.  The beam has 

two segments; one is shorter and flexible of length l, and the other is longer and rigid of 

length L.  The shorter segment has casing of flexural rigidity �+�+ and insert of flexural 

rigidity ����.   
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Figure 4.9.  Initially-Straight Small-Length Flexural Pivot with an Insert 
 

 

4.5.1. Closed-Form Elliptic Integral Solution.  The beam end deflection of the 

entire beam, may be expressed as, 

 /� = 1√2T ��0cos(�� − () − cos(� − () + F�c�
�  

(4.55) 

 
a< = 1√2α°T cos � ��0cos(�� − () − cos(� − () + F�c�

� + W cos �� 
(4.56) 

 
Ll = 1√2α°T sin � ��0cos(�� − () − cos(� − () + F�c�

� + W sin �� 
(4.57) 
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where, 

 /� = N O<��+�+ + ���� (4.58) 

 F� = 12 � ���+�+ + ������ � </��� (4.59) 

 �� = 3W sin(( − ��) (4.60) 

 ( = tan*+ �− 1@� (4.61) 

 

4.5.2. Equivalent Pseudo-Rigid-Body Model. Figure 4.10 shows the PRBM of 

the initially-straight small-length flexural pivot with casing of flexural rigidity �+�+ and 

insert of flexural rigidity ���� subjected to combined end forces.  The beam may be 

modeled as two rigid links joined at a characteristic pivot located at the center of the 

flexural pivot.  The angle of the pseudo-rigid link is the pseudo-rigid-body angle	Θ. For 

small-length flexural pivots, the pseudo-rigid-body angle is equal to the beam end angle 

(Howell, 2001), i.e. 

 Θ = �� (4.62) 

The combined resistance of the casing and the insert at the compliant segment is 

modeled through a torsional spring at the characteristic pivot.  The stiffness of the 

torsional spring is given by, 

 �i� = �+�+ + ����<  (4.63) 

The torsional spring moment at the characteristic pivot is given by: 

 �i�Θ = �W + <2�3 sin(( − Θ) (4.64) 
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Figure 4.10.  PRBM of an Initially-Straight Small-Length Flexural Pivot with an Insert 

 

 

The beam end deflections are given by, 

 ; = <2 + �W + <2� cos Θ (4.65) 

 L = �W + <2� sin Θ (4.66) 

The values of the non-dimensionalized beam tip deflection ! ���� , ����% are 

calculated from the pseudo-rigid-body model equations (4.65) and (4.66).  These are then 

compared favorably with the values obtained from the elliptic integral solution equations 

(4.56) and (4.57) and ABAQUS
®

 as shown in Figure 4.11. 
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Figure 4.11.  Beam End Deflection Comparison of Initially-Straight SLFP with an Insert 

for n = 0 

 

4.6. INITIALLY-CURVED SMALL-LENGTH FLEXURAL PIVOT WITH AN 

INSERT 

Figure 4.12 shows an initially-curved small-length flexural pivot subjected to 

non-follower horizontal and vertical end forces nP and P, respectively.  The beam has 

two segments, one is compliant and shorter of length l, and the other is rigid and longer 

of length L.  The shorter segment has casing of flexural rigidity �+�+ with an insert of 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ABAQUS®

Elliptic Integrals

PRBM

L< + W 

;< + W 



89 
 

flexural rigidity ����.  The flexural pivot has an initial radius of curvature �� and hence a 

curvature of 1/��.   
 

 

 

Figure 4.12.  Initially-Curved Small-Length Flexural Pivot with an Insert 

 

 

4.6.1. Closed-Form Elliptic Integral Solution.  The coordinates of the beam end 

in the deformed position may be expressed as: 

for	|F�| < 1; ( − cos*+(−F�/@) ≤ −θ� < (′	and	/� ≠ 0, 
/� = 101 [3[9�, 6] − 3[9+, 6]] (4.67) 

a< = 1/�1= �⁄ t−@1 2u3[9�, 6] − 3[9+, 6]v + 2u�[9+, 6] − �[9�, 6]v7 										
+ 021(1 + F�)(cos 9+ −cos 9�)w + W cos �� 

(4.68) 
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 L< = 1/�1= �⁄ t1 2[3[9�, 6] − 3[9+, 6]]

+ 2u�[9+, 6] − �[9�, 6]v7 																	
+ @021(1 + F�)(cos 9+ −cos 9�)w + W sin �� 

(4.69) 

for F� > 1; 	( − 4 ≤ −�� < (�;@�	/� ≠ 0,  
/� = N 2F� + 1 [3[y�, h] − 3[y+, h]] (4.70)  

;< = 02(1 + F�)/�1� z−@ A F1 + F� [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]vD
+ {N1 − 1 − @1 + F� −N1 − 1 + sin �� − @ cos ��1 + F� |} + W cos �� 

(4.71)  

L< = 02(1 + F�)/�1� z F1 + F� [3[y�, h] − 3[y+, h]] + u�[y+, h] − �[y�, h]v
+ @ {N1 − 1 − @1 + F� −N1 − 1 + sin �� − @ cos ��1 + F� |} + W sin �� 

(4.72)  

where,   

 �� = 3W sin(( − ��) (4.73) 

 ( = tan*+ �− 1@� (4.74) 

 /� = N O<��+�+ + ���� (4.75) 

F� = 12 � ���+�+ + ���� + 1���� � </��� + sin �� − @ cos �� (4.76) 
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1 = 01 + @�; 														(′ = tan*+ �1@� 
(4.77) 

9+ = sin*+N1 − @1 + F� ; 												9� = sin*+N1 + sin �� − @ cos ��1 + F�  (4.78) 

y+ = sin*+N1 − @21 ;	 									y� = sin*+N1 + sin �� − @ cos ��y+  (4.79) 

6 = N1 + F�21 ; 																	h = N 211 + F� (4.80) 

 

4.6.2. Equivalent Pseudo-Rigid-Body Model. Figure 4.13 shows the PRBM of 

the initially-curved small-length flexural pivot with casing of flexural rigidity �+�+ and 

insert of flexural rigidity ���� subjected to combined end forces.  The beam has an initial 

radius of curvature �� and hence a curvature of 1/��.  The initial curvature can be related 

to the beam length using the non-dimensional parameter��	as, 
 �� = <�� (4.81) 

The beam is modeled as two rigid links joined at a characteristic pivot located at 

the center of the flexural pivot along the undeformed curvature.  The angle of the pseudo-

rigid link is the pseudo-rigid-body angle Θ. For small-length flexural pivots, the pseudo-

rigid-body angle is equal to the beam end angle, i.e. 

 Θ = �� (4.82) 
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Figure 4.13.  PRBM of an Initially-Curved Small-Length Flexural Pivot with an Insert 
 

 

The initial beam end coordinates ;� and L�are, 

 ;� = <�� sin �� + W cos �� (4.83) 

 L� = <�� (1 − cos ��) + W sin �� (4.84) 

As the beam is initially curved, the pseudo-rigid-body angle Θ will have a non-

zero initial value such that, 

 Θ� = tan*+�L� − <2�� (1 − cos ��);� − <2�� sin �� � (4.85) 

The combined resistance of the casing and insert at the compliant segment is 

modeled through a torsional spring at characteristic pivot whose equivalent stiffness is 

given by, 
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 �i� = �+�+ + ����<  (4.86) 

The torsional spring moment at the characteristic pivot is given by, 

 �i�(Θ − Θ�) = �W + <2�3 sin(( − Θ) (4.87) 

The beam end deflections are given by, 

 ; = <2�� sin �� + �W + <2� cos Θ (4.88) 

 L = <2�� (1 − cos ��) + �W + <2� sinΘ (4.89) 

Figure 4.14 shows the beam end coordinate comparison calculated using 

ABAQUS
®

, elliptic integrals and PRBM. 

 

 
 

Figure 4.14.  Beam End Deflection Comparison of Initially-Curved SLFP with an Insert 

for n = 0 
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4.7. INITIALLY CURVED PINNED-PINNED SEGMENT WITH AN INSERT 

Figure 4.15 shows an initially-curved pinned-pinned flexible segment of length l 

with casing of flexural rigidity �+�+ and insert of flexural rigidity ���� subjected to non-

follower horizontal force P.  The beam has an initial curvature �� where, 

 κ� = lR² (4.90) 

Following sections discuss the elliptic and PRBM solutions for an initially-curved 

pinned-pinned flexible beam with an insert. 

 

 

 

Figure 4.15.  Initially-Curved Pinned-Pinned Segment with an Insert 

 

4.7.1. Closed-Form Elliptic Integral Solution.  The closed-form elliptic integral 

solution for a pinned-pinned segment with an insert subject to a non-follower horizontal 

force may be given as follows: 
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For F > 1 

 
;< = 1/�6 [(6� − 2)3(R, 6) + 2�(R, 6)] (4.91) 

 
L< = √2/� �√F + 1 − 0F + cos ��� (4.92) 

 /� = 63(R, 6) (4.93) 

 /� = N O<��+�+ + ���� (4.94) 

 F = ���2/�� − cos �� (4.95) 

 R = ��2  (4.96) 

 6 = N 2F + 1 (4.97) 

For |F| < 1 

 
;< = 1/� [2�(y, h) − 3(y, h)] (4.98) 

 
L< = √2/� �√F + 1 − 0F + cos ��� (4.99) 

 /� = 3(y, h) (4.100) 

 y = sin*+N1 − cos ��F + 1  (4.101) 

 h = NF + 12  (4.102) 
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4.7.2. Equivalent Pseudo-Rigid-Body Model. The equivalent pseudo-rigid-body 

model of an initially-curved pinned-pinned flexible segment of length l with casing of 

flexural rigidity �+�+ and insert of flexural rigidity ���� subjected to non-follower 

horizontal force P may be represented as shown in Figure 4.17. The symmetry of the 

beam is used to divide the complete segment into two equivalent half-segments which are 

conceptually equal to initially-curved fixed-free segments as shown in Figure 4.16 in its 

PRBM form.  Thus, the entire pinned-pinned segment shown in Figure 4.15 may be 

represented in terms of an identical PRBM on each side of the segment midpoint.  The 

equivalent resistance of the casing and the insert to the deflection is modeled through 

nonlinear torsional springs which are identical due to symmetry.     

 

 

 

Figure 4.16.  PRBM in Deflected Position 
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Figure 4.17.  PRBM of Entire Pinned-Pinned Segment with an Insert 

 

 

The initial non-dimensional horizontal and vertical coordinates of the beam are, 

 ;� = <�� sin �� (4.103) 

 L� = <�� (1 − cos ��) (4.104) 

And the initial value of the pseudo-rigid-body angle Θ�is, 

 Θ� = tan*+ L�;� − <(1 − 9) (4.105) 

To account for the curvature, the length of rigid-body link is ~< where ~	is given by, 

 ~ = �2;�< − (1 − 9)7� + �L�< ���
+�
 (4.106) 

And the value of the equivalent stiffness of spring constant is given by, 

 �i� = ~�� �+�+ + ����<  (4.107) 

The torsional spring moment at the characteristic pivot is given by, 
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 �i�(Θ − Θ�) = 3 sin(k) 9< (4.108) 

 

The beam end coordinates are given by, 

 
;< = 2(1 − 9 + ~ cos �) (4.109) 

 
L< = ~ sin � (4.110) 

 

 

 

 

Figure 4.18.  Beam End Deflection Comparison of Initially-Curved Pinned-Pinned 

Segment with an Insert  

 

4.8. FIXED-GUIDED COMPLIANT BEAM WITH AN INSERT AND AN 

INFLECTION POINT 

A fixed-guided compliant beam of length L with casing of flexural rigidity �+�+ 

and insert of flexural rigidity ���� subjected with end forces and moment is shown in 

Figure 4.19, where, P is the transverse force, nP the axial force, and M the moment.  

Table 4.1 summarizes the conditions on these loads that will yield an inflection point (Pi). 
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Figure 4.19.  Fixed-Guided Compliant Beam with an Insert and End Forces and 

Opposing Moment 

 

Table 4.1.  Dependence of Pi on P and M 

P M 
Point of Inflection 

(Pi) 

+ + Not Possible 

+ − Possible 

− + Possible 

− − Not Possible 

 

 

4.8.1. Closed-Form Elliptic Integral Solution.  The non-dimensionalized beam 

tip deflections from the elliptic integral solution for a fixed guided beam with an 

inflection point may be given as follows: 
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;< = 1/�1=/� u−@1f∗ + 2@1�∗ + 021b$∗v (4.111) 

 
L< = 1/�1=/� u1f∗ − 21�∗ +021b#∗v (4.112) 

where,   

 1 = 01 + @� (4.113) 

 /� = N O<��+�+ + ���� (4.114) 

 /� = N11 f∗ (4.115) 

 f∗ = 3(9+, �) + 3(9�, �) (4.116) 

 �∗ = �(9+, �) + �(9�, �) (4.117) 

 b$∗ = b$+ + b$� (4.118) 

 b#∗ = b#+ + b#� (4.119) 

 b$+ = −0F + 1 �@N1 − @1 + @ − 1� (4.120) 

 b$� = −√��@N1 + sin �� − @ cos ��1 − sin �� + @ cos �� − 1� (4.121) 

 b#+ = 0F + 1 �@ +N1 − @1 + @� (4.122) 

 b#� = √��@ + N1 + sin �� − @ cos ��1 − sin �� + @ cos ��� (4.123) 
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 9+ = sin*+N 21F + 1 �F + @1 + @� (4.124) 

 9� = sin*+N 21F + 1 � �1 − sin �� + @ cos ��� (4.125) 

 � = NF + @21  (4.126) 

 

4.8.2. Equivalent Pseudo-Rigid-Body Model. Figure 4. (a) shows a fixed-guided 

compliant beam of length L with casing of flexural rigidity �+�+ and an insert of flexural 

rigidity ����  in its deformed state with a positive beam end angle.  The beam is subjected 

to a transverse force P, an axial force nP, and moment M.  According to table 4.1, this 

type of loading will cause an inflection point in the beam.   

 

In its PRBM form, the beam is modeled as two fixed-free compliant segments, 

pinned at the inflection point, Pi, which is characterized by zero curvature and, therefore, 

a zero moment (Midha 2012).  Both the compliant segments and their respective pseudo-

rigid-body models are shown in Figure 4.( b), 4.20 (c), 4.20 (d) and 4.20 (e) respectively. 
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(a) 

 

(b) 

Figure 4.20.  Deformed State of Fixed-Guided Compliant Beam with an Insert (a) 

Considered as Two Compliant Segments; (b) Compliant Segment 1; (c) Compliant 

Segment 2; (d) PRBM of Segment 1; and (e) PRBM of Segment 2  
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(c) 

 

(d) 

Figure 4.20.  Deformed State of Fixed-Guided Compliant Beam with an Insert (a) 

Considered as Two Compliant Segments; (b) Compliant Segment 1; (c) Compliant 

Segment 2; (d) PRBM of Segment 1; and (e) PRBM of Segment 2 (cont.) 



104 
 

 

(e) 

Figure 4.20.  Deformed State of Fixed-Guided Compliant Beam with an Insert (a) 

Considered as Two Compliant Segments; (b) Compliant Segment 1; (c) Compliant 

Segment 2; (d) PRBM of Segment 1; and (e) PRBM of Segment 2 (cont.) 

 

 

The equations are summarized below comprising of three distinct sets of 

equations in the analysis of the fixed-guided compliant beam with an insert, subjected to 

a variety of beam end load and/or displacement boundary conditions.  

 

Based on the parametric expressions, equations (4.127) through (4.132) and are 

referred to as Parametric Equations (Midha, 2012).  It should be noted that the beam 

stiffness coefficient �� is calculated using the following improved equations discussed in 

Section 3.2 and 3.3: 
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9+ = 0.855651 − 0.016438@+, fgh	 − 4	 < @+ 	≤ 	−1.5 

(4.127)  

9+ = 0.852138 − 0.018615@+, fgh	 − 1.5	 < @+ 	≤ 	−0.5 

9+ = 0.851892 − 0.020805@+ 	+ 0.005867@+� − 0.000895@+ +0.000069@+a − 0.000002@+=, fgh	 − 0.5	 < @+ 	≤ 	10 

 

9� = 0.855651 − 0.016438@�, fgh	 − 4	 < @� 	≤ 	−1.5 

(4.128)  

9� = 0.852138 − 0.018615@�, fgh	 − 1.5	 < @� 	≤ 	−0.5 

9� = 0.851892 − 0.020805@� 	+ 0.005867@�� − 0.000895@� +0.000069@�a − 0.000002@�=, fgh	 − 0.5	 < @� 	≤ 	10 

 

bc� = 1.238945 + 0.012035@+ + 0.00454@+�, fgh	 − 4 < @+ ≤	−0.5 

(4.129)  

bc� = 1.238845 + 0.009113@+ − 0.001929@+� + 0.000191@+ +
0.000390@+a − 0.000013@+=, fgh	 − 0.5	 < @+ ≤ 	10 

 

bc� = 1.238945 + 0.012035@� + 0.00454@��, fgh	 − 4 < @� ≤	−0.5 

(4.130)  

bc� = 1.238845 + 0.009113@� − 0.001929@�� + 0.000191@� +
0.000390@�a − 0.000013@�=, fgh	 − 0.5	 < @� ≤ 	10 

 

��+ = 1Θ+ (0.004233 − 0.012972@+ + 2.567095Θ+ + 0.003993n+�
− 0.037173Θ+� − 0.000297n+ + 0.179970Θ+ − 0.034678@+Θ++ 0.003467n+�Θ+ − 0.009474@+Θ+�)	fgh	0 ≤ @+ ≤ 10, 0 < Θ+≤ 65� 

(4.131)  
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��+ = 1Θ+ (0.000651 − 0.008244@+ + 2.544577Θ+
− 0.004764n+� + 0.071215Θ+� − 0.000104n+ + 0.079696Θ+ + 0.069274@+Θ+ + 0.061507n+�Θ+− 0.347588@+Θ+�),fgh − 4 < @+ < 0, 0 < Θ+ < 0.8(+ 

 

 

 ��� = 1Θ� (0.004233 − 0.012972@� + 2.567095Θ� + 0.003993n��
− 0.037173Θ�� − 0.000297n� + 0.179970Θ� − 0.034678@�Θ�+ 0.003467n��Θ� − 0.009474@�Θ��)	fgh	0 ≤ @� ≤ 10, 0 < Θ�≤ 65� 

(4.132)  ��� = 1Θ� (0.000651 − 0.008244@� + 2.544577Θ�
− 0.004764n�� + 0.071215Θ�� − 0.000104n� + 0.079696Θ� + 0.069274@�Θ� + 0.061507n��Θ�− 0.347588@�Θ��),fgh − 4 < @� < 0, 0 < Θ� < 0.8(� 

 

 

Equations (4.133) through (4.137) are derived from force and moment 

equilibrium using the free-body diagrams, and are referred to as the Static Equilibrium 

Equations. 

3W+��+�+ + ���� sin &(+ −	�+�bc�' − ��� �+�bc� = 0 (4.133) 
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3W���+�+ + ���� �j@ &(� −	���bc�' − ��� ���bc� = 0	 (4.134) 

@+ = −16;@	((+) (4.135) 

@� = −16;@	((�) (4.136) 

� + �[@Obg�(��) − O�j@(��)]9�W��j@ &�+� − ��bc� '�
+ �[Obg�(��) + @O�j@(��)] B(1 − 9�)W� + 9�W��j@ &�+� − ��bc� 'C� = 0 

(4.137) 

           

          Equations (4.138) through (4.142) reflect constraints of length, slope, and 

displacements, and are referred to as the Compatibility Equations. 

W+ + W� = W (4.138) 

�+� = ��� + �� (4.139) 

(+ = (� + �� 
L = 9+W+ sin &�+�bc�' + 9�W�sin &���bc� + ��' 

+(1 − 9�)W�sin	(��) (4.141) 

; = (1 − 9+)W+ + 9+W+ cos &�+�bc�' + 9�W�cos &���bc� + ��'
+ (1 − 9�)W�bg�	(��) (4.142) 

 

Table 4.2 compares the beam end coordinates calculated from PRBM, elliptic 

integral solution and ABAQUS
®

.  The fixed-guided compliant beam considered in the 

example has following geometric and material properties: 
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Casing:  Length, L = 20 inches; Width, w1 = 1 inch; Height, h1 = 0.3 inches;  

  Material = Polypropylene; Modulus of Elasticity, E = 200,000 psi. 

Insert:  Length, L = 20 inches; Width, w2 = 0.8 inches; Height, h2 = 0.1 inches; 

       Material = Steel; Modulus of Elasticity, E = 30 x 10
6
 psi. 

 

The following sign conventions are followed for the applied loads, Fx: Positive for 

compressive axial force; Fy: Positive for vertically upward force; M: Positive for counter-

clockwise moment. 

 

Table 4.2.  Analysis of a Fixed-Guided Compliant Segment with an Insert Subjected to 

Load Boundary Conditions 

Beam End 

Loads 

Specified 

Beam End Displacement Results from 

PRBM 
Elliptic integral 

Solution 
ABAQUS

®
 

nP = 1.5 

P = 15 

M = -15 

a = 15.985 

b = 11.02 

θ0 = 48.392 

a = 15.941 

b = 10.987 

θ0 = 48.979 

a = 15.956 

b = 11.12 

θ0 = 49.173 

nP = -3 

P = 8 

M =  -20 

a = 17.414 

b = 9.113 

θ0 = 38.052 

a = 17.398 

b = 9.051 

θ0 = 38.297 

a = 17.414 

b = 9.113 

θ0 = 38.378 

nP = 0 

P = 4 

M = -20 

a = 16.382 

b = 10.545 

θ0 = 45.705 

a = 16.346 

b = 10.506 

θ0 = 46.206 

a = 16.401 

b = 10.616 

θ0 = 46.424 

 

Note: The units are: P in lb; M in-lb; b in.; a in. and θ0 in deg. 

 

4.9. SUMMARY 

In this Section, the pseudo-rigid-body models for compliant segments with inserts 

subject to various boundary conditions and cases have been presented.  Such beams may 
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offer an alternative to the existing materials by overcoming their limitations of creep and 

strength.  The compliant beam with insert is modeled as two beams in parallel.  The 

PRBMs have been validated with the closed-form elliptic integral solution and finite 

element analysis solutions.   
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5. EXPERIMENTAL SETUP AND RESULTS 

 

5.1. INTRODUCTION 

It has been shown in previous Section that the analytical results from the pseudo-

rigid-body model for the compliant beams with inserts for various boundary conditions 

and cases compare closely with the elliptic integral solution and the finite element 

analysis Software ABAQUS
®

.  To further validate the PRBM, three experiments for the 

fixed-free cantilever beam with an insert were performed.  For the first experiment, the 

beam was subject to vertical load at the free end, whereas, for the second and third 

experiment the beam was subject to vertical and compressive, and vertical and tensile 

loads.  Another experiment was performed to compare the creep behavior of plastic 

beams with and without insert.  Following sections discuss the experimental setup, 

procedure and the results in detail.  

  

5.2. EXPERIMENTAL SETUP 

Figure 5.1 shows the solid model of the experimental setup for the testing of the 

fixed-free cantilever beam with an insert.  The setup is made up of two parts, the upper 

part is for the testing of a cantilever beam and the lower part is to be utilized for a 

compliant four-bar mechanism for another research effort.  The entire setup is mounted 

on two wooden blocks which are securely fastened to a table by means of four C-clamps.  

Since this thesis is concerned with the cantilever beam, only the upper part of the setup 

will be discussed.   
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Figure 5.1.  The Experimental Setup - CAD 

 

 

Figure 5. (a) shows the close-up of the upper part where a cantilever beam is fixed 

at one end and connected to a lightweight loading rope at the other end.  The beam is 

fixed at one end by a clamp which securely fastens the beam using six bolts passing 

through the holes in the beam as shown in Figure 5. (b) to ensure perfect cantileverage.  

The loading rope passes over three frictionless pulleys.  One pulley is free to slide and 

lock in place in the rectangular slot as shown in Figure 5. (c) to allow for loading at an 
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angle.  The beam is loaded by adding weights to a pan attached at the other end of the 

loading rope shown in Figure 5. (d). 

 

 

(a) 

 

 

(b) 

Figure 5.2. Experimental Setup (a) Test Beam; (b) The Fixture; (c) The Pulley and Rope; 

and (d) The Loading Arrangement 
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(c) 

 

 

(d) 

Figure 5.2. Experimental Setup (a) Test Beam; (b) The Fixture; (c) The Pulley and Rope; 

and (d) The Loading Arrangement (cont.) 
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5.3.      TESTING AND RESULTS 

The experimental setup discussed above was manufactured and assembled as 

shown in Figure 5.3. 

 

 

 

Figure 5.3.  The Experimental Setup  

 



115 
 

In the example chosen for the experiment, the insert material was sandwiched 

between two layers of casing material, as shown in Figure 5.4.  The three beams were 

held together by using plastic binding posts and slots were made in the lower beam to 

simulate no bonding and allow for lateral sliding upon deflection.  

 

 

 

(a)     (b) 

Figure 5.4.  The Test Beams – CAD (a) Exploded View; and (b) Assembly 

 

 

The casing and the insert exhibit following material and geometric properties: 

Plastic Beams (Casing) 1 and 2: 

Length, L = 10 inches; Width, w1 = w3=2.5 inch; Height, h1 = h3 = 0.125 inch;  

Material = Delrin
®

; Modulus of Elasticity, E = 550,000 psi. 

Insert: 

Length, L =10 inches; Width, w2 = 1 inches; Height, h2 = 0.025 inch;  

Material = Spring Steel; Modulus of Elasticity, E = 30 x 10
6
 psi. 

 

Figure 5.5 (a), (b) and (c) show the casing and insert beams used for the 

experiment.  The assembly of the beams was then securely clamped at one end in the 
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experimental setup using bolts as shown in Figure 5.6.  A graph paper was placed at the 

back of the beam to record the beam end deflections of the beam. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 5.5. Test Beams (a) Plastic Beam 1; (b) Plastic Beam 2; and (c) Insert Beam 
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Figure 5.6.  The Clamping 

 

 

5.3.1. Experiment 1 – Vertical Loading.  In the first experiment, a vertically 

downward force was applied at the end of the beam using a lightweight steel rope which 

holds the weight hanger as shown in Figure 5.7.  The weight of the hanger was found to 

be 0.34 lbs.  The weight in the hanger was increased gradually from 4 lb to 8.5 lb 

(excluding the weight of hanger) and the corresponding beam end points are marked on 

the graph paper.  The measurements were then taken using a vernier caliper to capture the 

x and y coordinates of the beam end.  The vernier caliper used for the measurement was 

Craftsman
®

 mechanical caliper with a least count of 0.001 in. 
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Figure 5.7.  Experiment 1 – Vertical Loading 

 

The x and y coordinates were then plotted to obtain the experimental beam end 

deflection for a vertically downward force.  The beam end coordinates a and b calculated 

from experimental and PRBM results are tabulated in Table 5.1.  It can be seen that the 

experimental results match closely with the PRBM results exhibiting a maximum relative 

error of 0.87%.   

 

Figure 5.8 shows the experimental beam end points as compared with the results 

from pseudo-rigid-body model equations.  The Maple code for this experiment is given in 

Appendix B. 
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Table 5.1 Beam End Coordinate Comparison for Vertical Loading 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.8.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical 

Loading 
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Experimental PRBM  

Fapplied be ae bPRBM aPRBM Relative error (%) 

0 0 10 0 10 - 

4 2.735 9.56 2.732 9.549 0.2173 

5 3.243 9.341 3.25 9.355 0.2728 

6 3.677 9.148 3.717 9.146 0.6505 

7 4.088 8.962 4.134 8.929 0.8685 

8 4.467 8.731 4.505 8.711 0.6283 

8.5 4.626 8.624 4.676 8.602 0.7826 
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5.3.2. Experiment 2 – Vertical and Compressive Loading: In the second 

experiment, the same procedure as the first experiment was repeated for vertical and 

compressive loads.  To apply the compressive loads, the steel rope was passed over three 

pulleys as shown in Figure 5.9.  The same load steps as used in first experiment were 

applied at angle of 58
0
 measured from the right horizontal in the anticlockwise direction.  

To account for follower loading, the actual load angle after deflection was calculated and 

used in the theoretical analysis.  The steel rope was properly lubricated at the contact 

point of the pulleys to reduce the friction.  Even with the lubrication, some amount of 

friction was present due to the rubbing of steel pulley on the steel rope. 

 

 

 

Figure 5.9.  Experiment 2 – Vertical and Compressive Loading  
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  To account for the friction, the coefficient of friction between the rope end the 

pulley was calculated by performing a simple experiment as shown in Figure 5.10 and 

using the Capstan friction equation (Meriam, 1978) mentioned below: 

 «� = «+�³U 
(5.1) 

where, «+ is the tension force in the low tension rope and «� is the tension force in the 

high tension rope, R is the angle of contact between the rope and the pulley. 

 

 

 

Figure 5.10.  The Capstan Friction Equation Experiment  

 

 

From the experiment, the coefficient of friction between the rope and pulley was 

determined to be 0.01.  This factor was then used in the PRBM calculations to calculate 

the actual load acting on the beam.  Figure 5.11 shows the calculation of the actual force 

acting on the beam considering the effect of friction between the rope and pulley.  The 
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contact angles between the rope and pulleys are denoted by β1, β2 and β3; Fapplied is the 

load applied at the end of the rope, including the weight of the hanger and Factual is the 

actual load acting at the beam end.  The Maple code for this experiment can be found in 

Appendix B.  The x and y coordinates of the beam end were then recorded and plotted.  

The beam end coordinates calculated from the PRBM and the experimental testing are 

listed in Table 5.2.  Figure 5.12 shows the experimental beam end points comparing 

closely with the results from PRBM with a maximum relative error of 0.95%. 

 

 

 

 

Figure 5.11 Calculation of the Actual Force Acting on the Beam for Experiment 2 
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Table 5.2 Beam End Coordinate Comparison for Vertical and Compressive Loading 

 
Experimental PRBM  

Fapplied be ae bPRBM aPRBM Relative error (%) 

0 0 10 0 10 - 

4 2.481 9.629 2.489 9.621 0.2261 

5 3.09 9.422 3.089 9.408 0.2511 

6 3.592 9.182 3.644 9.162 0.9141 

7 4.127 8.911 4.168 8.882 0.7664 

8 4.614 8.588 4.675 8.562 0.9490 

8.5 4.873 8.423 4.912 8.392 0.6928 

 

 

Figure 5.12.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical 

and Compressive Loading 
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5.3.3. Experiment 3 – Vertical and Tensile Loading. For the third and final 

experiment, the beam was subjected to vertical and tensile loads as shown in Figure 5.13.  

To apply tensile loads, the rope was passed over two pulleys and the loads were applied 

at an angle of 117
0
 measured from the right horizontal in the anticlockwise direction.  

Figure 5.14 shows the calculation of the actual force acting on the beam, considering the 

effect of friction at the pulleys.  Table 5.3 lists the beam end coordinates as calculated 

from PRBM and experimental testing for the applied loads.  The x and y coordinates 

from the experiment were recorded and plotted against the PRBM results as shown in 

Figure 5.15.  The results compared favorably with a maximum error of 0.87%.  The 

Maple code for this experiment can be found in Appendix C.  

  

 

 

Figure 5.13.  Experiment 3 – Vertical and Tensile Loading 
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Figure 5.14. Calculation of the Actual Force Acting on the Beam for Experiment 3 

 

Table 5.3 Beam End Coordinate Comparison for Vertical and Tensile Loading 

 
Experimental PRBM 

 
Fapplied be ae bPRBM aPRBM Relative error (%) 

0 0 10 0 10 - 

4 1.902 9.791 1.933 9.781 0.7399 

5 2.197 9.734 2.213 9.712 0.5772 

6 2.421 9.652 2.45 9.647 0.5930 

7 2.621 9.596 2.664 9.582 0.8733 

8 2.819 9.539 2.859 9.515 0.8688 

8.5 2.898 9.508 2.938 9.488 0.8214 

 



126 
 

  
 

Figure 5.15.  PRBM vs. Experimental Beam End Coordinate Comparison for Vertical 

and Tensile Loading  

 

 

 

5.4. CREEP TEST 

To validate the proposed methodology for creep alleviation, two simple 

experiments were performed to compare the creep behavior of plastics in bending, with 

and without inserts.  For this experiment, polypropylene was chosen over Delrin
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because Polypropylene showed more dramatic response to creep.  The beams used for 

this experiment exhibit following geometric and material properties: 

Plastic Beams 1 and 2: 

Length, L = 10 inches; Width, w1 = w3=1.5 inch; Height, h1 = h3 = 0.0625 inches;  

Material =Polypropylene; Modulus of Elasticity, E = 250,000 psi. 

Insert: 

Length, L =10 inches; Width, w2 = 1 inches; Height, h2 = 0.025 inches;  

Material = Spring Steel; Modulus of Elasticity, E = 30 x 10
6
 psi.  

 

            5.4.1. Creep. For the first experiment, the two polypropylene beams, without 

insert, were subjected to stress levels of 2800 psi by applying a calculated load for a 

period of one hour.  After unloading, the readings of the deflection retained due to creep 

were recorded. 

 

Figure 5.16 (a) shows the beams without insert in loaded position and 5.16 (b) 

shows the deformation in the beams due to creep after unloading.  The beams without 

insert were subject to a vertical deflection of 6.487 inches.  After unloading, the beams 

retained a vertical deflection of 2.637 inches due to creep.  Hence, the creep in the beams 

immediately after unloading was 36.49% of the deflection. 
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(a)      (b) 

Figure 5.16.  Creep Test – Without Insert (a) Loaded; and (b) Unloaded  

 

 

The second experiment was performed by placing the spring steel insert between 

two layers of polypropylene.  The plastic beams were subjected to similar stresses of 

2800 psi by applying suitable loads for a period of one hour.  Readings of the deflection 

due to creep after unloading were recorded similar to the first experiment. 

 

Figure 5.17 (a) shows the beams with insert in loaded position and 5.17 (b) shows 

the deformation in the beams due to creep after one hour of loading.  The beams with 

insert were subject to a vertical deflection of 6.26 inches.  The beams retained a vertical 

deflection of 0.65 inches due to creep, after unloading.  Hence, the beams with insert 

showed a creep of 10.40% of the deflection after unloading. 
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(a)                (b) 

Figure 5.17. Creep Test – With Insert (a) Loaded; and (b) Unloaded 

 

             5.4.2. Creep Recovery: Creep recovery is defined as the rate of decrease in the 

deformation that occurs when load is removed after prolonged application in a creep test.  

The amount of recovery depends on the stress levels, loading time and the time allowed 

for recovery; some plastics may exhibit full recovery if sufficient time is allowed for 

recovery (Findley, 1989).  For the stress levels observed in this experiment (2800 psi), 

approximately 35-40% creep deformation is recovered in first five minutes (Flinn, 1995).   

 

To observe the effect of creep recovery, further two readings of the deflection 

were taken after every five minutes.  The beams without insert recovered 30.62% of the 

deflection due to creep in first five minutes and 40% in ten minutes after unloading, 

whereas, the beams with insert showed a steep recovery of 63.95% of the deflection due 

to creep in first five minutes and 74% in ten minutes after unloading. 
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5.5. DISCUSSION OF RESULTS 

The experimental testing of a fixed-free compliant beam with an insert yielded 

very close results compared to the theoretical PRBM results, exhibiting a maximum 

relative error of 0.95%.  The error present may have occurred due to following reasons: 

(1) Difference in the approximated value of the elastic modulus of the plastic and insert 

material. 

(2) Error in measurement. 

(3) Unaccounted friction between the beams. 

(4) Axial stiffening of the beams. 

 

Attempts were made to accommodate most of the points mentioned above in the 

theoretical calculations as explained in the previous sections, which have helped in 

achieving fairly accurate results.  More research into considerations of the factors 

contributing to the errors would help to reduce the errors further. 

 

The results from the creep test showed that the deformation due to creep in the 

beams with insert was reduced significantly from 36.49% to 10.40% of the deflection.  

Creep resistance is defined as a polymer's ability to resist any kind of deformation when 

under a load over an extended period of time.  Hence, it can be said that the creep 

resistance of the beams with inserts was significantly improved as compared to the beams 

without inserts. 
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As discussed earlier, creep recovery is the rate of decrease in the deformation that 

occurs when load is removed after prolonged application in a creep test.  Hence, it would 

be desirable to achieve a faster recovery to reduce the creep deformation in the material 

in a shorter period of time.  The experimental results showed that the beams without 

insert had recovered 30.62% of in first five minutes and 40% after ten minutes after 

unloading, whereas, the beams with insert had recovered 63.95% in first five minutes and 

74% after ten minutes after unloading.  This shows that the recovery rate is significantly 

improved with the insert.  To achieve near-full recovery, the resistance force of the 

plastic must be much smaller than the restoring force of the insert material.  If a faster 

and better recovery is required, higher rigidity (EI) of the metal insert could be utilized. 

 

5.6. SUMMARY 

In this Section, the pseudo-rigid-body-model for a fixed free beam with an insert 

has been validated using experimental testing.  Three experiments have been performed 

by subjecting the beam to vertical, compressive and tensile loading.  The comparison of 

the experimental results with the theoretical PRBM model has been presented by showing 

plots of the beam end coordinates.  An experiment comparing the creep behavior of the 

plastic with and without insert material was performed and discussed.  The results are 

discussed briefly providing a rationale for the causes of error in the experimental testing 

and an insight on the results from creep test. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

 

6.1. CONCLUSIONS 

 Compliant mechanisms offer many potential advantages over their traditional 

rigid-body counterparts in engineering designs, such as, reduction in the number of parts, 

cost, wear; ease of assembly; increased mechanical precision, etc., as mentioned in 

Section 1.  Pseudo-rigid-body model offers a simple method of large deflection analysis, 

and helps expedite the compliant mechanism design process.  PRBMs give fairly accurate 

results in the analysis of large deflection members.  A method to improve the accuracy of 

the PRBM of a fixed-free beam has been presented in Section 3.  The results from the 

improved method and the old method are compared with the elliptic integral method, and 

elaborate results may be found in Appendix A.   

 

 In spite of the inherent advantages of compliant mechanisms, their use has been 

limited whenever fabricated from thermoplastic materials, and subjected to forces over 

sustained periods of time.  They are likely to experience creep, rendering them 

ineffective.   A methodology to reduce the creep and effectively increase the strength of 

materials by using an insert of a stronger material between plastic layers has been 

explored in Section 4.  The pseudo-rigid-body models for compliant links with inserts for 

various boundary conditions and cases were satisfactorily developed and validated with 

the elliptic integrals and finite element analysis.  The experimental validation of the 

pseudo-rigid-body model of the fixed-free compliant beam with an insert has been 

presented in Section 5.  Three different experiments with vertical, vertical and 

compressive, and vertical and tensile loading were conducted to reproduce the theoretical 
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results from the PRBM in an attempt to give the reader confidence in its accuracy.  The 

results of all the three experiments compared very well with the PRBM results exhibiting 

a maximum error of 0.95%.  The consistency of the results in all three experiments 

provides confidence in the repeatability of the experiment.  An experiment comparing the 

creep behavior of the plastic with and without the insert material was performed and 

discussed.  The experimental results showed that the creep resistance and the creep 

recovery time were significantly improved in the plastic beams with insert as compared 

to the beams without insert. 

 

6.2. FUTURE WORK 

The area of compliant mechanisms is relatively newer compared to the large 

knowledge base in existence for rigid-body mechanisms.  It is hoped that the ideas 

presented in this thesis will help to advance further research and development in this 

field, by presenting new alternatives in material selection and fabrication, to overcome 

what has been a limiting factor in the use of compliant mechanisms.  The proposed 

methodology, of using inserts to alleviate creep and increase strength of compliant 

segments, is a preliminary step towards accomplishing the objective of addressing the 

problems associated with the use of thermoplastic materials in compliant mechanisms. 

 

The use of pseudo-rigid-body models (PRBMs) presented in this work plays a 

vital role in expediting the design process of compliant mechanisms.  The improved �� 

expressions presented in Section 3 provide a method to increase the accuracy of PRBM 
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for a fixed-free beam.  With further insight into this topic, similar expressions may be 

developed for other boundary conditions which would help improve the slate of PRBMs.   

 

The work presented in Section 4 provides PRBMs for compliant segments with 

inserts subject to varied boundary conditions and cases.  This methodology of PRBMs for 

compliant segments with inserts may be extended to the more complex compliant 

mechanisms and their applications, with various force and displacement boundary 

conditions.  In the future, another possible area of research could be exploring the 

manufacturing possibilities of the compliant beams with inserts and exploring real-life 

applications of the same.   

 

The experimental validation of the fixed-free compliant beam with insert, and 

creep test results with and without the insert, are presented in Section 5.  Similar 

experimental validations may be conducted for more cases of the PRBMs of compliant 

segment types with inserts, as well as the more complex compliant mechanisms 

composed therefrom.   

 

Recent advances in the compliant mechanism theory have led to the development 

of superior products that help reduce cost and part count, and improve their quality and 

reliability.  Further research in this area should investigate viable manufacturing 

techniques for the compliant segments and mechanisms with inserts, as well as 

applications thereof to render them more practical and develop newer and more efficient 

products that offer significant and distinct benefits to society. 
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APPENDIX A 

PLOTS COMPARING THE OLD AND NEW �� EQUATIONS FOR VARYING 

LOAD FACTOR 
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A. 1.  Relative Error versus Beam End Angle for @ = 0 

 

 

 

A. 2.  Relative Error versus Beam End Angle for @ = 1 
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A. 3. Relative Error versus Beam End Angle for @ = 2 

 

 

 

A. 4. Relative Error versus Beam End Angle for @ = 3 
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A. 5.  Relative Error versus Beam End Angle for @ = 4 

 

 

 

A. 6.  Relative Error versus Beam End Angle for @ = 5 
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A. 7.  Relative Error versus Beam End Angle for @ = 6 

 

 

 

A. 8.  Relative Error versus Beam End Angle for @ = 7 
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A. 9.  Relative Error versus Beam End Angle for @ = 8 

 

 

 

A. 10.  Relative Error versus Beam End Angle for @ = 9 
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A. 11.  Relative Error versus Beam End Angle for @ = 10 

 

 

 

A. 12.  Relative Error versus Beam End Angle for @ = −1 
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A. 13.  Relative Error versus Beam End Angle for @ = −2 

 

 

 

A. 14.  Relative Error versus Beam End Angle for @ = −3 
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A. 15.  Relative Error versus Beam End Angle for @ = −4 
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APPENDIX B 

MAPLE CODE FOR PRBM RESULTS OF EXPERIMENTS 1 AND 2 
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>  
>  

> #Enter beam material and geometric properties and load 
angle: 
>  

> #Enter value of the load applied: 
>  

 

> #Enter value of the coefficient of friction: 
>  

 

>  

 

>  

 

>  

>  

>  

 

  

 

> 
NumericEventHandler(division_by_zero=proc(operator,operands
,defVal) 
if operator=ln then return -infinity else return defVal end 
if 
end proc); 
division_by_zero=proc(operator,operands,defVal)defVal end 
proc: 

 

> #Calculate characteristic radius factor: 

>  
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>  

 

>  

 

> #Calculate M.I. of the beams: 

>  

>  

>  

>  

>  

>  

>  

 

>  

 

> #Calculate Pseudo-rigid-body angle 

>  

 

> #Calculate beam end coordinates 

>  

 

>  

 

 

 
 



 

 
 

 

 

 

 

 

 

 

APPENDIX C 

MAPLE CODE FOR PRBM RESULTS OF EXPERIMENT 3 
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>  

>  

> #Enter beam material and geometric properties and load angle: 

>  

> #Enter value of the load applied: 

>  

> #Enter value of the coefficient of friction: 

>  

>  

>  

>  

> 

>NumericEventHandler(division_by_zero=proc(operator,operands,defV

al) 

if operator=ln then return -infinity else return defVal end if 

end proc); 

division_by_zero=proc(operator,operands,defVal)defVal end proc: 

 

> #Calculate characteristic radius factor: 

>  
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>   

>  

 

> #Calculate M.I. of the beams: 

>  

>  

>  

>  

>  

>  

>  

>  

> #Calculate Pseudo-rigid-body angle 

>  

 

> #Calculate beam end coordinates 

>  

 

>  
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