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ABSTRACT 

This research presents an interactive product development model in 

remanufacturing environment. The product development model defined a quantitative 

value model considering product design and development tasks and their value attributes 

responsible to describe functions of the product. At the last stage of the product 

development process, remanufacturing feasibility of used components is incorporated. 

The consummate feature of this consideration lies in considering variability in cost, 

weight, and size of the constituted components depending on its types and physical states.  

Further, this research focuses on reverse logistics paradigm to drive 

environmental management and economic concerns of the manufacturing industry after 

the product launching and selling in the market. Moreover, the model is extended by 

integrating it with RFID technology. This RFID embedded model is aimed at analyzing 

the economical impact on the account of having advantage of a real time system with 

reduced inventory shrinkage, reduced processing time, reduced labor cost, process 

accuracy, and other directly measurable benefits. 

Consideration the computational complexity involved in product development 

process reverse logistics, this research proposes; Self-Guided Algorithms & Control (S-

CAG) approach for the product development model, and Chaos-based Interactive 

Artificial Bee Colony (CI-ABC) approach for remanufacturing model. Illustrative 

Examples has been presented to test the efficacy of the models. Numerical results from 

using the S-CAG and CI-ABC for optimal performance are presented and analyzed. The 

results clearly reveal the efficacy of proposed algorithms when applied to the underlying 

problems. 
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1. INTRODUCTION 

The last century witnessed manufacturing advances at an extraordinary rate as a 

direct outcome of increased customer requirements, which has had a pronounced effect 

on the system’s complexity. Customers have come to expect reliable products that offer 

trouble-free use and a full range of desired functions. This expectation has made it 

necessary for manufacturers to pay close attention during each stage of product 

development in order to produce high-quality, useful, reliable products that embody all of 

the functionality that customers desire. Achieving these goals, however, increases the 

economic burden of manufacturing, which may cause some firms to fail due to the 

accompanying high price of the product in the market. The economic success of 

manufacturing firms depends on their ability to identify the needs of customers and to 

quickly create products that meet those needs and that can be produced at low cost. Both 

the customers’ and the manufacturers’ needs must be considered from the beginning of 

the product design and development process. The manufacturing firm must also consider 

its direct, adverse environmental impact as an inevitable byproduct of production. 

Regarding this concern, the government has introduced take-back legislation that forces 

manufacturers to collect and dispose of any hazardous products. In addition to the 

environment and legislation, profit is another important reason to deal with byproducts. 

Generally, while the byproduct has been removed due to the technological obsolescence 

of any of its contents, it still contains significant value. Though direct reuse is infeasible 

in most cases, retrieving reusable components is an important and economical recovery 

option. Thus, for legislative, environmental, and economic reasons, remanufacturing has 

emerged as a promising field of research in the last decade. This research presents the 

following aspects of remanufacturing, and the Product Development Process (PDP).  

1. A new value model at design and functional level in PDP.  

2. Introduction of remanufacturing feasibility in PDP.  

3. Designing of a generic remanufacturing framework to provide a way to measure 

the economical merits of Radio frequency Identification (RFID) adoption at 

various reverse echelons.  
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PAPER I 

MODELING THE VALUE OF A PRODUCT AT THE DESIGN & FUN CTIONAL 

LEVELS: SELF-GUIDED ALGORITHMS & CONTROL APPROACH 

 

ABSTRACT 

During the design and development stages of a new product, value and reliability 

optimization is a prime concern of the manufacturer. Previous research conducted in this 

domain has been limited to either the qualitative aspects of value definition, or value 

quantification considering time, cost, serviceability and the importance of the product. 

However, the value attributes, such as performance, form, fit, function, risk, schedule, 

and timeliness, are other important parameters responsible for mapping the two generic 

tasks of knowledge discovery (KD) and risk reduction (RR) in the product development 

process (PDP). This research presents a quantitative value model that considers product 

design and development tasks and their value attributes responsible for defining the 

product’s functions. Another beneficial feature of this formulated model is that it 

considers the remanufacturing feasibility of used components for prototyping and 

performance testing at the system testing stage. The used components vary in cost, 

weight, and size based on their types/versions and physical state. 

Furthermore, in consideration of the computational complexity involved in the 

PDP, this research proposes an efficient computational technique, the Self-Guided 

Algorithms & Control (S-GAC) Approach, which takes its governing traits from the basic 

meta-heuristics of GA, PSO, and SA. The proposed algorithm can efficiently predict and 

select a better algorithm from a given set for more adequate exploration of the entire 

search space.  

Illustrative examples of a complex, multi-state, series-parallel system are 

presented to compare the performance of S-GAC with other random search techniques. 

S-GAC significantly outperformed PSO, SA, and GA in terms of the solution quality and 

rate of convergence. The results clearly reveal the efficacy of the proposed algorithm 

when applied to the two underlying problems. 
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1. INTRODUCTION 

The recent technological advancement in the manufacturing scenario has been a 

direct outcome of increased customer requirements and therefore has a pronounced effect 

on the system complexity. This yields to a problem of a new dimension for serving 

customers who satisfied with the reliable and trouble-free use of the product composed of 

a full range of desired functions. This expectation has made it necessary for 

manufacturers to pay close attention during each stage of product development in order to 

produce high-quality, useful, reliable products that embody all of the functionality that 

customers desire.  Achieving these goals, however, increases the economic burden of 

manufacturing, which may cause some firms to fail due to the accompanying high price 

of the product in the market.  The economic success of manufacturing firms depends on 

their ability to identify the needs of customers and to quickly create products that meet 

those needs and that can be produced at low cost. From the perspective of a for-profit 

manufacturer, successful product development results in products that can be produced 

and sold profitably [Ulrich and Eppinger, (2011)]. Thus, considering the perspectives of 

both the user and the manufacturer regarding what makes a product valuable, the larger 

adoption of the desired functions at minimum cost is considered a successful strategy for 

improving a new product’s success.   

A new PDP comprehends a set of activities beginning with market opportunity 

and ending in the production, sale, and delivery of a product [Hallstedt, (2008)]. 

According to Roozenburg and Eekels (1995), Roozenburg (2006), and Barkley (2008), a 

PDP consists of all the steps that precede a new product entering the market (or the 

implementation of a new production process), such as basic and applied research, market 

research, project planning, requirement engineering, logical design, detail design, system 

testing, user acceptance testing, production, distribution, marketing planning, sales, and 

after sales service. These are the major steps, though they can be executed in a different 

order, and steps can be added or removed depending on the product type, customer 

requirements, production-related constraints, etc. Figure 1 depicts the framework of a 

PDP.   
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Figure 1.  Overview of a New Product Development Problem 
 

 

This research focuses on the design and development stages of the PDP to 

quantify the value of a newly developed multi-state system. The model formulated in this 

study considers the requirement engineering, logical design, detail design, and system 

testing stages, which will be elaborated upon to provide some background and different 

views of the terminology.  

Requirement engineering: In this stage, the manufacturer identifies the target 

market for the product under development and conducts research, forecasting, and 

surveys to determine future trends and consumers’ functional requirements for the 

product. Then, ideas are generated and screened to meet the form, function, and features 

of the product. In the literature, this stage is also referred to as concept development or 

idea generation and idea screening.  

Logical Design: In the logical design stage, the most suitable mechanism by 

which to perform the function selected in the requirement engineering stage is identified, 

as are a set of alternative mechanisms with a built-in capability to execute a specific 

function in a different manner. A comparative justification analysis of each mechanism is 

performed, and the one with the best objective value is selected. 

Detail Design: The detail design stage frames the product architecture and 

categorizes the product’s components as standardized or modularized. Standardized 
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components are developed on a single platform, while modularized components require 

multiple platforms.  

System Testing: The system testing stage begins with the construction of a 

prototype for testing the performance of the strategically developed product. The testing 

is performed under various operating conditions to identify whether changes are required 

for the final product. A set of experiments conducted under each condition reveals how 

the reliability varies and accordingly predicts the system’s reliability in an actual working 

environment. 

These four stages are highly critical and make up approximately 75% of the total 

cost of the PDP. Thus, extra care is required when selecting parameters for the 

quantification of value model during these stages in order to optimize the product’s value. 

 

 

1.1. REASERCH AIM AND OBJECTIVE 

In this research, we attempt to formulate a mathematical model during the PDP in 

which the value function includes the perspectives of both the users and the 

manufacturers. A particular benefit of this model is that it can map KD and WR 

parameters to define the value function at different PDP stages. In order to create a 

realistic value model that can closely meet both user and manufacturer requirements, the 

KD and WR factors are made variable with upstream to downstream design and 

development stages. When initiating the requirement engineering stage, the KD factor is 

more crucial to value adding than the subsequent logical design, detail design, and system 

testing stages. Similarly, the increasing influence of the risk reduction factor is set along 

the downstream PDP process. At the system testing stage, a multi-state series parallel 

product prototype is developed and tested in a remanufacturing environment. The product 

consists of components of different versions and physical states, which leads to the 

incorporation of used product and thus to the launching of remanufactured products into 

the market. The model also accounts for the optimal reliability factor while 

simultaneously minimizing other conflicting parameters, such as product cost, weight, 

and volume.  
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The product development problem studied in this research involves enormous 

computational complexity. The addition of remanufacturing activities into the product 

development model adds more difficulty to the problem to be solved in polynomial time. 

As deterministic methods either make it more difficult to solve the problem in 

polynomial time or fail to solve it with higher dimensions, various AI-based random 

search techniques have been proposed in the literature, such as Genetic Algorithm (GA) 

(Gen and Chang, 1997), Artificial Immune System (AIS) (Dasgupta et al., 2002), and 

Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995). This research 

proposes a Self-Guided Algorithms and Control (S-CAG) approach for problems of the 

type previously defined. The proposed algorithm is real time in the sense that it utilizes 

an adaptive method to allocate computational resources among a set of algorithms during 

its runtime in order to achieve superior performance on the underlying problem. The 

approach does not rely upon any complex prediction model (either on the problem 

domain or on algorithm behavior) and is capable of achieving performance better than the 

pure algorithms constituting it. The efficacy of the proposed optimization strategy is 

tested over a complex, multi-state, series parallel system in order to test the performance 

of S-CAG against that of the individual algorithms (GA, SA, and PSO). 

 

1.2. ORGANIZATION OF THE PAPER 

The remainder of the paper is organized as follows. Section 2 presents a review of 

the literature concerning the problem domain and solution methodology. An overview of 

the problem description and mathematical modeling are presented in Section 3. Section 4 

details the functioning of the proposed approach. The results and a discussion of those 

results are provided in Section 5, followed by concluding remarks and directions for 

future research. 
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2. LITERATURE REVIEW  

This section contains a review of some important considerations and challenges in 

the product development process (PDP).  

 

2.1. QUANTIFYING VALUE IN THE PDP 

The initial quantification of a product’s value in the PDP has been cited by Slack 

(1999), Browning (2000), Smith (2000), Krishanna et al. (2001), and others. Browning 

(2000) and Browning et al. (2002) defined the value of a product in terms of its benefits 

to the user in association with its price. Chase (2000) comparatively assessed the 

performance of products with different prices. The performance measure is quantified by 

the ability of the product to satisfy customers’ needs.   

Manufacturers may view a product’s value differently than the product’s users 

(Middleton and Sutton, 2005). According to Krishanna et al. (2001, 2008) and Krishnan 

and Ramachnadran (2008), in addition to performance and price, manufacturers also 

consider production time as a major factor. Furthermore, Higgins et al. (1998), Browning 

(2003), McManus (2004), Slack (2006), and Higgins and Reimers (2007) emphasized the 

economic value model, into which the direct cost (weighted average cost in PDP) and 

indirect cost (capital employed by the firm) are incorporated for realism.  

Considering the concerns of both the manufacturer and the user, some researchers 

have developed value models for the PDP over the last decade. Kettunen (2006) proposed 

a value-based product development model that categorizes value as either development 

value or phase value. The development value is established during the product 

development phase and hinges on customer requirements, while the phase value is 

established when the product is prototyped and tested. This model delivers initial value 

projections with some associated execution costs to the manufactures. Browning (2003) 

and Browning and Ramasesh (2007) defined value based on the product’s status as a 

high-quality product or service released on time to the customers, in addition to the 

consequent sales and revenue. Recently, Hasan et al. (2010) introduced fundamental 

aspects of value from the perspective of economic theory and described product value 

relationships from the business, product, and project perspectives.  
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Table 1: Value Attribute for PDP 
Type Attribute Units Symbols 

Performance Performance metrics % increase in value due to task Pm 

Overall performance % increase weighted due to customer 

requirement 

Po 

Risk Risk Specification % decrease of value due to task Rs 

Overall Risk % decrease weighted to customer 

requirement 

Ro 

Predicted failure iteration Number Rf 

Schedule Set up time Hours Ts 

Cycle time Hours Tc 

Integration time Hours Ti 

Dissemination time Hours Td 

Total time Hours Tt 

Cost Fixed Overhead cost $ Co 

Variable cost $ Cv 

Total cost $ Ct 

Future cost development $ Cfd 

Future cost manufacture $ Cfm 

Future cost operation $ Cfm 

Future cost support $ Cfs 

Future cost retirement $ Cfr 

Total future cost $ Cft 

Form Information retained % of information capture Ir 

Time spent reformatting data Hours Trd 

Fit Necessity of information % of information actually used In 

Depth of information % of information that is needed Id 

Function Complexity of Information (1-10) Ic 

Time spent handling the 

information 

Hours Thi 

Timeliness Time before first access Hours Tfa 

Time before last access Hours Tla 

Time accessed # # 
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2.2. PRODUCT DEVELOPMENT PROCESS 

PDPs are unlike typical business and production processes in several ways. 

Instead of repeatedly performing the same action, product development seeks to create a 

design that has not existed before (Browning, 2002). In this creative and iterative process, 

designers start with a design, find it deficient in several ways, learn more about the 

problems, and then improve the design to eliminate the deficiencies (Braha and Maimon 

(1997), Verganti (1997), and Suwa et al. (2000)).  The available product development 

literature identifies Knowledge Discovery (KD) and Risk Reduction (RR) as the two 

most generic tasks in the PDP [Browning (2003); Krishnan, Ramachandran (2008), and 

and Yadav (2010)]. KD refers to the process of learning and evolving the related 

information in the development stages of the product. It is frequently referred to in the 

literature as design knowledge or design freedom [Mistree et al. (1990)], information 

evolution [Krishnan et al. (1999)], and idea generation.RR, another generic task in the 

PDP, is concerned with product realization. It covers the activities and processes 

necessary to bring a product into physical existence. In the early stages of the PDP, the 

potential for design failure is high, and manufacturers face penalties in terms of schedule, 

cost, and time [Levardy and Browning (2009)]. As the design work proceeds through the 

subsequent stages of the PDP, the penalties faced by manufacturers increase.  

Chase (2000) advocated that designers can proceed with KD and RR tasks by 

adding or deleting PDP activities. Krishnan and Ramachandran (2008) categorized these 

activities as value-added or non-value-added. An activity that yields some useful 

information leading to certainty about the ability of the design to meet requirements is 

called a value-added activity, whereas activities that yield uncertainty and establish the 

risk of materializing the design concepts are called non-value-added activities. The 

researchers (Krishnan and Ramachandran, 2008) further categorized non-value-added 

activities a necessary waste (Muda 1) and unnecessary waste (Muda 2); these should be 

minimized or eliminated from the PDP.  

When an activity leads to the discovery of some knowledge, the quality of that 

discovery and the risk associated with it are extremely difficult to determine (Browning 

et al. (2002)). Chase (2000), Browning et al. (2002 and 2006), Browning and Honour 

(2008), Levardy and Browning (2009), and Yadav (2010) defined KD and RR factors in 
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terms of the following parameters: performance, form, fit, function, risk, schedule, cost, 

and timeliness. Different metrics are associated with each of these parameters, as 

summarized in Table 1. The value attributes of performance, form, fit, and function 

determine the quality of information or knowledge discovered during a PDP activity. On 

the other hand, risk, schedule, cost, and timeliness determine the range of the penalty to 

be incurred if the developed ideas and models fail; thus, these are RR measures.  

A comprehensive overview of the literature reveals that no studies, to the best of 

our knowledge, have investigated the qualitative value of using a model to map value 

attributes at different stages in the PDP. This paper attempts to fill this gap and discusses 

how value is added during the various product development stages through particular 

activities and their attributes. 

 

2.3. PRODUCT DEVELOPMENT STAGES 

System testing is performed once the product’s architecture and design have been 

created. A prototype is developed to test and predict the performance and reliability of 

the product with the functions conceived of during the earlier stages. Two prototyping 

methods have been reported in the literature: alpha prototyping and beta prototyping 

[Clifta and Vandenboschb (1999); Barkley (2008), and Ulrich and Eppinger (2011)]. 

Alpha prototyping is conducted to evaluate whether the product will work as designed 

and satisfies the desired customer functions. In beta prototyping, the testing is conducted 

on products similar to the final product. The typical goal of beta prototyping is to 

determine whether the product can perform the functions at the core of its architecture.   

The literature pertaining to the system testing stage of the PDP reveals that 

research has been limited to developing prototypes with components having the same 

physical state. However, in reality, there may be different types of components with 

different physical states. Different combinations of types and states of a component add 

different degrees of value to the final product.   

In order to improve the robustness of the developed product, this research 

considers aforementioned facts and formulates a mathematical model that maximizes the 

product’s value while simultaneously minimizing its cost and weight. Additionally, this 
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research considers the size of the product as having a significant impact on product 

design and development in the PDP.  

 

2.4. LITERATURE RELATED TO SOLUTION METHODOLOGY  

Recently, artificial intelligence techniques such as GA, AIS, PSO, etc. have been 

used extensively to optimize computationally complex problems categorized as NP-hard. 

These algorithms are marked by their short response time and high-quality solutions to 

the problems of real dimensions. Algorithm selection involves choosing the best 

algorithm from the predefined set to run on a given problem instance (Rice, 1976). 

Lagoudakis and Litman (2000) applied a Markov decision process with reinforcement 

learning to algorithm control. Boyan and Moore (2000) attempted to correlate problem 

features with performance in an effort to improve the search procedure. Carchare and 

Beck (2005) applied a machine learning approach and introduced the term low knowledge 

control for optimizing scheduling problems. 

In this research, the investigators define a relative improvement factor for each 

pure algorithm during runtime and thereby propose the Self-Guided Algorithms and 

Control (S-CAG) approach for the underlying value-based product development model. 

This research strives to fill some of the gaps discussed previously and presents the 

following contributions:   

1. Models the value of a product at the design and functional levels. 

2. Incorporates remanufacturing capabilities at the system testing or prototyping 

stage. 

3. Introduces a new variant of artificial intelligence techniques. 
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3. PROBLEM DESCRIPTION  

Certain product development approaches that apply to products that are not totally 

different from each others have drawn the attention of researchers and practitioners; these 

include independent, platform-based, standardized, and niche product development 

[Krishnan and Zhu (2006)]. The objective of this research is to develop a value model for 

a platform-based product development approach in which the manufacturer aims to 

incorporate economical remanufacturing at the last stage of the PDP.  

 

3.1. MATHEMATICAL MODELING  

In this section, a mathematical model for the PDP is formulated to maximize 

product value while simultaneously minimizing the cost, weight, and size of the 

developed product. First, all of the notations and decision variables used in this 

mathematical model will be presented. Then, the value objectives will be explained, 

followed by the integrated normalized objective function, and, finally, all of the related 

constraints. 

3.1.1. Notations. The notations listed in the nomenclature are used throughout 

this paper. 

3.1.2. Value Model Formulation. Considering the perspectives of the customers 

and the manufacturers at a qualitative level in the PDP, Slack (1999), Browning (2003), 

and Browning and Honour (2007) defined product value as: 

 

* * ( )
Value

IN AB A t

Co
=                                               (1) 

Where, 

IN = The importance of the need for the product or service. The value of “IN” is fully 

determined by the customer. 

AB = The value of “AB” is determined by how well the PDP is executed.  

Co = The cost of ownership, which is a function of product and service attributes, as well 

as the efficiency of the PDP.  
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A(t) = The availability of the product or service to the customer, relative to the 

customer’s need date.  

 

Because knowledge discovery (KD) and risk reduction (RR) are the two most 

generic tasks in the PDP [Krishnan and Ramachandran (2008)], both must be responsible 

for deciding how effectively the product development stages are designed.  Thus, Yadav 

(2010) defines AB as a function of KD and RR: 

 

AB = f (KD, RR)                                                    (2) 

 

During the design and development stages, Browning et al. (2002) Browning 

(2008), and Yadav (2010) suggested the following uneven influence of KD and RR 

parameters: 

1. In the earlier stages of the PDP, KD has a major influence on value creation. 

2. As the PDP progresses, the manufacturer faces a higher penalty for product 

failure. 

Considering these facts about KD and RR, this research defines AB in different 

PDP stages as defined in Yadav (2010): 

 

PDP Stage 1: Requirement Engineering (1s= ) 

 ( )  ( )x z
s s sAB KDC KD RRC RR= ⋅ + ⋅

                                (3) 

PDP Stage 2: Logical Design ( 2s= ) 

 ( )  ( )y y
s s sAB KDC KD RRC RR= ⋅ + ⋅                               (4) 

PDP Stage 3: Detail Design ( 3s = ) 

 ( )  ( )z x
s s sAB KDC KD RRC RR= ⋅ + ⋅                             (5) 

 

Where  

1x y z> > ≥                                                              (6) 
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Further, Slack (1999) advocated that A(t) should provide the dependency for the 

timing of the product or service. Thus, we define A(t) as: 

                                                                                                                         (7) 

 

After modifying Equation 1 with the parameters from Equations 2-7, the 

following new value model is defined:  

PDP Stage 1: Requirement Engineering (1s= ) 

{  ( )  ( ) } ( )x z
s s

s
s

KDC KD RRC RR IN A t
VA

CO

⋅ + ⋅ ⋅ ⋅
= ;      1s∀ =             (8) 

PDP Stage 2: Logical Design ( 2s= ) 

{  ( )  ( ) } ( )y y
s s

s
s

KDC KD RRC RR IN A t
VA

CO

⋅ + ⋅ ⋅ ⋅
= ;          2s∀ =           (9) 

PDP Stage 3: Detail Design ( 3s = ) 

{  ( )  ( ) } ( )z x
s s

s
s

KDC KD RRC RR IN A t
VA

CO

⋅ + ⋅ ⋅ ⋅
= ;        3s∀ =             (10) 

Conceptualizing value attributes from Chase (2000), Browning et al. (2002, 

2006), Browning, and Honour (2008), and Levardy, Browning (2009), and Yadav (2010) 

into generic product development tasks, this paper defines KD and RR as: 

 

1 2 3 4 5 6( ) ( )s ms os s rs s rds s ns ds s cs s hisKD KDF P P KDF I KDF I KDF I I KDF I KDF I= + + + + + + +  

                                                                                                                            (11)                    

1 2 4

3 5 6

( ) ( )

          ( ) ( )

s ss os s fis s os vs fds fms fss frS

s ss cs is ds s fas las s a

RRF R R RRF P RRF C C C C C C
RR

RRF T T T T RRF T T RRF T

+ + + + + + + +  
=  

+ + + + + + +  
 

                                                                                                                          (12) 

 

3.1.3. Constraints.  

PDP Stage 1: Requirement Engineering Constraints 

1,    if idea  is selected for  model 1,...,
  ; , 1,20,                    Otherwise

i m i I
i m m

z
 =
 ∀

=
=

                                (13) 

( ) / A ll tim e attribu tes defined for A t a PD P
tc

= ∑
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1  ; 1,2,
1

mi m
i

z ∀ =
=

=∑                                                                                     (14) 

 

PDP Stage 2: Logical Design Constraints 

1,...,1,    if alternative/mechanism am is selected 
                    for function  of  model  ; 1,...,,
0,                    Otherwise 1,2

=
am AM

f m f Fam m
m

z
=

 ∀ =
 =

 

                                                                                                                                (15) 

1,...,
1  ; , 1,2

f F
am m mf

z =
∀

=∈
=∑

                                                                                (16) 

 

PDP Stage 3: Detail Design Constraints 

1,    if component  is commonalized 
  ;   

0,                    Otherwise

nStd
n VCOMnz


 ∀ ∈


=
                              (17) 

1,    if component  is customized/differentiated
   ;   
0,                    Otherwise

nCus
n VCOMnz


 ∀ ∈


=
         (18) 

1  ;   
Std Cus

n VCOMn nz z ∀ ∈+ =                                                                                     (19)                                                                                 
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       1n =                             2n =                           n N=  

       Figure 2:  Multi-State Series-Parallel System 
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3.2. VALUE MODEL FORMULATION FOR SYSTEM TESTING STAGE  

The PDP model considers a series–parallel multi-state system having n 

components and each component is configured with r
i  number of components of same 

type and state parallel. A series–parallel system with the aforementioned scenario is 

shown in Figure 2. In order to formulate a comprehensive mathematical model of the 

system presented above, following points have been assumed to provide a generic view 

of the underlying model. 

 

3.2.1. Assumptions.  

1. All the components and system have Q possible states, namely, 1, 2…, Q. 

2. There are T types of components available in the market. The cost, weight, 

size and state probability distribution of each type t
i ( ( )1 t T

i
≤ ≤ ) are 

specified. 

3. The state and type (version) of all components in the subsystem are 

identical and mutually statistically independent. 

4. Cost of the components is independent of its physical state, but its type.  

 

3.2.2. Value of a Physical System. There are T versions (Types) of choices 

available for the components in the system where each component and system may be in 

Q possible states. According to Barlow and Wu (1978), the state of a parallel system is 

equal to the state of the best component in the system while the state of a series system is 

equal to the state of the worst component in the system. Thus, the state of the parallel–

series system shown in Figure 2 is, 

 

( ) min  max  
1 1

x
iji C j r

i

ψ α=
≤ ≤ ≤ ≤

                                                        (20) 

Where, 
i j

α is the state of component j in subsystem i. 

Using the equation (20), the probability of the system is in state “q” or above can 

be evaluated as follow (Shukla et al. 2009), 
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( )( )
11

1 1
irQN

iq
qi

Pr x q pψ
==

  
 ≥ = − − 
   

∑∏                                  (21) 

                    
Where, pil is the probability of a component i in state q. 

Then, the value (U) of the multi-state series-parallel system (in state q) can be 

mathematically formulated as,   

( )( )
1

Q

s q
q

U u Pr x qψ
=

= ⋅ =∑                           4s∀ =                     (22) 

 
Where, u

q
 is the value function of the state q, and it is known for that state under 

consideration. 

Cost, Weight, and Size of a system: Due to different versions of components 

available in the market the cost, weight and weight-volume have different values with 

respect to the corresponding component and have been formulated as (Bachlaus et al., 

(2006), Pandey et al., (2007), Limborg and Kochs (2007)), 

 

( ) ( )exp 0.25
1

N
C C t r r

i i i i
i

 = +∑   =
                   (23) 

                                                 

( ) ( )exp 0.25
1

N
W W t r r

i i i i
i

= ⋅ ⋅∑
=

                                             (24) 

                                            

( ) 2

1

N
P P t r

i i i
i

= ⋅∑
=

                                                               (25) 

 

Where, ( )C t
i i

, ( )W t
i i

and ( )i iP t  are the cost, weight and size of the individual  

components respectively, whereas, C, W and P are that of the complete system. r
i , and N 

represents the number of redundancy and number of components/subsystems. 
 

3.3. A WEIGHTED OBJECTIVE FUNCTION 

The value, cost, weight and size of the system, are the key factors in defining the 

objective of the system. The weighted objective function encompassing these objectives 

with corresponding weighting factors, is formulated as,  
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  max   ( )
1

S
V VA U

s s
s

= +∑
=

                                                                        (26) 

 

And                                    ( ) ( ) ( )min , ,  , ,  ,C r t W r t P r t                        (27) 

 

 

( )
( ) ( )( )

( )( ) ( )( )
,

 ,
, ,  

v C

W P

w f V w f C r t
M a x r t

w f W r t w f P r t
φ

 − − 
=  

−  

           (28) 

 
Subject to, 

( ) ( ) ( )
0 0 0

, , , , , ,

0 ; 1,2,..., ,  0 ; 1,2,...,
i i

C r t C W r t W P r t P

r i R t i T

≤ ≤ ≤

< = < =
                                             (29) 

 
Where, ( ),r tφ is the weighed objective function of variables version vector t = (t1, 

t2,…, tT) and redundancy vector r = (r1, r2,…,rR). Uw f , wf
C , Ww f andwf

p
are the weight 

priority associated with of  system utility, system cost, system weight and system size 

respectively. Constraints C0, W0 and P0 ensure that the cost, weight and weight-volume of 

the system can’t exceed this limit respectively.  Here, T and R are number of types for the 

system and number of redundancy in the subsystem. 
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4. SOLUTION METHODOLOGY 

The product development problem is computationally complex in nature and 

belongs to the class of NP-Hard problems (Chen, 1992) and therefore, the model 

formulated in this research involves enormous computational complexity. Utilizing 

deterministic methods, these problems are either more difficult to be solve in polynomial 

time or fail to solve with higher dimensions. Therefore, subsequently, evolutionary meta-

heuristics have been evolved as robust optimization techniques to effectively solve 

complex optimization problems. In recent years, Artificial Intelligent (AI) based random 

search algorithms utilizing some analogies with the natural or social systems have been 

applied to obtain optimal/near optimal solution. A few of such techniques found in the 

literatures that include Simulated Annealing (SA) (Kirkpatrick et al., 1983), Ant Colony 

Optimization (ACO) ( Dorigo, 1992), Particle Swarm Optimization (PSO) (Kennedy and 

Eberhart, 1995), Genetic Algorithm (GA) (Gen and Chang, 1997), Artificial Immune 

System (AIS) (Dasgupta et al., 2002), Artificial Bee Colony (ABC) (Karaboga, 2005) etc. 

Continuous improvements in past few years have spectacularly reduced the time of 

response of these metaheuristics along with substantial increase in solution quality. 

Determination of optimal number of redundant components is a computationally complex 

process which requires the analysis of all possible combinations of components at the 

subsystem level. Considering the computational complexity involved over the problem at 

hand, this research proposes a new meta-heuristic having its roots in canonical AI 

techniques; GA, PSO and SA. 

 
4.1.  OVERVIEW OF GENETIC ALGORITHM 

Genetic algorithm (GA) is an artificial random search technique motivated by 

Darwinian’s evolution theory. Facilitated with ergodic and stochastic nature it has been 

invented by John Holland (1975). As of today, it is considered as very important tool in 

the area of research such as Scheduling problem (Dvis 1985, Gupta et al 1993, Lee And 

Choi 1995); Traveling salesman problem (Grefenstette et al. 1985); Pattern classification 

(Bandyopadhyay et al 1995); Real time control problem in manufacturing system (Lee et 



 

 

al 1997); Cellular manufacturing (Gupta et al 1996); Assembling line problem 

(Ponnambalam et al 2000); Disassembling line problem (NcGoven and Gupta 2005) etc.

Coding starting with GA requires a set of randomly generated solution candidates 

namely population. Each individual solution candidate called string or chromosome is 

evaluated by fitness test function. To incline toward favorable chromosome, population 

inters in loop. Loop plays the role of termination toward optimal or near optimal solution 

via Recombination and Selection. The process of efficient implementation of GA on 

underlying problem is described below.

 

 

Figure 3.  Population Generation in Genetic Algorithm
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4.1.1. Representation and Initial Population. As mentioned above, initial 

population is generated by random numbers. In order to create a string of work functions 

or obeying precedence relation among them is a tedious work. To retrain from this 

difficulty we generate a string representing all functions by corresponding real integer 

value such that each joint assigns a unique function. This string is altered at least half 

times the string length by interchanging randomly selected two elements in the sting. The 

key idea behind this to offer equal weighted to all element arrange their position 

randomly. The procedure is repeated until a population created.  Coding of the solutions 

is done in the manner as shown in figure 3. 

4.1.2. Recombination. Recombination imitates good balance between 

exploitation and exploration. It comprises two operations Crossover and Mutation. 

4.1.3. Crossover. It is a crucial operation, which creates new offspring by 

interchanging information between two randomly selected parent chromosomes. There 

are many methods have been proposed for crossover operation such as, partial-mapped 

crossover (PMX), order crossover (OX), heuristic crossover, cyclic crossover (CX), 

Position-based crossover etc. [Cen and Chang, (1997)]. We use Two- Point cut crossover, 

which creates two off-springs by two parent chromosomes. The parents are randomly 

selected with crossover probability. A clear picture of this operation is shown in figures 

4, and 5.  

4.1.4. Mutation. Mutation provides exploitation by change one or more element 

in chromosome to prevent the solution from local optimal. A number of mutation 

operation have been proposed like, inverse mutation, displacement mutation, reciprocal 

exchange mutation etc (Cen and Chang).  To create new genetic material we use inverse 

mutation works as swapping in the in chromosomes. The position of chromosome is 

determined by the aid of chaotic variable (details are given in Figure 6). Now, there are 8 

cells in the strings. Suppose chaotic variable suggest that cell no. 3rd and 6th should be 

interchanged. The mutation scheme takes care of biasing the search into more useful sub 

space and hence, it carries out the exploitation of search space. The detailed procedure of 

the Genetic Algorithm is given in Figure 7.  

 

 



 

 

Figure 5:

 

 

4.1.5. Reproduction.

by the good solutions. Here Tournament selection is preferred that selects half of the 

fitter solution from unrecompensed population and another half from recombined.

 

 

 

 

 

 

 

Figure 6:

4 2 

4 2 

Figure 5:  Offspring Generation in Genetic Algorithm 

Reproduction. Before going to next iteration new population is generated 

Here Tournament selection is preferred that selects half of the 

fitter solution from unrecompensed population and another half from recombined.

Figure 6:  Mutation in Genetic Algorithm 

3 2 1 4 1 

4 2 1 3 1 
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next iteration new population is generated 

Here Tournament selection is preferred that selects half of the 

fitter solution from unrecompensed population and another half from recombined. 

3 

3 



 

 

Figure 7: Pseudo Code of 
 

 

Figure 8: Pseudo Code of Particle Swarm Optimization

Figure 7: Pseudo Code of Genetic Algorithm (GA) 

Figure 8: Pseudo Code of Particle Swarm Optimization 
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4.2. OVERVIEW OF PARTICLE SWARM OPTIMIZATION     

The Particle Swarm Optimization (PSO) is a population based stochastic 

optimization technique, developed by Kennedy and Eberhart (1995). The idea behind the 

development of PSO was to simulate the social foraging behavior of living organisms 

classified as swarms. However, several striking features of PSO transform it into a 

promising evolutionary metaheuristic. To illustrate, in the context of PSO, the population 

is called a swarm and each members of swarm is referred as particles. In order to reach at 

the desired destination, the particles of the swarm head with a restrained velocity in the 

search space. During the search, particles utilize their cognitive and collaborative ability 

to move towards their own best position and the best position explored by swarm so far, 

respectively. Kennedy and Eberhart (1995) developed an equation (equations (30)) for 

changing the velocity of each particle and thereby according to this updated velocity the 

position of individual particle is altered (equations (31)).  

 

  

( 1)
1

( ) ( 1) (0 1)
( 1)

2

bestC L L n
p p

V n V n rand
p p bestC L L n

g p

  × − −     
= − + −  

  + × − −    

      (30)                                                                                                 

( ) ( 1) ( )L n L n V np p p= − +                                      (31) 

                                                                                               

Where, ( )  [ ,  ]min maxV n V Vp ∈  represents the velocity of individual particle 

( 1,2,..., )p P= at nth iteration. C1 and C2, respectively, denote cognitive and collaborative 

ability of particles called accelerations coefficients. (0 1)rand − is a randomly generated 

value between 0 and 1. Lp represents position of particle p; best
pL and best

gL are used to 

denote the best position found so far (up to nth iterations) for an individual particle and 

for the whole swarm (global best), respectively. The detailed procedure of the PSO is 

given in Figure 8.                        
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4.3. OVERVIEW OF SIMULATED ANNEALING  

The Simulated Algorithm (SA) belongs to class of stochastic optimization 

methods that mimic nature skills as Neural Networks and Genetic Algorithms in the 

sense in exploring and providing optimal solutions. It was first proposed by Kirkpatrick 

et al., (1983), inspired from thermodynamic process of cooling (annealing) of molten 

metal to attain the lowest free energy state. In a generic SA, the foremost and essential 

step is the generation of initial solution randomly.  

First, the algorithmic parameters like maximum and minimum temperature, 

maximum number of iterations etc. are initialized, which is followed by the generation of 

initial solution given by, ( )0 0 ,1 0,2, 0 ,, , ...,
T

qL L L L=  by using the formula,  

                            ( )0,i i i i kiL a b a H= + − ×                                               (32) 

 Where, i=1, 2,…, q; q is the number of variables in objective function; ai and bi  

are the limits in which the value of corresponding variable lies; and, 0,iL  is the value of 

i th  variable at 0th iteration.  

After determining the initial solution, a new solution ( ),1 ,2 ,, ,...,
T

p p p p qM M M M=  is 

generated in each iteration by the formula, 

                   ( ), , pp i p i i i kM L b a Hα= + × − ×                     … (33) 

Where, Mq,i denotes new solution of ith variable at qth iteration;α  is a variable 

given as e βα α −= ×  in each iteration; and β  is a constant. This is followed by the 

calculation of change in energy level as ( ) ( )q qE f M f L∆ = − , with f (Mq) and f (Lq) 

corresponds to the fitness value of new and initial solution. If E∆  is negative then the 

new solution is accepted for next iteration; whereas if the change in energy level is 

positive then solution is accepted with probability( )TE∆−exp  to accept the inferior 

solution. The value of temperature counter is continuously decreasing by annealing 

scheduleT Tα= , where α  is a constant. The above procedure is continued until the 

pre-specified minimum temperature is not achieved and the best solution is given as the 

output. In the above procedure, it can be experimentally verified that after few iterations, 

value of α  becomes insignificant and thus deteriorates the exploration of search space. 



 

 

Figure 9 clarifies the decreasing characteristics of  

and Huanwen 2004). The detailed procedure of the Genetic Algorithm is gi

10.  

Figure 9: Variation in Value of 

Figure 

clarifies the decreasing characteristics of  α  (Values adopted from Mingjun 

The detailed procedure of the Genetic Algorithm is gi

 

: Variation in Value of α  (alpha) With No. of Iterations
 

 

Figure 10: Pseudo Code of Simulated Annealing  
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(Values adopted from Mingjun 

The detailed procedure of the Genetic Algorithm is given in Figure 

 

(alpha) With No. of Iterations 
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4.4.  PROPOSED METHODOLOGY 

The proposed algorithm (Self-Guided Algorithms & Control (S-CAG) Approach) 

is a hybrid metaheuristic which derives its governing traits from the three aforementioned 

algorithms; GA, SA, and PSO. The key idea behind comprising of these algorithms is not 

only to provide a global component of search space but also a special local search 

component, which is employed to enhance the search results.  

The seeking of a fruitful solution starts with random search of attaining global 

maximum in a multimodal function with unknown number of maxima rely generally 

upon the stochastic search in the individual AI techniques such as the aforementioned 

algorithm; GA, SA, and PSO. However, significant variation among the final outputs 

produced by these techniques is evident by the greater standard deviation in the results 

generated by the same algorithm with different random seeds. This may some time lead 

to inefficacy of the random search technique by producing results entrapped in the local 

maxima. Hence, certain measures must be incorporated into the solution methodology 

which makes it capable enough to generate results with acceptable standard deviation. In 

this paper, we propose an optimization framework comprising of a set of stochastic 

search algorithms. We observed following two characteristics of the proposed 

methodology: 

1. Producing results with greater proximity towards global optimum than the pure 

algorithms under consideration. 

2. Producing results with smaller standard deviation. 

 

The computational complexity of the aforementioned problem paves the way for 

development of a search technique that efficiently predicts and selects a better algorithm 

from a given set and adequately explores the entire search space. Schematic 

representation of the algorithm flow is depicted in figure 11.  

In general, superiority of a search strategy is judged by its relative performance 

over other metaheuristics by the principal of winner takes all (Rice, 1976). However, an 

algorithm producing better results on one problem instance may not guarantee to produce 

similar results in all other cases.  
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Therefore, any single optimization strategy may not prove itself to be versatile 

enough for having universal applicability in terms of generating better averaged results. 

Hence, the Self-Guided Algorithms and Control poses an issue of significant relevance in 

current optimization technology. In view of above considerations, the authors propose a 

Self-Guided Algorithms & Control (S-CAG) search strategy as an adaptive method for 

allocation of computational resources among a set of algorithms to achieve a superior 

performance on the underlying model. The approach followed in this paper does not rely 

upon any complex prediction model (either on problem domain or on algorithm behavior) 

and performs iteration wise selection of the algorithms. In the proposed technique, the 

metaheuristics compete among themselves for both their selection and control.  

 

A2(h2, z2) 
 

A3(h3, z3) 
 

A1(h1, z1) 
 

Forecast Phase (tf) 

   Aw(zw) 
 

Control Phase i < i_MAX i = 

i_MAX  
Output 

Initial Population (i = 1) 
 

Adjust (hk, zk) 

for each Ak, 

{ }1, 2 , 3k ∈  

Figure 11: Overview of Proposed S-CAG 
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Given a time limitZ , S-CAG ranks each algorithm during runtime in the order in 

which they have to operate on the problem instance. The time Z  is further broken into a 

short forecast phase (Z
f
) and control phase (Z

c) such that, 

Z Z Z
f c

= +                                                          (34) 

The forecast phase (Z
f
) predicts which algorithm should be utilized for remaining of the 

control timeZ Z Z
f c

− = . We represent the information flow within the real-time 

optimization based strategy as shown in the figure 11. ( ) { }, 1,2,3A h Z l
l l l

+ = , represents an 

algorithm from the predefines set, h
l andZ

l  being its corresponding rank and time for 

which the algorithm runs during the forecast phase. A
l  is the winner algorithm that is 

predicted to perform better in the control phase and Zw is the time for which it is run. It is 

clear from figure 11 thatZ Z
w c

= . The winner algorithm among the three is decided by 

the Relative Improvement Factor (RIF
l ) calculated during the forecast phase via a real-

time algorithm selection procedure.  

In order to circumvent the loss of computations carried out during the forecasting phase, 

the results produced by one algorithm is passed on directly to the other algorithm 

sequentially. Instead of computing absolute improvement in results for each algorithm 

over a common static population, a relative improvement factor (RIF
l ) is utilized over a 

dynamic population received by previous algorithm. This RIF
l  is defined mathematically 

according to, 

( )

( )

( )
l

ibs bsn
m m0;                                        if 0bs

mm 1

ibs bs
RIF l l

bs
l ; otherwise

ibs bsn
m m

bs
mm 1

  −   =∑   =  

 −= 

  −  ∑    =  

                         (35) 
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Here, libs ibsl  is the best solution produced in the current iteration and lbs bsl  is the 

best solution over which the algorithm operated upon. The runtime for each algorithm is 

equally distributed ( /Z n
f

) among them during the forecast period. During initialization, 

the ranks have been randomly assigned to each algorithm which are later updated 

according to the rank factor hf
l  (as shown in eq. 12) such that greater the value of hf

l , 

better the corresponding rank. 

( ){ }hf n h i 1 RIFk l l= − − ×                                                    (36) 

Where, ( )h i 1l − ( )lhi 1−represents the rank of the algorithm A
l  in the previous iteration. 

Any conflicts in rfl  (arising due to equality of rank factors of two or more algorithms) 

are broken by randomization of ranks. 

As a part of this research, GA, SA and PSO were selected to operate sequentially 

in each iteration according to their corresponding ranks. Pseudo codes for these three 

algorithms are presented in Appendix A-C. 
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5. ILLUSTRATIVE EXAMPLES 

The following two illustrative examples demonstrate the efficacy of the proposed 

model.  

 

5.1. EXAMPLE 1: CHAIR WITH 4 COMPONENTS 

An exhaustive study of the design and development of a chair is conducted in this 

section. Additionally, the relevant information pertaining to the value of the developed 

system coupled with its functional performance is explained. In this example, the 

manufacturer plans to develop a few different models of a chair, each having 4 

components.  

The idea generation process for the design and development of the chair is 

detailed in Table 2. The range of value attributes contributing to the selection of the 

ideas; functions, standardization, and modularization of the chair appear in Table 3. 

Furthermore, Table 4 includes an exhaustive list of alternatives/mechanisms for each 

function desired in the chair. Table 5 lists the probability distribution of all four states 

corresponding to each type of component,1 4i ip p− , in the system testing stage. Moreover, 

the utility of the components with respect to their existing state is listed in Table 6. 

Finally, Table 7 provides the numerical values of the other parameters defined in the 

nomenclature. 

 

5.2. CNC MACHINE WITH 10 COMPONENTS 

This example is similar to Example 1 in terms of its objectives and constraints, 

but the product contains 10 components. The input data for idea generation in this 

problem has been tabulated in Table 8. An exhaustive list of alternatives/mechanisms for 

each CNC function appears in Table 9. Table 10 lists the probability distribution of all 

four states corresponding to each type of component, 1 4i ip p− , in the system testing stage. 

The functions are further categorized as fixed or variable, and their corresponding 

components are listed below. The remainder of the variable data is the same as defined in 

Example 1.  
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       Tool/Spindle rotation, Paller support,  Job holding, Body cover, 

    Coolant spray,  Program control, Lighting,  Safety, Noise control, 
FUN = 

 Heat sink, Sealing, Tool holding, Work support, Coding/Programming,

Motor power support, Chuck function, Health monitoring, Chip handling

 
 
 
 
 
  

 

       Tool/Spindle rotation, Program control, Tool holding,
F-FUN = 

Motor Power support, Chuck function, Coding/Programming

 
 
 

 

Paller support,  Job holding, Body cover, Coolant spray,

V-FUN = Lighting,  Safety, Noise control,  Heat Sink, Sealing, 

  Work Support, Health monitoring, Chip handling

 
 
 
 
 

 

    Bed, Spindle, Turret, Tailstock, Motor, Chuck/Collect,Vice, 

COM =     Door,  Controller screen, Sprincler, Pendant, Pump, Fixture,

Host computer, Axis drive, Lighting, Sound damper, Heat Sinker













 

{ }F-COM = Bed, Spindle, Turret, Tailstock, Motor, Chuck/Collect, Controller screen 

 Vice, Door,  Sprincler, Pendant, Pump, Host computer, 
V-COM = 

Fixture, Axis drive, Lighting, Sound damper, Heat sinker

 
 
 

 

 

 

 

 

Table 2: Idea Generation for Sitting Chair Design & Development 
 

 

 

 

 

 

 

 

 

 

S. No Functions I1 I2 

1 Sitting + + 

2 Back Supporting  * 

3 Stand Support + + 

4 Arm support * * 

5 Movement   

6 Rolling *  
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Table 3: Range of Value Attributes 

 

 

 

 

 

Type Attribute Range 

Performance Performance metrics (Pm) 20-50 

Overall performance (Po) 0.10-0.30 

Risk Risk Specification (Rs) 0.5-0.20 

Overall Risk (Ro) 0.5-0.30 

Predicted failure iteration (Rf) 0.3-0.10 

Schedule Set up time (Ts) 0.10-0.30 

Cycle time (Tc)  0.30-0.12 

Integration time (Ti) 0.30-0.60 

Dissemination time (Td) 0.60-0.24 

Total time (Tt) 0.13-0.450 

Cost Fixed Overhead cost (Co) 0.35-0.10 

Variable cost (Cv) 0.50-0.40 

Total cost (Ct) 0.85-0.50 

Future cost development (Cfd) 0.10-0.30 

Future cost manufacture (Cfm) 0.50-0.10 

Future cost operation (Cfo) 0.35-0.70 

Future cost Support (Cfs) 0.70-0.30 

Future cost retirement (Cfr) 0.10-0.25 

Total future cost (Cft) 0.12-0.25 

Form Information retained (Ir) 0.10-0.70 

Time spent reformatting data (Trd) 0.20-0.12 

Fit Necessity of information (In) 0.20-0.80 

Depth of information (Id) 0.50-0.85 

Function Complexity of Information (Ic) 1-10 

Time spent handling the information (Thi) 0.1-0.60 

Timeliness Time before first access (Tfa) 0.20-0.10 

Time before last access (Tla) 0.5-0.15 

Time accessed (#) 3-10 
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Table 4: Exhaustive List of Alternatives/Mechanism for Each Function of a Sitting Chair Design 
& Development 

 

Table 5: Characteristics of the Components 

Functions Alternative Mechanism for achieving the function 

(+)Sitting  Metal Sheet   Wooden Sheet Plastic Sheet 

Back Supporting St. Support Curved support Inclined Support 

(+)Stand Support Single stand Triple Stand 4 arm stand 

Arm support Connected to sheet Connected to back support  

Movement Frictional 

Movement 

    Gear movement  

Rolling Free rolling Forward rolling Locked rolling 

iN

 

it  1ip  2ip  3ip  4ip  ( )i iC t  ( )i iw t  ( )i iP t  

 

 

1 

1 0.140 0.350 0.350 0.160 1.150 12 1 

2 0.487 0.240 0.038 0.235 0.630 5 2 

3 0.190 0.074 0.186 0.550 0.900 8 3 

4 0.038 0.350 0.180 0.432 0.550 10 4 

5 0.480 0.060 0.290 0.170 0.740 12 2 

 

2 

1 0.215 0.180 0.025 0.580 0.875 10 2 

2 0.300 0.250 0.250 0.200 0.250 12 4 

3 0.074 0.550 0.186 0.190 0.545 17 1 

4 0.450 0.250 0.250 0.050 0.975 14 3 

 

 

3 

1 0.240 0.400 0.110 0.250 0.826 3 5 

2 0.150 0.400 0.045 0.405 0.550 8 1 

3 0.235 0.240 0.038 0.487 0.790 16 3 

4 0.160 0.452 0.038 0.350 0.545 13 3 

5 0.255 0.230 0.450 0.065 0.780 5 4 

6 0.200 0.100 0.300 0.400 1.120 7 3 

 

4 

1 0.100 0.450 0.250 0.200 0.875 10 2 

2 0.040 0.300 0.320 0.340 0.494 15 3 

3 0.080 0.320 0.320 0.280 0.790 12 2 

4 0.074 0.186 0.550 0.190 0.380 14 4 

5 0.038 0.240 0.235 0.487 0.620 6 1 
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Table 6: Utility of the system of state q 
q 1 2 3 4 

Uq 20 50 90 70 

Table 7: Value of Defined Parameters 

KDCs =  $ 4.0 

WMCs = $ 3.0 

IN = 7 

A(t) = 0.004 

COs = $ 120000 

at = 1000 Hour 

KDF1s = 0.0016 Per Product value 

KDF2s = 0.0080 

KDF3s = 0.0012 Hour-1 

KDF4s = 0.0070 

KDF5s = 0.0090 

KDF6s = 0.0050 Hour-1 

WMF1s = 0.0018 Per Product value 

WMF2s = 0.0011 

WMF3s = 0.0014 Hour-1 

WMF4s = 0.0050 $-1 

WMF5s = 0.0060 Hour-1 

WMF6s = 0.0040 

x=3,  y=2,  z=1 
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Table 8: Idea Generation for CNC Design & Development 

S. No Functions I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

1 Tool/spindle  

Rotation 

+ + + + + + + + + + 

2 Pallet support  *  * *     * 

3 Job Holding + + + + + + + + + + 

4 Body Cover * *   *  *   * 

5 Coolant spray    * *  *   * 

6 Program 

control 

*     *    * 

7 lighting *  *    *  * * 

8 Coding/ 

Programming 

+ + + + + + + + + + 

9 Noise Control  * *  *    *  

10 Sensor * *   * * *  *  

11 Sealing   * *    * *  

12 Tool Holding + + + + + + + + + + 

13 Work Support   *   *  * *  

14 Motor Power 

support 

+ + + + + + + + + + 

15 Chucking + + + + + + + + + + 

16 Heat sink  *    * * *   

17 Chip handling *   *    *   

18 Safety   * *  *  *   
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Table 9: Exhaustive List of Alternatives/Mechanism for Each Function of A CNC Machine 

 

 

 

 

Functions Alternative Mechanism for achieving the function 

Tool/Spindl

e Rotation 

 fixed collet spindles   manual quick change 

spindles 

automatic tool change 

spindles 

brush 

types 

Spindle 

Pallet 

support 

Hard 

Polymer 

Router 

Woodworkin

g Router 

Steel 

Router 

CI Router Light Stone 

Router 

Heavy 

Stone 

Router 

Granite 

Router 

Ceramic  

router 

Job 

Holding 

Vice Automated 

fixture 

Magnet Arm with 

grip 

cotter clamps fasteners Jigs 

Body 

Cover 

Hard 

polymer 

Lead plating Steel 

enclosure 

Kevlar Ceramic 

Proof 

coating 

composite Force 

field 

Reactive 

armor 

Coolant 

spray 

Sprinkler Pump nozzle pipe     

Program 

control  

Pendent Controller 

Screen 

MPG CNC 

CAT 

Remote 

controller 

Lath 

handler 

Optical 
Encoder 

CNC 
Mach3 

lighting bulb tube bulb       

Programmi

ng 

computer MDI 

processor 

Controller  Cable 

Tape 

Embedded 

System 

Smart wire 

DT 

LAB view compact 

RIO 

Noise 

Control 

Sound 

damper 

Muffler Acoustic 

Material 

Noise 

Collector 

Damper Lubricant   

Heat sink Liquid 

coolant 

Mist air Radiator Fan Exhaust Pipes Fins Thermo 

cooling 

Sealing EM shield Plastic 

coating 

Compartment Sealant PVC Gasket  Jelly 

Barrier 

Tool 

Holding 

4 tools 

Turret 

5 tools 

Turret 

6 tools 

Turret 

7 tools 

Turret 

8 tools 

Turret 

9 tools 

Turret 

10 tools 

Turret 

 

Work 

Support 

ROHM 

Tailstock 

PSI LCENTL Sunwin PSI Sherline Amico 
Tailstock 

Amico 
Tailstock 

MT2 
Tailstoc
k  

Motor 

support 

NEMA  TB6560 Autek 4 MAKIN

O 

LEBLOND hossen Amico DIY 

CNC 

Chucking ER-Collets Newbie Dremel Steelex  

 

Bosch 

 

TECHNIKS Sherline 

 

Harding

e 

Sensor Temperature 

sensor 

Thermal 

Stress Sensor 

Mechanical  

sensor 

     

Chip 

handling 

Magnet Vacuum scoop net velcro Suction cup   

Safety gloves goggles shoes Leather  Earplug    
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Table 10:  Characteristics  Of The Components 

iN  
 Sub-systems/ 

Components        
it  1ip  2ip  3ip  4ip  ( )i iC t  ( )i iw t  ( )i iP t  

1 Magnet Pallet 

 

1 0.140 0.350 0.350 0.160 1.150 12 1 
2 0.487 0.240 0.038 0.235 0.630 5 2 
3 0.190 0.074 0.186 0.550 0.900 8 3 
4 0.038 0.350 0.180 0.432 0.550 10 4 

2  

Turret 

1 0.215 0.180 0.025 0.580 0.875 10 2 
2 0.300 0.250 0.250 0.200 0.250 12 4 
3 0.074 0.550 0.186 0.190 0.545 17 1 

3  

Motor Power 

components 

 

1 0.240 0.400 0.110 0.250 0.826 3 5 
2 0.150 0.400 0.045 0.405 0.550 8 1 
3 0.235 0.240 0.038 0.487 0.790 16 3 
4 0.160 0.452 0.038 0.350 0.545 13 3 
5 0.255 0.230 0.450 0.065 0.780 5 4 
6 0.200 0.100 0.300 0.400 1.120 7 3 

  4  

Scoop 

 

1 0.100 0.450 0.250 0.200 0.875 10 2 
2 0.040 0.300 0.320 0.340 0.494 15 3 
3 0.080 0.320 0.320 0.280 0.790 12 2 
4 0.074 0.186 0.550 0.190 0.380 14 4 
5 0.038 0.240 0.235 0.487 0.620 6 1 

  5  

PVC 

1 0.172 0.158 0.309 0.361 0.079 2 1 
2 0.183 0.376 0.284 0.157 0.832 12 3 
3 0.045 0.294 0.147 0.514 0.152 9 2 
4 0.181 0.164 0.304 0.351 0.793 4 5 
5 0.080 0.103 0.316 0.501 0.228 6 1 

  6 Brush types  

Spindle 

1 0.321 0.194 0.132 0.353 0.982 14 1 
2 0.091 0.059 0.077 0.773 0.121 13 4 
3 0.133 0.327 0.321 0.219 0.189 13 5 
4 0.175 0.442 0.303 0.080 0.782 8 3 

  7 ER-Collets 

 

1 0.131 0.420 0.360 0.089 0.560 4 4 
2 0.583 0.123 0.091 0.203 0.726 11 2 
3 0.709 0.078 0.187 0.026 0.673 2 5 
4 0.447 0.149 0.168 0.236 0.124 12 3 
5 0.100 0.076 0.241 0.583 0.480 13 1 
6 0.212 0.249 0.289 0.250 0.254 8 2 

  8 Leather jacket 1 0.075 0.029 0.401 0.495 0.579 13 1 
2 0.268 0.131 0.417 0.187 0.108 14 4 
3 0.103 0.561 0.150 0.186 0.743 14 1 
4 0.103 0.378 0.330 0.189 0.453 10 3 
5 0.056 0.222 0.055 0.667 0.650 1 3 

  9 Heavy Stone 

Router 

1 0.429 0.173 0.286 0.112 0.708 8 4 
2 0.514 0.319 0.130 0.037 0.146 1 5 
3 0.459 0.052 0.331 0.158 0.252 12 2 

 
10 

Controller 

Screen  

1 0.750 0.081 0.052 0.117 0.578 8 3 
2 0.314 0.166 0.287 0.233 0.863 8 4 
3 0.056 0.120 0.245 0.579 0.742 15 1 
4 0.432 0.183 0.174 0.211 0.119 6 4 
5 0.298 0.168 0.378 0.156 0.344 13 2 

 
11 

Nozzle 1 0.447 0.149 0.168 0.236 1.524 15 4 
2 0.172 0.158 0.309 0.361 1.55 17 6 
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Table 11: Optimal Values & Ideas Achieved At Requirement Engineering Stage For Sitting 

Chair Family 

 Model 1 Model 2 

Idea Selected I2 I1 

 

 

 

Functions 

(+)Sitting (+)Sitting 

Back Supporting --- 

(+)Stand Support (+)Stand Support 

Arm support Arm support 

--- --- 

--- Rolling 

Values Added 242.879 185.14 

Total Values Added 428.029 
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6. RESULT AND DISCUSSION 

This section outlines the results obtained by implementing the proposed Self-

Guided Algorithm and Control Approach over Value based a new product development 

model problem. For comparative purpose Particle Swarm Optimization (PSO), Simulated 

Annealing (SA) and Genetic Algorithm (GA) algorithms have also been used in addition 

to proposed S-CAG.  

 

6.1. PARAMETER SETTING 

The algorithms have been coded in C++ and compiled program is run on a system 

specification of Dell Notebook with Intel ® Core ™ i5-2.40GHz and 4 GB RAM. The 

first step in the implementation of a search technique to any problem is the representation 

of search space and tuning the various parameters of each algorithm. For the underlying 

model, integer encoding in used and length of the string is set to match the problem 

requirements. For example, in system testing stage, the length of string is 12: the first 

four digits represent the number of components (1 4-r r ), next four digits are used to 

represent its corresponding type (1 4-t t ) and the last four digits denote the existing state of 

the subsystems. After extensive experimentations the value of the tuning parameters are 

decided. For GA the population size, crossover rate and mutation rate are set to be 20, 

0.25 and 0.10 respectively. Moreover, in order to find out optimal control parameters of 

SA, number of rejected solution, temperature and steps in which temperature is reduced 

were inspected by varying in the range of 1 - 5, 200 - 1000 and 5 - 15, respectively. 

Likewise, for PSO swarm size and acceleration coefficients are chosen to be 10 and 2.0 

respectively. 

Moreover, for S-CAG, 
fZ  is the time required for each iteration of the pure 

algorithm under consideration and was computed dynamically during the run of each 

algorithm separately under S-CAG. Therefore, each single iteration of S-CAG constituted 

of 
fZ  such that there were 5 runs of each pure algorithm during prediction phase. 

Similarly, cZ  was chosen such that there were 20 runs of the winner algorithm during the 

control phase. The ranks of the algorithms were initialized randomly. In case of tuning 
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parameters utilized in S-CAG for individual pure algorithms, same parameter settings 

have been undertaken as reported for GA, SA and PSO. 

 

 

 

 

 

 

6.2. RESULT ANALYSIS FOR EXAMPLE 1 

The ideas, functions and components selected in requirement engineering and 

logical design stages are listed in tables 11 and 12. The tables also include value adding 

in the both stages. Table 13 summaries the architecture of the product platform. It 

Table 12: Optimal Values & Mechanism Achieved At Logical Design Stage For Sitting 

Chair Design & Development Family 

Functions Model 1 Model 2 

Mechanism selected for each function 

(+)Sitting Wooden sheet   Plastic sheet   

Back Supporting Curved Support Curved Support 

(+)Stand Support Single stand --- 

Arm support Connected to back support Connected to back support 

Rolling --- Locked rolling 

Values Added (496+578+248+635) (734+356+498+478) 

Total Values Added 1957+2066=4023 

Table 13: Standardization & Customization of Variable components at Physical Design stage 

for CNC family 

 

Standardized Components  

Customized  Components 

Model 1 Model 2 

Curved back Support Wooden sheet  Plastic Sheet   

Arm Connected to back support Single type stand Locked roller 

Values Added 1,05,869 + 1,13, 126 

Total Values Added 2,18,995 
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provides a clear picture which components to be standardize and which to be 

modularized during platform development time.   

Comparative study of the proposed solution methodology (S-CAG) and their 

canonical version; PSO, SA, and GA for first illustrative example, sitting chair with four 

components, have been provided in Table 13. It includes value added to product at 

system testing stage. The results obtained In this case, equal priority has been given to the 

each design metrics and the values ofwf
U , Cw f , Ww f and

pw f  are considered to be 1 for 

simplicity. In this case, results obtained by the best performing algorithm (S-CAG) have 

also been stated in the table 14. 

Figure 12 illustrates the convergence rate of solution with the number of function 

evaluations when algorithms are applied in the illustrative example. The following 

inference can be drawn from Figure 12 that initially SA has faster convergence rate but 

with the increase in number of iterations, its convergence rate becomes almost constant 

whereas, S-CAG and PSO both of them initially converges with the same rate and finally 

S-CAG in the long run gains the advantage of adaptive algorithm selection and yields 

better solutions in both the cases. Hence, from above discussion it can be concluded that 

S-CAG demonstrated superior results in context of computational time and convergence 

rate both. 

 

Table14: Comparative Results By Applying Different Algorithm 

 GA PSO SA S-CAG 

( )xφ  2.52653 2.52323 2.51612 2.50997 

U 916.13 910.903 917.121 905.689 

C 26.8176 29.3608 28.4782 28.6294 

W 917.674 1022.95 984.197 996.575 

P 301 283 301 370 

Components(r) (3,2,2,1) (1,2,3,3) (2,1,3,2) (1,2,1,2) 

Type(t) (4,2,6,5) (4,1,2,5) (4,1,2,5) (4,1,2,5) 

State (4,3,2,1) (4,4,1,2) (1,1,3,2) (4,3,4,4) 
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Figure 12: Variation and Search Characteristics of GA, PSO, SA and Proposed S-CAG 
 

 

 

Figure 13: Standard Deviation Comparison of the Proposed Algorithm 

S-CAG

SA

PSO

GA

Numer of function evaluations

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

30.00

20.00

10.0

1.00

0.25

0 100 200 400 800



  

 

44

Furthermore, in order to check the scalability and effectiveness of the proposed 

method, a comparative standard deviation graph at different generations for all algorithms 

is plotted in Figure 13. The trend of smaller standard deviation of S-CAG at every 

generation than the other algorithms reveals that the proposed solution methodology 

provides an adaptive allocation of computational resources between exploration and 

exploitation of the search space. In addition, it supports the basic theory behind the 

formulation of the proposed algorithms. Hence, from the above discussion it can be 

concluded that S-CAG demonstrated both superior results in the context of solution 

quality and convergence rate. 

 

 

 

 

Table 15: Optimal Values & Ideas Achieved At Requirement Engineering Stage For 
CNC Family 

 Model 1 Model 2 
Idea Selected I4 I8 

 
 
 
 
 
 
 
 
 
 
 
 

Functions 

(+) Tool/spindle  
Rotation 

(+) Tool/spindle  
Rotation 

Pallet support --- 
(+)  Job Holding (+)  Job Holding 

--- --- 
Coolant spray --- 

--- --- 
--- ---- 

(+) Coding/ 
Programming 

(+) Coding/ 
Programming 

--- --- 
--- --- 

Sealing Sealing 
(+) Tool Holding (+) Tool Holding 

--- Work Support 
(+) Motor Power 

support 
(+) Motor Power 

support 
(+) Chucking (+) Chucking 

--- Heat sink 
Chip handling Chip handling 

Safety Safety 
Values Added 5284.27 6721.62 

Total Values Added 12005.89 
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6.3. RESULT ANALYSIS FOR EXAMPLE 2 

The ideas, functions and components selected in requirement engineering and 

logical design stages are listed in tables 15 and 16. The tables also include value adding 

in the both stages. Table 17 summaries the architecture of the product platform. It 

provides a clear picture which components to be standardize and which to be 

modularized during platform development time.   

 

 

 

Table 16: Optimal Values & Mechanism Achieved At Logical Design Stage For 
CNC Family 

Functions Model 1 Model 2 
Mechanism selected for each function 

(+) Tool/spindle  
Rotation 

Brush types  Spindle 
 

Manual quick change 
spindle 

Pallet support Heavy Stone Router --- 
(+) Job Holding Magnet Magnet 

Body Cover --- --- 
Coolant spray Nozzle --- 

Program control --- --- 
lighting --- --- 

(+) Coding/ 
Programming 

Controller Screen  Pendent 

Noise Control --- --- 
Sensor --- --- 
Sealing PVC PVC 

(+) Tool Holding 8 tools Turret 8 tools Turret 
Work Support --- ROHM Revolving 

Tailstock 
(+) Motor Power 

support 
MAKINO MAKINO 

(+)  Chucking ER-Collets Bosch 
Heat sink ---- Mist air 

Chip handling scoop scoop 
Safety Leather jacket shoes 

 
Values Added (448+498+324+510+491+465+ 

572+452+ 531+386+404) 
(467+678+546+432+486+

452+ 
605+635+478+489+601) 

Total Values 
Added 

5081+5851=10,932 
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Table 17: Standardization & Customization of Variable components at Physical 
Design stage for CNC family 

 
Standardized Components  

Customized  Components 
Model 1 Model 2 

Magnet Pallet Brush types  Spindle Manual quick 
change spindle 

Turret Heavy Stone Router Pendent 
Motor Power components Nozzle  Tailstock 

Scoop Controller Screen  Bosch 
PVC ER-Collets Mist air 

 Leather jacket Shoes 
 

Values Added 1,05,869 + 1,13, 126+ 1, 72, 064 + 98, 972+ 1, 03, 426  
Total Values Added 5, 93,457 
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7. CONCLUSION AND FUTURE WORK  

This study aimed to develop a model by which to determine the value of a product 

at the design and functional levels. The model was formulated to maximize the value of 

the product while minimizing its cost, weight, and size. In this research, a four-stage 

(components) problem was considered to map the remanufacturing component into the 

PDP. In order to tackle the underlying problem, a novel approach, Self-Guided 

Algorithms & Control (S-CAG), was proposed and implemented successfully. The 

proposed algorithm has been shown to significantly outperform many existing 

optimization strategies prevalent in the literature, with faster convergence. 

The following directions for future research are suggested to interested readers: (i) 

include more realistic reliability considerations, such as the field and service data (in the 

form of survey results) into the value computation, (ii) evaluate the reliability of the 

developed products, and (iii) apply the S-CAG strategy to optimize other computationally 

complex problems.  

 

 

  



  

 

48

8. BIBLIOGRAPHY OF PAPER I 

Ulrich, K.T., Eppinger, S. D.. 2011. Product design and development. McGraw-Hill, New 
York.  

Hallstedt, S. 2008. A foundation for sustainable product development. Doctoral thesis, 
Blekinge Institute of Technology, Karlskrona, Sweden. 

Roozenburg, N. F. M. and J. Eekels. 1995. Product Design: Fundamentals and Methods. 
Chichester, England: John Wiley & Sons Ltd. 

Browning, T. R., Fricke, E., and Negele, H.. 2006. Key Concepts in Modeling Product 
Development Processes. Systems Engineering, 9(2), 104-128. 

Browning, T.R., Deyst, J.J., Eppinger, S.D., and Whitney, D.E. 2002. Adding Value in 
Product Development by Creating Information and Reducing Risk. IEEE 
Transactions on Engineering Management, 49:443–58. 

Browning, T. R.. 2003. On customer value and Improvement in product Development 
process. Systems Engineering, 6(1), 49-61. 

Browning, T. R., and Honour, E. C..   2008.  Measuring the Life-Cycle Value of 
Enduring Systems, Systems Engineering, 11 (3), 187-202. 

Levardy, V. and Browning, T. R. 2009.  An Adaptive Process Model to Support Product 
Development Project Management, IEEE Transactions on Engineering 
Management, VOL. 56, NO. 4, November 2009. 

Barkley, B. T.. 2008. Project Management in New Project Development. New York: 
McGraw-Hill.  

Smith, J.. 2000. Measuring Value in Product Development. The Lean Aerospace 
Initiative Working Paper Series;WP00-05. MIT, Cambridge, MA.  

Middleton, P. and Sutton, J. (2005) Lean Software Strategies: Proven Techniques for      
Managers and Developers, Productivity Press. 

Kettunen, P.. 2008. Rethinking Software-Intensive New Product Development: From 
Product Push to Value, http://www.cloudsoftwareprogram.org/rs/2237/9ed65124-
0873-400e-bc8a-9c85c1f1afa8/5a5/filename/submission.pdf 

Hasan, Sk. Md. N., Hasan, M. S., Mahmood, A. A., and Alam, Md. J.. 2010. A Model for 
Value Based Requirement Engineering.  IJCSNS International Journal of 
Computer Science and Network Security, VOL.10 No.12, 

R. Verganti, “Leveraging on systematic learning to manage the early phases of product 
innovation projects,” R&D Management, vol. 27, no. 4, pp. 377–392, 1997. 

D. Braha and O. Maimon, “The design process: Properties, paradigms, and structure,” 
IEEE Trans. Syst., Man, Cybern., vol. 27, pp. 146–166, Apr. 1997 

M. Suwa, J. Gero, and T. Purcell, “Unexpected discoveries and S-invention of design 
requirements: Important vehicles for a design process,” Design Studies, vol. 21, 
no. 6, pp. 539–567, 2000. 

Chase, J.. 2000. Measuring Value in Product Development. The Lean Aerospace 
Initiative Working Paper Series; WP00-05. MIT, Cambridge, MA.  

Clifta, T. B., Vandenboschb M. B.. 1999. Project Complexity and Efforts to Reduce 
Product Development Cycle Time. Journal of Business Research, Volume 45, 
Issue 2, Pages 187–198. 



  

 

49

Krishnan V., and Zhu W.. 2006. Designing a Family of Development-Intensive Products. 
Management Science, 52(6), 813–825. 

Krishnan V., Ramachandran K.. 2008. Economics models of product family design and 
development. C. Loch, S. Kavadias, eds. Handbook of New Product Development 
Management. Butterworth Heinemann-Elsevier, Oxford, UK, 87-112. 

Browning T. R., 2008. A Quantitative Framework for Value, Risk and Opportunity 
Management in Projects. 2nd Annual UTD Project Management Symposium 
University of Texas at Dallas, Dallas, TX, Aug. 18-19. 

Bachlaus M., Shukla N., Tiwari M. K and Shankar R., Optimization of System Reliability 
using Chaos-Embedded Self-organizing Hierarchical Particle Swarm 
Optimization., J. Risk and Reliab., 2006, 220.  

Yadav S., A Value Model for Product Development Process Using Lean Principles. 
Master's Thesis, Missouri S&T, 2010. 

Barlow Re and Wu AS., Coherent System with Multi-State Components, Math Oper., 
1978, 3(4), 81-275.  

Boyen, J., and Moore, A., Learning evaluation functions to improve optimization by local 
search, J. of Mach. Lear. Res., 2000, 1, 77-112.  

Carchare, T. and Beck J. C., Applying Machine Learning to Low Knowledge Control of 
Optimization Algorithms, Computational Intelligence, 2005, 21(4), 372-387 

Chen M. S., On the computational complexity of reliability redundancy allocation in 
series system, Oper. Res., 1992, 11, 309-315. 

Dasgupta D. and Gonzalez G., An Immunity-Based Technique to Characterize Intrusions 
in Computer Networks, IEEE Tra. on Evo. Com., 2002, 6(3), 281-291. 

Gen M. and Cheng R., Genetic algorithm and engineering design., A Wiley-Interscience 
publication, John Wiley and sons, Inc., 1997 

Gen M. and Yun Y.S., Soft computing approach for reliability optimization: State-of-the-
art survey, Reliab Eng and Sys Saf, 2006, 91 1008–1026. 

Huang, H.-Z., Tian, Z., and Zuo, M.J. Intelligent Interactive Multiobjective Optimization 
Method and its Application to Reliability Optimization. IIE Tran., 2005, 37, 983-
993. 

Kennedy J. and Eberhart R. C., Particle Swarm Optimization in Proc. IEEE Int. 
Conference. Neu. Networks, 1995; 4: 1942-1948. 

Kumar, V. V., Pandey, M. K., Tiwari, M. K., & Ben-Arieh, D. (2010). Simultaneous 
optimization of parts and operations sequences in SSMS: a chaos embedded 
Taguchi particle swarm optimization approach. Journal of Intelligent 
Manufacturing, 21(4), 335-353. 

Kumar, V. V., Tripathi, M., Pandey, M. K., & Tiwari, M. K. (2009). Physical 
programming and conjoint analysis-based redundancy allocation in multistate 
systems: a Taguchi embedded algorithm selection and control (TAS&C) 
approach. Proceedings of the Institution of Mechanical Engineers, Part O: Journal 
of Risk and Reliability, 223(3), 215-232. 

Kumar, V., Kumar, V. V., Mishra, N., Chan, F. T. S., & Gnanasekar, B. (2010, October). 
Warranty failure analysis in service supply chain: A multi-agent framework. 
In Supply Chain Management and Information Systems (SCMIS), 2010 8th 
International Conference on (pp. 1-6). IEEE. 



  

 

50

Kumar, V. V., Yadav, S. R., Liou, F. W., & Balakrishnan, S. N. (2013). A digital 
interface for the part designers and the fixture designers for a reconfigurable 
assembly system. Mathematical Problems in Engineering, vol. 2013. 

Kumar, V. V., Tripathi, M., Tyagi, S. K., Shukla, S. K., & Tiwari, M. K. (2007). An 
integrated real time optimization approach (IRTO) for physical programming 
based redundancy allocation problem. In Proceedings of the 3rd International 
Conference on Reliability and safety engineering, Udaypur, Rajasthan, India (pp. 
692-704). 

Lagoudakis, M.G., and Littman, M.L., Algorithm selection using reinforcement learning, 
In proceedings of 17th International Conference on Machine Learning. Morgan 
Kaufmann, San Francisco, CA, 2000, 511-518. 

Liu P., Zuo M., and Meng M., Using neural network function approximation for optimal 
design of continuous-state parallel–series systems. Comput Oper Res., 2003; 
30(3), 339–52. 

Limbourg P. and Kochs H.D., Multi-objective optimization of generalized reliability 
design problems using feature models-A concept for early design stages, Reliab 
En. And Syst Saf, 2007 

Levitin G, Lisnianski A., Structure optimization of multi-state system with two failure 
modes. Reliab Eng Syst Saf 2001; 72(1), 75–89. 

Pandey M. K., Tiwari M. K. and Zuo M. J., Interactive enhanced particle swarm 
optimization: A multiobjective reliability application, Inst. of MeE, Part O, J. of 
risk and reliability, on line available.  

Rice, J., The algorithm selection problem, Advances in Computers, 1976, 15, 65-118. 
Tian Z. and Zuo M. J., Redundancy allocation for multi-state systems using physical 

Programming and genetic algorithms, Reliability Eng. and Sys. Saf.y, 2006, 91, 
1049–1056. 

 
 
 
 
 

 

 

 

 

 

 

 



  

 

51

PAPER II 

ECONOMICAL IMPACT OF RFID IMPLEMENTATION IN 

REMANUFACTURING: A CHAOS-BASED INTERACTIVE ARTIFICI AL BEE 

COLONY APPROACH 

 

 

ABSTRACT 

In the modern manufacturing arena, environmental and economical concerns draw 

considerable attention from both practitioners and researchers towards remanufacturing 

practices. The success of remanufacturing firms depends on how efficiently the recovery 

process is executed. Radio Frequency Identification (RFID) technology holds immense 

potential to enhance the recovery process. The deployment of RFID technology at reverse 

echelons has the advantage of having a real time system with reduced inventory 

shrinkage, reduced processing time, reduced labor cost, process accuracy, and other 

directly measurable benefits. In spite of these expected benefits, the heavy financial 

investment required in implementing the RFID system is a big threat for remanufacturing 

companies. This paper examines the economical impact of RFID adoption to 

remanufacturing. The aim of the research is to compare the basic and RFID-diffused 

reverse logistics model, and to quantitatively decide whether RFID implementation is 

economically viable. In order to meet these objectives, we have proposed a Chaos-based 

Interactive Artificial Bee Colony (CI-ABC) algorithm. Numerical results from using the 

CI-ABC for optimal performance are presented and analyzed. Comparison between the 

canonical Artificial Bee Colony and the Particle Swarm Optimization reveals the 

superiority of the CI-ABC for this application.  
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1. INTRODUCTION 

An unprecedented increase in every field of human daily requirements has a direct 

effect on the burgeoning demand for consumer goods in the last decade. In addition, the 

customer expects trouble-free use of products over a certain period of time. 

Consequently, the manufacturers need to produce superior products; this expectation also 

leads to scientific and technological innovations. Fast emerging manufacturing paradigms 

have resulted in frequent dumping of products due to technological obsolescence of any 

components that still have a significant value. The shortening of the product’s life cycle 

not only puts an extra demand of raw materials to manufacture a new product but also 

increases the threat to the environment as an inevitable by-product of this process. A 

growing concern about environment (pollution, global warming and traffic congestion, 

etc.) has led to a number of take-back legislation and European Union (EU) directives 

such as: End-of-Life Vehicle (ELV), Closed Substance Cycle and Waste Management 

Act, and Waste Electrical and Electronic Equipment (WEEE) to collect End-Of-Life 

(EOL) products and to properly dispose of the hazardous materials (Schultmann et al., 

2006; Jung and Hwang, 2011). The economical value of EOL products has generated 

some interest in manufacturers and needs a better handling approach. A manufacturer can 

retrieve some components from an EOL product having the same utility as it was in the 

virgin state, at a much lower cost compared to a new one. For example, manufacturers of 

toner cartridges (Xerox), single-use cameras (Eastman Kodak and Fuji Film) and 

photocopiers (Fuji and Xerox), washing machines (ENVIE), computers (IBM) and 

mobile phones (ReCellular, and Greener Solutions) have profited by a huge amount 

through reusing durable components (Franke et al., 2006). Thus, various factors such as 

economical, environmental, legislative, and depletion of natural resources have led to the 

emergence of a promising field of research termed “remanufacturing”. 

Remanufacturing is a process of recapturing parts of value and proper disposal of 

the hazardous components from a used product. This process is performed in a cost-

effective and environmentally friendly manner from the point of consumption to the point 

of origin of reverse logistics. There are several steps to be followed which can be 

executed in different order or some steps could even be ignored, depending on the 
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product type, remanufacturing volume etc. Frequently used reverse logistics steps 

reported in previous studies are termed as: collection, sorting, inspection, cleaning, 

disassembling, repairing, refurbishing, and disposing (Charter and Gray, 2008). First, 

inspection operation is performed at the collection centre to justify whether the returned 

product is directly reusable or needs disassembling to sort out its worn-out parts. At the 

disassembly centre, the product is disassembled to subassembly and further to the 

individual part level. The good and moderate quality components are shipped to 

refurbishing centers to execute cleaning, repairing and replacing operations on any 

defective or worn out parts, whereas the unendurable ones are sent to landfills at the 

disposal centre.   

Quantitative studies in remanufacturing addresses the various existing 

complexities such as; Network design (Charter and Gray, 2008; Lee and Dong, 2009), 

product recovery and distribution planning (Jayaraman, 2006; Pineyro and Viera, 2010), 

scheduling and shop floor management (Franke et al., 2006; Stanfield et al., 2006), 

inventory control (Konstantaras and Papachristos, 2007; and Pan et al., 2009), resource 

allocation (Wang and Yang 2007), routing (Blanc et al., 2006), and third party logistics 

(Ko and Evans, 2007; Lee et al., 2008). In addition to these, some researchers have 

highlighted issues related to uncertainty in demand and return rate. Hong et al. (2006) 

presents a scenario-based robust optimization model, “Reverse Production Systems” 

(RPS) that employs some electronic goods e-scraps under uncertainty. They implement 

an RPS model to a case study based in Georgia and linked a relation between RPS 

processing strategic decisions and RPS collection decisions. Salema et al. (2006) studies 

a design of reverse logistics network with uncertainty in demand and return, and capacity 

limits. They developed a mixed integer model to resolve these multi product management 

issues. Uncertainty in the return rate of an EOL product due to various environmental 

factors such as law, government policies, and environmental protection issues is 

considered in Bu and Xu (2008). They formulated an expiration based on above factors 

and have drawn a mathematical relation between return rate and environmental factors. 

Recently, Naeem et al. (2013) incorporated both deterministic and stochastic model to 

determine the optimal quantities that have to controlled for both inventories; recoverable 

and serviceable in remanufacturing environment. They developed a dynamic 
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programming based model to minimize the total cost, including production cost, holding 

cost for returns and finished goods, and backlog cost at each period.  

Utilisation of state-of-the-art Radio Frequency Identification (RFID) is 

experiencing an increasing popularity in logistics systems. Addressing the forward 

logistics problems, many researchers such as Prater et al. (2005), Chow et al. (2006), 

Nagi et al. (2007), and Pigni and Ugazio (2009) emphasise the adaptation of RFID 

technology at different echelons viz. manufacturer production sites, warehouses, 

distribution centres, retail stores, etc. These researchers have developed network models 

and discussed several benefits of RFID dissemination mainly for real time information, 

stock-out reduction, process accuracy, and for increasing labour efficiency. However, the 

cost associated with the RFID adaptation over the traditional shop floor facilities has 

been ignored by most of the researchers. Only a few recent papers deal with the 

economical impact of RFID technology on logistics. Veeramani et al. (2008), presents a 

framework and models for assessing the value of RFID utilization by tier-one suppliers to 

major retailers. Their paper argues that the RFID implementation is profitable on 5 upper 

echelons of the supply chain in the context of a real-life application to Wal-Mart’s top 

100 suppliers. Bottani and Razzi (2008) evaluate the economical impact of RFID tools on 

three echelons of fast-moving consumer goods in a supply chain: manufacturers, 

distributors, and retailers. Their assessment is made by analysing two different scenarios: 

non-integrated and integrated, which shows that RFID diffusion is not profitable for all 

scenarios. A cost analysis of an RFID integrated three-echelon supply chain is 

investigated by Ustundag and Tanyas (2009). They conclude that the total supply chain 

cost savings are increased by RFID integration.   

Although resource allocation and inventory management at forward logistics 

echelons are similar to the reverse one, they are not exactly the same. Recycling activities 

differ from production procedure in time and manner such as quantity, category, cycle 

time, stock keeping unit, and distribution paths. Consequently, the remanufacturing 

process requires extra care in implementing the RFID technology than the forward supply 

chain. Moreover, unlike the forward logistics which has been adequately studied, the 

reverse logistics have not been well studied for the suitability of RFID adoption. 

Researchers have recently proposed the utilization of RFID in remanufacturing most of 
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them have overlooked its cost in their mathematical models (Lee and Chan, 2009; Yoo 

and Park, 2009; Kumar et al., 2011; Dowlatshahi, 2012; etc.). In order to fill this gap, this 

study focuses on the design of a generic framework of a remanufacturing system which 

provides a way to measure the economical impact of RFID adoption at various reverse 

facility centers viz. collection, disassembling, and refurbishing.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It has already been proven that the remanufacturing network design problem 

belong to the class of NP-hard problems (Doh and Lee, 2010; Kumar et al., 2013). Hence, 

random search optimization techniques and their variants have been widely accepted as a 

more efficient optimization tool over conventional enumeration based optimization 

techniques; such as genetic algorithm (GA), artificial immune system (AIS), particle 

swarm optimization (PSO), and their variants (Chan et al., 2011; Kumar et al., 2009; 

Yadav et al., 2008; etc.). In addition, Artificial Bee Colony (ABC) meta-heuristic has 

gained adequate favour in this area of research in recent past (Lazzús, 2013; Tsai et al., 

2009; Prakash et al., 2008; Kumar et al., 2004; Soleymanpour et al., 2003; etc.). Inspired 

by successful applications of ABC, in this paper, a new variant of the Artificial Bee 

Manufacturer Customers 

Figure 1: Reverse logistics network 
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Disassembly Centre 
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Suppliers 
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Colony algorithm (ABC) called the Chaos-based Interactive Artificial Bee Colony (CI-

ABC) Algorithm is used to handle a realistically sized remanufacturing problem. The 

proposed CI-ABC assimilates the attributes of chaotic systems by introducing stochastic 

and ergodic properties in searching for the optimal or near optimal solution. Moreover, a 

new primitive component is combined to update the position of component for enhancing 

the interaction between employed and unemployed bees. The computational results 

indicate that the proposed CI-ABC outperforms the canonical ABC and PSO 

metaheuristics. 

 

1.1. ORGANISATION OF THE PAPER 

The rest of this paper is organized as follows: In section 2, modeling of a suitable 

objective function for a reverse logistics problem that includes the RFID cost is 

discussed. Section 3 presents the steps involved in implementing the CI-ABC over the 

illustrative examples which are discussed in section 4. The results obtained by 

implementing the aforementioned algorithms are discussed in detail in section 5. Finally, 

section 6 provides the conclusions from the study and provides directions for further 

research.  
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2. THE MODEL DEVELOPMENT 

This section develops a model to systematically examine the impact of RFID 

technology on reverse logistics cost factors. In this sense, a general and an RFID-

integrated reverse logistics model are illustrated in the subsequent sub-sections.  

 

2.1. REVERSE LOGISTICS MODEL 

Figure 1 depicts a generic reverse logistics network of the system under study. 

This system starts with returned products including EOL products from customers. First, 

the returned products are collected at a collection centre where they are sorted. Reusable 

products are sent back to the manufacturer after the required treatment and the rest of 

them are transported to the disassembly centre. At the disassembly centre, the product is 

disassembled to subassembly and further to the individual part level. The components of 

good and moderate quality are shipped to refurbishing centers for cleaning, repairing, and 

replacing any defective or worn parts.  The unendurable ones are sent to a land fill at the 

disposal centre. At all three echelons (collection, disassembly, and refurbishing centers), 

the product/parts are processed through two warehouse processes: inbound moves and 

outbound moves. The inbound moves include unloading, receiving, and put-away 

operations during the receiving of the returned products, while outbound moves consist 

of two operations: picking and loading when the products are shipped to next the echelon. 

Table 1 summarizes the warehouse operations considered in this study.  

 

 

Table 1: Main Warehouse Operations 

Movement type  Operations 

Inbound Moves Unloading Receiving Put-Away 

Outbound Moves Picking Loading 
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 In this study, the manufacturer produces a certain number of products in a certain 

time period by assembling the virgin and used parts which are in good condition to 

remanufacture. Virgin parts are purchased from external suppliers while used parts are 

acquired by disassembling and retrieving the valuable parts from EOL products. Thus, 

the model is aimed at determining the optimal revival of the used parts in an economical 

way. In order to articulate this concept into mathematical terms, an objective function (J) 

is formulated below, followed by a list of all model parameters and decision variables 

used in this research, which is shown in the nomenclature.  

 

2.1.1. Objective Function. The objective function, J, is formulated as follows; 

 

Min (J) = Min (Jcost + Jtime)                                  (37)  

  

In equation (37), the operation cost (Jcost) is defined as:      
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                                                                                                                                      (38) 

This equation reflects the total manufacturing cost that consists of the cost of 

virgin product and the cost incurred in retrieving potential product/parts from EOL 

products. The first term shows the cost associated with the purchase of virgin parts to 

fulfill the customer demand in a time period; the second term considers the cost of 

collecting the end-of-use product from the final users. The collection cost of a product 

depends on its type and geographical region from which it was collected and aggregated 

on return rate ‘r’ of EOL. The third term stands for the cost charged for cleaning or 

repairing operations of all directly reusable products sorted out at the collection centre. 

The next three terms consider operating costs of the disassembly, disposal, and 
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refurbishing centers respectively. The operations like landfill of uneconomical and 

hazardous parts at a disposal centre, breaking of joints to recover reusable parts at a 

disassembly centre, and repainting of potential parts at a refurbishing centre correspond 

to operation costs. The seventh, eighth, and ninth terms represent the set-up costs of 

collection, disassembly, and refurbishing echelons. The last three terms indicate the idle 

cost of reverse facilities. 

  

The second term in (1), Jtime represents the operational time cost and is defined as: 

,
, / , / , /

, / , /1 1 , 1

( ) ( ) ( )
( ) ( )

E T P A
et et ete p a e p a e p a

time et ete p a e p ae t p a

UT NU RT NR AT NA
J LT NL PT NA

= = =

⋅ + ⋅ + ⋅  
=  + ⋅ + ⋅  
∑∑∑

   (39) 

 

This term counts the time involved in warehouse operations viz. inbound moves 

(Unloading, Receiving, and Put-away) and outbound moves (Picking and Loading) at 

echelons; collection, disassembly, and refurbishing centers. Note that the length of 

operational time depends on the number of items ready for movement between the two 

consecutive centers. 

 

2.1.2. Normalization for Assimilation. Since the time and cost functions cannot 

be added directly, they are normalized in the range [0, 1]. The motive of normalization is 

to make them compatible with each other and to formulate a comprehensive objective 

function J. The normalized functions for Jcost and Jtime can be defined as: 
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cos
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t t
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N J
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−
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_ time time
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time time
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Where, LBcost and LBtime are the lower bounds of Jcost and Jtime respectively, and 

UBcost and UBtime, are the upper bounds. 

 

Based on the normalized objective of cost and time J is reformulated as: 

 _  _cost C time tJ N J W N J W= ⋅ + ⋅                                        (42) 

 

CW=Priority weight associated with cost objective. 

tW= Priority weight associated with time objective. 

 

The weight priorities associated with integrated objectives are given by crisp 

values which are assessed by decision’s maker based on relative importance of cost and 

time objectives. In case of more priority assigned to cost objective CW is always greater 

than tW and vice versa. 

 

2.1.3. Constraints. The total number of parts of type ‘a’ obtained after 

disassembling the products at a disassembly centre at time period ‘t’ depends on the Bill-

Of-Materials (BOM) of the products type, is represented by equation 43. 

 

1

. ;    , ,
P

at pt pa
p

DP NDP BOM a p t
=

= ∀∑
                       (43) 

 

The total disassembled parts of type ‘a’ at time period ‘t’ are further sorted into 

disposal and refurbished parts at the disassembly centre, is represented by equation 44. 

 

   ,at at a tD P N H N R a t= + ∀
                             (44) 

 

The maximum inventory level of product can be equal to the upper capacity limit 

of the collection centre. Thus the sum of total number of sorted for disassembling and 
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direct reusable purpose is equal to the processing capacity of collection centre of product 

type ‘p’ at time period ‘t’. 

. . ;   ,pt p pt pNDP RP r S PCC p t+ = ∀
                          (45) 

 

The maximum inventory level of product can be equal to the upper capacity limit 

of the disassembly centre: 

;   ,pt pNDP PCD p t= ∀                                                 (46) 

The maximum inventory level of parts of type ‘a’ at time-period ‘t’ can be equal 

to the upper capacity limit of the refurbishing centre: 

 

;   ,at aNR PCR a t= ∀                                                (47) 

 

The numbers of product ‘p’/part ‘a’ received at echelon ‘e’ in time period ‘t’ have 

to be satisfy set-up constraint of different echelons. Here, M is a large predetermined 

positive number. 

. ;      ,at atNR M VR a t≤ ∀                                           (48) 

. ;      ,pt ptNDP M VD p t≤ ∀                                            (49) 

. . . ;      ,p pt ptRR r S M VC p t≤ ∀                                        (50) 

 

A parameter referring to the lower bond of disposal rate of part type ‘a’ is set to 

DRa in time period ‘t’ that instruct that a fraction of disassembled parts are assumed to be 

hazardous for that time period ‘t’. Thus, for the whole time horizon it is expressed as: 

 

1 1

. ;      ,
T T

at a a t
t t

N H D R D P a t
= =

≤ ∀∑ ∑
                                     (51) 

 

Non-negativity and binary constraints are represented by equation 52 and 53 

respectively: 
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, , , , , 0; , ,pt a at pt at atS DR DP NDP NR NP a p t≥ ∀
                        (52) 

{ }, , 0,1 ;   , ,VR VD VC a p t
at pt pt

∈ ∀                             (53) 

 

 

Table 2: Benefits from Implementing RFID Technology 

Inbound Moves  

 Benefits 

Unloading • Reduction in waiting time before unloading  
• Increased visibility of incoming product 
• Real time monitoring and control 
• Automated services 

Receiving •  Pallet labels cost 
• Manpower cost for labeling of pallets 
• Manpower cost for checking of received pallets and updating 

the information to control room 
• Manpower cost for amending data errors  

Put Away •  Manpower cost for paper works 
• Cost of shrinkage; misplacement, spoilage, shoplifting, and 

organized shop floor crime 
• Manpower cost for general and replacement inventory counts  
• Manpower cost to identify pallets and locations and update 

the information to control room. 
Outbound Moves 

 
Picking and 
Sorting 

•  Optimal picking routes 
• Reduction in bin location exception management  
•  Cost of pallets labels 
• Manpower cost for amending data errors 
• Manpower cost to identify pallets and locations and update 

the information to control room. 
• Cost of shrinkage of picking inventory 

Loading •  Improvement in loading time 
• Reduction in waiting time before loading 
• Increased data accuracy and reduction of errors in counting 
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2.2. RFID INTEGRATED REVERSE LOGISTICS MODEL 

RFID system is a wireless technology which enables auto-identification (auto-ID) 

and traceability of items by transmitting radio waves between an RFID tag and a reader. 

A tag, which contains a microchip that stores the data, is attached on objects and 

broadcasts part data such as: manufacturing site, production lot, date of manufacture, 

expiry date, product and component type, etc. The reader receives this information and 

converts it into digital data to a computer system. The capability to obtain real-time 

information about the location and properties of tagged objects influenced various 

industries to deploy the RFID tool for enhancing the efficiency of their logistics 

processes. A large number of forward logistics players such as Wal-Mart, The U.S.  

Defense Department, Metro groups, and Tesco utilize RFID technology and are high 

profit examples.  In reverse logistics, the adaptation of RFID has not been studied much; 

however, there is significant opportunity in the use of this process to improve operational 

efficiencies which is being considered in this study. The diffusion of RFID technology at 

reverse echelons (collection, disassembly, and refurbishing centers) enables increased 

inbound and outbound operational efficiency through auto-counting and precise 

instructions. The information and physical flow of the EOL items are presented in figure 

1. Moreover, Table 2 summarizes advantages of an RFID system in warehouse operations 

over traditional processes.   

Based on the information provided in Table 2 the cost and time objective for the 

RFID adopted reverse logistics model, cos

RFID

t
J and 

RFID

time
J   is defined as:  
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Here, cost factors
C

RFID
SP ,

D

RFID
SP , and 

R

RFID
SP  are the RFID set-up costs at collection, 

disassembly, and refurbishing centers respectively. Excluding tag cost ( cost
Tag ), the 
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RFID set-up cost associates all hardware and software costs defined in Section 4. The 

model equally imposes the RFID set-up cost to all ‘T’ time scenarios. The last term of the 

equation represents the cost involved in pasting RFID-tags onto all optimally assigned 

products at collection centers and to the parts at disassembly centers after being 

disassembled. The RFID tagging is not required at the refurbishing centre as they were 

already tagged at disassembly centre. 

 

Now,  

{ },
' ' ' ' '
, / , / , / , / , /

1 1 , 1

(( . ) ( . ) ( . ) ( . ) ( . ))
E P ATRFID

et et et et ettime e p a e p a e p a e p a e p a
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= + + + +∑∑ ∑   (56) 

 
 

The  equation calibrates time involved in inbound and outbound moves of 

warehouse operations. The expressions used in Equation (56) are described below. 
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Again, in order to formulate a compatible overall objective function, (
RFID

J ), 

cos

RFID

t
J  and 

RFID

time
J  are normalized in the range of 0 to 1. 
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_
RFID RFID
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where cos
RFID

tLB  and 
RFID
timeLB  are  the lower bounds of cos

RFID

t
J and 

RFID

time
J , and  cos

RFID
tUB  

and 
RFID
timeUB  are the upper bounds. 

 

Thus, the aim of this research is to 

Min (
RFID

J )                                                                    (64) 

 

where           _  _RFID RFID RFID RFID RFID
cost C time tJ N J W N J W= ⋅ + ⋅  

 

RFID
CW =Priority factor associated with cost objective.  

RFID
tW = Priority factor associated with time objective. 

 

2.2.1. Constraints. Apart from Constrains 7 to 17, a non-negativity constraint 65 

which cannot exceed the value of one numerically is assumed in this study. That is, 
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3. SOLUTION METHODOLOGY 

The determination of an optimal solution in the reverse logistics problems is a 

computationally complex process since it requires vast exploration and exploitation of 

search space. Since this problem is NP-hard, artificial intelligence-based random search 

techniques have gained favor in this area of research (Kim et al., 2008). Inspired by 

successful applications of the Artificial Bee Colony meta-heuristic over a closed loop 

logistics model by Kumar et al. (2010), an improved version of Artificial Bee Colony 

(ABC) algorithm, known as Chaos-based Interactive Artificial Bee Colony (CI-ABC) 

algorithm, is used in this study. The following subsections present the proposed 

methodology in brief.    

 

3.1. AN OVERVIEW OF ARTIFICIAL BEE COLONY 

The ABC algorithm is a recently developed (Karaboga, 2005) swarm intelligence 

technique based on the natural food searching behavior of bees. In a D-dimensional 

search space, each solution (Sxy) is represented as; 

1 2{ , , ..., }xy x x xDS S S S=                                          (66) 

Here, x = 1,…, SP is the index for solutions of a population and  y = 1,.., D is the 

optimization parameters index.  

The probability value which is based on the individuals’ fitness value to 

summation of fitness values of all food sources and decides whether a particular food 

source has potential to get status of a new food source is determined as; 

 

/g g gP f f= ∑                                       (67) 

Where, fg and Pg are the fitness and probability of the food source ‘g’ 

respectively.  

After sharing the nectar information between the existing onlookers and employed 

bees, in case of higher fitness than that of the previous one, the position of the new food 

source is calculated as following: 

 



 

 

( 1) ( ) [ ( ( ) ( ))]xy xy n xy zyV n S n S n S n+ = + × −

where z =1, 2,.., SP is

( )xyS n  is the food source position at n

position in (n+1)th iteration. 

parameter xyS is set to meet the acceptable value and is modified as;

x yS S r a n S S= + −

In this equation, 

values.  

Although the employed and scout bees nicely exploit and explore the solution 

space, the original design of the onlooker bee’s movement only considers the relation 

between the employed bee food source, 

and a food source having been selected randomly

reduces the exploration capacity and thus induces premature convergence. In addition, 

the position updating factor utilizes 

to generate a higher order bit more random than 

 

( 1) ( ) [ ( ( ) ( ))]xy xy n xy zyV n S n S n S nϕ+ = + × −    

 

here z =1, 2,.., SP is a randomly selected index and has to be different from 

is the food source position at nth iteration, whereas ( 1)xyV n+

iteration.  nϕ  is a random number in the range of [

is set to meet the acceptable value and is modified as;  

m i n m a x m i n( 0 , 1 ) ( )y y yS S r a n S S= + −    

 

In this equation, max
yS and min

yS  are the maximum and minimum y

Although the employed and scout bees nicely exploit and explore the solution 

space, the original design of the onlooker bee’s movement only considers the relation 

etween the employed bee food source, which is decided by the roulette wheel selection,

and a food source having been selected randomly (Tsai et al., 2009). This consideration 

reduces the exploration capacity and thus induces premature convergence. In addition, 

the position updating factor utilizes a random number generator which shows a tendency 

higher order bit more random than a lower order bit (Kumar 

Figure 2: Logistic mapping 
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( 1) ( ) [ ( ( ) ( ))]                      (68) 

randomly selected index and has to be different from x.  

( 1)+ is its modified 

is a random number in the range of [-1, 1].  The 

                       (69) 

are the maximum and minimum yth parameter 

Although the employed and scout bees nicely exploit and explore the solution 

space, the original design of the onlooker bee’s movement only considers the relation 

which is decided by the roulette wheel selection, 

). This consideration 

reduces the exploration capacity and thus induces premature convergence. In addition, 

random number generator which shows a tendency 

(Kumar et al., 2010).  
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3.2. CHAOS-BASED INTERACTIVE ARTIFICIAL BEE COLONY LGORI THM  

In order to avoid the aforesaid shortcomings and enhance the searching capacity 

of the canonical form of the ABC, a new variant called the Chaos-based Interactive 

Artificial Bee Colony (CI-ABC) algorithm, has been proposed. This algorithm is 

described next. 

3.2.1. Basic of Chaotic Systems. A non-linear system is said to be chaotic if its 

evolution is very sensitive to the initial conditions and has an infinite number of different 

periodic responses (Yuan et al., 2002). The ability to generate unbiased random numbers 

increases the use of chaotic sequences over random number generators in recent years. 

There are considerable numbers of chaotic operators possessing ergodic and stochastic 

properties and are reported in literature (Luo and Shen, 2000; Yang and Chen, 2002). In 

this paper, a “Logistics” (Parker and Chua, 1989) chaotic system is used to replace the 

random function in the equation (70), which is formulated as: 

 

       . (1- )1C C Cn n nλ=+ ; (0, 1);   n =1,…, N                                 (70)     

 

where  is the value of the chaotic variable at nth iteration and  is the 

bifurcation parameter of the system. Figure 2 shows the chaotic graph of the logistic map. 

This graph has been plotted for 300 iterations with initial values of C0 = 0.01 and λ = 4. 

3.2.2. Proposed CI-ABC. In order to enhance the exploration capacity of 

foraging bees, the equation for updating new position (equation 68) has been modified by 

adding a new factor which incorporates more perturbation on the food source position Sxy.  

The concepts can be mathematically represented as;  

 

( 1) ( ) [ ( ( ) ( )) ( ( ) ( ))]xy xy n xy zy n xy wyV n S n C S n S n C S n S n+ = + × − + × −   (71)  

 

where Cn [-1, 1] stands for the chaotic value obtained from equation (70) at nth 

iteration. w {1,...,W},   

where Cn [-1, 1] stands for the chaotic value obtained from equation (70) at nth 

iteration. w {1,...,W},  an index refers to the bee having the largest nectar amount. It is 

Cn ∈

Cn λ

∈

∈

∈

∈
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the best global position found by any employed bee so far. The index w may be to x or z, 

depending on whether the x or z index referred bees achieved best position in the 

population.   

The newly added term brings diversification in the search and facilitates each bee 

to interact with a higher number of neighborhoods. Another advantage of this term is to 

help get better convergence toward the goal of the bees. For easy comprehension, a flow 

chat of the proposed algorithm (CI-ABC) has been detailed in Figure 3. 
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iter = iter+1 

End 

Randomly generate solution space (a set of food source location) 

New solution for Onlooker bees 

Is 

termination 

Tru

False 

iter =1 

Evaluate the fitness value (Nectar amount) 

 Update position (eqn. 34) 

Produce new Solution space by adoption the Selection process of higher 

Compute chaotic system (eqn. 33) 

Figure 3: Flowchart of the proposed CI-ABC algorithm 

Produce new solutions from neighborhoods search or previous iteration   

Evaluate probability value of each food source (equation 30) 
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4. ILLUSTRATIVE EXAMPLES 

This section presents a numerical example to check the efficacy and scalability of 

the proposed algorithm. The dimension of the test cases has been varied irregularly with a 

view to show flexibility in an underlying model. The planning horizon for demand and 

supply of products considered is taken in six time periods (T=6). Table 3 summarizes the 

numbers of product that are to be manufactured according to their own production plan 

under 6 time periods. The test beds conceived in this paper have to manufacture 8 

different numbers of product-types. Table 4 shows Bill-Of-Material (BOM) of each 

product by which part-types are assembled to a product. The BOM can have a maximum 

of 9 different part-types for each individual product.     

The unit purchasing cost from external supplies is set to be 20, 25, 22, 32, 25, 33, 

68, 25, and 35 dollars for part-type 1 to 9 respectively. Furthermore, the idle costs of the 

echelons; collection, disassembly, and refurbishing centers are fixed at 2900, 2500, and 

2700 dollars respectively.  

The return rate ‘r’ is limited by the environmental factors which have a maximum 

of 0.90 for any scenario. The test case set an upper fraction of EOL products going to be 

directly reusable is 0.25 (DRp= 0.25;  ‘p’) and the lower bound for the disposal rate for 

all part types in each time period is 0.30 (RRp= 0.30;  ‘p’). The set-up costs for each 

product/Part-type are set as: collection centre (SCCp=$0.2;  ‘p’), disassembly centre 

(SCDp=$0.4;  ‘p’), and refurbishing centre (SCRa=$0.25;  ‘a’). Furthermore, the 

upper limit of product-types and part-types to be operated at three centers is listed in table 

5. Table 6 summarizes the operating costs on these echelons. Owing to integrity with 

time objectives of the paper, the parameters related to implementing RFID at different 

reverse logistics echelons are outlined in Table 7. The costs of RFID adoption encompass 

hardware and software costs. For the RFID-hardware set-up, different technical devices 

such as tags, RFID mobile reader, shock-proof shielding gates, and RFID printer are 

taken into account. Unitary costs have been derived from Bottani and Rizzi (2008) and 

are listed in Table 8. The proposed procedure is used in conjunction with the above data 

on different cases.  

 

∀

∀

∀

∀ ∀
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The next section describes the numerical results from the proposed CI-ABC on 

the reverse logistics problems. 

 

 

Table 3: Manufacturing Plan of Product in Different Scenarios 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 13759 13823 16702 12271 8721 13023 3289 9917 

t=2 14562 12026 11011 16388 11902 10060 8871 8794 

t=3 8401 5988 9429 9832 9862 4821 14024 14290 

t=4 12452 14200 7793 11012 2291 6428 11191 12375 

t=5 9372 13063 10503 2310 13027 5826 7728 9943 

t=6 10067 8823 12985 8621 14738 12221 7998 10727 

 

 

 

Table 4: BOM; Number of Part-Types for Assembling 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

a=1 5 1 10 4 5 3 6 3 

a=2 6 0 0 6 3 9 6 6 

a=3 1 10 0 2 4 5 3 7 

a=4 4 2 9 8 9 8 8 2 

a=5 6 8 9 10 7 8 10 7 

a=6 9 8 4 1 3 2 7 8 

a=7 2 6 8 6 6 9 2 9 

a=8 0 9 9 2 0 7 6 3 

a=9 7 3 0 6 8 4 6 8 
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Table 5: Processing Capacity of Reverse Echelons 

Product-
type(p)/Part-
type (a) 

1 2 3 4 5 6 7 8 9 

Collection 
Centre (PCCp) 

15000 15000 15000 15000 15000 15000 15000 15000  

Disassembly 
Centre (PCDp) 

10000 8500 9000 7000 7500 7500 8000 8000  

Refurbishing 
Centre (PCRa) 

195000 178000 169000 177000 187000 157500 105000 105000 181000 

 

Table 6: Operating Costs of Product-Types and Part-Types at Reverse Echelons (in $) 

Product-type(p)/Part-type 
(a) 

1 2 3 4 5 6 7 8 9 

Collection cost (CCp) 7 7 11 8 6 3 5 7  
Cleaning (OCRp)  3.0 1.5 1.5 3.5 4.5 1.5 1.2 2.5  
Disassembling (OCDp) 2.0 0.5 0.75 1.5 1.8 2.2 3.2 0.75  
Refurbishing (OCRa) 1.4 0.75 0.3 0.75 0.9 1.2 2.5 1.8 0.75 

 

 

Table 7: Inbound and Outbound Moves Time for Product and Part-Types (in Min.) 

 

Table 8: Costs of RFID Equipment (1€=1.3$) 

 Unloading (UTe,p/a) Retrieving 
(RTe,p/a) 

Put-away 
(ATe,p/a) 

Loading 
(LTe,p/a) 

Picking 
(PTe,p/a) 

Processing 
time 

2.2 1.5 1.8 2.5 1.75 

Percentage efficiency increment after adopting RFID 

 EUTe,p/a  ERTe,p/a EATe,p/a ELTe,p/a EPTe,p/a 

% increment 0.75 0.75 0.50 0.85 0.65 

Hardware and software equipment Costs (€) 
RFID tag (€/tag) 0.15 
 label (€/label) 0.035 
Printer of logistics (€/time period) 400.00 
RFID reader (€/time period) 300.00 
RFID gate (€/time period) 425.00 
Equipments of a RFID truck (€/time period) 800.00 
Software and implementation projects (€/time 
period) 

30,000.00 
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5. RESULTS AND DISCUSSION 

This section is devoted to report and analyze the effect of different values of CI-

ABC approach parameters on its performance. In order to check the efficacy of the 

proposed algorithm, canonical ABC and PSO algorithms are also tested on the illustrative 

example. The algorithms have been coded in C++ and executed on an Intel® core™ i5 

CPU M @ 2.4 GHz and 4GB of RAM.  

 

5.1. PARAMETERS SETTINGS 

Extensive experimental tests were carried out to see the effect of different values 

of the parameters on the performance of all three algorithms. The population size has 

been varied in the range of 10-100 in steps of 10, and it was observed that the CI-ABC 

algorithm obtains best results with a population size of 70. It was also observed that 

although lesser population size reduces the computational time, it fails to achieve an 

optimal solution, and vice versa, in the case of higher population size. Thus, the 

population size of 60 was facilitated to obtain optimal solutions in a reasonable 

computational time. Similarly, the parameters value that assisted in finding optimal or 

near optimal solutions in case of PSO, and ABC, are presented in Table 9. 

For the evaluation of the objective function, experiments have been performed for 

50 runs, and the lower and upper bounds of set cost and time objectives are calculated. 

Since the operation time changes with varied integration of RFID technology to reverse 

logistics, the cost and time limits for each case comes out to be different, as shown in 

table 10. 

 

Table 9: Optimal Tuning Parameters 

 

Parameters PSO ABC CI-ABC 
Random number 

generator 
[0, 1] [-1,1]  Logistics system 

Size of solution space 40 60 60 
Acceleration coefficients 2.0 - - 
Chaotic parameter ( )  - 3.0 3.0 λ
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Table 10: Lower and Upper Bounds of Cost and Time Objectives 

 

 

5.2. THE ENCODING SCHEMA 

Integer coding is followed for the string representation so that each echelon and 

external supplies centre is assigned the value of a unique positive integer. A set of 

solution candidates equal to the number of the employed bees are generated. Each string 

segment denotes an individual reverse facility centre (collection, disassembly, 

refurbishing, and disposal) and external supplier. In order to assign the value of return 

rate in different scenarios, a separate string is followed which comprises integer values. 

For example, in the following 5-tuple string representation, <213; 189; 985; 24; 94>, 

integers represents the number of products/parts assigned to collection, disassembly, 

refurbishing, disposal, and external supplier centre in a certain time period respectively. 

 

Figure 4: Solution Convergence Rate 
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5.3. PERFORMANCE COMPARISON  

The proposed algorithm has been applied to the illustrative example underlined in 

the previous section. Equal priority has been assigned to both time and cost objectives. 

First, the results obtained from the basic reverse logistics model (equation 42) are given 

in Table 11. Also, for an easy appraisal, normality values of time (N_Jtime) and cost 

(N_Jcost) have been outlined in Table 11. On the basis of the results marked in Table 11, it 

is evident that, although CI-ABC produced the  same quantitative results as ABC and 

PSO, it significantly outperforms the both when compared in terms of computational time 

and the number of function evaluation. In front of 192th function evaluation for the CI-

ABC, PSO terminates at 398th.  Figure 4 illustrates the convergence rate of solution with 

the number of function evaluations when algorithms are applied in the illustrated 

example. The following inference can be drawn from Figure 4: CI-ABC has the fastest 

convergence rate. However, PSO terminates better than CI-ABC in the middle, but with 

the increase in number of iterations, its convergence rate becomes almost constant.CI-

ABC and ABC both initially converge with the same rate, and CI-ABC, in the long run, 

yields better solutions over others.  

 

 

Table 11: Results on Reverse Logistics Model 

 

Table 12: The Number of Product to Go to Direct Reuse 

 PSO ABC CI-ABC 

Objective function value ( ) 0.7275 0.7275 0.7275 
Normalized Cost ( ) 0.4013 0.3822 0.3778 

Normalized Time ( ) 0.3262 0.3253 0.3507 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 972 1238 1337 627 126 1526 1521 1087 
t=2 1091 1224 1421 771 273 1421 1471 1201 
t=3 1273 1379 1554 509 93 979 1009 997 
t=4 928 1127 1328 512 145 1437 1406 1213 
t=5 975 1325 1378 476 76 1584 1213 1203 
t=6 1013 1243 1287 518 205 1174 1313 1078 

J
_ costN J

_ timeN J



  

 

77

 

In the process of getting the optimal objective value, the assigned numbers of 

parts/products to reverse facility centers are listed in Tables 12-14.  Table 12 represents 

the reusable product to go to the manufacturer directly after minor cleaning operation. 

Table 13 summarizes the product quantities needed to disassemble for sorting into 

recoverable and disposable parts. Furthermore, the rest of the required parts purchased 

from external suppliers to fulfill the customer’s demands are listed in Table 14.  

 

Table 13: The Number of Disassembled Product 

 

 

 

5.4. IMPACT OF RFID TECHNOLOGY 

In order to analyze the impact of RFID diffusion in reverse echelons, the proposed 

algorithm is implemented on the RFID integrated reverse logistics model (equation 64). 

In contrast to the objective value (0.7275) of the basic reverse logistics model, the 

minimal objective value is evaluated by the CI-ABC as 0.7859. The figure reveals that 

 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 

t=1 6224 8031 1016 6127 5221 7117 1101 6124 
t=2 7079 8500 7723 6724 7334 6101 4017 5778 
t=3 5441 7023 5747 5981 5281 2814 4121 6908 
t=4 8108 6092 5391 6123 1019 3421 3789 7001 
t=5 7719 8500 5378 1223 7493 3871 2121 6193 
t=6 6873 7179 7273 5211 7197 6884 2298 6276 

Table 14: The Number of Parts to be Purchased from External Supplies 

 a=1 a=2 a=3 a=4 a=5 a=6 a=7 a=8 a=9 

t=1 12223 10270 7521 6541 4215 4216 103 4013 1267 

t=2 13107 11177 8795 5719 5073 5217 219 4271 1547 

t=3 9287 9271 6281 5929 4587 4791 3 5978 1987 

t=4 10018 8439 6547 5786 4991 6289 0 4774 678 

t=5 9129 88271 5489 6020 5298 5665 78 1719 910 

t=6 1174 7541 5545 5627 5303 5217 21 2191 1103 
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the RFID-enabled scenario is uneconomical under the given data in Section 4. The result, 

however, reflects improvement in operational time performance by reducing the time 

objective by 53.3 %; it increases the overall cost objective by 34.6%. The “hiking in cost” 

objective is primarily due to huge investments in software and hardware equipment at 

different echelons of reverse logistics. Consequently, the cost of RFID tags put heavy 

economical load in tagging the returned parts/product. It can be concluded that, 

€0.15/unit tag is still too high to enable the diffusion of RFID in reverse logistics. 

Nevertheless, such costs are widely compensated by time saving in inbound and 

outbound moves. The benefit of time saving in unloading, receiving, put-away, picking, 

and loading operations are achieved from a dramatic shortening of time required to 

perform replenishment cycle and inventory counts.   

 

 

Figure 5: Sensitivity Analysis of the RFID-Equipments  

The above finding of RFID-based reverse logistics model depended on a number 

of parameters that we assumed to be constant in the illustrative example. However, in 

corporate reality, the different quality of RFID hardware and software that is utilized, 

significantly affects the installation cost of RFID technology in reverse logistics. For this 

reason, sensitivity analysis is performed for RFID equipments, capacity of reverse 

echelons, and the parameter related to chaotic generator.  
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5.4.1. RFID Equipment Costs. It can be examined from the objective values of 

basic reverse logistics model and RFID-based reverse logistics model, that the latter is 

uneconomical due to the high cost of adoption of an RFID project. At present, the cost of 

RFID implementation comprises the major investment in hardware, application software, 

middleware, tags, and the cost of integrating the RFID system with the legacy systems. 

Tag costs represent a major cost factor as they have to be supplied in high quantities. In 

market, the costs of these tags vary significantly which refer bulk or small orders of tags 

purchased. As the research aim is to utilize high quantities of tags at collection, 

disassembly, and refurbishing centers, an analysis is performed by varying the investment 

cost of all hardware and software defined in Table 8 for the successful diffusion of RFID 

technology. Since the tags are utilized in high quantities, we investigate the impact of 

RFID equipment at two different stages. Firstly, excluding the tags, Figure 5 gives the 

sensitivity of all hardware and software costs an objective value. Furthermore, the impact 

of RFID tags is depicted in Figure 6.     

 

 

Figure 6: Sensitivity Analysis of the RFID-Tags 

  As expected, Figures 5 and 6 shows that the price depreciation of RFID 
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equipment, produce same the objective of the basic reverse logistics model. In this 

scenario, the hike in objective value arises due to RFID-equipment costs is easily 

compensated by the operational time reduced after RFID installation.  

 

 

Figure 7: Sensitivity Analysis of the Reverse Echelons Capacity 

 

 

Figure 8: Impact of Bifurcation Parameter on Objective Value 
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5.4.2. Capacity of Reverse Echelons. The successful implementation of any 

new technology relies on how effectively it is utilized by the system on which it is 

applied. In this research, the adoption of RFID has been proposed at reverse echelons that 

encompass RFID equipment, such as tags, readers, fixed and mobile devices, and related 

software. As mentioned above, the RFID tags only variable parameter is a quantity that 

depends on the optimal assignment of parts/products to the echelons. Thus, the capacity 

of reverse echelons is an important influential factor in the proposed model.   

In order to investigate the effect of operational capacity over solution quality, the 

upper capacity limit of three echelons viz. collection, disassembly, and refurbishing 

centers varies by an even percentage amount. The result has been drawn in Figure 7.  

From Figures 7, it is analyzed that the objective value decreases with the 

increscent in capacity up to a certain level. Above this level the value became constant 

and the manufacturer is not getting any additional profit for extension of the centers. 

Such a result reveals that RFID implementation is favorable at the centers having a very 

high capacity limit. In this case, only RFID tags put additional costs, while the other 

equipment costs are the same for the echelons having lower operational capacity.  

 

5.5. EFFORT ANALYSIS FOR RFID ADOPTION  

The variation in demand of a new product and the returning of a used one are 

considered on seasonal basis in six time-horizons (T=6). The duration of an individual 

time period can be assumed in an hour, day, or month depending on the flow of the 

products. However, the maximum limit of operating products on the reverse echelons is 

not only controlled by such consideration, but also by the capacity of the corresponding 

echelon. A centre can only allow the maximum number of products to be operated which 

is minimum from the maximum capacity limit and maximum flow of EOL products in a 

time period.   

As the underlying model consists of cost and time objectives for different 

activities, a trade-off analysis of both is difficult to execute with the constraints discussed 

above. In order to examine a correlation, the inventory level defined in the equations 45, 

46, and 47 are eliminated from the model. Moreover, the time periods are considered as 

order numbers (T=1 is order number 1 and so on), so that the product-types/ parts-type of 
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any order can be operated just after the previous one. The result shows that the saving in 

time for in-bound and out-bound moves is  15.6%, 20.3%, 17.2%, 11.3%, 21.7%, and 

15.3% for order numbers 1 to 6 respectively. Similarly, the extra burden on cost 

objectives are 8.6%, 7.7%, 8.1%, 11.3%, 6.8%, and 8.1%. A correlation that can be set 

from here is that the adoption of RFID technology is economically viable in the long run 

for remanufacturers. Since there is no inventory limit at the echelons, a sufficient number 

of refurbished products/parts are ready for re-use at low cost, which will reduce the 

burden on new parts from the external supplier. 

 

5.6. IMPACT OF CHAOS PARAMETER  LAMBDA ( λ ) ON THE SOLUTION 

In the proposed CI-ABC, the bifurcation parameter  is used with the numerical 

value 3.5 to generate chaotic variables using equation (70). The computational 

experiments are performed by varying the value of  between 2 and 4 in Figure 8, and 

establishing that the solution quality increases with the increase in the value of . It can 

also be seen from Figure 8 that, as  attains value of 3, this comes in the region of the 

chaotic regime. Actually, this is the location of the first bifurcation and the logistic 

equation becomes super stable at this point. As the growth rate exceeds 4, all orbits zoom 

to infinity and the modeling aspects of this function become useless. Hence, this is the 

reason why the value of  stops at 4 and for this value the chaotic system performs best. 

 

5.7. LIMITATION OF PROPOSED CI-ABC 

The following aspects are relevant to the performance of the algorithm. 

1. Problem implementation: A decision maker is required only to evaluate the 

generated seed solutions and compare the estimated objective values. Thus, the 

cognitive load is not very arduous and it is not too complex to use CI-ABC in solving 

real problems. However, evaluation of the generated solutions and determining their 

preference values is a key issue.  

2. Parameter effect:   The algorithm moves towards the global best position by 

adjusting the trajectory of each bee towards its own best position and the nectars’ best 

position. The determination of the employed and unemployed (Onlooker, and Scout) 

λ

λ

λ

λ

λ
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bees and probability function are critical factors. Also, the chaotic function requires 

careful estimation.       

3. Convergence: The decision maker’s preference model guides the search to 

explore the discrete Pareto front of seed solutions. Albeit, the algorithm performed 

very well to converge to the near optimal solutions. In each of the cases that use 

Linear value, Quadratic value, L-4 metric value, and the Tchebycheff value functions 

the percentage scaled deviation remains about 1 % to 2%.   
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6. CONCLUSION AND FUTURE REMARKS 

Implementing RFID technology in remanufacturing is primly concerns to 

abandonment of outdated recovery processes. It can contribute to real-time quality 

information and increased efficiency in reverse logistics. Through this research, the 

authors have demonstrated that the RFID technology can effectively   improve inventory 

control, operational efficiency, and data visibility at reverse echelons, i.e., at collection, 

disassembly, and refurbishing centres. However, the present price of RFID equipment 

(hardware and software) is still one of the main cost factors when implementing RFID. 

We studied an illustrative example on a basic and a RFID-based reverse logistics model 

to quantitatively decide whether RFID technology is feasible and economically viable. In 

order to execute this task, the paper proposes a new variant of artificial bee colony 

algorithm, namely the Chaos-based Artificial Bee Colony (CI-ABC) approach. The 

analysis showed that the RFID-enabled scenario is uneconomical at present equipment 

prices but it has a potential to create a favorable environment for remanufacturers in the 

near future. For the comparative analysis of the proposed CI-ABC algorithm it was 

compared with ABC, and PSO algorithms, over a problem instances. The comparison 

shows that the proposed algorithm outperforms others in terms of computational time and 

rate of convergence.  

The paper put forwards a number of future research directions for interested 

researchers. Future research can be aimed at: (i) Checking the improvement in process 

accuracy; (ii) Sensitivity analysis of various cost factors such as operational, disposal, 

and inspection can be considered; (iii) Application of the proposed model to a real 

remanufacturing corporation;  and (iv) Utilizing the multi-objective techniques for 

solving the problems. 
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 SECTION  

2. CONCLUSION 

 

The first part of this study develops value of a product at design and functional 

level. The model has been formulated with the view of maximizing value of the product 

and minimizing product cost, product weight and product size simultaneously. In this 

research, a four stage (components) problem has been considered to map the 

remanufacturing facility in to product development process. The second part of this 

research examines the economical merits of RFID adoption at remanufacturing echelons. 

Through this research, the authors have demonstrated that the RFID technology can 

effectively   improve inventory control, operational efficiency, and data visibility at 

reverse echelons, i.e., at collection, disassembly, and refurbishing centers. However, the 

present price of RFID equipment (hardware and software) is still one of the main cost 

factors when implementing RFID.   

  In order to tackle the underlying models, a novel approach, Self-Guided 

Algorithms & Control, has been proposed and implemented successfully in PDP value 

model, and a Chaos-based Interactive Artificial Bee Colony approach to RFID based 

Remanufacturing models respectively the first and the second part of the thesis. The 

proposed algorithms have been shown to significantly outperform many existing 

optimization strategies prevailing in the literature and offer a faster convergence. 

Following directions for the future research are suggested to interested readers: (i) 

inclusion of more realistic reliability considerations such as including the field and 

service data (in form of survey results) in value computation, (ii) Reliability evaluation of 

the developed products, (iii) application of S-CAG and CI-ABC strategies for optimizing 

other computationally complex problems, (iv) Application of the proposed model to a 

real remanufacturing corporation;  and (v) Utilizing the multi-objective techniques for 

solving the problems. 

 



 

 

 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 PSEUDO CODE of PSO 
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Randomly generate the initial particles and velocity  

While (iter < max_iter)    

           for (i = 1 to number of particles)        

Calculate the fitness value for each particle.                                          

Update the self-best position of ith particle 

End for 

Update the global best position of the swarm  

          for (i = 1 to number of particles)   

          for (j = 1 to number of dimensions)  

                    Update particle velocity                      

                  Update particle position  

                     j = j+1 

                     i= i+1                     

                     iter = iter + 1; 

           end for  

      end 

Output : Best Solution of the problem 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 

 PSEUDO CODE of SA 
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Randomly generate a solution string Evaluation fitness function) for all solution 

string 

Set, Initial and final temperature and Iterations at each temperature 

While (Final tem. =Initial Tem.) 

{ 

 For (fixed number of iteration)   

Randomly introduce a   perturbation (a small change to the current solution string) 

Evaluate newly generated string 

Always accept the new alternative if it reduces the cost 

Randomly accept some alternatives that increase the cost  

 End of for loop  

 Reduction in final temperature    

} 

Output : Best Solution of the problem 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 PSEUDO CODE of GA 
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Generate random population of solutions 

For each individual: calculate Fitness 

While (iter<iter_MAX) 

{ 

Perform Crossover operation based on probability of crossover; 

Perform Mutation operation based upon probability of mutation; 

Compute Fitness; 

Perform Selection operation for population of next generation. 

iter++; 

} 

Output : Best Solution of the problem 
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