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ABSTRACT

This research presents an interactive product dpuwent model in
remanufacturing environment. The product develogmmeadel defined a quantitative
value model considering product design and deveéoprtasks and their value attributes
responsible to describe functions of the product.tlhe last stage of the product
development process, remanufacturing feasibilityuséd components is incorporated.
The consummate feature of this consideration Iresansidering variability in cost,
weight, and size of the constituted componentsmi#ipg on its types and physical states.

Further, this research focuses on reverse logisfiesadigm to drive
environmental management and economic concerniseofmanufacturing industry after
the product launching and selling in the market.rddwer, the model is extended by
integrating it with RFID technology. This RFID endaked model is aimed at analyzing
the economical impact on the account of having athge of a real time system with
reduced inventory shrinkage, reduced processing,tireduced labor cost, process
accuracy, and other directly measurable benefits.

Consideration the computational complexity involvied product development
process reverse logistics, this research prop&ssGuided Algorithms & Control (S-
CAG) approach for the product development modeld &haos-based Interactive
Artificial Bee Colony (CI-ABC) approach for remamgturing model. lllustrative
Examples has been presented to test the efficatlyeonodels. Numerical results from
using the S-CAG and CI-ABC for optimal performaraze presented and analyzed. The
results clearly reveal the efficacy of proposedatgms when applied to the underlying

problems.
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1. INTRODUCTION

The last century witnessed manufacturing advantes &xtraordinary rate as a
direct outcome of increased customer requiremeviigch has had a pronounced effect
on the system’s complexity. Customers have comexpect reliable products that offer
trouble-free use and a full range of desired fuumdi This expectation has made it
necessary for manufacturers to pay close attentionng each stage of product
development in order to produce high-quality, uketliable products that embody all of
the functionality that customers desire. Achievihgse goals, however, increases the
economic burden of manufacturing, which may causmesfirms to fail due to the
accompanying high price of the product in the markéhe economic success of
manufacturing firms depends on their ability tontiy the needs of customers and to
quickly create products that meet those needstatdcan be produced at low cost. Both
the customers’ and the manufacturers’ needs musbbsidered from the beginning of
the product design and development process. Thefactaring firm must also consider
its direct, adverse environmental impact as an iiakele byproduct of production.
Regarding this concern, the government has intredldake-back legislation that forces
manufacturers to collect and dispose of any hazardwoducts. In addition to the
environment and legislation, profit is another intpat reason to deal with byproducts.
Generally, while the byproduct has been removedtdube technological obsolescence
of any of its contents, it still contains signifitavalue. Though direct reuse is infeasible
in most cases, retrieving reusable components isngortant and economical recovery
option. Thus, for legislative, environmental, ambm@omic reasons, remanufacturing has
emerged as a promising field of research in thedasade. This research presents the
following aspects of remanufacturing, and the Pob@evelopment Process (PDP).

1. A new value model at design and functional levaPiDP.

2. Introduction of remanufacturing feasibility in PDP.

3. Designing of a generic remanufacturing frameworlptovide a way to measure
the economical merits of Radio frequency Ildenttfma (RFID) adoption at

various reverse echelons.
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MODELING THE VALUE OF A PRODUCT AT THE DESIGN & FUN CTIONAL
LEVELS: SELF-GUIDED ALGORITHMS & CONTROL APPROACH

ABSTRACT

During the design and development stages of a medupt, value and reliability
optimization is a prime concern of the manufactuReevious research conducted in this
domain has been limited to either the qualitatispests of value definition, or value
guantification considering time, cost, serviceapiind the importance of the product.
However, the value attributes, such as performafwe), fit, function, risk, schedule,
and timeliness, are other important parametersoresple for mapping the two generic
tasks of knowledge discovery (KD) and risk reduct{®&R) in the product development
process (PDP). This research presents a quangiteéiie model that considers product
design and development tasks and their value attsbresponsible for defining the
product’s functions. Another beneficial feature this formulated model is that it
considers the remanufacturing feasibility of usemmponents for prototyping and
performance testing at the system testing stage. Uded components vary in cost,
weight, and size based on their types/versiongagsdical state.

Furthermore, in consideration of the computatioc@hplexity involved in the
PDP, this research proposes an efficient compuatieechnique, the Self-Guided
Algorithms & Control (S-GAC) Approach, which takis governing traits from the basic
meta-heuristics of GA, PSO, and SA. The proposgdrihm can efficiently predict and
select a better algorithm from a given set for madequate exploration of the entire
search space.

lllustrative examples of a complex, multi-state riegparallel system are
presented to compare the performance of S-GAC etltler random search techniques.
S-GAC significantly outperformed PSO, SA, and GAamms of the solution quality and
rate of convergence. The results clearly revealetifieacy of the proposed algorithm

when applied to the two underlying problems.



1. INTRODUCTION

The recent technological advancement in the matwiag scenario has been a
direct outcome of increased customer requiremerdglzerefore has a pronounced effect
on the system complexity. This yields to a problema new dimension for serving
customers who satisfied with the reliable and ttediee use of the product composed of
a full range of desired functions. This expectatibas made it necessary for
manufacturers to pay close attention during eaatpesvf product development in order to
produce high-quality, useful, reliable productsttambody all of the functionality that
customers desire. Achieving these goals, howearereases the economic burden of
manufacturing, which may cause some firms to fag tb the accompanying high price
of the product in the market. The economic sucoéssanufacturing firms depends on
their ability to identify the needs of customerslda quickly create products that meet
those needs and that can be produced at low camsh the perspective of a for-profit
manufacturer, successful product development esulproducts that can be produced
and sold profitably [Ulrich and Eppinger, (2011)hus, considering the perspectives of
both the user and the manufacturer regarding wizdesa product valuable, the larger
adoption of the desired functions at minimum cestansidered a successful strategy for
improving a new product’s success.

A new PDP comprehends a set of activities beginmiith market opportunity
and ending in the production, sale, and deliveryaoproduct [Hallstedt, (2008)].
According to Roozenburg and Eekels (1995), Roozent006), and Barkley (2008), a
PDP consists of all the steps that precede a nedupt entering the market (or the
implementation of a new production process), sichasic and applied research, market
research, project planning, requirement enginegtagical design, detail design, system
testing, user acceptance testing, production,iigton, marketing planning, sales, and
after sales service. These are the major stepgglthtihey can be executed in a different
order, and steps can be added or removed dependirthe product type, customer
requirements, production-related constraints, Eigure 1 depicts the framework of a
PDP.
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Figure 1. Overview of a New Product DevelopmemtRem

This research focuses on the design and developstages of the PDP to
guantify the value of a newly developed multi-stsystem. The model formulated in this
study considers the requirement engineering, lbgleaign, detail design, and system
testing stages, which will be elaborated upon tvigle some background and different
views of the terminology.

Requirement engineering: In this stage, the matwfec identifies the target
market for the product under development and casduesearch, forecasting, and
surveys to determine future trends and consumensttional requirements for the
product. Then, ideas are generated and screemaddbthe form, function, and features
of the product. In the literature, this stage soaleferred to asoncept developmeiotr
idea generatiorandidea screening

Logical Design In the logical design stage, the most suitablelrmaism by
which to perform the function selected in the reguient engineering stage is identified,
as are a set of alternative mechanisms with a-buitiapability to execute a specific
function in a different manner. A comparative jfistition analysis of each mechanism is
performed, and the one with the best objectiveevédiselected.

Detail Design The detail design stage frames the product actute and
categorizes the product’s components as standdrdizemodularized. Standardized



components are developed on a single platform,enmibdularized components require
multiple platforms.

System TestingThe system testing stage begins with the construcof a
prototype for testing the performance of the stiatdly developed product. The testing
is performed under various operating conditionglémtify whether changes are required
for the final product. A set of experiments conédctinder each condition reveals how
the reliability varies and accordingly predicts #ystem’s reliability in an actual working
environment.

These four stages are highly critical and make pgraimately 75% of the total
cost of the PDP. Thus, extra care is required whkelecting parameters for the

guantification of value model during these stagesrder to optimize the product’s value.

1.1. REASERCH AIM AND OBJECTIVE

In this research, we attempt to formulate a mathiealanodel during the PDP in
which the value function includes the perspectivids both the users and the
manufacturers. A particular benefit of this model that it can map KD and WR
parameters to define the value function at differ@DP stages. In order to create a
realistic value model that can closely meet bottr @nd manufacturer requirements, the
KD and WR factors are made variable with upstreamdbwnstream design and
development stages. When initiating the requirene@gineering stage, the KD factor is
more crucial to value adding than the subsequgntdbdesign, detail design, and system
testing stages. Similarly, the increasing influentéhe risk reduction factor is set along
the downstream PDP process. At the system testagesa multi-state series parallel
product prototype is developed and tested in a mefaaturing environment. The product
consists of components of different versions angsigal states, which leads to the
incorporation of used product and thus to the laumg of remanufactured products into
the market. The model also accounts for the optim&lability factor while
simultaneously minimizing other conflicting paraerst such as product cost, weight,

and volume.



The product development problem studied in thigaesh involves enormous
computational complexity. The addition of remantiising activities into the product
development model adds more difficulty to the peoblto be solved in polynomial time.
As deterministic methods either make it more difficto solve the problem in
polynomial time or fail to solve it with higher densions, various Al-based random
search techniques have been proposed in the litefaguch as Genetic Algorithm (GA)
(Gen and Chang, 1997), Artificial Immune System3JA[(Dasgupta et al., 2002), and
Particle Swarm Optimization (PSO) (Kennedy and Badr 1995). This research
proposes a Self-Guided Algorithms and Control (S3JApproach for problems of the
type previously defined. The proposed algorithmeisl time in the sense that it utilizes
an adaptive method to allocate computational ressuamong a set of algorithms during
its runtime in order to achieve superior perforneamn the underlying problem. The
approach does not rely upon any complex predictimdel (either on the problem
domain or on algorithm behavior) and is capablaabfieving performance better than the
pure algorithms constituting it. The efficacy ofetlproposed optimization strategy is
tested over a complex, multi-state, series parailstem in order to test the performance
of S-CAG against that of the individual algorith(@&A, SA, and PSO).

1.2. ORGANIZATION OF THE PAPER

The remainder of the paper is organized as foll@&estion 2 presents a review of
the literature concerning the problem domain ardtem methodology. An overview of
the problem description and mathematical modelmegpaesented in Section 3. Section 4
details the functioning of the proposed approadie fesults and a discussion of those
results are provided in Section 5, followed by dodmg remarks and directions for

future research.



2. LITERATURE REVIEW

This section contains a review of some importanisaterations and challenges in

the product development process (PDP).

2.1. QUANTIFYING VALUE IN THE PDP

The initial quantification of a product’s valuetime PDP has been cited by Slack
(1999), Browning (2000), Smith (2000), Krishannaakt(2001), and others. Browning
(2000) and Browning et al. (2002) defined the valfi@ product in terms of its benefits
to the user in association with its price. Chas@0(@ comparatively assessed the
performance of products with different prices. Hegformance measure is quantified by
the ability of the product to satisfy customerséds.

Manufacturers may view a product’s value differgrttian the product’s users
(Middleton and Sutton, 2005). According to Krisharet al. (2001, 2008) and Krishnan
and Ramachnadran (2008), in addition to performamue price, manufacturers also
consider production time as a major factor. Furtieee, Higgins et al. (1998), Browning
(2003), McManus (2004), Slack (2006), and Higgind Reimers (2007) emphasized the
economic value model, into which the direct coseighted average cost in PDP) and
indirect cost (capital employed by the firm) arearporated for realism.

Considering the concerns of both the manufacturdrtihe user, some researchers
have developed value models for the PDP over Stadkecade. Kettunen (2006) proposed
a value-based product development model that caregovalue as either development
value or phase value. The development value isbikstaed during the product
development phase and hinges on customer requitsmenhile the phase value is
established when the product is prototyped aneédesthis model delivers initial value
projections with some associated execution costegamanufactures. Browning (2003)
and Browning and Ramasesh (2007) defined valuedbasethe product’s status as a
high-quality product or service released on timetite customers, in addition to the
consequent sales and revenue. Recently, Hasan €04l0) introduced fundamental
aspects of value from the perspective of economory and described product value

relationships from the business, product, and ptgjerspectives.



Table 1: Value Attribute for PDP

Type Attribute Units Symbols
Performance Performance metrics % increase in value due to task P
Overall performance % increase weighted due toooust P,

requirement

Risk Risk Specification % decrease of value due to task Rs

Overall Risk % decrease weighted to customBy

requirement

Predicted failure iteration Number R
Schedule Set up time Hours T
Cycle time Hours k)
Integration time Hours ir
Dissemination time Hours al
Total time Hours T
Cost Fixed Overhead cost $ GCo
Variable cost $ C,
Total cost $ G
Future cost development $ Ciy
Future cost manufacture $ Cim
Future cost operation $ Cim
Future cost support $ Cis
Future cost retirement $ o
Total future cost $ Ci
Form Information retained % of information capture |
Time spent reformatting data Hours daT
Fit Necessity of information % of information actuallged !
Depth of information % of information that is nedde lq
Function Complexity of Information (1-10) cl
Time spent handling theHours Thi
information
Timeliness  Time before first access Hours tal
Time before last access Hours a T

Time accessed # #




2.2. PRODUCT DEVELOPMENT PROCESS

PDPs are unlike typical business and productiorcgsses in several ways.
Instead of repeatedly performing the same actiooglyct development seeks to create a
design that has not existed before (Browning, 20@2bhis creative and iterative process,
designers start with a design, find it deficientseveral ways, learn more about the
problems, and then improve the design to elimitia¢edeficiencies (Braha and Maimon
(1997), Verganti (1997), and Suwa et al. (2000)he available product development
literature identifies Knowledge Discovery (KD) amidsk Reduction (RR) as the two
most generic tasks in the PDP [Browning (2003)sKmnian, Ramachandran (2008), and
and Yadav (2010)]. KD refers to the process of rieey and evolving the related
information in the development stages of the pradiads frequently referred to in the
literature as design knowledge or design freedonstiige et al. (1990)], information
evolution [Krishnan et al. (1999)], and idea getieraRR, another generic task in the
PDP, is concerned with product realization. It agevéhe activities and processes
necessary to bring a product into physical exisgtemt the early stages of the PDP, the
potential for design failure is high, and manufaets face penalties in terms of schedule,
cost, and time [Levardy and Browning (2009)]. As tlesign work proceeds through the
subsequent stages of the PDP, the penalties fgcedbufacturers increase.

Chase (2000) advocated that designers can procgedK® and RR tasks by
adding or deleting PDP activities. Krishnan and Relnandran (2008) categorized these
activities as value-added or non-value-added. Ativigc that yields some useful
information leading to certainty about the abildlthe design to meet requirements is
called a value-added activity, whereas activitlest tyield uncertainty and establish the
risk of materializing the design concepts are dali®n-value-added activities. The
researchers (Krishnan and Ramachandran, 2008)efudategorized non-value-added
activities a necessary waste (Muda 1) and unnegesseste (Muda 2); these should be
minimized or eliminated from the PDP.

When an activity leads to the discovery of somevkrdge, the quality of that
discovery and the risk associated with it are emélg difficult to determine (Browning
et al. (2002)). Chase (2000), Browning et al. (2602 2006), Browning and Honour
(2008), Levardy and Browning (2009), and Yadav (®0defined KD and RR factors in
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terms of the following parameters: performancemiofit, function, risk, schedule, cost,
and timeliness. Different metrics are associateth véach of these parameters, as
summarized in Table 1. The value attributes of qremance, form, fit, and function
determine the quality of information or knowledgscdvered during a PDP activity. On
the other hand, risk, schedule, cost, and timdlimktermine the range of the penalty to
be incurred if the developed ideas and modelstfails, these are RR measures.

A comprehensive overview of the literature revehtt no studies, to the best of
our knowledge, have investigated the qualitativleieaof using a model to map value
attributes at different stages in the PDP. Thisepatempts to fill this gap and discusses
how value is added during the various product dgreent stages through particular

activities and their attributes.

2.3. PRODUCT DEVELOPMENT STAGES

System testing is performed once the product’sigaciure and design have been
created. A prototype is developed to test and ptatle performance and reliability of
the product with the functions conceived of durthg earlier stages. Two prototyping
methods have been reported in the literature: alpléotyping and beta prototyping
[Clifta and Vandenboschb (1999); Barkley (2008)d ddlrich and Eppinger (2011)].
Alpha prototyping is conducted to evaluate whetiher product will work as designed
and satisfies the desired customer functions. ta peototyping, the testing is conducted
on products similar to the final product. The tyigoal of beta prototyping is to
determine whether the product can perform the fanstat the core of its architecture.

The literature pertaining to the system testingyestaf the PDP reveals that
research has been limited to developing prototyp#ls components having the same
physical state. However, in reality, there may higeent types of components with
different physical states. Different combinatiorigypes and states of a component add
different degrees of value to the final product.

In order to improve the robustness of the developentuct, this research
considers aforementioned facts and formulates &enatical model that maximizes the

product’s value while simultaneously minimizing @est and weight. Additionally, this
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research considers the size of the product as fawisignificant impact on product

design and development in the PDP.

2.4. LITERATURE RELATED TO SOLUTION METHODOLOGY

Recently, artificial intelligence techniques such@A, AlS, PSO, etc. have been
used extensively to optimize computationally compgleoblems categorized as NP-hard.
These algorithms are marked by their short respting® and high-quality solutions to
the problems of real dimensions. Algorithm selectimvolves choosing the best
algorithm from the predefined set to run on a giygoblem instance (Rice, 1976).
Lagoudakis and Litman (2000) applied a Markov denigprocess with reinforcement
learning to algorithm control. Boyan and Moore (@p@ttempted to correlate problem
features with performance in an effort to improhe search procedure. Carchare and
Beck (2005) applied a machine learning approachi@naduced the terrrow knowledge
control for optimizing scheduling problems.

In this research, the investigators define a nsdatmprovement factor for each
pure algorithm during runtime and thereby propdse $elf-Guided Algorithms and
Control (S-CAG) approach for the underlying valweséd product development model.

This research strives to fill some of the gapsudised previously and presents the
following contributions:

1. Models the value of a product at the design andtfanal levels.
2. Incorporates remanufacturing capabilities at thetesy testing or prototyping
stage.

3. Introduces a new variant of artificial intelligeneehniques.
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3. PROBLEM DESCRIPTION

Certain product development approaches that apgbyaducts that are not totally
different from each others have drawn the attertioresearchers and practitioners; these
include independent, platform-based, standardized niche product development
[Krishnan and Zhu (2006)]. The objective of thisearch is to develop a value model for
a platform-based product development approach irctwkhe manufacturer aims to

incorporate economical remanufacturing at thedtsie of the PDP.

3.1. MATHEMATICAL MODELING

In this section, a mathematical model for the PBHRormulated to maximize
product value while simultaneously minimizing thest weight, and size of the
developed product. First, all of the notations aiekision variables used in this
mathematical model will be presented. Then, thaievadbjectives will be explained,
followed by the integrated normalized objectivediion, and, finally, all of the related
constraints.

3.1.1. Notations. The notations listed in the nomenclature are ubkeaughout
this paper.

3.1.2.Value Model Formulation. Considering the perspectives of the customers
and the manufacturers at a qualitative level inRb¥, Slack (1999), Browning (2003),
and Browning and Honour (2007) defined product eals:

Value= w (1)
Co

Where,

IN = The importance of the need for the product oviser The value of IN” is fully
determined by the customer.

AB =The value of AB’ is determined by how well the PDP is executed.

Co =The cost of ownership, which is a function of prodand service attributeas well

as the efficiency of the PDP.
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A(t) = The availability of the product or service to thastomer, relative to the

customer’s need date.

Because knowledge discovery (KD) and risk reductiBR) are the two most
generic tasks in the PDP [Krishnan and Ramachan@@o8)], both must be responsible
for deciding how effectively the product developrmstages are designed. Thus, Yadav
(2010) defines AB as a function of KD and RR:

AB =f (KD, RR) )

During the design and development stages, Broweingl. (2002) Browning
(2008), and Yadav (2010) suggested the followingven influence of KD and RR
parameters:

1. Inthe earlier stages of the PDP, KD has a majtuence on value creation.
2. As the PDP progresses, the manufacturer faceshermpenalty for product
failure.

Considering these facts about KD and RR, this rebedefinesAB in different
PDP stages as defined in Yadav (2010):

PDP Stage 1: Requirement Engineerisgl)

AR = KDC,- (KD"+ RRG ( RR 3)
PDP Stage 2: Logical Desigis £ 2)

AB = KDG: (KD'+RRG ( RR 4)
PDP Stage 3: Detail Desigis € 3)

AR = KDC,- (KD*+ RRG ( RR (5)
Where

X>y>z>1 (6)
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Further, Slack (1999) advocated that)Aghould provide the dependency for the

timing of the product or service. Thus, we defing) As:

A(t) = a /X All time attributes defined foPDP (7)

After modifying Equation 1 with the parameters froBguations 2-7, the
following new value model is defined:

PDP Stage 1: Requirement Engineerisgl)
{KDC,- (KD)*+RRG- ( R} - IN At

A co, (8)
PDP Stage 2: Logical Desigis € 2)
: y : :
V&:{KDCS (KD'+RRG- (RR}- IN At. Vs 2 )
CQO,
PDP Stage 3: Detail Desigis € 3)
VASZ{KDCS-(KD) +RRG- (RR}- IN Bt o (10)

e}

Conceptualizing value attributes from Chase (20@¥pwning et al. (2002,
2006), Browning, and Honour (2008), and Levardyvaning (2009), and Yadav (2010)
into generic product development tasks, this pdpénes KD and RR as:

KD = KDF,(P,+ P,) + KDF, J &+ KDF, | &+ KDF, (I +I )}+KDF.l  +KDF(l .

(11)
RR_ RRE(R+ R)+ RRE R+ RRE @ @ G Gt G G
+RRE, ([+ Tt Tk Tk RRE(T T RRRET
(12)
3.1.3. Constraints.
PDP Stage 1: Requirement Engineering Constraints
1, ifideai is selected for modul i=1...1
Lim = Vv P
’ 0, Otherwise m=1,2 (13)
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El Zin =19 m=12 14)

PDP Stage 2: Logical Design Constraints

1, if alternative/mechanism am is selected am=1,...,AM
Z = for functioh  of modal v f= 1F
am, m -
0, Otherwise m=1,2
(15)
f=1,..F
Z =1; s
fzé am, m m=1,2 (16)
PDP Stage 3: Detail Design Constraints
Std 1, if componenh is commonalized
Zn = 'V neVCOM
0, Otherwise (17)
Cus 1, if componenh is customized/differentiated
Zn = 'V neVCOM
0, Otherwise (18)
Std C
Z, 6~ + Znus:1 ;¥ neVCOM (19)

Figure 2: Multi-State Series-Parallel System
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3.2. VALUE MODEL FORMULATION FOR SYSTEM TESTING STAGE

The PDP model considers a series—parallel multestsystem having n

components and each component is configured t{vitiumber of components of same

type and state parallel. A series—parallel systeith Whe aforementioned scenario is
shown in Figure 2. In order to formulate a compreinge mathematical model of the
system presented above, following points have lassamed to provide a generic view
of the underlying model.

3.2.1. Assumptions.
1. All the components and system have Q possiblesstaganely, 1, 2..., Q.
2. There are T types of components available in theketaThe cost, weight,

size and state probability distribution of each etytcl)((lgi sT)) are

specified.
3. The state and type (version) of all components he subsystem are
identical and mutually statistically independent.

4. Cost of the components is independent of its paysiate, but its type.

3.2.2. Value of a Physical SystemThere are T versions (Types) of choices
available for the components in the system whecé eamponent and system may be in
Q possible states. According to Barlow and Wu ()9%#& state of a parallel system is
equal to the state of the best component in thiesys/hile the state of a series system is
equal to the state of the worst component in tistesy. Thus, the state of the parallel—

series system shown in Figure 2 is,

v (x)= min max « (20)
1<i<C 1<j<r i
i
Where, a;; is the state of componenin subsystenn.

Using the equation (20), the probability of thetsys is in state “q” or above can
be evaluated as follow (Shukla et al. 2009),
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Pr(y(x)=q) _ﬁll[li qu (21)

Where, R is the probability of a component i in state q.

Then, the value (U) of the multi-state series-paraystem (in state gq) can be

mathematically formulated as,
Q
U= Uy Pr(w(x)=q) Vs=4 (22)
g=1

Where,uq Is the value function of the state g, and it iswn for that state under

consideration.

Cost, Weight, and Size of a system: Due to diffensrsions of components
available in the market the cost, weight and weighttime have different values with
respect to the corresponding component and have foeulated as (Bachlaus et al.,
(2006), Pandey et al., (2007), Limborg and Kocl{),

c= Xy renfo2s)] @)
w= X w(}) es{o2g) @
2= 3 (i) @)

Wherec, (Ti) vvi(tl)andpi (1) are the cost, weight and size of the individual

components respectively, whereas, C, W and P ateofithe complete systerf, andN
represents the number of redundancy and numbemabanents/subsystems.

3.3. AWEIGHTED OBJECTIVE FUNCTION
The value, cost, weight and size of the systemttar&key factors in defining the
objective of the system. The weighted objectivecfiom encompassing these objectives

with corresponding weighting factors, is formulates)
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S
max V=3 VA+U.) (26)
s=1

And minC(r.t), W(r.t),P(rt) (27)

wf(V)- wf(C(r,t))—

Max s (D= e w () wE (P () )
Subject to,
C(r,t)<C, W(r,t)<W, R )< P, 9
29

O<ri=12,..R, &ti= 12,.T,

Where, 4(r 1)is the weighed objective function of variables \@msvectort = (t1,

t2,..., tT and redundancy vector= (r1, r2,...,rR. wf, ,WfC,wa andwfpare the weight

priority associated with of system utility, systenmst, system weight and system size
respectively. ConstraintsoOWNy and B ensure that the cost, weight and weight-volume of
the system can’t exceed this limit respectivelyeréd T and R are number of types for the

system and number of redundancy in the subsystem.
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4. SOLUTION METHODOLOGY

The product development problem is computationatiynplex in nature and
belongs to the class of NP-Hard problems (Chen,21%hd therefore, the model
formulated in this research involves enormous cdatmnal complexity. Utilizing
deterministic methods, these problems are eithee mifficult to be solve in polynomial
time or fail to solve with higher dimensions. THere, subsequently, evolutionary meta-
heuristics have been evolved as robust optimizatemhniques to effectively solve
complex optimization problems. In recent yearsjfisral Intelligent (Al) based random
search algorithms utilizing some analogies with rilagural or social systems have been
applied to obtain optimal/near optimal solutionfed of such techniques found in the
literatures that include Simulated Annealing (SKirKpatrick et al., 1983), Ant Colony
Optimization (ACO) ( Dorigo, 1992), Particle Swafptimization (PSO) (Kennedy and
Eberhart, 1995), Genetic Algorithm (GA) (Gen anda@dy 1997), Artificial Immune
System (AIS) (Dasgupta et al., 2002), AtrtificialdB€olony (ABC) (Karaboga, 2005) etc.
Continuous improvements in past few years havetapelarly reduced the time of
response of these metaheuristics along with sutsitancrease in solution quality.
Determination of optimal number of redundant cormgras is a computationally complex
process which requires the analysis of all posstobinations of components at the
subsystem level. Considering the computational dexiy involved over the problem at
hand, this research proposes a new meta-heuriaidn its roots in canonical Al
techniques; GA, PSO and SA.

4.1. OVERVIEW OF GENETIC ALGORITHM

Genetic algorithm (GA) is an artificial random sgartechnique motivated by
Darwinian’s evolution theory. Facilitated with edjo and stochastic nature it has been
invented by John Holland (1975). As of today, itansidered as very important tool in
the area of research such as Scheduling problens 85, Gupta et al 1993, Lee And
Choi 1995); Traveling salesman problem (Grefenstettal. 1985); Pattern classification

(Bandyopadhyay et al 1995); Real time control pgobin manufacturing system (Lee et
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al 1997); Cellular manufacturing (Gupta et al 199@)ssembling line probler
(Ponnanbalam et al 2000); Disassembling line problem (b\o&h and Gupta 2005) €

Coding starting with GA requires a set of randogynerated solution candida
namely population. Each individual solution cantkdaalled string or chromosome
evaluated byfitness test function. To incline toward favorablromosome, populatic
inters in loop. Loop plays the role of terminattomvard optimal or near optimal solutir
via Recombination and Selection. The process atiefit implementation of GA o
underlyirg problem is described belc

T 1
Chromosome 1 11111011111 _
T TTE | i [ | i I =~ _
T e |
T T~ |
— | r_T1_T_T1 "1 T |
Chromosome 7 1711010101171 : |
L H I H L i s |
|
_ I I | [P
Cnrmomosome 3 1 U1 Ui 1T 1uiui - AN
i :/ \
Ve i x .
: - - - rd A \ N
~ I Al I T Al Al 7~ Ve N\ ~.
Imomuosoiiie 4 v it | i pviguvj e 4 \ ~
AN A AS— r
— |
A~ Al al gl adal [ T W | 3 4 A
WITHTVITIVOUIITIC U | A | 1 ! [ 1 | 4 | 4

Chromosome 8 11111

HHTUTTIVSUINT U ) | i

ninl

Figure3. Population Generation in Genetic Algori

Offspring 1 11010

o
o

Chromosome 2 | 1] 0 O-

Chromosome 3 |[0]0[(130}|0

Offspring 2

Figure 4 Crossover in Genetic Algorithm
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4.1.1. Representation and Initial Population. As mentioned above, initial
population is generated by random numbers. In dalereate a string of work functions
or obeying precedence relation among them is adsdiwork. To retrain from this
difficulty we generate a string representing alhdtions by corresponding real integer
value such that each joint assigns a unique fumcfitis string is altered at least half
times the string length by interchanging randonelfested two elements in the sting. The
key idea behind this to offer equal weighted to elément arrange their position
randomly. The procedure is repeated until a pojulatreated. Coding of the solutions
is done in the manner as shown in figure 3.

4.1.2. Recombination. Recombination imitates good balance between
exploitation and exploration. It comprises two @iems Crossover and Mutation.

4.1.3. Crossover. It is a crucial operation, which creates new offsprby
interchanging information between two randomly skdd parent chromosomes. There
are many methods have been proposed for crosspeeatmn such as, partial-mapped
crossover (PMX), order crossover (OX), heuristiossover, cyclic crossover (CX),
Position-based crossover etc. [Cen and Chang, [L9%¢& use Two- Point cut crossover,
which creates two off-springs by two parent chroomess. The parents are randomly
selected with crossover probability. A clear pietwf this operation is shown in figures
4, ands.

4.1.4. Mutation. Mutation provides exploitation by change one or enelement
in chromosome to prevent the solution from locatiropl. A number of mutation
operation have been proposed like, inverse mutat@mplacement mutation, reciprocal
exchange mutation etc (Cen and Chang). To creategenetic material we use inverse
mutation works as swapping in the in chromosomd® position of chromosome is
determined by the aid of chaotic variable (detaiks given in Figure 6). Now, there are 8
cells in the strings. Suppose chaotic variable ssgthat cell no. 3rd and 6th should be
interchanged. The mutation scheme takes care singidhe search into more useful sub
space and hence, it carries out the exploitaticseafch space. The detailed procedure of

the Genetic Algorithm is given in Figure 7.
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Figure 5 Offspring Generation in Genetic Algorithm

4.1.5. Reproduction. Before going taext iteration new population is genera
by the good solutionddere Tournament selection is preferred that seleatf of the
fitter solution from unrecompensed population andther half from recombine

Figure 6 Mutation in Genetic Algorithm
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4.2. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

The Particle Swarm Optimization (PSO) is a popalatibased stochastic
optimization technique, developed by Kennedy andrBdrt (1995). The idea behind the
development of PSO was to simulate the social fogagehavior of living organisms
classified as swarms. However, several strikingufes of PSO transform it into a
promising evolutionary metaheuristic. To illustratethe context of PSO, the population
is called a swarm and each members of swarm igeef@s particles. In order to reach at
the desired destination, the particles of the swhead with a restrained velocity in the
search space. During the search, particles utiize cognitive and collaborative ability
to move towards their own best position and the pesition explored by swarm so far,
respectively. Kennedy and Eberhart (1995) develaoedquation (equations (30)) for
changing the velocity of each particle and therabgording to this updated velocity the
position of individual particle is altered (equai$o(31)).

best
Clx(Lp —Lp(n—l)

V (n)=V_(n-1)+ rand(0-1)
Y P best
+(:2><(Lg _Lp(n_l))

(30)
Lp(n): Lp(n_1)+vp(n) (31)

Where, V(N € [Myin: Vimaxd represents the velocity of individual particle

PELZ...Pat n" iteration. G and G, respectively, denote cognitive and collaborative

ability of particles called accelerations coeffiti® rand(0-1)is a randomly generated

best
0}

value between 0 and 1, represents position of particle py~"and LgeStare used to

denote the best position found so far (umfoiterations) for an individual particle and
for the whole swarm (global best), respectivelye Tdetailed procedure of the PSO is
given in Figure 8.
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4.3. OVERVIEW OF SIMULATED ANNEALING

The Simulated Algorithm (SA) belongs to class obckiastic optimization
methods that mimic nature skills as Neural Netwaaksl Genetic Algorithms in the
sense in exploring and providing optimal solutiolhsvas first proposed by Kirkpatrick
et al., (1983), inspired from thermodynamic proceksooling (annealing) of molten
metal to attain the lowest free energy state. gemeric SA, the foremost and essential
step is the generation of initial solution randomly

First, the algorithmic parameters like maximum amthimum temperature,
maximum number of iterations etc. are initializedhich is followed by the generation of

initial solution given by, = (|_ L o )T by using the formula,

011 Looses

Lo, =3 +(h-a)x H, (32)
Where,i=1, 2,..., q q is the number of variables in objective functie; andb;
are the limits in which the value of correspondiragiable lies; andl,; is the value of
i" variable at 8 iteration.

After determining the initial solution, a new sétut M, =(M_,,M ,,...,

generated in each iteration by the formula,
Mp,i:Lp’i+ax(lq—q)x I—LP ... (33)

Where, My, denotes new solution of variable atq™ iteration;, is a variable

given asr=axe” in each iteration; ands is a constant. This is followed by the
calculation of change in energy levelMs= f(M,)- f(L,), with f (M) and f (L)

corresponds to the fitness value of new and ing@ltion. If AE is negative then the
new solution is accepted for next iteration; wherdathe change in energy level is
positive then solution is accepted with probab#igy(- Ag/T) to accept the inferior
solution. The value of temperature counter is cwdusly decreasing by annealing
scheduld =aT, wherea is a constant. The above procedure is continuditl the
pre-specified minimum temperature is not achieved the best solution is given as the
output. In the above procedure, it can be experialignverified that after few iterations,

value of , becomes insignificant and thus deteriorates thpdoeation of search space.
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Figure 9clarifies the decreasing characteristics ¢ (Values adopted from Mingju

andHuanwen2004).The detailed procedure of the Genetic Algorithrngiven in Figure
10.

Value of alpha
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Figure 9 Variation in Value o (alpha) With No. of Iteratior
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Figurel10: Pseudo Code of Simulated Annealing
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4.4. PROPOSED METHODOLOGY

The proposed algorithm (Self-Guided Algorithms &n@rol (S-CAG) Approach)
is a hybrid metaheuristic which derives its govegniraits from the three aforementioned
algorithms; GA, SA, and PSO. The key idea behindmusing of these algorithms is not
only to provide a global component of search spawe also a special local search
component, which is employed to enhance the seastlits.

The seeking of a fruitful solution starts with ranad search of attaining global
maximum in a multimodal function with unknown numbe maxima rely generally
upon the stochastic search in the individual Ahtegues such as the aforementioned
algorithm; GA, SA, and PSO. However, significantiaaon among the final outputs
produced by these techniques is evident by thetgretandard deviation in the results
generated by the same algorithm with different cemdseeds. This may some time lead
to inefficacy of the random search technique bydpoing results entrapped in the local
maxima. Hence, certain measures must be incorgbiate the solution methodology
which makes it capable enough to generate resititsagceptable standard deviation. In
this paper, we propose an optimization frameworkmaesing of a set of stochastic
search algorithms. We observed following two chimdstics of the proposed
methodology:

1. Producing results with greater proximity towardshbgl optimum than the pure
algorithms under consideration.

2. Producing results with smaller standard deviation.

The computational complexity of the aforementiopedblem paves the way for
development of a search technique that efficieptgdicts and selects a better algorithm
from a given set and adequately explores the ergearch space. Schematic
representation of the algorithm flow is depictedigure 11.

In general, superiority of a search strategy igggeby its relative performance
over other metaheuristics by the principal of wintekes all (Rice, 1976). However, an
algorithm producing better results on one problestance may not guarantee to produce

similar results in all other cases.
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Figure 11: Overview of Proposed S-CAG

Therefore, any single optimization strategy may piave itself to be versatile
enough for having universal applicability in terwfsgenerating better averaged results.
Hence, the Self-Guided Algorithms and Control paaesssue of significant relevance in
current optimization technology. In view of abowensiderations, the authors propose a
Self-Guided Algorithms & Control (S-CAG) searchasagy as an adaptive method for
allocation of computational resources among a éetlgorithms to achieve a superior
performance on the underlying model. The approattbwed in this paper does not rely
upon any complex prediction model (either on problomain or on algorithm behavior)
and performs iteration wise selection of the alpons. In the proposed technique, the

metaheuristics compete among themselves for bethghlection and control.
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Given a time limit, S-CAG ranks each algorithm during runtime in dnder in

which they have to operate on the problem instahbe.time; is further broken into a

short forecast phase‘ii() and control phaseZE) such that,

Z2=7Z +Z (34)
f C

The forecast phasezp predicts which algorithm should be utilized fenraining of the

control timeZ—Zf =Z.. We represent the information flow within the r&ale

optimization based strategy as shown in the figﬂneﬁ (q +7 ) 1={1,2,3, represents an
algorithm from the predefines sd}, andZI being its corresponding rank and time for
which the algorithm runs during the forecast phaﬁejs the winner algorithm that is
predicted to perform better in the control phasdzé};lis the time for which itis run. Itis
clear from figure 11 thaZW= ZC. The winner algorithm among the three is decidgd b

the Relative Improvement FactoRlFl) calculated during the forecast phase via a real-

time algorithm selection procedure.
In order to circumvent the loss of computationgiedrout during the forecasting phase,
the results produced by one algorithm is passediicectly to the other algorithm

sequentially. Instead of computing absolute impnoest in results for each algorithm

over a common static population, a relative improgst factor RlFl) is utilized over a

dynamic population received by previous algoritfthis RIFI is defined mathematically

~n (ibsm—bsm)
0; if mZ: bsm =0

RIF = (ibﬁ - b?) (35)

: otherwise

according to,
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Here,=ibs is the best solution produced in the current itenaand® g is the
best solution over which the algorithm operatedrupgthe runtime for each algorithm is

equally distributed Zf /'n) among them during the forecast period. Duringjahzation,

the ranks have been randomly assigned to eachithlgomhich are later updated
according to the rank factdiffl (as shown in eqg. 12) such that greater the vallh'(f,o
better the corresponding rank.
hfy ={n—h (i- D} x RIf (36)
Where, n (i-1)mrepresents the rank of the algoritl“ﬁp in the previous iteration.

Any conflicts in Ffl (arising due to equality of rank factors of twornore algorithms)

are broken by randomization of ranks.
As a part of this research, GA, SA and PSO werecssd to operate sequentially
in each iteration according to their correspondiagks. Pseudo codes for these three

algorithms are presented in Appendix A-C.
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5. ILLUSTRATIVE EXAMPLES

The following two illustrative examples demonstrtte efficacy of the proposed

model.

5.1. EXAMPLE 1: CHAIR WITH 4 COMPONENTS

An exhaustive study of the design and developmeatahair is conducted in this
section. Additionally, the relevant information faning to the value of the developed
system coupled with its functional performance iplained. In this example, the
manufacturer plans to develop a few different medef a chair, each having 4
components.

The idea generation process for the design andlaf@went of the chair is
detailed in Table 2. The range of value attributestributing to the selection of the
ideas; functions, standardization, and modulaoraif the chair appear in Table 3.
Furthermore, Table 4 includes an exhaustive lisalegrnatives/mechanisms for each
function desired in the chair. Table 5 lists thelyability distribution of all four states

corresponding to each type of componept: ,, in the system testing stage. Moreover,

the utility of the components with respect to thexisting state is listed in Table 6.
Finally, Table 7 provides the numerical values lté bther parameters defined in the

nomenclature.

5.2. CNC MACHINE WITH 10 COMPONENTS

This example is similar to Example 1 in terms af abjectives and constraints,
but the product contains 10 components. The in@ta dor idea generation in this
problem has been tabulated in TabléB8.exhaustive list of alternatives/mechanisms for
each CNC function appears in Table 9. Table 18 lise probability distribution of all
four states corresponding to each type of compopgnt ,, in the system testing stage.
The functions are further categorized as fixed ariable, and their corresponding

components are listed below. The remainder of Hrable data is the same as defined in

Example 1.
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Tool/Spindle rotation, Paller support, Jatdmg, Body cover,

Coolant spray, Program control, Lighting, édaf Noise control,
Heat sink, Sealing, Tool holding, Work supportdg/Programming,
Motor power support, Chuck function, Hemamonitoring, Chip handlin

FUN =

Tool/Spindle rotation, Program control, Tbolding,
F-FUN =

Motor Power support, Chuck function, Gog/Programmin

Paller support, Job holding, Body cov€nolant spray,
V-FUN = < Lighting, Safety, Noise controHeat Sink, Sealing,
Work Support, Health monitoring, Chip handling

Bed, Spindle, Turret, Tailstock, Mot Chuck/Collect,Vice,
COM = Door, Controller screen, Sprincler, Penid&ump, Fixture,
Host computer, Axis drive, Lighting, Sod damper, Heat Sink

F-COM :{ Bed, Spindle, Turret, Tailstoddptor, Chuck/Collect, Controller scre}e

Vice, Door, Sprincler, Pendant, Pummdti computer,
V-COM =

Fixture, Axis drive, Lighting, Sound darar, Heat sinker

Table 2: Idea Generation for Sitting Chair Desigib&velopment

S. No Functions 11 4
1 Sitting + +
2 Back Supporting *
3 Stand Support + +
4 Arm support * *
5 Movement
6 Rolling *




Table 3: Range of Value Attributes

Type Attribute Range
Performance Performance metrics 20-50
Overall performance (P 0.10-0.30
Risk Risk Specification (B 0.5-0.20
Overall Risk (R) 0.5-0.30
Predicted failure iteration ¢R 0.3-0.10
Schedule Set up time (J) 0.10-0.30
Cycle time (T) 0.30-0.12
Integration time () 0.30-0.60
Dissemination time (J) 0.60-0.24
Total time () 0.13-0.450
Cost Fixed Overhead cost ({ 0.35-0.10
Variable cost (¢ 0.50-0.40
Total cost (Q 0.85-0.50
Future cost development {I 0.10-0.30
Future cost manufacture 0.50-0.10
Future cost operation {{J 0.35-0.70
Future cost Support (§ 0.70-0.30
Future cost retirement {¢ 0.10-0.25
Total future cost (§) 0.12-0.25
Form Information retained () 0.10-0.70
Time spent reformatting data gy 0.20-0.12
Fit Necessity of information () 0.20-0.80
Depth of information () 0.50-0.85
Function Complexity of Information () 1-10
Time spent handling the informationy()T 0.1-0.60
Timeliness Time before first access £J 0.20-0.10
Time before last access)l 0.5-0.15
Time accessed (#) 3-10

33



34

Table 4: Exhaustive List of Alternatives/Mechani@mEach Function of a Sitting Chair Design
& Development

Functions

Alternative Mechanism for achieving the function

(+)Sitting Metal Sheet Wooden Sheet Plastic Shee
Back Supporting St. Support Curved support IncliSegport
(+)Stand Support Single stand Triple Stand 4 aemdst

Arm support

Connected to sheet

Connected to bamhost

Movement Frictional Gear movement
Movement
Rolling Free rolling Forward rolling Locked rolling

Table 5: Characteristics of the Components

1 0.140 0.350 0.350 0.160 1.150 12 1
2 0.487 0.240 0.038 0.235 0.630 5 2
1 3 0.190 0.074 0.186 0.550 0.900 8 3
4 0.038 0.350 0.180 0.432 0.550 10 4
5 0.480 0.060 0.290 0.170 0.740 12 2
1 0.215 0.180 0.025 0.580 0.875 10 2
2 2 0.300 0.250 0.250 0.200 0.250 12 4
3 0.074 0.550 0.186 0.190 0.545 17 1
4 0.450 0.250 0.250 0.050 0.975 14 3
1 0.240 0.400 0.110 0.250 0.826 3 5
2 0.150 0.400 0.045 0.405 0.550 8 1
3 3 0.235 0.240 0.038 0.487 0.790 16 3
4 0.160 0.452 0.038 0.350 0.545 13 3
5 0.255 0.230 0.450 0.065 0.780 5 4
6 0.200 0.100 0.300 0.400 1.120 7 3
1 0.100 0.450 0.250 0.200 0.875 10 2
4 2 0.040 0.300 0.320 0.340 0.494 15 3
3 0.080 0.320 0.320 0.280 0.790 12 2
4 0.074 0.186 0.550 0.190 0.380 14 4
5 0.038 0.240 0.235 0.487 0.620 6 1
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Table 6: Utility of the system of state q

1 2 3 4

20 50 90 70

Table 7: Value of Defined Parameters

KDCs= $ 4.0
WMGC=$ 3.0
IN=7
A(t) = 0.004
COs=$ 120000
a;= 1000 Hour
KDF1s= 0.0016 Per Product value
KDF2s= 0.0080
KDF3s= 0.0012 Hour
KDF4s= 0.0070
KDFss= 0.0090
KDFes= 0.0050 Houf
WMFs= 0.0018 Per Product value
WMF,s= 0.0011
WMFss= 0.0014 Hour
WMF4s= 0.0050 $
WMFss= 0.0060 Hour
WMFss= 0.0040

x=3, y=2, z=1




Table 8: Idea Generation for CNC Design & Developtme

1 Tool/spindle  + + + + + + + + 4+ +

Rotation

3 Job Holding +  + O+ + + + + + o+ +

5 Coolant spray * * * *

*
*
*
*

7 lighting *

*
*
*
*

9 Noise Control

*
*
*
*

11 Sealing

*
*
*
*

13 Work Support

15 Chucking

+
+
N
+
+
+
+
N
+
+

*
*

17  Chip handling *

36
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Table 9: Exhaustive List of Alternatives/MechanifimEach Function of A CN®/achine

Functions Alternative Mechanism for achieving thedtion
Tool/Spindl fixed collet spindles manual quick change automatic tool change | brush
e Rotation spindles spindles types
Spindle
Pallet Hard Woodworkin Steel Cl Router | Light Stone Heavy Granite | Ceramic
support Polymer g Router Router Router Stone Router router
Router Router
Job Vice Automated Magnet Arm with cotter clamps fasteners Jigs
Holding fixture grip
Body Hard Lead plating Steel Kevlar Ceramic composite Force | Reactive
Cover polymer enclosure Proof field armor
coating
Coolant Sprinkler Pump nozzle pipe
spray
Program Pendent Controller MPG CNC Remote Lath Optical CNC
control Screen CAT controller handler Encoder | Mach3
lighting bulb tube bulb
Programmi | computer MDI Controller Cable Embedded | Smart wire | LAB view compact
ng processor Tape System DT RIO
Noise Sound Muffler Acoustic Noise Damper Lubricant
Control damper Material Collector
Heat sink Liquid Mist air Radiator Fan Exhaust Pipes Fins| Thermo
coolant cooling
Sealing EM shield Plastic Compartment Sealant PVC Gasket Jelly
coating Barrier
Tool 4 tools 5 tools 6 tools 7 tools 8 tools 9 tools 10 tools
Holding Turret Turret Turret Turret Turret Turret Turret
Work ROHM PSI LCENTL Sunwin PSI Sherline Amico Amico MT2
Support Tailstock Tailstock Tailstock 'krailstoc
Motor NEMA TB6560 Autek 4 MAKIN | LEBLOND hossen Amico DIY
support O CNC
Chucking ER-Collets Newbie Dremel Steele Bosch TECHNIKS | Sherline | Harding
e
Sensor Temperature  Thermal Mechanical
sensor Stress Senso sensor
Chip Magnet Vacuum scoop net velcro Suction cup
handling
Safety gloves goggles shoes Leather Earplug




Table 10: Characteristics Of The Components

Sub-systems/

NFRPWONPOWORRPRPRPUONWOWORPRPANWNWOPNOWROORAENDEWNPRE

N t R R R R G wi) R
Components
1 | Magnet Pallet 1 0.140 0.350 0.350 0.160 1.150 12
2 0.487 0.240 0.038 0.235 0.630 5
3 0.190 0.074 0.186 0.550 0.900 8
4 0.038 0.350 0.180 0.432 0.550 10
2 1 0.215 0.180 0.025 0.580 0.875 10
Turret 2 0.300 0.250 0.250 0.200 0.250 12
3 0.074 0.550 0.186 0.190 0.545 17
3 1 0.240 0.400 0.110 0.250 0.826 3
2 0.150 0.400 0.045 0.405 0.550 8
Motor Power —3—5535 0240 0.038 0487 0.790 16
components 4 0.160 0.452 0.038 0.350 0.545 13
5 0.255 0.230 0.450 0.065 0.780 5
6 0.200 0.100 0.300 0.400 1.120 7
4 1 0.100 0.450 0.250 0.200 0.875 10
Scoop 2 0.040 0.300 0.320 0.340 0.494 15
3 0.080 0.320 0.320 0.280 0.790 12
4 0.074 0.186 0.550 0.190 0.380 14
5 0.038 0.240 0.235 0.487 0.620 6
5 1 0.172 0.158 0.309 0.361 0.079 2
PVC 2 0.183 0.376 0.284 0.157 0.832 12
3 0.045 0.294 0.147 0.514 0.152 9
4 0.181 0.164 0.304 0.351 0.793 4
5 0.080 0.103 0.316 0.501 0.228 6
6 | Brush types 1 0.321 0.194 0.132 0.353 0.982 14
Spindle 2 0.091 0.059 0.077 0.773 0.121 13
3 0.133 0.327 0.321 0.219 0.189 13
4 0.175 0.442 0.303 0.080 0.782 8
7 | ER-Collets 1 0.131 0.420 0.360 0.089 0.560 4
2 0.583 0.123 0.091 0.203 0.726 11
3 0.709 0.078 0.187 0.026 0.673 2
4 0.447 0.149 0.168 0.236 0.124 12
5 0.100 0.076 0.241 0.583 0.480 13
6 0.212 0.249 0.289 0.250 0.254 8
8 | Leather jacket 0.075 0.029 0.401 0.495 0.57913
2 0.268 0.131 0.417 0.187 0.108 14
3 0.103 0.561 0.150 0.186 0.743 14
4 0.103 0.378 0.330 0.189 0.453 10
5 0.056 0.222 0.055 0.667 0.650 1
9 | Heavy Stone 1 0.429 0.173 0.286 0.112 0.708 8
Router 2 0.514 0.319 0.130 0.037 0.146 1
3 0.459 0.052 0.331 0.158 0.252 12
Controller 1 0.750 0.081 0.052 0.117 0.578 8
10 Screen 2 0.314 0.166 0.287 0.233 0.863 8
3 0.056 0.120 0.245 0.579 0.742 15
4 0.432 0.183 0.174 0.211 0.119 6
5 0.298 0.168 0.378 0.156 0.344 13
Nozzle 1 0.447 0.149 0.168 0.236 1.524 15
11 2 0.172 0.158 0.309 0.361 1.55 17

CD_bI\)-I>I—\-l>(.«.)l\.)0'l-l>(.«.)(;u.)l—‘*-l>
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Table 11: Optimal Values & Ideas Achieved At Regoient Engineering Stage For Sitting
Chair Family

Idea Selected 12 11

Back Supporting

Arm support Arm support

Rolling

Total Values Added 428.029
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6. RESULT AND DISCUSSION

This section outlines the results obtained by immaeting the proposed Self-
Guided Algorithm and Control Approach over Valueséd a new product development
model problem. For comparative purpose ParticlerBw@ptimization (PSO), Simulated
Annealing (SA) and Genetic Algorithm (GA) algoriterhave also been used in addition
to proposed S-CAG.

6.1. PARAMETER SETTING

The algorithms have been coded in C++ and compitedram is run on a system
specification of Dell Notebook with Intel ® Core 18-2.40GHz and 4 GB RAM. The
first step in the implementation of a search teghaito any problem is the representation
of search space and tuning the various parameterach algorithm. For the underlying
model, integer encoding in used and length of thiegis set to match the problem
requirements. For example, in system testing stdgelength of string is 12: the first
four digits represent the number of componentsr,), next four digits are used to
represent its corresponding type-(,) and the last four digits denote the existingestst
the subsystems. After extensive experimentatioasvétiue of the tuning parameters are
decided. For GA the population size, crossover aate mutation rate are set to be 20,
0.25 and 0.10 respectively. Moreover, in orderinad out optimal control parameters of
SA, number of rejected solution, temperature aeg@sstn which temperature is reduced
were inspected by varying in the range of 1 - 5) 20000 and 5 - 15, respectively.
Likewise, for PSO swarm size and acceleration cmeffts are chosen to be 10 and 2.0
respectively.

Moreover, for S-CAG,z, is the time required for each iteration of the eur

algorithm under consideration and was computed myeely during the run of each
algorithm separately under S-CAG. Therefore, eauffiesiteration of S-CAG constituted
of z, such that there were 5 runs of each pure algorithuming prediction phase.
Similarly, z, was chosen such that there were 20 runs of theewiggorithm during the

control phase. The ranks of the algorithms werialidzed randomly. In case of tuning
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parameters utilized in S-CAG for individual purga@ithms, same parameter settings

have been undertaken as reported for GA, SA and PSO

Table 12: Optimal Values & Mechanism Achieved Agiaal Design Stage For Sitting
Chair Design & Development Family
Functions Model 1 Model 2

Mechanism selected for each function

(+)Sitting Wooden sheet Plastic sheet
Back Supporting Curved Support Curved Support
(+)Stand Support Single stand
Arm support Connected to back support Connectéétl support
Rolling Locked rolling
Values Added (496+578+248+635) (734+356+498+478)
Total Values Added 1957+2066=4023

Table 13: Standardization & Customization of Valéatomponents at Physical Design stage
for CNC family

Customized Components

Standardized Components Model 1 Model 2
Curved back Support Wooden sheet Plastic Sheet
Arm Connected to back support Single type stand keédcoller
Values Added 1,05,869 + 1,13, 126
Total Values Added 2,18,995

6.2. RESULT ANALYSIS FOR EXAMPLE 1
The ideas, functions and components selected iniresgent engineering and
logical design stages are listed in tables 11 &hdr'he tables also include value adding

in the both stages. Table 13 summaries the arthite@f the product platform. It
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provides a clear picture which components to bendstadize and which to be
modularized during platform development time.

Comparative study of the proposed solution methaglol(S-CAG) and their
canonical version; PSO, SA, and GA for first ilhagtve example, sitting chair with four
components, have been provided in Table 13. ltuges value added to product at

system testing stage. The results obtained Irctse, equal priority has been given to the

each design metrics and the value!u;\lfef,wfC ,wf, andwf, are considered to be 1 for

simplicity. In this case, results obtained by tlsthperforming algorithm (S-CAG) have
also been stated in the table 14.

Figure 12 illustrates the convergence rate of smuwith the number of function
evaluations when algorithms are applied in thesitiative example. The following
inference can be drawn from Figure 12 that ingi@IA has faster convergence rate but
with the increase in number of iterations, its cengence rate becomes almost constant
whereas, S-CAG and PSO both of them initially coges with the same rate and finally
S-CAG in the long run gains the advantage of adaepdigorithm selection and yields
better solutions in both the cases. Hence, fronvalscussion it can be concluded that
S-CAG demonstrated superior results in contextomfifgutational time and convergence
rate both.

Table14: Comparative Results By Applying Differédgorithm

GA PSO SA S-CAG
4 (x) 2.52653 252323 2.51612 2.50997

U 916.13 910.903  917.121 905.689
C 26.8176 29.3608 = 28.4782 28.6294

W 917.674 1022.95  984.197 996.575

P 301 283 301 370

Components()  (3,2,21)  (1.233) (2132 (1,2,1,2)

Type(t) (4,2,6,5) (4,1,25) (41,25 (4,1,2,5)

State 4,3,2,1) (4,4,1,2) (1,1,3,2) (4,3,4,4)
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Furthermore, in order to check the scalability afif@ctiveness of the proposed
method, a comparative standard deviation grapiffateht generations for all algorithms
is plotted in Figure 13. The trend of smaller stmdddeviation of S-CAG at every
generation than the other algorithms reveals that groposed solution methodology
provides an adaptive allocation of computationaotgces between exploration and
exploitation of the search space. In addition,uports the basic theory behind the
formulation of the proposed algorithms. Hence, frdme above discussion it can be
concluded that S-CAG demonstrated both superiaulteesn the context of solution

guality and convergence rate.

Table 15: Optimal Values & Ideas Achieved At Regment Engineering Stage For

CNC Family
Model 1 Model 2
Idea Selected 14 I8
(+) Tool/spindle (+) Tool/spindle
Rotation Rotation

Pallet support
(+) Job Holding

Coolant spray

(+) Coding/
Programming

(+) Job Holding

(+) Coding/
Programming

Functions Sealing Sealing
(+) Tool Holding (+) Tool Holding
Work Support
(+) Motor Power (+) Motor Power
support support
(+) Chucking (+) Chucking
Heat sink
Chip handling Chip handling
Safety Safety
Values Added 5284.27 6721.62

Total Values Added

12005.89
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6.3. RESULT ANALYSIS FOR EXAMPLE 2

The ideas, functions and components selected inireggent engineering and
logical design stages are listed in tables 15 @dr'he tables also include value adding
in the both stages. Table 17 summaries the arthree®f the product platform. It
provides a clear picture which components to bendstadize and which to be

modularized during platform development time.

Table 16: Optimal Values & Mechanism Achieved Agical Design Stage For

CNC Family
Functions Model 1 Model 2
Mechanism selected for each function
(+) Tool/spindle Brush types Spindle Manual quick change
Rotation spindle
Pallet support Heavy Stone Router
(+) Job Holding Magnet Magnet
Body Cover
Coolant spray Nozzle
Program control ---
lighting
(+) Coding/ Controller Screen Pendent
Programming
Noise Control
Sensor
Sealing PVC PVC
(+) Tool Holding 8 tools Turret 8 tools Turret
Work Support ROHM Revolving
Tailstock
(+) Motor Power MAKINO MAKINO
support
(+) Chucking ER-Collets Bosch
Heat sink Mist air
Chip handling scoop scoop
Safety Leather jacket shoes
Values Added (448+498+324+510+491+465+ (467+678+546+432+486+
572+452+ 531+386+404) 452+
605+635+478+489+601)
Total Values 5081+5851=10,932

Added
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Table 17: Standardization & Customization of Valgatomponents at Physical
Design stage for CNC family

Customized Components

Standardized Components Model 1 Model 2
Magnet Pallet Brush types Spindle Manual quick
change spindle
Turret Heavy Stone Router Pendent
Motor Power components Nozzle Tailstock
Scoop Controller Screen Bosch
PVC ER-Collets Mist air
Leather jacket Shoes
Values Added 1,05,869 + 1,13, 126+ 1, 72, 064 4992;+ 1, 03, 426

Total Values Added 5, 93,457
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7. CONCLUSION AND FUTURE WORK

This study aimed to develop a model by which tedweine the value of a product
at the design and functional levels. The model feasulated to maximize the value of
the product while minimizing its cost, weight, aside. In this research, a four-stage
(components) problem was considered to map themefaeturing component into the
PDP. In order to tackle the underlying problem, @vet approach, Self-Guided
Algorithms & Control (S-CAG), was proposed and ismpkented successfully. The
proposed algorithm has been shown to significardlytperform many existing
optimization strategies prevalent in the literajuvéh faster convergence.

The following directions for future research arggested to interested readers: (i)
include more realistic reliability consideratiomsich as the field and service data (in the
form of survey results) into the value computati@r), evaluate the reliability of the
developed products, and (iii) apply the S-CAG siggtto optimize other computationally

complex problems.
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PAPER I

ECONOMICAL IMPACT OF RFID IMPLEMENTATION IN
REMANUFACTURING: A CHAOS-BASED INTERACTIVE ARTIFICI AL BEE
COLONY APPROACH

ABSTRACT

In the modern manufacturing arena, environmentdlessonomical concerns draw
considerable attention from both practitioners asgkarchers towards remanufacturing
practices. The success of remanufacturing firmexép on how efficiently the recovery
process is executed. Radio Frequency ldentificafiRifilD) technology holds immense
potential to enhance the recovery process. Thegem@nt of RFID technology at reverse
echelons has the advantage of having a real tinséersy with reduced inventory
shrinkage, reduced processing time, reduced labst, rocess accuracy, and other
directly measurable benefits. In spite of theseeetgd benefits, the heavy financial
investment required in implementing the RFID systera big threat for remanufacturing
companies. This paper examines the economical immpdéc RFID adoption to
remanufacturing. The aim of the research is to @mphe basic and RFID-diffused
reverse logistics model, and to quantitatively decwhether RFID implementation is
economically viable. In order to meet these obyestj we have proposed a Chaos-based
Interactive Artificial Bee Colony (CI-ABC) algorith. Numerical results from using the
CI-ABC for optimal performance are presented analyaed. Comparison between the
canonical Artificial Bee Colony and the Particle &@m Optimization reveals the
superiority of the CI-ABC for this application.
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1. INTRODUCTION

An unprecedented increase in every field of humaly dequirements has a direct
effect on the burgeoning demand for consumer gaodlse last decade. In addition, the
customer expects trouble-free use of products o&ercertain period of time.
Consequently, the manufacturers need to producerisaproducts; this expectation also
leads to scientific and technological innovatidrsst emerging manufacturing paradigms
have resulted in frequent dumping of products @utethnological obsolescence of any
components that still have a significant value. Shertening of the product’s life cycle
not only puts an extra demand of raw materials mufacture a new product but also
increases the threat to the environment as antai#ei by-product of this process. A
growing concern about environment (pollution, glolwarming and traffic congestion,
etc.) has led to a number of take-back legislatiod European Union (EU) directives
such as: End-of-Life Vehicle (ELV), Closed Substar@ycle and Waste Management
Act, and Waste Electrical and Electronic Equipm@MEEE) to collect End-Of-Life
(EOL) products and to properly dispose of the hda@as materials (Schultmann et al.,
2006; Jung and Hwang, 2011). The economical vafueQ@L products has generated
some interest in manufacturers and needs a bettellihg approach. A manufacturer can
retrieve some components from an EOL product hathegsame utility as it was in the
virgin state, at a much lower cost compared tova oee. For example, manufacturers of
toner cartridges (Xerox), single-use cameras (East{odak and Fuji Film) and
photocopiers (Fuji and Xerox), washing machines VEY, computers (IBM) and
mobile phones (ReCellular, and Greener Solutiora)ehprofited by a huge amount
through reusing durable components (Franke eR@06). Thus, various factors such as
economical, environmental, legislative, and depletf natural resources have led to the
emergence of a promising field of research termechanufacturing”.

Remanufacturing is a process of recapturing pdnsloe and proper disposal of
the hazardous components from a used product. Aroisess is performed in a cost-
effective and environmentally friendly manner fréfme point of consumption to the point
of origin of reverse logistics. There are sevetaps to be followed which can be

executed in different order or some steps couldcheve ignored, depending on the
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product type, remanufacturing volume etc. Freqyenited reverse logistics steps
reported in previous studies are termed as: cadlectsorting, inspection, cleaning,
disassembling, repairing, refurbishing, and dispgsiCharter and Gray, 2008). First,
inspection operation is performed at the collectentre to justify whether the returned
product is directly reusable or needs disassemibtingprt out its worn-out parts. At the
disassembly centre, the product is disassembledubtmssembly and further to the
individual part level. The good and moderate qualibmponents are shipped to
refurbishing centers to execute cleaning, repairmgl replacing operations on any
defective or worn out parts, whereas the unenderabkes are sent to landfills at the
disposal centre.

Quantitative studies in remanufacturing addresshe twarious existing
complexities such as; Network design (Charter anglyG2008; Lee and Dong, 2009),
product recovery and distribution planning (Jayaaanm006; Pineyro and Viera, 2010),
scheduling and shop floor management (Franke et2@D6; Stanfield et al., 2006),
inventory control (Konstantaras and Papachristf72and Pan et al., 2009), resource
allocation (Wang and Yang 2007), routing (Blan@akt 2006), and third party logistics
(Ko and Evans, 2007; Lee et al.,, 2008). In additionthese, some researchers have
highlighted issues related to uncertainty in demand return rate. Hong et al. (2006)
presents a scenario-based robust optimization md&averse Production Systems”
(RPS) that employs some electronic goods e-scragsrwncertainty. They implement
an RPS model to a case study based in Georgiaiaked|a relation between RPS
processing strategic decisions and RPS collectamistbns. Salema et al. (2006) studies
a design of reverse logistics network with uncettain demand and return, and capacity
limits. They developed a mixed integer model tohes these multi product management
issues. Uncertainty in the return rate of an EOadpct due to various environmental
factors such as law, government policies, and enwuiental protection issues is
considered in Bu and Xu (2008). They formulatedeapiration based on above factors
and have drawn a mathematical relation betweennretate and environmental factors.
Recently, Naeem et al. (2013) incorporated botlerdgnistic and stochastic model to
determine the optimal quantities that have to abieil for both inventories; recoverable

and serviceable in remanufacturing environment. yTh#eveloped a dynamic
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programming based model to minimize the total dostuding production cost, holding
cost for returns and finished goods, and backlay abeach period.

Utilisation of state-of-the-art Radio Frequency ritigcation (RFID) is
experiencing an increasing popularity in logistegstems. Addressing the forward
logistics problems, many researchers such as Peatal. (2005), Chow et al. (2006),
Nagi et al. (2007), and Pigni and Ugazio (2009) leasise the adaptation of RFID
technology at different echelons viz. manufactuproduction sites, warehouses,
distribution centres, retail stores, etc. Theseasshers have developed network models
and discussed several benefits of RFID dissemimatiainly for real time information,
stock-out reduction, process accuracy, and foeeming labour efficiency. However, the
cost associated with the RFID adaptation over thdittonal shop floor facilities has
been ignored by most of the researchers. Only a revent papers deal with the
economical impact of RFID technology on logistigeeramani et al. (2008), presents a
framework and models for assessing the value oDRFilization by tier-one suppliers to
major retailers. Their paper argues that the REWplementation is profitable on 5 upper
echelons of the supply chain in the context ofa-li&e application to Wal-Mart's top
100 suppliers. Bottani and Razzi (2008) evaluateettonomical impact of RFID tools on
three echelons of fast-moving consumer goods inupplg chain: manufacturers,
distributors, and retailers. Their assessment idenfiy analysing two different scenarios:
non-integrated and integrated, which shows thatDRd#iffusion is not profitable for all
scenarios. A cost analysis of an RFID integrateteetechelon supply chain is
investigated by Ustundag and Tanyas (2009). Theglade that the total supply chain
cost savings are increased by RFID integration.

Although resource allocation and inventory managena forward logistics
echelons are similar to the reverse one, they atrexactly the same. Recycling activities
differ from production procedure in time and manesech as quantity, category, cycle
time, stock keeping unit, and distribution pathson€equently, the remanufacturing
process requires extra care in implementing thédR&thnology than the forward supply
chain. Moreover, unlike the forward logistics whibas been adequately studied, the
reverse logistics have not been well studied far #uwitability of RFID adoption.

Researchers have recently proposed the utilizatidRFID in remanufacturing most of
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them have overlooked its cost in their mathematicatiels (Lee and Chan, 2009; Yoo
and Park, 2009; Kumar et al., 2011; Dowlatshahl,2@tc.). In order to fill this gap, this
study focuses on the design of a generic framewbik remanufacturing system which
provides a way to measure the economical impa&®FD adoption at various reverse

facility centers viz. collection, disassemblingdaefurbishing.

External | ' Forward logistics I
Suppliers ~  ___, l -
] /’ 1 “\
I \
A X

|
Manufacturer l AN Customers

Refurbishing Centre %\ Collection Centre

~— Disassembly Centre ]

e

Disposal Centre i

Figure 1: Reverse logistics network

It has already been proven that the remanufactunietyvork design problem
belong to the class of NP-hard problems (Doh are] P810; Kumar et al., 2013). Hence,
random search optimization techniques and theiants have been widely accepted as a
more efficient optimization tool over conventionahumeration based optimization
techniques; such as genetic algorithm (GA), aréifiemmune system (AIS), particle
swarm optimization (PSO), and their variants (Clearal., 2011; Kumar et al., 2009;
Yadav et al., 2008; etc.). In addition, ArtificiBlee Colony (ABC) meta-heuristic has
gained adequate favour in this area of researechdent past (Lazzus, 2013; Tsai et al.,
2009; Prakash et al., 2008; Kumar et al., 2004e8oanpour et al., 2003; etc.). Inspired

by successful applications of ABC, in this papemeav variant of the Artificial Bee
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Colony algorithm (ABC) called the Chaos-based butéve Artificial Bee Colony (ClI-

ABC) Algorithm is used to handle a realisticallgesl remanufacturing problem. The
proposed CI-ABC assimilates the attributes of deatstems by introducing stochastic
and ergodic properties in searching for the optianatear optimal solution. Moreover, a
new primitive component is combined to update th&tpn of component for enhancing
the interaction between employed and unemployeds.b&he computational results
indicate that the proposed CI-ABC outperforms thenanical ABC and PSO

metaheuristics.

1.1. ORGANISATION OF THE PAPER

The rest of this paper is organized as followssdntion 2, modeling of a suitable
objective function for a reverse logistics probldhat includes the RFID cost is
discussed. Section 3 presents the steps involveaptementing the CI-ABC over the
illustrative examples which are discussed in sactth The results obtained by
implementing the aforementioned algorithms areudised in detail in section 5. Finally,
section 6 provides the conclusions from the studg provides directions for further

research.
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2. THE MODEL DEVELOPMENT

This section develops a model to systematicallymena the impact of RFID
technology on reverse logistics cost factors. lis tkense, a general and an RFID-
integrated reverse logistics model are illustratetthe subsequent sub-sections.

2.1. REVERSE LOGISTICS MODEL

Figure 1 depicts a generic reverse logistics nékvadrthe system under study.
This system starts with returned products includt@_ products from customers. First,
the returned products are collected at a colleatEmre where they are sorted. Reusable
products are sent back to the manufacturer aferdljuired treatment and the rest of
them are transported to the disassembly centréhedtisassembly centre, the product is
disassembled to subassembly and further to theithdil part level. The components of
good and moderate quality are shipped to refunbgsbéenters for cleaning, repairing, and
replacing any defective or worn parts. The uneablgrones are sent to a land fill at the
disposal centre. At all three echelons (collectdisassembly, and refurbishing centers),
the product/parts are processed through two wasshpuocesses: inbound moves and
outbound moves. The inbound moves include unloadmegeiving, and put-away
operations during the receiving of the returneddpots, while outbound moves consist
of two operations: picking and loading when theduas are shipped to next the echelon.
Table 1 summarizes the warehouse operations coadidethis study.

Table 1: Main Warehouse Operations

Movement type Operations
Inbound Moves Unloading Receiving Put-Away

Outbound Moves Picking Loading




58

In this study, the manufacturer produces a certamber of products in a certain
time period by assembling the virgin and used pettgch are in good condition to
remanufacture. Virgin parts are purchased fromragtesuppliers while used parts are
acquired by disassembling and retrieving the vd@glarts from EOL products. Thus,
the model is aimed at determining the optimal ravof the used parts in an economical
way. In order to articulate this concept into mathécal terms, an objective function (J)
is formulated below, followed by a list of all mddgarameters and decision variables

used in this research, which is shown in the nohatine.

2.1.1. Objective Function. The objective function, J, is formulated as follows

Min (J) = Min (Jeost + Jtime) (37)
In equation (37), the operation cods§) is defined as:
T A T P T P
> D PCES,. Ny+> > rS,.CG+> > RRB. r§. OCR
t:lTa:1P t=1 p= l t=1 p=1
+>.> (0CD,.NDP, )+ZZ(DC NHat)+ZZ(ocg NR,)
"]Cost — t;l p;l T t:P a=1 t 1 a=1
£33 (sCC,.VvG,)+ > D (sch. vq,t)+22( SCR VR
I_Fl p;l t?rl p;l t= 1 a—
+D 3 (1-VCy)ICC+ Y > (1-VDy) ICD+Z Z (1I- VR, ) ICR
t=1 p=1 t=1 p=1 t=1a=1
(38)

This equation reflects the total manufacturing dbsit consists of the cost of
virgin product and the cost incurred in retrievipgtential product/parts from EOL
products. The first term shows the cost associatiéitl the purchase of virgin parts to
fulfill the customer demand in a time period; thec@nd term considers the cost of
collecting the end-of-use product from the finaénss The collection cost of a product
depends on its type and geographical region fronctwit was collected and aggregated
on return rate ‘r of EOL. The third term stands tbe cost charged for cleaning or
repairing operations of all directly reusable proadusorted out at the collection centre.

The next three terms consider operating costs ef disassembly, disposal, and



59

refurbishing centers respectively. The operatioke landfill of uneconomical and

hazardous parts at a disposal centre, breakingiofsjto recover reusable parts at a
disassembly centre, and repainting of potentialspair a refurbishing centre correspond
to operation costs. The seventh, eighth, and rietins represent the set-up costs of
collection, disassembly, and refurbishing echeldi® last three terms indicate the idle

cost of reverse facilities.

The second term in (L)imerepresents the operational time cost and is defased

E T PA (UT, | NU)+H(RT, | - NR)+( AT . N&)
B a pa
tlme Z ; Z {+(LT va NLg; )+( P-?e da NAY) ) } (39)

&=l t=1 p,a-1

This term counts the time involved in warehouserafpens viz. inbound moves
(Unloading, Receiving, and Put-away) and outbouraves (Picking and Loading) at
echelons; collection, disassembly, and refurbishiegters. Note that the length of
operational time depends on the number of itemdyréar movement between the two

consecutive centers.

2.1.2. Normalization for Assimilation. Since the time and cost functions cannot
be added directly, they are normalized in the rgfgé]. The motive of normalization is
to make them compatible with each other and to fate a comprehensive objective

functionJ. The normalized functions fdk.s: andJimecan be defined as:

J .—LB
N _ Jco — cost co$ 40
¥ UBcost - LBcoss (40)
J = tlme LBtlme 41
—me Umae tlme (1)
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Where, LBcost and LBysime are the lower bounds &f,s; and Jime respectively, and

UBcostandUBiime, are the upper bounds.

Based on the normalized objective of cost and tinsereformulated as:

J = N_‘Jcost'WC+ N_ ‘Jtime' W (42)

W =Priority weight associated with cost objective.

W= Priority weight associated with time objective.

The weight priorities associated with integratedeotives are given by crisp
values which are assessed by decision’s maker lmaseelative importance of cost and

time objectives. In case of more priority assigbedost objective/{l is always greater

thanVW and vice versa.

2.1.3. Constraints. The total number of parts of type ‘a’ obtainedenft
disassembling the products at a disassembly cahtmme period ‘t’ depends on the Bill-

Of-Materials (BOM) of the products type, is repregel by equation 43.

P
DR, =NDP,.> BOM_; Vanp!
p=1 (43)

The total disassembled parts of type ‘a’ at timaque't’ are further sorted into

disposal and refurbished parts at the disassendlye; is represented by equation 44.

DP, = NH_ + NR, V at s

The maximum inventory level of product can be edqaahe upper capacity limit

of the collection centre. Thus the sum of total bemof sorted for disassembling and
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direct reusable purpose is equal to the processipgcity of collection centre of product
type ‘p’ at time period ‘t’.
NDPpt+ RF;.r.Sptz PCC;; VP (45)
The maximum inventory level of product can be edqaahe upper capacity limit
of the disassembly centre:
NDPR, = PCDp; Vp,t J46
The maximum inventory level of parts of type ‘a’teme-period ‘t’ can be equal
to the upper capacity limit of the refurbishing tren

NR,= PCR; V a1 (47)

The numbers of product ‘p’/part ‘a’ received at eloim ‘e’ in time period ‘t’ have
to be satisfy set-up constraint of different echsloHere,M is a large predetermined

positive number.

NR, < MVR; Va (48)
NDF’pt < M.VDpt; v p,t (49)
RR.L.S, < MVG; Vp (50)

A parameter referring to the lower bond of dispastéé of part type ‘a’ is set to
DRa in time period ‘t’ that instruct that a fraatiof disassembled parts are assumed to be

hazardous for that time period ‘t". Thus, for thioke time horizon it is expressed as:

.
> NH,<DR,> DP,; Vat
t=1

TM—|
-

(51)

Non-negativity and binary constraints are represgbrity equation 52 and 53

respectively:
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S, DR,, DR,, NDPR,, NR, NR> 0V a p (52)

VR, VD t,VCpte{O,l}; Vaop (53)

P

Table 2: Benefits from Implementing RFID Technology

Inbound Moves

Benefits
Unloading e  Reduction in waiting time before unloading
o Increased visibility of incoming product
e Real time monitoring and control
e  Automated services
Receiving . Pallet labels cost

. Manpower cost for labeling of pallets
. Manpower cost for checking of received pallets apdating
the information to control room
o Manpower cost for amending data errors
Put Away o Manpower cost for paper works
e  Cost of shrinkage; misplacement, spoilage, shapdjftand
organized shop floor crime
e  Manpower cost for general and replacement invercounts
o Manpower cost to identify pallets and locations apdate
the information to control room.
Outbound Moves
Optimal picking routes
Reduction in bin location exception management
Cost of pallets labels
Manpower cost for amending data errors
Manpower cost to identify pallets and locations apdate
the information to control room.
Cost of shrinkage of picking inventory
Improvement in loading time
Reduction in waiting time before loading
Increased data accuracy and reduction of errozeunting

Picking and
Sorting

Loading
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2.2. RFID INTEGRATED REVERSE LOGISTICS MODEL

RFID system is a wireless technology which enablgs-identification (auto-ID)
and traceability of items by transmitting radio wawetween an RFID tag and a reader.
A tag, which contains a microchip that stores tlaadis attached on objects and
broadcasts part data such as: manufacturing sibeluption lot, date of manufacture,
expiry date, product and component type, etc. Hagler receives this information and
converts it into digital data to a computer systéihe capability to obtain real-time
information about the location and properties ajged objects influenced various
industries to deploy the RFID tool for enhancing tkfficiency of their logistics
processes. A large number of forward logistics @laysuch as Wal-Mart, The U.S.
Defense Department, Metro groups, and Tesco utRE¢D technology and are high
profit examples. In reverse logistics, the adaptabf RFID has not been studied much;
however, there is significant opportunity in the wd this process to improve operational
efficiencies which is being considered in this stuthe diffusion of RFID technology at
reverse echelons (collection, disassembly, andrbisting centers) enables increased
inbound and outbound operational efficiency throughto-counting and precise
instructions. The information and physical flowtbé EOL items are presented in figure
1. Moreover, Table 2 summarizes advantages of dD Bystem in warehouse operations
over traditional processes.

Based on the information provided in Table 2 thst@nd time objective for the
RFID

RFID adopted reverse logistics monILD and J, "™ is defined as:

me

C D R
OoBJ + SP + SEFID + SFEFID

cost RFID
RFID T
t : -
o +Tagcost Z Z (r. Spt+(1_ RI% ).« %t Z Dg’t ) (55)
t=1 \ p=1 a=1

Here, cost factorSIch,D : S%E;,D, and SF;RFID are the RFID set-up costs at collection,

disassembly, and refurbishing centers respectivekcluding tag cost (8%« ), the



64

RFID set-up cost associates all hardware and sodtwasts defined in Section 4. The
model equally imposes the RFID set-up cost toTaltime scenarios. The last term of the
equation represents the cost involved in pastingDR&gs onto all optimally assigned
products at collection centers and to the partdisassembly centers after being
disassembled. The RFID tagging is not requirechatrefurbishing centre as they were

already tagged at disassembly centre.

RFID E T , . , . .
‘]time = Zz ((UTe,p/a'NUet)+( R-Izana' NBt)+( A-I';Iba' Né‘)—i_( L-glbé N!?)-F( P-’I’;/P'a N‘H) (56)

The ;™" equation calibrates time involved in inboumdl autbound moves of

time

warehouse operations. The expressions used iniBguy&aé) are described below.

UT =UT -(1-EUT,). VYacer (57)
Rtﬂa: RT -(1- ERJ,.), V ae (58)
AT =AT -(-EAl,); VY ae (59)
LT =LT -@-BT,) Vvae] (60)
PT =PT -(-FFL,);. Vae (61)

Again, in order to formulate a compatible overalijextive function, QRF'D),

RFID RFID . .
J andJ,, are normalized in the range of O to 1.

cost

UB, . — LB

cost cos

N
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N geeo _ JoP - LBEP 63
— Ytime
UBY - LBIY

RFID RFID FID RFID RFID
where LBY.” and LB are the lower bounds of, and 3. , and UB,

time 1

andUB" are the upper bounds.

Thus, the aim of this research is to

RFID

Min (3°°) (64)

where JRFID JRFID V\gFID_i_ N J?FID NHD

V\gF'D:Priority factor associated with cost objective.

V\fﬂD: Priority factor associated with time objective.

2.2.1. Constraints. Apart from Constrains 7 to 17, a non-negativitpstoaint 65

which cannot exceed the value of one numericalasmuimed in this study. That is,

EUT, ;» ERT ;4 EAT,4 ELT,» EPT,€[01; vV ae (65)
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3. SOLUTION METHODOLOGY

The determination of an optimal solution in theae logistics problems is a
computationally complex process since it requirast\exploration and exploitation of
search space. Since this problem is NP-hard, @atifintelligence-based random search
techniques have gained favor in this area of rekeéim et al., 2008). Inspired by
successful applications of the Artificial Bee Cofometa-heuristic over a closed loop
logistics model by Kumar et al. (2010), an improwession of Artificial Bee Colony
(ABC) algorithm, known as Chaos-based Interactivéfidial Bee Colony (CI-ABC)
algorithm, is used in this study. The following sabtions present the proposed

methodology in brief.

3.1. AN OVERVIEW OF ARTIFICIAL BEE COLONY
The ABC algorithm is a recently developed (Karahdf#5) swarm intelligence
technique based on the natural food searching bmha¥ bees. In a D-dimensional

search space, each soluti@y)is represented as;

Sxy :{ le’ $<2’ e %D} (66)

Here, x = 1,..., SP is the index for solutions ofopyation and y =1,.., D is the
optimization parameters index.

The probability value which is based on the indial$’ fitness value to
summation of fitness values of all food sources dadides whether a particular food

source has potential to get status of a new foadceds determined as;

P, = f, 1> f, (67)
Where, f; and Py are the fitness and probability of the food soufgé
respectively.
After sharing the nectar information between thistexg onlookers and employed
bees, in case of higher fithess than that of tleeipus one, the position of the new food

source is calculated as following:
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Vyn+1) =S, (N+[p,x(S,( n- S NI (68)

where z =1, 2,.., SP arandomly selected index and has to be differentix.

S,(N is the food source position a™ iteration, whereasV, (N+1)is its modified
position in (n+1‘$1 iteration. @, is a random number in the range 1, 1]. The

parameterSQ/is set to meet the acceptable value and is modifs

S,y = Smin + 1an(0,1)( S, - Sin) (69)

Xy

In this equation, §,,andS);, are the maximum and minimun™ parameter

values.

Although the employed and scout bees nicely ex@od explore the solutic
space, the original design of the onlooker bee’'sament only considers the relati
between the employed bee food souwhich is decided by the roulette wheel selec
and a food source having been selected ranc (Tsaiet al.,2009. This consideratio
reduces the exploration capacity and thus inducesg@ture convergence. In additi
the position updating factor utiliza random number generator which shows a tend

to generate higher order bit more random tha lower order bifKumaret al.,2010).

Yalue of chaotic varible -

1 1 1 1
o 50 100 150 200 250 300
Murmber of iteration --=

Figure 2: Logistic mapping
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3.2. CHAOS-BASED INTERACTIVE ARTIFICIAL BEE COLONY LGORI THM

In order to avoid the aforesaid shortcomings arttheoe the searching capacity
of the canonical form of the ABC, a new variantledlthe Chaos-based Interactive
Artificial Bee Colony (CI-ABC) algorithm, has beeproposed. This algorithm is
described next.

3.2.1. Basic of Chaotic SystemsA non-linear system is said to be chaotic if its
evolution is very sensitive to the initial condii®and has an infinite number of different
periodic responses (Yuan et al., 2002). The altditgenerate unbiased random numbers
increases the use of chaotic sequences over randarber generators in recent years.
There are considerable numbers of chaotic opergimssessing ergodic and stochastic
properties and are reported in literature (Luo 8hén, 2000; Yang and Chen, 2002). In
this paper, a “Logistics” (Parker and Chua, 198%atic system is used to replace the

random function in the equation (70), which is fatated as:

C1=4G1-Gy; €0, 1); n=1,..,N (70)

where C,, is the value of the chaotic variable &t iteration andl is the

bifurcation parameter of the system. Figure 2 shinehaotic graph of the logistic map.
This graph has been plotted for 300 iterations wiifial values of G=0.01 andi = 4.
3.2.2. Proposed CI-ABC. In order to enhance the exploration capacity of
foraging bees, the equation for updating new pmsi¢equation 68) has been modified by
adding a new factor which incorporates more pedtiob on the food source positi&y.

The concepts can be mathematically represented as;

Voy(n+D) =S (N+[Cx( L - M+ & F)a I (71

where G e[-1, 1] stands for the chaotic value obtained frequation (70) at'h
iteration. we {1,...,W},
where G e[-1, 1] stands for the chaotic value obtained frequation (70) ath

iteration. we {1,...,W}, an index refers to the bleaving the largest nectar amount. It is
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the best global position found by any employed $@éar. The indexv may be tox or z,
depending on whether the or z index referred bees achieved best position in the
population.

The newly added term brings diversification in #earch and facilitates each bee
to interact with a higher number of neighborhooMsother advantage of this term is to
help get better convergence toward the goal ob#es. For easy comprehension, a flow
chat of the proposed algorithm (CI-ABC) has beegitbsl in Figure 3.



70

[ Randomly generate solution space (a set of footcedacation) ]

iter =1

A 4
Evaluate the fitness value (Nectar amount

A 4

Il

v
[ Produce new solutions from neighborhoods searginesious iteration]

v

Evaluate probability value of each food source &tigm 30)

A
Produce new Solution space by adoption the Sefeptiocess of higher

A 4
Compute chaotic system (eqn. 33)

v

New solution for Onlooker bees

v

[ Update position (eqgn. Bﬂ)

False
Is

termination

iter = iter+1

[Eﬁd]

Figure 3: Flowchart of the proposed CI-ABC alganth
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4. ILLUSTRATIVE EXAMPLES

This section presents a numerical example to ctiexlefficacy and scalability of
the proposed algorithm. The dimension of the tases has been varied irregularly with a
view to show flexibility in an underlying model. &tplanning horizon for demand and
supply of products considered is taken in six tpedaods (T=6). Table 3 summarizes the
numbers of product that are to be manufacturedrdoupto their own production plan
under 6 time periods. The test beds conceived im ghper have to manufacture 8
different numbers of product-types. Table 4 show@-Material (BOM) of each
product by which part-types are assembled to aymtodhe BOM can have a maximum
of 9 different part-types for each individual pratiu

The unit purchasing cost from external suppliesetsto be 20, 25, 22, 32, 25, 33,
68, 25, and 35 dollars for part-type 1 to 9 regpelt. Furthermore, the idle costs of the
echelons; collection, disassembly, and refurbisluegters are fixed at 2900, 2500, and
2700 dollars respectively.

The return rater’ is limited by the environmental factors which leaa maximum
of 0.90 for any scenario. The test case set anrdpgetion of EOL products going to be
directly reusable is 0.2DR,= 0.25; v p’) and the lower bound for the disposal rate for
all part types in each time period is 0.FR{= 0.30; v P’). The set-up costs for each
product/Part-type are set as: collection cenB€G=%$0.2; v 1), disassembly centre
(SCDH=%$0.4; v 1), and refurbishing centreSCR=%$0.25; v &). Furthermore, the
upper limit of product-types and part-types to perated at three centers is listed in table
5. Table 6 summarizes the operating costs on thekelons. Owing to integrity with
time objectives of the paper, the parameters mklegemplementing RFID at different
reverse logistics echelons are outlined in TablEhé costs of RFID adoption encompass
hardware and software costs. For the RFID-hardwataip, different technical devices
such as tags, RFID mobile reader, shock-proof dimglgates, and RFID printer are
taken into account. Unitary costs have been derik@u Bottani and Rizzi (2008) and
are listed in Table 8. The proposed procedure esl irs conjunction with the above data

on different cases.
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The next section describes the numerical resubts fthe proposed CI-ABC on

the reverse logistics problems.

Table 3: Manufacturing Plan of Product in Differ&tenarios

p=1  p=2 p=3 p=4 p=5 p=6  p=7  p=8

t=1 13759 13823 16702 12271 8721 13023 3289 9917
t=2 14562 12026 11011 16388 11902 10060 8871 8794
t=3 8401 5988 9429 9832 9862 4821 14024 14290
t=4 12452 14200 7793 11012 2291 6428 11191 12375
t=5 9372 13063 10503 2310 13027 5826 7728 9943
t=6 10067 8823 12985 8621 14738 12221 7998 10727
Table 4: BOM; Number of Part-Types for Assembling
p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8

=1 5 1 10 4 5 3 6 3
a=2 6 0 0 6 3 9 6 6
a=3 1 10 0 2 4 5 3 7
a=4 4 2 9 8 9 8 8 2

=5 6 8 9 10 7 8 10 7
a=6 9 8 4 1 3 2 7 8
a=7 2 6 8 6 6 9 2 9

=8 0 9 9 2 0 7 6 3

=9 7 3 0 6 8 4 6 8
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Table 5: Processing Capacity of Reverse Echelons

Product- 1 2 3 4 5 (§] 7 8

type()/Part-

type @)

Collection 15000 15000 15000 15000 15000 15000 15000 15000
Centre PCG))

Disassembly 10000 8500 9000 7000 7500 7500 8000 8000
Centre PCD,)

Refurbishing 195000 178000 169000 177000 187000 157500 1050000000 181000
Centre PCR)

Table 6: Operating Costs of Product-Types and Pgres at Reverse Echelons (in $)
Product-typgf)/Part-type 1 2

(a)

Collection costCC,) 7 7 11 8 6 3 5 7
Cleaning OCR,) 30 15 15 35 4515 1.2 25
Disassembling@CDy) 20 05 075 15 1.8 22 3.2 0.75
Refurbishing OCR,) 14 075 03 07509 12 25 18 0.75

Table 7: Inbound and Outbound Moves Time for Prodnd Part-Types (in Min.)

Unloading UTepa) Retrieving Put-away Loading Picking

Processing 2.2 1.5 1.8 25 1.75
time
Percentage efficiency increment after adopting RFID
EUTe,p/a El:\’Te,p/a EATe,p/a EI-Te,p/a EI:)Te,p/a
% increment 0.75 0.75 0.50 0.85 0.65

Table 8: Costs of RFID Equipment (1€=1.3%)

Hardware and software equipment Costs (€)

RFID tag (€/tag) 0.15
label (€/1abel) 0.035
Printer of logistics (€/time period) 400.00
RFID reader (€/time period) 300.00
RFID gate (€/time period) 425.00
Equipments of a RFID truck (€/time period) 800.00
Software and implementation projects (€/time 30,000.00
period)
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5. RESULTS AND DISCUSSION

This section is devoted to report and analyze ffexteof different values of CI-
ABC approach parameters on its performance. Inrordecheck the efficacy of the
proposed algorithm, canonical ABC and PSO algoritlame also tested on the illustrative
example. The algorithms have been coded in C++exeduted on an Intel® core™ i5
CPUM @ 2.4 GHz and 4GB of RAM.

5.1. PARAMETERS SETTINGS

Extensive experimental tests were carried out éotke effect of different values
of the parameters on the performance of all thigerithms. The population size has
been varied in the range of 10-100 in steps ofahd, it was observed that the CI-ABC
algorithm obtains best results with a populatiaresof 70. It was also observed that
although lesser population size reduces the cortipoéd time, it fails to achieve an
optimal solution, and vice versa, in the case dajhér population size. Thus, the
population size of 60 was facilitated to obtain i@l solutions in a reasonable
computational time. Similarly, the parameters vatlouat assisted in finding optimal or
near optimal solutions in case of PSO, and ABCpagsented in Table 9.

For the evaluation of the objective function, expents have been performed for
50 runs, and the lower and upper bounds of setamu$ttime objectives are calculated.
Since the operation time changes with varied irggn of RFID technology to reverse
logistics, the cost and time limits for each casmes out to be different, as shown in
table 10.

Table 9: Optimal Tuning Parameters

Parameters PSO ABC CI-ABC
Random number [0, 1] [-1,1] Logistics systen
generator
Size of solution space 40 60 60
Acceleration coefficients 2.0 - -
Chaotic parameter{ ) - 3.0 3.0
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Table 10: Lower and Upper Bounds of Cost and TirbgQives

UB,., 2.89*10° LB, 7.83*10°
UB,. 1.07*10 LBme 8.41*10
UBRFP 6.98*107 LBRFP 5.19*10"
UBRFIP 4.48*1¢f | BRFIP 9.12*1¢

time time

5.2. THE ENCODING SCHEMA

Integer coding is followed for the string represgioin so that each echelon and
external supplies centre is assigned the value ohigue positive integer. A set of
solution candidates equal to the number of the eyepl bees are generated. Each string
segment denotes an individual reverse facility men{collection, disassembly,
refurbishing, and disposal) and external supplierorder to assign the value of return
rate in different scenarios, a separate strin@liswed which comprises integer values.
For example, in the following 5-tuple string repetation, <213; 189; 985; 24; 94>,
integers represents the number of products/padigreed to collection, disassembly,

refurbishing, disposal, and external supplier eeirtra certain time period respectively.
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Figure 4: Solution Convergence Rate
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5.3. PERFORMANCE COMPARISON

The proposed algorithm has been applied to thstilitive example underlined in
the previous section. Equal priority has been agsigo both time and cost objectives.
First, the results obtained from the basic revérgestics model (equation 42) are given
in Table 11. Also, for an easy appraisal, normaliyues of time N_Jime) and cost
(N_Jos) have been outlined in Table 11. On the basib®tésults marked in Table 11, it
is evident that, although CI-ABC produced the sajuantitative results as ABC and
PSO, it significantly outperforms the both when pamed in terms of computational time
and the number of function evaluation. In frontl®" function evaluation for the ClI-
ABC, PSO terminates at 388 Figure 4 illustrates the convergence rate ofitamh with
the number of function evaluations when algorithare applied in the illustrated
example. The following inference can be drawn frieigure 4: CI-ABC has the fastest
convergence rate. However, PSO terminates betier @-ABC in the middle, but with
the increase in number of iterations, its convetgerate becomes almost constant.Cl-
ABC and ABC both initially converge with the sanaea, and CI-ABC, in the long run,
yields better solutions over others.

Table 11: Results on Reverse Logistics Model

PSO ABC CI-ABC
Objective function value ( J) 0.7275 0.7275 0.7275
Normalized Cost ( N _J_,) 0.4013 0.3822 0.3778
Normalized Time ( N _ J;..) 0.3262 0.3253 0.3507

Table 12: The Number of Product to Go to Direct $&u

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8
972 | 1238 | 1337 | 627 126 | 1526 | 1521 | 1087
1091 | 1224 | 1421 771 273 142 1471 1201
1273 | 1379 | 1554 | 509 93 979 | 1009 | 997
928 1127 | 1328 512 145 1437 1406 1213
975 | 1325 | 1378 | 476 76 1584 | 1213 | 1203
1013 | 1243 | 1287 518 205 1174 1313 1078

:—rc-rel-lrc-rrrc-r
NUI| D |WIN |-
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In the process of getting the optimal objectiveuealthe assigned numbers of
parts/products to reverse facility centers areedish Tables 12-14. Table 12 represents
the reusable product to go to the manufacturerctiyreafter minor cleaning operation.
Table 13 summarizes the product quantities neededigassemble for sorting into
recoverable and disposable parts. Furthermoreresteof the required parts purchased

from external suppliers to fulfill the customer’'erdands are listed in Table 14.

Table 13:The Number of Disassembled Product

p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8
t=1 | 6224 | 8031 | 1016 | 6127 | 5221 | 7117 | 1101 | 6124
t=2 | 7079 | 8500 | 7723| 6724 7334 6101 4017 5778
t=3 | 5441 | 7023 | 5747 | 5981 | 5281 | 2814 | 4121 | 6908
t=4 | 8108 | 6092 | 5391| 6123 1019 3421 3789 7001
t=5 | 7719 | 8500 | 5378 | 1223 | 7493 | 3871 | 2121 | 6193
t=6 | 6873 | 7179 | 7273| 5211 7197 6884 2298 6276

Table 14: The Number of Parts to be Purchased from External Supplies

a=1 a=2 a=3 a=4 a=5 a=6 a=7|a=8 | a=9
t=1 12223 | 10270 7521 6541 4215 4216 16®13| 1267
t=2 13107 | 11177 | 8795 | 5719 |5073 |5217 |219|4271|1547
t=3 9287 9271 6281 5929 4587 4791 3 59718987
t=4 10018 | 8439 |6547 |5786 [4991 6289 |0 4774|678
t=5 9129 88271 | 5489 6020 5298 5665 18 17990
t=6 1174 | 7541 |5545 |5627 |5303 |5217 |21 |2191(1103

5.4. IMPACT OF RFID TECHNOLOGY

In order to analyze the impact of RFID diffusionr@verse echelons, the proposed
algorithm is implemented on the RFID integratederse logistics model (equation 64).
In contrast to the objective value (0.7275) of thesic reverse logistics model, the

minimal objective value is evaluated by the CI-ABE 0.7859. The figure reveals that
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the RFID-enabled scenario is uneconomical undegien data in Section 4. The result,
however, reflects improvement in operational tinerfgrmance by reducing the time
objective by 53.3 %; it increases the overall aigéctive by 34.6%. The “hiking in cost”
objective is primarily due to huge investments aftware and hardware equipment at
different echelons of reverse logistics. Consedygtite cost of RFID tags put heavy
economical load in tagging the returned parts/pcadit can be concluded that,
€0.15/unit tag is still too high to enable the d#iion of RFID in reverse logistics.
Nevertheless, such costs are widely compensatedinby saving in inbound and
outbound moves. The benefit of time saving in uding, receiving, put-away, picking,
and loading operations are achieved from a dransdtartening of time required to

perform replenishment cycle and inventory counts.
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Figure 5: Sensitivity Analysis of the RFID-Equipnt&n
The above finding of RFID-based reverse logisticslel depended on a number
of parameters that we assumed to be constant iilltiserative example. However, in
corporate reality, the different quality of RFIDrbevare and software that is utilized,
significantly affects the installation cost of RFtEBchnology in reverse logistics. For this
reason, sensitivity analysis is performed for RR¢Quipments, capacity of reverse
echelons, and the parameter related to chaotiagieme
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5.4.1. RFID Equipment Costs.It can be examined from the objective values of
basic reverse logistics model and RFID-based reviagistics model, that the latter is
uneconomical due to the high cost of adoption oR&D project. At present, the cost of
RFID implementation comprises the major investmertardware, application software,
middleware, tags, and the cost of integrating tié¢DRsystem with the legacy systems.
Tag costs represent a major cost factor as theg tabe supplied in high quantities. In
market, the costs of these tags vary significawtiych refer bulk or small orders of tags
purchased. As the research aim is to utilize higiangties of tags at collection,
disassembly, and refurbishing centers, an analygisrformed by varying the investment
cost of all hardware and software defined in Tabfer the successful diffusion of RFID
technology. Since the tags are utilized in highnggas, we investigate the impact of
RFID equipment at two different stages. Firstlycleding the tags, Figure 5 gives the
sensitivity of all hardware and software costs bjective value. Furthermore, the impact

of RFID tags is depicted in Figure 6.
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Figure 6: Sensitivity Analysis of the RFID-Tags
As expected, Figures 5 and 6 shows that the piigereciation of RFID
hardware and software creates great influence anamafacturing. Though the
implementation of RFID technology is uneconomidapiesent equipment prices, it will
create a favorable environment for remanufacturetbe near future. It is easily noticed

from the figures that a 55 % decrement tag’'s paicd a 25% decrement in other RFID
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equipment, produce same the objective of the besierse logistics model. In this
scenario, the hike in objective value arises dueRED-equipment costs is easily

compensated by the operational time reduced afD fhstallation.
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Figure 7: Sensitivity Analysis of the Reverse Eohnel Capacity
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5.4.2. Capacity of Reverse EchelonsThe successful implementation of any
new technology relies on how effectively it is i@d by the system on which it is
applied. In this research, the adoption of RFID lbesn proposed at reverse echelons that
encompass RFID equipment, such as tags, readerd, dnd mobile devices, and related
software. As mentioned above, the RFID tags onlyabée parameter is a quantity that
depends on the optimal assignment of parts/prododise echelons. Thus, the capacity
of reverse echelons is an important influentiatdam the proposed model.

In order to investigate the effect of operatiorabacity over solution quality, the
upper capacity limit of three echelons viz. coliect disassembly, and refurbishing
centers varies by an even percentage amount. $h# hexs been drawn in Figure 7.

From Figures 7, it is analyzed that the objectivdug decreases with the
increscent in capacity up to a certain level. Abtivs level the value became constant
and the manufacturer is not getting any additiqmalfit for extension of the centers.
Such a result reveals that RFID implementatiorai®fable at the centers having a very
high capacity limit. In this case, only RFID tagst @dditional costs, while the other
equipment costs are the same for the echelonsdnéoxrer operational capacity.

5.5. EFFORT ANALYSIS FOR RFID ADOPTION

The variation in demand of a new product and thermeng of a used one are
considered on seasonal basis in six time-horizér$), The duration of an individual
time period can be assumed in an hour, day, or iImdepending on the flow of the
products. However, the maximum limit of operatirrggucts on the reverse echelons is
not only controlled by such consideration, but digathe capacity of the corresponding
echelon. A centre can only allow the maximum nundfgeroducts to be operated which
is minimum from the maximum capacity limit and maxim flow of EOL products in a
time period.

As the underlying model consists of cost and tinigectives for different
activities, a trade-off analysis of both is difficto execute with the constraints discussed
above. In order to examine a correlation, the itmgnlevel defined in the equations 45,
46, and 47 are eliminated from the model. Moreotlez,time periods are considered as

order numbers (T=1 is order number 1 and so onhaiothe product-types/ parts-type of
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any order can be operated just after the previoes ©he result shows that the saving in
time for in-bound and out-bound moves is 15.6%3%§) 17.2%, 11.3%, 21.7%, and
15.3% for order numbers 1 to 6 respectively. Sirhyijathe extra burden on cost
objectives are 8.6%, 7.7%, 8.1%, 11.3%, 6.8%, adélo8 A correlation that can be set
from here is that the adoption of RFID technologconomically viable in the long run
for remanufacturers. Since there is no inventanytlat the echelons, a sufficient number
of refurbished products/parts are ready for re-atséow cost, which will reduce the

burden on new parts from the external supplier.

5.6. IMPACT OF CHAOS PARAMETER LAMBDA ( 4 ) ON THE SOLUTION

In the proposed CI-ABC, the bifurcation paramefteiis used with the numerical
value 3.5 to generate chaotic variables using emuaf70). The computational
experiments are performed by varying the valuelobetween 2 and 4 in Figure 8, and
establishing that the solution quality increasethhe increase in the value of . It can
also be seen from Figure 8 that, 4s  attains vaillgs this comes in the region of the
chaotic regime. Actually, this is the location dfetfirst bifurcation and the logistic
equation becomes super stable at this point. Agribvth rate exceeds 4, all orbits zoom
to infinity and the modeling aspects of this funatibecome useless. Hence, this is the

reason why the value of  stops at 4 and for thilgesthe chaotic system performs best.

5.7. LIMITATION OF PROPOSED CI-ABC

The following aspects are relevant to the perforeeanf the algorithm.
1. Problem implementation: A decision maker is reqliiomly to evaluate the
generated seed solutions and compare the estinudtjedtive values. Thus, the
cognitive load is not very arduous and it is nat eomplex to use CI-ABC in solving
real problems. However, evaluation of the generatddtions and determining their
preference values is a key issue.
2. Parameter effect: The algorithm moves towardsglbbal best position by
adjusting the trajectory of each bee towards ita best position and the nectars’ best

position. The determination of the employed andmyieyed (Onlooker, and Scout)



83

bees and probability function are critical factoidéso, the chaotic function requires
careful estimation.

3. Convergence: The decision maker’s preference mgdeles the search to
explore the discrete Pareto front of seed solutiéiseit, the algorithm performed
very well to converge to the near optimal solutiolms each of the cases that use
Linear value, Quadratic value, L-4 metric valued éime Tchebycheff value functions

the percentage scaled deviation remains aboutd. 2%ot
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6. CONCLUSION AND FUTURE REMARKS

Implementing RFID technology in remanufacturing psimly concerns to
abandonment of outdated recovery processes. Itcoatribute to real-time quality
information and increased efficiency in reverseidogs. Through this research, the
authors have demonstrated that the RFID technatagyeffectively improve inventory
control, operational efficiency, and data visilyildat reverse echelons, i.e., at collection,
disassembly, and refurbishing centres. However,ptlesent price of RFID equipment
(hardware and software) is still one of the maistdactors when implementing RFID.
We studied an illustrative example on a basic afFiD-based reverse logistics model
to quantitatively decide whether RFID technologyeiasible and economically viable. In
order to execute this task, the paper proposeswauagiant of artificial bee colony
algorithm, namely the Chaos-based Atrtificial Beelodg (CI-ABC) approach. The
analysis showed that the RFID-enabled scenarimé&anomical at present equipment
prices but it has a potential to create a favorablronment for remanufacturers in the
near future. For the comparative analysis of theppsed CI-ABC algorithm it was
compared with ABC, and PSO algorithms, over a mwebinstances. The comparison
shows that the proposed algorithm outperforms sthreterms of computational time and
rate of convergence.

The paper put forwards a number of future resedaiobctions for interested
researchers. Future research can be aimed ath@gkihg the improvement in process
accuracy; (i) Sensitivity analysis of various cdattors such as operational, disposal,
and inspection can be considered; (iii) Applicatiohthe proposed model to a real
remanufacturing corporation; and (iv) Utilizingethmulti-objective techniques for
solving the problems.
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SECTION
2. CONCLUSION

The first part of this study develops value of aduct at design and functional
level. The model has been formulated with the vigwnaximizing value of the product
and minimizing product cost, product weight andduat size simultaneously. In this
research, a four stage (components) problem has wemsidered to map the
remanufacturing facility in to product developmembcess. The second part of this
research examines the economical merits of RFIptaio at remanufacturing echelons.
Through this research, the authors have demondtthi the RFID technology can
effectively  improve inventory control, operatidonefficiency, and data visibility at
reverse echelons, i.e., at collection, disassenanig, refurbishing centers. However, the
present price of RFID equipment (hardware and so#)vis still one of the main cost
factors when implementing RFID.

In order to tackle the underlying models, a noeglproach, Self-Guided
Algorithms & Control, has been proposed and implete@ successfully in PDP value
model, and a Chaos-based Interactive Artificial Bzmdony approach to RFID based
Remanufacturing models respectively the first amel second part of the thesis. The
proposed algorithms have been shown to signifigamiitperform many existing
optimization strategies prevailing in the liter&@and offer a faster convergence.

Following directions for the future research arggasted to interested readers: (i)
inclusion of more realistic reliability considemtis such as including the field and
service data (in form of survey results) in valoenputation, (ii) Reliability evaluation of
the developed products, (iii) application of S-CA&d CI-ABC strategies for optimizing
other computationally complex problems, (iv) Apglion of the proposed model to a
real remanufacturing corporation; and (v) Utilgithe multi-objective techniques for

solving the problems.



APPENDIX A
PSEUDO CODE of PSO



Randomly generate the initial particles and velocity
While (iter < max_iter)
for (i = 1 to number of particles)
Calculate the fitness value for each particle.
Update the self-best position of ith particle
End for
Update the global best position of the swarm
for (i = 1 to number of particles)
for (j = 1 to number of dimensions)
Update patrticle velocity
Update particle position
j=j+l
i=i+1
iter = iter + 1;
end for
end
Output: Best Solution of the problem



Appendix B
PSEUDO CODE of SA
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Randomly generate a solution string Evaluation fitness fimmg for all solution
string
Set, Initial and final temperature and Iterationeach temperature
While (Final tem. =Initial Tem.)
{
For (fixed number of iteration)
Randomly introduce a perturbation (a small chaongee current solution string)
Evaluate newly generated string
Always accept the new alternative if it reducesdbst
Randomly accept some alternatives that increasedste
End of for loop
Reduction in final temperature

}
Output: Best Solution of the problem



APPENDIX C
PSEUDO CODE of GA



Generaterandom population of solutions
For each individual: calculate Fitness
While (iter<iter_MAX)
{
Perform Crossover operation based on probabilityra$sover;
Perform Mutation operation based upon probabilftynatation;
Compute Fitness;
Perform Selection operation for population of ngemeration.
iter++;

}
Output: Best Solution of the problem
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