
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2016

An IMU-based spacecraft navigation architecture using a robust An IMU-based spacecraft navigation architecture using a robust

multi-sensor fault detection scheme multi-sensor fault detection scheme

Samuel J. Haberberger

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Aerospace Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Haberberger, Samuel J., "An IMU-based spacecraft navigation architecture using a robust multi-sensor
fault detection scheme" (2016). Masters Theses. 7505.
https://scholarsmine.mst.edu/masters_theses/7505

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7505?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

AN IMU-BASED SPACECRAFT NAVIGATION ARCHITECTURE USING A

ROBUST MULTI-SENSOR FAULT DETECTION SCHEME

by

SAMUEL J. HABERBERGER

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN AEROSPACE ENGINEERING

2016

Approved by

Kyle DeMars, Advisor

Henry Pernicka

Serhat Hosder

Copyright 2016
SAMUEL J. HABERBERGER

All Rights Reserved

iii

ABSTRACT

Redundant sensor networks of inertial measurement units (IMUs) provide in-

herent robustness and redundancy to a navigation solution obtained by dead reckon-

ing the fused accelerations and angular velocities sensed by the IMU. However, IMUs

have been known to experience faults risking catastrophic mission failure creating

large financial setbacks and an increased risk of human safety. Different fusion meth-

ods are analyzed for a multi-sensor network using cost effective IMUs, including direct

averaging and covariance intersection. Simulations of a spacecraft in low Earth orbit

are used to baseline a typical expensive IMU and compare the navigation solution

obtained from a network of several low-cost IMUs from fused data. Robust on-board

fault detection schemes are developed and analyzed for a multi-sensor distributed

network specifically for IMUs.

Simulations of a spacecraft are used to baseline several cases of sensor failure in

a distributed network undergoing fusion to produce an accurate navigation solution.

The presented results exhibit a robust fault identification scheme that successfully

removes a failing sensor from the fusion process while maintaining accurate navigation

solutions. In the event of a temporary sensor failure, the fault detection algorithm

recognizes the sensors’ return to nominal operating conditions and processes its sensor

data accordingly.

iv

ACKNOWLEDGMENTS

Firstly, I’d like to thank my advisor Dr. Kyle DeMars. You have given me

the opportunity to envelop myself in the aerospace field of research, leaving me with

a passion for navigation and estimation. You’ve held me to the highest expectations

embedding me with a proud work ethic. Thank you for all of the priceless experience

you have given me and for being a great advisor. I couldn’t have made it to this point

in my academic career without your guidance and knowledge.

Secondly I’d like to thank my committee members Dr. Hank Pernicka and

Dr. Serhat Hosder. As an undergraduate student, you have both instilled invaluable

knowledge to me along with a contagious enthusiasm for academia via your classes

and the satellite research team. My desire and aspirations of pursuing research in

this field are greatly accredited to both of you.

My deepest appreciation goes to my loving and supportive family. Without

you I couldn’t have made it to this point in my life and academic career. You have

raised me with a work ethic that has given me the persistence, and will power needed

in the engineering field. You will never know how truly thankful I am for all of the

opportunities that you have provided for me.

Lastly, I’d like to thank my friends, classmates and academic peers James

McCabe, Matthew Gualdoni, Jacob Darling, Levi Mallot, Matthew Glascock, John

Schaefer, Keith LeGrand and the AREUS lab entity. I can’t thank you all enough

for the knowledge and technical advice that has been provided to me from you. I

couldn’t have asked for a better group of friends and academic peers to work with.

It’s truly been a pleasure working and going to school with all of you.

v

TABLE OF CONTENTS

Page

ABSTRACT. iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . ix

LIST OF TABLES . xi

NOMENCLATURE . xii

SECTION

1 INTRODUCTION . 1

1.1 MOTIVATION . 3

1.2 OVERVIEW. 5

2 SPACECRAFT DYNAMICS . 7

2.1 IMU MODELING . 7

2.2 CONTINUOUS TIME DYNAMICS 10

2.3 IMU INVERSION . 11

2.4 MULTI-SENSOR TRANSLATIONAL COMPENSATION 13

2.5 DISCRETIZED DEAD-RECKONING EQUATIONS 14

2.6 MEAN AND COVARIANCE PROPAGATION 15

3 FUSION METHODOLOGY . 18

3.1 DIRECT AVERAGING . 18

3.2 COVARIANCE INTERSECTION . 20

3.2.1 Implementation . 24

vi

3.2.2 Generalized Variance Weighting Selection 25

3.3 FAULT TOLERANT FUSION . 26

3.4 FUSION EXAMPLE . 28

3.5 FUSION METHODOLOGY SUMMARY AND CONCLUSION . . . 31

4 FAULT DETECTION . 34

4.1 PRINCIPAL COMPONENT ANALYSIS 34

4.2 FAULT DETECTION EXAMPLE . 37

4.3 MODIFIED PRINCIPAL COMPONENT ANALYSIS. 40

4.4 TRAINING VECTOR FAILURE . 43

4.4.1 Covariance Intersection in the Feature Plane 43

4.4.2 Kullback-Leibler Divergence Covariance Threshold 45

4.4.3 Shannon Entropy Threshold . 46

5 MEASUREMENT MODELING . 48

5.1 POSITION MEASUREMENT MODELING 48

5.2 QUATERNION MEASUREMENT MODELING 50

5.3 RANGE MODELING . 51

5.4 RANGE RATE MODELING . 53

5.5 UNIT VECTOR STAR CAMERA MODELING 57

6 NAVIGATION ALGORITHM . 60

6.1 THE DISCRETE EXTENDED KALMAN FILTER 60

6.1.1 Mean and Covariance Propagation 60

6.1.2 Mean and Covariance Update. 64

6.1.3 Attitude Update . 71

vii

6.1.4 Extended Kalman Filter Summary 72

6.2 STATE ESTIMATE AND STATE ESTIMATION ERROR CO-
VARIANCE PROPAGATION . 73

6.2.1 Position and Velocity Error Covariance 74

6.2.2 Attitude Error Covariance. 79

6.2.3 Error Covariance in a Fusion Network 81

6.3 MEASUREMENT PROCESSING . 83

6.3.1 Position Measurement . 83

6.3.2 Quaternion Measurement . 84

6.3.3 Range and Range Rate . 85

6.3.4 Unit Vector Star Camera . 86

7 NAVIGATION/FAULT DETECTION SYSTEM ARCHITECTURE . . . 88

7.1 SYSTEM IMPLEMENTATION . 88

7.1.1 Fault Detection Architecture . 88

7.1.2 Fusion Architecture . 90

7.1.3 Navigation Architecture . 90

7.2 SENSOR CONFIGURATION . 91

8 SIMULATION RESULTS . 93

8.1 SIMULATION CONFIGURATION 93

8.2 CASE 1: NOMINAL SENSOR OPERATION 97

8.3 CASE 2: SINGLE SENSOR FAILURE 104

8.4 CASE 3: MULTIPLE SENSOR FAILURES 109

8.5 CASE 4: TRAINING VECTOR SENSOR FAILURE 111

viii

9 CONCLUSIONS . 118

9.1 FUTURE CONSIDERATIONS. 120

APPENDICES

A IMU SPECIFICATIONS . 121

B FUSION ALGORITHM . 123

C MATRIX DEFINITIONS . 125

D MONTE CARLO ANALYSIS . 131

E EKF CONSIDERATION: UNDERWEIGHTING 134

F ERROR PARAMETER SIMULATION RESULTS 137

BIBLIOGRAPHY . 142

VITA . 144

ix

LIST OF ILLUSTRATIONS

Figure Page

1.1 x Position Standard Deviation versus Time with Plotted Errors. 4

2.1 IMU Errors vs. Time . 9

3.1 IMU Data Fusion Computed by Directly Averaging the Measurements . . . 19

3.2 Direct Averaging Fusion (N = 10, 100 and 1000 Respectively) 19

3.3 IMU Data Fusion Computed by Covariance Intersection 24

3.4 CI Fusion Rule . 25

3.5 Position [m] and Attitude [deg] RSS Error 30

3.6 x− y Uncertainty Contours [m] at 50, 200, 300 [s], Respectively 31

3.7 Fusion Rule Uncertainty Comparison . 32

4.1 Effects of PCA Undergoing Single Sensor Failure for Static and Dynamic
Systems . 38

4.2 First and Second Principal Components versus Time for a Static and
Dynamic System Undergoing a Single Sensor Failure 39

4.3 First and Second Principal Components Plotted Over 3-Dimensional Zero-
Mean Data Set Before and After Failure . 40

7.1 Implementation Architecture Overview . 88

7.2 Fault Detection in a Static System. 89

7.3 Fault Detection in a Dynamic System . 90

7.4 IMU Data Fusion Computed by Directly Averaging the Measurements . . . 91

7.5 Navigation Architecture . 91

8.1 True Simulated Orbit Trajectory. 94

8.2 True Simulated ai
ng and ωi

i/b . 96

x

8.3 Time of Received Measurements . 96

8.4 Case 1: Position Standard Deviation/Errors and RSS vs. Time 100

8.5 Case 1: Position Standard Deviation/Errors and RSS vs. Time 101

8.6 Case 1: Attitude Standard Deviation/Errors and RSS vs. Time. 102

8.7 Case 1: Effects of MPCA with no Failures 103

8.8 Case 1: Feature Plane CI Training Vector Fault Detection 103

8.9 Case 2: Position Standard Deviation/Errors and RSS vs. Time 105

8.10 Case 2: Velocity Standard Deviation/Errors and RSS vs. Time 106

8.11 Case 2: Attitude Standard Deviation/Errors and RSS vs. Time. 107

8.12 Case 2: Effects of MPCA with a Single IMU Failure 108

8.13 Case 2: Feature Plane CI Training Vector Fault Detection 108

8.14 Case 3: Effects of MPCA with Multiple IMU Failures 110

8.15 Case 3: Feature Plane CI Training Vector Fault Detection 110

8.16 Case 4: Training Vector Failure using Only MPCA 111

8.17 Case 4: Position Standard Deviation/Errors and RSS vs. Time 113

8.18 Case 4: Velocity Standard Deviation/Errors and RSS vs. Time 114

8.19 Case 4: Attitude Standard Deviation/Errors and RSS vs. Time. 115

8.20 Case 4: Effects of MPCA with a Training Vector Failure 116

8.21 Case 4: Training Vector Fault Detection . 117

xi

LIST OF TABLES

Table Page

3.1 Spacecraft IMU Configuration . 29

3.2 Fusion Example Legend . 29

8.1 Results Overview. 97

xii

NOMENCLATURE

am,k Measured non-gravitational acceleration outputted from the ac-

celerometer

ωm,k Measured angular velocity outputted from the gyroscope

n̂ Estimated vector denoted by the hat

∆t Time step between measurements

∆v̂ Measured non-gravitational acceleration multiplied by ∆t

∆θ̂ Measured angular velocity multiplied by ∆t

n̄ Right handed, vector-first quaternion form

r̂k Position estimate

v̂k velocity estimate

ˆ̄qk Quaternion estimate

xk State of the system

mk Mean at some time k

Pk Covariance at some time k

σk Standard deviation at some time k

T i
b Body to inertial attitude matrix

ñ Fused solution

N Number of IMUs in system configuration

pg(x;m,P) Gaussian distribution in x with a given mean and covariance

Φ Feature plane mapping matrix

τ Fault alarm threshold

y Principal components

xT Training vector

Θ Parity space mapping matrix

wk IMU measurement noise at some time k

xiii

vk External sensor noise at some time k

δn state or measurement deviation

zk Received measurement at some time k

ẑk Estimated measurements as a function of the mean at some time k

F Dynamics Jacobian

M Mapping matrix that maps the noise into the system dynamics

Q Process noise covariance matrix

ek State estimation error at some time k

m−
k Predicted mean at some time k

m+
k Corrected mean at some time k

P−
k Predicted covariance at some time k

P+
k Corrected covariance at some time k

h(m+
k) Estimated measurement as a function of the predicted mean

Wk Innovations or measurement residual covariance

Ck Cross covariance

Kk The Kalman gain

H(m−
k) Measurement Jacobian as a function of the predicted mean

1. INTRODUCTION

Spacecraft inertial measurement unit (IMU)-based navigation typically relies

on a single, high-reliability, high-cost, tactical or strategic grade IMU to achieve

accurate navigation solutions. In order to reduce cost while retaining accuracy of the

navigation solution and improving the overall fault tolerance of the system, multiple

lower-cost IMUs can be used. In order to combine the data from these multiple

IMUs, several data fusion rules have been proposed. A direct averaging fusion rule

of data from multiple IMUs was used in the demonstration and development of a

micro-electrical-mechanical system (MEMS) IMU cluster [1]. Data fusion for IMUs

in a decentralized distributed system has also been studied for enhanced pedestrian

navigation, in which the direct averaging, the Centralized Filter, and the Federated

Filter fusion rules [2] were used. The covariance intersection (CI) algorithm [3–5], has

been cast under the more general logarithmic opinion pool framework and applied

to the tracking of a space object using multiple ground-based optical sensors [5]. In

order to improve upon the performance of the Federated Filter fusion rule, which

equally weights each input solution to be fused, an intelligent weight selection scheme

for the CI fusion rule is proposed. The navigation solutions input to the CI fusion rule

with lower uncertainty are accepted with greater confidence than those with higher

uncertainty. In order to evaluate the CI fusion rule with these intelligently selected

weights, a simulation is constructed and analyzed in which this rule is compared to

the direct averaging fusion rule for a distributed network of IMUs. This analysis

determines the fusion rule considered in the analysis and construction of a fault

detection algorithm for a cluster of IMUs.

In order to improve the capabilities of financially limited spacecraft, low-cost,

high-performance, fault tolerant navigation systems are needed. Data fusion in a

distributed network of low-cost IMUs can provide navigation system performance

2

comparable to those with a single, high-cost, tactical, or strategic grade IMU. The

proposed fusion rules perform differently under certain circumstances; therefore, this

thesis study investigates how intelligently selected weights for the CI fusion rule com-

pares to the direct average fusion rule for the case when the system is operating

nominally and the case when an IMU failure is present. The direct averaging fusion

rule does not adapt for measurement degradation of each individual sensor; thus, it is

expected that the CI fusion rule will be preferred to the direct averaging fusion rule

when a sensor failure is present. This expectation can only hold if the CI fusion rule

can down-weight the navigation solution of a degraded sensor producing off-nominal

data. In order to perform the CI fusion rule, each IMU is used to propagate an in-

dependent navigation solution, and then the navigation solutions are fused together

using weights that are selected to reflect the confidence in each navigation solution.

The direct averaging rule, on the other hand, performs a simple average of the mea-

surements from each IMU and propagates a single navigation solution forward in

time.

Typical navigation solutions are comprised of two parts: determining the mean

and determining the covariance. Inherently, covariance evolution is a function of the

sensor error specifications that are provided by a data sheet or from a priori test-

ing analysis. Therefore, with the proposed multi-sensor navigation architecture, a

method of on-board fault detection is needed inside the navigation system. Fault de-

tection algorithms must be constructed to ensure a robust fault tolerant distributed

system of multiple redundant sensors, specifically IMUs in this case. One fault detec-

tion method that was examined in this thesis study is Principal Component Analysis

(PCA), first invented by Karl Pearson [6]. PCA is an analytic, statistical procedure

that orthogonally transforms correlated observations into a set of linearly uncorre-

lated values, known as principal components. This allows for the construction of

3

uncorrelated data patterns and data trends that can be used to identify a set of data

that is not uniform with respect to the rest of the data sets.

The issue at hand with the standard PCAmethod is that when a fault occurs in

a dynamic environment, PCA cannot classify fault patterns in the sensor data due to

similar patterns created by sensor movement. In order to classify faults in a dynamical

system, a Modified Principal Component Analysis (MPCA) approach, proposed by

Potter shown in Reference [7], is independent of sensor movement is considered. The

MPCA approach introduces a null space matrix to compute a parity vector, which is a

transformation into a data feature plane that can be used in testing for patterns in the

comparable data. From Reference [8], this matrix cancels the dynamical movement

on the PCA input by algebraic manipulation in which the procedure calculates the

parity vector and then generates a fault pattern separate from the sensor data output.

Using this modification of PCA, dynamic sensors, such as IMUs, can be configured

and fused in a distributed network undergoing fault detection while using MPCA.

This allows for a the construction of a robust fault tolerant algorithm that is capable

of producing confident navigation solutions. This thesis provides an extension to the

previous work found in Reference [9].

1.1. MOTIVATION

Data fusion, in parallel with fault detection, in a distributed network of low-

cost IMUs can provide navigation system performance comparable to those with a

single, high-cost, tactical, or strategic grade IMU, which is ideal for aerospace indus-

tries and even universities. Current budget limitations in aerospace industries provide

the need for low cost multi-sensor data fusion prioritizing funding and feasibility on

high-fidelity IMU-based mission payloads. In recent years, the industry’s interest in

small satellites has grown to become a large area of research. This includes university

collaborations, which are directed toward making small spacecraft into powerful but

4

financially feasible space operations. Along with ameliorating budget limitations and

advancing manned space flight missions in the near future, sensor redundancy and the

detection of sensor failures are vital to mission success. While this current research

is applied specifically to IMUs, the algorithms studied and implemented herein are

designed to be robust and applicable to a wide variety of sensors on dynamic vehicles.

A motivating example is considered to demonstrate the need for on-board fault

detection in a multi-sensor fusion network of IMUs. Suppose an arbitrary spacecraft

with ten IMUs on board is undergoing a fusion process that feeds into the navigation

solution. The motivation and importance of fault detection in a redundant sensor

network is found in comparing the navigation solution of a system with and without

on-board fault detection. A single sensor in the fusion network undergoes a failure

halfway through the simulation characterized by an increase in bias and noise. Figure

1.1 shows the position standard deviation (1σ) along with the estimated position error

with and without fault detection on-board along with a zoomed in view to better

inspect the navigation solution.

1σ Standard Deviation
Fused Position Error with Fault Detection
Fused Position Error without Fault Detection

0 20 40 60
−200

0

400

Time [s]

σ
x
[m

]

(a) Position Standard Deviation

0 20 40 60
−50

0

50

Time [s]

(b) Zoom in Position Standard Deviation

Figure 1.1. x Position Standard Deviation versus Time with Plotted Errors

5

It is clearly seen that even with a single IMU failure that the inability to detect

a sensor fault can lead to large errors very quickly. Along with producing a poor esti-

mate, the propagated uncertainty no longer accurately represents the true uncertainty

of the system due to the uncertainty model being based off of set sensor specifications.

These results clearly show the importance of fault detection on-board a distributed

sensor network. For brevity, the velocity and attitude standard deviation/error plots

are omitted but also show very similar results.

1.2. OVERVIEW

The current thesis has two main points of focus but contains necessary pre-

liminary information about the system. In order to focus on data fusion and fault

detection on-board a spacecraft, the governing spacecraft dynamics must be discussed

in conjunction with a proposed IMU model defining non-negligible sensor errors. A

brief discussion on mean and covariance propagation is then considered. The full

derivation and explanation of mean and covariance is discussed in full detail later in

the thesis, but is a necessary consideration in fusion methodology which is introduced

directly after.

The first point of focus is a comparison and performance analysis of multiple

data fusion rules applied to IMUs, i.e. direct averaging and Covariance Intersection

(CI). This trade-study examines system implementation and a weighting selection

enabling a more robust fusion rule method. In this comparison, it was deemed that

direct averaging produces a more accurate navigation solution, i.e. mean and covari-

ance, than that of CI. However, in the non-negligible consideration of a failing sensor

in the system, with an intelligent weighting solution CI could effectively down-weight

the failing sensor via a priori knowledge of a faulty sensor. While CI may seem more

robust, it is not practical to assume that CI could obtain this knowledge of sensor

degradation. A conclusion is made deeming direct averaging the appropriate fusion

6

rule to use for simulation with the assumption of an inherent fault detection method

implemented.

The last main point of focus examines a fault detection algorithm applied to an

IMU cluster, specifically that of Principal Component Analysis (PCA). A motivating

example is then shown exposing problems in PCA for IMUs, so a modified version

of this fault detection method is shown to account for these issues. Underlying fault

detection processes are added into this modified fault detection method to completely

allow for an autonomous, fault detection method.

The remainder of the thesis examines tools used in fusion and fault detection

analysis. Measurement models for position and attitude updates in the extended

Kalman filter (EKF) are shown followed by in-depth derivations of the discrete EKF.

A full system implementation chapter is also shown in order to tie in and summarize all

proposed methodologies. Finally, a spacecraft simulation is constructed and presented

with the implementation of all subject matter discussed. This simulation produces

results that merit fault detection and fusion necessary for homogeneous, multi-sensor

navigation systems.

7

2. SPACECRAFT DYNAMICS

In order to model the spacecraft dynamics as a function of non-gravitational

accelerations and inertial angular velocities, an IMU model is constructed. The con-

tinuous time dynamics contain these accelerations and angular velocities as a continu-

ous function of time but are needed to be discretized to account for IMU measurement

outputs. Using an inverted version of the proposed IMU model and analytical inte-

gration of the continuous time dynamics, the discretized dead-reckoning equations,

which compute position, velocity and attitude, are constructed. This allows for mean

and covariance analysis which inherently governs the needed navigation solution.

2.1. IMU MODELING

The acceleration and angular velocity measured by an inertial measurement

unit (IMU) are corrupted by a variety of error sources. The IMU model, based on

Reference [10], accounting for these error sources is given for the accelerometers and

gyroscopes as

am,k = aQ,k

(
(I + Sa) (I +Na +Ma)

(
T imu
i ai

k + ba,0 + ba,k +wa,k

))
− E {ba,0}

(2.1a)

ωm,k = ωQ,k

(
(I + Sg) (I +Ng +Mg)

(
ωimu

k + bg,0 + bg,k +wg,k

))
− E {bg,0} ,

(2.1b)

where

ai
k is the true non-gravitational inertial acceleration experienced by the IMU

expressed in the inertial frame at time tk,

T imu
i is the rotation matrix representing the rotation from the inertial frame to

the IMU frame,

8

ba,0 is the startup bias of the accelerometers,

ba,k is the bias of the accelerometer at time tk, which changes due to bias

instability,

wa,k is the thermo-mechanical zero-mean white noise present in the accelerom-

eters,

Sa is the scale factor error matrix of the accelerometers,

Ma is the axes misalignment matrix of the accelerometers,

Na is the axes nonorthogonality matrix of the accelerometers, and

aQ,k is the quantization affect caused by analog-to-digital conversion.

and similarly for the gyroscopes. The error sources are applied in the following order:

1. Startup bias, walking bias, and thermomechanical noise are applied first because

they affect the sensor (accelerometer or gyroscope) regardless of how the sensor

is mounted with respect to the defined IMU frame,

2. Axes nonorthogonality and misalignment errors are applied next to account for

the mounting error between the sensors and the defined IMU frame,

3. A scale factor error is applied next to account for errant voltages, circuitry, etc.

in converting the sensor output to a value that can be quantized,

4. Quantization error is applied last to emulate the Analog to Digital Conversion

necessary for quantizing the sensor signal.

The mean of the startup bias of the sensor is subtracted after applying these errors

as it is assumed known from sensor testing. It is necessary to add the startup bias

before emulating the errors, then subtract its mean so the effect of the errors will

have an appropriate effect on the startup bias.

9

The bias, ba,k, which changes due to bias instability, is given by the random

walk model

ba,k = ba,k−1 +wa,BI,k , (2.2)

where wa,BI,k is a white-noise process of known covariance, which is a function of the

velocity random walk specification and time step of the IMU. The IMU errors dis-

cussed in the given model are graphically represented versus time in Figure 2.1. Note

that the manufacturing errors shown in the figure are defined as the misalignment,

nonorthogonality, and scale factor uncertainty errors.

0 20 40 60 80 100

−1.5

−1

−0.5

0

·10−3

Time [s]

a
[m

/s
2
]

(a) Bias Instability

0 1 2 3 4 5
−0.2

0

0.2

Time [s]

a
[m

/s
2
]

(b) Velocity Random Walk

0 1 2 3 4 5

−4

−2

0

2

4

·10−4

Time [s]

a
[m

/s
2
]

(c) Manufacturing Errors

0.00 0.10 0.20 0.30 0.40 0.50
−0.2

−0.1

0

0.1

0.2

Time [s]

a
[m

/s
2
]

(d) Quantization Error

Figure 2.1. IMU Errors vs. Time

The sources of error used by this model with their respective graphics are

assumed to affect the gyroscopes identically and thus their presentation is omitted

for brevity.

10

2.2. CONTINUOUS TIME DYNAMICS

The continuous equations of motion for a vehicle with the aid of a strapdown

IMU are given by [11]

ṙi
fp(t) = vi

fp(t)

v̇i
fp(t) = ai

g(r
i
fp(t) + T i

c (t)r
c
cm/fp) + T i

c (t)a
c
ng(t)

˙̄qc
i (t) =

1

2
ω̄c

c/i(t)⊗ q̄c
i (t) ,

where the subscript “fp” represents a fixed point on the vehicle, such as the location

of an IMU, and the subscript “cm” denotes the center of mass of the vehicle. ri
fp

and vi
fp denote the position and velocity of the fixed point in the inertial frame, q̄c

i

is the attitude quaternion that describes the orientation of the IMU case frame with

respect to the inertial frame, ω̄c
c/i is the pure quaternion representation of the angular

velocity of the case frame with respect to the inertial frame and expressed in the case

frame, ai
g and ac

ng are the gravitational and non-gravitational accelerations in the

inertial and case frames, respectively, and T i
c is the transpose of the attitude matrix

equivalent to the quaternion q̄c
i . To simplify the nomenclature, let

ri
fp(t) → r(t) , vi

fp(t) → v(t) , ai
g(·) → g(·) , T i

c (t) → T T (t) , ac
ng(t) → a(t) ,

q̄c
i (t) → q̄(t) , ωc

c/i(t) → ω(t) , rc
cm/fp → d , and ri

fp(t) + T i
c (t)r

c
cm/fp → s(t) .

With these substitutions, the equations of motion may be written succinctly as

ṙ(t) = v(t)

v̇(t) = g(s(t)) + T T (t)a(t)

˙̄q(t) =
1

2
ω̄(t)⊗ q̄(t) .

11

In this work, the extended Kalman filter approach to uncertainty propagation is used.

As such, the state estimates are propagated by integration of the equations of motion

with the dynamics evaluated at the current state estimate. Therefore, the estimates

of position, velocity, and attitude have dynamics that are given by

˙̂r(t) = v̂(t) (2.3a)

˙̂v(t) = g(ŝ(t)) + T̂ T (t)â(t) (2.3b)

˙̄̂q(t) =
1

2
ˆ̄ω(t)⊗ ˆ̄q(t) . (2.3c)

2.3. IMU INVERSION

In order to perform dead reckoning navigation, the measured non-gravitational

acceleration and measured angular velocity must be “inverted” in order to solve for

the true non-gravitational acceleration and true angular velocity. These relationships

then form the basis for providing estimates of the true quantities that are employed

in the discretization of Eqs. (2.3).

The measured non-gravitational acceleration and angular velocity are modeled

using Eqs. (2.1). For some vector v = [vx vy vz]
T , define the matrices [vr], [v×],

and [v∗] to be

[vr] =


vx 0 0

0 vy 0

0 0 vz

 , [v×] =


0 vz −vy

−vz 0 vx

vy −vx 0

 , and [v∗] =


0 vz vy

vz 0 vx

vy vx 0

 .

Omitting the effects due to quantization, the accelerometer model of Eq. (2.1a) be-

comes

am,k = (I + Sa) (I +Na +Ma) (ak + ba,0 + ba,k +wa,k)− E {ba,0} , (2.4)

12

where ak = T imu
i ai

k is used for compactness. Equation (2.4) may be solved for ak in

terms of the measured acceleration and the errors to yield

ak = (I +Na +Ma)
−1 (I + Sa)

−1 ām,k − ba,0 − ba,k −wa,k , (2.5)

where ām,k = am,k+E {ba,0}. Noting that (I + Sa) (I +Ma +Na) ≈ I+Λa, apply-

ing the matrix inversion lemma to Eq. (2.5), and simplifying the resulting expression,

it follows that the true non-gravitational acceleration written in terms of the measured

non-gravitational acceleration as

ak = am,k − [ām,kr]sa + [ām,k×]ma − [ām,k∗]na − (ba,0 − E {ba,0})− ba,k −wa,k ,

(2.6)

from which one may obtain an estimate of the true non-gravitational acceleration as

âk = E {ak}, which gives

âk = am,k − [ām,kr]ŝa + [ām,k×]m̂a − [ām,k∗]n̂a − b̂a,k − ŵa,k . (2.7)

An alternative expression for the estimate of the true non-gravitational acceleration

is given by evaluating all of the error terms in Eq. (2.5) at their current estimates,

such that

âk =
(
I + N̂a + M̂a

)−1(
I + Ŝa

)−1
ām,k − b̂a,0 − b̂a,k − ŵa,k . (2.8)

If all of the error sources are zero-mean, it follows from either Eq. (2.7) or Eq. (2.8)

that

âk = am,k .

13

Parallel results hold for expressing the true angular velocity in terms of the

measured angular velocity. That is, following the same process used in arriving at

Eq. (2.6), it can be shown that

ωk = ωm,k − [ω̄m,kr]sg + [ω̄m,k×]mg − [ω̄m,k∗]ng − (bg,0 − E {bg,0})− bg,k −wg,k ,

(2.9)

where all of the error sources are now for the gyro instead of the accelerometer, and

ω̄m,k = ωm,k + E {bg,0}. It is then possible to determine an estimate of the true

angular velocity as ω̂k = E {ωk}, which gives

ω̂k = ωm,k − [ω̄m,kr]ŝg + [ω̄m,k×]m̂g − [ω̄m,k∗]n̂g − b̂g,k − ŵg,k . (2.10)

Additionally, an alternative expression for the estimate of the true angular velocity

is given by

ω̂k =
(
I + N̂g + M̂g

)−1(
I + Ŝg

)−1
ω̄m,k − b̂g,0 − b̂g,k − ŵg,k . (2.11)

Finally, as with the accelerometer, if all of the error sources are zero-mean, it follows

from either Eq. (2.10) or Eq. (2.11) that

ω̂k = ωm,k .

2.4. MULTI-SENSOR TRANSLATIONAL COMPENSATION

When the IMU is displaced from the center of mass (CM) of the vehicle, non-

gravitational acceleration effects are introduced due to the combined rotation of the

vehicle and the displacement of the IMU. In order to transform the acceleration from

an arbitrary fixed-point on the vehicle to the CM, translational compensation must be

14

performed. This step is not necessary when dead-reckoning navigation is performed

at the IMU, but is required for navigation about any other point on the vehicle. The

only significant effect is due to centripetal acceleration; therefore, compensation for

the translational displacement of the IMU is performed as

ai
fp = ai

imu − ωi
c/i × ωi

c/i × (T i
cr

c
fp/imu)

where the superscripts c, and i denote the case frame and the inertial frame respec-

tively, aimu is the acceleration at the IMU, and afp is the acceleration at some other

fixed point on the vehicle.

2.5. DISCRETIZED DEAD-RECKONING EQUATIONS

Dead reckoning navigation is conducted using high-rate IMU data. Therefore,

it is assumed that the non-gravitational acceleration and angular velocity are constant

over a small time-step, which yields

âk =
∆v̂k

∆tk
and ω̂k =

∆θ̂k

∆tk
.

Applying analytical integration techniques to Eqs. (2.3) under the assumption of con-

stant non-gravitational acceleration and angular velocity and following the derivations

from References [11] and [12], it can be shown that the estimates for position, velocity,

and attitude evolve according to

r̂k = r̂k−1 + v̂k−1∆tk +
1

2
T̂ T
k−1

(
I3×3 +

1

3
[∆θ̂k×]

)
∆v̂k∆tk (2.12a)

+
1

2

(
ĝk−1 −

1

3
Ĝk−1T̂

T
k−1[d̂×]∆θ̂k

)
∆t2k

v̂k = v̂k−1 + T̂ T
k−1

(
I3×3 +

1

2
[∆θ̂k×]

)
∆v̂k +

(
ĝk−1 −

1

2
Ĝk−1T̂

T
k−1[d̂×]∆θ̂k

)
∆tk

(2.12b)

15

ˆ̄qk = q̄(∆θ̂k)⊗ ˆ̄qk−1 , (2.12c)

where

q̄(∆θ̂k) =

sin
(

1
2
||∆θ̂m,k||

)
∆θ̂m,k/||θ̂m,k||

cos
(

1
2
||∆θ̂m,k||

)


The estimated non-gravitational acceleration and estimated angular velocity are com-

puted from Eqs. (2.7) and (2.10) or Eqs. (2.8) and (2.11). Note that Ĝ is defined as

the partial derivative of gravity with respect to position or formally written as

Ĝk−1 =

[
∂g(s)

∂s

]
,

and d̂ is the estimated position vector from the center of mass of the vehicle to

the IMU. For further information and readings on strapdown IMU modeling, see

References [10] and [13].

2.6. MEAN AND COVARIANCE PROPAGATION

As previously mentioned, the dead-reckoning navigation considered in this

thesis relies upon the treatment of uncertainty propagation in the same manner as is

done for the extended Kalman filter (EKF). That is, the mean of the distribution is

propagated using the nonlinear dynamical system and the covariance is propagated

using a linearized dynamical system, where the linearization is performed about the

current mean. The state vector is chosen to be the collection of the position, velocity,

and attitude of the vehicle along with all of modeling parameters of the accelerometer

and the gyro. This collection of states is denoted by

xk =

[
rT
k vT

k q̄T
k aT

param ωT
param

]T
,

16

where

aparam =

[
bTa,0 bTa,k sTa mT

a nT
a

]T
and ωparam =

[
bTg,0 bTg,k sTg mT

g nT
g

]T
.

Additionally, the noise terms for the accelerometer and gyro are concatenated into a

single process noise as

wk =

[
aT
noise ωT

noise

]T
,

where

anoise =

[
wT

a,k wT
a,BI,k

]T
and ωnoise =

[
wT

g,k wT
g,BI,k

]T
.

Then, the dynamical system described by Eqs. (2.12) in conjunction with Eq. (2.2)

for describing the evolution of the accelerometer and gyro walking biases may be

expressed as

xk = f(xk−1,wk−1) ,

from which the propagation of the mean is obtained as

mk = f(mk−1,0) , (2.13)

where mk represents the mean of the state at time tk and the process noise is taken

to be zero mean.

The error covariance is defined as

Pk = E
{
eke

T
k

}
. (2.14)

17

While not shown here, by defining an error state to be the difference between the truth

and the mean, the error can be shown to satisfy the discrete propagation equation

ek = Fk−1ek−1 +Mk−1wk−1 . (2.15)

Substituting Eq. (2.15) into Eq. (2.14), expanding, and noting that the error and

process noise are taken to be uncorrelated uncorrelated yields

Pk = Fk−1E
{
ek−1e

T
k−1

}
F T

k−1 +Mk−1E
{
wk−1w

T
k−1

}
MT

k−1 .

DefiningQk−1 , E
{
wk−1w

T
k−1

}
and noting that Pk−1 = E

{
ek−1e

T
k−1

}
, the final form

of the error covariance propagation for the covariance propagation is

Pk = Fk−1Pk−1F
T
k−1 +Mk−1Qk−1M

T
k−1 . (2.16)

The mean and covariance propagation equations shown here are derived in full detail

in the derivation of the discretized EKF contained in the Navigation Algorithm chap-

ter. Equations 2.15 and 2.16 are necessary for the discussion of fusion methodology in

the proceeding section. To formulate and construct the full F (mk−1) and M(mk−1)

matrices, refer to Appendix C.

18

3. FUSION METHODOLOGY

The two main fusion methods investigated in the current work are the direct

measurement averaging fusion rule and the covariance intersection fusion rule. While

there are many different subsets of each fusion rule, along with different implemen-

tations, the two specific fusion methods considered herein allow for a comparison of

the general trends to be expected of the methods.

3.1. DIRECT AVERAGING

The direct averaging fusion approach takes N non-gravitational accelerations,

transformed by the translational compensation discussed earlier, ai, and angular ve-

locities, ωi, from N IMUs and averages them together to determine a fused non-

gravitational acceleration, ã, and angular velocity, ω̃. These fused data are then

implemented in the dead-reckoning equations to produce a fused mean, m̃, and co-

variance, P̃ . For a set of L measurements xi, the fused data x̃ is given by the direct

average

x̃ =
1

N

N∑
i=1

xi , (3.1)

where xi = ai or xi = ωi. This method is the most simple fusion rule due to low

computational costs and can be easily implemented with analog circuitry. There

are multiple averaging schemes applicable to IMU fusion such as averaging the state

estimates and covariances after propagation, but for simplicity, the result of the fused

raw measurements will be propagated to provide a fused navigation solution. This

method of direct averaging is shown as a block diagram in Figure 3.1.

From Reference [1], the expectation in the improvement in bias stability and

noise is on the order of
√
N , where N is the number of IMUs. In using a sensor

19

IMU1:

a1,ω1

IMU2:

a2,ω2

...

IMUN :

aN ,ωN

Measurement
Average

Mean and

Covariance

Propagation

m̃

P̃

Figure 3.1. IMU Data Fusion Computed by Directly Averaging the Measurements

network of redundant, homogeneous sensors, the actual improvement is expected to

be slightly less than the
√
N factor because all noise sources cannot be assumed to

be completely uncorrelated. To visualize this factor of improvement, sensor networks

of N = 10, 100, and 1000 single degree of freedom accelerometers are simulated and

averaged and are simply modeled in this case by injecting a bias an noise process

into the true ai = 0 measurements. The fused measurement is plotted over that of

a single sensors in Figure 3.2. As expected it is seen that the noise is reduced by a

Single Accelerometer Data
Multiple Fused Accelerometer Data

0 2 4 6 8 10
−0.4

0

0.4

Time [s]

0 2 4 6 8 10
−0.4

0

0.4

Time [s]

0 2 4 6 8 10
−0.4

0

0.4

Time [s]

a
x
,m

[m
/s

2
]

Figure 3.2. Direct Averaging Fusion (N = 10, 100 and 1000 Respectively)

20

significant factor as the number of sensors to be fused increases. This analysis of the

direct averaging fusion rule exhibits simplicity; computationally and implementation

wise. However, a more intelligent fusion rule is to be considered to examine fusion

robustness.

3.2. COVARIANCE INTERSECTION

The covariance intersection (CI) rule is primarily known for fusing two Gaus-

sian distributions by combining the means and covariances in order to produce con-

sistent solutions. This approach can be described as a geometric representation of the

Kalman filter because the form of the state estimate and covariance is identical to the

standard Kalman filter, which can be found in Reference [3]. If the intersection of co-

variance is known exactly, the cross covariance will always lie within the intersection

of each of the respective covariances from Reference [3]. In order to examine the full

form of CI, a general case is implemented in order to fuse N distributions together

to produce a more accurate mean and covariance of the system. To derive the CI

fusion rule, the geometric mean density (GMD) fusion rule proposed in Reference [4]

is applied to N Gaussian distributions. The properties of the GMD fusion rule and

more details of the GMD fusion are given in Reference [4]. The most general form of

the GMD fusion rule for fusing N arbitrary probability density functions (pdfs) is

p̃(x) =
1

η

N∏
i=1

pwi
g (x;mi,Pi) (3.2)

where η is a normalization factor needed in order to have the distribution integrate

to one and pg (x;m,P) represents a Gaussian distribution in x with mean m and

covariance P .

21

Raising a Gaussian distribution to the power w, it follows that

pwg (x;m,P) =

[
|2πP |−1/2exp

{
−1

2
(x−m)T P−1 (x−m)

}]w
= |2πP |−w/2exp

{
−w

2
(x−m)T P−1 (x−m)

}

By defining P̄ , P /w, the Gaussian density raised to the power w may also be

expressed as

pwg (x;m,P) = |2πP |−w/2exp

{
−1

2
(x−m)T P̄−1 (x−m)

}
. (3.3)

The term within the exponential is of the form of the Gaussian distribution with

a scaled covariance, but the normalizing factor does not account for the scaled co-

variance. The normalizing factor should be |2πP̄ |−1/2; therefore, multiplying and

dividing the raised Gaussian in Eq. (3.3) by the proper normalizing constant gives

pwg (x;m,P) = kpg
(
x;m, P̄

)
, (3.4)

where k = w−n/2|2πP |(1−w)/2. That is, a Gaussian distribution raised to the power

w is a scaled Gaussian with an inflated covariance (provided that 0 ≤ w ≤ 1).

Substituting the result of Eq. (3.4) into each term of the product in Eq. (3.2), it

follows that the GMD fusion rule for Gaussian distributions is

p̃(x) =
1

η

N∏
i=1

kipg
(
x;mi, P̄i

)
, (3.5)

where ki = w
−n/2
i |2πPi|(1−wi)/2 and P̄i = Pi/wi.

When the product is expanded out, the fused distribution of Eq. (3.5) becomes

p̃(x) =
k̄

η

[
pg

(
x;m1, P̄1

)
pg

(
x;m2, P̄2

)
pg

(
x;m3, P̄3

)
· · · pg

(
x;mN , P̄N

)]
, (3.6)

22

where k̄ =
∏N

i=1 ki. The product of two Gaussian distributions is a well known

procedure [14], but this process becomes more complicated when considering N pdfs.

Given two Gaussian pdfs pg(x;ma,Pa) and pg(x;mb,Pb), their product is [14]

pg(x;ma,Pa)pg(x;mb,Pb) = Γab pg (x;mc,Pc) , (3.7)

where

mc = Pc

(
P−1

a ma + P−1
b mb

)
(3.8a)

Pc =
(
P−1

a + Pb

)−1
(3.8b)

Γab = |2π (Pa + Pb)
−1/2 exp

{
−1

2
(ma −mb)

T (Pa + Pb)(ma −mb)

}
. (3.8c)

Direct application of Eq. (3.7) to the product of pg
(
x;m1, P̄1

)
and pg

(
x;m2, P̄2

)
in

Eq. (3.6) gives the GMD as

p̃(x) =
k̄

η
Γ12

[
pg

(
x;m12, P̄12

)
pg

(
x;m3, P̄3

)
· · · pg

(
x;mN , P̄N

)]
, (3.9)

where, from Eq. (3.5),

m12 = P̄12

(
P̄−1

1 m1 + P̄−1
2 m2

)
(3.10a)

P̄12 =
(
P̄−1

1 + P̄2

)−1
(3.10b)

and similarly for Γ12. Now, apply Eq. (3.7) to the product of pg
(
x;m12, P̄12

)
and

pg
(
x;m3, P̄3

)
in Eq. (3.9) to obtain

p̃(x) =
k̄

η
Γ12Γ123

[
pg

(
x;m123, P̄123

)
· · · pg

(
x;mN , P̄N

)]
, (3.11)

23

where, from Eqs. (3.8), it follows that

m123 = P̄123

(
P̄−1

12 m12 + P̄−1
3 m3

)
P̄123 =

(
P̄−1

12 + P̄3

)−1
,

and similarly for Γ123. From Eqs. (3.10), it follows thatm123 and P̄123 are equivalently

expressed as

m123 = P̄123

(
P̄−1

1 m1 + P̄−1
2 m2 + P̄−1

3 m3

)
P̄123 =

(
P̄−1

1 + P̄−1
2 + P̄3

)−1
.

It then follows that the GMD fusion rule for a set of N Gaussian distributions is given

by continuing to reduce products of pairs of Gaussian pdfs; therefore, by induction,

the GMD fusion rule becomes

p̃(x) =
1

η

[
k̄Γ12Γ123 · · ·Γ12···N

]
pg(x; m̃, P̃) , (3.12)

where

m̃ = P̃

N∑
i=1

P̄−1
i mi and P̃ =

[N∑
i=1

P̄−1
i

]−1

.

Since the integral of p̃(x) must evaluate to one and since the integral of pg(x; m̃, P̃)

is guaranteed to evaluate to one, it follows that η = k̄Γ12Γ123 · · ·Γ12···N . Addition-

ally, recall that P̄i = Pi/wi. Substituting for the normalizing factor and the scaled

covariances, the GMD fusion rule in Eq. (3.12) is given in its final form as

p̃(x) = pg(x; m̃, P̃) , (3.13)

24

where

m̃ = P̃
N∑
i=1

wiP
−1
i mi and P̃ =

[N∑
i=1

wiP
−1
i

]−1

. (3.14)

Thus, the GMD fusion rule produces a Gaussian distribution when applied to a set

of N input Gaussian distributions; in fact, Eq. (3.13) is exactly the CI method for

fusing a set of N means and covariances.

3.2.1. Implementation. The implementation using the CI fusion rule prop-

agates the mean and covariance of each individual IMU and is followed by an applica-

tion of CI at each time step to output a fused mean and covariance. This fusion rule

is ideal for cheaper, fault-prone sensors in a distributed network by considering the

weights correlated with CI. There are many different weighting techniques, although

for brevity, only one will be examined. The process of the implementation of CI is

outlined and shown in the block diagram in Figure 3.3.

IMU1

a1,ω1

IMU2:

a2,ω2

...

IMUN :

aL,ωN

Mean and

Covariance

Propagation

Mean and

Covariance

Propagation

Mean and

Covariance

Propagation

Covariance
Inter-
section

m̃

P̃

Figure 3.3. IMU Data Fusion Computed by Covariance Intersection

It is useful to visually see the effects of the CI fusion rule. Consider an ex-

ample where two zero mean distributions, p1(x) and p2(x) respectively, with two

25

covariances and respective arbitrarily selected weights fused together using CI to pro-

duce the fused distribution p̃(x). The uncertainty ellipses based on their respective

distributions are plotted with the fused uncertainty ellipse in Figure 3.4. It is seen

−3 −2 −1 0 1 2 3

−2

−1

0

1

2
p1(x)
p2(x)
p̃(x)

Figure 3.4. CI Fusion Rule

that the fused data produce a smaller uncertainty ellipse that geometrically is pro-

jected and drawn through the intersections of the two distributions undergoing fusion.

However, it is not practical to arbitrarily select weights for each covariance; therefore,

a weighting scheme is needed to be shown.

3.2.2. Generalized Variance Weighting Selection. The covariance in-

tersection algorithm depends on weighting low uncertainties larger than high uncer-

tainties. One proposed method of weighting is taken from the generalized variance

method, proposed by Wilks, found in Reference [15], as a scalar measure of overall

multidimensional scatter. The generalized variance is the trace of the reciprocal of

the information matrix, which in the fusion case is the trace of the covariance matrix

tr{P }. With this knowledge, an algorithm for uncertainty weighting can be used to

26

intelligently weight the uncertain measurements. Noting that

L∑
i=1

wi = 1 ,

let P ∗ be the sum of the determinants of the covariance matrices, such that

P ∗ =
L∑
i=1

|Pi| .

The trace weights can then be appropriately given by

w∗
i =

tr{Pi}
P ∗ .

However, this weighting scheme provides large weights for higher covariances which

would allow for measurements with larger uncertainties to be trusted more than mea-

surements with lower uncertainties. Noting that the above weight’s value is inversely

proportional to the desired weight, the final expression for generalized variance weight

selection given as

wi =
1− w∗

i∑N
`=1w

∗
`

. (3.15)

3.3. FAULT TOLERANT FUSION

IMU failures are typically very rare for most spacecraft due to the high fidelity

nature of high-cost IMUs. In order to reduce the cost of using a single, high-cost,

high-reliability tactical or strategic grade IMU, consider the case where multiple low-

cost, commercial off-the-shelf (COTS) IMUs are used. In this case, the cost of a single

high-cost, high-reliability IMU-based navigation system can be reduced by using a

multiple low-cost IMU-based navigation system; however, this multiple IMU-based

27

system must be robust to faults in the IMUs as the lower-cost COTS IMUs have a

non-negligible possibility of failure as compared to the single high-cost IMU.

Two fault tolerant frameworks are considered for this multiple IMU-based

navigation system: direct averaging of the measured acceleration and angular velocity

provided by each IMU and fusing the dead-reckoned state of each IMU using the

CI method. The direct averaging method is expected to provide an estimate of

the vehicle state with a lower uncertainty than is obtained by fusing the individual

dead-reckoned navigation solutions using the covariance intersection method. When

fusing the individual dead-reckoned navigation solutions using CI, the weights used for

CI are selected as a function of the uncertainty in each dead-reckoned solution; thus,

this fusion rule is predicted to be more robust than the direct averaging fusion rule.

The uncertainty in the dead-reckoned solution corresponding to a failed sensor will

become very large, which means that its weight will tend to zero, thereby effectively

removing its influence on the fused navigation solution.

In order to take advantage of both the lower uncertainty obtained when direct

averaging the measured accelerations and angular velocities and the robustness of

fusing the individual navigation solutions using the CI method, a system is proposed

that runs both algorithms in parallel and uses the dead-reckoned solution correspond-

ing to the direct averaging method in the presence of no sensor failures. As a safe

mode, the algorithm will switch to using the fused navigation solution given by the

CI method in the case of sensor failure(s). This algorithm is summarized by Algo-

rithm 1 in Appendix B. In order for the uncertainty of the individual dead-reckoned

navigation solutions, P1,...,N , to propagate accurately, it is assumed that real-time

values for the error parameters of each IMU are available from some type of real-time

sensor calibration. This will cause Pi to grow more quickly when IMUi fails and

produces more corrupted data than normal. If these data are blindly averaged, as is

proposed in the direct averaging method, after a fault occurs in the system, then the

28

navigation solution corresponding to this method can no longer accurately represent

the covariance. In the case where the weights used in CI fusion can down-weight

failing sensors, the averaging fusion rule cannot be considered robust. As of now the

covariances being fused are modeled as the true uncertainty of the system which is

not the case in performing linear covariance. With this assumed knowledge of sensor

and covariance degradation, CI is expected to down-weight dead-reckoned solutions

with higher uncertainties acting as a pseudo fault detection method.

3.4. FUSION EXAMPLE

To demonstrate the performance of the proposed direct averaging and covari-

ance intersection fusion methods, a simulation is performed in which the navigation

solution fused from six low-cost IMUs is compared against the navigation solution ob-

tained using a single tactical grade IMU. The true non-gravitational acceleration and

angular velocities of the simulated IMUs are simulated for a spacecraft in LEO using

AGI STK1 with a primary spin about the body z-axis. The true accelerations and

angular velocities are corrupted according to the error model given in Eqs. (2.1). The

error parameters for these models are based off of the Microstrain 3DM-GX3-152 and

the Epson M-G362PDC13 IMUs and are summarized in Appendix A. Three of each

IMU are assumed to be on the spacecraft, which is considered to be a 1.0× 1.0× 1.0

meter cube. The locations of each of the six IMUs as well as the CM of the spacecraft

are shown in Table 3.1.

In order to compare the direct averaging and CI fusion rules, consider the

case where one of the Microstrain 3DM-GX3-15 IMUs fails at t = 100 s, an arbi-

trarily chosen time, and begins to provide more corrupted data. Because the noise

characteristics of this more corrupted data are assumed known, the uncertainty in

1http://www.agi.com/products/stk/
2http://www.microstrain.com/inertial/3dm-gx3-35
3http://www.epsondevice.com/en/sensing system/product/imu/g362/

29

Table 3.1. Spacecraft IMU Configuration

IMU Position Vector [m]

CG
IMU2

IMU6

IMU1

IMU4

IMU3

IMU5

IMU1: M-G362PDC1 d1 =
[
0.0 0.0 0.5

]
IMU2: M-G362PDC1 d2 =

[
0.0 0.5 0.0

]
IMU3: M-G362PDC1 d3 =

[
0.5 0.0 0.5

]
IMU4: 3DM-GX3-15 d4 =

[
0.0 −0.5 0.0

]
IMU5: 3DM-GX3-15 d5 =

[
−0.5 0.0 0.0

]
IMU6: 3DM-GX3-15 d5 =

[
0.0 0.0 −0.5

]

the navigation solution associated with this IMU begins to grow very quickly. For

brevity, only the position and attitude uncertainties are presented because the po-

sition and velocity uncertainties follow the same general trends and uncertainty is

the most effective way to evaluate the fusion rules. The legend used for presenting

the results is shown in Table 3.2. To provide information on the trend of uncer-

Table 3.2. Fusion Example Legend

Single 3DM-GX3-15 IMU Failure
Systron Donner: SDI-500 (Not Fused)
Epson: M-G362PDC1
Micro Strain: 3DM-GX3-15
Covariance Intersection Fusion Rule
Direct Averaging Fusion Rule

tainty growth, the position and attitude root-sum-square (RSS) are shown in Figure

3.5. The failure of the single Microstrain 3DM-GX3-15 IMU at t = 100 s causes an

instantaneous change in how the uncertainty of the single IMU dead-reckoning nav-

igation solution evolves. In the case of the position RSS, because the failure causes

changes to the IMU acceleration, the effects are less immediate due to the necessity

30

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

200

400

600

800

Figure 3.5. Position [m] and Attitude [deg] RSS Error

of doubly integrating the acceleration. In terms of the fusion rules, however, the

position RSS demonstrates the quickest switch between the direct averaging fusion

rule and the CI fusion rule. At approximately t = 125 s, the CI fusion rule begins

to outperform the direct averaging fusion rule in position uncertainty. This reversal

occurs only at approximately t = 180 s in the attitude uncertainty. In order to show

the uncertainty in the position with less cluttered plots, a series of two dimensional

uncertainty contour plots in the x − y plane are shown at t = 50, 200, and 300 s in

Figure 3.6. The first time step shows the position uncertainty before any IMU failure,

which illustrates that the direct averaging fusion rule provides a more confident navi-

gation solution in the presence of no IMU failures. The next two time steps show the

position uncertainty after the IMU failure, demonstrating that the CI fusion rule is

preferred in the case of an IMU failure. While the direct averaging fusion rule clearly

follows along with the failed IMU, the CI fusion rule downweights the failed IMU and

is seen to be consistent with the remaining, nominally operating IMUs. However, the

CI fusion rule has no knowledge of a sensor failure so a comparison of the two fusion

31

−2,000 0 2,000

−2,000

−1,000

0

1,000

2,000

−500 0 500
−600

−400

−200

0

200

400

600

−10 0 10

−10

0

10

Figure 3.6. x− y Uncertainty Contours [m] at 50, 200, 300 [s], Respectively

rules’ true covariance outputs are shown for position and attitude in Figure 3.7. It

can be determined that the true uncertainty of data averaging system undergoing no

sensor failures can be characterized much closer to that of a tactical grade IMU. The

CI fusion rule cannot obtain a covariance navigation solution lower than the lowest

individual sensor which promotes direct averaging over CI.

3.5. FUSION METHODOLOGY SUMMARY AND CONCLUSION

In order to provide a lower-cost inertial measurement unit (IMU)-based navi-

gation system as opposed to one that uses a typical high-cost, high-reliability tactical

or strategic grade IMU, a fault-tolerant method was proposed that uses multiple low-

cost IMUs and fuses their data together via a direct averaging method or fuses their

individual navigation solutions together via the covariance intersection (CI) fusion

rule. It is demonstrated that the direct averaging fusion rule tends to outperform the

CI fusion rule during nominal operations where no hardware failures are present. On

the other hand, the CI fusion rule is shown to outperform the direct averaging fusion

rule when an IMU fails due to the ability of the CI fusion rule to selectively down-

weight the navigation solution obtained from the failed IMU. The proposed algorithm

32

Systron Donner: SDI-500 (Not Fused)
Direct Averaging Fusion Rule
Covariance Intersection Fusion Rule

0 100 200 300
−400
−200

0
200
400

Time [s]

0 100 200 300
−400
−200

0
200
400

0 100 200 300
−400
−200

0
200
400

(a) Fused Position Uncertainty [m]

0 100 200 300
−0.1

−5 · 10−2
0

5 · 10−2
0.1

Time [s]

0 100 200 300
−0.1

−5 · 10−2
0

5 · 10−2
0.1

0 100 200 300
−0.1

−5 · 10−2
0

5 · 10−2
0.1

(b) Fused Attitude Uncertainty [deg]

Figure 3.7. Fusion Rule Uncertainty Comparison

uses the navigation solution propagated using the direct averaged data when there

are no IMU faults because it provides a more confident solution. In the case of an

IMU failure, the algorithm will recognize the failure, and the navigation solution from

the covariance intersection method will be used. However, the covariance propagation

is a function of sensor errors given from data sheet specifications. The uncertainties

undergoing failures were realized by adding in the sensor failure parameters into the

IMU model forcing knowledge of the failure. If the covariance propagation could au-

tonomously detect changes in sensor parameters, then CI would be the robust, fault

tolerant fusion method. However, this error realization is not likely or realistic. It

was seen in the results that a simple averaging fusion method produces a more accu-

rate navigation solution than that of CI concluding that direct averaging is the best

33

option for IMU data fusion. Therefore, data averaging has no knowledge of faulty

data, a fault detection architecture must be examined and implemented to provide a

true fault tolerant multi-sensor network on-board a spacecraft.

34

4. FAULT DETECTION

To reiterate the conclusions of the comparison of direct averaging and CI,

direct averaging out performs CI in the case of no faults. It was also seen that if a

sensor failure is present, CI has the robust ability to recognize the fault if weighted

correctly. Unfortunately, the proposed weighting solution is a function of covariance

which is computed from sensor data sheet statistics and specifications. This leaves

both fusion methods with the need for a robust, fault detection scheme, and due to

the higher estimate direct averaging has to offer, the proposed fusion method in the

considerations of fault detection is that of direct averaging. Principal Component

Analysis (PCA) is the initial proposed fault detection method. However, an example

is shown concluding in the need of a more desirable, modified version of PCA that

better fits the dynamic nature of IMUs.

4.1. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) has many applications, such as dimen-

sionality reduction, feature extraction and data visualization. While dimensionality

reduction does not have much application to detecting faults in IMU data, feature

extraction and data visualization play an important role in recognizing faults in an

IMU sensor network. From Bishop [16], there are two commonly used definitions of

PCA consisting of a maximum variance formulation and a minimum-error formula-

tion. The maximum variance formulation orthogonally projects data onto a linear

space with lower dimension such that the variance of the transformed data is maxi-

mized. This linear space is known as the principle subspace or the feature plane. The

minimum-error formulation linearly projects the data while minimizing the average

projection cost. Each method is equivalent, and the studied PCA definition will be

that of the maximum variance formulation. In the case where there is no dynamical

35

movement, consider a multiple IMU sensor network with N number of IMUs. Fol-

lowing procedures from Lee [8] and Bishop [16], the first step is to fuse the data by

directly averaging the measurements to get xavg, governed by

xavg =
1

N

N∑
i=1

x̂i, (4.1)

where x̂i ∈ Rm is the measured outputs from each IMU i.e. ai or ωi. A data set

is then constructed to produce zero mean data, mp,i, by subtracting the averaged

output from each measurement given as

mp,i = x̂i − xavg , (4.2)

The next step is to compute the measurement covariance matrix. By definition the

covariance is given by

P = E
{
(x− E[x]) (x− E[x])T

}
,

which can be notationally written for a multi-sensor system as

P =
1

N

N∑
i=1

(x̂i − xavg) (x̂i − xavg)
T (4.3)

=
1

N

N∑
i=1

mp,im
T
p,i , ∈ Rm×m. (4.4)

This covariance can be written in terms of its eigenvectors and eigenvalues, such that

P = V ΓV T , V =

[
v1 v2 · · · vm

]
(4.5)

where V ∈ Rm×m is the eigenvector matrix of P composed of m unit eigenvectors

vi, and Γ ∈ Rm×m is the diagonal eigenvalue matrix of P . This is found by solving

36

the characteristic equation

(P − λiIm×m)vi = 0, (4.6)

where λi and vi denote the i
th eigenvalue and eigenvector respectively. The eigenvec-

tors and eigenvalues are introduced as a representation of the variance in the data

due to their orthogonality, which exposes patterns in the data. This pattern can be

thought of as a relationship of the data sets that are related along a best-fit line. The

most significant relationship between the data sets is known as the principle compo-

nent and can be represented by the eigenvector with the largest eigenvalue. Once all

eigenvector and eigenvalue pairs are found, it is important to list them from largest

to smallest which will give an ordering of significance to the components known as

a feature vector matrix Φ. Components of lesser significance can then be ignored;

however, some information will be lost, but this can be considered negligible for most

cases. The feature matrix can be written in terms of the most significant eigenvectors

to lowest written as

Φ =

[
φ∗

1 φ∗
2 · · · φ∗

s

]
,

where the ∗ superscript represents the eigenvectors in order of most significant to

least, and the subscript s denotes the number of selected dimensions used where

s ≤ m. The feature vector constructed is then used to transform the original data

into a new data set that shows the sensor’s data patterns; the transformed data is

y = ΦT

[
x̂1 x̂1 · · · x̂N

]T
, (4.7)

where y is the transformed data set that correlates the original data with a sensor

pattern. While this case is only useful for a sensor with no movement, PCA can

37

be used for sensor calibration and fault detection when the system is at rest. This

also lays the foundation for MPCA, which will provide fault tolerant algorithms for

dynamical systems.

4.2. FAULT DETECTION EXAMPLE

A motivating example is provided to compare PCA for a static and dynamic

accelerometer. Consider six (L = 6) 3-axis (m = 3) accelerometer systems assuming

each accelerometer is at the center of mass. Throughout the example two selected

dimensions for the feature matrix (s = 2) are used. The static measurements are

simulated by corrupting a true acceleration of as = 0 and the dynamic measurements

are simulated from the equations of motion given by ad =
[
sin2(θ) cos(θ) 0.0

]T
where θ = t∆t [rad]. The example is carried out with ∆t = 0.01 [s], with a simulation

time of 10 seconds, tf = 10 [s]. At 5 seconds into the simulation, accelerometer three

undergoes an increase in bias and noise, simulating a sensor fault. This example

is used to prove and visualize the need for a modified version of PCA for dynamic

systems. The measurements are then transformed using principal components based

on Eq. (4.7). Figure 4.1 shows the effects and behavior of PCA applied on the static

and dynamic systems.

Note that y1 is the dominant information holder in the feature plane due to the

feature vector matrix Φ giving preference to the most significant eigenvector. After

a failure y1 is dominated by the fault allows for the fault to expose itself while y2 is

dominated by the patterns of sensor noise. It is seen that in the static case, PCA

is able to easily identify threshold outliers enabling a fault alarm to disregard the

outlying measurements. The threshold value is selected based on the interpretation

on what is and is not a failure. A fault alarm is determined by pulling a fault

identification signal high to alert the system of a failure with a corresponding sensor

ID (i = 3) in this case. This method is discussed in depth in the simulation results

38

Nominal Principal Component
Off-Nominal Principal Component
Fault Alarm Threshold

−0.02 0.0 0.02 0.04 0.06 0.08 0.1

−4

−2

0

2

4

·10−2

y1

y2

(a) Static PCA

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y1

y2

(b) Dynamic PCA

Figure 4.1. Effects of PCA Undergoing Single Sensor Failure for Static and Dynamic
Systems

section. However, in the dynamic case, the principal components containing fault

information cannot be distinguished from the nominal principal components proving

a need to remove dynamic effects from the feature plane. This is the goal when

modifying the principal component analysis method.

In Figure 4.1, it is seen that principal components tend to shrink in the first

principal component direction. When plotted in two dimensions (y1 vs. y2), this

decrease in the first principal component is not easily seen; therefore, each principal

component is plotted separately versus time for the static case and the dynamic case

and is shown in Figure 4.2.

While the clustered data points in the two dimensional plots become apparent

from the one dimensional plots, it is desired to seek an explanation for the drastic

decrease in the feature plane along the first principal component. The static case is

examined in order to conclude a reasoning for this phenomena. It is known that the

39

Nominal Principle Component
Off-Nominal Principle Component

0 2 4 6 8 10
−0.04

−0.02

0.0

0.02

0.04
·10−2

Time [s]

y2

0 2 4 6 8 10
−0.05

0.0

0.05

0.1

0.15

y1

(a) Static PCA

0 2 4 6 8 10
−1

0

1

Time [s]

0 2 4 6 8 10

−1

0

1

(b) Dynamic PCA

Figure 4.2. First and Second Principal Components versus Time for a Static and
Dynamic System Undergoing a Single Sensor Failure

direction of the eigenvectors, used as the first and second principal components, are

orthogonal and geometrically point along the best-fit lines through data along the

first and second principal directions. The eigenvector pairs are plotted over a point

cloud of zero-mean data in three dimensions for twenty sensors instead of the six

sensors priorly used to emphasize the illustration. In the current discussion of fault

detection, faulty data is denoted as off-nominal components, and the functional data

is denoted as nominal components. These illustrations are plotted at three epochs

prior-and post-failure and are shown in Figure 4.3.

From the PCA derivation, it is known that the feature plane is a function of

the principal eigenvectors and the data set. Figures 4.3a-4.3c shows direction of the

principal components pointing along the best fit line through the data. It is seen that

both eigenvectors are pointing in drastically different directions at each epoch that

accounts for the “noisy” feature plane patterns before the failure. Examining the

40

Zero Mean Data Set
1st Principal Component
2nd Principal Component

(a) t = 3 s (b) t = 4 s (c) t = 5 s

(d) t = 6 s (e) t = 7 s (f) t = 8 s

Figure 4.3. First and Second Principal Components Plotted Over 3-Dimensional
Zero-Mean Data Set Before and After Failure

failure case in Figures 4.3d-4.3f, it is seen that the best fit line along the 1st principal

component is along the direction of the faulty sensor data. The 1st principal compo-

nent’s variation remains relatively constant after the fault in order to geometrically

satisfy the best fit line along the fault.

4.3. MODIFIED PRINCIPAL COMPONENT ANALYSIS

Recall that PCA can only be used for a non-moving sensor due to the fault-like

data patterns caused by sensor motion. Hence, the Modified Principle Component

Analysis (MPCA) is introduced to allow for fault detection in a dynamic system. This

modified method uses a training data set x̂T , which is the measured IMU outputs from

a desired sensor to form the basis of a training set or training vector. From Reference

41

[8], the parity space concept is implemented, which helps remove the negative effects

caused by sensor movement.

A matrix Θ is required in order to formulate the parity space, which is defined

as the column space of Θ and is defined by the following conditions: Θ is a positive

definite trapezoidal matrix that satisfies the conditions [8]

ΘH = 0 , ΘΘT = I ∈ Rn−ζ×n−ζ ,

and

Θ =

[
θ1 θ2 · · · θn−ζ

]T
=

[
θc,1 θc,2 · · · θc,n,

]

where H is the sensor orientation matrix that defines the physical sensor placement

and rotation for the distributed system of IMUs, n is the number of sensors used, and

ζ is the rank of H . The first step in computing the Θ matrix is to find the null space

of H , which will be denoted as N ; that is,

N = null (H) .

Then, to ensure that the needed conditions are satisfied, a QR factorization method

[17] is applied to N and the resulting R matrix in the factorization is the Θ matrix.

Using this method, N can be decomposed into two matrices Q and R. The R matrix

formulated from this null space meets all of the conditions for Θ and is formally

defined as

N = QR = QΘ. (4.8)

42

where Q is an m × m unitary matrix and R (or Θ) is an upper triangular matrix;

hence, Θ is trapezoidal in this case.

As stated before a training vector is used to remove the dynamic effects in

the feature plane. A training parity matrix is found by multiplying a subset of the

columns of Θ and the training vector as

pT =

[
θ1 θ2 · · · θm

]
x̂T .

This training parity matrix is now a function of sensor movement based on the training

vector. The feature vector used to transform the data into the feature plane in the

MPCA formulation YT can then be calculated by finding the null space of pT to

effectively create a matrix that negates dynamic effects and is given as

YT = null(pT).

A parity matrix, which transforms all measurements into the same orientation space,

is computed as

p = Θ

[
x̂1 x̂1 · · · x̂N

]T
.

The columns of Θ are defined as the projections of the direction of measurements

onto the parity space. The parity matrix and dynamic null space matrix are used to

create a sub-transformed data set, y∗, which is not a function of sensor movement,

and is given as

y∗ = Y T
T Ω. (4.9)

43

Now, the typical PCA algorithm can be applied such that the covariance is written

as

P =
1

N

N∑
i=1

(pi − pT)(pi − pT)
T .

Recall from PCA that the eigenvector decomposition of the covariance matrix is

sorted so that the most significant eigenvector, eigenvalue pair rank from highest to

lowest, which creates the principal components for the dynamic system. This sorted

eigenvector decomposition matrix is the feature matrix, Φ, which gives the feature

plane transformation with the utilization of Eq. (4.9) shown as

y = ΦTy∗. (4.10)

4.4. TRAINING VECTOR FAILURE

MPCA is proven to work for a dynamic system under the assumption that the

training vector does not fail. As stated before, the training vector output is a user-

specified IMU that is considered to be the most trusted. However, in a redundant

sensor network of homogeneous sensors, the training vector has the same probability

of failure as the rest of the sensors. This gives rise to the need for a fault detection

method applied specifically to the training vector. The proposed method takes ad-

vantage of the previously discussed CI fusion rule within the feature plane data set

with reduced dimensionality. This allows for a measurement covariance fusion pro-

cess that enables faults to be easily detected using a covariance distance thresholding

scheme.

4.4.1. Covariance Intersection in the Feature Plane. Recall that the

transformed feature plane measurements yi, are zero mean even for a dynamical

system when using MPCA. This allows for the expected value of the feature plane

44

measurements to be calculated after using the previous j iterations, where j is a

user-specified parameter. Recall from PCA analysis that the measurement covariance

is defined as

P = E
{
(x− E[x]) (x− E[x])T

}
,

For MPCA, the training vector can be thought of as the expected value due to the

governing dynamic principles. This allows for a covariance to be calculated based on

the training vector itself. The expected value of each feature plane measurement can

be thought of as the average of the previous j iterations, and the training vector set

data that has been transformed into the feature plane is denoted by ytv. Therefore

the feature plane covariance can be expressed as

Py,i =
1

j

j∑
`=1

(
y
(k−`)
i − y

(k−`)
tv

)(
y
(k−`)
i − y

(k−`)
tv

)T

, (4.11)

where j is the number of previous iterations desired to be used in the feature plane

covariance calculation and the superscript (k − `) denotes the `th previous iteration

from the current iteration k. The feature plane covariance based on the training

vector is then processed via CI. From Reference [18], the CI rule is derived from the

geometric mean density (GMD) fusion rule [5] applied to L Gaussian distributions.

The resulting general equations are given in Eqs. (4.12)

m̃y = P̃y

L∑
i=1

wiP
−1
y,i mi and P̃y =

[L∑
i=1

wiP
−1
y,i

]−1

, (4.12a)

where wi is the associated weight for each mean and covariance matrix. Note that the

fused mean is not needed for this training vector fault detection method as interest is

only held in the uncertainty. It is known that the uncertainty for the training vector

case Py,tv will be equal to the null matrix. Assuming no failure in the system, the

45

uncertainty ellipses will maintain small uncertainty surrounding the Py,tv uncertainty

ellipse which happens to be zero. Therefore, if all failed sensors are accounted for and

taken out of the system based on MPCA thresholding, the only time the uncertainty

ellipses change in magnitude will be the result of a failure in the training vector. This

brings up a need for a thresholding solution.

4.4.2. Kullback-Leibler Divergence Covariance Threshold. The pro-

posed fault detection method for the training vector is left with a need for a failure

threshold solution. The detection of a failure for this paper is governed by calculating

the distance between covariance matrices by using the Kullback-Leibler divergence.

The Kullback-Leibler divergence dKL(p||q) between the two distributions p(x) and

q(x) is defined by the integral

dKL(p||q) =
∫ ∞

−∞
p(x)ln

p(x)

q(x)
dx

For two multivariate normal distributions with means µA and µB and with covariance

matrices A and B, the Kullback-Leibler divergence between the two distributions is

[19]

dKL(p||q) =
1

2

[
trace

{
A−1B

}
+ (µA − µB)

TA(µA − µB)− k + ln (|B|/|A|)
]

where k is the dimension of distributions. Assuming equal means, the Kullback-

Leibler divergence can then be computed as

d(A,B) = dKL(p||q) =
1

2

[
trace

{
A−1B

}
− k + ln (|B|/|A|)

]
.

46

Using this covariance measure, a fault alarm can be triggered using the following

condition:

if d(A,B) ≤ threshold, then ytv = nominal

if d(A,B) > threshold, then ytv = fail

If a fault alarm has been triggered, the system can then default to a different IMU

to be considered as the training vector.

4.4.3. Shannon Entropy Threshold. The Kullback-Leibler divergence is

the thresholding method used in the simulation results; however, it is sometimes useful

to examine other thresholding methods. Another method proposed is to measure the

Shannon entropy of each covariance matrix. The Shannon entropy is defined by the

integral

d(A) = −
∫

p(x)logp(x)dx = E{−logp(x)}

This entropy is a measure of the organization or lack of organization of a random

variable; i.e., the more spread out a random variable is, the higher its entropy is. For

a Gaussian pdf with covariance A it can be shown that the Shannon entropy is

d(A) =
1

2
log|2πeA|.

Using this covariance measure, a fault alarm can be triggered using the following

condition:

if d(A) ≤ threshold, then ytv = nominal

if d(A) > threshold, then ytv = fail

47

As stated before, if a fault alarm for the training vector has been triggered, the system

can then default to a different IMU to be considered as the training vector. Again, in

a homogeneous network of sensors, the training vector is typically chosen arbitrarily,

therefore if a training vector fails, a back-up training vector is arbitrarily chosen as

well.

48

5. MEASUREMENT MODELING

Measurement models are developed for Kalman filtering applications needed

to complete the navigation algorithm. The sensor models are to be used for spacecraft

navigation applications per topics discussed in this section. Position updates will be

determined by the processing of position measurements which are used to simulate

the performance of a GPS position fix. The attitude updates will be determined by

a quaternion measurement resembling a star camera quaternion measurement. The

measurements that are modeled and processed here are not realistic in a spacecraft

navigation environment or architecture, but are used as a tool to better aid the

understanding of redundant IMU fault detection on-board.

5.1. POSITION MEASUREMENT MODELING

The position of the spacecraft, or sensor, in the inertial frame, ri
sc, is con-

structed by the addition position of the IMU in the inertial frame, ri
imu, and the

position of the CM of the spacecraft with respect to the IMU in the body frame

rb
s/imu. In addition, rb

s/imu must be rotated from the body frame into the inertial

frame by the quaternion rotation given as T i
b . This gives the final form of the posi-

tion as

ri
sc = ri

imu + T i
br

b
s/imu. (5.1)

However, the position measurement will be corrupted by a zero-mean, Gaussian white-

noise sequence vr. Therefore, the position of the spacecraft ri
sc and its corresponding

estimate r̂i
sc are defined as

ri
sc = ri

imu + T i
br

b
s/imu + vr

49

r̂i
sc = r̂i

imu + T̂ i
br

b
s/imu.

Note that rb
s/imu is assumed to be deterministic; therefore, it does not need to be

estimated. The error in the estimate is then needed in the construction of the extended

Kalman filter. The error estimate can be shown by the difference equation of ri
sc and

r̂i
sc given as

δri
sc = (ri

imu + T i
br

b
s/imu +wr)−

(
r̂i
imu + T̂ i

br
b
s/imu

)
.

Rearranging terms and defining the error of δri
imu as

δri
imu = ri

imu − r̂i
imu,

the error in the position of the spacecraft can be written as

δri
sc = δri

imu +
{
T i
b − T̂ i

b

}
rb
s/imu + vr.

The true rotation matrix, T i
b , can be expanded using a first-order Taylor series ex-

pansion about its estimate as

T i
b = T̂ i

b − T̂ i
b

[
δθi

b×
]

where δθi
b is defined as the attitude error and [δθi

b×] is defined as the skew symmetric

cross product matrix of the attitude deviation. Plugging in this relation, and reversing

the cross product matrix, the final position error is given as

δri
sc = δri

imu − T̂ i
b

[
rb
s/imu×

]
δθi

b + vr. (5.2)

50

It is then seen that the sensitivity of the position measurement has components

associated with position error, attitude error and measurement noise.

5.2. QUATERNION MEASUREMENT MODELING

The quaternion attitude state of a spacecraft representing the orientation of

the inertial frame with respect to the body frame, q̄b
i , is considered to be given as

a measurement by some means. The measured quaternion is taken to be the true

quaternion corrupted by a zero-mean, Gaussian white-noise sequence, vθ, that is

multiplicatively injected by the quaternion multiplication. Therefore, the quaternion

and its respective estimate are given as

z̄b
i = q̄(vθ)⊗ q̄b

i , and ˆ̄zb
i = ˆ̄qb

i

where q̄(vθ) is defined to as

q̄(vθ) =

sin ||vθ||
2

vθ

||vθ||

cos ||vθ||
2

 .

The difference between the true and estimated measurements in terms of its rotation

angle is then desired and can be computed by taking twice the vector part of the

quaternion multiplication between the quaternion measurement and the inverse of the

estimate. The term q̄b
i ⊗ ˆ̄qb

i is well approximated as a small angle rotation quaternion

giving the approximation

z̄ ⊗
(
ˆ̄z
)−1 ≈

[
1
2
δz

]
.

51

Therefore, taking twice the vector part of this assumption gives the attitude error

estimate solely in terms of its error which is given as

δz = 2vec
(
q̄b
i ⊗ (ˆ̄qb

i)
−1
)
. (5.3)

5.3. RANGE MODELING

The range, ρ, by definition, is the magnitude of the difference between two

position vectors. For this case, the two position vectors will be the vehicle’s position

in the inertial frame ri
s, and the position vector of a transmission receiving ground

station ri
g in the inertial frame, which is assumed to be known. The position vector

difference in the inertial frame is determined by

δri = ri
s − ri

g

= ri
s − T i

fr
f
g

= ri
imu + T i

br
b
s/imu − T i

fr
f
g

Then the range is shown as

hρ (x) = ||δri||2

=

√
(δri)T (δri).

The range equation can be expanded as

ρ =

√(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T (
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)
. (5.4)

To simplify notation, let

ri
s/g =

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)

52

where ri
s/g is defined as the position vector of the range sensor to the ground station

in the inertial frame. However the range sensor measurements will be corrupted by

a zero-mean, Gaussian white-noise sequence, vρ. Therefore, the range measurement

zρ, and its corresponding estimate ẑρ, are defined as

zρ =

√(
ri
s/g

)T (
ri
s/g

)
+ wρ , ẑρ =

√(
r̂i
s/g

)T (
r̂i
s/g

)
,

where

r̂i
s/g =

(
r̂i
imu + T̂ i

br
b
s/imu − T i

fr
f
g

)
.

Now, the difference between the true measurement and its estimate is considered as

δzρ = zρ − ẑρ.

Expanding the first term in a first-order Taylor series expansion about the estimated

states gives

δzρ =
[
ẑρ + fρδr

i
s/g + vρ

]
− ẑρ = fρδr

i
s/g,

where fρ is the partial derivative of range with respect to the position of the range

sensor with respect to the ground station, which is defined as

fρ =
∂ρ

∂ri
s/g

=

(
ri
s/g

)T

√(
ri
s/g

)T (
ri
s/g

)
with its respective deviation, δri

s/g, defined as

δri
s/g = ri

s/g − r̂i
s/g =

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)
−
(
r̂i
imu + T̂ i

br
b
s/imu − T i

fr
f
g

)
.

53

The range deviation expression is then simplified to be

δzρ = fρδr
i
imu + fρ

[
T i
b − T̂ i

b

]
rb
s/imu + vρ.

Then, using the relation to obtain the first-order approximation of the body to inertial

transformation matrix in terms of its estimate, which is shown as

T i
b = T̂ i

b − T̂ i
b

[
δθi

b×
]

and plugging this relation back into δzρ gives the final form of the range deviation as

δzρ = fρδr
i
imu − fρT̂ i

b

[
δθi

b×
]
rb
s/imu + vρ

= fρδr
i
imu + fρT̂ i

b

[
rb
s/imu×

]
δθi

b + vρ. (5.5)

It is then seen that the sensitivity of the range measurement has components associ-

ated with position error, attitude error and measurement noise

5.4. RANGE RATE MODELING

The range-rate, ρ̇, is found by taking the time derivative of Equation 5.4. To

simplify this derivation, both sides of the range equation are squared to give

ρ2 =
(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T (
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)
.

Then, differentiating ρ2 with respect to time yields

2ρρ̇ = 2
(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T d

dt

{(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)}
,

54

which can be simplified to

ρρ̇ =
(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T d

dt

{(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)}
. (5.6)

Now, the variable vi
s/g is defined to be

vi
s/g =

d

dt

{(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)}
= ṙi

imu + Ṫ i
br

b
s/imu + T i

b ṙ
b
s/imu − Ṫ i

fr
f
gT

i
f ṙ

f
g ,

where the time derivative of the two attitude matrices, defined in Reference [20], are

given as

Ṫ i
b =

(
Ṫ b
i

)T

Ṫ i
f =

(
Ṫ f
i

)T

=
(
−[ωb

b/i×]T b
i

)T
=

(
−[ωf

f/i×]T f
i

)T

=
(
T b
i

)T (
−[ωb

b/i×]
)T

=
(
T f
i

)T (
−[ωf

f/i×]
)T

= T i
b [ω

b
b/i×] = T i

f [ω
f
f/i×].

Additionally, rb
s/imu and rf

g are constant, known position vectors; therefore,

ṙb
s/imu = 0 and ṙf

g = 0

and vi
s/g may be written as

vi
s/g =

(
vi
imu + T i

b [ω
b
b/i×]rb

s/imu + T i
f [ω

f
f/i×]rf

g

)

The range rate can now be expressed as

ρ̇ =
1

ρ

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T (
vi
imu + T i

b [ω
b
b/i×]rb

s/imu + T i
f [ω

f
f/i×]rf

g

)

55

Plugging back in all needed relations into the above equation yields the final form for

range rate given by

ρ̇ =

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T (
vi
imu + T i

b [ω
b
b/i×]rb

s/imu − T i
f [ω

f
f/i×]rf

g

)
√(

ri
imu + T i

br
b
s/imu − T i

fr
f
g

)T (
ri
imu + T i

br
b
s/imu − T i

fr
f
g

) (5.7)

To simplify this, recall that

ri
s/g =

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)
vi
s/g =

(
vi
imu + T i

b [ω
b
b/i×]rb

s/imu − T i
f [ω

f
f/i×]rf

g

)
,

where ri
s/g is defined as the position vector of the range sensor to the ground station

in the inertial frame and vi
s/g is the velocity vector of the range sensor with respect

to the ground station in the inertial frame. However, the sensor measurements will

be corrupted by a zero-mean, Gaussian white-noise sequence, vρ̇. Therefore, zρ̇ and

its corresponding estimate ẑρ̇, are defined as

zρ̇ =
ri
s/gv

i
s/g√(

ri
s/g

)T (
ri
s/g

) + vρ̇ , ẑρ̇ =
r̂i
s/gv̂

i
s/g√(

r̂i
s/g

)T (
r̂i
s/g

)
where

r̂i
s/g =

(
r̂i
imu + T̂ i

br
b
s/imu − T i

fr
f
g

)
v̂i
s/g =

(
v̂i
imu + T̂ i

b [ω̂
b
b/i×]rb

s/imu − T i
f [ω

f
f/i×]rf

g

)
.

Then the deviation of the range-rate measurement from its estimate can be shown by

taking the difference between zρ̇ and ẑρ̇ and expanding the first term in a first-order

56

Taylor series expansion about the estimate gives

δzρ̇ = zρ̇ − ẑρ̇ =
[
ẑρ̇ + fρ̇δr

i
s/g + gρ̇δv

i
s/g + vρ̇

]
− ẑρ̇ = fρ̇δr

i
s/g + gρ̇δv

i
s/g + vρ̇. (5.8)

The partial of ri
s/g with respect to range-rate can be solved in a rather straightforward

manner as

fρ̇ =
vi
s/g

T√(
ri
s/g

)T (
ri
s/g

)
I3×3 −

ri
s/gr

i
s/g

T(
ri
s/g

)T (
ri
s/g

)


=
vi
s/g

T

ρ

[
I3×3 −

ri
s/gr

i
s/g

T

ρ2

]
.

Likewise, the partial of range-rate with respect to vs/g is given by

gρ̇ =
ri
s/g

T√(
ri
s/g

)T (
ri
s/g

) =
ri
s/g

T

ρ
.

The terms δri
s/g and δvi

s/g in Equation 5.8 are given as

δri
s/g = ri

s/g − r̂i
s/g =

(
ri
imu + T i

br
b
s/imu − T i

fr
f
g

)
−

(
r̂i
imu + T̂ i

br
b
s/imu − T i

fr
f
g

)
δvi

s/g = vi
s/g − v̂i

s/g

=
(
vi
imu + T i

b [ω
b
b/i×]rb

s/imu − T i
f [ω

f
f/i×]rf

g

)
−

(
v̂i
imu + T̂ i

b [ω
b
b/i×]rb

s/imu − T i
f [ω

f
f/i×]rf

g

)
.

Using the relation to obtain the first order approximation of the body to inertial

transformation matrix in terms of its estimate, which is shown as

T i
b = T̂ i

b + T̂ i
b

[
δθi

b×
]
.

57

The term vi
s/g can then be simplified to

vi
s/g =

(
v̂i
imu + δvi

imu

)
+
(
T̂ i
b + T̂ i

b

[
δθi

b×
]) [(

ω̂b
b/i + δωb

b/i

)
×
]
rb
s/imu − T i

f

[
ωf

f/i×
]
rf
g

=
(
v̂i
imu + δvi

imu

)
+ T̂ i

b

[
ω̂b

b/i×
]
rb
s/imu − T̂ i

b

[
rb
imu×

]
δωb

b/i − T̂ b
b/i

[(
ω̂b

b/i × rb
s/imu

)]
δθi

b.

Subtracting the estimate of the sensor velocity with respect to the ground station,

δvi
s/g becomes

δvi
s/g = δvi

imu − T̂ i
b

[
rb
s/imu×

]
δωb

b/i − T̂ i
b

[(
ω̂b

b/i × rb
s/imu

)
×
]
δθi

b.

The last step is to plug δri
s/g and δvi

s/g back into the measurement variation. It is

then shown that δρ̇ becomes

δżρ̇ =
(
Rρδr

i
imu +Rρ

[
T i
b − T̂ i

b

]
rb
s/imu

)
+ Vρ̇δv

i
imu − Vρ̇T̂

i
b

[
rb
s/imu×

]
δωb

b/i (5.9)

− Vρ̇T̂
i
b

[(
ω̂b

b/i × rb
s/imu

)
×
]
δθi

b + wρ̇

=
(
Rρδr

i
imu −RρT̂ i

b

[
rb
s/imu×

]
δθi

b

)
+
(
Vρ̇δv

i
imu − Vρ̇T̂

i
b

[
rb
s/imu×

]
δωb

b/i (5.10)

− Vρ̇T̂
i
b

[(
ω̂b

b/i × rb
s/imu

)
×
]
δθi

b

)
+ wρ̇. (5.11)

5.5. UNIT VECTOR STAR CAMERA MODELING

By imaging stars and mapping them to a celestial reference, the unit vector

to a star is measured as a function of the declination and right ascension of the star.

A practical and common assumption is made that the stars are at infinity, meaning

that the position of the star in the inertial frame is much greater than the position

of the IMU in the inertial frame and the position of the star camera to the IMU i.e.

rs � rimu and rs � rsc/imu. Note that the imaged star and the star camera are

denoted by the subscripts s and sc. This measurement model follows the derivation

found Reference [12]. The position of the star from the star camera in the body frame

58

is then given by

rb
s/sc = T b

i r
i
s.

A new reference frame is now introduced as the “celestial reference” frame (cr) in

which the star’s coordinates are written. The celestial reference frame is considered

to be at the center of the Earth. Therefore, the above equation can be written as

rb
s/sc = T b

i T
i
crr

c
sr.

Also, note that ||rb
s/sc|| = ||rcr

s ||. The model of the star camera can then be written

as

usc
s/sc = T sc

b T b
i T

i
cru

cr
s/sc

However, the star camera measurements will be corrupted by a zero-mean, Gaussian,

white-noise sequence, vsc
sc. Therefore, the practical use of the star camera measure-

ment model is written as

zsc = T sc
b T b

i T
i
cru

cr
s/sc + vsc.

The estimated star camera measurement can be written as

ẑsc = T sc
b T̂ b

i T
i
cru

cr
s/sc. (5.12)

Now the deviation of the star camera measurement is examined and can be written

as

δzsc = zsc − ẑsc = T sc
b

[
T b
i − T̂ b

i

]
T i
cru

sr
s/sc + vsc

sc.

59

Then applying a first-order Taylor series expansion and rearranging cross product

terms introduces the measurement deviation as a function of attitude error, θi
b, as

δzsc = T sc
b

[
T̂ b
i T

i
cru

cr
s/sc×

]
δθi

b + vsc
sc (5.13)

Attitude error and star-camera measurement noise are the only sensitivity associated

components of the star camera measurement.

60

6. NAVIGATION ALGORITHM

6.1. THE DISCRETE EXTENDED KALMAN FILTER

It is known that the Kalman filter operates on linear dynamical systems; how-

ever, spacecraft two-body dynamics obey nonlinear differential equations. Therefore

the Kalman filter cannot be used, but the extended Kalman filter (EKF) makes use

of linearization to handle these nonlinearities. The discrete EKF is derived due to

the discrete nature of the dead-reckoning equations. The evolutionary equations for

the propagation of the mean and covariance are to be examined, followed by the

development of the mean and covariance update relationships. Consider a discrete

dynamical system that is assumed to have the form

xk = f(xk−1) +Mk−1wk−1

where f(·) is the nonlinear dynamics that governs the transition of the state from xk−1

to xk and Mk−1 maps the zero-mean white noise sequence wk−1 into the dynamics.

The initial state is taken to have meanm0 and covariance P0, andwk−1 has covariance

Qk−1.

6.1.1. Mean and Covariance Propagation. First, the mean propagation

is examined by taking the expected value of the the dynamical system form giving

mk = E {xk} = E {f(xk−1 +Mk−1wk−1)} = E {f(xk−1}+ E {Mk−1wk−1)} .

The mapping matrix Mk−1 is assumed to be deterministic, which allows it to be

moved outside of the expectation. The mean can then be written as

mk = E {f(xk−1}+Mk−1E {wk−1)}

61

It is also assumed that the process noise wk−1 has zero-mean, i.e. E {wk−1} = 0,

which gives the mean at time tk as

mk = E {f(xk−1)} . (6.1)

The nonlinear dynamics are then expanded by using a first-order Taylor series expan-

sion about the current mean and higher-order terms are neglected, giving

f(xk−1) = f(mk−1) + F (mk−1)(xk−1 −mk−1)

where F (mk−1) is the Jacobian of the nonlinear dynamics as a function of the prior

mean, which linearizes the system, and is defined as

F (xk−1) =

[
∂f(xk−1)

∂xk−1

∣∣∣∣
xk−1=mk−1

]
.

Using this expansion, Eq. (6.1) can be written as

mk = E {f(mk−1)}+ E {F (mk−1)(xk−1 −mk−1)} .

Assuming that the mean at time k−1 is deterministic, f(mk−1) is deterministic along

with its Jacobian. Using these assumptions, the mean at time tk can be written as

mk = f(mk−1) + F (mk−1)E {(xk−1 −mk−1)} .

Finally, provided that the estimator is unbiased at time k − 1 then (xk−1 −mk−1) is

zero-mean, i.e. E {(xk−1 −mk−1)} = 0, which gives the final form of the propagation

equation for the mean as

mk = f(mk−1). (6.2)

62

Estimation errors are now defined at time k − 1 and k to be

ek−1 = xk−1 −mk−1 and ek = xk −mk.

Starting with ek, a difference equation for the estimation error is given by considering

the governing relationships for xk and mk in terms of xk−1, wk−1, and mk−1 shown

as

ek = xk −mk

= [f(xk−1) +Mk−1wk−1]− [f(mk−1)]

= [f(xk−1)− f(mk−1)] +Mk−1wk−1

which shows the evolution of the estimation error through discrete time steps. Noting

that

xk = f(xk−1) +Mk−1wk−1, and mk−1 = f(xk−1),

the estimation error at time k can be written as

ek = f(xk−1) +Mk−1wk−1 − F (mk−1)mk−1.

By combining like terms of F (mk−1) it is seen that the estimation error at time k−1

can be substituted into ek as

ek = F (mk−1)ek−1 +Mk−1wk−1. (6.3)

From Eq. (6.3), the covariance propagation equation can be developed from the defi-

nitions of the state estimation error covariances at times k− 1 and k which are given

63

as

Pk−1 = E
{
ek−1e

T
k−1

}
and Pk = E

{
eke

T
k

}
.

The product of the propagated error with its transposed is found by substituting in

Eq. (6.3) which gives

eke
T
k = [F (mk−1)ek−1 +Mk−1wk−1][F (mk−1)ek−1 +Mk−1wk−1]

T

= F (mk−1)ek−1e
T
k−1F (mk−1)

T +Mk−1wk−1e
T
k−1F (mk−1)

T

+ F (mk−1)ek−1w
T
k−1M

T
k−1 +Mk−1wk−1w

T
k−1M

T
k−1

In order to formulate the error covariance, the expected value of eke
T
k shown above

is taken as

Pk = E
{
F (mk−1)ek−1e

T
k−1F (mk−1)

T
}
+ E

{
Mk−1wk−1e

T
k−1F (mk−1)

T
}

+ E
{
F (mk−1)ek−1w

T
k−1M

T
k−1

}
+ E

{
Mk−1wk−1w

T
k−1M

T
k−1

}
and knowing that F (mk−1) and Mk−1 are deterministic, they are pulled outside of

the expectations shown as

Pk = F (mk−1)E
{
ek−1e

T
k−1

}
F (mk−1)

T +Mk−1E
{
wk−1e

T
k−1

}
F (mk−1)

T

+ F (mk−1)E
{
ek−1w

T
k−1

}
MT

k−1 +Mk−1E
{
wk−1w

T
k−1

}
MT

k−1.

The process noise is assumed to be uncorrelated to the state; therefore,

E
{
wk−1e

T
k−1

}
= 0, and E

{
wk−1e

T
k−1

}
= 0

64

and using the knowledge that Pk−1 = E
{
ek−1e

T
k−1

}
, the covariance propagation

equation arrives at its final form as

P = F (mk−1)Pk−1F (mk−1)
T +Mk−1Qk−1M

T
k−1. (6.4)

where Qk−1 = E
{
wk−1w

T
k−1

}
.

6.1.2. Mean and Covariance Update. Now, the measurement update is

examined. The measurement is taken to be of the form

zk = h(xk) +Lkvk

where vk is the measurement noise which is assumed to be a zero mean white-noise

sequence with covariance Rk; that is,

E {vk} = 0 and E
{
vkv

T
k

}
= Rk.

The a priori mean and covariance given before the addition of new information are

denoted by m−
k and P−

k , respectively, which are defined to be the outputs of the

propagation stage. For the Kalman filter, the a posteriori mean is given by a linear

combination of the a priori data given as

m+
k = Nkm

−
k +Kzk.

However, this equation is required to make use of the fact that the measurement is

linear with respect to the state. To avoid this, an update is considered that effectively

replaces the linear function of the prior mean with a constant vector ak, and has the

form

m+
k = ak +Kkzk. (6.5)

65

This still keeps a portion of the update as being a linear function of the data as well,

but it allows nonlinear functions such as those used in the EKF to be considered.

The prior and posterior errors are then defined to be

e−
k = xk −m−

k and e+
k = xk −m+

k

which, in a rather straightforward manner, allows for the posterior mean to be written

as

m+
k = m−

k + e−
k − e+

k . (6.6)

Now, the update equation is given by substituting Eq. (6.6) in to Eq. (6.5), which

yields

m−
k + e−

k − e+
k = ak +Kzk.

By taking the expected value of this equation as

E
{
m−

k + e−
k − e+

k

}
= E {ak +Kzk}

and using the assumption of an unbiased prior mean, while enforcing a desired unbi-

ased posterior and that Kk is deterministic, yields

m−
k = ak +Kkẑk where ẑk = E {zk} .

Now, ak can be solved for such that for an unbiased posterior estimate is guaranteed,

giving

ak = m−
k −Kkẑk

66

and substituting this relationship for ak into Eq. (6.5) and simplifying gives the

posterior mean as

m+
k = m−

k +Kk[zk − ẑk]. (6.7)

Note that no measurement linearity needs to be specified for the mean update equa-

tion to hold. The covariance update is needed to be described, which follows from

the manner in which the error gets updated. The a posteriori state estimation error

is defined to be

e+
k = e−

k −Kk(zk − ẑk),

and then the prior and posterior covariance can be defined respectively as

P−
k = E

{
(e−

k)(e
−
k)

T
}

and P+
k = E

{
(e+

k)(e
+
k)

T
}
.

Using the definition of the posterior error shown above, the posterior covariance can

be written as the expected value of the product of posterior error and its transpose,

or

P+
k = E

{
(xk −m−

k)(xk −m−
k)

T
}
− E

{
(xk −m−

k)(zk − ẑk)
TKT

k

}
− E

{
Kk(zk − ẑk)(xk −mk)

T)
}
+ E

{
Kk(zk − ẑk)(zk − ẑk)

TKT
k

}
.

Again, assuming that the gain matrix is deterministic, the posterior covariance can

then be written as

P+
k = E

{
(xk −m−

k)(xk −m−
k)

T
}
− E

{
(xk −m−

k)(zk − ẑk)
T
}
KT

k

−KkE
{
(zk − ẑk)(xk −mk)

T)
}
+KkE

{
(zk − ẑk)(zk − ẑk)

T
}
KT

k .

67

Recall that the prior covariance can be written as

P−
k = E

{
(e−

k)(e
−
k)

T
}
= E

{
(xk −m−

k)(xk −m−
k)

T
}

and then a cross-covarianceCk, with the measurement, and a measurement covariance

Wk, are defined respectively as

Ck = E
{
(zk − ẑk)(xk −mk)

T
}

Wk = E
{
(zk − ẑk)(zk − ẑk)

T
}
.

From these above relationships, the covariance update can then be written in its final

form as

P+
k = P−

k −CkK
T
k −KkC

T
k +KWkK

T
k . (6.8)

The remaining steps are to define the gain, the expected value of the measurement,

the cross-covariance, and the measurement covariance. First, the gain matrix Kk is

examined. While any gain could be used for Kk, it is desired to find a gain such

that the mean square of the posterior state estimation error is minimized. The cost

function, or performance index, to be minimized is given by

J = E
{
(e+

k)
T (e+

k)
}
= trace

{
E
{
(e+

k)(e
+
k)

T
}}

= trace
{
P+

k

}
,

which is expanded using Eq. (6.8) and simplified as

J = trace
{
P−

k

}
− trace {CkKk} − trace

{
KkC

T
k

}
+ trace

{
KkWkK

T
k

}
= trace

{
P−

k

}
− 2trace

{
KkC

T
k

}
+ trace

{
KkWkK

T
k

}
.

68

In order to minimize the performance index, the derivative of the performance index

is taken term-by term with respect to the gain Kk. The properties of the derivative

of the trace of a matrix can be found in Appendix C. The derivative terms are found

to be

∂

∂Kk

trace
{
P T

k

}
= 0

∂

∂Kk

trace
{
KkC

T
k

}
= Ck

∂

∂Kk

trace
{
KkWkK

T
k

}
= Kk

[
Wk +W T

k

]
.

From the definition of a covariance matrix, it is known that Wk is symmetric and

therefore that Wk +Wk = 2Wk, which gives the derivative of the performance index

as

∂J

∂Kk

= −2Ck + 2KkWk.

The gain that minimizes the performance index is the one that renders the perfor-

mance index stationary, or

∂J

∂Kk

= −2Ck + 2KkWk = 0.

Solving for Kk yields the final form of the Kalman gain as

Kk = CkW
−1
k (6.9)

which successfully minimizes the cost function by the examination of the Hessian

of the performance index, J , [21]. The expected value of the measurement is then

examined. The case where the measurement is nonlinear in the state and is subjected

69

to additive measurement noise is considered as

zk = h(xk) +Lkvk.

where Lk is a noise mapping matrix. Then the expected value of both sides of the

measurement model is taken to be

ẑk = E {zk} = E
{
h(x−

k)
}
+ E {Lkvk} (6.10)

which is expanded about the a priori mean, with neglecting higher order terms, via

h(xk) = h(m−
k) +H(m−)(xk −m−

k). (6.11)

The measurement Jacobian, H(m−
k), is defined as

H(m−
k) =

[
∂h(xk)

∂xk

∣∣
xk=m−

k

]
.

Then, substituting first order Taylor series expansion, given by Eq. (6.11), into the

measurement expected value, or Eq. (6.10), yields

ẑk = E
{
h(m−

k)
}
+ E

{
H(m−

k)
}
+ E {Lkvk} ,

and since h(m−
k), H(m−

k) and Lk are taken to be deterministic, ẑk can be rewritten

as

ẑk = h(m−
k) +H(m−

k)E {xk}+LkE {vk} .

70

Because the measurement noise E {vk} is taken to be zero mean and knowing that

E {xk} = m−
k , the final form of the expected value of the measurement is given by

ẑk = h(m−
k) (6.12)

The cross-covariance is now examined which is given as

Ck = E
{
(xk −m−

k)(zk − ẑ)T
}
.

Substituting Equation 6.12 into the measurement model and expected measurement

it follows that

zk − ẑk = h(xk)− h(m−
k) +Lkvk,

and applying a first-order Taylor series expansion about h(xk), yields

zk − ẑk = H(m−
k)(xk −m−

k) +Lkvk. (6.13)

Substituting back into the cross-covariance and assuming that H(m−
k) and Lk are

still deterministic, Ck becomes

Ck = E
{
(xk −m−

k)(xk −m−
k)

T
}
H(m−

k)
T + E

{
(xk −m−

k)v
T
k

}
LT

k .

The assumption is then made that the state is not correlated to the measurement

noise, i.e. E
{
(xk −m−

k)v
T
k

}
= 0, and recognizing that E

{
(xk −m−

k)(xk −m−
k)

T
}
=

P−
k , the final form of the cross-covariance becomes

Ck = P−
k HT

k (m
−
k). (6.14)

71

The final component needed is the measurement covariance (or innovations covari-

ance) which is given as

Wk = E
{
(zk − ẑk)(zk − ẑk)

T
}
.

Recall (zk − ẑk) defined in Equation 6.13, and following the same conditions as the

cross covariance, i.e. H(m−
k) and Lk are deterministic, the state is not correlated

with the measurement noise, and the covariance of the measurement noise is given by

Rk. Using these assumptions as relationships, the innovations covariance is given by

Wk = H(m−
k)P

−
k HT (m−

k) +LkRkL
T
k . (6.15)

6.1.3. Attitude Update. The additive states, which are all of the states

except the quaternion attitude, are updated according to

m+
k = m−

k +Kk[zk − ẑk].

Define the deviation added to the a priori mean as δm̃k, such that

m+
k = m−

k + δm̃k.

The a priori quaternion ˆ̄q−
k can then be updated according to a multiplicative update

to obtain the posterior quaternion, ˆ̄q+
k as

ˆ̄q+
k = q̄(δm̃k,θ)⊗ ˆ̄q+

k , (6.16)

where δm̃k,θ is the portion of δm̃k correlated to the attitude mean. However, nu-

merical error can cause slight deviations away from the unit norm quaternion and

likewise with the symmetrical elements of the covariance matrix. A forced normal-

72

ization can be implemented on the attitude quaternion and symmetrization of the

covariance matrix. The procedure for the normalization and symmetrization is given

respectively as

ˆ̄q+
norm,k =

ˆ̄q+
k

||ˆ̄q+
k ||

and P+
sym,k =

1

2
(P+

k + (P+
k)T). (6.17)

All components for the covariance updates are now solved for and can be used in

Equation 6.8 to arrive at the posterior covariance of the system.

6.1.4. Extended Kalman Filter Summary. A summary of the EKF is

provided below. First, recall that the system model and measurement model are

given as

xk = f(xk−1) +Mk−1wk−1

zk = h(xk) +Lkvk

with initial conditions for the mean and covariance given by

m0 = E {x0}

P0 = E
{
(x0 −m0)(x0 −m0)

T
}
.

The mean and covariance propagation evolve via

mk = f(mk−1)

P = F (mk−1)Pk−1F (mk−1)
T +Mk−1Qk−1M

T
k−1.

where F is the Jacobian of the nonlinear system. The update step is listed as the ex-

pected measurement, innovations covariance, cross-covariance, Kalman gain, followed

73

with the mean and covariance update equations respectively and is shown as

ẑk = h(m−
k)

Wk = H(m−
k)P

−
k HT (m−

k) +LkRkL
T
k

Ck = P−
k HT

k (m
−
k)

Kk = CkW
−1
k

m+
k = m−

k +Kk[zk − ẑk]

P+
k = P−

k −CkK
T
k −KkC

T
k +KWkK

T
k

where H(m−
k) is the Jacobian of the nonlinear measurement. It is also important to

note that in the case of a quaternion attitude update, the multiplicative update must

be used to obtain the posterior quaternion. This multiplicative update is summarized

in the previous section.

6.2. STATE ESTIMATE AND STATE ESTIMATION ERROR COVARI-
ANCE PROPAGATION

The true state represents an analytical integration of the continuous time

dynamics. It is important to note that these true equations are not exact, but process

noise injected into the dynamical system can envelop this discrepancy. It is known

that the true state of the system propagates according to Equations 2.12, which are

shown as

rk = rk−1 + vk−1∆tk +
1

2
T T
k−1

(
I3×3 +

1

3
[∆θk×]

)
∆vk∆tk (6.18a)

+
1

2

(
gk−1 −

1

3
Gk−1T

T
k−1[d×]∆θk

)
∆t2k

vk = vk−1 + T T
k−1

(
I3×3 +

1

2
[∆θk×]

)
∆vk +

(
gk−1 −

1

2
Gk−1T

T
k−1[d×]∆θk

)
∆tk

(6.18b)

74

q̄k = q̄(∆θk)⊗ q̄k−1. (6.18c)

The error estimation equations derived in the following section are used to formulate

the needed Jacobian for the estimation error covariance propagation. The following

derivations follow and are based on Reference [12].

6.2.1. Position and Velocity Error Covariance. Define the position and

velocity errors to be

er,k = rk − r̂k and ev,k = vk − v̂k.

Utilizing the mean position and velocity propagation equations shown in Equations

2.12a and 2.12b, the respective errors are expanded as

er,k = (rk − r̂k) + (vk − v̂k)∆tk +
1

2
(gk−1 − ĝk−1)∆t2k (6.19a)

+
1

2

(
T T
k−1∆vk − T̂ T

k−1∆v̂m,k

)
∆tk

+
1

6

(
T T
k−1 [∆θk×] ∆vk − T̂ T

k−1

[
∆θ̂m,k×

]
∆v̂m,k

)
∆tk

− 1

6

(
Gk−1T

T
k−1 [d×] ∆θk − Ĝk−1T̂

T
k−1[d̂×]∆θ̂

)
∆t2k

ev,k = (vk − v̂k) + (gk−1 − ĝk−1)∆tk +
(
T T
k−1∆vk − T̂ T

k−1∆v̂m,k

)
(6.19b)

+
1

2

(
T T
k−1 [∆θk×] ∆vk − T̂ T

k−1

[
∆θ̂×

]
∆v̂m,k

)
− 1

2

(
Gk−1T

T
k−1 [d×] ∆θk − Ĝk−1T̂

T
k−1[d̂×]∆θ̂

)
∆tk

In comparing the position and velocity estimation errors, many terms are identical,

up to scaling. Therefore, it is needed to only expand the remaining four terms in

order to linearize the estimation errors. The four terms to be linearized are given as

gk−1, T T
k−1∆vk, T T

k−1[∆θk×]∆vk and Gk−1T
T
k−1[d×]∆θk.

75

First, the attitude matrix is to be expanded. The quaternion is defined as a multi-

plicative error; therefore, the attitude matrices are multiplied in the same order as

the quaternions, which gives

δTk−1 = Tk−1T̂
T
k−1. (6.20)

This multiplicative attitude matrix error is expanded via a first-order Taylor series

expansion, which is shown as

δTk−1 = I3×3 − [eθ,k−1×].

where eθ,k−1 is defined as the error associated with attitude at time tk−1. Using the

relationship given in Equation 6.20 and transposing the solution gives the attitude

matrix expansion as

T T
k−1 = T̂ T

k−1 + T̂ T
k−1[eθ,k−1×]. (6.21)

The next term to expand about the estimate is gravity as a function of position gk−1,

such that

gk−1 = ĝk−1 + Ĝk−1es,k−1, where es,k−1 , sk−1 − ŝk−1. (6.22)

where Ĝk−1 is defined as the gravity Jacobian and is given in Appendix C. The errors

in ∆vk and ∆θk are then defined respectively, to be

e∆v,k , ∆vk −∆v̂m,k, and e∆θ,k , ∆θk−1 −∆θ̂m,k.

76

Using these error definitions and eliminating higher-order terms, an expression for

T T
k−1∆vk is given as

T T
k−1∆vk = T̂ T

k−1∆v̂k + T̂ T
k−1e∆v,k − T̂ T

k−1[∆
ˆ̂vm,k×]eθ,k−1. (6.23)

Now the term T T
k−1[∆θk×]∆vk is to be expanded and becomes

T T
k−1[∆θk×]∆vk =

(
T̂ T
k−1 + T̂ T

k−1[eθ,k−1×]
)
((∆θ̂m,k + e∆θ,k)× (∆v̂m,k + e∆v,k),

which, when expanded out and after eliminating higher-order terms yields

T T
k−1[∆θk×]∆vk = T̂k−1(∆θ̂m,k ×∆v̂m,k) + T̂ T

k−1[∆θ̂m,k×]e∆v,k

− T̂ T
k−1[∆v̂m,k×]e∆θ,k − T̂ T

k−1[(∆θ̂m,k ×∆v̂m,k)×]eθ,k−1. (6.24)

Finally, the term Gk−1T
T
k−1[d×]∆θk is to be expanded and yields

Gk−1T
T
k−1[d×]∆θk = Gk−1

(
T̂ T
k−1 + T̂ T

k−1[eθ,k−1×]
)
[(d̂+ ed)×](∆θ̂m,k + e∆θ,k),

where ed is defined as th error of the position vector from the IMU to the CM of the ve-

hicle. If higher-order terms are eliminated from this expression, the terms containing

bothGk−1 and an error source are already a first-order error source. With the elimina-

tion of higher-order terms, Gk−1 can then be written as its estimate Ĝk−1 due to any

expansion of Gk−1 will result in second-order terms. Therefore, Gk−1T
T
k−1[d×]∆θk

can then be written as

Gk−1T
T
k−1[d×]∆θk = Gk−1T̂

T
k−1[d̂×]∆θ̂m,k + Ĝk−1T

T
k−1[d̂×]e∆θ,k

− Ĝk−1T
T
k−1[∆θ̂m,k×]ed − Ĝk−1T

T
k−1

[
(d̂×∆θ̂m,k)×

]
eθ,k−1.

77

Now a vector pk−1 is defined as

pk−1 , Gk−1T̂
T
k−1[d̂×]∆θ̂m,k.

This vector can be expanded to first-order and is expressed as

pk−1 = p̂k−1 + Ûk−1es,k−1 with p̂k−1 = ĜT̂ T
k−1[d̂×]∆θ̂m,k,

where Ûk−1 ∈ R3×3, with the element in the ith row and jth column given by

Ûk−1(i, j) =

[
3∑

`=1

∂g(i)

∂s(j)∂s(`)
u(`)

∣∣∣∣
s=ŝk−1

]
.

Making use of pk−1, Gk−1T
T
k−1[d×]∆θk can be expressed in its first form as

Ĝk−1T
T
k−1[d×]∆θk = Gk−1T̂

T
k−1[d̂×]∆θ̂m,k + Ûk−1es,k−1 + Ĝk−1T

T
k−1[d̂×]e∆θ,k

− Ĝk−1T
T
k−1[∆θ̂m,k×]ed − Ĝk−1T

T
k−1

[
(d̂×∆θ̂m,k)×

]
eθ,k−1.

(6.25)

Only error expression for es,k−1, e∆v,k and e∆θ,k are needed to obtain the final position

and velocity error estimation expressions. From the definitions of es,k−1 and sk−1 gives

es,k−1 = sk−1 − ŝk−1 = (rk−1 − r̂k−1) +
(
T T
k−1d− T̂ T

k−1d̂
)
,

which is then expressed in first order form as

es,k−1 = er,k−1 + T̂ T
k−1ed − T̂ T

k−1[d̂×]eθ,k−1, (6.26)

78

and the error terms e∆v,k and e∆θ,k are defined respectively to be

e∆v,k = ∆vk −∆v̂m,k

e∆θ,k = ∆θk −∆θ̂m,k

and using the substitutions of ∆vk and ∆θk form Equations 2.7 and 2.10 yields

e∆v,k = [∆v̂m,k×]ma − [∆v̂m,k∗]na − [∆v̂m,kr]sa − ba −wv,k (6.27a)

e∆θ,k = [∆θ̂m,k×]mg − [∆θ̂m,k∗]ng − [∆θ̂m,kr]sg − bg −wθ,k. (6.27b)

The final form of the position and velocity error covariance is obtained by substituting

Equations 6.21-6.27 into Equations 6.19a and 6.19b yielding

er,k =

[
I3×3 +

1

2

(
Ĝk−1 −

1

3
Ûk−1

)
∆t2k

]
er,k−1 + ev,k−1∆tk (6.28a)

− 1

2

(
T̂ T
k−1[∆v̂m,k×] +

1

3
T̂ T
k−1

[
(∆θ̂m,k ×∆v̂m,k)×

])
∆tkeθ,k−1

− 1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂ T
k−1[d̂×]− 1

3
Ĝk−1T̂k−1

[
(d̂×∆θ̂m,k)×

]]
∆t2keθ,k−1

+
1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂k−1 +

1

3
Ĝk−1T̂

T
k−1[∆θ̂m,k×]

]
∆t2ked

− R̂abg + R̂a[∆v̂m,k×]ma − R̂a[∆v̂m,k∗]na − R̂a[∆v̂m,kr]sa

− R̂gbg + R̂g[∆θ̂m,k×]mg − R̂g[∆θ̂m,k∗]ng − R̂g[∆θ̂m,kr]sg

− R̂awv,k − R̂gwθ,k

ev,k =

(
Ĝk−1 −

1

3
Ûk−1

)
∆tker,k−1 + ev,k−1 (6.28b)

−
(
T̂ T
k−1[∆v̂m,k×] +

1

2
T̂ T
k−1

[
(∆θ̂m,k ×∆v̂m,k)×

])
eθ,k−1

−
[(

Ĝk−1 −
1

3
Ûk−1

)
T̂ T
k−1[d̂×]− 1

2
Ĝk−1T̂k−1

[
(d̂×∆θ̂m,k)×

]]
∆tkeθ,k−1

+

[(
Ĝk−1 −

1

2
Ûk−1

)
T̂k−1 +

1

2
Ĝk−1T̂

T
k−1[∆θ̂m,k×]

]
∆tked

79

− V̂abg + V̂a[∆v̂m,k×]ma − V̂a[∆v̂m,k∗]na − V̂a[∆v̂m,kr]sa

− V̂gbg + V̂g[∆θ̂m,k×]mg − V̂g[∆θ̂m,k∗]ng − V̂g[∆θ̂m,kr]sg

− V̂awv,k − V̂gwθ,k

where the matrices R̂a, R̂g, V̂a and V̂g are defined to be,

R̂a =
1

2
T̂ T
k−1

(
I3×3 +

1

3
[∆θ̂m,k×]

)
∆tk

R̂g =
1

6

(
T̂ T
k−1[∆v̂m,k×] + Ĝk−1T̂

T
k−1[d̂×]∆tk

)
∆tk

V̂a = T̂ T
k−1

(
I3×3 +

1

3
[∆θ̂m,k×]

)
V̂g =

1

2

(
T̂ T
k−1[∆v̂m,k×] + Ĝk−1T̂

T
k−1[d̂×]∆tk

)
.

To formulate and construct the full F (mk−1) and M(mk−1) matrices, refer to Ap-

pendix C.

6.2.2. Attitude Error Covariance. While the position and velocity error

are defined in a straightforward manner, the attitude error must be defined as a

multiplicative attitude estimation error as

δq̄k , q̄k ⊗ ˆ̄q−1
k .

Equation 2.12c is substituted in for ˆ̄qk and Equation 6.18c for q̄k which gives

δq̄k = q̄(∆θk)⊗ q̄k−1 ⊗ ˆ̄q−1
k−1 ⊗ q̄(∆θ̂m,k)

−1

= q̄(∆θk)⊗ δq̄k−1 ⊗ q̄(∆θ̂m,k)
−1

= q̄(∆θk)⊗ q̄(∆θm,k)
−1 ⊗ q̄(∆θm,k)⊗ δq̄k−1 ⊗ q̄(∆θm,k)

−1.

80

It can then be shown that

q̄(∆θk)⊗ δq̄k−1 ⊗ q̄(∆θk)
−1 =

T (∆θm,kδq̄k−1)

δqk−1


where

T (∆θm,k) = I3×3 − sin ||∆θm,k||[∆θ̂m,k×] + (1− cos ||∆θm,k||) [∆θm,k×][∆θm,k×].

The term q̄(∆θk)⊗ q̄(∆θm,k)
−1 is well approximated as a small angle rotation quater-

nion giving the approximation as

q̄(∆θk)⊗ q̄(∆θm,k)
−1 ≈

1
2
e∆θ,k

1

 ,

where the error term e∆θ,k is defined as ∆θk − ∆θ̂m,k. These relationships give the

attitude estimation error as

δq̄k =

1
2
e∆θ,k

1

⊗

T (∆θ̂m,k)δq̄k−1

δqk−1

 .

With the small angle assumption, the vector part of the quaternion then fully repre-

sents the attitude, so approximating to first order, the above expression becomes

δq̄k = T (∆θ̂m,k)δq̄k−1 +
1

2
e∆θ,k

Letting δq̄k change notationally to eθ,k, and knowing that the rotation vector θ is

approximately twice the vector part of the quaternion, the attitude estimation error

81

is given by

eθ,k = T (∆θ̂m,k)eθ,k−1 + e∆θ,k.

Then substituting Equation 2.9 into e∆θ,k, the final form of the attitude estimation

error propagation is given by

eθ,k = T (∆θ̂m,k)eθ,k−1 + [∆θ̂m,k×]mg − [∆θ̂m,k∗]ng − [∆θ̂m,kr]sg − bg −wg.

(6.29)

6.2.3. Error Covariance in a Fusion Network. In the construction of

a multi-IMU fusion network of N IMUs with direct averaging as the applied fusion

rule, the increased performance follows a
√
N factor. However, in the derivation of

the position, velocity and attitude estimation error covariance, this fusion perfor-

mance index is not accounted for. It is desired to construct a set of error covariance

equations that contain and account for this
√
N parameter to allow for the statistical

quantification of N IMUs in its covariance propagation. The proposed method is to

inject this parameter into all of the IMU error terms given as bias b, misalignment

m, nonorthogonality n, scale factor uncertainty s, and its noise w for accelerometers

and gyroscopes. Per this discussion, the fused estimation error covariance for position

and velocity can be written as a function of
√
N and is given as

er,k =

[
I3×3 +

1

2

(
Ĝk−1 −

1

3
Ûk−1

)
∆t2k

]
er,k−1 + ev,k−1∆tk (6.30a)

− 1

2

(
T̂ T
k−1[∆vm,k×] +

1

3
T̂ T
k−1 [(∆θm,k ×∆vm,k)×]

)
∆tkeθ,k−1

− 1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂ T
k−1[d̂×]− 1

3
Ĝk−1T̂k−1

[
(d̂×∆θm,k)×

]]
∆t2keθ,k−1

+
1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂k−1 +

1

3
Ĝk−1T̂

T
k−1[∆θ̂m,k×]

]
∆t2ked

82

− 1√
N
R̂abg +

1√
N
R̂a[∆vm,k×]ma −

1√
N
R̂a[∆vm,k∗]na −

1√
N
R̂a[∆vm,kr]sa

− 1√
N
R̂gbg +

1√
N
R̂g[∆θ̂m,k×]mg −

1√
N
R̂g[∆θ̂m,k∗]ng −

1√
N
R̂g[∆θ̂m,kr]sg

− 1√
N
R̂awv,k −

1√
N
R̂gwθ,k

ev,k =

(
Ĝk−1 −

1

3
Ûk−1

)
∆tker,k−1 + ev,k−1 (6.30b)

−
(
T̂ T
k−1[∆vm,k×] +

1

2
T̂ T
k−1

[
(∆θ̂m,k ×∆vm,k)×

])
eθ,k−1

−
[(

Ĝk−1 −
1

3
Ûk−1

)
T̂ T
k−1[d̂×]− 1

2
Ĝk−1T̂k−1

[
(d̂×∆θ̂m,k)×

]]
∆tkeθ,k−1

+

[(
Ĝk−1 −

1

2
Ûk−1

)
T̂k−1 +

1

2
Ĝk−1T̂

T
k−1[∆θ̂m,k×]

]
∆tked

− 1√
N
V̂abg +

1√
N
V̂a[∆vm,k×]ma −

1√
N
V̂a[∆vm,k∗]na −

1√
N
V̂a[∆vm,kr]sa

− 1√
N
V̂gbg +

1√
N
V̂g[∆θ̂m,k×]mg −

1√
N
V̂g[∆θ̂m,k∗]ng −

1√
N
V̂g[∆θ̂m,kr]sg

− 1√
N
V̂awv,k −

1√
N
V̂gwθ,k

and the attitude error covariance for an IMU fusion network can then be written as

eθ,k = T (∆θ̂m,k)eθ,k−1 +
1√
N
[∆θ̂m,k×]mg −

1√
N
[∆θ̂m,k∗]ng (6.31)

− 1√
N
[∆θ̂m,kr]sg −

1√
N
bg −

1√
N
wg. (6.32)

Recall that the terms R̂a, R̂g, V̂g and V̂g are defined in the prior section in the

derivation of the estimation error covariance equations. With this set of equations,

the propagated uncertainty is now sensitive to the number of sensors being fused

in accordance with the fusion performance increase model from Reference [1]. It is

important to note that this error model is only for a homogeneous sensor network

and the sensor specifications are taken from one sensor. With the current proposed

fault detection scheme, it is also necessary to note that N can change over time in

the event of a sensor failure.

83

6.3. MEASUREMENT PROCESSING

6.3.1. Position Measurement. The measurement for the position of a space-

craft is given by its non-linear measurement model as

z = h(x) + vr

and recalling that the position estimation of a spacecraft is given by

h(x) = ri
imu + T i

br
b
s/imu.

The estimated position measurement is the measurement model computed at the

mean, i.e.,

h(x̂) = r̂i
imu + T̂ i

br
b
s/imu.

The measurement deviation, δz, of the position sensor is computed with the differ-

ence equation of the measurement of the position at some time k, and its respective

estimate evaluated at the current mean as

δz = h(x)− h(x̂) + vr = H(x̂)e+ vr.

The measurement Jacobian, H(x̂), for a position sensor is derived from the position

deviation that has the form

H(mk) =

[
Hr 03×3 Hθ 03×27

]

from Equation 5.2 that is given as

δz = δri
sc − T̂ i

b

[
rb
s/imu×

]
δθi

b.

84

The components associated with the position and attitude error define the specific

elements of the measurement Jacobian and are given as

Hr = I3×3, and Hθ = −T̂ i
b

[
rb
s/imu×

]
.

6.3.2. Quaternion Measurement. Recall that the quaternion estimation

of a spacecraft’s attitude is given by

h(q̄) = ˆ̄qb
i .

The measurement residual yθ, k of the quaternion sensor is computed by a multi-

plicative difference equation of the quaternion measurement q̄b
i at some time k and

its estimate ˆ̄qb
i as a function of the mean quaternion which yields

yθ,k = 2vec
(
q̄b
m,i ⊗ ˆ̄qb

i

)
.

Recall that the term q̄b
m,i ⊗ ˆ̄qb

i is well approximated as a small angle rotation quater-

nion. The measurement Jacobian for a quaternion sensor is derived from the attitude

deviation that has the form

H(mk) =

[
03×6 Hθ 03×27

]

from Equation 5.3 given again as

δθb
i = 2vec

(
q̄b
i ⊗ ˆ̄qb

i

)
= eθ.

85

The components associated with the attitude error define the specific element of the

measurement Jacobian and is given as

Hθ = I3×3

6.3.3. Range and Range Rate. Recall that the estimation range and range

rate measurement is given by

ẑρ =

√(
r̂i
s/g

)T (
r̂i
s/g

)
, and ẑρ̇ =

r̂i
s/gv̂

i
s/g√(

r̂i
s/g

)T (
r̂i
s/g

) .

The measurement residual yrv,k of the range and rangerate sensor is computed with

the measurement of the range and rangerate at some time by ρ, ρ̇ and their estimates

ẑρ, ẑρ given as

yrv,k = [zρ zρ̇]
T − [ẑρ ẑρ̇]

T

The measurement Jacobian for a range and range rate sensor is derived from the

range and range rate deviations which has the form

Hk =

Hρ,r 03×3 Hρ,θ 03×3 03×3 03×3 03×3 03×12

Hρ̇,r Hρ̇,v Hρ̇,θ Hρ̇,b Hρ̇,m Hρ̇,n Hρ̇,s 03×12

 .

from Equations 5.5 and 5.9 which are given as

δzρ = Rρδr
i
imu −RρT̂ i

b

[
rb
s/imu×

]
δθi

b +wρ

δzρ̇ =
(
Rρδr

i
imu −RρT̂ i

b

[
rb
s/imu×

]
δθi

b

)
+
(
Vρ̇δv

i
imu − Vρ̇T̂

i
b

[
rb
s/imu×

]
δωb

b/i

− Vρ̇T̂
i
b

[(
ω̂b

b/i × rb
s/imu

)
×
]
δθi

b

)
+ wρ̇.

86

The components of associated with the position,velocity and attitude error define the

specific elements of the measurement Jacobian and are shown as

Hρ,r = Rρ

Hρ̇,r = Rρ

Hρ̇,b = Vρ̇T̂
i
b

[
rb
s/imu×

]
b̂g,k

Hρ̇,n = Vρ̇T̂
i
b

[
rb
s/imu×

]
[ω̄m,kr]

Hρ,θ = RρT̂ i
b

[
rb
s/imu×

]
Hρ̇,v = Vρ̇

Hρ̇,m = −Vρ̇T̂
i
b

[
rb
s/imu×

]
[ω̄m,k×]

Hρ̇,s = Vρ̇T̂
i
b

[
rb
s/imu×

]
[ω̄m,k∗]

Hρ̇,θ = Vρ̇T̂
i
b

[(
ω̂b

b/i × rb
s/imu

)
×
]
.

Note that the V and R matrices for range and range rate are defined in their respec-

tive modeling sections.

6.3.4. Unit Vector Star Camera. Recall that the estimated unit vector

star camera measurement is given by Equation 5.12 as

ẑsc = T sc
b T̂ b

i T
i
cru

cr
s/sc.

where the the transformation matrix from the inertial-to-body frame estimate is a

function the estimated inertial-to-body quaternion which is defined to be

T̂ b
i,k = T

(
ˆ̄qb
i,k

)
=


1− 2q22 − 2q23 2(q1q2 − q3q4) 2(q3q1 − q2q4)

2(q1q2 − q3q4) 1− 2q23 − 2q21 2(q2q3 − q1q4)

2(q3q1 − q2q4) 2(q2q3 − q1q4) 1− 2q21 − 2q22


The measurement residual yr,k of the unit vector star camera is computed with the

measurement of a star unit vector with respect to the star camera at some time by

usc
s/sc,k and its estimate ûsc

s/sc,k, and is given as

yr,k = zsc
sc − ẑsc.

87

The measurement Jacobian for a unit vector star vector camera is derived from

Eq. (5.13) which has the form

Hk =

[
03×3 03×3 Hθ 03×12 03×12

]
.

From Equation Eq. (5.13), which is given as

δzsc = T sc
b

[
T̂ b
i T

i
crzsc×

]
δθi

b + vsc, (6.33)

the component associated with the attitude error define the specific elements of the

measurement Jacobian and is shown as

Hθ = T sc
b

[
T̂ b
i T

i
cru

cr
s/sc×

]
.

88

7. NAVIGATION/FAULT DETECTION SYSTEM ARCHITECTURE

7.1. SYSTEM IMPLEMENTATION

The implementation and construction of a distributed network of multiple

redundant inertial sensors with robust fault detection is outlined in this section. The

architecture hierarchy in this overview is divided into three sections: sensor fault

detection, data fusion, and navigation. This overview is shown in a block diagram in

Figure 7.1.

Fault
Detection:

PCA/MPCA

Data Fusion:
Direct

Averaging

Navigation:
EKF

m, P

Figure 7.1. Implementation Architecture Overview

Throughout this chapter, each block is individually broken down into a more

in-depth description and detailed systematic diagrams.

7.1.1. Fault Detection Architecture. Simulation implementation of fault

detection can become convoluted if not carefully outlined. For a static system, two un-

derlying processes are needed for a closed-loop fault detection algorithm: fusion/nav-

igation and PCA. The PCA algorithm is an underlying process that is running at

a desired frequency. After the L IMUs are transformed into the feature plane, the

transformed data are compared to a user specified fault threshold, τ . If a sensor out-

put exceeds this threshold, a fault alarm is signaled by attaching a fault identification

to the poor or failing measurement. This fault identification label prevents the faulty

IMU from being introduced in the fusion of the sensor outputs. If all of the trans-

formed sensor outputs are within the specified threshold, the navigation algorithm

89

proceeds as follows. The fusion and navigation algorithm starts by subtracting the

centripetal acceleration from each sensor output, followed by the simple direct aver-

age fusion rule for all sensor outputs within the fault threshold condition. The fused

data can then be used to dead reckon a navigation solution, in this case the mean,

m, and covariance, P , of the system. This procedure is summarized and visualized

in block diagram form in Figure 7.2.

IMU Data

IMU1:L

Translational
Compensation

Data Trans-
formation
y = ΦT x̂

Fault

Detection:

yi > τ

Fault Alarm:

Discard

Faulty IMU

Data Fusion:

Direct

Average

Propagate

Mean and

Covariance

m, P

PCA

Fusion/Navigation

Yes

Figure 7.2. Fault Detection in a Static System

A dynamic system has a similar architecture regarding fusion/navigation and

measurement fault detection using MPCA with the addition of a training vector fault

detection algorithm. Recall that when using MPCA, a trusted measurement set, or

the training vector, is used in the process of removing the system dynamics. As

stated before, to ensure that the training vector does not fail, a CI fault detection

scheme is implemented in the loop along with fusion/navigation and MPCA. This

scheme applies CI relative to the transformed training vector in the feature plane

allowing for a fault analysis by computing distances of the fused covariance matrices.

A distance threshold is set to determine a fault in the training vector. This algorithmic

addition must be computed at a lower frequency than MPCA and navigation in order

90

to store previous feature plane data sets to compute a fused covariance relative to the

transformed training vector. This procedure is summarized and visualized in block

diagram form in Figure 7.3.

IMU Data

IMU1:L

Training
Vector

Feature Plane
Covariance
Intersection

Covariance

Threshold

dKL >

threshold

Fault Alarm:

New Training

Vector

Translational
Compensation

Data Trans-
formation
y = ΦTy∗

Fault

Detection:

yi > τ

Fault Alarm:

Discard

Faulty IMU

Data Fusion:

Direct

Average

Propagate

Mean and

Covariance

m, P

MPCA

Fusion/Navigation

Training Vector Fault Detection

Yes

Yes

Figure 7.3. Fault Detection in a Dynamic System

7.1.2. Fusion Architecture. The proposed data fusion process is reiter-

ated here for systematic overview purposes. The fusion process undergoes a direct

averaging algorithm producing fused IMU measurements from N sensors. The fused

measurements that have been passed through a needed fault detection algorithm are

then passed into the navigation algorithm. As seen in the Fusion Methodology chap-

ter, the direct averaging process can be seen in block diagram form in Figure 7.4. As

seen in the fusion block diagram, this process is computationally and architecturally

simple while producing measurements with a noise reduction factor of
√
N .

7.1.3. Navigation Architecture. The navigation architecture is defined as

a predictor and corrector stage. The predictor computes the predicted mean m−

and covariance P−. The predicted mean is computed as a function of the fused

91

IMU1:

a1,ω1

IMU2:

a2,ω2

...

IMUN :

aN ,ωN

Measurement
Average

Mean and

Covariance

Propagation

m̃

P̃

Figure 7.4. IMU Data Fusion Computed by Directly Averaging the Measurements

non-gravitational acceleration, ã, and angular velocity, ω̃, given by Eq. (2.12). This

predicted solution is then fed into the corrector stage. The corrector takes data

from external measurements zm and the predicted mean and covariance to compute

the final navigation solution, i.e. mean m+ and covariance P+. This process is

summarized and shown in block diagram form in Figure 7.5.

Predictorã, ω̃
m−, P−

Corrector

zm

m+, P+

Figure 7.5. Navigation Architecture

7.2. SENSOR CONFIGURATION

In constructing a distributed network of redundant inertial sensors, orientation

and configuration of the network brings to light the manner in which the network of

92

sensors is configured. In some cases, the overall system configuration may limit the

placement of the individual sensors, such that they are placed to meet certain mass

distribution or wiring constraints. Other situations, however, may allow for more

freedom in the placement of the individual sensors. In this latter case, which is the

case considered in this thesis, the issue becomes how to intelligently place and orient

the sensors. In Reference [22], the problem of orienting a set of single-axis sensors

is considered, and it is shown that by minimizing the cost function, defined as the

trace of the measurement covariance, an optimal sensor configuration for navigation

performance is found. The resulting optimal sensor configuration, denoted by H , is

found in Eq. (7.1) as

HTH =
n

3
I3×3, (7.1)

where n is the number of sensors in the network. While this is only demonstrated for

single-axis sensors, the same approach is used herein for three-axis sensors in order to

emulate an intelligently designed sensor network. It should also be noted that nothing

about the optimal sensor network implies that optimality is preserved when a fault

is encountered. The design of fault-tolerant optimal placement and orientation, as

well as the analysis of the sensor configuration, is not considered in this thesis; it is

a topic for future study.

93

8. SIMULATION RESULTS

8.1. SIMULATION CONFIGURATION

To demonstrate the performance of the proposed direct averaging fusion rule

and while running an underlying fault detection method, i.e. MPCA, a spacecraft

navigation solution is examined. This simulation consists of a spacecraft with ten

low-cost Microstrain 3DM-GX3-351 IMUs onboard, N = 10, and where all sensor axis

orientations are assumed to be perfectly aligned, which gives the sensor orientation

matrix to be

H = 0 ∈ RN×N .

The initial conditions of the simulated spacecraft are given in orbital element form,

i.e. semimajor axis a, eccentricity e, inclination i, argument of periapsis ω, right

ascension of the ascending node Ω, and true anomaly ν. This set of orbital elements

is given as

[a e i ω Ω ν] = [1.05× 104 [km] 0.200 28.4989◦ 0.00◦ 0.00◦ 0.00◦]

or, when converted to Cartesian coordinates shown as

rt,0 =

[
8.400080× 103 0.00 0.00

]T
[km], vt,0 =

[
0.00 6.6316 3.6006

]T
[km/s].

With these true initial conditions, the true position for one orbit xt, along with the

initial position xt,0 and initial velocity direction vector vt,0, are plotted and are shown

in Figure 8.1. Note that the axes are scaled to the radius of the Earth, denoted by

[ER]. An initial covariance is specified for the position, velocity, and attitude states,

1http://www.microstrain.com/inertial/3dm-gx3-35

94

−2
−1

0
1

2

−2
−1

0
1

2
−1

−0.5

0

0.5

1

x [ER]y [ER]

z
[E
R
]

xt
xt,0
vt,0

Figure 8.1. True Simulated Orbit Trajectory

while the respective standard deviations of the accelerometer σa,param, and gyroscope

σg,param, are governed by the IMU data sheet shown in Appendix A. This initial

covariance is given as

P0 = S0S
T
0

The term S0 is defined as the diagonal matrix of the state standard deviations shown

as

S0 = diag

{[
σr σv σθ σd σa,param σg,param

]}
,

where σd is defined as the standard deviation of the position of the IMU with respect

to the spacecraft’s CM. The initial position, velocity, and attitude standard deviations

95

are specified as

σr =


202

202

202

 [m], σv =


32

32

32

 [m/s], σθ =


0.052

0.052

0.052

 [rad].

For simplification purposes, this position vector is assumed to be perfectly known;

therefore, σd = 0. While this creates a non-positive definite initial covariance matrix,

it does not create any singularities in the system. This initial covariance is used to

generate a Gaussian initial condition distribution centered on the initial truth ,x0,

which is distributed as

m0 ∼ N (x0,P0)

The true non-gravitational acceleration and angular velocities of the simulated IMUs

are simulated at 100 Hz using AGI STK1 with a constant angular velocity along each

axis. These true non-gravitational accelerations at,ng and inertial angular velocities

ωi
i/b, both outputted respectively from STK, are plotted over time and are shown in

Figure 8.2. As discussed prior in the navigation section, a position and a quaternion

measurement update are used in the overall navigation process via the EKF. Position

and quaternion measurements are received at 0.2 Hz and 0.1 Hz, respectively. The

times at which measurements are received throughout the simulation are shown in

Figure 8.3, which are denoted when zr and zq are pulled to the value of one. The

simulation and navigation solutions are examined for only 500 seconds, tf = 500 [s],

as seen in the time axis of the received measurements in Figure 8.3. Multiple cases

are examined to better understand the characteristics and behavior of MPCA during

the event of sensor failures. The first case examined contains no sensor failures,

1http://www.agi.com/products/stk/

96

0 0.2 0.4 0.6 0.8 1

·104

−6

−4

−2

0

2

4
·10−3

Time [s]

a
t,
n
g
[m

/s
2
]

ax,t
ay,t
az,t

0 0.2 0.4 0.6 0.8 1

·104

−2

0

2

·10−2

Time [s]

ω
x
y
z
,t
[
ra
d
/s
]

Figure 8.2. True Simulated ai
ng and ωi

i/b

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

Time [s]

z q
R
ec
ie
ve
d

0 50 100 150 200 250 300 350 400 450 500

0

0.5

1

z r
R
ec
ie
ve
d

Figure 8.3. Time of Received Measurements

97

but provides a baseline navigation solution that is used to compare against that

of off-nominal sensor cases. The next three cases examine different sensor failure

scenarios; the first being a single IMU failure, the second being multiple IMU failures,

and the last containing a failure in the crucial training vector. The overview of all

four cases examined in the results is found in Table 8.1.

Table 8.1. Results Overview

Case 1 Nominal Operating Conditions
Case 2 Single IMU Failure
Case 3 Multiple IMU Failure
Case 4 Training Vector Failure

8.2. CASE 1: NOMINAL SENSOR OPERATION

The first simulated case study examines the behavior of a homogeneous multi-

IMU network undergoing nominal operating conditions; i.e., no sensor failures. The

navigation results of this fusion network create a performance baseline, providing use-

ful information in the examination of the sensor failure cases. A Monte Carlo analysis

is performed on this nominal case to verify the fusion filter algorithms. The position

and velocity 3 − σ standard deviations, and their respective root sum square (RSS)

errors and mean errors are plotted versus time. These errors are defined respectively

as

σRSS,k =
√

trace(Pk) and ek = ||xk −mk||.

and are shown in Figures 8.4 and 8.5, respectively.

It is seen that the position and velocity 3− σ standard deviations accurately

envelop their respective errors. It is important to note that the Monte Carlo simula-

98

tion is only run for 100 samples, due to computational time, which accounts for the

slight deviation in the Monte Carlo and fusion filter uncertainty. Note that the Monte

Carlo algorithm is shown in Appendix D. The attitude 3−σ standard deviation, and

its respective RSS error and mean errors, are plotted versus time and are shown in

Figure 8.6. Note that all of the IMU error parameter standard deviations/errors are

shown in Appendix F.

Recall that due to the multiplicative properties of the quaternion state, the

rotation error is defined as twice the vector part of the quaternion error, which yields

eθ = 2vec(q̄ ⊗ ˆ̄q).

MPCA is now examined for the nominal operation case, where the first two

principle components, i.e. y1 and y2, are considered in the process of fault detection

with a fault threshold of τ = 1.5×10−3. A point cloud representation of the principal

components is plotted along with y1 versus time and can be found in Figures 8.7a

and 8.8, respectively.

It can be seen that both principal components stay within the specified fault

threshold, as expected from a sensor cluster without failure, signaling no fault flags in

the fusion process. The system can then determine if it is needed to switch training

vectors to that of a nominal sensor, in the case of a failing training vector, if the

feature plane CI solution exceeds its expected threshold, τ = 0.008. Note that the

threshold values are predetermined, user specified constants in this case and future

study will examine more intelligent selections of these thresholds. Figure 8.8 exhibits

the feature plane CI solution, σCI , time history along with its N associated principal

component standard deviations, σy1. Note that y1 consisted of N transformed data

points that correspond to its respective sensor. As expected, in the event of no

training vector failure, the feature plane Covariance Intersection solution maintains a

99

continuous nominal status defined by the given threshold. Note that the threshold is

arbitrarily selected in this case which could lead to inaccurate thresholding solutions

if walking biases become evident in the transformed linear subspace. Thresholding

propagation and intelligent selection are to be a topic of future study.

100

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

σ
y

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200
σ
x

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

Time [s]

σ
z

(a) Position Uncertainty [m]

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

Time [s]

P
os
it
io
n
R
S
S
[m

]

(b) Position RSS [m]

Figure 8.4. Case 1: Position Standard Deviation/Errors and RSS vs. Time

101

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẋ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẏ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

Time [s]

σ
ż

(a) Velocity Uncertainty [m/s]

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Time [s]

V
el
o
ci
ty

R
S
S
[m

/s
]

(b) Velocity RSS [m/s]

Figure 8.5. Case 1: Position Standard Deviation/Errors and RSS vs. Time

102

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5

1

σ
θ
x

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

σ
θ
y

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

Time [s]

σ
θ
z

(a) Attitude Uncertainty [rad]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

Time [s]

A
tt
it
u
d
e
R
S
S
[r
ad

]

(b) Attitude RSS [rad]

Figure 8.6. Case 1: Attitude Standard Deviation/Errors and RSS vs. Time

103

or Nominal Principal Component
or Off-Nominal Principal Component

Fault Alarm Threshold

−1 0 1

·10−3

−1

0

1

·10−3

y1

y
2

(a) MPCA Point Cloud

0 100 200 300 400 500

−1

0

1

·10−3

Time [s]

y
1

(b) First Principal Component

Figure 8.7. Case 1: Effects of MPCA with no Failures

σy1: Feature Plane Standard Deviations
σCI : Feature Plane CI Solution
τtv: Traning Vector Fault Threhsold

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1
·10−2

Time [s]

σ
tv

Figure 8.8. Case 1: Feature Plane CI Training Vector Fault Detection

104

8.3. CASE 2: SINGLE SENSOR FAILURE

The second simulated case study examines the behavior of a homogeneous

multi-IMU network undergoing a single IMU failure at t = 250 seconds into the

simulation. The sensor fault is modeled as a sudden increase in bias and noise. The

position and velocity 3−σ standard deviations, and their respective root sum square

(RSS) errors and mean errors, are plotted versus time and are shown in Figures 8.9 and

8.10, respectively. It is seen that the position and velocity 3− σ standard deviations

accurately envelop their respective errors with a single failure. The attitude 3 − σ

standard deviation, and its respective RSS error and mean errors, are plotted versus

time and is shown in Figure 8.11.

MPCA is now examined for the case of a single failure where the first two

principle components, i.e. y1 and y2, are considered in the process of fault detection

with a fault threshold of τ = 1.5×10−3. A point cloud representation of the principal

components is plotted along with y1 versus time and can be found in Figures 8.12a

and 8.13, respectively.

It can be seen that MPCA successfully detects and isolates the failing sensor

and eliminates the outliers from the data fusion process. In certain cases [18], if the

sensor is re-calibrated or noisy faulty data points re-enter the threshold, the data

could then be processed again; however, it is practical to completely eliminate a

failure from the system in the case of a failure. As before, the underlying training

vector fault detection method was processed at 1 Hz, and the feature plane deviations

away from the training vector’s transformed data are shown in Figure 8.13.

105

EKF Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

σ
y

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

Time [s]

σ
z

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

σ
x

(a) Position Uncertainty [m]

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

Time [s]

P
os
it
io
n
R
S
S
[m

]

(b) Position RSS [m]

Figure 8.9. Case 2: Position Standard Deviation/Errors and RSS vs. Time

106

EKF Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẋ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẏ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

Time [s]

σ
ż

(a) Velocity Uncertainty [m/s]

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Time [s]

V
el
o
ci
ty

R
S
S
[m

/s
]

(b) Velocity RSS [m/s]

Figure 8.10. Case 2: Velocity Standard Deviation/Errors and RSS vs. Time

107

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

Time [s]

σ
θ
,z

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

σ
θ
,y

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

σ
θ
,x

(a) Attitude Uncertainty [rad]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

Time [s]

A
tt
it
u
d
e
R
S
S
[r
ad

]

(b) Attitude Magnitude Uncertainty

Figure 8.11. Case 2: Attitude Standard Deviation/Errors and RSS vs. Time

108

or Nominal Principal Component
or Off-Nominal Principal Component

Fault Alarm Threshold

0 0.5 1 1.5

·10−2

0

0.5

1

·10−2

y1

y
2

(a) MPCA Point Cloud

0 100 200 300 400 500

0

0.5

1

1.5

·10−2

Time [s]

y
1

(b) First Principal Component

Figure 8.12. Case 2: Effects of MPCA with a Single IMU Failure

σy1: Feature Plane Standard Deviations
σCI : Feature Plane CI Solution
τtv: Traning Vector Fault Threhsold

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1
·10−2

Time [s]

σ
tv

Figure 8.13. Case 2: Feature Plane CI Training Vector Fault Detection

109

8.4. CASE 3: MULTIPLE SENSOR FAILURES

The third case examined looks at a system with multiple sensor failures, specif-

ically three failures in this case. All three sensors fail at the same time, t = 250

seconds, and it is desired to examine the performance of the fault detection process

with multiple failures. The navigation solutions for this case are omitted for brevity

due to performance similarities to that of the previous two cases. However, it can be

seen that MPCA successfully detects and isolates the failing sensors and eliminates

the outliers from the data fusion process. A point cloud representation of the prin-

cipal components is plotted along with y1 versus time and can be found in Figures

8.14a and 8.15, respectively. While there is no failure in the training vector, the

underlying training vector fault detection method is examined, which is processed

at 1 Hz. The feature plane deviations away from the training vector’s transformed

data are shown in Figure 8.13. It is important to note that even in the case of three

sensor failures, the training vector fault detection process remains undisturbed and

is nominally operating as expected.

110

or Nominal Principal Component
or Off-Nominal Principal Component

Fault Alarm Threshold

−1 0 1

·10−2

−1

−0.5

0

0.5

1

·10−2

y1

y
2

(a) MPCA Point Cloud

0 100 200 300 400 500

−1

0

1

·10−2

Time [s]

y
1

(b) First Principal Component

Figure 8.14. Case 3: Effects of MPCA with Multiple IMU Failures

σy1: Feature Plane Standard Deviations
σCI : Feature Plane CI Solution
τtv: Traning Vector Fault Threhsold

50 100 150 200 250 300 350 400 450 500
−0.2

0

0.2

0.4

0.6

0.8

1
·10−2

Time [s]

σ
tv

Figure 8.15. Case 3: Feature Plane CI Training Vector Fault Detection

111

8.5. CASE 4: TRAINING VECTOR SENSOR FAILURE

The last simulated case study examines the behavior of a homogeneous multi-

IMU network undergoing a sensor failure at t = 250 seconds. In this case, the failure

occurs in the IMU that is being used as the training vector for MPCA. It is desired to

examine the performance of the proposed underlying fault detection method for the

training vector within MPCA along with the respective navigation solutions. Before

examining performance results of this method, an illustration is shown to display the

need for this method. First, an examination of the system without training vector

fault detection is considered. Figure 8.16 shows the feature plane during a training

vector failure without using this feature plane training vector fault detection method.

y2:N : Principal Components
y1: Training Vector Principal Component
τ MPCA Threshold

0 50 100 150 200 250 300 350 400 450 500

0

2

4

6

8
·10−2

Time [s]

y
1

Figure 8.16. Case 4: Training Vector Failure using Only MPCA

Now, the underlying fault detection method of the training vector is imple-

mented. The position and velocity 3 − σ standard deviations, and their respective

root sum square (RSS) errors and mean errors, are plotted versus time and are shown

in Figures 8.17 and 8.18, respectively. The attitude 3 − σ standard deviation, and

112

its respective RSS error and mean errors, are plotted versus time and are shown in

Figure 8.19. It is seen that at the time of failure, the position, velocity, and attitude

increase in error, unlike the other failure cases. This is due to the training vector

fault detection frequency. Since this training vector fault detection method uses the

previous j iterations of the feature plane covariance time history, there is a brief pe-

riod where the filter believes the measurements of the faulty training vector, which

results in a non-negligible error. However, as shown in Figures 8.17, 8.18, and 8.19,

the filter does not diverge and is able to maintain a nominal status due to this under-

lying feature plane fault detection. The training vector is then switched based on the

large increases in the feature plane deviations, which is shown later. A point cloud

representation of the principal components are plotted along with the y1 component

versus time and can be seen in Figures 8.20a and 8.20b respectively. Note that the

gold points denote the initial believed failing sensors. In the event of a training vector

failure, the system maintains its belief that the training vector is correct even if all

other sensors have failed. The system can then determine when to toggle to a nomi-

nal training vector once the feature plane CI solution exceeds its expected threshold,

τ = 0.008. Figure 8.21a exhibits the feature plane CI solution, σCI , time history

along with its N corresponding transformed data point standard deviations relative

to the training vector, σy1. The same graphic is zoomed in, shown in Figure 8.21b,

to illustrate the behavior of this method in a clearer manner. Note that the feature

plane CI solution maintains a nominal condition after the training vector is toggled

from the failing sensor to a new nominal sensor. From this, it is seen that MPCA can

handle training vector failures without suffering filter divergence in the event where

this underlying training vector fault detection method is performed.

113

EKF Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

σ
x

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

σ
y

0 50 100 150 200 250 300 350 400 450 500
−200

−100
0

100

200

Time [s]

σ
z

(a) Position Uncertainty [m]

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

Time [s]

P
os
it
io
n
R
S
S
[m

]

(b) Position RSS [m]

Figure 8.17. Case 4: Position Standard Deviation/Errors and RSS vs. Time

114

EKF Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẏ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

σ
ẋ

0 50 100 150 200 250 300 350 400 450 500
−10

−5
0

5

10

Time [s]

σ
ż

(a) Velocity Uncertainty [m/s]

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Time [s]

V
el
o
ci
ty

R
S
S
[m

/s
]

(b) Velocity RSS [m/s]

Figure 8.18. Case 4: Velocity Standard Deviation/Errors and RSS vs. Time

115

EKF Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

σ
θ
,x

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

Time [s]

σ
θ
,z

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4

σ
θ
,y

(a) Attitude Uncertainty [rad]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

Time [s]

A
tt
it
u
d
e
R
S
S
[r
ad

]

(b) Attitude RSS [rad]

Figure 8.19. Case 4: Attitude Standard Deviation/Errors and RSS vs. Time

116

or Nominal Principal Component
or Off-Nominal Principal Component
or False Off-Nominal Component

Fault Alarm Threshold

−6 −4 −2 0 2 4 6

·10−2

−4

−2

0

2

4

6
·10−2

y1

y
2

(a) MPCA Point Cloud

0 50 100 150 200 250 300 350 400 450 500

−5

0

5

·10−2

Time [s]

y
1

(b) First Principal Component

Figure 8.20. Case 4: Effects of MPCA with a Training Vector Failure

117

σy1: Feature Plane Standard Deviations
σCI : Feature Plane CI Solution
τtv: Traning Vector Fault Threhsold

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

Time [s]

σ
tv

(a) Feature Plane CI Training Vector Fault Detection

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5
·10−2

Time [s]

σ
tv

(b) Feature Plane CI Training Vector Fault Detection

Figure 8.21. Case 4: Training Vector Fault Detection

118

9. CONCLUSIONS

In order to provide a lower-cost inertial measurement unit (IMU)-based naviga-

tion system as opposed to one that uses a typical high-cost, high-reliability tactical or

strategic grade IMU, a fault-tolerant method is proposed that uses multiple low-cost

IMUs and fuses their data together via a direct averaging method or their individual

navigation solutions together via the covariance intersection (CI) fusion rule. It is

demonstrated that the direct averaging fusion rule tends to outperform the CI fu-

sion rule during nominal operations where no hardware failures are present. On the

other hand, the CI fusion rule is shown to outperform the direct averaging fusion rule

when an IMU fails due to the ability of the CI fusion rule to selectively downweight

the navigation solution obtained from the failed IMU. The proposed algorithm uses

the navigation solution propagated using the direct averaged data when there are no

IMU faults since it provides a more confident solution. In the case of an IMU failure,

the algorithm will recognize the failure, and the navigation solution from the covari-

ance intersection method will be used. This distributed IMU network can provide a

comparable navigation solution to that of a single, high-cost, high reliability IMU at

significantly reduced cost. However, CI will only outperform direct averaging if there

is knowledge of a sensor failure due to the limitation of the weighting scheme pro-

posed. Since both fusion methods suggest needs for sensor fault detection methods,

the direct averaging fusion rule is implemented. The direct averaging rule produces

more accurate navigation solutions, i.e. mean and covariance, while also remaining

computationally efficient.

In a distributed network of low-cost IMUs, sensor failures have been known to

happen and were dealt with in this thesis using principal component analysis (PCA)

for static systems and a modified version of principal component analysis (MPCA)

for dynamical systems. Three different failure cases were examined to determine the

119

robustness of the proposed fault detection algorithms, which were compared to a

baseline nominal (no-failure) case. The first failure case took into account a single

IMU failure after an arbitrarily set time. The MPCA fault detection algorithm real-

ized the fault and isolated the faulty measurements from the fusion process allowing

the navigation solution and EKF to maintain nominal status. A similar case was set

up for the event of multiple IMU failures; in this case, three failures occurred at the

same time. Like the first failure case, at the fault occurrences, the algorithm isolated

the faulty measurements from the fusion process and also maintained nominal filter

status. The final case examined the failure of the vital training vector. An underlying

fault detection process was run at a slower frequency than the IMU frequency due to

calculating feature plane measurement covariances relative to the training vector. In

the case of a training vector failure, it was seen that the system believes all sensors

to be failing and the training vector to be the only nominal sensor. By implementing

Covariance Intersection into the feature plane covariances, a thresholding fault de-

tection scheme was constructed based on the overall fused feature plane covariance.

Due to timing considerations of this underlying fault detection method, the system

believes that the nominal sensors are failing for only a brief period of time. Once

the time history of the feature plane CI solution shows a discrepancy in trend, the

training vector is toggled to that of a nominal sensor. During this time of falsely

believed off-nominal sensors, the EKF suffers a spike in error but does not diverge

which allows the filter to remain operational even in the event of a training vector

failure. In all of the cases considered in this paper, it was shown that the faults could

be properly detected and isolated, which allowed the navigation solution to produce

a covariance that is still consistent with its estimated state and provided for a robust,

fault-tolerant method for performing spacecraft navigation.

120

9.1. FUTURE CONSIDERATIONS

In the current thesis, a complete, robust multi-sensor fault detection navigation

network was proposed and outlined. However, there are still a few minor topics of

future study. The thresholds that were selected to determine fault characteristics were

chosen arbitrarily enabling a threshold regime that remains constant, encompassing

all nominal principal components. While this may seem to work during a 500 second

simulation, walking biases may eventually cause the transformed data points to obtain

similar random walks as well. Due to the linear subspace transformation performed

on the sensor outputs, these walking biases do not present themselves directly in the

feature plane. To further understand and handle these errors that come through in

the feature plane, further studies are needed to propagate a sensor fault threshold

forward in time instead of an arbitrary selection. Along with examining thresholding

trends, another area of future discussion is that of sensor placement in a system. If

a system is constructed where the sensors are decentralized throughout a spacecraft,

optimal sensor configuration needs to be examined. It could also be proposed that

instead of multiple axes IMUs, such as proposed in this thesis, single axes IMUs

would be used and distributed optimally throughout the system. It could then be

shown that by minimizing a cost function defined as the trace of the measurement

covariance, an optimal sensor configuration could be found.

APPENDIX A

IMU SPECIFICATIONS

122

Specification 3DM-GX3-15 M-G362PDC1

A
cc
el
er
om

et
er
s

Analog-to-Digital Converter Bitrate 16 16

Range ±156.96 m
s2

±176.58 m
s2

Scale Factor Error U(−500, 500) ppm U(−125, 125) ppm

Axes Nonorthogonality Error U(−103, 103) arcsec U(−108, 108) arcsec

Axes Misalignment Error U(−103, 103) arcsec U(−108, 108) arcsec

Velocity Random Walk 0.0007848m/s√
hr

0.04 m/s√
hr

Bias Instability 0.0003924 m
s2

0.000981 m
s2

Bias Instability Time 100 s 100 s

Startup Bias U(−0.0196, 0.0196) m
s

U(−0.0785, 0.0785) m
s

G
y
ro
sc
op

es

Analog-to-Digital Converter Bitrate 16 16

Range ±600 ◦
s

±300 ◦
s

Scale Factor Error U(−500, 500) ppm U(−5000, 5000) ppm

Axes Nonorthogonality Error U(−103, 103) arcsec U(−360, 360) arcsec

Axes Misalignment Error U(−103, 103) arcsec U(−360, 360) arcsec

Angular Random Walk 0.03 ◦√
hr

0.1 ◦√
hr

Bias Instability 18 ◦
hr

3 ◦
hr

Bias Instability Time 100 s 100 s

Startup Bias U(−0.25, 0.25) ◦
s

U(−0.5, 0.5) ◦
s

APPENDIX B

FUSION ALGORITHM

124

Algorithm 1 Robust, Fault Tolerant Multiple IMU Fusion.

1. Draw measured a1,...,N and ω1,...,N from IMU1,...,N .

2. Propagate the individual dead-reckoned solutions, m1,...,N and P1,...,N ,

which correspond to IMU1,...,N according to Eqs. (2.13) and (2.14).

3. Determine w1,...,N from Eq. (3.15) for the CI fusion method.

4. Fuse m1,...,N and P1,...,N using the CI fusion method according to

Eq. (4.12) to obtain m̃CI and P̃CI .

5. Apply the direct average fusion to a1,...,N and ω1,...,N according to

Eq. (3.1), to obtain ãDA and ω̃DA.

6. Propagate the dead-reckoned solution from ãDA and ω̃DA according to

equations Eqs. (2.13) and (2.14), to obtain m̃DA and P̃DA.

7. if tr P̃CI < tr P̃DA

Use m̃CI and P̃CI as navigation solution.

else

Use m̃DA and ˜PDA as navigation solution

end

APPENDIX C

MATRIX DEFINITIONS

126

DERIVATIVE OF A TRACE MATRIX

For the derivation of the Kalman gain matrix, it is needed to take the derivative

of the trace of a matrix. The derivative properties can be shown as

∂

∂A
trace {BAC} = BTCT

∂

∂A
trace

{
ABAT

}
= A

[
B +BT

]
.

MATRIX NOTATION

For some vector v = [vx vy vz]
T , define the matrices [vr], [v×], and [v∗] to

be

[vr] =


vx 0 0

0 vy 0

0 0 vz

 , [v×] =


0 vz −vy

−vz 0 vx

vy −vx 0

 , and [v∗] =


0 vz vy

vz 0 vx

vy vx 0

 .

DEAD-RECKONING MATRIX DEFINITIONS

The equations used follow Reference [12]. The following intermediate equa-

tions are used in order to calculate the F and M matrices. T T
k−1 is the coordinate

transformation from the inertial frame to the IMU frame and is calculated using the

quaternion portion of the state vector x.

T T
k−1 =


1− 2q22 − 2q23 2 (q1q2 − q3q4) 2 (q3q1 + q2q4)

2 (q1q2 + q3q4) 1− 2q23 − 2q21 2 (q2q3 − q1q4)

2 (q3q1 − q2q4) 2 (q2q3 + q1q4) 1− 2q21 − 2q22



127

Gk−1 represents the Jacobian of the acceleration due to gravity with respect to the

vehicle position at tk−1 and is expressed for a central body spherical gravity field as

Gk−1 = G (sk−1) =


− µ

|sk−1|3
+ 3µs2x

|sk−1|5
3µsxsy

|sk−1|5
3µsxsz
|sk−1|5

3µsysx

|sk−1|5
− µ

|sk−1|3
+

3µs2y

|sk−1|5
3µsysz

|sk−1|5

3µszsx
|sk−1|5

3µszsy

|sk−1|5
− µ

|sk−1|3
+ 3µs2z

|sk−1|5


Uk−1 is the Hessian of the acceleration due to gravity and is given by

U =
µ

s7
[(
s2Jx − 5xJ

)
ux +

(
s2Jy − 5yJ

)
uy +

(
s2Jz − 5zJ

)
uz

]
where

J =


3x2 − s2 3xy 3xz

3xy 3y2 − s2 3yz

3xz 3yz 3z2 − s2


which can be broken down into the following components:

Jx =


4x 3y 3z

3y −2x 0

3z 0 −2x

 , Jy =


−2y 3x 0

3x 4y 3z

0 3z −2y

 , Jz =


−2z 0 3x

0 −2z 3y

3x 3y 4z

 .

Now, define n as ωm,k∆tk and if ||n|| > 0, n = n/||n||, T (ωm,k∆tk) is then defined to

be

T (ωm,k∆tk) = I3×3 − sin ||ωm,k∆tk||[n×] + (1− cos ||ωm,k∆tk||) [n×][n×].

128

THE F MATRIX

The F matrix at time tk−1 is defined as

Fk−1 =



Frr Frv Frθ Frd Frba Frma Frna Frsa Frbg Frmg Frng Frsg

Fvr Fvv Fvθ Fvd Fvba Fvma Fvna Fvsa Fvbg Fvmg Fvmg Fvsg

0 0 Fθθ 0 0 0 0 0 Fθbg Fθmg Fθng Fθsg

0 0 0 I3×3 0 0 0 0 0 0 0 0

0 0 0 0 I3×3 0 0 0 0 0 0 0

0 0 0 0 0 I3×3 0 0 0 0 0 0

0 0 0 0 0 0 I3×3 0 0 0 0 0

0 0 0 0 0 0 0 I3×3 0 0 0 0

0 0 0 0 0 0 0 0 I3×3 0 0 0

0 0 0 0 0 0 0 0 0 I3×3 0 0

0 0 0 0 0 0 0 0 0 0 I3×3 0

0 0 0 0 0 0 0 0 0 0 0 I3×3


with the following entries:

Frr = I3×3 +
1

2

(
Ĝk−1 −

1

3
Ûk−1

)
∆t2k

Frv = I3×3∆tk

Frθ = −1

2

(
T̂ T
k−1 [∆v̂m,k×] +

1

3
T̂ T
k−1

[(
∆θ̂m,k ×∆v̂m,k

)
×
])

∆tk

− 1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂ T
k−1[d̂×]− 1

3
Ĝk−1T̂

T
k−1

[
(d̂×∆θ̂m,k)×

]]
∆t2k

Frd =
1

2

[(
Ĝk−1 −

1

3
Ûk−1

)
T̂ T
k−1 +

1

3
Ĝk−1T̂

T
k−1

[
∆θ̂m,k×

]]
∆t2k

Frba = −R̂a∆t

Frma = R̂a[∆v̂m,k×]

Frna = −R̂a[∆v̂m,k∗]

129

Frsa = −R̂a[∆v̂m,kr]

Frmg = R̂g[∆θ̂m,k×]

Frng = −R̂g[∆θ̂m,k∗]

Frsg = −R̂g[∆θ̂m,kr]

Fvr =

(
Ĝk−1 −

1

2
Ûk−1

)
∆tk

Fvv = I3×3

Fv,θ = −
(
T̂ T
k−1 [∆v̂m,k×] +

1

2
T̂ T
k−1

[(
∆θ̂m,k ×∆v̂m,k

)
×
])

−
[(

Ĝk−1 −
1

2
Ûk−1

)
T̂ T
k−1[d̂×]− 1

2
Ĝk−1T̂

T
k−1

[
(d̂×∆θ̂m,k)×

]]
∆tk

Fvd =

[(
Ĝk−1 −

1

2
Ûk−1

)
T̂ T
k−1 +

1

2
Ĝk−1T̂

T
k−1

[
∆θ̂m,k×

]]
∆tk

Fvba = −V̂a∆t

Fvma = V̂a[∆v̂m,k×]

Fvna = −V̂a[∆v̂m,k∗]

Fvsa = −V̂a[∆v̂m,kr]

Fvbg = V̂g∆t

Fvmg = V̂g[∆θ̂m,k×]

Fvng = −V̂g[∆θ̂m,k∗]

Fvsg = −V̂g[∆θ̂m,kr]

Fθθ = T (∆θ̂m,k)

Fθbg = −I3×3∆t

Fθmg = [∆θ̂m,k×]

Fθng = −[∆θ̂m,k∗]

Fθsg = −[∆θ̂m,kr]

130

where ∆v̂m,k = am,k∆t and ∆θ̂m,k = ωm,k∆t.

THE M MATRIX

The M matrix at time tk−1 is defined as

Mk−1 =



−R̂a∆t R̂g∆t 0 0

−V̂a∆t V̂g∆t 0 0

0 −I3×3∆t 0 0

0 0 0 0

0 0 I3×3∆t 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 I3×3∆t

0 0 0 0

0 0 0 0

0 0 0 0


where

R̂a =
1

2
T̂ T
k−1

(
I3×3 +

1

3

[
∆θ̂m,k×

])
∆tk

R̂g =
1

6

(
T̂ T
k−1 [∆v̂m,k×] + Ĝk−1T̂

T
k−1[d̂×]∆tk

)
∆tk

V̂a = T̂ T
k−1

(
I3×3 +

1

2

[
∆θ̂m,k×

])
V̂g =

1

2

(
T̂ T
k−1 [∆v̂m,k×] + Ĝk−1T̂

T
k−1[d̂×]∆tk

)
.

APPENDIX D

MONTE CARLO ANALYSIS

132

MONTE CARLO ALGORITHM

First, the “average” quaternion, labeled q̄∗, is found according to Reference

[23] as the eigenvector corresponding to the largest eigenvalue of the matrixM , where

M =
N∑
i=1

q̄nq̄
T
n

and N is the number of Monte Carlo Samples. The error quaternion is then found

for each state vector in the cell X as

δq̄i = q̄∗ ⊗ q̄−1
i

for the ith state vector in N . Next, a cell of augmented vectors corresponding to the

cell of state vectors, labeled Y , is defined in terms of a rotation vector (as opposed

to an error quaternion) as

Yi =

[
ri vi 2δqi d aparam ωparam

]T

where

δq̄i ≈

δqi

1


for small error angles. The mean is then

Y ∗ =
1

N

N∑
i=1

Yi

and the covariance is

Pmc =
1

N

N∑
i=1

(Yi − Y ∗) (Yi − Y ∗)T

133

This augmented state vector, which is expressed in terms of a rotation vector for the

vehicle attitude, is necessary to compute the mean and covariance because the error

in the rotation vector representation of the vehicle attitude is approximately additive

under the assumption of small angles. Note that the error quaternion representation

is multiplicative.

APPENDIX E

EKF CONSIDERATION: UNDERWEIGHTING

135

In the construction and simulation of the EKF, it is sometimes needed to

“soften” measurement updates to avoid over-convergence in the filter. The accelerom-

eter biases were seen to over-converge in the current simulation. To avoid this, the

position measurements were underweighted. Recall that the update equations used

to incorporate measurements in the EKF are given by

m+
k = m−

k +Kk[zk − ẑk]

P+
k = P−

k −CkK
T
k −KkC

T
k +KWkK

T
k

where the Kalman gain, Kk, is defined as

Kk = CkW
−1
k

= P−
k HT (m−

k)
[
H(m−

k)P
−
k HT (m−

k) +LkRkL
T
k

]−1
.

This optimal gain can be applied to the state estimation error covariance which allows

the covariance update equation to be rewritten as

P+
k = P−

k KkWkK
T
k

= P−
k −Kk

[
H(m−

k)P
−
k HT (m−

k) +LkRkL
T
k+

]
KT

k .

It is seen from this rewritten covariance update that by lowering the Kalman gain,

a smaller update occurs in both the state estimate and the state estimation error

covariance. Using this information, the covariance update can be reduced in order

to slow down the convergence of the filter, preventing over convergence of the filter.

The Kalman gain is then augmented with an underweighting factor Uk as

Kk = P−
k HT (m−

k)
[
H(m−

k)P
−
k HT (m−

k) +LkRkL
T
k +Uk

]−1
.

136

While this underweighting factor can be determined by computing second-order ef-

fects in the residual covariance, an ad-hoc selection can be made as a tuning param-

eter. This ad-hoc selection of the underweighting factor is given as a scaled form of

the uncertainty mapped into the measurement uncertainty, such that

Uk =
1− p

p
Hk(m

−
k)P

−
k HT (m−

k) (9.1)

where 0 < p < 1. Knowing that the innovations covariance is defined as

Wk = H(m−
k)P

−
k HT (m−

k) +LkRkL
T
k ,

and using the ad-hoc relationship in Eq. (9.1), the final form of the underweighting

consideration is given in terms of the innovations covariance as

Wk =
1− p

p
H(m−

k)P
−
k HT (m−

k) +LkRkL
T
k . (9.2)

APPENDIX F

ERROR PARAMETER SIMULATION RESULTS

138

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−2

b
a
y
[m

/s
2
]

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−2

b
a
x
[m

/s
2
]

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−2

Time [s]

b
a
z
[m

/s
2
]

Case 1: Accelerometer Bias Standard Deviation/Errors vs. Time

0 50 100 150 200 250 300 350 400 450 500
−2
−1
0
1
2 ·10−3

Time [s]

σ
m
a
z

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−3

σ
m
a
x

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−3

σ
m
a
y

Case 1: Accelerometer Misalignment Standard Deviation/Errors vs. Time

139

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

σ
n
a
y

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

Time [s]

σ
n
a
z

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

σ
n
a
x

Case 1: Accelerometer Nonorthogonality Standard Deviation/Errors vs. Time

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−3

σ
sa
x

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−3

Time [s]

σ
sa
z

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−3

σ
sa
y

Case 1: Accelerometer Scale Factor Standard Deviation/Errors vs. Time

140

EKF Uncertainty
Monte Carlo Uncertainty
Error

0 50 100 150 200 250 300 350 400 450 500
−2
−1
0
1
2 ·10−5

b
g
x
[r
ad

/s
]

0 50 100 150 200 250 300 350 400 450 500
−2
−1
0
1
2 ·10−5

b
g
y
[r
ad

/s
]

0 50 100 150 200 250 300 350 400 450 500
−2
−1
0
1
2 ·10−5

Time [s]

b
g
z
[r
ad

/s
]

Case 1: Gyroscope Bias Standard Deviation/Errors vs. Time

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−2

Time [s]

σ
m
g
z

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−2

σ
m
g
y

0 50 100 150 200 250 300 350 400 450 500
−2
−1
0
1
2 ·10−2

σ
m
g
x

Case 1: Gyroscope Misalignment Standard Deviation/Errors vs. Time

141

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

σ
n
g
x

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

σ
n
g
y

0 50 100 150 200 250 300 350 400 450 500
−4
−2
0
2
4

·10−4

Time [s]

σ
n
g
z

Case 1: Gyroscope Nonorthogonality Standard Deviation/Errors vs. Time

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−4

σ
sg
x

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−4

σ
sg
y

0 50 100 150 200 250 300 350 400 450 500
−1

−0.5
0

0.5
1 ·10−4

Time [s]

σ
sg
z

Case 1: Gyroscope Scale Factor Standard Deviation/Errors vs. Time

142

BIBLIOGRAPHY

[1] Daniel Greenheck, Robert Bishop, Eric Jonardi, and John Christian. Design and
testing of a low-cost MEMS IMU cluster for SmallSat applications. In Proceedings
of the 2013 Small Satellite Conference, 2013.

[2] Jared B. Bancroft and Gerard Lachapelle. Data fusion algorithms for multiple
inertial measurement units. ISSN 1424-8220, June 2011.

[3] John L. Crassidis and John L. Junkins. Optimal Estimation of Dynamic Systems.
CRC Press, New York, 2nd edition, 2011.

[4] Tim Bailey, Simon Julier, and Gabriel Agamennoni. On conservative fusion
of information with unknown non-gaussian dependence. In 15th International
Conference on Information Fusion (FUSION), pages 1876–1883. IEEE, July 9–12
2012.

[5] Kyle J. DeMars and James S. McCabe. Multi-sensor data fusion in non-gaussian
orbit determination. In Proceedings of the AIAA/AAS Astrodynamics Specialist
Conference, Advances in the Astronautical Sciences, 2014.

[6] Karl Pearson. On lines and planes closest fit to systems of points in space.
Philosphical Magazine, 2(11):559–572, 1901.

[7] J. E. Potter and M. C. Suman. Thresholdless redundancy management with
arrays of skewed instruments. In Integrity in Electronic Flight Control Systems,
pages 15–25, 1997.

[8] Lee Wonhee and Chan Gookpark. A fault detection method of redundant imu us-
ing modified principal component analysis. International Journal of Aeronautical
and Space Science, 13(3):298–404, 2012.

[9] Samuel J. Haberberger and Kyle J. DeMars. Spacecraft navigation using a robust
multi-sensor fault detection scheme. In Proceedings of the AAS/AIAA Spaceflight
Mechanics Meeting, 2016.

[10] Kenneth R. Britting. Inertial Navigation Systems Analysis. Wiley Interscience,
New York, 1st edition, 1971.

[11] Renato Zanetti. Advanced Navigation Algorithms for Precision Landing. PhD
thesis, The University of Texas at Austin, Austin, TX, December 2007.

[12] DeMars, Kyle J. Precision navigation for lunar descent and landing. Master’s
thesis, The University of Texas at Austin, Austin, TX, May 2007.

[13] Woodman, Oliver J. An Introduction to Inertial Navigation. Tech. Rep. UCAM-
CL-TR-696, University of Cambridge, Computer Laboratory, August 2007.

143

[14] Jason L. Williams and Peter S. Maybeck. Cost-function-based Gaussian mixture
reduction for target tracking. In Proceedings of the Sixth International Confer-
ence of Information Fusion, pages 1047–1054, 2003.

[15] S. S. Wilks. Certain generalizations in the analysis of variance. Biometrika, 24
(3/4):471 – 594, November 1932.

[16] C. M. Bishop. Pattern Recognition and Machine Learning. Springer Science,
Newy York City, NY, 3rd edition, 2006.

[17] Walter Gander. Algorithms for the qr-decomposition. In Research Report No.
80-02, 1980.

[18] Jacob E. Darling Samuel J. Haberberger and Kyle J. DeMars. Distributed net-
work navigation using multi-sensor data fusion. In Proceedings of the AAS/AIAA
Spaceflight Mechanics Meeting, pages 3427–3444, 2015.

[19] Duchi J. Derivations of linear algebra and optimization.

[20] Malcolm D. Shuster. A survey of attitude representations. The Journal of the
Astronautical Sciences, 41(4):439–517, 1993.

[21] A. Gelb. Applied Optimal Estimation. M.I.T. Press, 1974. ISBN 9780262700085.

[22] Duk-Sun Shim and Cheol-Kwang. Yang. Optimal configuration of redundant
inertial sensors for navigation and fdi performance. Sensors ISSN, (1424-8220),
July 2010.

[23] Crassidis J . Oshman Y. Markley F., Cheng Y. Averaging quaternions. Journal
of Guidance, Control, and Dynamics, 30(4):1193–1197.

144

VITA

Samuel Haberberger was born in St. Louis, Missouri on November 22, 1991.

He began his aerospace engineering studies at Missouri University of Science and

Technology in the fall of 2010. As an undergraduate student, Samuel began doing

research with Dr. Kyle DeMars on IMU-based navigation and multi sensor data fu-

sion systems. Samuel graduated with his Bachelor of Science degree in the spring

of 2014. The proceeding Summer, Samuel entered and started his graduate aero-

space engineering program at Missouri University of Science and Technology to study

fault detection methods in multi-sensor networks applied to IMU-based navigation.

As a graduate student, Samuel was the recipient of a NASA Missouri Space Grant

Consortium Fellowship and worked as a research assistant under Dr. Kyle DeMars.

He received his MS degree in Aerospace Engineering in May of 2016 from Missouri

University of Science and Technology.

