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ABSTRACT 

 

Compliant mechanisms offer numerous advantages over their rigid-body 

counterparts. The synthesis with compliance technique synthesizes compliant 

mechanisms for conventional rigid-body synthesis tasks with energy/torque specifications 

at precision positions. In spite of its usefulness, the method suffers from some 

limitations/problems. The purpose of this work is to investigate these sensitivities with 

the synthesis with compliance technique and improve upon existing method. A new, 

simple but efficient, method for synthesis with compliance using an optimization 

approach is proposed, and its usefulness and simplicity demonstrated over the existing 

method. The strongly and weakly coupled system of kinematic and energy/torque 

equations in the existing method has been studied, and the new method is made simple by 

removing the strong coupling between these sets of equations. All synthesis cases are 

solved by treating them as though they are governed by weakly coupled systems of 

equations. 

 Representative examples of different synthesis tasks are presented. The results are 

verified with finite element analysis software ABAQUS® and ANSYS® by means of 

coupler curve/precision position comparisons, and stored energy comparisons. An 

experimental setup has been devised to perform experiments on compliant mechanisms 

for validation purposes. The results obtained using the Pseudo-Rigid-Body Model 

(PRBM) for compliant mechanism synthesis match closely with experimental and finite 

element analysis (FEA) results, and hence reinforce the utility of the synthesis with 

compliance method using the PRBM in compliant mechanism synthesis. 
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1. INTRODUCTION 

 

 The compliant mechanisms are functionally similar to the rigid-body mechanisms 

but they gain some or all of their mobility from the deflection of flexible members rather 

than from movable joints only (Howell 2001). 

 

1.1. DEFINITION 

 A kinematic mechanism is a mechanical device used to transfer or transform 

motion, force, or energy (Erdman et al., 1997). The rigid-body mechanisms consist of 

rigid links joined together by joints or kinematic pairs and they gain their mobility from 

the movable joints only. A four-bar mechanism is a very well-known example of a rigid-

body mechanism. Figure 1.1 shows a crank-rocker mechanism. 

 

  

 

Figure 1.1. A Rigid-Body Four-Bar (Crank-Rocker) Mechanism 
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  It is an inversion of a four-bar mechanism, generally with an input torque T 

applied at the crank which rotates through 3600 and serves to oscillate the rocker link. An 

example of a compliant crimping mechanism developed by AMP Inc. (Her, 1986) is 

shown in Figure 1.2 with its rigid-body counterpart design. Only one-half of the 

mechanism is shown because of its symmetry.  

 

 

 

Figure 1.2. A Compliant Crimping Mechanism with its Rigid-Body Counterparts (Her, 
1986) 
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A pseudo-rigid-body model concept (Howell and Midha, 1994) provides a simple 

way to use the vast rigid-body mechanism knowledge base available to synthesize and 

analyze compliant mechanisms. It models the large deflections of the flexible segments, 

reducing them to their rigid-body kinematic counterparts and torsional springs to 

represent their compliance, their equivalence being maintained in their force-deflection 

characteristics. The compliant mechanisms can be fully compliant consisting of no rigid 

links or joints, or can be partially compliant with flexible segments and rigid links and 

joints. The compliant mechanisms have numerous advantages (Howell, 2001) as follows: 

1. The compliant mechanisms may contain fewer parts, or can be 

manufactured/molded as one-piece resulting in cost reduction due to reduced 

assembly time, simplified manufacturing processes, and general integration of 

form and function. 

2. With less number of parts, the compliant mechanisms are relatively lighter as 

compared with rigid-body mechanisms. 

3. The compliant mechanisms have fewer movable joints.  

i) This results in reduced wear and reduced need for lubrication 

ii) Lacking lash, it reduces the noise and vibration 

4. Less number of joints also helps increase the mechanical precision, making them 

useful in high-precision instruments. 

5. As the compliant mechanisms achieve some of their mobility from the deflection 

of their flexible members, the stored strain energy may be transferred, 

transformed or released at a later time in a different manner. They can be used to 

design mechanisms having specific force-deflection properties, e.g. compliant 
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constant-force mechanism, which generates a nearly constant output force in 

response to, say, a linear input displacement. 

6. The compliant mechanisms can be easily miniaturized and so they may result in 

space savings and find useful applications in MEMS devices. 

The compliant mechanisms also have few disadvantages, as follows: 

1. Due to the large deflections of flexible links, the design and analysis of compliant 

mechanisms is more difficult than that of rigid-body mechanisms. 

2. Fatigue analysis is important in the design of compliant mechanisms, and the 

choice of material is critical to attain a required fatigue life. The large deflection 

of a flexible member is limited by its geometric and material properties. The 

compliant segmentscannot produce continuous rotational motion, as does a rigid-

body crank.   

3. Flexible segments under stress for long periods of time, or at high temperatures, 

may experience stress relaxation or creep and may be rendered ineffective in their 

function. 

 In spite of the above disadvantages, compliant mechanisms are continuing to 

findimportant applications (Howell, 2001) in the engineering world and society at large, 

such as micro-sensors and actuators in micro-electro-mechanical (MEMS) devices, 

crashworthiness applications in automobiles due to the energy storage characteristics, 

precision machines, robotics, biomedical devices and prosthetics, surgical tools, adaptive 

structures, etc. Compliant mechanisms are also widely used in items such as grippers, 

Compliers®, bicycle brakes, binder clips, staple removers, etc. 
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1.2. HISTORICAL DEVELOPMENT 

  Use of flexible members to store energy and create motion has been in use since 

ages, e.g. in bows and catapults (Howell, 2001). The strain energy stored in the bow is 

released in the form of kinetic energy of the arrow. A systematic development of 

compliant mechanisms started in the second half of the twentieth century. Burns (1964) 

and Burns and Crossley (1968) performed the kinetostatic synthesis of flexible-link 

mechanisms. They considered a four-bar planar linkage with a flexible coupler and took 

into account the geometrical behavior of the flexible link along with an applied torque. 

Sevak and McLarnan (1974) synthesized and analyzed flexible link mechanisms for 

function generation using finite element analysis and optimization techniques, in 

particular, Fletcher and Powell’s variable metric method. Shoup and Mclarnan (1971) 

and Shoup (1972) used elliptic integrals to arrive at first approximations of the 

parameters including forces, elastic properties, dimensions, etc. occurring in the 

equations of the undulating and nodal elastic describing the static behavior of an end-

loaded flexible strip. These first approximations are useful in obtaining iterative solutions 

of equations for force or motion analysis of flexible-link mechanisms containing 

members that undergo large elastic deflections. Winter and Shoup (1972) performed 

displacement analysis of path-generating flexible-link mechanisms using elliptic integrals 

and obtained their coupler curves. 

 Bishop and Drucker (1945) obtained a solution for the large-deflection of a 

cantilever beam using elliptic integrals. Elliptic integrals were used for more complex 

geometries and loading conditions in later works (e.g. Frish-Fay 1962; Mattiason, 1981; 

and Zhang, 2012). Numerical techniques like chain algorithm may be found in earlier 
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works by Harrison (1973) and Miller (1980). The beam is discretized into smaller beam 

elements and each segment is analyzed in succession. Thus, the small displacements of 

each element are combined through chain calculation to obtain the large deflection of 

entire beam. Miller (1980) used the shooting method along with a Newton-type iteration 

to obtain improved estimates. Her (1986) and Midha et al. (1992) extended the chain 

algorithm idea with critical improvements, developing a more accurate chain calculation 

algorithm for use in large deflection, compliant mechanism analysis. A graphical, user-

driven Newton-Raphson technique which allows accurate solutions of loads in large 

deflection problems is presented by Hill (1990). A line search technique is also included 

to enhance the stability of this numerical method. 

  Her (1986) and Her and Midha (1987) developed appropriate terminology for the 

compliant mechanisms, and identified their kinematic properties. The concept of 

compliance number is also introduced which helps in evaluating the degrees of freedom 

of compliant mechanisms. Howell (1993) and Howell and Midha (1994) developed a 

method for designing compliant mechanisms using small-length flexural pivots. Howell 

(1991), and Howell and Midha (1995) proposed the pseudo-rigid-body concept for 

initially straight cantilevered flexible segments, subjected to end force or moment 

loading. Pauly (2002) presented an improved values of pseudo-rigid-body model 

parameters for compliant beams with nearly axial, tensile end force loads. Dado (2000) 

presented a variable parametric pseudo-rigid-body model for large-deflection beams with 

end loads. Norton (1991), Midha et al. (1992a), Midha et al. (1992b) and Midha et al. 

(1994) outlined the nomenclature and classification of the compliant mechanisms.  

Norton (1991), Norton et al. (1991),(1993), and Midha et al (2000) used pseudo-rigid-
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body model concepts to study kinematic mobility of the compliant mechanisms and to 

specify the limit positions of compliant mechanisms. Mettlach and Midha (1999) outlined 

the concept of characteristic deflection domain in compliant mechanism design and 

analysis. Murphy (1993) used type synthesis technique in compliant mechanisms and 

represented compliant mechanisms by matrix representation based on kinematics and on 

compliant segment types and connectivity between the segments. 

  Howell (1993) used kinematic loop-closure equations along with energy/torque 

considerations to account for the energy storage in compliant mechanisms to synthesize 

the compliant mechanisms for specified energy/ torques at precision positions. Mettlach 

and Midha (1995), (1996) presented graphical techniques and used Burmester theory to 

synthesize compliant mechanisms for more number of precision positions. Dado (2005) 

developed a variable parametric pseudo-rigid-body model for limit position synthesis of 

complaint four-bar mechanism with energy specifications. Annamalai (2003), Midha et 

al. (2004) used the pseudo-rigid-body model concept to synthesize the compliant four-bar 

mechanism with energy and torque specifications. Kolachalam (2003), Midha et al. 

(2011) synthesized the compliant single strip mechanisms for energy, torque and force 

specifications.  Saggere and Kota (2001), synthesized the four-bar mechanism with 

compliant coupler which requires prescribed shape change along with rigid-body motion 

for motion generation. Tari and Su (2011) presented a complex solution framework by 

polynomial approximations of nonlinear the kinematic and energy equations for 

kinetostatic synthesis of compliant mechanism. Midha et al. (2012) developed a 

technique using pseudo-rigid-body-model to analyze fixed-guided compliant beam with 

an inflection point.  
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1.3. SCOPE OF INVESTIGATION 

  The objectives of this work are: a) To investigate the sensitivities of the synthesis 

with compliance technique, and to improve upon the existing method of compliant 

mechanism synthesis by overcoming the limitations/problems, associated with it. b) 

Study the effects of strongly coupling and weakly coupling of kinematic and 

energy/torque equations on the solutions. c) Validate the results obtained from synthesis 

with compliance technique using pseudo-rigid-body model with commercial FEA 

software and with the experimental results. 

  Section 2 reviews three precision positions synthesis of a rigid-body four-bar 

mechanism, introduces the pseudo-rigid-body model concept and presents the PRBMs for 

different types of compliant segments in which a compliant segment is represented as 

combination of rigid-body links joined at pivot points with torsional springs. The 

synthesis techniques for compliant mechanisms using pseudo-rigid-body model concept 

are briefly discussed. Section 3 discusses the synthesis with compliance technique 

applied to generalized synthesis of compliant mechanism with energy/torque 

specifications. This Section also outlines the limitations/problems associated with the 

existing method and introduces the use of optimization in synthesis with compliance 

method. 

  Section 4 begins with review of optimization concept, and explains the 

optimization design process, types of optimization. A new method using optimization for 

solving energy/torque equations is explained. The design tables outlining the number of 

equations, number of unknowns and number of free choices for different synthesis types 

and precision positions with different number of torsional springs are presented. The 
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different cases of synthesis based on energy/torque specifications at the precision 

positions, different types of compliant segments using type synthesis etc. are given with 

appropriate examples. This Section also includes a discussion on the energy equivalence 

between a compliant mechanism and corresponding pseudo-rigid-body model. The 

results obtained are compared with commercial FEA software ABAQUS® and ANSYS® 

by means of coupler curve/precision positions comparisons and energy/torque 

comparisons. The proposed method is applied to synthesize a straight-line generating 

compliant mechanism, which can be used in a suspension system of small robotic 

vehicles. 

  Section 5 discusses the need for the experimental verification of the results and 

outlines the experimental setup manufactured. A compliant mechanism synthesis 

example is provided and the results obtained are compared with, FEA software and with 

experimental results. Section 6 summarizes the current research effort and outlines the 

recommendations for future study. 
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2. SYNTHESIS OF RIGID-BODY AND COMPLIANT MECHANISMS 

 

  Kinematic synthesis is a process of designing a mechanism for specified 

functions. Many different techniques are available for synthesis of the rigid-body 

mechanisms such as graphical methods, analytical methods and optimization methods. 

The class of the synthesis problem often decides the choice of the proper method. The 

rigid-body synthesis can be accomplished by considering kinematic considerations only; 

however to synthesize the compliant mechanisms, one has to take into account the large 

deflections of the flexible members that arise due to the material and geometric 

nonlinearities along with the kinematic considerations. A pseudo-rigid-body model 

(Howell and Midha, 1995) is a technique to model the flexible member, which undergo 

large deflections using the rigid-body members and torsional springs that reflect the 

equivalent force-deflection characteristics (Howell 2001). In this way, the available rigid-

body synthesis techniques can be applied to synthesize and analyze the compliant 

mechanisms (Howell and Midha, 1996).  

 This Section reviews the rigid-body synthesis methods and classification of the 

synthesis problems. A pseudo-rigid body model concept is discussed for the different 

types of compliant segments. Synthesis of compliant mechanisms using PRBM is 

presented followed by the review of compliant mechanism synthesis methods. 

 

2.1. RIGID-BODY FOUR-BAR MECHANISM SYNTHESIS 

 The two major categories in the area of synthesis (Sandor and Erdman, 1984) are 

type synthesis which includes finding mechanism type, number of links in the 
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mechanism, degrees of freedom etc. for given synthesis problem and dimensional 

synthesis which calculates the dimensions of the mechanisms e.g. link lengths, starting 

position etc. for a pre-selected mechanism type. Depending on the tasks performed, the 

kinematic synthesis is classified into three different types (Sandor and Erdman, 1984; 

Norton, 1999) function generation, path generation and motion generation. They are 

briefly discussed as follows:  

 In function generation, the input function (input link 2 position, in Figure 2.1) is 

correlated with the output function (output link 4 position) at the precision positions. In 

the path generation, the floating point on the coupler link, called as coupler point is 

required to traverse a prescribed path. If the position of the coupler point is correlated 

with the input-link positions or with time, the synthesis is called path generation with 

prescribed timing. In the motion generation, the position of the coupler point is correlated 

with the orientation of the coupler link i.e. coupler link is guided through the prescribed 

sequence. The synthesis methods are discussed herewith for a three precision positions 

synthesis of a four-bar mechanism. The precision positions are the positions prescribed 

for successive locations of the output (coupler or rocker) link in the plane (Norton, 1999). 

In the Figure 2.1, P is the precision position. The number of precision positions for which 

the mechanism can be synthesized is limited by the number of equations available to get 

the solution (Norton, 1999). A rigid-body four-bar mechanism can be easily synthesized 

graphically and analytically for two or three precision positions. A closed form solution 

for loop-closure equations is possible even for four and five precision positions four-bar 

synthesis problem (Erdman and Sandor, 1997; Norton, 1999). A Burmester theory is 

often used for four precision positions rigid-body synthesis (Howell, 2001). Many 
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researchers have developed solutions for the 5 to 9 precision positions synthesis problems 

using continuation methods also known as  homotopy methods (Norton, 1999). 

 

 

 

Figure 2.1. Schematic of a Rigid-Body Four-Bar Mechanism 
 

 

 The analytical synthesis method uses the vector dyadic approach. A pair of 

vectors is called a dyad (Sandor and Erdman 1984; Howell, 2001). The independent 

closed loops are identified in the mechanism and the loop-closure vector equations are 

obtained (Mallik et al., 1994). Each such vector equation will give two scalar equations. 

The solutions of this set of equations will synthesize the mechanism. Generally a four-bar 

mechanism can be represented by two dyads. The loop-closure equations can be obtained 
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using two dyads in initial and final position of the mechanism. The solutions to these 

equations will yield a four-bar mechanism dimensions. 

 In many cases, it may happen that, the number of equations available is less than 

number of unknowns to find. In such cases, a user has to make best guesses for some of 

the unknowns and they are known as free choices so as to solve the system of equations 

for remaining variables. Again analytical synthesis may yield the infinite number of 

solutions owing the freedom of assigning values to the free choices. It is a designer's 

judgment to select the best solution of all the possible solutions and it may require 

analysis and iterations. In the following sections, the vector loop approach is used for 

three precision positions rigid-body synthesis of a four-bar mechanism. 

  2.1.1. Function Generation. As discussed above, in function generation a 

mechanism is synthesized for relation between input link angle and output link angle at 

precision positions. In function generation (Midha et al. 1997; Annamalai, 2003) output 

link angle,ψ�, is specified as a function of input link angle, ϕ�	, where j	represents j
� 

position of the mechanism. The vector schematic of a four-bar mechanism for function 

generation for any two precision positions is shown in Figure 2.2. Z
 is the input link and 

Z� is output link, γ�	represents the rotation of the Z� coupler link from its initial position 

to j
� position.  

 Following the loop �Z
 → Z� → Z� → Z�� → Z�� → Z
�� in 1st and j
�	positions of 

the mechanism in Figure 2.2, the vector loop-closure equation can be written as follows. 

 Z
 + Z� − Z� + Z�� − Z�� − Z
� = 0	 (1)  

where,                               Z
� = Z
e��� ; Z�� = Z�e���; 	Z�� = Z�e�ψ�  
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Figure 2.2. Vector Schematic of Four-Bar Mechanism in its 1st and j
� Precision Positions 
for Function Generation 

 

 

Using above relations equation (1) can be written as follows   

 Z
�1 − e���� + Z��1 − e���� + Z��e�ψ� − 1� = 0 (2)  

Considering three precision positions synthesis problem the vector loop-closure equation 

for positions 1 and 2 can be written using equation (2) as 

 Z
�1 − e�� � + Z��1 − e�� � + Z��e�ψ − 1� = 0 (3)  

Similarly, for positions 1 and 3; 

 Z
�1 − e��!� + Z��1 − e��!� + Z��e�ψ! − 1� = 0 (4)  

 

Vector equations (3) and (4) represents 4 scalar equations, let the vector Z" can be 

represented in complex number form in its first position as 
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 Z" = R"e�$%& = R"'cosΘ"+ + isinΘ"+. (5)  

where, R" = length of the vector 

 Θ"+ = Angle of the nth vector in its first position from right horizontal measured 

in counterclockwise direction 

The four scalar equations are 

R
/cos'Θ
+. − cos'Θ
+ + ϕ
.0 + R�/cos'Θ�+. − cos'Θ�+ + γ
.0
+ R�/cos'Θ�+ + ψ
. − cos'Θ�+.0 = 0	 (6a) 

 R
/sin'Θ
+. − sin'Θ
+ + ϕ
.0 + R�/sin'Θ�+. − sin'Θ�+ + γ
.0 +
R�/sin'Θ�+ + ψ
. − sin'Θ�+.0 = 0	 (6b) 

R
/cos'Θ
+. − cos'Θ
+ + ϕ�.0 + R�/cos'Θ�+. − cos'Θ�+ + γ�.0
+ R�/cos'Θ�+ + ψ�. − cos'Θ�+.0 = 0	 (6c) 

R
/sin'Θ
+. − sin'Θ
+ + ϕ�.0 + R�/sin'Θ�+. − sin'Θ�+ + γ�.0
+ R�/sin'Θ�+ + ψ�. − sin'Θ�+.0 = 0	 (6d) 

The values of ϕ
, ψ
, ϕ�,, ψ� are given as input in the synthesis problem. The unknowns 

in the above four equations are 

R
, Θ
+, R�, Θ�+, R�, Θ�+, γ
, γ�	
 Since, there are four nonlinear equations and eight unknowns; in order to solve 

this system of equations, any four variables are chosen as free choices and the remaining 

four variables are calculated by solving four equations. 

 2.1.2. Path Generation. In path generation synthesis, a coupler point is required 

to pass through the prescribed precision positions (Sandor and Erdman, 1984; Howell, 

2001; Kolachalam, 2003). The point P� is the coupler point of the mechanism in its j
� 

position and path vector δ� represents the change in position of the coupler point P from 
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14
 position to j
� position. The vector loop-closure equations for path generation 

synthesis can be obtained using two dyads: the input 'A6AP+. and output 'B6BP+. dyads 

from Figure 2.3. 

  

 

 

Figure 2.3. Vector Schematic of the Four-Bar Mechanism in its 1st and j
� Precision 
Positions for Path, Motion Generation and Path Generation with Prescribed Timing 

 

  

 Vector Z
 represents the input link, while vector Z� represents the output link. 

Angles ϕ�	,ψ�,	γ� are rotations of the input, output and coupler links from 1st position to 

j
� position. Following the left loop �Z
 → Z8 → δ� → Z8� → Z
�� and right loop 

�Z� → Z9 → δ� → Z9� → Z��� from initial to j
� position; two vector loop-closure 

equations can written as follows: 
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 Z
�e��� − 1� + Z8�e��� − 1� = δ�	 (7)  

 Z��e�:� − 1� + Z9�e��� − 1� = δ�	 (8)  

These two vector equations will yield four scalar equations for two precision positions. 

For three precision position synthesis case using the equations (7) and (8), four loop-

closure equations can be obtained as follows: 

For positions 1 and 2; 

 Z
�e�� − 1� + Z8�e�� − 1� = δ
	 (9)  

 Z��e�: − 1� + Z9�e�� − 1� = δ
	 (10) 

For positions 1 and 3; 

 Z
�e��! − 1� + Z8�e��! − 1� = δ�	 (11) 

 Z��e�:! − 1� + Z9�e��! − 1� = δ�		 (12) 

The above four vector loop-closure equations will yield eight scalar equations using 

equation (5) and they are as follows: 

R
/cos'Θ
+ + ϕ
. − cos'Θ
+.0 + R8/cos'Θ8+ + γ
. − cos'Θ8+.0 = Re'δ
.	 (13a) 

R
/sin'Θ
+ + ϕ
.− sin'Θ
+.0 + R8/sin'Θ8+ + γ
.− sin'Θ8+.0 = Im'δ
.	 (13b) 

R�/cos'Θ�+ + ψ
. − cos'Θ�+.0 + R9/cos'Θ9+ + γ
. − cos'Θ9+.0 = Re'δ
.	 (13c) 

R�/sin'Θ�+ + ψ
.− sin'Θ�+.0 + R9/sin'Θ9+ + γ
.− sin'Θ9+.0 = Im'δ
.	 (13d) 

R
/cos'Θ
+ + ϕ�. − cos'Θ
+.0 + R8/cos'Θ8+ + γ�. − cos'Θ8+.0 = Re'δ�.	 (13e) 

R
/sin'Θ
+ + ϕ�.− sin'Θ
+.0 + R8/sin'Θ8+ + γ�.− sin'Θ8+.0 = Im'δ�.	 (13f) 

R�/cos'Θ�+ + ψ�. − cos'Θ�+.0 + R9/cos'Θ9+ + γ�. − cos'Θ9+.0 = Re'δ�.	 (13g) 

R�/sin'Θ�+ + ψ�.− sin'Θ�+.0 + R9/sin'Θ9+ + γ�.− sin'Θ9+.0 = Im'δ�.	 (13h) 
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where, Re'δ
.	and Im'δ
. represents the real and imaginary parts of the path vector δ
 

and the same applies for vector δ�. For the path generation synthesis δ
 and δ�	are 

specified as input while the unknowns in the above equations are  

R
, Θ
+, R8, Θ8+, R�, Θ�+, R9, Θ9+, ϕ
, ϕ�,ψ
, ψ�,γ
, γ�	
 Since, there are 8 non-linear equations and 14 unknowns, in order to solve this 

system of equations any of the 6 variables are chosen as free choices and the remaining 

eight variables are calculated by solving eight equations.   

 2.1.3. Motion Generation. In motion generation synthesis (Sandor and Erdman, 

1984; Howell, 2001; Kolachalam, 2003) in addition to the precision positions, the coupler 

orientations are also specified at each precision position (Figure 2.3). The governing 

loop-closure equations for three precision positions motion generation synthesis case are 

the same as those for the path generation synthesis case but the number of unknowns gets 

reduced by two due to specification of couple link angle 'γ�. at precision positions. The 

unknowns are 

R
, Θ
+, R8, Θ8+, R�, Θ�+, R9, Θ9+, ϕ
, ϕ�,ψ
, ψ�	
There are 8 non-linear equations and 12 unknowns, any four variables are considered as 

free choices so as to solve the above system of equations for 8 unknown variables. 

 2.1.4. Path Generation with Prescribed Timing. In path generation with 

prescribed timing synthesis (Sandor and Erdman, 1984; Howell, 2001; Kolachalam, 

2003) the precision positions are correlated with input link angles. This is similar to the 

motion generation expect instead of coupler link angles 'γ�., input link angles 'ϕ�. are 

specified at precision positions (Figure 2.3). The governing loop-closure equations for 
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three precision positions path generation with prescribed timing synthesis case are the 

same as those for the path generation or motion generation synthesis case. 

Here, the unknowns are  

R
, Θ
+, R8, Θ8+, R�, Θ�+, R9, Θ9+, ψ
, ψ�, γ
,γ�	
 In this case also, there are 8 non-linear equations and 12 unknowns, any four 

variables are considered as free choices so as to solve the above system of equations for 8 

unknown variables.  

 

2.2. COMPLIANT MECHANISM DESIGN 

 Compliant mechanisms involve the large nonlinear deflections, so the 

conventional linear equations are not applicable to the compliant mechanisms design. 

These large deflections cause geometric nonlinearities in the compliant mechanisms. 

Bisshopp and Drucker (1945), developed elliptic integrals for analysis of large-deflection 

analysis problems. Elliptic integrals are the functions like trigonometric functions where 

an input is given and result is calculated by series of expansion (Howell, 2001).  

e.g. cosine trigonometric function where angle can be an input and result will be obtained 

by cosine series expansion. One difference in analogy between the trigonometric function 

and elliptic integrals is the trigonometric functions have only one independent function, 

while elliptic integrals may require two or three independent variables. The use of elliptic 

integrals is limited to the relatively simple geometries and simple loading cases due to 

several simplifying assumptions such as linear material properties, inextensible materials 

(Howell, 2001). 
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 A nonlinear finite element analysis and chain algorithm (Her et al., 1992) can be 

used for analysis of more complicated geometries and loadings problems (Howell, 2001). 

These methods can be useful in analyzing the compliant mechanisms obtained using 

pseudo-rigid-body model concept technique. These methods can also be used to analyze 

the complex geometry problems which will be difficult to model using pseudo-rigid-body 

models. However, it will be still wise decision to use pseudo-rigid-body models in the 

preliminary design stages to obtain the general understanding of the behavior and 

characteristics of the mechanism and then use above methods to improve the design 

obtained. 

 2.2.1. Pseudo-Rigid-Body Model Concept. A pseudo-rigid-body model concept 

is used to model the large deflections of flexible members using rigid-body members and 

torsional springs having equivalent force-deflections characteristics (Howell and Midha, 

1996; Howell 2001). It can be shown that free end of the flexible cantilever beam with 

force at the free end follows a nearly circular path, having some radius of curvature along 

the beam's length (Howell, 2001). This idea is used to develop the parametric 

approximations for the beam's deflection path, wherein it is assumed that nearly circular 

path travel of beam's end can be modeled by two rigid links joined at characteristic pivot 

(Howell, 1991) along the beam (Howell and Midha, 1995; Howell, 2001). The 

characteristic pivot location on the beam is measured as a fraction of beam length from 

the beam end. This fractional distance is known as characteristic radius,γ=, where γ is 

called as characteristic radius factor. The average value of the characteristic radius factor 

γ is found to be 0.85. For most of the pseudo-rigid-body models of the various beam 

types, this value can be taken as the preliminary estimate. The characteristic radius,γ=, 
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represents the radius of circular deflection path traversed by the end of pseudo-rigid-body 

link. The torsional spring at the characteristic pivot is used to model the force-deflection 

characteristics of the flexible beam and represents the beam's resistance to the deflection 

and this resistance can be modeled by the stiffness coefficient,Κ$, which represents 

torsional spring property of the beam. The average value of Κ$ is taken as 2.65 for 

0.5	< n < 1.0 (Howell, 2001). 

 Figure 2.4 shows the initially straight cantilever beam of length L which 

undergoes the large deflection due to applied transverse and axial end forces P and nP 

respectively. θ6, is the beam end angle of the cantilever beam. Figure 2.5 shows the 

equivalent pseudo-rigid-body model of the cantilever beam with two rigid links and 

torsional spring at the characteristic pivot. The angle by which the characteristic radius or 

the longer pseudo-rigid-body link rotates is referred as pseudo-rigid-body angle Θ. The 

nearly linear relationship is approximated between θ6 and Θ (Howell and Midha, 1995; 

Howell, 2001) by 

 θ6 = cFΘ	 (14) 

where, cF is the parametric angle coefficient. More explanation on pseudo-rigid-body 

models can be found in Compliant Mechanisms, Howell 2001. 

 2.2.2. Types of Compliant Segments and Equivalent PRBMs. The compliant 

mechanisms can have compliant segments as well as rigid links and joints. Depending on 

the types of links and joints in the mechanism, compliant mechanisms are classified as 

fully compliant mechanisms or partially compliant mechanisms. The mechanism shown 

in Figure 2.6 has no traditional joints and so zero links. These mechanisms obtain all of 

their motions from deflections of flexible members and termed as fully compliant 
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mechanisms (Howell, 2001). The compliant mechanisms that contain one or more 

kinematic pairs along with compliant segments are termed as partially compliant 

mechanisms (Howell, 2001). The compliant mechanisms may contain different types of 

compliant segments such as fixed-pinned (Howell and Midha, 1995; Howell, 2001) 

compliant segments, fixed-guided compliant segments and small-length flexural pivots. 

These different types of compliant segments with their equivalent PRBMs are discussed 

in the subsequent sections. 

 

 

 

Figure 2.4. A Compliant Cantilever Beam with Large-Deflection 
 

 

 2.2.2.1. Fixed-pinned compliant segment. Consider a flexible cantilever beam of 

length L having constant cross-sectional area and linear material properties shown in 

Figure 2.4. Large deflection elliptic integrals show that free end of the cantilever beam 
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follows the nearly circular path with a force at free end (Howell, 2001). This deflection 

path is modeled by two rigid links connected at characteristic pivot and force-deflection 

characteristic of the beam are modeled by the torsional spring at the characteristic pivot. 

The equivalent pseudo-rigid-body model for the fixed-pinned beam with force at the free 

end is shown in Figure 2.5.  

 

 

 

Figure 2.5. A Pseudo-Rigid-Body Model of Compliant Cantilever Beam with Large-
Deflection 

 

 

 The characteristic pivot is located at '1 − γ.L distance from the fixed end of the 

beam. The value of γ can be taken as 0.85 as a preliminary estimate. The equivalent 
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spring constant,Κ
, of the torsional spring attached at the characteristic pivot, can be 

determined using the equation (Howell, 2001): 

 Κ
 = 	γΚ$ ΕΙL  (15) 

where, Κ$ ≡ Stiffness coefficient (average value of Κ$ can be taken as 2.65) 

 Ε ≡ Elastic modulus 

 Ι ≡ Moment of inertia 

 2.2.2.2. Fixed-guided compliant segment. Consider a cantilever flexible beam 

with loadings as shown in Figure 2.7. The one end of the beam is fixed while the other 

end is to be maintained at constant angle and in order to have a constant beam-end angle, 

the resultant moment Μ6 must be present at the free end with the force Ρ. The resulting 

deflected shape of the beam is anti-symmetric at its centerline, where the curvature 

becomes zero (Howell, 2001). Moment also becomes zero at the mid-length as it is 

proportional to the curvature according the Euler-Bernoulli principle. 

 Considering only the one-half of the beam, it will have force P at its end and it 

will have same pseudo-rigid-body model as discussed for the fixed-pinned segment. The 

pseudo-rigid-body model for the whole beam can be obtained by combining the two anti-

symmetric one-half beam models as shown in Figure 2.8. Thus, PRBM consists of three 

rigid links joined at two characteristic pivots as shown in Figure 2.8 with two torsional 

springs; one at each characteristic pivot. The characteristic pivot is located at the distance 

'1 − γ. L
 from each end. The value of γ can be taken as 0.85. 
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Figure 2.6. A Fully Compliant Mechanism (Howell, 2001) 

  

  

 

Figure 2.7. A Fixed-Guided Compliant Beam with Constant Beam-End Angle 
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The torsional spring constant, Κ
, of the each spring can be determined by the following 

the expression (Howell, 2001): 

 Κ
 = 	2γΚ$ ΕΙL 	 (16) 

 

 2.2.2.3. Small-length flexural pivot. Consider a cantilever beam shown in Figure 

2.9. The beam is composed of two segments; a short flexible segment and long rigid 

segment. If the small flexible segment is significantly shorter and flexible than longer 

rigid segment, '= << L.	or �'E=. << 'EL.� then smaller segment is known as small-

length flexural pivot. Usually length of the longer segment'L., is 10 times more than 

length of smaller segment '=. (Howell, 2001). 

 

 

 

Figure 2.8. A Pseudo-Rigid-Body Model of Fixed-Guided Compliant Beam with 
Constant Beam-End Angle 
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 As the flexible segment is much shorter than rigid segment, the motion of the 

system can be modeled as two rigid links joined at pin joint called as characteristic pivot 

as shown in Figure 2.10. The characteristic pivot can be assumed at the center of the 

flexible segment as the deflection occurs at the flexible segment and is much smaller than 

length of the rigid segment (Howell, 2001).  

 

 

 

Figure 2.9. A Small-Length Flexural Pivot 
 

 

 The equivalent spring constant,	Κ
 of the torsional spring attached at the 

characteristic pivot is given by expression (Howell, 1991, 2003). 
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 Κ
 = ΕΙ
= 	 (17) 

where, Ε is the modulus of elasticity, Ι is the moment of inertia and = is the length of the 

flexible segment.  

 

 

 

Figure 2.10. A Pseudo-Rigid-Body Model of a Small-Length Flexural Pivot 
 

 

2.3. COMPLIANT MECHANISM SYNTHESIS. 

 As opposed to the rigid-body mechanism synthesis much less work has been done 

in the area of compliant mechanism synthesis. Earlier efforts in the compliant mechanism 

synthesis were done by (Burns, 1964; Burns and Crossley, 1968) and developed the 

kinetostatic synthesis of four-bar mechanism with flexible coupler link. In 1980, Ashok 

Midha pioneered work in compliant mechanism design methods with the concentrated 
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compliance. Howell and Midha (1994) developed the pseudo-rigid-body model, which 

modeled the flexible segments by equivalent rigid links and torsional springs and made 

the compliant mechanism synthesis much easier using available rigid-body mechanism 

theories. Mettlach and Midha (1995) presented a graphical synthesis technique using 

Burmester theory to design the compliant mechanisms for more number of precision 

positions. Murphy et al. (1996) developed the method based in graph theory to design the 

different topologies of the compliant mechanisms employing type synthesis techniques.  

Annamalai (2003), Midha et al. (2004) used the pseudo-rigid-body model concept to 

synthesize the pseudo-rigid-body four-bar mechanism with energy/torque specifications. 

Kolachalam (2003), Midha et al. (2011) synthesized the compliant single strip 

mechanisms for energy, torque and force specifications. Dado (2005) developed a 

variable parametric pseudo-rigid-body model for limit position synthesis of complaint 

four-bar mechanism with energy specifications.   

 Design methodologies for the distributed compliance first appeared in the works 

of Ananthsuresh (1994). In this case, continuum solid mechanics methods are used 

instead of rigid-body kinematics. Ananthsuresh (1994) used the structural optimization 

technique to design the compliant mechanisms with distributed compliance by using 

homogenization method and using the displacement of one point as objective function. 

Another structural optimization method using mechanism deformation energy as 

objective function is developed by Frecker et al. (1997). Saggere and Kota (2001) 

synthesized the four-bar mechanism with compliant coupler which requires prescribed 

shape change along with rigid-body motion for motion generation. In the recent times, Lu 

and Kota (2003) used load-path methodology and genetic algorithms in designing the 
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shape morphing compliant mechanisms. Krovi et al. (2002) studied the kinetostatic 

synthesis of planar-coupled serial chain mechanisms by combining precision point 

synthesis and optimization. 

 Su and McCarthy (2007) synthesized the bi-stable four-bar compliant mechanism 

using polynomial homotopy technique. Tari and Su (2011) presented a complex solution 

framework for kinetostatic synthesis of compliant four-bar mechanism. There are other 

design methods for compliant mechanisms known as inverse design methods that allow 

designer to determine the initial shape such that it attains the desired shape under applied 

loads (Albanesi et al. 2010). 

 2.3.1. Compliant Mechanism Synthesis Methods Using PRBM Concept. 

Compliant mechanism synthesis poses many challenges that are not found in rigid-body 

synthesis. Unlike the rigid-body mechanism, motion of the compliant mechanism 

depends on the location, direction and magnitude of the applied forces. The compliant 

mechanisms inherently have limits on geometry. e.g. the compliant segments such as 

small-length flexural pivots can't fully rotate. For motion, the compliant segments have to 

deform, this induces stresses in them. So, stress and fatigue are of major concern while 

designing compliant mechanisms etc. The compliant mechanism synthesis using pseudo-

rigid-body model can be divided into two major classes (Howell, 2001) rigid-body-

replacement synthesis and synthesis with compliance. These methods are discussed in 

detail in following sections. 

 2.3.1.1. Rigid-body replacement (kinematic) synthesis. The synthesis of 

compliant mechanisms in which rigid-body equations are directly applied to the pseudo-

rigid-body model without any concern for energy storage characteristics of the 
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mechanism, is called as rigid-body replacement synthesis. As only kinematic equations 

are considered only for synthesis, this is also known as kinematic synthesis. In this 

approach, pseudo-rigid-body model is obtained for compliant mechanism and using rigid-

body kinematic equations, link lengths are obtained. Once the kinematic geometry is 

obtained, structural properties of the mechanism are determined according to the 

allowable stresses or the input requirements. This synthesis approach is particularly 

useful when a compliant mechanism is to be used for conventional rigid body tasks like 

function generation, path generation etc. without considering energy storage in the 

mechanism. 

 The major task in this synthesis method is determining and evaluating the pseudo-

rigid-body model for the compliant mechanism as the synthesis may yield number of 

solutions that may be valid for rigid-body mechanism but not for the compliant 

mechanism due to some practical limits on the geometry, e.g. small-length flexural pivots 

can't rotate fully. So, the iterative approach will be more useful in this compliant 

mechanism synthesis method. 

 2.3.1.2. Synthesis with compliance (kinetostatic synthesis). The compliant 

mechanism synthesis technique, which considers energy storage characteristics in the 

flexible segments in addition to the rigid-body kinematic equations, is termed as 

synthesis with compliance (Howell and Midha, 1994; Howell, 2001). As both kinematic 

equations and static force equations are considered for the synthesis, this is also known as 

kinetostatic synthesis. The synthesis includes loop-closure equations for the pseudo-rigid-

body model and energy equations. The energy storage characteristics of the mechanism 

can be considered as energy stored in the system as function of input, required input 
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torque or force and required input and output force or torque at each precision position 

(Howell, 2001). The example of synthesis with compliance can be a mechanism designed 

for path generation with energies or torques or forces specified at the precision positions. 

As discussed in the rigid-body replacement synthesis, in this method also an appropriate 

pseudo-rigid-body model for the compliant mechanism is obtained using kinematic 

equations. The structural properties of the flexible segments are then determined 

according to the allowable stresses or the input requirements using the energy equations.  

 The energy is stored in the form of strain energy in the flexible members of 

compliant mechanisms. This energy can be accounted using the torsional springs of 

appropriate stiffness values at characteristic pivots in the pseudo-rigid-body model. The 

consideration of energy equations along with kinematic equations for the synthesis results 

in two sets of unknowns in the system of equations. i) kinematic variables includes link 

lengths, angles of the pseudo-rigid-body model links ii) energy variables consists of 

spring constants, K
, related to the stiffness coefficient, Κ$, and undeflected spring 

parameters, β6, related to the initial pseudo-rigid-body model, Θ6. Figure 2.11 shows the 

four-bar mechanism with four torsional springs attached at pin joints. 

 2.3.2. Energy Considerations. In designing compliant mechanism using 

synthesis with compliance technique, energies are specified at precision positions in 

addition to the kinematic variable specifications depending synthesis type e.g. for the 

motion generation synthesis case, coupler link angles (γ4) are specified along with 

precision positions. Considering the pseudo-rigid-body four-bar mechanism, a maximum 

of four torsional springs can be attached at the four pin joints.  
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Figure 2.11. A Four-Bar Mechanism with Four Torsional Springs at the Pivots 
 

 

 Thus, the synthesis problem mainly becomes determination of these spring 

constants which contribute the same energy stored in the mechanism as specified. 

The total energy stored in the compliant mechanism at j
�	precision position,E�	 is 

calculated (Howell 1993; Annamalai, 2003) by potential energies stored in each torsional 

spring as 

E� = 1
2PΚ��β�� − β�6�


Q

�R+
; 																																																		1 ≤ m ≤ 4	 (18) 

where, Κ� is the spring constant of the i
� spring, β�� is the j
� angular position of the i
� 

spring, β�6 is undeflected angular position of the i
� torsional spring and m is the number 
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of torsional springs in the mechanism. The angle β�� can be expressed in terms of pseudo-

rigid-body model angle, Θ6 (Howell, 1993; Annamalai, 2003) as follows: 

    β+� = Θ
�	 (19a) 

 β
� = 1806 − �Θ
� − Θ���	 (19b) 

 β�� = Θ�� − Θ��	 (19c) 

 β�� = Θ��	 (19d) 

where, Θ�� is the angle of the i
� link in the j
�	position. Using equations (19), the 

mechanism total energy,	E� in j
� position can be written as follows: 

E� = 1
2 VΚ+�Θ
� − Θ
6�
 + Κ
��Θ�� − Θ�6� − �Θ
� − Θ
6��


+ Κ���Θ�� − Θ�6� − �Θ�� − Θ�6��
 + Κ��Θ�� − Θ�6�
� 
(20) 

Considering three precision positions synthesis problem, equation (20) can be written for 

each precision position as follows:                

E+ = 1
2 /Κ+'Θ
+ − Θ
6.
 + Κ
/'Θ�+ − Θ�6. − 'Θ
+ − Θ
6.0


+ Κ�/'Θ�+ − Θ�6. − 'Θ�+ − Θ�6.0
 + Κ�'Θ�+ − Θ�6.
0	
(21a) 

E
 = 1
2 /Κ+'Θ
+ + ϕ
 − Θ
6.


+ Κ
/'Θ�+ + γ
 − Θ�6. − 'Θ
+ + ϕ
 − Θ
6.0

+ Κ�/'Θ�+ + ψ
 − Θ�6. − 'Θ�+ + γ
 − Θ�6.0

+ Κ�'Θ�+ + ψ
 − Θ�6.
0	

(21b) 
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E� = 1
2 /Κ+'Θ
+ + ϕ� − Θ
6.


+ Κ
/'Θ�+ + γ� − Θ�6. − 'Θ
+ + ϕ� − Θ
6.0

+ Κ�/'Θ�+ + ψ� − Θ�6. − 'Θ�+ + γ� − Θ�6.0

+ Κ�'Θ�+ + ψ� − Θ�6.
0	

(21c) 

 

 These three energy equations can be solved for four unknown spring constants. 

i.e. Κ+, Κ
, Κ�, Κ�. If the first precision position of the mechanism is considered to be an 

undeflected position i.e. zero-energy position of the mechanism, then the system of 

reduced equations is used and is given below:  

E+ = 0	 (22a) 

E
 = 1
2 /Κ+'ϕ
.
 + Κ
'ϕ
 − γ
.
 + Κ�'ψ
 − γ
.
 + Κ�'ψ
.
0	 (22b) 

E
 = 1
2 /Κ+'ϕ�.
 + Κ
'ϕ� − γ�.
 + Κ�'ψ� − γ�.
 + Κ�'ψ�.
0	 (22c) 

 In this particular case, first energy equation is trivial and may be neglected. Other 

two energy equations can solved for four unknowns Κ+, Κ
, Κ�, Κ�. Once the pseudo-

rigid-body four-bar mechanism has been synthesized, the next step is to determine the 

dimensions of the flexible members. In this work, rectangular sections of compliant 

members have been assumed.  

 

2.4. COMPLIANT SEGMENT DESIGN 

 Depending on the type of the compliant segments i.e. fixed-pinned segment, 

fixed-guided segment, small-length flexural pivot considered in the compliant 
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mechanism, dimensions of compliant segments can be determined as discussed in the 

following sections.  

 2.4.1. Fixed-Pinned Segment. The equivalent pseudo-rigid-body model for the 

fixed-pinned compliant segment is shown in Figure 2.5. After determining all the pseudo-

rigid-body link lengths from the synthesis; if a fixed-pinned segment is selected as a 

flexible member, the distance of the characteristic pivot from the fixed end of the 

compliant beam is taken as '1 − γ.L, where, γ	can be taken as 0.85 and the stiffness 

coefficient is assumed to be 2.65. It is assured that the pin joint of the pseudo-rigid-body 

link and characteristic pivot coincides with each other. Thus, pseudo-rigid-body link 

lengths obtained are used to find the characteristic radius, γL. The total link length of 

compliant fixed-pinned segment L can be obtained as: 

 γL = |Z| 	⇒ L = |Z|/γ	 (23) 

where, |Z| = R = length of the pseudo-rigid-body link 

Once the spring constants are known, the equation (15) and equation (23) is used to 

determine the either width or thickness of the segment by assuming an appropriate value 

for the other as follows: 

 I = bh�
12  (24) 

 b = 12ΚL
γΚ$Εh�	 (25) 

 h = [ 12ΚLγΚ$Εb\
+�	 (26) 
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 2.4.2. Fixed-Guided Compliant Segment. The equivalent pseudo-rigid-body 

model for the fixed-guided compliant segment with constant beam-end angle is shown in 

Figure 2.8. This model assumes that one end of the compliant segment is maintained at 

constant angle. For the compliant mechanism motions considered here, it will be difficult 

to enforce this assumption, so this model is used as a possible approximation. 

  If a fixed-guided compliant segment is selected, the distance to the characteristic 

pivot from the either end is given by'1 − γ. L
 , the value of  γ is assumed to be 0.85 and 

stiffness coefficient to be 2.65. While using fixed-guided compliant segment in the 

mechanism, it is reasonable to assume two same spring constants on the one pseudo-

rigid-body link. It is assured that the pin joints of the pseudo-rigid-body link and 

characteristic pivots coincide with each other. Thus, pseudo-rigid-body link lengths 

obtained are used to find the characteristic radius, γL. The total link length of compliant 

fixed-guided segment	L, can be obtained using equation (23). Once the spring constants 

are known, the equation (16) is used to determine the either width or thickness of the 

segment by assuming an appropriate value for the other as follows: 

 b = 6ΚL
γΚ$Εh�	 (27) 

 h = [ 6ΚL
γΚ$Εb\

+�	 (28) 

 

 2.4.3. Small-Length Flexural Pivot. The equivalent pseudo-rigid-body model of 

the small-length flexural pivot is shown in Figure 2.10. The compliant mechanisms with 

flexure pivots, utilizes the small-length flexural pivots assumption. If the small length 

flexural pivot is selected as a compliant segment, the characteristic pivot is located at its 
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center. The length of small-length flexural pivot is assumed to ] +
+6^


�
 of the pseudo-rigid-

body link length. 

 = = L
10 (29) 

Once the length of the small-length flexural pivot and spring constant of torsional spring 

are known, equation (17) is used to determine the either width or thickness by assuming 

an appropriate value for the other as follows: 

 b = 12Κ=
Εh� 	 (30) 

 h = [12Κ=Εb \
+�	 (31) 

 

2.5. SUMMARY 

 In this Section, the rigid-body synthesis methods for three-precision positions 

synthesis of a four-bar mechanism are reviewed. A pseudo-rigid-body concept is 

discussed and pseudo-rigid-body models are presented for three types of compliant 

segments. The compliant mechanism synthesis methods are reviewed. The two synthesis 

methods for compliant mechanism synthesis using pseudo-rigid-body model concept are 

discussed and energy considerations for compliant mechanism synthesis are introduced. 

The different types of compliant segments such small-length flexural pivots, full-length 

compliant segments are designed.   
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3. SYNTHESIS WITH COMPLIANCE FOR ENERGY AND TORQUE 

SPECIFICATIONS AND NEED FOR OPTIMIZATION APPROACH TO SOLVE 

ENERGY/TORQUE EQUATIONS 
 

 Synthesis with compliance technique (Howell and Midha, 1996; Howell, 2001) 

synthesizes the compliant mechanisms considering both loop-closure kinematic equations 

and energy/toque equations. This concept was introduced briefly in Section 2 applied to 

synthesis of a pseudo-rigid-body four-bar mechanism for three precision positions with 

energy specified at each position and a particular case where first precision position is 

energy-free position of the mechanism i.e. energy is zero at the first precision position. 

This Section reviews the general synthesis with compliance technique applied to different 

synthesis problems such as function generation, path generation etc. with more than three 

precision positions and torque specifications problems also. The Section also enlists the 

design tables, which gives an easy tool for the user to determine the number of equations 

and number of unknowns required to synthesize the pseudo-rigid-body four-bar 

mechanism for energy and torque specifications. The limitations/problems with synthesis 

with compliance technique are presented in subsequent sections. The new approach to 

solve the system of energy/torque equations using optimization is introduced at the end of 

the Section. 

 

3.1. SYNTHESIS WITH COMPLIANCE 

 The synthesis with compliance technique uses pseudo-rigid-body model concept 

for compliant mechanism synthesis. This method provides multiplicity of solutions along 

with expediency and accuracy of the solutions (Annamalai, 2003). The pseudo-rigid-body 

links and their orientations in precision positions constitute the kinematic equations i.e. 
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loop-closure equations, while the spring constants and deflections of springs attached at 

the characteristic pivots in pseudo-rigid-body model constitutes energy equations and 

results in two different sets of unknowns. 

i. Kinematic variables consisting of pseudo-rigid-body link lengths and their angles 

corresponding to precision positions, and 

ii. Energy variables consisting of spring constants and undeflected torsional spring 

positions. 

 Thus, the loop-closure equations represent kinematic mobility of the mechanism, 

while the energy/torque equations represent the mechanism compliance. The compliant 

mechanisms can be reduced to pseudo-rigid-body model with rigid links and torsional 

springs. Consider the basic four-bar mechanism with its pin joints representing 

characteristic pivots and torsional springs at the characteristic pivots representing the 

segment compliances as shown in Figure 3.1. Depending on the number of springs in the 

system, the number of unknowns i.e. kinematic variables and energy variables introduced 

in the system changes. The variables common in both the kinematic equations and energy 

equations cause coupling in them.  
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Figure 3.1. A Four-Bar Mechanism with Four Torsional Springs at the Pivots 
 

 

 Let, the energy equations for n- precision positions problem add n equations and 

2m unknowns to the system. If the kinematic equations could be solved independent of 

energy equations, the system is said to be weakly coupled system (Howell, 2001). The 

system can be made weakly coupled only if 

 But if the more equations than number of unknowns are introduced into the 

systems, then the kinematic and energy/torque equations are solved simultaneously and 

system becomes strongly coupled. It is usually useful and will reduce the efforts required 

to obtain the solution if the kinematic and energy equations, which are nonlinear, could 

be solved separately (Howell, 2001). 

 2m ≥ n (32)  
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 The inclusion of different types of compliant segments in the mechanism gives 

wide range of solutions to the design problems (Howell, 2001). For a pseudo-rigid-body 

four-bar mechanism, with different types of compliant segments such as small-length 

flexural pivots, full-length compliant segments, all possible 18 configurations depending 

on the number of springs used are presented in Figure 3.2 (Midha et al., 1997; 

Annamalai, 2003). Using different compliant segment types for pseudo-rigid-body links 

and starting with four torsional springs in the mechanism, three compliant mechanism 

configurations (Figure 3.2 A-C) are possible. Similarly, five compliant mechanism 

configurations (Figure 3.2 D-H) with three springs, eight configurations (Figure 3.2 I-P) 

with two springs and two configurations (Figure 3.2 Q,R) with one spring are possible, 

resulting in total of 18 configurations. It is the user's decision to choose the suitable 

configuration for particular task considering design and manufacturing constraints. 

 3.1.1. Kinematic Considerations. The kinematic synthesis of pseudo-rigid-body 

mechanism is discussed in Section 2.1. It is reviewed quickly here for the sake of 

continuity. In function generation, the vector loop �Z
 → Z� → Z� → Z�� → Z�� → Z
�� in 

14
 and j
� positions of the mechanism in Figure 2.2, gives following loop-closure 

equation:                               

 Z
�1 − e���� + Z��1 − e���� + Z��e�:� − 1� = 0	 (2)  

 In path generation, motion generation and path generation with prescribed timing, 

left loop �Z
 → Z8 → δ� → Z8� → Z
�� and right loop �Z� → Z9 → δ� → Z9� → Z��� from 

initial to j
� position of the mechanism in Figure 2.3; give following two vector loop-

closure equations: 
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 Z
�e��� − 1� + Z8�e��� − 1� = δ�	 (7)  

 Z��e�:� − 1� + Z9�e��� − 1� = δ�	 (8)  

 3.1.2. Energy/Torque Considerations. The total energy stored in the compliant 

mechanism at j
�	 precision position,E�, is calculated (Howell, 1993; Annamalai, 2003) by 

the potential energies stored in each torsional spring of the corresponding pseudo-rigid-

body model as 

 			E� = 1
2PΚ��β�� − β�6�


Q

�R+
; 																													1 ≤ m ≤ 4 (18)  

where, Κ� is the spring constant of the i
� spring, β�� is the j
�	angular position of the 

i
�	spring, β�6 is the undeflected angular position of the i
�	torsional spring and m is the 

number of torsional springs in the mechanism. The corresponding torque equation 

(Howell, 1993; Mettlach 1996; Annamalai, 2003) is given as                                      

 T
� =PK��β�� − β�6� dβ��dS
Q

�R+
																											1 ≤ m ≤ 4	 (33)  

where, S represents the input variable for the mechanism. The angle β�� is related to 

pseudo-rigid-body angles as given in equations (19) as follows: 

	 β+� = Θ
�	 (19a) 	
	 β
� = 1806 − �Θ
� − Θ���	 (19b) 	
	 β�� = Θ�� − Θ��	 (19c) 	
	 β�� = Θ��	 (19d) 	

where, Θ�� is the angle of the i
�	link in the j
�	position. If Θ
 is the input, then 
cde�
cf  may be 

expressed as: 



44 

 

 [dβ+dΘ
\� = 1	 (34a) 

 [dβ
dΘ
\� = [dΘ�dΘ
\� − 1 = h�� − 1	 (34b) 

 [dβ�dΘ
\� = [dΘ�dΘ
\� − [dΘ�dΘ
\� = h�� − h��	 (34c) 

 [dβ�dΘ
\� = [dΘ�dΘ
\� = h��	 (34d) 

where, h�� represents the first-order kinematic coefficient of the i
� link at the j
� position, 

and is defined (Hall, 1981) as follows:                              

 h�� = R
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���	 (35a) 

 h�� = R
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���	 (35b) 

Using equations (19) in equation (18), energy at the j
� position can be written as: 

E� = 1
2 VΚ+�Θ
� − Θ
6�
 + Κ
��Θ�� − Θ�6� − �Θ
� − Θ
6��


+ Κ���Θ�� − Θ�6� − �Θ�� − Θ�6��
 + Κ��Θ�� − Θ�6�
�	
(20)  

Using equations (19), (33) and (34) in equation (32), the torque at the j
� position can be 

written as: 
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T
� = Κ+�Θ
� − Θ
6�

+ Κ
��Θ�� − Θ�6� − �Θ
� − Θ
6�� gR
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ��� − 1h

+ Κ���Θ�� − Θ�6� − �Θ�� − Θ�6�� gR
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���

− R
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���h + Κ��Θ�� − Θ�6� R
 sin�Θ�� − Θ
��

R� sin�Θ�� − Θ���	

(36)  

where, Θ"6 represents the angular position of the n
� link in the energy-free state. 

 The number of equations, number of unknowns and number of free choices for 

function generation, path, and motion generation and path generation with prescribed 

timing for given number of torsional springs 'm. are summarized in the Tables 3.1-3.4 

respectively (Annamalai, 2003). For example, for a function generation synthesis of four-

bar mechanism for three precision positions with one torsional spring, there are 7 

equations comprised of 4 loop-closure equations and 3 energy/torque equations and 10 

unknowns, and hence 3 free choices yielding the solutions in the order of '∞.�. In the 

last column of the table, notations s.c. and w.c. represents strongly coupled and weakly 

coupled cases respectively. 

 For function generation synthesis case for five precision positions with one 

spring, the number of equations become more than unknowns, hence over-constraining 

the system and so not included in the Table 3.1 (Annamalai, 2003). 
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Figure 3.2. 18 Possible Configurations of Compliant Mechanism Types from Pseudo-
Rigid-Body Four-Bar Mechanism 
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3.2. NEED OF COUPLER EQUATION FOR STRONGLY COUPLED SYSTEM 

 The torque equation (36) involving first-order kinematic coefficients, adds two 

additional unknowns to the system R� and Θ��, where  represents  j
� precision position. 

In pseudo-rigid-body synthesis for three-precision positions with one spring for torque 

specifications (e.g. refer to Table 3.3) when j > 1,	Θ�� is given by �Θ�+ + γ��, where γ� is 

the angle of coupler in j
� precision position relative to the first precision position. Hence, 

if Θ�+ is determined, then Θ�� can be easily calculated. For function generation synthesis 

case, this may be free choice or can be solved for from kinematic equations. However, for 

the other synthesis cases requiring use of dyads such as motion generation Θ�+ is not 

readily available. 

 For weakly coupled system of equations, Θ�+ can be determined separately from 

kinematic equations after solving loop-closure equations. However, for strongly coupled 

system, it needs to be solved simultaneously and can be easily obtained from use of 

coupler equation as follows (Figure 2.3):                                  

 Ζ� − Ζ8 + Ζ9 = 0	 (37)  

 Accordingly, for strongly coupled, torque specification case, except for the 

function generation, the number of equations and number of unknowns are increased by 

two and are indicated within brackets in Tables 3.2-3.4. 

 

3.3. SYNTHESIS CASE WITH NON-PRESCRIBED ENERGY-FREE STATE 

 Consider a synthesis case, where energy-free state of the compliant mechanism is 

different from prescribed positions.  
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Table 3.1. Design Choices Based on Number of Torsional Springs for Function 
Generation Synthesis with Compliance 

 

Number 
of 

Torsional 
Springs 

Number 
of 

Equations 

Number of 
Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 7 
Z
, 	Z�, 	Z�, γ
, γ�, Κ+, β+6                        (10) 

3 (s.c.) 

2 9* 
Z
, Z�, Z�, γ
, γ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6  (13) 

4 (w.c.) 

3 9* " + Κ�                  (14) 5 (w.c.) 

4 9* " + Κ�                  (15) 6 (w.c.) 

Four Precision Positions 

1 10 
Z
, Z�, Z�, γ
, γ�, γ�, Κ+, β+6                   11) 

1 (s.c.) 

2 14* 
Z+, Z
, Z�, Z�, γ
, γ�, γ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6                       (16) 

2 (s.c.) 

3 12 
Z
, Z�, Z�, γ
, γ�, γ�, Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6                       (15) 

3 (w.c.) 

4 12 " + Κ�                  (16) 4 (w.c.) 

Five Precision Positions 

2 17* 
Z
, Z�, Z�, γ
, γ�, γ�, γ8, Κ+, Κ
, Θ
6, Θ�6, Θ�6                       (17) 

0 (s.c.) 

4 17* 
Z
, Z�, Z�, γ
, γ�, γ�, γ8, Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6               (18) 

1 (s.c.) 

5 15 " + Κ�                  (17) 2 (w.c.) 
                                                     

                    * Equation (38) gives two more scalar equations. s.c. and w.c. denotes  
               the strongly and weakly coupled system. 

 

 

 For a pseudo-rigid-body four-bar mechanism with more than one spring, the 

deflection-free state of the one spring doesn't govern the deflection-free state of the other 

springs. But for the monolithic compliant mechanism, the energy-free state of the one 

compliant segment implies the energy-free state of the all compliant segments in the 
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mechanism at that position. Thus, while synthesizing the compliant mechanism, the 

deflection-free state of all springs in pseudo-rigid-body mechanism should be related 

with each other. Even if the resulting mechanism may be valid pseudo-rigid-body 

mechanism with independent springs, it cannot be a valid one-piece compliant 

mechanism until the deflection-free states of the torsional springs are not related with 

each other. These additional constraints need to relate the deflection-free state angles 

(Θ"6. of the springs with one another. At the energy-free state of the mechanism i.e. at 

the zero-energy position of the mechanism, β�6 of the springs are related to the pseudo-

rigid-body link angles Θ"6 by equation (19). Since, Θ"6 are the part of designed pseudo-

rigid-body mechanism, they need to satisfy the following four-bar loop-closure equation 

in energy-free position of the mechanism, where, the subscript '0' refers to the energy-free 

state of the mechanism.  

 Ζ
6 + Ζ�6 = Ζ+ + Ζ�6 (38)  

 This equation provides additional constraints to the deflection-free state of the 

springs in the mechanism. The equation (38) would suffice to satisfactorily synthesize the 

weakly coupled system. However for a strongly coupled system, few additional equations 

are needed for satisfactory solution. For example, for strongly coupled function 

generation synthesis case with non-prescribed energy-free state, the equations (2), (18) or 

(36), and (38), adds Ζ+ as an additional unknown. To accommodate these two new 

unknowns, first-precision position four-bar loop-closure equation as below is used. 
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Table 3.2. Design Choices Based on Number of Torsional Springs for Path Generation 
Synthesis with Compliance 

 

Number 
of 

Torsional 
Springs 

Number 
of 

Equations 
Number of Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 11[+2*] 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,γ
, γ�, ψ
, ψ�, Κ+,β+6    (16)[+2**] 

5 (s.c.) 

2 13 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,γ
, γ�, ψ
, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6 
                                      (19) 

6 (w.c.) 

3 13 " + Κ�                            (20) 7 (w.c.) 

4 13 " + Κ�                            (21) 8 (w.c.) 

Four Precision Positions 

1 16[+2*] 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�, Κ+,β+6 
                              (19)[2**] 

3 (s.c.) 

2 22$ 

Z+, Z
, Z�, Z�, Z8, Z9, ϕ
,	ϕ�, ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6           (26) 

4 (s.c.) 

3 18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�, Κ+, Κ
, Κ�, ΘΘ�6                                 (23) 

5 (w.c.) 

4 18 " + Κ�                            (14) 4 (w.c.) 

Five Precision Positions 

1 21[+2*] 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,ϕ�, ϕ8,ψ
, ψ�, ψ�, ψ8, Κ+,β+6 
                            (22)[+2**] 

3 (s.c.) 

2 27$ 

Z+, Z
, Z�, Z�, 	Z8, Z9, ϕ
,	ϕ�, ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8, Κ+, Κ
, Θ
6, Θ�6, Θ�6 
                                       (29) 

2 (s.c.) 

3 27$ " + Κ�                            (30) 3 (s.c.) 

4 23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�,ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8, Κ+, Κ
, Κ�, Κ�, Θ
6, Θ�6, Θ�6 
                                       (27) 

4 (w.c.) 

 

                                 * Equation (39) gives two more scalar equations. $ Equation (38) gives two more 

          scalar equations.  **	Z� adds two unknowns. s.c. and w.c. denotes the strongly and weakly         
          coupled system 
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Table 3.3. Design Choices Based on Number of Torsional Springs for Motion Generation 
Synthesis with Compliance 

 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 11[+2*] 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�, Κ+,β+6      (14)[+2**] 

3 (s.c.) 

2 13 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6                                  (17) 

4 (w.c.) 

3 13 " + Κ�                             (18) 5 (w.c.) 

4 13 " + Κ�                             (19) 6 (w.c.) 

Four Precision Positions 

1 16[+2*] 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�, Κ+,β+6 
                               (16)[2**] 

0 (s.c.) 

2 22$ 

Z+, Z
, Z�, Z�, Z8, Z9, ϕ
,	ϕ�,	ϕ�, ψ
, ψ�, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6        (23) 

1 (s.c.) 

3 18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�, Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6             (23) 

2 (w.c.) 

4 18 " + Κ�                             (24) 3 (w.c.) 

Five Precision Positions 

4 23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, ψ
, ψ�, ψ�, ψ8, Κ+, Κ
, Κ�, Κ�, Θ
6, Θ�6, Θ�6                                  (23) 

0 (w.c.) 

                             

     * Equation (39) gives two more scalar equations. $ Equation (38) gives two more scalar   

     equations.  **	m� adds two unknowns. s.c. and w.c. denotes the strongly and weakly 
      coupled system. 
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Table 3.4. Design Choices Based on Number of Torsional Springs for Path Generation 
with Prescribed Timing Synthesis with Compliance 

 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 11[+2*] 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, ψ
, ψ�, Κ+,β+6     (14)[+2**] 

3 (s.c.) 

2 13 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, ψ
, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6                                 (17) 

4 (w.c.) 

3 13 " + Κ�                             (18) 5 (w.c.) 

4 13 " + Κ�                             (19) 6 (w.c.) 

Four Precision Positions 

1 16[+2*] 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�,γ�, ψ
, ψ�, ψ�, Κ+,β+6       (16)[2**] 

0 (s.c.) 

2 22$ 

Z+, Z
, Z�, Z�, Z8, Z9, γ
,	γ�, γ�, ψ
, ψ�, ψ�, Κ+, Κ
, Θ
6, Θ�6, Θ�6                          (23) 

1 (s.c.) 

3 18 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�,γ�, ψ
, ψ�, ψ�, Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6                                 (23) 

2 (w.c.) 

4 18 " + Κ�                             (24) 3 (w.c.) 

Five Precision Positions 

4 23 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�,γ�, γ8, ψ
, ψ�, ψ�, ψ8, Κ+, Κ
, Κ�, Κ�, Θ
6, Θ�6,Θ�6                   (23) 

0 (w.c.) 

                             

    * Equation (38) gives two more scalar equations. $ Equation (37) gives two more  

     scalar equations.  **	Z� adds two unknowns. s.c. and w.c. denotes the strongly and 
     weakly coupled system 
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 Ζ
 + Ζ� = Ζ+ + Ζ� (39)  

 For the remaining synthesis cases; Ζ+ and Ζ� become additional unknowns. In 

order to accommodate these, the coupler equation (37) is used in addition to the equation 

(39). Thus, the system accumulates the four more scalar equations. The above discussion 

is applicable to the four-bar synthesis case with two or more springs. For pseudo-rigid-

body four-bar mechanism with one spring, the energy-free state of that spring will be the 

energy-free state of the mechanism and so no additional constraints are required.  

 As mentioned before, above discussion assumes the energy-free state of the 

mechanism is different from the prescribed positions of the mechanism. If the energy-free 

state of the mechanism is assumed to be one of the prescribed positions, then reduced 

system of equations can be used for synthesis. In Tables 3.3 and 3.4, for five precision 

positions synthesis, the cases with one, two and three springs are not included due to 

over-constraining of the system with more number of equations than more number of 

unknowns. In Tables 3.2-3.4, the numbers in the brackets refer to additional equations or 

unknowns arising, when the torque is specified at the precision positions instead of 

energies. The synthesis with compliance method using strongly coupled and weakly 

coupled system of equations can be represented as flowchart shown Figure 3.3. 

 

3.4. LIMITATIONS/PROBLEMS WITH SYNTHESIS WITH COMPLIANCE  

       TECHNIQUE 

  

 Though the synthesis with compliant technique is useful to synthesize compliant 

mechanisms for specified energy/torques at precision positions, it has some 

limitations/problems. In next section, these limitations/problems are presented. 
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• The synthesis with compliance technique solves the kinematic and energy/torque 

equations using strongly coupled and weakly coupled system approach depending 

on the number of unknowns in common (condition given by the equation (32)). 

The kinematic and energy/torque equations are nonlinear equations and generally 

solving nonlinear equations by coupling increases the complexity of the system 

and computational time also. It will be advantageous if the coupling between 

kinematic and energy/torque equations can be reduced and equations can be 

solved separately. 

• The variables involved in the system include kinematic and energy variables. 

They are generally more than number of equations. In order to solve the 

equations, the user has to assign reasonable values to selected free choices and 

initial guesses to the remaining unknowns. In the strongly coupled system of 

equations, kinematic and energy/torque equations are solved simultaneously and 

numbers of variables are more. It becomes cumbersome to assign the reasonable 

values to large number of variables.  

 e.g. from Table 3.3, for three precision positions motion generation 

synthesis with one spring for energy specification, which is strongly coupled case, 

the number of equations involved are 11 and number of variables are 14, giving 3 

free choices. It is little more cumbersome to assign reasonable values to all of 14 

different variables in order to get reasonable solution. 

• In weakly coupled system of equations, kinematic equations are solved separately 

and kinematic configuration is solved for, before solving the energy/torque 

equations; as a result the latter system frequently yields negative solutions for 
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spring stiffness values, which cannot be currently controlled. It has been observed 

that specification of energy values at all the precision positions tends to over-

constrain the energy equations and yield negative values for the spring stiffness 

values (Annamalai, 2003).  

 e.g. A compliant mechanism with fully-compliant segment is to be 

designed for three precision positions, path generation with prescribed timing 

synthesis for energy specifications as follows (Annamalai,2003): 

δ
 = 0.822 − 0.076i																																																									δ� = 1.802 − 0.24i		
ϕ
 = −4°																																																																													ϕ� = −9°		
Ε+ = 3.14	in − lb														Ε
 = 8.0	in − lb																			Ε� = 16.5	in − lb	
 Assuming four torsional springs in pseudo-rigid-body mechanism 

resulting system is weakly coupled with 13 equations and 19 unknowns, thus 6 

free choices. Selecting R
, Θ
+, R�, Θ�+ as free choices for solving kinematic 

equations yield following solution.  

Z+ = 4.384 + 0.177i																																																											Z
 = 1.885 + 9.815i	
Z� = 2.231 − 1.092i																																																											Z� = −0.268 + 8.546i	
K
, K�	 are selected as remaining two free choices (= 42lb − in. to solve energy 

equations and following solution is obtained: 

K+ = −30.67	lb − in/rad																													K� = 85.98	lb − in/rad									
This is not a satisfactory solution as spring stiffness K+ is negative. 
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Figure 3.3. A Flowchart Showing Synthesis with Compliance Technique 
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• Because of the nonlinearity of the equations involved in the system, the solutions 

are very sensitive to the values assigned to the free choices and initial guesses. 

Even the slight change in their values won't give solutions or may give 

unreasonable solutions.  

e.g. In the above example, while solving the energy equations we have 3 energy 

equations and 2 zero-energy state loop-closure equations with 7 unknowns: 4 

spring constants, K+, 	K
	, K�, K�	and 3 zero-energy position link angles, 

Θ
6, Θ�6, Θ�6. In order to solve this system, two variables let K
 = 50	lb −
in/rad	and	K� = 50	lb − in/rad are selected as free choices and initial guesses 

are assigned to the remaining the 5 variables as follows:  

K+ = 40	lb − in/rad,						K� = 40	lb − in/rad, 											Θ
6 = Θ
+ = 79.129°,		  
Θ�6 = Θ�+ = −26.071°,			and					Θ�6 = Θ�+ = 91.798° 
The energies specified at three precision positions are              

 Ε+ = 3.14	in − lb											Ε
 = 8.0	in − lb										Ε� = 16.5	in − lb 

With these values, the solution is obtained as follows: 

K+ = 32.664	lb − in/rad																													K� = 2.434	lb − in/rad				
However, if energy value at first precision position is changed slightly from 

3.14	in − lb	to 3.15	in − lb, following solution is obtained with one spring 

constant negative which is not acceptable. 

K+ = 65.718	lb − in/rad																													K� = −20.154	lb − in/rad				
• If the system of equations yields the negative or the unrealistic solutions, one 

approach is to change free choices until a reasonable solution is achieved 

(Howell, 2001); but this may require many iterations to get the desired solution, 
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especially for a strongly coupled system and there is no way for the user to assist 

in assigning values to free choices and initial guesses so as to achieve the realistic 

solutions easily. 

 Some efforts have been done to overcome some of above-mentioned 

problems. In order, not to over-constrain the energy equations which may yield 

negative spring stiffness values in weakly coupled system of equations, 

(Annamalai, 2003) suggested to solve the energy equations by taking energy at 

one of the precision positions to be unknown instead of specifying all the 

energies.  

 e.g. The example presented above (Annamalai, 2003) has one of spring 

constant negative, in order to overcome this problem, Ε+ is treated as unknown 

and K+,	K
,	K� are selected as free choices and solution obtained is  

Ε+ = 3.16	in − lb                                                    K� = 37.682	in − lb/rad 

 Even for the strongly coupled system of equations, wherein all the 

kinematic and energy/torque unknowns would be simultaneously solved for, it has 

been suggested to take care while selecting free choices so as not to nearly 

completely define kinematic configuration and this may give unrealistic solutions.  

  In order to get multiple solutions, which includes realistic and unrealistic 

solutions, Tari and Su (2011) developed polynomial solver based framework for 

solving kinetostatic synthesis equations. They approximated the nonlinear energy 

equations into polynomials using numerical approximations and generated 

multiple solutions using polynomial homotopy technique and then sifted out the 

solutions with negative spring stiffness values.  
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3.5. OPTIMIZATION APPROACH IN SYNTHESIS WITH COMPLIANCE  

       TECHNIQUE 
 

 A new, simple way to solve kinematic and energy/torque equations is proposed 

using optimization approach that overcomes some of the above-mentioned 

limitations/problems with synthesis with compliance technique. This method is briefly 

introduced in the following paragraphs and it will be explained in detail in Section 4. 

 In the new approach, instead of solving kinematic and energy/torque equations as 

strongly coupled and weakly coupled system, they are solved as weakly coupled system 

only. The kinematic loop-closure equations are solved using conventional nonlinear 

equations solving algorithms such as Newton-Raphson algorithm; while energy/torque 

equations are solved by using constrained optimization technique. This solves many of 

above-mentioned limitations/problems associated with the existing method.  

 In this method, the coupling between kinematic and energy/torque equations is 

reduced and the equations are solved as weakly coupled system, thus making the method 

computationally simple and fast.  

 Due to weakly coupled system of equations, kinematic and energy variables are 

separated from each other and so user has to assign reasonable values to the relatively 

less number of variables (for kinematic variables only). Due to the use of optimization for 

solving energy/torque equations, the user is not required to make free choices for solving 

these equations. 

 Thus, the sensitivity of solutions to the values assigned to the free choices and 

initial guesses is somewhat reduced. e.g. In the example presented in above section, the 

solutions are very sensitive to the values assigned to the free choices and initial guesses. 

When the same energy equations are solved by new approach using optimization, the 
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solutions are not changed much with the little changes in values assigned to the variables. 

Here, the zero-energy position loop-closure equations are solved separately. So there will 

be 3 energy equations and 4 unknown spring constants. In the previous method, user has 

to select two of the spring constants as free choices but in optimization approach user is 

not required to make free choices. The initial values are assigned 4 spring constants as 

follows with same energies as in the above example. 

K+ = 40	lb − in/rad,																																															K
 = 50	lb − in/rad,	
K� = 50	lb − in/rad,																																															K� = 40	lb − in/rad 

Ε+ = 3.14	in − lb													Ε
 = 8.0	in − lb																Ε� = 16.5	in − lb	
The solution obtained is as follows  

K+ = 38.5034			lb − in/rad,																																		K
 = 44.0435	lb − in/rad,		 
K� = 42.3228	lb − in/rad,																																				K� = 37.5872	lb − in/rad 

When the energy value at first precision position is changed from 3.14	in − lb to 

3.15	in − lb, the solution is not changed much and it is still acceptable. 

K+ = 38.5042	lb − in/rad,																																						K
 = 44.0473	lb − in/rad,	 
K� = 42.3279	lb − in/rad,																																						K� = 37.5886	lb − in/rad  

 One of the main problems with synthesis of compliance technique is negative or 

unreasonable values of the spring constants in the solution of weakly coupled system. 

This is overcome by applying lower and upper bounds to the solutions in the optimization 

for solving energy/torque equations. e.g. the example presented above shows that 

synthesis with compliance technique gives negative answer for one of spring constant but 

with new approach, the solutions are positive and acceptable. 
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 While solving the energy/torque equations using constrained optimization 

technique, the objective function is evaluated at each solution point. This value gives a 

way to the user, to decide the direction, in which the values assigned to the initial guesses 

or energy specifications should change, if required, to get an acceptable solution. This 

will significantly reduce the number of iterations to get the solution. 

 

3.6. SUMMARY 

 The synthesis with compliance method is explained in detail. The energy and 

torque considerations for synthesis are presented along with kinematic equations. The 

tables giving information about number of equations, number of unknowns and number 

of free choices for different synthesis cases with varying number of springs in four-bar 

pseudo-rigid-body model are enlisted. The limitations/problems with the current 

synthesis with compliance technique are explained with suitable examples. At the end of 

the Section, new method for solving kinematic and energy/torque equations using 

optimization approach, which overcomes limitations/problems with existing method is 

introduced. 

 

 

 

 

 

 



62 

 

4. SYNTHESIS WITH COMPLIANCE TECHNIQUE WITH OPTIMIZATION 

APPROACH AND DIFFERENT CASES 

 

 The synthesis with compliance technique suffers from some limitations/problems 

as discussed previous Section. To overcome these problems, a new approach for 

synthesis with compliance technique using optimization is introduced in Section 3. In this 

Section, the optimization concept is briefly reviewed at the beginning followed by 

explanation of use of optimization in the synthesis with compliance technique. The 

optimization routine developed for energy equations is discussed later along with suitable 

examples. The different cases of synthesis like use of type synthesis i.e. use of small- 

length flexural pivots or full-length compliant segments to replace the springs in the 

pseudo-rigid-body model, and other cases like undeflected position of the mechanism to 

be one of the precision positions etc. are presented with examples. The energy 

equivalence of pseudo-rigid-body model and corresponding compliant mechanism is 

discussed and comparison between the solutions obtained using pseudo-rigid-body 

models and commercial finite element software ABAQUS® and ANSYS® is presented. 

Finally, few recommendations for energy/torque to be specified at the precision positions 

are suggested. 

 

4.1. INTRODUCTION TO OPTIMIZATION 

 Optimization is a design tool which helps user automatically to identify the 

optimal design from number of available design solutions or even from the infinite 

number of design solutions (Rao, 2009). The use of optimization is increasing in the 

industry to select optimal designs as it provides a designer with cheap and efficient way 



63 

 

to identify the optimal solution before physical deployment. Even the optimization is 

used in day-to-day life regularly. e.g. one may want to minimize the monthly expenditure 

for resources maintaining certain level of living or while buying a car, one may want to 

meet certain exceptions like fuel economy, maintenance costs etc. with a maximum limit 

for the price. Engineering designs also work in the same way, where objectives are met or 

optimized satisfying some design constraints. 

 The first step in the optimization is creating the optimization model in 

mathematical formulations known as optimization modeling (Nocedal and Wright, 2000). 

The modeling involves deciding the objective, a quantitative measure for the performance 

of a system under study. e.g. the objective of the study could be maximizing profit, 

minimizing expenditure etc. The objective depends on the certain characteristics of the 

system known as design variables or unknowns. These variables are often constrained in 

some way but they may be unconstrained at times. The goal of the optimization problem 

is finding the values of these variables which optimize the objective. The modeling is the 

first and the most important step in the optimization process. If the model is too 

simplistic, it may not give useful insights into the practical problem; and if it is too 

complex, it may be difficult to solve (Nocedal and Wright, 2000). 

 After creating the model, the second step in the optimization process is the 

solving the model. Three methods are generally used and they are analytical method, 

graphical method and numerical method (Rao, 2009). The use of analytical and graphical 

methods is limited to the simple problems such as problems with simple objective 

function. Usually engineering design problems are complex and include too many design 

variables with complicated objective functions and constraints (Rao, 2009). In such cases, 
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numerical methods are used to solve the optimization models. With numerical method, 

the optimal design starts from initial design point. The numerical optimizer evaluates the 

objective function, constraints and their derivatives at the design point. Based on the 

function value and derivatives, the solver decides the search direction along which the 

objective function is likely to descend. The step size along the descent direction is 

decided, so that the value of objective function decreases to the lowest possible value 

without violating any constraints. The current design point moves in the descent direction 

by the step size to the new design point in the next iteration. The solver evaluates the 

objective function, constraints and derivatives at the new design point and check for the 

convergence of the solution. If the solution does not converge, then solver finds new 

search direction and step size to obtain new design point and continues to do so until it 

finds the optimal solution. 

 The last step in the optimization process is the posterior analysis in which the user 

performs some analyses tasks on the optimal solution to determine whether the solution is 

optimal, whether it is reasonable etc. The optimal solution obtained depends on where 

optimization search process starts; when multiple local optimal points exist. So in order 

to obtain the global optimal solution different starting points should be used. 

 4.1.1. Optimization Design Process and Mathematical Modeling. The above 

discussed steps in the optimization design process can be shown in flowchart as shown in 

Figure 4.1. Mathematically, optimization is the minimization or maximization of an 

objective function subject to constraints of the variables. 
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Figure 4.1. A Flowchart Showing Optimization Design Process 
 

 

A standard optimization model (Rao, 2009) can be written as follows:  

minu f	'x+, x
, … x". 
subject	to	 

c�'x+, x
, … x". ≤ 0,							i = 1,2, … n� 
ceq�'x+, x
, … x". = 0,				j = 1,2, … n{ 

lb| ≤ x| ≤ ub|,														k = 1,2, … n 

where, x = 'x+, x
, … x". is the vector of design variables that is to be determined during 

the process, f'x+, x
, … x".is the objective function that is to be minimized, 

Create optimization design model 

• Design variables 

• Design objectives 

• Design constraints 

Solve the optimization problem 

• Analytical method 

• Graphical method 

• Numerical method 

Analyze the optimization results 

• Optimality 

• Feasibility 

• Sensitivity 

• Improvement 
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c�'x+, x
, … x". is the inequality constraint function, ceq�'x+, x
, … x". is the equality 

constraint function, lb| and ub| are the lower and the upper bounds of the design variable 

respectively. If the designer wishes to maximize the objective function;	f'x+, x
, … x". is 

changed to −f'x+, x
, … x".  
 Different software can be used to solve the optimization problems such as 

Microsoft Excel, MATLAB® etc. In this work, MATLAB® is used to solve the 

optimization problems, as it is easier to write the three separate files for objective 

function file containing objective function, constraints file containing equality and 

inequality constraints & lower and upper bounds and main file that calls the objective 

function, constraints functions and solves the problem. They can be edited easily if they 

are written separately. 

 

4.2. TYPES OF OPTIMIZATION. 

 The optimization problems can be classified according to the nature of the 

objective function, constraints (e.g. linear, nonlinear, convex), the nature of the variables 

(e.g. small, large), the smoothness of the functions (e.g. differentiable, or non-

differentiable) and so on (Nocedal and Wright, 2000). One of the important 

classifications of the optimization problems is according to the constraints on the 

variables i.e. unconstrained optimization which has no constraints and constrained 

optimization in which the variables are constrained in some way.  

 4.2.1. Unconstrained Optimization. In this type of optimization, the variables 

are unconstrained. Sometimes for the problems with the natural constraints, it may be 

safe to disregard the constraints on the variables as they do not affect the solution or the 
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do not interfere with the solution (Nocedal and Wright, 2000). In the unconstrained 

optimization, the objective function is minimized that depends upon real variables and 

without restrictions. There are many algorithms available for the unconstrained 

optimization of smooth functions. All of them require the user to give a starting point. It 

will be easy for the user who has knowledge of the application and data set of the 

problem to give a reasonable initial starting point. Most of the algorithms use two 

strategies to move to the next design point from the starting point i) Line search methods 

and ii) Trust region methods. More information about these strategies and unconstrained 

optimization can be found in Numerical Optimization Nocedal and Wright, 2000.  

The mathematical formulation for this kind of optimization is as follows: 

minu f'x. 
with no restrictions on variables. 

 The MATLAB® provides many different solvers for the unconstrained 

optimization such as fminunc, fminsearch etc. It is the user's responsibility to choose the 

right solver of the optimization problem depending on type of objective function and 

constraint functions. More information on choosing right type of optimization solver can 

be found in HELP in MATLAB®. 

 4.2.2. Constrained Optimization. In this type of optimization, there are some 

constraints on the variables e.g. size or shape constraint in design problem or expenditure 

constraints on the profitability problem etc. These constraints may be simple bounds on 

the variables like 0 ≤ x+ ≤ 100 or some linear unequality constraints such as  x+ + x
 <
500 or linear equality constraints x+ − x
 = 50 or it may be some complex nonlinear 
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relationships among the variables. A mathematical formulation of these optimization 

problems is (Nocedal and Wright, 2000) as follows: 

minu f'x. 
subject	to	 

c�'x. ≤ 0,											i = 1,2, … n� 
ceq�'x. = 0, j = 1,2, … n{ 

lb| ≤ x| ≤ ub|,					k = 1,2, … n 

where, f'x. is a objective function, c�'x. are the unequality constraints, ceq�'x. are the 

equality constraints and lb|, &	ub| represents the lower and upper bounds for the design 

variable x respectively. 

 For the constrained optimization, MATLAB® has many different solvers, such as 

fmincon, fminbnd, fseminf etc. Each solver is used to solve particular type of problems, 

e.g. fminbnd is used to find the minimum of a single-variable function on a fixed interval, 

fseminf is used to find semi-infinitely constrained multivariable nonlinear function and 

fmincon is used to minimum of constrained nonlinear multivariable function. In this 

work, the MATLAB® optimization solver, fmincon is used to solve the optimization 

problem. 

 

4.3. OPTIMIZATION ROUTINE FOR SOLVING ENERGY/TORQUE  

       EQUATIONS IN SYNTHESIS WITH COMPLIANCE TECHNIQUE 
 

 In the synthesis with compliance technique, the kinematic and energy/torque 

equations are solved either strongly coupled or weakly coupled depending on the number 

on the equations and unknowns introduced in the system due to energy/torque 
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considerations using conventional nonlinear equations solver algorithm. A new way is 

proposed to solve the kinematic equations by conventional algorithm and energy/torque 

equations by optimization approach separately. 

 The optimization design process involves the three steps as shown in Figure 4.1. 

The first step is creating optimization design model which includes objective function 

and constraint functions. The energy/torque considerations introduce number of 

energy/torque equations in the system in addition to the kinematic equations depending 

on the number of precision positions and energy/torque specified at the precision 

positions. Let us consider a general synthesis case: A four-bar mechanism with four 

torsional springs at the pivots is to be synthesized for three precision positions with 

energy specifications for motion generation. The system has 8 loop-closure kinematic 

equations given by equations (13), 3 energy equations at three precision positions given 

by equations (21) and 2 scalar loop-closure equations at the energy-free state of the 

mechanism given by equation (38). The loop-closure kinematic equations are as follows: 

R
/cos'Θ
+ + ϕ
. − cos'Θ
+.0 + R8/cos'Θ8+ + γ
. − cos'Θ8+.0 = Re'δ
.	 (13a) 

R
/sin'Θ
+ + ϕ
.− sin'Θ
+.0 + R8/sin'Θ8+ + γ
.− sin'Θ8+.0 = Im'δ
.	 (13b) 

R�/cos'Θ�+ + ψ
. − cos'Θ�+.0 + R9/cos'Θ9+ + γ
. − cos'Θ9+.0 = Re'δ
.	 (13c) 

R�/sin'Θ�+ + ψ
.− sin'Θ�+.0 + R9/sin'Θ9+ + γ
.− sin'Θ9+.0 = Im'δ
.	 (13d) 

R
/cos'Θ
+ + ϕ�. − cos'Θ
+.0 + R8/cos'Θ8+ + γ�. − cos'Θ8+.0 = Re'δ�.	 (13e) 

R
/sin'Θ
+ + ϕ�.− sin'Θ
+.0 + R8/sin'Θ8+ + γ�.− sin'Θ8+.0 = Im'δ�.	 (13f)  

R�/cos'Θ�+ + ψ�. − cos'Θ�+.0 + R9/cos'Θ9+ + γ�. − cos'Θ9+.0 = Re'δ�.	 (13g) 

R�/sin'Θ�+ + ψ�.− sin'Θ�+.0 + R9/sin'Θ9+ + γ�.− sin'Θ9+.0 = Im'δ�.	 (13h) 
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 Thus, there are 8 equations and 12 unknowns for the motion generation synthesis. 

So, 4 free choices are required to solve the above equations and to obtain the kinematic 

configuration. The 3 energy equations and vector loop-closure equation for zero-energy 

position are as follows: 

E+ = 1
2 /Κ+'Θ
+ − Θ
6.
 + Κ
/'Θ�+ − Θ�6. − 'Θ
+ − Θ
6.0


+ Κ�/'Θ�+ − Θ�6. − 'Θ�+ − Θ�6.0
 + Κ�'Θ�+ − Θ�6.
0	
(21a) 

E
 = 1
2 /Κ+'Θ
+ + ϕ
 − Θ
6.


+ Κ
/'Θ�+ + γ
 − Θ�6. − 'Θ
+ + ϕ
 − Θ
6.0

+ Κ�/'Θ�+ + ψ
 − Θ�6. − 'Θ�+ + γ
 − Θ�6.0

+ Κ�'Θ�+ + ψ
 − Θ�6.
0	

(21b) 

E� = 1
2 /Κ+'Θ
+ + ϕ� − Θ
6.


+ Κ
/'Θ�+ + γ� − Θ�6. − 'Θ
+ + ϕ� − Θ
6.0

+ Κ�/'Θ�+ + ψ� − Θ�6. − 'Θ�+ + γ� − Θ�6.0

+ Κ�'Θ�+ + ψ� − Θ�6.
0	

(21c) 

 

 Ζ
6 + Ζ�6 = Ζ+6 + Ζ�6 (38) 

 The equation (38) will give 2 scalar equations and has 3 unknowns. These 2 

equations are solved simultaneously with energy equations in the existing method. In the 

new approach, these 2 equations are separated from energy equations and solved by 

making one free choice. Thus, 3 energy equations have 4 spring stiffness as unknowns 

and all other variables are known from kinematic equations and from zero-energy loop-

closure equations. The energy equations are solved using optimization. One of the main 
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problems with the synthesis with compliance technique is the solutions yielding negative 

and unrealistic spring stiffness values. This is overcome by constraining the spring 

stiffness values i.e. by applying the lower and upper bounds. The optimization problem is 

created as below: 

f+'K+, K
, K�, K�. = E+ − ~+
 /Κ+'Θ
+ − Θ
6.
 + Κ
/'Θ�+ − Θ�6. − 'Θ
+ − Θ
6.0
 +
Κ�/'Θ�+ − Θ�6. − 'Θ�+ − Θ�6.0
 + Κ�'Θ�+ − Θ�6.
0�   
f
'K+, K
, K�, K�. = E
 − ~+
 /Κ+'Θ
+ + ϕ
 − Θ
6.
 + Κ
/'Θ�+ + γ
 − Θ�6. −
'Θ
+ + ϕ
 − Θ
6.0
 + Κ�/'Θ�+ + ψ
 − Θ�6. − 'Θ�+ + γ
 − Θ�6.0
 + Κ�'Θ�+ + ψ
 −
Θ�6.
0�  
f�'K+, K
, K�, K�. = E� − +


 /Κ+'Θ
+ + ϕ� − Θ
6.
 + Κ
/'Θ�+ + γ� − Θ�6. −
'Θ
+ + ϕ� − Θ
6.0
 + Κ�/'Θ�+ + ψ� − Θ�6. − 'Θ�+ + γ� − Θ�6.0
 + Κ�'Θ�+ + ψ� −
Θ�6.
0               

f = f+
 + f

 + f�
 

Minimize	f 
 Above equations form the objective function of the optimization problem. The 

upper and lower bounds are applied to the spring stiffness, K values, as per the user's 

requirement. The constraint function includes any restrictions on the design variables i.e. 

spring stiffness e.g. all spring stiffness are equal or a fixed-guided compliant segment has 

two torsional springs at the characteristic pivots in pseudo-rigid-body model. It will be 

convenient to size the compliant segment if two spring constants are same. This 

restriction on spring stiffness values should be put in the constraint function.  
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 In MATLAB®, fmincon optimization solver is used for the constrained 

optimization. The same optimization routine can also be used for torque specifications 

instead of energy specifications at the precision positions. The equation for the torque at 

the j
� position of the mechanism is given by equation (36). 

T
� = Κ+�Θ
� − Θ
6�

+ Κ
��Θ�� − Θ�6� − �Θ
� − Θ
6�� gR
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ��� − 1h

+ Κ���Θ�� − Θ�6� − �Θ�� − Θ�6�� gR
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���

− R
 sin�Θ�� − Θ
��
R� sin�Θ�� − Θ���h + Κ��Θ�� − Θ�6� R
 sin�Θ�� − Θ
��

R� sin�Θ�� − Θ���	

(36)  

 The objective function for torque specification case is formed in the same way as 

that for energy specification case. Using equation (36), the torque equations for three 

precision positions can be written as shown in equations (40). The Section 4.5 shows 

different cases/examples of compliant mechanism synthesis such as undeflected position 

of the mechanism to be different form precision positions, one precision position to be 

undeflected position of the mechanism etc. 

 4.3.1. Recommendations for Energy/Toque Specifications. The energy/torque 

specifications at the precision positions are input to the problem. As the kinematic loop-

closure equations and energy/torque equations are nonlinear equations, specification of 

energy/torque values significantly affect the solution. 
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T
+ = Κ+'Θ
+ − Θ
6.
+ Κ
/'Θ�+ − Θ�6. − 'Θ
+ − Θ
6.0 gR
 sin'Θ�+ − Θ
+.R� sin'Θ�+ − Θ�+.
− 1\

+ Κ�/'Θ�+ − Θ�6. − 'Θ�+ − Θ�6.0 gR
 sin'Θ�+ − Θ
+.R� sin'Θ�+ − Θ�+.

− R
 sin'Θ�+ − Θ
+.R� sin'Θ�+ − Θ�+.\ + Κ�'Θ�+ − Θ�6. R
 sin'Θ�+ − Θ
+.R� sin'Θ�+ − Θ�+.	

(40a) 

T

 = Κ+�'Θ
+ + ϕ
. − Θ
6�
+ Κ
��'Θ�+ + γ
. − Θ�6�

− �'Θ
+ + ϕ
. − Θ
6�� gR
 sin�'Θ�+ + ψ
. − 'Θ
+ + ϕ
.�
R� sin�'Θ�+ + γ
. − 'Θ�+ + ψ
.�

− 1h

+ Κ���'Θ�++	ψ
. − Θ�6�

− �'Θ�+ + γ
. − Θ�6�� gR
 sin�'Θ�+ + γ
. − 'Θ
+ + ϕ
.�
R� sin�'Θ�+ + γ
. − 'Θ�+ +ψ
.�

− R
 sin�'Θ�+ + ψ
. − 'Θ
+ + ϕ
.�
R� sin�'Θ�+ + γ
. − 'Θ�+ + ψ
.�h

+ Κ��'Θ�+ + ψ
. − Θ�6� R
 sin�'Θ�+ + γ
. − 'Θ
+ + ϕ
.�
R� sin�'Θ�+ + γ
. − 'Θ�+ + ψ
.�	

(40b) 
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T
� = Κ+�'Θ
+ + ϕ�. − Θ
6�
+ Κ
��'Θ�+ + γ�. − Θ�6�

− �'Θ
+ + ϕ�. − Θ
6�� gR
 sin�'Θ�+ + ψ�. − 'Θ
+ + ϕ�.�
R� sin�'Θ�+ + γ�. − 'Θ�+ + ψ�.�

− 1h

+ Κ���'Θ�++	ψ�. − Θ�6�

− �'Θ�+ + γ�. − Θ�6�� gR
 sin�'Θ�+ + γ�. − 'Θ
+ + ϕ�.�
R� sin�'Θ�+ + γ�. − 'Θ�+ + ψ�.�

− R
 sin�'Θ�+ + ψ�. − 'Θ
+ + ϕ�.�
R� sin�'Θ�+ + γ�. − 'Θ�+ + ψ�.�h

+ Κ��'Θ�+ + ψ�. − Θ�6� R
 sin�'Θ�+ + γ�. − 'Θ
+ + ϕ�.�
R� sin�'Θ�+ + γ�. − 'Θ�+ + ψ�.�	

(40c) 

  

 In the synthesis with compliance technique, the random specifications of 

energies/torques may not yield the solution or may yield the negative or unrealistic 

solution such as with negative K values. 

 With the optimization approach, if the energies are specified randomly, there is 

chance that you may not get the solution or you may get the solution with all the spring 

stiffness values either at their lower or upper limits and with function value not close to 

zero at that solution point. But with this approach the answers will non-negative and 

within the bounds specified, so user will have control over the spring stiffness values. So, 

while specifying energies/torques at the precision positions care should to be taken. 

Instead of specifying values randomly, they should be related with the angles through 
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which the pseudo-rigid-body links with torsional springs are moving from one precision 

position to other. The function value at the solution is an indicator of the correctness of 

the solution. As the objective function is minimized for solving energy equations by 

optimization approach, its value at the solution point should be very close to zero. The 

synthesis with compliance method using optimization approach is shown as flowchart in 

Figure 4.2. 

 4.3.2. Notions on Energy Equivalence. The pseudo-rigid-body four-bar 

mechanism is a rigid-body four-bar mechanism with torsional springs at the pivot points, 

and the compliant mechanism represents the single continuum, where the some or all 

segments deflect and gives desired motion to the mechanism and stores energy in flexible 

segments. The synthesis with compliance technique initially helps in designing a pseudo-

rigid-body mechanism and then using a pseudo-rigid-body model concept, the compliant 

mechanism is obtained. 

 The total energy stored in the pseudo-rigid-body mechanism is obtained by 

summing up the energies stored in the individual torsional springs at that precision 

position. The energy stored in the compliant segment has been calculated by chain 

algorithm assuming the bending energy to be predominant in planar compliant 

mechanism (Annamalai, 2003). In this work, the energy stored in the compliant 

mechanism is calculated using commercial finite element software ABAQUS® and/or 

ANSYS® as strain energy stored in the mechanism. Thus, the compliant mechanism 

designed for energy specifications, ensures the energy equivalence between compliant 

mechanism and its pseudo-rigid-body model.  
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 In general, for any compliant mechanism synthesized using synthesis with 

compliance technique, it can be assured that energy stored in the compliant mechanism is 

of the same order of that of stored in pseudo-rigid-body model from which the compliant 

mechanism is obtained (Annamalai, 2003).  

 However, this energy equivalence does not necessarily ascertain the same the 

dynamic properties of the two mechanisms. The kinematics of the compliant mechanism 

is expected to vary in different degrees under different circumstances from that of 

corresponding pseudo-rigid-body model. 

 

4.4. STRONGLY COUPLED VS. WEAKLY COUPLED SYSTEM  

 In the synthesis with compliance technique, the kinematic equations and 

energy/torque equations are solved as either strongly coupled or weakly coupled system 

of equations depending on the number of equations and number of unknowns introduced 

in the system by energy/torque considerations. The condition for the system to be solved 

as weakly coupled is given by equation (32). In the weakly coupled system, the kinematic 

equations and energy/torque equations are solved separately while in strongly coupled 

system, kinematic and energy/torque equations are solved simultaneously. However, as 

the kinematic and energy/torque equations are generally nonlinear, coupling between 

them increases the complexity of the system. 
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Figure 4.2. A Flowchart Showing Synthesis with Compliance Technique using 
Optimization Approach 
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 In order to find the effects of strongly coupled and weakly coupled system of 

equations, for the strongly coupled case of synthesis; the two strategies are proposed for 

to study the effects. 

• Treated as a strongly coupled system: kinematic and energy equations are solved 

simultaneously 

• Treated as a weakly coupled system: kinematic equations are solved by a 

nonlinear equations solver and then the energy/torque equations are solved by 

optimization  

e.g. It is desired to synthesize a compliant mechanism for three precision positions 

motion generation synthesis, energy specified at these points as follows: 

δ
 = −2 + i																																																																							δ� = −4 + 0.75i		
γ
 = −7°																																																																													γ� = −14°		
Ε+ = 1.16in − lb													Ε
 = 28.45	in − lb															Ε� = 95.80	in − lb	

 Assuming one torsional spring in the pseudo-rigid-body model four-bar 

mechanism, there are 11 equations, 14 unknowns and 3 free choices, resulting in strongly 

coupled system (Table 3.3). Hence, kinematic and energy equations have to be solved 

simultaneously. A compliant mechanism with one fixed-free segment as shown in Figure 

3.2 (R) is selected for synthesis. R
, R�	and	θ
+ are selected as free choices. Reasonable 

initial estimates have assigned to remaining 11 variables. The energy-free state loop-

closure equation (38) is not really needed for this case as it has only one spring. But in 

order to know the mechanism configuration in energy-free state, these two scalar 

equations are added. This adds 2 more equations and 3 unknowns. The coupler equation 

(37) and first precision position loop-closure equation (39) are considered to determine 
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remaining link lengths and angles. These add 4 scalar equations and 4 unknowns. Using 

equations (6), (21), (37), (38) and (39), the following solution is obtained: 

Z+ = 11.852 + 2.472i																																																								Z
 = 4.596 + 2.571i	
Z� = 9.26 + 2.077i																																																													Z� = 2.004 + 3.362i	
Z8 = 5.425 + 2.689i																																																											Z9 = −3.835 + 0.612i	
ϕ
 = 27.367			°																																																																					ϕ� = 48.979°		
ψ
 = 31.488°																																																																								ψ� = 64.433°		
K� = 119.996	in − lb/rad																																																Θ�6 = 51.961°	
Θ
6 = 29.999°																																																																						Θ�6 = 16.043°	

 In the second technique, the kinematic and energy equations are solved separately 

i.e. as weakly coupled system. The kinematic equations are solved by conventional 

nonlinear equations solver and energy equations are solved by constrained optimization 

approach. In the above example, we have 8 kinematic loop-closure equations and 12 

unknowns, giving 4 free choices and solution obtained for kinematic configuration is as 

below: 

Z
 = 4.496 + 3.857i																																																										Z� = 2 + 1.732i	
Z8 = 5.425 + 2.689i																																																										Z9 = −3.856 + 0.608i	
ϕ
 = 27.367°																																																																							ϕ� = 48.979		
ψ
 = 31.473°																																																																								ψ� = 64.43°		

The coupler equation (37) and first-precision position loop-closure equation (39) are 

solved separately and solution obtained is follows: 

Z+ = 11.877 + 2.474i																																																										Z� = 9.282 + 2.081i	
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 The energy-free state loop-closure equation results in two scalar equations and 

has 3 unknowns, giving one free choice. Θ
6 = 30° is selected as free choice and the 

equations are solved for other two unknowns which give following solutions: 

Θ�6 = 16.032°																																																																					Θ�6 = 52.029°	
Using the values obtained above, three energy equations are solved by optimization 

approach and value of K� is obtained as K� = 119.9955	in − lb/rad.  

 If the solutions obtained from the new technique of solving equations by weakly 

coupled system using optimization approach are compared with those from strongly 

coupled system, it has been observed that, the solutions are almost similar with little 

differences in some values and that is because of the value of 	Θ�+ is taken as free choice 

while solving equations by weakly coupled and in strongly coupled it is regarded as 

unknown, which changes value of 	Θ�+ from 60° to 59.9279°. Thus, it can be concluded 

that solutions is obtained by using both the strategies and it is believed that, the latter 

strategy, which uncouples the equation sets, yields the solution from an entire set of 

possible solutions. As in the latter case, as the kinematic and energy equations are solved 

separately, the system becomes much simpler than strongly coupled one. 

 The length of the fixed-pinned segment is determined by using the following equation: 

 γL = |Z| 	⇒ L = |Z|/γ	 (23)  

 where, γ is the characteristic radius factor with average value 0.85, |Z| is the length of the 

corresponding pseudo-rigid-body link and L is the length of compliant segment. Selecting 

output link R� as pseudo-rigid-body link the compliant link length L� comes out as 

4.7059	in.	Using the equation, (15) as given below, the moment of inertia is obtained. 
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 Κ
 = 	γΚ$ ΕΙL 	 (15)  

where, Ε is the modulus of elasticity, Ι is the moment of inertia, L is the length of the 

compliant segment, γ is the characteristic radius factor, Κ$ is the stiffness coefficient, Κ
 
is torsional spring stiffness. Using the thermoplastic polymer Polypropylene, material, 

moment of inertia Ι comes out as Ι = 1.2535 × 10��	in�. Selecting the rectangular cross-

section for the compliant segment and assuming the width of 0.5	in, the thickness of the 

compliant segment is obtained by following equation (24). 

 I = bh�
12  (24) 

where, b is the width and h is the thickness of the segment. The value of thickness 

obtained is 0.3110	in. The resulting compliant mechanism is shown in Figure 4.3. The 

precisions positions from PRBM and from the corresponding compliant mechanism are 

compared. In order to obtain the precision positions in ABAQUS®, the X displacements 

are given to the coupler point of the compliant mechanism for each precision position and 

the Y displacements are obtained. This comparison is shown in Table 4.1. 

 

 

Table 4.1. Precision Positions Comparison PRBM vs. Compliant Mechanism (FEA) 
 

Pseudo-rigid-body four-bar 
mechanism 

Compliant mechanism 
(ABAQUS®) 

% Relative 
error in Y 

displacement  X 
displacement 

Y 
displacement 

X 
displacement 

Y 
displacement 

-0.431 0.54 -0.431 0.5395 0.0727 

-2.4312 1.5403 -2.4312 1.5288 0.4012 

-4.4312 1.2906 -4.4312 1.2699 0.4479 
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 The coupler curve is plotted for a pseudo-rigid body model with precision points 

marked on it. The precision positions obtained from corresponding compliant mechanism 

in ABAQUS® are also shown on it. The coupler curve for this example is shown in 

Figure 4.4. An energy comparison between pseudo-rigid-body model and compliant 

mechanism, using commercial finite element software ABAQUS® is done to verify the 

equivalence of the design and validate the solution. The results are shown in Table 4.2. 

 

 

 

Figure 4.3. Solid Model of a Compliant Mechanism with One Fixed-Free Segment 
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Table 4.2. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 
Pseudo-rigid-body 

four-bar mechanism 
Compliant mechanism 

(FEA software) 
% Error in 

Energy 

E+ 1.16 1.1096 4.35 

E
 28.45 27.5763 3.07 

E� 95.8 96.8233 1.07 

 

 

 

Figure 4.4. Coupler Curve Obtained from PRBM with Precision Positions  
 

 

 Table 4.3-4.6 shows the number of equations, number of unknowns and number 

of free choices for function, path, motion generation and path generation with prescribed 

timing depending on number on springs in pseudo-rigid body four-bar mechanism for 

varying number of precision positions synthesis. In the new technique, the equations are 

solved separately. The kinematic equations are solved by conventional method so free 

choices are needed to solve the loop-closure equations. The energy-free state loop-closure 
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equation gives two scalar equations and three unknowns, requiring one free choice there. 

As the energy equations are solved by the optimization method, no free choices are 

needed. In the tables, the number of equations is shown as addition of number kinematic 

equations, energy-free state loop-closure equations and energy/torque equations. The last 

column indicates the number of free choices and it includes the free choices for solving 

the kinematic equations and one free choice of energy-free state loop-closure equations.   

e.g. from Table 4.4, for three precision positions path generation synthesis with four 

springs has 8+2+3=13 equations, 12 kinematic unknowns and 7 energy unknowns giving 

5 free choices.   

 From Tables 3.1-3.4, it can be seen that with the synthesis with compliance 

technique due to strongly coupling of kinematic equations and energy/torque equations, 

few synthesis cases can't be solved due to over-constraining of the system as number of 

equations are more than number of variables. Those cases are listed below: 

1) Function generation synthesis for five precision positions with one torsional spring in 

pseudo-rigid-body four-bar mechanism. 

2) Motion generation synthesis for five precision positions with one, two, three torsional 

springs in pseudo-rigid-body four-bar mechanism. 

3) Path generation with prescribed timing synthesis for five precision positions with one, 

two, three torsional springs in pseudo-rigid-body four-bar mechanism. 
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Table 4.3. Design Choices Based on Number of Torsional Springs for Function 
Generation Synthesis with Compliance Technique Using Optimization Approach 

 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of 
Kinematic 
Unknowns 

Number of 
Energy 

Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 4+2+3=9 Z
, Z�, Z�, γ
, γ� (8) 
Κ+, Θ
6, Θ�6, Θ�6         (4) 

5 

2 4+2+3=9 Z
, Z�, Z�, γ
, γ�  (8) 
Κ+, Κ
, Θ
6, Θ�6, Θ�6  (5) 

5 

3 4+2+3=9 Z
, Z�, Z�, γ
, γ�  (8) " + Κ�     (6) 
5 
 

4 4+2+3=9 Z
, Z�, Z�, γ
, γ�  (8) " + Κ�     (7) 
5 
 

Four Precision Positions 

1 6+2+4=12 
Z
, Z�, Z�, γ
, γ�, γ�, 
                         (9) 

Κ+, Θ
6, Θ�6, Θ�6         (4) 
4 

2 6+2+4=12 
Z
, Z�, Z�, γ
, γ�, γ�, 
                         (9) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6 (5) 
4 

3 6+2+4=12 
Z
, Z�, Z�, γ
, γ�, γ�, 
                         (9) 

" + Κ�     (6) 4 

4 6+2+4=12 
Z
, Z�, Z�, γ
, γ�, γ�, 
                         (9) 

" + Κ�     (7) 4 

Five Precision Positions 

1 8+2+5=15 
Z
, Z�, Z�, γ
, γ�, γ�, γ8                        (10) 

Κ+, Θ
6, Θ�6, Θ�6         (4) 
3 

2 8+2+5=15 
Z
, Z�, Z�, γ
, γ�, γ�, γ8                        (10) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6  (5) 
3 

3 8+2+5=15 
Z
, Z�, Z�, γ
, γ�, γ�, γ8                        (10) 

" + Κ�     (6) 3 

4 8+2+5=15 
Z
, Z�, Z�, γ
, γ�, γ�, γ8                        (10) 

" + Κ�     (7) 3 

 

 

 From Tables 4.3-4.6, obtained using new method using optimization approach, as 

the kinematic and energy/torque equations are solved separately, all of synthesis cases 

mentioned above which couldn't be solved by existing method are solvable by new 

approach. 
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4.5. DIFFERENT CASES 

 This section shows different cases/examples of compliant mechanism synthesis 

such as undeflected position of the mechanism different from precision positions, 

undeflected position of the mechanism to be one of the precision positions etc. Examples 

are shown for compliant mechanisms with different types of complaint segments such as 

full length compliant segments, small length flexural pivots etc. All the cases/examples 

presented herewith are for the pseudo-rigid-body four-bar mechanism synthesis for three 

precision positions. The kinematic loop-closure equations for the function generation 

synthesis are given by equations (6). For motion or path generation, the loop-closure 

equations are given by equations (13). The energy and torque equations for three 

precision positions are given by equations (21) and equations (40) respectively.  

 4.5.1. Case 1: Undeflected Position of the Mechanism Different from the 

Specified Positions. In this case, the energies are specified at the three precision 

positions and energy-free state of the mechanism happens to be different from the 

specified precision positions. Thus, the energy-free state loop-closure equation given by 

equation (38) needs to be included in the system of equations.  

e.g. It is desired to synthesize a compliant mechanism for three precision positions path 

generation with prescribed timing synthesis, energy specified at these points as follows: 

δ
 = −3 + 0.5i																																																																				δ� = −5 + 0.25i		
E+ = 6.3	in − lb																		Ε
 = 28	in − lb																			Ε� = 51.6	in − lb	
ϕ
 = 20°																																																																															ϕ� = 35°		

 Assuming two torsional springs in the pseudo-rigid-body model four-bar 

mechanism, there are 8 kinematic loop-closure equations, 3 energy equations and 2 
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energy-free state loop-closure equations, having 17 unknowns giving 5 free choices 

(Table 4.6). A compliant mechanism with one fixed-guided segment as shown in Figure 

3.2 (I) is selected for synthesis. As the two springs in pseudo-rigid-body model link 

generate one fixed-guided segment, two same spring constants will be useful for sizing 

the compliant segment. This restriction is added in the constraint function of optimization 

code for energy equations.  

R
, R�, θ
+, θ�+ are selected as free choices as given below for solving loop-closure 

equations.   

R
 = 5.5	in																																																																											R� = 7	in	
θ
+ = 85°																																																																														θ�+ = 65°		
Θ
6 = 70°	

 Two undeflected state loop-closure equations are solved by selecting Θ
6 as free 

choice. The solutions obtained from these two sets of equations are used as input to solve 

3 energy equations by optimization approach. The coupler equation (37) and first 

precision position loop-closure equation (39) are considered to determine remaining link 

lengths and angles. These add 4 scalar equations and 4 unknowns. 
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Table 4.4. Design Choices Based on Number of Torsional Springs for Path Generation 
Synthesis with Compliance Technique Using Optimization Approach 

 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of Kinematic 
Unknowns 

Number of 
Energy 

Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, γ
, γ�, ψ
, ψ�	       (14) 

Κ+, Θ
6, Θ�6, Θ�6         (4) 
7 

2 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, γ
, γ�, ψ
, ψ�         (14) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6  (5) 
7 

3 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, γ
, γ�, ψ
, ψ�         (14) 

" + Κ�     (6) 7 

4 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, γ
, γ�, ψ
, ψ�        (14) 

" + Κ�     (7) 7 

Four Precision Positions 

1 12+2+4=18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�,                        (17) 

Κ+, Θ
6, Θ�6, Θ�6         (4) 
6 

2 12+2+4=18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�,                        (17) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6  (5) 
6 

3 12+2+4=18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�,                        (17) 

Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6 
(6) 

6 

4 12+2+4=18 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, γ
, γ�, γ�, ψ
, ψ�, ψ�,                        (17) 

Κ+, Κ
, Κ�, Κ�, Θ
6, Θ�6, Θ�6         (7) 

6 

Five Precision Positions 

1 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8,      (20) 

Κ+, Θ
6, Θ�6, Θ�6         (4) 
5 

2 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8,      (20) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6  (5) 
5 

3 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8,      (20) 

Κ+, Κ
, Κ�, Θ
6, Θ�6, Θ�6 
(6) 

5 

4 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, γ
, γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8,      (20) 

Κ+, Κ
, Κ�, Κ�, Θ
6, Θ�6, Θ�6         (7) 

5 
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Table 4.5. Design Choices Based on Number of Torsional Springs for Motion Generation 
Synthesis with Compliance Technique Using Optimization Approach 

 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of Kinematic 
Unknowns 

Number of 
Energy 

Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�	                  (12) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
5 

2 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�	                    (12) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
5 

3 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�	                    (12) 

" + Κ�       (6) 5 

4 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ψ
, ψ�	                    (12) 

" + Κ�       (7) 5 

Four Precision Positions 

1 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�,      (14) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
3 

2 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�,      (14) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
3 

3 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�,      (14) 

" + Κ�       (6) 3 

4 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ψ
, ψ�, ψ�,      (14) 

" + Κ�       (7) 3 

Five Precision Positions 

1 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, ψ
, ψ�, ψ�, ψ8, 
                              (16) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
1 

2 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, ψ
, ψ�, ψ�, ψ8, 
                              (16) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
1 

3 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, ψ
, ψ�, ψ�, ψ8, 
                             (16) 

" + Κ�       (6) 1 

4 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, ϕ
,	ϕ�, ϕ�, ϕ8, ψ
, ψ�, ψ�, ψ8, 
                              (16) 

" + Κ�       (7) 1 
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Table 4.6. Design Choices Based on Number of Torsional Springs for Path Generation 
with Prescribed Timing Synthesis with Compliance Technique Using Optimization 

Approach 
 

Number 
of 

Torsional 
Springs 

Number of 
Equations 

Number of Kinematic 
Unknowns 

Number of 
Energy 

Unknowns 

Number 
of 

Free 
Choices 

Three Precision Positions 

1 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, γ
, γ�, ψ
, ψ�	                  (12) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
5 

2 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, γ
, γ�, ψ
, ψ�	                    (12) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
5 

3 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, γ
, γ�, ψ
, ψ�	                    (12) 

" + Κ�       (6) 5 

4 8+2+3=13 
Z
, 	Z�, 	Z8, 	Z9, γ
, γ�, ψ
, ψ�	                    (12) 

" + Κ�       (7) 5 

Four Precision Positions 

1 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, ψ
, ψ�, ψ�	      (14) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
3 

2 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, ψ
, ψ�, ψ�,     (14) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
3 

3 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, ψ
, ψ�, ψ�,     (14) 

" + Κ�       (6) 3 

4 12+2+4=18 
Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, ψ
, ψ�, ψ�       (14) 

" + Κ�       (7) 3 

Five Precision Positions 

1 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8 
                              (16) 

Κ+, Θ
6, Θ�6, Θ�6           (4) 
1 

2 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8 
                              (16) 

Κ+, Κ
, Θ
6, Θ�6, Θ�6    (5) 
1 

3 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8 
                              (16) 

" + Κ�       (6) 1 

4 16+2+5=23 

Z
, 	Z�, 	Z8, 	Z9, γ
,	γ�, γ�, γ8, ψ
, ψ�, ψ�, ψ8 
                              (16) 

" + Κ�       (7) 1 
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The solution obtained is as below: 

 Z+ = 2.875 + 3.019i																																																											Z
 = 0.479 + 5.479i	
Z� = 5.355 + 3.884i																																																											Z� = 2.958 + 6.344i	
Z8 = 4.652 + 6.397i																																																											Z9 = −0.703 + 2.537i	
ψ
 = 22.064°																																																																							ψ� = 36.74°		
γ
 = 9.286°																																																																											γ� = 14.613°		
Θ�6 = 24.152°																																																																						Θ�6 = 43.921°	
K� = 78.27	in − lb/rad																																																					K� = 78.27	in − lb/rad					

 The length of the fixed-guided segment is determined by using equation (23). 

Selecting input link R� as pseudo-rigid-body link, the compliant segment length L� comes 

out as 8.235	in. Using the equation, (16) as given below, the moment of inertia is 

obtained. 

Κ
 = 	2γΚ$ ΕΙL  (16) 

where, Ε is the modulus of elasticity, Ι is the moment of inertia, L is the length of the 

compliant segment, γ is the characteristic radius factor, Κ$ is the stiffness coefficient and, 

Κ
 is the torsional spring stiffness. Using the thermoplastic polymer Polypropylene 

material, moment of inertia Ι comes out as Ι = 7.154 × 10��	in�. Selecting the 

rectangular cross-section for the compliant segment and assuming the width of  0.5	in, 

the thickness of the compliant segment is obtained by equation (24). The value of 

thickness obtained is 0.258	in. The resulting compliant mechanism is shown in Figure 

4.5. In order to compare the precision positions from PRBM and FEA, the Y 

displacements of coupler point are compared for given X displacements. The comparison 

is shown in Table 4.7 for PRBM with two FEA software ABAQUS® and ANSYS®.     
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The mechanism is modeled in the same way and same boundary conditions are applied in 

two software and however the results obtained from those are varying as shown in Table 

4.7. The energy comparison between pseudo-rigid-body model results and FEA results 

from both ABAQUS® and ANSYS® are shown in Table 4.8. 

 

 

Table 4.7. Precision Positions Comparison PRBM vs. Compliant Mechanism (FEA) 
 

Pseudo-rigid-body 
four-bar 

mechanism 

Compliant mechanism 
 

% Relative error in    
Y displacement 

between PRBM and ABAQUS® ANSYS® 

X disp. Y disp. X disp. Y disp. X disp. Y disp. ABAQUS® ANSYS® 

-2.6171 1.3978 -2.6171 1.3135 -2.6171 1.3135 0.255 0.162 

-5.6174 1.898 -5.6174 1.7593 -5.6174 1.7593 0.462 0.285 

-7.6176 1.6481 -7.6176 1.4818 -7.6176 1.4818 0.585 0.327 

 

 

Table 4.8. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 

Pseudo-rigid-
body 

four-bar 
mechanism 

Compliant 
mechanism 

(ABAQUS®) 

Compliant 
mechanism 
(ANSYS®) 

% Error in energy 
obtained using PRBM 

and 

ABAQUS® ANSYS® 

E+ 6.3 5.678 5.9705 9.869 5.231 

E
 28 25.999 27.344 7.146 2.343 

E� 51.6 48.907 51.447 5.219 0.297 

 

 

The coupler curve obtained from PRBM is plotted along with precision positions marked 

on it. The coupler curve for this example is shown in Figure 4.6. 
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Figure 4.5. Solid Model of a Compliant Mechanism with One Fixed-Fixed Segment 
 

 

 

Figure 4.6. Coupler Curve Obtained from PRBM with Precision Positions  
 

 

 4.5.2. Case 2: Undeflected Position of the Mechanism to be one of the 

Specified Positions. In this case, the energy-free state of the mechanism happens to be 

one of the specified precision positions. So the energy-free state loop-closure equation is 

not needed and reduced system of equations can be used. Thus, for the three precision 
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positions synthesis problem, two energies are specified and third energy is assumed to be 

zero.  

e.g.  A compliant mechanism with fully-compliant segments is to be designed for three-

precision positions path generation with prescribed timing synthesis with energy 

specifications: 

δ
 = −3 + 0.5i																																																															δ� = −5 + 0.25i		
ϕ
 = 20°																																																																										ϕ� = 35°		
Ε+ = 0	in − lb																	Ε
 = 15	in − lb																			Ε� = 44.8	in − lb	

 Assuming four torsional springs in the pseudo-rigid-body model four-bar 

mechanism, there are 8 kinematic loop-closure equations. As the energy at first precision 

position is zero, the energy equation for first precision position is not required, and so 

there are 2 energy equations. The energy-free state loop-closure equation is also not 

needed. Thus, there are total 10 equations with 16 unknowns giving 4 kinematic free 

choices. A compliant mechanism with two fixed-guided segments as shown in Figure 3.2 

(A) is selected for synthesis. As the four springs in pseudo-rigid-body model generate 

two fixed-guided segments, two same spring constants for each compliant segment will 

be useful for sizing it. 

R
, R�, θ
+, θ�+, are selected as free choices as given below for solving loop-closure 

equations.   

R
 = 5.5	in																																																																										R� = 7	in	
θ
+ = 85°																																																																													θ�+ = 65°		

 The solution obtained from loop-closure equations is used as input to solve 2 

energy equations by optimization approach. The coupler equation (37) and first precision 



95 

 

position loop-closure equation (39) are considered to determine remaining link lengths 

and angles. These add 4 scalar equations and 4 unknowns.  The solution obtained is as 

below: 

Z+ = 2.876 + 3.019i																																																											Z
 = 0.4794 + 5.479i	
Z� = 5.355 + 3.885i																																																											Z� = 2.958 + 4.110i	
Z8 = 4.652 + 6.422i																																																											Z9 = −0.703 + 2.537i	
γ
 = 9.286°																																																																											γ� = 14.613°		
ψ
 = 22.064°																																																																								ψ� = 36.74°		
K+ = 80.882	in − lb/rad																																																			K
 = 80.882		in − lb/rad				

														K� = 87.733	in − lb/rad																																																			K� = 87.733	in − lb/rad						
	 The length of the fixed-guided segment is determined by using equation (23). 

Selecting input link R
 pseudo-rigid-body link, the compliant segment length L
 comes 

out as 7.0588	in. Using the equation (16), the moment of inertia is obtained. Using the 

thermoplastic polymer Polypropylene material, moment of inertia Ι comes out as                          

Ι = 5.808 × 10��	in�. Similarly, for output pseudo-rigid-body link, R�, the compliant 

segment length L� comes out as 8.235	in and moment of inertia as                                        

Ι = 8.019 × 10��	in�.Selecting the rectangular cross-section for the compliant segments 

and assuming the width of 0.5	in, the thickness of the compliant segment obtained for 

input link is 0.2406	in and for output link is 0.2679	in. The resulting compliant 

mechanism is shown in Figure 4.7. In order to compare the precision positions from 

PRBM and FEA, the Y displacements of coupler point are compared for given X 

displacements. The comparison is shown in Table 4.9 for PRBM with two FEA software 

ABAQUS® and ANSYS® .The mechanism is modeled in the same way and same 
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boundary conditions are applied in both software and however the results obtained from 

those are varying as shown in Table 4.9. The energy comparison between pseudo-rigid-

body model results and FEA results from both ABAQUS® and ANSYS® are shown in 

Table 4.10.  

 

 

Table 4.9. Precision Positions Comparison PRBM vs. Compliant Mechanism (FEA) 
 

Pseudo-rigid-
body 

four-bar 
mechanism 

Compliant mechanism 
 

% Relative error in    
Y displacement 

between PRBM and ABAQUS® ANSYS® 

X disp. Y disp. X disp. Y disp. X disp. Y disp. ABAQUS® ANSYS® 

0 0 0 0 0 0 0 0 

-3 0.5 -3 0.4707 -3 0.4967 0.964 0.108 

-5 0.25 -5 0.2479 -5 0.2516 0.0418 0.0308 

 

 

Table 4.10. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 

Pseudo-rigid-
body 

four-bar 
mechanism 

Compliant 
mechanism 

(ABAQUS®) 

Compliant 
mechanism 
(ANSYS®) 

% Error in energy 
obtained using PRBM 

and 

ABAQUS® ANSYS® 

E+ 0 0 0 0 0 

E
 15 13.769 13.499 8.21 10 

E� 44.8 41.228 40.418 7.974 9.781 

 

 

The coupler curve obtained from PRBM is plotted along with precision positions marked 

on it. The coupler curve for this example is shown in Figure 4.8. 
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Figure 4.7. Solid Model of a Compliant Mechanism with Two Fixed-Fixed Segments 
 

 

 

Figure 4.8. Coupler Curve Obtained from PRBM with Precision Positions  

 

 

 4.5.3. Case 3: All Four Torsional Spring Constants Same. This can be special 

case of compliant mechanism synthesis in which all the four torsional spring constants 

will be the same. This simplifies the sizing of the compliant segments. The optimization 

approach provides the simplified way to apply such kinds of restrictions on the spring 

constants. The addition of new such constraint equations in the conventional method may 
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cause over-constraining. Different types of constraints e.g. total stiffness of the 

mechanism to be under certain limit, individual spring stiffness values to be within 

certain lower and upper bounds etc. can be applied on the spring stiffness values using 

optimization approach. 

e.g. A compliant mechanism with small-length flexural segments is to be designed for 

three-precision positions path generation synthesis with energy specifications: 

δ
 = −3 + 0.5i																																																																							δ� = −5 + 0.2i		
E+ = 11.75	in − lb													E
 = 37.25	in − lb																	E� = 60	in − lb	

 Assuming four torsional springs in the pseudo-rigid-body model four-bar 

mechanism, there are 8 kinematic loop-closure equations, 3 energy equations and 2 scalar 

undeflected state loop-closure equations, having 21 unknowns giving 7 free choices 

(Table 4.4). A compliant mechanism with four small-length flexural pivots as shown in 

Figure 3.2 (C) is selected for synthesis. As the special case, all the torsional spring 

stiffness values are assumed to be same. R
, R�, θ
+, θ�+, γ
, γ� are selected as free 

choices as given below for solving loop-closure equations.   

R
 = 6	in																																																																														R� = 7	in	
θ
+ = 60°																																																																													θ�+ = 40°		
γ
 = 9°																																																																																		γ� = 15°		
Θ
6 = 30°	

 Two undeflected state loop-closure equations are solved by selecting Θ
6 as free 

choice. The solutions obtained from these two sets of equations are used as input to solve 

3 energy equations by optimization approach. The coupler equation (37) and first 

precision position loop-closure equation (39) are considered to determine remaining link 
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lengths and angles. These add 4 scalar equations and 4 unknowns.  The solution obtained 

is as below: 

Z+ = 3.479 − 1.537i																																																											Z
 = 3 + 5.196i	
Z� = 5.841 + 5.196i																																																											Z� = 5.362 + 4.499i	
Z8 = −1.464 + 3.809i																																																								Z9 = −7.305 + 6.042i	
ϕ
 = 24.473°																																																																								ϕ� = 40.214°		
ψ
 = 22.635°																																																																								ψ� = 36.136°		
Θ�6 = −33.795°																																																																			Θ�6 = 8.7545°	
K+ = K
 = K� = K� = 30.6878	in − lb/rad				

 The length of the small-length flexural pivot is taken as 5% of the longer rigid 

part. Thus, the pseudo-rigid-body link length obtained is addition of rigid part length, L 

and small-length flexural pivot length = . Selecting input link R
 as pseudo-rigid-body 

link, the small-length flexural pivot length =
 comes out as 0.2857	in and rigid part 

length, L
 as 5.714	in.	Using the equation, (17) as given below, the moment of inertia is 

obtained.	
 Κ
 =	ΕΙ= 	 (17)  

where, Ε is the modulus of elasticity, Ι is the moment of inertia, = is the length of the 

small-length flexural pivot, Κ
 is the torsional spring stiffness. Using the thermoplastic 

polymer Polypropylene material, moment of inertia Ι comes out as                        

 Ι = 4.383 × 10�8	in�. Selecting the rectangular cross-section for the compliant segment 

and assuming the width of 2	in, the thickness of the compliant segment is obtained. The 

value of thickness obtained is 0.06407	in. Similarly, for the output pseudo-rigid-body 
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link	R�, the small-length flexural pivot length l� and rigid part length, L� are as 0.3333	in 

and 6.667	in. The width is assumed to be 2	in and thickness value of 0.0675	in is 

obtained. The resulting compliant mechanism is shown in Figure 4.9. In order to compare 

the precision positions from PRBM and FEA, the Y displacements of coupler point are 

compared for given X displacements. The comparison between PRBM and FEA software 

ABAQUS® is shown in Table 4.11. The energy comparison between pseudo-rigid-body 

model and compliant mechanism obtained using ABAQUS® shown in Table 4.12. 

 

 

Table 4.11. Precision Positions Comparison PRBM vs. Compliant Mechanism (FEA) 
 

Pseudo-rigid-body 
four-bar mechanism 

Compliant mechanism  
ABAQUS® % Relative error in 

Y displacement X 
displacement 

Y 
displacement 

X 
displacement 

Y 
displacement 

-3.076 1.967 -3.076 1.9725 0.151 

-6.076 2.467 -6.076 2.4893 0.339 

-8.076 2.167 -8.076 2.2055 0.460 

 

 

Table 4.12. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 
Pseudo-rigid-body 

four-bar mechanism 

Compliant 
mechanism 

(ABAQUS®) 

% Error in energy 
obtained using 

PRBM and 
ABAQUS® 

E+ 11.75 11.7682 0.155 

E
 37.25 37.4105 0.431 

E� 60 60.3288 0.548 
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Figure 4.9. Solid Model of a Compliant Mechanism with Four Small-Length Flexural 
Pivots 

 

 

The coupler curve obtained from PRBM is plotted along with precision positions marked 

on it. The coupler curve for this example is shown in Figure 4.10. 

 

Figure 4.10. Coupler Curve Obtained from PRBM with Precision Positions  
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 4.5.4. Case 4: Application of Straight-Line Generating Compliant 

Mechanism in Vehicle Suspension System. The compliant mechanisms find numerous 

applications in real life such as in MEMS, precision instruments etc. The rigid-body 

straight-line mechanisms such as Watt's straight-line mechanism or Robert straight-line 

mechanism (Barlas, 2004) are used in vehicle suspension systems. The Chebyshev or 

Hoeken straight-line generating rigid-body mechanism has been designed for Mars Rover 

suspension mechanism (Barlas, 2004). Using this rigid-body straight-line generating 

mechanisms, the compliant straight-line generation mechanisms can be obtained using 

synthesis with compliance technique and these mechanisms can be used in suspension 

systems of small robotic vehicles. The compliant mechanism suspension system will have 

advantages like reduced weight, reduced number of parts etc. over rigid-body 

mechanisms. Figure 4.11 shows the rigid-body Hoeken straight-line mechanism with 

coupler point which almost follows straight line over much of its path (Howell, 2001). 

The link lengths in the mechanism can be specified as function of crank length R
 as 

follows: 

R+ = 2R
, R� = R� = 2.5R
, a� = 5R
, b� = 0 

 This rigid-body mechanism can be considered as the pseudo-rigid-body model for 

the compliant mechanism to be designed. A fully compliant mechanism can be obtained 

by using four small-length flexural pivots at four pin joints with energy storage 

considerations in compliant segments. But as the small-length flexural pivots can't rotate 

fully, the mechanism won't have full rotation; but it can move over much of the range of 

straight line path. The full rotation can be obtained by using two small-length flexural 

pivots. 
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 The synthesis procedure for the Hoeken straight-line generating mechanism is 

given by example. e.g. It is desired to synthesize a compliant straight-line generating 

mechanism for three precision positions with energy specified as below:  

δ
 = −2 + 0i																																																																					δ� = −4 + 0i		
E+ = 2.15	in − lb													E
 = 49.5	in − lb																E� = 66.1	in − lb	

 For this, the rigid-body synthesis loop-closure equations are different from that of 

given by equations (13) for a four-bar mechanism. The link lengths in the mechanism can 

be expressed as function of crank length. The kinematic-loop closure equations are given 

below: 

5R
'cos'Θ�+ + γ
. − cos'Θ�+.. + R
'cos'Θ
+ + ϕ
. − cos'Θ
+.. = Re'δ
. 41(a)  

5R
'sin'Θ�+ + γ
. − sin'Θ�+.. + R
'sin'Θ
+ + ϕ
. − sin'Θ
+.. = Im'δ
	. 41(b)  

 2.5R
'cos'Θ�+ + γ
. − cos'Θ�+.. + R�'cos'Θ�+ + ψ
. − cos'Θ�+.. =
Re'δ
. 

41(c)  

 2.5R
'sin'Θ�+ + γ
. − cos'Θ�+.. + R�'sin'Θ�+ + ψ
. − sin'Θ�+.. =
Im'δ
. 

41(d)  

5R
'cos'Θ�+ + γ�. − cos'Θ�+.. + R
'cos'Θ
+ + ϕ�. − cos'Θ
+.. = Re'δ�. 41(e)  

 5R
'sin'Θ�+ + γ�. − sin'Θ�+.. + R
'sin'Θ
+ + ϕ�. − sin'Θ
+.. = Im'δ�. 41(f)  

 2.5R
'cos'Θ�+ + γ�. − cos'Θ�+.. + R�'cos'Θ�+ + ψ�. − cos'Θ�+.. =
Re'δ�.  

41(g)  

 2.5R
'sin'Θ�+ + γ�. − cos'Θ�+.. + R�'sin'Θ�+ + ψ�. − sin'Θ�+.. =
Im'δ�. 

41(h)  
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Figure 4.11. Rigid-body Hoeken Straight-Line Mechanism 
 

 

 The energy-free state loop-closure equation and energy equations are same as 

used in the previous synthesis examples. Assuming two torsional springs in the pseudo-

rigid-body model four-bar mechanism, there are 8 kinematic loop-closure equations, 3 

energy equations and 2 undeflected state loop-closure equations as discussed above, 

having 14 unknowns giving 3 free choices. A compliant mechanism with two small-

length flexural pivots as shown in Figure 3.2 (K) is selected for synthesis. For 

convenience of sizing small-length flexural pivots, two spring stiffness values are 

restricted to be the same. R
	and	θ
+	 are selected as free choices as given below for 

solving kinematic loop-closure equations. Θ+6 assumed to be as 0°. 
R
 = 1	in																																																																														θ
+ = 90°	
Θ
6 = 70°	
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 Two undeflected state loop-closure equations are solved by selecting Θ
6 as free 

choice. The solutions obtained from these two sets of equations are used as input to solve 

3 energy equations by optimization approach.  The solution obtained is as below: 

Z+ = 2 + 0i																																																																											Z
 = 0 + 1i	
Z� = 2 + 1.499i																																																																			Z� = 0 + 2.5i	
Z8 = 2 + 1.499i																																																												
ϕ
 = 90°																																																																															ϕ� = 180°		
ψ
 = 36.869°																																																																						ψ� = 53.130°		
γ
 = 16.26°																																																																										γ� = 53.130°		
Θ�6 = 38.052°																																																																				Θ�6 = 82.862°	
K+ = 117.222	lb − in/rad																																														K
 = 117.222	lb − in/rad					

 The length of the small-length flexural pivot is taken as 5% of the longer rigid 

part. Selecting output link R� as pseudo-rigid-body link, the small-length flexural pivot 

length =� comes out as 0.1191	in and rigid part length, L� as 2.2809	in. Using the 

equation (17) and selecting thermoplastic polymer Polypropylene material, moment of 

inertia Ι comes out as Ι = 6.9806 × 10�8	in�. Selecting the rectangular cross-section for 

the compliant segment and assuming the width of 3	in. The value of thickness obtained is 

0.06536	in. The resulting compliant mechanism is shown in Figure 4.12. The mechanism 

with crank length of 1	in generates a straight line of approximately 4.5	in for 270° crank 

rotation. In order to compare the precision positions from PRBM and FEA, the Y 

displacements of coupler point are compared for given X displacements. The comparison 

between PRBM and FEA software ABAQUS® is shown in Table 4.13. 
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Table 4.13. Precision Positions Comparison PRBM vs. Compliant Mechanism (FEA) 
 

Pseudo-rigid-body 
four-bar mechanism 

Compliant mechanism  
ABAQUS® % Relative error in 

Y displacement X 
displacement 

Y 
displacement 

X 
displacement 

Y 
displacement 

-0.2793 -0.0215 -0.2793 -0.02038 0.399 

-2.2793 -0.0215 -2.2793 -0.01045 0.484 

-4.2793 -0.0215 -4.2793 -0.0213 0.005 

  

 

The energy comparison between pseudo-rigid-body model and compliant mechanism 

obtained using ABAQUS® shown in Table 4.14. 

 

 

Table 4.14. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 
Pseudo-rigid-body 

four-bar mechanism 

Compliant 
mechanism 

(ABAQUS®) 

% Error in energy 
obtained using 

PRBM and 
ABAQUS® 

E+ 2.15 2.1327 0.806 

E
 49.5 49.2079 0.590 

E� 66.1 66.915 1.233 
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Figure 4.12. Solid Model of Compliant Straight-Line Generating Mechanism with Two 
Small-Length Flexural Pivots 

 

 

 The coupler curve obtained from PRBM is plotted along with precision positions 

marked on it. The coupler curve for this example is shown in Figure 4.13.  

A sample MATLAB® code for this example is provided in Appendix B. 

 

Figure 4.13. Coupler Curve Obtained from PRBM with Precision Positions  
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            The pseudo-rigid-body model considered for fixed-guided segments in this work 

was tailored to work for fixed-guided segments with constant beam end angle. But it is 

observed that the PRBM considered here for fixed-guided segment works well for fixed-

guided segments with varying beam end angles also. It has been observed that, the FEA 

software ABAQUS® and ANSYS® give different solutions of the precision position 

displacements and energies at precision positions for the problem modeled in the same 

way. The formula to calculate the percentage relative error in displacement can be found 

in Appendix A.  

 

4.7. SUMMARY 

  In this Section, the optimization concept, types of optimization and design process 

are reviewed. The optimization routine developed for solving energy/torque equations is 

presented. The strongly coupling and weakly coupling of kinematic and energy/torque 

equations is studied and the results are explained with example. The energy equivalence 

between pseudo-rigid-body model and the corresponding compliant mechanism using 

FEA is discussed. The tables outlining the number of equations, number of variables, and 

number of free choices for different synthesis cases with different number of springs are 

presented. The different cases of synthesis based on number of torsional springs, types of 

compliant segments etc. are presented. The results obtained from pseudo-rigid-body 

model concept are compared with FEA. The new approach is used to synthesize the 

straight-line generating compliant mechanism which can be used in the suspension 

system of small robotic vehicles.  

  



109 

 

5. EXPERIMENTAL VALIDATION 

 In parallel with validation of results using finite element analysis software, the 

experimental setup is manufactured to validate the results practically. This Section 

discusses the experimental setup, and the testing procedure. The experiment is performed 

on pseudo-rigid-body model four-bar mechanism with one torsional spring. The 

compliant mechanism with one fixed-pinned segment is selected for synthesis. 

 

5.1. EXPERIMENTAL SETUP 

 An experimental setup is made up of two parts i) upper part of the setup is used 

for testing cantilever beams ii) lower part can be used to test compliant mechanisms and 

is shown in Figure 5.1. The experimental setup is bolted to the wooden pieces, which are 

used to clamp the whole setup on table with four c-clamps. In this work, as the 

experiment is being done on compliant mechanisms, only lower part of the setup is 

discussed. The experimental setup is shown in Figure 5.1.  

 The input and output segments of the compliant mechanism are mounted in two 

separate jaws and fastened with bolts. The jaws are mounted on rotating bars so as rotate 

and hold the segment at any initial angle. The rotating bar can be fixed at particular 

required angle using vise and blocks lined with friction pads on inside. These rotating 

bars are in turn mounted on two bearings which are mounted on two sliding fixtures. 

These fixtures are free to move on horizontal guides so as to accommodate the 

mechanisms with varying ground link length. If the compliant segment, fixed at ground is 

placed in the jaw; the effective length of the compliant segment is measured from the top 
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end of the jaw. On the other hand, when the compliant or rigid segment is pinned to the 

ground, the effective length of the segment starts from center of the rotating bar.  

 

 

 

Figure 5.1. Experimental Setup CAD 
 

 

 The angle for the ground link varies with initial position angle of the input and 

output links. So in order to mount a compliant mechanism, the pseudo-rigid-body ground 

link angle should be adjusted. The experimental setup with compliant mechanism 

mounted is shown in Figure 5.2. 
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Figure 5.2. Experimental Setup with Compliant Mechanism 
 

 

 The load is applied using the light-weight string passing over the three frictionless 

pulleys A, B and C so as to have minimum frictional resistance. The pulley A is free to 

slide so as to adjust the loading angle. The loads are applied by using loading pan 

attached to the other end of the string. Figure 5.3 shows the mechanism loaded with light-

weight string passing over three pulleys. One end of the string is attached to pinned end 

of the compliant segment, while the loading pan is attached to other hanging end. The 

following section presents an example in which the compliant mechanism is synthesized 

using synthesis with compliance technique and in latter section; the testing procedure and 

results are discussed. 
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Figure 5.3. Experimental Setup with Compliant Mechanism and Loading Arrangement  
 

 

5.2. EXAMPLE 

 The pseudo-rigid body four-bar mechanism with one torsional spring is selected 

for the experiment. For this mechanism, a compliant mechanism with one fixed-pinned 

segment is selected.  

e.g. It is desired to synthesize a compliant mechanism for three precision positions path 

generation with prescribed timing synthesis, energy specified at these points as follows: 

δ
 = −0.646 + 1.58i																																																											δ� = −1.227 + 2.54i		
ϕ
 = 11.20°																																																																											ϕ� = 19.10°		
Ε+ = 1.207	in − lb														Ε
 = 3.828	in − lb														Ε� = 6.563	in − lb	
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 Assuming one torsional spring in the pseudo-rigid-body model four-bar 

mechanism, there are 8 kinematic loop-closure equations, 3 energy equations and 2 

energy-free state loop-closure equations, having 19 unknowns giving 5 free choices 

(Table 4.3). A compliant mechanism with one fixed-pinned segment as shown in    

Figure 3.2 (R) is selected for synthesis. R
, R�, θ
+, θ�+,	are selected as free choices as 

given below for solving loop-closure equations.   

R
 = 5.5	in																																																																											R� = 7.25	in	
θ
+ = 30.2°																																																																								θ�+ = 11.71°		
Θ
6 = 15.86°	

 Two energy-free state loop-closure equations are solved by selecting Θ
6 as free 

choice. The solutions obtained from these two sets of equations are used as input to solve 

3 energy equations by optimization approach. The coupler equation (37) and first 

precision position loop-closure equation (39) are considered to determine remaining link 

lengths and angles. These add 4 scalar equations and 4 unknowns. The solution obtained 

is as below: 

Z+ = 3.902 − 0.8802i																																																									Z
 = 4.754 + 2.767i	
Z� = 6.249 − 2.176i																																																											Z� = 7.099 + 1.471i	
Z8 = 7.929 − 0.148i																																																											Z9 = 1.68 + 2.027i	
ψ
 = 11.948°																																																																							ψ� = 19.825°		
Θ�6 = −28.356°																																																																		Θ�6 = −6.008°	
K+ = 38.536	lb − in/rad				

 The length of the fixed-pinned segment is determined by using equation (23). 

Selecting input link R
 as pseudo-rigid-body link, the compliant segment length =
 comes 
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out as 6.4706	in. Using the equation (15), the moment of inertia is obtained. Using the 

Delrin® as material, moment of inertia Ι comes out as Ι = 2.212 × 10��	in�. Selecting 

the rectangular cross-section for the compliant segment and assuming the width of 1.5	in, 

the thickness of the compliant segment is obtained as 0.121	in. The resulting compliant 

mechanism is shown in Figure 5.4.and individual links are shown in Figure 5.5. 

 An energy comparison between pseudo-rigid-body model and compliant 

mechanism, using commercial finite element software ABAQUS® is done to verify 

equivalence of the design and validate the solution. Given the dimensional and material 

properties of the compliant mechanism, the ABAQUS® is used to find out the energy 

stored in the mechanism at precision positions. The results are shown below in Table 

5.1. 

 

 

Table 5.1. Energy Comparison PRBM vs. Compliant Mechanism (FEA) 
 

 
Pseudo-rigid-body 

four-bar mechanism 
Compliant mechanism 

(ABAQUS®) 
% Error in 

Energy 

E+ 1.207 1.149 4.82 

E
 3.829 3.636 5.04 

E� 6.563 6.231 5.07 
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 Figure 5.4. Solid Model of A Compliant Mechanism 
 

 

The dimensions of the three links are as follows:  

Input compliant link: 

Length L
 = 6.4706	in, width b = 1.5	in and thickness h = 0.121	in 

Output link: 

Length R� = 7	in, width b = 	0.6	in and thickness h = 	0.5	in 

Coupler: It has three links rigidly joined. 

R� = 6.616	in, R8 = 7.926	in, and R9 = 2.633	in, width b = 2.491in and 

thickness h = 0.3	in 

Ground link: 

Length R+ = 4.169	in 
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(a) 

 

 

(b) 

 

 

Figure 5.5. CAD Models (a) Input Compliant Link (b) Output Link (c) Coupler 
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5.3. TESTING AND RESULTS 

 The experimental setup described above is manufactured and assembled as shown 

in Figure 5.6. The whole setup is manufactured with Aluminum 6061.  

 

 

 

Figure 5.6. An Experimental Setup 
 

 After synthesizing the compliant mechanism using synthesis with compliance 

technique, the mechanism is analyzed using ABAQUS® for stresses and it is ensured that 



118 

 

stresses within the links are under yield strength of the material. The Delrin® is selected 

as the material for all the segments in the compliant mechanism due to its good 

machinability. 

 The thickness and width of all segments particularly the compliant fixed-pinned 

segment in the mechanism are adjusted so as not to exceed the yield strength of 8000	psi 
of the Delrin® material. The individual pieces are manufactured and assembled to 

generate compliant mechanism. The ground link is generated by maintaining the fixed 

distance between the centers of two rotating bars. The compliant link is fixed to the one 

jaw, of which the rotation is restricted by holding the rotating bar in a vise with two 

pieces which are inlined with friction material to ensure no rotation. The rotating rod, to 

which the rigid link attaches, is free to rotate and so it acts as pin joint. Both rotating bars 

are mounted on bearings to ensure smooth rotation. All the bearings and pulleys are 

lubricated to minimize the friction. The input, output link, coupler links and ground link 

are shown in Figure 5.7 (a), (b), (c) and (d). The loads to be applied are calculated from 

PRBM. Due to the few angle constraints in experimental setup, the loading angle is 

adjusted to 129° with the horizontal instead of 90°. The load values obtained from 

PRBM for three precision positions are as follows: 

F+ = 1.7742	lb,																					F
 = 3.1269	lb																														F� = 4.1589	lb 
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(a) 

 

 

 

(b) 

 

 

 

Figure 5.7. Compliant Mechanism for Experiment (a) Input Compliant Link (b) Output 
Link (c) Coupler (d) Ground Link 
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Figure 5.7. Compliant Mechanism for Experiment (a) Input Compliant Link (b) Output 

Link (c) Coupler (d) Ground Link (contd.) 

 

  

The mechanism is mounted in energy-free state on the setup and is shown in Figure 5.8.  

 

 

 

Figure 5.8. Compliant Mechanism in Energy-Free State 
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 The load is applied to input compliant link with loading string fastened to pin 

passing through input and coupler link as shown in Figure 5.9. As there are three pulleys 

and one bearing used, the frictional force has to be considered while applying the loads to 

the mechanism. The loading pan used to hold the weights is found to be of 0.34 lb. 

  

  

 

Figure 5.9. A Compliant Mechanism Loaded  
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 The frictional forces between the rope and pulley is calculated by a simple 

experiment as shown in Figure 5.10 and using the Capstan friction equation (Meriam, 

1978) as mentioned below. 

 T
 = T+e�d (42) 

where,  T+ is the tension force in the low tension rope and T
 is the tension force in the 

high tension rope, μ is the coefficient of friction and β is the angle of contact between the 

rope and pulley. 

 From the experiment, the coefficient of friction between rope and pulley is found 

to be 0.01. This is used to calculate the frictional forces at the pulleys and final load to be 

applied is determined by adding these frictional forces at three pulleys to the loads 

calculated by PRBM for precision positions. The final loads to be applied are obtained as 

below: 

F+ = 1.8407	lb,																					F
 = 3.2427lb																														F� = 4.3115	lb  

 

 

 

Figure 5.10. The Capstan Friction Equation Experiment 
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 It was difficult to get and apply such accurate loads. So the nearest available loads 

1.84	lb, 3.34	lb, 4.34	lb are applied. With each load applied, the X and Y co-ordinates of 

the coupler point are recorded on the graph paper attached to the cork board. A coupler 

curve is obtained from PRBM. The precision positions obtained from ABAQUS® and 

experiment are plotted on the same curve as shown in Figure 5.11. In order to get the 

precision positions from ABAQUS®, the X displacements are given to the coupler point 

and Y displacements are obtained. All the length measurements are done using vernier 

caliper. 

 

 

 

Figure 5.11. Coupler Curve Obtained from PRBM with Precision Positions  
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5.4. DISCUSSION OF RESULTS 

 The measured data points are plotted and a smooth coupler curve passing through 

those points is drawn.  Figure 5.11 shows the coupler curve comparison obtained from 

PRBM, FEA and experiment. There are many sources of errors which cause the 

deviations in precision positions. Some of them are listed below: 

• The loads applied are little higher than the obtained from theoretical calculation. 

This may have induced some errors in the deflection, 

• All the theoretical calculations are done considering link length and angle 

dimensions up to third digit after the decimal point. But while manufacturing it 

was very difficult to manufacture the parts with that precision. e.g. The length of 

coupler links used in theoretical calculations are R� = 7.926	in, 
	R8 = 6.616	in	, R9 = 2.633	in; but the actual parts are manufactured with the 

dimensions R� = 7.9	in, R8 = 6.6	in, R9 = 2.6	in.  

• The Young's modulus of the beam's material is not provided by the manufacturer. 

The value of E is calculated in the lab using PRBM formulae by applying load of 

0.84	lb and measuring deflection.  

• Errors in measurement 

• The average values of PRBM parameters such as γ and KF are considered. This 

assumption contributed to some extent in the errors.  

            With these many sources of the error, the results obtained are fairly accurate and 

the relative error in the precision position displacements is below 1.58%. With the more 

research work in this direction, the errors may be further reduced and accuracy of the 

results can be improved. 
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5.5. SUMMARY 

 In this Section, the experimental setup designed, and manufactured to perform 

experiments on compliant cantilever beam and mechanism is presented. The testing 

procedure and mechanism synthesized for an experiment are explained with CAD models 

and photographs. The path generation with prescribed timing synthesis for three precision 

positions with energy specifications synthesis example is provided and the results are 

validated by comparing precision positions and energies at precision positions. The 

possible sources of error are briefly discussed at the end.  
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6. CONCLUSIONS AND FUTURE WORK 

 

6.1. CONCLUSIONS 

 The pseudo-rigid-body model (PRBM) naturally enables the use of the vast body 

of existing knowledge of rigid-body mechanism synthesis and analysis techniques for 

compliant mechanism synthesis and analysis, and vice versa. The synthesis with 

compliance technique uses the PRBM concept to synthesize compliant mechanisms for 

conventional rigid-body mechanism tasks, e.g. path generation, motion generation, etc. 

with energy/torque considerations at the precision positions. The existing synthesis with 

compliance technique is reviewed and its limitations in the current form of usage are 

discussed with examples. A methodology for synthesis with compliance technique, using 

an optimization approach, is developed which overcomes the limitations such as negative 

or unrealistic solutions for the critical spring stiffness values. It provides a way to guide 

the user as to how the values of the initial estimates should be changed in order to obtain 

realistic solutions in fewer number of iterations. This methodology makes the synthesis 

procedure computationally simple, expedient and less cumbersome by separating the set 

of kinematic equations from the energy/torque equations. 

  Many of the synthesis cases for the compliant mechanisms, with a four-bar 

PRBM, which were not easily solvable by the synthesis with compliance technique, now 

were readily solved with the new method. The design tables providing information about 

the number of equations, number of unknowns and number of free choices for a pseudo-

rigid-body four-bar mechanism, with varying number of torsional springs for different 

synthesis types, may be readily used for synthesis. Recommendations for energy/torque 

specifications at the precision positions are given so as to make the solution procedure 
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easy. The strongly coupled and weakly coupled system of kinematic and energy/torque 

equations have been studied. It is demonstrated that even solving the synthesis cases 

which are characterized as strongly coupled, by treating and solving them as weakly 

coupled systems, also readily provide solutions. These solutions are likely subsets from 

the entire set of possible solutions to the nonlinear system of equations. The new 

approach, for solving equations by treating them as a weakly coupled system, has certain 

advantages such as computationally simple, fast and more stable.  The user has to assign 

reasonable values to a relatively smaller number of variables, as compared to a strongly 

coupled system, solved in the conventional way. 

 Different cases of synthesis have been presented using the proposed technique for 

various synthesis tasks of a pseudo-rigid-body four-bar mechanism, for three precision 

positions with energy/torque specifications. These include a general synthesis case where 

the undeflected state of the mechanism is different from the prescribed precision 

positions. The synthesis case, where the undeflected state of the mechanism is coincident 

with one of the precision positions, will require a reduced system of equations to be 

solved. Different compliant segments have been used in examples to validate the 

synthesis technique and the PRBMs. A straight-line generating compliant mechanism, 

which could be used in the suspension system of a small robotic vehicle, is synthesized. 

The finite element analysis software ABAQUS® and/or ANSYS® are used to analyze the 

synthesized compliant mechanism, for the purpose of validation. The experiment was 

conducted using a designed compliant mechanism containing one fixed-free segment; the 

PRBM results are satisfactorily verified using the FEA and experimental results. 
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6.2. RECOMMENDATIONS 

 This work presents the use of synthesis with compliance technique, augmented by 

incorporating an optimization approach for a pseudo-rigid-body four-bar mechanism for 

three precision positions synthesis problems. This method is also applicable to synthesis 

cases with more than three precision positions. A distinct possibility exists, since the 

kinematic and energy/torque equations are separated from each other (treated as a weakly 

coupled system), that we should be able to use the proposed technique to synthesize 

compliant mechanisms which have PRBMs other than four-bar mechanisms, e.g. five-bar 

mechanisms, etc.  

 The PRBMs used in this work, for the fixed-free compliant segment and the 

fixed-guided compliant segment, assumes the average values of the PRBM parameters, 

such as characteristic radius factor and stiffness coefficient. This assumption introduces 

some errors in the results. More accurate results may be obtained by the use of variable 

PRBM parameters as functions of the load factor. 

 The experiment has been performed on a compliant mechanism synthesized for 

three precision positions with energy specifications, and consisting of one fixed-free 

compliant segment. The results go a long way to validate the usefulness of the proposed 

method as well as the PRBM concept. In future work, extensive experimental validation 

should be conducted involving more complex compliant mechanisms, with different 

compliant segment types, for different synthesis tasks and with more precision positions, 

and for torque specification cases also. 

 Metallic inserts could be used in the segments to synthesize compliant 

mechanisms with low creep and higher strength properties. 
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 The errors in the coupler point displacement are calculated using the relative error 

formula used to calculate relative error in deflection obtained using PRBM and elliptic 

integrals (Howell, 2001). Figure A.1 shows the approach used to calculate the relative 

error. 

 

 

 
Figure A.1. Calculation of Relative Error in Coupler Point Displacement 

 

 

Relative error is calculated as 

Relative	Error = �''X2 − X1.
 + 'Y2 − Y1.
.
�''X2 − X0.
 + 'Y2 − Y0.
. 
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 CODES 
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MATLAB
®
 Code for Rigid Body Synthesis: 

Main function: 

clc;clear all; 

  
%Initial Estimates 
y0=[37*(pi/180),24*(pi/180),45*(pi/180),2*(pi/180),6*(pi/180),10*(pi/18

0),19*(pi/180),94*(pi/180)]; 

  
options=optimset('display','iter'); 
options.MaxFunEvals=100000; 
options.MaxIter = 4000; 
y=fsolve(@myfun,y0); 

  
theta31=y(1); ph2=y(2); ph3=y(3); gamma2=y(4); gamma3=y(5);  ps2=y(6); 

ps3=y(7); theta41=y(8); 

  
%Given 
Redelta2=-0.5; Imgdelta2=0; Redelta3=-1; Imgdelta3=0; 

  
% Free Choices 
theta21=100*(pi/180); R2=1;  

  
% Loop-closure Equations 

  
f(1)=2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+R2*(cos(theta21+ph2)-cos(theta21))-Redelta2; 
f(2)=2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+R2*(sin(theta21+ph2)-sin(theta21))-Imgdelta2; 
f(3)=2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+2.5*R2*(cos(theta41+ps2)-cos(theta41))-Redelta2; 
f(4)=2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+2.5*R2*(sin(theta41+ps2)-sin(theta41))-Imgdelta2; 
f(5)=2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+R2*(cos(theta21+ph3)-cos(theta21))-Redelta3; 
f(6)=2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+R2*(sin(theta21+ph3)-sin(theta21))-Imgdelta3; 
f(7)=2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+2.5*R2*(cos(theta41+ps3)-cos(theta41))-Redelta3; 
f(8)=2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+2.5*R2*(sin(theta41+ps3)-sin(theta41))-Imgdelta3; 
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Objective function: 

function f=myfun(y) 

  
theta31=y(1); ph2=y(2); ph3=y(3); gamma2=y(4); gamma3=y(5);  ps2=y(6); 

ps3=y(7); theta41=y(8); 

  
%Given 
Redelta2=-0.5; Imgdelta2=0; Redelta3=-1; Imgdelta3=0; 

  
% Free Choices 
theta21=100*(pi/180); R2=1;  

  
%Loop Closure Eqautions 
f(1)=2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+R2*(cos(theta21+ph2)-cos(theta21))-Redelta2; 
f(2)=2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+R2*(sin(theta21+ph2)-sin(theta21))-Imgdelta2; 
f(3)=2.5*R2*(cos(theta31+gamma2)-

cos(theta31))+2.5*R2*(cos(theta41+ps2)-cos(theta41))-Redelta2; 
f(4)=2.5*R2*(sin(theta31+gamma2)-

sin(theta31))+2.5*R2*(sin(theta41+ps2)-sin(theta41))-Imgdelta2; 
f(5)=2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+R2*(cos(theta21+ph3)-cos(theta21))-Redelta3; 
f(6)=2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+R2*(sin(theta21+ph3)-sin(theta21))-Imgdelta3; 
f(7)=2.5*R2*(cos(theta31+gamma3)-

cos(theta31))+2.5*R2*(cos(theta41+ps3)-cos(theta41))-Redelta3; 
f(8)=2.5*R2*(sin(theta31+gamma3)-

sin(theta31))+2.5*R2*(sin(theta41+ps3)-sin(theta41))-Imgdelta3; 
end 

 

MATLAB
®
 Code for Energy Free State Loop-Closure Equations: 

Main function: 

clc;clear all; 
% Initial Estimates 
y0=[50*(pi/180),125*(pi/180)]; 
y=fsolve('myfun',y0); 

  
theta30=y(1); theta40=y(2); 
%Results from Rigid Body Synthesis 
R1=2; R2=1; R3=2.5; R4=2.5; 
theta10=0*(pi/180);  

  
%Free Choice 
theta20=70*(pi/180); 
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% Energy Free State Loop-Closure equations 
f(1)=R1*cos(theta10)+R4*cos(theta40)-R3*cos(theta30)-R2*cos(theta20); 
f(2)=R1*sin(theta10)+R4*sin(theta40)-R3*sin(theta30)-R2*sin(theta20); 

 

Objective function: 

 

function f=myfun(y) 

  
theta30=y(1); theta40=y(2); 

  
%Results from Rigid Body Synthesis 
R1=2; R2=1; R3=2.5; R4=2.5; 
theta10=0*(pi/180); 

  
%Free Choice 
theta20=70*(pi/180); 

  
% Energy Free State Loop-Closure equations 
f(1)=R1*cos(theta10)+R4*cos(theta40)-R3*cos(theta30)-R2*cos(theta20); 
f(2)=R1*sin(theta10)+R4*sin(theta40)-R3*sin(theta30)-R2*sin(theta20); 

 

 

MATLAB
®
 Code for Energy Equations using Optimization: 

Main function: 

clear all; clc; 
%**********************************************************************

* 

  
x0=[60;60]; %Initial values 
lb=[10,10,10,10]; % lower bounds 
ub=[]; % upper bounds 
options=optimset('display','iter'); 

  
options.MaxFunEvals=100000; 
options.MaxIter = 4000; 
%options = optimset(options,'Algorithm','interior-point'); 
x=fmincon(@objfun,x0,[],[],[],[],lb,ub,@confuneq,options); % 

Optimization function 

  
% Evaluation of K values 
K3=x(1); K4=x(2); 

  
% Evaluation of Objective Function 
%R1=2; R2=1; R3=2.5; R4=2.5; 
%theta10=0*(pi/180);theta20=70;  
theta30=38.052; theta40=82.862; 
%theta21=90; 
theta31=36.869; theta41=90; 
%phi2=90; phi3=170; 
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tsai2=36.869; tsai3=53.130; gamma2=16.26; gamma3=53.130; 

  
%theta22=theta21+phi2; theta23=theta21+phi3; 
theta32=theta31+gamma2; theta33=theta31+gamma3;  
theta42=theta41+tsai2; theta43=theta41+tsai3;  

  
%b10=theta20; b20=180-(theta20-theta30);  
b30=theta40-theta30; b40=theta40; 
%b11=theta21; b21=180-(theta21-theta31); 
b31=theta41-theta31; b41=theta41; 
%b12=theta22; b22=180-(theta22-theta32); 
b32=theta42-theta32; b42=theta42; 
%b13=theta23; b23=180-(theta23-theta33); 
b33=theta43-theta33; b43=theta43; 

  
%db11=(b11-b10)*pi/180; db21=(b21-b20)*pi/180;  
db31=(b31-b30)*pi/180; db41=(b41-b40)*pi/180; 
%db12=(b12-b10)*pi/180; db22=(b22-b20)*pi/180;  
db32=(b32-b30)*pi/180; db42=(b42-b40)*pi/180; 
%db13=(b13-b10)*pi/180; db23=(b23-b20)*pi/180;  
db33=(b33-b30)*pi/180; db43=(b43-b40)*pi/180; 

  
E1=2.15; E2=49.5; E3=66.1; 
fn=(E1-(1/2*K3*db31^2+1/2*K4*db41^2))^2+(E2-

(1/2*K3*db32^2+1/2*K4*db42^2))^2+(E3-(1/2*K3*db33^2+1/2*K4*db43^2))^2; 
%Displaying Solution 
disp('*********************************************************'); 
disp('Solution is');disp(x'); 
disp('Function value at the solution');disp(fn); 
disp('*********************************************************'); 

 

Objective function 

function fn= objfun(x) 
K3=x(1); K4=x(2); 

  
%Objective Function 
%R1=2; R2=1; R3=2.5; R4=2.5; 
%theta10=0*(pi/180); theta20=70; 
theta30=38.052; theta40=82.862; 
%theta21=90;  
theta31=36.869; theta41=90; 
%phi2=90; phi3=170;  
tsai2=36.869; tsai3=53.130; gamma2=16.26; gamma3=53.130; 

  
%theta22=theta21+phi2; theta23=theta21+phi3; 
theta32=theta31+gamma2; theta33=theta31+gamma3;  
theta42=theta41+tsai2; theta43=theta41+tsai3;  

  
%b10=theta20; b20=180-(theta20-theta30);  
b30=theta40-theta30; b40=theta40; 
%b11=theta21; b21=180-(theta21-theta31); 
b31=theta41-theta31; b41=theta41; 
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%b12=theta22; b22=180-(theta22-theta32); 
b32=theta42-theta32; b42=theta42; 
%b13=theta23; b23=180-(theta23-theta33); 
b33=theta43-theta33; b43=theta43; 

  
%db11=(b11-b10)*pi/180; db21=(b21-b20)*pi/180;  
db31=(b31-b30)*pi/180; db41=(b41-b40)*pi/180; 
%db12=(b12-b10)*pi/180; db22=(b22-b20)*pi/180;  
db32=(b32-b30)*pi/180; db42=(b42-b40)*pi/180; 
%db13=(b13-b10)*pi/180; db23=(b23-b20)*pi/180;  
db33=(b33-b30)*pi/180; db43=(b43-b40)*pi/180; 

  
E1=2.15; E2=49.5; E3=64.1;  % Energy values should be co-related with 

the PRBM angles 
fn=(E1-(1/2*K3*db31^2+1/2*K4*db41^2))^2+(E2-

(1/2*K3*db32^2+1/2*K4*db42^2))^2+(E3-(1/2*K3*db33^2+1/2*K4*db43^2))^2; 

 

Constraint function 

function [c,ceq]= confuneq(x) 
K3=x(1); K4=x(2); 
c =[];  
ceq=[K3-K4]; 
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