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ABSTRACT

Electromechanical coupling in ferroelectric materials has given rise to a myriad of

technological applications. Through the complex domain structure of ferroelectrics ma-

terials, which are typically stiff and have low damping, can exhibit significant structural

damping. The applications for a material with a relatively large Young’s modulus and the

ability to damp out vibrations would be useful for structures, more specifically, aerospace

structures. The dynamic mechanical properties of ferroelectrics, particularly mechanical

properties while an electric field is applied, are not well understood. This is due in part to

the lack of experimental methods to measure such properties. Even with recent advance-

ments in these testing methods, there still exists a gap in the ability to measure the dynamic

electromechanical response of ferroelectrics over wide ranges of temperature (in particular

at low temperatures for e.g. space applications). To this end, the cryogenic broadband elec-

tromechanical spectroscopy (CBES) experimental apparatus was designed and constructed,

and a particular ferroelectric material, lead zirconate titanate (PZT) was tested. The CBES

is a new experimental set-up allowing for the measurement of dynamic mechanical, elec-

trical and temperature dependent properties of materials within the cryogenic temperature

region. The CBES expands the current state of the art testing abilities for ferroelectrics,

allowing for the simultaneous application of dynamic electrical and mechanical loads in a

space-like environment, with temperatures ranging from 34-325 K. This study will review

current testing capabilities and highlight the need to test ferroelectrics in this environment.

The capabilities of the novel CBES and results from cryogenic viscoelastic measurements

are presented, demonstrating the temperature dependent relationship between electric prop-

erties (polarization) and the viscoelastic properties (loss tangent and dynamic Young’s

modulus) of PZT. The possible future applications for the CBES are also discussed.
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1. INTRODUCTION

Physicists, scientists, and engineers continuallymake progress in the field ofmaterial

science as new materials, specifically smart materials, (ones with tunable properties), are

being discovered and developed. As part of the growing category of smart materials,

ferroelectrics, which are the focus of this study, are finding increased use in technological

applications. As will be discussed more in depth, ferroelectric materials are a special class

of materials that exhibit thermo-electromechanical coupling, which enables their diverse

application.

In the development of new materials or devices it is necessary to fully understand

the physics that gives rise to their overall properties in order for them to be properly utilized.

Physics-based material modeling is important for our understanding of the underlying

physics. However, in order to validate such models, experimental data is required, and the

complexity of ferroelectric materials necessitate the development of special experimental

equipment. To this end, the objective of this study is the construction and validation of an

experimental apparatus designed to test the viscoelastic and dielectric properties of bulk

ferroelectric ceramic materials through simultaneous thermal, electrical, and mechanical

loading. The measured material properties will aid in fundamental understanding of the

underlying material physics. In the following sections we introduce ferroelectricity, and

then a discuss current applications of ferroelectrics as well as existing methods for their

characterization. Lastly the motivation to develop the new testing apparatus for bulk

ferroelectric ceramics and an outline for the thesis will be given.
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Figure 1.1. Flowchart showing the classification of ferroelectrics.

1.1. INTRODUCTION TO FERROELECTRICS

Ferroelectrics are a sub-class of pyroelectrics, which are themselves a sub-class of

piezoelectrics. Piezoelectrics are a sub-class of dielectrics which are a direct class under

all materials. The classes and sub-classes are shown in the diagram in Figure 1.1.

Dielectric materials are polarizable, electrically-insulating materials. The dielectric

phenomena is what is used in capacitors. The insulating properties allows for a voltage, V ,

to be applied without a current passing through the material. Instead, the material becomes

electrically polarized with polarization, p, which gives rise to the build up of charge, Q, on

the specimen’s surfaces as shown in Figure 1.2.

Piezoelectrics are dielectric materials that exhibit electromechanical coupling, that

is to say when piezoelectrics are subjected to an electric field, they will exhibit a mechanical

strain; the inverse is true, when under a mechanical stress a charge is accumulated on the

specimen’s surface. In the presence of relativity low applied electric fields, piezoelectric

materials have a linear relationship between the applied electric field and strain.



3

+

−

−

+

V
+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

+

−

−

+

Q

p̄

w

h

Figure 1.2. Capacitor with internal polarization due to an applied voltage adapted with
permission from [74].

Pyroelectrics are piezoelectric materials with two distinct qualifiers, they have a

spontaneous polarization, such that when no stress or electric field is applied there is a

discernible polarization, and this polarization is dependent on temperature, hence pyro- in

the name pyroelectrics (see Figure 1.3).

Lastly the ferroelectric sub-class of materials, which exhibit all of the same proper-

ties of pyroelectric materials with the distinction that the spontaneous polarization direction

is able to be reoriented. Such that, under a sufficiently large electric field, called the coer-

cive field, the spontaneous or remnant polarization exhibited by all pyroelectric materials

is able to be switched. This polarization switching results in a hysteretic effect under cyclic

loading, which can be observed in Figure 1.4.

Piezoelectrics have been studied for over a century. Jacques and Pierre Curie studied

naturally occurring piezoelectric materials such as quartz, topaz, and Seignette’s (Rochelle)

salt in the 1880’s [15]. Earlier, studies into pyroelectrics, were carried out to understand the

phenomena [5, 68]. Valasek was the first person to discover ferroelectricity in 1921 [71].

Despite the ferro prefix, most ferroelectrics do not contain iron, instead ferroelectricity is

the namesake of ferromagnetism, which was already known at the time Valasek discovered

ferroelectricity.
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Figure 1.3. Graph of polarization vs stress (under relatively low electric fields) showing the
spontaneous polarization. The temperature dependence of pyroelectrics can be observed
by the change in the spontaneous polarization vs the change in temperature.

1.2. PHYSICS BEHIND FERROELECTRICITY

Ferroelectrics are a subset of piezoelectrics, hence they exhibit piezoelectricity.

Piezoelectricity arises due to electric dipoles in materials. The dipole is induced as a

result of asymmetry in the crystal lattice for crystalline materials. In polymers, the electric

displacement can be induced by the dipoles found in molecular groups. For brevity only

piezoelectricity and ferroelectricity in crystalline ceramics will be discussed in this thesis.

To understand the mechanisms behind piezoelectricity and specifically ferroelectricity in

polymers one should reference [44]. As shown in Figure 1.5, a simple atomic structure of

Si+ and O−, which make up quartz, can be repeated in a fashion where the net polarity is

neutral in the undeformed configuration. However as a stress is applied, the structure will

experience strain that distorts the crystal structure and leads to an electric potential across

the material indicated by the positive and negative ends.
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Figure 1.4. Plot of piece-wise linearized version of the electric field versus electric dis-
placement for a ferroelectric material. The characteristic hysteretic curve is observable due
to the polarization switching, adapted with permission from [74].

In piezoelectric materials, this electromechanical coupling is linear as shown before

in Figure 1.3, such that the polarization versus the stress applied, and conversely the strain

versus the charge applied are linearly related at relatively low electric fields. As the stress

is removed, the atomic structure returns to its undeformed configuration and the separation

between the electric dipoles decreases until returning back to a zero net polarization.

The spontaneous polarization, distinguishing pyroelectrics from piezoelectrics, can

be observed in lead zirconate titanate (PZT). The spontaneous polarization occurs only

below a material-specific temperature called the Curie temperature. Above this temperature

the PZT crystal is cubic. Once the material cools below its Curie temperature, it transitions

into a tetragonal crystal. In its tetragonal phase, the center of the unit cell, comprised of

Zr4+ and Ti4+, is shifted, causing the unit cell to be non-centrosymmetric and leads to an

electric dipole. This electric dipole creates a polarization of the material, as shown in Figure
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Figure 1.5. Figure showing the piezoelectric effect in quartz; when a stress is applied the
crystal deforms and the unbalance of the charges leads to a polarization.

1.6. As the temperature further decreases the electric dipole of the unit cell increases, thus

exhibiting the pyroelectric affect. The temperature dependence of polarization in PZT can

be modeled as an logarithmic growth in the spontaneous as the material cools from the

Curie temperature [37]. This trend can be altered through changing the composition of the

material, i.e. manganese doping, can lead to different thermoelectric coupling [64].

The final requirement for a material to be ferroelectric is the ability to reorient

or realign the material’s electric polarization, referred to as domain switching. This is

typically achieved by applying an external electric field that is sufficiently large to force

the electric dipole to realign to the favorable position with respect to the external electric

field. Recently it has be shown that domain switching can be achieved, in a thin film,

by applying a mechanical load [11]. PZT, as mentioned above as a pyroelectric, is also

ferroelectric. One can see when looking at the structure of the PZT crystal that the
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Figure 1.6. As (a) PZT in the cubic phase cools below the curie temperature it transitions
to a (b) tetragonal crystal PZT where the spontaneous polarization can be observed adapted
with permission from [74].

spontaneous polarization below the Curie temperature moves the Zr4+, or Ti4+ nucleus

to one of six possible positions all, either 90 or 180 degrees apart. These positions are

shown in Figure 1.7. The reorientation of the polarization can be induced by applying the

coercive electric field, which will shift the Zr4+, or Ti4+ nucleus to one of the six positions

that is most favorable with respect to the applied electric field. It should be noted that

not all ferroelectrics have the same admissible orientations of polarization. The number

of polarization orientations and angle difference between them is dependent on the crystal

structure of the particular ferroelectric material.

While it is possible to switch the polarization orientation of a ferroelectric under

a coercive field, it should be noted that not all the domains in a bulk specimen switch

instantaneously to the coercive field being applied. As an electric field is applied, the

favorably oriented domains in a crystal will begin to grow and the less favorable domains

will shrink as was shown in Figure 1.8 [24]. This growth and corresponding reduction

of domains is called domain wall motion and has been studied and a variety of different

models have been developed to capture the underlying physics ([8, 12, 25, 48, 49, 59]). As
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Figure 1.7. Possible spontaneous polarization orientations (with two additional orientations,
into and out of the page) in PZT adapted with permission from [74].

the applied electric field tends toward the coercive field, the domain wall velocity increases,

and the maximum velocity occurs near the coercive field. This being understood, most

experiments and models have looked into domain wall motion below the coercive field,

and have determined the velocity of the domain wall motion is a function of the applied

electric field, stress, and temperature ([48, 79]). Domain wall motion is significant to

this study because the capacity for domain wall motion allows for energy dissipation in

a ferroelectrics, which is an important application. Nonetheless few studies have focused

on dynamic mechanical properties during domain switching, with none focused on the

influence of low temperatures.
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Figure 1.8. Growth of favorable domains under applied electric field [24].

In the next section previous and current applications and experimentation on fer-

roelectric materials will be discussed, including experiments involving the application of

thermal, electrical, and mechanical loads. The goal of this discussion is to highlight the lim-

itations of current experimental methods on studying the influence of temperature, electric

fields, and stress on the properties of ferroelectrics. The new capabilities of the apparatus

developed will close this gap.
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1.3. APPLICATIONS OF PIEZO/PYRO/FERROELECTRICS

Due to the unique electromechanical coupling, thermoelectrical coupling, and po-

larization orientation and reorientation characteristics of ferroelectrics, they are used in a

myriad of technological applications. Common applications of ferroelectrics are sensors

and actuators. Sensors typicallymake use of either the electromechanical and thermoelectric

coupling by transforming pressure or temperature gradients, respectively, into measurable

electric signals. Actuators take the reverse electromechanical coupling effect and use an

electrical input to output a displacement, sometimes using it to create sound or sonar pings

and in one cases to create an ultrasonic micro-heater for cauterization [72]. Other ap-

plications include energy converters in the form of harvesters [27], and others make use

of ferroelectricity by means of polarization reorientation to create non-volatile computer

memory [7]. However the focus of the testing equipment which will be discussed in this

thesis is for structural applications. While the coupling of ferroelectric materials allow for

uses in actuators and sensors, it also allows for the dissipation of energy, via another outlet

(i.e. mechanical energy can be dissipated as electrical or thermal energy), allowing for

the creation of devices that can either passively or actively damp vibrations. Such devices

have a wide range of potential applications, specifically in aerospace applications where the

ability to damp out vibrations in plane, jet, and satellite structures is desired.

1.4. PREVIOUS EXPERIMENTATION ON FERROELECTRIC MATERIALS

In the following, existing experimental techniques for characterizing ferroelectrics

will be reviewed, in particular, the first section will discuss experiments with a focus on

measuring electrical properties, the second will focus on mechanical property testing and

the third will focus on measuring the influence of temperature. There is inherently overlap

in testing between the three sections however this will reveal the gap in empirical data that

our new apparatus can be used to fill.



11

1.4.1. Experiments Measuring Electrical Properties. Currently an important

area of applications for piezoelectrics and specifically ferroelectrics is in electronics, and

this has resulted in a large quantity of experimental data on the electronic properties of

ferroelectrics. These experiments include testing the polarization switching time for pos-

sible uses as a fast relay switch [41], and measuring the polarization fatigue to increase

the life expectancy of memory applications[65, 18]. Other properties of interest include

electrical creep [78], ultra high frequency dielectric properties [63], the ability to en-

hance the electrical properties through manufacturing or post processing [6, 13, 56], and

depolarization-field-induced instability [77].

1.4.2. Experiments Measuring Mechanical Properties. A large amount of ex-

perimental data on the mechanical properties are also available due to the widespread

application of ferroelectrics in sensors and actuators. To understand the mechanical prop-

erties, researchers have developed experiments from the nanoscale to the macroscale, test-

ing shockwave compression [60] and the electric energy generated by shock compression

[46], fatigue [85] and fracture [83] of ferroelectric ceramics, high temperature mechanical

properties [17], bulk material characterization [50], and nanoscale studies of individual

ferroelectric domains [26]. While there are many mechanically based experiments, the

ones which are most relevant to this study are those which measured mechanical damping

in ferroelectrics.

As stated before, piezoelectric and ferroelectric materials are used for both active

and passive vibration damping in structures. Passive damping methods used in dissipating

mechanical energy make use of the thermomechanical coupling and/or the electromechan-

ical coupling. This is done by converting the mechanical energy into another form of

energy which can be more easily dissipated from the system. For the passive damping

that utilizes thermomechanical coupling, ferroelectric inclusions can be used in a matrix

with a high coefficient of thermal conductivity. This allows the thermal energy produced

by the domain wall motion of the ferroelectric to be dissipated throughout the material
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[36]. Other passive methods use the electromechanical coupling to dissipate mechanical

energy through an electrical circuit. This can be done using a resistor in series with the

ferroelectric or by using a conductive matrix composite in which the matrix itself acts as

the shunt resistor in series with the ferroelectric to dissipate the energy via joule heating

[2, 3, 35]. Semi-passive methods have been developed such as synchronized switch damp-

ing in which a similar circuit to the shunt resistor is used but this method incorporates a half

period pulse switch and an inductor. The switch, attached to a sensor, is closed when the

displacment extremes are detected, and the RLC circuit is discharged and dissipates energy

via heat as shown in Figure 1.9 [42]. Actively controlled methods include those that work

by applying an external voltage to cancel out vibrations, or controlling the temperature and

the phase of the material is used to control damping [54]. These methods have tradeoffs,

the passive methods are low in complexity compared to actively damped methods, however

actively damped methods achieve a loss tangent approximately an order of magnitude larger

[22, 4, 12]. Actively controlled methods are inherently more complex and are limited by

the force and strain constraints of piezoelectricity.

1.4.3. Experiments Measuring the Influence of Temperature. Experiments fo-

cusing on the thermal properties of pyroelectrics have been performed, measuring the

pyroelectric effect along with thermal expansion and thermal strain [61, 67, 37]. Pyro-

electrics are commonly used to accurately measure temperatures from a distance. With

this currently being an important application, thermography experimentation is extensive

[69, 31, 45, 23, 29]. Previous experiments of interest in this study are ones that have been

performed at low or cryogenic temperatures. These studies tend to be with smaller samples,

typically thin film or single crystal specimens. The reason for this is practicality; it is

faster and less costly to cool down a smaller setup than it is to cool down a larger setup.

These studies have led to discoveries of ferroelectric properties in materials such as SrTiO3

and KTaO3 which have a Curie temperature below that of room temperature, e.g. SrTiO3,

which has a Curie temperature of 3.0 K [33]. Experiments characterizing the dielectric and
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Figure 1.9. Circuit model for synchronized switch damping [42].

piezoelectric properties of ferroelectrics at cryogenic temperatures have been performed

for a variety of materials including, PZT, barium titanate (BaTiO3), lanthanum-doped lead

zirconium titanate (PLZT), barium strontium titanate (BST), and lead zinc niobate-lead ti-

tanate (PZN-PT) [51]. Academic research on testing materials at cryogenic temperatures is

not new, however researchers and engineers are currently tasked with designing equipment

and structures for cryogenic environments, such as deep space, which require structures to

operate at temperatures as low as 2.726 K [21]. Current experiments at cryogenic temper-

atures have involved testing materials for applications in stack actuators, or displacement

testers [28, 66, 80], thermometry sensors, as well as other sensor experiments [20, 53].

Testing materials in their application environment enables engineers to properly test their

designs before putting them into the field, or in this instance into space.
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1.5. MOTIVATION

While ceramics typically have a relatively high Young’s modulus and low damping

coefficient, polymers have a relatively large damping coefficient but a lowYoung’s modulus,

and metals typically have a moderate Young’s modulus and damping coefficient, the ideal

material for some structural applications would have both high damping and high Young’s

modulus. As previously stated ferroelectric ceramics have been used as energy absorbers

that are controlled both passively and actively, and have stimulated this study. Other studies,

which directly motivated the design of this new experimental equipment, have looked into

viscoelasticity of ferroelectrics both under small and large electric fields and have shown

that ferroelectric ceramics can be electrically stimulated in order to increase the mechanical

damping [73, 74]. These applications allow for a ceramic (with high Young’s modulus),

to have a damping coefficient comparable to that of some polymers [4, 9]. Correlating

to the recent studies, new equipment has been designed in pursuit of being able to test

the viscoelastic properties of ferroelectric ceramics under large electric fields [38], however

there are still limitations to these testing apparatuses, as will be discussed in the next section.

The design goal of this experimental apparatus was to control mechanical, electrical, and

thermal fields in order to be able to fill in the gaps that still exist in the experimental data.

1.6. OUTLINE OF THESIS

Now that the introduction to ferroelectrics, background, and motivation have been

established, the outline of this thesis is given in the following. In the next chapter, the

reasoning and development of the equipment will be examined, then the results from the

preliminary experimentswill analyzed and discussed. Lastly, the conclusionwill summarize

what this project accomplished and suggestions for future work and improvements will be

given.
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2. REQUIREMENTS AND DESIGN OF EQUIPMENT

An experimental setup for measuring the electromechanical response in a simulated

space environment requires a vacuum system, the ability to cool the setup down to cryogenic

temperatures, as well as the ability to simultaneously apply both electrical and mechanical

loading. For characterizing the time-dependent properties (e.g. viscoelastic properties and

fatigue), electric fields and mechanical loads must also be applied dynamically over wide

ranges of frequency. Each section of this chapter will cover a design requirement and the

development and implementation of a solution, culminating in the creation of the cryogenic

broadband electromechanical spectroscopy (CBES). This CBES will then be compared to

preexisting experimental setups and improvements and modifications will be addressed.

2.1. MECHANICAL LOADING

There are existing methods for applying dynamic mechanical loading to materi-

als, which have been reviewed in e.g. [74]. These viscoelastic measurement techniques

include dynamic mechanical analysis (DMA), inverted torsion pendulum (ITP), acoustic

resonance spectroscopy (ARS), and broadband viscoelastic spectroscopy (BVS). However,

these methods have drawbacks or inherent traits that eliminate them as viable options for

testing ferroelectric ceramics. DMA for example usually operates below 1000 Hz, and is

limited to materials with a modulus of elasticity of less than 1 GPa [47]. Also, they require

a fixed-fixed configuration, which is suitable for some materials (i.e. polymers), this adds

difficulties with ferroelectrics and ceramics due to piezoelectric strain and brittleness, re-

spectively. The ARS can apply a wide range of frequencies, from 20 Hz to 30 kHz, however

ARS uses piezoelectric transducers to stimulate and sense the vibrations ([62]). The use

of these piezoelectric transducers and sensors would interfere with the application of an

external electric field to the specimen, or conversely the application of an external electric
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Figure 2.1. Schematic of the BES setup [75].

field to the specimen would interfere with the actuation and sensing capabilities of the ARS.

The ITP method encapsulates the basic idea that is desired, using fixed-free, contactless,

loading and measurement. However the frequency range for The ITP setup is 10−5 to 10 Hz

[34, 49], which may be too slow to study the effects of polarization switching on mechanical

damping. The BVS, also a fixed-free test setup, the ability to be placed under vacuum, and

allows for both torsional and bending measurements to be tested within a frequency range of

10−6 to 105 Hz as reported by [40]. The BVS allows for a wide range of forcing frequencies

to be applied while allowing for the possibility of other methods to apply electrical loading

as done so by [75] in the creation of broadband electro-mechanical Spectroscopy (BES).

The need for contactless actuation and measurement stems from the material being tested.

As the material is a ceramic it is inherently brittle, and therefore makes a double cantilever

or fixed-fixed testing setup impractical. Also the fixed-free setup allows for expansion from

both thermal and electrical loads which will be present in this type of testing.
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The BES, as shown in Figure 2.1, is the most relevant, state of the art, equipment for

this study. The BES setup allows for a fixed-free testing setup with contactless actuation and

measurement while maintaining the ability to apply electric fields to the specimen. In the

BES the waveform generator outputs a sinusoidal voltage of amplitude V̂ and a frequency

of ω to the Helmholtz coils. The coils produce a magnetic field for the bending Hy or

torsion Hz, which interact the the permanent magnet dipole µ to apply a moment My or

Mz, respectively. The waveform generator amplified by a high-voltage amplifier is used to

apply electric fields ex to the specimen in series with a Sawyer-Tower circuit to measure the

electric displacement dx . The lock-in amplifier takes a reference signal from the waveform

generator and an input from the laser position sensor and uses phase sensitive detection to

measure the amplitude û and phase shift δ. The moment is induced through the magnetic

field H generated by the Helmholtz coils, which is given by

H =
µ0nI
√

8R
, (2.1)

and its interaction with the dipole m of the permanent magnet through

τ = µ0m × H, (2.2)

where µ0 is the relative permeability of a vacuum (4π×10−7 H/m), n is the number of turns

of the coil, I is the current through the coil, R is the radius of the coils and the coil distance

from the magnet, and m is the magnetic moment([16]).

The current is supplied by a waveform generator producing a sinusoidal voltage

output. The limited power output of the waveform generator, which is typically in the 10-

100 mW range, limits the magnitude of the applied moment. To circumvent this limitation,

an amplifier circuit was added such that the waveform generator provides the input signal

and the amplifier circuit isolates the current draw to an external power supply, allowing for

a greater current to be input to the coils. Both BES and BVS, use a similar laser, mirror,
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and laser position sensor to detect the deflection of the specimen tip. This has been proven

to be an effective method for contactless tip deflection measurement and can be performed

inside of a vacuum chamber [38, 19]. To determine the loss tangent and dynamic Young’s

modulus, a lock-in amplifier was used. Utilizing dual phase-sensitive detection (PSD), the

lock-in takes a reference signal (from the waveform generator),

Vre f sin(ωt + θre f ), (2.3)

and an input signal (from the laser position sensor),

Vinsin(ωt + θin), (2.4)

to measure the in-phase component,

X = Vin cos θ, (2.5)

where

θ = (θin − θre f ), (2.6)

ω is the frequency, Vre f is the amplitude of the reference signal, and Vin is the amplitude

of the input signal, and θre f and θin are the reference and input signal phases, respectively.

The second PSD component shifts the reference signal by 90◦, i.e.

Vre f sin(ωt + θre f + 90◦), (2.7)

to measure the quadrature component,

Y = Vin sin θ, (2.8)
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which allows for the amplitude,

R =
√
(X2 + Y2) = Vin, (2.9)

and phase shift (angle),

θ = tan−1
(

Y
X

)
, (2.10)

to be calculated. This method has been used to determine the loss tangent and dynamic

Young’s modulus of the materials in BES by measuring the phase shift between stress and

strain and amplitude, respectively. Since the reference signal is the voltage signal from the

waveform generator, and the coils are inductors there is an inherent phase shift between

the voltage and current in the coils. For the BES setup this was corrected for using a

magnetometer and calibrating the frequency response of the Helmholtz coils. In an attempt

to avoid the need for a calibration, the current through the coils was measured directly (by

the voltage drop across a 1 Ohm resistor), and used as the reference signal for the lock in

amplifier similarly to the BVS [19]. However this led to discrepancies in the phase shift

measurements, varying based on the voltage applied to the Helmholtz coils. Thus, similarly

to the BES, a calibration using a magnetometer was performed for room temperature tests

(see Figure 2.2). Following Faraday’s law, the induced emf, measured as a voltage Vout(t),

is a function of the rate of change in the magnetic flux ∆B
∆t produced by the Helmholtz coils,

given by

em f = Vout(t) = nA
∆B(t)
∆t

, (2.11)

where n and A are the number of turns and area of the magnetometer. Since the magnetic

field is a sinusoidal function of the current I, the derivative shifts the the phase 90◦, such

that

B(ωt + δcoils) ∝ I(ωt + δcoils), (2.12)
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and

em f = Vout(ωt + δcoils) ∝ B(ωt + δcoils + 90◦) ∝ I(ωt + δcoils + 90◦), (2.13)

allowing for the frequency response of the coils δcoils to be measured. This phase measure-

ments allow for the material loss tangent to be found using (2.6) and setting

θ = δmaterial + δcoils . (2.14)
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Figure 2.2. tan δcoils of the applied voltage and the produced magnetic field of the vertical
Helmholtz coils at room temperature.

However since the temperature is varied in the CBES, a calibration was necessary

at every temperature the specimen was tested. To this end, a magnetometer was attached

to the coil fixture to allow for the frequency response of the coils to be measured at any

temperature. The magnetometer is a 10-turn .25” radius coil in an open circuit. The two

leads allow for measurement of the induced emf as an open circuit voltage measurement.



21

The reduced area and number of turns (as compared to the Helmholtz coils) prevent the

magnetometer from interfering with the magnetic field produced from the Helmholtz coils

via back emf. The Young’s modulus is measured based off of the tip-deflection of the

specimen. Similarly to the BVS and BES, the specimen is under an applied stress in the

form of an end moment. With a laser incident on the mirror at the end of the specimen, the

angle of tip-deflection (θtip) can be measured by

tan θtip =
uz

l
(2.15)

where uz is the measured displacement of the laser at the laser position sensor and l is the

distance from the laser position sensor to the specimen. Since the specimen is subjected

to small deflections, the approximation, θtip ≈ uz
l , can be used. The deflection of a slender

beam under an applied moment, M , is

θtip =
ML
EI

, (2.16)

where L is the beam length, E is the modulus, and I is the bending moment of inertia. With

the moment a function of the current, as shown by (2.2), and the other values known, the

dynamic modulus can be expressed as

E∗ = A
Î

ûz
, (2.17)

where A is a constant composed of the atemporal terms from (2.2) and (2.2), Î is the

amplitude of the current through the coils, and ûz is the amplitude of the laser displacement.

Figure 2.3 shows the CBES schematic with the waveform generator supplying the reference

signal to the lock-in amplifier, and to the current isolation amplifier which drives the coils.

The lock-in amplifier uses dual PSD to measure the the amplitude of deflection as well

as the phase between the reference signal and the laser position sensor, allowing for the
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Figure 2.3. CBES Mechanical setup, adapted with permission from Wojnar [74].

dynamic Young’s modulus and material loss tangent to be determined. The amplitude and

phase are recorded by an oscilloscope concurrently with the electrical loading, as will be

discussed in the next section. The specific instruments used are: laser (REO Inc., 633 nm,

5.0 mW) , optical beam position sensor (Newport OBP, 9 mm × 9 mm), lock-in amplifier

(SR830 from Stanford Research Systems), waveform generator (TekTronix AFG3022c),

oscilloscope (Tektronix MDO 3014), pair of Helmholtz coils (each coil 150 ±1 turns,

radius of .5”, 32 AWG magnetic wire), current isolation amplifier (See A), and a N38SH

Neodymium magnet (.25” × .25” × .1” with a maximum pull of 1.7 lbs at 298 K). For

pictures of the actual set-up see Appendix A.

2.2. ELECTRICAL LOADING

While domain wall motions occur under relatively small applied electric fields,

the specific case that is desired to be studied is domain switching. Domain switching as

previously described, happens in ferroelectric materials under an applied electric field larger

than the coercive field. The coercive field of PZT can be as high as 20 kV/cm [30], meaning
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it is necessary to apply a high voltage to the specimen safely and without arcing. This

requires specially designed grips that can apply an electric potential across test specimens

in a safe manner and without electrical arcing. Applying the high voltage is necessary to

induce domain switching, but to be able to determine how the domain switching affects

damping, the electric displacement of the PZT needs to be measured in-situ. This requires

that the electric displacement of the specimen be measured concurrently to the applied

electric field and dynamic mechanical properties. The electrical displacement is measured

via a Saywer-Tower circuit [58] connected in series to the specimen. This is a commonly

used technique which allows the electric displacement (D) of the specimen to be calculated

through

D =
C · Vcap

SA
, (2.18)

where C is the capacitance of the capacitor, Vcap is the voltage across the capacitor, and SA

is the surface area of the specimen. As shown in Figure 2.4, a high-voltage amplifier in

conjunction with the waveform generator are used to supply the high voltage necessary for

domain switching. The applied electric field (Eapp) to the specimen is related to the applied

voltage (Vapp) by the thickness of the specimen (h) by,

Eapplied =
Vapp

h
. (2.19)

The voltage across the capacitor and the output voltage from the high voltage amplifier

are recorded by the same oscilloscope as mentioned in the section above. This allows for

the simultaneous measurement of the electric displacement, applied electric field, dynamic

Young’s modulus, and loss tangent.
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2.3. THERMAL LOADING

To determine and understand the electromechanical behavior of ferroelectrics in a

space environment, specimens must also be tested at cryogenic temperatures. Cryostats,

which are devices for reaching and controlling temperature at cryogenic levels, are commer-

cially available and typically work in one of two main ways. Cryogenic temperatures can be

achieved by submerging a specimen or apparatus into a cryogen (e.g. liquid oxygen, liquid

helium, or liquid hydrogen) or pouring the cryogen over the test apparatus. These styles of

cryostats are commonly referred to as wet cryostats due to the the specimen or apparatus

coming into contact with the cryogen. Wet cryostats are used for various reasons, either

making use of the superconductivity of the cryogen, or the ease of use of the device in being

able to submerge the whole setup into the cryogen. However to perform a mechanical test

the cryogen itself could pose a problem of increased noise and measurement difficulties.

The other common type of cryostat is called a dry cryostat, this method still uses cryogen,

however the cryogen never comes into direct contact with the test setup. Instead the way dry
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cryostats work is by pumping the cryogen onto a platform for the test apparatus consisting

of a material with high thermal conductivity commonly referred to as the cold head. This

allows the cold head to act as a heat sink to the test apparatus and conduct heat away from

the sample to the cold head. The cryogen then carries the thermal energy away in the

evaporation process. The complete process uses a pump to maintain the flow of cryogen

over the cold head. The pump may add noise, so the design must incorporate a cryostat

that can reach a cryogenic temperature and temporarily be turned off (while maintaining

the desired temperature) during the electromechanical testing.

To test ferroelectrics at cryogenic temperatures, a custom designed cryostat from

Janis Research Company was built. This system is a closed-cycle helium system, which

means that the cryogen (liquid helium) will never come into contact with the test apparatus,

but will flow to a cold head which acts as the base for the test apparatus. The cryostat

chamber has optical ports allowing for the laser position measurement system. A custom

cartridge heater, and calibrated GaAlAs temperature sensor diode, located at the base of the

cold head and on the specimen grip, respectively, are used with a LakeShore Model 335

temperature controller to set the temperature of the test apparatus platform within ±0.005

Kelvin. The test platform itself is made from brass and is at the maximum thickness the

manufacture could make, .5” thick, to insure the maintenance of the temperature after the

cryogen pump (Sumitomo HC-4E1) was shut off. Also to accommodate the mechanical

loading and measure the deflection, optical ports were installed into the chamber of the

cryostat. To be able to test different length specimens, two 2” diameter optical ports were

put in the chamber 180◦ apart and vertically offset 1.5” such that the cryostat could be

rotated allowing for the appropriate port to test specimens from .5” to 3.5” in length.
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2.4. VACUUM REQUIREMENTS

Space is a vacuum, and to simulate that in a lab inside the Earth’s atmosphere, a

vacuum chamber and an accompanying pump are required. Space applications range in

pressure from about 10−4 Torr to 10−11 Torr on the moon and tends towards 0 Torr in

deep space [55]. Besides simulating the space environment, the vacuum chamber provides

several additional benefits to the experimental setup. For mechanical loading, placing the

sample under vacuum will reduce any parasitic damping due to the air resistance. The

parasitic damping due to surrounding air on a cantilever is proportional to the pressure and

to the density of the air as shown by Chen et al. [10] through the equation,

tan δair =
2P
πρc

√
Cpµ

CvRT
(2.20)

Where Cp and Cv are heat capacity under constant pressure and volume respectively, ρ is

the density of the solid, µ is the density of the fluid (air), c is the speed of sound in the solid

and P, R, and T correlate to the pressure, gas constant and temperature, respectively. As

shown by (2.20), the lower the pressure and density, the lower the parasitic damping due to

the fluid.

Another aspect of the vacuumsystem is that it affects electrical arcing; the breakdown

voltage required for arcing a gap in air varies with pressure. To understand the correlation

between a vacuum and arcing one can look at Paschen’s law, [43] and the voltage breakdown,

Vb, equation

Vb =
Apd
ln pd

+ B, (2.21)

where A and B are constants that depend on the medium in the spark gap, p and d are the

pressure of the surroundings and the distance between the two electrodes, respectively [52].

Figure 2.5 shows that the breakdown voltage is not linear with respect to pressure and the
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Figure 2.5. Voltage breakdown versus pressure-distance (Paschens curve) in air [52].

ideal pressure with respect to electrical loading would be less than 10−3 bar-mm or greater

than 10 bar-mm. Due to the geometry of the specimens, and the voltage applied in this

study our experimental set-up this requires a pressure of 10−4 bar or greater than 1 bar-mm.

Most cryostats need to be placed under vacuum in order to function properly. The

custom cryostat by Janis required an evacuated pressure of 10−4 mbar or less. The lower

the pressure the quicker the cooldown time. For this experimental set-up the maximum

allowable pressure is determined by the cryostat 10−4 mbar, but with respect to every type

of loading (mechanical, electrical, and thermal), a pressure lower would yield more efficient

and accurate experimental equipment. To achieve the desired pressure an Edwards T-Station

75 vacuum pump is used. This vacuum system has an ultimate pressure of < 4×10−7 mbar.

For experiments, typically pressures below 1.1 × 10−7 bar are reached, which is sufficient

for all loading conditions.
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Table 2.1. Comparison of BVS, BES, and CBES viscoelastic characterization methods.

method bandwidth moduli temp. e-field vac. contactless
BVS 10-6 to 105 up to 104 GPa up to 160◦C – – X
BES 10 to 104 Hz up to 104 GPa up to 400◦C X X X
CBES 10 to 104 Hz > 104 GPa -243 to 50◦C X X X

2.5. CRYOGENIC BROADBAND ELECTROMECHANICAL SPECTROSCOPY

All of these subsystems together create the Cryogenic Broadband Electromechan-

ical Spectroscopy setup (as shown in Figure 2.6). Functionally any load can be applied

individually, and all loads can be applied simultaneously, which is the true benefit of this

testing apparatus. The CBES allows for the measure of dynamic mechanical, and electrical

properties, with the added ability of being able to measure the influence of cryogenic tem-

peratures on these dynamic properties (see Table 2.1). While all methods allow for a wide

range of viscoelastic materials to be tested in a contactless manor, however the CBES is

the only method which allows this to be done at cryogenic temperature while being able to

apply simultaneous high voltage electrical loading. For images of the actual CBES set-up

and ancillary equipment please see Appendix A.
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3. VALIDATION AND EXPERIMENTATION

The experimental setup developed enable the measurement of the dynamic modulus,

loss tangent, and electric displacement hysteresis under large electric fields at cryogenic

temperature, which was not possible with previous equipment. As a first step, the exper-

imental setup will be used to measure known properties of well characterized materials.

Specifically the mechanical properties of aluminum 6061-T6 and the electrical properties

of PZT. Then electromechanical tests at room temperature will be performed on PZT. This

room temperature tests are compared to literature in order validate the accuracy of the setup.

Then, experiments carried out at cryogenic temperatures are reported and obsevrations are

made with regards to the effects of low temperature on material properties. An important

note is that the Young’s modulus will be reported as relative Young’s modulus such that

comparisons can be made to literature [75, 39, 74]. This relative Young’s modulus is the

measure of the instantaneous amplitude of deflection with no applied electric field u0
z over

the amplitude of the deflection when a field is applied uz, as shown by

E
E0 =

u0
z

uz
, (3.1)

where the E is the dynamic Young’s modulus and E0 is the dynamic Young’s modulus with

no applied electric field.
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Table 3.1. Properties of PZT-5A4E obtained from Piezo Systems Inc.

parameter symbol value units
density ρ 7.8 g/m3

coercive field Ec 1.2 × 106 V/m
axial elastic modulus Y3 5.2 × 1010 N/m2

transverse elastic modulus Y1 6.6 × 1010 N/m2

piezoelectric coefficients d33 390 × 10−12 m/V
d31 −190 × 10−12 m/V

Curie temperature Tc 350 ◦C
thermal expansion coefficient 4 × 10−6 ◦C−1

mechanical quality Q 80 –
composition 60 − 70 % lead oxide

5 − −25 % zirconium oxide
5 − −15 % titanium oxide
0 − −4 % lanthanum oxide
0 − −20 % zirconium oxide
0 − −7 % nickel oxide

3.1. MATERIAL PROPERTIES

The PZT specimens used in the experiments were model PSI-5A4E from Piezo

Systems Inc., an industry type 5A piezoceramic, pre-plated with nickel electrodes, and

pre-poled through the thickness direction. The specimen dimensions are 1.016 mm (0.04”)

thick, 3.175 mm (0.125”) wide, and 38.1 mm (1.5”) long. The properties provided by the

manufacture are shown in Table 3.1.

Poled PZT is transversely isotropic, as can seen by the different axial and transverse

elastic moduli in the Table 3.1. To this end, the Young’s modulus referred to in this report

will be that of the transverse modulus, denoted as Y1 by Piezo Systems Inc.
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Table 3.2. Properties of the aluminum cantilever beam

parameter symbol value units
density ρ 2.7 g/cm3

complex Young’s modulus E∗ 69(1 + .005i) GPa
cross-sectional area A 0.05162 cm2

area moment of inertia I 3.335 × 10−5 cm4

end mass m 1.89 g
beam length L 6.05 cm

3.2. VALIDATION

In order to asses the accuracy of the experimental setup, a series of experiments were

carried out at room temperature (with both PZT and aluminum), where the resulting data can

be compared with existing data and models. To this end, the dynamic Young modulus and

loss tangent of aluminum, which is well characterized, was measured. Then, the electric

displacement hysteresis of PZT was measured and compared to literature. Finally, the

dynamic modulus and loss tangent of PZT under cyclic electric fields at room temperature

was measured and compared with previous experiments.

3.2.1. Determining the Accuracy of the Modulus and Loss Tangent Measure-

ments. To verify that the Helmholtz coils and the laser-detector setup used for measuring

dynamic Young’s modulus and loss tangent was accurate, a well characterized material was

tested, viz. aluminum 6061-T6. Specimens were .89 mm (0.035") thick, 5.715 mm (0.225")

wide, and 64.29 mm (2.531") long. The specimen’s dynamic Young modulus and loss tan-

gent was measured using CBES for frequencies from 2 Hz to 2.5 kHz and compared to

theoretical result of a dynamic Euler-Bernoulli beam. The given properties and parameters

used in the model are values for 6061-T6 obtained [76] or were directly measured and are

shown in Table 3.2.
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Figure 3.1. Frequency response of 6061-T6 aluminum beam in comparison with dynamic
Euler-Bernoulli beam theory.

The boundary conditions for the model were that of a fixed-free beam, with an end

mass, subjected to an applied sinusoidal bending moment on the free end. From Figure 3.1,

a peak in the relative amplitude is observable at 74 Hz, corresponding to the fundamental

frequency, and a relativeminimum at 163Hz corresponding to the first anti-resonance. Each

of the following positive and negative peaks correspond to the subsequent resonance and

anti-resonance frequencies, respectively. Using the material properties obtained from liter-

ature, and measurements taken directly from the aluminum specimen, the model accurately

captures the fundamental and first anti-resonance frequency of the aluminum cantilever.

Thus, the setup is accurately measuring the dynamic Young’s modulus. The higher order

resonances are difficult to capture due the the approximations in the model (i.e. point end

mass, clamping conditions, and effective beam length).

Besides measuring the dynamic Young modulus, the loss tangent of aluminum

6061-T6 was also measured and compared to literature in order to characterize any parasitic

damping and noise in the setup. To capture the material loss tangent, and avoid geometric
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dependence, the applied loading was at a sub-resonant frequency of 5 Hz. The applied

voltage was used as the reference signal and the corresponding deflection measured by the

laser position sensor was used as the input signal, the reference and input signal representing

the applied stress and resulting strain, respectively. The phase shift due to the Helmholtz

coils, δcoils, (which was measured and shown in Figure 2.2) was subtracted from the total

measured phase to obtain the material loss tangent, tan δal . The loss tangent measured

for aluminum was = 0.005 at 5 Hz, which coincides with values measured from previous

experiments, ranging from 0.005 to .019 [76, 81]. The ability to measure the relatively

small loss tangent of aluminum provides confidence in the measurement of the loss tangent

of PZT which is an order of magnitude larger than aluminum 6061-T6 (see mechanical

quality in Table 3.1).

3.2.2. Measuring Electric Displacement Hysteresis. To verify the accuracy of

the Sawyer-Tower circuit, a cyclic electric field was applied to PZT specimens and the

resulting electric displacement was measured and is shown in Figure 3.2. The measured

hysteresis curves were compared with those from the literature.

The electric displacement vs. electric field (P-E) curve in Figure 3.2 demonstrates

the hysteresis associated with a ferroelectrics. As the applied field surpassed the coercive

field (13 kV/cm), the electric displacement switches and when the applied electric field

is removed, the electric displacement will return to the spontaneous polarization value

(0.34 C/m2). The coercive field is in agreement with the approximate value of 12 kV/cm

provided by the supplier and the P-E curve resembles those found in literature [70, 84]. This

demonstrates the ability of the CBES system to apply coercive electric fields and accurately

measure the electric displacement via the Saywer-Tower circuit.
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Figure 3.2. a) Concurrent measurements of electric displacement and electric field and b)
electric displacement plottedwith respect to the electric field; withmeasurements performed
at room temperature and the frequency of the applied electric field was 50 mHz.
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3.2.3. Dynamic Modulus and Loss Tangent of PZT at Room Temperature.

The final validation step before testing materials at cryogenic temperatures was to measure

the dynamic modulus and loss tangent at room temperature and compare the result with

previous experiments. The test follows the methods used by Wojnar [74], the only existing

experimental data currently in literature. The test is performed by applying harmonic

mechanical loading in the form of a bending moment on the free end of the specimen, while

a substantially lower frequency triangle wave electrical field was applied. The loading

frequencies of the mechanical and electrical loads are orders of magnitude in difference

such that the electric load can be assumed to be quasi-static. This allows for themeasurement

of dynamic properties during domain switching (and thus domain wall motion). For each

test, the mechanical loading was driven by a 5 Vpp (peak-to-peak voltage) sine wave applied

to the Helmholtz coils, while the electric field was applied by supplying a 1 Vpp triangle

wave at 50 mHz to the high voltage amplifier with a gain of 2000. Four measurements were

recorded concurrently (see Figure 3.3): beam deflection amplitude, phase between applied

voltage and resulting deflection (allowing for the calculation of the loss tangent), applied

electric field, and the charge on the specimen .

The simultaneous measurements allow for the relative bending moment and loss

tangent to be observed as the PZT is undergoing domain switching at an applied electric

field of 15 kV/cm, as shown in Figure 3.4. The loss tangent was 0.09 at no applied

electric field, and reached a maximum of 0.35 at an applied electric field of 15 kV/cm.

The relative Young’s modulus decreased, as expected, as the loss tangent increases. The

dynamic mechanical properties show a drastic difference when a coercive field is applied,

with greater than a 375% increase in loss tangent and a reduction of dynamic Young’s

modulus by 40%. After the domain switching occurs, the loss tangent reaches a minimum

value of .045, while the dynamic Young’s modulus increases to it maximum of 24% greater

than the modulus at no applied electric field. These results are consistent with previous

experimental results obtained by le Graverend et al. [39], Wojnar et al. [75].
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3.3. EXPERIMENTS AT CRYOGENIC TEMPERATURES

The temperature dependence of electric displacement, dynamic Young’s modulus

and loss tangent were measured utilizing the temperature control capabilities of the CBES.

Tests on PZT specimens range in temperature from 34 K to 298 K, and therefore add to

currently available experimental data on the effects of domain wall motion on the dynamic

mechanical properties of ferroelectric ceramics.

3.3.1. P-E Curves at Different Temperatures. Following the methods used in

measuring the P-E curves at room temperature, the electric displacement was measured for

temperatures of 34 K (−240 ◦C), 73 K (−200 ◦C), 123 K (−150 ◦C), 173 K (−100 ◦C), and

223K (−50 ◦C). As shown in Figure 3.5, the spontaneous polarization and hysteretic affect

significantly decrease as the temperatures reach cryogenic levels which is expected from

literature [30].

As the temperature decreases, the spontaneous polarization in the positive direction

decreases from 0.31 C/m2 at 298 K, to 0.246 C/m2 at 223 K, to 0.096 C/m2 at 173 K,

to a minimum value of 0.007 C/m2 at 34 K. Furthermore, as the temperature decreases

the coercive field first increases from 14 kV/cm at 298 K to 16 kV/cm at 223 K, then

begins to decline to 11 kV/cm at 173 K, and continues to decrease as the temperature

decreases. As both the spontaneous polarization and coercive field tend to lower values

with decreasing temperature (at a sufficiently low temperature), the amount of domain

switching also decreases. Thus, applications that seek to utilize domain switching at

cryogenic temperature must account for this reduction of domain wall motion.

One can observe a difference between the electric displacement with respect to the

sign of the applied electric field, as observable by the rounded corner of the P-E curve, at

223 K, during the maximum negative applied electric field. This artifact can be attributed

to the pre-poling of the PZT specimens, such that the specimens are biased towards a

particular polarization direction, and thus the spontaneous polarization and coercive fields
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Figure 3.5. Temperature dependence of the P-E curves of PZT-5A4E for a frequency of an
applied electric field of 50 mHz.

are direction dependent. As seen in the P-E curve for 223 K the spontaneous polarization

is greater in magnitude in the negative direction (0.273 C/m2) as compared to the positive

direction (0.246 C/m2).

It should be noted that as the electric fieldwas cycled the temperature of the specimen

increases. This temperature increase was greatest at the lowest temperature, 34 K, at which

the temperature, as measured on the grips at base of the specimen, changed 6.8 K over

400 s during continuous cycling at an applied electric field frequency of 50 mHz. To avoid
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Figure 3.6. Relative Young’s modulus measured at 298 K, 173 K, 123 K, 73 K and 34 K
for a mechanical frequency of 100 Hz, and electric frequency of 50 mHz.

extreme temperature variances during testing, all measurements were taken within the first

40 seconds of applying the electric field. Between tests the specimen was allowed to reach

and maintain the desired temperature for 10 minutes before a test was performed.

3.3.2. Dynamic Mechanical Properties of PZT at Different Temperatures. The

dynamic Young’s modulus and loss tangent of PZT-5A4E were measured while applied a

cyclic electric field for a range of temperatures. As shown in Figure 3.7 and 3.6 the loss

tangent and relative Young’s modulus were measured at temperatures ranging from 34 K

to 298 K. As before, all measurements were taken concurrently and the dynamic properties

are reported versus the applied electric field.

As the temperature cools to the cryogenic range, the fluctuation of the Young’s

modulus with respect to the applied electric field is reduced. Below 173 K the relative

Young’s modulus becomes approximately linear with respect to the applied electric field,

and proportional to the electric displacement (as shown in Appendix B). This demonstrates

the dynamic Young’s modulus at low temperatures tends towards a static Young’s modulus,



42

lo
ss

ta
ng
en
t(
–)

0.8

0.9

0.7

0.6

0.4

0.3

0.2

0.1

0
-25 -20 -15 -10 -5 0 5 10 15 20 25

electric field (kV/cm)

0.5

298 K
173 K

lo
ss

ta
ng
en
t(
–)

0.3

0.25

0.2

0.1

0.05

0
-25 -20 -15 -10 -5 0 5 10 15 20 25

electric field (kV/cm)

0.15

173 K

34 K

a)

b)

123 K

Figure 3.7. Loss tangent measured at a) 298 K and 173 K and b) 173 K, 123 K and 34 K
for a mechanical frequency of 100 Hz, and electric frequency of 50 mHz. The loss tangent
at 173 K is shown twice to allow for observation of the scale difference.



43

and that the relatively small change in the polarization of the PZT contributes to the small

change Young’s modulus. The dynamic mechanical properties of viscoelastic materials are

generally known to be temperature dependent. In this case, the resulting loss tangent did

not vary monotonically with temperature. The magnitude of the loss tangent, with respect

to the applied electric field, shifted, such that at low temperatures the loss tangent no longer

peaked before the maximum electric field is applied, instead the loss tangent increased

approximately linearly until the maximum electric field was applied. After the peak of the

electric field, the loss tangent decays back to the linear trend. However this decay is not

consistent with measurements at higher temperatures, and was therefore not expected (for

results from each temperature studied, see Appendix B). An additional experiment was

performed in order to better understand what was affecting the loss tangent. Instead of

applying a triangle wave electric field, a ramp-and-hold electric field was applied. In this

test the electric field was ramped to the maximum field of the original triangle wave field

(20 kV/cm) over 2.5 s. The maximum electric field was held for 5 s, then ramped in the

opposite direction to the maximum (negative) field and held for 5 s. The test was carried

out at 173 K as this was the temperature which best highlighted the peculiar loss tangent

behavior in question. As shown in Figure 3.8, the loss tangent peaks and decreases prior to

the maximum positive electric field, and only decreases when the negative applied electric

field reaches its maximum and is held. This is comparable to the triangle wave test (Figure

3.7) where the loss tangent also peaks before the positive applied electric field, but does not

peak until the maximum negative field is applied. One can also observe that the magnitude

of the loss tangent does not reach as large of a value when the applied electric field is

positive as compared to a negative applied electric field. The difference between the values

and trend of the loss tangent with respect to the positive and negative applied electric field

could be attributed to the pre-poling of the PZT specimens: a trend similar to that observed

in the electric displacement, as shown previously in Figure 3.5.
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Figure 3.8. Ramp-and-hold electromechanical measurements for a mechanical frequency
of 100 Hz at 173 K.

The electric displacement for the ramp-and-hold test was also plotted in Figure 3.8.

It is important to note during the ramp-and-hold tests, the electric displacement continues

to increase in magnitude after the maximum negative electric field has been reached and

held, and does not begin to decrease until the applied electric field begins to change.

This could be due to a temperature dependence of domain wall motion, such that as the

temperature decreases the speed of domain wall motion is decreased and therefore, as shown

in Figure 3.8, the total polarization of a bulk specimen is slower to increase in magnitude.

This same behavior is observed at room temperature at high electric field frequencies where

the domain wall motion is too slow to respond to the rapidly changing electric field [84].

This is a possible explanation for the continued change of electric displacement as the

applied electric field was held constant. Another observation is the relationship between the

electric displacement inflection points and the loss tangent peaks. This shows a potential

correlation between the loss tangent and the time rate of change of polarization, or a

relationship between domain wall velocity and loss tangent. To better demonstrate this,
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the loss tangent was plotted with respect to the rate of change of the electric displacement,

and is shown in Figure 3.9. Since the loss tangent is physically due to internal dissipation

mechanisms in thematerial, in this case domain switching, the loss tangent should be related

to the rate of change of the overall electric displacement. As temperature affects domain

wall motion, it follows that temperature will also affect the rate of change of the electric

displacement.
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Figure 3.9. Loss tangent plotted against the rate of change of electric displacement for PZT
at temperatures of 298 K, 223 K and 173 K for a mechanical frequency of 100 Hz and
electrical frequency of 50 mHz.

The temperature dependence of the rate of change of polarization permits a specimen

at higher temperatures to achieve a larger value of ∆P/∆t. This is expected since it has been

previously suggested that the rate of change of polarization is dependent on both temperature

and applied electric field [57]. From Figure 3.9 we can determine the relationship between

the loss tangent and the time rate of change of polarization, which is well fit by a natural

log curve. The equations for the trend-lines from Figure 3.9 at the temperatures of 298 K,
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223 K, and 173 K are

tan δ298 = 0.185 ln
∆P
∆t
+ 0.676, (3.2)

tan δ223 = 0.06452 ln
∆P
∆t
+ 0.3428, (3.3)

and

tan δ173 = 0.0238 ln
∆P
∆t
+ 0.2008, (3.4)

respectively.
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4. CONCLUSION AND FUTUREWORK

By designing and building the novel CBES setup, the goal of closing the gap in

experimental capabilities was achieved. CBES enables the temperature controlled dynamic

electromechanical testing of bulk ferroelectric ceramics, due to its capability to individually

or concurrently measure the dynamic mechanical and electrical properties in cryogenic

temperatures. The test specimens can have a modulus up to 104 GPa and be tested through

a frequency range from 10−1 to 104 Hz. The CBES can also test electrical properties under

an applied electric field up to 200 kV/m at a frequency of up to 7.5 kHz. The influence

of temperature can be measured from 325 K to 34 K, and all tests can be performed under

vacuum at a pressure of 4 × 10−7 mbar. The apparatus goes beyond current state of the art

equipment and allows for measuring material properties in a simulated space environment.

Validation of the the measurement capabilities of the CBES setup show the accuracy of the

instrumentation. New results have been reported, providing insight to the dependence of

dynamic mechanical properties on both the rate of change of polarization, and temperature.

In particular, the experiments have revealed a relationship between domain wall velocity

and loss tangent. While this is dependence is expected [82, 1], the exact relationship

between damping and domain wall motion is still not well understood. The CBES allows

provides a means to gain insight into this relationship. Such knowledge will aid in the

design of improved ferroelectric material microstructures and compositions with improved

properties. Due to the equipment being designed such that it is capable of measuring

material properties over a broad spectrum of loading scenarios, there are many possibilities

for future work with the CBES. To this end a list of potential studies utilizing the testing

capabilities are described as follows.
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1. Testing different ferroelectric materials: Through the creation validation and initial

study of the CBES only PZT 5A4E was tested to the full extent of the capabilities

of the CBES. As mentioned previously there are a multitude of different ferroelectric

materials, both ceramics and polymers. These other materials, (e.g. barium titanate,

bismuth titanate, europium barium titanate, germanium telluride, lead scandium tan-

talate, lead titanate, lithium niobate, polyvinylidene fluoride, potassium niobate, and

potassium titanyl phosphate) are able to be tested at cryogenic temperatures. While

some properties, such as the electric or mechanical properties, of these materials have

been tested at low temperatures, the dynamic mechanical properties during domain

switching have not. This setup allows for the testing of a wide range of materials, and

a possible future research direction is to characterize other ferroelectric materials.

The CBES also allows for non-ferroelectric materials to be tested for viscoelastic

properties over the 34-300 K temperature range.

2. Testing different compositions of PZT: The composition of the PZT which was tested

in this study is shown in Table 3.1. This material composition of PZT falls into

the range highlighted in yellow in Figure 4.1. However to study the properties of

materials with different phases or a material going through a phase transition one

could have a PZT with a titanium composition of 0.4-0.6 in the range of the blue

highlighted region which allows for temperature dependent phase transitions. The

ability to study different phases of material allows for the characterization of phase

dependent properties such as electromechanical coupling. Also phase boundaries

such as the morphotropic phase boundary (MPB in Figure 4.1), can exhibit properties

such as a giant dielectric response and high electromechanical coupling [32].
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Figure 4.1. Phase diagram for PZT [14], with the yellow area denoting the composition of
the PZT tested in this study, and the blue area denoting the recommended composition for
future testing.

3. Influence of electric field frequency: This study focused on the dynamic mechanical

properties during domain switching, and shows the relationship between the loss

tangent and the rate of change of polarization. To this end, a possible next step in

characterizing the loss tangent with respect to the rate of change of polarization is

to apply the electric fields at different frequencies. In this way, the magnitude of the

polarization change could be increased and the relationship between the loss tangent

and rate of change of polarization could be extended. The current known limit to

the ability to perform this test resides in the high voltage amplifier. During previous

studies, the electrical cycling rate was limited to 5 Hz because at that rate the current

draw from the high voltage amplifier exceeded the rating of the equipment. This

current draw will decrease at lower temperatures but to do higher frequency testing it

may be necessary to use a high voltage amplifier with a larger current output rating.
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4. Heat generation due to electric cycling: It is known that ferroelectrics produce heat

when a sufficiently large electric field is applied and understanding the heat generation

of materials to be used in temperature sensitive environments is critical. The CBES

currently measured a temperature gain during the electromechanical testing, but this

was not the goal of this study. TheCBEShas ability tomeasure the temperature change

(and thus the heat generation) of PZT at different initial temperatures, magnitudes of

applied electric fields, and frequencies of applied electric fields. A study similar to this

has been completed for PZT using the CBES by Wiebe Boleij under the advisement

of Dr. Charles Wojnar, to characterize the heat generation at room temperature.

However this study can be continued by testing over the temperature range of the

CBES.

5. Fatigue and aging: TheCBES allows for extended testing under thermal, electrical and

mechanical loads. This allows for fatigue and aging tests to be completed in one system

without the need to remove, replace, or adjust the specimen being tested. Fatigue in

ferroelectrics is not just in the mechanical sense, to be measured over a number of

loading cycles, but also includes electrical fatigue, in which the specimen is loaded by

a cyclically applied electric field, leading to polarization degradation. This is currently

studied separately, either the mechanical or electrical fatigue being the focus. The

CBES allows for the simultaneous study of mechanical and electrical loading and thus

the simultaneous study of mechanical and electrical fatigue. Aging, is the change in

either mechanical or electrical properties over time without external applied loads.

Similarly the aging of ferroelectrics is currently studied individually, with the CBES

allowing for the simultaneous study of aging on electrical and mechanical properties.

The CBES also allows for the temperature dependence of both fatigue and aging

studies to be measured. Non-ferroelectric materials can also be tested for fatigue and

aging in the CBES, e.g. solid rocket propellant.
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6. Ferroelectric set-and-hold actuation: As proposed by Wojnar [74], set-and-hold ac-

tuation utilizing domain switching in ferroelectrics could be used as a semi-active

method for controlling displacement. This actuation utilizes the strain induced in a

ferroelectric by applying a coercive field to realign the domain orientations. This al-

lows for a one time activation of the actuator which will deform and remain deformed

until a coercive field is applied in a different direction. Some proposed applications of

these are for aerospace applications, specifically for space telescopes. Previously, the

proof of concept testing of set-and-hold actuators was performed at room temperature.

However for the proposed application, the proof of concept should be evaluated in the

true application setting. To this end the CBES allows for the testing of these actuators

such as micro fiber composites (MFC’s) as used by Wojnar [74], in the intended use

environment, i.e. at cryogenic temperatures in a vacuum environment. The CBES

could also be used with a digital image correlation set-up allowing for the strain of

the actuator, or specimen to be measured over the temperature range.

7. Implementation of different specimen testing fixtures: The CBES is robust in design

and allows for modular testing set-ups to replace the electrical isolating grips and

Helmholtz coils. With this, the CBES allows for any testing apparatus needing up to

20 standard (non-high voltage) electrical connections, up to 4 high voltage electrical

connections, optical line of sight for a setup 5” in height and the setup must fit

within a 3.545” radius area and volume of less than 266.5 in3. Thus, it is possible

to run uniaxial tensile or compression tests for materials with or without application

of electric fields, or it is possible to implement an impact, displacement, or fracture

testing setup.
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PICTURES OF CBES SETUP
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The solid model and schematics of the CBES setup are shown in the above report.

The appendix contains pictures of the equipment in the setting in which it was used. An

important note is that the Young’s modulus will be reported as relative Young’s modulus

such that comparisons can be made to literature [75, 39, 74]. This relative Young’s modulus

is the measure of the instantaneous amplitude of deflection with no applied electric field u0
z

over the amplitude of the deflection when a field is applied uz, as shown by

E
E0 =

u0
z

uz
, (A.1)

where the E is the dynamic Young’s modulus and E0 is the dynamic Young’s modulus with

no applied electric field.

PICTURES OF THE CBES AND ANCILLARY EQUIPMENT

The CBES, in the open (specimen accessible) position and closed (operating) posi-

tion are shown in Figures A.1 andA.2, respectively. With Figure A.3 showing theHelmholtz

coils and specimen setup. Figures A.4, A.5, and A.6 show the temperature controller, vac-

uum pumping station, and cryo-pumping station, respectively. All other ancillary electrical

equipment is housed in an electronics rack as shown by Figure A.7
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radiation shield

cold

head

to cyropump

to vacuum

radiation shield

Helmholtz coils

vacuum chamber

supporting

and grips

mount

frame

station

Figure A.1. Picture of the CBES while in the open position allowing for access to the
specimen, magnet clamp, Helmholtz coils and temperature sensors.
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cryogen hoses

winch for

to temperature

controllerHigh voltage

Helmholtz coil

optical port

vibration

isolation table

power supply

feed-through

raising chamber

Figure A.2. Picture of the CBES in the closed position, allowing for the operation of the
CBES.
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vertical coils

horizontal coils

magnet

mirror and clamp

temperature sensorisolating grips
PZT specimen

Figure A.3. A close up view of the Helmholtz coils, specimen, magnet and mirror clamp,
and temperature sensor.
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grip temperature

cold head

heater outputset temperature

sensor
temperture sensor

Figure A.4. Lakeshore Model 335 temperature controller used in the CBES.

pressure guage

diaphragm pump

turbo-molecular pump

vacuum hose to chamber

Figure A.5. Picture of the Edwards T-Station 75 vacuum pumping station.
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cryogen supply to

power switch

cryogen return

cooling water lines

the cold head

from cold head

Figure A.6. The Sumitomo HC-4E1 cryopump used in the CBES set-up.
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Power supply

waveform generator

lock-in amplifier

oscilloscope

power supply

high voltage amplifier

Figure A.7. The electronics rack containing two DC power supplies (Tektronix PWS2300
and Yescom 30 V 5 A), TekTronix AFG3022c waveform generator, Tektronix MDO 3014
oscilloscope, and the Trek 20/20A high voltage amplifier.
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DESIGN OF CURRENT ISOLATION CIRCUIT

The circuit shown in Figure A.8, was designed to be used with a voltage signal, as

provided by the waveform generator, and two power supplies, one positive and one negative,

as see in the electronics rack in Figure A.7. This circuit uses a LM358 op-amp in a standard

voltage follower circuit, and uses a pair of TIP31 and TIP32 bipolar transistors to allow for

the AC power to be provided by the DC power supplies.

waveform
generator

negative
DC supply

positive
DC supply

TIP31

TIP32 coil resistance

coil inductance

currentmeasurement

Figure A.8. Circuit diagram for the current isolation circuit used to amplify the power abel
to be supplied to the Helmholtz coils.
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TheCBESwas used to study the temperature dependence of the dynamicmechanical

properties during domain switching of PZT 5A4E. Separate plots of electric displacement,

dynamic Young’s modulus, and loss tangent were shown in previous figures. Here, the

complete set of data obtained from the scope versus time is shown. In the following

appendix, data collected from temperature ranges 73 K through 298 K are provided and

the data for each measurement will be plotted against time. The temperatures are 298 K,

223 K, 173 K, 123 K, and 73 K

TESTING AT DIFFERENT TEMPERATURES

Figure B.1 and Figure B.2 show room temperature data for two different specimens,

specimen A and specimen B, respectively.

1

0.8
0.6
0.4

0.2

0

-0.2
-0.4
-0.6

0 2 4 6 8 10 12 14 16 18 20
-1.5

time (s)

1.5

1

0.5

0

-0.5

-1

lo
ss

ta
ng
en
t(
–)

re
la
tiv

e
Yo

un
g’
sm

od
ul
us

(–
)

loss tangent relative Young’s modulus
electric displacement applied electric field

el
ec
tri
c
fie

ld
(k
V
/c
m
)×

20

el
ec
tri
c
di
sp
la
ce
m
en
t(
C
/m

2 )

Figure B.1. Concurrent measurements at 298 K for specimen A, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.2. Concurrent measurements at 298 K for specimen B, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.3. Concurrent measurements at 223 K for specimen A, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.4. Concurrent measurements at 223 K for specimen B, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.5. Concurrent measurements at 173 K for specimen A, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.6. Concurrent measurements at 173 K for specimen B, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.7. Concurrent measurements at 123 K for specimen A, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.8. Concurrent measurements at 123 K for specimen B, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.9. Concurrent measurements at 73 K for specimen A, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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Figure B.10. Concurrent measurements at 73 K for specimen B, at a mechanical frequency
of 100 Hz, and electrical frequency of 50 mHz
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