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ABSTRACT 

The applications of using industrial robots in hybrid manufacturing overcome many 

restrictions of the conventional manufacturing methods, such as small part building size, 

long building period, and limited material choices. However, some problems such as the 

uneven distribution of motion accuracy within robot working volume, the acceleration 

impact of robot under heavy external loads, few methods and facilities for increasing the 

efficiency of hybrid manufacturing process are still challenging. This dissertation aims to 

improve the applications of using industrial robot in hybrid manufacturing by addressing 

following three categories research issues. The first research issue proposed a novel 

concept view on robot accuracy and stiffness problem, for making the maximum usage of 

current manufacturing capability of robot system. Based on analyzing the robot 

forward/inverse kinematic, the angle error sensitivity of different joint and the stiffness 

matrix properties of robot, new evaluation formulations are established to help finding the 

best position and orientation to perform a specific trajectory within the robot’s working 

volume. The second research issue focus on the engineering improvements of robotic 

hybrid manufacturing. By adopting stereo vision, laser scanning technology and curved 

surface compensation algorithm, it enhances the automation level and adaptiveness of 

hybrid manufacturing process. The third research issue extends the robotic hybrid 

manufacturing process to the broader application area. A mini extruder with a variable 

pitch and progressive diameter screw is developed for large scale robotic deposition. The 

proposed robotic deposition system could increase the building efficiency and quality for 

large-size parts. Moreover, the research results of this dissertation can benefit a wide range 

of industries, such as automation manufacturing, robot design and 3D printing. 
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INTRODUCTION 

1.1. BACKGROUND 

With the development of automation technology, the scope of applications using 

industrial robots is getting wider and wider. The potential applications of using industrial 

robots in hybrid manufacturing, which usually involve both robot deposition process and 

robot machining process, have been gaining worldwide attention from researchers. In the 

robot hybrid manufacturing process, the industrial robot arm functions as the motion 

mechanism for the tools of machining or deposition [1], as shown in Figure 1.1.  

           
 

                              (a) Robot Machining                    (b) Robot Deposition 
 

Figure 1.1 Robot hybrid manufacturing process 
 

Many restrictions of the conventional manufacturing methods, such as small part 

building size, long building period, and limited material choices, can be overcame in the 

hybrid manufacturing process with the using industrial robot. However, some problems 

still limit its further development, such as the uneven distribution of motion accuracy 

within robot working volume [2], the acceleration impact of robot under heavy external 

loads [3], few methods and facilities for increasing the efficiency of hybrid manufacturing 
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process. In order to solve these problems, this dissertation will investigate the following 

key research tasks to improve the applications of the industrial robot in hybrid 

manufacturing process. The outcomes will benefit many areas, such as robotic engineering, 

additive manufacturing engineering, and high value component repair technology. 

1.2. RESEARCH OBJECTIVES 

The main objective of this research is to investigate the key technologies for 

improving the applications of using industrial robot in hybrid manufacturing and expanding 

it to a wider area. Five research tasks are carefully studied to achieve this overall objective. 

Specifically, the research task 1 answers the following question: Where is the best 

place and orientation to perform a hybrid manufacturing working path within the robot’s 

working envelop. The main challenge for answering this question is how to evaluate the 

trajectory accuracy at different position and orientation while considering the affection of 

robot kinematic parameters error. By analyzing the robot forward/inverse kinematic, the 

angle error sensitivity of different joint in the serial manipulator system will be revealed. 

The influence of different position and orientation on the movement accuracy of end 

effector will also be discussed [4-6]. Based on these analysis, a visualized evaluation map 

can be obtained to describe the accuracy difference of a robotic laser deposition working 

path at different positions and orientations. 

Research task 2 addresses the question of how to improve the operation accuracy 

when heavy external load applied on robot’s end effector. In robotic hybrid manufacturing 

process, the weight of deposition extruder or the cutting force from machining process, 

affects the operation accuracy significantly [7-8]. By analyzing the robot kinematic and 

stiffness matrix properties of robot, a new evaluation formulation will be established for 
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mapping the trajectory’s stiffness within the robot’s working volume. The method is 

important for improving the operation performance of robot system under heavy external 

laod with its current stiffness capability. 

Research Task 3 studies using robot to implement hybrid manufacturing process on 

a freeform surface. Take the robotic writing task as example, an adaptive compensation 

algorithm is developed for the robot to deposit ink on a curved surface [9-10]. This method 

provides more flexibility for using the robot arm to print characters or graph on a curved 

surface. Meanwhile, the robot system also affords a larger working envelope for ink 

deposition process. Research Task 4 applies the stereo vision and laser scanning technology 

into hybrid manufacturing process [11-12]. These methods could realize automatic part 

alignment and working path generation, and enhance the automation and accuracy of 

hybrid manufacturing process. 

Research Task 5 proposed fused pellets modeling (FPM) system for robotic hybrid 

manufacturing process. A mini extruder with variable pitch and progressive diameter screw 

is developed for large scale robotic deposition. In order to get a better control of the 

extrusion filament shape, some initial studies based on analyzing polymer extrusion theory 

and non-Newtonian fluid properties will be carried out [13-16]. The robotic FPM system 

could increase the building efficiency and deposition quality for large-size parts by 

controlling the filament shape.  

The outcomes of above research tasks are expected to advance the knowledge of 

using robot in hybrid manufacturing process. The technical developments may benefit not 

only the area of hybrid manufacturing, but also other areas such as robotic engineering, 

additive manufacturing, and part repair engineering. 
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1.3. ORGANIZATION OF DISSERTATION  

In this dissertation, there are five major developments been presented and been 

organized in the way as shown in Figure 1.2. Paper I and II focus on theory foundation 

study for robotic hybrid manufacturing, which highlights the study of movement accuracy 

and the stiffness property of robot, respectively. Paper III and Paper IV emphasize the 

engineering improvement of robotic hybrid manufacturing, aims to enhance the automation 

level and adaptiveness of this process. Paper V develops the fused pellets modeling system 

for large scale robotic deposition, this study could extend robotic hybrid manufacturing to 

a wider application area. 

 
 

       Figure 1.2 Framework of this dissertation 
 

All of the five articles share a same core research topic: hybrid manufacturing using 

industrial robot, while each of them has a different focus. Paper I presents a new method 

of finding the best position and orientation to perform a specific hybrid manufacturing 

working path based on the current accuracy capacity of robot system. This method is 
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helpful for making the maximum usage of the robot’s current accuracy ability rather than 

blindly pursuit the higher accuracy of robot system. For the situation of heavy external load 

applied on robot system, a new evaluation formulation is established for mapping the 

hybrid manufacturing trajectory’s stiffness within the robot’s working volume in Paper II. 

One advantage of using robot in hybrid manufacturing is its great flexibility, an adaptive 

compensation algorithm based on B-spline surface theory is developed for the robot 

realizing deposit ink on a curved surface in Paper III. In order to improve the efficiency of 

hybrid manufacturing process, by adopting stereo vision and laser scanning technology, an 

automatic alignment and path planning method is given in Paper IV. Paper V developed a 

fused pellets modeling (FPM) system for larger scale robotic deposition, it also studied the 

methods for optimizing the extrusion process to eliminate the void density during large 

scale FPM processes. 
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PAPER 

I. INDUSTRIAL ROBOT TRAJECTORY ACCURACY EVALUATION MAPS 
FOR HYBRID MANUFACTURING PROCESS BASED ON JOINT ANGLE 

ERROR ANALYSIS 

Zhiyuan Wang, Renwei Liu, Todd Sparks, Yunlu Zhang and Frank Liou 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology, Rolla, Missouri 65409, U.S.A. 

ABSTRACT 

Industrial robots have been widely used in various fields. The joint angle error is a 

main factor that affects the accuracy performance of the robot. It is important to notice that 

these kinematic parameters error cannot be eliminated from the robot system completely. 

Even after calibration, these errors still exist and will be fluctuated during the robot system 

running. This paper proposed a new method of finding the best position and orientation to 

perform a specific working path based on the current accuracy capacity of robot system. 

By analyzing the robot forward/inverse kinematic and the angle error sensitivity of 

different joint in the serial manipulator system, a new evaluation formulation is established 

for mapping the trajectory accuracy within the robot’s working volume. The influence of 

different position and orientation on the movement accuracy of end effector is discussed. 

Finally, a visualized evaluation map can be obtained to describe the accuracy difference of 

a robotic laser deposition working path at different positions and orientations. This method 

is helpful for making the maximum usage of the robot’s current accuracy ability rather than 

blindly pursuit the higher accuracy of robot system. 

Keywords: Industrial Robot, Trajectory Accuracy, Joint Angle Error, Hybrid 

Manufacturing 
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1. INTRODUCTION 

Usually, the serial robots are mainly used in industry for tasks that require good 

repeatability [1-2]. In this case, the movement accuracy of a robot is not important, as long 

as the robot end-effector poses are manually taught, repeatability is all that matters. 

However, in offline programming tasks, like the robotic hybrid manufacturing process, 

movement accuracy becomes important, since the working path and positions are defined 

in a virtual space with respect to an absolute or relative coordinate system.  

In order to improve the precision of robot, some studies have focused on the 

modeling and identification of the geometric parameter errors and have ignored the non-

geometric errors [3-4]. These studies assumed that the effect of the non-geometric errors 

on the robot position errors is small [5-8]. The identified kinematic parameters are 

inaccurate, because these non-geometric errors still affect the robot accuracy, non-

geometric error parameters cannot be ignored.  

Other researchers developed the robot kinematic model including geometric and 

joint compliance errors. Judd and Knasinski [9] examined experimentally many error 

sources of a physical robot such as geometric errors, gear errors, servo error, structural 

deformation errors, thermal change errors, gear wear errors and base misalignment. 

However, these error sources are specific to individual physical robots, so the method is 

not general. Dulen and Schröer [10] applied the elastic beam theory to investigate the robot 

link effects as represented by the changes of six differential elements. Hudgens et al. [11] 

used a method for the identification of general robot compliance characteristics under 

applied torques and forces. But both studies did not include sufficient non-geometric errors 

for accurate robot calibration. 
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Some researchers focused on algorithm study, one of the most be used is the least 

squares algorithm for parameter identification [12]. There are many other studies using 

various algorithms for parameter identification such as nonlinear optimization procedure 

[13-14], iterative linearization, extended Kalman filter. The effectiveness of the 

identification algorithms was compared in the calibration study for SCARA robot by 

Omodei et al. [15]. Omodei et al. concluded that EKF is the best among the above 

algorithms due to the advantages such as fast convergence, reliability and estimation of 

identification result uncertainty. Park and Kim [16] conclude the same remark that EKF 

converges faster than Least Squares Estimation. Some algorithms also used for parameter 

identification for examples maximum likelihood [17], Levenberg–Marquardt [18] although 

their convergence speeds are fairly slow. 

Besides, to increase robot accuracy, its kinematic properties are identified based on 

robot signature. Stone et al. [19-20] developed an identification method to estimate S model 

parameters based on joint features such as rotation plane, rotation center and rotation 

radius. Afterward, D-H parameters can be extracted from the parameters of S model. 

Abderrahim and Whittaker [21] identify directly D–H parameters by adopting the method 

of Stone et al. without utilizing the S model. These studies, however, only found out robot 

geometric parameters. Another calibration method applied genetic programming for 

calibrating manipulators [22]. The advantage of the method is that it makes a correcting 

model automatically by genetic programming (or symbolic regression) and therefore 

avoiding the involvement of human in building robot calibration models. However, this 

method does not supply knowledge of error sources in robot structure and has slow 

convergence speed due to the nature of the method. 
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In addition to the model-based calibration methods mentioned above, alternative 

approaches such as the so-called model-free calibration have been developed for robot 

calibration. These approaches are based on an approximation of robot kinematic 

relationships, such as the relationship between the robot joint readings and its position 

errors or between the robot positions and its position errors. In order to approximate these 

relationships, some researchers have used radial basis function networks (RBFN) [23], 

fuzzy logic algorithms [24], and artificial neural networks (ANN) [25-26]. Some other 

researchers have utilized polynomials such as Fourier polynomials, ordinary polynomials, 

and the polynomials of Jacobi, Laguerre and Hermeite, and Bessel. Other works have used 

Fourier and ordinary polynomials to predict the robot position errors at its configurations 

or end-effector positions [27-28]. However, these techniques are limited due to their low 

accuracy and complicated polynomials. Among those approximation techniques, the ANN-

based functional approximation is the most effective due to its ability to generalize high 

adaptation, flexibility, and learning ability. In some studies [29-30], a functional 

relationship between the robot joint angle and its corresponding joint errors are formulated 

based on an ANN. However, the ANN training data that are obtained by the robot's nominal 

inverse kinematics are inaccurate. Generally, the methods of approximation for robot 

kinematics are limited with regard to understanding the sensitivity of the robot error 

sources, even the errors that can be modeled or measured easily. 

As the above stated studies, most of study in this area are focus on improve the 

accuracy of robot system, but it is important to notice that these kinematic parameters error 

cannot be eliminated from the robot system completely. Even after calibration, these errors 

still exist and will be fluctuated during the robot system running. Thus it is more 
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meaningful to make the maximum usage of the robot’s current accuracy ability rather than 

blindly pursuit the higher accuracy of robot system. This paper proposed a new method of 

finding the best position and orientation to perform a specific working path based on the 

current accuracy capacity of robot system. This paper is composed as following structure: 

Firstly, the knowledge of rigid body representation and homogeneous transformation 

matrices is introduced. Then by analyzing the robot forward/inverse kinematic and the 

angle error sensitivity of different joint in the serial manipulator system, a new evaluation 

formulation is established for mapping the trajectory accuracy within the robot’s working 

volume. The influence of different position and orientation on the movement accuracy of 

end effector is discussed. Finally, a visualized evaluation map can be obtained to describe 

the accuracy difference of a robotic laser deposition working path at different positions and 

orientations.  
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2. RIGID BODY REPRESENTATION AND HOMOGENEOUS 
TRANSFORMATION MATRIX 

A point P in space can be represented by its three coordinates relative to Cartesian 

reference frame: 

P = ��� + ��� + ����                                                 (1) 

Where �� , �� , and �� are the three coordinates of the points represented in the 

reference frame. �, �, and �� are the unit vectors along each axis in the reference frame. 

A vector can be represented by three coordinates of its tail and of its head. If the 

vector starts at ��  and ends at the point P (Figure 2.1), then: 

� 
�  = ��� + ��� + ����                                            (2) 

Where ��, ��, and ��are the three components of the vector in the reference frame. 

In fact, point P is in reality represented by a vector connected to it at point P and expressed 

by the three components of the vector. The vector can also be written in a matrix form in 

the reference frame, as shown in Equation (3). 

� 
� = �

��

��

��

�                                                        (3) 

         

Figure 2.1 Representation of a point and a vector in space 
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An object can be represented in space by attaching a frame to it and representing 

the frame in space. Since the object is permanently attached to this frame, its position and 

orientation relative to this frame is always known. As a result, as long as the frame can be 

described in space, the object’s location and orientation relative to the fixed frame will be 

known, as shown in Figure 2.2. 

 

Figure 2.2 Representation of an object in space 
 

Where �� , �� , and ��  are the unit vector in the reference frame B, the three unit 

vectors are mutually perpendicular and their length must be equal to unity. These 

constraints translate into the following constraint equations: 

�� 
� �� 

� = �� 
� �� 

� = �� 
� �� = 1 

�                                 (4) 

�� 
� �� 

� = �� 
� �� 

� = �� 
� �� = 0 

�                                 (5) 

Create a 3 × 3 matrix ��
� , use the direction cosine value of �� , �� , and ��  relative 

to the unit vector in the reference frame A as the elements. 

� = [ �� 
� �� 

� �� 
� ] = �

��� ��� ���

��� ��� ���

��� ��� ���

��
�                              (6) 
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��
�  represents the rotation of object relative to reference frame A. It is easy to notice 

that ��
�  is an orthogonal matrix, and satisfying the following equation: 

���
�
� = ��

�
� ; | ��

� |= 1                                                (7) 

The rotation matrixes about x-axis, y-axis and z-axis are as following: 

�(�,�)= �
1 0 0
0 �� ��
0 �� ��

�                                               (8) 

�(�,�)= �
�� 0 ��
0 1 0
�� 0 ��

�                                               (9) 

�(�,�)= �
�� �� 0
�� �� 0
0 0 1

�                                             (10) 

Therefore, the object’s location and orientation relative to the fixed frame can be 

described by a 4 × 4 homogeneous matrix: 

��
� = �

��
� �� � 

�

0 1
�                                                 (11) 
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3. D-H REPRESENTATION OF 6-DOF INDUSTRIAL ROBOT 

In 1955, Denavit and Hartenberg published a paper in the ASME Journal of Applied 

Mechanics that was later used to represent and model robots and to derive their equations 

of motion. The Denavit – Hartenberg (D-H) model of the representation is a very simple 

way of modeling robot links and joints that can be used for any robot configuration, 

regardless of its sequence and complexity.  

It has the added benefit that many techniques have been developed for use with its 

results, such as the calculation of Jacobians, force analysis, etc. This method has become 

the standard way of representing robots and modeling their motions. 

For the 6-DOF industrial robot, a reference frame will be assigned to each joint and 

define a general procedure to transform form one joint to the next. Combine all the 

transformations from the base to the first joint, from the first joint to the second joint, etc., 

until get to the last joint, the robot’s total transformation matrix will be obtained.  

Figure 3.1 shows two reference frames, each has assigned on a rotate joint. Assign 

joint number � to the first shown joint, � + 1 to the second shown joint.  

All joints, without exception, are represented by a z-axis. For the revolute, the z-

axis is in the direction of rotation as followed by the right-hand rule for rotations and the 

rotation value � about the z-axis will be the joint variable.  

As shown in Figure 3.1, in general, the joints may not necessarily be parallel or 

intersecting. As a result, in general, the z-axes are skew lines.  

There is always one line mutually perpendicular to any two skew lines, called the 

the common normal, which has the shortest distance between the two skew lines. The x-

axis of the local reference frame always be assigned in the direction of the common normal. 
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Thus, if �� represents the common normal between �� and ����, the direction of ���� will 

be along ��.  

In figure 3.1, � represents a rotation about the z-axis, � represents the distance on 

z-axis between two successive common normal, � represents the length of each common 

normal (also called joint offset), and � represents the angle between two successive z-axes 

(also called joint twist). 

 

Figure 3.1 A D-H representation of robot joint-link frame combination 

The next step is to follow the necessary motions to transform from one reference 

frame to the next. Assuming that starting from the local reference frame  �� ��, the next 

local reference frame ���� ���� will be get by following four standard motions: 

(I) Rotate about the ��-axis and angle of ��, this will make �� and ���� parallel to 

each other. This is true because �� and ����  are both perpendicular to �� and rotating an 

angle of �� will make them parallel (and thus coplanar). (II) Translate along the ��-axis a 

distance of �� to make �� and ���� collinear. Since �� and ���� were already parallel and 

normal to ��, moving along �� will lay them over each other. (III) Translate along the ��-

axis a distance of ��  to bring the origins of ��  and ���� together. At this point, the two 

origins of the two reference frames will be at the same location. (IV) Rotate ��-axis about 
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����-axis an angle of �� to align ��-axis with ����-axis. At this point, frame � and � + 1 will 

be exactly the same, and transformed from one frame to the next will be obtained. 

Doing the exactly the same sequence of four movements between the � + 1 and � +

2 frames will transform one to the next, and by repeating this as necessary, successive 

frames can be transformed. Starting with the reference frame, firstly transformed to the 

base of the robot, then to the first joint, second joint…, until the end effector. What is nice 

is that the foregoing sequence of movements remains the same between any two frames. 

Use matrix A representing the four movements is found by post-multiplying these 

four matrices representing the four movements. Since all transformations are relative to the 

current frame, all matrices are post-multiplied. The result is as follows: 

���� = �� = ���(��,��)× �����(0,0,��)× �����(��,0,0)× 
� ���(��,��) 

= �

��� ��� 0 0
��� ��� 0 0
0 0 1 0
0 0 0 1

� × �

1 0 0 0
0 1 0 0
0 0 1 ��

0 0 0 1

� × �

1 0 0 ��

0 1 0 0
0 0 1 0
0 0 0 1

� × �

1 0 0 0
0 ��� ��� 0
0 ��� ��� 0
0 0 0 1

�   (12) 

�� = �

��� ������ ������ �����

��� ������ ������ �����

0 ��� ��� ��

0 0 0 1

�                              (13) 

In the equations,  ��� represents ���(��), ��� represents ���(��). 

Use �� represents the location and orientation of the first joint relative to the base 

frame of the robot, �� represents the location and orientation of the second joint relative to 

the first joint frame.  

Thus the location and orientation of the second joint relative to the base frame can 

be represented by the post-multiplying previous two matrices: 

�� = ����                                                    (14) 
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Calling the result of post-multiplying �� matrices as �, if the pre-superscript is 0, it 

can be omitted to write. 

At the base of the robot, start with the first joint and transform to the second joint, 

then to the third…, to the hand of the robot, and eventually to the end effector. For a n 

degree of freedom series robot, there will be number �  of �  matrices, the total 

transformation between the base of the robot and the end effector is: 

�� = ������ ��                                           (15) 

To facilitate the calculation of the �  matrices, a table of joint and link parameters 

will be formed, whereby the values representing each link and joint are determined from 

the schematic drawing of the robot, and are substituted into each �  matrix.  

The Nachi Robot (SC300F-02) is used as an illustrate example throughout this 

paper. It has a 4.1 �� (cross-section area) operating area and a 300° rotation range for the 

base motor (Figure 3.2), which could provide a much bigger working envelope than any 

current hybrid manufacturing system. The 6-axis movement mechanism makes the 

deposition/machining process more flexible in building a model with complex features. 

 

Figure 3.2 Working envelop and links schematic of Nachi Robot (SC300F-02) 
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Based on the previous of knowledge of how to set the reference frame axis on each 

joint, and figuring out the positive rotation direction of each joint by operating the robot 

manually, the kinematic chain of Nachi Robot (SC300F-02) is shown in Figure 3.3.  

 

Figure 3.3 Kinematic chain schematic of Nachi Robot (SC300F-02) 
 

But one thing needs to be noticed is that at current posture, the joints value 

displayed on the robot’s touchpad is [0° 90° 0° 0° 0° 0°]. In order to build a D-H 

model could represent the real robot perfectly, all of the joint value should be set to 0°, thus 

the robot’s posture will be look like as the Figure 3.4: 

 

Figure 3.4 Robot’s posture when joints value as  [0° 0° 0° 0° 0° 0°] 
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Start at joint 1, �� represents the first joint, which is the base revolute joint, �� is 

chosen to be the same direction as the reference frame x-axis of the robot controller, this is 

done for convenience to verify the correctness of the D-H model. �� is a fixed field axis, it 

represents the base of the robot. Next, �� is assigned at joint 2. �� will be normal to �� and 

��, because these two axes are intersecting. �� will be in the direction of the common 

normal between �� and ��. �� is in the direction of the common normal between �� and ��. 

In order to ensure the solvability of the invers kinematic of robot, ��, �� and �� are assigned 

at the same origin point. Thus, the reference frames representation of Nachi robot as shown 

in Figure 3.5. Normally, the end effector is not included in the equations of motions, but it 

can be represented by an additional line in the D-H parameters table. In the case, the tip 

point of end effector physically represents the center point of the fixing plate of the joint 

6, it is also as the same as the coordinate value that indicated on the robot’s touch pad.  

 

Figure 3.5 Reference frames representation of Nachi robot  
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According to these assigned coordinate frames, the parameters of D-H model can 

be filled out in Table 3.1. Notice that the rotations are measured with the right-hand rule. 

The curled fingers of your right hand, rotating in the direction of rotation, determine the 

direction of the axis of rotation along the thumb. 

Table 3.1 D-H model parameters of Nachi Robot (SC300F-02) 

� �� �� �� �� 

1 �� 1070 340 90 

2 �� 0 910 0 

3 �� 0 200 90 

4 �� 1300 0 -90 

5 �� 0 0 90 

6 �� 0 0 0 

tool 0 235 0 0 
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4. ROBOT KINEMATIC 

Robot kinematic equations can establish the mapping of parameters between joints 

angle domain and coordinate domain of the end effector (Figure 4.1). The forward 

kinematic problem is concerned how to calculate the position and orientation of the end 

effector from a group of known joints value. On the contrary, the inverse kinematic 

problem is to determine the value of each joint in order to place the arm at a desired position 

and orientation.  

 

Figure 4.1 Mapping relationship between joints angle domain and end effector domain 

4.1. FORWARD KINEMATIC OF ROBOT 

According to Equation 14, �� represents the transformation matrix of end effector 

frame relative to the base frame of a n degree of freedom series robot. The position and 

orientation of an arbitrary point � = [�� �� ��] 
�  on the end effector can be described 

in the robot base coordinate frame as following: 

� = �� � 
� = ������ �� � 

�
 

�                                      (16) 

For a robot which structure has been determined, according to D-H model table, 

link length ��, link offset ��, and link rotation angle �� are all known parameters, �� are the 

variables changing with the movement of the robot. Thus, the equations of forward 

kinematic can be written as: 

�� = ��(��)��(��)��(��) ��(��)                            (17) 
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For the Nachi robot, there are 6 joints, the transformation between each two 

successive joints can be written by simply substituting the parameters from the Table 1: 

�� = �

�� 0 �� ����

�� 0 �� ����

0 1 0 ��

0 0 0 1

�                                         (18) 

 

�� = �

�� �� 0 ����

�� �� 0 ����

0 0 1 0
0 0 0 1

�                                         (19) 

 

�� = �

�� 0 �� ����

�� 0 �� ����

0 1 0 0
0 0 0 1

�                                         (20) 

 

�� = �

�� 0 �� 0
�� 0 �� 0
0 1 0 ��

0 0 0 1

�                                         (21) 

 

�� = �

�� 0 �� 0
�� 0 �� 0
0 1 0 0
0 0 0 1

�                                              (22) 

 

�� = �

�� �� 0 0
�� �� 0 0
0 0 1 0
0 0 0 1

�                                              (23) 

In the equations,  �� represents ���(��), �� represents ���(��). 

According to equation 11, the ��  is a 4 × 4 homogeneous matrix, the forward 

kinematic solution of Nachi Robot it can be written as following: 
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�� = �

�� �� �� ��

�� �� �� ��

�� �� �� ��

0 0 0 1

� = ������������                       (24) 

The elements in the matrix are as following: 

�� = ��(��(��(������ ����) ������) ��(��(������ ����)+ ������))+

��(���� + ������)  

�� = ��(��(��(������ ����) ������) ��(��(������ ����)+ ������))

��(���� + ������)  

�� = ��(��(������ ����)+ ������)+ ��(��(������ ����) ������)  

�� = ��(��(��( ������ ����)+ ������) ��(��( ������ ����) ������))+

��(���� ������)  

�� = �����(��( ������ ����)+ ������) ��(��( ������ ����) ������)�

��(���� ������)  

�� = ��(��( ������ ����) ������)+ ��(��( ������ ����)+ ������)  

�� = ��(��(������ + ����) ��(������ ����))+ ������ 

�� = �����(������ + ����) ��(������ ����)� ������ 

�� = ��(������ ����)+ ��(������ + ����) 

�� = ��(��(���� + ����) ��(���� ����)+ ����)+ ���� 

�� = ��(��(���� + ����) ��(���� ����)+ ����)+ ���� 

�� = ��(���� + ����)+ ��(���� ����)+ ���� + �� 

4.2. INVERSE KINEMATIC OF ROBOT 

The previous section showed how to determine the end-effector position and 

orientation in terms of the joint variables. This section is concerned with the inverse 

problem of finding the joint variables in terms of the end-effector position and orientation. 
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This is the problem of inverse kinematics, and it is, in general, more difficult than the 

forward kinematics problem. The following derivation steps will show how to obtain the 

solution of inverse kinematics of robot: 

Step 1: solve �� 

∵  �� = ������������ 

∴ ��
���� = ���������� 

Make � = ��
����, � = ���������� 

∵ For the two equal matrixes, the corresponding elements in matrix are equal as 

well. 

∴ �(3,4)= �(3,4) 

∵ �
�(3,4)= �� sin(��) �� cos(��)

�(3,4)= 0                                          
 

∴ �� sin(��) �� cos(��) = 0 

⇒
sin(��)

cos(��)
=

��

��
= tan (��) 

Therefore, the solution of �� is: 

�� = ����2(��,��)                                                                                           (25) 

Step 2: solve �� 

∵  �� = ������������ 

∴ ��
���� = ���������� 

Make � = ��
����, � = ���������� 

∵ For the two equal matrixes, the corresponding elements in each matrix are equal 

as well. 
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∴  �
�(1,4)= �(1,4)

�(2,4)= �(2,4)
  

∵

�(1,4)= �� sin(��)+ �� cos(��) ��

�(1,4)= �� sin(�� + ��)+ �� cos(�� + ��)+ �� cos(��)

�(2,4)= �� ��

�(2,4)= �� sin(�� + ��) �� cos(�� + ��)+ �� sin(��)

 

Notice that all variables in �(1,4) and �(2,4) are known, make �� = �(1,4) and 

�� = �(2,4) 

⇒ �
�� = �� sin(�� + ��)+ �� cos(�� + ��)+ �� cos(��)

�� = �� sin(�� + ��) �� cos(�� + ��)+ �� sin(��)
 

⇒ �
��

� = (�� sin(�� + ��)+ �� cos(�� + ��)+ �� cos(��))�

��
� = (�� sin(�� + ��) �� cos(�� + ��)+ �� sin(��))�  

⇒  ��
� + ��

� = 2���� sin(��)+ 2���� cos(��)+ ��
� + ��

� + ��
� 

⇒ �� sin(��)+ �� cos(��)=
(��

� + ��
�) (��

� + ��
� + ��

�)

2��
 

Make � =
���

����
���(��

����
����

�)

���
, and based on the knowledge of trigonometric 

functions, the equation ����(�)+ ����(�) = 1 is always true.  

⇒ �
�� sin(��)+ �� cos(��) = �

����(��)+ ����(��)= 1
   

These are binary quadratic equations, in which sin(��) and cos(��) are regarded 

as the unknown variables. Solve these equations, the two sets of solution are as following: 

Solution 1 of ��:  

�sin(����)=
��� �� + ��

� + ��
� ���

��
� + ��

� , cos(����)=
��� �� + ��

� + ��
� + ���

��
� + ��

�
� 

⇒ tan(����)=
��� �� + ��

� + ��
� + ���

��� �� + ��
� + ��

� + ���
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⇒ tan(����)=

( ��� �� + ��
� + ��

� + ���)(
1

��� �� + ��
� + ��

�
)

(��� �� + ��
� + ��

� + ���)(
1

��� �� + ��
� + ��

�
)

 

⇒ tan(����)=

�
��

��
� + (

�

� �� + ��
� + ��

�
)

1 �
��

��
� (

�

� �� + ��
� + ��

�
)
 

Based on the knowledge of trigonometric functions, there is: 

tan(α + β)=
tan(�)+ tan (�)

1 tan (�)tan (�)
 

Make � = ����2( ��,��),  � = ����2(�,� �� + ��
� + ��

�) 

⇒ tan(α + β)=
tan(����2( ��,��))+ tan (����2(�,� �� + ��

� + ��
�))

1 tan (����2( ��,��))tan (����2(�,� �� + ��
� + ��

�))

= tan(����) 

⇒ ���� = α + β = ����2( ��,��)+  ����2(�,� �� + ��
� + ��

�) 

Solution 2 of ��:  

�sin(����)=
��� �� + ��

� + ��
� + ���

��
� + ��

� , cos(����)=
��� �� + ��

� + ��
� ���

��
� + ��

�
� 

⇒ tan(����)=
��� �� + ��

� + ��
� + ���

��� �� + ��
� + ��

� + ���
 

⇒ tan(����)=

(��� �� + ��
� + ��

� + ���)(
1

��� �� + ��
� + ��

�
)

( ��� �� + ��
� + ��

� + ���)(
1

��� �� + ��
� + ��

�
)
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⇒ tan(����)=

�
��

��
� + (

�

� �� + ��
� + ��

�
)

1 �
��

��
� (

�

� �� + ��
� + ��

�
)
 

Based on the knowledge of trigonometric functions, there is: 

tan(α + β)=
tan(�)+ tan (�)

1 tan (�)tan (�)
 

Make � = ����2( ��,��),  � = ����2(�, � �� + ��
� + ��

�) 

⇒ tan(α + β)=
tan(����2( ��,��))+ tan (����2(�, � �� + ��

� + ��
�))

1 tan (����2( ��,��))tan (����2(�, � �� + ��
� + ��

�))

= tan(����) 

⇒ ���� = α + β = ����2( ��,��)+  ����2(�, � �� + ��
� + ��

�) 

Therefore, take two results together, the solution of �� is: 

�� = ����2( ��,��)+  ����2 ��,±� �� + ��
� + ��

��                                  (26) 

When ( �� + ��
� + ��

�)≥ 0 

Step 3: solve �� 

∵  �� = ������������ 

∴ (������)���� = ������ 

Make � = (������)����, � = ������ 

∵ For the two equal matrixes, the corresponding elements in each matrix are equal 

as well. 

∴  �
�(1,4)= �(1,4)

�(3,4)= �(3,4)
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∵

�(1,4)= sin(�� + ��)(�� ��)+ cos(�� + ��)��� sin(��)+ �� cos(��) ��� cos(��)�� ��

�(1,4)= 0

�(3,4)= sin(�� + ��)��� sin(��)+ �� cos(��) ��� + cos(�� + ��)(�� ��) sin(��)��

�(3,4)= ��

 

⇒

sin(�� + ��)=
(�� sin(��)+ �� cos(��) �� + �� ��)�� cos(��)+ (�� sin(��)+ �� cos(��) ��)�� + (�� ��)��

(�� sin(��)+ �� cos(��) ��)� + (�� ��)�

cos(�� + ��)=
(�� sin(��)+ �� cos(��) �� + �� ��)�� cos(��)+ (�� sin(��)+ �� cos(��) ��)�� + (�� ��)��

(�� sin(��)+ �� cos(��) ��)� + (�� ��)�

 

Notice that all the variables in equation (xx) are known, thus make: 

�� =
(�� sin(��)+ �� cos(��) �� + �� ��)�� cos(��)+ (�� sin(��)+ �� cos(��) ��)�� + (�� ��)��

(�� sin(��)+ �� cos(��) ��)� + (�� ��)�

�� =
(�� sin(��)+ �� cos(��) �� + �� ��)�� cos(��)+ (�� sin(��)+ �� cos(��) ��)�� + (�� ��)��

(�� sin(��)+ �� cos(��) ��)� + (�� ��)�

 

⇒ �
sin(�� + ��)= ��

cos(�� + ��)= ��
 

⇒
sin(�� + ��)

cos(�� + ��)
=

��

��
= tan (�� + ��) 

Therefore, the solution of �� is: 

�� = ����2(��,��) ��                                                                                    (27) 

Step 4: solve �� 

∵  �� = ������������ 

∴ (������)���� = ������ 

Make � = (������)����, � = ������ 

∵ For the two equal matrixes, the corresponding elements in each matrix are equal 

as well. 

∴  �
�(1,3)= �(1,3)

�(2,3)= �(2,3)
 

∵

�(1,3)= �� sin(�� + ��)+ �� sin(��)cos(�� + ��)+ �� cos(��)cos(�� + ��)

�(1,3)= cos(��)sin(��)

�(2,3)= �� sin(��) �� cos(��)

�(2,3)= sin(��)sin(��)
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Notice that all variables in �(1,3) and �(2,3) are known, make �� = �(2,3) and 

�� = �(1,3)  

⇒ �
�� = �� sin(��) �� cos(��)

�� = �� sin(�� + ��)+ �� sin(��)cos(�� + ��)+ �� cos(��)cos(�� + ��)
 

⇒ �
�� = sin(��)sin(��)

�� = cos(��)sin(��)
 

When sin(��)≠ 0 

⇒
sin(��)

cos(��)
=

��

��
= tan (��) 

Therefore, the solution of �� is: 

�� = ����2(��,��)                                                                                             (28) 

Step 5: solve �� 

∵  �� = ������������ 

∴ (��������)���� = ���� 

Make � = (��������)����, � = ���� 

∵ For the two equal matrixes, the corresponding elements in each matrix are equal 

as well. 

∴  �
�(1,3)= �(1,3)

�(2,3)= �(2,3)
   

�(1,3) = sin(��) 

�(2,3) = cos(��) 

�(1,3)= (�� sin(��) �� cos(��))sin(��)+ ((( �� sin(��)

�� cos(��))sin(��)+ �� cos(��))sin(��)+ (�� cos(��)+ (�� sin(��)+

�� cos(��))cos(��))cos(��))cos(��)  
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�(2,3)= (( �� sin(��) �� cos(��))cos(��) �� sin(��)) sin(��)+

(( �� sin(��) �� cos(��))sin(��)+ �� cos(��))cos(��)  

Notice that all variables in �(1,3) and �(2,3) are known, make �� = �(1,3) and 

�� = �(2,3)  

⇒ �
�� = sin(��)

�� = cos(��)
 

⇒
sin(��)

cos(��)
=

��

��
= tan (��) 

Therefore, the solution of �� is: 

�� = ����2(��, ��)                                                                                          (29) 

Step 6: solve �� 

∵  �� = ������������ 

∴ (����������)���� = �� 

Make � = (����������)����, � = �� 

∵ For the two equal matrixes, the corresponding elements in each matrix are equal 

as well. 

∴  �
�(1,2)= �(1,2)

�(2,2)= �(2,2)
   

�(1,2)= ((( �� sin(��) �� cos(��))cos(��) �� sin(��))sin(��)+

(( �� sin(��) �� cos(��))sin(��)+ �� cos(��))cos(��))sin(��)+ ((�� sin(��)

�� cos(��))sin(��)+ ((( �� sin(��) �� cos(��))sin(��)+ �� cos(��))sin(��)+

(�� sin(��)+ (�� sin(��)+ �� cos(��))cos(��))cos(��))cos(��))cos(��)  

�(1,2) = sin(��) 
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�(2,2)= (((�� sin(��)+ �� cos(��))sin(��) �� cos(��))sin(��)+

(( �� sin(��) �� cos(��))cos(��) �� sin(��))cos(��))sin(��)+

(�� sin(��) �� cos(��))cos(��)  

�(2,2) = cos(��) 

Notice that all variables in �(1,2) and �(2,2) are known, make �� = �(1,2) and 

�� = �(2,2)  

⇒ �
�� = sin(��)

�� = cos(��)
 

⇒
sin(��)

cos(��)
=

��

��
= tan (��) 

Therefore, the solution of �� is: 

�� = ����2( ��,��)                                                                                          (30) 

Thus, six equations have been found that collectively yield the values needed to 

place and orientate the robot at any desired location. In addition, all the valid results of 

inverse kinematic should be within the joint rotation range respectively, as shown in Table 

4.1. It is important to notice that this solution is only possible to obtain in this method 

because the last three joints of the robot are intersecting at a common point. Otherwise, it 

will not possible to solve for this kind of solution, and as a result, one will have to solve 

the matrices directly or by calculating the inverse of the matrix and solving for the 

unknowns. Most industrial robots have the intersecting wrist joint and a similar approach 

may be taken for the other robots.  

From the above calculation process, it is easy to notice that the forward kinematic 

problem has only one solution, but the inverse kinematic problem usually has multiple 

groups of solution, as shown in Figure 4.2. A common principle called “Minimum energy 
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consuming principle” has been widely used to choose a group solution of inverse 

kinematic. The controller will choose a group of angles which has the minimum joint 

angles changing compare to the current position of the robot, because the less joint angle 

rotating result the less power consuming.  

Table 4.1 Joint rotation range of Nachi Robot (SC300F-02) 

Joint # Rotation range 

J1 �~� 

J2 0~1.67� 

 J3 0.67�~0.33� 

 J4 �~� 

 J5 1.33�~1.33� 

J6 �~� 

 

 

Figure 4.2 Solution difference between joints angle domain and end effector domain 
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5. JOINT ANGLE ERROR ON EFFECTOR’S POSITION ACCURACY 
 

From the D-H model of Nachi robot, the center point of the robot’s fixing plate 

relative to the robot base reference frame (Figure 5.1) can be described as following 

equation: 

� = �

�
�
�
1

� = ������������ ����                                      (31) 

�� = �

��� ������ ������ �����

��� ������ ������ �����

0 ��� ��� ��

0 0 0 1

�                                   (32) 

���� = �

0
0
�
1

�                                                        (33) 

 
 

Figure 5.1 Center point of the robot’s fixing plate relative to the robot base frame 
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In actual use, the kinematic parameters of the robot are normally different from the 

designed due to variety reasons, these difference come from the manufacturing, 

assembling, installation, sensors and even the temperature changing, finally these factors 

will lead to the position error of the end effector. Because the serial system structure of 

industrial robot, the error on each joint could be coupling and accumulating with each 

other. For the error on each joints, the ability to influence the final position error of the end 

effector is very different as well. Thus, a robot positon error model can be created to 

analyze the sensitivity of each joint with error as following:  

��� = �

�(�� + ���) �(�� + ���)�(�� + ���) �(�� + ���)�(�� + ���) (�� + ���)�(�� + ���)
�(�� + ���) �(�� + ���)�(�� + ���) �(�� + ���)�(�� + ���) (�� + ���)�(�� + ���)

0 �(�� + ���) �(�� + ���) �� + ���

0 0 0 1

�  (34) 

����� = �

0
0

� + ��
1

�                                                     (35) 

�� = �

� + ��
� + ��
� + ��

1

� = ������������������ �����                        (36) 

� = |���|= �(��)� + (��)� + (��)�                             (37) 

��� and ����� are the transformation matrixes with kinematic parameters’ error,  

��  is the center point of the robot’s fixing plate when considering the kinematic 

parameters’ error of D-H model, �  is the position difference between the theory 

coordinate value and coordinate value with parameters’ error. 

Based on the equations of robot positon error model, a D-H model parameter error 

analysis simulation system can be programmed with Python, the flow chart of this 

simulation analysis system as shown in Figure 5.2. 



  35 
 

 

Figure 5.2 Flow chart of D-H model parameter error analysis simulation system 

For the error on each joints, the influence on final position error of the end effector 

is varied at different position and orientation. In order to study the difference of these 

influence, the control variable method and unified error input method has been adopted. 

Set the joint value as  [ 90° 70° 20° 0° 50° 90°], this is a typical position and 

orientation of robot for deposition or machining process, as shown in Figure 5.3.  

 

Figure 5.3 Typical position and orientation of robotic deposition or machining process 
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Use this as the robot’s basic position and orientation, only rotate one joint at one 

time within its rotation range and keep other joints fixed, assume there is a joint angle error 

which value is 0.01°, calculate the coordinate error at every 1° angle changing, apply this 

error on each joint respectively, thus a figure with six error curves according to each joint 

can be obtained. Repeat this process for other joints, similar figures of error curves can be 

obtained, as shown in Figure 5.4. 

 

 

 

Figure 5.4 End effector error distribution when joints rotate with unified angle error 
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Figure 5.4 End effector error distribution when joints rotate with unified angle error 
(cont.) 

When joint 1 rotates from 0° to  360°, meanwhile other joints are fixed. Apply the 

0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4 (a). The figure shows that when only joint 1 rotates, the 

end effector error caused by angle error on different joints are constant, these values don’t 

change with the changing of position and orientation of joint 1. For the influence on final 

position error of different joint error, the effect of weights sorted descend as 1, 3, 2, 5, 4, 

6. 

When joint 2 rotates from 0° to 150°, meanwhile other joints are fixed. Apply the 

0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4 (b). The figure shows that when only joint 2 rotates, the 

end effector error caused by angle error on joint 1 is varied and reach its maximum at the 

middle value of the joint 2 rotation angle, the end effector error caused by angle error on 
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other joints are constant, these values don’t change with the changing of position and 

orientation of joint 2. For the influence on final position error of different joint error, the 

effect of weights sorted descend as 3, 2, 1, 5, 4, 6. 

When joint 3 rotates from 60° to 30°, meanwhile other joints are fixed. Apply the 

0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4 (c). The figure shows that when only joint 3 rotates, the 

end effector error caused by angle error on joint 1, 2 are varied, the end effector error 

caused by angle error on other joints are constant, these values don’t change with the 

changing of position and orientation of joint 3. For the influence on final position error of 

different joint error, the effect of weights sorted descend as 1, 2, 3, 5, 4, 6. 

When joint 4 rotates from 0° to 360°, meanwhile other joints are fixed. Apply the 

0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4 (d). The figure shows that when only joint 4 rotates, the 

end effector error caused by angle error on joint 1, 2, 3 are varied, the end effector error 

caused by angle error on other joints are constant, these values don’t change with the 

changing of position and orientation of joint 4. For the influence on final position error of 

different joint error, the effect of weights sorted descend as 1, 2, 3, 5, 4, 6. 

When joint 5 rotates from 120° to 120°, meanwhile other joints are fixed. Apply 

the 0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4 (e). The figure shows that when only joint 5 rotates, the 

end effector error caused by angle error on joint 1, 2, 3, 4 are varied, the end effector error 

caused by angle error on other joints are constant, these values don’t change with the 



  39 
 

changing of position and orientation of joint 5. For the influence on final position error of 

different joint error, the effect of weights sorted descend as 1, 2, 3, 5, 4, 6. 

When joint 6 rotates from 0° to 360°, meanwhile other joints are fixed. Apply the 

0.01°  joint angle error on each joints respectively, the resulting end effector error 

distribution as shown in Figure 5.4(f). The figure shows that when only joint 6 rotates, the 

end effector error caused by angle error on different joints are constant, these values don’t 

change with the changing of position and orientation of joint 6. For the influence on final 

position error of different joint error, the effect of weights sorted descend as 1, 3, 2, 5, 4, 

6. 

Sum up all these position error together and calculate the average position error 

caused by each joint respectively, the results as shown in Table 5.1. As can be seen from 

the data in Table 5.1, even a tiny joint error can lead to a significant end effector position 

error. The sensitivity of joint error influence on end effector position error is different, for 

the serial manipulator type industrial robot, the joint errors exist on arm joints have more 

obvious effect on position error of end effector than the joint errors exist on wrist joints. 

For the total influence on final position error of different joint errors, the effect of weights 

sorted descend as 6, 5, 4, 2, 3, 1.  

Table 5.1 Average position error (/mm) caused by each joint and joint error sensitivity 
rank 

 

 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 

Average position error 0.301 0.257 0.252 0.030 0.0410 0.0000 

Sensitivity rank 6 5 4 2 3 1 
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In order to increase the accuracy of industrial robot, precise manufactured parts and 

high resolution sensors can be used to reduce the joint angle error, but adopt these 

expensive parts for the whole robot system will make the cost surge. The analysis of joint 

error sensitivity can be helpful for making a decision of balancing the cost and accuracy. 

Take this Nachi robot as an example, utilize high performance parts and sensors on joint 1 

will improve the system accuracy mostly.  
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6. INDUSTRIAL ROBOT TRAJECTORY ACCURACY MAPPING 

Normally, the users pay attention to movement accuracy when robot perform 

certain trajectory, and simply believe that the more accurate of the robot system, the better 

result will be obtained. It is important to notice that the kinematic parameters error cannot 

be eliminate from the robot system completely, even after calibration, these errors still exist 

and will be varied during running, so the conventional error compensation method is not a 

“once and for all” solution. For a certain working path, it can be performed at multiple 

positions and orientations within robot working envelop, based on the robot kinematic and 

joint sensitivity analysis, a visualized evaluation map can be obtained to describe the 

accuracy difference of trajectory at different positions and orientations. This method can 

help the user to find the best position and orientation to perform a working path, it can also 

make the maximum usage of current accuracy ability of a specific robot rather than blindly 

pursuit higher accuracy. 

Any working path performed by robot is composed of angle changing in joints 

domain, the angle changing is related with the trajectory itself, as well as with its location 

and orientation. When an error is present, each joint has different sensitivity on affecting 

the position error of end effector. Thus, a trajectory accuracy evaluation function for Nachi 

Robot (SC300F-02) can be created as following: 

� = ∑ �����
�
��� = [�� �� �� �� �� ��]

���

���

���

���

���

���

                     (37) 

�� is the effect weight of different joints influence on position of end effector, ��� 

is the joint angle changing for a specific working path at certain position and orientation. 
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For a simple working path, let the end effector move a 50mm straight line along y-

axis from negative to positive in robot system coordinate, there are multiple positions 

available to conduct this task within robot working envelop, as shown in Figure 6.1.  

 

Figure 6.1 Multiple positions choice for robot conduct a specific trajectory 

Apply the trajectory accuracy evaluation method for this task, separate working 

area into small testing patches (50mm × 50mm) within the x range is from -700 to 700, y 

range is from -1200 to -2000, z takes 800, 1200, 1600, and 2000, respectively, in robot 

system coordinate. The robot trajectory accuracy evaluation mapping results for a 50 mm 

straight line in these laminated 2D working areas are as shown in Figure 6.2.  
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Figure 6.2 Trajectory accuracy evaluation mapping result for straight line in 2D working 
area 
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Figure 6.2 Trajectory accuracy evaluation mapping result for straight line in 2D working 
area (cont.) 

 
As can be seen from Figure 6.2, for same height, which means z value is constant, 

each patch has different accuracy evaluation value for a specific trajectory, the less 
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evaluation value of patch is, the better accuracy can be obtained at this position. The patch 

surrounded by rectangle shape indicate the best position to perform this task. The best 

position is varied along with changing of z value.  

In order to verify the correctness of accuracy evaluation, the drawing experiments 

have carried out.  

Employ the parameter settings the in Figure 6.2 (a) as an example, set up the 

position of working table and white paper with grid in the robot working envelop, as shown 

in Figure 6.3. 

 

Figure 6.3 Experiments set up for accuracy evaluation of robot drawing straight line 

According to the accuracy evaluation results shown in Figure 6.2 (a), let the robot 

draw 50mm straight line in the patch with best accuracy and in the patch with worst 

accuracy respectively. 

 Repeat this process for 10 times and record the measurement data as shown in 

Figure 6.4. 
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Figure 6.4 Experiments value (mm) for accuracy evaluation of robot drawing 

As can be seen from Figure 6.4, the average measurement value at the best accuracy 

position and the worst accuracy position are 50.01mm and 50.14mm, the standard deviation 

of two sets of data are 0.074 and 0.107, respectively. The difference between two standard 

deviations is 31%.  

The accuracy evaluation of the best accuracy position and the worst accuracy 

position with the parameter settings in Figure 6.2 (a) are 2.65 and 3.74, the difference 

between two accuracy evaluation values is 29%, which is close to the difference of standard 

deviations of experiments value. Thus the experiments result shows that the accuracy 

evaluation value could reflect the trajectory accuracy difference within robot working 

envelope at different positions. It is easy to notice that in Figure 6.1, all the directions of 

the straight lines are along the y axis of robot system coordinate, it is also the common 

direction when the users assign a working path for robot. Obviously, this straight line can 

be drawn in multiple directions from a same start point, and the different direction will 

cause different joint angle changing, as shown in Figure 6.5. 
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Figure 6.5 Multiple direction possibilities for robot conduct a specific trajectory 

Apply the trajectory accuracy evaluation method for this situation, set the angle 

changing 30° every position from 0° to 360°, the start point is (200, -1500, 1200) in robot 

system coordinate, the length of line is 50 mm.  

The robot trajectory accuracy evaluation results for these lines toward different 

directions as shown in Figure 6.6. 

 The 50 mm straight line start from the same point toward different directions have 

different accuracy evaluation value, the color range from red to green indicates the 

accuracy evaluation value as descending, the less evaluation value of line is, the better 

accuracy can be obtained at this orientation.  
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The lowest accuracy evaluation value is plotted as the thicker green arrow, it 

represents the best orientation to perform this task. 

 

Figure 6.6 Trajectory accuracy evaluation mapping result for straight line towards 
different directions 

 
In order to observe the affection of orientation on trajectory accuracy in the working 

envelop of robot, separate working area into small testing patches (120mm × 120mm) 

within the x range is from -600 to 600, y range is from -1200 to -1800, z takes 800, 1200, 

1600, and 2000, respectively, in robot system coordinate.  

Then apply the same analysis process to these multiple centers, the robot trajectory 

accuracy evaluation mapping results for 50 mm straight line starts from the same point 

towards different directions in laminated 2D working areas are as shown in Figure 6.7.  
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Figure 6.7 Trajectory accuracy evaluation mapping result for straight line orientation 
analysis 
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Figure 6.7 Trajectory accuracy evaluation mapping result for straight line orientation 
analysis (cont.) 
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As can be seen from Figure 6.7, at the same height, which means z value is constant, 

the best orientation for move a straight line are varied in different regions. For same x, y 

coordinates, the best orientation could be changed according to the changing of z value, as 

the red rectangle bounded area shown in these figures. Thus, the best position and 

orientation in 3D working envelop to perform a certain working path can be found by 

taking enough accuracy evaluation calculation. 
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7. SIMULATION: TRAJECTORY ACCURACY MAPPING OF A ROBOTIC 
HYBRID MANUFACTURING WORKING PATH 

The zigzag path is a typical trajectory for robotic hybrid manufacturing as shown 

in Figure 7.1. One layer of this kind path could work for machining or milling process, 

multiple layers of that could be used as a deposition working path.  

 

Figure 7.1 Zigzag path for hybrid manufacturing 

The simulation will take this zigzag path as an example, use the above discussed 

trajectory accuracy mapping method to find the best position and orientation to conduct 

this task within Nachi Robot’s (SC300F-02) working envelop (Figure 7.2). 

Also analyze the actual dimension error and possibility of reaching a deposition 

tolerance requirements according to a group of known joints error. 
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Figure 7.2 Multiple position and orientation possibilities for a zigzag path 
 

In order to study how zigzag trajectory’s position and orientation affect its accuracy 

in the working envelop of robot. The trajectory’s accuracy evaluation value should be 

calculated at different position while with different orientation with robot working envelop. 

Firstly, separate working volume into small testing cube area (50mm × 50mm ×

50mm) within the in robot system coordinate.  

Specifically, x range is from -500 to 500, y range is from -1200 to -1800, z range 

is from 800 to 1400. 

Thus there are 45 testing cube areas within robot working envelop, as shown in 

Figure 7.3.  

The dimension of deposition zigzag path is 10mm × 10mm × 1mm , layer 

thickness is 0.1 mm, track width is 2 mm and overlap is 0.3. 
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Figure 7.3 Trajectory testing cube within robot working envelop 
 

Secondly, set the orientation angle for these trajectories: 

Start from x axis positive direction, rotate about z axis counterclockwise, take the 

angle value as 0° , 30° , 60° , 90° , 120° , 150° , 180° , 210° , 240° , 270° , 300° , 330° , 

respectively.  

Then apply the trajectory accuracy mapping process to every line segments of the 

zigzag trajectories.  

Sum these up as robot trajectory accuracy evaluation value of this trajectory, the 

results are respectively shown in Table 7.1.  

Plot the testing cube area with the normalized evaluation values in angle group, the 

trajectory accuracy mapping results for this task as shown in Figure 7.4.  
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Table 7.1 Zigzag trajectories accuracy evaluation value 
 

 

 

 

 

 

Poistion 

No. 0 30 60 90 120 150 180 210 240 270 300 330

1 513.73 544.44 600.52 514.68 543.87 598.28 513.70 544.50 600.83 514.97 544.02 598.26

2 449.73 486.91 537.52 450.33 486.04 535.57 449.73 486.90 537.82 450.53 486.15 535.58

3 418.42 458.35 504.35 418.92 457.10 502.23 418.42 458.30 504.41 419.04 457.21 502.23

4 482.79 591.78 598.75 483.24 590.82 596.77 482.75 591.80 599.02 483.51 590.90 596.81

5 415.23 520.59 534.87 415.44 519.39 533.27 415.23 520.59 535.16 415.59 519.50 533.27

6 382.97 484.43 499.07 383.08 482.87 497.38 382.97 484.40 499.19 383.19 482.98 497.37

7 494.84 610.41 571.85 494.79 608.92 570.37 494.81 610.63 572.11 494.96 608.99 570.40

8 425.68 538.09 514.81 425.50 536.55 513.60 425.68 538.09 515.07 425.61 536.66 513.60

9 386.03 500.67 483.25 385.73 498.75 481.91 386.03 500.61 483.36 385.84 498.86 481.91

10 532.61 599.25 522.45 532.12 597.21 521.56 532.58 599.51 522.70 532.21 597.30 521.58

11 461.10 539.73 479.53 460.51 537.84 478.68 461.10 539.98 479.68 460.62 537.95 478.68

12 421.69 506.31 458.00 420.98 503.98 457.02 421.69 506.20 458.11 421.09 504.08 457.02

13 542.77 571.76 466.45 541.87 570.01 466.02 542.75 572.02 466.58 541.97 570.03 466.04

14 482.07 527.45 434.70 481.07 525.64 434.22 482.07 527.68 434.82 481.19 525.64 434.22

15 447.82 503.16 427.43 446.67 500.73 426.81 447.81 503.05 427.54 446.78 500.73 426.81

16 517.89 547.34 608.58 518.73 546.65 606.57 518.11 547.56 609.16 519.30 547.09 606.55

17 448.80 480.57 534.86 449.32 479.67 533.27 448.99 480.77 535.31 449.67 479.97 533.07

18 418.38 452.09 498.91 418.78 450.75 496.95 418.50 452.09 498.99 419.04 451.01 496.78

19 485.20 598.96 609.26 485.57 597.84 607.53 485.41 599.17 609.82 486.13 598.18 607.32

20 409.20 516.04 532.82 409.35 514.81 531.54 409.39 516.23 533.27 409.67 515.11 531.34

21 383.19 477.86 493.14 383.22 476.22 491.73 383.33 477.88 493.42 383.49 476.49 491.56

22 497.96 617.57 580.39 497.84 616.03 579.16 498.16 618.07 580.94 498.28 616.37 578.95

23 418.31 534.70 512.48 418.07 533.13 511.54 418.50 534.89 512.88 418.39 533.45 511.34

24 381.87 493.63 477.77 381.52 491.64 476.70 382.01 493.63 478.05 381.79 491.92 476.54

25 533.36 603.66 523.84 532.78 601.76 523.20 533.56 604.20 524.36 533.13 601.86 523.00

26 453.99 535.06 476.23 453.35 533.18 475.64 454.17 535.32 476.55 453.67 533.44 475.46

27 414.20 498.61 453.88 413.41 496.24 453.16 414.31 498.62 454.16 413.68 496.51 453.00

28 538.97 570.86 460.17 537.98 569.38 459.97 539.15 571.39 460.52 538.33 569.20 459.79

29 475.20 521.08 430.48 474.15 519.48 430.25 475.37 521.38 430.79 474.47 519.32 430.08

30 439.15 494.75 424.61 437.89 492.47 424.24 439.21 494.78 424.89 438.16 492.35 424.09

31 497.12 517.68 582.44 497.66 517.01 581.32 497.62 518.17 583.28 498.43 517.69 581.23

32 437.95 462.20 516.80 438.26 461.20 515.52 438.26 462.42 517.11 438.74 461.67 515.24

33 411.88 437.47 488.94 412.07 436.07 487.19 412.04 437.63 489.10 412.48 436.48 486.86

34 455.38 569.26 586.35 455.56 568.22 585.46 455.88 569.75 587.21 456.33 568.85 584.96

35 399.03 495.83 513.15 399.04 494.57 512.34 399.38 496.09 513.65 399.54 495.06 511.93

36 377.59 461.69 482.91 377.44 460.01 481.81 377.77 461.85 483.27 377.86 460.43 481.47

37 468.85 588.43 558.90 468.63 587.03 558.38 469.32 588.93 559.74 469.30 587.66 557.90

38 398.21 513.68 493.72 397.88 512.10 493.21 398.56 513.91 494.24 398.39 512.61 492.82

39 376.18 476.75 467.89 375.65 474.75 467.18 376.35 476.91 468.33 376.08 475.18 466.85

40 503.44 578.48 504.20 502.82 577.28 504.04 503.87 579.30 504.89 503.44 577.41 503.60

41 434.48 514.28 460.77 433.75 512.54 460.56 434.78 514.46 461.29 434.27 512.86 460.20

42 403.45 482.23 444.92 402.52 479.88 444.52 403.61 482.39 445.36 402.95 480.30 444.21

43 513.70 546.94 436.79 512.70 546.04 436.99 514.08 547.62 437.39 513.30 545.65 436.60

44 455.29 501.50 420.15 454.13 500.11 420.26 455.52 501.72 420.65 454.63 499.78 419.92

45 426.86 480.38 416.91 425.49 478.27 416.84 427.02 480.53 417.34 425.91 478.11 416.56

Rotation angle (°)
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(a) Trajectory rotate angle equals 0°                (b) Trajectory rotate angle equals 30° 

 

   
 

(c) Trajectory rotate angle equals 60°                (d) Trajectory rotate angle equals 90° 

 

   
 

(e) Trajectory rotate angle equals 120°              (f) Trajectory rotate angle equals 150° 

 
 

Figure 7.4 Trajectory accuracy mapping results 
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(g) Trajectory rotate angle equals 180°                (h) Trajectory rotate angle equals 210° 

 

   
 

(i) Trajectory rotate angle equals 240°                (j) Trajectory rotate angle equals 270° 

 

   
 

(k) Trajectory rotate angle equals 300°              (l) Trajectory rotate angle equals 330° 

 

Figure 7.4 Trajectory accuracy mapping results (cont.) 
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As can be seen from Table 7.1 and Figure 7.4, the affection of position to the 

trajectory accuracy evaluation result is obvious. The accuracy evaluation result is also 

changing with the change of trajectory’s orientation. Because the deposition angle between 

layers differs 90°, so the trajectory accuracy evaluation value in each axis directions is 

close, but it is still slightly different. The lower of the evaluation result is, the better 

accuracy can be obtained. Thus, the best position and orientation to perform this zigzag 

task is at center point of [100, -1600, 1000], and orientation angle is 90°. 

For the laser metal deposition process, track width is an important parameter to 

ensure the deposition quality, it will affect the gap distance between the melting pools, 

thereby influence the dimension accuracy and density of the deposited parts (Figure 7.5). 

 

Figure 7.5 Schematic diagram of track width and melting in laser metal deposition 
 

Usually, the diameter of laser spot is 2 mm, the overlap is chosen as 30%, thereby 

the theoretical track width should be 1.4 mm. But in actual, due the motion error of moving 

system, a 10% tolerance of the theoretical value is acceptable, as shown in Figure 7.6. 

 

Figure 7.6 Deposition track width tolerance 
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With a group of known joint error value, the actual track width conduct by robot at 

the best position and orientation can be calculated through the robot kinematic. The joint 

error can be obtained by using many kinds of robot calibration method, like the laser tracker 

or machine vision. In order to discuss the affection of joint error on actual deposition track 

width, the joint error can be assumed with consideration of the robot’s structure, wearing 

state, and its working environment. Three groups of joint error have been assumed as 

following: Joint error_1 [0.011, -0.26, 0.05, -0.01, -0.04, -0.01], Joint error_2 [0.023, 0.05, 

-0.29, 0.38, -0.03, 0.01], Joint error_3 [-0.013, 0.17, -0.09, 0.15, 0.04, 0.01].  

There are total of 60 track width segments in the deposition working path, the actual 

track width according to these three groups of joint error has been plotted as shown in 

Figure 7.7: 

 

Figure 7.7 Actual track width according to different joint error 
 

The red solid line is the theoretical value of track width, the two red dash lines are 

the lower and upper tolerance of this theoretical value. As can be seen from Figure 7.7, 

Joint error_2 exceed the upper tolerance, that means if robot’s joints with this group of 

joint error value, it cannot satisfy the requirements of laser deposition task. In this case, the 

robot system is needed to be calibrated or applied with other compensation methods to 

improve its movement and position accuracy performance. For the other two groups of 

joint error, all of the track width value can fall into the acceptable tolerance range, but the 
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distribution of deviation from the theoretical value is different. Joint error_3 could result 

lager actual track width values than Joint error_1, it is preferred for the actual additive 

process, because this provides more manufacturing allowance for the next step machining 

process in hybrid manufacturing. 
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8. CONCLUSION 

The subject of this paper was to develop a new methodology for finding the best 

position and orientation to perform a specific tasks based on the current robot system 

accuracy capability. Firstly, knowledge of rigid body representation and homogeneous 

transformation matrices was introduced. Then the D-H model of Nachi Robot (SC300F-

02) was established and the detail solution of robot forward/inverse kinematic was given. 

Since joint angle error affects the end effector position accuracy greatly, a robot positon 

error model was created to analyze the sensitivity of each joint with angle error. It reveals 

that even the same joint angle error could have different weight of affection when it appears 

on different joint. Thus, a new evaluation formulation was established for mapping the 

trajectory accuracy within the robot’s working volumetric. With a group of known joint 

error, influence of different position and orientation on the movement accuracy of end 

effector was discussed. Finally, the simulation process takes a laser deposition zigzag 

working path as example to validate effectiveness of the proposed methodology, it also can 

be used as a criterion for checking the current joint error of robot system whether or not 

can satisfy a specific manufacturing tolerance. In addition, this method not only benefits 

the application of using robot in hybrid manufacturing process, it also important for 

improving robot operation accuracy performance in other area and optimizing the cost 

design of the industrial robot.  
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II. INDUSTRIAL ROBOT TRAJECTORY STIFFNESS MAPPING FOR HYBRID 
MANUFACTURING 

Zhiyuan Wang, Renwei Liu, Todd Sparks and Frank Liou 
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ABSTRACT 

The application of using industrial robots in hybrid manufacturing is promising, but 

the heavy external load applied on robot system, including the weight of deposition 

extruder or the cutting force from machining process, affects the operation accuracy 

significantly. This paper proposed a new method for helping robot to find the best position 

and orientation to perform heavy duty tasks based on the current system stiffness. By 

analyzing the robot kinematic and stiffness matrix properties of robot, a new evaluation 

formulation has been established for mapping the trajectory’s stiffness within the robot’s 

working volumetric. The influence of different position and orientation for hybrid 

manufacturing working path in different scale has been discussed. Finally, a visualized 

evaluation map can be obtained to describe the stiffness difference of a robotic deposition 

working path at different positions and orientations. The method is important for improving 

the operation performance of robot system with current stiffness capability. 

Keywords: Industrial Robot, Robot Stiffness, Jacobian Matrix, Hybrid Manufacturing 
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1. INTRODUCTION 

Serial industrial robots are mainly used in industry for tasks that require good 

repeatability but not necessarily good global position and orientation accuracy of the robot 

end effector. For example, these robots are generally used for pick and place, painting and 

welding operations. These kind of tasks do not apply much external load or force on the 

robot system, the stiffness of robot system itself is sufficient to satisfy these operations’ 

accuracy requirements. With the development of automation technology, the scope of 

applications using industrial robots is getting wider and wider. The potential applications 

of industrial robots in hybrid manufacturing, which usually involve both robot deposition 

process and robot machining process, have been gaining worldwide attention from 

researchers. But the external load from hybrid manufacturing process applied on robot 

system, including the weight of fused pellets extruder for deposition process and the cutting 

force from metal machining process, is much larger than common tasks for robot. Thus, to 

perform these operations, the robots must show good kinematic and elastostatic 

performance.  

Some research works discuss the following: (i) tool path optimization considering 

both kinematic and dynamic robot performance [1–2]; (ii) the determination of optimal 

cutting parameters to avoid tool chattering [3,4]; (iii) robot stiffness analysis [5]; and (iv) 

the determination of robot performance indices [6–10]. Robot stiffness is also a relevant 

performance index for robot machining [11]. Accordingly, this paper discusses the stiffness 

modeling of serial robots and identifies their stiffness parameters. Some stiffness models 

can be found in the literature for serial and parallel manipulators [12-13]; however, the 

identification of stiffness parameters has yet to be determined. Two methods were 
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presented by Abele et al. [14] to obtain the Cartesian stiffness matrix (CaSM) of a five-

revolute robot. The first method consists of clamping all of the joints except one to measure 

its stiffness. The second method measures the displacements of the robot end-effector due 

to certain applied loads and evaluates the robot Cartesian stiffness matrix throughout its 

Cartesian workspace with some interpolations. 

In addition to the study of dynamic stiffness (which is useful for vibration and 

stability problems), the study of robot rigidity can be performed through the analysis of 

static stiffness maps. Static stiffness maps can be used to assess the level of positioning 

error for a given production task, i.e., for a given type of loading condition [15-17]. They 

can also be used to compare different architectures or configurations [18-19]. A few studies 

in the literature provide the stiffness maps of industrial robots. Using the virtual joint 

method, Gosselin [20] provided stiffness maps with the aim of setting a tool for the 

computer-aided design of a planar 3-DOF parallel manipulator and a spatial 6-DOF parallel 

manipulator. Majou et al. [21] identified the stiffest areas in the workspace of the 

Orthoglide, which is a three-axis translational parallel kinematic machine, by analyzing its 

stiffness maps for a specific machining task. Ruggiu [22] mapped the stiffness of a 

translational parallel mechanism using a general formulation based on the development of 

the principle of virtual work. Pinto et al. [23] used MSA, finite element method (FEM), 

and experimental measurements for the stiffness mapping of a Daedalus I, and concluded 

that volume FEM was more precise but leads to long calculation times. 

The research objects of the above studies focus on robot stiffness parameter 

identification or stiffness distribution in robot working volume. This paper provides a new 

concept of viewing robot stiffness mapping problem, this method takes the turning points 
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of working path into consideration, by analyzing robot kinematic and the property of robot 

cartesian stiffness matrix, establish an evaluation formualtion to describe the difference of 

trajectory stiffness at different position and orientation. The paper will first introduce the 

mathematics foundation of robot jacobian matrix and how solve the jacobian matrix for a 

6 DOF industrial robot, then based on two reasonable assumptions establish the stiffness 

model of serial manipulator and trajectory stiffness evaluation formualtion, finally apply 

the proposed method on a specific typical zigzag working path, find out the best position 

and orientation to perform this in the robot working volume and discuss how the size of 

working path affect the stiffness mapping analysis.    
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2. KINEMATIC JACOBIAN OF ROBOT 

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-

valued function. Suppose there are following multivariate functions: 

�� = ��(��,��,��,��,��,��)
�� = ��(��,��,��,��,��,��)
�� = ��(��,��,��,��,��,��)
�� = ��(��,��,��,��,��,��)
�� = ��(��,��,��,��,��,��)
�� = ��(��,��,��,��,��,��)

                                           (1) 

It can be written in vector form as: 

� = �(�)                                                            (2) 

Solve the multiple variables’ first derivative of functions in equation (1): 
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It can be written in vector form as: 

�� =
��

��
��                                                       (4) 

Make � =
��

��
, thus � is the jacobian matrix to illustrate the mapping relationship 

between �� and ��: 

� = �(�)�                                                        (5) 

Assume the movement function of robot is: 

� = �(�)                                                         (6) 
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� is the vector representing the position and orientation of robot’s end effector, � 

is the vector representing the angle value of each joint. From equation (5), the jacobian 

matrix of robot �(�) is: 

� = �(�)�                                                        (7) 

Or it can be written in matrix form as: 

��
��
��
��
��
��
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�����
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                                           (8) 
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3. SOLUTION OF THE JACOBIAN MATRIX OF ROBOT 

The Nachi Robot (SC300F-02) is used as an illustrate example throughout this 

paper. It has a 4.1 �� (cross-section area) operating area and a 300° rotation range for the 

base motor (Figure 3.1), which could provide a much bigger working envelope than any 

current hybrid manufacturing system. The 6-axis movement mechanism makes the 

deposition/machining process more flexible in building a model with complex features. 

       

Figure 3.1 Working envelop and links schematic of Nachi Robot (SC300F-02) 

The sixth link carrying the operation point � is connected to the base frame through 

a serial chain composed of six-revolute joints. The kinematic chain of Nachi Robot 

(SC300F-02) is shown in Figure 3.2. 
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Figure 3.2 Kinematic chain schematic of Nachi Robot (SC300F-02) 

But one thing needs to be noticed is that at current posture, the joints value 

displayed on the robot’s touchpad is [0° 90° 0° 0° 0° 0°]. In order to build a D-H 

model could represent the real robot perfectly, all of the joint value should be set to 0°, thus 

the robot’s posture will be look like as the Figure 3.3: 

 

Figure 3.3 Robot’s posture when joints value as  [0° 0° 0° 0° 0° 0°] 
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Start at joint 1, �� represents the first joint, which is the base revolute joint, �� is 

chosen to be the same direction as the reference frame x-axis of the robot controller, this is 

done for convenience to verify the correctness of the D-H model. �� is a fixed field axis, it 

represents the base of the robot. Next, �� is assigned at joint 2. �� will be normal to �� and 

��, because these two axes are intersecting. �� will be in the direction of the common 

normal between �� and ��. �� is in the direction of the common normal between �� and ��. 

In order to ensure the solvability of the invers kinematic of robot, ��, �� and �� are assigned 

at the same origin point. Thus, the reference frames representation of Nachi robot as shown 

in Figure 3.4. Normally, the end effector is not included in the equations of motions, but it 

can be represented by an additional line in the D-H parameters table. In the case, the tip 

point of end effector physically represents the center point of the fixing plate of the joint 

6, it is also as the same as the coordinate value that indicated on the robot’s touch pad.  

 

Figure 3.4 Reference frames representation of Nachi robot  
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According to these assigned coordinate frames, the parameters of D-H model can 

be filled out in Table 3.1. Notice that the rotations are measured with the right-hand rule. 

The curled fingers of your right hand, rotating in the direction of rotation, determine the 

direction of the axis of rotation along the thumb. 

Table 3.1 D-H model parameters of Nachi Robot (SC300F-02) 
 

� �� �� �� �� 

1 �� 1070 340 90 

2 �� 0 910 0 

3 �� 0 200 90 

4 �� 1300 0 -90 

5 �� 0 0 90 

6 �� 0 0 0 

tool 0 235 0 0 

 

�� represents the transformation matrix of end effector frame relative to the base 

frame of a n degree of freedom series robot. The position and orientation of an arbitrary 

point � = [�� �� ��] 
�  on the end effector can be described in the robot base coordinate 

frame as following: 

� = �� � 
� = ������ �� � 

�
 

�                                             (9) 

For a robot which structure has been determined, according to D-H model table, 

link length ��, link offset ��, and link rotation angle �� are all known parameters, �� are the 

variables changing with the movement of the robot. Thus, the equations of forward 

kinematic can be written as: 

�� = ��(��)��(��)��(��) ��(��)                                  (10) 
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For the Nachi robot, there are 6 joints, the transformation between each two 

successive joints can be written by simply substituting the parameters from the Table 1: 

�� = �

�� 0 �� ����

�� 0 �� ����

0 1 0 ��

0 0 0 1

�                                             (11) 

 

�� = �

�� �� 0 ����

�� �� 0 ����

0 0 1 0
0 0 0 1

�                                             (12) 

 

�� = �

�� 0 �� ����

�� 0 �� ����

0 1 0 0
0 0 0 1

�                                             (13) 

 

�� = �

�� 0 �� 0
�� 0 �� 0
0 1 0 ��

0 0 0 1

�                                             (14) 

 

�� = �

�� 0 �� 0
�� 0 �� 0
0 1 0 0
0 0 0 1

�                                               (15) 

 

�� = �

�� �� 0 0
�� �� 0 0
0 0 1 0
0 0 0 1

�                                               (16) 

In the equations,  �� represents ���(��), �� represents ���(��). 

�� is a 4 × 4 homogeneous matrix, the forward kinematic solution of Nachi Robot 

it can be written as following: 
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�� = �

�� �� �� ��

�� �� �� ��

�� �� �� ��

0 0 0 1

� = ������������                     (17) 

Or it can be written in a lite form: 

�� = �
�� �̅ �� �̅
0 0 0 1

� = ������������                      (18) 

Each element in the Jacobian is the derivative of a corresponding kinematic 

equation with respect to one of the variables. Referring to Equation (8), the first element in 

� is ��. This means the first kinematic equation must represent movements along the x-

axis, which, of course, would be ��. In other words, �� expresses the motion of the hand 

frame along the x-axis, and thus, its derivative will be ��. The same will be true for �� 

and ��. Considering the ��, �̅, ��, �̅ matrix, the corresponding elements of ��, ��, �� can be 

picked and be differentiated to get the ��, ��, and ��. However, since there is no unique 

equation that describe the rotations about the axes, thus there is no single equation available 

for differential rotations about the three axes, namely, ��, �� and ��. As a result, these 

have to be calculated differently. 

Actually, it is a lot simpler to calculate the Jacobian relative to ��, the last frame, 

than it is to calculate it relative to the first frame. The velocity equation relative to the last 

frame can be written as: 

� 
�� = �(�)� 

��                                                    (19) 

� 
��  is the vector representing the position and orientation of robot’s end effector in 

last frame, � is the vector representing the angle value of each joint. This means that for 

the same joint differential motions, pre-multiplied with the Jacobian matrix relative to the 

last frame, the operation point differential motions relative to the last frame can be 
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obtained. One can calculate the Jacobian with respect to the last frame using following 

formation steps: 

(1) The differential motion relationship of equation can be written as: 
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                           (20) 

(2) Assuming that any combination of �� , �� , ��  can be expressed with a 

corresponding ��, �̅, ��, �̅ matrix, the corresponding elements of the matrix will be used to 

calculate the Jacobian. 

(3) If joint � under consideration is a revolute joint, then: 

��� 
��

��� 
��

��� 
��

��� 
��

��� 
��

��� 
��

=

( ���� + ����)

( ���� + ����)

( ���� + ����)
��

��

��

                                       (21) 

(4) The column � use �� 
��� : 

      For column 1, use �� 
� = ������������ 

      For column 2, use �� 
� = ���������� 

      For column 3, use �� 
� = �������� 

      For column 4, use �� 
� = ������ 

      For column 5, use �� 
� = ���� 

      For column 6, use �� 
� = �� 
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4. FORCE JACOBIAN MATRIX OF ROBOT 

When an external load applied on the robot end effector, if the robot system is in 

equilibrium state, the driving force generated by each joint should be balance with the 

external load. The external load can be written as � = [�,�]�, so called the generalized 

end effector force vector. Revolute joint provides driving torque, prismatic joint provide 

drive force. For the Nachi Robot, the driving torques provided by the six revolute joints 

are ��, ��, ��, these can be written as: 

� = [�� �� �� �� �� ��]�                                (22) 

So called the generalized joint force vector. 

According to the principle of virtual work, make the virtual displacement of each 

joint is ��, the virtual displacement of end effector is ��, thus the sum of virtual work by 

each joint force is: 

�� = ���� = ����� + ����� + �����                        (23) 

�� = ����                                                       (24) 

According to the sum of virtual work should be zero, thus: 

���� = ����                                                    (25) 

From Equation (5), there is: 

�� = �(�)��                                                      (26) 

From Equation (26) and (26), there is: 

���� =  ���(�)�� 

⇒                                                         � =  ��(�)�                                                      (27) 
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��(�) is force Jacobian matrix of robot, when the robot system is in equilibrium 

state, it represents the mapping relationship between external load and joint force. It is also 

the transposed matrix of Jacobian matrix. 
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5. CARTESIAN STIFFNESS MATRIX FORMULATION OF ROBOT SYSTEM 

The robot system stiffness refers to the ability of resist to deformation, especially 

the displacement of end effector, when robot subjected to external robot. Make external 

load as � = [�� �� �� �� �� ��]�, the tiny displacement of end effector subjected 

to external load is �� = [�� �� �� �� �� ��]� . When displacement is small 

enough, there are linear relationship between these two: � = ���. It can be written in 

matrix form: 

��

��

��

��

��

��

=

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

���

���

���

���

���

���

                                    (28) 

� is the external load applied on end effector relative to the base coordinate frame 

of robot, it contains the force and torque in three degrees of freedom. ��  is the 

displacement of the end effector relative the base coordinate of robot, it contains the 

translation and rotation in three degrees of freedom. Both of these are 6-dimensinal vectors. 

� is 6 × 6 matrix, it is the cartesian stiffness matrix of robot system. 

The cartesian stiffness matrix of robot system depends on robot’s configuration, 

link stiffness, control loop stiffness and the actuators’ mechanical stiffness. For the slim 

and long structure, like the repair manipulator applied in space station, the deformation of 

link is the main factor that affect the robot stiffness. The components of transmission 

system, like the gears, belt and shaft, will be deformed under driving force. Especially, 

when the transmission line is long, these deformations could be accumulated and coupling 

with each other.  
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Because the deformation and stiffness properties are distributed in the robot system, 

and the statistical data shows that 70% or higher of deformation is come from the 

insufficient stiffness of driving and transmission system for the industrial robot. Thus, 

assume the deformation concentrate on the joints is reasonable. In this paper, the links of 

robot are assumed to be rigid, the damping is neglected and the stiffness of the joints is 

represented with the linear torsional springs, the coefficient of elasticity is ���, so called 

the joint stiffness, as shown in Figure 5.1. The reciprocal of ���  is ��� , so called the 

flexibility. For a 6 DOF robot, �� is the diagonal joint stiffness matrix defined as follows: 

�� =

��� 0 0 0 0 0

0 ��� 0 0 0 0

0 0 ��� 0 0 0

0 0 0 ��� 0 0

0 0 0 0 ��� 0

0 0 0 0 0 ���

                                    (29)                                      

 

 

Figure 5.1 A 3-DOF robot model with linear torsional springs as joints 
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For a � DOF robot, assume the stiffness of each joint is ��� (� = 1,2, ,�), the 

displacement of end effector is �� which subject to the external load �, the angle changing 

of each joint is ��� (� = 1,2, ,�), there is: 

�� = ������ (� = 1,2, ,�)                                           (30) 

�� is torque on each joint, it is due to the elastic deformation of the robot system. 

This can be written in matrix form as: 

� = ����                                                         (31) 

In the above equation, �� = [��� ��� ���]�, �� = ����(���,���, ,���). 

Make the robot system stiffness equivalent to each joint, the mapping relationship 

between joints stiffness and end effector stiffness can be established, the derivation process 

as following: 

From the jacobian matrix of robot, there is: 

�� = �(�)��                                                     (32) 

From the force jacobian matrix of robot, there is: 

� =  ��(�)�                                                      (33) 

From equation (31) and equation (33), there is: 

          ���� = ��(�)� 

⇒                                                      �� = ��
����(�)�                                                         (34) 

From equation (32) and equation (34), there is: 

�� = �(�)��
����(�)�                                            (35) 

Make �(�)=  �(�)��
����(�), thus: 

�� = �(�)�                                                     (36) 

�(�) is flexibility matrix of end effector.  
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Equation (35) pre-multiplied by ���(�), �� and  ���(�) Successively 

⇒                                          ���(�)�� = ���(�)�(�)��
����(�)� 

⇒                                                   ���(�)�� = ��
����(�)� 

⇒                                              �� ���(�)�� = ����
����(�)� 

⇒                                                    �� ���(�)�� = ��(�)� 

⇒                                          ���(�)�����(�)�� = ���(�)��(�)� 

⇒                                          ���(�)�����(�)�� = ���(�)��(�)� 

⇒                                                   ���(�)�����(�)�� = � 

Make  

�(�) = ���(�) �����(�)                                       (37) 

Thus:                                                         � = �(�)��                                                 (38) 

�(�) = ���(�) �����(�) is the end effector stiffness matrix, derivation is completed. 

The stiffness matrix �(�)  or flexibility matrix �(�)  represents the linear 

relationship between the external load applied on end effector and the displacement of end 

effector, and these matrixes change with the changing of robot’s position and orientation. 

As can be seen from the elements in stiffness matrix, the force of one direction not only 

cause the deformation on this direction, but also cause the deformation in other directions. 

For example, the diagonal element ��� in stiffness matrix represents the �� caused by �� 

on � direction, the non-diagonal element ��� in stiffness matrix represents the �� caused 

by �� on � direction. 
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6. ROBOT TRAJECTORY STIFFNESS EVALUATION FORMULATION 

The zigzag path is a typical trajectory for robotic hybrid manufacturing as shown 

in Figure 6.1. One layer of this kind path could work for machining or milling process, 

multiple layers of that could be used as a deposition working path. When robot carry the 

deposition extruder or machining tools moving along the straight line segments, the 

operation speed usually is set at a constant value, the robot system is in equilibrium state. 

But when the robot moves to the turning points in the trajectory, the end effector often 

accompanied with intensely changing of acceleration in different directions. The initial 

cutting force or inertia of heavy deposition equipment in directions of acceleration 

changing will cause unbalanced force on the robot system, so the robot demands higher 

stiffness property at these turning points positions.  

 

Figure 6.1 Zigzag path for hybrid manufacturing and turning points in the trajectory 
 

As mentioned in the previous section, the robot joint stiffness matrix ��  is a 

diagonal matrix, so �� = ��
�, simultaneous this with equation (37), there is: 

�(�)= �(�)�                                                       (39) 
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This is the symmetry property of �(�), which is ��� = ���, it illustrates that if the 

force in � direction can cause a unit deformation in � direction, then the same force in � 

direction can cause a unit deformation in � direction. The non-diagonal elements in �(�) 

represents the coupling relationship between the force and displacement in different 

direction. When the non-diagonal element equal 0, which means there is no coupling 

relationship between these two directions. For example, when there is no coupling 

relationship between the force and displacement in � and y direction, then there is ��� =

��� = 0. 

In addition, �(�) is a positive-definite matrix, simultaneous with it symmetry 

property, the diagonal elements and the principal minor determinant of each order are more 

than 0, this can be written as: 

��� > 0, det ��
��� ���

��� ���

�� > 0, � = 1,2, ,6                        (40) 

According to the analysis of �(�)’s properties, and notice that the stiffness matrix 

is changing when robot at different position and orientation, an evaluation formulation can 

be created to illustrate the difference of trajectory’s stiffness performance at different 

position and orientation within robot working envelop: 

� = ∑ ���
�
��� + ∑ ������

���,���,���                                         (41) 
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7. SIMULATION: STIFFNESS MAPPING OF A ROBOTIC HYBRID 
MANUFACTURING WORKING PATH 

 
The initial motivation of applying robot in hybrid manufacturing is overcome the 

building size limitation of conventional CNC machines. Figure 7.1 shows a schematic of 

the fused pellets deposition (FPM) extruder installed on the Nachi robot, this equipment 

can realize deposit large scale part in a relatively short period.  

But the weight of the FPM extruder is over 500lb, this is an external load cannot be 

ignored during operation. Thus it is necessary use trajectory stiffness evaluation method to 

help planning the working path. 

 

Figure 7.1 Assembly model of FPM system 
 

For conducting a specific working path, there are multiple choices of position and 

orientation in the robot working envelop. Based on the robot kinematic and stiffness 

evaluation formulation, a trajectory stiffness evaluation simulation system can be 

programmed with Python, the flow chart of this simulation analysis system as shown in 

Figure 7.2. 



  88 
 

 

Figure 7.2 Flow chart of trajectory stiffness evaluation simulation system 

In order to study how zigzag trajectory’s position and orientation affect its stiffness 

in the working envelop of robot, firstly separate working volume into small testing cube 

area (200mm × 200mm × 200mm) within the x range is from -500 to 500, y range is 

from -1200 to -1800, z range is from 800 to 1400, in robot system coordinate.  

The dimension of deposition zigzag path is 100mm × 100mm × 30mm , layer 

thickness is 10 mm, track width is 20 mm and overlap is 0.3. 

 Thus there are 45 testing cube areas within robot working envelop, as shown in 

Figure 7.3.  
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Figure 7.3 Trajectory testing cube within robot working envelop 

Secondly, set the orientation angle for these trajectories, start from x axis positive 

direction, rotate about z axis counterclockwise, take the angle value as 0°, 60°, 120°, 180°, 

240°, 300°, respectively.  

Then apply the trajectory stiffness analysis process to these zigzag trajectories 

which at different positions and with different orientations, the results are shown in Table 

7.1. 
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Table 7.1 100mm × 100mm × 30mm trajectory stiffness evaluation value 
 

 

As can be seen from Table 7.1, for the same angle group, the position affects the 

trajectory stiffness obviously. But for the same position with different angle, the evaluation 

Trajectory

position

index Value Rank Value Rank Value Rank Value Rank Value Rank Value Rank

1 57912008.5 16 57917201.5 16 58023086.2 16 58098883.1 16 57982785.1 16 57899655.5 16

2 62189826.6 25 62177482.3 25 62238753.2 25 62319313.1 25 62268150.5 25 62198579.2 25

3 63186832.3 27 63162031.7 27 63192306.8 27 63266532.9 27 63256148.0 27 63205920.5 27

4 53285991.7 4 53299057.5 4 53384377.6 4 53404272.6 4 53305523.2 4 53271486.8 4

5 57421016.3 15 57417061.0 15 57472652.6 15 57516140.2 15 57461913.1 15 57421446.2 15

6 59000277.0 19 58983756.3 19 59015254.4 19 59065204.6 19 59044628.4 19 59010565.4 19

7 51508067.0 1 51522248.2 1 51579577.2 1 51567781.9 1 51500388.5 1 51497801.0 1

8 54659692.6 9 54659664.5 9 54702410.9 9 54719810.0 9 54675017.5 9 54657182.4 9

9 56152074.0 12 56140577.0 12 56167441.0 12 56197837.4 12 56176134.9 12 56156830.7 12

10 51419211.9 0 51430333.4 0 51460867.5 0 51436841.7 0 51400559.1 0 51413793.8 0

11 53368017.0 5 53368650.2 5 53396299.6 5 53398184.2 5 53367248.3 5 53364656.5 5

12 54440081.0 8 54430997.9 8 54450115.7 8 54466352.4 8 54448439.6 8 54441096.0 8

13 52164260.4 2 52170766.7 2 52180043.9 2 52155719.1 2 52142697.5 2 52161140.1 2

14 53076982.5 3 53076309.6 3 53089746.1 3 53083921.4 3 53065778.1 3 53072425.1 3

15 53645742.1 6 53637095.4 6 53647414.2 6 53654094.2 6 53641445.7 6 53643383.3 6

16 73443909.7 36 73420000.6 36 73535555.1 36 73692566.6 36 73596953.9 36 73460405.2 36

17 75636443.9 38 75604032.5 38 75668940.1 38 75801094.8 38 75778766.6 38 75677509.0 38

18 74860829.0 37 74820718.6 37 74855339.6 37 74966442.1 37 74978485.2 37 74906726.1 37

19 64402023.5 30 64396711.1 30 64503089.4 30 64581091.8 30 64482815.3 30 64408016.5 30

20 67652769.3 32 67635441.2 32 67700507.0 32 67786708.7 32 67746833.8 32 67676755.0 32

21 68235388.9 33 68208558.4 33 68247052.8 33 68328566.8 33 68321784.0 33 68266431.5 33

22 59097087.6 20 59103493.5 20 59183625.6 20 59213191.8 20 59140921.2 20 59104406.8 20

23 62120889.2 24 62113648.6 24 62169417.0 24 62221092.2 24 62181115.1 24 62136012.4 24

24 63232961.1 28 63215517.6 28 63251622.0 28 63308565.0 28 63293570.5 28 63253606.0 28

25 56080975.2 10 56091933.9 10 56144625.0 10 56153200.0 10 56108066.5 10 56088833.8 10

26 58451823.2 17 58450434.4 17 58493031.0 17 58522436.0 17 58489623.2 17 58461390.3 17

27 59627644.9 21 59616398.3 21 59646464.4 21 59684707.5 21 59667856.7 21 59640602.8 21

28 54333450.4 7 54344378.4 7 54376489.0 7 54378560.4 7 54350578.5 7 54338064.0 7

29 56118242.9 11 56119624.4 11 56149451.5 11 56165633.1 11 56140196.4 11 56122657.9 11

30 57175331.2 14 57167859.3 14 57190380.5 14 57215016.1 14 57199026.8 14 57181766.9 14

31 88574068.5 44 88529787.1 44 88619540.6 44 88828436.1 44 88813640.6 44 88646634.4 44

32 87420580.4 43 87375345.4 43 87435825.8 43 87596780.7 43 87616362.0 43 87499901.4 43

33 84942871.8 42 84893153.4 42 84932478.4 42 85066465.9 42 85099371.8 42 85014684.8 42

34 75849792.0 39 75826520.5 39 75925689.9 39 76065664.0 39 76009206.7 39 75890040.7 39

35 77035187.2 41 77008058.1 41 77072891.5 41 77193342.4 41 77182329.7 41 77088091.5 41

36 76425986.6 40 76392257.0 40 76435917.5 40 76541272.0 40 76550420.2 40 76478337.4 40

37 66838747.2 31 66833073.6 31 66922348.9 31 67005968.4 31 66945252.7 31 66866016.8 31

38 69042978.1 34 69029348.6 34 69091190.3 34 69176008.0 34 69150092.0 34 69078205.8 34

39 69575120.6 35 69553403.0 35 69596732.2 35 69676568.7 35 69670665.6 35 69612149.6 35

40 60648881.9 23 60654519.9 23 60725155.0 23 60774268.8 23 60722885.2 23 60667777.9 23

41 63113367.5 26 63109194.0 26 63163058.5 26 63220357.6 26 63189754.8 26 63136220.4 26

42 64250581.8 29 64237617.3 29 64277140.7 29 64335566.5 29 64321325.6 29 64275581.9 29

43 56424502.0 13 56435653.5 13 56489190.8 13 56518331.5 13 56475400.1 13 56435091.1 13

44 58856879.1 18 58858784.4 18 58902798.7 18 58940188.8 18 58909419.9 18 58869947.2 18

45 60270174.0 22 60263350.3 22 60296984.2 22 60338155.3 22 60319812.4 22 60285295.1 22

Rotation angle (°)

0 60 120 180 240 300
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result is close, take the maximum value position 31 as example, the difference between 

max and min is only 0.37 %. Moreover, the rank of evaluation result in different angle 

group is the same. This leads to the stiffness trajectory mapping result is the identical for 

these 6 groups, as shown in Figure 7.4. The color of cube is assigned as the normalized 

evaluation values. The higher of the evaluation result is, the better stiffness can be obtained 

at this position. So the best position to perform this task is at the center point of [500, -

1200, 1000]. 

 

 

Figure 7.4 Trajectory stiffness mapping results for small scale working path 
 

The reason of this result is the size of the deposition part. The stiffness property of 

robot is distributed unevenly within its working envelop, the larger of the task’s operation 

range, the more different stiffness area the robot will cross. For the small scale working 

path, in macro view, most turning points are concentrated within a small area, even with 

the changing of working path’s orientation, the gesture of robot manipulator did not change 

a lot. Thereby, it is more meaningful to discuss how the orientation affect a large scale 
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working path’s stiffness performance, this is also the initial goal of applying robot in hybrid 

manufacturing. 

Take a large size deposition task as example, the dimension of deposition zigzag 

path is 800mm × 800mm × 500mm, layer thickness is 10 mm, track width is 20 mm and 

overlap is 0.3, thus there is only one center point option for this trajectory: [0, -1600, 800]. 

Then set the orientation angle for these trajectories, start from x axis positive direction, 

rotate about z axis counterclockwise, take the angle value as 0°, 60°, 120°, 180°, 240°, 

300°, respectively. The stiffness evaluation result for this task is shown in Figure 7.5. The 

difference between maximum value and minimum value is 14 %, much more obvious than 

the small size working path. The higher of the evaluation result is, the better stiffness can 

be obtained at this orientation. So the best orientation to perform this task is 60°. 

 

Figure 7.5 Trajectory stiffness mapping results for large scale working path 
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8. CONCLUSION 

The subject of this paper was to develop a new methodology for finding the best 

position and orientation to perform heavy duty tasks based on the current robot system 

stiffness capability. Firstly, the definition of jacobian matrix was introduced, and the Nachi 

Robot (SC300F-02) was used as an illustrate example throughout this paper. The detail 

process of solving robot jacobian matrix was presented, and the force jacobian matrix also 

has been derived according to the concept of virtual work. Based the on the assumptions 

of the link of industrial robot is rigid and all the deformation are concentrated at joints, the 

stiffness model of serial manipulator was developed. Then the robot stiffness matrix was 

derived from the robot jacobian matrix and robot joint stiffness matrix. By analyzing the 

robot kinematic and the properties of robot stiffness matrix, a new evaluation formulation 

has been established for mapping the trajectory’s stiffness within the robot’s working 

volumetric. A trajectory stiffness simulation analysis system was developed for discussing 

the stiffness difference of a robotic deposition working path at different positions and 

orientations. The simulation results revealed that for the small size working path, in macro 

view, most turning points are concentrated within a small area, position is the main factor 

that affect the stiffness performance of this specific task. But for the large scale working 

path, the orientation of trajectory would affect the distribution of turning pointing a lot, 

thus lead to a great difference of stiffness performance. In conclusion, this method can 

benefit the applications of using robot in hybrid manufacturing process, especially for the 

larger-scale deposition process when robot carrying a heavy extruder. When considering 

the robot machining process, for instance, with variable heavy cutting force applied to the 

robot system, the stiffness analysis should integrate more influence factors. 
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III. REALIZATION OF ROBOT INK DEPOSITION ON A CURVED SURFACE 

Zhiyuan Wang, Renwei Liu, Todd Sparks, and Frank Liou 

Department of Mechanical and Aerospace Engineering 
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ABSTRACT 

    A robot ink deposition system is proposed in this paper. An Additive 

Manufacturing (AM) concept-based method is proposed to generate an ink deposition path, 

and an adaptive compensation algorithm is developed for the robot to deposit ink on a 

curved surface based on B-spline surface theory. This method provides more flexibility for 

the robot arm to print characters or graph on a curved surface and affords the robot system 

a larger working envelope for ink deposition. A letter-printing experiment was conducted 

in a laboratory using this method. The results show that writing letters on the ink deposition 

path generated based on the AM concept is much easier than doing so on paths generated 

using existing methods. Additionally, the adaptive compensation algorithm for printing 

letters on a large curved surface proved effective. 

Keywords: ink deposition; robot print; adaptive compensation; curved surface; B-spline 

surface 
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1. INTRODUCTION 

Robots can work continuously and tirelessly, so their implementation typically is 

desirable in places where continuous operation is required, such as assembly lines. Getting 

a robot to behave like a human continues to be a research area of much interest. Various 

studies have been conducted to investigate the mechanism and control of robots that can 

perform the task of writing letters. A 4 DOF robot drawing platform that can write Chinese 

characters with a brush was developed and then later improved with the addition of a vision 

system [1-3]. A segmentation-based algorithm stores the character information; it focuses 

on segmenting the Latin character set, and the segment information then can be used by 

the robots to write [4]. The extraction of the trajectory of the writing brush in character 

writing was proposed based on image and curve processing techniques and knowledge of 

writing [5]. Thus far, however, this line of work typically has required complicated 

programs to control the robot, as well as specially designed devices, such as dedicated 

movement mechanisms and precise drawing planes. Moreover, the writing style and 

character size are limited.     

 The basis of writing is an ink deposition process. In this paper, a contour-points-

based method based on the Additive Manufacturing (AM) concept is proposed to generate 

an ink deposition path and to adopt surface measurement technology to enable the robot 

arm to print letters on a curved white board. This method involves decomposing the shape 

of the characters into a set of contour points, information that the robot then can use to 

reconstruct the characters with linear tracks. The deposition movement of the robot along 

the curved surface can be adjusted by a position compensation program. This method 
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provides an easy way for a robot to write different styles of characters in large scale on a 

freeform surface. 

The paper is structured as follows. The generation of the proposed ink deposition 

method and the measurement of the curved surface and the compensation algorithm are 

presented in Section 2. Section 3 describes the experiment and the results of the robot 

adaptive ink deposition system. Finally, some conclusions are discussed in Section 4. 
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2. METHODOLOGY 

In the first part of this section, the method for generating the ink deposition path is 

introduced. Then, in the second section, the method for measuring the curved surface and 

the compensation algorithm are discussed.  

2.1. GENERATION OF INK DEPOSITION PATH FOR THE ROBOT 

Characters in different languages consist of various basic segments. The Latin 

language is a simple example in which characters are formed primarily with two elements, 

straight lines and curves. A complicated example is the Chinese language, which uses 28 

different strokes as opposed to two. Extracting the sequence of writing is an arduous task 

requiring the design and programming of algorithms. From the perspective of geometry, a 

set of collinear points constitute a line, and a set of successive lines constitute a plane. The 

plane can be any graph, including the characters, as calligraphy could be considered a kind 

of plane art as well. In this way, information about the contour points of a character can be 

obtained, these points can be connected with tracks of a reasonable width, and the writing 

task can be completed using just a linear movement of the robot. 

In order to obtain the graph information of the characters, the concept of AM was 

adopted because the writing process is just like depositing one layer of ink material. 

Available 3D CAD software, such as Solidworks and NX, can build 3D models of 

characters easily. Another advantage of this method is that the font library of 3D CAD 

software can be used to allow the robot to write different kinds of characters.  

The algorithm for extracting the contour information of 3D models works as 

follows:  

Step 1: Use a horizontal plane to slice the model into layers. 
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Step 2: Set a series vertical plane to intersect with one of the sliced layers to get the 

contour points.  

Step 3: Generate the ink deposition path according to the contour points. 

Figure 2.1 provides a detailed illustration of the method for generating the ink 

deposition path. Figure 2.1 (a) shows a 3D extrusion model of the Chinese character “激

光” using the font library in Solidworks. Figure 2.1 (b) depicts a one-layer slice contour 

of the 3D character model. Figure 2.1 (c) illustrates that the segments inside the slice 

contour connect the contour points.  

Finally, the ink deposition path can be obtained based on the AM concept. All of 

these steps can be accomplished using MAPS, software developed by our lab that can be 

used for multi-axis deposition path planning. 

 

(a) 3D model of Chinese character “激光” 
 

Figure 2.1 Method for generating the ink deposition path   
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(b) one layer slice contour 
 

 
 

(c) segments connecting the contour points 
 

Figure 2.1 Method for generating the ink deposition path (cont.)   
 

2.2. MEASUREMENT OF CURVED SURFACE AND COMPENSATION 
ALGORITHM  

 
When using a robot to deposit ink in a large working envelope, the absence of 

segments becomes a problem because the flatness of a large plane cannot be guaranteed. 

To realize adaptive ink deposition, a matrix of points on the board’s surface first must be 

detected. Then, the board’s surface based on B-spline surface theory can be reconstructed, 

and the compensation algorithm can be applied to determine the adaptive ink deposition 

path. 
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2.2.1 Curved Surface Reconstruction. The fundamental principle of 

reconstructing the surface [6] from the matrix of detected points is as follows: Suppose the 

detected points are ��,�(� = 0,1, �;  � = 0,1, �); the expected surface can be expressed 

by equation (1), which has (� + 1)× (� + 1)  control points ��,�(� = 0,1, �,� =

0,1, �,� = � + � 1,� = � + � 1), parameters�, � with times � and �, respectively, 

and knots vectors � = [��,��, ,������] and � = [��,��, ,������]. 

                    �(�,�)= ∑ ∑ ��,���,�(�)��,�(�)�
���

�
���                              (1) 

Where �� ≤ � ≤ ����,  �� ≤ � ≤ ����. 

This equation can also be revised to yield equation (2): 

 �(�,�)= ∑ (∑ ��,���,�(�))��,�(�)�
���

�
���                           (2)                                                      

Which then can yield equation (3), which is similar to the B-spline curve function: 

       �(�,�)= ∑ ��(�)��,�(�)�
���                                            (3)                                

In equation (3), ��(�)= ∑ ��,���,�(�)�
��� , � = 0,1, � , which are now control 

curves instead of control points. Therefore, by fixing parameter �, � + 1 points will be 

given in ��(�) (� = 0,1, �). Those points are used as control points to define the equal 

parameter curve of the surface for which � is a parameter. When parameter � sweeps its 

whole range, infinite equal parameter curves can describe the whole surface. Clearly, � +

1  curves are given interpolation points in the infinite equal parameter curves, which 

correspond to a column of points in the value points matrix. These � + 1 equal parameter 

curves are called section curves [7]. The control points ��,�
����(� = 0,1, �;  � = 0,1, �) of 

the section curve can be calculated using equation (4). 

                       ��(����)= ∑ ��,�
������

��� ��,�(����)= ��,�                               (4) 

Where � = 0,1, �;  � = 0,1, �. 
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The problem can be changed to the reconstructed calculation of � + 1 

interpolation curves:  

∑ ��,���,��������
��� = ��,�

����, � = 0,1, �;  � = 0,1, �                       (5) 

By combining these equations,  (� + 1)× (� + 1), the control point ��,�(� =

0,1, �;  � = 0,1, �) of the surface can be calculated. Then, using the B-spline surface 

equation generates the surface. In the experiment described in this paper, we used a bi-

cubic B-spline interpolation surface to reconstruct the robot writing surface. The 

reconstructed surface can be described by parametric equation (1). 

2.2.2 Compensation Algorithm. The reconstructed surface also can be described 

by parametric equation (6). 

                        �(�,�)= �

 �(�,�)

 �(�,�)

 �(�,�)
�                                                (6) 

Project each point [��,��,��] from the ink deposition path to the curved surface to 

obtain the corresponding point [��,��,��
� ], and then obtain the compensation value �� =

��
� �� for each ink deposition point. The principle behind this step is as follows: 

Firstly, determine �,� that satisfy equation (7). 

          �
�(�,�)= ��

�(�,�) = ��
                                                      (7) 

In order to solve (�,�), first guess the value (� = ��,� = ��). Then, use the 

Newton-Raphson method to obtain the values of (�,�) numerically. According to the 

Taylor Series,  

�� = ����,��� + �� ���
�����,���

��
+ �� ���

�����,���

��
+ �� �� ����� ����� 

 �� = ����,��� + �� ���
�����,���

��
+ �� ���

�����,���

��
+ �� �� ����� ����� 
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By ignoring the higher-order terms, we obtain: 

�

��

��

��

��
��

��

��

��

�

���,���

�
�
�

� = �
�0 ����,���

�
0

����,���
� 

Here, � = �� + �, � = �� + �. 

If [�0 �(�,�)]� + [�
0

�(�,�)]� < �, then ��
� = �(�,�). 

Otherwise, let the obtained �  and �  be ��  and �� , and then continue the above 

computation iteratively. 

After obtaining the value of �,�, use parametric equation (6) to obtain ��
� = �(�,�) 

, and the compensation value �� = ��
� �� for the adaptive robot ink deposition path. 
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3. EXPERIMENT AND RESULTS 

In this paper, a robot to write characters is used as an implementation example of 

ink deposition. Figure 3.1 explains the entire working process of the robot ink deposition 

system. 

 

Figure 3.1 Working process of robot ink deposition system 
 

Specifically, the ink deposition path of a character is generated by following steps. 

Step 1: Generate a character model as a step file with 3D modeling software. 

Step 2: Slice this model into layers, and generate the file contour points; the track 

width and overlap between each track can be controlled in this step. Figure 3.2 shows the 

robot writing path generation procedure. 

Step 3: Measure and reconstruct the curved surface. Then, apply the compensation 

algorithm to obtain the adaptive robot ink deposition path.  

Step 4: Conduct post-processing to translate information about the points into the 

robot commands file.  
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(a) 3D model of characters 

 

(b) contour points of characters 

 

(c) simulation of robot writing path 

Figure 3.2 Writing path generation procedure 
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A marking pen was installed on the wrist of a 7-axis industry robot arm, as shown 

in Figure 3.3 (a), to accomplish the writing task. The arm had 6 joints and a moveable 

foundation, therefore exhibiting great flexibility and a large working range (1.6m*3.4m). 

In this experiment, the robot was to write characters on a large white board that did not 

have a flat surface, especially at the four edges.  

In order to write on this board, the curve information should be obtained firstly. No 

coordinate measuring machine can measure such a large object. As Figure 3.3 (b) shows, 

a touch probe installed on the robot was used to collect the points coordinate matrix of the 

board’s surface.  

               

(a)                                                                    (b)   

Figure 3.3 Robot arm and touch probe 
 

In this experiment, 6*6 points were detected in the coordinate matrix of the board’s 

surface, as shown in Table 3.1. Each element of the table represents the x, y, and z values 

of a point from the board’s surface, in millimeters. Figure 3.4 (a) shows the curved white 

board, and Figure 3.4 (b) shows its reconstructed surface.  

The compensation algorithm which introduced in Section 3 to calculate the offset 

for each contour point on the curved surface and to generate the final writing commands.  
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Table 3.1 Points coordinate matrix of the board’s surface 
 

Group 1 Group 2 Group 3 

 [800 -1300 742.9]  [480 -1300 741.8]  [160 -1300 741.0] 

[800 -1500 752.0] [480 -1500 752.1] [160 -1500 751.4] 

[800 -1650 754.9] [480 -1650 756.3] [160 -1650 755.9] 

[800 -1700 755.1] [480 -1700 757.0] [160 -1700 756.9] 

[800 -1900 752.5] [480 -1900 757.3] [160 -1900 758.7] 

[800 -2100 745.8] [480 -2100 753.3] [160 -2100 757.3] 

Group 4 Group 5 Group 6 

[-160 -1300 739.8] [-480 -1300 738.6] [-800 -1300 737.5] 

[-160 -1500 750.1] [-480 -1500 748.2] [-800 -1500 745.7] 

[-160 -1650 754.5] [-480 -1650 752.0] [-800 -1650 747.5] 

[-160 -1700 755.6] [-480 -1700 752.8] [-800 -1700 747.8] 

[-160 -1900 757.6] [-480 -1900 753.6] [-800 -1900 745.8] 

[-160 -2100 756.3] [-480 -2100 750.1] [-800 -2100 740.5] 

 

         

(a)                                                              (b)   

Figure 3.4 Curved white board and its reconstructed surface 
 

The writing result illustrated in Figure 3.5 shows that the entire robot ink deposition 

system was effective. Generating the ink deposition path using AM concepts was much 

easier than doing so using existing methods for writing letters. Furthermore, the system 

was able to deposit ink for any kind of character or graph represented in the 3D model. In 

this study, the height difference of the ink deposition path created using the proposed 

system was approximately 10mm, and the robot writing result showed no segment absence; 
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therefore, the compensation algorithm was effective and can support ink deposition on free-

form surfaces.  

 

Figure 3.5 Robot writing result 
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4. CONCLUSIONS 

An adaptive robot ink deposition system aimed at writing larger-scale letters on a 

curved surface was developed in LAMP lab. Based on the contour points, gathering 

information about the 3D model and using it to reconstruct the characters is an easier 

method than other control algorithms for robot writing, and this process also served as a 

test method for robot ink deposition. Using the proposed curved surface measurement 

method, the robot was not limited to writing only on a flat surface. Due to the measurement 

limitation of laser meter, the current scanning method can only work for the slightly convex 

curved surface. For other complex types surface, the customized scanning algorithm should 

be developed. In addition, the compensation control algorithm also was shown to apply to 

the robot repair area, which focuses mainly on curved deposition.   
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ABSTRACT 

This paper presents the research and development of an automatic hybrid 

manufacturing process which based on stereo vision and laser scanning technology to 

produce fully dense metal parts with CNC level precision. High performance metals, such 

as titanium alloys, nickel super-alloys, tool steel, stainless steels, etc., can benefit from this 

process. Coupling the additive and the subtractive processes into a single workstation, the 

hybrid process, can produce metal parts with accuracy.  The surface quality of the final 

product is similar to the industrial milling capability. It will certainly impact the future 

rapid manufacturing industry. To achieve such a system, issues, including the modeling of 

the metal deposition process, the automated path planning and accurate surface scanning 

of the hybrid manufacturing process, are summarized. 

Keywords: Hybrid manufacturing, Deposition process molding, Stereo Vision, Laser 

Surface Scanning 
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1. INTRODUCTION 

The Directed Energy Deposition (DED) process referred here is a metal additive 

manufacturing process in which metal is added to the part or product, layer by layer, to 

rapidly manufacture or form the part or product to a predetermined shape.  It is a technique 

that can produce fully dense functional metal parts or tools directly from a CAD system 

and eliminate the need for intermediate steps. An example of DED process discussed in 

this paper is shown in Figure 1.1.  

 
 

Figure 1.1 A blown powder metal deposition process is depositing a steel part 
 

A DED process is especially beneficial for high performance metals, such as fully 

dense titanium alloys, Inconel, and tool steel, which are difficult for traditional CNC 

machines or rapid prototyping (RP) machines to fabricate. For example, titanium and its 

alloys have proven to be technically superior and cost-effective materials for a wide variety 

of aerospace, industrial, marine, medical, and commercial applications.  Parts or products 

cast and/or machined from these high performance metals are very expensive, partly due 

to the processing difficulties and complexities during machining and casting. DED 

processes however have been found to be very cost effective because they can produce 

near-net shape parts from these high performance metals with little or no machining.  

However, as DED processes cannot build support materials, multi-axis capability is critical 
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in metal deposition technologies. The hybrid manufacturing process here combines laser 

deposition and machining processes to develop a rapid manufacturing process to build 

functional metal parts.  This paper summarizes the research and development of such a 

hybrid process, including modeling and understanding of the direct laser deposition process 

for distortion, and automated process planning of the hybrid process.   
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2. DEPOSITION PROCESS MODELING 

The basis of DED process is a sound microstructure which is dominated by the 

created melt pool during deposition. Melt pool formed during laser deposition is a critical 

factor and melt pool geometry is a crucial factor in determining deposition quality. To 

optimize process parameters, a deep understanding of the underlying mechanisms is 

beneficial. A mathematical model, as shown in Figure 2.1, was developed to simulate the 

coaxial laser cladding process with powder injection, which includes laser-substrate, laser-

powder and powder-substrate interactions [1]. The model considers most of the associated 

phenomena, such as melting, solidification, evaporation, evolution of the free surface and 

powder injection. The fluid flow in the melt pool, which is mainly driven by Marangoni 

shear stress as well as particle impinging, together with the energy balances at the liquid-

vapor and the solid-liquid interfaces are investigated. Powder heating and laser power 

attenuation due to the powder cloud are incorporated into the model in the calculation of 

the temperature distribution. The influences of the powder injection on the melt pool shape, 

penetration, and flow pattern are predicted by comparison between cases with powder 

injection and without powder injection. Dynamic behavior of the melt pool and the 

formation of the clad are simulated. The effects of the process parameters on the melt pool 

dimension and peak temperature are further investigated based on the validated model.  

 
 

Figure 2.1 Schematic diagram of the calculation domain for laser deposition process 
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3. DISTORTION ANALYSIS 

Highly localized heating and cooling during DMD process produces nonuniform 

thermal ex- pansion and contraction, resulting in complicated distribution of residual 

stresses in the heat affect zone and unexpected distortion in the whole structures. The 

residual stresses may promote fracture and fatigue and induce unpredictable buckling 

during the service of deposited parts and the distortion is often detrimental to the 

dimensional accuracies of structures. Therefore, it is vital to predict the behavior of 

materials after DMD process and optimize the design/manufacturing parameters to control 

the residual stresses and distortion. 

During DED process, the substrate will continuously experience expansion and 

shrinkage and finally keep a deformed shape. Deformation in y direction, shown in Figure 

3.1, is the main deformation under consideration and is observed by both experiments and 

simulations shown in Figure 3.2. 

 
 

Figure 3.1 Deformation of substrate in y direction 
 

 
Figure 3.2 Simulation and experiment results of deflection of substrate 

 



  119 
 

The distortion analysis tool allows the planning of an effective hybrid 

manufacturing process so that the distortion effect could be minimized through the 

machining process. 
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4. HYBRID MANUFACTURING SYSTEM 

In order to expand the applications of DED processes, multi-axis capability is 

needed.  A multi-axis rapid manufacturing system can be hardware-wise configured by 

adding extra degrees of mobility to a deposition system or by mounting a laser deposition 

device on a multi-axis robot.  The configuration could also be a hybrid system in which a 

laser deposition system is mounted on a multi-axis CNC machine. With the addition of 

extra rotations, the support structures may not be necessary for the deposition process in 

order to build a complicated shape. Due to the nature of the deposition process, it is driven 

by a so-called “slicing” procedure, which uses a set of parallel planes to cut the object to 

obtain a series of slicing layers. So far, the slicing software on the market is only able to 

handle 2.5D slicing in which the building/slicing direction is kept unchanged and it lacks 

the capability of changing directions to fully explore the capability of multiple degrees of 

freedom.  

This process uses laser deposition for material deposition and CNC milling for 

material removal.  As shown in Figure 4.1, it includes two major systems: a laser deposition 

system and a CNC milling machine system.  

 
 

Figure 4.1 A hybrid manufacturing system: laser deposition for material deposition and 
CNC milling for material removal 
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The laser deposition system and CNC milling machine work in shifts in a five-axis 

motion mode.  The laser deposition system consists of a laser and a powder feeder. In a 

conventional 2.5-D laser deposition process to create three-dimensional parts, overhang 

and top surfaces of hollow parts must be supported.  Often support materials for functional 

metal parts are not feasible.   

Moreover, it increases the build time of the part and necessitates a time-consuming 

post-processing.  Additionally use of support increases the build time of the part and 

necessitates a time-consuming post-processing.  With a five-axis deposition process 

integrated with five-axis machining, these obstacles can be removed. 

Measurement with high resolution is the basis of precise manufacturing [2-3]. 

Measuring with camera could get numerous information in a short time but not accurate, 

the laser sensor is precision enough but relatively slow.  

Stereo vision camera couple with laser displacement sensor archive a balance 

between speed and precision for automation path planning [4]. As shown in Figure 4.2, 

two level of measuring will be taken in this process: Rough and Precise. Two-eye camera 

adopted with stereo vision algorithm could provide the spatial information for this hybrid 

manufacturing system, including the position, size, shape of part, substrate, machine tool 

and the deposition nozzle. The work of precisely scanning in specific working area will 

finished by Laser displacement sensor, which the resolution of point clouds could reach to 

10 microns.  
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Figure 4.2 Stereo vision based path planning for hybrid manufacturing 
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5. STEREO VISION BASED HYBRID PROCESS PLANNING 

The major issue to make an effective hybrid process is the automation of the system.  

Process planning, simulation, and tool path generation of a hybrid manufacturing process 

allow the designer to visualize and perform the part fabrication from the desktop. The Laser 

Aided Manufacturing Process Planning system uses B-Rep models as input and generates 

a description that specifies contents and sequences of operations. The objective of the 

process planning is to integrate the five-axis motion and deposition-machining hybrid 

processes.  The results consist of the subpart information and the build/machining 

sequence. Basic planning steps involve determining the base face, extracting the skeleton, 

decomposing a part into subparts, determining build sequence and direction for subparts, 

checking the feasibility of the build sequence and direction for the machining process, and 

optimization of the deposition and machining [5-7]. 

(1) Skeleton Computation 

An algorithm for computing the skeleton of the 3-D polyhedron is needed. The 

algorithm is based on a classification scheme for points on the skeleton computation in 

which the continuous representation of the medial axis is generated with associated radius 

functions.  Because it is used as a geometric abstraction, the skeleton is trimmed from the 

facets that touch the boundary of the object along every boundary edge for which the 

interior wedge angle is less than π rad.  

(2) Part Orientation 

The determination of the base face from which the building process of the part starts 

is very important.  The base face functions as the fixture in the machining process.  
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Therefore, when in the machining process, it must provide resistance against the cutting 

force. The maximal resistance force depends on the area of the base face.   

(3) Part Decomposition and Building Direction 

The objective of part decomposition is to divide the part into a set of subparts, which 

can be deposited and machined.  The topology of the part can be obtained from the skeleton.  

Each branch of the skeleton corresponds to a subpart. One of the partitions that is performed 

is along a non-planar surface.  Therefore, close to the partition area, 3-D layers are needed 

to build the connection between two subparts. The build direction of a subpart may not be 

constant.  It changes when the part is built layer by layer so that for two adjacent layers, 

the later layer can be deposited based on the early layer without any support structures.  To 

achieve the non-support build, the build directions need to be along the skeleton. 

(4) Building Sequence 

The results of decomposition are recorded in an adjacency graph where nodes 

represent subparts, and edges represent the adjacency relationship between connected 

nodes.  After considering part building order, a directed graph that represents the 

precedence relationship among subparts can be constructed.  From the precedence graph, 

one can identify in what order the subparts can be built.  With the precedence graph, a set 

of alternative building plans can be generated.  Each plan represents a possible building 

sequence on the decomposed geometry and can be chosen optimally depending upon 

machine availability or other criteria such as minimum building time.   

(5) Machinability Check 

The main purpose of the machinability check is to choose an optimal building 

sequence from the sequence set. Local and global collision checks are operated first to 



  125 
 

choose acceptable sequences since the building direction is different in each sequence. If 

any kind of collision happens or an undercut plane appears, the corresponding sequence 

will be discarded. For the rest of the building sequences in the set, the building ability check 

and machining time computation is performed to find an optimal building sequence.  

Stereo computer vision technology is adopted to obtain the spatial information of 

the part and hybrid manufacturing system. Firstly, several markers are put around the target 

working area on the part for image processing. After the part securely fixed on the CNC, 

stereo camera will take several stereo images. Then the image processing is done by stereo 

marker matching to get the value of three dimension coordinates in the camera coordinates 

system. The stereo camera calibration provides the camera intrinsic and extrinsic 

parameters. The spatial information in camera coordinate system could be transformed to 

the hybrid manufacturing environment with this information. This process is to build the 

relationship between CNC machine and camera coordinate system, as shown in Figure 5.1. 

And then the 3d coordinates of defect area on the Ti64 part in camera coordinate system is 

transformed to CNC machine. Equation (1) and (2) show the method to get the 

transformation matrix ����
���  . Four spatial positions which are not in one plane on CNC 

machine are used to calculate ����
��� . Read each coordinate of those four positions in CNC 

machine and then calculate the corresponding coordinate of those four positions in camera 

coordinates system by stereo computer vision method.  
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Figure 5.1 Coordinate Relationship between camera, CNC, and part 
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6. RESULTS 

Laser displacement sensor is used to scan the geometry of deposition result and 

machining area. The resolution of measurement can be reach to 10 microns. These accurate 

dimension data are basis for path planning of near-net manufacturing. Point clouds of the 

deposition area is used to generate the machining tool path. Figure 6.1 shows the laser 

displacement sensor is scanning a deposition sample on Ti64 substrate.  Figure 6.2 

describes the machining tool path according to this point clouds information. 

 

 

 

Figure 6.1 Accurate surface scanning with laser displacement sensor 
 

 

 

Figure 6.2 Point clouds of scanning results and the machining tool path 
 

The bearing seat example as shown in Figure 6.3 (a) and its deposition result are 

shown here.  Figure 6.3 (b) shows the planed tool path for both deposition and machining, 
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Figure 6.3 (c) shows the part in H13 tool steel being deposited, and Figure 6.3 (d) shows 

the part after machining.   

 
(a)  CAD model       

       

    
(b)  Automated generated tool path for deposition and machining 

 

 

(c) Laser deposition 

Figure 6.3 Hybrid manufacturing of an H13 tool steel bearing seat part  
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(d) After machining 

Figure 6.3 Hybrid manufacturing of an H13 tool steel bearing seat part (cont.) 
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7. CONCLUSIONS 

Making precision metal parts is a critical additive manufacturing technology as it 

can directly produce finished products or parts for high performance applications. The 

current limitations of additive processes include surface finish, repeatability, and material 

properties. The research and applications of a stereo vision based hybrid metal 

manufacturing system are summarized in this paper.  The issues include understanding the 

DED process, the stereo vison aided automated process planning, and laser displacement 

sensor surface scanning. The modeling and simulation of material-laser interaction help 

design and set the process parameters for metal deposition. The stereo vison based path 

planning and laser sensor scanning make the process has less involve with manual 

operation, enhance the automation and accuracy of additive manufacturing process. The 

overall goal for process planning is not only to find a solution to build a part but also to 

look for an answer to produce it in the least amount of time; therefore, the least amount of 

switching between the machining process and deposition process, the better since each 

switch requires retreating and relocating the deposition nozzle as well as the machining 

tool, which may cost extra time. With integration of multi-axis deposition and machining 

processes on the same work station, a hybrid system is able to produce complicated 

geometry, especially the overhang structure with less or no support structures. Based on 

different geometry shapes, the five-axis system can save close to 100% of support 

materials. The surface quality of the final product is similar to the industrial milling 

capability. As there is a big demand in precision metal additive manufacturing applications, 

a more sophisticated process planner and general purpose for hybrid manufacturing 

systems is needed.  
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V. LARGE-SCALE DEPOSITION SYSTEM BY AN INDUSTRIAL ROBOT (I) – 
DESIGN OF FUSED PELLET MODELING (FPM) SYSTEM AND 
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ABSTRACT 

Fused pellet modeling (FPM) is an important method in additive manufacturing 

technology that uses granular material instead of filaments. In FPM, prototypes are 

constructed by the sequential deposition of material layers. As the size of the part increases, 

the long build times and part deformations become critical problems. Methods for 

optimizing the extrusion process to eliminate the void density during large scale FPM 

processes were studied. Based on analyzing polymer extrusion theory and non-Newtonian 

fluid properties, a mini extruder with a variable pitch and a progressive diameter screw has 

been proposed for large scale fused pellets deposition. Each of the design parameters, such 

as the lengths of different function sections of screw, die shape of extruder nozzle, and the 

material properties was analyzed. According to these analysis results, an extrusion process 

simulation for controlling the filament shape was carried out with multi-physics modeling 

software proving that the FPM could increase the building efficiency and deposition quality 

for large-size parts. 

Keywords: Fused pellet extruder, Robot deposition, Polymer extrusion, Non-Newtonian 

fluid 
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1. INTRODUCTION 

Layered manufacturing with extruded material is one of the most promising rapid 

prototyping techniques that demonstrates novel design ideas and reduces the product 

development cycle. This process fabricates prototypes by extruding the material in a semi-

fluid status through a heated nozzle in a prescribed pattern onto a platform. Various types 

of material could be applied in this process, including polymer, cement, plaster, and wax.  

The deposition material should be extruded continuously, stably, and under 

constant temperature during the layered manufacturing process. “Continuously” means 

there should be no interruption of extrusion when the nozzle scans the deposition path; 

“stably” involves the stable extrusion amount and accurate geometry of the semi-molten 

material; and “thermostatic” is to ensure the bonding quality is acceptable between 

deposition tracks.  

The fused deposition modeling (FDM) developed by Stratasys Inc. has been a 

leading rapid prototyping technology that involves layer by layer deposition of extruded 

material through a nozzle using feedstock filaments from a spool [1]. The material feeding 

process of filament based extrusion is realized by two friction wheels that rotate reversely 

to push the filament into a heated nozzle as shown in Figure 1.1. Because of the simple 

structure and easy control, it has been widely used in most of the fused deposition systems. 

But the weak points of this method are also very obvious. The extrusion force is limited by 

the filaments’ surface compressive strength and the contact area between the friction 

wheels and filament. Insufficient friction will cause slip feeding, and too much 

compressive force applied on the filament might break it off. Both of these will affect the 

extrusion quality. To shift from rapid prototyping to agile fabrication by broadening the 
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material selection and to improve the properties of fused deposition modeling, N. Volpato 

et al [2] proposed a piston driven extrusion head that can extrude polypropylene granules 

into a filament. However, the problem of this method that related to filament uniformity 

should be addressed. Also adopted granulated material, Anna Bellini et al [3] presented a 

novel extrusion system that was mounted on a high precision positioning system and fed 

with plastic pellets. This research area also drawn significant interests from industry. 

Cincinnati Incorporated commercialized a Big Area Additive Manufacturing (BAAM) 

machine that could use granulated material to build a body of car within a gantry deposition 

system, but it still confined by an enclosed working envelope. Lockheed Martin teamed 

with Oak Ridge National Laboratory (ORNL) designed a system that accommodate a team 

of coordinated robots working in an open air environment to produce components and 

structures unbounded in size, they adopted a screw extrusion unit which enables the use of 

advanced polymer composites, multiple material within a single component [4]. Although 

this screw extrusion system could perform better than other filament based extrusion 

systems, the normal single screw is still not the most suitable structure for the fused 

material extrusion process. 

 

         
 

Figure 1.1 Schematic of filament based extrusion systems 
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As the size of the part increases, the problem of long build times and part 

deformation becomes more critical. Currently, most filament based 3D printers equipped 

with 0.3 mm-0.8 mm diameter nozzles, and the printing speed of those between 30 mm/s - 

120 mm/s, even some printers can go up to 200 mm/s, it would still take a long time to 

build a big part. In addition, inner stresses resulting from the contraction of deposition 

fibers within one layer can affect the precision of the prototype’s size and bring about 

prototype deformations, including warp and inner-layer delaminating or cracking. Similar 

quality issues exist in other rapid prototyping processes. Many researchers have 

investigated the inner stresses. Tian-Ming Wang et al. [5] constructed a mathematical 

model of the prototype warp deformation to analyze each of the influencing factors. 

Jayanthi et al. [6] discussed how the scanning pattern of the laser in stereolithography 

(SLA) influences the resulting deflection of the part. Céline Bellehumeur [7] studied the 

dynamics of bond formation between polymer filaments using thermal analysis and 

sintering experiments under different conditions. This same group performed a more in-

depth study on the mechanisms that control the bond formation under different process 

conditions [8].  

To avoid most of the defects that occur during the material extrusion steps in a 

filament-based system, a mini screw extrusion system has been proposed, developed, and 

specially designed to build large objects using the layered manufacturing technique. The 

new set-up is called fused pellet modeling (FPM) system. The FPM consists of a mini 

extruder mounted on an industry robot arm. It operates using bulk material in a granulated 

form. With the special designed progressive screw, this mini extruder could provide higher 

extrusion speed and better extrusion quality. In addition, theory analysis and simulation 



  137 
 

work have done on optimizing the nozzle geometry, to eliminate the deposition defects 

happened in conventional fused deposition method. This configuration opens up 

opportunities to use a wider range of materials. Meanwhile the robot arm makes the fused 

pellet modeling process a more flexible and viable alternative rapid for the prototyping of 

large part. 
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2. SYSTEM SPECIFICATIONS 

Screw extrusion has been widely adopted in the polymer manufacturing industry 

because of its extremely excellent attribute for processing. The plastic melts as it moves 

along the screw. Initially, a thin film of molten material is formed at the barrel walls. As 

the screw rotates, it scrapes this film off, and molten plastic moves down the front face of 

the screw flight. When the material reaches the core of the screw, it sweeps up again, setting 

up a rotary movement in front of the leading edge of the screw flight. Initially, the screw 

flight contains solid granules, but these granules tend to be swept into the molten pool by 

the rotary movement. As the screw rotates, the material passes further along the barrel, and 

more and more solid material is swept into the molten pool until, eventually, only melted 

material exists between the screw flights. 

Applying the screw extrusion method into the fused deposition process is not 

simple. The key component in the system is the extrusion screw. But the length of screw 

for extrusion machine in plastic industry is normally from 80 inch to 200 inch. Those 

extrusion systems are too big to apply on robot deposition process, because the nozzle 

needs to keep a certain scanning speed during the deposition process, it requires the weight 

and volume of the extrusion unit to be within a certain range, so it is crucial to design and 

manufacture a small screw for the mini extrude. Some researchers have tried to use a 

common screw for extrusion. A common screw could work for several kinds of material, 

like ceramic and plaster, because these material are already in viscous state, the screw 

rotation only provide the force for material moving forward. But for the polymer pellets, 

the material will experience state change from solid plastic to viscous fluid. The mini screw 

with a variable pitch and a progressive diameter could form a volume changing inside of 
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the barrel, the material will be mixed uniformly by the pressure which generated when 

material moving forward. 

In combination with the barrel, the screw converts solid material to the melted 

status and efficiently pumps the material to the die. To obtain a good extrusion 

performance, the screw for FPM system should be designed with three different function 

sections: feed, transition, and metering. The feed section is the first element of the screw 

where the polymers are introduced. The wide pitch P1 and small diameter D1 could provide 

the greatest feeding volume and frication force for pushing the polymer material forward, 

because the dry friction occurred between the solid state pellets and inner wall of the barrel 

at this section. The transition section (or compression section) is where most of the polymer 

melting takes place. This is the portion of the screw that “transitions” from the feed depth 

to the metering depth. This portion is also where the work is done on the resin to cause 

melting to occur. In this section, the root of the screw gradually becomes shallower, forcing 

the material towards the wall of the heated barrel where the melting takes place. Last but 

not least is the metering section, or pumping section, of the screw. This is where the 

polymer melting is completed and pumping occurs to overcome the head pressure.  

The first design requirement of the extrusion screw is L/D ratio, as shown in Figure 

2.1. It being defined as the “enclosed” portion of the screw, or the flighted length form the 

front side of the feed port to the end of the screw. Typical extruder L/Ds are 24:1 and 30 

or 32:1, but there are special applications where extruder are built as 10:1 L/D and as long 

as 50:1 L/D. The proper L/D is determined by the process and application that is being 

satisfied. Considering minimize the extruder unit volume and realize high extrusion 

amount for this proposed design, L/D ratio has chosen as 10:1.  
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Figure 2.1 Schematic of a progressive screw 
 

Another important design requirement is the length and diameter of different 

sections. As the function described above, feed section is the deepest portion of the screw, 

special attention needs to be given to this section of the screw in order to reduce twisting 

the screw in half due to over torque of the screw. For this design, the raw material of screw 

is 8620 hot roll steel, according to empirical formula for screw design, the depth of feed 

section is ����� = 0.2 (����� ��������)= 0.4 ��� . The depth of metering section is 

determined as 0.2 inch for provide volume changing for compression along the screw. The 

screw pitch also decreased from the end to the front of screw, feed section is 1.5 inch, 

transition section is 1.0 inch, metering section is 0.6 inch, respectively. Usually, the length 

of feed section set as L1 = (3~5)*D, the length of transition section determined based on 

the heating ability and rotation speed, L2 = (6~8)*D, so the ratio of section length for this 

design is L1 : L2 : L3 ≈ 2:3:1. The screw is machined on a 5-axis CNC, used its helix 

expand command, the G-code is shown in Table 2.1. The finial manufacturing result of 

progressive screw shown as Figure 2.2. 
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Table 2.1 G-code for manufacturing progressive screw 
 

N1 02010 (Progressive Screw) 

N2 G90 

N3 S800 

N4 F3. 

N5 G17 

N6 G58 

N7 M6 T3 

N8 G58 Z0 

N9 G43 H3 

N10 G59 

N11 G5 Z3 

N12 G90 

N12.1 S3000 M3 

N13 X1.40 Y-1. Z0 F27. 

N14 Z (0:-0.2:-0.1)  

// cutting start height z=0;  

// cutting end height z=-0.2;  

// cutting depth z=-0.1 

N15 Y0 

N16 G17 Q2.8648 

N17 X4.60 Y25.13272 

N18 X5.60 Y31.4159 

N19 X11.20 Y56.54862 Z (0:-0.4:-0.1) 

N20 X12.60 Y62.8318  

N21 X14.60 Y69.11498 

N22 X16.70 Y75.39816 

N23 X16.95 Y75.39816 

N24 X14.85 Y69.11498 

N25 X12.80 Y62.8318 

N26 X13.00 Y62.8318 

N27 X15.10 Y69.11498 

N28 X17.20 Y75.39816 

N29 X15.10 Y69.11498 

N30 X13.00 Y62.8318 

N31 X11.45 Y56.54862 

N32 X5.60 Y31.4159 Z (0:-0.2:-0.1) 

N33 X4.60 Y25.13272 

N34 X1.40 Y0 

N35 X1.45 Y0 

N36 X4.65 Y25.13272 

N37 X5.85 Y31.4159 

N38 X11.45 Y56.54862 Z (0:-0.4:-0.1) 

N39 X13.25 Y62.8318 

N40 X17.45 Y75.39816 

N41 X16.45 Y75.39816 

N42 X14.35 Y69.11498 

N43 X12.35 Y62.8318 

N44 X10.95 Y56.54862 

N45 X5.35 Y31.4159 Z (0:-0.2:-0.1) 

N46 X4.55 Y25.13272 

N47 X1.35 Y0 

N48 X1.45 Y0 

N49 Z0.5 

N50 X1.35 Y0 F200. 

N51 G17 
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Figure 2.2 Progressive screw for mini extruder 
 

This mini extruder is mounted on an industry robot as shown in Figure 2.3(a). It 

has a 4.1 m2 (cross-section area) operating area and a 300  rotation range for the base motor 

(Figure 2.3(b)), which could provide a much bigger deposition working envelope than the 

current fused deposition system. The 6-axis movement mechanism makes the deposition 

process more flexible in building a model with complex features. 

             
 

(a) Assembly model of FPM system                (b) Robot’s working envelope 
 

Figure 2.3 Assembly model of FPM system on the industry robot 
and working envelope 
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3. ACCURACY CONTROL OF THE EXTRUSION PROCESS 

The void density caused by the gap and overlap between deposition tracks is an 

inevitable defect of the filament based extrusion system. It will also result in part 

deformation and deposition failure. To analyze the effect of void density in the deposition 

process, L. Li [9] proposed a method to calculate it theoretically. For each laminate, axis d 

is normal to the plane of filament’s cross section, define 1r  as the area void density, g as 

the gap size. 

 When g =0, there are no gaps among the filaments. The ideal cross section is 

shown in Figure 3.1. The cross section shape of the filament is an ellipse with a  and b

representing the idealized lengths of the semi-major axis. 

 
 

Figure 3.1 Ideal cross section of deposited filament 
 

In the actual process, the top and bottom surfaces of the filament would flatten 

when deposited onto previous layers. This is from the vertical force of extrusion in a semi-

molten state. Therefore, the modified calculation model is shown in Figure 3.2(a), 

considering the flattening effect of d  can be measured experimentally. Assuming that the 

total cross sectional area stays unchanged, the relation between areas Q and P  should be:  

Q  2P                                                                          (1) 
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Assuming d  is a small amount, the flattened area has the same length as the long 

semi-axis of the filament ellipse. Thus, the void density can be calculated using the 

following equation: 

r
1
1

pab

2a(2bd)
                                                           (2) 

The real cross section for this situation is also indicated in the microscopic photo 

in Figure 3.2(b). 

    
(a) Schematic diagram of deposited filament with flattening effect      

         
         (b) Microscopic cross section of deposited filament 

Figure 3.2 Deposited filament with flattening effect and photo of microscopic cross 
section  

 

When g  ±D , there is a gap or overlap between deposition tracks, as shown in 

Figures 3.3(a) and Figures 3.4(a). The cross section photos of filaments were taken under 

microscopic, as shown in Figures 3.3(b) and Figures 3.4(b), respectively.  

r
1
1

pab

(2a±D)(2bd)
                                                                  (3) 
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(a) Schematic diagram of deposited filament with positive gap 
 

 
 

(b) Microscopic cross section of deposited filament 
 

Figure 3.3 Deposited filament with positive gap and photo of microscopic cross section  
 

  
(a) Schematic diagram of deposited filament with negative gap 

 

 
 

(b) Microscopic cross section of deposited filament 
 

Figure 3.4 Deposited filament with negative gap and photo of microscopic cross section  

The smaller area of void density means a better deposition quality. Increasing d  

and using a minus gap setting could decrease the 1r , but because of the nozzle’s structure 
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more deposition layers and denser deposition tracks are required, d  has a limitation as well. 

The result would be a longer building time.  

Obviously, the void density problem in conventional filament based deposition 

process caused by the elliptical shape of extruded filament’s cross section. To solve this 

problem, FPM system could realize extruding filament with rectangle shape cross section 

by analyzing the plastic extrusion process and extrusion material property.  

The polymer material changes into three different physical states, sequentially, 

from when it is fed into the barrel to when it is extruded out through the nozzle: a glass 

state, a high elastic state, and a viscous flow state. Because the molten polymer has a high 

viscosity and significant elasticity, it should be considered as a kind of viscoelastic material 

that exhibits non-Newtonian fluid properties. 

 One important feature of a non-Newtonian fluid is the Barus effect [10], which is 

an expansion phenomenon of a non-Newtonian fluid that occurs when it emerges from a 

nozzle to an open space such that the diameter of the emerging stream can be several times 

the nozzle diameter, and the expansion ratio is varied from the edges to the corners. When 

the molten polymer is extruded out from the nozzle, it expends along the edge.  

The longer the edge, the more significant the expansion is. This results in the 

filament shape of the extruded material been different from the shape of the nozzle (Figure 

9). Therefore, if the expected filament shape is a rectangle, the shape of the nozzle should 

be similar to the third shape in Figure 3.5. 
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Figure 3.5 Barus effect with different nozzle shapes 
 

By controlling the parameters of the extrusion process, including screw ration speed 

(this one will directly affect the back pressure in the barrel), temperature of heating bands, 

the pellets feed amount and the shape the nozzle, a rectangle-shaped of filament, as shown 

in Figure 3.6 could be obtained to decrease the void density and enhance the deposition 

quality. 

          
(a)                                                      (b) 

Figure 3.6 Model of nozzle for extruding rectangle filament and the ideal deposition 
results 
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4. EXTRUSION PROCESS MODELING AND DISCUSSION OF SIMULATION 
RESULTS 

 
For a non-Newtonian flow, � denotes the viscosity (kg/(m·s)), � the velocity (m/s), 

� is the density of the fluid (kg/m3), and � the pressure (Pa). The equations to solve are the 

momentum and continuity equations are, respectively, as follows: 

( ( ) ) 0Tu
u u u u p

t
r  r


        


                           (4) 

0                                                                 (5) 

In the Carreau model, the viscosity depends on the shear rate, 


, which, for an 

axisymmetric model in cylindrical coordinates, is defined according to Equation 2: 

2 2 2 21
(2 ) 2( ) (2 ) 4( )

2
r r r z

u
u u v v

r



 
     

 
                             (6) 

The viscosity is given by  

( 1)
2 2

0( )[1 ( ) ]
n

    
 

                                         (7) 

where   is the infinite shear rate viscosity, 0  is the zero shear rate viscosity,   

is a parameter with units of time, and n  is a dimensionless parameter. 

The section view of the nozzle in this FPM system is shown in Figure 4.1(a). An 

inside volume model of the nozzle was built, as shown in Figure 4.1(b), to analyze the flow 

behavior of the molten polymer material in COMSOL multi physics.  
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    (a)                                      (b) 

Figure 4.1 Cross section view of nozzle and the inside volume model 
 

Three different nozzle shapes were designed to analysis the Barus effect of the 

extruded molten polymer. The inside volume models of the nozzle were also modeled, 

respectively (Figure 4.2). Shape-1 represents the original rectangle shape die. The edge 

length is 0.5 inch. Shape-2 represents the modified shape die. The edge contracted inward, 

obviously. The radius of the arc is equal to the length of the rectangle, and the arcs are 

tangent to each other. Shape-3 represents the improved shape die. The edge contracted 

inward slightly. The radius of the arc is 0.7 inch, and the radius of the fillet at each corner 

is 0.01 inch. 

 

 
Figure 4.2 Cross section sketch and 3D model of three different nozzle shapes 

 
The inside volume model represents the material that is extruded out from the barrel 

through the die of the nozzle. The flow behavior of the melted material follows the non-
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Newtonian flow equations. Because of the symmetrical geometry feature, and for 

computation efficiency, the model could be simplified as a single quadrant, shown as in 

Figure 4.3. To compare how different nozzle shapes affect extruded filament shape, the 

boundary conditions and mesh parameters set as same for these simulations in COMSOL: 

wall boundary is no slip, pressure at inlet boundary is 23 M Pa , pressure at outlet boundary 

is 0 M Pa , mesh type is tetrahedral, maximum element size is 0.058.  

 

Figure 4.3 Quadrant inside volume models and definition of boundaries 
 

The material subdomain settings for low density polyethylene (LDPE) at around 

220 degrees centigrade [11] are shown in Table 4.1. The convergence could be achieved 

when the mesh is tuned sparser, it is also affected by the boundary conditions and material 

properties. With current boundary conditions and the property of LDPE material, the model 

is stable and convergent. 

Table 4.1 Subdomain settings for LDPE material 
 

Viscosity model type Carreau model 

Density of melt LDPE (rho) 743 kg/m3 

Zero shear rate viscosity 1437.4Pa.s 

Model parameter (n) 0.39 

Model parameter ( ) 0.015s 
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When a non-Newtonian flow comes out from the nozzle with a certain speed and 

back pressure, the inner pressure of the flow forces the material to expand in the open 

space. This is the macro phenomenon of the Barus effect, which results in the extruded 

material swelling and coming out with an oval shape or another unexpected shape. Usually 

the working pressure of plastic extrusion machine is 20 MPa. As the screw rotation speed 

increasing, extrusion pressure will rise up, obvious Barus effect will happen when the 

pressure reach to 22.5 MPa-26 MPa, specific value is varied according to different material 

property and other system parameters, like L/D ratio, pellets feed amount, et al. This 

phenomenon could be reflected in the pressure plot of nozzle outlet cross section of the 

simulation results. Figure 4.4 shows the meshed inside single quadrant volume models of 

three different shaped nozzles and the cross section pressure distribution plot at the outlet 

of each nozzle, respectively. Normalized pressure scale is used in the figures to illustrate 

the color difference of maximum and minimum pressure. 

The polymer material filament will swell when it comes out from the nozzle of 

screw extruder, because the internal pressure of material will drive the filament expand to 

different shape. As shown in Figure 4.4(a), for the rectangle shape nozzle, the pressure 

distribution along the rectangle’s edge is higher than the pressure at the corner section, the 

filament tends to expand to a round similar shape. Figure 4.4(b) shows the pressure 

distribution plot of the modified nozzle shape, which shrank too much from each edge. It 

resulted that the pressure was concentrated at the corner because of the stress cusp effect. 

These pressure distribution plots illustrate that the simulation corresponded to the non-

Newtonian flow’s characteristic, and these two designs cannot achieve the extruding 

rectangle shape filament because the molten polymer cannot expand averagely.  
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This problem can be solved by optimizing the geometry of the die, that could 

uniform the pressure at the edges and corners. Figure 4.4(c) shows the pressure distribution 

plot of the improved shape die. The pressure at the corners is less than the pressure at the 

edges, and the pressure distribution is nearly uniform and symmetrical, the filament surface 

tends to expand to a rectangle similar shape which drove by the internal pressure. The stress 

cusp effect could also be eliminated by adding a fillet feature. A comparison between these 

three nozzles shows that the filament extrusion quality could be controlled with die shape 

optimization. Moreover, the rectangular filament would improve deposition accuracy and 

efficiency for large-scale objects. 

          
(a) 

 

            
(b)  

 
Figure 4.4 Meshed single quadrant inside volume models and 

the cross section pressure distribution plot at the outlet of the nozzle 
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(c) 

 
Figure 4.4 Meshed single quadrant inside volume models and 

the cross section pressure distribution plot at the outlet of the nozzle (cont.) 
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5. CONCLUSION 

Filament based fused extrusion deposition has been innovated and developed for a 

long period of time. It has the advantages of being a simple and economical system 

structure, but the low extrusion speed and enclosed workspace limit applying this technique 

to build a large-size prototype. To solve these problems, a fused pellet modeling (FPM) 

method is proposed. A screw with a variable pitch and progressive diameter would be 

designed to provide sufficient extrusion material at a high speed and with a certain back 

pressure. Analyzing the cause of void density in fused deposition based on the Carreau 

model would allow the die shape to be optimized for LDPE material in COMSOL. The 

next step of this project will include an investigation of the coupling affection of multi-

physic fields (including hydromechanics, thermodynamics, and phase change) on the 

deposition process of fused pellet modeling (FPM) to build high-quality large-size 

prototypes with efficiency. 
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SECTION 

2.   CONCLUSION 

Since the robot arm functions as the motion mechanism in the robotic hybrid 

manufacturing process, thus the research issues on optimizing robot accuracy and stiffness 

property are very important. A new methodology was developed for finding the best 

position and orientation to perform a specific tasks based on the current robot system 

accuracy capability. The knowledge of rigid body representation and homogeneous 

transformation matrices was introduced. Then the D-H model of Nachi Robot (SC300F-

02) was established and the detail solution of robot forward/inverse kinematic was given. 

Since joint angle error affects the end effector position accuracy greatly, a robot positon 

error model was created to analyze the sensitivity of each joint with angle error. It reveals 

that even the same joint angle error could have different weight of affection when it appears 

on different joint. Thus, a new evaluation formulation was established for mapping the 

trajectory accuracy within the robot’s working volumetric. With a group of known joint 

error, influence of different position and orientation on the movement accuracy of end 

effector was discussed.  

For solving the problem of enhancing robot trajectory stiffness under heavy 

external load, firstly the detail process of solving robot jacobian matrix was presented, and 

the force jacobian matrix also has been derived according to the concept of virtual work. 

Based the on the assumptions of the link of industrial robot is rigid and all the deformation 

are concentrated at joints, the stiffness model of serial manipulator was developed. Then 

the robot stiffness matrix was derived from the robot jacobian matrix and robot joint 

stiffness matrix. By analyzing the robot kinematic and the properties of robot stiffness 
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matrix, a new evaluation formulation has been established for mapping the trajectory’s 

stiffness within the robot’s working volumetric. A trajectory stiffness simulation analysis 

system was developed for discussing the stiffness difference of a robotic deposition 

working path at different positions and orientations. The simulation results revealed that 

for the small size working path, in macro view, most turning points are concentrated within 

a small area, position is the main factor that affect the stiffness performance of this specific 

task. But for the large scale working path, the orientation of trajectory would affect the 

distribution of turning pointing a lot, thus lead to a great difference of stiffness 

performance.  

For improving the engineering application of robotic hybrid manufacturing, an 

adaptive robot ink deposition system aimed at writing larger-scale letters on a curved 

surface was developed. Based on the contour points, gathering information about the 3D 

model and using it to reconstruct the characters is an easier method than other control 

algorithms for robot writing, and this process also served as a test method for robot ink 

deposition. Using the proposed curved surface measurement method, the robot was not 

limited to writing only on a flat surface, which has been the standard, especially for writing 

large-scale characters. In addition, the compensation control algorithm also was shown to 

apply to the robot repair area, which focuses mainly on curved deposition. 

 Moreover, the research and applications of a stereo vision based hybrid metal 

manufacturing system are summarized. The issues include understanding the DED process, 

the stereo vison aided automated process planning, and laser displacement sensor surface 

scanning. The stereo vison based path planning and laser sensor scanning make the process 

has less involvement with manual operation, enhance the automation and accuracy of 
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additive manufacturing process. The overall goal for process planning is not only to find a 

solution to build a part but also to look for an answer to produce it in the least amount of 

time; therefore, the least amount of switching between the machining process and 

deposition process, the better since each switch requires retreating and relocating the 

deposition nozzle as well as the machining tool, which may cost extra time. With 

integration of multi-axis deposition and machining processes on the same work station, a 

hybrid system is able to produce complicated geometry, especially the overhang structure 

with less or no support structures. 

In order to extend the robotic hybrid manufacturing process to the broader 

application area, a fused pellet modeling (FPM) system is proposed. A screw with a 

variable pitch and progressive diameter would be designed to provide sufficient extrusion 

material at a high speed and with a certain back pressure. Analyzing the cause of void 

density in fused deposition based on the Carreau model would allow the die shape to be 

optimized for LDPE material in COMSOL. The simulation result shows that the filament 

extrusion quality could be controlled with die shape optimization. Moreover, the 

rectangular filament would improve deposition accuracy and efficiency for large-scale 

objects. 

The overall outcomes of this dissertation addressed several key issues which 

challenging the development of robotic hybrid manufacturing. It provided a systematic 

approach for analyzing the factors that could affect robot accuracy in actual hybrid 

manufacturing processes, and establish the schema for optimizing working trajectory to 

maximize the accuracy and stiffness capacity of robot. In addition, the stereovision 
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measurement and adaptive path planning technology is important for improving the 

efficiency of robot hybrid manufacturing process.  

Moreover, the fused pellet modeling (FPM) system avoids most of the defects that 

occur during the material extrusion steps in a filament-based system, make the large-scale 

robotic deposition object much more feasible and easier to implement. 
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