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ABSTRACT 

Engineers always encounter time-dependent uncertainties that ubiquitously exist, 

such as the random deterioration of material properties and time-variant loads. Therefore 

the reliability of engineering systems becomes time-dependent. It is crucial to predict the 

time-dependent reliability in the design stage, given possible catastrophic consequences 

of a failure. Although extensive research has been conducted on reliability analysis, 

estimating the reliability accurately and efficiently is still challenging. The objective of 

this work is to develop accurate and efficient reliability methodologies for engineering 

design. The basic idea is the integration of traditional reliability methods with saddlepoint 

approximation (SPA), which can accurately approximate the tail distribution of a random 

variable. Four methods are proposed in this work. The first three methods deal with time-

independent reliability while the last one estimates the time-dependent reliability. The 

first method combines SPA with first-order approximation and achieves higher accuracy 

over the traditional first-order reliability method when bimodal distributions are involved. 

The second method further improves the accuracy of reliability estimation by integrating 

SPA with the second-order approximation. The third method extends the second method 

into the reliability-based design for higher accuracy, and the high efficiency is maintained 

by an efficient algorithm for searching for an equivalent reliability index. The fourth 

method uses sequential efficient global optimization to convert a time-dependent problem 

into a time-independent counterpart. Then the second method is utilized to estimate the 

time-independent reliability after the conversion. The accuracy and effectiveness of the 

above methods are demonstrated by both numerical examples and engineering 

applications. 



 

 

v 

ACKNOWLEDGEMENTS 

First, I would like to express my sincere appreciation to my advisor, Dr. Daoru 

Han, and my co-advisor, Dr. Xiaoping Du, for their time, kindness, unwavering support, 

insightful guidance, and continuous encouragement during my Ph.D. study at Missouri 

University of Science and Technology. It has been my great honor and privilege to work 

with them. Their diligence, rigorous attitude to research, great passion for teaching, and 

modesty in life will continuously inspire me in my future career and life. 

Meanwhile, I would like to extend my gratitude to all my dissertation committee 

members, Dr. Serhat Hosder, Dr. Ashok Midha, Dr. Anthony Okafor and Dr. Ruwen Qin. 

Without their guidance, insightful comments and time commitment, this dissertation 

would not have been possible. 

Besides, I would like to thank my labmates and friends, Dr. Zhen Hu, Dr. Zhifu 

Zhu, Dr. Yao Cheng, Dr. Zhengwei Hu, Mr. Guannan Liu, Mr. Hao Wu, Mr. Xinpeng 

Wei, Dr. Fangping Yuan, Dr. Xin Wang, Dr. Chao Zhang, Mr. Junji Huang, Mr. Le Ma, 

Ms. Aslihan Vuruskan, Mr. Ganesh Ravi Shanker and Mr. Philip Honnold, for their 

support and help during my study in Rolla. I also would like to thank Dr. Cenk Undey, 

Dr. Myra Coufal and Dr. Elif Seyma Bayrak at Amgen Corporation for their guidance 

and help during my graduate co-op. I also greatly appreciate the financial support from 

the National Science Foundation through Grants CMMI 1562593 and CMMI 1727329 

and the Intelligent Systems Center at Missouri University of Science and Technology. 

Lastly but not the least, I would like to express my deepest appreciation and love 

to my wife, Qilian Song, my parents, my parents in law and relatives for their love, 

encouragement, patience and persistent support. 



 

 

vi 

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION .................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGEMENTS ................................................................................................ v 

LIST OF ILLUSTRATIONS ............................................................................................. xi 

LIST OF TABLES ........................................................................................................... xiii 

SECTION 

1. INTRODUCTION .................................................................................................... 1 

1.1. BACKGROUND ............................................................................................. 1 

1.2. RESEARCH OBJECTIVE .............................................................................. 3 

1.3. ORGANIZATION OF DISSERTATION ....................................................... 5 

PAPER 

I. RELIABILITY METHODS FOR BIMODAL DISTRIBUTION WITH FIRST 

ORDER APPROXIMATION ................................................................................. 7 

ABSTRACT ............................................................................................................ 7 

1. INTRODUCTION .............................................................................................. 8 

2. REVIEW OF METHODOLOGIES .................................................................. 12 

2.1. FOSM ....................................................................................................... 12 

2.2. FORM ...................................................................................................... 13 

2.3. SPA .......................................................................................................... 14 

3. SADDLEPOINT APPROXIMATION FOR BIMODAL DISTRIBUTIONS . 16 

3.1. SPA FOR A BIMODAL DISTRIBUTION ............................................. 16 



 

 

vii 

3.1.1. Case 1: Bimodal Distribution with A Mixture of Two Normal 

Distributions. ....................................................................................17 

3.1.2. Case 2: Bimodal Distribution with A Mixture of Two Gumbel 

Distributions. ....................................................................................19 

3.2. SPA METHODS FOR BIMODAL DISTRIBUTIONS WITH FIRST 

ORDER APPROXIMATIONS ................................................................. 21 

3.2.1. MVSPA. ...........................................................................................21 

3.2.2. FOSPA. ............................................................................................22 

3.2.3. Numerical Procedure. ......................................................................23 

4. NUMERICAL EXAMPLES ............................................................................. 25 

4.1. EXAMPLE 1: SIMPLE SUPPORT BEAM ............................................ 25 

4.2. EXAMPLE 2: SPEED REDUCER SHAFT ............................................ 30 

4.3. EXAMPLE 3: ROOF TRUSS ................................................................. 32 

5. CONCLUSIONS............................................................................................... 34 

ACKNOWLEDGEMENTS .................................................................................. 36 

REFERENCES ..................................................................................................... 37 

II. SADDLEPOINT APPROXIMATION RELIABILITY METHOD FOR 

QUADRATIC FUNCTIONS IN NORMAL VARIABLES................................. 41 

ABSTRACT .......................................................................................................... 41 

1. INTRODUCTION ............................................................................................ 42 

2. REVIEW OF FORM AND SORM................................................................... 44 

2.1. FORM ...................................................................................................... 44 

2.2. SORM ...................................................................................................... 45 

3. SADDLEPOINT APPROXIMATION FOR A QUADRATIC FUNCTION .. 48 

3.1. QUADRATIC LIMIT-STATE FUNCTION ........................................... 48 

3.2. SADDLEPOINT APPROXIMATION .................................................... 51 



 

 

viii 

3.3. NUMERICAL PROCEDURE ................................................................. 53 

4. EXAMPLES ..................................................................................................... 55 

4.1. QUADRATIC LIMIT-STATE FUNCTIONS ......................................... 55 

4.1.1. Example 1: Ellipse. ..........................................................................55 

4.1.2. Example 2: Parabola. .......................................................................60 

4.1.3. Example 3: Hyperbola. ....................................................................63 

4.1.4. Example 4: High Dimensional Quadratic Function. ........................65 

4.2. ENGINEERING EXAMPLES ................................................................ 67 

4.2.1. Example 1: A Slider-Crank Mechanism. .........................................67 

4.2.2. Example 2: Cantilever Tube. ...........................................................69 

5. CONCLUSIONS............................................................................................... 72 

ACKNOWLEDGEMENTS .................................................................................. 73 

REFERENCES ..................................................................................................... 74 

III. EFFICIENT RELIABILITY-BASED DESIGN WITH SECOND ORDER 

APPROXIMATIONS ........................................................................................... 77 

ABSTRACT .......................................................................................................... 77 

1. INTRODUCTION ............................................................................................ 78 

2. REVIEW OF FUNDAMENTAL METHODOLOGIES .................................. 81 

2.1. RBD AND FORM ................................................................................... 81 

2.2. RBD AND INVERSE FORM ................................................................. 83 

2.3. SORA ....................................................................................................... 84 

2.4. SORM ...................................................................................................... 86 

2.4.1. Traditional SORM Methods. ...........................................................86 

2.4.2. Second Order Saddlepoint Approximation. .....................................87 



 

 

ix 

3. SORA WITH INVERSE SORM ...................................................................... 89 

3.1. OVERVIEW OF SORA/SORM .............................................................. 89 

3.2. ALGORITHM FOR INVERSE SORM................................................... 90 

3.3. ALGORITHMS FOR UPDATING   ..................................................... 93 

3.3.1. Additive Relationship. .....................................................................94 

3.3.2. Multiplicative Relationship. .............................................................95 

4. SORA/SORM ................................................................................................... 99 

5. EXAMPLES ................................................................................................... 102 

5.1. EXAMPLE 1: MATHEMATICAL PROBLEM ................................... 102 

5.2. EXAMPLE 2: CANTILEVER BEAM DESIGN .................................. 104 

5.3. EXAMPLE 3: DESIGN OF A WELDED BEAM ................................ 107 

6. CONCLUSIONS............................................................................................. 110 

ACKNOWLEDGEMENTS ................................................................................ 111 

REFERENCES ................................................................................................... 112 

IV. SECOND ORDER RELIABILITY METHOD FOR TIME-DEPENDENT 

RELIABILITY ANALYSIS USING SEQUENTIAL EFFICIENT GLOBAL 

OPTIMIZATION ................................................................................................ 116 

ABSTRACT ........................................................................................................ 116 

1. INTRODUCTION .......................................................................................... 117 

2. REVIEW OF FUNDAMENTAL METHODOLOGIES ................................ 120 

2.1. TIME-DEPENDENT RELIABILITY ................................................... 120 

2.2. FIRST ORDER RELIABILITY METHOD (FORM) ........................... 120 

3. SEGO/SOSPA................................................................................................. 122 

3.1. OVERVIEW .......................................................................................... 122 

3.2. SEGO ..................................................................................................... 123 



 

 

x 

3.2.1. Sequential Optimization.................................................................123 

3.2.2. Efficient Global Optimization (EGO). ...........................................125 

3.3. HESSIAN APPROXIMATION AND ENVELOP THEOREM ........... 127 

3.4. SOSPA ................................................................................................... 129 

3.5.  SEGO/SOSPA PROCEDURE .............................................................. 131 

4. EXAMPLES ................................................................................................... 133 

4.1. EXAMPLE 1: MATHEMATICAL PROBLEM ................................... 133 

4.2. EXAMPLE 2: AUTOMOBILE FRONT AXLE ................................... 136 

4.3. EXAMPLE 3: A VIBRATION PROBLEM .......................................... 138 

5. CONCLUSIONS............................................................................................. 140 

ACKNOWLEDGEMENTS ................................................................................ 141 

REFERENCES ................................................................................................... 142 

SECTION 

2. CONCLUSIONS................................................................................................... 146 

BIBLIOGRAPHY ........................................................................................................... 148 

VITA ............................................................................................................................... 152 

 



 

 

xi 

LIST OF ILLUSTRATIONS 

SECTION Page 

Figure 1.1. Reliability analysis with saddlepoint approximation ....................................... 6 

PAPER I 

Figure 1. A bimodal distribution with a mixture of two normal distributions .................. 16 

Figure 2. Flowchart of the SPA methods .......................................................................... 24 

Figure 3. A simple support beam ...................................................................................... 26 

Figure 4. PDF approximation using FOSM ...................................................................... 28 

Figure 5. Contours of the limit-state function in the X-space .......................................... 29 

Figure 6. Contours of the limit-state function in the U-space........................................... 29 

Figure 7. A speed reducer shaft ........................................................................................ 30 

Figure 8. A roof truss structure ......................................................................................... 32 

PAPER II 

Figure 1. The flowchart of SOSPA ................................................................................... 54 

Figure 2. Elliptical contour of the quadratic function in Case 1 ....................................... 57 

Figure 3. Elliptical contour of the quadratic function in Case 2 ....................................... 57 

Figure 4. Elliptical contour of the quadratic function in Case 3 ....................................... 58 

Figure 5. Approximated contours in Case 1 ..................................................................... 58 

Figure 6. Parabolic contour of the limit-state function in Case 1 ..................................... 61 

Figure 7. Parabolic contour of the limit-state function in Case 2 ..................................... 61 

Figure 8. Hyperbolic contour of the limit-state function in Case 1 .................................. 63 

Figure 9. Hyperbolic contour of the limit-state function in Case 2 .................................. 64 

Figure 10. A slider crank system ...................................................................................... 67 



 

 

xii 

Figure 11. The contour of the slider crank system............................................................ 68 

Figure 12. A cantilever tube .............................................................................................. 70 

PAPER III 

Figure 1. Flowchart of SORA ........................................................................................... 85 

Figure 2. Flowchart of SORA/SORM .............................................................................. 90 

Figure 3. Flowchart of the inverse SORM ........................................................................ 92 

Figure 4. Convergence history .......................................................................................... 98 

Figure 5. Flowchart of SORA/SORM method ............................................................... 101 

Figure 6. A cantilever beam ............................................................................................ 104 

Figure 7. The welded beam problem .............................................................................. 107 

PAPER IV 

Figure 1. Flowchart of sequential optimization .............................................................. 124 

Figure 2. Flowchart of SEGO/SOSPA ........................................................................... 132 

Figure 3. Extreme limit-state surface formed by instantaneous limit-state surfaces ...... 134 

Figure 4. Extreme limit-state surface .............................................................................. 134 

Figure 5. Convergence history of Example 1 ................................................................. 135 

 

 

 

 

 



 

 

xiii 

LIST OF TABLES 

PAPER I Page 

Table 1. CGFs of some common distributions ................................................................. 17 

Table 2. CDFs of a bimodal distribution with two normal distributions .......................... 19 

Table 3. Distribution parameters of load X ...................................................................... 20 

Table 4. CDFs of a bimodal distribution with two Gumbel distributions ........................ 20 

Table 5. Distributions of the variables in simple support beam ....................................... 27 

Table 6. Probability of failure of simple support beam .................................................... 28 

Table 7. Distributions of the variables in speed reducer shaft .......................................... 31 

Table 8. Probability of failure of speed reducer shaft ....................................................... 31 

Table 9. Distributions of the variables in roof truss structure........................................... 33 

Table 10. Probability of failure of roof truss .................................................................... 33 

PAPER II 

Table 1. fp  of the elliptical quadratic function in Case 1 ................................................ 59 

Table 2. fp  of the elliptical quadratic function in Case 2 ................................................ 59 

Table 3. fp  of the elliptical quadratic function in Case 3 ................................................ 59 

Table 4. fp  of the parabolic quadratic function in Case 1 ............................................... 62 

Table 5. fp  of the parabolic quadratic function in Case 2 ............................................... 62 

Table 6. fp  of the hyperbola quadratic function in Case 1 .............................................. 65 

Table 7. fp  of the hyperbola quadratic function in Case 2 .............................................. 65 

Table 8. fp  of quadratic function with n=10 and 20 ....................................................... 66 



 

 

xiv 

Table 9. 
fp  of quadratic function with n=30 and 40 ....................................................... 66 

Table 10. Distributions of the random variables in slider crank mechanism.................... 68 

Table 11. The probability of failure of nonlinear oscillator system ................................. 69 

Table 12. Distributions of the random variables in cantilever tube .................................. 70 

Table 13. fp  of cantilever tube ........................................................................................ 71 

PAPER III 

Table 1. Algorithms to update the reliability index .......................................................... 96 

Table 2. Results of inverse SORM ................................................................................... 98 

Table 3. Convergence history of SORA/SORM ............................................................. 103 

Table 4. Results of example 1 ......................................................................................... 103 

Table 5. Distributions of variables in example 2 ............................................................ 106 

Table 6. Results of example 2 ......................................................................................... 106 

Table 7. Distributions of variables in example 3 ............................................................ 108 

Table 8. The optimization results of welded beam design problem ............................... 109 

Table 9. Reliability constraints of welded beam design problem ................................... 109 

PAPER IV 

Table 1. Algorithms of EGO ........................................................................................... 126 

Table 2. Iteration history of MPP search for Example 1 ................................................ 135 

Table 3. Results of Example 1 ........................................................................................ 136 

Table 4. Distribution of parameters for axle beam example ........................................... 137 

Table 5. Results of Example 2 ........................................................................................ 138 

Table 6. Distribution of parameters for vibration example ............................................. 138 

Table 7. Results of Example 3 ........................................................................................ 139



 

 

1 

SECTION 

1. INTRODUCTION 

1.1. BACKGROUND 

Engineers are always surrounded by uncertainty that ubiquitously exists during 

any systems design. Examples of uncertainty include random material properties, 

dimensions of components, and loads. Uncertainties can be classified into time-

independent uncertainties and time-dependent uncertainties. Time-independent 

uncertainties are usually represented by random variables, which do not vary with respect 

to time, such as manufacturing variations in dimensions. Time-dependent uncertainties 

change randomly over time and are typically described by random processes. Examples 

include the motion error of a mechanism and the wave loads on offshore structures. 

Therefore, the system performance such as reliability becomes time-dependent. Herein, 

reliability is defined as the probability that a product or system performs its intended 

function over a period of time and under specified service conditions [1]. It is very 

important to predict this probability in a design stage, given the possible catastrophic 

consequences of a failure. Reliability analysis is imperative in many engineering systems 

design when accounting for uncertainties.  

In the past decades, extensive research has been conducted on time-independent 

reliability analysis where uncertainties are time-invariant. Among them, Monte Carlo 

simulation (MCS) [2-4] is the most widely used method. It is very easy to use and can 

produce high accuracy with a large sample size. So it is usually used as a benchmark 

method to validate the accuracy of new reliability methods. However, its computational 
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cost is very high since a large sample size is required. Alternatively, many methods focus 

on obtaining an approximation solution with high efficiency, such as the First Order 

Second Moment Method (FOSM) [5, 6], the First Order Reliability Method (FORM) [7-

10], the Second Order Reliability Method (SORM) [11-16], and saddlepoint 

approximation (SPA) based methods [17-21]. FOSM is easy to use and is highly 

efficient. Its accuracy may not be good when a performance function or a limit-state 

function is highly nonlinear and the distributions of input random variables are far away 

from normal distributions. FORM is in general more accurate than FOSM, but is less 

efficient. It is commonly used among the approximation methods because of the good 

balance between accuracy and efficiency. SORM is generally more accurate than FORM 

because of the second order approximation. However, it is more computationally 

expensive since it requires second derivatives of the limit-state function. SPA methods 

have the same order of magnitude for computational demand as that of FORM but it 

improves the accuracy for the problems where FORM worsen the linearity of limit-state 

functions due to the nonnormal to normal transformation. SPA methods have been 

successfully applied to component reliability analysis [21-23], reliability-based design 

[24], and system reliability analysis [25]. However, they may not be accurate enough 

when the limit-state function is highly nonlinear. 

Recently, many efforts have been devoted to estimating time-dependent 

reliability. For example, Rice’s formula based methods [26-30] have been proposed to 

solve the time-dependent problems where the upcrossings are not strongly dependent. 

Surrogate modeling methods have been developed to replace the original limit-state 

functions that are complex and computationally expensive. Then MCS is implemented on 
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the surrogate model to predict the time-dependent reliability. Typical surrogate models 

include polynomial chaos expansions (PCE) [31, 32], artificial neural networks (ANN) 

[33-35], support vector machines (SVMs) [36, 37], and Kriging model [38-41], also 

known as Gaussian process model. Surrogate modeling methods can achieve very high 

accuracy for reliability estimation if the surrogate model is well trained. However, 

accurate training may require a high computational effort. Besides the above methods, 

extreme value methods [42-46] are also widely used since they can convert the time-

dependent problem into a time-independent counterpart and then time-independent 

methods can be applied. However, obtaining the extreme value distribution accurately is 

still challenging and difficult. 

From the state-of-the-art, we can see that many methodologies have been 

developed for time-independent reliability and some of them have been extended to time-

dependent problems. The methodologies, however, still have their limitations and more 

research is needed. Motivated by the aforementioned challenges, this dissertation 

develops new methodologies to accurately and efficiently estimate the reliability and 

applies them into engineering design.  

 

1.2. RESEARCH OBJECTIVE 

The objective of this dissertation is to develop reliability methodologies under 

time-independent uncertainty and then extend them into time-dependent reliability 

analysis. The major approach is the integration of saddlepoint approximation (SPA) with 

traditional reliability methods. To achieve this objective, four research tasks are 
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performed. The first three tasks deal with time-independent reliability while the last one 

estimates the time-dependent reliability. 

Research task 1 (RT1) focuses on time-independent reliability analysis for 

bimodal distributions. The bimodal distribution, which has two peaks in their probability 

density, is widely encountered in engineering applications, such as the distribution of the 

gross vehicle weight of trucks [47], axle load distribution [48], and force from human 

hands. When binomial distributions are involved, traditional reliability methods, such as 

FOSM and FORM, may not be accurate. This research task intends to improve the 

accuracy of reliability estimation by using the SPA with first order approximation. And it 

results in Paper I [49]. 

Research task 2 (RT2) concentrates on improving the accuracy of time-

independent reliability analysis when second order approximation is used. In general, 

SORM is more accurate than FORM because of the second-order Taylor expansion rather 

than the first order approximation in FORM. In the traditional SORM methods [11-16], a 

rotation transformation is performed after the second-order Taylor expansion. Then the 

general quadratic function is approximated by a paraboloid. Finally the reliability can be 

evaluated by closed form formulas. However, the further approximation may introduce 

an extra error. So a new reliability method, integrating the SPA with second order 

approximation, is proposed to avoid the further approximation in traditional SORM 

methods. This research task produces Paper II [50]. 

Research task 3 (RT3) applies the developed method in RT2 to reliability-based 

design (RBD). The objective of RBD is to obtain an optimal design with high reliability 

by satisfying design constraints at desired levels. During RBD, reliability is estimated 
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repeatedly by reliability analysis. For reliability analysis, the first order approximation is 

commonly used owing to its good balance between accuracy and efficiency. However, it 

may result in a large error when the constraint function is highly nonlinear. So the goal of 

this task is to improve the accuracy of RBD by introducing second order approximation. 

And this research task produces Paper III [51]. 

Research task 4 (RT4) extends the developed time-independent methodologies 

into time-dependent reliability analysis. In this task, the limit-state function is explicit 

with respect to time. So the reliability becomes time-dependent. The time-dependent 

reliability problem can be converted into a time-independent problem by using the 

extreme value of the limit-state function. Then the developed time-independent methods 

are introduced to improve the accuracy of predicting time-dependent reliability.  This 

research task produces Paper IV [52].  

The outcomes of above research tasks are expected to enable engineers to 

understand how uncertainties affect the system performance and how they can predict the 

reliability accurately and efficiently. In addition, this research will also help engineers 

design more reliable products with reduced lifecycle cost and risk. If successful, the 

outputs of this research will not only impact the area of engineering design, but also 

reliability engineering, risk management, decision making, and operations research. 

 

1.3. ORGANIZATION OF DISSERTATION 

As discussed in Section 1.2, the four research tasks in this study have produced 

four papers, which constitute this dissertation. The relationship between these papers is 

shown in Figure 1.1. Paper I focuses on the saddlepoint approximation with first order 



 

 

6 

approximation when bimodal distributions are involved. Paper II studies the saddlepoint 

approximation with second order approximation. Paper III is an application of the 

proposed method in Paper II to the reliability-based design optimization. Paper IV is an 

extension of the proposed method in Paper II to the time-dependent reliability analysis. 

 

 

  Figure 1.1. Reliability analysis with saddlepoint approximation   

  RT1  Paper I 

Saddlepoint approximation 

with first order approximation 

for bimodal distributions 

RT2  Paper II 

Saddlepoint approximation 

with second order 

approximation 

RT3  Paper III 

Reliability-based design with 

second order approximation 

RT4  Paper IV 

Second order approximation for 

time-dependent reliability analysis 

Apply to reliability-

based design 

Extend to time-dependent 

reliability analysis 

Extension from first order 

approximation to second 

order approximation 
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PAPER 

 

I. RELIABILITY METHODS FOR BIMODAL DISTRIBUTION WITH FIRST 

ORDER APPROXIMATION 

Zhangli Hu and Xiaoping Du 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology 

 

 

ABSTRACT 

In traditional reliability problems, the distribution of a basic random variable is 

usually unimodal; in other words, the probability density of the basic random variable has 

only one peak. In real applications, some basic random variables may follow bimodal 

distributions with two peaks in their probability density. When binomial variables are 

involved, traditional reliability methods, such as the First Order Second Moment (FOSM) 

method and the First Order Reliability Method (FORM), will not be accurate. This study 

investigates the accuracy of using the saddlepoint approximation for bimodal variables 

and then employs saddlepoint approximation based reliability methods with first order 

approximation to predict the reliability. A limit-state function is at first approximated 

with the first-order Taylor expansion so that it becomes a linear combination of the basic 

random variables, some of which are bimodally distributed. The saddlepoint 

approximation is then applied to estimate the reliability. Examples show that the 

saddlepoint approximation based reliability methods are more accurate than FOSM and 

FORM. 
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1. INTRODUCTION 

Reliability is the probability that a product performs its intended function without 

failures. The fundamental task of reliability analysis is to compute the multifold 

probability integral for the reliability defined by [1]. 

 
( ) 0

Pr{ ( ) 0} ( )
g

R g f d


    X
X

X x x   (1) 

and the associated probability of failure is 

 
( ) 0

1 Pr{ ( ) 0} ( )f
g

p R g f d


      X
X

X x x   (2) 

where 
1 2[ , ,..., ]T

nX X XX  is a vector of basic random variables, ( )f
X

x  is the joint 

probability density function (PDF) of X , and ( )g X  is a limit-state function defined such 

a way that ( ) 0g X  indicates a failure event. 

Accurately calculating the probability integral is difficult and computationally 

expensive, leading to the development of various approximation methods. Among them, 

the first order second moment method (FOSM) [2, 3], the first order reliability method 

(FORM) [4, 5], and the second order reliability method (SORM) [6-9] are the most 

widely used methods.  

FOSM approximates the limit-state function with the first-order Taylor series 

expansion at the mean values of X . It assumes X  to be normally distributed and 

estimates 
fp  with the first two moments of the limit-state function. FOSM is easy to use 

and is very efficient. Its accuracy may not be good when the limit-state function is highly 

nonlinear and the distributions of X  are far away from normal distributions. 
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FORM is in general more accurate than FOSM, but is less efficient. FORM 

transforms basic random variables X  into independent standard normal variables U . 

Thereafter, it linearizes the limit-state function at a point with the highest probability 

density at the limit state. The point is called the most probable point (MPP). Then, 
fp  is 

estimated by using the reliability index, which is the magnitude of the MPP vector [10]. 

FORM is most commonly used because of the good balance between accuracy and 

efficiency. 

SORM is generally more accurate than FORM because of the second-order 

Taylor expansion at the MPP, and this makes the limit-state function become a complete 

quadratic function in standard normal variables. In the commonly used SORM methods 

proposed by Breitung [6] and Tvedt [7, 8], a rotation transformation is performed after 

the second order Taylor expansion [11]. Then the general quadratic function is 

approximated into a paraboloid [1, 12]. Finally the probability of failure is analytically 

evaluated by asymptotic formulas [6, 7, 9]. However, this method does not work well for 

negative curvatures at the MPP. Furthermore, the approximation of quadratic function by 

a paraboloid may introduce an extra error. 

The aforementioned methods are used for problems when basic random variables 

X  are unimodally distributed. This is the case when the PDFs of basic random variables 

have only one peak. In industrial applications, some random variables may follow 

bimodal distributions with two probability density peaks. For example, the distribution of 

the gross vehicle weight of trucks are characterized by a bimodal distribution having two 

peaks or modes based on the weigh-in-motion data [13, 14]. The study in [15, 16] also 

indicates that a mixture of two normal distributions could reasonably fit the observed axle 
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load distribution, which is used to estimate traffic levels. A bimodal distribution is also 

employed to model the abrupt local change of load (voltage, traffic density, or water 

level), which is involved in the Burgers equation for identifying the most vulnerable 

nodes on complex networks (power grids, road maps, and river streams) [17]. The other 

typical example is human-powered equipment. The force from human hands are 

bimodally distributed because of gender differences. 

In general, the bimodal distribution can be described as a weighted sum of two 

specified distributions. 

   1 1 2 2( ) ( )f x w f x w f x    (3) 

where 1( )f x  and 2 ( )f x  are the partial PDFs’ of two modes, and 1w  and 2w  are the 

weights that satisfy 1 2 1w w  . 

As demonstrated later in Section 4, when the bimodal variables are involved, the 

existing methods such as FOSM and FORM may produce large errors because they all 

need to transform the bimodal variables to unimodal variables that follow normal 

distributions. This transformation makes the limit-state function much more nonlinear. To 

accurately predict the reliability with bimodal random variables, we employ the 

saddlepoint approximation (SPA) [18-23] in this work. 

There are two major contributions of this study. First, we clearly demonstrate that 

SPA can accurately approximate the CDF of a bimodal distribution. The significance of 

this finding is that there is no need to transform a bimodal distribution as traditional 

reliability methods do. This will therefore avoid large errors due to the transformation. 

Second, based on the finding, we employ the mean value SPA method (MVSPA) [24, 25]  

and first order SPA method (FOSPA) [26] to accommodate bimodal distribution in 
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reliability analysis. Both methods approximate the limit-state function by the first-order 

Taylor series expansion, so that the original limit-state function becomes a linear 

combination of basic random variables, some of which are bimodally distributed. Then 

the cumulant generating function (CGF) of the limit-state function is analytically 

available, and the SPA is applied to estimate the probability of failure. 

The rest of this paper is organized as follows: Section 2 presents the theoretical 

background of this work, including FOSM, FORM and SPA. Then the proposed MVSPA 

and FOSPA are discussed in Section 3, followed by three engineering examples in 

Section 4. Conclusions are given in Section 5. 
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2. REVIEW OF METHODOLOGIES 

In this section, we briefly review FOSM, FORM, and SPA. All the basic random 

variables used in this work are assumed to be independent. 

 

2.1. FOSM 

As implied by its name, FOSM uses the first order approximation to the limit-

state function and the first two moments of basic random variables. The limit-state 

function is approximated with the first-order Taylor series expansion at the mean values 

of basic random variables [2, 27, 28]. Thus the limit-state function becomes 

 1

( )
( ) ( ) ( )

( ) ( ) ( )

n

i i

i i

T

g
Y g g X

X

g g





   



  


μ

X
X μ

μ μ X μ

  (4) 

where 
1 2[ , ,..., ]T

n  μ  is a vector of the mean values of X , and ( )g μ  is the gradient 

of ( )g X at X μ , given by 

 
1 2

( ) ( ) ( )
( ) , ,...,

T

n

g g g
g

X X X

   
  
   
 μ μ μ

X X X
μ   (5) 

Then the mean and standard deviation of the limit-state function are computed by 

 ( )Y g  μ   (6) 

 

2

2

1

( )n

Y i

i i

g

X
 



 
 
 
 


μ

X
  (7) 

where i  is the standard deviation of iX . 
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If all the basic random variables are assumed to be normally distributed, then the 

probability of failure is easily estimated by 

   Pr 0 Y
f

Y

p g




 
    

 
X   (8) 

where ( )   is the cumulative distribution function (CDF) of a standard normal 

distribution. 

FOSM only requires the first two moments of basic random variables. So FOSM 

is easy to use and is efficient. However, it may produce a large error when the 

distributions of basic random variables are far away from normal distributions and the 

limit-state function is highly nonlinear. 

 

2.2. FORM 

FORM [29-32] first transforms X  in the X-space into standard normal variables 

U  in the U-space. The transformation is given by [33, 34] 

 ( ) ( )
iX i iF X U   (9) 

in which ( )
iXF   and ( )   represents CDFs of iX  and iU , respectively. Eq. (9) is 

applicable for independent variables. The transformation for dependent variables is given 

by the Nataf transformation [33]. 

After the transformation, the limit-state function becomes 

 ( ) ( )Y g G X U   (10) 

For the minimal error from the linearization, the function is expanded at the point 

that has the highest probability density, and this point is called the most probable point 

(MPP), denoted by 
*

u . MPP is obtained by solving 
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min

s.t. ( ) 0

T

G

 




u u u

u
  (11) 

The limit-state function is linearized at the MPP. 

 

*

*

*

*

1

* *

1

( ) ( ) ( )

( )

n

i i

i i

n
T

i

i i

G
G G U u

U

G
G U

U

 

 


  




  







U u

U u

U u

u u

  (12) 

The magnitude of  
*

u  is  , called the reliability index given by 

    
2 2

* *

1 ... nu u      (13) 

Then the probability of failure is computed by 

 ( )fp     (14) 

FORM has good accuracy when the nonlinearity of transformed limit-state 

function ( )G U  is not high. 

 

2.3. SPA 

The saddlepoint approximation (SPA) was developed in statistics. It can 

accurately approximate the CDF of a random variable at a distribution tail [18, 35]. Let 

Y  denote a response random variable with PDF ( )Yf y  and CDF ( )YF y . The moment 

generating function (MGF) of Y  is defined by 

 ( ) ( ) ( )tY tY

Y YM t E e e f y dy



     (15) 

Then the cumulant generating function is given by 

  ( ) ln ( )Y YK t M t   (16) 
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The SPA is used to approximate the CDF of Y with [36] 

 
1 1

( ) Pr{ } ( ) ( )YF y Y y w w
w




 
     

 
  (17) 

where ( )   is the PDF of the standard normal distribution. 

   
1/2

sgn( ) 2 ( )s s Y sw t t y K t    (18) 

 
1/2

'' ( )s Y st K t       (19) 

in which sgn( ) 1, 1st     or 0, depending on whether st  is positive, negative, or zero; 

'' ( )YK t  is the second derivative of ( )YK t  with respect to t , and st  is the saddlepoint 

obtained from 

 ' ( )Y sK t y   (20) 

Given the good accuracy of SPA, many SPA-based reliability methods have been 

developed, including MVSPA [24, 25] and FOSPA [26]. However, these methods are 

intended for basic random variables with unimodal distributions. The purpose of this 

study is to investigate if SPA is also applicable for bimodal random variables with good 

accuracy. The details are provided in Section 3. 
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3. SADDLEPOINT APPROXIMATION FOR BIMODAL DISTRIBUTIONS 

As discussed previously, FOSM and FORM are effective, but they may not be 

accurate enough when bimodal random variables are involved. It is not clear if SPA 

could improve the accuracy. To answer this question, we at first investigate if SPA could 

provide an accurate estimate for a tail CDF of a bimodal random variable. With the 

promising results, we then introduce SPA for reliability analysis with bimodal 

distributions. The major strategy is to linearize the limit-state function at the mean values 

in the X-space or the MPP in the X-space, and then SPA is employed. 

 

3.1. SPA FOR A BIMODAL DISTRIBUTION 

The PDF of a bimodal distribution is usually given by a weighted sum of two 

specified distributions as indicated in Eq. (3). An example of the bimodal PDF is shown 

in Figure 1. 

 

 

Figure 1. A bimodal distribution with a mixture of two normal distributions 



 

 

17 

For the general bimodal distribution in Eq. (3), the MGF is 

 
   1 1 2 2

1 1 2 2

( ) ( )

( ) ( )

tX

XM t e w f x w f x dx

w M t w M t




 

 

   (21) 

where 1( )M t  and 2 ( )M t  are the moment generating functions of 1( )f x  and 2 ( )f x , 

respectively. 

Then CGF is obtained based on Eq. (16). 

  1 1 1 2( ) ln ( ) ( )K t w M t w M t    (22) 

Table 1 lists the CGFs of some common distributions. 

 

Table 1. CGFs of some common distributions 

Distribution PDF CGF 

Normal 
 

2

22
1

( )
2

x

f x e









  
2 21

( )
2

K t t t    

Exponential ( ) xf x e    ( ) ln(1 )
t

K t


    

Gumbel 
1

( )

xx

ef x e e










 
 
 

 
 

     ( ) ln 1K t t t      

 

We now investigate SPA for two cases: 1) a bimodal distribution with a mixture 

of two normal distributions, and 2) a bimodal distribution with a mixture of two non-

normal distributions. 

3.1.1. Case 1: Bimodal Distribution with A Mixture of Two Normal 

Distributions. For a bimodal distribution with a mixture of two normal distributions, the 

PDF is defined by 
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   1 2
1 2

1 1 2 2

1 1x x
f x w w

 
 

   

    
    

   
  (23) 

where 1  and 1  are the mean and standard deviation of the first mode, respectively, and 

2  and 2  are the mean and standard deviation of the second mode, respectively. 

The CGF of X  is expressed as 

 
2 2 2 2

1 1 2 2

1 1

2 2
1 2( ) ln

t t t t

K t w e w e
     

  
 

  (24) 

SPA is easily used to approximate the CDF using Eqs. (17-20). Now let us use a 

random load X , whose PDF is a weighted sum of two normal PDFs, as an example to 

investigate the accuracy of the tail CDF estimation. 

The PDF of the load X  is given by 

 
200 1 300 1

( ) 0.6 0.4
20 20 10 10

X

x x
f x  

    
    

   
  (25) 

Then the CDF and CGF are obtained as 

 
200 300

( ) 0.6 0.4
20 10

X

x x
F x

    
      

   
  (26) 

 
   2 2 2 21 1

200 20 300 10
2 2( ) ln 0.6 0.4

t t t t

K t e e
  

  
 

  (27) 

SPA is used to approximate the tail CDF and is compared with respect to the 

analytical solution given by 

 Pr{ } ( )XX x F x    (28) 

The results are presented in Table 2, which show that SPA yields high accuracy in 

estimating tail CDFs. 
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Table 2. CDFs of a bimodal distribution with two normal distributions  

x  ( )XF x  SPA Relative Error Absolute Error 

100 71.7199 10  
71.7234 10  0.20% 103.5 10  

110 62.0386 10  
62.0447 10  0.30% 96.1 10  

120 51.9003 10  
51.9090 10  0.46% 88.7 10  

130 41.3958 10  
41.4060 10  0.73% 61.02 10  

 

3.1.2. Case 2: Bimodal Distribution with A Mixture of Two Gumbel 

Distributions. We use a bimodal distribution with a mixture of two Gumbel distribution 

as an example to investigate SPA for non-normal distribution. The PDF is given by 

 

1 21 2

1 2
1 2

1 2

1 2

1 1
( )

x xx x

e ef x w e e w e e

 

 

 

 

 

    
       
   

    
    

        (29) 

where 1  and 2  are location parameters; 1  and 2 are shape parameters. 

Then the CDF and CGF are obtained as 

 

1 2

1 2

1 2( )

x x

e e

XF x w e w e

 

 

    
       
        (30) 

  1 2

1 2 2( ) ln (1 ) (1 )
t u t

K x w e t w e t
          (31) 

where ( )   is the gamma function. 

Let us also use the load example to investigate the SPA for a bimodal distribution 

with a mixture of two Gumbel distributions. The distribution parameters of X  are given 

in Table 3. 

SPA is then used to estimate the tail CDFs and is compared with respect to the 

analytical solution. The results are given in Table 4 and show that SPA also has a high 
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accuracy for estimating the tail CDFs of a bimodal distribution with mixed Gumbel 

distributions. 

 

Table 3. Distribution parameters of load X  

Variable Distribution Weight Mean    
Standard 

Deviation    

X   Bimodal Gumbel 
0.6 15000 500 

0.4 30000 1000 

 

where 

 

0.5772

6

  


 

 






  (32) 

Therefore 

 

0.5772

6

  

 


 






  (33) 

 

Table 4. CDFs of a bimodal distribution with two Gumbel distributions 

x  ( )XF x  SPA Relative Error Absolute Error 

13860 51.7297 10  
51.7460 10  0.94% 71.63 10  

13900 54.7942 10  
54.8451 10  1.06% 75.09 10  

14000 44.0529 10  
44.1126 10  1.47% 65.97 10  

14060 31.1482 10  
31.1692 10  1.82% 52.1 10  
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3.2. SPA METHODS FOR BIMODAL DISTRIBUTIONS WITH FIRST ORDER 

APPROXIMATIONS 

We have demonstrated the accuracy of SPA for a bimodal distribution. Since the 

output of a limit-state function could also be bimodal given the bimodal basic variables, it 

is expected that SPA will also work well for the prediction of the probability of failure, 

which is the CDF at the tail of the response distribution. As a result, bimodal distributions 

could be considered.  In this study, we extend MVSPA and FOSPA so that bimodal basic 

random variables are accommodated. 

3.2.1. MVSPA. The limit-state function is first approximated at the mean values 

of basic random variables using the first-order Taylor series expansion 

 
1

1 1

( ) ( )

( )
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( ) ( )
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n
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i i
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μ

μ μ

X X

X
μ

X X
μ

  (34) 

To obtain the CGF of ( )L X , we need to use some properties of CGF [37]. 

1)  For a constant Y c , the CGF is YK ct .  

2)  If Y aX , then ( ) ( )Y XK t K at , where ( )XK t  and ( )YK t  are the CGFs of  X  

and Y , respectively, and a  is constant. 

3)  If  X  and Y  are independent, then ( ) ( ) ( )X Y X YK t K t K t   , where ( )X YK t  

is the CGF of X Y . 

Using the above properties and Eq. (34), we obtain the CGF of the limit-state 

function. 
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1 1
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μ μ

X X
μ   (35) 

If iX  follows a bimodal distribution, 
iXK  can be obtained from Eq. (22); 

examples included those are given in Eqs. (24) and (31). 

Thus the first and second derivatives of ( )LK t  are 

 ' '

1 1

( ) ( ) ( )
( ) ( )

i

n n

L i X

i ii i i

g g g
K t g K t

X X X
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Once ' ( )LK t  is available, the saddlepoint is obtained by solving the equation 

 ' '

1 1

( ) ( ) ( )
( ) ( ) 0

i

n n

L s i X s

i ii i i
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Based on Eq. (17), the probability of failure is calculated by 

 
1 1

Pr{ ( ) 0} ( ) ( )fp g w w
w




 
     

 
X   (39) 

in which 

  
1/2

'sgn( ) 2 ( )s Lw t K t      (40) 

 
1/2

'' ( )s L st K t       (41) 

3.2.2. FOSPA. The limit-state function is first linearized at point *
x  where the 

integrand of the integral 
( ) 0

( )f
g

p f d


  X
X

x x  has the maximum value in the failure 
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region ( ) 0g X . *
x  is therefore the MPP in the X-space because it has the highest 

probability density. 

The following model is used to identify the MPP *
x : 

 1

max ( )

. . ( ) 0

n

i i

i

f x

s t g






 


x

x

  (42) 

The linear form of ( )g X  at *
x  is 

 
* *

* *

1 1
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( ) ( ) ( )
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i ii i

g g
g L g x X

X X 

  
       

 
x x

X X
X X x   (43) 

Then the CGF of ( )L X  can be easily obtained based on the procedure described 

in Section 3.2.1. Finally the saddlepoint is solved and is used to estimate 
fp . 

The procedure of FOSPA is similar to that of MVSPA. The only difference is that 

FOSPA linearizes the limit-state function at the MPP while MVSPA linearizes the limit-

state function at the mean values. 

3.2.3. Numerical Procedure. The numerical procedure of MVSPA and FOSPA is 

summarized as follows: 

Step 1: Derive CGFs of bimodal basic random variables with Eqs. (21) and (22). 

Step 2: Linearize the limit-state function at the mean values of basic random 

variables with Eq. (34) for MVSPA or at the MPP with Eq. (43) for FOSPA after the 

MPP search using Eq. (42). 

Step 3: Obtain the CGF of limit-state function using Eq. (35). 

Step 4: Solve Eq. (38) to obtain the saddlepoint. 

Step 5: Calculate the probability of failure 
fp  using Eqs. (39-41)  
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The flowchart of MVSPA and FOSPA is given in Figure 2. 

 

 

Figure 2. Flowchart of the SPA methods 

 

The SPA methods use the first order approximation. Although they improve the 

accuracy of FORM, they also share the same drawbacks as FORM, especially for 

dependent basic random variables. The SPA methods may not be accurate when many 

basic random variables are strongly dependent because the dependence to independence 

transformation may make a limit-state function in the transformed space highly nonlinear. 

For large scale problems, the SPA methods can behave the same way as FORM because 

of the use of the MPP in the original space [38-41]. For the same reason, the SPA 

methods do not work well when multiple MPPs exist [42, 43]. 
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4. NUMERICAL EXAMPLES 

Three engineering problems are used to evaluate the accuracy of MVSPA and 

FOSPA. We at first examine a simply supported beam with a linear limit-state function. 

Then a speed reducer shaft is used to validate the two SPA methods for a nonlinear limit-

state function. Finally a roof truss structure is modified to investigate the effectiveness of 

SPA methods for bimodal distributions with a mixture of non-normal distributions. 

To show the benefits of MVSPA and FOSPA, we compare them with other two 

first-order methods, including FOSM and FORM, which have been reviewed in Section 

2. The accuracy is evaluated by the error relative to the result from Monte Carlo 

Simulation (MCS) with a large sample size, or an analytical solution if it is available. The 

relative error is defined as 

 
, accurate

, accurate

% 100%
f f

f

p p

p



    (44) 

where 
fp  is the result from FOSM, FORM, MVSPA or FOSPA, and 

, accuratefp  is the 

MCS or analytical solution. 

We also give the number of function calls, which serves as a measure of 

efficiency. 

 

4.1. EXAMPLE 1: SIMPLE SUPPORT BEAM 

A simply supported beam shown in Figure 3 is subjected to a random force P  

following a bimodal distribution. The PDF of P  is a mixture of two different normal 

distributions and is given by 
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200 1 300 1

( ) 0.7 0.3
20 20 10 10

P

x x
f x  

    
    

   
  (45) 

 

 

Figure 3. A simple support beam 

 

A failure occurs if the applied stress is larger than the yield strength. Then the 

limit-state function of the beam is defined by 

 
2

3
( ) y

l
g S P

bh
 X   (46) 

in which ( , )yS PX , 
yS  is the yield strength, l  is the length of beam, b is the length of 

the cross section, and h  is the height of the cross section. The limit-state function is 

linear with respect to the two basic random variables. The distributions and parameters of 

these variables are given in Table 5. 

The probability of failure is computed by FOSM, FORM, MVSPA and FOSPA. 

The results are compared with respect to an analytical solution which exists for this 

problem.  

P  

l  

b  

h
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In FOSM, the mean and standard deviation of force P ,  which is bimodally 

distributed, are calculated by 

 1 1 2 2 230P w w       (47) 

 2 2 2 2 2

1 1 1 2 2 2[ ] [ ] 49.09P Pw w             (48) 

P  and 
P  are used for the non-normal to normal transformation in Eq. (9) when FORM 

is used. 

 

Table 5. Distributions of the variables in simple support beam 

Variables Distribution Weight Mean 
Standard 

Deviation 

(kpsi)yS  Normal - 110 12.5 

(lb)P  Bimodal Normal (0.7, 0.3) (200, 300) (20, 10) 

(in)l  Deterministic - 6 - 

(in)b  Deterministic - 0.2 - 

(in)h  Deterministic  - 0.6 - 

 

For this example, the probability of failure can be analytically evaluated by 
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X

  (49) 

The above univariate integration can be estimated by a numerical integration 

method, such as adaptive Simpson quadrature [44, 45]. 

The results are presented in Table 6, which show MVSPA and FOSPA produce 

the most accurate results, while MVSPA maintains the same efficiency as FOSM. 
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The relative error of FOSM is 43.4 %. The reason for this large error is explained 

in Figure 4. It shows that FOSM approximates the actual bimodal normal distribution 

(solid line) of the response by a unimodal normal distribution (dotted line) using the first 

two moments. The two distributions are quite different, including the left tail area, where 

a failure occurs. This causes a large error. 

 

Table 6. Probability of failure of simple support beam 

Method fp  Relative Error Absolute Error Function Calls 

FOSM 31.3635 10  43.4% 44.1289 10  3 

FORM 31.2839 10  35.1% 43.3329 10  44 

MVSPA 49.4416 10  0.68% 66.45 10  3 

FOSPA 49.4416 10  0.68% 66.45 10  12 

Analytical 

Solution 
49.5061 10  - - - 

  

 

Figure 4. PDF approximation using FOSM 
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The error of FORM is 35.1%. Figures 5 and 6 explain the reason for this error. 

Figure 5 indicates that the limit-state function in the X-space is linear. However, the 

limit-state function in the U-space becomes highly nonlinear after the bimodal to 

unimodal transformation shown in Figure 6. The linearization in the U-space produces a 

large error. 

 

 

Figure 5. Contours of the limit-state function in the X-space 

 

 

Figure 6. Contours of the limit-state function in the U-space 
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4.2. EXAMPLE 2: SPEED REDUCER SHAFT 

A speed reducer shaft shown in Figure 7 is subjected to a random force P  and a 

random torque T , which are bimodally normally distributed. The PDFs of the two loads 

are given by 

 
1500 1 2200 1

( ) 0.6 0.4
150 150 50 50

P

x x
f x  

    
    

   
  (50) 

 
400 1 500 1

( ) 0.7 0.3
100 100 50 50

T

x x
f x  

    
    

   
  (51) 

The limit-state function is defined by the difference between the strength and the 

maximum equivalent stress and is given by 

 
2 2 2

3

16
( ) 4 3yg S P l T

d
  X   (52) 

where ( , , , , )yS d l P TX . The distributions and parameters of the basic random variables 

are described in the Table 7. 

 

 

Figure 7.  A speed reducer shaft 
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Table 7. Distributions of the variables in speed reducer shaft 

Variables Distribution Weight Mean 
Standard 

Deviation 

(MPa)yS  Normal - 250 35 

(mm)d  Normal - 40 0.1 

(mm)l  Normal - 400 0.1 

(N)P  Bimodal Normal (0.6, 0.4) (1500, 2200) (150, 50) 

(N m)T   Bimodal Normal  (0.7, 0.3) (400, 500) (100, 50) 

 

FOSM, FORM, MVSPA and FOSPA are compared with respect to the solution 

from MCS with 
610  runs. The results are shown in Table 8, and they indicate that both 

SPA based methods yield high accuracy. FOSPA is the most accurate method but it is not 

as efficient as MVSPA because of the MPP search in the X-space.  

 

Table 8. Probability of failure of speed reducer shaft 

Method fp  Relative Error Absolute Error Function Calls 

FOSM 31.4716 10  16.4% 42.076 10  11 

FORM 32.2018 10  74.2% 49.378 10  60 

MVSPA 31.2038 10  4.76% 56.02 10  11 

FOSPA 31.2411 10  1.81% 52.29 10  102 

MCS 31.2640 10  - - 61 10  

 

FOSM is not accurate since it only uses the first two moments, which cannot 

capture the full information of bimodal distribution. FORM also produces a significant 

error because it linearizes the limit-state function at the MPP, while the nonlinearity is 

high due to the bimodal distributions. 
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4.3. EXAMPLE 3: ROOF TRUSS 

A roof truss structure problem [46, 47] shown in Figure 8 is modified and is used 

as the third example. In this structure, the top chords and compression bars of the truss 

are reinforced by concrete, and the bottom chords and tension bars are made of steel. A 

uniformly distributed load q  is assumed to be applied on the roof truss, and then it can be 

transformed into the nodal load / 4P ql . A failure occurs if the perpendicular 

deflection of truss peak node is larger than 5.4 cm. Then the limit-state function of truss 

structure is defined by 

 
2 3.81 1.13

( ) 0.054
2 C C S S

ql
g

A E A E

 
   

 
X   (53) 

where [ , , , , , ]s c S Cq l A A E EX . Table 9 presents the parameters of basic random variables 

in the limit-state function. 

 

Figure 8. A roof truss structure 
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The results of the roof truss structure are presented in Table 10. They indicate that 

FOSPA is the most accurate method. FOSM and FORM are not accurate since both of 

them need to transform the bimodal distribution to a unimodal distribution. MVSPA 

produces a large error due to the linearization of limit-state function at the mean values, 

where the nonlinearity is high. 

 

Table 9. Distributions of the variables in roof truss structure 

Variables Distribution Weight Mean 
Standard 

Deviation 

(N / m)q  
Bimodal 

Gumbel 
(0.7, 0.3) (15000, 30000) (1500, 3000) 

(m)l  Normal -  12.6
 

0.01
 

2(m )sA  Normal -  49.82 10  
51 10  

2(m )cA  Normal - 24 10  
51 10  

(Pa)sE  Normal - 111 10  
101 10  

(Pa)cE  Normal - 102 10  
92 10  

 

Table 10. Probability of failure of roof truss 

Method fp  Relative Error Absolute Error Function Calls 

FOSM 31.1722 10  60.9% 31.8296 10  13 

FORM 32.5357 10  15.5% 44.661 10  75 

MVSPA 31.4208 10  52.7% 31.581 10  13 

FOSPA 32.8616 10  4.67% 41.402 10  188 

MCS 33.0018 10  - - 65 10  
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5. CONCLUSIONS 

Bimodal distributions are encountered in many engineering applications, but 

traditional reliability methods may not be able to handle them well due to large reliability 

prediction errors. This work at first investigates if high accuracy can be maintained when 

saddlepoint approximation is used for a single bimodal random variable. The experiments 

on a random variable with a mixture of two normal distributions and two Gumbel 

distributions indicate that saddlepoint approximation can accurately approximate the 

probability in the tail areas of the bimodal distribution. This finding suggests that the 

saddlepoint approximation could be potentially used for reliability analysis with bimodal 

basic random variables with good accuracy, and this is confirmed by two saddlepint 

approximation based reliability methods: mean value saddlepoint approximation method 

(MVSPA) and first order saddlepoint approximation method (FOSPA). MVSPA 

approximates a limit-state function with the first-order Taylor expansion at the mean 

values of basic random variables while FOSPA approximates the limit-state function at 

MPP. Thereafter, saddlepoint approximation is applied to estimate the probability of 

failure. 

Both methods avoid approximating bimodal distributions with unimodal 

distributions and therefore avoid the chance of increasing the nonlinearity of the limit-

state function. The three examples demonstrate the accuracy and efficiency of 

saddlepoint approximation based reliability methods.  

Since MVSPA linearizes the limit-state function at mean values, its accuracy may 

not be good if the limit-state function is highly nonlinear at mean values. The accuracy 
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can be improved by integrating the saddlepoint approximation with the first and second 

order reliability methods. 

FOSPA is generally more accurate than MVSPA, but less efficient. It linearizes 

the limit-state function at the MPP, the point where joint PDF of the basic random 

variables is at its maximum value. However, FOSPA will not work if some of the basic 

random variables do not have closed-form CGFs. In this case, these random variables 

need to be transformed into other random variables that have CGFs before linearization. 

Saddlepoint approximation can accurately approximate the CDF of a random 

variable at a distribution tail. Although bimodal distributions are only investigated in the 

work, saddlepoint approximation based reliability methods are potentially applicable for 

multimodal basic random variables. So the possible future research task is to investigate 

the use of saddlepoint approximation for multimodal distributions with more than two 

probability density peaks. The other potential research tasks may include investigating 

the applicability of saddlepoint approximation for dependent basic random variables and 

high dimensional reliability problems. 
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II. SADDLEPOINT APPROXIMATION RELIABILITY METHOD FOR 

QUADRATIC FUNCTIONS IN NORMAL VARIABLES 

Zhangli Hu and Xiaoping Du 

Department of Mechanical and Aerospace Engineering 
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ABSTRACT 

If the state of a component can be predicted by a limit-state function, the first and 

second order reliability methods are commonly used to calculate the reliability of the 

component. The latter method is more accurate because it approximates the limit-state 

function with a quadratic form in standard normal variables. To further improve the 

accuracy, this study develops a saddlepoint approximation reliability method that does 

not require additional transformations and approximations on the quadratic function. 

Analytical equations are derived for the cumulant generating function (CGF) of the limit-

state function in standard normal variables, and then the saddlepoint is found by equating 

the derivative of the CGF to the limit state. Thereafter a closed form solution to the 

reliability is available. The method can also be applied to general nonlinear limit-state 

functions after they are approximated by a second order Taylor expansion. Examples 

show the better accuracy than the traditional second order reliability methods.  
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1. INTRODUCTION 

When a physics-based approach is used, reliability is calculated by [1] 

 
( ) 0

Pr{ ( ) 0} ( )
g

R g f d


    X
X

X x x   (1) 

and the associated probability of failure is given by 

 
( ) 0

1 Pr{ ( ) 0} ( )f
g

p R g f d


      X
X

X x x   (2) 

where ( )g X  is a limit-state function, 
1[ ,..., ]nX XX  is a vector of random input 

variables, and ( )f
X

x   is the joint probability density function (PDF) of X  . 

Directly calculating the integral is difficult and computationally expensive, and 

thus approximation methods are needed. The widely used approximation methods are the 

First Order Second Moment Method (FOSM) [2, 3], the First Order Reliability Method 

(FORM) [4-6], and the Second Order Reliability Method (SORM) [7-12].  

FOSM approximates the limit-state function with the first-order Taylor series 

expansion at the mean values of X . It assumes X  to be normally distributed and 

estimates fp  with the mean and standard deviation of the limit-state function. FOSM is 

easy to use and has good efficiency. Its accuracy, however, is poor when the limit-state 

function is highly nonlinear, standard deviations of X  are large, and the distributions of 

X  are far away from normal. 

FORM is more accurate than FOSM, but less efficient. FORM transforms random 

variables X  into independent standard normal variables U . Thereafter, it linearizes the 

limit-state function at a point with the highest probability density at the limit state. (The 

point is called the MPP, or the most probable point). Then, fp  is estimated by using the 



 

 

43 

reliability index, which is the magnitude of the MPP vector [13]. FORM is most 

commonly used because of the good balance between accuracy and efficiency. 

SORM is more accurate than FORM because of the second-order Taylor 

expansion at the MPP, which makes the limit-state function a complete quadratic 

function in standard normal variables. In the commonly used SORM methods proposed 

by Breitung [7] and Tvedt [8, 9], a rotation transformation is performed after the second-

order Taylor expansion [14]. Then the general quadratic function is approximated by a 

paraboloid, ignoring the last row and last column in the transformed Hessian matrix [1, 

15]. Finally the probability of failure can be analytically evaluated by asymptotic 

formulas [7, 8, 10]. However, this method does not work well for negative curvatures at 

the MPP. Furthermore, the further approximation may introduce an extra error. 

To further improve the accuracy of SORM, we extend the first-order saddlepoint 

approximation (FOSPA) [16] to the second-order saddlepoint approximation (SOSPA). 

The new method does not need any additional transformations and approximations after 

the MPP and Hessian matrix at the MPP are found. After the limit-state function is 

approximated by the second order Taylor expansion at the MPP with respect to 

independent standard normal variables, the cumulant generating function (CGF) of the 

limit-state function is analytically available. Then the saddlepoint approximation is 

directly applied to estimate the probability of failure. Given the high accuracy of the 

saddlepoint approximation itself and no further approximations, SOSPA is more accurate 

than the two existing SORM methods. 
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2. REVIEW OF FORM AND SORM 

In this section, we briefly review the commonly used reliability methods FORM 

and SORM. 

 

2.1. FORM 

FORM [17-21] transforms the original random variables X  in the X-space into 

standard normal variables U  in the U-space. This transformation is called the Rosenblatt 

transformation and is given by [22, 23] 

 ( ) ( )
iX i iF X U   (3) 

in which ( )
iXF   and ( )   represents the cumulative distribution functions (CDF) of 

iX  

and 
iU , respectively. Eq. (3) is applicable for independent variables in X . The 

transformation for dependent variables is given by the Nataf transformation [22].  

After the transformation, the limit-state function becomes 

 ( ) ( )Y g G X U    (4) 

To minimize the error from the linearization of the limit-state function, one 

expands the function at the point that has the highest probability density, and this point is 

called the most probable point (MPP), denoted by *
u . MPP is obtained by solving the 

following model:  

 
min

s.t. ( ) 0

T

G

 




u UU

U
  (5) 

Let the magnitude of  *
u   be  , namely 
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2 2

* * *

1 ... nu u    u   (6) 

The probability of failure is then computed by 

 ( )fp     (7) 

FORM uses the first-order approximation to ( )G U . It is accurate when the 

nonlinearity of ( )G U  is not high. Otherwise, SORM may be used if high accuracy is 

needed. 

 

2.2. SORM 

SORM approximates ( )G U  with a second-order Taylor expansion at *
u . The 

approximation is given by 

 
* * * * 2 * *1

( ) ( ) ( ) ( )( ) ( ) ( )( )
2

T TG Q G G G       U U u u U u U u u U u   (8) 

where 
* *

*

1

( ) , ,
n

G G
G

U U

  
   

   u u

u   is the gradient, and 2 *( )G u  is the Hessian matrix, 

given by 
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2 2 2
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   u

u   (9) 

Still no analytical solution to 
fp  exists using Eq. (8). Breitung’s and Tvedt’s 

methods then rotate the U-space into a new standard normal space called Y-space whose 
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last coordinate 
nY  coincides with the MPP vector. Then the limit-state function is 

rewritten as 

 
* *1

( ) ( ) ( )
2

T

nQ Y      Y Y y W Y y   (10) 

where  * 0,0, ,
T

y is the MPP in the Y-space, and W  is the transformed Hessian 

matrix and given by 

 
2 *

*

( )

( )

g

g






R u R
W

u
  (11) 

in which R  is an orthogonal rotational matrix and can be determined by the Gram-

Schmidt orthogonalization.  

After the rotation, ( )Q Y  is further approximated by a paraboloid by setting the 

last row and last column of  W  to be zero and then diagonalizing W . Eq. (10) becomes 

 
1

' ' '2

1

1
( )

2

n

n i i

i

Q Y k Y




    Y   (12) 

where ik  are the main curvatures of ( )G U  at the MPP and can be computed from the 

eigenvalues of the ( 1) ( 1)n n    leading submatrix of W . 

Finally, the probability of failure is estimated, according to Breitung’s formula 

and Tvedt’s formula, by 

 
1

1/2

,Breitung

1

( ) (1 )
n

f i

i

p k 






      (13) 

and 

 
,Tvedt 1 2 3fp T T T     (14) 

where 



 

 

47 

  

 

1
1/2

1

1

1 1
1/2 1/2

2

1 1

1 1
1/2 1/2

3

1 1

( ) (1 )

( ) ( ) (1 ) (1 ( 1))

( 1) ( ) ( ) (1 ) Re (1 ( 1))

n

i

i

n n

i i

i i

n n

i i

i i

T k

T k k

T k k

 

     

      






 
 

 

 
 

 


   




 
         

 
   
           
   



 

 

  (15) 

in which, Re( )  denotes the real part of an imaginary number. 

The second-order approximation makes SORM in general more accurate than 

FORM. However, neither Breitung’s method nor Tvedt’s method work when 1ik    . 

Furthermore, an extra error may be introduced because some components of the 

transformed Hessian matrix are ignored in the approximation into a paraboloid. 

 



 

 

48 

3. SADDLEPOINT APPROXIMATION FOR A QUADRATIC FUNCTION 

The objective of this study is to improve the accuracy of SORM by eliminating 

further approximations. The major strategy is to use the complete information of the MPP 

and the Hessian matrix, and the major approach is the saddlepoint approximation. The 

advantage of the proposed second order saddlepoint approximation (SOSPA) is that an 

analytical solution is available after the saddlepoint is found. 

 

3.1. QUADRATIC LIMIT-STATE FUNCTION 

After the MPP is found, Eq. (8) is rewritten as  

 ( ) T TQ a  U b U U CU   (16) 

where 

 

 * 2 * * * *

* 2 * *

2 *

1
( ) ( )

2

( ) ( )

1
( )

2
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Ta G G

G G

G


  


  


  


u u u u u

b u u u

C u

  (17) 

The saddlepoint approximation then can be used. Its use requires to know the 

cumulant generating function (CGF) of ( )Q U . Next we discuss how to obtain the CGF. 

To analytically derive the CGF, we at first eliminate the cross terms in Eq. (16) 

with the following transformation 

 
1U D U   (18) 
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where D  is an orthogonal matrix whose column vectors are the eigenvectors of C , and 

 1 2, , , nU U UU  is a n-dimensional vector with independent standard normal random 

variables. 

Thus, the limit-state function becomes 

                                           ( ) T TQ a  U b U U CU                      (19) 

in which 

 
 

 

1 2

1 2

, , ,

, , ,

T

n
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b b b
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b D b

C D CD
  (20) 

Since C  is diagonal, Eq. (19) can be written as 

  2

1 1

( ) ( )
n n

i i i i i i

i i

Q Q a bU cU
 

    U U   (21) 

where 

 i

a
a

n
   (22) 

According to the signs of 
ic , ( )iQ U  is further rewritten as 
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where 

 
2

4

i
i i

i

b
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c
    (24) 

and 
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  (25) 

iZ  is a linear function of the standard normal random variable, and thus it is also 

normally distributed with the mean and standard deviation given by 
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and 
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i i

Z

i i
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Let 

2

i

i
i

Z

Z
V



 
  
 
 

. Then 
iV  follows a noncentral chi-square distribution with 

freedom of 1 [24-26]; namely,  2~ 1,iV   , where   is a noncentrality parameter and 

given by  

 

2

i

i

Z

Z






 
  
 
 

  (28) 

Hence we can further rewrite Eq. (23) as 
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Therefore, the limit-state function 
1

( ) ( )
n

i

i

Q Q


U U  is finally expressed as a 

linear combination of chi-square variables and standard normal variables. Note that there 

are no approximations during the above process. 

 

3.2. SADDLEPOINT APPROXIMATION 

We now use the saddlepoint approximation (SPA) to calculate 
fp  based on Eq. 

(29). SPA can produce an accurate estimation of the cumulative distribution function 

(CDF) in a tail area [16, 27-31]. As discussed previously, we need to know the CGF of 

1

( ) ( )
n

i

i

Q Q


U U . 

The CGF of a noncentral chi-square variable 
iV  is [32] 

 
1

( ) log(1 2 )
1 2 2i

i
V

t
K t t

t


  


  (30) 

For the standard normal variable 
iU , the CGF is 

 
21

2iU
K t   (31) 

Based on the properties of CGF [32], the CGF of ( )iQ U  can be easily obtained by 
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Then we have CGF of ( )Q U  

 
1

( ) ( )
i

n

Q Q

i

K t K t


   (33) 

Once ( )QK t  is available, we solve for the saddlepoint 
st  by 

 ' ( ) 0QK t    (34) 

where ' ( )QK t  is the first derivative of ( )QK t  with respect to t . According to the 

Lugannani and Rice’s formula [28], 
fp  is computed by 

  
1 1

Pr ( ) 0 ( ) ( )( )fp Q w w
w




    U   (35) 

where ( )   and ( )   are CDF and probability density function (PDF) of the standard 

normal distribution, respectively. 

  
1/2

sgn( ) 2 ( )s Q sw t K t      (36) 

 
1/2

'' ( )s Q st K t       (37) 

in which sgn( ) 1, 1st     or 0, depending on whether 
st  is positive, negative, or zero; 

'' ( )QK t  is the second derivative of ( )QK t  with respect to t . 
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As will be shown in the examples, SPA can produce an accurate estimation of 
fp  

for the function form in Eq. (29). 

 

3.3. NUMERICAL PROCEDURE 

The numerical procedure of the proposed SOSPA is summarized below.  

Step 1: Perform the MPP search and obtain the MPP *
u , the gradient *( )G u , 

and the Hessian matrix 2 *( )G u . This step is the same as the one in the traditional 

SORM methods.  

Step 2: Construct the general quadratic form of the limit-state function shown in 

Eq. (16) by using *
u , *( )G u , and 2 *( )G u . 

Step 3: Transform the general quadratic limit-state function into a linear 

combination of chi-square distribution variables shown in Eq. (29) by the diagonalizable 

transformation 1U D U . 

Step 4: Obtain the CGF of the limit-state function ( )Q U  using Eq. (33). 

Step 5: Compute 
fp  by SPA using Eq. (35). 

The flowchart of SOSPA is given in Figure 1. 

SOSPA is easy to implement. Since it uses all the components of the Hessian 

matrix without any further approximations, SOSPA is in general more accurate than the 

Breitung’s and Tvedt’s methods. 
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Figure 1. The flowchart of SOSPA 

 



 

 

55 

4. EXAMPLES 

In this section, we use a number of testing problems to evaluate the accuracy of 

SOSPA. We at first examine general quadratic limit-state functions. Since the contour of 

a quadratic function may be an ellipse, a parabola, or a hyperbola, we first provide three 

mathematical examples that represent the three cases. We then perform SOSPA for a high 

dimensional quadratic limit-sate function. Thereafter, we demonstrate that SOSPA could 

also be applied to general engineering problems where limit-state functions are not 

necessarily quadratic. 

To show the benefits of using SOSPA, we compare it with the other two variants 

of SORM, including Breitung’s and Tvedt’s methods, which have been reviewed in 

Section 2. We also provide the results from FORM. The accuracy is evaluated by the 

error relative to the result from Monte Carlo Simulation (MCS) with a large sample size. 

We also give the number of functional calls as the measure of efficiency. 

 

4.1. QUADRATIC LIMIT-STATE FUNCTIONS  

Three mathematical examples are tested for cases of an ellipse, a parabola, and a 

hyperbola. To easily plot the curves, the functions in the first three examples are all two 

dimensional. Then we test SOSPA with the fourth example that involves a large number 

of random variables. The random input variables in the examples are assumed to be 

independent standard normal variables. 

4.1.1. Example 1: Ellipse. Three limit-state functions with elliptic contours are 

given by 
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  U   (40) 

where 
1 2[ , ]U UU . 

1U  and 
2U  are independent standard normal variables.  

   Figure 2 shows the contour of 
1G , lying far away from the origin. Figure 3 

shows the contour of  
2G , which lies close to the origin. Figure 4 shows the contour of 

3G , which encloses the origin. 

The probability of failure is computed by SOSPA and other two SORM formulas. 

The results are compared with respect to that of MCS with 810  simulations. The relative 

error is defined as 

 
,

,

% 100%
f f

f

p p

p



 

MCS

MCS

  (41) 

where 
fp  is the result from a non-MCS method, and 

,fp
MCS

  is the result from MCS. 

The approximated contours for 
1G  obtained from the two SORM methods and 

FORM are plotted in Figure 5. It is shown that FORM approximates the elliptical contour 

with a straight line, the SORM methods approximate the limit-state function with a 

parabola, and SOSPA does not approximate but directly use the original contour of limit-

state function. So the SOSPA should produce the most accurate results. This is 

demonstrated by the results given in Tables 1 through 3.  
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Figure 2.  Elliptical contour of the quadratic function in Case 1 

 

 

Figure 3.  Elliptical contour of the quadratic function in Case 2 
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Figure 4.  Elliptical contour of the quadratic function in Case 3 

 

 

Figure 5.  Approximated contours in Case 1 
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Table 1. 
fp  of the elliptical quadratic function in Case 1 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 55.0071 10  459% 54.1121 10  30 3.89 

SORM 

(Breitung) 
51.4031 10  56.8% 65.081 10  33 3.89 

SORM (Tvedt) 51.3385 10  49.5% 64.435 10  33 3.89 

SOSPA 69.2403 10  3.24% 72.903 10  33 3.89 

MCS 68.950 10  N/A N/A 108 N/A 

 

Table 2. 
fp  of the elliptical quadratic function in Case 2 

Method fp   %  
Absolute 

Error 

Function 

Calls 
  

FORM 32.7546 10  88% 31.2938 10  24 2.78 

SORM 

(Breitung) 
31.6697 10  14.3% 42.089 10  27 2.78 

SORM (Tvedt) 31.5859 10  8.56% 41.251 10  27 2.78 

SOSPA 31.4685 10  0.527% 67.7 10  27 2.78 

MCS 31.4608 10  N/A N/A 108 N/A 

 

Table 3. 
fp  of the elliptical quadratic function in Case 3 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 15.3814 10  75.5% 12.3144 10  28 0.096 

SORM 

(Breitung) 
15.1598 10  68.2% 12.0928 10  31 0.096 

SORM (Tvedt) N/A N/A N/A N/A 0.096 

SOSPA 13.1289 10  2.02% 36.19 10  31 0.096 

MCS 13.0670 10  N/A N/A 108 N/A 
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The results show that SOSPA is more accurate than the other two SORM 

methods. FORM produces the largest error because of the first order approximation. 

The MPP and the Hessian matrix are identified numerically, and the numerical 

process calls the limit-state function repeatedly. SOSPA is as efficient as the other two 

SORM methods since the three methods have the same number of function calls. 

It is noted that, for Case 3, the origin is in the failure domain. To let FORM and 

SORM work properly, we need to use 3( )G U . Namely, we perform the following 

transformation: 

 

   

 

 

3 3

3

3,new

Pr ( ) 0 1 Pr ( ) 0

1 Pr ( ) 0

1 Pr ( ) 0

fp G G

G

G

    

   

  

U U

U

U

  (42) 

The contour of the new limit-state function 
3,new ( )G U  is the same as the original 

3( )G U , but the failure domain changes from the region inside the contour to be outside. 

Then the FORM and two SORM methods can be used to calculate 
fp . However, the 

main curvature of the new limit-state function is 0.93k   , leading to the failure of the 

Tvedt’s formula. 

4.1.2. Example 2: Parabola. In this example, the limit-state function is a 

quadratic function with a parabolic contour. Two cases are considered. The two limit-

state functions are given by 

 2

1 1 2( ) 0.5 4G U U  U   (43) 

 2

2 1 2( ) 0.5G U U  U   (44) 
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The contours of the two limit-state functions are plotted in Figures 6 and 7. The 

origin is outside the contour in Figure 6 but inside the contour in Figure 7. 

 

 

Figure 6.  Parabolic contour of the limit-state function in Case 1 

 

 

Figure 7.  Parabolic contour of the limit-state function in Case 2 

 

The results are given in Tables 4 and 5, indicating that SOSPA has the highest 

accuracy in both cases. FORM still produces significant errors because it linearizes the 
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limit-state function at the MPP. Both SORM methods have good accuracy in Case 1 but 

do not work in Case 2. In Case 2, the failure domain contains the origin, so a 

transformation is needed to obtain a new limit-state function 

2

2,new 2 1 2( ) ( ) 0.5G G U U     U U . Then FORM and the two SORM methods are used 

to calculate  2,new1 Pr ( ) 0fp G  U . However, the main curvature of the new limit-

state function is 2k    and thus 1k   . So the two SORM methods cannot work for 

this case. 

 

Table 4.   fp  of the parabolic quadratic function in Case 1 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 53.1671 10  131% 51.7931 10  31 4 

SORM 

(Breitung) 
51.4166 10  3.1% 74.26 10  34 4 

SORM (Tvedt) 51.3654 10  0.622% 88.6 10  34 4 

SOSPA 51.3701 10  0.283% 83.9 10  34 4 

MCS 51.374 10  N/A N/A 108 N/A 

 

Table 5.  fp  of the parabolic quadratic function in Case 2 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 16.9146 10  61.4% 12.6295 10  115 0.5 

SORM 

(Breitung) 
N/A N/A N/A N/A 0.5 

SORM (Tvedt) N/A N/A N/A N/A 0.5 

SOSPA 14.5262 10  5.63% 22.411 10  118 0.5 

MCS 14.2851 10  N/A N/A 108 N/A 
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4.1.3. Example 3: Hyperbola. Two quadratic limit-state functions with 

hyperbolic contours are defined by 

 
2 2

2 1
1 2 2
( ) 1

4 3

U U
G

 
   

 
U   (45) 

 
2 2
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2 2 2

( 1.8)
( ) 1

6 10

U U
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U   (46) 

Their contours are plotted in Figures 8 and 9. The contour is symmetric with 

respect to the origin in Case 1 but asymmetric in Case 2. 

 

 

Figure 8.  Hyperbolic contour of the limit-state function in Case 1 

 

The results are given in Tables 6 and 7. They show that SOSPA is the most 

accurate method. In Case 1, the probability of failure calculated by Breitung’s and 
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Tvedt’s methods are 5

,Breitung 1.9003 10fp    and 5

,Tvedt 1.8494 10fp   , respectively. 

They are almost one half of the one obtained by MCS, which is 
5

,MCS 3.779 10fp   . 

The reason is that both of the SORM methods approximate the limit-state function 

containing two parabolic contours by only one parabolic contour. In Case 2, the two 

SORM methods are accurate because the failure domain associated with the upper 

contour ignored by SORM has small contribution to the failure. 

The three mathematical examples show that SOSPA has the highest accuracy and 

that SOSPA can deal with quadratic functions in an elliptic, a parabolic, or a hyperbolic 

form. SOSPA has the same efficiency as the traditional SORM methods. 

 

 

Figure 9.  Hyperbolic contour of the limit-state function in Case 2 

 



 

 

65 

Table 6.  
fp  of the hyperbola quadratic function in Case 1 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 53.1671 10  16.2% 66.119 10  48 4 

SORM 

(Breitung) 
51.9003 10  49.7% 51.8787 10  51 4 

SORM (Tvedt) 51.8494 10  51.1% 51.9296 10  51 4 

SOSPA 53.9383 10  4.21% 61.593 10  51 4 

MCS 53.779 10  N/A N/A 108 N/A 

 

Table 7.  fp  of the hyperbola quadratic function in Case 2 

Method fp  %  
Absolute 

Error 
Function Calls   

FORM 51.3346 10  8.68% 61.066 10  28 4.2 

SORM 

(Breitung) 
51.1927 10  2.87% 73.53 10  31 4.2 

SORM (Tvedt) 51.1856 10  3.45% 74.24 10  31 4.2 

SOSPA 51.1963 10  2.58% 73.17 10  31 4.2 

MCS 51.228 10  N/A N/A 108 N/A 

 

4.1.4. Example 4: High Dimensional Quadratic Function. We modify the 

example in Ref. [33] to test the effectiveness of SOSPA for solving the problem with a 

large number of input variables. The limit-state function is given by 

 
1

2

1

1
( )

2

n

n i i

i

g U kU




    U                                         (47) 

where 
1 2[ , ,..., ]nU U UU , n  is the number of random variables,   is 3, and 

ik  is 0.1. 

The results with various dimensions are given in Table 8 and 9. 
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Table 8. 
fp  of quadratic function with n=10 and 20 

Method 

10n   20n   

fp  %  
Absolute 

Error fp  %  
Absolute 

Error 

FORM 31.3499 10  284% 49.9860 10  31.3499 10  1880% 31.2817 10  

SORM 

(Breitung) 
44.1453 10  18% 56.323 10  41.1164 10  63.7% 54.344 10  

SORM 

(Tvedt) 
43.4769 10  1.03% 63.61 10  56.0905 10  10.7% 67.295 10  

SOSPA 43.5308 10  0.51% 61.78 10  57.0806 10  3.82% 62.606 10  

MCS 43.5130 10  N/A N/A 56.82 10  N/A N/A 

 

Table 9. 
fp  of quadratic function with n=30 and 40 

Method 

30n   40n   

fp  %  
Absolute 

Error fp  %  
Absolute 

Error 

FORM 31.3499 10  10400% 31.3371 10  31.3499 10  67400% 31.3479 10  

SORM 

(Breitung) 
53.0069 10  135% 51.7269 10  68.0987 10  305% 66.0987 10  

SORM 

(Tvedt) 
64.8265 10  62.3% 67.9735 10  62.1865 10   209% 64.1865 10  

SOSPA 51.2648 10  1.19% 71.52 10  62.0256 10  1.28% 82.56 10  

MCS 51.28 10  N/A N/A 62.0 10  N/A N/A 

 

As the results show, SOSPA constantly yields accurate results while other 

methods produce larger errors as the dimensions of random variables increase. When 

40n  , the Tvedt’s formulas results in a negative probability of failure. 
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4.2. ENGINEERING EXAMPLES 

After demonstrating the high accuracy of SOSPA for quadratic limit-state 

functions, we now use it for engineering problems with general limit-state functions, 

which are not quadratic. 

4.2.1. Example 1: A Slider-Crank Mechanism. A slider-crank mechanism is 

shown in Figure 10. The position of the mechanism is required to be 2.3cmrs   when 

60  . If the difference between the actual position s  and the required positon is 

outside the tolerance range 0.16 cm   ,  the mechanism fails. 

Thus the limit-state function of the slider crank mechanism is given by 

   
2

22 2( ) cos sin rg a b a s      X   (48) 

where [ , ]a bX . All the random variables are assumed to be independently and normally 

distributed, and their parameters are listed in Table 10. The contour of the limit-state 

function is plotted in Figure 11. 

 

                    

Figure 10. A slider crank system 

a  b  

  

s  
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Table 10.  Distributions of the random variables in slider crank mechanism 

Random Variable Distribution Mean Standard Deviation 

(cm)a  Normal 1 0.02 

(cm)b  Normal 2 0.04 

 

 

 

Figure 11. The contour of the slider crank system 

 

Table 11 gives the results, which show that FORM and both of the SORM 

methods produce relatively large errors. The reason is that the above methods only 

consider half of the failure domain by approximating one of the two contours. SOSPA 

can take all the failure domains into account and estimate the probability of failure 

accurately while maintaining the same efficiency as the two SORM methods.  
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Table 11.  The probability of failure of nonlinear oscillator system 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 41.8193 10  43.4% 41.3949 10  26 3.57 

SORM 

(Breitung) 
41.8140 10  46.6% 41.4002 10  29 3.57 

SORM (Tvedt) 41.8136 10  43.6% 41.4006 10  29 3.57 

SOSPA 43.1615 10  1.64% 65.27 10  29 3.57 

MCS 43.2142 10  N/A N/A 108 N/A 

 

4.2.2. Example 2: Cantilever Tube. In order to investigate the effectiveness of 

SOSPA for problems with non-normal random variables, we modify the example of a 

cantilever tube [34, 35] shown in Figure 12. The tube is subjected to three forces 
1F , 

2F  

and P  as well as a torque T . A failure occurs if the maximum von Mises stress max  is 

larger than the yield strength 
yS . The limit-state function is defined by 

 
max( ) yg S  X   (49) 

where 
1 2 1 2[ , , , , , , , , ]yF F P T t d S X , and max is given by 

 
2 2

max 3x zx   (50) 

in which 

 x

P M

A I
  (51) 

 1 1 2 2[2 sin( ) sin( )]

8
xz

T F d F d d

I
  (52) 

 
4 4[ ( 2 ) ]

64
I d d t   (53) 
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2 2[ ( 2 ) ]

4
A d d t   (54) 

and 

 1 1 1 2 2 2cos( ) cos( )M F L F L   (55) 

 

 

Figure 12.  A cantilever tube 

 

Table 12.  Distributions of the random variables in cantilever tube 

Random Variable Distribution Mean  Standard Deviation 

1 (N)F  Lognormal 2000 400 

2 (N)F  Lognormal 2500 875 

(N)P  Normal 1000 100 

(N m)T   Normal 200 20 

1( )  Normal 20 1 

2 ( )  Normal 20 1 

(mm)t  Normal 5 0.1 

(mm)d  Normal 43 0.1 

(MPa)yS  Normal 170 25 
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Table 13. 
fp  of cantilever tube 

Method fp  %  
Absolute 

Error 

Function 

Calls 
  

FORM 49.5299 10  34.1% 44.94 10  180 3.10 

SORM 

(Breitung) 
31.3692 10  5.38% 57.78 10  225 3.10 

SORM (Tvedt) 31.3997 10  3.27% 54.73 10  225 3.10 

SOSPA 31.4068 10  2.78% 54.02 10  225 3.10 

MCS 31.4470 10  N/A N/A 107 N/A 

 

All the input variables are given in Table 12. This problem involves nine 

independent random variables, in which two of them follow lognormal distributions with 

large coefficients of variations, and others follow normal distributions. 

The results are given in Table 13, showing that both the SORM methods and 

SOSPA have high accuracy. SOSPA is still more accurate than the SORM methods while 

maintaining the same efficiency. 
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5. CONCLUSIONS 

This work improves the accuracy of the second order reliability methods (SORM) 

without sacrificing computational efficiency. This is achieved by combing SORM and the 

saddlepoint approximation. The proposed second order saddlepoint approximation 

(SOSPA) method first approximates a limit-state function with a second-order Taylor 

expansion at the most probable point (MPP) as the traditional SORM methods do. After 

transforming the approximated limit-state function into a linear combination of 

noncentral chi-square variables without accuracy loss, in a straightforward way, SOSPA 

employs the saddlepoint approximation to estimate the probability of failure. 

SOSPA does not require any further approximations after the limit-state function 

is approximated as a quadratic function. It is therefore in general more accurate than the 

other SORM methods that require a further approximation.   

Since SOSPA is essentially a SORM method based on the MPP, it shares the 

same limitations of SORM. For example, it may not be accurate when multiple MPPs 

exist. If a limit-state function is highly nonlinear, far away from a quadratic function, the 

accuracy will not be good either. 
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ABSTRACT 

Sequential optimization and reliability analysis (SORA) is an efficient approach 

to reliability-based design (RBD). It decouples the double loop structure of RBD into a 

serial cycles of deterministic optimization and reliability analysis. The first order 

approximation is used in SORA for reliability analysis due to its good balance between 

accuracy and efficiency. However, it may result in a large error when a constraint 

function is highly nonlinear. This study proposes a new numerical method so that second 

order approximations for the reliability analysis can be used for higher accuracy. To 

minimize the increased computational cost due to second order approximations, this 

study also develops an efficient algorithm for searching for an equivalent reliability index 

with the help of the saddlepoint approximation. The efficiency and accuracy of the 

proposed method are verified through numerical examples. 
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1. INTRODUCTION 

Reliability-based design (RBD) is a design methodology for accounting for 

uncertainties associated with material properties, geometry, manufacturing processes, and 

operational environments [1].  RBD aims to obtain an optimal design with high reliability 

by ensuring design constraints be satisfied at desired probability levels. 

RBD formulates a probabilistic optimization problem by minimizing a cost-type 

object while maintaining reliability constraints [2-5]. During RBD, reliability is 

numerically evaluated repeatedly by reliability analysis. The most commonly used 

reliability analysis method is the First Order Reliability Method (FORM) [6, 7]. FORM 

provides a good balance between accuracy and efficiency [8, 9]. Since the direct use of 

FORM is computationally expensive due to the Most Probable Point (MPP) search, the 

inverse FORM has been developed to improve the efficiency by modifying the 

formulation of reliability constraints, and one of the methods is the performance measure 

approach (PMA) [10, 11]. Both the direct and inverse FORM need an iterative numerical 

process, and combining optimization with either FORM or inverse FORM becomes a 

double-loop process, resulting in a high computational cost. 

The decoupled approaches have been therefore developed to reduce the 

computational cost. The sequential optimization and reliability assessment (SORA) [3, 

12-14] is one of the decoupled approaches. In SORA, the reliability analysis loop is 

decoupled from the optimization loop. Both loops are performed sequentially. Then the 

double loop structure is transformed into decoupled sequential loops. Furthermore, 

inverse FORM is employed as an integral part to maintain the efficiency of the reliability 

analysis loop. SORA is more efficient than double loop RBD methods with the same 
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accuracy. Yin and Chen [15] developed an enhanced SORA to improve the efficiency for 

solving problems with varying variances of random variables. Saddlepoint approximation 

is integrated with SORA to improve the accuracy of RBD when FORM is not appropriate 

[16]. Chao and Lee [17] integrated the convex linearization with SORA to improve the 

efficiency of RBD. The MPP-based dimensional reduction method is combined with 

SORA to ensure high accuracy of RBD when the performance functions are highly 

nonlinear [18]. The approximate SORA [19] was proposed to further reduce the number 

of reliability analyses. 

SORA was originally developed for the use of FORM, which approximates a 

constraint function by the first-order Taylor expansion at the MPP. SORA may result in a 

large error in reliability estimation when the constraint function is highly nonlinear. The 

Second Order Reliability Method (SORM) [20-24] is more accurate than FORM due to 

the second-order approximation. It makes the constraint function a complete quadratic 

function in standard normal variables. Then a further rotation transformation is performed 

after the second-order Taylor expansion and constraint function becomes a paraboloid. 

Finally the reliability is analytically evaluated by Breitung’s formula or Tvedt’s formula. 

The other second order approximation method is the saddlepoint approximation [16, 25]. 

It calculates the reliability without further transformation and approximation of the 

quadratic function. Its accuracy is in general higher than Breitung’s and Tvedt’s 

formulas. 

The objective of this work is to introduce SORM into SORA in order to improve 

the accuracy of SORA. The new method is termed as SORA/SORM. It improves the 
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accuracy by replacing the inverse FORM with an inverse SORM and maintains the high 

efficiency by using the same structure of SORA.  

The rest of this article is organized as follows: Section 2 reviews the theoretical 

background of this work. Then the proposed computational procedure and algorithms of 

inverse SORM are discussed in Section 3. Section 4 presents the proposed SORA/SORM, 

followed by illustrative examples in Section 5. Conclusions are given in Section 6. 
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2. REVIEW OF FUNDAMENTAL METHODOLOGIES 

In this section, the basic formulation of RBD and the common methods for the 

reliability analysis are briefly reviewed, including the direct FORM, inverse FORM, and 

SORM. SORA is also reviewed herein. 

 

2.1. RBD AND FORM 

A typical RBD model is expressed as 

 
  

( , )
Min ( , , )

. . Pr , , 0 [ ] 1 [ ], 1,2,...,i i fi g

L U

L U

f

s t g R p i n



     

  


 

X

X P
d μ

X X X

d μ μ

d X P

d d d

μ μ μ

  (1) 

In the above model, d  is the vector of deterministic design variables, 
L

d  and 

U
d represent the lower and upper bounds of d , respectively. 1 2[ , ,..., ]T

nX X XX  is the 

vector of independent random design variables whose mean values 

1 2
[ , ,..., ]

n

T

X X X  
X
μ  are to be determined, and its lower bound and upper bound are 

L

X
μ  and U

X
μ , respectively. 1 2[ , ,..., ]T

mP P PP  is the vector of independent random 

parameters, which cannot be controlled by designers. ( )f   is the objective function, 

which is evaluated at d , X
μ , and P

μ .  , ,ig d X P  is a constraint function or performance 

function, and the probability of constraint satisfaction or reliability   Pr , , 0ig d X P  

should be greater than or equal to the desired reliability [ ]iR  or 1 [ ]fip , where [ ]fip  is 

the prescribed allowable probability of failure. 
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In the above model, the probability of constraint satisfaction or reliability is 

obtained by 

   
  ,

, , 0
Pr , , 0 ( , )

g
g f d d


   X P

d X P
d X P x p x p   (2) 

where , ( , )f
X P

x p  is the joint probability density function of X  and P . Generally, it is 

difficult to compute the above multidimensional integration. FORM is usually used to 

approximate the reliability. FORM first transforms X  and P  into standard normal 

variables X
U  and P

U [9, 26, 27]. The performance function then becomes 

      , , , ( ) , ( , ; ) ( , )g g T g T G  
X P X

d X P d U d U U μ d U   (3) 

where ( , )
X P

U U U  , and ( )T   stands for the transformation from standard normal space 

(U-space) to original random space (X-space). Note that the transformation depends on 

X
μ . FORM then linearizes ( , )G d U  at the MPP, where the integrand , ( , )f

X P
x p  in Eq. (2) 

is maximized, thereby minimizing the error of the linearization. 

MPP MPPu  is obtained by solving 

 
 

Min

s.t. , ( ) 0

T

g T

 




u uu

d u
  (4) 

where   stands for the magnitude of a vector. 

Finally the reliability is calculated by 

   Pr , , 0 ( ) ( )MPPg   d X P u   (5) 

where MPP  u  is the reliability index, and ( )   is the cumulative distribution function 

(CDF) of a standard normal random variable. 
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When FORM is directly used to solve the optimization model in Eq. (1), the 

efficiency is usually low due to the nested optimization loop [10, 28, 29]. Inside the outer 

optimization loop, FORM needs to call the performance function repeatedly for the 

reliability analysis. 

 

2.2. RBD AND INVERSE FORM 

As discussed above, directly using FORM in RBD is computationally expensive. 

So the inverse FORM has been proposed to improve the efficiency by modifying the 

formulations of reliability constraints. Using inverse FORM, the equivalent RBD model 

becomes [10, 30, 31] 

 
 

( , )

1 [ ]

Min ( , , )

. . , , 0, 1,2,...,fip

i g
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X
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d μ μ

d X P
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  (6) 

where 
1 [ ]fip

ig


 is the performance measure, which is defined by 

   1 [ ]
Pr , , 1 [ ]fip

i i fig g p


  d X P   (7) 

The performance measure is calculated by inverse FORM. 

        
1 [ ]

, , , ( ) , ( , ) , ,f

MPP MPP

p

MPP MPP MPPg g T g T g


  
x p

d X P d u d u u d x p   (8) 

where  ,
MPP MPPMPP  x p

u u u  is the inverse MPP in the U-space, and  ,MPP MPPx p  is 

corresponding inverse MPP in the X-space. The inverse MPP is obtained through an 

optimization problem given by 
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Min ( , )

. . [ ]

g

s t 






u
d u

u
  (9) 

where [ ]  is the target reliability index and is calculated by 

 1[ ] ([ ])MPP fp   u   (10) 

in which 
1( )   represents the inverse CDF of a standard normal random variable. 

With Eq. (8), the RBD model is then rewritten as 
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d u μ u
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  (11) 

Inverse FORM can transform a probabilistic constraint to a deterministic 

constraint. However, finding the MPP needs a numerical iterative search process, and 

solving the RBD model in Eq. (11) still requires a double loop procedure.  

 

2.3. SORA 

SORA [3, 12] overcomes the drawback of the poor efficiency of the double loop 

structure. It decouples the optimization loop and reliability loop, and performs the two 

loops sequentially. In the first cycle, the deterministic optimization is performed at the 

means of random design variables and random parameters. 
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d μ

X P

d μ μ
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After the deterministic optimization, the reliability analysis is implemented at the 

deterministic optimal point (1) (1)( , )
X P
μ μ  to locate the inverse MPP  (1) (1)

, ,,
MPP MPPi ix p

u u . From 

the second cycle, the constraint function in deterministic optimization is modified using 

the inverse MPP. 

 

 
( , )

(1) (1)

, ,

Min ( , , )

. . , ( ; ), ( ) 0, 1,2,...,
MPP MPPi i i g

f

s t g T T i n





 

X

X P
d μ

x X p

d μ μ

d u μ u
  (13) 

Then the process is repeated until convergence. It is illustrated in Figure 1. Since 

SORA requires fewer reliability analyses, its efficiency is high. 

 

 

                                             Figure 1. Flowchart of SORA 
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2.4. SORM 

SORA uses inverse FORM to solve RBD problems. However, its accuracy may 

not be good when the performance functions are highly nonlinear. For this case, SORM 

can be employed since it is in general more accurate than FORM due to the second order 

approximation. The most common methods are Breitung’s method [21] and Tvedt’s 

method [32]. 

2.4.1. Traditional SORM Methods. The traditional methods such as Breitung’s 

and Tvedt’s methods first approximate the performance function by the second-order 

Taylor expansion at the MPP. 

                            

   

2

, , ( ) ( )( )

1
( ) ( )( )

2

T

MPP MPP MPP

T

MPP MPP MPP

g G G G

G

   

   

d X P U u u U u

U u u U u
       (14) 

where 
1

( ) , ,

MPP MPP

MPP

n

G G
G

U U

  
  
  
 u u

u   is the gradient vector, and 2 ( )MPPG u  is a 

Hessian matrix. 

After a set of linear transformations, such as coordinate rotation and orthogonal 

diagonalization, the performance function is further simplified as a hyperparabola given 

by 

 
1

( )
2

T

nG V 
 

   
 

V VWV   (15) 

where W  is a ( 1) ( 1)n n    diagonal matrix whose elements are determined by Hessian 

matrix.  1 2, ,...,
T

nV V VV   is the vector of orthogonal standard normal random variables. 

Finally, the reliability is analytically calculated by the asymptotic formulation 

[21]. 
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1

1/2

1

Pr , , 0 ( ) (1 )
n

i

i

g k 






   d X P   (16) 

where 
ik  stands for the main curvatures of performance function  G U  at the MPP. 

2.4.2. Second Order Saddlepoint Approximation. Besides the traditional 

SORM methods, the alternative method for reliability analysis is the second order 

saddlepoint approximation (SOSPA) [25] , which is considered more accurate than 

Breitung’s and Tvedt’s methods. 

Once the performance function is approximated by the quadratic form in Eq. (15), 

the cumulant generating function (CGF) can be obtained. 
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The derivatives of CGF are 
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The saddlepoint st  is obtained by solving the following equation: 

 
1

1

( ) 0
1 2

n
i

i i
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tk






     


   (20) 

Then the reliability is evaluated by 

   
1 1

Pr , , 0 ( ) ( )( )g w w
w




   d X P   (21) 

where ( )   is the probability density function (PDF) of a standard normal distribution, 

   
1/2

sgn( ) 2 ( )s sw t K t    (22) 
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1/2

( )s st K t    (23) 

in which sgn( ) 1, 1 or 0st    , depending on whether st  is positive, negative, or zero. 

Saddlepoint approximation has several excellent features. It yields an extremely 

accurate probability estimation, especially in the tail area of a distribution [16, 33, 34]. 

For this reason, SOSPA is employed in the proposed SORA/SORM method. 
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3. SORA WITH INVERSE SORM 

In this section, the details of the proposed SORA/SORM method are discussed. 

 

3.1. OVERVIEW OF SORA/SORM 

The objective of this study is to improve the accuracy of SORA by replacing 

inverse FORM with inverse SORM. SORA is originally developed for FORM such that 

the MPPs from FORM are directly used to formulate constraint functions for the 

deterministic optimization, which can be then decoupled from the reliability analysis with 

FORM. 

The major contributor to the high efficiency of SORA is the use of the MPPs that 

are directly related to required reliabilities. The MPPs are identified by inverse FORM. 

When the inverse SORM is used to replace the inverse FORM, an MPP is no longer 

directly related to the required reliability or probability of failure through the simple 

relationship [ ] ( )f MPPp   u . To maintain the high efficiency, the same structure of 

SORA is used, which relies on the MPPs. To make this happen, the same relationship is 

maintained between the allowable probability of failure and the MPP in the inverse 

SORM, and the new MPP is called the equivalent MPP, namely, 

 [ ] ( )Equ

f MPPp   u   (24) 

where Equ

MPPu  is the equivalent MPP. The other advantage of using the equivalent MPP is 

that the exiting MPP search algorithms can still be used. 
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With the equivalent MPP, the same structure of the original SORA is able to be 

used. Then the flowchart for SORA/SORM can be obtained with slight modifications 

based on original SORA. The modified flowchart is given below. 

 

 

Figure 2.  Flowchart of SORA/SORM 

 

As shown in the flowchart, the key to SORA/SORM is to search for the 

equivalent MPPs through inverse SORM, which is discussed in the Section 3.2. 

 

3.2. ALGORITHM FOR INVERSE SORM 

Recall that the MPP of inverse FORM is located on the condition that the 

magnitude of the MPP or the required reliability index [ ]  is given, as indicated by the 
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MPP search model in Eq. (9). In the original SORA or SORA/FORM, [ ]  is directly 

related with allowable probability of failure [ ]fp  by 1[ ] ([ ])MPP fp   u . But now 

such a relationship is not available when using the second order approximation. The 

required reliability index is no longer the magnitude of the MPP, or MPPu . Let the 

magnitude of u  be   , namely, 

   u   (25) 

Then the model for searching for the equivalent MPP is 

 

  

,
Min ( , )

. .

Pr , ( ) 0 [ ]f f

g

s t

p g T p











  

u
d u

u

d u

  (26) 

The solution is the equivalent MPP Equ

MPPu , and Equ

MPP  u  is called the equivalent 

reliability index. There are some drawbacks if the above model is solved directly. The 

model has two equality constraints, which make the solution process inefficient. Existing 

inverse MPP search algorithms cannot be used because of the second constraint function. 

In addition, fp  has to be computed by SORM, which requires the second derivatives of 

the performance function. Then a new numerical procedure is proposed so that existing 

inverse MPP search algorithms can be used. The central idea is to vary   , and then 

search for the MPP until [ ]f fp p  is satisfied. For a given value of   , the inverse MPP 

search is performed. 

 
Min ( , )

. .

g

s t 






u
d u

u
  (27) 
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Note that the search is the same as that in Eq. (9) for the original SORA. 

After the MPP MPPu  is found, SORM is performed to calculate the probability of 

failure 
fp  . If 

fp  is not equal to [ ]fp ,   is updated and the inverse MPP search is 

performed in Eq. (27) again. This process is repeated until the difference between 
fp  and 

[ ]fp  is small enough. The SORM method used in this work is the second order 

saddlepoint approximation. The flowchart and steps of the inverse SORM are given as 

follows. 

 

 

Figure 3.  Flowchart of the inverse SORM 
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The details shown in Figure 3 are discussed below. 

Step 1: Set 1k  , and initialize 
(1)  based on allowable probability of failure 

[ ]fp , (1) 1([ ])fp    

Step 2: Perform the inverse MPP search using Eq. (27), and find the MPP ( )k

MPPu . 

Step 3: Calculate the probability of failure ( )k

fp  using the second-order SPA 

method. 

Step 4: Update 
( 1)k 

. 

Step 5: Check the convergence criteria, which is chosen as the 

 

( ) [ ]

[ ]

k

f f

tol

f

p p

p
 


    (28) 

where   is the absolute value of the relative error, and tol  is a user-defined threshold for 

the convergence check. 

If tol  , terminate the iteration, and 
( 1)k 

 is the equivalent reliability index. 

Otherwise, set 1k k   and return to step 2. 

The key to searching for the equivalent MPP is to update  . The algorithms of 

updating   are developed in Section 3.3. 

 

3.3. ALGORITHMS FOR UPDATING    

To make the inverse SORM efficient, the number of inverse MPP searches is 

minimized. Efficient algorithms to update   are critical. Recall that the purpose of 

updating   is to satisfy [ ]SORM

f fp p  . The 
SORM

fp  is assumed to be a function of  , 
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expressed by ( )SORM

fp  . Since the probability of failure from FORM is 

 1FORM

fp   , the relationship between ( )SORM

fp   and FORM

fp can be used to derive 

equations for  . Next, two possible relationships are assumed between ( )SORM

fp   and 

FORM

fp , based on which algorithms are designed to update  . 

3.3.1. Additive Relationship. The difference between SORM

fp  and FORM

fp  is 

assumed to be constant. 

 ( ) ( ) ( )SORM FORM

f fp p c c         (29) 

where c  is a constant. 

At current iteration k  and next iteration 1k  , the probabilities of failure are 

given by 

 

( 1) ( 1)

( ) ( )

( )

( )

k k

f

k k

f

p c

p c





     


   

  (30) 

In the above equations, fp  is the probability of failure from SORM, or SORM

fp  

(For brevity, the superscript SORM is dropped). Then 

 ( 1) ( ) ( 1) ( )( ) ( )k k k k

f fp p          (31) 

Replacing 
( 1)k

fp 
 by the allowable probability of failure [ ]fp  yields the first 

updating algorithm as follows: 

  ( 1) 1 ( ) ( )[ ] ( )k k k

f fp p         (32) 

Alternatively, the derivative of Eq. (29) may be taken, and this gives 

 ( )
fdp

d
 


     (33) 
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The derivative can be approximated with the finite difference method (FDM) with 

the forward scheme. Then 

 

( 1) ( )

( )

( 1) ( )
( )

k k

f f k

k k

p p
 

 






  


  (34) 

Thus the second updating algorithm is thus given by 
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  (35) 

3.3.2. Multiplicative Relationship. The alternative relationship between SORM

fp  

and FORM

fp  is assumed to be 

 ( ) ( )SORM FORM

f fp cp c       (36) 

where c  is not constant. 

Using the FDM in Section 3.3.1, the first-order derivative of the above equation is 

given by 
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where 
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( )( )

k

fk

k

p
c



 

  (38) 

Thus the third updating algorithm is obtained as 

 

( )

( 1) ( )

( ) ( )

[ ]

( )

k

f fk k

k k

p p

c
 

 




 


  (39) 

Besides updating   to satisfy [ ]SORM

f fp p , directly solving the following 

nonlinear equation may be considered: 
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 ( ) [ ] [ ] ( ) 0SORM

f f fh p p p c          (40) 

A convex acceleration of Newton's method [35] can be used to solve the above 

equation due to its cubic and fast convergence [36, 37]. Then the forth updating algorithm 

is yielded. 
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where 

 
' ( ) ( ) ( )( ) ( )k k kh c      (42) 

 
'' ( ) ( ) ( ) ( )( ) ( ) ( )k k k kh c        (43) 

    
2

( ) ( ) '' ( ) ' ( )( ) ( ) ( ) ( )k k k k

hL h h h      (44) 

and 
( )kc  is calculated with Eq. (38). 

The four algorithms for updating   are summarized in Table 1. 

 

Table 1.  Algorithms to update the reliability index 

Algorithms Equations 

1  ( 1) 1 ( ) ( )[ ] ( )k k k
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Next a numerical example is used to demonstrate the performance of the 

algorithms. The example contains four standard normal variables, and the performance 

function is given by 

        
2 2 2 2

1 2 3 4( ) 90 5 6 6 6g X X X X        X   (45) 

where 
1 2 3 4[ , , , ]TX X X XX .  

The allowable probability of failure is set to be 5[ ] 10fp  , and the tolerance for 

convergence criterion is chosen as 0.1%tol  . The proposed four updating algorithms 

are compared in terms of accuracy and efficiency. The accuracy is evaluated by 

comparing with the result from Monte Carlo Simulation (MCS). And the efficiency is 

measured by the number of performance function calls. 

The results are presented in Table 2, which show that all the four algorithms 

achieve the same target reliability. MCS

fp  in the table is the probability of failure of 

Pr{ ( ) ( )}MPPg gX u  calculated by MCS with a sample size of 
710 . The results are the 

same for four algorithms and are close to the allowable probability of failure 5[ ] 10fp  . 

So the four algorithms have the same accuracy. But algorithm 4 achieves the highest 

efficiency. Considering efficiency and accuracy, algorithm 4 is chosen as the method of 

updating reliability index when inverse SORM is used.  

Figure 4 shows the iteration history of the probability of failure calculated by 

inverse SORM with algorithm 4. It indicates that the probability of failure coverages to 

the allowable probability of failure quickly. 

 

 



 

 

98 

Table 2.  Results of inverse SORM 

Algorithm MPPu     ( )MPPg u  
MCS

fp   
Function 

Calls 

Number of 

MPP 

searches 

1 
(1.7792, 2.1351, 

2.1351, 2.1351) 
4.1037 34.8134 51.02 10   242 11 

2 
(1.7792, 2.1351, 

2.1351, 2.1351) 
4.1037 34.8134 51.02 10  242 11 

3 
(1.7791, 2.1350, 

2.1350, 2.1350) 
4.1037 34.8115 51.02 10  122 6 

4 
(1.7791, 2.1350, 

2.1350, 2.1350) 
4.1037 34.8110 51.02 10  98 5 

       

 

 

 
 

Figure 4.  Convergence history 
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4. SORA/SORM 

The purpose of SORA/SORM is to improve the accuracy. At the same time, high 

efficiency is also required. For high efficiency, the complete inverse SORM is not 

performed after the deterministic optimization in each cycle of SORA. Instead, only one 

iteration of inverse SORM is performed, and   is updated only once. With the progress 

of cycles,   will gradually converge to the equivalent reliability index for an active 

constraint. The detailed steps of SORA/SORM are summarized below. 

Step 1: Set the initial design point 
(1)

d  and (1)

X
μ . 

Step 2: Set 1k  . Use the means of random variables as the initial MPP for each 

performance function. Calculate the initial (1) 1([ ])i fip   . 

Step 3: Perform the following deterministic optimization and obtain 
( 1)k

d  and 

( 1)k

X
μ . 
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, ,

Min ( , , )

. . , ( , ), ( ) 0, 1,2,...,
MPP MPPi i i g

L U

L U

f

s t g T T i n



  

  


 

X

X P
d μ

x X p

X X X

d μ μ

d u μ u

d d d

μ μ μ

  (46) 

Step 4: Implement reliability analysis using inverse SORM for each constraint 

function. 

(1) Perform MPP search given ( )k . Obtain the MPP ( )k

MPPu ,and the gradient of the 

performance function ( )( )k

MPPg u , and evaluate it at MPP. 

(2) Calculate the probability of failure 
( )k

fp  using second-order SPA. 
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(3) Update the reliability index ( 1)k   using Eq. (41). 

(4) Update the MPP using the advanced mean-value method [38, 39]. 

 
( )

( 1) ( 1)

( )

( )

( )

k
k k MPP

MPP k

MPP

g

g
  




u
u

u
  (47) 

Step 5: Check convergence. The convergence criterion is defined as 

 

( ) [ ]

[ ]

k

f f

tol

f

p p

p
 


    (48) 

If tol  , terminate the iteration, and  ( 1) ( 1),k k 

X
d μ  is the optimal point. 

Otherwise, set 1k k   and return to step 3. 

The flowchart of overall procedure of SORA/SORM is shown in Figure 5. 
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Figure 5.  Flowchart of SORA/SORM method 
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5. EXAMPLES 

In this section, three problems are given to test the effectiveness of SORA/SORM. 

To show the effectiveness, SORA/SORM is compared with double-loop method using 

direct SORM, denoted as DL-SORM, and SORA/FORM. The accuracy is evaluated by 

the relative error between the probability of failure at the optimal point calculated by 

MCS with a large number of sample size and the allowable probability of failure for 

active constraint functions. The number of function calls is provided as the measure of 

efficiency, including those for both optimization and reliability analysis. The sequential 

quadratic programming (SQP) algorithm is used for optimization and the MPP search. 

 

5.1. EXAMPLE 1: MATHEMATICAL PROBLEM 

In this problem, there are two independent random variables and one reliability 

constraint. No deterministic variables and random parameters are involved. The RBD 

model [40] is modified as 
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  (49) 

Each of the random design variables follows a normal distribution with a standard 

deviation 0.6. The allowable probability of failure is 
3[ ] 1.35 10fp   . 

Table 3 displays the convergence history of design variables X
μ , equivalent 

reliability index  , and the number of performance function calls in each cycle, denoted 
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by N . The optimal design is found with only three cycles of deterministic optimization 

and reliability analysis. 

 

Table 3.  Convergence history of SORA/SORM 

Cycle k   X
μ    N  

1 (5, 5) 3 60 

2 (3.6991, 5) 3.0108 78 

3 (3.6800, 5) 3.0181 60 

 

Table 4.  Results of example 1 

Method Objective X
μ  

MCS

fp  
fp (Absolute Error) N   

SORA/FORM -8.6938 (3.6937, 5) 31.442 10    56.81% 9.20 10  171 

DL-SORM -8.6799 (3.6799, 5) 31.361 10   50.82% 1.10 10  705 

SORA/SORM -8.68 (3.68, 5) 31.361 10   50.82% 1.10 10  198 

 

The problem is solved by DL-SORM, SORA/FORM and SORA/SORM. All the 

solutions are shown in Table 4. MCS

fp  is the probability of failure from MCS at optimal 

point from DL-SORM, SORA/FORM, or SORA/SORM, and MCS uses 
710  samples. N  

stands for the number of performance function calls, including those for both 

optimization and reliability analysis. SORA/FORM produces a large relative error of 

6.81%
fp   due to the nonlinearity of the performance function. But it is the most 

efficient method with 171N  . SORA/SORM achieves a more accurate result with an 

error of 0.82%
fp  , and it requires additional computations due to the second-order 

approximation with 198N  . DL-SORM shows the same accuracy as SORA/SORM 
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since it also uses SORM for reliability analysis. However, its computational cost 

( 705N  ) is much higher because of the double loop structure. Considering both 

efficiency and accuracy, the proposed SORA/SORM gives the best result. 

 

5.2. EXAMPLE 2: CANTILEVER BEAM DESIGN 

In the previous mathematical example, there is only one constraint. In this 

engineering example, two constraints are considered. 

A cantilever beam design problem [30, 41, 42] is adopted in this example as 

shown in Figure 6. The objective is to minimize the weight 

 b hf L    (50) 

where b  and h  represents the width and height of the cross section, respectively, and 

their means, b  and h ,  are to be determined. 100 inL   is the length of the beam. 

 

 

Figure 6.  A cantilever beam 

 

The first constraint is that the maximum stress at the fixed end of the cantilever 

should be less than the yield strength yS ; the second constraint is that the tip 

L  

b  

h  

yP  

xP  
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displacement should not exceed an allowable value 0D .  The two performance functions 

are given by 

  1

6
,

yx
y

PPL
g S

bh b h

 
   

 
X P   (51) 
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where ( , )b hX , and ( , , , )x y yP P E SP , which include the horizontal load xP  , vertical 

load yP , Young’s modulus E , and yield strength yS . The distributions of the random 

design variables and random parameters are shown in Table 5. 

The RBD model is given by 
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where the allowable probability of failure of each constraint is 
3

1 2[ ] [ ] 1.35 10f fp p    , 

and the allowable displacement is 0 2.25 inD  . 

The results are given in Table 6. Compared with the results from MCS, all the 

three methods are accurate for the first constraint. SORA/SORM and DL-SORM are 

much more accurate than SORA/FORM for the second constraint. Theoretically, 
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SORA/SORM and DL-SORM should produce the same accuracy, and the slight 

difference of the results between the two methods is due to the numerical errors. In terms 

of efficiency, SORA/FORM is the most efficient method with 489N  , and 

SORA/SORM has a moderately increased value of  N , which is 753, compared with 

9292N   from DL-SORM. Overall, SORA/SORM is the best method with respect to the 

accuracy and efficiency. 

 

Table 5.  Distributions of variables in example 2 

Variable Mean Standard deviation Distribution 

b   inb  0.01  in Normal 

h  inh  0.01  in Normal 

xP  500  lb 50  lb Normal 

yP  1000  lb 100  lb Normal 

E  
72.9 10 psi  

51 10 psi  Normal 

yS  43.9 10 psi  500 psi  Normal 

 

Table 6. Results of example 2 

Method Objective X
μ  1

MCS

fp  
1fp   

(Absolute 

Error) 

2

MCS

fp  
2fp  

(Absolute 

Error) 

N   

SORA/ 

FORM 
890.77 

(2.2507, 

3.9577) 
31.355 10   

0.40%  

( 65 10 ) 
31.429 10  

5.85%  

( 57.9 10 ) 
489 

DL- 

SORM 
890.81 

(2.2531, 

3.9538) 
31.355 10  

0.40%  

( 65 10 ) 
31.354 10  

0.33%  

( 64 10 ) 
9292 

SORA/ 

SORM 
890.81 

(2.2530, 

3.9539) 
31.355 10  

0.40%  

( 65 10 ) 
31.357 10  

0.54%  

( 67 10 ) 
753 
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5.3. EXAMPLE 3: DESIGN OF A WELDED BEAM 

A welded beam design problem [43-45] is modified and used as the third 

example. The objective is to minimize the cost of the beam subject to constraints on shear 

stress  , bending stress   in the beam and buckling load cP . There are four random 

design variables, including the height of the weld h  , the length of the weld l , the height 

of the beam t , and the width of the beam b  as shown in Figure 7. 

 

 

Figure 7.  The welded beam problem 

 

The RBD model is given below. 
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where 
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( , , , )h l t bX  are random design variables, and ( , , , )P L E GP  are random 

parameters, which include the load P , length L , modulus of elasticity E , and modulus 

of rigidity G . max  is the design shear stress of the weld, and max  is the design normal 

stress of the beam material. The distributions and parameters of all the variables are 

shown in Table 7.  

 

Table 7.  Distributions of variables in example 3 

Variable Mean Standard deviation Distribution 

h  inh  0.01  in Normal 

l   inl  0.01  in Normal 

t  int  0.01  in Normal 

b   inb  0.01  in Normal 

P  8000  lb 600  lb Lognormal 

L  14  in 0.01  in Normal 

E  
73 10 psi  

63 10 psi  Normal 

G  71.2 10 psi  
61 10 psi  Normal 

max  41.4 10 psi  - Deterministic 

max  43.5 10 psi  - Deterministic 
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The allowable probability of failure of each constraint is 

3

1 2 3[ ] [ ] [ ] 1.35 10f f fp p p     . The results of the welded beam design are presented in 

Tables 8 and 9. All three reliability constraints are active at optimal points. Even though 

SORA/FORM is more efficient than SORA/SORM, it produces a very large error for the 

third constraint. SORA/SORM accurately satisfies the reliability requirement and is more 

accurate than SORA/FORM. DL-SORM has the same accuracy as SORA/SORM, but its 

efficiency is the worst. 

 

Table 8. The optimization results of welded beam design problem 

Method Objective X
μ  N   

SORA/FORM 3.1936 (0.4759, 3.9592, 9.6746. 0.2636) 2338 

DL-SORM 3.1996 (0.4888, 3.8258, 9.6648, 0.2642) 27230 

SORA/SORM 3.1987 (0.4763, 3.9598, 9.6653, 0.2642) 2814 

 

Table 9.  Reliability constraints of welded beam design problem 

Method 1

MCS

fp  
1fp   

(Absolute 

Error) 

2

MCS

fp  
2fp  

(Absolute 

Error) 

3

MCS

fp  
3fp  

(Absolute 

Error) 

SORA/ 

FORM 
31.365 10  

1.13%  

( 51.5 10 ) 
31.397 10  

3.51% 

( 54.7 10 ) 3

1.555

10
 

15.16% 

( 42.05 10 ) 

DL- 

SORM 
31.353 10  

0.26% 

( 63 10 ) 
31.362 10  

0.90% 

( 51.2 10 ) 3

1.351

10
 

0.06% 

( 61 10 ) 

SORA/ 

SORM 
31.355 10  

0.38% 

( 65 10 ) 
31.367 10  

1.23% 

( 51.7 10 ) 3

1.364

10
 

1.02% 

( 51.4 10 ) 
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6. CONCLUSIONS 

This study demonstrates that the second order reliability method (SORM) can be 

introduced to sequential optimization and reliability analysis (SORA), which is an 

efficient method for reliability-based design and was originally proposed for the use of 

the first order reliability method (FORM). The new SORA/SORM method developed in 

this work improves the accuracy of reliability-based design with an increased 

computational cost. The increase of the computational cost, however, is minimized by 

new algorithms for the reliability analysis that employs the inverse SORM with the 

saddlepoint approximation.  

SORA/SORM is in general more accurate than the original SORA with FORM 

because of the second order approximation. This is demonstrated by the numerical 

examples. SORA/SORM can therefore be used for problems where performance 

functions are not close to linear with respect to transformed standard normal variables. 

SORA/SORM is less efficient than the original SORA because the second order 

approximation requires second derivatives of a performance function. Nevertheless, 

much higher efficiency than the direct use of SORM is achieved through the following 

means: first, decoupling deterministic optimization and inverse SORM; second, 

performing each iteration of inverse SORM after each deterministic optimization, instead 

of the complete process of inverse SORM; and third, developing and using an efficient 

algorithm for updating the equivalent reliability index. 
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ABSTRACT 

Reliability depends on time if the associated limit-state function includes time. A 

time-dependent reliability problem can be converted into a time-independent reliability 

problem by using the extreme value of the limit-state function. Then the first order 

reliability method can be used but it may produce a large error since the extreme limit-

state function is usually highly nonlinear. This study proposes a new reliability method so 

that the second order reliability method can be applied to time-dependent reliability 

analysis for higher accuracy while maintaining high efficiency. The method employs 

sequential efficient global optimization to transform the time-dependent reliability 

analysis into the time-independent problem. The Hessian approximation and envelope 

theorem are used to obtain the second order information of the extreme limit-state 

function. Then the second order saddlepoint approximation is utilized to evaluate the 

reliability. The accuracy and efficiency of the proposed method are verified through 

numerical examples. 
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1. INTRODUCTION 

Reliability is the probability that a product performs its intended function under 

specified conditions over a period of time [1]. Higher reliability means a lower chance of 

failure. It is especially critical to maintain high reliability because failures may be costly 

and catastrophic. Predicting reliability during a design stage is therefore imperative for 

many products. 

For many engineering applications, reliability depends on time if the associated 

limit-state function involves time-dependent parameters, such as time-variant loads and 

the deterioration of material properties. For example, the wave loads on offshore 

structures are time-dependent since the typical wave heights and periods change  

randomly over time [2]; the material and dimensional properties of concrete structures 

vary with respect to time due to the time-dependent chloride corrosion damage [3, 4]; For 

kinematic mechanism, the motion error involves time-dependent input motion [5, 6]. 

Extensive research has been conducted on time-dependent reliability analysis. 

Existing time-dependent reliability methodologies can be roughly classified into three 

group. The first group is Rice’s formula based methods, whose key step is the 

computation of the upcrossing rate. For instance, a PHI2 method was developed to 

compute the time-variant reliability [7]. Hu and Du proposed a time-dependent reliability 

method for hydrokinetic turbine blades [8]. Besides, many other empirical modifications 

[5, 9-14] have also been made. This group has advantages over other groups for its 

efficiency. But it may produce large errors when upcrossings are strongly dependent. 

The second group includes simulation-based methods using surrogate models. 

Most of these methods build a surrogate model to replace the original limit-state function 
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by evaluating the response variable at a number of points predefined through Design of 

Experiment (DoE) [15-17]. Then Monte Carlo simulation (MCS) is performed based on 

the surrogate model. The methods include artificial neural networks (ANN) [18, 19], 

polynomial chaos expansions (PCE) [20, 21], and Gaussian process based method, also 

known as Kriging model based methods [22-26]. This group can evaluate the time-

dependent reliability accurately if the surrogate model is well trained. Nevertheless, this 

may result in a high computational cost. 

The third group contains the methods that convert time-dependent reliability 

analysis into the time-independent reliability analysis using the extreme value of the 

time-dependent limit-state function. If the distribution of the extreme value can be 

estimated accurately, the accuracy of this group is higher than the first group. The typical 

methods in this group are extreme value response method [22, 27], extreme value 

distribution method [28], composite limit-state function method [29], and the envelope 

function method [6].  However, it is often a challenging task to obtain the distribution of 

the extreme value accurately and efficiently. 

Motivated by the above challenges, we propose a new time-dependent method 

using sequential efficient global optimization (SEGO). The new method first converts the 

time-dependent problem into a time-independent counterpart by using the extreme value. 

Then the Hessian approximation and envelope theorem are employed to obtain the 

second order approximation to the extreme value. Finally the second order saddlepoint 

approximation (SOSPA) [30, 31] is utilized to estimate the distribution of the extreme 

value. The new method is termed as SEGO/SOSPA. It improves the accuracy by using 
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second order approximation to the extreme value of the limit-state function and maintains 

high efficiency by using SEGO. 

The reminder of this paper is organized as follows: Section 2 reviews the 

theoretical background of this work. Then the new SEGO/SOSPA method is discussed in 

Section 3 followed by three examples in Section 4. Conclusions are given in Section 5. 
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2. REVIEW OF FUNDAMENTAL METHODOLOGIES 

In this section, we briefly review the basic definition of time dependent reliability. 

We also discuss the commonly used first order reliability method (FORM). 

 

2.1. TIME-DEPENDENT RELIABILITY 

In this work, we consider a limit-state function given by 

 ( , )Y g t X   (1) 

where ( , )g tX  is explicit with respect to time t , 1[ ,..., ]NX XX  is a N-dimensional 

vector of random variables. 

For a given period of time [0, ]T , the reliability is defined by 

  [0, ] Pr ( , ) 0, [0, ]R T g t t T   X   (2) 

where   means “for all”. 

And the associated probability of failure is given by 

  Pr ( , ) 0, [0, ]fp g t t T   X   (3) 

where   means “there exists at least one”. 

 

2.2. FIRST ORDER RELIABILITY METHOD (FORM) 

FORM is the most commonly used method in time-dependent reliability analysis 

since it can convert the general non-Gaussian process into equivalent Gaussian process 

[32]. 

X  is transformed into standard normal variables U . Then the most probable 

point (MPP) MPPu  identified by the following model: 
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min

s.t. ( , ) ( ( ), ) 0

T

g t g T t




 

UU

X U
  (4) 

in which ( )T   is an operator of the transformation from U  to X . 

The limit-state function is linearized at MPPu  by 

 
1

( ( ), ) ( , ) ( ) ( , )( )

MPP

N

MPP i iMPP MPP MPP

i i

g
g T t g t U u g t

U 


    




U u

U u u U u   (5) 

where 
1

( , ) ,...,

MPP MPP

T

MPP

N

g g
g t

U U
 

  
  
   U u U u

u  is the gradient vector. 

Finally, the probability of failure can be estimated by 

 

 

1

Pr ( , ) 0, [0, ]

Pr ( , ) ( ) 0, [0, ]

Pr{ ( ) ( ) 0, [0, ]}

MPP

f

N

MPP i iMPP

i i

p g t t T

g
g t U u t T

U

t t t T

 

   

  
      

  

    


U u

X

u

α U

  (6) 

in which ( )t  is the time-dependent reliability index 

 ( ) MPPt  u   (7) 

and ( )tα  is the time-dependent unit gradient vector 

  1 2

( , )
( ) ( ), ( ),..., ( )

( , )

MPP
N

MPP

g t
t t t t

g t
  


 


u
α

u
  (8) 

As Eq. (6) shows, the non-Gaussian process ( , )g tX has been transformed into an 

equivalent Gaussian process represented as a sum of standard normal random variables. 

A common method is to build the surrogate models of ( )t  and ( )tα  with respect to t , 

and then use MCS to estimate the probability of failure. However, it might be 

computational expensive to build accurate surrogate models. 
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3. SEGO/SOSPA 

The objective of this study is to improve the accuracy of the time-dependent 

reliability analysis by employing the second-order approximation. The central idea is to 

convert the time-dependent problem into a time-independent problem using sequential 

efficient global optimization (SEGO). The second order approximation is obtained by 

using the Hessian approximation and envelope theorem. Then the time-independent 

problem is solved with the second-order saddlepoint approximation (SOSPA) [30]. 

 

3.1. OVERVIEW 

The time-dependent probability of failure can be evaluated through the extreme 

value of the limit-state function, expressed by [27] 

 

 

 
[0, ]

(0, ) Pr ( , ) 0, [0, ]

Pr min ( , ) 0

f

t T

p T g t t T

g t


   

 

X

X
  (9) 

The extreme limit-state function, also known as the envelope function [6], or the 

composite limit-state function [29], 
[0, ]

min ( , )
t T

g t


X  is obtained by 

 
[0, ]

( ) min ( , ) ( , ( ))
t T

G g t g t


 X X X X   (10) 

where ( )G X is global minimal value of ( , )g tX  with respect to time t .  ( )G X  is time 

independent and only depends on X . Let t  be the time instant when the global minimal 

value occurs. t  is a function of X . 

  
[0, ]

min ( , )
t T

t t g t


 X   (11) 

Now the Eq. (9) can be converted into time-independent problem 
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(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

fp T g t t T

G

   

 

X

X
  (12) 

Then a time-independent reliability method can be applied after the conversion. In 

this work, we assume that ( )G X  exists and is continuously differentiable. 

 

3.2. SEGO 

3.2.1. Sequential Optimization. It is very difficult to analytically obtain the 

extreme limit-state function ( )G X . So FORM is generally used to approximate ( )G X , 

and the MPP of ( )G X  is found using the following formulas 

 

[0, ]

min

s.t. ( ( )) min ( ( ), ) 0

T

t T
G T g T t







 

UU

U U
  (13) 

Eq. (13) is formulated as a double loop structure. The inner loop is the global 

optimization with respect to time t , while the outer loop is the MPP search with respect 

to U . The computational cost of the double loop optimization is very high. 

Inspired by sequential optimization and reliability assessment (SORA) [33], we 

use sequential strategy to decouple the global optimization from the MPP search and 

performs the two loops sequentially. In the first cycle, FORM is used to locate the MPP 

(1)

MPPu  at the initial time 0t . 

 

0

min

s.t. ( ( ), ) 0

T

g T t






UU

U
  (14) 

After the MPP search, the global optimization is performed by fixing U  at the 

(1)

MPPu , and optimal time is obtained as 
(1)

t .  
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(1) (1)

[0, ]

arg min ( ( ), )MPP
t T

t g T t


 u   (15) 

In the second cycle, the new MPP (2)

MPPu  is located at the time instant 
(1)

t  using 

Eq. (14). And then the optimal time is updated to 
(2)

t  by performing global optimization 

at (2)

MPPu . 

 
(2) (2)

[0, ]

arg min ( ( ), )MPP
t T

t g T t


 u   (16) 

Finally, the process is repeated cycle by cycle until convergence. The global 

optimization is discussed in Section 3.2.2. 

The flowchart of the above procedure is illustrated in Figure 1. 

 

 

Figure 1.  Flowchart of sequential optimization 
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3.2.2. Efficient Global Optimization (EGO). The global optimization method 

used in this study is the efficient global optimization (EGO) [22, 27, 34]. EGO has been 

widely used in various areas [35, 36] because it can search for the global optimum with 

high computational efficiency. In this work, we search for a time instant where 

( ( ), )MPPY g T t u  is minimized. Recall that 
MPPu  is fixed during the optimization 

process, and then ( ( ), )MPPg T tu  is one-dimensional function. We denote this function as 

( )g t ; namely, ( ) ( ( ), )MPPg t g T t u . 

 ( ) ( ( ), ) ( ) ( )T

MPPy g t g T t t Z t  u F γ +   (17) 

where ( )TtF γ  is a deterministic term, ( )tF  is a vector of regression functions, γ  is a 

vector of regression coefficients, and ( )Z t  is a stationary Gaussian process with zero 

mean and a covariance given by 

 2

1 2 1 2Cov[ ( ), ( )] ( , )ZZ t Z t R t t   (18) 

in which 2

Z  is process variance, and ( , )R   is the correlation function. 

The output of the surrogate model is a Gaussian random variable following 

  2( ) ~ ( ), ( )y g t N t t    (19) 

where ( )t  and ( )t  are the mean and standard deviation of y . If t  is a training point, 

( ) ( )t g t   and ( ) 0t  . This means that the surrogate model is exact at a point where 

the model is trained. 

After building the initial model, the expected improvement (EI) metric is used to 

identify the new training point with the highest probability to produce a better extreme 

value of the response. The improvement is defined by 
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 *max( ,0)I y y    (20) 

where *

1,2,...,
min ( )i

i k
y g t


  is the current minimum response obtained from the sampled 

training points. 

Thus its expectation or EI is computed by [34] 

 
 

*

* *
*

EI( ) [max( ,0)]

( ) ( )
( ) ( )

( ) ( )

t E y y

y t y t
y t t

t t

 
  

 

 

    
      

   

  (21) 

in which ( )   and ( )   are the cumulative distribution function (CDF) and probability 

density function (PDF) of a standard normal variable, respectively. 

The new training point 1kt   is identified as the time maximizes the expected 

improvement. 

 1 arg max EI( )k
t

t t    (22) 

The procedure of EGO is described in Table 1. More details can be found in Ref. 

[34]. 

 

Table 1.  Algorithms of EGO 

Steps  Procedure 

1 
Generate  initial training point 

1 2[ , ,..., ]s

kt t tt  and compute the response of 

limit-state function 
1 2[ ( ), ( ), , ( )]s

kg t g t g ty  

2 Construct a Kriging model ( )y g t  using  ,s s
t y  

3 Find the global minimum 
*

1,2,...,
min ( )i

i k
y g t


  

4 Search for 1 arg max EI( )k
t

t t  , where EI( )t  is computed by Eq. (21) 

5 
Compare max EI( )

t
t  with EI : if EImax EI( )

t
t  , stop and give the final 

optimum *y  and 
*t ; Otherwise, go to next step 

6 Update 
1[ , ( )]s s

kg t y y  and 
1[ , ]s s

kt t t , and repeat steps 2-5 
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In this work, the convergence criterion of EGO EI  is choses as *

EI 2%y   . 

By combining sequential strategy with EGO, the MPP 
*

u of extreme limit-state 

function  G X  can be obtained efficiently by solving Eq. (13). If FORM is used, the 

probability of failure can be estimated by  

 

 

 
*

(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

( )

f

F

p T g t t T

G



   

 

  

X

X   (23) 

where  * *

F  u  is the first order reliability index of extreme limit-state function.  

Since the above method uses FORM and SEGO, we denote this method as 

SEGO/FORM. In general, the extreme limit-state function can be highly nonlinear and 

SEGO/FORM may not be accurate enough. In Section 3.3, we discuss how to develop a 

second-order approximation method. This method uses the Hessian approximation and 

envelope theorem to obtain the second order information of the extreme limit-state 

function. Then SOSPA is used to estimate the probability of failure. 

 

3.3. HESSIAN APPROXIMATION AND ENVELOP THEOREM 

The second-order approximation requires the Hessian matrix. But it is challenging 

to calculate the Hessian because it consists of second derivatives of the extreme limit-

state function with respect to random input variables X . Hence a quasi-Newton approach 

[37, 38] is introduced in this work to approximate the Hessian matrix. This Hessian 

approximation method can take advantage of the MPP search information in SEGO, 

leading to high efficiency. 
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The Hessian matrix is updated using the following formulas [38] 

 
( ) ( ) ( ) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )

( )( )

( )

k k k k k k T
k k

k k k T k

  
 



r H s r H s
H H

r H s s
  (24) 

where 

 

( ) ( 1) ( )

( ) ( 1) ( )

k k k

MPP MPP

k k kG G





  


  

s u u

r
  (25) 

in which ( )k

MPPu  represents the MPP at current step k  used in the SEGO, 

( ) ( ) ( )

1 ,...,
T

k k k

nG G U G U         is the gradient vector of the extreme limit-state 

function, and 
( )k

s  and ( )k
r  are the variation of the MPP and the gradient between two 

successive iterations, respectively.  

The approximated Hessian is expected to converge to the true Hessian as the MPP 

reaches the true MPP. However, SEGO does not provide the gradient information of the 

extreme limit-state function, and the extra computational effort is needed. In this case, the 

finite difference method is used. 

 
min ( , ) min ( , )( ) ( ) i i i

i i i t t

i i i

g u u t g u tG u u G uG

U u u

  
 

  
  (26) 

As Eq. (26) shows, min ( , )i i
t

g u u t  needs additional global optimization at 

i iu u . Directly using finite difference method will increase N  times of global 

optimization at each iteration in order to obtain the gradient. This is very computationally 

expensive. 

To reduce to computational cost, we use the envelope theorem, which is a widely 

used method in economic optimization field [39, 40]. The envelope theorem can connect 
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the derivative of extreme limit-state function with the derivative of original limit-state 

function. 

    
( )

, ( ) ( , )
i i i t t

G g t g t
U U U



  
 

  
U

U U U U   (27) 

Eq. (27) indicates that the gradient of the extreme limit-state function at U  equals 

to the gradient of original limit-state function at time instant ( )t t U .  

And Eq. (26) becomes 

 

( )

( ) ( ) ( , ) ( , )i i i i i i

i i i t t

G u u G u g u u t g u tG

U u u


   
 

  
u

  (28) 

Then only N  function calls are required in each iteration by using the envelope 

theorem. This makes the method more efficient. 

Combining Eqs. (24) and (28) yields the gradient G  and Hessian matrix H  of 

the extreme limit-state function. Then the second order reliability method can be used. 

 

3.4. SOSPA 

Once the MPP 
*

u , gradient G , and Hessian matrix H  of the extreme limit-state 

function are available, the second approximation to the extreme limit-stat function is 

formulated as 

 ( ) T TG a  U b U U CU   (29) 

where 
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 * * * *

* *

1
( )

2

( )

1

2

T
Ta G

G


 


  


 


u Hu u u

b u Hu

C H

  (30) 

Then SOSPA [32, 44] is employed to estimate the probability of failure, and it is 

considered in general to be more accurate than the traditional SORM methods such as 

Breitung’s [45] and Tvedt’s methods [46].  

After the extreme limit-state function is approximated in Eq. (29), we can obtain 

the cumulant generating function (CGF). 

 
1

* 21 1
( ) log(1 2 )

2 2

n

F i

i

K t t t tk


       (31) 

The derivatives of CGF are 

 
1

*

1

( )
1 2

n
i

F

i i

k
K t t

tk






    


   (32) 
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   (33) 

The saddlepoint st  is obtained by solving the following equation: 

 
1

*

1

( ) 0
1 2

n
i

F

i i

k
K t t

tk






     


   (34) 

Then the probability of failure is evaluated by 

 

 

 

(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

1 1
( ) ( )( )

fp T g t t T

G

w w
w




   

 

   

X

X   (35) 

where 
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1/2

sgn( ) 2 ( )s sw t K t    (36) 

  
1/2

( )s st K t    (37) 

in which sgn( ) 1, 1 or 0st    , depending on whether st  is positive, negative, or zero. 

Saddlepoint approximation has several excellent features. It yields an extremely 

accurate probability estimation, especially in the tail area of a distribution [43-46]. More 

details can be found in Ref. [30]. 

 

3.5. SEGO/SOSPA PROCEDURE 

The detailed steps of SEGO/SOSPA are summarized below. 

Step 1: Set 1k  . Use the initial time instant as the initial critical time 
 0

0t t  

and use unit vector as the initial MPP (1)

0MPP u u   

Step 2: Perform MPP search at time instant 
( 1)k

t


 and obtain MPP ( )k

MPPu  by 

solving the following formulas 

 
( 1)

min

s.t. ( ( ), ) 0

T

k

g T t




 

UU

U

  (38) 

Step 3: Implement efficient global optimization by fixing U  at ( )k

MPPu . The critical 

time 
( )k

t  that minimizes the limit-state function is found and the corresponding minimum 

value ( )

min

kg  is also obtained. 

Step 4: Perform Hessian approximation by using quasi-Newton approach with Eq. 

(24) and envelope theorem with Eq. (28) 

Step 5: Check convergence. The convergence criterion is defined as 
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 ( )

min

k

tolg     (39) 

If tol  , terminate the iteration, and  ( ) ( ) ( ), ,k k k

MPP Gu H  is the output. 

Otherwise, set 1k k   and return to step 2. 

Step 6: Calculate the 
fp  using SOSPA based on the information 

 ( ) ( ) ( ), ,k k k

MPP Gu H . 

The flowchart of overall procedure of SEGO/SOSPA is shown in Figure 2. 

 

 

Figure 2.  Flowchart of SEGO/SOSPA 
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4. EXAMPLES 

In this section, three examples are used to test SEGO/SOSPA. To show its 

benefits, we compare it with SEGO using FORM, denoted as SEGO/FORM. The 

accuracy is evaluated by the relative error with respect to the result from MCS with a 

large sample size. The relative error is defined as 

 
,MCS

, MCS

% 100%
f f

f

p p

p



    (40) 

where 
fp  is the result from SEGO/FORM or SEGO/SOSPA. We also use the number of 

function calls as a measure of efficiency. 

 

4.1. EXAMPLE 1: MATHEMATICAL PROBLEM 

A mathematical example modified from [27] is used as the first example, which 

has two independent normal random variables. The limit-state function is given by 

  2 2

1 2 1 2( , ) 5 1 9g t X X X t X t    X   (41) 

where t  varies within [0,5] , 1 2[ , ]X XX  with 2

1 ~ (3.5, 0.3 )X N  and 2

2 ~ (3.5, 0.3 )X N .  

Figure 3 shows the extreme failure surface formed by the instantaneous limit-state 

surfaces at different discretized instants within the interval [0,5] . The extreme limit-state 

function has a parabolic curve. 

The extreme failure surface is confirmed by the one from an analytical equation 

obtained by solving 0
g

t





, leading to 

 
2

2 1
1 2

2

25
( ) 9

4( 1)

X
G X X

X
  


X   (42) 
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The contour of the analytical extreme limit-state function is plotted in Figure 4, 

where the grey region represents the failure domain. 

 

 

Figure 3.  Extreme limit-state surface formed by instantaneous limit-state surfaces 

 

 

Figure 4.  Extreme limit-state surface 
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Table 2.  Iteration history of MPP search for Example 1 

Iterations  MPPu     ming   t   

1 (-5.8805, -1.7106) -4.1627 1.4636 

2 (-2.1135, -2.7084) -0.8475 1.9414 

3 (-1.4111, -2.8275) -0.0997 2.1070 

4 (-1.2110, -2.8875) -0.0095 2.1594 

5 (-1.1504, -1.1314) 48.1489 10   2.1760 

6 (-1.1314, -2.9165) 43.3407 10  2.1824 

 

SEGO is used to find the MPP of the extreme limit-sate function. The iteration 

history of the MPP search is shown in Table 2.  Figure 5 displays the convergence history 

of first order reliability index F . The MPP obtained from SEGO algorithm quickly 

converges to (-1.1314, -2.9165). It is close to the true MPP at (-1.1290, -2.9174), which is 

directly obtained from the extreme limit-state function Eq. (42).  

 

 

Figure 5. Convergence history of Example 1 
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After SEGO, FORM and SOSPA are used. For MCS, 
610  samples are drawn for 

input random variables X , and the time variable t  is discretized evenly into 100 time 

instants within interval [0,5] . The results are shown in Table 3. And they indicate that 

SEGO/FORM produces a large error of 18.5%   due to the nonlinearity of the extreme 

limit-state function. SEGO/SOSPA achieves a more accurate result with an error of 

2.47%  . With respect to SEGO/FROM, SEGO/SOSPA requires additional 

computations which equal to the multiplication of number of iteration k  and number of 

input random variables N , i.e. 6 2 12kN    . SEGO/SOSPA has much higher accuracy 

with slightly decreased efficiency. 

 

Table 3.  Results of Example 1 

Methods fp   %   Absolute Error 
Number of 

Function Calls 

SEGO/SOSPA 31.0524 10  2.47% 52.66 10  124 

SEGO/FORM 48.7918 10   18.5% 41.998 10  112 

MCS 31.0790 10  - - 810   

 

4.2. EXAMPLE 2: AUTOMOBILE FRONT AXLE 

An automobile front axle beam [47] is subjected to a torque T  and a bending 

moment 0(0.1sin(0.25 ) 0.9) N mmM M t    in which [0,12]t . The limit-state 

function is given by 

 

22

2 2( , ) 3 3y y

x

M T
g t S S

W W

 
  

          
   

X   (43) 
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in which 
yS  is the yield strength,    and    are the maximum normal stress and shear 

stress respectively, and 
xW  and W  are section factor and polar section factor given by 

 

3
3 3( 2 )

( 2 )
6 6

x

a h c b
W h h c

h h


        (44) 

 

3
2 0.4 ( 2 )

0.8
a h c

W bc
c




    (45) 

where , ,a b c  and h  are dimension variables of the I-beam. All the parameters are 

independent and are listed in Table 4. 

 

Table 4.  Distribution of parameters for axle beam example 

Variable (Unit) Distribution Mean Standard Deviation 

(mm)a  Normal 12 0.6 

(mm)b  Normal 65 3.25 

(mm)c  Normal 14 0.7 

(mm)h  Normal 85 4.25 

0 (N mm)M   Normal 67 10  57 10  

0 (N mm)T   Normal 63.1 10  53 10  

(MPa)yS  Deterministic 610 - 

 

610  samples are used for MCS and t  is discretized into 100 time instants within 

interval [0,12] . Results are given in Table 5. Even though SEGO/FORM is more 

efficient than SEGO /SOSPA, it produces a relatively large error. SEGO/SOSPA is more 

accurate with only 18 additional function calls compared to SEGO/FORM.  

 



 

 

138 

Table 5.  Results of Example 2 

Methods fp   %   Absolute Error 
Number of 

Function Calls 

SEGO/SOSPA 34.3800 10  0.37% 51.60 10  176 

SEGO/FORM 34.1899 10   4.69% 42.061 10  158 

MCS 34.3960 10  - - 810   

 

4.3. EXAMPLE 3: A VIBRATION PROBLEM 

This example involves a forced vibration system modified from [22, 48]. There 

are five random variables, including the stiffness of spring 
1k , the mass 

1m , the stiffness 

of the spring 
2k , the mass 

2m , and the damping coefficient 
2c . All the random variables 

are independent and are listed in the Table 6. 

 

Table 6.  Distribution of parameters for vibration example 

Variable (Unit) Distribution Mean Standard Deviation 

1 (N/ m)k  Normal 63 10  51 10  

1 (kg)m  Normal 42 10  22 10  

2 (N/ m)k  Normal 48.5 10  32 10  

2 (kg)m  Normal 480 5 

2 (Ns/ m)c  Normal 63.5 10  57.5 10  

 

The mass 
1m  in the main system is subjected to a sinusoidal force 

0 sin( )f t  and 

the amplitude is given by 

 
 

     

1/2
2

2 2 2

2 2 2

1, max 0 22
2 2 2 2 2 2 2

2 1 1 2 2 2 1 1 2 2

c k m
q f

c k m m k m k m k m

 
    

 
            
 

  (46) 
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Eq. (46) may be non-dimensionalised using a “static” deflection of main system, 

and the non-dimensional displacement of mass 
1m  is obtained as 

   
 

     

1/2
2

2 2 2

2 2 21, max

1 22
2 2 2 2 2 2 2

0 1
2 1 1 2 2 2 1 1 2 2

/

c k mq
k

f k c k m m k m k m k m


 
     

 
            
 

 (47) 

where   is the displacement and is considered over a wide excitation frequency band 

12 30 (rad/ s) .   is the excitation frequency and is treated as the time variable t  

within interval [12, 30] rad/ s . A failure occurs when the displacement   is larger than 

30. The probability of failure is given by 

   Pr , 30 0, [12,30]fp g      X   (48) 

where  1 1 2 2 2, , , ,k m k m cX . 

SEGO/FORM and SEGO/SOSPA are used to calculate the probability of failure. 

For MCS, 
610  samples are used and the time variable   is discretized evenly into 500 

instants within the interval [12,30] . Table 7 shows the results from different methods. 

The results indicate that SEGO/SOSPA achieves a higher accuracy than SEGO/FORM 

while it needs 20 additional function calls.  

 

Table 7.  Results of Example 3 

Methods fp   %   Absolute Error 
Number of 

Function Calls 

SEGO/SOSPA 27.8284 10  2.48% 31.988 10  465 

SEGO/FORM 28.8295 10   9.99% 38.023 10  445 

MCS 28.0272 10  - - 85 10   
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5. CONCLUSIONS 

A new time-dependent reliability method, sequential efficient global 

optimization/second order saddlepoint approximation, is proposed for limit-state 

functions which are explicit with respect to time. This new method employs sequential 

efficient global optimization (SEGO) to convert a time-dependent problem into a time-

independent counterpart where the most probable point (MPP) of the extreme limit-state 

function is obtained. Then a quasi-Newton approach and the envelope theorem are 

introduced to approximate the Hessian matrix of the extreme limit-state function. Finally 

the second order saddplepoint approximation (SOSPA) is used to evaluate the probability 

of failure. 

The new method improves the accuracy of time-dependent reliability analysis 

with a reasonably increased computational effort. It is generally more accurate than the 

SEGO with first order reliability method (FORM) due to the second-order approximation 

to the extreme limit-state function. Therefore the new method can be applied to the 

problems in which extreme limit-state functions are not close to linear. The new method, 

however, is less efficient than first order approximation method because it requires 

second derivatives of extreme limit-state function. But the increase in the computational 

cost is minimized by the Hessian approximation method and envelope theorem, which 

make the new method more efficient than the direct second-order approximation. 

Our future work includes applying the proposed method into time-dependent 

reliability-based design and extending the idea to more general limit-state functions. 
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SECTION 

2. CONCLUSIONS 

The objective of this research is to develop accurate and efficient reliability 

methodologies under time-independent uncertainty and then extend them into time-

dependent reliability analysis. To achieve this objective, four saddlepoint approximation 

(SPA) based methods have been developed. 

The first method investigates the applicability of mean value saddlepoint 

approximation (MVSPA) and first order saddlepoint approximation (FOSPA) for the 

reliability problems where the bimodal distributions are involved. The second method 

approximates a limit-state function with the second-order Taylor expansion and obtains 

its cumulant generating function (CGF). Then SPA is used to predict the probability of 

failure with high accuracy. The third method introduces the second method into 

reliability-based design (RBD). The new method improves the accuracy of reliability 

estimation by replacing FORM with the second order SPA and maintains high efficiency 

by developing an algorithm to search for the equivalent reliability index. The fourth 

method is an extension of second method to time-dependent reliability analysis. The 

time-dependent problem is converted into a time-independent counterpart by using the 

extreme value of the limit-state function. A sequential efficient global optimization is 

developed for the first order approximation to the extreme value of the time-dependent 

limit-state function. Then Hessian approximation and envelope theorem are employed to 

obtain the second order approximation. Finally the second order SPA is used to estimate 

the reliability. Based on the above studies, the following conclusions are drawn. 
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(1) The widely used first order second moment method (FOSM) and first order 

reliability method (FORM) may produce large errors for reliability problems with 

bimodal distributions. 

(2) The SPA based methods can estimate the reliability accurately when bimodal 

distributions are involved. 

(3) The second order saddlepoint approximation (SOSPA) is in general more 

accurate than the traditional second order reliability method (SORM). 

(4) Using SOSPA for RBD can produce better optimal designs because of higher 

reliability accuracy. 

(5) Sequential efficient global optimization with SOSPA is able to convert a time-

dependent reliability problem into a time-independent problem and achieves higher 

accuracy over FORM. 

Our future work includes the improvement of developed methodologies and their 

applications into the most general space- and time-dependent problems. Another work is 

to incorporate the methods into product design and lifecycle management of engineering 

systems. 
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