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ABSTRACT 

Driven micro-cavities embedded in the wall beneath turbulent supersonic 

boundary layers are analyzed using two-dimensional computational fluid dynamics. This 

concept is a passive flow control technique in which very small cavities formed by arrays 

of thin vertical walls are oriented transverse to the flow direction and underlie the 

boundary layer. The purpose is to reduce or eliminate skin friction drag. Various micro-

cavity configurations were analyzed at locations (0.1 m and 1 m) downstream of the 

leading edges of flat plates, for free-stream Mach numbers of 1.2, 2.0, and 3.0. Results 

focus on net drag reduction achieved, cavity flow-field effects, perforation effects in 

vertical cavity walls, cavity scale effects, mesh refinement issues, and the stability of the 

solutions.  

Skin friction drag was eliminated over micro-cavity regions for all configurations 

tested. Drag in these regions was due to pressure effects on vertical walls and exhibited a 

linear increase with downstream distance. Drag reductions as high as 18-20% (compared 

to a reference flat plate section) were obtained for 52-cavity geometries at Mach 2.0 and 

Mach 3.0 downstream of the 10 cm and 1 m flat plates, respectively. Perforation of the 

cavity walls showed no effect on net drag reduction for these cases. Stability issues were 

observed when using a fine grid mesh for the Mach 2.0 case, with significant oscillations 

seen in the drag. A parametric investigation in which cavity scale, number, and wall 

configuration were varied was also performed for two free-stream Mach numbers of 1.2 

and 3.0. Drag reductions between 18-40% were seen for these cases. It is shown that drag 

reduction was reduced with increasing cavity length and that the steadiness of the 

solution increases with the number of vertical cavity walls present.  



 

 

iv

ACKNOWLEDGMENTS 

The author would like to thank Dr. David Riggins for his invaluable guidance, 

expertise, and above all, patience in the completion of this work. Without his constant 

support and scheduling accommodations, timely completion of this work would not have 

been possible. The author’s gratitude for Dr. Riggins’ continued advice and friendship 

cannot be overstated. Further thanks go to Dr. Serhat Hosder and Dr. James Drallmeier 

for their contributions to the author’s educational experience at both the graduate and 

undergraduate level and for serving on the committee to review this material. 

Thank you to the Missouri University of Science and Technology Department of 

Mechanical and Aerospace Engineering for its financial support through the Graduate 

Teaching Assistantship. 

Finally, thank you to my family and friends for their unwavering encouragement 

and support throughout this experience. 

 



 

 

v

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... iii 

ACKNOWLEDGMENTS ................................................................................................. iv 

LIST OF ILLUSTRATIONS ............................................................................................ vii 

LIST OF TABLES ............................................................................................................ xii 

NOMENCLATURE ........................................................................................................ xiii 

SECTION 

1. INTRODUCTION ...................................................................................................... 1 

1.1. CONCEPT MOTIVATION ................................................................................ 1 

1.2. THESIS OUTLINE ............................................................................................. 5 

1.3. LITERATURE REVIEW ................................................................................... 6 

1.4. SCOPE OF PRESENT WORK ........................................................................ 13 

2. CFD TOOLS, METHODOLOGY, AND PROFILE DEVELOPMENT ................. 14 

2.1. VULCAN CFD CODE ..................................................................................... 14 

2.2. UPSTREAM TURBULENT BOUNDARY LAYER GENERATION ............ 17 

2.3. MICRO-CAVITY REGION GEOMETRY AND 

 BOUNDARY CONDITIONS .......................................................................... 21 

2.4. GRID AND MESH SIZING ............................................................................. 26 

3. 52-CAVITY REGION SMALL WIDTH BASELINE GRID RESULTS ............... 28 

3.1. GATED CAVITY REGION ............................................................................. 29 

3.2. UNGATED CAVITY REGION ....................................................................... 37 

3.3. UNPERFORATED CAVITY REGION ........................................................... 42 

3.4. COMPARISON TO FLAT PLATE RESULTS ............................................... 46 

3.5. REDUCED MACH NUMBER RESULTS ...................................................... 48 

4. 208-CAVITY SMALL WIDTH BASELINE GRID RESULTS ............................. 54 

5. FINE GRID CASE STUDY ..................................................................................... 63 

5.1. GATED FINE GRID RESULTS ...................................................................... 63 

5.2. UNPERFORATED FINE GRID RESULTS .................................................... 70 

6. CAVITY SPACING, SIZING, AND GRID REFINEMENT STUDY.................... 73 



 

 

vi

6.1. MACH 1.2 MEDIUM CAVITY WIDTH ........................................................ 73 

6.2. MACH 1.2 SMALL CAVITY WIDTH............................................................ 81 

6.3. MACH 3.0 MEDIUM CAVITY WIDTH ........................................................ 85 

7. SUMMARY AND CONCLUSIONS ....................................................................... 89 

APPENDICES 

 A. SAMPLE VULCAN INPUT DECK ....................................................................... 93 

 B. FORTRAN DRAG FORCE DECOMPOSITION 

      POST PROCESSING CODE ................................................................................ 105 

BIBLIOGRAPHY ........................................................................................................... 108 

VITA  .............................................................................................................................. 110 

 

 

 

 

 

 

 

 

 

 

 



 

 

vii

LIST OF ILLUSTRATIONS 

Figure               Page 

 1.1.   Driven Micro-Cavity Section Side View (Left) and 
  Oblique View (Right) of a 3-D Cavity Channel .................................................. 2 

 

 1.2.   Schematic of Pressure Drag Generation on Vertical Cavity Walls ..................... 3 

  

 1.3.   Schematic Showing Potential Effects of Perforating Cavity Walls ..................... 5 

 

 1.4.   Riblets Geometry Aligned in the Direction of the Flow ...................................... 8 

 

 1.5.   Finite-Thickness Porous Cavity Blocks ............................................................... 9 

 

 1.6.   Flat Plate with Holes in Flow Direction ............................................................ 10 

 

 1.7.   Embedded Hexagonal Shaped Cavities ............................................................. 10 

 

 1.8.   Boundary Layer Flow Over an Embedded Cavity in Transverse 
  Orientation to the Incoming Flow ...................................................................... 11 

 

 1.9.   Schematic of Velocity Profile with Reversal in Flow at the Bottom of the 
  Embedded Cavity ............................................................................................... 12 

 

 2.1.   Multi-Block Configuration for L = 0.1 m Initial Upstream Flat 
  Plate Profile ........................................................................................................ 18 

 

 2.2.   Multi-Block Configuration for L = 1.0 m Initial Upstream Flat 
  Plate Profile ........................................................................................................ 19 

 

 2.3.  Mach Contours for Initial Upstream Flat Plate Flow Profile US1..................... 20 

 

 2.4.   General Geometry for Driven Micro-Cavity Test Cases ................................... 22 



 

 

viii  

 2.5.  Multi-Block Layout for 52-Cavity Geometry .................................................... 23 

 

 2.6.  Boundary Conditions for the Micro-Cavity Test Geometry .............................. 24 

 

 2.7.   Detailed View of Perforated Cavity Wall Geometry and Boundary 
  Conditions .......................................................................................................... 25 

 

 2.8.   Detailed View of Unperforated Cavity Wall Geometry and Boundary 
  Conditions .......................................................................................................... 26 

 

 3.1.  Mach Number Contours from VULCAN with Incoming Flow 
  Over the 52-Cavity Small Width Region ........................................................... 29 

 

 3.2.   Drag Time History Plot for the Gated 52-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 30 

 

 3.3.   Pressure Contours for the Gated 52-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 31 

 

 3.4.  U-Velocity Contours and Flow Streamtraces for the Gated 52-Cavity 
  Region from the Start of the Cavity Region to the First Gate ........................... 33 

 

 3.5.   U-velocity Contours and Flow Streamtraces Indicate Both Reversed 
  and Non-Reversed Flow Near the First Gate ..................................................... 34 

 

 3.6.   Breakdown of the Contributions of Skin Friction and Pressure Forces 

  to Total Drag Over the Entire 52-Cavity Small Width Mach 2 Test Case ........ 35 

 

 3.7.  Drag Time History Plot for the Ungated 52-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 37 

 

 3.8.   Pressure Contours for the Ungated 52-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 39 

 



 

 

ix

 3.9.   U-Velocity Contours and Flow Streamtraces for the Ungated 52-Cavity 
  Small Width Mach 2 Test Case ......................................................................... 40 

 

 3.10.   Breakdown of the Contributions of Skin Friction and Pressure Forces to 

  Total Drag Over the Ungated 52-Cavity Small Width Mach 2 Test Case ......... 41 

 

 3.11.  Drag Time History Plot for the Unperforated 52-Cavity Small Width 
  Mach 2 Test Case ............................................................................................... 42 

 

 3.12.   Pressure Contours for the Unperforated 52-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 43 

 

 3.13.  U-Velocity Contours and Flow Streamtraces for the Unperforated 

  52-Cavity Small Width Mach 2 Test Case ........................................................ 44 

 

 3.14.   Breakdown of the Contributions of Skin Friction and Pressure Forces to 

  Total Drag Over the Unperforated 52-Cavity Small Width Test Case .............. 45 

 

 3.15.  Drag Time History Plot for the Gated 52-Cavity Small Width Mach 1.2 
  Test Case ............................................................................................................ 49 

 

 3.16.   Drag Time History Plot for the Ungated 52-Cavity Small Width Mach 1.2 
  Test Case ............................................................................................................ 49 

 

 3.17.  Breakdown of the Contributions of Skin Friction and Pressure Forces to 

  Total Drag Over the Gated 52-Cavity Small Width Mach 1.2 Test Case .......... 51 

 

 3.18.   Breakdown of the Contributions of Skin Friction and Pressure Forces to 
  Total Drag Over the Ungated 52-Cavity Small Width Mach 1.2 Test Case ...... 51 

 

 4.1.   Mach Number Contours from VULCAN Showing the Incoming Flow 
  Over the 208-Cavity Small Width Mach 2 Test Case........................................ 55 

 

 4.2.  Drag Time History Plot for the Gated 208-Cavity Mach 2 Test Case ............... 56 

 



 

 

x

 4.3.   Pressure Contours for the Gated 208-Cavity Small Width Mach 2 
  Test Case ............................................................................................................ 57 

 

 4.4.   Pressure Contours for the Gated 208-Cavity Small Width Case 
  Enlarged for Detail at the End of the Cavity Region ......................................... 58 

 

 4.5.   U-Velocity Contours and Flow Streamtraces Indicating Reversed 
  Flow in the Cavities Bounded by the First Gate ................................................ 59 

 

 4.6.   U-Velocity Contours and Flow Streamtraces Indicating Both Reversed 
  and Non-Reversed Flow Near the Second Gate ................................................ 60 

 

 4.7.   Breakdown of the Contributions of Skin Friction and Pressure Forces to 
  Total Drag Over the Gated 208-Cavity Small Width Mach 2 Test Case ........... 61 

 

 5.1.   Time History Plot (Top) for the Gated 52-Cavity Small Width Mach 2 

  Test Case Using the 41 X 41 Node Fine Grid, Zoomed for Detail (Bottom) .... 65 

 

 5.2.   Pressure Contours for the Gated 52-Cavity Small Width Geometry Using 
  the 41 x 41 Node Fine Grid (Top) and Enhanced View (Bottom) Over the 
  Region Between Gates ....................................................................................... 67 

  

 5.3.   U-Velocity Contours of the Fine Grid Gated 52-Cavity 

  Small Width Mach 2 Test Case ......................................................................... 69 

 

 5.4.   Time History Plot (Top) for Unperforated 52-Cavity Small Width Mach 2 

  Test Case Using the 41 x 41 Node Fine Grid, Zoomed for Detail (Bottom) ..... 71 

 

 6.1.   Micro-Cavity Region Geometry for Medium Cavity Width Test Case ............. 74 

 

 6.2.   Mesh Sequenced Drag Time History Plot for Test Cases R1 and R2 ............... 76 

 

 6.3.   Reference-to-Test Drag Value Comparison for Test Cases R1-R5 ................... 78 

 

 6.4.   Overall Percentage of Drag Reduction for Cases R1-R5 ................................... 79 



 

 

xi

 6.5.   Mesh-Sequenced Time History Plot for 8-Cavity Configuration ...................... 80 

 

 6.6.   Level of Steadiness for All Mach 1.2 Medium Cavity Width Cases ................. 81 

 

 6.7.   Micro-Cavity Region Geometry for Small Cavity Width Test Case ................. 82 

 

 6.8.   Case S1 Drag Time History Plot ........................................................................ 83 

 

 6.9.   Case S2 Drag Time History Plot ........................................................................ 84 

 

 6.10.   Overall Percentage of Drag Reduction for Cases T1-T8 ................................... 88 

 



 

 

xii

LIST OF TABLES 

Table               Page 

2.1.  Upstream Flat Plate Case Configurations .......................................................... 17 

 

2.2.  Boundary Layer Thicknesses and Local Skin Friction Coefficients ................. 20 

 

2.3.  Summary of Grid Sizes and Mesh for Micro-Cavity 

  Test Cases/Small Width Cavity Cases ............................................................... 27 

 

3.1.  52-Cavity Small Width Region Drag Comparison of Baseline Grid Cases ...... 47 

 

3.2.  Drag Comparison of Baseline Grid Cases for Mach 1.2 Flow .......................... 52 

 

4.1.  208-Cavity Small Width Drag Results .............................................................. 62 

 

6.1.  Test Case Configuration for Mach 1.2 Medium Cavity Width ......................... 75 

 

6.2.  Tabulated Drag Results for Mach 1.2 Medium Width Cavity Test Cases......... 77 

 

6.3.  Test Case Configuration for Mach 1.2 Small Cavity Width .............................. 82 

 

6.4.  Tabulated Drag Results for Mach 1.2 Small Width Cavity Test Cases ............. 84 

 

6.5.  Test Case Configuration for Mach 3.0 Medium Cavity Width ......................... 86 

 

6.6.  Tabulated Drag Results for Mach 3.0 Medium Width Cavity Test Cases......... 86 

 



 

 

xiii  

NOMENCLATURE 

Symbol Description         

cf,x  Local Skin Friction Coefficient 

D  Drag 

δ  Boundary Layer Thickness 

H  Cavity Height 

h  Perforation Height 

L  Length of Simulation Domain 

LLE  Leading Edge Length 

LTE  Trailing Edge Length 

M∞   Free-Stream Mach Number 

N  Number of Cavities 

P∞   Free-Stream Static Pressure 

Re  Reynolds Number 

T∞   Free-Stream Static Temperature 

u  Local Velocity in the X-Direction 

U∞   Free-Stream Velocity 

w  Cavity Width 

x  X-Distance from Initial Incoming Boundary Layer Profile 

xupstrem  X-Distance from Origin on Upstream Flat Plate 

y  Y-Coordinate 

 

 

 



 

 

1. INTRODUCTION 

1.1. CONCEPT MOTIVATION 

Concepts and techniques that can generate reductions in fluid dynamic drag are of 

significant interest for the design and optimization of future aerospace systems.  

Substantial decreases in the drag experienced by a vehicle, without incurring undue 

system penalties associated with the drag reduction, would provide attendant increases in 

vehicle performance and fuel economy, as well as potentially improved operability 

characteristics. Fluid dynamic drag generally comes from a combination of two sources: 

pressure drag (drag associated with pressure acting on the aerodynamic surfaces of an 

aerospace vehicle) and skin friction drag. Summation of the pressure drag and skin 

friction drag yields the net overall aerodynamic drag force acting on a solid surface.  

The purpose of the present work is to investigate the feasibility of potentially 

reducing (or eliminating) turbulent skin friction drag on flat surfaces in supersonic flows 

by suitably tailoring the structural details of the surface, specifically by generating very 

small and successive fluid separation zones within micro-cavities embedded in the 

surface of the vehicle. These cavities are oriented transverse to the bulk fluid motion. 

Specifically of interest here is the performance of this concept in terms of potential drag 

reductions and stability characteristics for low to mid supersonic free-stream Mach 

numbers.  A representative schematic of the concept investigated in the present work is 

shown in Figure 1.1. 
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Figure 1.1.  Driven Micro-Cavity Section Side View (Left) and Oblique View 
(Right) of a 3-D Cavity Channel 

 

 

The cavities described have thin vertical walls with heights representing a small 

fraction of the boundary layer thickness.  The boundary layer flow over these cavities 

then drives clockwise fluid vortices between these vertical cavity walls. In principle, 

these vortices will generate frictional forces acting in the direction opposite to that of the 

boundary layer flow. This has the potential to reduce or completely eliminate skin friction 

drag, or even generate a net contribution to thrust (skin friction drag becoming 

‘negative’). Frictional forces acting on the vertical cavity walls do not contribute to net 

drag since frictional forces on vertical surfaces do not act in the axial (drag) direction. As 

depicted in Fig. 1.1, the cavities are essentially successive parallel channels oriented in 

the direction transverse to the incoming flow. This simplifies the present work, as it 

allows two dimensional representations of the cavity and boundary layer flows for 

preliminary investigation. 

Although the skin friction will in principle be much reduced (or even become 

‘negative’) in such a concept, unfortunately, as the flow drives the clockwise vortices 

within the cavities, there will be inevitable variations in pressure within a given driven 
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cavity and from upstream cavity to adjacent downstream cavity. Specifically this pressure 

difference may be manifested across a given vertical wall, hence yielding a potential drag 

force. This phenomenon is depicted in Figure 1.2, where the net effect is shown as 

causing a pressure drag in the axial direction. This pressure-induced drag is a force 

component that would not be experienced by a simple flat plate at zero angle of attack. 

 

 

 

Figure 1.2.  Schematic of Pressure Drag Generation on Vertical Cavity Walls 
 

 

For the concept of driven micro-cavities as proposed in this investigation to be 

viable, the net overall drag experienced over the region of the plate as modified with 

embedded micro-cavities must be less than that of an unmodified flat plate of equal 

length. It is then essential to determine if the net pressure drag force experienced by the 

cavities outweighs the benefit of the skin friction reduction caused by the vortices, or 

vortex systems, associated with the cavities. 
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A specific technique for reducing the pressure drag associated with the cavities 

that is developed and investigated within the present work is to use perforations (slots) in 

the cavity walls, as shown in Figure 1.3.  The purpose of such perforations would be to 

potentially promote fluid interaction between cavities, i.e., allow pressure equilibration 

between adjacent cavities, and hence provide reductions in the pressure component of 

drag over regions with cavities. 

 Another important consideration for the concept of driven micro-cavities for drag 

reduction is the stability, or lack of stability, for a boundary layer moving over a surface 

with embedded micro-cavities. Possible transient fluid interaction between the driven 

micro-cavity region and the boundary layer flow above it must not cause substantial 

(transient) instability in the boundary layer flow. Specifically, vortex shedding from the 

cavities and significant flow turning of the upper (above cavity) flow must be limited.  

Due to the fact that the cavities under consideration in the present concept are very small 

with respect to the boundary layer thickness, their role in terms of generating 

destabilization of the boundary layer is not definite. The present study provides some 

preliminary assessment of this issue. 

The current investigation utilizes two-dimensional computational fluid dynamics 

(CFD) simulations of simplified geometries composed of smooth flat plates with 

embedded micro-cavity structures underlying supersonic turbulent boundary layers, in 

order to provide a parametric investigation into potential drag reductions associated with 

this concept and concept variations. Three different free-stream Mach numbers are 

considered; Mach 1.2, 2.0, and 3.0. Note that, in fact, a very large number of parameters 

are important in the characterization of this concept, including the cavity physical scale 
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with respect to the boundary layer, aspect ratio of the cavities, number of cavities, details 

of the extent of the cavity walls (perforated versus unperforated), upstream boundary 

layer development, etc. This study represents a preliminary feasibility study of the 

concept with a limited number of selected parameters varied and a limited number of 

concept variations examined. In addition, no considerations are made in the present study 

with regards to the manufacturability, cost, and/or weight and heat transfer penalties 

inevitably associated with embedded micro-cavities. 

 

 

 

Figure 1.3.  Schematic Showing Potential Effects of Perforating Cavity Walls 
 

 

1.2. THESIS OUTLINE 

This thesis is divided into seven main parts. First, Section 1 is the introduction 

and provides a general description of the concept investigated and a literature review of 

related work. Section 2 describes the CFD code, physical modeling, and methodologies 

used for this study and outlines the basic geometries studied, boundary conditions used, 

and geometric constraints, as well as describes the upstream marching simulations used 

to generate inflow boundary layer profiles for elliptic computational domains containing 
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micro-cavity geometries. In Section 3, a detailed study (in terms of discussion of flow 

physics, visualization, etc.) is conducted using a baseline grid for a 52-cavity geometry in 

which various cavity wall parameters are examined. This section provides results for two 

free-stream Mach numbers (Mach 2 and Mach 1.2) and compares drag performances of 

cavity configurations to that of an unmodified reference flat plate. Section 4 provides 

similar results for a single configuration with a large number of cavities, specifically a 

208-cavity region at a free-stream Mach number of 2.0. Section 5 re-examines the test 

case presented in Section 3, except using a more refined mesh. Section 6, provides drag 

reductions (as measured from unmodified reference flat plates) and stability results 

obtained from a parametric investigation using mesh sequencing with coarse, baseline, 

and fine grids. Variations in cavity spacing, cavity region sizes, and other input 

parameters are examined in this section. This section provides results for free-stream 

Mach numbers of 1.2 and 3.0. Finally Section 7 provides a summary of the investigation 

and gives recommendations for future work. 

 

1.3. LITERATURE REVIEW 

A wide range of passive drag reduction techniques have been proposed, studied, 

and employed on fluid dynamic and aerodynamic surfaces, with significant emphasis in 

terms of applications involving aerospace vehicle design. However, such techniques have 

also been used in a wide variety of non-aerospace applications, including improving 

commercially available products. Passive drag reduction is also seen in natural biological 

systems. The classic example of passive flow control for a common application is the 

dimpling of a golf ball in order to induce turbulence, thereby reducing pressure drag 
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associated with separation. Examples of passive flow control devices in nature are seen 

on the wings of butterflies, as well as on the skin of sharks. Lang and Hidalgo[1,2] found 

that the bristled geometry of shark skin is capable of creating an interlocking web of 

vorticity, a web essentially composed of embedded vortices, that produces an effect 

similar to the dimples on the golf ball, hence reducing pressure drag associated with 

separation. In addition, the micro-geometry of the grooves/cavities in shark skin produces 

an effective slip velocity that increases momentum of the boundary layer flow near the 

skin and hence acted as a boundary layer control mechanism that results in a reduction in 

skin friction drag. Hao et al.[3] experimentally investigated laminar drag reduction in 

hydrophobic micro-channels and found decreases in channel pressure of up to 30% with 

effective slip velocities reaching 10% of the centerline velocity in the channel. 

Another passive drag reduction technique extensively investigated is the use of 

riblets, i.e. raised ridges aligned in the direction of the flow, as depicted in Figure 1.4. 

Walsh[4] provides a very comprehensive study in the use of riblets as a method of viscous 

drag reduction in boundary layers. Shark skin also exhibits riblet-like configurations.  

Work with riblets in high-speed flows has also been conducted by Duan and Choudhari[5]. 

The maximum total drag reduction (compared to a reference flat plate) using riblets has 

been observed to be between 4-8% in these and most other riblet studies.  The essential 

mechanism behind the drag reduction obtained using riblets is still under investigation 

but is usually attributed to a suppression in lateral transport of near-wall streamwise 

vortices, which in turn reduces effective turbulent shearing at the surface. 
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Figure 1.4.  Riblets Geometry Aligned in the Direction of the Flow[5] 

 

 

Active flow control techniques such as micro-blowing, supersonic micro-jet 

injections, and controlled energy injections, have been used to reduce drag and suppress 

unsteadiness and resonance issues, delay separation, etc. in  flow over  cavity and cavity-

like geometries, generally larger than of interest in the current work.  The reader is 

directed to the studies of Hwang[6], Zhuang et al.[7], and Lazar et al.[8] for further 

information regarding active flow control in such flows. 

Several investigations have been conducted using thick blocks arranged 

transverse to the flow, shown in Figure 1.5, as opposed to utilizing thin cavity walls as 

proposed in the current work. Wang[9] analyzed slip coefficients for cavities with such 

finite-thickness cavity walls. His findings indicated that for the highest slip (lowest 

resistance) shallow cavities were better in terms of reducing drag, and he notes that this is 

somewhat contrary to intuition that would seemingly indicate that deep cavities would 

produce the most slip. Huang[10] , in a similar geometry, found that the flow is decelerated 

in the inter-block regions and eventually forced to reverse near the wall, resulting in 

overall separation of the flow. 
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Figure 1.5.  Finite-Thickness Porous Cavity Blocks[10] 

 

 

Subjects of further passive drag reduction techniques include flow over plates that 

include embedded shapes or have roughened surfaces. Hwang’s[11] work analyzed 

subsonic flow over a plate with circular holes of various sizes, orientations, and patterns, 

shown in Figure 1.6. The study found that turbulent skin friction was most effectively 

reduced for holes with a 0.6 aspect ratio oriented at 15° from the flow direction. Ekoto et 

al.[12] examined the effect of large scale roughness for supersonic boundary layers over 3-

D plates with raised squares, noting the dominance of a pressure force acting in the x-

direction. Lang and Melnick[13] conducted another experimental study of both laminar 

and turbulent flow over embedded hexagonal shaped cavities, depicted in Figure 1.7. 

Partial effective slip increased up to 30% in the cavities and increases in momentum of 

the fluid acted as a passive separation control mechanism. A patent was also awarded to 

Lang[14] for this surface patterning technique. 
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Figure 1.6.  Flat Plate with Holes in Flow Direction[11] 

 

 

 

Figure 1.7.  Embedded Hexagonal Shaped Cavities[13] 

 

 

Previous works most closely related to the present work include the use of 

cavities in a transverse orientation to the flow. Gatski and Grosch[15] performed a 

computational of steady laminar and incompressible flow over a single embedded cavity, 

as shown in Figure 1.8. Results obtained showed negligible reduction in drag for the 

single cavity when compared to a flat plate; however, the presence of an embedded 

vortex contributed to an overall favorable pressure gradient from the cavity. It was 

postulated in this study that multiple cavities have the potential to reduce drag provided 

such cavities are optimally spaced and sized. 
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Figure 1.8.  Boundary Layer Flow Over an Embedded Cavity in Transverse 
Orientation to the Incoming Flow[15] 

 

 

Umazame et al.[16] obtained a patent for the concept of using cavities and grooves 

as a passive drag reduction technique closely related to the current study. A schematic of 

the general physical principle is shown in Figure 1.9. The flow on the bottom of the 

cavity is reversed, i.e., flowing in the opposite direction of the boundary layer flow. This 

reversal in the velocity profile generates a reduction in the skin friction drag. A numerical 

study by Madi-Arous et al.[17] analyzes the reattachment phenomenon of flow entering 

and exiting the cavity and found that three zones of recirculation exist in each cavity, the 

primary one behind the upstream step and two secondary zones located in the bottom 

corners. 
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Figure 1.9.  Schematic of Velocity Profile with Reversal in Flow at the Bottom of 
the Embedded Cavity[16] 

 

 

Lang and Hidalgo[18] performed both experimental and computational tests on an 

embedded cavity region with multiple cavities with thin walls in very low speed flow. A 

reduction in drag coefficient was sustained over the first eight cavities, but no additional 

investigation of reductions for any longer lengths was done. Instabilities in the flow were 

observed near the fourth and fifth cavities during experimental testing that weren’t seen 

in computational tests. 

A recent work in cavities in transverse orientation to the flow was conducted by 

Leibenguth[19]. This work modeled 2-D Couette flow over single-embedded cavity 

geometries with various inclination angles of the cavity walls. Very low speed flows were 

considered with 0.01 ≤ Re ≤ 100. This work found that regardless of the cavity wall 

aspect ratio or inclination angles, the drag reduction potential decreased with lower Re. 

Further, as the distance between the bounding top plate and the cavity region increased, 

the drag reduction potential decreased. Leibenguth’s work, however, did not include any 
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results for external flow, only internal Couette flow. He concludes that future work is 

needed in exploring boundary layer flow over multiple embedded cavities. 

 

1.4. SCOPE OF PRESENT WORK 

The present study examines two-dimensional supersonic external turbulent flow 

over multiple wall-embedded thin-walled micro-cavities aligned in the transverse 

direction to the flow. This investigation differs from previous works in that it is believed 

to be the first study focusing upon high-speed (supersonic Mach number) boundary flows 

over such multiple micro-scaled cavities. Furthermore, a concept is investigated here in 

which the cavity walls are perforated in order to attempt to control and equilibrate 

pressure and flow patterns inside the cavity region. The primary objective of the present 

work is to provide information on whether such driven micro-cavities may be able to 

potentially produce effective drag reductions on surfaces in high-speed flow without 

significantly destabilizing the outer boundary layer flow. In addition, the effects of 

perforating cavity walls are of interest in terms of potentially reducing drag, increasing 

flow stabilization associated with embedded micro-cavities, and allowing the tailoring of 

the circulatory patterns within the micro-cavity region. 
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2. CFD TOOLS, METHODOLOGY, AND PROFILE DEVELOPMENT 

2.1. VULCAN CFD CODE 

All CFD results presented in this work were generated using the VULCAN 

(Viscous Upwind ALgorithm for Complex Flow ANalysis) code version 6.2.0.[20] 

VULCAN is a turbulent, non-equilibrium, chemically reacting Reynolds Averaged 

Navier-Stokes solver maintained by the NASA Langley Research Center. VULCAN 

utilizes structured, cell-centered grids and has a wide variety of user-selected options for 

marching simulations and for performing fully elliptic simulations, including the ability 

to solve using either local time-stepping or time accurate capability. It includes multi-grid 

and mesh-sequencing options, with the latter used extensively in the current 

investigation. VULCAN was used in the current study to provide both upstream 

marching (flat plate) boundary layer simulations and the main (downstream) fully-elliptic 

two-dimensional Navier-Stokes simulations for regions with embedded cavities. 

VULCAN has multi-block capability for facilitating parallel computations; this capability 

was used extensively in the current study. This code has been extensively validated on a 

wide range of applications, although it has been primarily utilized (and developed for) the 

high-speed flight regime. All simulations in the current work used the Roe flux difference 

scheme with third order upwind-biased MUSCL interpolation parameter kappa = 1/3 and 

a smooth limiter. For non-time-accurate computations (local time-stepping), a Distributed 

Approximate Factorization (CFL based) scheme was used; for time accurate 

computations, a DAF dual-time stepping scheme was utilized. Marching simulations 

employed DAF with manual sub-stepping. 
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All simulations presented in this work used the Menter Shear Stress Transport 

(Menter-SST) k-omega model[21,22], a two-equation eddy-viscosity turbulence model. The 

Menter-SST model provides a blending treatment for the turbulence such that there is 

realization of the benefits of a k-ω model for near-the-wall calculations while blending 

into the k-ε model for the outer flow. This turbulence model has been used successfully 

in a wide range of studies and for various flow-fields, including boundary layer studies at 

moderate and high speeds, and for flows with separating boundary layers. Simulations 

used a free-stream turbulence intensity of 1%. 

Since the grid was extremely refined spatially (due to small physical scale of 

domain of interest which was essentially just the boundary layer and the underlying 

driven micro cavity regions), this study did not use available wall matching functions (i.e. 

the ‘solve to the wall’ option was utilized). Typical y+ values through most of the domain 

are very small (much less than 1.0). Primary interest in the current study was to simply 

generate representative turbulent boundary layer profiles providing wall shear for use in 

providing inflows into driven micro-cavity domains. Additionally, due to the very small 

vertical scale of the micro-cavities underlying the boundary layer, the impact of the 

turbulence model within the elliptic domain itself is minimal in terms of defining the very 

low velocity flow in the cavities themselves, at least over the lengths studied here. 

Essentially the typical problem in the current study was characterized by a flat plate 

turbulent boundary layer moving with minimal disturbance over the top of the driven 

cavity regions, which themselves are very short in length (for most of the geometries 

examined). 
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Inflow air was simulated as a thermally perfect gas mixture composed of 76.86% 

N2 and 23.14% O2 (by mass). Input free-stream Mach number and ambient temperature 

and pressure conditions varied by case study and are defined in subsequent sections. An 

example of a VULCAN input deck for a micro-cavity region test case is provided in 

Appendix A. 

Degree of temporal convergence for the simulations over cavity regions was 

monitored primarily by examining computed drag against iteration on the finest grid level 

tested; it was observed that cases that converged to a single unvarying drag level utilizing 

local time-stepping did not change their convergence characteristics when time accurate 

simulations were subsequently utilized. Note, however, that some cases examined did not 

exhibit steady convergence, as will be discussed in following sections, with refined grids 

exhibiting the greatest tendency to be unsteady or oscillatory. Cases that exhibited steady 

convergence in terms of drag value (and hence were of greatest interest in the current 

study) generally displayed eight or more orders of magnitude reduction of the L2 norm of 

the residual; cases that oscillated about a fixed drag value generally displayed two or 

three orders of magnitude reduction at most.   

The internal utilities within the VULCAN tool suite were used to directly monitor 

time (iteration) history of drag on the geometries examined; also produced by VULCAN 

and used extensively is a spatial descriptor of pressure and skin friction drag on a given 

geometry. 
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2.2. UPSTREAM TURBULENT BOUNDARY LAYER GENERATION 

In order to generate the incoming flow profiles for the test geometries (regions 

with embedded cavities), upstream turbulent boundary layers were simulated by 

generating flow over simple flat plates. The flat plate geometry was taken to be an 

adiabatic wall at zero angle of attack. Due to the parabolic nature of boundary layer 

growth and the simplicity of the flow and geometry, a space marching scheme was used 

for all upstream simulations. This solution approach requires far less computational time 

than the solution of full elliptic Navier-Stokes equations. Four boundary layer profiles 

were created for testing, as outlined in Table 2.1, with varied upstream flat plate length, 

free-stream Mach number, and ambient temperature and pressure. The height of the 

solution domain for profiles US1 and US2 is very slightly less than 0.002 m, since the flat 

plate bottom wall for the upstream marching simulations is located at a height 

corresponding to the height of the micro-cavities in the downstream elliptic domains 

which is very small compared to overall solution domain height, as discussed 

subsequently. Profiles US3 and US4 required an increased height of very slightly less 

than 0.02 m in order to completely capture the boundary layer present over the longer 

upstream flat plate region modeled for those cases. 

 

 

Table 2.1. Upstream Flat Plate Case Configurations 

Profile Length [m] M∞ T∞ [K] P∞ [N/m2] 
US1 0.1 2.0 288 101,325 
US2 0.1 1.2 288 101,325 
US3 1.0 1.2 223 26,500 
US4 1.0 3.0 223 26,500 
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VULCAN is able to make use of multiple processors while running a solution for 

a given single geometry. Each upstream flat plate case was broken up into four blocks 

stacked in the y-direction. The blocks were configured in this manner to most effectively 

make use of the parallel computing abilities of VULCAN while using the marching 

solution scheme. Stacking blocks in the axial (x-direction) would serve no purpose in a 

multi-grid parallelization strategy using a marching solution. Figure 2.1 and Figure 2.2 

show the multi-block configuration used for the L = 0.1 m cases and L = 1.0 m cases, 

respectively. Note that the grid was equally spaced in the y-direction for the L = 0.1 m 

cases while it was clustered at the wall boundary for the L = 1 m cases, due to the thicker 

boundary layer over the embedded cavity regions modeled. The outflow profile from 

each block was then exported to become the fixed input (inflow) profile for the elliptic 

domains containing embedded cavities. 

 

 

 

Figure 2.1.  Multi-Block Configuration for L = 0.1 m Initial 
Upstream Flat Plate Profile 
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Figure 2.2.  Multi-Block Configuration for L = 1.0 m Initial 
Upstream Flat Plate Profile 

 

 

A representative visualization of the resulting boundary layer flow is given in 

Figure 2.3. The profile shown is Profile US1 with a total length of 0.1 m (10 cm) with M∞ 

= 2.0 flow. The Reynolds number for flow over the flat plate based on the total length is 

~4.65 x 106. Despite the flow shown in Figure 2.3 not being a fully developed boundary 

layer, the output from the profile provides a reasonable simulation of a turbulent 

boundary layer to act as the inflow condition for subsequent simulation of the elliptic 

micro-cavity region. 
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Figure 2.3. Mach Contours for Initial Upstream Flat Plate Flow Profile US1 
 

 

Boundary layer thicknesses (the vertical distance between the flat plate to the 

point in the flow at which u = 0.99U∞) and the local skin friction coefficient values were 

tabulated at the xupstream = L location for the four upstream flat plate profiles and are 

presented in Table 2.2. As expected the boundary layers for the 1.0 m flat plate are 

significantly thicker than those for the 0.1 m flat plate. The cf values obtained are 

between 6-12% higher than the theoretical values obtained using the relations in 

Schetz[23]
. The reason for the discrepancy may lie in the scatter in data present in the 

empirical relations developed to provide a correlation between compressible and 

incompressible local skin friction coefficients, but needs to be studied in future works. 

 

 

Table 2.2. Boundary Layer Thicknesses and Local Skin Friction Coefficients 

Profile δ [m] 
cf,x 

(simulation) 
cf,x 

(theoretical) 
US1 0.001465 0.002317 0.002060 
US2 0.001635 0.002937 0.002708 
US3 0.012449 0.002219 0.002085 
US4 0.011365 0.001372 0.001170 
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2.3. MICRO-CAVITY REGION GEOMETRY AND BOUNDARY CONDITIONS 

This section describes the general geometric configuration of the domains used in 

the present study that contained embedded driven micro-cavities. All driven micro-cavity 

regions simulated in this work used the same general domain configuration. This 

consisted of a flat plate leading edge region (downstream of the outflow from the 

upstream marching simulation discussed in the previous section, but upstream of the 

region with cavities) of length LLE, the cavity region itself, and finally a flat plate trailing 

edge of length LTE (downstream of the cavity region). This allowed fully elliptic 

simulations of the modeled domains that sufficiently captured any upstream interactions, 

as well as the smooth flat plate boundary layer ‘re-establishment’, downstream of the 

cavity region itself. Length of the cavity region is given in terms of N-cavities of small, 

medium, or large width, (width designated as w), as described below. The embedded 

cavity region is recessed a height (H) below the level of the upstream/downstream flat 

plate section bottom boundary. For all work done in this study, the ratio of cavity height 

to cavity width, H/w was kept constant at 4.0 (i.e., the vertical-to-horizontal aspect ratio 

of the cavity regions are always 4.0). This aspect ratio is based on defined individual 

‘cavity regions,’ even for parametric studies which removed vertical walls between 

adjacent cavities, i.e., the effective aspect ratio from the standpoint of distance between 

bounding vertical walls (to cavity height) can be less than 4.0, depending on the number 

of ‘removed’ walls. However, the nominal aspect ratio based on cavity ‘regions’ (defined 

by blocks utilized within the solution procedure) always remains at 4.0, as stated. The top 

of each vertical cavity wall is flush with the leading and trailing flat plate sections. Actual 

vertical extent of the cavity walls themselves is dictated by the value of the perforation 
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height (h), corresponding to the distance between the bottom wall of the cavity region 

and the bottom edge of the cavity wall. Figure 2.4 provides a schematic of the general test 

case geometry with all significant measurement parameters. 

There are three cavity physical scales utilized for various cases discussed in the 

present investigation. As noted previously, default aspect ratio of the cavities (or the 

defined individual cavity regions for parametric studies with ‘removed’ walls) is kept at 

4.0. However, various test cases are considered utilizing ‘small width’ cavities, 

corresponding to H = 0.0002 m (such that cavity width, w, is 0.00005 m). ‘Medium 

width’ cavities correspond to H = 0.0005 m (such that cavity width, w, is 0.000125 m). 

‘Large width’ cavities correspond to H = 0.002 m (such that cavity width, w, is 0.0005 

m). 

 

 

 

Figure 2.4.  General Geometry for Driven Micro-Cavity Test Cases 
 

 



 

 

23

For the purposes of diagraming the boundary and cut conditions, as well as the 

parallelization strategy used, the 52-cavity (N = 52) small width baseline grid test 

geometry is used as a representative example in the following discussion. Figure 2.5 

shows that the 52-cavity setup is divided into 55 blocks to maximize parallel processing 

capabilities. Blocks 1, 2, and 55 (or N + 3 for the general case) include only the leading 

and trailing edge flat plates. There is always one block per individual cavity region, 

extending from bottom cavity wall to top boundary as shown, over the region of the 

domain with embedded cavities. This is true even in cases where cavity walls between 

adjacent cavities have been ‘removed’, in order to study the impact of internal walls on 

flow-field and drag reductions obtained. 

 

 

 

Figure 2.5. Multi-Block Layout for 52-Cavity Geometry 
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Boundary conditions for the example test case are presented in Figure 2.6. These 

input boundary conditions are common for all cases in this study. The left face of Block 1 

is the INFLOW face. It includes four inflow “sub-faces” corresponding to the four output 

profile files generated by the upstream flat plat geometry. Recall that the blocks were 

stacked in the y-direction, thus the input face of the downstream test geometry required 

four inflow sub-faces to make up the total inflow. The top of all blocks is set as FAR-

FIELD. The right face of Block 55 is designated as the OUTFLOW, here taken as 

extrapolation. The bottom of each block is set as ADB-WALL (adiabatic wall). 

 

 

 

Figure 2.6. Boundary Conditions for the Micro-Cavity Test Geometry 
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The cavity walls are a very critical part of the geometry setup for each test case. 

Cavity walls are classified as either “perforated” or “unperforated” in each test case. 

Designation of perforated walls signifies that h > 0, while the designation of unperforated 

walls indicates that h = 0. Figure 2.7 and Figure 2.8 depict enlarged views of the cavity 

region to more adequately show the differences between the perforated and unperforated 

cavity walls. The walls themselves are treated as adiabatic walls and have zero thickness. 

For perforated walls, the adiabatic wall condition is only set for the nodes that constitute 

the wall itself. The region of the perforation has no boundary condition, corresponding 

only to a cut condition between two adjacent block faces. 

 

 

 

Figure 2.7.  Detailed View of Perforated Cavity Wall 
Geometry and Boundary Conditions 
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Figure 2.8.  Detailed View of Unperforated Cavity Wall 
Geometry and Boundary Conditions 

 

 

2.4. GRID AND MESH SIZING 

Three main grid densities were used for analyzing the micro-cavity domains:  

coarse, baseline, and fine. The coarse and fine grids will be discussed further as part of 

the mesh sequencing discussion in Section 6. The following discussion focuses on the 

baseline grid and provides representative numbers. In terms of the overall solution 

strategy using the baseline grid, Blocks 1, 2, and N+3 consist of 21 (horizontal, or x- 

direction) nodes by 181 (vertical, or y-direction) nodes. Each of the blocks in the cavity 

region (3 through N) consists of 21 x 201 nodes. Focusing on the embedded cavities 

themselves, the baseline grid contains 21 x 21 nodes in each cavity. For the small width 

cavity cases (described previously), these nodes are spaced evenly 2.5 x 10-6 m in the x-
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direction and 1 x 10-5 m in the y-direction, such that the aspect ratio is 4. Table 2.3 

summarizes the grid sizing and mesh for this study (for small width cavity cases). As 

noted previously, medium width cavity cases correspond to cavities scaled up 250% in 

size (2.5X) (both horizontally and vertically). Note, however, that the vertical height of 

the outer (boundary layer) flow above the embedded cavity flows remains the same 

between ‘small width’ cavities and ‘medium width’ cavity cases. 

 

 

Table 2.3.  Summary of Grid Sizes and Mesh for Micro-Cavity 

Test Cases/Small Width Cavity Cases 

Grid Type 
Nodes in 
Blocks 

1, 2, N + 3 

Nodes in 
Blocks 
3 to N 

Nodes in 
Cavities 

Node 
Spacing in 

X-Direction 

Node 
Spacing in 

Y-Direction 
Coarse 11 x 91 11 x 101 11 x 11 5.0 x 10-6 m 2 x 10-5 m 
Baseline 21 x 181 21 x 201 21 x 21 2.5 x 10-6 m 1 x 10-5 m 
Fine 41 x 361 41 x 401 41 x 41 1.25 x 10-6 m 5 x 10-6 m 
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3. 52-CAVITY REGION SMALL WIDTH BASELINE GRID RESULTS 

The first case study is conducted using a 52-cavity length region with small width 

cavities analyzed using the baseline 21 x 21 (per cavity) node grid. This set of test cases 

uses a fixed inflow plane which is the exit profile from an upstream marching simulation 

of a boundary layer with a free-stream Mach number equal to 2.0; this plane is located 

ten centimeters downstream of the leading edge of the plate (profile US1 as described in 

Section 2). The length of the cavity region is 0.26 cm (or 2.6% of the upstream flat plate 

length from the leading edge). Cavity height, H, for this case using small width cavities is 

0.0002, corresponding 13.65% of the thickness of the incoming boundary layer (H/δ = 

0.13652). A visualization of the flow over the driven micro-cavity region is provided in 

Figure 3.1 in terms of Mach number contours. As displayed in this figure, but true for all 

steady (drag converged) cases examined, there is very little impact on the vertical 

distribution of velocity and Mach number through the boundary layer over the length of 

the overall cavity region. In this section, three cases are analyzed for the 52-cavity small 

width region case study:  gated, unperforated, and ungated. It should be noted that all 

drag results presented in this work are given in units of Newtons, although, due to the 

two-dimensional modeling of the flow, are implicitly Newtons per meter width.  
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Figure 3.1.  Mach Number Contours from VULCAN with Incoming Flow Over 
the 52-Cavity Small Width Region 

 

 

3.1. GATED CAVITY REGION 

The first case in this study uses the 52-cavity small width cavity region with two 

gates located at the 17th and 34th wall locations (x = 0.0016 m and x = 0.00245 m). As 

discussed previously, these gates are adiabatic walls that extend to the bottom floor of the 

cavity region (h = 0) while all of the rest of the cavity walls are perforated at the bottom 

with (h = 6 x 10-5 m). The simulation began with a non-time accurate scheme with a 

Courant-Friedrichs-Lewy number (CFL) beginning at 0.1, increasing to 0.5 after 10,000 

cycles, and finally ramping up to 1.0 after 20,000 cycles. The solution exhibits a steady 

convergence to a drag value of 2.224 N after approximately 100,000 cycles. The time 

history of the drag force is shown below in Figure 3.2. 
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Figure 3.2.  Drag Time History Plot for the Gated 52-Cavity 
Small Width Mach 2 Test Case 

 

 

A time-accurate solution was then run using a distributed approximating function 

(DAF) with a time step of 2 nanoseconds (2.0 x 10-8 s) with 20 sub-iterations between 

each step. This time-accurate simulation was started utilizing the non-time accurate 

simulation at 151,000 cycles as the initial condition. As indicated in Figure 3.2, no 

discernible change in the net drag value occurs when switching to the time-accurate case. 

For the 52-cavity (small width cavities) region using the baseline grid, time-accurate vs. 

local time stepping has no bearing on the resulting drag, i.e., once the solution converges, 

drag remains constant despite changing the time scheme. This, in fact, was found to be 

true for all ‘steady’ cases examined in the present investigation. 
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The CFD generated pressure contours in the region with cavities are presented in 

Figure 3.3. It can be seen that the strongest effects of the cavity region on the pressure 

field occur at the end of the cavity region where the flow must ‘reestablish’ on the trailing 

flat plate. However, there is little change in pressure overall. (Note the small levels of 

pressure change within the contours). 

 

 

 

Figure 3.3.  Pressure Contours for the Gated 52-Cavity 
Small Width Mach 2 Test Case 

 

 

The pressure field produced by the simulation, although characterized by very 

small changes in general, is sub-divided into four regions, for purposes of discussion. 

First, a pressure drop occurs at the beginning of the cavity region where the leading flat 
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plate section ends and the embedded cavity region begins; the flow expands slightly due 

to the presence of the cavities. The contours indicate that the pressure then increases 

slightly at both locations of the (two) gates, and reaches a local maximum at the 

downstream upper corner of the micro-cavity region, where the flow re-establishes back 

onto the downstream flat plate section. 

A jet of reversed flow is established through the perforations in the cavity walls, 

and contributes a negative contribution to drag force (i.e., effectively a positive 

contribution to thrust due to the negative skin friction on the bottom wall of the cavities, 

associated with the jet). This jet is the result of the combined separation zones created by 

the flow vortices present between the cavity walls and the interaction between cavities 

allowed by the perforations at the bottom of vertical cavity walls. As shown in Figure 3.4, 

the magnitude of the reversed flow velocity is between 5 and 10 m/s, or about 1.5% of 

the free-stream velocity. Also shown in this figure are streamline traces, in order to 

visualize the patterns of recirculation within the cavity region(s). 
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Figure 3.4. U-Velocity Contours and Flow Streamtraces for the Gated 52-Cavity 
Region from the Start of the Cavity Region to the First Gate 

 

 

While reversed flow exists in the region between the start of the cavity region and 

the first gate, the flow in the region bounded between the first and second gate is not 

reversed. As shown in Figure 3.5, the cavities located in that region (between the two 

gates) actually have positive u-velocity contours and the stream line traces show flow 

movement mainly in the positive x-direction. Downstream of the second gate, the flow in 

the embedded cavities becomes reversed once again. The presence of the gates appears to 

break the flow up into regions of reversal and non-reversal within the overall micro-

cavity region, at least for this test case. 
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Figure 3.5.  U-velocity Contours and Flow Streamtraces Indicate Both Reversed 
and Non-Reversed Flow Near the First Gate 

 

 

Fluid flowing in the negative x-direction across portions of the overall micro-

cavity region can, in fact, make the overall skin friction drag contribution ‘negative’ 

within that region. However, due to the extremely small velocities within the cavity 

(whether positive or negative), skin friction is essentially considered here to be zero 

within all cavity regions for all cases tested. This is particularly true when the magnitude 

of skin friction drag within the overall cavity region is compared to a reference flat plate 

drag and/or to pressure drag associated with vertical cavity walls. 

Pressure acting on the vertical cavity walls generates a pressure drag component 

that is completely in the positive x-direction. Figure 3.6 shows the detailed spatially 

distributed (x-direction) separate contributions of both cumulative pressure and shear 

forces in the x direction that occur on all solid walls, for this gated 52-cavity small width 
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case. Note that this figure presents cumulative pressure drag as a continuous line with x 

distance, although there are pressure contributions to overall drag only at discrete 

(vertical) cavity walls; the line shown simply connects these discrete points. A sample of 

the post processing code used to generate Figure 3.6 is provided in Appendix B. 

 

 

 

Figure 3.6.  Breakdown of the Contributions of Skin Friction and Pressure Forces 
to Total Drag Over the Entire 52-Cavity Small Width Mach 2 Test Case 

 

 

Pressure drag does not increase on the leading and trailing flat plates surrounding 

the micro-cavity region, as expected, since pressure acts only in the y-direction for a flat 

plate at zero angle of attack. The pressure drag drops initially at the beginning of the 

cavity region due to the negative pressure force on the initial (upstream) surface of the 
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first cavity. It then essentially increases linearly with x across the cavity region, 

indicating that pressure is slightly higher on the upstream side of each vertical wall than 

on the downstream side of each wall, with regularity to this trend with axial distance. 

Further investigation demonstrates that the pressure imbalance, and hence the linearly 

increasing pressure drag contribution as shown in Figure 3.6, is almost entirely associated 

with the top part of each vertical cavity wall.  This phenomenon was discussed as more or 

less inevitable, in the introduction section of this work. The rate of increase in pressure 

drag for the case here is 576.7 N/m from the beginning to the end of the micro-cavity 

region. Presence of the two gates (vertical walls with no perforations) is evident and 

expected from the two spikes in the total pressure drag, but these gates have no net effect 

on the overall nearly linear trend of pressure drag increase across the micro-cavity region. 

Total cumulative drag due to pressure is generally negative (meaning a net contribution 

to thrust instead of drag) until the end of the cavity region is reached and the flow 

reestablishes upon the aft flat plate region. Upon reaching the end of the overall cavity 

region, the pressure significantly increases its contribution to drag due to the positive 

axial pressure contribution on the vertical wall associated with the aft plate region, before 

leveling over the downstream flat plate. Skin friction drag increases on the forward and 

rear flat plates, but decreases very slightly throughout the cavity region itself. This shows 

that there is virtually no shear occurring in the cavity region itself as discussed earlier, 

and that total drag within the overall cavity region is almost entirely driven by the 

pressure drag acting in the x-direction, associated with the vertical walls of the cavities.  

Considering only the cavity region itself (x = 0.0007 m to x = 0.0033 m, i.e., removing 

the leading and trailing flat plates), the skin-friction drag was found to be -0.009910 N. 
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This corresponds to a very slight positive contribution to thrust. The pressure drag was 

found to be 1.5700 N, making the total drag over the micro-cavity region 1.5601 N. 

 

3.2. UNGATED CAVITY REGION 

The ‘ungated’ cavity region simulation uses the same geometry as the case 

discussed in Section 3.1, except that there are no gates, i.e. all cavity walls are perforated. 

For this case, a non-time accurate solution was used with CFL of 1.0. The drag force 

history is presented in Figure 3.7. The solution exhibits a solid convergence to a fixed 

total drag value of 2.2212 N. This value is within 0.1% of the converged drag value 

found in the gated simulation. 

 

 

 

Figure 3.7.  Drag Time History Plot for the Ungated 52-Cavity 
Small Width Mach 2 Test Case 
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In the interest of reducing computational time, the initial run of the ungated 

simulation took the flow-field of the converged gated case (previously described) as its 

initial condition. The large oscillations in the drag force at the beginning of the ungated 

solution are therefore due to the simulation coping with the cut condition change 

removing the two gates. In order to ensure the validity of this technique (i.e., using the 

previous gated case flow-field as the initial condition for a different (ungated) 

configuration), a separate simulation for the ungated case beginning from free-stream 

initialized everywhere was done. This simulation resulted in the same final converged 

drag value. 

Pressure contours in Figure 3.8 show that the flow-field is similar to the previous 

gated case in that there remain several weak but distinct pressure zones spanning the 

region, as previously described. The highest pressure concentration still occurs at the end 

of the cavity region, on the top right wall of the last cavity (where the flow reestablishes 

on the downstream flat plate section). Despite slight differences in the pressures upstream 

of the end of the cavity region when compared to the gated case, the peak pressure 

remains the same in both cases, reaching ~105500 Pa which is only 3% greater than the 

inflow (free-stream) pressure value. 
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Figure 3.8.  Pressure Contours for the Ungated 52-Cavity 
Small Width Mach 2 Test Case 

 

 

As with the gated case, the ungated results show a jet of reversed flow passing 

through the perforations, as depicted in Figure 3.9. The absence of gates allows the 

reversed flow to propagate throughout the entire cavity region, rather than being sub-

divided into separate regions. However, the maximum magnitude of the u-velocity of the 

reversed flow remains around 10 m/s, as with the gated case, i.e. is very small. 
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Figure 3.9.  U-Velocity Contours and Flow Streamtraces for the Ungated 52-
Cavity Small Width Mach 2 Test Case 

 

 

Figure 3.10 shows the separate axial distribution of cumulative pressure and shear 

forces acting on the solid surfaces for this configuration. The skin friction drag exhibits 

the same behavior for the ungated case as that of the gated case previously discussed; 

linear increases on the leading and trailing edge, and a very slight decrease across the 

cavity region. Pressure drag retains roughly the same linear relationship with x as noted 

in the gated case, increasing at a rate of 588.427 N/m. The absence of the two gates is 

clearly shown (note that the two spikes at gate locations shown in the gated case 

disappear), but the cumulative value of pressure drag and its overall trend do not differ 

significantly between the two cases. 
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Figure 3.10.  Breakdown of the Contributions of Skin Friction and Pressure 
Forces to Total Drag Over the Ungated 52-Cavity Small Width Mach 2 Test Case 
 

 

Skin friction and pressure across the cavity region for the ungated case were 

found to be -0.026841 N and 1.5822 N, respectively. Skin friction drag decreased 

(contributed greater thrust) very slightly compared to the gated case, while the pressure 

drag increased very slightly. The total drag over the region is 1.5553 N, thus exhibiting 

less than one-tenth of a percent change from the gated test case. These results show that 

the lack of gates does contribute to a decreased skin friction drag; however the increase in 

pressure drag cancels out that effect, resulting in a nearly identical final total drag value 

between the two cases. 
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3.3. UNPERFORATED CAVITY REGION 

The unperforated simulation extended all vertical cavity walls to the ‘floor’ of the 

cavity region (h=0 for all walls), making all walls essentially “gated”. The same non-time 

accurate scheme with a CFL of 1.0 was used in this case. As was done with the ungated 

solution, the final converged flow-field from the gated test case was used as the initial 

flow-field (initial condition) for the unperforated simulation. The resulting drag history is 

given in Figure 3.11. Total drag converges to 2.2249 N after approximately 60,000 

iterations. This drag value is within 0.04% of the drag for the gated case and within 0.2% 

for the ungated case. A time accurate scheme was used after convergence with local time 

stepping was reached; there was no change in the final drag result. 

 

 

 

Figure 3.11.  Drag Time History Plot for the Unperforated 52-Cavity 
Small Width Mach 2 Test Case 
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The pressure contours for the unperforated case presented in Figure 3.12 exhibit 

nearly the same characteristics as noted and discussed in the ungated case. There is a 

similar pattern of weak pressure increases, with the main difference being that the 

pressure increase seems to initiate (or migrate) further upstream for the unperforated 

case. Again, the local region of the highest pressure occurs in the final cavity on the right 

upper wall, but the pressure there is still is only 3% greater than the free-stream pressure. 

The overall increase in pressure across the cavity region is virtually the same for the three 

cases presented: gated, ungated, and unperforated. 

 

 

 

Figure 3.12.  Pressure Contours for the Unperforated 52-Cavity 
Small Width Mach 2 Test Case 
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The most significant difference shown visually between the unperforated case and 

the gated/ungated case is expected; the lack of the reversed flow jet. Without perforations 

in the cavity walls, cavity flows are isolated from one another and distinct clock-wise 

flow vortices establish within each cavity region. Figure 3.13 shows streamtraces of the 

flow in the cavity regions. The well-defined and repeating vortices rotate in the clockwise 

direction inside each of the cavities, meaning that there is a certain amount of flow 

reversal present. However, there is no significant region of negative u-velocity 

developing due to the inhibiting effect of the cavity walls. It is further shown in Figure 

3.12 that the vortices in the individual cavities are strongest near the top of the cavities, 

where the greatest shear from the outer flow is present. 

 

 

 

Figure 3.13.  U-Velocity Contours and Flow Streamtraces for the Unperforated 
52-Cavity Small Width Mach 2 Test Case 
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The cumulative distributions of pressure and skin friction drag forces on walls of 

the unperforated configuration is separately plotted in Figure 3.14. Note that the large 

drop in pressure drag seen at the beginning of the overall micro-cavity region for cases 

with perforated vertical walls does not appear, since the right vertical wall of the first 

cavity for the unperforated case extends to the floor of the micro-cavity region.  

Similarly, the large increase in pressure drag seen at the end of the overall micro-cavity 

region for perforated cases also disappears. However, the overall linearly increasing 

pressure trend remains the same from beginning to end of the micro-cavity region, as 

does the skin friction drag decrease across the overall cavity region (although it exhibits 

only a very slight decrease). 

 

 

 

Figure 3.14.  Breakdown of the Contributions of Skin Friction and Pressure 
Forces to Total Drag Over the Unperforated 52-Cavity Small Width Test Case 
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Skin-friction drag across the overall cavity region itself was found to be  0.000032 

N (i.e. effectively zero).  Pressure drag was 1.5556 N. This skin friction value, although 

very small,  is the highest of the three cases examined in this section,  due to the inability 

of the reversed flow jet to form when vertical walls separating cavities are not perforated.  

The pressure drag for the unperforated case is the lowest of the three cases, but has the 

similar linear relationship as the gated and ungated cases, increasing at a rate of 596.6 

N/m across the overall cavity region. Note that this rate is greater than seen in the gated 

and ungated cases, yet pressure drag is lowest of the three for this case. This suggests that 

the downstream pressure spike at the end of the cavity region in cases with perforated 

cavities causes an increased jump in pressure drag. The minor changes in the skin friction 

and pressure drag cancel out however, as the end resultant total drag force for the 

unperforated case remains within 0.1% of both previous (perforated) cases. 

 

3.4. COMPARISON TO FLAT PLATE RESULTS 

The primary focus of this study is to determine whether the driven micro-cavity 

region can perform better in terms of experiencing less overall drag than an unmodified 

(no embedded micro-cavities) flat plate. In order to generate the skin friction drag 

associated with a reference (unmodified) flat plate boundary layer over the same length 

as the micro-cavity regions studied, an additional flat plate marching simulation was 

performed (see Section 2 of this thesis) using the increased length (from leading edge of 

the flat plate, but including the length of the domain for the elliptic simulations with the 

micro-cavities). The reference flat plate skin friction drag for the section of domain 

length as modeled in simulations of the embedded micro-cavity concept could then be 
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readily computed. Here, for the purpose of direct comparison with drag only within the 

overall micro-cavity region itself, the skin friction drag over the leading and trailing flat 

plate regions of the micro-cavity region were then subtracted as well, i.e., only reference 

skin friction drag over the length of the micro-cavity region itself (0.0026 m) was used 

for comparisons to micro-cavity drag results. Results for each of the three previous cases 

versus reference flat plate section drag values are tabulated in Table 3.1. 

 

 

Table 3.1. 52-Cavity Small Width Region Drag Comparison of Baseline Grid Cases 

Case 
Viscous 

Drag [N] 

Pressure 

Drag [N] 

Total 

Drag [N] 

Total Drag 

(Flat Plate) [N] 

Drag Reduction 

[%] 

Gated -0.009910 1.5700 1.5601 1.906 18.1503 

Ungated -0.026841 1.5822 1.5553 1.906 18.3984 

Unperforated -0.000032 1.5556 1.5556 1.906 18.3841 

 

 

Total skin friction drag on the reference flat plate section of length equal to the 

region with micro-cavities is 1.906 N. In each of the three cases considered with micro-

cavities, the skin friction drag contributed a very small negative component to the overall 

drag (a net gain in thrust). All effective drag in the gated, ungated, and unperforated cases 

is therefore attributed to pressure forces acting on the vertical cavity walls. Total drag 

over the driven micro-cavity region is ~1.56 N. All test cases with cavities therefore had 

significant drag reductions as measured from a reference flat plate boundary layer; these 

drag reductions were approximately 18%. 
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3.5. REDUCED MACH NUMBER RESULTS 

In order to study the effect of Mach number on drag reduction results, the same 

three test cases (gated, ungated, perforated) were conducted using a reduced free-stream 

Mach number of 1.2. All other input parameters including a 10 cm upstream flat plate, 

the configuration geometry itself and grid resolution remain unchanged (i.e. ‘small width’ 

cavities were used with the ‘baseline’ grid resolution). Additionally, the same 

computational methodology was used. For all three test cases with micro-cavities 

previously considered at a free-stream Mach of 2.0, the time history of the overall drag 

demonstrated definite convergence to a converged single drag value. This remains true 

only for the unperforated case using the fine grid when the free-stream Mach is equal to 

1.2.  For that case the total drag is 1.0209 N. Figure 3.15 and Figure 3.16 show the gated 

and ungated drag versus iteration plots, for free-stream Mach of 1.2, respectively. 
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Figure 3.15.  Drag Time History Plot for the Gated 52-Cavity 
Small Width Mach 1.2 Test Case 

 

 

 

Figure 3.16.  Drag Time History Plot for the Ungated 52-Cavity 
Small Width Mach 1.2 Test Case 
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Significant oscillations are present in the drag result for the gated and ungated 

cases. The average drag value, however, seemingly remains constant as the oscillations 

become regular. This shows that the flow is exhibiting ‘quasi-steady’ characteristics. 

Average drag value for the gated simulation is 1.157 N (13% higher than the 

unperforated case). Average drag for the ungated simulation is 1.241 N (22% higher than 

the unperforated). 

The trends observed previously for the Mach 2.0 case generally hold for the Mach 

1.2 case in terms of decreased skin friction drag inside the micro-cavity region itself 

(essentially zero), and pressure drag component increasing linearly with x across the 

region with micro-cavities. Since only a ‘quasi-steady’ (oscillatory about a fixed value) 

result exists for drag for the gated and unperforated cases, chatter exists in the resulting 

cumulative drag forces axial distribution plots shown in Figure 3.17 and Figure 3.18. 
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Figure 3.17.  Breakdown of the Contributions of Skin Friction and Pressure 
Forces to Total Drag Over the Gated 52-Cavity Small Width Mach 1.2 Test Case 

 

 

Figure 3.18.  Breakdown of the Contributions of Skin Friction 
and Pressure Forces to Total Drag Over the Ungated 

52-Cavity Small Width Mach 1.2 Test Case 
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The chatter is most evident in the pressure drag in the cavity. These figures serve 

only to show qualitatively the decomposition of drag forces. The results displayed are 

only a snapshot in time of the oscillatory drag value and do not represent a time-averaged 

drag result. However, Figure 3.17 and 3.18 demonstrate that the cumulative pressure and 

shear distributions behave in a generally similar manner as seen in the Mach 2.0 cases. 

The total time-averaged drag values for each of the three Mach 1.2 cases as well 

as a reference total drag for a flat plate section over the same length are tabulated in 

Table 3.2. The drag associated with the leading and trailing edge sections of the elliptic 

domain length has been subtracted from the results for cases with micro-cavities and for 

the reference flat plate section drag values,, i.e. only drag values acting over the micro-

cavities, or the reference length of the micro-cavity region,  is considered and compared 

in this table. 

 

 

Table 3.2.  Drag Comparison of Baseline Grid Cases for Mach 1.2 Flow 

Case 
Total Drag 
[N] 

Total Drag 
(Flat Plate) [N] 

Drag Reduction 
[%] 

Gated 0.8539 0.878 2.745 
Ungated 0.9372  0.878 (6.742) 
Unperforated 0.717058 0.878 18.3305 

 

 

The unperforated case, the only Mach 1.2 case in the present section that 

converged to a single fixed value of drag (no oscillatory behavior), outperforms the 

reference flat plate in terms of achieving a reduction in drag of 18.3305%, which is 

nearly the exact same result as obtained for Mach 2.0 free-stream flow. The gated case 

exhibits a 2.745% reduction in total drag from a reference flat plate length for this Mach 



 

 

53

1.2 flow. Finally, the ungated case has 6.742% greater drag than the reference flat plate 

section. The reduced Mach number seems to have an adverse effect on the convergence, 

or transitory behavior, of the gated and ungated cases, and skews the total overall drag 

results upward. The fully converged unperforated case performs the same for the two 

free-stream Mach numbers.  
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4. 208-CAVITY SMALL WIDTH BASELINE GRID RESULTS 

This section provides results from a case study that utilized an overall cavity 

region four times the length of that used in the test cases presented in Section 3 (i.e. 

increased the number of cavities, and hence the length of the cavity region, by a factor of 

four). This was done to study the relationship between overall cavity region lengths and 

drag reduction potential. The 208-cavity (small cavity width) geometry is analyzed using 

the 211-block 21 x 21 (in cavity) node baseline grid. This case uses the same free-stream 

conditions (M∞ = 2.0, T∞ = 288 K, P∞ = 101325 N/m2) and the same boundary layer 

profile (as generated by a marching simulation to a location 10 cm from the leading edge 

of a flat plate) as the 52-cavity (small width) cases presented in the previous section. The 

length of the cavity region is 0.0104 m (1.04 cm). Only one test case, the gated 

configuration, was analyzed using the 211 block 208-cavity geometry due to 

computational resources required. A total of 11 gates are used in this case, with gates 

evenly spaced at the 17th, 34th, etc. walls (i.e., at x = 0.0016 m, 0.00245 m, 0.0033 m, 

0.00415 m, 0.005 m, 0.00585 m, 0.0067 m, 0.00755 m, 0.0084 m, 0.00925 m, and 0.0101 

m). All other vertical cavity walls were perforated. Flow Mach contours are presented for 

this converged case in Figure 4.1. 
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Figure 4.1.  Mach Number Contours from VULCAN Showing the Incoming Flow 
Over the 208-Cavity Small Width Mach 2 Test Case 

 

 

The simulation for the 208-cavity (small width) region begin with a non-time 

accurate solution with a CFL beginning at 0.1, stepping up to 0.5 after 10,000 iterations, 

and then ramping to 1.0 until 20,000 iterations were reached. This is the same CFL 

scheme used in the 52-cavity cases. After approximately 400,000 iterations, the solution 

converged with a fixed drag value of 7.0451 N. The complete time history for the gated 

208-cavity small width region simulation is given in Figure 4.2. 
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Figure 4.2. Drag Time History Plot for the Gated 208-Cavity Mach 2 Test Case 
 

 

At 400,000 iterations the simulation was switched to use a time-accurate scheme 

as shown in Figure 4.2. No difference in the resulting drag value was observed. This is 

the same behavior (time accurate simulations yielding the same drag values as 

simulations using local time-stepping, for cases that converged to a steady fixed drag 

value) that was exhibited in the previous 52-cavity Mach 2 cases. 

Pressure contours for the converged simulation are presented in Figure 4.3. The 

gated 208-cavity case does not have the weak pressure waves originating from each gate 

location as seen in the gated 52-cavity small width case, at least at the level of resolution 

of the contours shown. However, the overall trend of increasing pressures match the 

behaviors noted in previous cases. Again, the local area of highest pressure occurs at the 

end of the cavity region, on the downstream top wall of the last cavity, where the flow re-
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establishes on the trailing flat plate section downstream of the micro-cavity region; this 

region is shown enlarged in Figure 4.4. 

 

 

 

Figure 4.3.  Pressure Contours for the Gated 208-Cavity 
Small Width Mach 2 Test Case 
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Figure 4.4.  Pressure Contours for the Gated 208-Cavity Small Width Case 
Enlarged for Detail at the End of the Cavity Region 

 

 

A small jet of reversed flow is present passing through the cavity wall 

perforations, as shown in Figure 4.5. This area corresponds to a negative u-velocity of a 

magnitude of about 6 m/s or about 1% of the free-stream velocity, the same magnitude as 

seen in the 52-cavity gated case in Section 3. While the magnitude of the reversed flow 

jet is very small, it represents an area of negative velocity and therefore actually 

contributes very slightly to overall thrust. Streamtraces in Figure 4.5 for an upstream 

region from first cavity to first gate show a single and very well-structured flow vortex 

that extends throughout all the cavities enclosed by the first gate. 
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Figure 4.5.  U-Velocity Contours and Flow Streamtraces Indicating Reversed 
Flow in the Cavities Bounded by the First Gate 

 

 

Further inspection of the flow slightly downstream shows that the region 

containing cavities between the first gate and the second gate of this flow does not 

contain a region of reversed flow, shown in Figure 4.6. Instead, the magnitude of the 

positive u-velocity of flow passing through the perforations in that area is greater than 

that of flow in other areas of the cavity region. This behavior matches that of the gated 

52-cavity case as well. Continuing downstream through the cavity region, flow between 

gates alternate between reversed and non-reversed flow. The strength of the non-reversed 

flow decreases with distance downstream. 
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Figure 4.6.  U-Velocity Contours and Flow Streamtraces Indicating Both 
Reversed and Non-Reversed Flow Near the Second Gate 

 

 

The distribution of cumulative viscous and pressure drag forces acting on the 

domain with micro-cavities is shown in Figure 4.7. Overall skin friction drag within the 

overall micro-cavity region is -0.0011 N, hence representing a contribution to thrust, 

rather than drag, although extremely small. The actual drag is therefore attributed to the 

pressure forces acting on the vertical cavity walls. This overall drag force within the 

cavity region is 6.396 N.  Pressure drag shows the same linearly-increasing trend as noted 

in the 52 cavity case and increases at a rate of 608.424 N/m from beginning to end of the 

micro-cavity region. This is within 5% of the ~576 N/m relationship observed for the 

gated 52-cavity small width test case. 
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Figure 4.7.  Breakdown of the Contributions of Skin Friction and Pressure Forces 
to Total Drag Over the Gated 208-Cavity Small Width Mach 2 Test Case 

 

 

Drag totals for the gated 208-cavity test case are presented in Table 4.1. 

Compared to a reference flat plate of equal length of the cavity region, the micro-cavities 

exhibit a drag reduction of 16.218%. Note, however, that while for this particular cavity 

region (with a length of 0.0104 m over the cavities themselves the driven micro-cavities 

still demonstrate a positive effect on reducing the overall drag, eventually there will be a 

length (for a set cavity spacing and input conditions) where a reference flat plate will 

outperform a geometry with embedded micro-cavities in terms of reduced drag. This is 

because the micro-cavity concept appears (in this study) to exhibit linearly increasing 

pressure drag, while a flat plate has an exponentially decaying (slowly decaying) skin 

friction drag (although the decay is very small as measured from a linear relationship). 
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Table 4.1.  208-Cavity Small Width Drag Results 

Case Viscous 
Drag [N] 

Pressure 
Drag [N] 

Total Drag 
[N] 

Total Drag 
(Flat Plate) [N] 

Drag 
Reduction [%] 

Gated -0.0011 6.396 6.385 7.621 16.218 
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5. FINE GRID CASE STUDY 

In order to determine the effect of a more refined grid on the results obtained in 

this investigation, the following case study re-examines baseline grid test cases presented 

in Section 3 (21 x 21 nodes in each cavity)  utilizing a fine grid with 41 x 41 nodes in 

each cavity (quadruple the grid points as the baseline grid). Due to the high 

computational expense associated with utilizing a fine grid, only two cases are considered 

in this section:  gated and unperforated, for a free-stream Mach number of 2.0 and small-

width cavity configuration. The same CFL and non-time accurate solution scheme used 

for the baseline grid results presented in Section 3 on the same configurations are used in 

these fine grid cases. 

 

5.1. GATED FINE GRID RESULTS 

The overall drag versus iteration history for the fine grid gated 52 (small-width) 

cavity simulation is given in Figure 5.1. This plot shows that the solution does not 

converge to a single value, as seen for the baseline grid cases presented in Section 3. 

Instead, the computed overall drag value (composed of contributions from skin friction 

on the upstream and downstream flat plate sections associated with the micro-cavity 

domain simulations and pressure drag within the micro-cavity region itself) exhibits 

significant oscillations. However these oscillations clearly bracket a fixed averaged 

(iteration-averaged) value. This sort of behavior will be referred to (for the purpose of 

discussion here) as “quasi-steady” convergence. The bottom plot shows a larger view of 

the detail region of the iteration history that is highlighted in red. The iteration-averaged 

drag value over the last 8000 iterations is 2.273 N. This drag value is actually within 2% 
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of the drag value found using the baseline grid for the gated 52-cavity small cavity width 

test case discussed in Section 3 (which exhibited steady convergence to a fixed value).  

As described earlier for other cases and seen in the plot, the time-accurate simulation 

(following the initial local time-stepping simulation) essentially gave the same oscillatory 

behavior about the same iteration-averaged drag value. 
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Figure 5.1.  Time History Plot (Top) for the Gated 52-Cavity Small Width Mach 2 
Test Case Using the 41 X 41 Node Fine Grid, Zoomed for Detail (Bottom) 
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A snap-shot of the pressure contours for the fine grid simulation at the end of the 

simulation run, presented in Figure 5.2, show (as expected due to the oscillatory behavior 

in drag) significantly more variability in pressure and inter-cavity interaction and vortex 

shedding associated with the cavity region than seen in the steady simulation using the 

baseline grid. Unlike the baseline grid simulation, in which the location of the highest 

pressure was seen at the last (downstream) cavity top right wall where the flow re-

establishes on the downstream flat plate section, there are articulated repeating zones of 

higher pressures within the cavities themselves, clearly associated with cavity-to-cavity 

interactions and shedding of vortices. However, note that the magnitudes of the variations 

in pressure as seen in these contours are not very large, i.e., the contours, although 

distinct, actually represent an overall small change in pressure. 
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Figure 5.2.  Pressure Contours for the Gated 52-Cavity Small Width Geometry 
Using the 41 x 41 Node Fine Grid (Top) and Enhanced View (Bottom) Over the Region 

Between Gates 
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The larger (zoomed) view of the pressure contours within the cavities in Figure 

5.2 indicates a clearly defined alternating pattern of high and low pressurization within 

the cavities themselves, generally alternating between neighboring cavities, or cavity sets. 

These patterns of over-pressurized and under-pressurized fluid within the cavities are 

associated with vortex shedding and consequent over-pressurization and under-

pressurization of the fluid directly above downstream adjacent cavities (see Figure 5.2).  

This effect results in a cyclic migration, or translation, of these zones of over-

pressurization and under-pressurization along the cavity region, hence the oscillatory 

nature of the overall drag results about an averaged value. 

U-velocity (axial velocity component) contours for this fine grid case (again, 

representing a time ‘snap-shot’ of the flow-field) are shown in Figure 5.3 for a portion of 

the cavity region. A reversed flow ‘jet’ upstream of the first gate is seen in the lower 

portion of the cavities, as also seen in the previously discussed baseline grid case. In 

general, however, there is much less structure and regularity of the flow due to the 

oscillations discussed above. There is indication of some reversed flow passing through 

perforations in the cavity vertical walls downstream of the first gate. This is in contrast to 

the visualization provided by the baseline grid velocity contours in Section 3, in which 

the flow appeared to be only moving in the downstream (positive x-direction) between 

the first and second gate. 
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Figure 5.3.  U-Velocity Contours of the Fine Grid Gated 52-Cavity 
Small Width Mach 2 Test Case 

 

 

The refinement in the grid for this case (from the baseline grid utilized for the 

same configuration discussed in Section 3) clearly indicates that the flow is destabilized 

both temporally and spatially from the baseline grid results predictions. The contours for 

the fine grid case presented here show upstream-to-downstream regular variability in 

pressurization between cavities and cavity regions, although pressurization changes are 

overall fairly small. These variations and associated temporal variability in drag are not 

seen in the base-line grid simulations shown earlier. This is a cause of concern and will 

be addressed as an important element for subsequent investigation for the concept studied 

here. However, it is significant that the iteration-averaged overall drag value for the 

oscillatory fine-grid simulation is almost the same as the steady baseline grid simulation. 
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5.2. UNPERFORATED FINE GRID RESULTS 

The second fine grid test case for this section corresponded to the same geometry 

as described in section 5.1, except that the vertical cavity walls were completely 

unperforated. This time-accurate simulation was initialized using the flow-field obtained 

at the final iteration in the perforated case described above. The iteration history for 

overall drag is shown in Figure 5.4 for this case. This plot demonstrates that the flow-

field for this case does not appear to reach the same degree of regularized “quasi-steady” 

convergence as exhibited for the perforated/ gated case. After 280,000 iterations, the time 

history begins to slightly repeat patterns, but is not as consistent in terms of showing 

fixed oscillations about an average as shown in the previous case. An iteration average 

over the last 10,000 iterations yields a drag value of 2.66 N, which is significantly higher 

than all other 52-cavity small width cases examined in this study. 
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Figure 5.4.  Time History Plot (Top) for Unperforated 52-Cavity Small Width 
Mach 2 Test Case Using the 41 x 41 Node Fine Grid, Zoomed for Detail (Bottom) 
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Due to the fact that this fine-grid simulation for the unperforated wall 

configuration shows no clear convergence to either a fixed drag value or to a definite 

iteration-averaged value, it is difficult at this time to draw strong conclusions from these 

results. As no convergence issues were found with the unperforated case using the 

baseline grid, it cannot be determined with certainty from this case alone whether 

perforations in the cavity walls contribute to some stabilization of the flow-field. Further 

study is warranted. 
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6. CAVITY SPACING, SIZING, AND GRID REFINEMENT STUDY 

Whereas the previous sections contain analysis of the physics and visualizations 

of the flow fields, this section analyzes purely drag reduction potential and flow-field 

steadiness. The primary focus is to provide information on the effect of the cavity region 

size, spacing between adjacent cavity walls, number of cavity walls and mesh sizing on 

the resulting stability of solutions and the total drag values. Simulations are conducted 

using mesh sequencing on three meshes:  coarse, baseline (medium), and fine. Mesh 

sequencing strategy used for much of the current work takes an input number of nodes on 

a fine grid (in this case corresponding to 41 x 41 nodes in each cavity), then generates 

coarser meshes internally by removing every other node on the grid lines. The coarsest 

grid is then solved for a set number of iterations, and then values are interpolated up to 

the next finer level, solved again for a set number of iterations, and so forth. 

All results in the current section are for elliptically-solved boundary layer regions 

which are underlaid by driven cavities, with these domains beginning 1.0 m downstream 

of the leading edge of a flat plate. Free-stream conditions correspond to a static pressure 

of 26,500 N/m2 and a static temperature of 223.26 K. The test cases are divided into three 

general categories in terms of for both cavity physical scale and the free-stream Mach 

number used:  Mach 1.2 flow over medium-width cavities, Mach 1.2 flow over small-

width cavities, and Mach 3.0 flow over medium-width cavities. 

 

6.1. MACH 1.2 MEDIUM CAVITY WIDTH 

The first case study uses a free-stream Mach number of 1.2 and begins 1.0 m 

downstream of the leading edge of the flat plate. Figure 6.1 provides a schematic of the 
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tested geometry. Medium width cavities are modeled with perforated cavity walls with 

height of perforations of 0.00015 m. These medium width cavity cases correspond to a 

spacing of 0.000125 m between each cavity wall or cavity region (block) boundary (for 

cases with removed walls). Height of the overall cavity region is held constant at 0.0005 

m, corresponding to a cavity height-to-boundary layer thickness of H/δ = 0.040164. The 

leading and trailing edges fore and aft of the cavity region are 0.00175 m and 0.001 m in 

length, respectively. Length of the cavity region itself is given in terms of number of 

cavities (N cavities), e.g. “2 cavities” corresponds to an overall cavity region equal in 

length to two cavity widths. Five cases are presented for this geometry, all of which 

resulted in steady convergence to fixed drag values for all grid levels (and residual drops 

of seven and more orders of magnitude on all three grid levels). Configurations for these 

cases are outlined in Table 6.1. 

 

 

 

Figure 6.1.  Micro-Cavity Region Geometry for Medium Cavity Width Test Case 
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Table 6.1.  Test Case Configuration for Mach 1.2 Medium Cavity Width 

Case Cavities Wall(s) 
R1 2 0 
R2 2 1 
R3 4 1 
R4 6 5 
R5 8 7 

 

 

Each case was run using the mesh sequencing scheme discussed previously. 

Figure 6.2 is a representative time history plot of drag for the 2-cavity cases R1 and R2. 

Each of the three meshes converges to a fixed drag value. There is a slight increase from 

the coarse grid in the baseline case, but for both cases, R1 and R2, no difference is seen 

between the baseline grid and the fine grid drag values. 
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Figure 6.2.  Mesh Sequenced Drag Time History Plot for Test Cases R1 and R2 
 

 

Results that compare the drag characteristics of these cavity cases to reference 

(flat plate) skin friction drag over the same length of plate are tabulated in Table 6.2. For 

each of the configurations examined, a reference (unmodified flat plate) total skin friction 

drag was calculated that includes the leading edge region upstream of the cavity region, 

the trailing edge region downstream of the cavity region, and the cavity region itself; this 

is designated Total Drag (ref) in Table 6.2. Further, reference flat plate skin friction drag 

for only the leading and trailing edge regions in the elliptic domain was computed, 

designated as LE/TE Drag (ref) in Table 6.2. This allows determination of the reference 

flat plate skin friction drag for the length of the cavity region alone, designated as Cavity 

Drag (ref). This reference flat plate drag over the cavity region alone can then be directly 
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compared to the total drag obtained from the simulation results with cavities, for each 

case. 

 

 

Table 6.2.  Tabulated Drag Results for Mach 1.2 Medium Width Cavity Test Cases 

Case Total Drag 
(Ref) [N] 

LE/TE 
Drag (Ref) 
[N] 

Cavity 
Drag (Ref) 
[N] 

Total 
Drag  
(Test) [N] 

Cavity 
Drag 
(Test) [N] 

Drag 
Reduction 
[%] 

R1 0.177816 0.163 0.01482    0.1665 0.0089 39.95 
R2 0.177816 0.163 0.01482    0.1653 0.0094             36.57 
R3 0.192634 0.163 0.02963   0.1608 0.0225             24.06 
R4 0.207452 0.163 0.04445   0.1601 0.03466            22.02 
R5 0.22227 0.163 0.05927   0.1614 0.0484               18.34 

 

 

The value for cavity drag (test) in Table 6.2 was taken to be only the resulting 

pressure drag in the region, as skin friction over the cavities was negligible. Figure 6.3 

shows the comparisons of reference flat plate skin friction drag values for i) the entire test 

region (leading edge, trailing edge, and overall cavity region) and ii) the leading and 

trailing edges only to the results obtained from the VULCAN simulations for the plates 

with underlying micro-cavities. All five cases exhibited lower drag for the driven cavity 

configurations, as compared to the flat plate reference values. 
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Figure 6.3.  Reference-to-Test Drag Value Comparison for Test Cases R1-R5 
 

 

The delta between the two drag values in Figure 6.3 corresponds to the drag over 

the cavity region alone, for each test case. The percentage in drag reduction is plotted for 

each test case in Figure 6.4. The best performing case is R2 (2-cavity, 1 wall) with a total 

of 39.95% reduction in drag compared to a flat plate of the same length. Each of the test 

cases exhibits at least an 18% drag reduction. Cases R1 and R2 show that for two cavities 

of equal length, the introduction of the cavity wall further reduces the total drag over the 

cavity region. 
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Figure 6.4.  Overall Percentage of Drag Reduction for Cases R1-R5 
 

 

In addition to cases R1-R5, a number of other cases with varied numbers of cavity 

walls were simulated in order to better develop a relationship between number of internal 

walls (for a given overall cavity region length) and drag; however, these cases did not 

exhibit convergence to a fixed drag value. A number of them, however, were quasi-

steady solutions, oscillating around a given value, although some were completely 

divergent. A representative time meshed-sequenced time history plot for 8-cavity cases is 

given in Figure 6.5. Inspection of the coarse grid data indicates that drag does continue to 

decrease with increasing number of cavity walls; however the baseline and fine grid 

values show a general lack of convergence for nearly all cases, rendering further analysis 

on those cases extraneous. Only the 8-cavity, 7-wall case exhibits solid convergence to a 
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single value, indicating that increasing number of walls not only decreases drag, but 

contributes to stability in the solution. 

 

 

 

Figure 6.5.  Mesh-Sequenced Time History Plot for 8-Cavity Configuration 
 

 

Time behavior of all of the Mach 1.2 medium cavity width cases is presented in 

Figure 6.6. Cases are classified in one of three ways:  steady (denoted by S), oscillatory 

(denoted by O), and unsteady (denoted by U). For a constant number of walls, 

unsteadiness becomes more prevalent as the number of cavities increased. Further, for a 

constant number of cavities, cases demonstrate greater stability with increasing number 

of walls. 
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Figure 6.6.  Level of Steadiness for All Mach 1.2 Medium Cavity Width Cases 
 

 

6.2. MACH 1.2 SMALL CAVITY WIDTH 

The second case study in this section examines flow over a similar geometry as 

the previous study, but with a reduced cavity width, height, and leading/trailing edge 

plate lengths. Free-stream Mach number is maintained at 1.2, free-stream temperature 

and pressure are kept at 223 K and 26,500 N/m2, respectively. The ‘small cavity width,’ 

is used here, corresponding to individual cavity regions of width 0.00005 m (0.005 cm) 

and a cavity height of 0.0002 m. This corresponds to a cavity height-boundary layer 

thickness ratio of H/δ = 0.016066, meaning that the cavity region height is 1.6% of the 

boundary layer thickness. A schematic of the geometry dimensions is provided in Figure 

6.7. The same incoming boundary layer profile and free-stream conditions used in the test 

cases in the previous section are used for the small cavity width test cases. 
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Figure 6.7.  Micro-Cavity Region Geometry for Small Cavity Width Test Case 
 

 

Two test cases are considered for the small cavity width configuration, outlined in 

Table 6.3. The term ‘gates’ refers to a cavity wall where h = 0 m, i.e., there is no 

perforation in the cavity wall. The gates are spaced at even intervals through the cavity 

region. 

 

 

Table 6.3.  Test Case Configuration for Mach 1.2 Small Cavity Width 

Case Cavities Walls Gates 
S1 52 51 2 
S2 208 207 11 

 

 

Time history plots for the two cases are presented in Figure 6.8 and 6.9. Both 

cases converge to a fixed drag value. This value increases slightly with each refinement 

of the grid though the baseline and fine grid values differ only slightly. Increases from the 
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coarse grid to the baseline occurred in the previous case study for medium width cavities 

as well. This suggests that while the coarse grid is slightly underestimating the total drag 

value, with each grid refinement, the solution is asymptotically approaching a fixed 

value. 

 

 

 

Figure 6.8.  Case S1 Drag Time History Plot 
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Figure 6.9.  Case S2 Drag Time History Plot 
 

 

Reference flat plate skin friction drag values for comparison are computed using 

the same procedure as previously described for the medium cavity width cases. The full 

tabulated results for the two test cases are given in Table 6.4. As with the R1-R5 cases, 

the skin friction over the cavity region itself was found to be negligible, so the cavity 

drag (test) value in Table 6.4 includes only the pressure drag obtained in the simulations. 

 

 

Table 6.4.  Tabulated Drag Results for Mach 1.2 Small Width Cavity Test Cases 

Case Total Drag 
(Ref) [N] 

LE/TE 
Drag (Ref) 
[N] 

Cavity 
Drag (Ref) 
[N] 

Total 
Drag  
(Test) [N] 

Cavity 
Drag 
(Test) [N] 

Drag 
Reduction 
[%] 

S1 0.2193064 0.0652 0.1541 0.2099 0.1437 6.749 
S2 0.6816281 0.0652 0.61643 0.652 0.5859 4.953 
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Both test cases with micro-cavities performed better than the reference 

unmodified flat plate; however, the percentage reduction in drag was significantly less 

than that observed in the medium width test cases with the same incoming flow profile. 

S1 achieves nearly 7% reduction in drag while S2 achieves about 5%. Despite the 

reduced cavity width presented in Case S1 and S2, the number of cavities is high enough 

such that the overall length of the cavity region is greater than that of any of the R1-R5 

cases. This further demonstrates the trend that as the number of cavities increase, the 

overall percentage of drag reduction decreases as seen in the 208-Cavity Mach 2 case 

presented in Section 4. Fundamentally speaking, this makes sense as the coefficient of 

friction, cf, for a flat plate decreases with distance along the plate, while the pressure drag 

associated with cavities demonstrates approximately (at best) a linear increase with 

distance along the plate. Based on this observation, at some point, the reference flat plate 

skin friction drag will eventually reach a value low enough such that the benefit of the 

cavity region disappears. The characteristic of the linearity of the observed pressure drag 

in the micro-cavity regions will be discussed at length in a subsequent section. 

 

6.3. MACH 3.0 MEDIUM CAVITY WIDTH 

The third case study in this section uses the same medium cavity width geometry 

and grid as is presented in Figure 6.1, with free stream Mach number corresponding to 

3.0 (recall that a fixed boundary layer profile is used at elliptic domain inflow, as 

obtained from an upstream 1 meter flat plate simulation) with a corresponding cavity 

height-to-boundary layer thickness ratio of H/δ = 0.043994. Free-stream temperature and 

pressure values are 223 K and 26,500 N/m2, respectively. A total of eight test cases are 
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presented for this configuration; these cases are listed in Table 6.5. Multiple parameters 

are varied in the Mach 3.0 test cases, including perforation height. Additionally, very fine 

mesh sizing, time accuracy, and unperforated configurations are investigated. Steady 

convergence was achieved for all of the test cases in which drag results are presented. 

Resulting drag values are tabulated in Table 6.6. 

 

 

Table 6.5.  Test Case Configuration for Mach 3.0 Medium Cavity Width 

Case Cavities Walls Notes 
T1 12 11  
T2 12 11 Unperforated (h = 0 for all walls) 
T3 12 11 h = 0.00025 m (50% of cavity height) 
T4 12 11 Very fine grid (161 x 41 nodes in each cavity) 
T5 12 11 Time accurate solution 
T6 52 51 2 gates, equally spaced, 17th and 34th wall location 
T7 52 51  
T8 52 51 Unperforated (h = 0 for all walls) 

 

 

Table 6.6. Tabulated Drag Results for Mach 3.0 Medium Width Cavity Test Cases 

Case Total Drag 
(Ref) [N] 

LE/TE 
Drag (Ref) 
[N] 

Cavity 
Drag (Ref) 
[N] 

Total 
Drag  
(Test) [N] 

Cavity 
Drag 
(Test) [N] 

Drag 
Reduction 
[%] 

T1 0.6164 0.62975 0.3425 0.8944 0.278 18.832 
T2 0.6286 0.62975 0.3425 0.9006 0.272 20.584 
T3 0.6208 0.62975 0.3425 0.8956 0.2748 19.766 
T4 0.6131 0.62975 0.3425 0.8866 0.2735 20.146 
T5 0.6166 0.62975 0.3425 0.8961 0.2795 18.394 
T6 0.6178 0.62975 1.4885 1.976 1.3582 8.754 
T7 0.6034 0.62975 1.4885 1.9747 1.3713 7.874 
T8 0.6347 0.62975 1.4885 1.9838 1.3491 9.365 
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Drag is reduced in all eight test cases compared to reference flat plates of equal 

length, ranging from 8% to over 20%. Case T1 and T5 are identical with respect to 

geometry and configuration. The only difference is that T5 is a time-accurate solution as 

opposed to the local time-stepping. Despite the change in the time scheme, no significant 

difference exists between the two results. The very fine grid (within the cavity regions) in 

T4 shows only a ~1% change in drag reduction compared to T1. It is significant that 

simulation using the very fine grid examined in this test case still converged to a fixed 

drag value, i.e., exhibited no oscillatory behavior. Best performance is obtained in the 

unperforated test cases in both the 12-cavity and 52-cavity cases (T2 and T8). Case T3 

with perforations spanning 50% of the cavity height outperformed Case T1 with the 

original perforation height. Finally, the gated T6 case performs ~1% better than T7 which 

is completely ungated. Figure 6.10 shows graphically the percentage reductions for each 

test case. 
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Figure 6.10.  Overall Percentage of Drag Reduction for Cases T1-T8 
 

 

The Mach 3.0 case study results in Figure 6.10 show the lower overall percentage 

of drag reduction for the 52-cavity cases vs. the 12-cavity case. This agrees with the 

previous trends seen in this work. Test cases T1-T8 provide further insight into the 

potential differences between gated, ungated, and unperforated cavity walls. Slightly 

higher differences in drag are present in these cases as opposed to Section 3 results. 

Further study on the perforations is needed to better ascertain the drag reduction potential 

and potential added stability provided for varied geometry and flow conditions. 
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7. SUMMARY AND CONCLUSIONS 

In this investigation, the VULCAN CFD code was used to analyze fluid dynamic 

drag effects and flow details for driven micro-cavities downstream and beneath 

compressible turbulent boundary layer flows. This entailed the simulation of 

representative upstream flat plate boundary layers for various free-stream Mach numbers 

and upstream plate lengths. Boundary layers from these upstream simulations were then 

used as the inflow profiles for fully elliptic domains containing various configurations of 

embedded driven micro-cavities. These configurations consisted of embedded thin-

walled cavities oriented transverse to the direction of the flow, which allowed two-

dimensional simulations in the present study. 

After initial upstream flat plate simulations were completed, a detailed study of 

the flow physics and drag performance was then conducted on a 52-cavity geometry with 

a baseline 21 x 21 node (in each cavity) grid using the inflow boundary layer profiles as 

generated over a 10 cm flat plate for free-stream Mach numbers of Mach 1.2 and Mach 

2.0. The test configurations for this study were divided into three categories based on 

geometry of the cavity walls:  gated (perforations through all vertical cavity walls, with 

the exception of two equally spaced non-perforated walls, both extending the entire 

cavity height), ungated (perforated vertical walls used throughout the entire cavity 

region), and unperforated (no perforations in any vertical cavity walls). The study showed 

that all three configurations yielded approximately an 18% reduction in overall drag as 

compared to a reference flat plate of equal length. Skin friction drag in all cases was 

reduced to near-zero, with most cases showing a negative drag contribution (a net gain in 

thrust). Pressure drag in the region with cavities increased linearly with axial distance. 
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Cavity wall perforations and gating were shown to have little impact on the net drag 

results for this case study. All cases exhibited essentially the same total drag value; 

distributions along the cavity region length for the separate contributions of skin friction 

drag and pressure drag were analyzed for all cases. Reversed flow jets penetrating 

through the perforations of the vertical walls were observed in both gated and ungated 

cases, contributing to improved skin friction drag reduction over the unperforated case; 

however, the pressure drag in these cases also increased, negating the improved skin 

friction reduction. Mach 2.0 cases all exhibited steady convergence to a fixed drag value 

for the baseline grid. No difference was observed in the fixed drag value achieved when 

switching between local time-stepping and time-accurate solution methodologies. Test 

cases with the reduced free-stream Mach number of 1.2 only showed steady convergence 

for one of the three test configurations; specifically the unperforated vertical wall case. 

Only quasi-steady convergence (oscillatory variance about a given drag value) was 

obtained for the gated and ungated cases, rendering meaningful analysis of the drag 

results difficult. Such unsteadiness issues further arose when refining the mesh 

(quadrupling the number of nodes) for the Mach 2.0 cases. Steady convergence to a fixed 

drag value was not obtained for any wall configuration in the 52-cavity geometries for 

these particular fine grid cases. These quasi-steady and non-convergent results require 

further study and analysis in future works as variability in stability/instability 

characteristics observed in this investigation is of concern in assessing degree of grid 

convergence using driven micro-cavities. 

A parametric case study in terms of variations in cavity length, number of 

cavities, vertical wall spacing, and grid refinement was then conducted for turbulent 
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Mach 1.2 and Mach 3.0 flows, with the cavity region beginning 1 meter downstream of 

the leading edge of the flat plate. Compared to a reference flat plate, drag was reduced for 

the Mach 1.2 cases by as much as 40% for 2-cavity geometries. Drag reduction potential 

was found to decrease with increasing cavity number (corresponding to overall length of 

the cavity region for a given cavity width). Mach 3.0 cases using 52-cavity configurations 

exhibited drag reductions from 8-20% with the best performance shown in the 

unperforated case and ungated cases. This study showed that for a fixed number of cavity 

regions (corresponding to an overall length of the cavity region itself for a given 

geometry of individual cavity regions) the degree of steadiness of the solution improved 

with increasing number of vertical cavity walls. Further, the overall percentage of drag 

reduction from that of a reference flat plate decreased as the number of cavities, i.e. the 

length of overall region with micro-cavities, increased. Slight increases in overall drag 

were exhibited in the mesh sequencing strategy used for the parametric study as the grid 

became more refined through three grid levels (coarse, base-line, and fine). A number of 

test cases demonstrated a transition to quasi-steady oscillations about an average value of 

overall drag, as mesh refinement was increased. 

This investigation indicates that all driven micro-cavity test geometries that 

converged to a fixed overall drag value were superior in terms of providing less overall 

drag when compared to a reference flat plate of the same length under the same flow 

conditions. Skin-friction drag was reduced to near-zero values in cavity regions for all 

test cases and, in most cases, showed net contributions to thrust, although these negative 

skin friction values were very small. The dominant source of drag over the cavity region 

was caused by pressure acting in the axial direction on vertical cavity walls. No 
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appreciable difference was observed in using local time-stepping vs. time-accurate 

solution schemes. Further study is needed to understand and possibly control or eliminate 

the  divergent and oscillatory behavior exhibited in the reduced Mach number and in fine 

grid resolution cases and is the subject of ongoing work. 

Other topics that need to be examined regarding the concept of driven micro-

cavities include analysis of the feasibility of manufacturing and optimization of the 

concept. The feasibility of and/or costs associated with manufacturing representative 

micro-cavity geometries was not addressed in this investigation. For the purposes of the 

current analysis, vertical walls in the cavity region were taken to be infinitely thin. With 

respect to CFD simulations, this assumption allows for a preliminary fluids-based proof 

of concept for the driven micro-cavity technique; however, it has no practicality from the 

standpoint of manufacturability. Further studies could potentially examine the effects of 

finite thickness vertical cavity walls as well as the manufacturing capabilities required to 

generate the detailed micro-cavity geometries at the extremely small scales necessary. 

Systematic optimization of parameters such as cavity spacing, perforation height, etc. was 

also not done in this study. All test geometries used equally-spaced cavity walls, fixed 

aspect ratio, evenly-distributed gates, and uniform perforation heights. There remain a 

significant number of related concepts, or variations on the overall concept of driven 

micro-cavities, that need to be further examined. Such studies might include the effects of 

varied perforation heights and perforation patterns as well as optimization of gate 

locations and cavity spacing on the overall drag reduction performance. 
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APPENDIX A. 

SAMPLE VULCAN INPUT DECK 
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$************************************************** *******************$ 
$******************* Beginning of general control d ata ***************$ 
$************************************************** *******************$ 
$------------------- Parallel processing control da ta ----------------$ 
PROCESSORS           16.0   (No. of cpus to use) 
MESSAGE MODE         0.0   (Message passing strateg y: 0=stnd., 
1=buffered) 
$------------------ Geometric model type ---------- -------------------$ 
TWOD                 1.0   (twod, axisym, threed) 
$------------------- Grid file data --------------- -------------------$ 
GRID FORMAT      3.0   (1=s.b.form, 2=s.b.bin., 3=m .b.form., 
4=m.b.bin.) 
GRID                 0.0   (0=plot3d->3d ; plot2d-> 2d/axi, 1=plot3d-
>all) 
gridvulcansqueeze.grd 
GRID SCALING FACTOR  1.0   (Converts grid units to meters) 
$------------------- Restart file data ------------ -------------------$ 
RESTART OUT          1.0 
restartcavebar1.restart 
RESTART OUT INTERVAL  500.0 
$------------------- Output control data ---------- -------------------$ 
WARNING MESSAGES     0.0   (0=none, 1=wall funct., 2=temp. limit, 
3=both ) 
PLOT ON              3.0   (1=s.b.frm., 2=s.b.unfrm ., 3=m.b.frm., 
4=m.b.unfrm.) 
PLOT NODES           0.0   (Create PLOT3D files usi ng data averaged to 
the nodes) 
PLOT FUNCTION        8.0   (Create PLOT3D function file containing 
variables below) 
DENSITY 
VELOCITY 
PRESSURE 
TEMPERATURE 
MACH NO. 
LAM. VIS. 
EDDY VIS. RATIO 
GAMMA 
$------------------- Gas thermo, diffusion, and rea ction model data --$ 
GAS/THERMO MODEL     1.0   (0=CPG, 1=TPG, 2=n/a) 
CHEMISTRY MODEL      0.0   (0=frozen, 1=finite rate , 2=n/a) 
IMPLICIT CHEMISTRY   0.0   (0 or 1=analytical jacob ian, 2=numerical 
jacobian) 
GLOBAL VISCOUS       0.0   (solve the Navier-Stokes  equations) 
$------------------- Transport model data --------- -------------------$ 
VISCOSITY MODEL      1.0   (1=Sutherlands law) 
CONDUCTIVITY MODEL   0.0   (0=Prandtl no., 1=Wassil ej's law) 
UNIV. GAS CONST.     8314.34 
NO. OF CHEMICAL SPECIES   2.0 
/share/apps/Vulcan/Ver_6.2.0/Data_base/gas_mod.Lewi s_3 
N2      O2  
0.7686   0.2314 
$------------------- Reference condition data ----- -------------------$ 
ANGLE REF. FRAME     0.0   (0=alpha in xy plane, 1= alpha in xz plane) 
ALPHA                0.0   (angle of attack measure d C.C.W in degrees) 
NONDIM               1.0   (0=non.dimen., 1=dimen. static, 2=dimen. 
total) 
MACH NO.             2.0 
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STATIC TEMP.         288.0 
STATIC PRESS.        101325.0 
LAM. PRANDTL NO.     0.72 
LAM. SCHMIDT NO.     0.22 
TURB. PRANDTL NO.    0.90 
TURB. SCHMIDT NO.    0.90 
$------------------- Turbulence Model Data -------- -------------------$ 
TURB. MODEL         
 MENTER-SST   (SPALART, MENTER, MENTER-SST, K-OMEGA ) 
 TURB. INTENSITY     0.01 
 TURB. VISC. RATIO   0.10 
 BOUSSINESQ REY. STRESS       0.0 
 NO 2/3 RHOK IN REY. STRESS   0.0 
$------------------- Runge-Kutta scheme coefficient s -----------------$ 
NSTAGE               3.0    (no. of Runge-Kutta Sta ges) 
0.333333333333, 0.5, 1.0 
$------------------- Boundary and cut control ----- -------------------$ 
FLOWBCS              219.0   (no. of boundary condi tions to be 
specified) 
CUTBCS               103.0   (no. of C(0) connectiv ity conditions to be 
specified) 
BCGROUPS             7.0    (no. of boundary condit ion groupings) 
PATCHBCS             0.0    (no. of non-C(0) connec tivity conditions to 
be specified) 
IGNITION SUB-BLOCKS  0.0    (no. of ignition sub-bl ocks) 
BLOCKS               55.0    (no. of blocks) 
BLOCK CONFIG.        55.0    (no. of lines of block  configurations 
input) 
BLK I-STRESS J-STRESS K-STRESS   TURB  PLOT SOLVER REGION 
1     T        T      N        Y         Y    E/A     1 
2     T        T      N        Y         Y    E/A     1 
3     T        T      N        Y         Y    E/A     1 
4     T        T      N        Y         Y    E/A     1 
5     T        T      N        Y         Y    E/A     1 
6     T        T      N        Y         Y    E/A     1 
7     T        T      N        Y         Y    E/A     1 
8     T        T      N        Y         Y    E/A     1 
9     T        T      N        Y         Y    E/A     1 
10    T        T      N        Y         Y    E/A     1 
11    T        T      N        Y         Y    E/A     1 
12    T        T      N        Y         Y    E/A     1 
13    T        T      N        Y         Y    E/A     1 
14    T        T      N        Y         Y    E/A     1 
15    T        T      N        Y         Y    E/A     1 
16    T        T      N        Y         Y    E/A     1 
17    T        T      N        Y         Y    E/A     1 
18    T        T      N        Y         Y    E/A     1 
19    T        T      N        Y         Y    E/A     1 
20    T        T      N        Y         Y    E/A     1 
21    T        T      N        Y         Y    E/A     1 
22    T        T      N        Y         Y    E/A     1 
23    T        T      N        Y         Y    E/A     1 
24    T        T      N        Y         Y    E/A     1 
25    T        T      N        Y         Y    E/A     1 
26    T        T      N        Y         Y    E/A     1 
27    T        T      N        Y         Y    E/A     1 
28    T        T      N        Y         Y    E/A     1 
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29    T        T      N        Y         Y    E/A     1 
30    T        T      N        Y         Y    E/A     1 
31    T        T      N        Y         Y    E/A     1 
32    T        T      N        Y         Y    E/A     1 
33    T        T      N        Y         Y    E/A     1 
34    T        T      N        Y         Y    E/A     1 
35    T        T      N        Y         Y    E/A     1 
36    T        T      N        Y         Y    E/A     1 
37    T        T      N        Y         Y    E/A     1 
38    T        T      N        Y         Y    E/A     1 
39    T        T      N        Y         Y    E/A     1 
40    T        T      N        Y         Y    E/A     1 
41    T        T      N        Y         Y    E/A     1 
42    T        T      N        Y         Y    E/A     1 
43    T        T      N        Y         Y    E/A     1 
44    T        T      N        Y         Y    E/A     1 
45    T        T      N        Y         Y    E/A     1 
46    T        T      N        Y         Y    E/A     1 
47    T        T      N        Y         Y    E/A     1 
48    T        T      N        Y         Y    E/A     1 
49    T        T      N        Y         Y    E/A     1 
50    T        T      N        Y         Y    E/A     1 
51    T        T      N        Y         Y    E/A     1 
52    T        T      N        Y         Y    E/A     1 
53    T        T      N        Y         Y    E/A     1 
54    T        T      N        Y         Y    E/A     1 
55    T        T      N        Y         Y    E/A     1 
REGION CONFIG.       1.0   (no. of regions the bloc ks are grouped into) 
$******************* Region 1   control input 
*************************$ 
ROE    KAPPA    LIMITER     LIM-COEF         ENTRP( U)       ENTRP(U+a) 
      3, 3, 3,  4, 4, 4,  2.0, 2.0, 2.0,  1.0, 1.0,  1.0,  1.0, 1.0, 1.0 
FMGLVLS  NITSCG1  NITSCG2  NITSFG  #1ST-ORD.-C.G./I TER.  RES.;REL.,ABS. 
   1     50000                               0             -10.0   -
10.0       
MG-CYCLE  COARSE GRIDS  DQ-SMOOTH  DQ-CORR  DAMP-MEAN  DAMP-TURB 
   I            0          0.25      0.50      1.0        0.5 
TURB CONVECTION  DT RATIO  NON-EQUIL  POINT-IMP  CO MP MODEL  CG WALL BC 
     1ST           0.1       25.0          N         N          STW 
SCHEME TIME STEP  IT-STATS  CFL-MIN  ADP-CFL  #CFL- VAL  VISC-DT  IMP-BC  
REG-REST 
 DAF  LOCAL         10        0.1       Y         5         Y        N       
Y 
   1   5000     10000  20000  800000 
 0.1   0.1     0.5      1.0    1.0 
!******************* End of general control data ** *******************! 
BC GROUPS: NAME         TYPE         OPTION 
           AIR-IN1      PROFILE      PHYSICAL 
           AIR-IN2      PROFILE      PHYSICAL 
           AIR-IN3      PROFILE      PHYSICAL 
           AIR-IN4      PROFILE      PHYSICAL 
           ADB-WALL     AWALL        PHYSICAL 
           FARFIELD     EXTRAP       PHYSICAL 
           OUTFLOW      EXTRAP       PHYSICAL 
BC  NAME  BLK  FACE  PLACE DIREC1 BEGIN  END  DIREC 2 BEGIN  END  IN-
ORDER 
AIR-IN1    1    I     MIN    J     1     46     K     MIN   MAX     0 
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outbackmarchbase1.prf            J     MIN   MAX    K     MIN   MAX 
AIR-IN2    1    I     MIN    J     46    91    K     MIN   MAX     0 
outbackmarchbase2.prf            J     MIN   MAX    K     MIN   MAX       
AIR-IN3    1    I     MIN    J     91   136    K     MIN   MAX     0 
outbackmarchbase3.prf            J     MIN   MAX    K     MIN   MAX      
AIR-IN4    1    I     MIN    J     136  MAX    K     MIN   MAX     0 
outbackmarchbase4.prf            J     MIN   MAX    K     MIN   MAX    
ADB-WALL   1    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   2    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   3    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   4    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   5    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   6    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   7    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   8    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   9    J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   10   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   11   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   12   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   13   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   14   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   15   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   16   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   17   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   18   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   19   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   20   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   21   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   22   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   23   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   24   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   25   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   26   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   27   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   28   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   29   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   30   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   31   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   32   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   33   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   34   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   35   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   36   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   37   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   38   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   39   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   40   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   41   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   42   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   43   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   44   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   45   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   46   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   47   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   48   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   49   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   50   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
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ADB-WALL   51   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   52   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   53   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   54   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   55   J     MIN    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   1    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   2    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   3    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   4    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   5    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   6    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   7    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   8    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   9    J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   10   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   11   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   12   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   13   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   14   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   15   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   16   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   17   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   18   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   19   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   20   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   21   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   22   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   23   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   24   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   25   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   26   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   27   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   28   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   29   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   30   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   31   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   32   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   33   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   34   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   35   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   36   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   37   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   38   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   39   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   40   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   41   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   42   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   43   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   44   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   45   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   46   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   47   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   48   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   49   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   50   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   51   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   52   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
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FARFIELD   53   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   54   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
FARFIELD   55   J     MAX    I     MIN   MAX    K     MIN   MAX     0 
OUTFLOW    55   I     MAX    J     MIN   MAX    K     MIN   MAX     0 
ADB-WALL   3    I     MIN    J     MIN   21     K     MIN   MAX     0 
ADB-WALL   3    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   4    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   4    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   5    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   5    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   6    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   6    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   7    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   7    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   8    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   8    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   9    I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   9    I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   10   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   10   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   11   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   11   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   12   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   12   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   13   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   13   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   14   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   14   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   15   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   15   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   16   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   16   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   17   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   17   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   18   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   18   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   19   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   19   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   20   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   20   I     MAX    J     MIN   21     K     MIN   MAX     0 
ADB-WALL   21   I     MIN    J     MIN   21     K     MIN   MAX     0 
ADB-WALL   21   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   22   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   22   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   23   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   23   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   24   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   24   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   25   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   25   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   26   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   26   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   27   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   27   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   28   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   28   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   29   I     MIN    J     6     21     K     MIN   MAX     0 
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ADB-WALL   29   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   30   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   30   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   31   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   31   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   32   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   32   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   33   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   33   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   34   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   34   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   35   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   35   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   36   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   36   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   37   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   37   I     MAX    J     MIN   21     K     MIN   MAX     0 
ADB-WALL   38   I     MIN    J     MIN   21     K     MIN   MAX     0 
ADB-WALL   38   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   39   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   39   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   40   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   40   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   41   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   41   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   42   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   42   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   43   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   43   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   44   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   44   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   45   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   45   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   46   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   46   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   47   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   47   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   48   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   48   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   49   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   49   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   50   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   50   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   51   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   51   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   52   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   52   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   53   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   53   I     MAX    J     6     21     K     MIN   MAX     0 
ADB-WALL   54   I     MIN    J     6     21     K     MIN   MAX     0 
ADB-WALL   54   I     MAX    J     MIN   21     K     MIN   MAX     0 
CUT NAME  BLK  FACE  PLACE  DIREC1  BEGIN  END  DIR EC2  BEGIN  END  IN-
ORDER 
CUT_1      1    I     MAX     J      MIN   MAX    K      MIN   MAX     0 
CUT_1      2    I     MIN     J      MIN   MAX    K      MIN   MAX     0 
CUT_2      2    I     MAX     J      MIN   MAX    K      MIN   MAX     0 
CUT_2      3    I     MIN     J      21    MAX    K      MIN   MAX     0 
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CUT_3      3    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_3      4    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_4      4    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_4      5    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_5      5    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_5      6    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_6      6    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_6      7    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_7      7    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_7      8    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_8      8    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_8      9    I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_9      9    I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_9      10   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_10     10   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_10     11   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_11     11   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_11     12   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_12     12   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_12     13   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_13     13   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_13     14   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_14     14   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_14     15   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_15     15   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_15     16   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_16     16   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_16     17   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_17     17   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_17     18   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_18     18   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_18     19   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_19     19   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_19     20   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_20     20   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_20     21   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_21     21   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_21     22   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_22     22   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_22     23   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_23     23   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_23     24   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_24     24   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_24     25   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_25     25   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_25     26   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_26     26   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_26     27   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_27     27   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_27     28   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_28     28   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_28     29   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_29     29   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_29     30   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_30     30   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_30     31   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_31     31   I     MAX     J      21    MAX    K      MIN   MAX     0 
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CUT_31     32   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_32     32   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_32     33   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_33     33   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_33     34   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_34     34   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_34     35   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_35     35   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_35     36   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_36     36   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_36     37   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_37     37   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_37     38   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_38     38   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_38     39   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_39     39   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_39     40   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_40     40   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_40     41   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_41     41   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_41     42   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_42     42   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_42     43   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_43     43   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_43     44   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_44     44   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_44     45   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_45     45   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_45     46   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_46     46   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_46     47   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_47     47   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_47     48   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_48     48   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_48     49   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_49     49   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_49     50   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_50     50   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_50     51   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_51     51   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_51     52   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_52     52   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_52     53   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_53     53   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_53     54   I     MIN     J      21    MAX    K      MIN   MAX     0 
CUT_54     54   I     MAX     J      21    MAX    K      MIN   MAX     0 
CUT_54     55   I     MIN     J      MIN   MAX    K      MIN   MAX     0 
CUT_55     4    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_55     5    I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_56     5    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_56     6    I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_57     6    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_57     7    I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_58     7    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_58     8    I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_59     8    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_59     9    I     MIN     J      MIN   6      K      MIN   MAX     0 



 

 

103

CUT_60     9    I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_60     10   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_61     10   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_61     11   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_62     11   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_62     12   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_63     12   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_63     13   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_64     13   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_64     14   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_65     14   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_65     15   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_66     15   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_66     16   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_67     16   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_67     17   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_68     17   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_68     18   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_69     18   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_69     19   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_70     19   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_70     20   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_71     21   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_71     22   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_72     22   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_72     23   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_73     23   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_73     24   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_74     24   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_74     25   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_75     25   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_75     26   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_76     26   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_76     27   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_77     27   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_77     28   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_78     28   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_78     29   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_79     29   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_79     30   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_80     30   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_80     31   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_81     31   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_81     32   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_82     32   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_82     33   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_83     33   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_83     34   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_84     34   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_84     35   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_85     35   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_85     36   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_86     36   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_86     37   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_87     38   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_87     39   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_88     39   I     MAX     J      MIN   6      K      MIN   MAX     0 
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CUT_88     40   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_89     40   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_89     41   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_90     41   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_90     42   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_91     42   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_91     43   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_92     43   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_92     44   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_93     44   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_93     45   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_94     45   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_94     46   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_95     46   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_95     47   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_96     47   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_96     48   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_97     48   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_97     49   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_98     49   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_98     50   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_99     50   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_99     51   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_100    51   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_100    52   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_101    52   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_101    53   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_102    53   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_102    54   I     MIN     J      MIN   6      K      MIN   MAX     0 
CUT_103     3   I     MAX     J      MIN   6      K      MIN   MAX     0 
CUT_103     4   I     MIN     J      MIN   6      K      MIN   MAX     0 

 

  



 

 

105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

FORTRAN DRAG FORCE DECOMPOSITION 

POST PROCESSING CODE 



 

 

106

      program loads_post_gated_52_baseline 
c  
      parameter(icav=55) 
 implicit double precision (a-h,o-z) 
      dimension rpsumcav(icav),rpsumtot(icav), 
     1vissum(icav),vissumtot(icav) 
      dimension xsave(icav) 
c 
c 
 open(7,file='vulcan.loads.tec') 
      rewind(7) 
c 
c 
      rpsum=0. 
      vis=0. 
c 
c 
      do 1000 i=1,55 
c 
      irun=20 
c 
      if(i.eq.1.or.i.eq.2) irun=20 
      if(i.eq.55) irun=20 
      iside=3 
      if(i.eq.1.or.i.eq.2.or.i.eq.55) iside=1 
c   
      rpsumcav(i)=0. 
      vissum(i)=0. 
c 
      do 1444 jj=1,iside 
c 
      jstart=6 
c 
      if(jj.eq.1) jstart=1 
      if(i.eq.3.and.jj.eq.2) jstart=1 
      if(i.eq.54.and.jj.eq.3) jstart=1 
      if(i.eq.20.and.jj.eq.3) jstart=1 
      if(i.eq.21.and.jj.eq.2) jstart=1 
      if(i.eq.37.and.jj.eq.3) jstart=1 
      if(i.eq.38.and.jj.eq.2) jstart=1 
      read(7,*) idum1,idum2,idum3,idum4 
      do 999 j=jstart,irun 
c 
      read(7,*) xdum1,xdum2,xdum3,xdum4,rp,xdum6,xd um7, 
     1xdum8,xdum9 
      rpsumcav(i)=rpsumcav(i)+rp 
      vissum(i)=vissum(i)+xdum7 
 999  continue 
c 
 1444 continue 
c 
      rpsum=rpsum+rpsumcav(i) 
      vis=vis+vissum(i) 
      rpsumtot(i)=rpsum 
      vissumtot(i)=vis 
      xsave(i)=xdum1 
 1000 continue 
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c 
      do 2000 i=1,55 
      write(8,*) i,xsave(i),rpsumcav(i),vissum(i), 
     1rpsumtot(i),vissumtot(i) 
 2000 continue 
c 
      stop 
      end 
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