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ABSTRACT 

 

 The ability to predict the mechanical properties of engineering materials is crucial 

to the manufacturing of advanced products. In the aerospace industry, Ti-6Al-4V is 

commonly used to build structures. Any deviation from the alloy’s standard properties 

can prove detrimental. Thus, the compositional integrity of the material must be 

controlled.  

 The ability to directly build and repair large, complicated structures directly from 

CAD files is highly sought after. Laser Metal Deposition (LMD) technology has the 

potential to deliver that ability. Before this process can gain widespread acceptance, 

however, a set of process parameters must be established that yield finished parts of 

consistent chemical composition. This research aims to establish such a set of parameters.  

 Design of Experiments was utilized to maximize the information gained while 

minimizing the number of experimental trials required. A randomized, two-factor 

experiment was designed, performed, and replicated. Another set of experiments (nearly 

identical to the first) was then performed. The first set of experiments was completed in 

an open environment, while the second set was performed in an argon chamber. Energy 

Dispersive X-Ray Spectroscopy (EDS) was then used to perform a quantitative 

microanalysis to determine the aluminum level in each sample. Regression analysis was 

performed on the results to determine the factors of importance.  Finally, fit plots and 

response surface curves were used to determine an optimal parameter set (process 

window). The process window was established to allow for consistent chemical 

composition of laser deposited Ti64 parts. 
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1. INTRODUCTION 

 

1.1. OVERVIEW 

Laser Metal Deposition (LMD) shows great promise for directly producing metal 

parts from Computer Aided Design (CAD) files [1]. LMD has the potential to produce 

parts which are fully dense and net shape [2]. Many industries have seen the potential 

impact of LMD technology in their respective fields. One of these industries is the 

aerospace industry. Within this industry, large titanium structures are often manufactured 

and used in the production of air vehicle platforms. The ability to directly manufacture 

and repair these structures could greatly reduce both the time and cost normally 

associated with current aerospace manufacturing practices.  

The most common aerospace structural titanium alloy is Ti-6Al-4V (Ti64) [3]. If 

any manufacturing process is to gain widespread acceptance and commercialization 

within the aerospace industry, it must have well-known, documented processing 

parameters for Ti64. The parameters must be able to produce parts with sufficient 

dimensional accuracy, surface finish, and aesthetic qualities. However, the process must 

also be able to produce parts with proper chemical composition.  

The occurrence of chemistry changes in materials during processing is not a new 

concept. One of the more common manufacturing processes is casting. In the casting 

process material is heated until it transitions to a liquid state. Once the material has 

reached a liquid state, it is poured into a mold and allowed to solidify. During the casting 

of metals, it has been found that holding an alloy at a liquid state for extended periods of 
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time can result in a reduction in the percentage of various elements within an alloy. This 

phenomenon is known as ‘fading’. The effect of fading in casting of different alloys is 

well known [4][5].  There are several potential causes of fade loss in castings. The losses 

could be the result of elements settling during the holding period. The losses could also 

be caused by oxidation of elements which in turn could rise to the surface of the casting 

as slag. A third potential cause could be evaporation. Regardless of the mechanism for 

loss, the losses have been established in previous work. 

Another process which induces changes in material composition during 

processing is electron beam welding. Electron beam welding has gained a lot of 

popularity for its ability to produce very narrow, deep penetration welds. These deep 

penetration welds are produced by the electron beam’s ability to produce a cavity or 

‘keyhole’ in the material to be welded. This cavity is formed, and maintained by the 

vaporization of metal [6]. This vaporization of metal is not only known, but is a necessity 

for the process. The fact that these losses are occurring lends to the idea of changes in 

chemical composition. The vaporization of elements within an alloy are likely to occur at 

different rates. This fact is what leads to the idea of compositional changes. The idea of 

elements vaporizing at different rates, or preferential vaporization, will be discussed in 

the following paragraphs. 

 The nature of many thermal processes is such that they can induce preferential 

vaporization when depositing certain alloys. Ti64 is one alloy which has experienced 

these losses during processing. Ti64 has been shown to lose between 10 wt% and 15 wt% 

of the original aluminum content during electron beam (Ebeam) deposition processes [3]. 

This preferential vaporization is due to the fact that aluminum has a high vapor pressure 
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with respect to titanium and vanadium [3]. Vapor pressure is an important factor with 

Ebeam deposition since the process is performed in a vacuum. With the reduced pressure 

experienced in a vacuum, the temperature at which the element will transition from liquid 

to gas is lowered. This is analogous to cooking at high altitudes, where the atmospheric 

pressure is lower, water boils at a lower temperature. This lower temperature makes it 

more difficult to cook food since the water, and food, don’t get as hot as they would at 

lower altitude (and lower pressure).  

The focus of this work, LMD, is similar in concept to Ebeam deposition and both 

processes are analogous to welding. In welding processes a heat source is used to heat a 

plate, creating a melt pool. Filler metal is then added to the melt pool to create a weld 

bead. Ebeam deposition and LMD both use a heat source to heat a plate and create a melt 

pool. Both processes also add filler metal to the melt pool to build parts. Although both 

processes use a heat source and add filler metal, the heat sources are considerably 

different. Ebeam deposition uses a high power, focused electron beam to heat the 

substrate. The nature of the electron beam is such that it acts to ‘drill’ a hole in the 

substrate, creating a relatively large interaction volume, and vaporizing material in the 

process. LMD systems use a high power laser to provide the heat source. The laser tends 

to act primarily on the surface of the substrate, penetrating to a depth of a few 

nanometers.  

An additional difference between Ebeam deposition and LMD lies in the 

processing environment. As mentioned previously, Ebeam deposition occurs inside of a 

vacuum chamber. LMD however, occurs in an inert environment at atmospheric pressure. 

And, as mentioned earlier, the reduced pressure in a vacuum would lower the temperature 
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at which the aluminum would begin to vaporize. Conversely, since LMD is performed at 

atmospheric pressure, the temperature required to vaporize aluminum would be higher.  

  The differences mentioned above could cause Ebeam and LMD processes to 

behave differently with regard to evaporative losses. Additionally, the fading losses 

which occur in casting, which were discussed previously, while not directly applicable to 

the LMD process, do serve to illustrate the effects that can be caused by holding an 

element in its liquid state for extended periods of time. A major difference between 

holding in casting and the LMD process is the time in which the material is held in its 

liquid state. The hold time in the casting studies mentioned earlier, ranged from several 

minutes to several hours. In LMD however, the time in which the metal is held in its 

liquid state is on the order of milliseconds.   

The purpose of the discussion to this point has been to illustrate the fact that other, 

similar manufacturing processes experience chemical losses during processing. The 

mechanism for the losses may be different, and as pointed out in the previous discussion 

there are major inherent differences between the processes. However, the fact that these 

losses occur in similar processes is the basis for this work. Although it is believed that 

LMD processes will experience some aluminum loss during processing. It is not known 

to what extent the losses occur, or if there is any measurable loss at all. 

The belief that the LMD process likely experiences some aluminum loss during 

processing is based upon a couple of factors. The first factor is one that was discussed at 

length previously; the fact that other similar processes experience losses through various 

mechanisms. Another factor is due to observations that have been made during previous 
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LMD processing. It has been noticed that while depositing different alloys, Ti64 

included, an oxide layer appears on equipment and tends to coat the inside of the 

deposition chamber. It is believed that this oxide layer may be due to elements oxidizing 

during the process and escaping from solution.  

These before mentioned losses are likely the result of extremely high 

temperatures experienced during the deposition process. As mentioned earlier, vapor 

pressure has been linked to evaporative losses in Ebeam deposition. At atmospheric 

pressure pure elements will tend to evaporate at their boiling point, since at that 

temperature the vapor pressure is equal to the atmospheric pressure. However, when 

considering alloys the relationship becomes much more complicated. The temperature 

required for the element to separate from solution and escape into the atmosphere through 

vaporization is likely much higher. Table 1.1 lists the alloying elements of Ti64 and their 

respective melting and boiling points [7][8][9][10]. 

 

Table 1.1. Melting and boiling points of Ti64 alloying elements. 

Element Melting Point (°C) Boiling Point (°C) 

Titanium 1668 3287 

Aluminum 660.3 2520 

Vanadium 1910 3407 

Ti64 1604-1660 
   

 

 During the LMD process, the temperatures often hover between 2000° C - 2200° 

C. The fact that the peak process temperature remains at a high level throughout the 
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course of deposition is believed to accelerate the evaporative losses. These evaporative 

losses are what this work seeks to minimize. Changes in the chemical makeup created by 

these conditions can adversely affect both the mechanical properties of the alloy and the 

structures created from it. These changes can be detrimental to the integrity of the 

structures [3]. Figure 1.1 illustrates the temperature dependence on the rate of 

evaporation of aluminum, titanium, and vanadium from liquid Ti-6Al-4V. This figure 

was created through the construction of a model. This model was based on not only the 

Langmuir equation but also thermodynamic estimates of the activity coefficients [11]. 

This illustration is meant to provide a visual representation of the evaporation rates of 

titanium (Ti), aluminum (Al), and vanadium (V). 

In order to prevent the adverse effects caused by a change in chemistry, it is 

imperative to determine a set, or a range, of optimal process parameters (process 

window). This process window will allow for minimization of aluminum loss, and 

mitigate the risk inherent with such losses. The purpose of this research was to 

investigate the relationship between two key LMD process parameters and the resulting 

aluminum content of the deposit. Both energy and feed rate were the investigated 

parameters. Energy was measured per unit length in Joules per millimeter (J/mm).  The 

feed rate was measured in millimeters per minute (mm/min). The ability to relate these 

parameters to aluminum loss is paramount for the future commercialization of the LMD 

process. Establishing this relationship will help create structures of acceptable chemical 

makeup. Additionally, quantifying these relationships will help in the development of 

analytical models used to simulate LMD processes. These models will aid in predicting 
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the composition of deposits. These predictions could prove very useful in the design and 

process planning stages of product development. 

 

 

 

Figure 1.1. Evaporation rates of Ti64 alloying elements. 
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Design of Experiments (DoE) was employed to identify the critical process 

parameters. The experiment was then performed in the Laser Aided Manufacturing 

Process (LAMP) Lab at Missouri University of Science and Technology (Missouri S&T). 

This study utilized the 1 kW Nuvonyx Diode Laser in the LAMP Lab. After the 

experiment was conducted, x-ray microanalysis was performed on the specimen to 

quantify the amount of aluminum present in the samples. After the microanalysis was 

completed, a regression analysis was performed on the results generating fit plots and 

response surface curves for optimal parameter set identification 

1.2. LASER METAL DEPOSITION 

 Blown Powder Laser Metal Deposition (LMD) is a process in which a laser is 

used to heat a substrate. Metal powder particles are then blown into the melt pool. This 

process is normally completed in a continuous manner, with many layers being deposited 

on top of each other to create a fully dense structure [12]. Figure 1.2 depicts a generic 

LMD system. The direction of travel indicated in the figure corresponds with the traverse 

feed rate factor investigated in this research. The energy factor (which was investigated) 

is represented by the laser beam (depicted in the figure). The powder particles are 

representative of the powder flow rate (described in the following section). Figure 1.3 is a 

generic representation of the LMD system in use in the LAMP Lab at Missouri S&T, and 

Figure 1.4 is an image of the actual LMD system used for this experiment in the LAMP 

Lab. 
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Figure 1.2. Generic Representation of a LMD System [13]. 

 

 

  

 

Figure 1.3. Generic Representation of LAMP Lab's LMD System. 
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Figure 1.4. LAMP Lab's LMD System. 

 

 

 Work has been done to establish a process window in which Ebeam deposition 

can be efficiently performed to minimize or control aluminum loss [3]. However, no 

published work could be found by the author of this work, detailing the establishment of 

a process window for laser deposition of Ti64. This work seeks to make an original 

contribution to the field of advanced manufacturing. In particular, a process window 

which will allow for optimized laser deposition of Ti-6Al-4V will be established. 
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2. EXPERIMENTAL PROCEDURE 

 

 

2.1. DESIGN OF EXPERIMENTS 

 One must understand the cause and effect relationships between both the inputs to 

the process and the outputs from the process to fully understand the way that process 

works. For this to occur, one must observe the process while intentionally changing the 

inputs to observe the changes in output. From these observations, an empirical model can 

be created to define the process [14]. Design of Experiments (DoE) is a methodical 

approach by which to accomplish this in an efficient manner. DoE allows for efficient 

planning and conducting of experiments. Additionally, DoE provides tools for analyzing 

the resulting data so that valid and objective conclusions are obtained [14].  

 A two-level, two-factor design was chosen for this research. A midpoint was also 

used to check for linearity. For the purpose of this work, the variables of energy and 

traverse feed rate were considered to be the most likely factors affecting the aluminum 

content of the deposits. Therefore, these two variables were chosen as the design factors 

to be varied. Another variable encountered in LMD is powder flow rate. This was 

negated by varying the powder flow rate proportionally to the feed rate so that the total 

amount of powder blown into the deposit remained approximately constant. 

 It was deemed important to be able to apply the results of this work across a wide 

scope of Ti64 deposits with varying geometries. The experimental factors were selected 

in such a way as to reduce the effects imposed by varying geometries. While this is 

impossible to do in reality, it was important to consider while designing the experiment. 
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Thus, the factor of energy was selected in terms of energy per unit length of linear 

deposit, or J/mm. Observing the effect of energy in this manner was the best way to gain 

results less dependent upon geometry.  

 Table 2.1 represents the experimental design constructed for the purpose of this 

work. As previously mentioned, the selected design called for high-low combinations 

with a center point. This design resulted in the four corners and center point in Table 2.1.  

 

  

Table 2.1. Experimental Parameter Sets. 

  
Energy (J/mm) 

  
85 97.5 110 

Feed 
(mm/min) 

375 X 
 

X 

455 
 

X   

535 X   X 

 

 

2.2. EXPERIMENTAL SETUP 

 The experiments performed in the course of this work were completed on a LMD 

system consisting of the following: 

 1.0 kW Nuvonyx Diode Laser 

 Bay State Technologies Model 1200 Powder Feeder 

 Precitec YC50 Cladding Head 

 National Instruments PXI-8195-RT Real Time Controller 
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 The equipment is part of the LAMP Lab at Missouri S&T.  

 These experiments were performed in two blocks due to the different deposition 

environments available at Missouri S&T. The standard deposition environment for Ti64 

(at Missouri S&T) is inside an argon chamber. It was determined that the best, most cost-

effective method for accomplishing this chamber was with turkey bags. These bags are 

the standard bags used in households to cook turkeys. They attach easily both to the base 

of the CNC table and to the top of the laser nozzle, creating a quick, flexible, easy to 

change/repair, cost-effective argon chamber in which to perform deposition.   

 Figure 2.1 is a photo of an experiment being performed inside a turkey bag. The 

metal shroud surrounding the nozzle helped to protect the bag from powder particles that 

might bounce off of the melt pool. The waves (running from the top of the picture 

towards the bottom), just to the left of center, are reflections of light off of the turkey bag. 

These waves are caused by wrinkles in the bag.  

The other deposition environment (and experimental block) used in this work was 

an argon flood (through an aluminum shroud). This method involved placing an 

aluminum shroud around the laser nozzle. The shroud accepted gas fittings on the top, 

allowing argon to be pumped into the shroud. The argon was then expelled through the 

bottom of the shroud, flooding the build area with argon gas. This method devoured large 

amounts of argon. Depending upon the geometry to be deposited this method is 

sometimes necessary.   

Figure 2.2 is a photo of deposition being performed with the shroud attached. The 

white hoses attached to the top of the shroud are the argon gas feeder lines. 
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Figure 2.1. Deposition inside of a turkey bag. 

 

 

  

Figure 2.2. Deposition being performed with the shroud attached. 
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2.3. EXPERIMENTAL DEPOSITION 

 The metal powder used for this experiment was a Ti-6Al-4V (Ti64) alloy with a 

size distribution of -60 +120 mesh. The powder was deposited onto Ti64 plates 

(substrates) measuring approximately 0.5” x 2.0”. The substrates were all engraved with 

a unique ID number, from 1 to 22, to allow for easy tracking during processing and 

analysis. The deposition for this experiment was performed for one day. All deposits 

were thin walls (the width of the deposit consisted of a single track). A total of 50 layers 

were deposited on each substrate. Each layer was approximately 320 µm thick and 25 

mm in length. As mentioned in section 2.1, the total amount of powder delivered to the 

deposit was held constant at approximately 24.13 g. This was accomplished by varying 

the powder flow rate proportionally to the traverse feed rate. Subsequently delivering an 

amount of powder that was equal per unit length, over all deposits. 

2.3.1. Deposition with a Turkey Bag. All of the experimental runs using the 

turkey bag were completed first. The first deposit was attempted on substrate 1. The 

deposit failed, however, due to a misalignment of the laser nozzle. This was corrected, 

and the first deposit was repeated on substrate 21. The remaining turkey bag deposits (2-

10) were completed without incident.  

Figure 2.3 is deposit 2 after completion. Table 2.2 lists the run-order 

corresponding to each substrate number and parameter set. This list covers all deposits 

completed with the turkey bag. 
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Figure 2.3. Deposit performed on substrate 2. 

 

 

Table 2.2. Experimental run order for the turkey bag. 

Run 
Order 

Substrate 
# 

E 
(J/mm) 

F 
(mm/min) 

M (g/min) 
[Ti] 

1 21 97.5 455 8.78 

2 2 110 375 7.24 

3 3 110 535 10.33 

4 4 97.5 455 8.78 

5 5 110 375 7.24 

6 6 85 535 10.33 

7 7 85 375 7.24 

8 8 110 535 10.33 

9 9 85 375 7.24 

10 10 85 535 10.33 
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2.3.2. Deposition with a Shroud. After the turkey bag deposits were completed, 

the shroud deposits were run. The shroud deposits began with run 11 and proceeded 

without problems until run 18. During run 18, the powder feeder ran out of powder, 

causing the build to fail. The powder feeder was reloaded with powder, and run 18 was 

repeated successfully on substrate 22. The remaining deposits (19 and 20) were 

completed without issue. Figure 2.4 is deposit 11 after completion. Table 2.3 lists the run-

order of each shroud substrate with the corresponding parameter set. 

 

 

 

Figure 2.4. Deposit performed on substrate 11. 
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 Table 2.3. Experimental run order for the shroud. 

Run 
Order 

Substrate 
# 

E 
(J/mm) 

F 
(mm/min) 

M (g/min) 
[Ti] 

11 11 97.5 455 8.78 

12 12 110 375 7.24 

13 13 110 535 10.33 

14 14 97.5 455 8.78 

15 15 110 375 7.24 

16 16 85 535 10.33 

17 17 85 375 7.24 

18 22 110 535 10.33 

19 19 85 375 7.24 

20 20 85 535 10.33 
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3. QUANTITATIVE MICROANALYSIS 

 

 Energy Dispersive X-Ray Spectroscopy (EDS) was performed to quantify the 

amount of aluminum present in each deposit. The samples were prepared for analysis 

using standard metallographic techniques. A matrix of measurements was then taken at 

different points on each deposit. A total of 70 data points were collected over the 20 

samples. This portion of the research was conducted in the Advanced Material 

Characterization Lab (AMCL) at Missouri S&T.  

 

3.1. SAMPLE PREPARATION  

3.1.1. Machining of Deposits. The deposits were first machined to a more 

manageable size to reduce the time spent polishing samples. The deposits were machined 

along the long axis until reaching a point just before the apparent center point of the short 

axis. Two cuts were then made with a saw, each approximately ¼” from the center of the 

deposit. These cuts ran from the top of the deposit to the substrate, creating a section 

approximately ½” wide. The deposit was then removed from the substrate with a final 

saw cut, freeing both the ½” coupon (test section) and the remainder of the deposit.  

After the deposit was removed, the substrate, the coupon, and the remainder of the 

deposit were all placed into individual storage devices allowing for easy identification 

and separation of coupons throughout the course of the work.  
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Figure 3.1 is a diagram of the coupon section to be removed from substrate 2. The 

X axis corresponds to the long axis, the Y axis corresponds to the short axis, and the 

hatched section in the middle is where the coupon was taken from. 

 

 

Figure 3.1. Schematic of the coupon section to be removed from the deposit made on 

substrate 2. The hatched section represents the coupon section. 

 

 

 3.1.2. Polishing of Coupons. After machining was complete, the coupons were 

polished to a mirror finish. This polishing was necessary to perform EDS analysis; EDS 

works best when the surface to be analyzed is completely flat and free of scratches. 

Polishing was performed on an automatic rotary polisher and the polishing consisted of 
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two phases: grinding and polishing. The first phase involved the use of Silicon Carbide 

(SiC) abrasives. The SiC grit size ranged from 120 to 1200, with the smaller grit being 

the more abrasive and first used. Table 3.1 shows the entire schedule used to grind the 

coupons. 

 

Table 3.1. Grinding schedule for Ti64 coupons. 

GRINDING 
SiC Grit 

Size 
Time (s) 

Wheel 
Speed 
(RPM) 

Pressure 
(psi) 

1 120 180 300 40 

2 240 180 300 40 

3 400 180 300 40 

4 600 180 300 40 

5 800 180 300 40 

6 1200 180 300 40 

 

 

 After grinding was complete, the coupons were polished to a mirror finish. This 

was completed with polishing compounds. These compounds were applied to a polishing 

cloth mounted in the automatic polisher. Two different polishing compounds were used, 

sequentially. Table 3.2 details the entire polishing schedule that was followed in the final 

polishing. Figures 3.2 and 3.3 show coupon 21 after polishing.  Note the reflection in 

Figure 3.3 of the camera lens and flashbulb, indicating a mirror finish on the coupon. 
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Table 3.2. Polishing schedule for Ti64 deposits. 

POLISHING 
Polishing 

Compound 
Time (s) 

Wheel 
Speed 
(RPM) 

Pressure 
(psi) 

1 9MM 300 250 30 

2 
Colloidal 

Silica 
300 150 15 

 

 

 

 

Figure 3.2. Coupon 21 after polishing. 
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Figure 3.3. Coupon 21 after polishing. Note the reflection of the camera lens and flash 

bulb, indicating a mirror finish. 

 

 

3.2. ENERGY DISPERSIVE X-RAY SPECTROSCOPY (EDS) 

 The quantitative analysis for this work was completed on an FEI Helios NanoLab 

600 Scanning Electron Microscope (SEM). The scope was equipped with an EDS gun 

producing a 50 mm spot size. A standard-based quantitative analysis was performed. The 

standard-based analysis was chosen because it can produce a higher degree of certainty. 

This standard was purchased from an outside vendor. The scope was calibrated 

immediately before any measurements were taken. This calibration was completed with 

the standard and the accompanying compositional specifications (provided by the 

vendor).  



24 

 

 The analysis was run over the course of several days. In order to better determine 

where to take measurements from when in the SEM, a series of lines were drawn on the 

coupons with a Sharpie pen. The lines denoted the center section of the coupon as well as 

the bottom, middle, and top. Three to five coupons were mounted onto a sample holder, 

along with the standard, and then loaded into the SEM. The SEM was then focused and 

stigmated. The initial calibration using the standard was then completed. Once calibration 

was complete, the coupons were located, one at a time, and a series of measurements was 

taken. These measurements were taken along the centerline of the coupon at three 

locations: bottom (B), middle (M), and top (T). Bottom corresponds to the section that 

was attached to the substrate initially. This process was repeated for all 20 deposits. The 

parameters used for the EDS analysis were as follows: 

 Accelerating Voltage = 15 kV 

 Beam Current = 1.4 nA 

 Working Distance = 4 mm 

 Process Time = 2 sec 

 Live Time = 100 sec 

The normalization routine forces the weight percent of all elements considered in the 

EDS analysis to total 100%. This routine can skew the results by adding an additional 

weight percent that is not really present. Thus, the normalization was turned off.  

The EDS analysis was conducted without issue. A total of 70 data points was 

collected. Figure 3.4 is the SEM (and related hardware) that was used to complete this 

work. 
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Figure 3.4. SEM housed in the AMCL at Missouri S&T.  
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4. RESULTS AND DISCUSSION 

 

 The data produced by the EDS analysis was gathered into an excel file, allowing 

the data to be easily organized. During analysis, the average aluminum levels were found 

to be near what one might expect them to be (6.08 %). Considerable variation did exist, 

however, among the deposits. Occasionally even among different locations (sometimes 

different locations very close to one another) on the same deposit. This finding was to be 

expected, as this variation was the focus of this study. In addition, the variation within a 

deposit was also investigated to see if there is any correlation between location within the 

deposit, and aluminum content. 

 The statistical analysis for this work was performed in SAS (Statistical Analysis 

Software). Two different statistical models were built during this analysis. The main 

model was built to test for the main effects of energy and feedrate, the interaction 

between the two, blocking effect (turkey bag, shroud), and location (of the measurement, 

B, M, T). A secondary model was built to test for run order effects. This was done to 

account for any drift that may have occurred during the deposition process. It was 

necessary to build a separate run order model due to the number of degrees of freedom 

required for the analysis. The blocking effect was examined to determine whether or not 

any statistical significance tied the method of the deposit (turkey bag or shroud) to the 

resulting aluminum content.  The location was checked to see if there was any significant 

difference in aluminum content based upon the location in the deposit (Bottom, Middle, 

and Top). Run order was tested separately to account for any variability in the machine 

and the significance of any system drift on aluminum content. 
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 The secondary model did show some significance tied to the run order. Since the 

run order was completely randomized, this was likely due to the deposition system 

drifting throughout the process. Drifting can be the result of misalignments which 

progressively get worse throughout the course of several deposits. This progression often 

leads to subtle changes in powder delivery and energy input to the deposit. While there 

was a slight significance tied to this factor, it was minimal when compared to the main 

effects of energy and feedrate. For that reason it was removed from the model to allow 

for a more detailed examination of the experimental variables. 

 The main statistical model built for data analysis consisted of two blocks: turkey 

bag, and shroud. This model tested two experimental variables (Energy and Feedrate) and 

examined the aluminum levels at different locations along the deposit. One response 

variable (aluminum content) was considered. Table 4.1 lists both the class and level 

information for the experiment. Additionally, the total number of observations is shown.  

 

Table 4.1. Class level information for the statistical model. 

Class Levels Values 

block 2 shroud turkeybag 

location 3 b m t 

energy 3 85 97.5 110 

feedrate 3 375 455 535 

Number of Observations 
Read 

70 

Number of Observations 
Used 

70 
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Table 4.2 lists the overall ANOVA for this experiment. Notice the ‘P’ value in the 

far right column. This number represents the significance level of the experiment. In 

general, a significance level of 0.05 or smaller, indicates that the model has a very small 

chance to produce a Type 1 error. The ‘P’ value (shown below) 0.0023 corresponds to a 

confidence level of 99.77%. This value indicates a high level of confidence in the 

statistical model created for this work.  

 

Table 4.2. Overall ANOVA for the statistical analysis. 

Source DF Sum of Squares Mean Square F Value Pr > F 

Model 7 6.52404756 0.93200679 3.66 0.0023 

Error 62 15.76992958 0.2543537     

Corrected Total 69 22.29397714       

 

 

The data that was used in this statistical model was unbalanced (there weren’t an 

equal number of observations for all treatment combinations). Therefore, a Type III Sum 

of Squares (SS) was used to analyze the results of this model. In addition to the main 

effects of energy and feedrate, the interaction between the two was also included. Table 

4.3 lists the results of the ANOVA. When reading an ANOVA table for an experiment 

with interactions, the first effect to test is the interaction effect. Note the ‘P’ value (shown 

below) for the interaction between energy and feedrate (energy*feedrate) in the table. As 

a general rule of thumb if the ‘P’ value (significance level) is less than or equal to 0.05 

then the interaction effect is very significant and the main effects involved in the 

interaction need not be tested individually. The ‘P’ value (shown below) 0.0008 is nearly 
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two orders of magnitude lower than the rule of thumb. Therefore, it can be stated that the 

interaction effect between energy and feedrate is very statistically significant. This 

interaction effect is instrumental in controlling the final aluminum content of Ti64 

deposits made using the LMD system in the LAMP Lab.  

Experimental block and deposit location were evaluated in addition to energy and 

feedrate. As shown in Table 4.3, the significance level for both block and location is very 

high (0.6609 and 0.467, respectively) indicating that there is no statistical significance 

between either of these factors and the resulting aluminum content in the deposits. 

 

Table 4.3. Type III ANOVA for the statistical model built for this experiment. 

Source DF Type III SS Mean Square F Value Pr > F 

block 1 0.04940467 0.04940467 0.19 0.6609 

location 2 0.39208508 0.19604254 0.77 0.467 

energy 1 0.13041889 0.13041889 0.51 0.4766 

feedrate 1 1.19169442 1.19169442 4.69 0.0343 

energy*feedrate 1 3.13654547 3.13654547 12.33 0.0008 

  

 

 Upon completing the statistical analysis, it was necessary to examine the results 

further in order to establish an optimal parameter set. The word “optimize” can be very 

subjective, and is definitely relative. Therefore, it was determined that for this work an 

optimized solution set should consist of a range of process parameters (process window) 

which would allow for consistent chemical composition across deposits. This was 
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deemed optimal because consistent mechanical properties is a critical characteristic of 

any engineering material, and especially critical in aerospace structures.  

 To determine an optimal solution set, response surface plots were created. The 

surface plots used in this work were created using spline interpolation. Spline 

interpolation allows for smoothing of graphs by filling in missing data points through 

interpolation. Figures 4.1 and 4.2 are the response surface plots that were created for the 

entire data set. Figure 4.1 is displayed using SAS default settings of 45° rotation, and 70° 

tilt. Figure 4.2 is shown with 135° rotation and 80° tilt.  

 Notice the flat region in Figure 4.1, beginning at the top left corner and extending 

towards the middle. This region shows a band of parameter sets which produce deposits 

of consistent aluminum content. Figure 4.2 shows the region from a different angle, 

allowing for easy visualization of the optimal solution set.  

The results shown in the figures below were very surprising. Conventional 

thinking dictates that as energy increases, feedrate must increase as well. This should 

help limit excess heat input into the build and prevent accelerated aluminum 

vaporization. The figures (shown below) indicate that, in fact, a slower, hotter build 

produces deposits with higher aluminum content. 
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Figure 4.1. Response surface plot of entire data set, shown with default rotation and tilt. 

 

 

Figure 4.2. Surface plot of entire data set, shown with 135° rotation, and 80° tilt. 
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 In order to further investigate potential solution sets, additional surface plots were 

created using just the turkey bag data, and just the shroud data. Surface plots of the turkey 

bag data are shown in Figures 4.3 and 4.4. Notice the flat spot in the top left corner of 

Figure 4.3. Figure 4.4 shows the same graph but with a 135° rotation and 80° tilt.  

In both of the turkey bag plots (shown below), a flat surface exists in which the 

optimal solution set resides. It is noted that the solution set for the turkey bag data is 

slightly larger and flatter than the overall solution set generated for the entire data set.  

 

 

Figure 4.3. Response surface plot of the turkey bag data with default rotation and tilt. 
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Figure 4.4. Response surface of turkey bag data with 135° rotation and 80° tilt. 

 

 

 Figures 4.5 and 4.6 below, show that optimal parameter sets for the shroud data 

are slightly less defined than in the overall and turkey bag plots. However, ¼ of the 

parameter space can be utilized with only ~ 4.4% variation in aluminum content. 

Therefore, consistent deposits could still be produced based on this model.  
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Figure 4.5. Response surface for the shroud data set with default rotation and tilt. 

 

 

Figure 4.6. Response surface for the shroud data with 275° rotation and 80° tilt. 
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 All of the response surface plots above depict a very surprising trend. The fact 

that the aluminum content is highest when the deposition is performed “slow and hot” 

(low feedrate and high energy) is counter to conventional thinking. As mentioned in 

section 1.1 and shown in Figure 1.1, as the temperature increases, evaporation rate 

increases as well. Conventional thinking would dictate that in order to keep the 

temperature down, one must increase the feedrate proportional to any increase in laser 

power. The fact that the results seem to indicate otherwise, was unexpected. 

One possible explanation for these results lies in the surface-area-to-volume ratio 

of the melt pool. Research has been done which closely links the ratio to the aluminum 

content in Ti64 deposits. It has been shown that as the ratio increases, aluminum loss 

increases as well [3]. This could help to explain the higher aluminum content achieved 

with the slow and hot parameter setting. By increasing the energy, and lowering the 

feedrate, a deeper, wider, melt pool is achieved. This increase in melt pool depth and 

width will cause the volume to increase, thereby decreasing the surface-area-to-volume 

ratio. This decrease in surface-area-to-volume ratio will cause a decrease in aluminum 

loss. 

 Also surprising was the apparent aluminum enrichment of the deposits. Before 

performing the deposition, Inductively Coupled Plasma mass spectrometry (ICP) analysis 

was performed on the powder. The ICP analysis reported the weight percent of aluminum 

in the powder at 6.00%. The results from the EDS analysis of the deposits indicated 

aluminum levels reaching as high as 7.17%. While this could be the result of error during 

the EDS analysis, another possible explanation is aluminum enrichment. The enrichment 

could be caused by the oxidation of titanium and possibly vanadium. This oxidation 
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could cause the amount of titanium and/or vanadium in the deposit to decrease, thereby 

increasing the amount of aluminum relative to the other two.  

 As mentioned before, another possibility for the inflated aluminum levels is EDS 

error. This error could be due to several factors. When performing EDS it is crucial that 

the analyzed surfaces are completely flat. This is the reasoning for polishing to a mirror 

finish, and removing all scratches. Even though the coupons were polished to a mirror 

finish, and no scratches were observed while in the scope, the coupons were still mounted 

onto stubs and placed into the SEM. The position of the coupons, while mounted to the 

stubs, likely left them in a position such that they weren’t exactly perpendicular to the 

electron beam and therefore not flat. Additionally, the standard and the coupons all need 

to be mounted at the exact same height in order to achieve the best results. As the 

coupons were mounted by hand to pen stubs, which were then mounted in the machine, it 

is likely that they were not all at the exact same height. This would also affect the results 

of the EDS analysis. Both of these factors are coupled with the inherent +/- 5% accuracy 

which is associated with this type of analysis. 

 ICP analysis was performed on three of the samples (#6, #10, #15) by an outside 

laboratory. This was done to verify the aluminum levels. The three samples were chosen 

based upon two main criteria. They were selected such that there was little variation in 

EDS measurements between the bottom, middle, and top of the deposits. This was done 

so that a sample wasn’t selected which had a large variation in aluminum content 

between two locations in the deposit. This selection was completed so that a more direct 

comparison could be made between the average aluminum content found by EDS 

analysis and the aluminum content found through ICP analysis. The second factor 
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considered when selecting the coupons to be analyzed was the average aluminum 

content. It was decided that it would be best to select samples such that one sample would 

have low aluminum content, one sample would have moderate aluminum content, and 

one sample would have high aluminum content. It was decided that the moderate and 

high samples should both be well over 6% aluminum, in order to better verify if 

aluminum enrichment was occurring. 

Table 4.4 shows a comparison between the average EDS results, and the ICP 

results from the three coupons that had ICP analysis performed on them. As shown below 

coupon 6 fell just outside the standard error range for EDS with a difference between 

EDS and ICP of ~5.4%. Coupon 10 fell well within the limits of EDS with a difference of 

~1.2%. Coupon 15 fell well outside the normal error limits for EDS with a difference of 

~18.2%. All three of the samples were found to have Al levels below 6%. Based upon 

these results and the inherent error, mentioned previously, associated with performing 

this type of analysis using EDS, a conclusion can be drawn that the inflated aluminum 

levels were likely due to EDS error. 

 

Table 4.4. Comparison of EDS and ICP results. 

Coupon 
# 

Average 
EDS 

Results  

ICP 
Results 

6 6.31 5.97 

10 5.88 5.95 

15 6.81 5.57 
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 The results indicating optimal, slow and hot conditions are not without validation. 

Dongare [15] found that Ti64 deposits created at conditions nearly identical to the slow 

and hot conditions presented here, yielded deposits of higher strength than deposits 

created with other parameter sets. Further, it has been found that increased aluminum 

content considerably increases the strength of titanium, and at levels below 7% Al, 

titanium alloys maintain good plasticity [16]. This would seem to suggest that the higher 

strength found by Dongare could be the result of higher Al content. The slow and hot 

conditions used here were nearly identical to conditions used by Dongare which produced 

the highest strength deposits.  

 Additional analysis of the three coupons that were sent out for ICP analysis was 

completed in order to see how well the ICP results matched up with the model predicted 

results for aluminum content. Table 4.5 lists the model predicted aluminum content and 

the aluminum content measured from the ICP analysis for coupons 6, 10, and 15. 

Coupons 6 & 10 were both produced with the parameter set consisting of low energy and 

high feedrate. The model predicted aluminum levels for coupons 6 & 10 do match up 

with the ICP results, with an error of approximately 1.2%. The model predicted result for 

coupon 15 however, does not match up well with the ICP results. The approximate error 

between model predicted results and ICP results for coupon 15 was 15%. Coupon 15 was 

produced with the parameter settings consisting of high power and low feedrate, or ‘slow 

and hot’ conditions.  

The ICP results have shown that two of the coupons have aluminum levels that 

match up well with the model, and that one does not. Further, since the surprising result 

drawn from this work was that the slow and hot conditions yielded deposits of higher 
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aluminum content and the ICP results indicate otherwise casts some doubt over the 

findings. However, ICP analysis was performed on only one of four coupons that were 

produced using the slow and hot conditions. Therefore, the ICP results can not 

completely in-substantiate the model, but they do draw into question the model’s validity. 

In order to further validate or in-substantiate the model, further ICP analysis should be 

done to gain a larger data set by which to make a more informed conclusion. 

 

Table 4.5. Comparison of model predictions and ICP results. 

Coupon # Model Predicted Results ICP Results 

6 5.90% 5.97% 

10 5.90% 5.95% 

15 6.40% 5.57% 
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5. CONCLUSIONS 

 

 An experiment was designed, performed, and analyzed in order to establish an 

optimal set of process parameters. This optimal parameter set will allow consistent 

chemical composition across Ti-6Al-4V deposits. 

 The experimental method produced data with a high level of statistical 

significance.  

 The statistical analysis showed that the interaction effect between energy and 

feedrate was extremely significant.  

 Because of the interaction significance, both energy and feedrate effects were 

significant. 

 There is no statistically significant difference between deposition in a turkey bag 

and deposition with a shroud on final aluminum content. 

 There is no statistically significant difference in aluminum content between the 

bottom, middle, and top of the deposits. 

 Maintaining Energy levels between 97.5 J/mm – 110 J/mm, and Feedrate levels 

between 375 mm/min – 455 mm/min, should allow for Ti64 deposits of consistent 

aluminum content. 

 Further ICP analysis should be completed on more of the coupons, to better verify 

the model. 
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APPENDIX 

 

Table A.1. Raw data obtained from the EDS analysis. 

Sample   Al Ti V Fe   
Height 

(in) 
Length 

(in) 
Width 

(in) 

1B 1 

REPLACED WITH # 21 1M 2 

1T 3 

2B 1 7.17 90.09 2.26 0.48   0.82 1.1 0.232 

2B-2 1 6.27 78.99 2.01 0.46         

2M 2 6.19 78.53 1.9 0.31         

2T 3 6.17 77.83 1.97 0.33         

3B  1 5.84 86.63 6.37 0.11   0.74 1.1 0.262 

3B-2 1 5.6 87.97 6.86 0.1         

3M 2 6.32 90.79 4.59 -0.12         

3T  3 5.05 91.08 -6.63 0.07         

3T-2 3 2.61 88.65 -11.54 0.11         

4B 1 6.43 90.89 1.17 -0.02   0.79 1.099 0.234 

4M 2 6.15 86.94 5.77 0.14         

4T 3 5.89 83.65 2.41 0.12         

5B 1 6 87.95 6.72 0.28   0.573 1.118 0.269 

5M 2 6.19 88.46 4.02 0.26         

5T 3 6.07 90.55 2.51 0.009         

6B 1 6.33 90.76 4.12 0.3   0.757 1.096 0.235 

6M 2 6.29 90.19 4.55 0.28         

6T 3 6.32 90.15 4.48 0.33         

7B 1 6.09 89.37 4.23 0.31   0.787 1.088 0.199 

7B-2 1 5.64 83.69 3.91 0.18         

7B-3 1 5.63 83.46 4.2 0.24         

7M 2 5.95 86.3 4.38 0.25         

7M-2 2 5.9 85.69 4.16 0.24         

7T 3 6.06 88.3 4.4 0.23         

7T-2 3 5.96 87.77 4.31 0.27         

8B 1 6.31 90.97 4.29 0.25   0.712 1.109 0.26 

8M 2 6.34 90.8 4.7 0.35         

8T 3 6.42 90.92 4.71 0.34         

9B 1 6.25 86.67 4.37 0.22   0.779 1.089 0.196 

9M 2 6.18 85.99 4.21 0.21         

9T 3 6.16 85.61 4.18 0.001         

10B 1 5.81 87.01 3.94 0.32   0.74 1.1 0.227 
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10M 2 5.92 87.92 4.49 0.27         

10T 3 5.92 88.11 4.57 0.25         

11B 1 5.99 85.22 3.7 0.24   0.679 1.098 0.226 

11M 2 6.15 87.76 3.89 0.27         

11M-2 2 6.23 87.82 3.78 0.31         

11T 3 6.4 91.24 3.96 0.34         

12B 1 6.74 91.81 3.95 0.3   0.633 1.1 0.235 

12M  2 6.66 92.68 4.02 0.33         

12M-2 2 6.65 91.17 3.92 0.33         

12T 3 5.98 88.19 4.1 0.35         

13B 1 5.94 86.89 4.51 0.28   0.591 1.109 0.264 

13M 2 6.15 89.25 4.46 0.25         

13T 3 6.03 90.3 4.66 0.28         

14B 1 6.61 93.53 4.03 0.37   0.562 1.081 0.212 

14M 2 6.55 91.86 4.03 0.33         

14T 3 6.69 93.78 3.91 0.45         

15B 1 6.9 94.89 3.77 0.26   0.551 1.114 0.241 

15M 2 6.74 92.13 4.06 0.35         

15T 3 6.78 92.72 3.95 0.37         

16B 1 6.24 86.36 4.25 0.22   0.501 1.096 0.224 

16M 2 6.15 84.02 4.18 0.16         

16T 3 6.13 84.81 3.66 0.26         

17B 1 5.79 76.37 1.71 0.18   0.536 1.092 0.198 

17M 2 5.78 76.23 1.84 0.2         

17T 3 6.16 86.73 4.24 0.18         

18B 1 

REPLACED WITH # 22 18M 2 

18T 3 

19B 1 5.51 82.65 3.8 0.22   0.667 1.091 0.198 

19B-2 1 5.54 82.44 3.68 0.22   0.667 1.091 0.198 

19M 2 5.65 83.7 4.14 0.18         

19T 3 5.81 86.82 3.57 0.14         

20B 1 5.85 77.19 1.72 0.15   0.686 1.104 0.222 

20M 2 5.93 78.1 1.86 0.15         

20T 3 5.94 78.56 1.92 0.19         

21B 1 6.57 93.3 4 0.4   0.775 1.1 0.25 

21M 2 6.55 92.58 4.01 0.58         

21T 3 6.68 95.46 3.62 0.53         

22B 1 5.45 73.99 1.72 0.16   0.672 1.1 0.253 

22M 2 5.64 76.98 1.87 0.12         

22T 3 5.85 78.56 1.87 0.2         
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Totals   425.84 6084.77 238.95 17.33         

                    

    Al Ti V Fe         

Average   6.08 86.93 3.41 0.248         
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